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Resumen

Esta tesis se centra en el estudio de las correlaciones de vacío en el espacio y el tiempo

y en el uso de distintas técnicas para explorarlas: modelos de detección, desde un punto de

vista teórico, y simulaciones cuánticas, desde una perspectiva más práctica. A lo largo de

esta exploración hemos encontrado resultados que podemos situar en tres categorías, que se

corresponden a su vez con las tres partes en que la tesis está dividida. En la primera parte

hemos estudiado modelos de detección cuántica, y más en concreto, modelos de detectores para

el análisis de estados realistas, localizados. También en esta parte hemos propuesto una

simulación en laboratorio del comportamiento teórico de uno de estos modelos, el detector

Unruh-DeWitt (UDW), en el caso de ser acelerado en presencia de un campo monomodo.

En la segunda parte de la tesis nos hemos centrado en el estudio de detectores en el régimen

más allá de la aproximación de onda rotante, descubriendo la aparición de comportami-

entos muy interesantes, a priori no esperados. En la tercera y última parte de la tesis,

estudiamos las correlaciones de vacío, comenzando por una propuesta experimental para

extraer un cierto tipo de ellas y concentrándonos a continuación en la interesante cuestión

de la localización de estados, desarrollando un formalismo de cuantización local en el que

se busca llegar al concepto de “partícula perfectamente localizada” de forma constructiva,

y analizar su problemática. Finalmente, apoyándonos en los resultados y la comprensión

alcanzada a lo largo de la tesis, estudiamos cómo estás partículas locales pueden ser libera-

das al desplegar rápidamente un espejo en el medio de una cavidad, y proponemos una vía

experimental para observar este nuevo efecto, de tipo Casimir-dinámico.

Este resumen pretende motivar el interés en estos aspectos, inscribirlos en un marco más

amplio y finalmente descender al detalle para pormenorizar en los resultados alcanzados y

su relevancia.

La computación cuántica: Un nuevo paradigma

La teoría de la información clásica fue uno de los pilares más importantes en el desarrollo

de las tecnologías de la información y la telecomunicación de hoy día. Sus méritos son innu-
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merables: la caracterización de los canales de comunicaciones, el descubrimiento de límites

fundamentales para la capacidad de canal, la comprensión rigurosa de la compresión, la

codificación y la interacción entre señal y ruido son ejemplos simples que han extendido

los horizontes del procesado de la información mucho más lejos de lo que podríamos haber

imaginado hace tan sólo unas décadas.

Entre sus hallazgos más importantes, destaca el teorema de Shannon-Hartley, un res-

ultado que limita la tasa máxima a la que se puede transmitir información sobre un canal

(la capacidad de canal C) cuando se dispone de un ancho de banda limitado B y existe una

cierta relación señal a ruido (S/N :

C = B log2

(
1 +

S

N

)
. (0.0.1)

Las tecnologías de la comunicación de hoy día operan al borde de ese límite y de hecho,

para potencias de transmisión constantes, las mejoras en la velocidad de datos provienen

directamente del uso de mayor ancho de banda (como ocurre en el caso de las redes 3G) 1.

En el caso de los ordenadores, la velocidad de procesado de la información no está lim-

itada (por ahora) por las velocidades de transmisión de datos entre registros. El número

de operaciones por unidad de tiempo que un ordenador puede efectuar depende más bien

de su potencia de cálculo, que crece con la complejidad del procesador y con la velocidad

de conmutación de sus transistores. Incrementar el número de transistores mientras se

mantiene el tamaño del ordenador implica miniaturizar el sistema. Afortunadamente, al

reducir el tamaño de los componentes también se consigue incrementar la velocidad de

conmutación. De hecho, hoy en día en 2014, las dimensiones de los transistores de los or-

denadores personales (supercomputadores) son en torno a 45nm (22nm), frente a los 250nm

del año 1997.

Pero la miniaturización presenta ciertos problemas. Hasta el año 2005 la “ley” de Moore,

que afirma que la potencia de cómputo se duplica cada 2 años, se apoyaba en el “scal-

ing” de Dennard: el calor liberado por unidad de área funcionando a la máxima frecuencia

disponible se mantenía constante (tanto el voltaje como la corriente escalaban inversamente

al tamaño). En 2005, sin embargo, el “scaling” de Dennard dejó de verificarse. Con la dismi-

nución del tamaño aumentan las fugas de corriente y con ellas la potencia térmica liberada.

La industria informática sólo ha podido contener esta “barrera térmica” limitando la velo-

1Lo cierto es que el límite de Shannon se verifica para canales punto a punto. Las nuevas tecnologías

presentes en los terminales 4G y 5G pueden ir aún más allá combinando enlaces multipunto a multipunto

con ayuda de varias antenas, cada uno de los múltiples canales operando no obstante al borde del límite de

Shannon.
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cidad de reloj de los procesadores 2. EDesde el 2005, los incrementos en el rendimiento de

los ordenadores se han debido fundamentalmente a los aumentos en la complejidad de los

sistemas. Aprovechando que la densidad de transistores ha seguido incrementándose se

han diseñado arquitecturas capaces de llevar a cabo procesado en paralelo, “multithread”,

sobre múltiples núcleos, “multicore”. Sin embargo, este incremento en la complejidad con-

lleva en general un aumento en la información necesaria para dirigir y enrutar los cálculos

y muchos científicos argumentan que la ganancia conseguida es muy inferior a la que se

conseguía con la regla Dennard [11], anticipando así el fin de la “ley” de Moore.

Por otro lado, la existencia de otros límites más fundamentales también lleva a esa con-

clusión. De un lado está la barrera de Landauer, que remite al hecho de que por cada bit de

información borrado se disipa al menos una cantidad de energía kT ln 2 [12]. La miniatur-

ización supone una reducción en la energía disipada por operación elemental, y nos estamos

acercando peligrosamente a ese límite. Si todo siguiera al ritmo actual, se llegaría a esa bar-

rera aproximadamente en 2034 [13]. Sólo un cambio en el paradigma de computación hacia

un modelo reversible podría evitarlo.

De otro lado, está el límite de Margolus y Levitin. En sus artículos de 1998 y 2009 [14,15]

demostraron que para conmutar entre estados ortogonales, un sistema cuántico de energía

media E requiere un tiempo de al menos ∆t = π~/2E . Basados en esto, la estimación es

que ese límite se alcanzaría en 75 u 80 años [15].

Con esto en mente a nadie sorprenderá que las compañías de superconductores estén

dedicando esfuerzos económicos enormes en tratar de superar los paradigmas actuales.

Nuevas arquitecturas y nuevos modelos de computación como la computación cuántica

se preven muy importantes desde el punto de vista práctica en el futuro cercano de la in-

formática.

Esta es una de las motivaciones fundamentales para trabajar en información cuántica. La

información cuántica da sustento teórico a la computación cuántica. En esta tesis llevamos a

cabo varios estudios usando sus herramientas. En algunos de ellos observamos fenómenos

límite que podrían darse regularmente si ciertas plataformas experimentales se convirtieran

en la implementación final de los ordenadores cuánticos, pero en realidad nuestro énfasis

está puesto en otra dirección. La teoría de la información cuántica tiene mucho más que

ofrecer a parte de la mejora de nuestra tecnología informática, de hecho es una puerta a

comprender mejor ciertas cuestiones fundamentales. Con ayuda de la teoría de campos y

de conceptos más cercanos al mundo relativista, nosotros nos hemos concentrado más bien

en el estudio de las correlaciones existentes el vacío, cómo sondearlas y cómo extraerlas con

2Es por eso que los chips todavía funcionan a 3 GHz, prácticamente la misma frecuencia que hace 10 años.
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propósitos prácticos. A lo largo de esta tarea nos hemos acercado al estudio de la causalidad,

la teoría de la detección, escenarios relativistas y fundamentos de física cuántica. Todos estos

campos están muy interconectados y en todo ellos juega un papel fundamental uno de los

fenómenos más interesantes de la física cuántica: el entrelazamiento.

Un potente concepto

El entrelazamiento es sin duda uno de los conceptos más importantes de la teoría cuántica

de la información, si no de toda la mecánica cuántica. La historia del entrelazamiento, o más

bien la historia de su descubrimiento y estudio, remonta a las primeras décadas del siglo

veinte, en particular a un artículo de Albert Einstein, Boris Podolsky y Nathan Rosen [16],

en el que describían un experimento teórico con la intención de demostrar la incompletitud

de la mecánica cuántica. El experimento, resumido por Leo Rosenfeld, es como sigue:

Supongamos dos partículas (A y B) con momentos opuestos que interaccionan entre sí en un

punto conocido. Si un observador externo tiene acceso a una de las partículas lejos de la región de

interacción y mide su momento, entonces por las condiciones del experimento debe poder deducir el

de la otra partícula. Si por contra, decide medir la posición, debe poder saber instantáneamente dónde

está la otra partícula. Es una deducción lógica pero.. ¿no es muy paradójico? ¿Cómo puede ser que

el estado de la segunda partícula se vea influenciado por la medida hecha sobre la primera, después de

que toda interacción haya cesado?

La idea que rondaba a Einstein es que, si la teoría cuántica fuera completa, según el ar-

gumento EPR se podrían asignar valores reales a la posición o al momento de la segunda

partícula sin haberla medido, de modo que valores para ambos observables debían existir

simultáneamente en B, violando el principio de incertidumbre. Era un argumento sutil,

pero por supuesto tenía suposiciones implícitas. En particular Einstein estaba descartando

la posibilidad de que el estado en B se viera instantáneamente afectado por la medición en

A. En las discusiones a las que llevó este artículo, Einstein reconoció que ésta era la esencia

de su argumento, e incómodo con la situación describió este fenómeno como “spukhafte

Fernwirkung” o “espeluznante acción a distancia”.

Erwin Schrödinger fue el primero que analizó el problema utilizando la palabra en-

trelazamiento (entanglement en inglés, Verschränkung en alemán), en una carta a Einstein:

Cuando dos sistemas (...) entran en interacción física temporal debido a la existencia fuerzas

entre ellos, y después de un tiempo de influencia mutua se separan, no pueden ser descritos como

previamente, otorgándoles una representación propia a cada uno. Diría que éste no un fenómeno

más, sino quizá el más característico de los fenomenos de la mecánica cuántica, el que da lugar a la
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auténtica divergencia frente a la línea de pensamiento clásica. Por medio de esa interacción las dos

funciones de onda se han entrelazado.

El entrelazamiento es sin duda algo peculiar. No puede ser producido interaccionando

con una de las partes localmente, a menos que exista una interacción entre ambas o que se

disponga de un recurso entrelazado compartido. En esos casos caso el entrelazamiento se

podrá destilar, redistribuir o intercambiar de un sistema a otro [17–19]. Pero todo ello son

descubrimientos recientes.

El entrelazamiento fue debatido y no del todo bien comprendido hasta 1964. Fue entonces

cuando John S. Bell, en un artículo histórico [20], publicó su famoso teorema en que definió

lo que era una teoría realista en términos de variables ocultas e introdujo un nuevo exper-

imento basado en el EPR que incluía medidas de espín. Formuló una desigualdad basada

en las estadísticas se se obtendrían en la repetición del experimento que sería satisfecha por

cualquier teoría de variables ocultas y violada para la teoría cuántica en ciertos estados de

naturaleza entrelazada. Por primera vez se demostraba que ninguna teoría local realista

podría reproducir todas las predicciones de la mecánica cuántica.

Se hicieron muchos esfuerzos para probar el resultado de Bell [21–23], en acuerdo con

la mecánica cuántica, pero los más famosos fueron los llevados a cabo por Alain Aspect y

su equipo [24–26] donde se obtuvieron violaciones máximas de la desigualdad. Aunque

los experimentos tenían ciertas lagunas, los llamados loopholes, deficiencias que no se han

llegado a superar (al menos no todas a la vez) en ningún experimento hasta la fecha, el

carácter no local de la naturaleza es a día de hoy plenamente aceptado, y el artículo EPR es

uno de los más citados de toda la historia de la ciencia.

El entrelazamiento es ya un concepto familiar para cualquier persona versada en la teoría

cuántica, pero además tiene importantes implicaciones y es fundamental en el estudio de un

gran número de procesos cuánticos. Por ejemplo, la detección. Supongamos que en labor-

atorio contamos con un átomo S originalmente excitado y un detector cuántico D. Si de-

jamos que el sistema evolucione, lo lógico sería esperar que terminase en una superposición

de la forma:

Ψ = α |SeDno click〉+ β
∣∣SgDno click

〉
+ γ |SeDclick〉 (0.0.2)

Este estado está entrelazado. El primer término representa el caso en que el átomo S no

ha emitido ningún fotón, el segundo, aquel en el que el átomo ha emitido un fotón pero el

fotón no ha llegado o no ha sido detectado, y el tercero, el caso de detección exitosa de la

emisión atómica. Si, a través de una medida local, descubrimos que el detector ha hecho

click, el estado total del sistema colapsará y podremos estar seguros de que el átomo ha
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emitido un fotón. ¿Seguros? Digamos que hemos descrito el caso ideal. Un detector realista

no sería 100 % eficiente y podría registrar partículas aún no habiendo ninguna (conteos

oscuros o dark counts).

En esta tesis hemos dedicado un esfuerzo considerable a entender bien los procesos de

detección desde las últimas consecuencias de la mecánica cuántica. Como mostraremos más

adelante, el análisis aquí presentado asume una aproximación que se mostrará válida sólo

en regímenes de tiempos cortos y pequeños acoplos. La historia al completo, como veremos

en detalle, es bastante más complicada a la aquí presentada.

Otro aspecto interesante relacionado con estas cuestiones fundamentales de la informa-

ción cuántica, en el que también nos hemos centrado, es la cuestión de la causalidad. Como

expondremos más adelante, la mecánica cuántica es una teoría “non-signalling” [27, 28], es

decir, las estadísticas obtenidas a través de las medidas de una parte A deben ser completa-

mente independientes de lo que haga otra parte B si A y B están espacialmente separados.

Por esta razón, la mecánica cuántica no permite transmisión de información más rápida que

la luz [29]. Las correlaciones cuánticas tienen que estar asistidas con operaciones locales y

comunicación clásica para cualquier proceso de transferencia de información, como en el

caso de la teleportación cuántica [30].

Pese a que la causalidad en el sentido relativista está garantizada por estas razones, un

experimento mental ha tenido a la comunidad en jaque prácticamente desde los años 30.

En aquel entonces, en un largo artículo donde presentaba una primera formulación de la

electrodinámica cuántica, Fermi propuso una situación sencilla, con dos átomos, para estu-

diar el comportamiento causal en la excitación de uno de ellos debida a la desexcitación

del otro. Con su fuerte intuición conceptual Fermi se las arregló para conseguir una de-

mostración que mantuvo a todo el mundo satisfecho durante décadas. Sin embargo, un

error detectado en su argumento [31] (una aproximación válida tan sólo a tiempos largos)

abrió un debate [32, 33] que ha continuado prácticamente hasta hoy [34–36].

En esta tesis hemos dedicado un capítulo entero al problema de Fermi. Lo diseccionamos

en detalle en el caso de 1 dimensión, ofrecemos una prueba no perturbativa de la causalidad

y explicamos el origen de los conflictos que parecen existir. Más aún, proponemos un ex-

perimento que modela la situación original usando qubits superconductores que emulan

átomos artificiales, contectados a través de una línea de transmisión. Esperamos que un

estudio experimental sobre el fenómeno ponga fin a esta controversia de décadas.

Este problema despertó mi interés en el mundo de las simulaciones cuánticas. Habiendo

orientado mi investigación principalmente hacia los aspectos teóricos de los procesos de

detección, las simulaciones cuánticas eran una posibilidad de explorar las consecuencias ex-
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perimentales y comprobar el impacto de los interesantes fenómenos físicos que estábamos

estudiando en condiciones realistas. Así fue como, inspirados por el problema de Fermi

y nuestros estudios sobre detección y con esta idea en mente, escribimos tres artículos

más donde propusimos experimentos para simular átomos acelerados, extracción del en-

trelazamiento del vacío y procesos rápidos de detección [5–7]. A cada uno de ellos le dedic-

amos un capítulo de esta tesis.

Entrelazamiento del vacío e información cuántica relativista

La teoría de la Información cuántica suele operar en escenarios no relativistas con un número

finito de grados de libertad. Pese a ello, el entrelazamiento acepta extensiones al dominio

de la teoría cuántica de campos [37–39].

Desde ese punto de vista se puede comprobar que el propio vacío cuántico está en-

trelazado, como demuestra el teorema de Reeh-Schlieder [40]. Este hecho, descubierto hace

ya 50 años, se consideraba un resultado puramente formal hasta que fue estudiado desde

un punto de vista más aplicado en [41]. Desde entonces, esta propiedad tan inquietante del

vacío, ha atraído mucha atención como posible nuevo recurso para tareas de procesado de

información cuántica [42–45].

Como se ve en [41], el entrelazamiento contenido en el vacío de un campo puede ser

transferido a un par de detectores de dos niveles separados espacialmente que interaccionan

con el campo . Desafortunadamente, este resultado teórico es muy difícil de demostrar

experimentalmente, incluso en el contexto de una simulación de iones atrapados [42].

En los últimos años muchos estudios han considerado la posibilidad práctica de ex-

traer correlaciones del vacío [46–50]. En esta tesis, nosotros hacemos nuestra contribu-

ción particular. Discutiremos una propuesta experimental con circuitos superconductores y

mostraremos cómo un tipo particular de correlaciones, a las que nos referimos como pasado-

futuro, pueden ser en principio extraídas con éxito.

A través de esta línea de estudio, me familiaricé con ciertos aspectos del problema de en-

trelazamiento del vacío, que puede ser considerado como un asunto bastante fundamental.

En particular, el estudio del entrelazamiento entre regiones separadas lleva implícito el uso

de observables locales, intrínsecamente distintos de los observables globales. De hecho, no

existen operadores número locales que predigan cero partículas en el estado de vacío [51,52].

La razón de ello es relativamente simple. Si el vacío es un estado puro entrelazado, el es-

tado reducido sobre cualquier región compacta del espacio deberá ser necesariamente una

mezcla.
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También el teorema de Malament theorem [53] argumenta la imposibilidad de exist-

encia para los estados perfectamente localizados de una sola partícula. Este tipo de in-

teresantes cuestiones teóricas se estudian fundamentalmente desde el punto de vista de la

notablemente abstracta Teoría Cuántica de Campos Algebraica. Nosotros hemos querido

acercarnos a ellas de una manera más práctica, más constructiva y más física si cabe. Más

concretamente, trabajando con un campo escalar en una cavidad hemos diseñado un pro-

cedimiento de cuantización local con el que explorar este tipo de teoremas.

Lo cierto es que la naturaleza entrelazada del vacío cuántico está estrechamente rela-

cionada con otros efectos interesantes como el efecto Unruh [54], por el que un observador

uniformemente acelerado detecta un baño térmico de partículas donde uno inercial exper-

imenta el vacío, y la radiación de Hawking [55] emitida por agujeros negros. Estos fenó-

menos se suelen ver como efectos geométricos relacionados con la existencia de un horizonte

y el entrelazamiento existente entre los modos del campo a uno y otro lado. Lo discutire-

mos más en detalle en el capítulo 2. El efecto Casimir Dinámico es otro fenómeno de este

estilo, en el que las partículas se procuden debido al movimiento oscilatorio de un horizonte

(un espejo por ejemplo). Aunque ni la radiación de Hawking ni el efecto Unruh hayan sido

observados directamente hasta la fecha, el efecto Casimir Dinámico ha sido recientemente

comprobado en laboratorio [56–59].

Al final de la tesis, como resultado de nuestro análisis sobre el entrelazamiento del vacío

y nuestra cuantización local, hemos ideado un experimento mental donde al desplegar rápi-

damente un espejo en el centro de una cavidad se genera un fenómeno de producción de

partículas de este estilo. También estudiamos la posibilidad de comprobarlo en el labor-

atorio.

El estudio de este tipo de fenómenos combina a menudo conceptos de Información

Cuántica, Relatividad General y Teoría de Campos en Espacio-Tiempos curvos, que se han

constituido en intereses de un nuevo campo interdisciplinar dentro de la Física con el nombre

de Información Cuántica Relativista.

Este campo arrancó en los años 90 cuando nadie prestaba atención a cómo la informa-

ción podía verse afectada bajo la influencia del movimiento de los sistemas en el espacio-

tiempo y cómo podría depender del punto de vista del observador o de cómo hubiera sido

codificada en primer lugar (diferentes grados de libertad pueden ser afectados de forma

diferente por el movimiento). La razón de ello es obvia: la información cuántica opera

en general en escenarios no relativistas. El primero en trabajar en estos aspectos fue Cza-

chor en 1997 [60], demostrando que la violación de las desigualdades de Bell por un par de

partículas separadas dependería de sus velocidades. Desde entonces, una increíble cantidad
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de esfuerzo, creatividad, tiempo y trabajo ha sido dedicado al estudio de las correlaciones

cuánticas en escenarios no inerciales, el núcleo de la información cuántica relativista. Den-

tro de ese marco se han estudiado temas que van desde el estudio de la invariancia Lorentz

del entrelazamiento bajo determinados supuestos [61–65] o los efectos del movimiento no

uniforme [66, 67], hasta casos más centrados en la física de agujeros negros y la cosmolo-

gía [68–72].

Y por supuesto entre estos temas, muchos otros, como los que ocupan a esta tesis: el estu-

dio del entrelazamiento en estados locales y globales, modelos de detección y la naturaleza

profunda del entrelazamiento en el vacío, incluyendo fenómenos de creación de partículas

como los mencionados.

En esta tesis, mucho del trabajo puede ser comprendido en este marco. En los primeros

estudios de Información Cuántica Relativista, a la hora de estudiar el entrelazamiento visto

por distintos observadores se trabajaba con modos globales, una aproximación interesante,

sobre todo desde el punto de vista académico, pero poco práctica ya que ningún observador

realista puede tener acceso a ellos. Últimamente sin embargo, esta cuestión ha sido tratada

en escenarios más realistas, con paquetes de onda [3, 4] o considerando cavidades como

en [73–75].

En esta tesis hemos tratado de contribuir a la superación de esos primeros trabajos. En

los primeros capítulos, tras la introducción, nos dedicamos a estudiar modelos de detección.

Derivamos en concreto el modelo de Unruh-DeWitt de primeros principios y sugerimos

modificaciones que faciliten el estudio teórico de paquetes de onda localizados, más realis-

tas. De igual modo, usando un modelo particular basado en medida proyectiva enfrentamos

también el análisis de estados de campo localizados de dos fotones entrelazados.

En este punto deberían quedar claras las motivaciones de esta tesis. Hemos tratado de

enfocar el estudio de las correlaciones del vacío estudiando en primer lugar qué es lo que

miden los detectores. Con las herramientas de la información cuántica y la teoría de campos

hemos presentado resultados sobre estados localizados y explorado el concepto de partícula

a través de simulaciones. Hemos profundizado en los problemas de la localización perfecta,

la naturaleza entrelazada del vacío y como estas cuestiones se relacionan entre sí, dando

lugar a fenómenos como el que describimos al final de esta tesis.

Estructura

La tesis comienza con una introducción (Preliminares) dividida en tres capítulos:

• Capítulo 1 Información Cuántica.
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• Capítulo 2 Teoría Cuántica de Campos.

• Capítulo 3 Plataformas Experimentales para la Simulación Cuántica.

Con este material, se pretender fijar una notación y proveer al lector con las herramientas

y conceptos más importantes en la investigación llevada a cabo en esta tesis. No es una

introducción exhaustiva, pero cubre una gran variedad de temas. El núcleo de la tesis,

desarrollado tras estos preliminares, se divide en tres partes, cada una de ellas a su vez,

dividida en varios capítulos.

• Parte I Dedicada al estudio teórico de modelos de detección.

– Capítulo 4 Este capítulo acerca al lector a los modelos de detección. Se

resumen algunos resultados previos y se describen brevemente los modelos de

Unruh-DeWitt y el detector proyectivo con los que se trabaja a continuación.

– Capítulo 5 Aquí consideramos el modelo Unruh DeWitt y sus propiedades

de localización. Mostramos que las modificaciones simples del mismo que in-

corporan perfiles espaciales presentan problemas al tratar ciertos estados interes-

antes de los campos. Deducimos que en el caso de la detección de paquetes de

onda el perfil espacial considerado debe verificar ciertas propiedades. Hemos

estudiado el origen de este perfil para el caso de un detector atómico derivando

la interacción Unruh-DeWitt de primeros principios y relacionando el modelo de

perfil suavizado con la forma usual p·A de la interacción QED acoplando átomos

y campos electromagnéticos. Exponemos un modo de conectar la forma del perfil

con la función electrónica de los orbitales relevantes del átomo. Mostramos tam-

bién que si queremos que el detector sirva para detectar radiación resonante, esa

información debe estar presente en el perfil. Finalmente sugerimos un método

para introducirla y explicamos cómo calcular la probabilidad de detección para

el caso de un detector acelerado.

– Capítulo 6 En este capítulo empleamos un modelo proyectivo de detector

para analizar el entrelazamiento de sistemas entrelazados de fotones individuales

desde un punto de vista no inercial. Como caso particular analizamos el com-

portamiento de entrelazamiento de un estado de dos fotones entralazados y mostramos

cómo los efectos cuánticos de la aceleración relativista pueden amplificar el en-

trelazamiento y no sólo destruirlo. Así mismo hemos analizado el caso de de-

tectores con detección de banda estrecha en frecuencia y estudiado el coste com-

putacional de considerar detectores de banda ancha.
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– Capítulo 7 Presentamos aquí un método para simular un conjunto de de-

tectores Unruh-DeWitt acelerados acoplados a un modo único del campo con

dos plataformas: iones atrapados por un lado y circuitos superconductores por

otro. La idea está basada en inducir “sidebands” dependientes del tiempo en

los acoplos átomo-campo. Mostramos cómo nuestra idea puede ser extendida

a experimentos con varios iones que podrían simular resultados no.-simulables

en computadores clásicos como trayectorias no-inerciales arbitrarias o muchos

detectores acoplados al mismo campo. Terminamos efectuando una conexión

nueva entre la física de los procesos fuera del equilibrio y los efectos cuánticos

debidos a la aceleración.

• Parte II Esta parte se centra en el comportamiento de detectores más allá de la

aproximación de la onda rotante. La parte termina respondiendo una pregunta in-

teresante... ¿qué significado debemos atribuir al click de un detector?

– Capítulo 8 Contrariamente a la creencia generalizada, bajo la aproximación

de onda rotante pueden aparecer fenómenos no causales. Sólo cuando se consid-

era el Hamiltoniano al completo emerge la causalidad. Comenzamos esta parte

con una breve digresión sobre el concepto de causalidad en filosofía y en física e

introduciendo lo que sigue.

– Capítulo 9 Discutimos aquí el problema de Fermi: un ejemplo paradigmático

donde presentamos un marco teórico bajo el que entender con claridad los mis-

terios de la causalidad. Ofrecemos una prueba de causalidad no perturbativa en

una dimensión y discutimos un experimento donde verificar cuantitativamente

las predicciones del análisis cuántico. Hemos considerado para ello un sistema

de dos qubits superconductores acoplados a una linea de transmisión. Con un

procedimiento novedoso basado en la activación del acoplo ultrafuerte usando

procesos de Landau Zener podemos conectar y desconectar los qubits de la línea

de forma efectiva y llevar a cabo mediciones independientes.

– Capítulo 10 Inspirados por nuestros estudios previos hemos centrado el

análisis de este capítulo en el comportamiento de detectores en tiempos cor-

tos. En estos regímenes la aproximación de onda rotante debe ser descartada.

Mostramos que para parámetros típicos en circuitos superconductores, y en tiem-

pos pequeños, la información aportada por el click de un detector respecto a la

posible desexcitación de una fuente originalmente excitada es mínima debido a

las excitaciones del detector. Sólo tras un cierto tiempo podemos comenzar a
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confiar en el estado del detector como indicativo de la desexcitación de la fuente.

Nuestros resultados se aplican a otras plataformas y detectores cuánticos, pero

es el campo de los circuitos superconductores donde estos fenómenos pueden

afectar a la interpretación de posibles resultados experimentales.

• Parte III Esta última parte se dedica al estudio de correlaciones de vacío y la local-

ización de estados en Teoría Cuántica de campos.

– Capítulo 11 En este capítulo introductorio discutimos en detalle la conexión

entre localización y entrelazamiento de vacío. Motivamos nuestro trabajo con un

repaso histórico sobre el progreso en la cuestión y describimos algunos de los

problemas más relevantes en lo que se refiere a la construcción de estados de

partícula localizados. Discutimos también cómo el formalismo que será desar-

rollado en los siguientes capítulos puede iluminar la cuestión de los fenómenos

de producción de partículas por emergencia de horizontes, en este caso de una

barrera física. Discutimos también el concepto de entrelazamiento de género es-

pacio y de género tiempo y, como introducción de lo que sigue, discutimos las

posibilidades de extracción de entrelazamiento del vacío.

– Capítulo 12 Dado que muchas propuestas de extracción de entrelazamiento

del vacío hasta la fecha resultan bastante impracticables sugerimos aquí un ex-

perimento dentro de las posibilidades de la tecnología actual. Caracterizamos

por completo, cualitativa y cuantitativamente el tipo de correlaciones que pueden

ser transferidas a un par de qubits P y F, que interaccionan con el campo exclu-

sivamente en el pasado y en el futuro respectivamente, aun cuando los qubits

en ningún momento coexisten. Discutimos las posibilidades de uso de esa ex-

tracción y el potencial de nuestro esquema para funcionar como una memoria

cuántica.

– Capítulo 13 En este capítulo desarrollamos nuestro formalismo de cuant-

ización local. Interesados sobre la imposibilidad teórica de construir estados

de una partícula perfectamente localizados en teoría cuántica de campos decidi-

mos explorar cómo surgirían los problemas al intentar una construcción concreta.

Hemos identificado el principal problema en el requerimiento de que el espacio

de Hilbert de una sola partícula se construya con modos de frecuencia positiva.

En concreto los paquetes de onda construidos de ese modo no pueden ser localiz-

ados en una región espacial finita, incluso en intervalos de tiempo infinitesimales.

Al basar nuestra cuantización en modos localizados de norma positiva, podemos
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dar cuenta de estados de una partícula. Llevamos a cabo esta cuantización en una

cavidad. Al calcular los coeficientes de Bogoliubov que relacionan las cuantiza-

ciones local y global demostramos que ambas son unitariamente no-equivalentes.

Pese a ello, mostramos que los creadores y destructores locales están bien defin-

idos por sus acciones en el espacio de Fock global FG y lo mismo ocurre con el

operador número local, concluyendo con un buen set de herramientas listas para

analizar y caracterizar propiedades locales de estados de ese espacio. Específica-

mente analizamos las propiedades del vacío global |0G〉 ∈ FG en términos de los

operadores números locales y demostramos, como era de esperar, la existencia de

entrelazamiento entre las secciones izquierda y derecha de la cavidad.

– Capítulo 14 Hemos dejado para el último capítulo un resultado que relaciona

muchos de los conceptos discutidos en esta tesis. Usando nuestro formalismo

local describimos la situación de una cavidad en la que desplegamos un espejo

dividiéndola rápidamenteen dos partes iguales. Explicamos cómo en ese caso

tiene lugar un fenómeno de producción de partículas. Damos una respuesta a

la pregunta “¿Qué quiere decir que la mitad de una cavidad vacía esté llena?”.

Comprobamos que las partículas producidas son matemáticamente equivalentes

a las excitaciones locales del vacío descritas en nuestro formalismo y verificamos

que las partículas producidas están entrelazadas entre sí. De hecho vamos más

allá y estudiamos el caso en el que dos espejos, en lugar de solo uno, se despliegan

a una cierta distancia. Dado que en esa situació, las partículas producidas en la

región más a la izquierda y más a la derecha surgen entrelazadas, podemos con-

cluir que este entrelazamiento no es producido por la introducción de los espe-

jos, sino que estaba presente previamente en el vacío. A lo largo de este capítulo

usamos la teoría de estados gaussianos para derivar los estadios reducidos y las

correlaciones del estado de vacío en distintas regiones de la cavidad.

En una última sección de conclusiones volvemos a resumir los resultados de esta tesis.
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A new paradigm for computation

Classical Information Theory has been one of the most important pillars in the development

of current information and communication technologies. Originally developed by Harry

Nyquist, Claude Shannon, Norbert Wiener among others in the 40’s and 50’s, it became

the foundational theory of information processing. In its core is the concept of information

entropy, which defines the information content of a certain message produced by a source

by relating it to the unpredictability of the message. 3

The merits of Classical Information Theory are countless: the mathematical characteriz-

ation of communication channels, the discovery of fundamental limits for channel capacity,

the rigorous understanding of compression, coding and the interplay between signal and

noise are just examples that have expanded the horizons of information processing much

further than we could have imagined just a few decades ago. 4

Among the most important of these findings, the Shannon-Hartley theorem is a limiting

result that sets the maximum rate at which information can be transmitted (capacity C) over

a communications channel of a certain bandwidth B for a certain S/N ratio

C = B log2

(
1 +

S

N

)
. (0.0.4)

Current communication technologies are incredibly close to it. Given usually a limited

transmission power, as it is the case with mobile phones, most of the improvements we

experience in transfer speeds come directly from the use of bigger and bigger bandwidths

3The entropy of a certain source X that emits messages {xi}with probability pi can be calculated as:

H(X) = −
∑
i

pi log pi (0.0.3)

.
4For more details in Classical Information Theory we refer the interested reader to [76]. In the main body of

this thesis we will just concentrate on its Quantum counterpart.
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for information transfer (e.g. 3G as compared to 2G mobile networks) 5.

For the computing case, the information processing rate limit is not so highly dependent

on the (in principle) limited transmission speeds from register to register. The number of

operations per time unit that a computer is able to perform depends rather on its processing

capabilities, which grow with the processor’s complexity (transistor density), and on the

switching speed of those transistors. Increasing the number of transistors while maintain-

ing the computer size involves miniaturization. Coincidentally, increasing the switching

speed can be also attained through reducing component size. As in a simple RC circuit,

the logical gate switching time happens to be proportional to the RC time constant of a cir-

cuit [77]. Modeling all resistances and capacitances that constitute a logical semiconductor

gate and their dependences with size, it can be found that this RC delay is at first order

proportional to the length scale [78,79], which has provided much of the performance gains

in the past. Transistor dimensions in personal computers (supercomputers) are now in 2014

around 45nm (22nm), while the dimensions in 1997 were around 250nm.

Miniaturization did not come without problems. Until 2005, the conspicuous Moore’s

law, which states that computer power doubles every 24 months, relied heavily on what is

known as Dennard scaling: as transistors got smaller, speeds (clock rates) could get higher,

as the heat released per area unit stayed constant (both voltage and current scaled down-

ward with length). In 2005, however, Dennard scaling broke down. At small sizes, current

leakage poses big challenges, and causes the chip to heat up creating the threat of thermal

runaway. The computer processor industry could not get rid of that extra amount of heat

(the power wall) and the solution was to relinquish any further increase in the clock rates.6

Since then, improvements in performance have been achieved by working on the complex-

ity side: the increased number of transistor density has allowed to allocate more processors

in the same area, capable of carrying on parallel operations, in a multi-core framework. This

evolution has been simultaneous to a change in the software design paradigm, where multi-

thread code has helped to divide and distribute tasks into the different cores improving

complexity but at the expense of introducing a considerable amount of overhead data. In

that sense, many scientists argue that further gains to be obtained through multi-threading

are actually much lower than those that could be achieved had Dennard scaling continued,

foreseeing the end of Moore’s law. [11]

As Seth Lloyd points out “Moore’s law is a law not of nature, but of human ingenuity. Com-

5It must be taken into account that Shannon’s limit is for a point to point channel. New technologies like

4G and 5G mobile telecommunications technologies make use of the possibility of establishing multipoint to

multipoint links creating many channels for a single transmission and therefore challenging that very limit
6That is the reason why our computers still run at 3 GHz, not much faster than 10 years ago.
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puters have gotten two times faster every eighteen months 7 because every eighteen months engineers

have figured out how to halve the size of the wires and logic gates from which they are construc-

ted.” [80] In other words, Moore’s law acts as a reference, a target, and in doing so becomes

a self-fulfilling prophecy, but as happened with Malthus’ law of exponential growth, we can

be certain that it will eventually break down. Exponential growth laws are usually really

difficult to maintain. Also Moore’s was never a law in any scientific sense , but rather a rule

of thumb (but of course “Moore’s Rule” sounds much less impressive to say)

In this particular case, there are also different physical limits that will also make its main-

tenance if not difficult, impossible.

First of all, given that most current computational technologies are based in irreversible

computing, there is the Landauer barrier. It accounts to the fact that every bit of information

deleted requires the dissipation of at least kT ln 2 of energy [12]. Miniaturization is pro-

gressively reducing the energy dissipation per computational step, and it is progressively

approaching that barrier. If the current pace is maintained it will be hit around 2034. Either

we have switched to a reversible paradigm by then or there would be no way to scale down

the heat released. [13].

Besides that, we can consider other limitations. In a result that relates closely to the

Heisenberg Uncertainty relation for time and energy, Margolus and Levitin [14] showed that

a quantum system with average energy E takes at least at time ∆t = π~/2E to evolve to an

orthogonal state. This implies that the computation speed of a computer is fundamentally

limited by the energy available to it for information processing. Using that simple idea, Seth

Lloyd, in a pretty original work [81], studied how fast the ultimate laptop 8 could perform.

Extrapolating Moore’s law to the future, Lloyd estimated a 250 years time to reach that

totally idealized limit.

In a more realistic approach to that of Lloyd, Levitin and Toffoli [15], based on a new

better bound for the rate of quantum dynamics have estimated the time to hit that quantum

limit within 75 to 80 years time.

With all that in mind, no doubt current semiconductor companies are studying new

technologies that challenge the current computational paradigm. The current scenario is

7 In origin, most people interpreted Moore’s Law as referring to the number of transistors on a 1 inch (2.5

cm) diameter of silicon doubling every xmonths. Some people say it takes 18 months, others say 24. Some have

interpreted the law to be rather about the doubling of processing power. Most of those rules, when interpreted

adequately, happen to be rather accurate to date, as does Seth’s version.
8That would be a laptop of 1 kg of mass and 1 L of volume, which is roughly the size of a conventional

laptop computer, operating at the limits of speed and memory space allowed by physics, where all its energy

could be put to use to perform universal quantum logic operations.

17



Preface

not a reason for dismay. More on the contrary, existing possibilities may take the future of

computing to a new level. More and more attention is being paid to alternative models of

computation like Quantum, Reversible and Molecular Computing.

In this thesis we would be conducting studies using Quantum Information (QI) tools.

Quantum Information is the basic theory behind Quantum Computing. The motivation

to work along those lines should be clear by now, but still, Quantum Information has still

much more to offer than just improvement of current computer technology. Actually, this

thesis deals mostly with other aspects of it, less related to Computing and more connected

to Causality, Detection Theory, Relativistic scenarios, Quantum Field Theory (QFT), and

Foundations of Quantum Physics. All these fields have links to one other and in all of them

plays a role one of most interesting phenomena of Quantum Physics: entanglement.

A powerful concept

Entanglement is one of the main concepts of Quantum Information. The history of Entan-

glement, or rather the history of its discovery and study, goes back to the first decades of the

twentieth century, in particular to a paper by Albert Einstein, Boris Podolsky and Nathan

Rosen [16], which described what later came to be known as the EPR paradox.

Einstein never really liked Quantum Mechanics (QM). He was especially against the

Copenhagen Interpretation, that thought of the wave function in quantum theory as just a

tool to calculate the probability for the outcomes of measurements. Einstein was at unease

by the theory being silent about what was true in the absence of observation. He wanted

laws to say how things were, independently of how one looks, and that theory was not

Quantum Mechanics, so he set on a quest to prove its flaws, in particular its not-realistic

aspects [82].

In May 1935, in collaboration with two postdoctoral researchers at the Institute of Ad-

vanced Study, Boris Podolsky and Nathan Rosen, Einstein co-authored a paper (the EPR

paper, by the names of the authors) in which they proposed a thought experiment trying to

make obvious this incompleteness of QM. As Leo Rosenfeld summarized it, the argument

goes as follows:

Suppose two particles, A and B, are set in motion towards each other with the same, very large,

momentum, and that they interact with each other for a very short time when they pass at known

positions. Consider now an observer who gets hold of one of the particles, far away from the region

of interaction, and measures its momentum; then, from the conditions of the experiment, he will

obviously be able to deduce the momentum of the other particle. If, however, he chooses to measure
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the position of the first particle, he will be able to tell where the other particle is. This is a perfectly

correct and straightforward deduction from the principles of quantum mechanics; but is it not very

paradoxical? How can the final state of the second particle be influenced by a measurement performed

on the first, after all physical interaction has ceased between them?

The main idea was that, if QM were complete, one could in principle attach real values

to both position or momentum of the second particle without having measured it, actually

“without in any way disturbing it”, so values for both observables should exist simultan-

eously, which was incompatible with quantum mechanics. It was a very subtle argument,

but of course it had some implicit assumptions.

What Einstein was discarding was the possibility that the state in B could be instantan-

eously affected by the measurement carried on in A. Bohr’s reply to the EPR paper made

obvious to Einstein that any valid claims against his reasoning were incorporating this non-

local nature of QM. He himself had also expressed similar concerns about the collapse of the

wave function in the Solvay Conference of 1927 [83]. Years later, Einstein, still not comfort-

able with this fact, which seemed to challenge his own relativity theory, in a famous letter to

Max Born, called it “ spukhafte Fernwirkung”, “spooky action at distance”, a sentence that

went down in history.

Erwin Schrödinger, who at the time was also contrary to the Copenhagen Interpretation

and hoped for a return to deterministic physics, was really interested in the EPR experi-

ment. Inspired by it, within a few months after the publication of the EPR paper, he wrote

a couple of articles [84, 85] discussing the issues raised by the EPR, and discussing along

other problems with QM, among which would be his cat paradox. In all of these papers, he

used the word “entanglement” for the first time, verschränkung 9 referring to that mysterious

Quantum Mechanical feature, noticing that a multipartite system might not be described as

just a sum of its parts 10

Entanglement is definitely peculiar, it cannot be produced locally: a system of two parts

with no access to any entangled shared resource and which may communicate only through

classical channels cannot become entangled by performing local quantum operations sep-

arately on each subsystem. When entanglement already exists, it may be redistributed, dis-

9Actually he had used the word before, in a letter to Einstein. In his own words: When two systems, of

which we know the states by their respective representatives, enter into temporary physical interaction due to known forces

between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in

the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather

the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By

the interaction the two representatives (or ψ-functions) have become entangled.
10Or more accurately, might not be factored out into the states of its constituents.
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tilled, swapped or delivered [17–19] from one subsystem to another. But those features are

recent findings.

Entanglement has been considered to be a key piece in Quantum Mechanics ever since

the EPR paper, if not the “key piece”. Many scientists, however, were dissatisfied with it,

because it seemed to violate the limit of transmission of information set implicitly as the

speed of light by the theory of relativity. We will discuss this in much more detail in chapter

8, but for the moment, let us say that the measurement of one of the two particles in an EPR

experiment does not involve faster-than-light classical bodies or any sort of radiation signal

so, in principle, the displayed non-locality does not have to be at odds with special relativity.

Anyhow, if truth be told, the whole entanglement concept was debated and highly chal-

lenged until 1964. That year, in a groundbreaking paper [20], John S. Bell disclosed his

theorem putting all these concepts on much firmer ground. He defined accurately what a

local hidden-variable theory was mathematically and used a version of the EPR experiment

proposed by David Bohm, which included spin-correlation measurements, to introduce a

new thought experiment. He formulated a simple inequality based on the experiment stat-

istics that would be satisfied by any physics following a hidden variable theory and showed

that using certain QM entangled states, the inequality was violated. This result, known as

Bell’s theorem makes obvious that no hidden local-variable theory would ever reproduce all

the predictions of QM.

Within the next years after that, many efforts were put trying to make Bell’s result test-

able. In 1972 the first experimental test [21] came to light and was in agreement with QM.

In the coming years new inequalities as the CHSH and the CH74 were derived [86, 87] and

more experiments were carried on by Clauser, and Fry and Thompson [22,23], in agreement

with QM predictions. The most conclusive and famous experiments where however those

carried on by Alain Aspect and his team [24–26] where they obtained maximum violations

of Bell’s inequalities.

Those experiments and the ones coming after them had certain loopholes. Under the

idea that maybe nature conspires against the experimenter (metaphorically of course), it

is possible that the experimental results match the predictions of quantum mechanics just

because nature finds its way through minor errors and deficiencies in the setups. To date, no

test has simultaneously closed all the loopholes. It is also true that no one, among the ones

carried on accurately, has ever found any result that could challenge the QM predictions.

The non-local character of quantum mechanics is nowadays fully accepted, and the EPR

paper, the first one noticing it, remains one of the most cited papers of Science, accumulating
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so far more than 12500 citations, according to Google Scholar.

Again, entanglement is not just a theoretical concept. It is basic in the Quantum Com-

putation paradigm [88]. Based on Quantum Entanglement, many algorithms have been

developed for Quantum Computers that can produce solutions for some NP problems 11 in

polynomial time. Shor’s algorithm for factorization would allow us to decipher top secure

current transmissions in matter of seconds had we a Quantum Computer available. Altern-

atives for traditional cryptography have been proposed and even built: Quantum Informa-

tion has been used to develop commercial Quantum Key Distribution systems, unbreakable

100 % secure cyphering systems that could even detect eavesdropping 12. Quantum Ma-

chines performing Quantum Algorithms on systems up to 512 superconducting qubits are

being developed by US company D-wave and there is evidence that they might solve in-

stances of the NP Travelling Salesman problem in polynomial time. It is highly impressive,

indeed, what has been achieved over the last 30 years of Quantum Information research.

Who can know what will come next?

Let us come back to Entanglement. Entanglement is everywhere, has important con-

sequences and it is basic when it comes to describing certain Quantum Phenomena. De-

tection for example, is one of those process where entanglement plays an important role.

Imagine that we have in the same isolated laboratory an originally excited atom S, which

acts as a quantum source, and a quantum detector, D. If we let the system evolve, in prin-

ciple, we would assume that it ends up in a quantum superposition:

Ψ = α |SexcitedDno click〉+ β
∣∣SdecayedDno click

〉
+ γ

∣∣SdecayedDclick

〉
(0.0.5)

This state is entangled. The first term represents the case where the source has not de-

cayed, the second, that of the source having decayed but the photon emitted having missed

the detector, and the third, the case of a successful detection of the decay event. If, through

a local measurement, we find out that the detector has clicked, the whole state collapses and

we can be sure that the source has decayed. If we were to consider a realistic detector there

would be other cases, as it would not be 100 % efficient and it could also register dark counts.

The case here described should at least be a good portrait of the ideal detection process. But

this turns out to not be the case.

In this thesis we have devoted much work in trying to understand the detection process

according to the ultimate predictions of Quantum Mechanics. As we will show later, the

11Roughly and rather unprecisely, a P problem is a decision problem that can be solved on a deterministic

Turing machine in an amount of time that is polynomial in the size of the input. Analogously, an NP problem is

a decision problem for which a solution can be verified in polynomial time given the right information.
12Vadim Makarov (The Quantum Hacker), might think otherwise... [89, 90]
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analysis that we have sketched above assumes an approximation that would prove only

valid for long times and small coupling regimes. The whole picture, as will be shown, is

much more complex.

Other issue, related to QI, where we have put our focus in this thesis, is that of causality.

As we will discuss later in more extent, Quantum Mechanics is a non-signaling theory [27,

28], i.e. the statistics of any measurements performed by a certain party A are completely

independent of the measurements carried on by the other party B if A and B are space-like

separated. For that reason, QM does not allow for faster-than-light information transfer:

quantum correlations must be assisted with local operations and classical communication

(LOCC) in order to transmit information [29]. Quantum Teleportation is a paradigmatic

example of this [30].

Even if Relativistic Causality is granted through those considerations, a particular thought

experiment has kept the community particularly busy since the 1930’s. At that time, in a

long paper where he presented a first formulation of Quantum Electrodynamics [8], Fermi

proposed a simple situation, with just two atoms, to study the causal behavior in the excita-

tion of one of them. With his strong conceptual intuition, he managed to obtain a proof for

it and for years everybody was satisfied. However, a flaw detected in his argument [31] (an

approximation only valid for long times) opened a can of worms that was source of debate

for many years [32,33] . It was not until very recently that the picture of the whole situation

became clearer [34, 35].

In this thesis we have devoted a full chapter to the study of the Fermi problem. There we

dissect the whole problem for the 1D case, provide a non-perturbative proof of causality and

explain in detail what the origin of all discrepancies is. Furthermore, we also propose a setup

that models the Fermi problem using superconducting qubits coupled to a transmission line,

and that would allow a detailed study of the issue from the experimental point of view that

could put an end to an eight-decade old controversy.

This very problem started my interest to work on Quantum Simulations. Having fo-

cused my research mainly in theoretical aspects of detection, Quantum Simulations were a

genuine possibility to explore the experimental consequences, and check the impact of the

interesting physical phenomena we were studying in real setups. Inspired by the Fermi

problem and our studies on detection, with this Quantum Simulation mindset, we wrote

three articles making experimental proposals dealing with accelerated atoms, vacuum en-

tanglement extraction and short-time detectors [5–7].
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Vacuum Entanglement and Relativistic Quantum Information

Although QI has always been mostly studied in non-relativistic settings with a finite num-

ber of degrees of freedom, most of its concepts can be formulated in abstract algebraic terms

engulfing both non-relativistic QM and QFT [37–39], extending therefore the notion of en-

tanglement in a natural way to domains with infinitely many degrees of freedom.

Entanglement is ubiquitous. Most quantum states are entangled [91], and most of them

are even too entangled to be useful for computational purposes [92, 93]. When looked from

the algebraic perspective, also the vacuum is entangled, as shown by the Reeh-Schlieder

theorem [40]. Moreover, it violates Bell’s inequalities maximally, without setting up a source

[94, 95].

This fact, discovered long ago, was considered a mere formal result until it was ad-

dressed from a more applied perspective in [41]. Since then, this intriguing property has

attracted a great deal of attention as a possible new resource for Quantum Information

tasks [42–45].

As shown in [41], the entanglement contained in the vacuum of a scalar field can be

transferred to a pair of two-level space-like separated detectors interacting with the field at

the same time. Unfortunately, this theoretical result seems to be very difficult to translate

into an experiment, even in the context of a trapped-ion simulation [42].

In the last years many studies have considered the possibilities for practical extraction

of vacuum correlations [46–50]. In this thesis, we will discuss a particular experimental

setup where we propose to use superconducting circuits and show how a particular kind of

correlations, that we call past-future, can be extracted from the vacuum in a feasible way.

Through this line of study, I became acquainted with some aspects of the whole vacuum

entanglement situation, which could be considered to be rather fundamental. In particular,

the study of entanglement between space-like separated regions involves the use of local

observables, which are intrinsically distinct from the global ones 13. As a matter of fact,

there are no non-trivial positive local operators with zero vacuum expectation value. In

particular, as shown by Redhead [51, 52], no candidate for a local particle number operator

can have zero expectation value in the vacuum state. Also Malament theorem [53] ad-

dresses the impossibility of having local one-particle states by showing that no local particle

projector exists whose eigenstates would correspond to a particle definitely being in the sub-

region of space or not. These aspects and many others which we will explore in more detail

later have been studied from the perspective of the notoriously abstract Algebraic Quantum

13One immediate consequence of vacuum entanglement is that, the vacuum being a entangled pure state, its

reduction to any local region in space must necessarily be mixed and thus excited
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Field Theory (AQFT). In this thesis we have aimed to illuminate these intriguing results

and insights of AQFT by providing a concrete and simple construction using language and

methods familiar to physicists. Specifically, by working with a scalar field in a cavity we

have envisioned a local quantization, in contrast to the global standard one, and with the

help of it explored the aforementioned ideas.

The entangled nature of the quantum vacuum is very much related to other interesting

effects like the Unruh [54] and Hawking [55] effects. These phenomena are usually viewed

as geometric effects related to the existence of a horizon. We will go through more detail

later in the chapter 2, but it might be worth mentioning here that from the point of view

of Quantum Field Theory, their origin can be explained in terms of a decomposition into

this-side-of-the-horizon modes and the-other-side-of-the-horizon modes. Let us explain it

further. If we can fully decompose the vacuum of a Quantum field in modes that fall into a

horizon (or are causally disconnected to our observer trajectory) and modes that do not (or

are causally connected to our observer), we will for most cases obtain an expression where

the vacuum state is described explicitly in terms of entangled modes. By then tracing away

the modes that cannot be accessed by our observer, we might end up with a remaining

thermal-like state.

In the case of flat Minkowski space time and a decomposition into modes accelerat-

ing towards or away from a certain horizon, this is exactly what happens and the picture

would correspond to the Unruh effect: an observer with uniform acceleration a in the flat

quantum vacuum perceives a thermal bath of particles of temperature TUnruh = ~a/2πckB.

Analogously, an observer positioned at a fixed proper distance from a black-hole horizon

has uniform acceleration (the closer to the horizon the larger the acceleration), and therefore

will see a thermal bath. This acceleration, if red shifted to an infinite distance from the black

hole, becomes the black hole’s “surface gravity”, κ = c2/2RBH. Then, by making use of

the equivalence-principle, we can replace the a by κ in the Unruh temperature to obtain the

Hawking temperature: THawking = TUnruh|a=κ = ~c/4πRBH [96, 97]. The Dynamical Casimir

Effect (DCE) is susceptible to a similar analysis [98]. There the situation is not stationary, but

in any case particles are produced due to the oscillatory movement of a horizon (a mirror

boundary). Although neither the Hawking radiation or the Unruh effects have been sim-

ulated yet, their cousin, the DCE, has been successfully observed in a few experiments to

date [56–59].

Thinking about vacuum entanglement and our local formalism, our ideas led naturally

to explore a dynamical-Casimir-like effect where a cavity in the vacuum state is divided into

two parts by slamming a mirror in the middle. Our mathematical toolbox can be directly
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applied to this problem where local virtual quanta get transformed into local measurable

particles. Moreover, we show mathematically how the entanglement existent between the

particles being produced corresponds exactly to previously existing vacuum entanglement

and we further suggest possible experimental settings where to see this.

This sort of phenomena whose study combines more often than not concepts of Quantum

Information, Gravity, Relativistic Mechanics and Quantum Field Theory in Curved space-

times, are engulfed in the interests of a relatively new interdisciplinary field within physics,

known under the name of Relativistic Quantum Information (RQI).

At the end of the last century a seemingly unrelated development of Quantum Informa-

tion theory helped to resolve some of the long-standing conceptual problems within quantum

mechanics. The scientific and technological breakthroughs followed a realization that in-

formation is physical, so its acquisition and processing are ultimately subjected to the laws

of physics. Also in the recent years also, a trend can be observed, with many scientists

exploring the possibilities of setting information as a more fundamental concept in the un-

derstanding of our universe, e.g. by deriving quantum theory from a set of information

processing principles [99], or studying how gravity could be an emergent force consequence

of the “information associated with the positions of material bodies” [100] (also known as

entropic gravity), or even exploring the possibility of time being an emergent phenomenon

based on entanglement [101–103].

Although those are rather exotic possibilities, it should be clear by now that the study of

information in all kind of contexts is highly motivated. Until the end of the 1990’s however,

nobody paid attention to the study of how information is affected under the influence of

movement through spacetime, how it might depend on the point of view of the observer

or how the final state of that information depends on the way it was encoded in the first

place (different inner degrees of freedom of a system are disturbed in different ways). For

standard Quantum Information any relativistic effect was negligible. The first one to work

on this kind of topic was Czachor in 1997 [60], who found that the violation of Bell’s in-

equalities by a pair of separated massive particles depended on their velocities. Since then,

an incredible amount of work, creativity, time and effort has been devoted to the study of

quantum correlations in non-inertial settings, which constitutes RQI basic focus. Given the

vast collection of papers, we will mention just a few references that might inspire the reader.

A few years after Czachor’s seminal paper, a review by Peres and Terno [104] pointed

out that a reassessment of several quantum information concepts was needed and pointed

out some research directions to follow. At the beginning, a central theme emerged in the
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first RQI papers: the study of entanglement dependence on the inertial observers reference

frames and, in particular, the effects of motion in both spin and momentum entanglement

[61–65]. The conclusion was that although spin entanglement or momentum entanglement

were not observer independent, when you consider both together, entanglement could be

seen to be Lorentz invariant. However, the possibilities of gathering experimental evidence

on this fact have been rather limited, given the dependence of measurement of spin and

momentum, [105]. As a matter of fact, the discussion about the definition of a relativistic

spin operator started back then and has not ended yet [106–108].

In parallel, people started to look into the study of the effects of non-uniform motion

[66, 67]. In that respect, the famous paper by I. Fuentes, Alice falls into a black hole, [68]

started a series of works on the effects of spacetime curvature that have continued as of

today [69, 70], and inspired other studies in black-hole physics and cosmology [71, 72].

The effects of acceleration on entanglement involve in general the degradation of it for

both fermionic and bosonic cases (although with remarkable differences), and in different

scenarios (cavities and free-space, local and global modes) [66, 109–111], but surprisingly

enough, and for some situations, acceleration might have an amplification of entanglement

as a consequence [4, 112, 113]. We will discuss this later in chapter 6. The trade-off between

particle and antiparticle modes for non-inertial frames, has also been considered [114, 115].

The article production rate in RQI has boomed in the last 10 years. Nowadays it extends

its arms to ideas that go from the extended study of observer dependence of entanglement

(the curious reader might find a recent review of those in [116]) to the study of the informa-

tion loss paradox [117, 118]. And of course, in between those, many others: the study of en-

tanglement behavior for local and global states, detector models, entanglement dependence

for inertial and non-inertial observers, non-uniform accelerations and curved space-times,

the profound nature of Vacuum Entanglement, particle creation phenomena, signatures of

Cosmological phenomena and many more.

Although its motivation was mostly theoretical at the beginning, it has progressively

moved towards interesting experimental scenarios as current technologies and, in partic-

ular, Quantum Information technologies, have stepped into realms where relativist effects

could be of interest, like satellite quantum communications [119,120] Also, the improvement

of Quantum technologies has given rise to a broad range of platforms to engineer quantum

systems, like ion traps or superconducting circuits, where to experiment and verify predic-

tions of RQI, produce analog computations of certain problems, simulate relativistic settings

and reproduce thought experiments [6, 8, 121–123].

In this thesis much of our work can be understood under that framework. In particular
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we have proposed the simulation of two thought experiments [7, 8] and the study of the

emission features of atoms accelerated in a quantum field [6].

Also among the RQI lines of study are particle creation phenomena such as the Unruh-

Hawking radiation, the Unruh effect, or the Dynamical Casimir effect, mentioned earlier.

After the corresponding seminal works, many studies have focused on the use of Quantum

Information tools to better describe such phenomena, focusing on how to probe them using

detectors. [124–127].

For most of those studies, and for those that study entanglement observer dependence,

the study of quantum detectors in spacetime has been paramount. The analyses carried on

in RQI usually involve studying the detection of particles using simple phenomenological

detector models such as the Unruh-DeWitt model. Actually, much of the work in the RQI

field has involved their study [75, 127, 128, 128–137] and corrections to former assumptions

in the detection process, like the single mode approximation [138].

Until very recently, many RQI studies, in order to study entanglement behavior as seen

by different observers, considered these particular detector models while working with en-

tangled states of quantum-field global modes. It was mainly a theoretical approach, as

global modes can never be probed by any realistic observer. Lately, however, this issue has

been addressed by working in more realistic settings, either studying more physical states,

like wavepackets [3, 4] or considering cavities as in [73–75].

In this thesis we have contributed our bit to this area. We have studied how the Unruh-

DeWitt model can be derived from first-principles and, introducing some modifications to

it, considered the case of detecting localized wavepackets. We have also considered a par-

ticular projection-based detector model introduced in [139] as a practical method to study

field entanglement for localized two single-photon bipartite electromagnetic field states.

Finally we would like to mention the interesting work being done in the emerging field

of Relativistic Quantum Metrology where the tools of relativistic quantum information har-

ness quantum optics technology and merge with it in synergically in the quest to design new

better detectors, thermometers, accelerometers, seismometers and even gravitational wave

detectors [140–147]

By now, it should be clear what are the main motivations of this thesis. Mainly we have

tried to contribute to the study of what a particle is and what is it that is measured by a

detector. With the tools of Quantum Information, Relativistic Information and Quantum

Field Theory we will present ways for detector models to be modified and better adjust to

physical relevant phenomena. We will use them to study more localized states, atypical in

the literature, and explore the concept of particle through simulations, like checking their
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propagation in ideal setups (Fermi problem) or the excitations of detectors in extraordinary

regimes (ultrastrong, extremely short-times). Furthermore, we will see some of the problems

intrinsic to the idea of local particles, the entangled nature of the vacuum and how these

two concepts relate to one another. We will describe vacuum entanglement using Rindler

quanta but also from the point of view of spacelike and timelike separated detectors and,

at the end of the thesis, we will finally to bring some ideas together by building a local

particle description. We will show that, although purely virtual, this description has an exact

correspondence to a particle production phenomenon that could, in principle, be observed

in the lab.

Structure of the thesis

This thesis starts with an introductory section (Preliminaries) divided in three chapters:

• Chapter 1 Quantum Information.

• Chapter 2 Quantum Field Theory.

• Chapter 3 Quantum Simulation Platforms.

With this review material, we aim to fix notation while providing the reader with the

most important tools and concepts used in the research program of this thesis. It is not

exhaustive in its contents, but covers a large background of topics.

The research core of the thesis, detailed from here on, is divided in three parts, each of

them, in turn, divided in several chapters.

• Part I The first part is devoted to a couple of theoretical studies about quantum

detection. There we study two detectors, the Unruh-DeWitt (UdW) model and a pro-

jective detector. For the first one we obtain a derivation from first principles and sug-

gest convenient modifications for the study of wavepackets. For the second, we use it

to study entanglement behavior of certain EM quantum states. We do so as part of a

larger effort to move away from the use of typical global-mode cases and to extend the

use of these theoretical models to more realistic cases like electromagnetic field states

or wavepackets. We finalize the part with a more practical work, where we make a

concrete proposal for simulating an accelerated UDW detector in the lab.

– Chapter 4 This chapter is an introduction to detector models. We will cover

briefly some results of entanglement degradation and amplification under non-

inertial settings and discuss the peculiarities of the detectors later studied.
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– Chapter 5 Here we consider the UdW model and its localization properties.

We show how natural extensions of it, incorporating spatial profiles, meet a series

of problems in their spectral response, especially when dealing with certain in-

teresting physical states of the fields. Additionally we provide a derivation of the

smeared UdW interaction from QED first principles.

– Chapter 6 In this chapter we analyse the quantum effects of acceleration on

realistic spatially-localized EM field states entangled in the polarization degree of

freedom. We do so by using a particular projective detector model. In line with

previous results [113] we find that quantum entanglement might build up as the

acceleration increases for a certain regime, in contrast to the extended belief that

the Unruh effect can only destroy entanglement.

– Chapter 7 Here we present a study to simulate accelerated UdW detectors

in the lab, by showing an analogy with static quantum emitters. Harnessing this

connection we propose two setups, one using trapped ions and another with su-

perconducting circuits, where we show how to model some relativistic quantum

scenarios that are beyond current computational power. Furthermore we show

a simple connection with non-equilibrium physics to make calculations with re-

lativistic atoms.

• Part II In this part we study some phenomena that concern the behavior of detect-

ors beyond rotating wave. Contrary to former standard belief, when the interaction

Hamiltonian is simplified through a rotating wave approximation, acausal behavior

might appear. Only when one considers the full Hamiltonian does causality emerge.

Now, we start this part with a brief discussion on the causality concept and an intro-

duction to what comes next. We proceed to discuss the Fermi Problem, a paradigmatic

case where we can fully understand these mysteries, and finally we head on to con-

sider another interesting question that relates to regimes beyond rotating wave... if a

detector can self-excite, how reliable is the information we get from a click as what

regards to the de-excitation of a certain source?

– Chapter 8 We devote this chapter to a general discussion about causality in

physics and a brief explanation and motivation to the problems and scenarios

that we would like to simulate in the lab and that would be described in the next

chapters.

– Chapter 9 This is a full dissection of the Fermi problem. We disentangle

previous misconceptions and give a general framework to understand causality
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issues in quantum theories. We produce a non-perturbative proof for causality

in 1D and discuss an experiment to verify the causal behavior, and to allow for a

quantitative verification of the quantum mechanical predictions.

– Chapter 10 Inspired by our studies of the Fermi problem, we discuss here a

thought experiment about quantum detection at short-times. We quantify the de-

tails of a detection process and verify that the information collected by a detector

from a source is minimum for short-times and increases as time evolves.

• Part III We have devoted the final part of the thesis to the study of vacuum correl-

ations and localizability of states in Quantum Field Theory. In an introductory chapter

we present some algebraic quantum field theory concepts and discuss how the local-

ization conundrum has been explored in the past. We put vacuum entanglement un-

der the light of the Reeh-Schlieder theorem and discuss the recently phrased concept

of timelike entanglement. After this introduction, a new chapter contains an experi-

mental proposal for the extraction of past-future vacuum correlations in a circuit QED

setup. Later we describe a local formalism, developed by us in order to see how the

problems of localizability would appear while defining local particles constructively.

We also discuss how vacuum entanglement can be understood within this construc-

tion. In spite of the expected problems we come up with a consistent mathematical

apparatus that, in the final chapter, relates this virtual perspective to an interesting

particle production phenomenon.

– Chapter 11 In this chapter we discuss in detail the connection between va-

cuum entanglement and localization. We motivate our work by making a short

historical review of the subject and presenting some of the relevant issues when

it comes to building localized particle states. We also discuss how the formalism

to be developed in the next chapters can help to further illuminate the question

of particle production in the appearance of physical boundaries, e.g. a mirror. We

discuss what is meant when people talk about time-like entanglement vs. space-

like entanglement of the vacuum and, as an introduction to what comes next, we

present the state-of-the-art regarding vacuum entanglement extraction.

– Chapter 12 Given that previous proposals to extract time-like correlations

in the vacuum where experimentally unfeasible, we suggest here an experiment

using circuit QED, where past-future correlations can be extracted. We character-

ize fully, both quantitative and qualitatively, the kinds of correlations extracted

and show how to perform quantum teleportation in time with our proposal, and
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how this can be seen as an exotic quantum memory that stores a quantum bit of

information in the vacuum.

– Chapter 13 Here is where we present our mathematical toolbox to analyze

and characterize local features of free quantum fields. By using two different

quantization procedures we show how to analyze, on a sound mathematical foot-

ing, the local particle content within a certain region of a box. We show explicitly

another way of seeing the existence of entanglement between left and right re-

gions of the box. Moreover, we relate abstract concepts such as Unitary Inequi-

valence to our particular constructive approach in order to give a better grasp

of their implications. In the process we define a local vacuum, with interesting

features, and a set of local operators which act naturally on the standard Fock

space.

– Chapter 14 As the cherry on the top of the cake, we have left for the very last

a most interesting chapter that brings together many of the concepts discussed

in this thesis. Using our local formalism we describe here the situation of a box

where a mirror is slammed down, dividing it into two equal parts. We describe

the process of particle production under this light and verify that the burst of

particles produced can be exactly expressed in terms of the original content of

entangled virtual local particles. We end up discussing what the experimental

prospects are when it comes to probing this scenario in the lab.

We end up with a conclusion section where we summarize all the results here exposed.
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CHAPTER 1

Quantum Information

This chapter aims to be a short introduction, mostly notational, to some basic notions on

entanglement and separability for pure and mixed states. We will also discuss briefly how

entanglement measures can help us to calculate the amount of entanglement in bipartite

systems. We will regrettably leave aside some other fundamental concepts, e.g. entangle-

ment witnesses, protocols, positive maps, majorization, etc., as they are not used directly

in this work. Entanglement is a very wide topic, still a very active field of research, and its

developments so broad and extensive that any brief introduction is doomed to be merely a

shadow of the field’s vastness. The interested reader may find more information about the

topic in the following reviews [148–150], which have inspired the present section.

In the preface we described entanglement as a distinctive characteristic of quantum

mechanics. It is surely not the only one. Quantum systems exhibit several non-classical fea-

tures like state superposition, interference or tunneling. These are all phenomena that can

be observed in individual systems, composed of just one particle. Entanglement however,

manifests itself in composite arrangements, where different subsystems (or independent de-

grees of freedom 1) can be identified . In classical physics, the correlations between different

subsystems can be explained in terms of classical probabilities, but this turns out not to be

the case for all quantum systems. The states that present that peculiar sort of correlations

are called entangled.

Along this chapter we focus on bipartite systems2, associated to a finite dimensional

Hilbert spaceHAB that is the tensor product of the associated Hilbert spaces of the two sub-

systems HAB = HA ⊗ HB , with dimension dS = dim(HAB) = dAdB , being dA = dim(HA)

and dB = dim(HB). For most cases we will work with states of two qubits: dA = dB = 2.

1We say this to make it clear that entanglement can manifest itself also in a single particle, if we consider as

subsystems its independent degrees of freedom, e.g. momentum and spin.
2Most of the ideas presented here, however, can be generalized to multipartite systems.
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We will discuss separately the cases of pure and mixed states.

1.1 Pure states

Let us consider a pure state of the form:

|ΨS〉 = |ψ1〉 ⊗ |ψ2〉 (1.1.1)

If we perform for example a projective measurement on the subsystem A, say by con-

sidering an operator O ⊗ 1, the final state of subsystem A will end being an eigenstate of

the first subsystem A, say |o〉 and the state of the subsystem B will remain unchanged:

|Ψ〉AB = |o〉 ⊗ |ψB〉 and all future local measurements on B would be independent of that

any measurements carried on atA. This is what is called a separable state. Notwithstanding,

these states are not the general case. The general bipartite state takes the form:

|Ψ〉AB =
∑
ij

cij |ψi〉A ⊗ |ψj〉B , (1.1.2)

where {|ψi〉A} and {|ψi〉B} constitute bases for the subspaces A and B respectively, and

the coefficients cij verify
∑

ij |cij |2 = 1. The indexes i, j run up to the corresponding sub-

spaces dimensions dA and dB .

There is always however a more “economical” expansion in which only one index is

needed, the Schmidt decomposition. Let us formulate here the following theorem.

Theorem 1.1 (Schmidt decomposition) For every pure bipartite state |Ψ〉AB there exist orthonor-

mal sets {|φi〉A} ⊆ HA and {|ϕi〉B} ⊆ HB such that,

|Ψ〉AB =

n∑
i=1

λi |φi〉A ⊗ |ϕi〉B ,

where 1 ≤ n ≤ min(dA, dB) and the Schmidt coefficients λi are all real, non-negative λi ≥ 0

and satisfy
∑n

i=1 λ
2
i = 1

The minimum possible value for n, nmin, is called the Schmidt rank of the state for that par-

tition AB. States of Schmidt rank nmin = 1 are called separable, and have the form of Eq.

(1.1.1). Any other state with nmin > 1 is called entangled. In particular, those states with

nmin = min(d1, d2) are called maximally entangled states. A paradigmatic example of max-

imally entangled states in a two-qubit case are the Bell states, {|Ψ+〉 , |Ψ−〉 , |Φ+〉 , |Φ+〉}. For

example, |Ψ−〉 = 1√
2
(|↓↑〉 − |↑↓〉).

An easier definition of separable and entangled states can be given simply as:
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Definition 1.1 (Separable pure state) A pure state |Ψ〉AB ∈ HAB is said to be separable with

respect to the partitionH = HA⊗HB iff it can be written as a tensor product of individual subspace

states, i.e. if there are states |ψ〉 ∈ HA and |ψ〉B ∈ HB such that :

|Ψ〉AB = |ψ〉A ⊗ |ψ〉B .

Definition 1.2 (Entangled pure state) A pure state |Ψ〉AB ∈ HAB is said to be entangled with

respect to the partition HAB = HA ⊗HB iff it is not separable with respect to that partition, i.e. iff

for all states |ψ〉 ∈ HA and |ψ〉B ∈ HB we have :

|Ψ〉AB 6= |ψ〉A ⊗ |ψ〉B .

1.2 Mixed states

While considering statistical mixtures of bipartite states, it may seem natural to demand

for a global mixed state, ρAB to be separable, that it should accept a decomposition as the

product of the corresponding mixed sub-states ρAB = ρA ⊗ ρB with ρA = TrB{ρAB}, and

ρB = TrA{ρAB}. This view is, however, too restrictive. Of course that would be a separable

state, but so should be any convex mixture of that kind of mixed states.

With that caveat in mind we can make the following definition:

Definition 1.3 (Separable mixed state) A mixed state ρAB : HAB → HAB is said to be separable

with respect to the partitionHAB = HA⊗HB iff it can be written as a convex combination of tensor

products of mixed states of the individual subsystems as:

ρAB =
∑
i

piρ
(A)
i ⊗ ρ(B)

i (1.2.1)

with pi ≥ 0 and
∑n

i=1 pi = 1

We must point out to the reader that the existence of a separable state does not mean the

absence of correlations. As a matter of fact, for the general case of a separable mixed state

there will be local observables OA, OB leading to correlated measurement results, i.e.

Tr{ρAB(OA⊗OB)} 6= Tr{ρAB(OA⊗1)}Tr{ρAB(1⊗OB)} = TrA{ρAOA}TrB{ρBOB}3 (1.2.2)

The definition of entangled mixed states follows directly:
3 Part or all of those correlations might be explainable classically. The part that cannot be classified as

“classical” is called Quantum discord. It has been proposed as a measure for the most general kind of Quantum

37



CHAPTER 1. QUANTUM INFORMATION

Definition 1.4 (Entangled mixed state) A mixed state ρAB : HAB → HAB is said to be en-

tangled with respect to the partitionHAB = HA⊗HB iff it is not separable, i.e. iff there are no local

states ρ(A)
i , ρ(B)

i , and non-negative weights pi such that ρAB can be written as a convex mixture:

@ ρ(A)
i , ρ

(B)
i , pi ≥ 0, with

∑
i

pi = 1 such that ρAB =
∑
i

piρ
(A)
i ⊗ ρ(B)

i (1.2.3)

1.3 Von-Neumann entropy

The entropy of information as defined in Classical Information Theory has a natural exten-

sion to Quantum Mechanics. There it represented the uncertainty associated with the next

message emitted by a source, or the next outcome of a random experiment. We can trans-

late this to the uncertainty we have for a mixed state ρ =
∑

i pi|ψi〉〈ψi| to be in one of its

constituent pure states |ψi〉. If we know that our system is in a certain pure state, then the

entropy should be zero. This is exactly what happens with the Von-Neumann entropy:

Definition 1.5 (Von-Neumann entropy) The Von-Neumann entropy S(ρ) of a certain density

matrix ρ with a decomposition ρ =
∑

i pi|ψi〉〈ψi| in pure states is given by:

S(ρ) = −
∑
i

pi log pi = −Tr(ρ log ρ) (1.3.1)

where log is usually taken to be the binary logarithm.

The connection of this concept with entanglement will be unveiled soon, when we con-

sider entanglement measures.

1.4 Entanglement detection

Given the importance of entanglement in Quantum Computing, it would be incredibly use-

ful to have a test that could check whether or not a given state is entangled. The search

of that kind of tests is a very active research area and has produced many necessary and

sufficient criteria for entanglement (check [149] for references). A different approach to it is

given by Entanglement Witness and Positive Maps [149, 153].

Notwithstanding, these are all partial solutions as there is not yet a universal, both ne-

cessary and sufficient test. However, if we restrict ourselves to the case of Hilbert spaces of

Correlations [151, 152]. We will omit a more precise definition here, but let us say that it is non-negative and

mention that separable pure states have zero discord, entangled states (pure or mixed) have non-zero discord and

certain separable mixed states (which are therefore not entangled) have non-zero discord.
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1.5. Quantum steering

2 × 2 or 2 × 3 dimensions, there exists such a criterion. We think it is worth presenting it

here:

Definition 1.6 (Peres-Horodecki Criterion, PPT Criterion 4 [154, 155]) Let us consider a state

ρ acting onHAB = HA ⊗HB with dAdB ≤ 6

ρ =
∑
ijkl

ρijkl|i〉〈j| ⊗ |k〉〈l| (1.4.1)

Its partial transpose (with respect to B) is given by:

ρTB := (1A ⊗ TB)(ρ) =
∑
ijkl

ρijkl|i〉〈j| ⊗ (|k〉〈l|)T =
∑
ijkl

ρijkl|i〉〈j| ⊗ |l〉〈k| (1.4.2)

Then, the criterion states that iff ρ is separable all ρTB eigenvalues are non-negative. The criterion

also verifies when considering ρTA instead. For other dimensions of the subsystems the positivity of

the partial transpose is not sufficient but it is still necessary for a state to be separable.

1.5 Quantum steering

The most interesting aspect of entanglement is probably the “spooky action at distance”,

how a measurement performed in a part of the system can modify (or rather, collapse) the

state of the other part. This notion, called by Schrödinger “quantum steering”, can be simply

put as follows: if A (Alice) and B (Bob) share a certain bipartite state, what kind of states can

Alice prepare for Bob, considering she acts just locally?5. The Quantum Steering theorem

might shed some light on it. Although we will omit its proof here, a very simple one can be

found in [156]:

Theorem 1.2 (Quantum steering [85, 157]) Let Alice and Bob share a pure bipartite state |Ψ〉AB
on HAB = HA ⊗ HB , with Bob’s local density matrix being ρB = TrA{|Ψ〉AB 〈Ψ|AB}. Then

there exist a POVM on Alice side where she can produce the ensemble {pBi , σBi } iff there is a convex

decomposition of ρB in that particular ensemble, i.e. iff ρB =
∑

i p
B
i σ

B
i .

The theorem is casted in a peculiar language that would benefit from some clarifications.

The whole question of Quantum Steering is extremely subtle. First, as a straightforward con-

sequence of the rules of quantum measurement theory, it is impossible for Alice, no matter

what operations she performs, to locally modify the density matrix of Bob’s subsystem ρB

(if she could, there would be signaling), so, in what sense are saying that Alice can prepare

5 If the reader hints here a rather strong connection between Quantum Steering and Teleportation, he is

right. Quantum Teleportation can be naturally and easily understood in those terms [156]
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certain states? It is all a matter of information. When dealing when mixed states we are talk-

ing about ensembles, an statistical description of the states we deal with. If Bob were to do

tomography on his final state, repeating the experiment many times for many copies of that

shared entangled state |Ψ〉AB , he would obtain a density matrix ρB no matter what Alice

has done. However, if he were to do tomography with only those states that Alice told him

he should look (for which she would have performed the appropriate POVM and obtained

the result corresponding to the final {σBk } then Bob would observe a density matrix σBk .

Alice can change Bob state, but only through post-selection. Unless Bob does know

the result of Alice measurement, he will not update his description of the system to a new

density matrix within the ensemble, because the state that Alice prepares is a different one

every time. Alice, on her side, cannot choose which one she prepares. Her preparation,

as happens with all quantum mechanical measurements, even if it may follow an accurate

recipe, it is like cooking a mysterious cake whose final flavor can only be discovered at the

moment you taste it.

1.6 Entanglement measures

When it comes to saying which one of two states is more entangled, the qualitative dis-

tinction between entangled and separable states that we have hitherto discussed proves to

be insufficient. In order to come up with a quantitative description we will consider some

properties of entangled states and how they can be affected by certain operations.

While talking about entanglement, we have left it clear that it was an intrinsically quantum

feature related to the quantum correlations that occur in many-party quantum states. In or-

der to define quantum correlations, it is easy to think about them as those that are not clas-

sical, and then we must try to define what classical means. In Quantum Information, and

for operational purposes, we can define classical correlations as those that can be build up

while performing local operations and classical communication (LOCC) between parties. The

idea is that both parties can make operations on their systems and then tell the other what

results they have obtained through a classical communication channel. LOCC operations

can create correlations but those should remain classical, and in that sense, they should not

increase entanglement. A natural requirement for any entanglement measure is therefore

that it should not increase under LOCC. That leads to define the concept of entanglement

monotone [158]:

Definition 1.7 (Entanglement monotone (I)) An entanglement monotone E(ρ) is a mapping
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from density matrices into real numbers that does not increase, on average, under LOCC 6

Given a function E(ρ) that satisfies this monotonicity axiom, E must be minimal and

constant on separable states, because any separable state can be obtained by LOCC from any

other state [158]. Therefore it is customary to set that value to zero and introduce, without

loss of generality, this other definition.

Definition 1.8 (Entanglement monotone (II)) A mapping from density matrices into real posit-

ive numbers E : ρ→ R+ is an entanglement monotone iff:

• E(ρsep) = 0 for all separable states ρsep.

• E does not increase, on average, under LOCC.

In addition to those, it is common in the literature to require more conditions in order to

define an entanglement measure. The choosing for these criteria is often source of debate

[149], so we will stick to the ones here presented and will not make any distinction between

monotone and measure. However, it can be worth to present some:

• Normalization The idea is to set the entanglement value for a state made of qubit

maximally-entangled states (Ψ+
2 ) in terms of how many other qubits can be teleported

using it as a resource. With this convention,

E[(Ψ+
2 )⊗n] = n

• Assymptotic Continuity For every two states ρn, σn acting on a Hilbert space Hn of

dimension n one must have:

‖ρn − σn‖1 → 0⇒ |E(ρn)− E(σn)|/ log n→ 0

• Weak Additivity For every state ρ we must have E(ρ⊗ ρ) = 2E(ρ)

Other examples of properties often considered are full additivity7 , convexity 8, faithful-

ness 9 or monogamy 10.

6With this we mean that, if we consider stochastic LOCCs, the estimated value of E does not increase, i.e.

E(ρ) ≥ piE(ρi) (1.6.1)

, where ρi are the possible outputs, each with probability pi, of the LOCC.
7For every two states ρ and σ, E(ρ⊗ σ) = E(ρ) + E(σ)
8A monotones is convex iff E(

∑
i piρi) ≤ pi

∑
iE(ρi), with

∑
pi = 1, pi ≥ 0

9A monotone is faithful iff for every ρent entangled, E(ρent) > 0
10A monotone is monogamous iff for every E(ρAÃB) ≥ E(ρAB) + E(ρÃB)
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If we limit ourselves to the study of just pure states, a natural measure of entanglement

is the Von-Neumann entropy of the reduced state for any of the two subsystems, also called

entropy of entanglement.

Definition 1.9 (Entropy of Entanglement) The entropy of entanglement ES of a pure state ρAB
is given by:

ES(ρAB) = S(ρA) = S(ρB), with ρA = TrBρAB, ρB = TrAρAB (1.6.2)

, with S being the Von-Neumann entropy as defined in Eq. (1.5))

This entropy is a measure of the mixedness of one of the system parts after we have

trace the other. Its use as a measure of the matches perfectly with the simple intuition that

the more a system is entangled, the more mixed one part will look like after we have disen-

tangled it.

The entropy of entanglement accepts many extensions to mixed states, some of them faith-

ful 11, like the relative entropy of entanglement .

Definition 1.10 (Relative entropy of entanglement [159]) The relative entropy of entanglement

ER of a state ρ is given by:

ER(ρAB) = min
σsep

S(ρ‖σsep) (1.6.3)

Where the minimization is taken over all separable states σsep and S(ρ‖σ) = S(ρ)− Tr(ρ log σ)

It reduces to the entropy of entanglement for pure states and it is a faithful monotone,

convex, normalized, asymptotically continuous and faithful, but not weakly additive. It

has many applications in quantum entanglement theory, especially in quantum hypothesis

testing [160], but its calculation implies a complex minimization process and there are other

faithful measures that can be calculated in a much simpler way. Concurrence and negativity

are examples of those, which will be used in this thesis. Neither of them, however, reduces

to the entropy of Entanglement in the case of pure states.

Concurrence

Concurrence is the most usual measure of entanglement for non-pure two-qubit states. It is

defined as follows:

11Faithfulness makes it easy to probe for entanglement as E(σ = 0) means automatically that σ is separable.
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Definition 1.11 (Concurrence [161]) The concurrence C of a state of two qubits ρ acting onHAB =

HA ⊗HB is given by:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (1.6.4)

and the {λi} are the eigenvalues, in decreasing order, of the Hermitian matrix R =
√√

ρρ̃
√
ρ.

Alternatively, the λi are also the square roots of the eigenvalues of the non-Hermitian matrix ρρ̃. The

matrix ρ̃ represents the spin-flipped state:

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) (1.6.5)

where the complex conjugate12 is taken in the standard basis, which for a pair of spin-1/2 particles

is {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}

Generalizations of concurrence in arbitrary dimensions exist only for pure states. Luckily

enough, we will restrict ourselves to its use in two-qubit states.

Negativity

Based on the PPT criterion presented in Sec. 1.6, the negativity quantifies how much a given

state fails to be positive after its partial transposition. It is simply calculated as the absolute

sum of the negative eigenvalues for the partial transpose.

Definition 1.12 (Negativity [162]) The negativityN of a bipartite state ρ acting onHAB = HA⊗
HB is given by:

N (ρ) =
∑
i

|λi| − λi
2

(1.6.6)

where the {λi} are the eigenvalues of the partial transpose of the state, ρTB (or ρTA).

The negativity is a convex monotone and it can be evaluated easily for pure and non-

pure states in arbitrary dimensions. It is only faithful, however, for the 2 x 2 (two qubits)

and 2 x 3 (a qubit and a qutrit) dimensions (the only cases where the PPT criterion is a

sufficient and necessary condition for separability).

12Unlike the Hermitian conjugate, the complex conjugate of a density operator depends on the basis in which

it is expressed
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Quantum Fields

Most of the research of this thesis is carried on within the framework of Quantum Field

Theory. Here we would like to go through some basic notions about quantum fields, quant-

ization in curved spacetimes and discuss some of particle production phenomena such as

the Unruh effect. In order to simplify the discussion, and given that in this thesis we do not

deal with fermions, we would restrict ourselves to the bosonic cases.

Also it is worth to say that Quantum Field Theory is an extremely broad topic and we are

studying it only laterally, in what it relates to our Relativistic Quantum Information studies.

A very interesting concept that has played a major role in the understanding, interpret-

ation and development of Quantum Theory has been that of particle. In the early days of

quantum mechanics, single particles were the fundamental objects under study. At the end

of the day the Schrödinger equation was a single particle equation and the wavefunction

represented originally the quantum properties of such an object. It was when QM and Spe-

cial Relativity came together into Quantum Field Theory that the focus on the single particle

drifted towards quantum fields, where those particles where envisaged as basic elementary

excitations. On top of a quantum background field, particles could be created or annihil-

ated, they could interact and even produce other particles of different nature. And in the

beginning such an understanding of the particle idea became satisfactory to a great extent.

The later success of QFT predicting experimental results in particle accelerators, the elec-

troweak unification, the development of Quantum Chromodynamics and the discovery of

the Higgs boson have strengthened that feeling. However, the concept of particle has sev-

eral problems when one looks at it from a fundamental point of view. First, a particle is

not a well localized object. Our naïve picture of particles being thought as minute compact

objects propagating at subluminical speeds is far from what the theory boilds down to. We
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will discuss this issue in detail later in part III of this thesis. Secondly, particles are typically

understood as rather free objets, but actually this free picture is in conflict with the exist-

ence of interactions. As Rudolf Haag proved in 1955, the interaction particle representation

is unitarily inequivalent to the free particle representation, being this last one basic in the

definition of the asymptotic states used to represent particles in the study of typical experi-

ments. We will give some thought to these unitary inequivalence issues also in chapter 13.

Thirdly, the concept of particle is ambiguous in curved spacetimes. There is no preferred

natural choice for the spacetime coordinates and, classically, all the possible choices have an

equal standing, even if they might lead to different unitarily inequivalent representations

and therefore not just different, but rather incompatible particle definitions. This is known

as the “multiple choice” problem.

Actually, the whole problem of defining particles in general spacetimes is a bit tricky.

For a general trajectory where no conserved quantities can be assumed to exist, there is no

way to consistently choose a definition for a particle that does not change in time. For that

matter we need to restrict ourselves to the study of observers whose particle definitions do

not change in time. The concept of Killing fields is key there. A Killing field is basically an

isometry of the metric tensor, which we can make use of to define a Hamiltonian and an

evolution parameter to properly define particles in the usual way.

We will first try to show how this procedure works for the paradigmatic case of the free

scalar bosonic field in a flat spacetime, and perform its quantization in Rindler coordinates,

but first we will show the quantization in the Minkowski coordinates. We will then proceed

to show how Bogoliubov transformations can help us to relate solutions of different quant-

izations of the same field. We will discuss unitarily inequivalence between representations

and finally we will show an easy derivation of the Unruh effect through the identification of

inertial and accelerated observers to the Minkowski and Rindler quantizations. We will try

to be rather concise. For a more extended exposition of these topics we suggest the reader

to check [163–166].

2.1 Quantization schemes

2.1.1 Klein Gordon field in flat spacetime: Minkowski quantization

Originally thought as the relativistic version for the Schrödinger equation, the Klein Gordon

(KG) equation when reinterpreted as a field equation in Minkowski coordinates with c =

1, ~ = 1 reads:
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(�−m2)Φ = (−∂2
t + ∂2

x −m2)Φ = 0 (2.1.1)

Where the flat space metric has been taken as ηµν = diag(−,+,+,+). We will use this

convention all throughout the thesis.

The first step is to identify the KG scalar product (emerging from the conserved current

density), defined for any two modes φi, φj of the vector space of solutions S:

(φi, φj) = i

∫
Σ

dx φ∗i
↔
∂ t φj = i

∫
Σ

dx (φ∗i ∂tφj − φj∂tφ∗i ) , (2.1.2)

Where Σ is a Cauchy spacelike hypersurface that for convenience we have taken to be

t = 0. Note that this inner product is not positive definite, so S does not form a Hilbert

space. Only by restricting the solution space to some choice of a positive frequency sector

does the KG pseudo inner product become positive definite. Of course, as is well known

,such a restriction is not robust as any interaction will quickly bring us outside any positive

frequency subspace of the vector space of solutions of the Klein-Gordon equation.

The following relations are satisfied for the KG inner product:

(φ, ϕ)∗ = (ϕ, φ), (φ, ϕ) = −(φ∗, ϕ∗) (2.1.3)

It will be useful to introduce a Dirac notation to denote the vectors and dual vectors on S

and S∗. First we make the identification Φ(x, t) ∼ |Φ) ∈ S. In order to determine the form of

the corresponding bra vector (Φ| ∈ S∗ we make use of the fact that the sesqui-linear pseudo

Klein-Gordon inner product (·|·) → C defines a map between the vector space of solutions

S and its conjugate dual space S∗. The pseudo metric on the vector space of solutions is

g = i
↔
∂ tδ(x− x′). Thus we identify the bra vector as (Φ|·) or written in ordinary notation

(Φ| =
∫

Σ
dx′Φ∗(x′, t)i

↔
∂ tδ(x− x′) = iΦ∗(x, t)

↔
∂ t (2.1.4)

In typical treatments the basis of plane wave solutions is used:

uk(x, t) =
1√

2ωk(2π)3
ei(kx−ωkt), (2.1.5)

with ω2
k = k · k +m2. These modes satisfy the orthogonality conditions:

(up|uq) = δp−q, (u∗p|u∗q) = −δp−q, (u∗p|uq) = 0, (2.1.6)

where the δs represent Dirac delta functions: δp = δ(p) = δ(px)δ(py)δ(pz).
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In order to construct a Hilbert space for the theory, we need to separate the positive and

negative norm modes, which, as we can see, correspond exactly to the positive and negative

frequency plane wave modes, as K = ∂t is a Killing vector in the Minkowski space which

correspond to inertial observers. Precisely in the plane wave solution basis we have:

∂tuk(x, t) = −iωkuk(x, t), (2.1.7)

∂tu
∗
k(x, t) = iωkuk(x, t). (2.1.8)

Rigorously, the splitting of the Hilbert space should be made explicit through the intro-

duction of a complex structure [165]. In our notation it takes the form:

J = i

(∫
k

dk|uk)(uk|+ |u∗k)(u∗k|
)

(2.1.9)

We also have the following decomposition of the identity in S:

1 =

∫
k

dk|uk)(uk| − |u∗k)(u∗k| (2.1.10)

We can therefore decompose any mode into its positive and negative frequency compon-

ents:

Φ =

∫
k

dk[aMk uk + aMk
∗
u∗k], Φ(x, t) =

∫
k

dk [aMk uk(x, t) + aMk
∗
u∗k(x, t)] (2.1.11)

With aMk = (uk|Ψ), aMk
∗

= −(u∗k|Ψ).

Now we can proceed to quantize the field, promoting the field to a quantum field oper-

ator and introducing the canonical commutation relations:

[
Φ̂(x, t), Π̂(x′, t)

]
= iδ(x− x′),

[
Φ̂(x, t), Φ̂(x′, t)

]
= 0,

[
Π̂(x, t), Π̂(x′, t)

]
= 0

(2.1.12)

Where Π(x, t) = ∂tΦ(x, t) is the associated canonical momentum. These relations have

the consequence of promoting the functions aMk , a
M ∗

k to operators âMk , â
M†
k verifying:

[âMp , â
M†
q ] = δp−q, [âMp , â

M
q ] = [âM†p , âM†q ] = 0 (2.1.13)

From now on we will abuse the notation and drop the hats while referring to these op-

erators.
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Now we can go and construct the Hilbert space of states which will be the Fock space

FM associated to the set of creation and annihilation operators. In contradistinction to S,

the Fock space FM is a Hilbert space, i.e. a vector space equipped with a positive definite

inner product. We denote members of this Fock space |ψ〉 ∈ F to distinguish them from the

members of the vector space of solutions |ψ) ∈ S which do not form a Hilbert space.

As usual, we will define the vacuum state |0〉M to be the state annihilated by all operators

aMk . It is normalized, M 〈0|0〉M = 1, and interpreted as the state with no particles:

aMk |0〉 = 0 ∀ k ∈ R3. (2.1.14)

We can proceed and define the general one-particle state as:

|ψ〉1 =

∫
k

dk ζka
M†
k |0〉M , with

∫
k

dk|ζk|2 = 1 (2.1.15)

The set of all possible one-particle states constitutes a Hilbert space, H, that we will refer

to as the single-particle sector. We can continue and construct the two particle sector by making

the tensor product of H with itself and then symmetrizing it to account for the bosonic nature

of the field (H⊗SH). In this way we can combine all particle sectors to create the full bosonic

Fock space FM is, as spanned by this basis, i.e.

FM (H) =

∞⊕
n=0

n⊗
S
H = C⊕ H⊕ (H⊗S H)⊕ . . . . (2.1.16)

For each mode we have a natural basis obtained by repeated application of the creation

operators on the vacuum state:

|nk〉M =
(aM†k )n√

n!
|0〉M , (2.1.17)

Also, any vector |ψ〉 belonging to the Fock space is required to contain a “finite number

of particles”,
∫
k dk〈ψ|aM†k aMk |ψ〉 <∞

2.1.2 Rindler quantization

Even in the simplest case of a flat spacetime, different observers can see essential differences

when checking the same state. The Minkowski quantization, represented by the Killing

field ∂t, describes the point of view of an inertial observer (Alice) and is based on the typical

Minkowski coordinates (t,x) = (t, x, y, z). As opposed to it, the Rindler quantization, rep-

resented by the other timelike Killing field of the Minkowski metric (the Lorentz generator
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Figure 2.1: Spacetime diagram showing the division of a flat spacetime in Rindler regions.

x∂t + t∂x) describes how uniformly accelerated observers would perceive a quantum field

around them. In order to describe this situation we recur to the Rindler coordinates (η,χ),

where y and z are unchanged, χ = (χ, y, z) [167] :

t = χ sinh(η) (2.1.18)

x = χ cosh(η) (2.1.19)

We remind the reader that we are using the convention c = 1, ~ = 1 all along this chapter.

As in the previous section, we will work considering the full three dimensional space. The

1 dimensional case is simpler and can be derived in an analogous way.

With these coordinates we only cover a part of the spacetime that we will refer to as

the right Rindler wedge or region I (x < |t|). We can analogously define another set of

coordinates

t = −χ sinh(η) (2.1.20)

x = −χ cosh(η) (2.1.21)
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with the same coordinate range χ > 0, η ∈ R. They describe a different kind of observer

(AntiRob), covering the left Rindler wedge or region II (x < −|t|) (check Fig. 2.1). Observers

in region I are causally disconnected from observers in region II, so a particle emitted in one

wedge will never be detected in the other wedge. As a consequence of that, no transmission

of information is possible between the two. Regions I and II only contain part of the total

spacetime, however we will see later that this should be enough for the present purposes.

Later in this thesis, in chapter 12, we will discuss how regions III (past) and IV (future) can

also be taken into account to study the concept of timelike entanglement.

In order to get a feeling about the Rindler space coordinates let us simplify this and work

in the 1+1 case. The spacetime metric for both regiones reads:

ds2 = −dt2 + dx2 = −χ2dη2 + dχ2 (2.1.22)

For an observer who follows a worldline of constant χ we obtain that the proper time is:

dτ2 = −ds2 = χ2dη2 (2.1.23)

So we can identify η = τ/χ, which could lead to a different Rindler parametrisation in

terms of the proper time along those trajectories. For the region I, that would be:

t = χ sinh(τ/χ)

x = χ cosh(τ/χ) (2.1.24)

Fixing χ and using thes eequations we can check that, seen by an inertial observer, a

Rindler trajectory follows a hyperbolic line x2− t2 = χ asymptotically approaching the cone

x = |t|.
Why do we say that these lines represent constantly accelerated observers? If using

(2.1.24) we just calculate the first components of the 4-acceleration αwe obtain:

α0 =
d2t

dτ2
=

1

χ
sinh(τ/χ) (2.1.25)

α1 =
d2x

dτ2
=

1

χ
cosh(τ/χ) (2.1.26)

And to obtain the proper acceleration we must just calculate its norm, i.e. α =
√
−|α0|2 + |α1|2 =

1/χ.

So we have shown that these coordinates, χ > 0, η ∈ R, for a chosen fixed value of χ > 0

represent in the inertial frame the hyperbolic trayectory of an observer (Rob, in the region
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I) moving with constant acceleration nχ/χ, which precisely at t = 0 passes through x = χ.

Rob’s proper time is given by dτ = χdη

The Klein Gordon equation in Rindler coordinates reads:

− ∂2
ηφ+ (χ∂χ)2φ+ χ2(∂2

yφ+ ∂2
zφ)− χ2m2φ = 0 (2.1.27)

And the KG inner product in Rindler coordinates is:

(φRi , φ
R
j ) = i

∫
Σ

dχ
φRi
∗
∂ηφ

R
j − φRj

∗
∂ηφ

R
i

χ
, (2.1.28)

where Σ is here the spacelike hypersurface η = 0.

For quantization purposes, we will recur to modes which solve this equation uk(η,χ),

are orthogonal in the KG product, as in Eq. (2.1.6), and are associated with the correspond-

ing future-directed Killing vector field (which in region I takes the form ∂η = x∂t + t∂x,

whereas in region II is -∂η). This last fact is what allow us to classify them into positive and

negative Rindler frequency modes, or positive and negative norm for that matter. These are

the positive modes for the right wedge (r):

uRr,Ω,k⊥ =

√
sinh(πΩ)

4π2
KiΩ(χm)e−iΩη+ik⊥·y⊥ (2.1.29)

where KiΩ is a modified Bessel function of the second kind, Ω ∈ (0,∞), k⊥ = (ky, kz)

and y⊥ = (y, z). The negative modes are just the conjugates of these. We can expand any

field in the right wedge (r) using these modes:

Φ =

∫
Ω,k⊥

dΩdk⊥[aRr,Ω,k⊥u
R
r,Ω,k⊥

+ aR∗r,Ω,k⊥u
R∗
r,Ω,k⊥

], (2.1.30)

Analogously we could obtain modes for region II (l). Even doing this, we would not

cover the whole spacetime. However, the modes (2.1.29) and the corresponding modes in

the left wedge happen to be enough, as they can be extended analytically to cover regions

III(p) and IV (f ) [54, 168, 169]. Given that, the field can be fully expanded in the whole

spacetime as:

Φ =

∫
Ω,k⊥

dΩdk⊥
∑
ε=l,r

[aRε,Ω,k⊥u
R
ε,Ω,k⊥

+ H.c.], (2.1.31)

The quantization procedure goes as usual. As regions I and II are disconnected we may

treat them independently. We will identify the modes uRε,Ω,k⊥ with the single-particle Hilbert

space Hε. Imposing the canonical conmmutation relations we obtain for the creation and

annihilation operators:
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2.2. Bogoliubov transformations

[aRε,Ω,p⊥ , a
R†
ε′,Ω′,q′⊥

] = δε,ε′δp⊥−q⊥δ(Ω− Ω′), [aRε,Ω,p⊥ , a
R
ε′,Ω′,q′⊥

] = [aR†ε,Ω,p⊥ , a
R†
ε′,Ω′,q′⊥

] = 0

(2.1.32)

The Rindler vacuum |0〉R = |0〉l ⊗ |0〉r is defined as:

aRε,Ω,k⊥ |0〉R = 0 ∀ ε,Ω,k⊥ (2.1.33)

2.2 Bogoliubov transformations

It is interesting to be able to transform a field state description between different basis, from

its Minkowski form to its Rindler form, as that relates to how different observers, inertial

and accelerated, may describe the same field. In fact, it is using this formalism of converting

from one basis to another that we can study the entanglement shared by two parties when

one or both are accelerated.

A Bogoliubov transformation is basically a change of basis between quantizations based

on different choices of modes. To this end, let {fi, f∗i } and {f̃i, f̃∗i } be two complete sets

of orthonormal modes in the sense of the KG inner product, see Eq. (2.1.6). Then we can

expand the quantum field in two distinct ways:

φ(x, t) =
∑
i

fi(x, t)al + f∗i (x, t)a†i =
∑
i

f̃i(x, t)ãi + f̃∗i (x, t)ã†i . (2.2.1)

Using the orthogonality relations we can immediately read off the relations

ãi =
∑
n

(f̃i|fj)aj + (f̃i|f∗j )a†j , (2.2.2)

ã†i =
∑
j

(fj |f̃i)a†j + (f∗j |f̃i)aj . (2.2.3)

The complex coefficients (f̃i|fj), (f̃i|f∗j ), (fj |f̃i), and (f∗j |f̃i) are the Bogoliubov coefficients1.

In the literature they are commonly denoted by α and β (and their complex conjugates),

defined by

αij ≡ (fj |f̃i), βij ≡ −(f∗j |f̃i). (2.2.4)

Given that the Bogoliubov transformation must leave the canonical commutation rela-

tions invariant, the coeffients must satisfy:
1More formally speaking, a Bogoliubov transformation is a transformation that preserves the symplectic

structure in the case of classical fields, or the canonical commutation relations in a QFT.
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∑
l

(
αljα

∗
li − βliβ∗lj

)
= δij (2.2.5)

∑
l

(
αliβ

∗
lj − β∗liαlj

)
= 0. (2.2.6)

which can be verified easily using the orthogonality relations for the modes :

∑
l

(
αljα

∗
li − βliβ∗lj

)
=
∑
l

[(fj |f̃l)(fi|f̃l)∗ − (f∗i |f̃l)(f∗j |f̃l)∗] =

=
∑
l

[(fj |f̃l)(f̃l|fi)− (fj |f̃∗l )(f̃∗l |fi)] = (fj |fi) = δij (2.2.7)

∑
l

(
αliβ

∗
lj − β∗liαlj

)
=
∑
l

[(fi|f̃l)(f∗j |f̃l)∗ − (f∗i |f̃l)∗(fj |f̃l)] =

=
∑
l

[(fi|f̃l)(f̃l|f∗j )− (fi|f̃∗l )(f̃∗l |f∗j )] = (fi|f∗j ) = 0 (2.2.8)

Now, let us focus the discussion on the Minkowski and Rindler cases. We have two

different quantizations of the real Klein Gordon field, one based on the use of Minkowski

coordinates, and the other based on the Rindler coordinates. For simplicity we will work just

in 1+1 dimensions, which basically means changing the normalization factors and dropping

the y and z coordinates and the corresponding momenta.

The field can be expanded using both bases:

Φ(x, t) =

∫
k

dk [aMk uk(x, t) + aM†k u∗k(x, t)], (2.2.9)

Φ(χ, η) =

∫
Ω

dΩ
∑
ε=l,r

[aRεΩu
R
εΩ + aR†εΩu

R∗
εΩ ], (2.2.10)

Both expressions must be equal so, using the scalar product, we can obtain a relation

between the different creation and annihilation operators:

aRεΩ =

∫
k

dk aMk (uRεΩ|uk) + aM†k (uRεΩ|u∗k) =
∑
k

αε∗kΩak − βε∗kΩa
†
k, (2.2.11)

aMk =

∫
Ω

dΩ aRεΩ(uk|uRεΩ) + aR†εΩ(uk|uR∗εΩ ) =
∑

Ω

αεkΩa
R
εΩ + βεkΩa

R†
εΩ , (2.2.12)

The exact values of the Bogoliubov coefficients αεkΩ, βεkΩ for the 3+1 case can be found

for example in [170], their equivalents in 1+1 dimensions are computed in [171]
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2.3 A sufficient condition for unitary inequivalence

We say that two Fock representations are unitarily equivalent if there exists a unitary map

B : F → F̃ that relates the Fock spaces associated with the representations, F and F̃. Ne-

cessary and sufficient conditions for two Fock representations to be unitarily equivalent are

given in [165].

For simplicity, and given that we will be more concerned with unitary inequivalence, we

will present here only the following condition.

Sufficient condition for unitary inequivalence: Two Fock representations of the

CCR are unitarily inequivalent if the vacuum state of one representation has in-

finitely many particles in terms of the number operator of the other representa-

tion, i.e.

∑
m

〈0̃|Nm|0̃〉 =
∑
m

〈0|Ñm|0〉 =
∑
mn

|(f̃m|f∗n)|2 =
∑
mn

|(βmn)|2 =∞, (2.3.1)

where am|0〉 = ãm|0̃〉 = 0 ∀m ∈ N+, Nm ≡ a†mam, and Ñm ≡ ã†mãm.

Well-known cases of unitarily inequivalent representations can be found in [169, 172–174].

In particular, Rindler and Minkowski quantizations are unitarily inequivalent:∫
k

∫
Ω

dk dΩ|βεkΩ|2 =∞. (2.3.2)

2.4 The Unruh effect

The Fulling-Davies-Unruh effect [54, 172, 175] is the prediction that an accelerated observer

would see a thermal bath of particles where an inertial observer sees none. More precisely,

let us consider an inertial observer who sees the “natural” vacuum (Minkowski), i.e. the

state of no particles in a flat spacetime. According to the Unruh effect, another observer in a

uniformly accelerated frame with acceleration a would observe a thermal distribution

Neither the Unruh radiation nor the Hawking radiation have been directly observed,

although some experiments have verified the existence of closely related similar phenom-

ena like the Dynamical Casimir Effect [58]. We could say their experimental proof is still a

somehow open question, although they are not disputed theoretically. As a matter or fact it

is partially the intention of this thesis to explore ways of getting close to a feasible experi-

mental proposal where the Unruh effect or other similar phenomena can be observed.
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For a detailed treatment of the Unruh effect we refer the reader to [54, 163, 168, 169, 176].

Here we would present a rather simple derivation, omitting the discussion of some sub-

tleties that we will however mention, but anyhow interesting in the context of Relativistic

Quantum Information.

Making use of Eq. 2.2.11, the correct expressions for the Bogoliubov coefficients and a

proper ansatz, an expresion for the Minkowski vacuum |0〉M = ⊗k|0k〉M can be obtained in

terms of the Rindler modes [169]:

|0k〉M =
√

1− e−2πΩk

∞∑
n=0

e−nπΩk |nk〉Rl ⊗ |nk〉Rr (2.4.1)

Which means that the Minkowski vacuum can be expressed as a decomposition into left

and right Rindler particle states. Actually as we will briefly check now, the Minkowski va-

cuum is spatially entangled in terms of the disconnected observers from regions I and II.

Considering that Rob has no access to AntiRob’s modes, to analyse what he would experi-

ence in presence of the Minkoswki vacuum we should trace out region II (the left wedge - l)

:

ρ
|0〉M
k = Trl|0k〉M = (1− e−2πΩk)

∑
n=0

e−2nπΩk |nk〉Rr 〈nk|Rr . (2.4.2)

which is a mixed state and actually a thermal state whose temperature we can find as:

Em/kBT = 2πΩm To obtain the relation between E and Ω we only have to consider Eq.

(2.1.23) η = τ/χ = ατ . Given that, the Rindler observer will observe a proper energy of Ω ,

but rather E = Ω/χ = Ωα. Hence we have:

TUnruh =
E

2πkBΩ
=

α

2πkB
(2.4.3)

In the SI, TUnruh = ~a/2πckB .

A different way to obtain this is directly from Eq. 2.2.11 imposing aMk |0〉M = 0 and using

the fact that βεΩ = −e−πΩαεΩ:

(aRεΩ − e−πΩaR†εΩ)|0〉M = 0 (2.4.4)

and so,

〈0|aRεΩa†RεΩ |0〉M = (e2πΩ − 1)−1 (2.4.5)

formula from which again we obtain the correct temperature.

The attentive reader may be bewildered by the fact that, while here we have described

how a Rindler observer sees a thermal bath of particles in the Minkowski vacuum, in the
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previous section we mentioned that Rindler and Minkowski quantizations were unitarily

inequivalent. That should mean that the Minkowski vacuum, when seen from the point of

view of a Rindler observer, has an infinite amount of particles, in clear contradiction with a

thermal spectrum.

Indeed, our derivation here was rather formal, as so is the expression of the Rindler

vacuum in terms of Minkowski states. Dealing with inequivalent representations it is not

rigurous to decompose one state on one representation into states of the other. As a matter

of fact, we just obtained the factor that makes the distribution thermal, but the total summa-

tion leads to an infinity. We will not get into details, but let us just say that it is the fact that

the observer is accelerating for all time what makes the total particle count infinite. Instead

of considering that quantity, it would be more interesting to study the flux of particles that

acumulate in a mode per unit time, or rather the amount of particles one would observe

when accelerating for just a certain period of time. In order to do so one can work with loc-

alized modes instead of the standard non-square integrable modes, and then one of the two

summations can be omitted as it relates precisely to the sum for all possible mode locations.

The interested reader can check such a wavepacket derivation in [163, 177] where the issue

is clearly addressed. The possibility also exists to prove the Unruh effect without recur-

ring to the Rindler quantization, analysing the problem from a purely inertial perspective as

in [164, 169, 176, 178]. In any case, although mathematically problematic and not rigurously

justified, the use of unitarily inequivalent representations to derive physical results is quite

regular and most times successful.

As an example of this we have Haag’s theorem [179] from Algebraic Quantum Field The-

ory, which proves the unitarily inequivalence between the free and the interaction picture

quantizations in particle physics. While the theorem challenges the mathematical grounds

for the calculation of the scattering terms, the predictive power of the theory is undisputed

and as far as concrete computations go and succeed, nobody would question its accuracy

and modern particle physics is definitely good science. Haag’s theorem simply tells us that

we do not know exactly why the computational tools of perturbative particle physics work

so well.

As a matter of fact, even the existence of profound mathematical differences between

quantizations could still allow for the same physical predictions and in that sense they could

still be equivalent. However, the question remains open, as for the case of different unitar-

ily inequivalent representations some observables might behave quite differently [180]. The

situation gets more complicated in curved spacetimes, where it not always clear what rep-

resentation should be preferable.
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In any case, at the end of this thesis, in chapter 13 we will discuss again the issue of

unitary inequivalence.
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Quantum Simulation Platforms

In this thesis we have tried to avoid limiting our study of quantum phenomena to their

theoretical aspects. On part I we focus on theoretical detector models, but we study their be-

havior when dealing with realistic physical states. The situation becomes more interesting

in part II, where we have striven to link any theoretical analysis with a possible experiment,

as in our scrutiny of the Fermi problem, the short-time detection scenarios and the study of

accelerated emitters in Chapters 9, 10, 7. This connection between theory and experiment

reaches its highest expression in the final part of the thesis, which starts with a proposal

for vacuum correlation extraction in superconducting circuits (chapter 12) and then contin-

ues with a purely theoretical analysis of a cavity in local terms, carried on in Chapter 13.

An analysis that is the foundation for a very interesting connection, described in Chapter

14, which links the local virtual particles in the vacuum to the real particles created by the

introduction of a physical barrier, a mirror in our case, opening a way for probing a new

dynamical-Casimir-like effect.

3.1 Quantum Simulations

One of Feynman’s most famous quotes, taken from the final words of his 1981 lecture ‘Simu-

lating physics with computers’ [181], is a customary opening for any reference to the world

of Quantum simulations:

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it

quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.

In that lecture Feynman discussed the difficulties that a standard computer would face

when simulating quantum mechanical experiments of increasing size. At one point of the
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talk, he discussed the possibility of building a Quantum Computer, and in particular talked

about a “suitable class of quantum machines (that) could imitate any quantum system, in-

cluding the physical world”, wondering whether it would be possible “to work out the

classes of different kinds of quantum mechanical systems which are really inter-simulatable”

in a similar way of what has been done in classical computing. This problem has not been

easy to solve. As a matter of fact, it is still open.

But incredible progress has been made since then. Quantum simulators are not a fantasy

anymore, but a reality. Thanks to the tremendous advances in measuring and manipulating

individual quantum systems, many experiments have already proved the principle by sim-

ulating particular problems in quantum mechanical analog systems such as optical lattices

of neutral atoms, trapped ions, photonic systems or superconducting circuits.

In this thesis, we will expose several Quantum Mechanical theoretical problems, and

propose ways to model them in different experimental setups. In that sense, some of our

results can be circumscribed into this thriving field of Quantum Simulations. Sometimes we

have just aimed to reproduce an effect in a similar context as the theoretical one in order to

observe it, to look for interesting aspects thereof and to verify the physics behind it as we

understand it. Some other times, however, we have dealt with a concept that was really hard

to realize experimentally in a direct way, e.g. relativistically accelerated atoms, and still we

have looked for indirect ways to reproduce its physics using alternative setups where the

variables of interest have been mapped, by resorting to mathematical analogies between

different-system behaviors, to some experimental measurements, in such a way that makes

possible to interpret the results under a different light.

In that sense, we can make a distinction of two kinds of works in this thesis that could

be classified as quantum simulations: those that consist of experiments testing the physics

of certain problems through a direct interpretation of the experiment variables, by profiting

from the high degree of control and parameter tuning allowed by modern experimental plat-

forms, and those others where the variables of the problem are mapped into experimental

variables that would evolve under a particular Hamiltonian, but still stay related by some

function to the original ones 1.

From our point of view, experiments of the first kind are not just simulations, but rather

direct observations of the effects reproduced. For example, the recent experiments probing

1In the more general framework of quantum simulations, the classification is more along the lines of dif-

ferentiating digital and analog quantum simulations, depending on whether the experimental system is evolved

through the sequential application of gate actions in an approximate way (simulating the problem Hamiltonian

effectively) or engineered so that the Hamiltonian of the simulator matches exactly that of the problem. In our

case we are always presenting analog simulation cases.
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the Dynamical Casimir effect [56,57,59] are the first experimental evidences of the real effect,

and not just a simulation of it based on analogous behavior of other systems. The second

kind of experiments, on the contrary, are not exactly evidences of the existence of a certain

effect, but rather the verification that, if the experiment is successful in showing the expected

behavior, the effect can be understood as a consequence of the mathematical description we

have for it. In that case, whether that description is accurate for the original case has not

been proven, so we cannot say that the effect has been observed, but rather simulated.

We hope that this small digression has not taken the reader away from the main topic:

the possibility of reproducing quantum mechanical problems through the use of different

quantum experimental platforms. Platforms where their quantum constituents can be con-

trolled in such a way that the interactions can be tuned precisely and the Hamiltonian of

the system engineered to match the solution of an ideal theoretical scenario. Certainly, our

motivation to see a problem simulated in the lab can be very diverse. We might do it be-

cause we have no means of simulating it in our classical computer due to its size or maybe

we are just working on basic instances of a more difficult problem in order to verify that we

are properly modeling it before scaling up. There is also the chance that we just do it for the

sake of it, because we find it worth it to observe or confirm a peculiar prediction in the lab.

In order to understand how a particular simulation works, it is key to have a rather

accurate knowledge of the experimental platform in question. For that matter, we would

like here to present a brief introduction to the two platforms for which we have proposed

experiments in this thesis: trapped ions and superconducting quantum circuits.

A broader perspective on the topic of Quantum Simulation and the possible physical

alternatives available is amply discussed in the reviews of [182, 183] and the collection of

articles in [184].

3.2 Trapped Ions: A Quantum Toolbox

One of the most successful experimental platforms for quantum information science have

been strings of trapped ions confined in radiofrequency traps. The trap sits in an ultrahigh

vacuum, and the ions are cooled simultaneously to both their internal and motional ground

states. Those conditions define one of the cleanest playgrounds available for manipulating

quantum systems, measurements are highly accurate and coherence times are really high,

well above 10 seconds, higher in two orders of magnitude than basic gate operations. There,

although alternatives exist, a qubit is usually encoded in each ion, as a hyperfine or Zeeman
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ground states2 and they are manipulated and their interactions controlled through pulses of

laser and microwave radiation, exploiting both the internal energy levels and the vibrational

degrees of freedom within the trap. The evolution of the system can be carefully controlled

and finally the qubit states detected via fluorescence measurement. Some of the most im-

pressive feats in the field of quantum control and quantum information processing have

been achieved in this platform, as recognized by the Nobel Prize in Physics 2012 to David

Wineland (shared with Serge Haroche). Already back in 2004, the ARDA report [185] poin-

ted to the ion trapped platform to be at the forefront among those competing in the race for

Quantum Computation, at least in terms of achievement of the DiVincenzo’s criteria [186]

for a scalable Quantum Computer architecture.

The list of merits for the ion trapped systems is so long it will take us pages to enumerate

them, so we will just mention a few milestones. Already the first theoretical proposal for

a physical implementation of quantum processing tasks by Cirac and Zoller [187] was in

trapped ions, bringing a lot of attention to a platform that was already quite promising. In

the same year, the first implementation of a quantum gate was realized by Wineland and

his team [188]. Soon many more proposals and implementations followed. In these last 20

years, among those accomplishments we can remark the first demonstration of deterministic

quantum teleportation between atoms [189, 190], the entangling of up to eight atoms in a

controlled manner, therefore creating the first quantum byte (qubyte), and later the creation

of 14-qubit entangled states [191,192], the first observation of entanglement between a single

trapped atom an a single photon [193] or several Quantum Simulations [194], among which

we can highlight that of free relativistic particles obeying the Dirac equation [195,196], where

for the first time the interesting Zitterbewegung 3 was seen - although simulated. Finally we

should also note the progress achieved in quantum clocks, see for example [197].

This is just a small set of accomplishments among the many, but they hint already at the

high possibilities of the platform.

3.2.1 Traps

One of key elements of a trapped ion experiment is the trap itself. Having charged particles

the most easy way to confine them is by using electrical or electromagnetic forces, how-

ever, given that the trapping cannot be stable by just using electrostatic fields (Earnshaw

theorem [198]), a combination of both magnetic and electrical forces must be used, or a time

dependent electric field. The last one is the case of the Paul trap [199], used in most trapped

2Also as combinations of a ground state and an excited metastable electronic state.
3A theoretical rapid quivering motion of a free Dirac particle along its trajectory.
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Figure 3.1: Linear Paul trap scheme. An alternating voltage applied to opposing electrodes confines the ions

in the transverse plane. Ua and the confining endcap voltage Uend are DC voltages applied to the other two

electrodes.

ions setups today.

We will consider here The Paul trap, or rather the linear Paul trap based on the same

principles. It consists of four electrodes in a quadrupole configuration. In the trap axis the

confinement is provided by a static field through the DC voltage Uend. Trapping in the trans-

verse plane is achieved by applying an oscillating voltage to two opposing electrodes which

generates an alternating saddle potential. By averaging over the transverse micromotion of

the ions at the RF frequency, an effective harmonic potential is obtained:

U(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (3.2.1)

with the secular frequencies ω (with values much smaller than ΩRF) are determined by the

geometry, the voltages applied and the charge and mass of the ions. For a detailed derivation

using the Mathieu equations we refer the reader to [200].

Typical trap sizes are at the mm scale in the transverse plane and at the mm − cm scale

for axial length, with voltages of 100-500 V and RF fields of a few 10’s of MHz leading to

an axial ωt = ωz in the low MHz range and transverse frequencies ωx, ωy ∼ 10ωz . For these

typical values the ions are strongly confined in the radial direction. They arrange as a linear

chain along the trap axis as transverse movement is negligible when the system has been

properly cooled. The distance between the ions is determined by the equilibrium of the

axial confinement potential and the Coulomb repulsion.
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We should finally point out although typical linear ion traps are still widely used, they

are progressively giving way to integrated microfabricated traps, mostly based on the same

principles [201].

3.2.2 The physics of trapped ions - Available degrees of freedom

For most quantum experiments with trapped ions the available degrees of freedom are the

internal state of the ions and the external - axis motion - vibrational modes. In Quantum in-

formation processing experiments, the qubit (which abstractly can be seen as a two-level

atom) is typically internally encoded. An appropriate ion species should have a rather

simple level structure in order to realize a close two-level system without too many lasers,

also the levels must be rather stable from spontaneous decay to avoid decoherence and

they should allow for easy state detection. This conditions basically rule out everything but

simple atomic ions with just one outer electron, such as the alkaline elements Be+, Mg+,

Ca+ and Ba+, and some transition metals, e.g. Cd+, Yb+ or Hg+.

For some of those cases the qubit is encoded into two levels with a forbidden direct

optical transition between them (optical qubit), for others it is encoded into the hyperfine

structure (hyperfine qubit). For the former case, the manipulation of the states is carried on

using two lasers far detuned from an intermediate level, with a frequency difference equal

to the hyperfine energy distance between the states of interest, in a process called Raman

resonance. In any case, the lasers used to control the state of individual qubits light only the

ion in question, and not the whole chain. Keeping all this in mind, we can just assume that

our ion internal states, |g〉 and |e〉, behave according to an internal Hamiltonian given by:

Hatom =
~ωeg

2
σz (3.2.2)

where in this matrix notion we are using the basis {|g〉, |e〉} and ωeg = ωe − ωg is much

bigger than the vibrational ωz . For that reason we can make use of the Born-Oppenheimer

approximation and treat internal and vibrational degrees of freedom independently.

As what regards to the vibrational degrees of freedom, for the typical values considered

in the previous section and cold enough temperatures, the transverse terms can be discarded

(strong confinement) and the Hamiltonian giving the motion of N ions in a linear trap can

be simplified as:

H =

N∑
i=1

(
p2
i

2m
+
mω2

zz
2
i

2

)
+

N−1∑
i=1

∑
j>i

q2

4πε0|zj − zi|
(3.2.3)

For this Hamiltonian we have N axial normal modes. For our purposes here, it will

suffice to consider just the lowest mode, the center of mass mode (CoM), where the ions
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Figure 3.2: Internal and external level scheme for a single trapped ion. The external modes refer to the CoM

mode. The numbers in parenthesis on the right identify sideband cooling transitions.

move together at the trap frequency ωz as a rigid body. The next lowest mode would be the

breathing mode (Br) at frequency
√

3ωz where the ions on different sides of the center move

with opposite phases.

States relevant to Quantum simulations and Quantum processing purposes can therefore

be characterized as |i1, ..., iN 〉 |nCoM〉 |nBr〉 where i1, ..., iN refer to the internal state of each

ion (generic superpositions of |g〉 and |e〉 states) and |n〉 |nBr〉 to the vibrational state of the

whole chain (see Fig. 3.2). For our purposes and from here on we will consider the center

of mass (CoM) mode to be the only relevant one, so we will just consider states of the type

|i1, ..., iN 〉 |n〉 .

3.2.3 Ion-Laser interaction

Most control operations on the ions are carried on by beaming lasers upon them. Reson-

ant interaction with lasers is used in all stages of ion trap quantum processes. Ion cooling,

quantum gates and unitaries, tuning of the couplings, state preparation and measurement

and Hamiltonian engineering are all operations performed through an appropriate combin-

ation of laser pulses acting on different ions or the whole chain.

Let us consider a propagating wave 4 produced by a laser of frequency ωL acting along

the trap axis 5. Considering just the ion j being beamed on, the interaction Hamiltonian in

the Schrödinger picture is:

Hint = ~
Ω

2

(
ei(kLzj−ωLt−φ) + e−i(kLzj−ωLt−φ)

)
(σ+
j + σ−j ), (3.2.4)

where Ω is defined as:
4A standing wave situation, created by opposing laser beams, is highly analogous and at the end of the

derivation involves a Rabi frequency two times bigger than in 3.2.5
5To address ions individually a slantwise beam can be used. For that case one must use instead of kL =

2π/λL, the new wavenumber kL = 2π cos(φ)/λL.
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Ω =
eE0

~
〈e|ε · µ|g〉 (3.2.5)

with E0 being the field amplitude; ε the field polarization and µ the ion’s dipolar op-

erator for the e − g transition. For levels coupled via a Raman transitions (assisted by two

lasers) we should use the effective associated couplings instead (check [202] for details).

The zj are the operators corresponding to the ion displacements, relative to the equilib-

rium positions along the chain. We express those displacements in terms of phonon operat-

ors,

zj =
∑
n

Mj,n∆zn(an + a†n), (3.2.6)

whereMj,n are phonon wavefunctions for the vibrational mode n, and ∆zn =
√

~
2mωn

.

Considering just the CoM mode, zj = Mj∆z(a + a†), andMj = 1/
√
N , N being the total

number of ions in the chain.

In the interaction picture, rotating with the laser frequency ωL and taking a RWA we can

simplify 3.2.4:

HI = ~
Ω

2

(
ei(kLzj−φ)σ+

j + e−i(kLzj−φ)σ−j

)
, (3.2.7)

Now, let us consider the Lamb-Dicke parameter, which relates the optical wavelength of

the laser beaming the ion with the extension of the ion’s wavefunction:

η =
2π∆z

λL
= kL∆z, with ∆z =

√
~

2mωt
(3.2.8)

When η � 1 the ion’s motion is confined to a region much smaller than the laser

wavelength. That is typically the case, e.g. for 40Ca+ linear traps η ∼ 0.01. On top of

that the system usually operates under the so-called Lamb-Dicke regime, which amounts to

having η〈Ψ|(a + a†)|Ψ〉 = η√
N

√
(2n+ 1) � 1, and allows us to expand the exponential in

the interaction Hamiltonian.

eikLzj = ei η√
N

(a+a†)
= 1 + i

η√
N

(a+ a†) +O(η2) (3.2.9)

And so we obtain:

HI = ~
Ω

2

{[
1 + i

η√
N

(a+ a†)

]
eφσ−j +

[
1− i

η√
N

(a+ a†)

]
e−φσ+

j

}
, (3.2.10)

Now, for particular values of the laser frequency ωL the Hamiltonian can be further

simplified by discarding the corresponding off-resonant terms:
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• Carrier resonance: If ωL − ωeg � ωt, transitions with changes in the n number are

suppressed .

HI
carrier = ~

Ω

2

(
eiφσ−j + e−iφσ+

j

)
, (3.2.11)

• Red sideband: If ωL = ωa − ωt (red detuned), the only relevant transitions are those

that reduce n while absorbing a photon (and their conjugates).

HI
red = −i

~Ω

2

η√
N

(
ae−iφσ+

j − a†eiφσ−j

)
, (3.2.12)

• Blue sideband: If ωL = ωa +ωt (blue detuned), the only relevant transitions are those

that increase n while absorbing a photon (and their conjugates).

HI
blue = i

~Ω

2

η√
N

(
aeiφσ−j − a†e−iφσ+

j

)
, (3.2.13)

These different Hamiltonians allow us to implement several operations by just beaming

the appropriate ion. Quantum gate operations can be made through smart combinations of

laser pulse of definite duration. Single qubit gates, for example, can be obtained by adjusting

the laser to match the carrier resonance. Two qubit gates, such as the CNOT gate proposed

by [187], can be implemented using the motional state of the chain as a bus to transfer cor-

relations, through a combination of laser pulses of different frequencies. As a matter of fact,

the possibility of building those gates just shows that the laser actions previously mentioned

constitute a universal set of quantum operations. To better see how they operate, we will

express the action of the laser pulses for a time interval t in terms of matrix operators:

• Carrier resonance: In the basis {|g, n〉, |e, n〉} such an action leads to the operator:

Rc(θ, φ) = e−
iHIc t
~ =

(
cos(θ/2) −ie−iφ sin(θ/2)

−ieiφ sin(θ/2) cos(θ/2)

)
(3.2.14)

where θ = ΩRt = Ωt. The continuous action of this operator produces oscillatory

transitions between |e, n〉 and |g, n〉with Rabi frequency ΩR = Ω.

• Red sideband: In the basis {|g, n〉, |e, n− 1〉} :

Rr(θ, φ) = e−
iHIr t
~ =

(
cos(θ/2) e−iφ sin(θ/2)

−eiφ sin(θ/2) cos(θ/2)

)
(3.2.15)

and here θ = ΩRt = η
√
n√
N

Ωt. This action induces oscillatory transitions between the

levels |g, n〉 and |e, n− 1〉with Rabi frequency ΩR = η
√
n√
N

Ω.
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• Blue sideband: In the basis {|g, n〉, |e, n+ 1〉}, Rb(θ, φ) looks exactly as Rr(θ, φ):

Rb(θ, φ) = e−
iHIb t
~ =

(
cos(θ/2) e−iφ sin(θ/2)

−eiφ sin(θ/2) cos(θ/2)

)
(3.2.16)

but here θ = ΩRt = η
√
n+1√
N

Ωt. For this case, the oscillation occurs between levels |g, n〉
and |e, n+ 1〉with ΩR = η

√
n+1√
N

Ω.

3.2.4 State preparation

There are several procedures to prepare states depending on the species used and using

intelligent mechanisms based on the final desired state. However, a standard procedure in-

volves a cooling stage that takes the ion chain the ground level |g1, · · · , gN , 0〉 and then acting

with beam laser pulses of precise duration and phase to excite the adequate transitions.

The control of a two level system requires the implementation of two types of rotations:

transversal (σx, σy) and longitudinal (σz) .The first ones change the amount of population

between the two states, the second modify the relative phase between them.

In the trapped-ion case, the transversal rotations can be easily controlled by adjusting

the duration of the pulse through the θ variable and the φ phase as can be easily checked in

the previous section. In particular π-pulses for the θ phase involve a full flip between the

states in consideration (which vary depending on whether the laser is tuned to resonance,

red detuned or blue detuned). π/2-pulses, on the contrary, create a balanced superposition.

By acting with lasers upon different ions entangled states can be created.

Longitudinal rotations σz can be implemented just using the free qubit precession or,

if there is a need to perform them faster, by decomposing them into σx and σy rotations

since σz = −i[σx, σy])/2, but there are other methods that would depend of course on the

atom species used and on the particular experimental setup. Among them we can highlight

the use of a far detuned laser beam that would shift differently the energies of both levels

through an AC-Stark shift .

We will not deal here with more details, as it would lead us far apart from our merely

introductory purposes.

3.2.5 Cooling

There are several cooling schemes available to take the ion chain progressively to its ground

state including laser cooling, resistive cooling, collisional cooling and sympathetic cooling.

We will briefly discuss the laser cooling processes, which for ion traps usually involve Dop-

pler and sideband cooling [203].
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Doppler cooling

The Doppler cooling process is based on a photon-ion scattering process. The ions are

beamed with a red detuned laser (ωred = ω − ∆) from a certain dipole transition (ω). The

optimal cooling requires ∆ ' Γ/2. The ions moving towards the incoming light with kin-

etic energy (K) would see a tuned laser and would absorb the photon ending up with a

total energy K + ~ωred but with less momentum. Eventually they would emit the photon

spontaneously but in a random direction, and when this is averaged over many absorption-

emission processes it amounts to a net average loss of momentum equivalent to the initial

(~ωred/c). This standard discussion conceals the fact that reducing the expected value for the

momentum to zero does not mean reducing the energy (for which the average of the square

velocity is the meaningful quantity). A proper semi-classical treatment that considers the ad-

equate absorption and emission profiles and the random-walk that the ions experience due

to the constant absorption and emission processes can be seen in [204], where net cooling is

actually derived. For a full quantum-mechanical treatment check [205]. The cooling can be

maintained while the kinetic energy of the ions is above the line-width Γ of the transition. At

that point the net cooling balance stops, the Doppler temperature limit being TDoppler = ~Γ
2kB

.

Considering trap frequencies in the MHz range, the residual excitation at the Doppler

limit is 〈n〉 ∼ 10. For higher frequencies it can reach 〈n〉 ∼ 1.

Sideband cooling

Doppler cooling takes the ion chain into the Lamb-Dicke regime η
√

(2n+ 1) � 1, but the

motional state is still excited. The ion chain can be cooled down to it using sideband cooling.

Here we will explain the process for the case of a single ion in a chain. The typical level

structure of a single ion can be seen in Fig. 3.2. A laser is then tuned to a transition leading

to an excited internal state in a lower motional excitation.

The process (1) in Fig. 3.2 corresponds to a forbidden dipole transition or is carried

on using an auxilary third level through a Raman resonance. Also, given that we are in

the Lamb-Dicke regime, the spontaneous emission is bound to occur following (2) and not

through some other channel that changes the motional state,

3.2.6 State reading

Again, there are several possibilities for reading the state of the system. Usually one is

only interested in the internal state of the ions, so we will only discuss this possibility. The

simplest case there is where the ion is beamed with light resonant to a strong dipole trans-
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ition between one of the two qubit states (let us assume it to be |g〉 to a third state |p〉 which

decays rapidly, as compared to the e − g transition. While the beam is acting upon it, the

ion will absorb and re-emit photons only it is in |g〉 but if it is in the excited state, |e〉, the

laser will not induce any transition. The detection of the scattered fluorescence photons

is therefore a projective measurement that shows the ion to be in its internal ground state

|g〉. The advantage of the procedure is that it can be used simultaneously in several ions of

the chain. Of course, in order to obtain the average populations of the different levels, the

quantum simulation or computation has to be repeated from the beginning, and the final

measurement carried on a sufficiently big number of times. Moreover, if coherences have to

be measured, one will have to use more complicated procedures. A very simple one would

be just to keep measuring populations but after performing specific local unitaries on the

ion.

3.2.7 Simulations

The possibilities of this Quantum toolbox in terms of simulations are vast.

For digital quantum simulations, we must mention here that having a universal set of

quantum operations, as presented in Section 3.2.3, we should in principle be capable of

efficiently 6 simulating any local quantum system [206] by approximating its evolution with

a stroboscopic sequence of quantum gates (Trotter decomposition). Of course the times of

operation and the limited size of controllable chains put a limit to that, but some successful

simulations of small spin chains have already been successful [207].

For the case of analog simulations, the possibilities are so many and so different that it

impossible to present here even a short collection of them that is in anyway representative.

We will just give here a few hints on how to simulate a Hamiltonian that will concern us in

the future (Chapter 7)

The Hamiltonian in question is:

HI =
∑
j

gjσ
+
j e

iΩjτ
(
ame

−iΦm(τ) + a†me
iΦm(τ)

)
+H.c., (3.2.17)

where τ represents a certain time parameter, and Φm(τ) can be seen as a time dependent

phase that relates to the coupling of an accelerated atom (with acceleration a) to a certain

Minkowski mode km of a quantum field.

Φm(τ) =−kmξe−aτ/c =−kmc
2

a
e−aτ/c (3.2.18)

6i.e. if the system size grows linearly so will the size of our simulator (trap)

70



3.3. Superconducting circuits: Another Quantum toolbox

Now let us consider a single ion trapped, beamed by two lasers coupling its internal

levels |g〉 and |e〉 by means of a Raman transition, with corresponding amplitudes ΩL,j (de-

pending on the laser intensities), and two frequencies ωL1,2 , (see [202] for details), the inter-

action in the Schrödinger picture as in 3.2.4 should be:

HL(τ) =
∑

j,ν=1,2

ΩL,j

2
σ+
j e

ikLzje−iωLν τ−iφν(τ) + H.c.. (3.2.19)

The small differences with 3.2.4, come from the fact that we are not using just one laser, but

rather exciting a Raman transition with two lasers of different frequencies. In the Lamb-

Dicke regime, under some working assumptions and with an adequate choice of the laser

phases φ1(τ), φ2(τ) we will be able to cast this last equation into 3.2.18. At this point this

should not be such a big surprise to the reader. We will describe this to the last detail when

we discuss the whole problem in chapter 7.

3.2.8 Final remarks

In all the sections covered up so far, the expert reader may have found that our descriptions

account for the most basic of the many possible scenarios. We acknowledge that. In fact,

there are many subtleties in all of the aspects here presented, and this rather simple present-

ation omits the discussion of many interesting cases, but still, with the didactic purposes of

this section in mind, we hope to have conveyed if not all at least some of the most important

ideas of the subject.

3.3 Superconducting circuits: Another Quantum toolbox

Along this thesis, most of the proposals for simulations that we will present are based on

the use of superconducting circuits as experimental platform.

Superconducting circuits have emerged in the last years as one of the most promising

platforms to implement the Quantum Computer after successfully replicating many of the

most interesting Cavity QED and ion trapped experiments to date. Its main advantage is of

course its inherent scalability. Making use of the existing litography techniques for chip fab-

rication, once made one qubit, it is easy to replicate it and fabricate many more on the same

chip. The challenges do however exist and they amount to limiting all the noise sources as

the chip scales up, and to be able to provide reliable, controlable and switchable coupling

between the distant qubits.

We will try to discuss here briefly the theory behind circuit quantization and discuss

circuits and means to couple them as well as the typical qubit readout. For a more rigor-
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ous description of these and other models and situations we refer the reader to [208–211],

sources that we have used as constant reference along this section.

3.3.1 Superconducting Quantum Circuits

Superconductivity was first discovered experimentally in 1911, but it was not until 1957

however that Bardeen, Cooper and Schrieffer (BCS [212]) came up with a genuine quantum

theory that properly explained the phenomenon at the microscopic level. One of the most

fundamental concepts of the theory is that of the Cooper pair, a composite boson made of

two electrons, that as such, tend to condense into the same ground state under a certain

critical temperature Tc. Materials like Niobium and Aluminum, that are commonly used

for constructing this kind of circuits show that behavior. In the superconducting phase, the

conductor’s state can be described as a macroscopic wavefunction Ψ(r, t) =
√
n(r, t)eiθ(r,t),

where n is the density of Cooper pairs and θ represents the phase of the condensate.

The quantum study of circuits started long ago, when it became clear that quantum

effects in circuits where observable. However, it was shown in the 80s [213] that a full mi-

croscopic theory is not necessary to study circuits quantum mechanically. As a matter of

fact, the study of macroscopic degrees of freedom related to standard electrical variables is

sufficient for most purposes and therefore the knowledge of many subtleties of supercon-

ductivity is in this context not revelant.

The theory of Quantum Networks, developed by Yurke and Denker in the early 80s [213]

and more recently analyzed further by Devoret [214], describes the standard procedure for

quantizing a circuit. We would describe briefly here. It involves identifying a Hamiltonian

description for the circuit (there are many Hamiltonians depending on the representation

chosen), by first choosing a spanning tree 7 and associating with each node n a voltage Vn
and a current In which relate to the node flux Φn and charge Qn by:

Φn =

∫ t

−∞
Vn(t)dt (3.3.1)

Qn =

∫ t

−∞
In(t)dt (3.3.2)

The relations between the different V ’s (or the I’s) are given by the Kirchoff equations,

that correspond to a certain Lagrangian. From there we can obtain the full Hamiltonian of

7A spanning tree is a tree containing all vertices of the circuit network and some or all of its edges. A tree

is an undirected graph in which any two vertices are connected by exactly one path, so basically a connected

undirected graph with no simple cycles.
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Figure 3.3: a) Simple physical realization. b) Lumped circuit scheme

the system expressed in terms of the Φ’s and Q’s, which result to be conjugate pairs, and

canonical quantization can be finally carried on.

3.3.2 The LC resonator

A very simple example for quantization is the LC resonator as seen in Fig. 3.3.

The Kirchoff equation for this case is basically IL = IC . By fixing Φ2 = 0, Φ1 = Φ, we can

cast the equation as:

Φ

L
+ CΦ̈ = 0 (3.3.3)

Which can be naturally obtained from the following Lagrangian and Hamiltonian, con-

nected through a Legendre transformation:

LLC =
CΦ2

2
− Φ2

2L
→ H =

Q2

2C
+

Φ2

2L
(3.3.4)

From the equation of motion we can check that Q = CΦ and Φ verify that the Poisson

bracket {Q,Φ} = 1 and therefore we can promote them to the operators Q̂, Φ̂. With them we

can define the corresponding annihilation and creation operators as:

a =
1√

2~LωLC

Φ̂ + i
1√

2~CωLC

Q̂ (3.3.5)

a† =
1√

2~LωLC

Φ̂− i
1√

2~CωLC

Q̂ (3.3.6)

with ωLC = 1/
√
LC.

And the Hamiltonian takes the form:
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Figure 3.4: Transmission line. a) Simple physical realization. b) Lumped circuit scheme. Image taken from [209]

H = ~ωLC

(
a†a+

1

2

)
(3.3.7)

3.3.3 The transmission line

A transmission line, in general, is a structure based on two conductors normally used to

guide electromagnetic signals, and capable of supporting a TEM mode. A coaxial cable is a

particular kind of transmission line. Other geometries include the two-wire line, the three

wire the parallel plate line, the stripline or the microstrip. We will consider a uniform three-

wire line, with two ground lines and one central conductor. The line will be interrupted at

x = 0 and x = d, resulting in two capacitors at the edges that act as mirrors and close the

resonator cavity.

For the typical situation, the wavelength corresponding to the waves propagating on the

line is much smaller than its length and we cannot consider the intensity or voltage to be

constant all along, so a treatment using lumped elements is not convenient. Instead we use

a distributed treatment where the line is abstractly divided into small segments of size ∆x

with characteristic impedance and capacitance per unit length, ` and c respectively.

In that situation the Kirchoff laws equations are:

c∆xΦ̈n +
Φn+1 − 2Φn + Φn−1

`∆x
= 0 (3.3.8)

In the continuum limit we have:

v2∂2
xΦ(x, t)− ∂2

t Φ(x, t) = 0 (3.3.9)
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with a Lagrangian:

Lline =
1

2

∫ d

0
dx[Φ̇2(x, t) +

1

`
(∂xΦ(x, t))2] (3.3.10)

Where v = 1/
√
`c and we note that the line extends from 0 to d. By performing a Four-

ier expansion of Φ(x, t) we obtain a Lagrangian of independent harmonic oscillators and

defining corresponding an, a
†
n operators we get to a final Hamiltonian:

Hline =

∞∑
n=1

~ωn
(
a†nan +

1

2

)
(3.3.11)

with ωn = nωr = n/d
√
`c.

For most cases in this thesis however, we will consider an open transmission line with

propagating modes. For that case we can use the regularized Hamiltonian:

Hline =

∫ ∞
−∞

~ωa†ωaωdω (3.3.12)

3.3.4 Introducing non-linearity: The Josephson Junction

Considering just linear elements like impedances and capacitances we arrive to equally-

spaced energy levels, but in order to create useful qubits, we must isolate the transitions,

to properly address them, by achieving a certain degree of unharmonicity. In order to get

it we need some sort of nonlinearity. In the atomic case, this nonlinearity is provided by

the atomic Coulomb force, which is an inverse square law (and therefore non-linear), in the

superconducting case, the nonlinearity is created by using a special element, the Josephson

junction.

In 1962, Brian Josephson proved [215] that when two superconductors are separated by

a thin insulating layer, their macroscopic wavefunctions overlap, giving rise to a flowing

current through the junction depending on the wavefunctions phase difference:

I1→2 = I0 sin(θ1 − θ2) = I0 sin(φJ) (3.3.13)

where φJ = θ1 − θ2 is the gauge-invariant phase, and I0 is the critical current, the max-

imum supercurrent the union can sustain, which depends on the actual microscopic charac-

teristics of the junction. This relationship represents what is known as the DC-Josephson effect,

which takes place in absence of an applied voltage. In the case that a voltage V = V1 − V2 is

applied to the junction the phase difference evolves in time as :
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Figure 3.5: a) Physical representation of a Josephson Junction: two superconducting electrodes separated by a

thin isolating (oxide) layer (red). The overlap of the superconducting wavefunctions Ψ1 and Ψ2 leads to the

tunneling of Cooper pairs. b) Circuit version of the Josephson junction subject to an external voltage V . Image

taken from [209]

dφJ
dt

=
2e

~
V =

2π

Φ0
V (3.3.14)

Φ0 = h/2e being the magnetic flux quantum (the magnetic flux across any closed loop of a

superconductor is quantized 8 )

Merging both previous equations be get that an alternating current is created

I = I0 sin

(
2π

Φ0
Vt+ φJ0

)
, (3.3.16)

which represents the so called AC-Josephson effect. Also, by taking the time derivative of the

supercurrent and using Eq. 3.3.14 we obtain:

dI
dt

=
2πV I0

Φ0
cos(φJ) (3.3.17)

which let us think of a Josephson junction as a non-linear inductor with an inductance:

LJ =
Φ0

2πI0 cos(φJ)
(3.3.18)

In an equivalent circuit representation, a faithful approach must also consider a shunted

capacitance CJ , natural to the junction, which depends on the geometry and the insulator

8In particular for a superconductor loop interrupted by n Josephson Junctions we have the following fluxoid

quantization condition:
Φ0

2π

∑
k=1

nφJk + Φext + ΦL = nΦ0 (3.3.15)

where ΦL is the flux due to the self inductance of the loop (ΦL → 0 for small loops). The orientation of the

flux taken defines the phase difference labeling φJk = θJk1
− θJk2

so that the current associated with the flux

flows from 1k to 2k.
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dielectric properties. Of course this capacitance can be modified using capacitances around

the junction, usually by creating islands (small isolated sections of superconductor)

Let us also note that flux and the gauge-invariant phase are intimately related. From Eq.

(3.3.1) we have that Φ̇ = V , while from the AC-Josephson effect condition Φ0φ̇J/2π = V , so:

∆φJ = 2π∆Φ/Φ0 (3.3.19)

And we get that for every change in the flux of one flux quantum the invariant phase

winds 2π.

Also, if we follow the quantization procedure we eventually obtain the following Hamilto-

nian:

H = EC
Q̂2

e2
− EL cos

(
2π

Φ0
Φ̂

)
(3.3.20)

with EC = e2/2CJ and EL = I0Φ0/2π being the charging energy and the Josephson

energy of the Junction respectively.

3.3.5 Artificial atoms: The flux qubit

There are several ways of implementing effective two-level systems using superconduct-

ing loops, lumped capacitances and inductances and Josephson junctions. In general they

are classified considering the regimes in which the Josephson junctions operate, which are

defined according to the ratio EJ/EC . The value of that quotient basically establishes the

dominance of one term over the other in the Hamiltonian (3.3.20).

For EJ/EC � 1 we have the charge regime, the number of Cooper pairs is well defined

and the phase fluctuates strongly. For EJ/EC � 1 we are in the flux or phase regime, as the

phase is conserved, while the cooper pair density is not.

In the charge regime we have configurations like the Cooper-pair box (also known as

charge qubit), the quantronium and the transmon. In the flux regime we have the flux qubit,

the phase qubit and the fluxonium. The latter mentioned in each category are basically im-

proved versions of the former, designed with the aim of reducing the effects of charge and

flux noise on the qubit state. Also, in the intermediate regimes we have other circuits like

the flux-phase qubit.

We will concentrate here on describing the flux qubit, as it is the model we will be using

along the thesis. It basically consists of a superconducting loop interrupted by three Joseph-

son junctions operating in the flux regime, one of which is significantly smaller than the

others, a fact encoded in an α factor.
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Figure 3.6: a) Physical realization of a flux qubit: a loop interrupted by three josephson junctions. b) Circuit

representation. Image taken from [209]

Quantizing the circuit we obtain the Lagrangian:

LFQ =
1

2

3∑
i=1

[
CiΦ̇

2
i + EJi cos

(
2π

Φ0
Φi

)]
, (3.3.21)

Considering an external magnetic flux being applied Φext and using the fluxoid quantiz-

ation condition 3.3.15 while neglecting the loop’s self-inductance we arrive at:

LFQ =
CJ
2

[
(Φ̇2

1 + Φ̇2
2) +

α

2
(Φ̇1 + Φ̇2)2

]
− U, (3.3.22)

where U is the system’s potential energy:

U(Φ1,Φ2) = −EJ
{

cos

(
2π

Φ1
Φi

)
+ cos

(
2π

Φ0
Φ2

)
+ α cos

[
2π(Φext − Φ1 − Φ2)

Φ0

]}
. (3.3.23)

With Φext = Φ0/2 and α > 0.5, U shows a confining profile where the dynamics happens

along the diagonal Φ+ = (Φ1 + Φ2)/2.

Along that one-dimensional line:

U(Φ+) = −EJ
{

2 cos

(
2π

Φ0
Φ+

)
+ α cos

[
2π(Φext − 2Φ+)

Φ0

]}
. (3.3.24)

Performing a Legendre transform between the conjugate variables Q+ = ∂LFQ/∂Φ̇+ and

Φ+ we finally obtain the Hamiltonian:

H =
(1 + α)Q2

+

2CJ(1 + 2α)
− EJ

[
2 cos

(
2π

Φ0
Φ+

)
+ α cos

[
2π(Φext − 2Φ+)

Φ0

]}
(3.3.25)

This Hamiltonian shows a two-well structure, each well classically corresponding to

clockwise and counterclockwise persistent currents in the circuit loop of magnitude Ip :

Ip = I0

√
1− 1

4α
(3.3.26)
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Diagonalizing the system we distinguish two levels than approach each other as Φext =

Φ0/2. Around that value we can discard other levels and write the Hamiltonian (3.3.25) in

the basis of the persistent currents {|	〉 , |�〉} as:

H =
1

2
(εσz + ∆σx) (3.3.27)

where

ε = 2Ip

(
Φext −

Φ0

2

)
(3.3.28)

is the qubit’s magnetic energy due to the existence of a persistent current around the loop,

and ∆, proportional to the tunneling rate between the two persistent current states, is the

qubit gap:

∆ ' 4EJ√
αEJ/EC

e−0.15
√

4α(1+2α)EJ/EC (3.3.29)

In the qubit eigenbasis:

H fq =
~ωq
2
σz, with ωq =

√
ε2 + ∆2 (3.3.30)

3.3.6 Qubit - light interaction: Coupling to a transmission line

A transmission line, which the qubits can be coupled to, can be used as a quantum bus

to facilitate the exchange of information between qubits or harnessed to perform collective

operations. In the context of quantum simulations we may think that it just simulates a 1D

electromagnetic environment where our artificial atoms can interact.

In any case, a way had to be envisioned to couple qubits to a transmission line in a setup

that is usually referred to as Circuit QED, in contrast to Cavity QED, refering the idea that

most situations in the last case can be circuit implemented in this superconductive setting.

The way to couple the qubits depends naturally on the type of qubit.

For the flux qubit, the coupling is achieved inductively as in Fig. 3.7. From the circuit

we can of course derive the Hamiltonian:

H = ~ω
(
a†a+

1

2

)
+

1

2
(εσz + ∆σx) (3.3.31)

with ε is the same as in Eq. (3.3.28), but now the external flux Φext = ΦDC
ext+ΦAC

ext, impingent

on the loop, has two contributions: the flux that we can use as a control variable and the

modulation due to the resonator’s field, an external AC flux
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Figure 3.7: a) Physical realization of a flux qubit coupled to a transmission line. b) Circuit representation. Image

taken from [209]

ΦAC
ext = Φrms(a+ a†), Φrms = MIrms = M

√
~ωr
2Lr

(3.3.32)

with Lr = d`, and M being the mutual impedance which depends on the placement and

size of the qubit. Here we have considered only the first resonator mode ωr to be relevant.

Abusing the notation we will consider ε = 2Ip (ΦDC
ext − Φ0/2), and the new Hamiltonian

can be written as:

H = ~ω
(
a†a+

1

2

)
+

1

2
(εσz + ∆σx) + ~gσz(a+ a†), with ~g = MIpIrms. (3.3.33)

In the qubit eigenbasis:

H fq =
~ωq
2
σz + ~ωr

(
a†a+

1

2

)
+ ~g(a+ a†)(cosϑσz − sinϑσx) (3.3.34)

where here ωq =
√
ε̃2 + ∆2 and tanϑ = ∆/ε.

If we apply a RWA (which requires that g � ωq, ωr) to eliminate the fast rotating terms,

we end up with a JC Hamiltonian:

H fq =
~ωq
2
σz + ~ωr

(
a†a+

1

2

)
− ~g sinϑ (aσ+ + a†σ−) (3.3.35)

Again we will consider for most cases an open line instead of a resonator. In that case

a sum will have to be performed over a continuum of frequencies for the transmission line

modes.
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 Hybridization of quantum systems 275

 A typical gap- tunable fl ux qubit is shown in  Fig. 11.4  and is composed of four 

Josephson junctions in two loops. The main loop (gray shading) encloses three 

junctions: two identical junctions with the same Josephson energy  E  
J
 , and one shared 

with the  _  control loop (unshaded) with a smaller Josephson energy  _  
0
  E  

J
 /2, where 

 _  
0
 /2 is the ratio of the Josephson energies of the third and fi rst two junctions. The 

two junctions in the  _  control loop are identical and form a DC SQUID. The effective 

Josephson energy of the DC SQUID,  _  E  
J
 , can be tuned by the fl ux  \  Į  threading the 

 _  control loop, as  _  E  
J
  =  _  

0
  E  

J
  |cos( /   \  Į / \  

0
 )|. The gap- tunable fl ux qubit can then be 

written as an effective two- level system (Mooij  et al. , 1999) described by 

    

 where  m  
 z , x 

  are the usual Pauli spin operators where the eigenstates of  m  
 z 
  describe 

clockwise and counterclockwise persistent states of the current  I  
p
  in the qubit. The 

energy imbalance  h  ¡  = 2 I  
p
  \  

0
 ( \  

qb
 / \  

0
  í 0.5) between the two states can be controlled 

by  \  
qb

  =  \  İ  +  \  Į /2, where  \  İ  ,  Į  are the magnetic fl uxes through the qubit loops. The 

control lines near the fl ux qubit mean that the effective magnetic fi eld of the main 

loop  \  İ  and of the  _  loop  \  Į  can be tuned  in situ  on a nanosecond timescale, 

meaning that we can control the energy gap  h  6  at the optimal point where it has 

its best coherence properties. If we want to change the gap of the qubit, we set the 

shift pulse current of control line 1 to another value and scan the current of control 

line 2 to sweep the qubit fl ux  \  
ex

  =  \  İ  +  \  Į /2. This is illustrated in  Fig. 11.5 , where 

spectra were taken with different gaps, obtained by adding shift pulses from 

control lines 1 and 2 with different currents. 

 Finally, it is worth discussing the coherence properties of these qubits. 

Generally, the measured  T  
1
  and  T  

2
  are of the order of 1  + s and 400 ns, respectively. 

This would correspond to natural decay rates of the order of 0.2 and 0.4 MHz.   

   11.4     Illustration of a gap- tunable fl ux qubit composed of four 
Josephson junctions in two loops, a main loop (gray shading) and an 
 _  loop (not shaded). Two high- bandwidth control lines are placed to 
tune the fl ux of each loop.     

Figure 3.8: Illustration of a gap-tunable qubit with four Josephson junctions placed along two loops: the main

loop (shaded in gray), and the α loop, a DC squid replacing what would otherwise have been the α junction of

the qubit. The control lines are placed to tune the loop fluxes. Image extracted from [217]

3.3.7 Qubit control

As explained before, the control of the qubit state consists of two different types of rotations.

The choice of options is vast both to implement both longitudinal and transversal rotations.

As longitudinal rotations can be achieved by just letting the qubit preceed or combining

transversal rotations, we could in principle just discuss the implementation of those last

ones.

In any case, given Eq. (3.3.27), it should be clear that, if it were possible to modify the

values for ε and ∆, we would have an easy way to perform 1-qubit operations. As a matter

of fact that is a possibility, for ε is controlled by the external flux (controlled through a control

line ending in a u-turn placed closely enough to the qubit loop), and ∆, which in principle is

fixed by geometry, can be made tunable by replacing the unequal junction by a DC-SQUID

(check next section) [216]. Fig. 3.8 shows a possible implementation.

Even if the gap is not tunable, the implementation of single rotations can be fully car-

ried on by simply driving the qubit with controlled microwave pulses of frequency ωd, sent

through the control line on top of the DC signal or extra control lines. The consequence is

an additional driving term in the Hamiltonian 3.3.27:

Hd =
A

2
cos(ωdt+ φ)σz (3.3.36)

Now, in the eigenbasis of the qubit, this looks as:

H
fq
d =

A

2~ωq
cos(ωdt+ φ) (εσz −∆σx) (3.3.37)

Now, if we take the full H fq, transform it into a frame rotating with the driving frequency

into H ′ 9 and then perform a RWA (demanding A� ωd, ωq) we obtain:

9Such a transformation requires a U = eiωdtσz/2. As U is time dependent the transformed hamiltonian can
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H
fq
RWA

′
=

~
2

(ωq − ωd)σz −
A∆

4~ωq
[cos(φ)σx − sin(φ)σy] (3.3.38)

For the case of resonant driving ωd = ωq, if the pulse is maintained for a certain time

t, we can solve the correspondent system of diffential equations and see that the following

rotation 10 gets performed :

Rt =

(
cos(ΩRt/2) [i cos(φ)− sin(φ)] sin(ΩRt/2)

[i cos(φ) + sin(φ)] sin(ΩRt/2) cos(ΩRt/2)

)
(3.3.39)

.

From here we see that, in resonance, Rabi oscillations are generated with a Rabi fre-

quency ΩR = A∆/2~2ωq.

If the qubit had a tunable gap, we could study the same situation but with a σx pulse

through the second control line.

3.3.8 Qubit readout: DC-SQUID

For flux qubits, several readout methods have been proposed and successfully implemen-

ted. They range from the simple switching-DC-SQUID method [28, 120, 121] to more soph-

isticated techniques such as the inductive readout [122–126] or the bifurcation amplifier

[127–130]. The two latter have the potential to achieve quantum non-demolition measure-

ments [131] and very large signal visibility, which are important features for future applica-

tions.

Again, several readout methods have been implemented for the flux qubit. Well known

are the simple switching-DC-SQUID [218], the inductive readout [219] and the bifurcation

amplifier [220]. For most cases the reading is performed by using an additional external

readout circuit, mostly a DC-SQUID (Superconducting QUantum Interference Device).

A DC-SQUID is a superconducting loop containing two Josephson junctions. Seen as

two JJ placed in parallel, the DC-SQUID is actually equivalent to a single Josephson Junc-

tion with effective capacitance Ceff = 2CJ and Eeff(Φext) = 2EJ cos(πΦext/Φ0) as tunable

Josephson energy. The DC-SQUID can be therefore seen as a non-linear inductor, with a

value that depends on the magnetic field. As a matter of fact, SQUIDs have been univer-

sally used as magnetometers. A theoretically simple measurement procedure that makes

use of this fact, the inductive readout, consists in placing the SQUID close to the qubit (or

even enclosing it) and therefore coupling both inductively. The two different eigenstates

be calculated as H ′ = U†HU − iU∂U†/∂t
10Always in the rotating frame, eigenstate basis being considered.
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have different expectation values for the circulating current that therefore result in different

values for the SQUID’s non-linear inductance. In order to detect the difference, the DC-

SQUID is placed in a resonator. A microwave signal is then applied to the resonator and the

outcoming phase depends on the state of the qubit.

For the procedure to be successful, we must demand ε � ∆, which means that before

the measurement is performed the control flux must be changed to take the qubit far from

the degenerate point. We advice the reader to check [219] for further details.

3.3.9 Switchable ultrastrong coupling

We have already devoted a long chapter to the discussion of many important concepts in

superconducting circuits and yet there is a particular circuit, considered many times later

in this thesis, that we have not analysed so far. That would be the ultrastrong coupling

switch [221].

For some of our theoretical proposals we have played with the possibility of switching

on an off a quantum field to which “atoms” are coupled strongly. This can be achieved in

the context of Circuit QED by recurring to the design depicted in Fig. [3.9]
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Figure 3.9: Switchable coupling design: a flux qubit (top ring) is coupled to the field ∆ψ by means of two loops.

Varying the magnetic fluxes Φ2 and Φ3 we deactivate the qubit-field coupling.

A superconducting flux qubit -upper three-junction loop-, is there galvanically coupled

to a quantum field ∆ψ -transmission line- by means of two additional loops. These extra

loops are essential since they allow us to decouple the qubit from the field in an extremely

fast way.

As usual in the case of flux qubits, the Josephson energy EJi of each junction is much

greater than its charging energy ECi , and the Hamiltonian of the three-loop device can be
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reduced to a sum of the inductive energy of the junctions,

HJ = −
5∑
j=1

EJj cosϕj , (3.3.40)

where ϕi is the superconducting phase of the i-th junction.

We can simplify the expression of HJ thanks to the flux quantization around each closed

loop, that imposes the following relations to the superconducting phases:∑
j

ϕj = 2πfi, (i = 1, 2, 3), (3.3.41)

where the magnetic frustration parameters fi = Φi/Φ0 can be adjusted varying the ex-

ternal magnetic fluxes Φi.

Using these conditions in the standard flux qubit configuration, EJ1 = EJ2 = αEJ3,

together with EJ4 = EJ5 = α4EJ1, the Hamiltonian acquires the following shape:

HJ = −EJ [cos(ϕ1) + cos(ϕ2) + α cos(2πf1 + ϕ1 + ϕ2)]

− αeffEJ cos(2πfeff−∆ψ + ϕ1 + ϕ2), (3.3.42)

where αeff = 2α4 cos(πf3), and feff = f1−f2 +f3/2 is an effective magnetic frustration.

After including the kinetic terms and quantizing the canonical variables charge and flux,

a diagonalisation shows that the first line of (3.3.42) can be identified with the flux qubit

Hamiltonian, whereas the second line represents the qubit-field interaction. The shape of

this interaction depends on which values the frustrations f1 and f2 take, while the interac-

tion strength given by αeff, can be adjusted to ultrastrong values through the control para-

meter f3. Note that no RWA has been taken.

In particular, a numerical evaluation of HJ for (f1, f2, f3) = (0.5, 0.75, 1), yields the fol-

lowing effective Hamiltonian in the qubit basis:

H =

∫
dkωka

†a+ ~
Ω

2
σz + α4EJσx∆ψ, (3.3.43)

where ∆ψ is given by the expression

∆ψ(x) = i

∫ ∞
−∞

dk
√
Nωk e

ikxak + H.c., (3.3.44)

and we have included the free Hamiltonian of the field.

On the other hand, if we vary the SQUID magnetic flux up to f3= 0.5 the interaction is

switched off, and the Hamiltonian is
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H =

∫
dk ωka†a+ ~

Ω

2
σz, (3.3.45)

isolating the qubit from the bosonic field.

Therefore, with a fast change of f3 a switchable interaction can be realized in the labor-

atory. Current technology with Al qubits [58] allows us to vary the magnetic frustration f3

in times of less than 0.1 ns, which is much faster than the dynamics of the flux qubit.
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CHAPTER 4

Concepts

We have devoted this part of the thesis to the study of quantum detection processes from

both a theoretical and a practical point of view. Detection is actually very relevant to Quantum

theory, as it is very close to the measurement process. That might be the reason why defining

such a familiar concept with precision is not particularly easy. We will give it a try anyway,

but first we want to point out that the word detector is widely used in the community to

refer to a general measurement apparatus, and here, on the contrary, we would like to refer

only to a particular kind of detectors, those that detect a particle’s presence. Why? Be-

cause we are very much interested in the particle concept, and taking the empiricist point

approach, what a better way to analyze it than focusing on detectors? At the end of the day

all the experience we have of particles comes precisely from the measurements that tell us

about their trajectories.

We will define a particle presence detector, detector from now on, as a two state meter

whose purpose is the detection of particles in a region of spacetime. We may picture it

ideally as a box with one or more sides opened and a light attached to it that gets lit on

when there is something inside the box, a “particle”. Sadly such magical box does not exist

but in order to model it we might think how an actual detector works and how the detection

process operates.

A normal detection of a field excitation requires it interacting with our detector. Ideally

the interaction would happen where both of them coincide in space and time, an then at

some point an external observer will check the detector state to find out whether the particle

has been detected or not. Ideally it would be the observer directly looking at the particle, but

to be faithful to reality, experimenters never directly measure the system of interest,unless

by accident (and in that case they would most probably not have the sensitivity required).

Rather, the particle of interest (a photon for example) interacts with a photodetector,

which triggers a current in a circuit coupled to a sort of display, which radiates more photons,
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which will eventually interact with the retina of the observer, etc. This chain of systems is

called the von Neumann chain, and there is one point in it where one must apply the projec-

tion postulate in order to analize the process from the point of view of quantum theory [222].

This point is called the Heisenberg’s cut. It usually represents the border between classical

and quantum worlds and it is usually assumed to be the point where macroscopic mater-

ial objects come into play . There, the fast decoherence times ensure that the measurement

would proceed rather deterministically for the rest of the chain.

So if for the sake of simplicity we leave aside the studies that deal with decoherence and

the frontier of quantum and classical, the practical quantum description of the system comes

before the Heisenberg’s cut, and this his how particle detectors are usually modelled when

studying for example relativistic phenomena.

In the early start of the field of RQI, most studies dealt with global states and studied the

point of view of accelerated observers and their observations without actually considering

any sort of detection process but rather putting the emphasis in coordinate transformations

and tracing away the non-accesible regions of the spacetime.

These early investigations on relativistic entanglement helped in the better understand-

ing of its observer-dependent aspects, but their results where merely academic. The entan-

glement between global modes could never be observed by local observers and let alone

properly controlled: Alice could never perform a unitary or a two qubit gate on a global

state. However, global mode entanglement, and also entangled localized states, can be ac-

cessed by local observers who employ detectors. As a matter of fact, the more one comes

closer to more physical scenarios, the more natural becomes the use of detector models.

The Unruh DeWitt detector has enabled the study of many interesting scenarios, start-

ing of course with the seminal work by Unruh [54]. More recently, using an exactly solvable

model (where the detector is assumed to be a harmonic oscillator) Lin and Hu [118] have

reconsidered the problem of a uniformly accelerated detector in a quantum field but taking

special care to analyze it in terms of the information flow and making connections with the

information paradox. There are plenty of other analyses considering alternative scenarios.

In [223], for example, two detectors are studied, one inertial and one in uniform accelera-

tion, both coupled to the same field. It is then verified that any initial entanglement shared

between them two disappears in a finite time, shorter for higher accelerations, as expected.

In that particular work, the case of non-uniform acceleration is also explored, concluding

that disentanglement slows down, and that uniform acceleration is somehow optimal in

that respect. The different case of circular motion, has been considered independently [224].

Also interesting are the possibilities for vacuum entanglement extraction. The case of two
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static detectors was studied in [225], and much more recently in a full analysis carried on

with two accelerated detectors in [47]. The study of extracting vacuum correlations with

detectors has also been explored in [46]. From the cosmological point of view, the use of

the UDW detector is also interesting. It has proved for example that the evolution of the

entanglement between two point-like detectors can also been used to distinguish between

flat and expanding deSitter spacetime [70]

Here we will study the Unruh DeWitt model by deriving it from first principles, but also

we would show how to modify it to better model the detection of wavepacket states. Besides

this, we will present a different study on non-monotonic entanglement with realistic states

carried on with another type of detector, called projective, an original model [139] that was

precisely developed to include the Heisenberg’s cut in it and so it cannot introduce particles

in the field that were not present before. Some claim that this difference makes the latter a

more realistic model of particle detector, while the former would be better characterized as

a fluctuation detector. We will see later what is meant by that.

For a detailed study on some more detector models and their use in the study of non-

local correlations we refer the interested reader to [131].

4.1 The Unruh-DeWitt detector

The Unruh-DeWitt (UDW) detector model describes phenomenologically a monopole de-

tector coupled to a massless scalar field, moving in the four-dimensional Minkowski space.

Since its inception, as mentioned above, it has been used to study the response of detectors

experiencing acceleration, to provide a proof for the Unruh effect, and particularly as one

of the main tools to probe dynamics of entanglement in the context of Relativistic Quantum

Information (RQI).

Usually, the detector considered is a quantum system with two internal states, ground

state |g〉 and excited state |e〉, with Ω (taking ~ = 1) being the energy gap between the two

levels. A harmonic oscillator might also be used, although there Ω would be the energy

difference between consecutive levels. The detector is then coupled to φ according to the

following interaction Hamiltonian:

Hint = λ ξ(τ)µ(τ)φ(x(τ)) (4.1.1)

where λ is the coupling strength, ξ is a switching function which activates during the inter-

action time , µ(τ) the monopole momentum operator and x(τ) the worldline of the atom.

In spite of the differences between this monopole-scalar field interaction and QED (for

instance in the behaviour at very extreme frequencies which may quantitatively differ), it
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characterises adequately the matter-radiation interaction in some specific settings [226] (see

section 5.2 for further details), while it very accurately models the interaction of internal

degrees of freedom of atoms with phonon fields (for example the spin-phonon interaction

of ions in a Coulomb crystal, collective excitations of Bose-Einstein condensates [227] and

other solid state and analog systems). This model and certain variations of it have been ex-

tensively used in the literature for many purposes [164], including thermalization dynamics

and decoherence ( [228, 229] and references therein), although it is more known for what

regards the studies of the Unruh effect and Hawking radiation [54, 230, 231].

As a detector model, it performs commonly under the pointlike approximation, i.e. it has

no extension and interacts with the field only in the exact geometric point of the space-time

where it is placed.

4.2 Other detector models: projective detector

The other detector model that we use briefly in this thesis was first developed in [139]. We

will mention its convenience to study some problems later on in chapter 6, so here we will

merely describe its operation.

The model is the idealization of a physical setting of a simple device where a lens is

attached to a single-mode fiber ending in a detector. In the ideal version, the state of the

single mode is projected in the Fock basis and all the other modes orthogonal to the it are

not be affected by the detection. We assume therefore that the detector’s response is neither

affected by the state of the orthogonal modes nor does it affect their state. The scheme could

be generalised to allow the detection of arbitrary modes by placing optical elements in front

of the lens, which would transform the given input mode into the single mode transmitted

by the fiber.

We will refer to the mode the detector is tuned to as ψD(q, τ), which can be decomposed

in positive frequency modes as:

ψD(q, τ) =
∑
i

fDi ui(q, τ). (4.2.1)

With fDi = (ψD, ui). We have used generic coordinate names (q, τ) to represent the co-

moving coordinates of the detector in which the mode is defined. In this fashion we fix the

mode independently of the detector’s state of motion (inertial or uniformely accelerated).

We will also assume that ψD(q, τ) consists only of positive frequency modes with respect to

the detector’s proper time τ . The real mode actually would be the combination ψD(q, τ) +

ψ∗D(q, τ) which must be a real field solution that describes the wave which couples to the
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detector. The {ui(q, τ)} represent the positive frequency modes associated with the detector

trajectory expressed in co-moving coordinates.

Until here we were working in classical terms. Now that we enter the quantization

realm we will make the hats explicit to avoid confussion. Assume we have the operator

d̂ = (ψD, φ̂) where

φ̂ =
∑
i

âiui(q, τ) + â†iu
∗
i (q, τ), (4.2.2)

then:

d̂ = (ψD, φ̂) =
∑
i

âi(ψD, ui) + â†i (ψD, u
∗) =

∑
i

âi(ψD, ui) =
∑
i

fDi âi, (4.2.3)

and as we see this operator annihilates the co-moving vacuum. It is also verified that

[d̂, d̂†] = 1. We can therefore interpret it as a creator of an excitation in the detector mode

and assume that the basis B =
{
d̂†n√
n!

}
spans all possible detector states (in the mode ψD).

d̂†d̂ will be the number operator for particles detected by the detector.

These excitations, which are not eigenstates of the Hamiltonian, are the only subspace

accesible from the detector when it comes to observing the whole Hilbert space. When the

detector is probing a particular a field state |Ψ〉 it will only see Tr⊥ψD |Ψ〉〈Ψ|, where the trace

is taken over the orthogonal complement of the space spanned by B in the whole Fock space.

The validity of the use of such a detector has been satisfactory verified in the sense that

it satisfactory predicts the existence of the well-known Unruh temperature for the case of a

uniformly accelerated detector in the presence of the Minkowski vacuum.

The interest of using it as compared to the typical UDW detector for the study of accel-

erated scenarios is that under this framework a fixed state of the field defined in an inertial

frame can be probed for any acceleration, avoiding having to use a different initial state for

each acceleration and a non-local initial mode as in the other case (we will understand this

better later on). Another alternative for working with localised modes from the beginning

is the modification of the UDW model that we propose in the next chapter.

4.3 Simulations: Accelerated detectors

Most of the existing calculations that involve the Unruh DeWitt model have predictions that

have never been tested experimentally due to the extreme accelerations needed for the cor-

responding effects to become observable. In this thesis we will try to make our contribution

trying to bridge this gap. At the end of this part, in chapter 7 we will study an analogy
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between static quantum emitters coupled to a single mode of a quantum field and acceler-

ated Unruh-DeWitt detectors. We will make an experimental proposal to simulate a variety

of relativistic quantum field settings beyond the reach of current computational power, such

as high number of qubits coupled to a quantum field following arbitrary non-inertial traject-

ories. Moreover, we will propose a connection to nonequilibrium physics by showing how

a simple rule as the Landau Zener (LZ) probability formula can be used to estimate the

probability of excitation and deexcitation of an accelerated atom. We will describe how our

scheme can be implemented in trapped ions and circuit QED set-ups.
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CHAPTER 5

Wavepacket Detection with the

Unruh-DeWitt Model

In this chapter we deal with several issues regarding the localisation properties of the Unruh-

DeWitt (UdW) detector model. Since its original formulation as a pointlike detector, the

UdW model has been used to study extensively the physics of quantum fields in presence

of accelerations or curved backgrounds. Natural extensions of it have tried to take into ac-

count the spatial profile of such detectors, but all of them have met a series of problems

in their spectral response which render them useless to study some of the most interesting

physical scenarios. We provide a derivation of the smeared UdW interaction from QED first

principles, then we analyze the spectral response of spatially smeared UdW detectors, and

discuss the kind of spatial profiles which are useful for the study of relevant cases.

5.1 Introduction

While this assumption –which will always be an approximation since any physical detector

has a finite size– seems to be valid in many scenarios, it is not valid in general even for phys-

ically interesting scenarios, and is particularly problematic in some specific settings that we

will discuss below. Also, it presents UV divergences as any pointlike interaction and can-

not be guaranteed to hold for any context where we consider several detectors undergoing

relativistic motion where the pointlike approximation may be violated from some reference

frames. Moreover, additional problems with the pointlike nature of the detector arise. For

instance, there are various regularisation schemes which yield different transition probabil-

ities [232].

For all these reasons, and keeping in mind that any realistic particle detector has a fi-

nite size, it is important to model and understand particle detectors that present a spatial
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smearing. However, previous localisation models present a series of issues when it comes

to analysing non-vacuum field states. In this work we will show to what extent an Unruh

DeWitt detector is a reliable model of electromagnetic atomic transitions, by explicitly ana-

lysing the relationship between the atomic wavefunctions and the spatial smearing. We also

intend to provide a pedagogical description of the use of a spatially smeared UdW model

and we will discuss how to overcome the problems when analysing signals by means of a

small but essential modification of the spatial profiles employed in the past. Besides, we will

focus on the particular case of spatially smeared uniformly accelerated detectors.

This chapter is organised as follows: In section 5.2 we show from first principles how to

relate the spatial profile of the UdW model to the wavefunctions of physical systems under

standard QED interactions. In section 5.3 we present the localisation issues of the canonical

UdW detector employed in the literature when the size of the detector is comparable to the

wavelength they are tuned to. In section 5.4 we propose a way around these difficulties by

modifying the spatial profile of the smeared UdW detector. In section 5.5 we discuss how

to use these detectors to analyze arbitrary signals in accelerated settings. Finally, section 5.6

contains our conclusions.

5.2 Modelling atomic physics with the Unruh DeWitt detector

An UdW detector is an ad-hoc phenomenological model commonly used to study idealised

situations in field theory and non-inertial settings. The model is built specifically for its use-

ful properties and simplicity. While desirable traits are good guidelines for model building,

one should always keep the physics in mind. This section is concerned with the build up of

a smeared UdW detector out from first principles and standard QED interactions.

First, note that the simple scalar field model (4.1.1) cannot be directly used to relate the

UdW model to electromagnetic phenomena due to the vector character of the photon field.

The vector version of an UdW interaction with a smeared field operator would be

HI =
∑

λ=+,−

∫
dx λ[F (x)σ+ + F ∗(x)σ−] ·A(x) (5.2.1)

where we have omitted any switching function, as the electromagnetic interaction cannot

be switched, and where σ− is the two-level system lowering operator, as is common in the

literature. We have also allowed for a complex profile function. The detector is assumed to

be inertial; we discuss the treatment of an accelerated UdW detector in sec. 5.5.

The physical system the UdW detector tries to emulate is that of a two-level atom coupled

to a quantum electromagnetic field. The Hamiltonian for such a system is well-known and
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it is simply

HQED
I = epD ·A(x, 0)

= pD ·
∑

λ=+,−

∫
dp√
2p

[
εp,λa

†
p,λe

−ipx + ε∗p,λap,λe
ipx
]
, (5.2.2)

where pD is the detector momentum and in the last two equalities we assume a (1 + 1)-

dimensional setting. In this setting, pD is itself an operator, the momentum operator of the

valence electron of the two-level system. There is a simple way to relate (5.2.2) to (5.2.1);

we simply write down the operator in (5.2.2) in terms of field operators and atomic Pauli

matrices. There are four possible matrix elements for the pDA(x, 0) operator in terms of the

relevant wavefunctions, Ψg(x) for the ground state and Ψe(x) for the excited state of the

detector, which can be neatly written into matrix form as,

HQED
I = αI + βσz + γσx + δσy,

α = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλgg(p) +Gλee(p)

2
+ H.c.

]
,

β = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλgg(p)−Gλee(p)

2
+ H.c.

]
,

γ = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλge(p) +Gλeg(p)

2
+ H.c.

]
,

δ = e
∑

λ=+,−

∫
dp√
2p

[
a†p
Gλge(p)−Gλeg(p)

2i
+ H.c.

]
, (5.2.3)

with

Gλij(p) =

∫
dx e−ipxεp,λ · (Ψ∗i (x)[−i∇Ψj(x)]). (5.2.4)

If we performed the same calculation with the interaction (5.2.1), we would obtain

Gλij(p) = [δigδje + δieδjg]

∫
dx e−ipxεp,λ · F (x). (5.2.5)

We have thus expressed the physical interaction hamiltonian HQED
I in the language of

(5.2.1). If we only consider the σx and σy terms, we may compare directly to (5.2.1). From

(5.2.4) and (5.2.5) we find that the two Hamiltonians are equivalent with a smearing function

F (x) = −iΨ∗e(x)∇Ψg(x). (5.2.6)

We have thus made a first connection between (5.2.1) and the physics - the smearing func-

tion can be obtained in terms of the atomic wavefunctions of the two-level system. This means that
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the smeared UdW Hamiltonian commonly used in the literature can be related in a direct

manner to the physical properties of the underlying system, directly relating the smearing

function to the wavefunctions of the excited and ground states of the two-level atom. Note

that the terms with I and σz do not vanish and can never do so unless Ψe = Ψg = 0, or in

the dipolar approximation, where e−ipx ' 1.

The α term can be dealt with full generality, as it can be reabsorbed into the free field

Hamiltonian HF,

HF + α =

∫
dp

[
(|p|a†pap +

1√
2p

(
a†p
Gλgg(p) +Gλee(p)

2

+ap
Gλgg(p)∗ +Gλee(p)∗

2

)]
(5.2.7)

and so defining new modes

bp = ap +
e

(2p)3/2
[Gλgg(p) +Gλee(p)] (5.2.8)

and neglecting the usual infinite zero-point contribution, we deal with the α term. We only

have to substitute the ap in terms of the bp in γ, which amounts to the addition of a constant

term to γ,

αγ =
e2

4
<
{∫

dp

p
[Gλgg(p)∗ +Gλee(p)∗)(Gλge(p) +Gλeg(p)]

}
. (5.2.9)

This will induce an extra αγσx term in the Hamiltonian, which will be relevant or not de-

pending on how αγ compares with Ω, the detector system gap. As αγ/e is typically of order

1 or less, this term will not be important if we are in a perturbation theory regime where

the coupling e is assumed to be small. The same considerations apply to αδ. The analogous

correction to β,

αβ =
e2

4
<
{∫

dp

p
[Gλgg(p)∗ +Gλee(p)∗][Gλgg(p)−Gλee(p)]

}
, (5.2.10)

can be reabsorbed into Ω.

Dealing with β is a more challenging matter. We cannot do the same as before because,

even though we could make the Hamiltonian look like that of a free field plus an UdW

interaction, the detector and field operators would not commute and hence, even without

the interaction, the theory would not be a free theory.

There is one special circumstance in which β vanishes: in systems with a strong spin

interaction, so that the gap comes from the spin dependence of the energy levels. This could

happen, for instance, in states of an atom within a strong magnetic field. In this case the
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atomic wavefunctions of the ground and excited states are the same and therefore β = 0

exactly. The energy gap is ~Ω = µBB. The coupling constant to the electric field is ≈ ed

where d is a typical dimension of the atom, so in order to be in perturbation theory regime

we would require electric fields of order E < µBB/ed.

As a particular example, consider the smearing function for a hydrogen atom in its 1s

state subjected to a magnetic field. According to (5.2.6), we would have

F (x) = −ie
−r/a0

πa4
0

ur. (5.2.11)

5.3 Localisation issues of the UdW detector

The first UdW localization model was introduced by Schlicht [232] to solve the problems

with the non-equivalence of regulators derived from the pointlike nature of the detector. In

particular, he proposed a localised spatial profile for the detector (which for computational

convenience was chosen to be Lorentzian). This localisation model was further studied by

Langlois [233] first, and then by Satz and Louko [234, 235], who envisioned a more gen-

eral scheme which allowed general spatial profiles to be considered undergoing arbitrary

movement throughout spacetime. In these works the interaction Hamiltonian is defined as

follows:

HI = g

∫ ∞
0

dk√
2ω(2π)3

∫
dx F (x)

(
σ+eiΩt + σ−e−iΩt

)
×
(
a†ke
−i(k·x−ωt) + ake

i(k·x−ωt)
)

(5.3.1)

Where F (x) is the spatial smearing of the detector that is supposed, for simplicity and

without loss of generality, at rest and centred in x = 0, and Ω represents the frequency

gap of the two-level system, in other words, the transition energy between the ground and

excited state of the detector. The detector is supposed to be tuned to this frequency, i.e. it

is more likely that the detector absorbs field quanta of this frequency than anything else, as

we will discuss below. In the case that the detector is point-like F (x) = δ(x), this model

becomes the standard UdW detector introduced in [178].

The form of the function F (x) must be related to the characteristics of the physical sys-

tem modelled by the Hamiltonian (5.3.1). In the particular case of a two-level atom, F (x)

should be obtainable from the wave functions of the ground and excited states of the atom

and the matter-radiation interaction Hamiltonian. For the case of atomic spin transitions,

the form of the Hamiltonian was derived from first principles in section 5.2.
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However, it is interesting to be able to consider detectors whose size becomes compar-

able with the wavelength to which they are tuned. These regimes cover a great range of ex-

tremely interesting physical scenarios, e.g. quantum microwave antennae (for example flux

or charge qubits in cQED), Rydberg atoms and cavity based detectors [236, 237], where one

can no longer use an atomic wave-function to obtain the form of the Hamiltonian. Yet, it is

well known that the point-like model is a good effective description of the physics [236,237].

As we will discuss below, a question arises when studying the compatibility of the standard

spatially smeared UdW model with detectors whose characteristic length is comparable to

the wavelength detected beyond the atomic scale.

In the following paragraphs we will point out a fundamental issue with the use of the

traditional smeared UdW model when considering spatially extended detectors. For these

cases, we propose a way to modify the detector model in order to formulate an effective

theory reproducing the correct phenomenology.

Previous works dealing with the localised UdW model just considered the behavior of

the detector interacting with the Minkowski vacuum, which is known to have equivalent

behavior for all frequencies [234, 235]. In that respect, the problems of the model dealt with

in this manuscript have not been studied yet. We will discuss below how they can build up

when one tries to process physical signals and photon wavepackets with such a detector.

For most recent analyses [232–235] a real symmetric profile function was chosen. In

particular, the spatial profile used for most calculations was a Lorentzian. To illustrate here

the problem in the most simple way we will consider a Gaussian profile, but all results apply

equivalently to the Lorentzian case or to any other spatial profile.

From the Hamiltonian (5.3.1), the integral over x takes the form of a trivial Fourier trans-

form

HI = g

∫ ∞
0

dk√
2ωk(2π)3

(
σ+eiΩt + σ−e−iΩt

)
×
(
F̂ (k)a†ke

iωkt + F̂ (−k)ake
−iωkt

)
(5.3.2)

where we have made the dispersion relation explicit ωk = c|k| and

F̂ (k) =

∫
dx F (x)e−ik·x (5.3.3)

is the Fourier transform of the spatial profile.

We can rewrite the Hamiltonian in a way in which the resonant and anti-resonant terms

are made explicit:

HI = g

∫
dk√

2ωk(2π)3

[
F̂ (k)

(
a†kσ

−ei(ωk−Ω)t + H.c.
)
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+F̂ (−k)
(
a†kσ

+ei(ωk+Ω)t + H.c.
)]

(5.3.4)

The time evolution operator is computed as the time ordered exponential of the Hamilto-

nian. When integrating over times, the exponential factors in the Hamiltonian above are

highly oscillating except when ωk = c|k| ≈ ±Ω (stationary phase). This is the mathematical

reason why a detector is tuned to the frequency of the energy gap between the ground and

the excited state, as it is very well known from the study of the matter-radiation interac-

tions [226, 238]. In plain words, if we want to stimulate the transition between ground and

excited state we have to ’beam’ the detector with radiation tuned to the natural frequency of

the transition (on resonance). Otherwise, the probability of transition quickly decreases with

the detuning between this natural frequency and the frequency of the radiation stimulating

the transition.

Here is the issue. If we choose F (x) to be a localised smooth function such as a Gaussian

or a Lorentzian, which is the case for most realistic atoms , the frequency profile F (k) will

be a localised function centred in k = 0. Being this so, its evaluation at Ω/c will give a

negligible value, for Ω sufficiently large.

The reason why this issue does not arise in electronic transitions for atoms at rest is be-

cause, for most cases, Ω is small enough. For instance, electronic transitions in the hydrogen

atom have an Ω in the visible range of the spectrum, whereas the Fourier transform of the

spatial profile has a width of ∼ a−1
0 , which extends up to the X-ray spectrum.

However, when we consider accelerated detectors, the Minkowski frequency for a packet

centered in Ω as seen from the detector, varies effectively as a function of time as ωR =

Ωeaτ/c (See derivation on section 5.5 and [6]) and even for very small times it goes out of

resonance. Even if we compensate the Doppler shift of the wavepacket tuning the detector in

real time for the period while packet and detector overlap, we would easily get the problem

of the frequency getting too far from our detector support function. If the spatial profile

function does not have information about the energy gap between the ground and excited

state of the detector, the response of the detector to the resonance frequency (the frequency

which, by far, mostly contributes to the estimated transition from the ground and excited

state) will be exponentially dampened by the Gaussian or Lorentzian tails. That implies that

an accelerated detector would be, in practical terms, incapable of detecting a wavepacket

centred on its natural frequency. If we are to analyse signals with UdW detectors, the model

should be accordingly modified to avoid this issue.

To illustrate the problem let us consider the most simple 1-D case, and a detector with a

Gaussian spatial profile. We can take F (x) to be a normalised Gaussian profile with charac-

101



CHAPTER 5. WAVEPACKET DETECTION WITH THE UNRUH-DEWITT MODEL

teristic length L:

F (x) =
1

L
√

2π
exp

(−x2

2L2

)
(5.3.5)

And so its Fourier Transform F̂ (k) will be a Gaussian localised around k = 0

F̂ (k) = exp

(−k2L2

2

)
(5.3.6)

Any frequencies such that ωk � 0 would be exponentially dampened in the integral over

k by the weight F̂ (k). In particular, if Ω >> 0, the stationary phase contribution ωk = ±Ω

will be zero due to F (±Ω/c) ≈ 0, effectively cancelling any non-trivial time evolution.

So, as it is illustrated in fig. 5.1, if Ω � cL−1 the detector will not ever detect any signal

even if it is a powerful pulse tuned to the transition frequency. Therefore, in order to be able

to study relativistic settings, some modifications must be made to the model.
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kΩ/c−Ω/c

Figure 5.1: A highly localised F̂ (k) centred in 0 would practically suppress the possibility of detection for the

resonance frequencies to which the detector is most responsive, k = ±Ω/c. This results in a vanishing transition

probability no matter what frequency we use to illuminate the detector.

One could argue that if the detector is very small with respect of the wavelength to which

it is tuned (as it is the case of atoms), the Gaussian profile F̂ (k) may cover the resonance re-

gions. However, as seen in figure 5.2, if we analyze the probability of transition as a function

of the frequency of the radiation with which the detector interacts, its spectral response will

be asymmetric in the detuning between the detector natural frequency and the frequency of

the radiation stimulating the transition ∆ = ωk − Ω.

In other words, if the transition frequency is Ω and the radiation stimulating the trans-

ition is detuned from the energy gap of the detector by a small factor δ, the probability of

transition will be positively weighted by F̂ (k) if ωk = Ω− δ, and dampened if ωk = Ω + δ.

Although a similar asymmetry occurs in realistic atomic transitions (as detailed in sec-

tion 5.5), the effect is so small that it can be neglected in most circumstances. In practice,

no such effects are observed neither in atomic detectors nor in any other settings where

quantum systems (like harmonic oscillators) are coupled to quantum fields.
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When the size of the detectors increases as to become comparable with the wavelength

to which they are tuned, e.g. quantum microwave antennaee (for example flux or charge

qubits in cQED), Rydberg atoms and cavity based detectors [236,237], the detector response

is also symmetric in frequencies. Therefore the use of the Unruh-DeWitt detector presented

above to model those scenarios (where the spatial profile is related to the natural dimension

of the detector), can be problematic.
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Figure 5.2: A not-so localised F̂ (k) centred in 0 would introduce an asymmetry in the detection of frequencies

ωk = Ω± δ k = ±Ω/c

5.4 Modulated oscillations in the spatial profile

In most realistic settings, the spectral response function of two level emitters is symmetric

with respect to the resonance frequency, thus a small detuning should produce similar ef-

fects no matter if it is positive or negative. Also, as we discussed above, if the two level

system size is comparable with the wavelength it is tuned to, the localized UdW model em-

ployed in the literature will dramatically fail to detect anything, even if it is the case of an

intense pulse of radiation centred in the natural frequency of the detector’s transition.

Taking these issues into account, we propose a modification of the way in which the

UdW detector is spatially smeared. We will do so by feeding the spatial profile with in-

formation about the resonance frequency. For that matter, we will introduce a spatial profile

which is strongly localized by a function S(x), modulated by internal oscillations associated

with the frequency the two level system is tuned to.

If the spatial profile is

F (x) = S(x) cos

(
Ωx

c

)
(5.4.1)

then the spectral profile would be

F̂ (k) =
1

2

[
Ŝ(k − Ω/c) + Ŝ(k − Ω/c)

]
(5.4.2)
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which is a localised profile in frequencies around the two resonance regions. If we take S(x)

to be the Gaussian profile (5.3.5) then

F̂ (k) =
1

2

(
e

1
2

(k−Ω/c)2L2
+ e−

1
2

(k+Ω/c)2L2
)

(5.4.3)

which, as seen in figure 5.3, covers symmetrically the resonance regions.
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Figure 5.3: A localised F̂ (k) can be not centered in 0 by introducing a oscillating term in the spatial profile seen

in the inset. The figure shows symmetric detection zones centered in the frequencies k = ±Ω/c.

By doing this we have the desired spectral response no matter the value of Ω, and the

detector is spatially localized around x = 0 with a characteristic proper length L. We must

stress that the introduction of the cosine factor in (5.4.1) is intended only as a solution to the

problem of the unphysical suppression of the transition rates. We do not claim that such

a spatial profile is realised, for instance, in inertially moving two-level atoms (where the

pointlike approximation is often valid and enough to produce physical results). However,

this will not be the case when the UdW detector is used to model more exotic systems where

the wavelength of the absorbed and emitted radiation is comparable with the size of the

physical system. The problem of considering the physical form of F (x) for regular atoms

was tackled in section 5.2.

Notice that we are not deriving this effective coupling from first principles. Rather, we

are pointing out the limits of applicability of the UdW model to describe extended detectors

when the wavelength of the radiation is comparable to their physical extension, and sug-

gesting a way in which the phenomenology of such detectors can be effectively recovered.

One can, however, understand this as a process of ‘antennization’ (classical antennae, that

are comparable with the wavelength of the radiation they are tuned to detect, have some

periodical structure related to the wavelength they are resonant with). We are providing the

extended detector with a spatial periodicity related to the radiation the detector is tuned to.
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5.5 Accelerated detectors

In order to provide a complete description of the localised detector model proposed in this

note, in this section we will describe how to use this model to analyse arbitrary signals with

a spatially smeared uniformly accelerated detector.

There is a well known problem with accelerating rigid bodies: the proper distance between

two points of a solid accelerating with the same relativistic acceleration increases with time,

eventually destroying the solid when the internal tension it supports is overrun by the re-

lativistic effects.

The reasonable hypothesis for a physical detector is that it has to keep internal coher-

ence. This means that the internal forces that keep the detector together will prevent it from

being further smeared due to relativistic effects up to some reasonable acceleration regimes.

That means that, effectively, every point of the detector will accelerate with a different ac-

celeration in order to keep up with the rest of its points. The natural formalism to treat this

detector is the use of the well-known Fermi-Walker coordinates [232, 239].

Thus, the interaction Hamiltonian of a smeared uniformly accelerated rigid detector is

HI(t) = g

∫
dk√

2ωk(2π)

∫
dχ F (χ)

(
σ+eiΩτ + σ−e−iΩτ

)
(
a†ke

i(ωkt(χ,τ)−kx(χ,τ)) + ake
−i(ωkt(χ,τ)−kx(χ,τ))

)
(5.5.1)

where χ = (χ, 0, 0) and τ are the Fermi-Walker coordinates associated with the trajectory of

the detector.

These coordinates have the particularity that at every point on the trajectory x(τ) =

(ct(τ), x(τ), 0, 0) the hyperplane which is orthogonal to the 4-velocity u(τ) = (cṫ(τ), ẋ(τ), 0, 0)

is the three-dimensional space which consists of all the events which are simultaneous to

x(τ), where simultaneity is judged from the comoving inertial frame. We assume that we

move only in one direction, so that χ1 = χ, χ2 = y = 0, χ3 = z = 0.

If we attach a dreibein to every such hyperplane

eχ1 = (c−1ẋ(τ), ṫ(τ), 0, 0)

eχ2 = (0, 0, 1, 0), eχ3 = (0, 0, 0, 1), (5.5.2)

we can characterise every event xe in a neighborhood of the trajectory with (τe,χe).

These coordinates guarantee a rigid detector (where rigidity means that its 3-geometry

as seen from its own momentary rest system is unchanged in the course of proper time). In

contrast, in a Rindler frame (standard approach for pointlike detectors) every point of the
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detector accelerates with a different proper acceleration, so they cannot account for rigid de-

tectors that have internal coherence. In the F-W frame the detector will accelerate coherently,

so this models very well what would happen to an accelerated rigid-body.

The change of coordinates between the inertial system to the Fermi-Walker frame is

given by

x(τ,χ) = x(τ) + χiei(τ), t(τ,χ) = t(τ) +
χie0

i

c
(5.5.3)

For the uniformly accelerated observer, the trajectory (parametrised in terms of comov-

ing time) is

x(τ) =

[
c2

a
sinh

(aτ
c

)
,
c2

a
cosh

(aτ
c

)
, 0, 0

]
(5.5.4)

The only relevant component of the dreibein is

eχ1 =
[
sinh

(aτ
c

)
, cosh

(aτ
c

)
, 0, 0

]
(5.5.5)

So, directly from (5.5.3) we read the change of coordinates

t(τ, χ) =
( c
a

+
χ1

c

)
sinh

(aτ
c

)
x(τ, χ) =

[(
c2

a
+ χ1

)
cosh

(aτ
c

)
, 0, 0

]
(5.5.6)

Within this scheme we compute the probability of excitation of an accelerated detector

responding to an arbitrary signal. In first order perturbation theory,

P = |g|2
∫ τ

τ0

dτ ′
∫ τ

τ0

dτ ′′ eiΩ(τ ′−τ ′′) 〈y|Ψ(τ ′′)Ψ(τ ′) |y〉 (5.5.7)

Ψ(τ)=

∫
F (χ) dkdχ√

2c|k|(2π)

(
ake

i(k·x(χ,τ)−c|k|t(χ,τ))+H.c.
)

(5.5.8)

where |y〉 is a general superposition of plane-wave field modes corresponding to a Minkowskian-

shaped wavepacket, prepared in the lab, that we want to analyze with our detector,

|y〉 =

(∫
dk y(k)a†k

)
. |0〉 (5.5.9)

Let us evaluate the time-correlation function Wy(τ
′, τ ′′) ≡ 〈y|Ψ(τ ′′)Ψ(τ ′) |y〉. The two χ

integrals can be rewritten in terms of Fourier transforms greatly simplifying the expression

of Wy(τ
′, τ ′′). To do this we first note that

kx(χ, τ)− ckt(χ, τ) = L(k, τ)

(
χ+

c2

a

)
L(k, τ) = keaτ/c (5.5.10)
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Considering that ω = ck, then the complex exponential argument depending on τ as

taken directly from the amplitude in (5.5.8) and (5.5.10) goes as

Ωτ +
cω

a
e−aτ/c. (5.5.11)

So, taking derivatives, the condition for the stationary phase is as follows

Ω− ωe−aτ/c = 0. (5.5.12)

Now the condition is no longer time independent as in the inertial case [6]. Instead the

resonance frequency ωR will be

ωR = Ωeaτ/c. (5.5.13)

which is obviously the inertial resonance frequency but non-trivially Doppler-shifted due to

the acceleration.

Now if we define G±(k, τ) = F̂ [±L(k, τ)], where F̂ (k) is the Fourier transform of F (χ)

as in (5.3.3), we can rewrite Wx(τ ′, τ ′′) =

=

∫
ȳ(k)y(κ)dkdκ

2(2π)c
√
|k||κ|

G+(k, τ ′′)G−(κ, τ ′)ei
c2

a
[L(κ,τ ′)−L(k,τ ′′)])

+

∫ |y(κ)|2dkdκ
2(2π)c|k| G

+(k, τ ′)G−(k, τ ′′)ei
c2

a
[L(k,τ ′′)−L(k,τ ′)]

+

∫
ȳ(k)y(κ)dkdκ

2(2π)c
√
|κ||k|

G+(κ, τ ′)G−(k, τ ′′)ei
c2

a
[L(k,τ ′′)−L(κ,τ ′)]

which can be further simplified if F (k) = F (−k) (true for a Gaussian or Lorentzian profile),

then we get G+ = G− = G (although in general G(k) 6= G(−k)), and if the frequency profile

of the signal y(ω) we want to analyse is chosen to be real, we can rewrite Wx(τ ′, τ ′′) =

=

∫
y(k)y(κ)dkdκ

(2π)c
√
|k||κ|

G(k, τ ′′)G(κ, τ ′)cos
[L(κ, τ ′)−L(k, τ ′′)

ac−2

]
+

∫
[y(κ)]2dkdκ

2(2π)c|k| G(k, τ ′)G(k, τ ′′)ei
c2

a
[L(k,τ ′′)−L(k,τ ′)], (5.5.14)

providing an operative expression for the response of a localized accelerated detector to a

given signal.

5.6 Discussion

In this work, we have analysed the problem of wavepacket detection by an UdW model.

By appealing to phenomenological considerations, we have argued that in scenarios

where our detector has to respond to a given frequency, the spatial profile considered must
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verify certain properties. In particular, we have studied the origin of such a profile function

for the case of an atomic detector by takink the task of deriving a UdW equation from first

principles, relating the smeared UdW model to the usual p ·A form of the QED interaction

coupling atoms to the electromagnetic field. We have shown what differences between the

models actually result from this calculation. As an outcome, we have shown a way of re-

lating the smearing profile used in the UdW case with the electronic wavefunction of the

relevant orbitals of an atom.

Going beyond this atomic example, and especially, when considering the case of detect-

ors comparable with the wavelength to which they are tuned, we show that some informa-

tion about the spectral response of the detector must be fed in general to the spatial profile.

Otherwise the detector will not have the expected behaviour and will dramatically fail to

detect radiation on resonance with the two-level system transition.

To solve these problems, we suggest to introduce a spatial oscillation of the profile, which

will make the detector tune to the resonance frequency regardless of its size and configura-

tion.

Not all the spatial profiles for the UdW model would be compatible with the experi-

mental response of accelerated particle detectors: the existence of some monopole (or di-

polar) momentum that couples the atom to the field with a given characteristic transition

frequency requires those oscillations introduced in the spatial profile to reproduce spectra

centred in the characteristic transition frequency of the detector . If one thinks of that profile

as being something like a charge distribution, then those oscillations would be the respons-

ible for the appearance of the momentum that correctly couples it to the field.

Completing our proposal, we have explained how to use this formalism while calculat-

ing the probability of detection of a wavepacket for an accelerated detector.

Finally note that, in parallel with this work, an analysis of the transition rates of smeared

UdW detectors coupled to different kinds of physical field modes and undergoing different

relativistic motion was carried out by Lee and Fuentes [240].
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CHAPTER 6

Non-Monotonic Entanglement of

Physical EM Field States in

Non-Inertial Frames

We develop a general technique to analyse the quantum effects of acceleration on realistic

spatially-localised EM field states entangled in the polarization degree of freedom. We show

that for this setting, quantum entanglement may build up as the acceleration increases,

providing a clear signature of phenomena related to the Unruh and Hawking effects.

6.1 Introduction

One of the most widely known results in relativistic quantum information is the notion that

acceleration may have non-trivial effects on entanglement. A number of works have stud-

ied this issue through transformations between inertial and accelerated Fock bases (among

many others, [67, 68, 138, 241]). Previous results considered tailored families of states which

greatly simplified calculations but whose physical interpretation was not clear. Recently,

[139] introduced a projective detector model which constitutes a promising new approach

to the issue of field entanglement in non-inertial frames. It was shown in [139] that such

detectors present the expected thermal response to the inertial vacuum state of the field (i.e.

the Unruh effect [54]) and the model provides a good effective description of particle de-

tection. In this work, we will use this projective model as a practical method to study field

entanglement for localised two single-photon bipartite electromagnetic field states.

There are, however, two different approaches to use the projective model introduced

in [139]. Here, we will develop a technique to analyse states by working out the Bogoliubov

transformations and the change of basis inertial-accelerated modes in some approximate
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but physically feasible scenario. A different technique, that allows to obtain exact results

for Gaussian states without going through the Bogoliubov coefficients calculation, has been

developed in [242].

While the later can be very handy to analyse squeezed states such as those produced

in parametric down conversion, it is not clear to what extent it can be used to analyse two

single-photon states as those studied in this work. Due to the relevance of non-monotonic

entanglement behaviour reported here in the two single-photon regime, it is worth explor-

ing the first approach. Also, the computation of the Bogoliubov transformations between

localised inertial and accelerated Fock bases is of much interest in itself for its possible fu-

ture use.

Let us use the detector model mentioned above [139] to explore bipartite entanglement

for two single-photon states entangled in helicities with a Gaussian spread in frequencies.

This spatially localised system is observed by two partners: an inertial one, Alice, looking at

one of the photons, and an accelerated one, Rob, observing the other photon.

The practical limiting factor of the general formalism presented in this work is compu-

tational complexity, which may grow very quickly for some cases of interest. We study for

which physical regimes results can be given within current computing power, and suggest

how the computational issues of the formalism may be overcome beyond that.

6.2 Setting

We will consider two different observers, Alice and Rob. They are interested in studying

field correlations in the electromagnetic field 1. Alice is an inertial observer, while Rob un-

dergoes a motion with constant proper acceleration ã and acceleration frequency a = ã/c.

Rob’s trajectory is best described in terms of Rindler coordinates. We introduce two sets

of Rindler coordinates (ξ±, τ±) whose relation with the Minkowskian coordinates (x, t) is

ct =± ξ± sinh (aτ±) , x = ±ξ± cosh (aτ±) , (6.2.1)

with x > |t| for (ξ+, τ+) and x < −|t| for (ξ−, τ−). These coordinates naturally define two

globally hyperbolic and causally disconnected submanifolds in flat spacetime, each being

the mirror image of the other, which we call regions I and II following the standard notation

of [68,138]. Any field theory in flat spacetime can be regarded as two independent field the-

ories, one in each of these regions [164]. Without loss of generality we place Rob in Region I.

1As usual in the literature, to analyse these effects more clearly we will assume that the acceleration lies in

the polarisation quantisation axis so no Thomas precession occurs.
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No operations will be carried out involving measurement or communication with region II.

Although we make use of some mathematical constructions which mix region I and region

II operators, we do so merely as a convenient computational tool. Our results are independ-

ent of whatever happens in the causally disconnected region II, thus, the entanglement we

find is of a different nature to that present in the Minkowski vacuum state, which displays

correlations between regions I and II [54].

At this point, there are two paths to go through: on one hand, we might take a specific

model for Alice’s and Rob’s detectors (such as Unruh-DeWitt), prepare the detectors in a

particular state and then let the field-detectors system evolve. After some time the detectors

would lose and gain entanglement due to the non-trivial effects of Rob’s acceleration. Recent

examples of this approach are [49, 243, 244].

Still, this method has the drawback of being dramatically dependent on the details of the

detector model assumed and it is very difficult to explore beyond first order perturbation

theory or inside small cavities. Besides, depending on the model, the detectors may not

inherit all the field correlations and may develop further correlations owing to the specific

form of the interaction which do not come directly from field entanglement.

On the other hand, field entanglement has been successfully studied for decades by

means of projective measurements on the field state, independently of any detector model.

Entanglement between correlated photon pairs is usually accessed this way [245]. This ap-

proach also avoids all the complications associated with the detector-dependent settings

previously discussed. This is the original approach used (among others) in [67, 68, 138, 241,

246] with completely delocalised Unruh modes [138]. In this line, using the localised pro-

jective detector formalism developed in [139] we do not face any problem coming from

non-locality and acceleration dependence associated to the Unruh modes.

6.3 Procedure

As common in the literature [68, 247], the Fock space for Alice will be constructed in terms

of Minkowski creation operators a†ω,σ acting on the Minkowski vacuum state |0〉M, defined

by

aω,σ |0〉M = 0. (6.3.1)

Here, σ ∈ {↑, ↓} denotes helicity.

Rob, as an accelerated observer, will build his Fock basis by means of Rindler modes.

In this case, the Fock space will be constructed in terms of Rindler creation operators a†Ω,σ,I
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(and their complement a†Ω,σ,II) acting on the Rindler vacuum state |0〉R, defined by

aΩ,σ,I |0〉R = aΩ,σ,II |0〉R = 0. (6.3.2)

The Rindler modes are labelled by their dimensionless Rindler frequency Ω ≡ Ω′/a, where

Ω′ is the Rindler frequency.

Let us consider that Alice and Rob carry detectors able to explore a particular set of

modes of the field, but without assuming anything about the particular detector model.

Rob’s associated field vacuum is not |0〉M, but rather, the Rindler vacuum |0〉R. This means

that Rob will be able to make projective measurements in the subspace spanned by the basis

B =

{
1√
n!

(d†↑)
n |0〉R ,

1√
n!

(d†↓)
n |0〉R |n ∈ N

}
(6.3.3)

with the operators d†σ, which create one ‘detector mode’ excitation, being a linear combina-

tion of Rindler creation operators of definite helicity,

d†σ =

∫ ∞
0

dΩ g(Ω)a†Ω,σ,I. (6.3.4)

We will analyse a very general family of arbitrarily spatially localised entangled states

of the form

|Ψ〉 = P |a〉A |x〉Rob +Q |b〉A |y〉Rob , |P |2 + |Q|2 = 1. (6.3.5)

Here, the states |x〉Rob and |y〉Rob will be a pair of Minkowskian wavepacket one-particle

excitations of opposite helicities, i.e.

|x〉Rob =

(∫
dω x(ω)a†ω,↑

)
|0〉M ,

|y〉Rob =

(∫
dω y(ω)a†ω,↓

)
|0〉M . (6.3.6)

|a〉A and |b〉A can be assumed to be a pair of Minkowskian wavepackets similar to |x〉Rob and

|y〉Rob.

As Rob will probe his part of the field state by means of projective measurements on the

basis (6.3.3), to compute the effect of these measurements we will have to express first |x〉Rob

and |y〉Rob in the Rindler basis.

This change of basis is most easily computed via an intermediate change to the so-called

Unruh modes. For bosonic fields, the Unruh modes are defined in terms of the Rindler

modes by

aR,Ω,σ = cosh rΩaI,Ω,σ − sinh rΩa
†
II,Ω,−σ,
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aL,Ω,σ = cosh rΩaII,Ω,−σ − sinh rΩa
†
I,Ω,σ, (6.3.7)

with tanh rΩ = e−πΩ.

The advantage of these modes is that the Minkowski vacuum factorises as [164]

|0〉M =
⊗

Ω

|0〉Ω,↑ |0〉Ω,↓ (6.3.8)

where aR,Ω,σ |0〉Ω,σ = aL,Ω,σ |0〉Ω,σ = 0. The explicit form of |0〉Ω,σ in terms of Rindler modes

has been found elsewhere [247]. Eq. (6.3.8) implies that the Unruh and Minkowski modes

share the same vacuum state, this meaning that Minkowski-Unruh change of basis preserves

the number of particles. Therefore, we may express |x〉Rob and |y〉Rob as

|x〉Rob =

∫
dΩαR

ωΩx(ω) |↑RΩ〉+

∫
dΩαL

ωΩx(ω) |↑LΩ〉 ,

|y〉Rob =

∫
dΩαR

ωΩy(ω) |↓RΩ〉+

∫
dΩαL

ωΩy(ω) |↓LΩ〉 ,

with |σXΩ〉 = a†X,Ω,σ |0〉M , X = {L,R} (6.3.9)

where the αX
ωΩ are the coefficients of the relevant change of basis, which are computed for a

scalar field in [138] and adapted for an electromagnetic field in [247].

Substituting (6.3.9) in (6.3.5), we finally express |Ψ〉 as a linear combination of states

entangled between Alice’s modes and Unruh modes of the form |σqR〉Ω = (qLa
†
L,Ω,σ +

qRa
†
R,Ω,σ) |0〉M, (qL being such that |qR|2 + |qL|2 = 1, qR ≥ qL). Namely,

|Ψ〉 =

∫
dΩ |Φ〉Ω , |Φ〉Ω = |φ〉Ω

⊗
Ω′ 6=Ω

|0〉Ω , (6.3.10)

|φ〉Ω = PΩ |a〉A |↑ qR1〉Ω
Rob

+QΩ |b〉A |↓ qR2〉Ω
Rob

. (6.3.11)

These states |φ〉Ω are precisely those studied in previous works on field entanglement in

non-inertial frames [138, 246, 248], and their form in the Rindler basis is well known. We re-

mark that, in contrast to previous works [68,138,246,249], the state (6.3.5) (and consequently

(6.3.10)) is the same no matter the acceleration of Rob.

Now, we recall that Rob’s detector probes the non-monochromatic modes (6.3.4). To

build a complete basis of the Fock space, we need to complete (6.3.4) with their orthogonal

complement D⊥ = {α†1, α†2 . . .} where α†i are one-particle creation operators so that S =

{d†↑, d
†
↓, α
†
1, α
†
2 . . .} is complete. In this basis, for a state |n1 n2 . . .〉 the detector will only be

sensitive to the first two entries, which correspond to the detector modes. All we need to

do then is tracing out the irrelevant set of modes α1, . . . αn. We will end up with a reduced

field state containing all the field entanglement accessible to our detector. At this point, we
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may quantify this entanglement through any suitable entanglement measure, such as the

negativity [250].

Note that the previous results reported in [68, 138, 246, 249] correspond to the choice of

|x〉Rob and |y〉Rob to be Unruh excitations of a single fixed frequency Ωfield, and imposing

a detector profile in adimensional frequencies g(Ω) = δ(Ω − Ωdet). In order to probe the

entanglement for those simple modes, these works used a single-frequency detector with

fixed Ω′det, which would couple to a dimensionless Rindler frequency Ωdet = Ω′det/a. That

means that the Ω really probed by the detector depends on its acceleration. For each acceler-

ation a, the field state was chosen peaked around a certain dimensionless Rindler frequency

Ωfield(a), so as to always have Ωfield = Ω′det/a. In contrast, using the projective detector

model [139] we can probe the same acceleration-independent field state.

Peaked detectors.– With the formalism above, we may consider a physical state and look

at the behaviour of entanglement with acceleration on a peaked distribution of Rindler fre-

quencies. Although we will discuss below that our formalism can be extended to arbitrarily

spatially smeared detectors, this is a most reasonable first step towards the study of realistic

experimental scenarios. Approximately single-frequency detector modes have been con-

structed in [138] and constitute a nice and simple starting point. Such a detector mode will

be spread in space with some finite characteristic length dependent on the frequency spread.

Let us consider the state (6.3.5) with P = Q = 1/
√

2 and Gaussian mode profiles,

x(ω) = y(ω) = (2πω)−1/4 e−
(ω−ω0)2

4σ2 . (6.3.12)

If we choose |a〉A and |b〉A as another pair of Gaussian modes centered at a frequency far

from ω0, then (6.3.5) represents a normalised version of a two single-photon field state max-

imally entangled in polarisations.

We now introduce a realistic approximation for a single-mode detector for Rob by cara-

cterising its spectral decomposition in terms of Rindler modes as

gdet(Ω
′) = ∆Ω′

−1/2
det Π

(
Ω′ − Ω′det

∆Ω′det

)
(6.3.13)

where Π(x) is the unit step function, the characteristic function of the [−1
2 ,

1
2 ] interval.

After tracing out the unobserved field frequencies through eqs. (6.3.10) and (6.3.11), we

compute the negativity of the relevant reduced state as a function of the acceleration. In

order to make this calculation simpler we assume that

rΩdet−∆Ωdet/2 ≈ rΩdet ≈ rΩdet+∆Ωdet/2. (6.3.14)
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Figure 6.1: (Color online) Frequency profile of the simplified detector mode considered in the text.

From rΩ definition (6.3.7) we find that for (6.3.14) to hold one must have

∆rΩdet

rΩdet

≈
∣∣∣d ln rΩ

dΩ

∣∣∣
Ωdet

∆Ωdet =

πe−πΩdet∆Ωdet

atanh(e−πΩdet)(1 + e−2πΩdet)
� 0.1 (6.3.15)

which assuming a quality factor Q = Ωdet/∆Ωdet = 500 (typical value for microwave filters)

happens to be valid for Ωdet = Ω′det/a . 10. Considering Ω′det = 1 GHz, that implies we must

have ã = ac & 3 · 1016m/s2. In this regime, we may assure that the observed effects are the

direct consequence of Rob’s acceleration, without any other effects playing any important

role.

Figure 6.2 shows our results for a reasonable choice of the relevant parameters, along

with the Rindler spread of the state (the coefficients of the left and right excitations in (6.3.9)).

Remarkably, the entanglement amplification phenomenon first reported in [246] still sur-

vives in this more physical scenario, and in fact it is present in single-photon entangled

states.

Note that the amount of entanglement shown in Fig 6.2 is very small. This responds only

to the fact that, in this example, we are considering a ultra-narrow-band detector: when

looked at from the accelerated frame, the localised Minkowskian states spread over a broad

Rindler frequency spectrum. In the simple example presented here we analyse correlations

only for a highly peaked frequency spectrum of Rindler frequencies, so a great amount of

the entanglement is lost due to the detector not seeing all the relevant frequencies.

In order to see more of the entanglement of the field state, we need a detector whose

bandwidth is the most similar to the Rindler frequency distribution corresponding to the

initial Minkowski wavepacket. Figures 6.2b and 6.3 show how a Minkowksi Gaussian wave-
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Figure 6.2: (Color online) (a) Negativity as a function of Rob’s acceleration for the field state (6.3.5) with Gaussian

profiles (6.3.12) with σ = 0.01 GHz, ω0 = 1 GHz. The Rindler spread of the detector mode is λ = 2 MHz. (b)

Rindler spread of the field state, defined in (6.3.9), as a function of Rob’s acceleration via the map Ω = Ω′d/a,

with detector Rindler dimensionful frequency Ω′d = 1 GHz. The inset provides a logarithmic scale of the profile,

with the same quantities in both axes.

packet transforms into a well localised state in terms of Rindler modes. If the bandwidth of

the detector approaches this localised distribution of Rindler modes, the amount of entan-

glement detected will be much higher. As we will discuss below, considering wider-band

detectors in this formalism is straightforward, but it has a price in terms of computational

complexity.

In any case our results mean that protocols of entanglement distillation [251] could be

implemented to detect entanglement generation due to acceleration and therefore provide

an unmistakable witness of the Unruh effect, easier to detect than the entanglement degrad-

ation reported in [68, 138] and others.

6.4 Broadband detectors

Our formalism can be applied to more general detector profiles and multimode detection:

once we have determined both the state and the detector mode(s), we may use (6.3.10) to find

the relevant reduced state of detector modes. We discuss in this section how computational

difficulties appear when considering a more general detector with an arbitrary large mode
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Figure 6.3: (Color online) Localised Rindler frequency spread of the Gaussian-localised Minkowskian state

(6.3.12) for ω0 = 1 Ghz and σ = 0.01 Ghz, for ã = 3 ·1017 m/s2. A detector mode with this profile in Rindler fre-

quencies would be maximally tuned to the field state being probed and therefore would result in much higher

entanglements. Ω0 comes from an appropriate phase choice of the Minkowskian state.

spread and how to overcome them.

Note that (6.3.10) for the field state prior to tracing out the unobserved degrees of free-

dom includes a continuous product of frequencies. This means that in order to numerically

obtain a reduced state from it, we need to make a sampling in frequencies, and then take a

limit of small discretisation step. Let us discretise the frequencies so as to have m sample

points within the spread of g(Ω) and allow up to n excitations per frequency. Then a lower

bound in the computational complexity of obtaining the reduced state can be derived just

by computing the number of individual operations required to manage the sparse matrices

involved in the calculation, giving a complexity growing as

O(a(n)m). (6.4.1)

where a(n) is a monotonously increasing function of n satisfying a(n) ≥ 5. Such a huge

lower bound gives an idea of the intractability of the problem.

Until a way around the computational problems of a big number of frequencies is found,

the only procedure to study these regimes is through quantum simulations and condensed

matter analog systems (see e.g. [6]) or by considering field states with convenient properties,

such as Gaussian states as done in [139] and other families which will be treated elsewhere

[242].

6.5 Discussion

We have devised a scheme to analyse field entanglement in non-inertial frames for arbitrary

single-photon field states and detector frequency response. To do this we have used the

projective detector model introduced in [139]. As a particular case, we dealt with reason-

able electromagnetic field states: we have analysed entanglement behaviour of a two-mode
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photon state entangled in helicities. We have shown that the quantum effects of relativistic

acceleration can actually amplify entanglement and not only destroy it.

Entanglement amplification phenomena have been reported before for some rather un-

physical families of states [246], but the present work clearly shows that the effect is a genu-

ine consequence of acceleration in less idealised field states.

This formalism allows us to consider very general and realistic states. In particular, we

have thoroughly analysed the case of peaked detectors and studied the rapidly scaling com-

putational costs of considering wide-band detection. These difficulties may be overcome

through the use of quantum simulations: Instead of using analog systems to test predic-

tions, we may use them to make predictions. Also, all the conclusions are exportable to a a

static black hole scenario by means of the formalism developed in [252].
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Accelerated Detectors

7.1 Introduction

The study of accelerated atoms interacting with a quantum field is a fundamental problem,

which has attracted a great deal of attention in General Relativity. Even though it has been

treated extensively in the literature [168], it still poses intriguing questions, as well as exper-

imental challenges for the detection of quantum effects induced by acceleration. Moreover,

the emerging field of relativistic quantum information has recently increased the attention

drawn to the topic, and in particular the study of correlations and entanglement in non-

inertial scenarios [41].

Acceleration effects in quantum field theory are well understood in the perturbative re-

gime, where, for example, transition rates are obtained for the excitation probability of atoms

due to general relativity effects. A physical paradigm in this regime is the detection of the

Unruh effect [54], which, roughly, implies that an atom accelerated in the vacuum of the

field is excited in the same way as an inertial atom in an effective thermal field state. Going

beyond the perturbative regime poses a tough theoretical problem, which gets even harder

if one considers a set of emitters, in which case we face a many-body situation, situation

particularly relevant from the point of view of relativistic quantum information.

In this chapter we show that a system of accelerated atoms [178] coupled to a bosonic

field in the discrete mode approximation [139, 253], shares interesting analogies to time-

dependent problems in quantum optics. Our work is motivated by the recent experimental

progress that has allowed physicists to develop tools to control the dynamics of single emit-

ters coupled to fields in set-ups such as trapped ions [202] or circuit QED [254] . The applic-

ation of those systems as analog-simulators of accelerated atoms is particularly relevant to

many-body non-perturbative regimes, where numerical calculations are difficult. Further-

more, the insight gained by such analogies motivates the study of physical effects that may
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be relevant to the experimental detection of the Unruh effect. For example, collective phe-

nomena such as superradiance [255,256] (which are known to amplify the effective coupling

of a set of emitters to the field) could be used to increase detection sensitivity of quantum

effects in non-inertial scenarios.

The chapter is structured as follows: We start by presenting the Unruh-DeWitt detector

model to characterize an atom coupled to a quantum field. Working in the interaction

picture from the comoving atom reference frame, we show how to account for a uniform

acceleration in the Hamiltonian. We then proceed to discuss the possible physical imple-

mentations in trapped ions and circuit QED. For both cases a model of emitters with con-

trolled time-dependent atom-field couplings is presented, which, after some approxima-

tions, yields an identical Hamiltonian. For the sake of simplicity we will refer generically

to single quantum emitters as “atoms”, and the bosonic mode as “field”, being the latter a

phonon mode in a Coulomb crystal of trapped ions, or a photon mode confined in cavity in

circuit QED. Then, as an illustrative example, we analyze the physics in the case of a single

atom to predict the outcome of simple experimental realizations of our ideas. An analogy to

a decoupling process is explained in terms of the well-known Landau-Zener formula. Some

future research lines on the topic will naturally emerge from our discussion.

7.2 Accelerated Unruh DeWitt detectors

The Unruh-DeWitt detector [168, 178,257] is a standard model for a two-level atom coupled

to a scalar field. This kind of detectors has been extensively used for multiple purposes such

as acknowledging acceleration effects in cavities, measuring quantum correlations between

spatially separated regions of spacetime, detecting entanglement degradation due to the

Unruh and Hawking effects and proposing set-ups to directly detect such effects. In general,

computing time evolution under such a Hamiltonian is a complex problem, and thus, the

affordable calculations reduce to very simple scenarios where perturbation theory to the

first or second order is adequate.

On the other hand, special interest have the cases where the detectors couple only to a

discrete number of modes. Presented in [253] and extended in [139] such settings directly

model the interesting case of accelerated atoms going through a cavity. Moreover, they also

feature a way to directly measure the Unruh effect considering cavities which are leaky to a

finite number of modes [253].

Let us start by presenting the discretized Unruh-DeWitt interaction Hamiltonian consist-

ing in a set of two-level atoms coupled to a scalar field. We assume a set of atoms that are
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accelerating with proper acceleration a. From the atoms perspective the Hamiltonian can be

rewritten as

HI =
∑
jm

gjm(σ+
j e

iΩjτ + σ−j e
−iΩjτ ) (7.2.1)

(a†me
i[ωmt(τ,ξ)−kmx(τ,ξ)] + ame

−i[ωmt(τ,ξ)−kmx(τ,ξ)])

where (τ, ξ) are the proper space-time coordinates of the accelerated detectors, and (t, x) are

Minkowskian coordinates. The following relation holds,

ct = ξ sinh (aτ/c) , x = ξ cosh (aτ/c) . (7.2.2)

Directly from (7.2.2) we see that for constant ξ these coordinates describe hyperbolic traject-

ories in space-time whose asymptote is the light cone. A uniformly accelerated observer

whose proper coordinates are (7.2.2), follows the trajectory of constant Rindler position

ξ = c2/a [239].

If all the detectors follow such a trajectory we can rewrite the Hamiltonian in a form

which is suitable to find quantum optical analogs,

HI =
∑
jm

gjm
(
σ+
j e

iΩjτ+ H.c.
)(
a†me

iΦm(τ)+ H.c.
)
, (7.2.3)

where τ is the atoms proper time, and

Φm(τ) =−kmξe−aτ/c =−kmc
2

a
e−aτ/c =−ωm

α
e−ατ , (7.2.4)

where we have used the relation ωm = ckm, and defined the parameter α = a/c. Eq. (7.2.3)

defines the Hamiltonian of interest that we aim to simulate. It also reproduces a scenario

where an array of detectors are resisting near the event horizon of a Schwarzschild black

hole, if we consider in (7.2.3) that a ≈ κ/√f0, where κ is the surface gravity of the black hole

and f0 is the gravitational redshift factor, following the arguments in [258].

7.3 Physical implementations. Trapped ions

This setup is ideally suited to prepare and measure quantum states by well established ex-

perimental techniques [202], which have found an important application in quantum sim-

ulation of many-body physics [259], and single particle dynamics in special relativity [196].

Previous proposals also allowed the simulation of quantum fields using trapped ions in gen-

eral relativistic settings but in different contexts [260], however, paying the price of requiring

control on the frequency of the qubit and the coupling strength. In our proposal, only phase
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control is needed. Our setting is therefore readily exportable to other experimental set-ups,

as shown below.

In our scheme we consider a chain of N ions of mass M . For simplicity, we focus on the

single-mode version of (7.2.3), and consider that the bosonic mode is a phonon mode of the

chain, namely, the center-of-mass mode which accounts to a homogeneous displacement of

all the ions. State-of-the-art techniques may be used to implement phonon sidebands, and

to control the atom-field coupling.

The vibrations of a Coulomb chain consists of a set of normal modes described by H0 =∑
n ωna

†
nan, with ωn the normal mode frequencies, and an, a†n, phonon operators. Levels |0〉

and |1〉 are two electronic states of the ions. Two sets of lasers couple those levels by means

of Raman transitions, with amplitudes ΩL,j , and two frequencies ωL1,2 , (see [202] for details),

HL(τ) =
∑

j,ν=1,2

ΩL,j

2
σ+
j e

ikLxje−iωLν τ−iφν(τ) + H.c.. (7.3.1)

This equation represents a standard atom-light interaction term, with the only peculiarity

that we consider time dependent phases φ1(τ), φ2(τ). xj are operators corresponding to the

ion displacements, relative to the equilibrium positions along the chain. We express those

displacements in terms of phonon operators, xj =
∑

nMj,nx̄n(an + a†n), where Mj,n are

phonon wavefunctions, and x̄n = 1/
√

2Mωn.

We choose laser frequencies close to resonance with the center-of-mass mode, n = 0,

such that ωL1 = −ω0 − Ω, ωL2 = ω0 − Ω, with Ω � ω0. The coupling (7.3.1) simulates the

quantum dynamics of an accelerated Unruh-DeWitt detector if: (i) kx̄n � 1 (Lamb-Dicke

regime), such that we can expand the exponential in powers of δxj , and restrict only to

linear atom-field couplings. (ii) ΩL,j/2 � ω0, and (ΩL,j/2)kx̄n � ω0, |ω0 − ωn| 6= 0, so that

we can neglect, in a rotating wave approximation (r.w.a.), all couplings to vibrational modes

n 6= 0. This yields

HL(τ) =
∑
j

gjσ
+
j e

iΩτ
(
a0e
−iφ1(τ) + a†0e

−iφ2(τ)
)

+ H.c.,

where we have used that the center-of-mass vibrational modes fulfillsMj,0 = 1/
√
N , such

that gj = iΩLjkx̄0/(2
√
N). By choosing phases such that φ1(τ) = −φ2(τ) = Φ(τ), we arrive

at the single-mode version of Eq. (7.2.3). Including more modes would require additional

lasers on resonance with other vibrational modes. Position depending couplings, gj , and fre-

quencies, Ωj , may be achieved given a certain intensity profile of the lasers, and by focusing

multiple lasers on each ion, respectively.

Typical experimental values are ω0, |ωn − ω0| ≈ 1 MHz, and kx̄0 ≈ 0.2, such that our re-

quirements are fulfilled with values ΩL/2 = 100 kHz, and Ω = 100 kHz, yielding g = 20/
√
N
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kHz. Those values are well above typical decoherence rates in trapped ions. Also, in order

to observe analogs to acceleration, Φ(τ) has to increase exponentially over a time-scale com-

parable to the inverse energies involved in the set-up. For example, values α = 10−3Ω =

0.1 kHz, would require to vary the optical phase on times scales of 10 ms. This is technic-

ally feasible by using, for example, acousto-optical modulators, and standard experimental

techniques from trapped ion quantum computation, which indeed require manipulation on

a much shorter time-scale [202]. Our ideas may also be used with spin many-boson models

as in [261].

7.4 Physical implementations. Circuit QED

Our second proposed implementation consists of a superconducting qubit coupled to a mi-

crowave cavity in the strong-coupling regime [254]. The interest of this kind of setups has

been growing in the last years, with very interesting proposals to simulate other relativistic

phenomena such as the Dynamical Cassimir effect in [56], or Hawking radiation [262]. In

particular, a review on these vacuum amplification processes, and their possible realizations

in superconducting circuit setups is to appear soon [263]. The simulation we propose here is

different from those in the scenario studied, the kind of effects and the experimental idea be-

hind, which in our case relies on the driving of the qubit frequency only, being particularly

well suited [264]. The qubits and field noninteracting Hamiltonian is

H0(τ) = ω0a
†a+

ε

2

∑
j

σz,j +Hd(τ), (7.4.1)

where ω is the resonant frequency of the mode, and ε is the qubit energy. Hd(τ) describes a

driving field, for which we assume the following form,

Hd(τ) = −
∑
j

∑
ν=1,2

ηj ωdν,j cos(ωdν,j t+ φν(τ))σz,j . (7.4.2)

Note that Eq. (7.4.2) is written as a periodic driving with a phase, φν(τ), which can be

considered to evolve slowly in time, in a sense to be quantified below. The qubit-cavity

coupling in the Schrödinger picture is given by HI = g0 (σ+ + σ−)
(
a+ a†

)
. We write the

coupling in the interaction picture with respect to H0(τ),

HI(τ) = g0

∑
j

(σ+
j e

iετGj(τ) + H.c.)(ae−iω0τ + H.c.),

Gj(τ) = e
−2i

∑
ν η sin(ωdν,j τ+φν(τ))

, (7.4.3)

where we made the approximation that φ̇(τ)/φ(τ) � ωdν,j . Consider now that η � 1,

and the choice of frequencies ωd1,j
= ε − Ωj − ω0, ωd2,j

= ε − Ωj + ω0 , and conditions
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ε, ω0, |ε − ω0| � g0. We expand G(τ) to first order in ηj , and keep only slow-rotating terms

in a r.w.a:

HI(τ) ≈ ηg0

∑
j

σ+
j (eiΩjτ−iφ1(τ)a+ eiΩjτ−iφ2(τ)a†) + H.c..

This expression takes the form (7.2.3) by choosing φ1(τ) = Φ(τ), φ2(τ) = −Φ(τ), and gj =

g0ηj .

In circuit QED, the high energy scales ε, ω0 are in the GHz regime. Low energy scales,

such as gj , Ωj , may be then in the MHz range. Finally, note that φ̇(τ)/φ(τ) = α. Thus, in

order to observe effects from effective acceleration, our scheme requires α on the frequency

scale of gj , Ωj , such that the driving fields in (7.4.2) have to be controlled with an inverse

time in the MHz range. This seems technically feasible, since this rate is slower than typical

evolution times in circuit-QED systems. By using different photonic modes in a cavity, as

well as local control of qubit couplings, the full multi-mode Hamiltonian (7.2.3) may be

implemented.

7.5 Single detector case: non-adiabatic effects induced by acceler-

ation

We will study a simple case with a two-folded purpose in mind: on the one hand it will

serve to gain some insight on the parameters required for our experimental proposal while,

on the other hand, it will unveil an analogy between non-equilibrium physics and quantum

effects induced by acceleration. Let us consider a single atom A, with natural frequency Ω

and uniform acceleration frequency α = a/c = faΩ, coupled to a single-mode field with

proper frequency ω > Ω.

Let us have A excited at τ = 0 with no excitations in the field. Representing the free

eigenstates of atom (A) and field (F ) with the notation |ψ〉 = |AF 〉, the initial state would

then be |i〉 = |e 0〉. We let the system evolve naturally and concentrate on the probability for

A to decay to its ground state:

PAg(τ) =
∑
F

|〈g F |U(τ)|e 0〉|2. (7.5.1)

It is convenient to analyze the phase in the Hamiltonian (7.2.3). The latter is equivalent to

a Hamiltonian in the interaction picture with respect to a time dependent effective frequency

ωeff(τ) = ∂τΦ(τ) = ω0e
−ατ , (7.5.2)

which decreases asymptotically. We can therefore picture this situation as a system starting

in a certain low energy state, in this case matching |e 0〉, coupled to a high energy state which
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7.5. Single detector case: non-adiabatic effects induced by acceleration

initially happens to be |g 1〉. The difference between the two effective energies varies with

time as

∆Eeff(τ) = ω0e
−ατ − Ω, (7.5.3)

and there will be a level crossing, corresponding to a stationary Φ(τ), taking place at τc =

ln(ω0/Ω)/α After a long time (as compared to 1/α) we can obviously approximate the low
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Figure 7.1: (Color online) Time evolution of PAg for different accelerations, with the parameter values g = 0.01Ω

and ω0 = 1.33Ω. The crossing time and the transition probability fit the Landau-Zener prediction described in

(7.5.4).

energy level of the system as |g 1〉, and the high as |e 0〉We can therefore establish an analogy

between this kind of phenomenon and a typical Landau-Zener transition, making a link

between non-equilibrium physics and quantum field theory in curved space-times. If the

energy difference happens to vary very slowly (which will be the case if α � g), we would

expect no transition between eigenstates to take place, so the system will stay in the ground

state, which means actually decaying into |g 1〉. If however, the evolution happens to be

diabatic, the probability of transiting into a high excited state (so to say, staying in |e 0〉) can

be approximated by the Landau-Zener formula:

PAe(+∞)
' e−2πΓ ⇒ PAg(+∞)

' 1− e−2πΓ, (7.5.4)

where Γ = g2/(∂τ∆E|τ=τc). PAg is plotted in Fig. 7.1.

We note several differences with the original Landau-Zener model [265]. Namely, (7.5.3)

is not linear but exponential in time; also, in our case, only for small couplings we have

a two-level problem (a r.w.a. approximation cannot be performed). Nevertheless, in the

regimes considered, L-Z is a very good approximation as shown in Fig. 7.2 The atom stays

excited until the phase variation rate slows down at times close to τc. Around that moment
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Figure 7.2: (Color online) Comparison between Landau-Zener theoretical prediction (red dashed) and probabil-

ity for an accelerated detector of remaining in the excited state as a function of the acceleration a = fαc Ω (blue

solid) with parameter values g = 0.01Ω and ω0 = 1.33Ω.

the coupling terms get resonant and the decay probability grows notably. From then on

atom and field get progressively decoupled again with the probability stabilizing itself.

7.6 Many emitters case

In this chapter we have given details regarding the single emitter case. However, the setting

presented is readily extendible to more general and interesting cases: the Hamiltonian (7.2.1)

can be simulated in a system of trapped ions taking into account that the number of qubits

in our simulator should be equal or greater than the number simulated emitters.

With these experimental constructions we would be able to explore many-body collect-

ive phenomena (such as superradiance) which can amplify the effective coupling of a set

of emitters to the field, effectively increasing the detection sensitivity of quantum effects in

non-inertial scenarios: we can use these simulators to go beyond the computational limit of

classical computers in order to explore collective phenomena that may amplify the relativ-

istic effects imprinted in arrays of many-detectors undergoing relativistic motion, and use

what we learn in the simulator to export it to direct detection of the Unruh and Hawking

effects in both analog and real general relativistic settings.

To do that we depend on the current technology of quantum control of systems of

many qubits and our ability to couple them to the same quantum field. In trapped ions,

the required control of systems of more than 10 ions can be achieved with current techno-

logy [192]. Considering systems of more than 10 qubits is already way beyond the reach

of standard classical computer clusters which have difficulties simulating systems of more

than 5 emitters, this exemplifies the convenience of developing this kind of quantum simu-
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lators.

7.7 Discussion

We have presented a scheme for simulating a set of accelerated atoms coupled to a single-

mode field. First, we have identified the Hamiltonian which yields the evolution as seen

by a comoving observer with the atoms. A method has been presented to obtain the same

Hamiltonian for circuit QED and trapped ions by inducing time-dependent sidebands in

atom-field couplings. Our idea may be extended to many-particle experiments which could

simulate results that are not affordable for classical computers such as arbitrary non-inertial

trajectories of detectors and many detectors coupled to quantum fields. Finally, by interpret-

ing our results from a Landau-Zener perspective, we have made a new connection between

non-equilibrium Physics and quantum effects due to acceleration. This highights an idea

that will undoubtedly be exploited in the future, and which has already been explored in

recent works [266] a context quite different to this one: general relativistic quantum effects

can be studied with tools coming from non-equilibrium Physics.
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CHAPTER 8

Concepts

Felix, qui potuit rerum cognoscere causas

Publius Vergilius Maro, Virgil, Georgics, 2-490

Belief in the causal nexus is superstition.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus.

8.1 Causality and Quantum Detection

Causality is a deeply rooted concept in everyone’s life. It has, as usually happens to be the

case with popular concepts, many more than just one definition. It is also a really important

concept for philosophy and physics, and we thought it would be interesting to sketch some

of the most important views on it in the following lines.

Commonly, we usually think of causality as the relationship existent between an event

or set of events (cause) and a second event or set of events (effect) that happens as a con-

sequence of the first. In that sense, it is also known as causation.

Cause is indeed a very fundamental concept in our mindsets. When we ask “why?”

we are asking “what was the cause?”. We understand the world in terms of causes and

their effects. Causality has therefore been a major subject of study in Philosophy, stretching

back out to Aristotle. Centuries later, David Hume made a very influential contribution

by changing the focus of the study of causality from the description and classification of

the types originally made by Aristotle to an analysis of the process by which we perceive

causation. He concluded that the relationship between cause and effect could not perceived,
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but rather was part of an inductive process of association. In simple words, we infer that

an event B is caused by another event A when A comes before B and whenever A happens,

so does B. Rather than real facts, causation nexi would be only stories that we humans tell

ourselves to make sense of the world around us. Kuhn elaborated on these ideas and took

the uncertainty in the causation inference to formulate his paradigm theory, where new

precise observations might give rise to paradigm shifts.

The discussion here has been oversimplified for the sake of pragmatism, as other notions

of causation or extended ideas of it also exist (e.g. soft probabilistic causation where an event

A leads to an event B with a certain probability ).

In any case, and no matter how controversial it can be, it is accepted by many scientists

that causation is real and fundamental to the world (causal realism). Whether causation

should or not be considered to be fundamental, what cannot be denied is that causal think-

ing is intrinsically related to our scientific understanding. And this is even more true for

social sciences. For natural sciences, the laws of nature connect past and future in mostly

deterministic ways 1, while for social sciences it holds on a softer ground. In any case, when

a set of initial conditions evolves to a certain outcome, a causal relation is expected to be

found. For social sciences, where one has not so much control over the variables of the ex-

periment, it is usually observance of correlations what points out the existence of a causal

nexus. But one has to be careful, because there might exist a common cause, therefore the

saying “correlation does not imply causation”.

The criticism to causal realism has never stopped from the philosophic frontlines. Ber-

trand Russell himself thought of it as a ”relic of a bygone age” 2, an archaic concept that

should be relinquished from modern science [267].

That criticism is well posed, as for natural sciences, the basis descriptions are more struc-

tural than dispositional, i.e. describe functional relations rather than a cascade of necessary

events (e.g. Back-action is a well known feature of some theories and mixes the ideas of

cause and effect). It that sense there is a separate approach of scientific realism where the

causal relations are not as important as the structure of the theory, which is assumed to be

1We are not being rigurous here. For the case of Quantum Mechanics determinism is only the case when

observer and system are treated as a whole and therefore no measurement problem appears. Otherwise the

description would be probabilistic but even in that case the probabilities would be determined by the state

and would not take just random values, and predictions can be made on averages. Chaos theory also has

implications. Although chaos does not contradict determinism, it is true that the extreme sensitivity to initial

conditions poses, under certain assumptions, difficulties at the time of predicting the outcome of an experiment

where chaos takes part.
2The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving,

like the monarchy, only because it is erroneously supposed to do no harm.
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referring to a real underlying structure (ontic structural realism) [268].

Anyhow, after this small digression let us come back to our matter of interest. What

physicists understand by causality is seldom interpreted as causation, but rather as what is

called “relativistic causality”, a concept that relates intimately to the former. As we know

from special relativity, given two events A and B, with B laying inside the light cone of A,

an absolute time order exists between them, either in all reference systems A came before

B (so it is in principle possible for A to have caused B) , or B before A (conversely, B may

have caused A).

But that order does not exist if A and B are spacelike separated (B is out of the lightcone

of A and viceversa). If that is the case, A and B are said to be causally disconnected. For

some reference systems A took place before B, for some others B came before. It is not pos-

sible therefore to assume a causal connection between A and B in any typical sense. More

precisely, event A(B) cannot have had a causal influence on event B(A), they are “causally

shielded” from one another.

In Quantum Field theory that feature is manifest through the microcausality property.

8.1.1 Causality in Quantum Mechanics and Quantum Field Theory

Microcausality

The fact that actions on a spacetime point A cannot have any measurable effect at any other

point B out of its lightcone (also known as no-signalling), can be seen as a consequence

of the microcausality property, which states that the (anti)commutator of local observable

operators O1 and O2 acting and evaluated at spacelike separated points, vanishes [269]:

[O1(x),O2(y)](+) = 0, if (x− y)2 < 0 (8.1.1)

Where, of course, x, y, are four-vectors. Microcausality appears “naturally” after canon-

ically quantizing a Lorentz invariant classic field equation 3 but is also an axiom used in

the construction of Algebraic Quantum Field Theory [269]. As stated, it is sufficient for no-

signaling. Any action at a point x (modelled as the action of local operators), would have no

measurable effect in y (nothing that could be detected through measurements recurring to

local operators).

We must be careful here. In the paragraph above we have implicitly assumed that having

“causal influence” implies having a measurable influence, but what about having a non-

measurable influence? As a matter of fact relativity does not prohibit that, on the contrary,

3The question is actually quite subtle, for more details check [270]
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it allows for the existence of correlations.

In particular, in constructive derivations following canonical quantization techniques,

Eq. (8.1.1) is usually obtained for fields as:

[φ(x), φ(y)](+) = 0, if (x− y)2 < 0. (8.1.2)

Fields at causally-separated points can be used within a single framework for computa-

tional purposes. The measurement of one is not intrinsically dependent upon the other but

however “correlations” might still exist between measurements, and again, the existence of

correlations between space-like separated points does not imply the possibility of producing

detectable effects at other points through any sort of pre-determined faster-than-light action.

A detailed derivation that faster-than-light communication cannot be established within the

framework of QFT can be seen in [29].

Feynman Propagator and Virtual Particles

The existent correlations between spacelike points are encoded in the field propagators. In

particular, it is well known that the Feynman propagator DF [271], which is proportional

to the probability amplitude to emit a photon at one location and annihilate it at another

location, takes a non-zero value outside of the forward light cone, which seems to collide

with causal intuition.

But the truth is that causality arguments cannot be formulated along so simple lines, the

actual picture, is much more complicated than such a naïve description. As a matter of fact

we must take into account that such a photon, emitted in a point x, is mathematically de-

scribed as a plane wave of defined momentum, and therefore spreads everywhere in space.

In that sense it is not surprising that its absorption anywhere else gives a non-zero contri-

bution. In fact the points x do not correspond to photon positions, they only label the field

amplitude in space. For good reasons, position - an operator in NRQM - is demoted to a

mere label in QFT. Also, to confort the confused reader a virtual particle view can be called

upon. The particles produced and emitted described in the propagator can be virtual and

therefore no issue arises.

What has to be clear is that a nonzero time-ordered product for spacelike-separated fields

just measures the probability amplitude for the existence of a nonlocal correlation in these

quantum vacuum fluctuations, analogous to an EPR correlation. Let us remind also that the

propagator is often called two-point correlation function.

This causality issue, first noted by Feynman, has been addresed extensively in the lit-

erature starting with Feynman himself [272, 273], Fermi [8] and later Hegerfeldt [274] and
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many others [33–35, 275] . Much of this discussion concentrates on the rather well-known

Fermi Problem.

8.2 The Fermi Problem

Although we will talk extensively about this problem in much more detail in the following

chapter, it is worth discussing it briefly here. Originally proposed by Fermi, it is a thought

experiment to check for causality at a microscopic level and has been a constant subject of

theoretical debate and discussions during the last few decades.

Fermi [8] considered two two-level neutral atoms A, B, coupled to the electromagnetic

field. At t = 0, atom A is in its excited state and atom B in its ground state, with no photons

present. If A and B are separated by a distance r and v is the speed of light, can A excite B

at times t < r/v?

The question is quite subtle and we will discuss later how it should be mathematic-

ally formulated. Let us here just simply say that it seems natural to expect the probability

of excitation for B to be 0 for t < r/v. That is in fact what Fermi obtained, although he

did so by making an additional assumption, extending the domain of a frequency integra-

tion to include negative frequencies as well. Shirokov, however, showed that the result is

non-causal, and the causal probability was found by Fermi and others only due to this ap-

proximation [31]. Years later, the works of Hegerfeld, Yngvason and others [32–35], clarified

that in previous works the final state had not been properly selected and in fact, when the

transition probability is properly calculated, it is indeed causal, but only in the sense that it

is independent of atom A for t < R/v.

Although the problem seems to be pretty simple, its experimental realization has not

been achieved yet. In this thesis, we have tried to investigate the causality issue in the

context of quantum detection by proposing a feasible experimental test of a 1-D version

of the Fermi problem using superconducting qubits. We give an explicit non-perturbative

proof of strict causality in this model, showing that the probability of excitation of a two-

level artificial atom with a dipolar coupling to a quantum field is completely independent

of the other qubit until signals from it may arrive. On top of that we relate this result with

previous works which were used to claim apparent causality problems for Fermi’s two-atom

system and explain in detail why everything is in perfect agreement with the existence of

nonlocal correlations.
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8.3 Short time behaviour of detectors

While studying the Fermi problem, we devoted quite some time working beyond the Ro-

tating Wave Approximation. Basically, for our Fermi problem proposal, in order to obtain

measurable signatures of the expected behavior, we needed to work in an experimental re-

gime where the RWA would no longer be valid. In this case we where working with ultra

strong couplings (with an adimensional coupling parameter λ such that 0.1 . λ < 1)

Following a similar derivation as in [35] we developed a formalism in perturbation the-

ory, that would allow us to work beyond RWA for short times and calculate all the quantities

needed for the study of the Fermi problem.

Inspired by those calculations we thought that it would be interesting to use this tool to

study the behavior of detectors for short times (as compared to the interaction strength of

their coupling to the field) trying to tie it to the event that they intend to detect (in our case,

the decay of a photon source). More concretely, we proposed a thought experiment to study

the information provided by a detector click about the state of an initially excited two-level

system. By computing the time evolution of the corresponding conditioned probability bey-

ond the rotating wave approximation, we showed that a click in the detector is related with

the decay of the source only for long times of interaction. For short times, the non-rotating

wave approximation effects like self-excitations of the detector forbid a naive interpretation

of the detector readings.
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The Fermi Problem with Artificial

Atoms in Circuit QED

9.1 Introduction

Information cannot travel faster than light. But in quantum theory, correlations may be

established between spacelike separated events. These facts are not contradictory, since cor-

relations need to be assisted with classical communication in order to transmit information.

The two physical phenomena above arise in a natural fashion in the following situation,

which is the so-called Fermi problem [8], originally proposed by Fermi to check causality

at the microscopic level. At t = 0 a two-level neutral atom A is in its excited state and

a two-level neutral atom B in its ground state, with no photons present. If A and B are

separated by a distance r and v is the speed of light, can A excite B at times t < r/v? Fermi

’s answer was negative but his argument had a mathematical flaw. When a proper analysis

is carried on, fundamental quantum theory questions arise due to the interplay between

causal signaling and quantum non-local phenomena.

These issues led to a controversy [33,35,274,276] on the causal behavior of the excitation

probability of qubit B, whose conclusions were never put to experimental test. A notorious

claim on causality problems in Fermi’s two-atom system was given in [274]. The reply of [33]

was in the abstract language of algebraic field theory and the proof of strict causality of [35]

is perturbative, although given to all orders in perturbation theory. The Fermi problem is

usually regarded just as a gedanken experiment, and remains untested, essentially because

interactions between real atoms cannot be switched on and off.

In this chapter we give a complete description of the problem in a physical framework

in which predictions can be verified. This framework will be circuit QED which can be

regarded as a 1-D version of Quantum Electrodynamics (QED) with two-level (artificial)
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atoms, a testbed which makes it possible to control the interaction and tune the physical

parameters. We complete previous descriptions made of the problem and explain how

there are no real causality issues for Fermi’s two-atom system. We give an explicit non-

perturbative proof of strict causality in these setups, showing that the probability of excit-

ation of qubit B is completely independent of qubit A for times t < r/v and for arbitrary

initial states. As a matter of fact, this comes as a manifestation of the nonsignaling charac-

ter of the quantum theory [277]. We also show how this is compatible with the existence of

nonlocal correlations at times 0 < t < r/v, a fact pointed out in various theoretical proposals

to entangle qubits at arbitrarily short times [41, 44, 275, 278]. More precisely, we give a non-

perturbative proof of the fact that the probability of B being excited and A in the ground

state is finite and r-dependent at any time, even for t < r/v. We provide also a physical

and intuitive explanation of why the conclusions in [274], even if mathematically sound, do

not apply to the causality problem. At the end we discuss the time dependence predicted in

our model for the various excitation probabilities and suggest a feasible experimental test of

causality using superconducting circuits.

9.2 Mathematical Formulation

In what follows we focus on a practical setup of circuit-QED, with two qubits, A and B,

interacting via a quantum field. The qubits have two stationary states |e〉 and |g〉 separated

by an energy ~Ω and interact with a one-dimensional field, V (x), which propagates along a

one-dimensional microwave guide that connects them

V (x) = i

∫ ∞
−∞

dk
√
Nωk e

ikxak + H.c. (9.2.1)

This field has a continuum of Fock operators [ak, a
†
k′ ] = δ(k − k′), and a linear spectrum,

ωk = v|k|, where v is the propagation velocity of the field. The normalization and the speed

of photons, v = (cl)−1/2, depend on the microscopic details such as the capacitance and in-

ductance per unit length, c and l.We will assume qubits that are much smaller than the relev-

ant wavelengths, λ = v/Ω, and are well separated. Under these conditions the Hamiltonian,

H = H0 +HI , splits into a free part for the qubits and the field

H0 =
1

2
~Ω(σzA + σzB) +

∫ ∞
−∞

dk ~ωka†kak (9.2.2)

and a point-like interaction between them

HI =
∑

J=A,B

dJ σ
x
J V (xJ) (9.2.3)
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Here xA and xB are the fixed positions of the atoms, and dJ σ
x
J is equivalent to the dipole

moment in the case of atoms interacting with the electromagnetic field.

The original formulation of the Fermi problem begins with an initial state

|in〉 = |eA gB 0〉 (9.2.4)

in which only qubit A has been excited, while B and the field remain in their ground and

vacuum states, respectively. The total probability of excitation of qubit J is the expectation

value of the projector onto the excited state PeJ = |eJ〉 〈eJ | . In the Heisenberg picture

PeJ = 〈in| PeJ(t) |in〉 , J ∈ {A,B}. (9.2.5)

9.3 Proof of Causality

We will prove that for vt < r the probability PeB is completely independent of the state of qubit

A for all initial states. In the Heisenberg picture this amounts to showing that there appears

no observable of A in the projector PeB(t) for vt < r. Our proof begins by solving formally

the Heisenberg equations for PeJ

PeJ(t)− PeJ(0) = −dJ
~

∫ t

0
dt′σyJ(t′)V (xJ , t

′). (9.3.1)

Integrating the Heisenberg equations of the operators ak and a†k and inserting them in

Eq. (9.2.1), the total field evaluated at x in Heisenberg picture is decomposed

V (x, t) = V0(x, t) + VA(x, t) + VB(x, t) (9.3.2)

into the homogenous part of the field

V0(x, t) = i

∫ ∞
−∞

dk
√
Nωk e

i(kx−ωt)ak + H.c. (9.3.3)

and the back-action of A and B onto the field

VJ(x, t) =
−idJ N

~
× (9.3.4)

×
∫ t

0
σxJ(t′)

∫ ∞
−∞

ωke
ik(x−xJ )−iωk (t−t′)dkdt′ + H.c.

Eqs. (9.3.1) translates into a similar decomposition for the probabilty PeB with three terms

PeB(t) = PeB0(t) + PeBB(t) + PeBA(t) (9.3.5)
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which are proportional to V0, VB and VA, respectively. The only explicit dependence on A

may come from PeBA through VA(xB, t). Manipulating Eq. (9.3.4) gives

VA(xB, t) =
−2πdAN

~
d

dr

[
σxA

(
t− r

v

)
θ
(
t− r

v

)]
(9.3.6)

where the Heaviside function θ shows that strictlyPeBA(xB, t) = 0 for vt < r, and no such de-

pendence is possible. We still have to analyze a possible implicit dependence on A through

PeBB, whose expression is

PeBB(t) =
id2
BN

~2

∫ t

0
dt′
∫ t′

0
dt′′σyB(t′)σxB(t′′)∫ ∞

−∞
dk ωke

−i ωk(t′−t′′) + H.c. (9.3.7)

The only implicit dependence could come through the evolution of σx,yB (t), but again this is

not the case. Since [σxB, HI ] = 0, the evolution of σxB does not involve the field in any way,

and for σyB(t) we have that σ̇yB(t) = ΩσxB(t)/2 − dB
~ V (xB, t)σ

z
B(t) so using again Eq. (9.3.2)

and Eq. (9.3.6) we see that the A-dependent part of P eBB is 0 for vt < r. Thus PeB may be

finite but is completely independent of qubit A for vt < r, as we wanted to show.

So far, we have demonstrated that although P eB(t) is non-zero for vt < r, the only non-

zero contribution is PeB0, which is not sensitive to the qubit A and thus cannot be used to

transmit information between the qubits. Now we will show that this result is compatible

with the existence of correlations for vt < r. For instance, we consider the probability of

finding qubit B excited and qubit A on the ground state PeB,gA, which is:

PeB,gA = 〈in| PeB(t)PgA(t) |in〉 , (9.3.8)

where PgA = 11− PeA. Using Eqs. (9.3.1), (9.3.2) and (9.3.5), we find a term in this probability

which is proportional to PeBB P
g
AA and thus to VB(xB, t)VA(xA, t). From Eq. (9.3.4) we ob-

tain: VJ(xJ , t) ∝ d
dt{σxJ(t)θ(t)}. Therefore, we conclude that in (9.3.8) there is an unavoidable

dependence on A at any t > 0, but this is not a causality violation because correlations alone

cannot transmit information.

At this point it remains a single question: How can the A-dependent part of PeB be

zero while the one of PeB,gA is nonzero for vt < r? To better understand it we need less

formal results that rely on perturbative expansions, but we would like to remark here that

the conclusions above are valid to all orders in perturbation theory.

9.4 Probability of excitation

To obtain the total probability of excitation of qubit B PeB to a given order in perturbation

theory, one has to expand to a certain order the operators appearing in Eqs. (9.3.1), (9.3.2),
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Figure 9.1: The terms of order dJ , d2
J and d3

J contributing to the amplitude for exciting qubit B.

(9.3.4). The different terms in the expansion can be related to the probabilities of the dif-

ferent physical processes involved. Fig. 9.1 shows the diagrams of the different amplitudes

contributing to PeB up to the fourth order in dJ . The lowest order amplitude contribut-

ing to a final excited B qubit is of order dJ , which means that terms up to order d3
J have

to be considered. The only terms leading to this final state will be M(1) = vB, M(2) =

x+uA vB, M(3) = a′vB +uAvAvB +vBuBvB +δM(3) where uJ (vJ ) represent the amplitude

for single photon emission at qubit J when the qubit is initially in the ground (excited) state,

x is the amplitude for photon exchange, aJ are the radiative corrections of qubit J , and fi-

nally δM(3) is the amplitude for photon exchange accompanied by a single photon emission

at qubit A. Notice that some of these processes are only possible beyond the rotating wave

approximation, which breaks down for strongly coupled circuit-QED setups [279] as the

ones considered later. Keeping only terms up to fourth order, we have for the probability to

get B excited at a time t

PeB(t) = |M(1)|2 + |M(2)|2 + 2Re{M(1)∗M(2)}
+ 2Re{M(1)∗M(3)}+O(d5) (9.4.1)

The final states in M(1) are orthogonal to those in M(2) and to the three photon terms in

M(3). Hence, their interference vanishes. Besides, we are only interested in theA-dependent

part of the probability, so we can remove the r-independent terms left in (9.4.1), marking the

remaining contributions with a superscript (r)

P
(r)
eB (t) = |M(2)|2(r)

+ 2Re{M(1)∗δM(3)}+O(d5). (9.4.2)

The first term actually gives PeB,gA up to the fourth order, it is positive and A-dependent

at all times, as shown in Fig. 9.2a. The second term is not a projector onto any physical

state, but an interference term which has the effect of canceling out exactly the first term for

vt < r but not for vt > r (cf. Fig. 9.2b). In a nutshell, interference seems to be the physical
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mechanism that operates at all orders in perturbation theory to give the causal behavior of

the total probability of excitation that we had previously shown.

These perturbative results cast new light on the controversy on the Fermi problem and

help us understand why our results do not contradict those of Hegerfeldt [274]. Hegerfeldt

proved mathematically that the expectation value of an operator consisting of a sum of pro-

jectors cannot be zero for all the times vt < r, unless it is zero at any time. Indeed, the

expectation value of PeB(t) cannot be zero for all vt < r, for it always contains the contribu-

tion PeB0 from Eq. (9.3.3). However, as we showed non-perturbatively, the actual relevant

question for causality is whether the expectation value of PeBA(t) vanishes for vt < r or not,

since only this part of the probability is sensitive to qubit A and could be used to trans-

mit information. Besides, according to our above perturbative results to fourth order, the

r-dependent part of the probability, that is the expectation value of PeBA(t), is not a mere

sum of projectors, but also contains interfering terms. Thus, Hegerfeldt’s result does not

apply and PeBA(t) can be zero for vt < r as is actually the case. Both results are in accord

with a general fact of Relativistic Quantum Field Theory: two global states can not be distin-

guished locally with the aid of a local projector annihilating one of the states, since the local

observable algebras are Type III von Neumann algebras (See [33, 276] for a discussion).

9.5 Experimental proposal

We will now suggest an experiment to check the causal behavior of PeB. For this we need to

control the interaction time at will to access the regions at both sides of t = r/v. This, which

is highly unrealistic with real atoms, becomes feasible in circuit-QED. While the ideas are

valid for both inductive and capacitive couplings, we will focus on using a pair of three-

junction flux qubits [280, 281]. Each of the qubits is governed by the Hamiltonian H0J =

1
2εJσ

z
J + 1

2∆Jσ
x
J . The energy εJ = 2IpδΦxJ , is approximately linear in the external magnetic

flux, δΦxJ , measured from the degeneracy point, and we assume that the gap ∆J is fixed.

The result is a qubit energy difference ΩJ(δΦxJ) =
√

(2 Ip δΦxJ)2 + ∆2
J .

The coupling between the qubit and the microwave photons is ruled by the dimension-

less ratio

KJ =
4d2

JN

~2v
= 2 (g/ΩJ)2 . (9.5.1)

Here g = dJ
√
NΩ/~ is the coupling strength between a qubit and the cavity that would be

obtained by cutting the transmission line to be perfectly resonant with the qubit transition.

These numbers enter the qubit excitation probability computed before (9.4.2) through the

product P (r)
eB (t) ∝ KAKB. Since KJ ∝ 1/ΩJ , we may use the external fluxes to move from
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Figure 9.2: (a) P (r)
eB,gA and (b) P (r)

eB versus vt/r for Ωr/v = π
2

(blue, crosses), π (red, squares), and 2π (green,

circles) with KA,B = 0.0225. For vt < r the qubits are spacelike separated, but there are correlations between

them and figure (b) shows the expected causal behavior. (c) P (r)
eB (blue, circles) and |M(1)|2 (green, squares)

vs. vt/r for KA = 0.20, KB = 0.04 and a separation of one wavelength r = 2πv/ΩA,B . With this data and

Ω/2π ' 1GHz we have ∆ t ' 1ns. (Color online)

a weakly coupled regime with no qubit excitations, ΩJ � g, to the maximum coupling

strength, ΩJ ' ∆J (δΦxJ = 0).

Let us first discuss how to prepare the initial state (9.2.4) of the Fermi problem. We

assume that the system starts in a ground state of the form |gA gB 0〉. This is achieved cooling

with a large negative value of δΦxJ on both qubits, which ensures a small value of g/ΩJ and

KJ . We estimate that couplings g/ΩJ < 0.15 and ΩJ ∼ 1.5GHz lower the probability of

finding photons in the initial state below 5×10−3, both for vacuum and thermal excitations.

Both magnetic fluxes are then raised up linearly in time, δΦxJ = αJ t, to prepare the qubits.

Using a Landau-Zener analysis [265] of the process we conclude that an adiabatic ramp

αB � π∆2
B/4~Ip of qubit B followed by a diabatic ramp [56, 57] αA � ∆2

A/~2Ip of qubit A,

leads to the desired state |eA gB 0〉 with a fidelity that can be close to 1, depending only of

αA, αB as derived from the Landau-Zener formula. Note that the minimum gap ∆B has to

be large enough to ensure that the qubit-line coupling of B remains weak and the qubit does

not “dress" the field with photons.
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Once we have the initial state, both magnetic fluxes must take a constant value during

the desired interaction time. After that, measurements of the probability of excitation of

qubit B can be performed with a pulsed DC-SQUID scheme [219, 282]. The timescale of the

“jump” of the probability around t = r/v for qubit frequencies in the range of GHz and a

separation of one wavelength r = 2πv/Ω is ∆t ' 1ns [Fig. 9.2c]. Although the total meas-

urement of the SQUID may take a few µs, the crucial part is the activation pulse (∼ 15ns)

in which the SQUID approaches its critical current and may switch depending on the qubit

state. During this activation period the SQUID and the qubit are very strongly coupled

(g ∼ GHz), [282] and the qubit is effectively frozen. The time resolution of the measure-

ment is thus determined by the ramp time of the activation pulse, which may be below

nanoseconds. Among the sources of noise that are expected, the short duration of the ex-

periment, well below T1 and T2 of usual qubits, makes the ambient noise and decoherence

pretty much irrelevant. Thermal excitations of the qubits and the line may be strongly sup-

pressed by using larger frequencies (> 1.5GHz). The most challenging aspect is the low

accuracy of SQUID measurements, which are stochastic, have moderate visibilities [282]

and will demand a large and careful statistics.

On the technical side, it is important to choose carefully the coupling regimes. If we

wish to compare with perturbation theory, we need KJ � 1. However, at the same time

the product KAKB must take sizable values for PeB ∝ KAKB to be large. And we need

to discriminate the causal signal from the r-independent background of the probability of

excitation, whose main contribution is |M(1)|2 ∝ KB . Thus, a good strategy would be to

work withKA > KB. In Fig. 9.2c we show that it is possible to achieve a regime in which the

perturbative approximations are still valid and the r-dependent part of PeB is comparable

to |M(1)|2 in the spacetime region of interest vt ' r.

9.6 Discussion

To conclude, we have considered a system of two superconducting qubits coupled to a trans-

mission line, which can be suitably described in the framework of 1-D QED with two-level

(artificial) atoms. Starting from an initial state with qubit A excited, qubit B in the ground

state and no photons, we have illustrated the causal character of the model showing that the

probability of excitation of qubit B is completely independent of qubit A when vt < r. We

have also shown that this is in agreement with the existence of nonlocal correlations and we

have used perturbative computations to see the physical mechanism underlying the causal

behavior. Finally, we have suggested an experiment feasible with current technology that
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would solve the controversy on the Fermi problem.
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CHAPTER 10

Short-Time Quantum Detection:

Probing Quantum Fluctuations

10.1 Introduction

Quantum detection theory was created to study the behavior of detectors in presence of

radiation [283]. Highly satisfactory up to date, it relies on the conspicuous rotating wave

approximation (RWA), which neglects the so-called counterrotating terms. These terms give

important contributions for strong atom-field couplings and very short times as compared

to the system time-scale, meaning that for any effect beyond RWA (bRWA) to be directly

acknowledged, our measurements must be very precise and fast. This is problematic for

Quantum Optics experiments, due to the very small matter-radiation coupling and the fact

that observation times must be at the femtosecond scale for most cases (nanosecond for

hyperfine qubits), which is too small for current experiments (∼ µs for trapped ions [202]).

However, cQED (cQED) [211] provides a framework in which those phenomena are

accessible to study. By using superconducting qubits coupled to a transmission line, the

set-up behaves analogously to a 1-D radiation-matter interaction model at the microwave

frequency range [210]. Moreover, parameters can be easily tuned, and the qubit-line coup-

ling modulated up to ultrastrong levels [279, 284]. Fast qubit state readout (∼ ns) is also

possible using a pulsed DC-SQUID scheme [282]. Thus, phenomena bRWA have already

been reported [285, 286], Glauber’s theory is no longer valid and quantum detectors should

be described by a non-RWA model like that of [54].

A direct consequence of the breakdown of the RWA is that a detector in its ground state

interacting with the vacuum of the field has a certain probability of getting excited and emit-

ting a photon. There is however not a widespread consensus on the physical reality of this

effect. As a matter of fact, there have been attempts of suggesting effective detector models
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by imposing this phenomenon to be impossible [287]. We should however recall here that

these peculiar effects should not be that discomforting, as the initial state considered is not

an eigenstate of the full Hamiltonian bRWA.

To describe those processes we will neither impose any additional constraints nor ques-

tion their real existence. We will study the following setup: a source S initially excited, a

detector D initially in the ground state and both interacting with the electromagnetic field

in its vacuum state. If the detector clicks at a given time, does it mean that the source is

now in the ground state? This problem amounts to compute the probability of decay for the

source, conditioned to the excitation of the detector. We will show that, unlike Glauber’s

RWA detector, in which this conditioned probability would be equal to 1 at any time, this

cQED detector only achieves this value at long times due to the impact of non-RWA effects.

10.2 Mathematical description of the model

We consider a model consisting of two superconducting qubits, S and D, with two levels

g and e and separated a distance r. Let us consider that at t = 0 S is excited, D is in

its ground state and there are no excitations in the transmission line, which will be open,

enabling a continuum of modes. Representing the states in terms of qubits and field (F )

free eigenstates with the notation |ψ〉 = |SDF 〉, the initial state would be |i〉t=0 = |eg0〉. We

intend to study the relevance of bRWA processes by quantifying what information about the

state of S can be extracted by knowing qubit D state after a certain time t. For that we will

compute the probability PSg/De(t) of S to have decayed at a certain instant t conditioned we

have measured D excited at that moment:

PSg/De(t) =
P[ge∗]

P[∗e∗]
=

∑
F |〈geF |e−iHt/~|eg0〉|2∑
n,F |〈neF |e−iHt/~|eg0〉|2 . (10.2.1)

P[ge∗] being the probability of having S in the ground state and D excited and P[∗e∗] the total

probability of excitation of D.

Naively we would expect that P[∗e∗](t) = 0 ∀t ≤ R/c and that P[∗e∗](t) = P[ge∗](t) 6=
0 ∀t ≥ R/c, so PSg/De = 1 . However, in [32] it is shown that PDe(t) ≥ 0 ∀t ≤ R/c. As

explained in [34, 36], we can split the probability of detector excitation as:

P[∗e∗](t) = P(0)
[∗e∗](t) + P(R)

[∗e∗](t) (10.2.2)

The first term, independent ofR (and so of S), is the self-excitation term, and soP(0)
[∗e∗](t) ≥

0 ∀t ≤ R/c. The second, dependent on R, refers to excitations due to exchange processes,

and behaves causally P(R)
[∗e∗](t) = 0 ∀t ≤ R/c.
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One might expect that the effects of P(0)
[∗e∗](t) could be accounted by including a sort of

“dark current” due to self-excitations as compared to the exchange processes that would be the

only ones to appear if we were thinking naively. In that sense, the analysis here presented

might look somehow contrived; however, the very notion of dark current is not valid for

short times. The concept itself comes from Fermi’s Golden Rule, which predicts a linear

dependence of the excitation probability with time. In an analysis bRWA at very short times,

akin to that of the Zeno effect or ours, the probability of excitation will result proportional to

t2, and no such thing as a constant stable rate of dark counts can be defined. Since there is no

way to experimentally distinguish between the two sort of processes that lead to a detector

excitation, the analysis through a conditioned probability seems a reasonable one.

We will consider the following Hamiltonian [213, 288]:

H = H0 +HI ,

H0 =
∑

A={S,D}

~ΩA

2
σAz +

∫ ∞
−∞

dk~ωka†kak,

HI = −
∑

A={S,D}

dAV (xA)σAx . (10.2.3)

Here xA corresponds to the position of the qubit A, ~ΩA is the gap between levels for qubit

A and V refers to the 1-dimensional field which expands as:

V (x) = i

∫ ∞
−∞

dk
√
Nωke

ikxak +H.c.. (10.2.4)

This field has a continuum of Fock operators [ak, a
†
k′ ] = δ(k − k′), and a linear spectrum,

ωk = v|k|, where v is the propagation velocity of the field. The normalization and the speed

of photons, v = (cl)−1/2, depend on the microscopic details such as the capacitance and

inductance per unit length, c and l. Note that this model resembles that of an Unruh-DeWitt

detector [54]. For our calculations, we will make use of the interaction picture, so we let the

initial state |eg0〉 evolve for a lapse of time t as:

|ψ(t)〉 = UI(t) |eg0〉 = T {e−i
∫ t
0 dt
′HI(t′)/~} |eg0〉

= I |eg0〉+X |ge0〉+
∑
k

A1,k |gg1k〉+
∑
k

B1,k |ee1k〉

+
∑
kk′

A2,kk′ |eg2kk′〉+
∑
kk′

B2,kk′ |ge2kk′〉+ ... . (10.2.5)

Note that all terms but the first three are zero when working in the RWA. ForA’s coefficients

D ends in the ground state, for B’s, in the excited one. Here and in the following we will

only make explicit the terms that contain contributions for the probabilities up to d4
A. For
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example, terms with 3 or more photons in the amplitude will be excluded, as they give

contributions of O(d6
A). We will underline the ones relevant in our analysis.

10.3 Probability calculations

Let us define M(t;nF ) = 〈neF |ψ(t)〉. Thus, the first of the probabilities needed for the

computation of PSg/De(t) (10.2.1) can be written down using (10.2.5) as

P[ge∗] =
∑
F

|〈geF |UI(t)|eg0〉|2 =
∑
F

|M(t; gF )|2

= |X|2 +
∑
|B2|2 +

∑
|B4|2 . . . .

The first building block needed is |X|2. Note that

P[ge0] = |〈ge0|UI(t)|eg0〉|2 = |M(t; g0)|2 = |X|2. (10.3.1)

Spin-Peierls Quantum Phase Transitions in Coulomb Crystals
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The spin-Peierls instability describes a structural transition of a crystal due to strong magnetic interactions.
Here we demonstrate that cold Coulomb crystals of trapped ions provide an experimental testbed in which
to study this complex many-body problem and to access extreme regimes where the instability is triggered
by quantum fluctuations alone. We present a consistent analysis based on different analytical and numerical
methods, and provide a detailed discussion of its feasibility on the basis of ion-trap experiments. Moreover, we
identify regimes where this quantum simulation may exceed the power of classical computers.

PACS numbers:

The beauty of low-dimensional quantum many-body sys-
tems (QMBS) relies on the complexity born of the combi-
nation of interactions, disorder, and quantum fluctuations.
However, these ingredients also conspire to render perturba-
tive techniques inefficient, posing thus a fundamental chal-
lenge that has inspired the development of a variety of ana-
lytical [1] and numerical [2] tools. Moreover, the synthesis
of low-dimensional materials has upgraded these challenges
from a theoretical endeavor into a discipline that underlies
some of the most exciting recent discoveries in condensed-
matter physics, such as the fractional quantum Hall effect.
The recent progress in the field of atomic, molecular, and op-
tical (AMO) physics presents a promising alternative to these
solid-state realizations of low-dimensional QMBS. This field,
which was originally devoted to the study of light-matter in-
teractions at the scale of a single or few atoms, is progressively
focusing on the many-body regime in platforms such as neu-
tral atoms in optical lattices, cold Coulomb crystals of trapped
ions, or coupled cavity arrays (see [3], [4], and [5] for recent
reviews on each of these subjects). The possibility of experi-
mentally designing the microscopic Hamiltonians in order to
target a variety of complicated many-body models introduces
a novel approach to explore QMBS in a controlled fashion,
the so-called quantum simulations (QSs) [6].

In this Letter, we explore the capabilities of AMO platforms
for the QS of interaction-mediated instabilities in QMBS.
The standard playground for such instabilities is the one-
dimensional metal, where either the electron-electron interac-
tions destabilize the metal towards a superconducting state, or
the electron-phonon coupling leads to a charge-density-wave
condensate [7]. The latter instability is a consequence of the
so-called Peierls transition [8], where the electron-phonon in-
teractions induce a periodic distortion of the ionic lattice, and
open an energy gap in the conduction band of the metal.

By virtue of the Jordan-Wigner transformation [9], this phe-
nomenon finds a magnetic counterpart: the spin-Peierls tran-
sition [10]. A spin-phonon-coupled antiferromagnet is unsta-
ble with respect to a dimerization of the lattice, which creates
an alternating pattern of weak and strong spin interactions,
and opens an energy gap in the spectrum of collective exci-
tations. From a theoretical perspective, the complete under-
standing of such a complex system, treating the dynamics of
the spins and phonons on the same footing, is still considered
to be an open problem [11]. From an experimental point of
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Figure 1. Spin-Peierls transition: Scheme for the magnetic in-
stability accompanied by the crystal distortion. (a) In the param-
agnetic phase |Pi = | "" · · · "i all the spins are parallel to a trans-
verse field g > g̃c that points along the z-axis, and the Coulomb crys-
tals corresponds to an ion string. (b) The antiferromagnetic phase
g < g̃c corresponds to the two Néel-ordered groundstates |AFi 2
{| +� · · · +�i, |�+ · · ·�+i}, where the spins are antiparallel in
the x-basis |±i= (|"i±|#i)/

p
2. This order-disorder quantum phase

transition occurs with the linear-to-zigzag structural phase transition.
(c) Arrangement of the laser wavevector kL lying within the xy-plane.

view, the spin-Peierls phenomena observed so far [12] take
place at finite temperatures. Hence, the possibility of a spin-
Peierls transition only driven by quantum fluctuations remains
as an experimental challenge. We hereby present a theoreti-
cal proposal for a trapped-ion QS to tackle both problems.
In particular, by building on the recent experiments [13] on
the quantum Ising model (QIM) [14], we describe how to tai-
lor a spin-Peierls instability. We show that (i) the disordered
paramagnet in a linear ion chain changes into an ordered an-
tiferromagnet in a zigzag crystal [Fig. 1(a)-(b)], and (ii) the
spin-Peierls transition can be driven only by the quantum fluc-
tuations introduced by the transverse field of the QIM.

The system.– The advent of experimental techniques for the
confinement, cooling, and coherent manipulation of atomic
ions, underlies their suitability as a quantum-information ar-
chitecture [15]. This technology has also been exploited for
QS purposes [4], where the controlled increase of the num-
ber of trapped ions yields a genuine bottom-up approach to
the many-body regime. We consider a Coulomb gas formed
by an ensemble of N trapped ions of mass m, and charge e,
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Spin-Peierls Quantum Phase Transitions in Coulomb Crystals

A. Bermudez1 and M. B. Plenio1

1Institut für Theoretische Physik, Albert-Einstein Allee 11, Universität Ulm, 89069 Ulm, Germany

The spin-Peierls instability describes a structural transition of a crystal due to strong magnetic interactions.
Here we demonstrate that cold Coulomb crystals of trapped ions provide an experimental testbed in which
to study this complex many-body problem and to access extreme regimes where the instability is triggered
by quantum fluctuations alone. We present a consistent analysis based on different analytical and numerical
methods, and provide a detailed discussion of its feasibility on the basis of ion-trap experiments. Moreover, we
identify regimes where this quantum simulation may exceed the power of classical computers.

PACS numbers:

The beauty of low-dimensional quantum many-body sys-
tems (QMBS) relies on the complexity born of the combi-
nation of interactions, disorder, and quantum fluctuations.
However, these ingredients also conspire to render perturba-
tive techniques inefficient, posing thus a fundamental chal-
lenge that has inspired the development of a variety of ana-
lytical [1] and numerical [2] tools. Moreover, the synthesis
of low-dimensional materials has upgraded these challenges
from a theoretical endeavor into a discipline that underlies
some of the most exciting recent discoveries in condensed-
matter physics, such as the fractional quantum Hall effect.
The recent progress in the field of atomic, molecular, and op-
tical (AMO) physics presents a promising alternative to these
solid-state realizations of low-dimensional QMBS. This field,
which was originally devoted to the study of light-matter in-
teractions at the scale of a single or few atoms, is progressively
focusing on the many-body regime in platforms such as neu-
tral atoms in optical lattices, cold Coulomb crystals of trapped
ions, or coupled cavity arrays (see [3], [4], and [5] for recent
reviews on each of these subjects). The possibility of experi-
mentally designing the microscopic Hamiltonians in order to
target a variety of complicated many-body models introduces
a novel approach to explore QMBS in a controlled fashion,
the so-called quantum simulations (QSs) [6].

In this Letter, we explore the capabilities of AMO platforms
for the QS of interaction-mediated instabilities in QMBS.
The standard playground for such instabilities is the one-
dimensional metal, where either the electron-electron interac-
tions destabilize the metal towards a superconducting state, or
the electron-phonon coupling leads to a charge-density-wave
condensate [7]. The latter instability is a consequence of the
so-called Peierls transition [8], where the electron-phonon in-
teractions induce a periodic distortion of the ionic lattice, and
open an energy gap in the conduction band of the metal.

By virtue of the Jordan-Wigner transformation [9], this phe-
nomenon finds a magnetic counterpart: the spin-Peierls tran-
sition [10]. A spin-phonon-coupled antiferromagnet is unsta-
ble with respect to a dimerization of the lattice, which creates
an alternating pattern of weak and strong spin interactions,
and opens an energy gap in the spectrum of collective exci-
tations. From a theoretical perspective, the complete under-
standing of such a complex system, treating the dynamics of
the spins and phonons on the same footing, is still considered
to be an open problem [11]. From an experimental point of
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kLc

g > g̃c g < g̃c

Figure 1. Spin-Peierls transition: Scheme for the magnetic in-
stability accompanied by the crystal distortion. (a) In the param-
agnetic phase |Pi = | "" · · · "i all the spins are parallel to a trans-
verse field g > g̃c that points along the z-axis, and the Coulomb crys-
tals corresponds to an ion string. (b) The antiferromagnetic phase
g < g̃c corresponds to the two Néel-ordered groundstates |AFi 2
{| +� · · · +�i, |�+ · · ·�+i}, where the spins are antiparallel in
the x-basis |±i= (|"i±|#i)/

p
2. This order-disorder quantum phase

transition occurs with the linear-to-zigzag structural phase transition.
(c) Arrangement of the laser wavevector kL lying within the xy-plane.

view, the spin-Peierls phenomena observed so far [12] take
place at finite temperatures. Hence, the possibility of a spin-
Peierls transition only driven by quantum fluctuations remains
as an experimental challenge. We hereby present a theoreti-
cal proposal for a trapped-ion QS to tackle both problems.
In particular, by building on the recent experiments [13] on
the quantum Ising model (QIM) [14], we describe how to tai-
lor a spin-Peierls instability. We show that (i) the disordered
paramagnet in a linear ion chain changes into an ordered an-
tiferromagnet in a zigzag crystal [Fig. 1(a)-(b)], and (ii) the
spin-Peierls transition can be driven only by the quantum fluc-
tuations introduced by the transverse field of the QIM.

The system.– The advent of experimental techniques for the
confinement, cooling, and coherent manipulation of atomic
ions, underlies their suitability as a quantum-information ar-
chitecture [15]. This technology has also been exploited for
QS purposes [4], where the controlled increase of the num-
ber of trapped ions yields a genuine bottom-up approach to
the many-body regime. We consider a Coulomb gas formed
by an ensemble of N trapped ions of mass m, and charge e,
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Figure 10.1: a) P[ge0] in front of t for three different values of the distance between qubits 2π r
λ

= 0.1 (dotted,

squares, blue), 0.3 (dashed, crosses, green) and 0.5 (solid, circles, black).For all cases KS = KD = 7.5 · 10−3

and Ω/(2π) = 1Ghz. b) P[ge0] in front of t for three different values of the coupling strength K = KS = KD =

6 ·10−3 (dotted, squares, blue), 7.5 ·10−3 (dashed, crosses, green) and 9 ·10−3 (solid, circles, black) . For all cases

2π r
λ

= 0.3 and Ω/(2π) = 1GHz.

150



10.3. Probability calculations

To evaluate |X|2 up to fourth order in perturbation theory, one must consider X has no

contributions neither for orders 0 or 1, so the calculation must be performed for orders 2

and above. As a matter of fact, order 2 alone is sufficient. This calculation has been already

performed in the appendix of [44], where the perturbative parameter dA is included in the

dimensionless coupling strength KA =
4d2
AN

~2v
= 2

( gA
ΩA

)2, with A = {S,D}, gA being the

qubit-line coupling. We must restrict to times where KAΩAt � 1, where our perturbative

approach is valid.

In Fig. 10.1 we sketch the evolution of the probability P[ge0] with time, and its depend-

ence with the coupling and the distance between qubits. Typical values for couplings and

distances for a set-up in cQED are considered from here on. At these early stages P[ge0] is

highly oscillatory in time. For a given time, the probability always grows with the coupling

strength but depends of the distance in different ways.

To proceed with the calculation of P[ge∗], the terms B2,kk′ = 〈eg0|UI(t)|ge2kk′〉 must be

evaluated. As the final bare state associated has two photons, this implies automatically that

orders 0 and 1 are discarded. Once again, order 2 alone fits. The final calculation gives a

term symmetric respect to a k ↔ k′ exchange:

B2,kk′ = fkk′ + fk′k = fkk′ + {k ↔ k′} (10.3.2)

After that, they must be squared and summed as in
∑ |B2|2 = 1

2!

∑
kk′ B2,kk′B

∗
2,kk′ splitting

into two terms:
∑ |B2|2 =

∑
kk′ fkk′f

∗
kk′ +

∑
kk′ fkk′f

∗
k′k, a “direct” one, just the product of

the square of the emission amplitudes (explicitly computed in [44]), and a “crossed” one

which looks like a photon exchange and is a 1-D version of the crossed term computed

in [278]. The summation of the direct terms implies the appearance of expected divergences

which can be resolved using a regularization procedure analogous to the one sketched in the

appendix of [278]. This procedure requires the times of analysis to be larger than a certain

cutoff time t0, which in this case is related with the typical size of a superconducting qubit

d ' 10−6m [237] and the propagation velocity of the field quanta: v ' 108m/s. Thus,

t0 = d/c ' 1 · 10−14 s, far below the times considered here.

Notice that B2 is only non-zero beyond the RWA. In Fig. 10.2 we compare P[ge∗] with

P[ge0]. The impact of this non-RWA contribution is seen in the sub-nanosecond regime for a

large coupling strength. At larger times, the impact diminishes, P[ge∗] ' P[ge0], and the RWA

applies.

The last probability of interest P[∗e∗] can be written as

P[∗e∗] =
∑
n,F

|〈neF |UI(t)|eg0〉|2 =
∑
n,F

|M(t;nF )|2

151



CHAPTER 10. SHORT-TIME QUANTUM DETECTION: PROBING QUANTUM FLUCTUATIONS

= |X|2 +
∑
|B1|2 +

∑
|B2|2 +

∑
|B3|2 . . . . (10.3.3)
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Figure 10.2: P[ge∗] (solid, blue, circles) and P[ge0] (dashed, green, crosses) in front of t in s with a distance

2π r
λ

= 0.5, a coupling strength of K = KS = KD = 3 · 10−2 and Ω/(2π) = 1GHz (Ω = ΩS = ΩD). The

difference between the two graphs is the non-RWA term
∑
|B2|2.

And so we must obtain
∑ |B1|2, which is again a completely non-RWA contribution. For

that case the situation gets more complicated, as there are interfering processes of orders 1

and 3 leading to that final state. The four diagrams contributing to
∑ |B1|2 up to fourth

order in perturbation theory can be seen in Fig. 10.3. The leading contribution is just the

probability of self-excitation of the detector, (first diagram for B1 in Fig. 10.3) and the other

contributions come from the interference of this diagram with the other three. In particular,

interference with the third diagram of B1 is crucial for causality [36]. More details on this

computation can be found in [289].

10.4 Conditioned detection probability

With the previous probabilities computed we can finally address the conditioned probability

PSg/De(t), which can be calculated as (10.2.1). Note that in the RWA PSg/De(t) = 1 at any

time, since P[∗e∗] = P[ge∗] = P[ge0]. The effect of non-RWA contributions to the evolution of

PSg/De(t) can be seen in Figs. 10.4 and 10.5, where the dependence with the coupling and

the distance between qubits is considered.

The first thing we notice in Fig. 10.4 is that for short times the information provided

by the detector is not very much related to the state of the source, that is, self-excitations

and other non-RWA phenomena dominate over the photon exchange between source and

detector. For the cases considered, only at interaction times t & 1ns ' 1/Ω the conditioned
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10.5. Discussion

X = B2 =

+ + +

|gS〉 |eD〉 |gS〉 |eD〉

B1 =

|eS〉 |eD〉 |eS〉 |eD〉 |eS〉 |eD〉 |eS〉 |eD〉

|eS〉 |gD〉 |eS〉 |gD〉

|eS〉 |gD〉 |eS〉 |gD〉 |eS〉 |gD〉 |eS〉 |gD〉

Figure 10.3: The diagrams contributing to X , B1 and B2. X represents the amplitude for photon exchange

between source and detector, while B2 is just the amplitude for two single photon emissions, one at each qubit.

The leading order contribution to B1 is the amplitude for a single photon emission at the detector qubit (first

diagram), but third-order one-loop corrections (second and fourth) and a photon exchange accompanied by an

emission at the source (third) have to be also taken into account. B1 and B2 are completely non-RWA diagrams.

probability converges to the RWA prediction and the excitation of the detector is a reliable

way to detect the decay of the source. Since the non-RWA contributions are more relevant

for large couplings and short distances, the convergence is faster as the distance grows and

the couplings diminish, as can be seen in Figs. 10.4 and 10.5. Notice that the ripple frequency

we see for instance in Fig. 10.4 comes from higher harmonics of the qubit frequency Ω. It

can be thought as a process similar to that of a Rabi oscillation, where the qubits would be

absorbing in cycles the photons previously emitted in self-excitations.

10.5 Discussion

These theoretical results could have an impact in real experiments of cQED. In particular,

a typical setup to measure the internal state of a flux qubit coupled to a transmission line

consists of a SQUID surrounding the qubit. Although the total measurement process could

take up to tens of nanoseconds, most of the time the coupling SQUID-qubit is much stronger

than K [282] and the dynamics qubit-transmission line is effectively frozen. Thus this dy-

namics is only important during the activation of the SQUID, a process that may be in the

nanosecond regime. For those measurement times, as we have proved, self-excitation effects

cannot be disregarded and should manifest themselves.

Besides, it should, in principle, be possible to prepare experiments in the near future
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Figure 10.4: PSg/De(t) (10.2.1) in front of Kt for three different values of K = KS = KD = 7.5 · 10−3 (solid,

blue, circles), 1.5 10−2(dashed, green, crosses), 7.5 · 10−2 (dashed, black, squares). In the three cases 2π r
λ

= 1

and Ω/(2π) = 1GHz (Ω = ΩS = ΩD).

to test our predictions directly. We do not intend to present here more than just a rough

sketch. Such experiments would involve the preparation of the system at t = 0 in the initial

state |eg0〉, the switching of the interaction for a certain time t (in the line of previous pro-

posals, as [36, 221, 290, 291]) and then the SQUID-measurement of both qubits S and D. By

repeating the experiment several times, the result frequencies should match our theoretical

predictions.

To conclude, we have shown that for typical cQED parameters, a significative amount of

time is needed to start trusting the state of a detector as informative regarding an initially

excited source. This is due to the breakdown of the RWA in cQED. By neglecting the coun-

terrotating terms a total reliability on the information coming out of the detector would be

wrongly derived for all time-scales. Our result applies to other setups and quantum detect-

ors, although it is in the case of cQED where it might affect the interpretation of coming

experimental results.
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Figure 10.5: PSg/De(t) (10.2.1) in front of t in s for three different values of the distance 2π r
λ

= 0.5 (dotted, blue,

circles), 0.75 (dashed, green, crosses), 1 (solid, black, squares). In the three cases K = KS = KD = 1.5 · 10−2

and Ω/(2π) = 1GHz (Ω = ΩS = ΩD).
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Part III

Vacuum Correlations and Localization

Alice Lost in The Vacuum,

Timelike and Spacelike Entanglement, Extraction of Correlations,

Local Virtual Particles and Unitary Inequivalence.





CHAPTER 11

Concepts

Después de todo, todo ha sido nada,

a pesar de que un día lo fue todo.

Después de nada, o después de todo

supe que todo no era más que nada.

Grito ‘¡Todo!’, y el eco dice ‘¡Nada!’.

Grito ‘¡Nada!’, y el eco dice ‘¡Todo!’.

Ahora sé que la nada lo era todo,

y todo era ceniza de la nada. (...)

José Hierro, Vida

The very own existence of such a thing as the No-Thing sounds paradoxical and it is pre-

cisely, highly problematic. Volumes have been written discussing it. Here however, we do

not want to dive into the philosophical historical debates about the being and the not-being.

Quantum mechanically however, as scientists, we have certainly something to say. Under

the light of Quantum Field Theory, the nothing has to be reinterpreted as the state with no

particles, i.e. the ground state of a quantum field, something quite different from the noth-

ingness. José Hierro, had something to say about it. Although most probably with different

implications, he pointed out the secret connection that we will enjoy playing with in the

next chapters, namely, that the No-Thing has something of the Every-Thing. The quantum va-

cuum, from which mathematically we construct any state, far from being empty and static,

it is actuallyfull of action. We will devote this part of the thesis to its analysis, to the study

of its local characteristics and its intrinsic correlations.
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CHAPTER 11. CONCEPTS

11.1 The Quantum Vacuum: a Global Entity

The elementary excitations of quantum field theory are countable, a crucial feature for mak-

ing it able to deal with the physics of elementary particles. These are described by operators

which carry information about the energy momentum that these excitations take or give

to the field. The ground state of the field, from which no quanta can be removed, thus

becomes the vacuum, whose excitations describe the states with one or more particles with

well defined momenta. This Fock construction provides simple global operators for the field

as a whole. In particular, the total number of particles carried by any specified configuration

is easy to address. However, the construction lacks a means to inquire into the local prop-

erties of the field. For instance a question as simple as “how are these particles distributed

in space?" or more simply, “where is this particle?" are difficult to address if not by indirect

means. The root of the problem is that creation and annihilation operators do not belong to

the algebra of local operators of the quantum field. This can be understood in physical terms

as a consequence of the fact that they describe excitations endowed with sharp momentum

and hence expected in principle to be unlocalized in space. The conclusion is that, powerful

as it is, the standard Fock space techniques provide only a feeble scaffolding for digging into

issues pertaining to the localization of quanta.

In standard Quantum Field Theory, we work constantly with the vacuum state |0〉, the

state annihilated by all particle destruction operators âk. Physically, it corresponds to the

ground state of the theory and as such, it is defined in all the spacetime region where our

theory applies, therefore being a global state. It is also the thermal state with temperature

T = 0K. Being a global, quantum, non-local state, it should not be that surprising if it shows

non-local correlations . This is, as a matter of fact, what happens. As explained in Part II,

the Feynman propagator for example does not vanish for spacelike separated points. The

existence of spacelike correlations in the quantum vacuum should, at this point, be rather

natural to the reader. In this part of the thesis we would like however to link that fact to the

problem of particle localizability.

11.2 The Problem of Localizability

In standard non-relativistic quantum mechanics, the concept of a localized particle is math-

ematically well-defined and straightforward. The theory is described in terms of quantum

states that could represent single particles. The self-adjoint position operator X acts on the

Hilbert space of states so that an ideal position measurement produces an outcome corres-

ponding to one of its eigenvalues. Using its eigenstates one may build an arbitrarily local-
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11.2. The Problem of Localizability

ized wave-packet in a finite region of position space in such a way that we can assert “The

particle is here" with probability 1. Correspondingly, by ‘localized’ in quantum mechanics

we understand wave packets with value different from zero, only on a certain spatial region

R . In this sense, if a state ψ(x) verifies

ψ(x)

= 0 if x /∈ R

6= 0 if x ∈ R

its expectation values for the physical observables trivially vanish outside R. It can be

shown [292] that, if the energy spectrum is bounded from below, such a wave packet will

spread everywhere instantly, or it will remain confined forever. This fact does not give rise

to theoretical problems since the theory is non-relativistic.

It is a well-known fact that the only known consistent relativistic quantum theory is that

of fields [293]. The basic dynamical variables of the standard model of physics are fields;

we have both bosonic fields (the Higgs field, electroweak and strong gauge bosons) and

fermionic spinor fields (quarks and leptons) and, perhaps and beyond, the graviton. All of

them are subject of relativistic field equations. These theories become consistent with the

rules of quantum theory by following quantization procedures, for example that of canon-

ical quantization. The result is a quantum field theory in which the elementary excitations

of the various bosonic and fermionic fields come in quanta corresponding to the elementary

particles we find in nature, e.g. electrons, muons, neutrinos, photons, etc. These entities are

traditionally referred to as ‘particles’, and commonly thought of as representing, in some

appropriate sense, spatially localized quanta of energy. However, several careful studies of

quantum field theory [40, 174, 294–296] have proven this picture to be too naive.

One first problem common to all quantum theories is given by Hegerfeldt’s theorem

[292]:

Theorem 1 Let the operator H be self-adjoint and bounded from below in a Hilbert space H. Let O
be any positive operator inH satisfying, and let ψ0 be any vector inH so that at t ∈ R

ψt = e−iHtψ0

Then one of the following two alternative holds:

i) 〈ψt|Oψt〉 6= 0 for almost all t, or

ii) 〈ψt|Oψt〉 = 0 for all t.

Hegerfeldt’s theorem can be understood as follows: Suppose thatO(x) is representing some

physical observable that gives the probability of finding a particle at x, and let ψ0 be a loc-

alized state in V0. The theorem asserts that if at time t0 we perform a measurement of O
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CHAPTER 11. CONCEPTS

outside V0, then either we have indeed no particles ever (possibility ii)), or immediately

after t0 the probability of finding the particle outside V0 is non zero (possibility i)), even if x

is arbitrarily far from V0.

Let us analyze the implications of the theorem for the one-particle sector of quantum

field theory. Consider a complex scalar field Φ satisfying the Klein-Gordon equation �Φ +

m2Φ = 0. In the usual formulation in Minkowski spacetime, the Hilbert space of one-

particle states H of the corresponding quantum field theory is selected by making use of the

Poincare invariance of the theory. Then H is chosen to be the space of positive frequency

solutions to the classical Klein-Gordon equation (We must remark here that we are dealing with

a flat spacetime. A clear separation in positive and negative frequencies in general curved spacetimes

is not possible [165], but only on static stationary spacetimes). Indeed, any positive frequency

solution is of the form

φ(x, t) =

∫
d3k√
2ωk

f(k)e−i(ωkt−k·x) (11.2.1)

Hence, one would naively expect that it is possible to define f in such a way that a com-

pletely localized wave packet, representing a single localized quantum of energy, could be

created, such that φ(x, t) gives the probability amplitude for finding the particle in x at time

t. Unfortunately, this is not the case. Let us be a bit more precise in the definitions. To this

point we have made the reasonable assumption, in analogy with QM, that a positive fre-

quency particle of the form (11.2.1) localized at some instant of time t0 within some compact

regionR ⊂ R3 can be mathematically represented by a wave-packet φ with support only in

R, i.e φ(x, t0) = 0 ∀x /∈ R for some open setR of R3. Conversely, a non-zero φ at some point

x would imply a non-zero probability for the particle to be detected there. Then, by virtue

of Hegerfeldt’s theorem or, in more general terms, of the Reeh-Schlieder theorem [40], such

a state would violate causality. The basis of Hegerfeldt’s argument is the non-local nature

of the Hamiltonian when solely acting on positive frequency solutions. It follows from easy

analytic arguments that we cannot have compact support for both φ(t,x) and φ̇(t,x) using

only positive frequencies [297–299]. This fact implies that the N -particle positive frequency

solutions do not have compact support and, in order to agree with special relativity, we will

need something else for constructing local states.

Summarizing, we can not use positive-frequency one-particle states to construct local-

ized states according to the former ‘localization’ scheme. Hence, this naive localization

prescription does not work. The goal of defining the concept of localization and localized

quanta in quantum field theory in an analogous way as done for QM is not trivial, and in

fact has generated a large debate in the field [300]. Several localization schemes have been

developed and studied, none of them showing general acceptance.
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11.2. The Problem of Localizability

For instance, the Newton-Wigner scheme [301] proposes the following definition for

local states: A state ψ representing system (or a particle) at time t = 0 in x = 0 satisfies:

1. The set of local states at t = 0 in x = 0 form a linear space S (i.e. superposition of local

states are still local).

2. This set of states is invariant under rotations and space and time reflections.

3. (Most important) If ψ is localized as above, then a spatial displacement out of its region

of localization makes it orthogonal to S.

Then, by applying the displacement operator T (a) on ψ one can obtain any state localized

in a = (ax, ay, az). This definition allowed Newton and Wigner to uniquely define position

and momentum relativistic operators X̂NW and P̂ acting on positive-frequency functions

and satisfying the same commutation relations and symmetry properties of the position

and momentum operators of standard quantum mechanics. Nevertheless, a detailed study

of them shows that: a) these definitions are not Lorentz covariant [302] and b) condition 3,

if it holds at t = 0, it does not at any t > 0: orthogonality of the eigenstates of the Newton-

Wigner position operators for spacelike-separeted ones is not preserved in time [292]. In

particular this means that a particle prepared in a Newton-Wigner position eigenstate may

be found anywhere in physical space infinitesimally after. Therefore, the Newton-Wigner

operators are not adequate to model a particle position measurement .

In any case, it must be noted that quantum field theory deals with fields rather than

particles, and quantum field states are not one-particle states but rather Fock states of the

Fock space we have chosen to describe the theory. The N − particle states in quantum

field theory (QFT), namely the eigenstates of the particle-number operator, have a well-

known non-local character [51, 52]: they are not eigenstates of local operators. However,

it seems natural to require that a particle as such should be a local object detected by a

local apparatus: a photoelectric detector, a bubble chamber, a calorimeter or a scintillating

detector. Such an apparatus would be implemented in the theory via some local operator,

and its excitations (i.e. the eigenvalues of the operator), should be interpreted as particles. A

state representing such a particle would in principle be expected to satisfy some reasonable

localization conditions. How could a Fock state, which spreads over the whole configuration

space, be instantaneously absorbed or detected by a local sized apparatus? Both concepts

of localization and particle in standard QFT are at loggerheads. In general formulations of

QFT the notion of particle depends on the algorithm used to select the one-particle sector of

the theory, and there is not a preferred mathematical choice for it [172]. Besides, the former

localization conditions for local states (i.e. a localization scheme) should be reformulated since
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the standard QM approach of vanishing wave-function outside a region of localization R
does not apply in the field domain, as we have seen.

Probably the most elegant and clear concept of localization and localized states in QFT

was given by Knight [294]. In his work, Knight carefully defines a state |ψR〉 to be strictly

localized at some time t0 within some region R ∈ R3 if it has the same expectation value as

the vacuum |0〉 for any operator O(x) with x /∈ R, i.e.

〈ψR|O(x)|ψR〉 = 〈0|O(x)|0〉. if x /∈ R (11.2.2)

From there, Knight proves that there are actually no N−particle states with finite N satisfying

the property of strict localization. In other words, it does not matter how much one tries, it is

impossible to use Fock states with a finite number of particles to construct such localized

states.

It is now clear that the notion of particles in QFT cannot be literally be taken to rep-

resent particles, if we understand by these local entities. This aims at the ultimate goal

of constructing a notion of particle employable on curved spacetimes backgrounds or for

quantum gravity proper. In shorter terms this will lead to the definition of qubits usefull for

the tasks of (Relativistic) Quantum Information.

11.3 Extraction of Vacuum Entanglement

We propose a realistic circuit QED experiment to test the extraction of past-future vacuum

entanglement to a pair of superconducting qubits. The qubit P interacts with the quantum

field along an open transmission line for an interval Ton and then, after a time-lapse Toff,

the qubit F starts interacting for a time Ton in a symmetric fashion. After that, past-future

quantum correlations of the vacuum will have transferred to the qubits, even if the qubits

do not coexist at the same time. We show that this experiment can be realized with current

technology and discuss its utility as a possible implementation of a quantum memory.

11.4 Local quanta

In this work we develop a formalism for describing localised quanta for a real-valued Klein-

Gordon field in a one-dimensional box [0, R]. We quantise the field using non-stationary local

modes which, at some arbitrarily chosen initial time, are completely localised within the left

or the right side of the box. In this concrete set-up we directly face the problems inherent to

a notion of local field excitations, usually thought of as elementary particles. Specifically, by
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computing the Bogoliubov coefficients relating local and standard (global) quantizations, we

show that the local quantisation yields a Fock representation of the Canonical Commutation

Relations (CCR) which is unitarily inequivalent to the standard one. In spite of this, we find

that the local creators and annihilators remain well defined in the global Fock space FG,

and so do the local number operators associated to the left and right partitions of the box.

We end up with a useful mathematical toolbox to analyse and characterise local features of

quantum states in FG. Specifically, an analysis of the global vacuum state |0G〉 ∈ FG in terms

of local number operators shows, as expected, the existence of entanglement between the

left and right regions of the box. The local vacuum |0L〉 ∈ FL, on the contrary, has a very

different character. It is neither cyclic (with respect to any local algebra of operators) nor

separating and displays no entanglement between left and right partitions. Further analysis

shows that the global vacuum also exhibits a distribution of local excitations reminiscent, in

some respects, of a thermal bath. We discuss how the mathematical tools developed herein

may open new ways for the analysis of fundamental problems in local quantum field theory.

11.5 Alice and the Slamming Mirror

So we know that the vacuum state of a quantum field is spatially entangled. This is true

both in free and confined spaces, for example in an optical cavity. The obvious consequence

of this, however, is surprising and intuitively challenging. Namely, that in a mathematical

sense half of an empty box is not empty. Formally this is clear, but what does this physically

mean in terms of, say, measurements that can actually be made? In this paper we utilize the

tools of Gaussian quantum mechanics to easily characterize the reduced state of a subregion

in a cavity and expose the spatial profile of its entanglement with the opposite region. We go

on an discuss then a thought experiment situation in which a mirror is introduced between

the regions. In so doing we expose a simple and physically concrete answer to the above

question: the vacuum excitations resulting from entanglement are mathematically equival-

ent to the real excitations generated by suddenly introducing a mirror. Such an experiment

would ideally allow to retain all entanglement present between left and right regions. We

conclude by discussing different possibilities for doing a similar experiment in the lab.
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CHAPTER 12

Extracting Past-Future Vacuum

Correlations Using Circuit QED

12.1 Introduction

The fact that the vacuum of a quantum field presents quantum entanglement was dis-

covered long ago [54,94,95], but it was considered a mere formal result until it was addressed

from an applied perspective in [41]. Since then, this intriguing property has attracted a great

deal of attention as a possible new resource for Quantum Information tasks [42–45].

As shown in [41], the entanglement contained in the vacuum of a scalar field can be

transferred to a pair of two-level spacelike separated detectors interacting with the field at

the same time. Unfortunately, this theoretical result seems to be very difficult to translate

into an experiment, even in the context of a trapped-ion simulation [42]. Recently, it has also

been proven [49] that the vacuum of a massless scalar field contains quantum correlations 1

between the future and the past light cones. A theoretical method of extraction by transfer

to detectors interacting with the field at different times has also been proposed [50], but the

particular time dependence of the energy gaps seems extremely challenging from the exper-

imental viewpoint. Another ideal proposal involving cavities transparent to a single mode

was provided in [243] with a setting that seems even more difficult to tackle experimentally.

On the other hand, circuit QED [211] provides a framework in which the interaction of

two-level systems with a quantum field can be naturally considered. The combination of su-

perconducting qubits with transmission lines implement an artificial 1-D matter-radiation

1Although in [49] these correlations are referred to as entanglement, such a wording might not be appro-

priate since quantum states in past and future belong to Hilbert spaces defined in different simultaneity planes.

Nevertheless, quantum correlations of this sort can in principle be extracted to physical systems and exploited

as a resource for quantum information tasks as in the case of typical entanglement.
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Figure 12.1: Experimental proposal for past-future entanglement extraction. a) Time evolution of our protocol:

the qubit P interacts with the vacuum field (∆ψ) for a time Ton. After a certain time Toff with no interaction, a

second qubit F interacts with the field getting entangled with the qubit P. b) Switchable coupling design: a flux

qubit (top ring) is coupled to the field ∆ψ by ways of two loops. Varying the magnetic fluxes Φ2 and Φ3 we

deactivate the qubit-field coupling.

interaction, with the advantage of a large experimental accessibility and tunability of the

physical parameters. Using these features, fundamental problems in Quantum Field The-

ory hitherto considered as ideal are now accessible to experiment [58]. In particular, the

possibility of achieving an ultrastrong coupling regime [285, 286, 303] has already been ex-

ploited to propose a feasible experimental test of the extraction of vacuum entanglement to

a pair of spacelike separated qubits [44].

In this chapter we will take advantage of the aforementioned features of circuit QED in

the ultrastrong coupling regime in order to propose a realistic experiment for the extraction

of past-future correlations 2 contained in the vacuum of a quantum field. We will consider

a set-up consisting of a pair of superconducting qubits P and F with constant energy gaps

separated by a fixed distance r in a common open transmission line (Fig. 12.1a). First, the

interaction of P with the vacuum of the field is on for a time interval Ton (we call this interval

‘the past’). Then, P is disconnected from the field during a time Toff. Finally, the interaction

of F is switched on during Ton (‘the future’) while keeping P disconnected. After this pro-

cedure, we will show that the qubits can end up in a strongly correlated quantum state, in

spite of not having interacted with the field at the same time. We will consider three differ-

ent spacetime configurations: that the qubits are spacelike or timelike separated, and in the

latter case with or without photon exchange allowed. Perhaps the most surprising result is

that, even if photon exchange is forbidden, the qubits can get entangled by a transference

of vacuum correlations, as we will show. However, this is not the only interesting aspect of

our scheme. If there is a certain probability of photon exchange, some classical correlations

between the qubits are obviously expected. But is also remarkable that, due to the pecu-

liarities of our circuit QED setup these correlations are quantum and attain a high degree

2Note that we will use the term “past-future” correlations to refer to a different and more general notion

than “time-like entanglement” or “entanglement between the past and the future light cones”.
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without the need of a projective measurement of the field. We stress that our proposal is free

of idealized requirements such as gaps with unfeasible time dependences. Our switching

scheme is fully within reach of current circuit QED technologies, as shown below.

In addition to its interest from the fundamental viewpoint, our protocol has also an im-

portant applied counterpart. As suggested in [50], the extraction of past-future quantum

correlations enables its use as a quantum channel for quantum teleportation “in time”. We

will show how this opens the door to a novel kind of quantum memory in which the in-

formation of the quantum state of some ancillary qubit P ′ is codified in the field during Toff

and then recovered in F using classical information stored in the past - regardless whatever

may happen to P after its interaction with the field.

12.2 Theoretical model

From now on we focus on a setup of circuit-QED with two superconducting qubits P and F

interacting via a quantum field. The qubits have two stationary states |e〉 and |g〉 separated

by a constant energy ~Ω and might interact with a 1D field, ∆ψ(x), which propagates along

an open microwave guide or transmission line that connects them

∆ψ(x) = i

∫ ∞
−∞

dk
√
Nωk e

ikxak + H.c. (12.2.1)

This field has a continuum of Fock operators [ak, a
†
k′ ] = δ(k − k′), and a linear spectrum,

ωk = v|k|, where v is the propagation velocity of the field. The normalization N and the

speed of photons, v = (cl)−1/2, depend on the microscopic details such as the capacitance

and inductance per unit length, c and l. We will assume qubits that are much smaller than

the relevant wavelengths, λ = 2π v/ΩJ , (J = P, F ) and the fixed distance r. Under these

conditions the Hamiltonian, H = H0 +HI, splits into a free part for the qubits and the field

H0 = 1
2~(ΩPσ

z
P + ΩFσ

z
F ) +

∫∞
−∞ dk ~ωka

†
kak and a point-like interaction between them

HI = −
∑
J=P,F

dJ ∆ψ(xJ)σxJ = HIP +HIF (12.2.2)

Here xJ are the fixed positions of the atoms, and dJ σxJ comes from a dimensional reduction

of the matter- radiation interaction hamiltonian with two-level atoms and the electromag-

netic field, analogous - but not fully equivalent - to the Unruh-de Witt model. [178].

We choose the following initial state |Ψ(−t2)〉 = |eg0〉, where only qubit P has been

excited, in order to analyze the interplay between photon exchange and vacuum correlations

effects in the generation of entanglement. According to our past-future scheme (Fig. 12.1a),
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the system evolves in the interaction picture into the state

|Ψ(t2)〉 = T e−i
∫ t2
−t2

dt′
~ [Θ(−t′−t1)H

(t′)
IP +Θ(t′−t1)H

(t′)
IF ] |eg0〉 , (12.2.3)

T being the time ordering operator.

We use the formalism of perturbation theory up to the second order and beyond Ro-

tating Wave Approximation [44] and trace over the field degrees of freedom to obtain the

corresponding two-qubit reduced density matrix ρPF evaluated at t2. The degree of entan-

glement of this X-state can be characterized with the concurrence, which at the considered

order is given by: C(ρPF ) = 2
[
|X| −

(∑
k |A1,k|2

∑
k |B1,k|2

)1/2]
, X standing for the nor-

malized amplitude of photon - real and virtual - exchange and
∑

k |A1,k|2,
∑

k |B1,k|2 for

the total normalized probability of single-photon emission by qubit P and F , respectively.

These terms can be computed - following similar techniques as in [44] - as a function of four

dimensionless parameters, ξon, ξoff, KP and KF . The first two, ξon = vTon/r, ξoff = vToff/r

allow to discriminate the different spacetime regions. The remaining ones are dimensionless

coupling strengths for qubits P and F: KJ = 4d2
JN/(~2v) = 2 (gJ/ΩJ)2 . We will restrict to

consider times where 2KJΩJ t2 � 1, needed for our perturbative approach to remain valid.

Three different regions emerge from the parameters above (see Fig.12.2a). If Toff < r/v,

we discriminate between two possibilities. First, if 2Ton + Toff < r/v (region I), there cannot

be real photon exchange, but vacuum correlations - or virtual photon exchange - are allowed

at any time. If 2Ton + Toff > r/v (region II), F may start to absorb radiation emitted by P in

the past somewhen in the future after an interval with no possible absorption (if Ton +Toff <

r/v, region IIa) or start to absorb radiation at t = t1 and stop to receive radiation somewhen

in the future while the interaction is still on (Ton +Toff > r/v, region IIb). Finally, if Toff > r/v

(region III) F cannot absorb radiation at all, as in region I. The difference between these

two regions is that the qubits are spacelike separated in region I and timelike separated in

region III. Only in regions I and III it can be said that we are dealing with a pure effect of

transference of the quantum correlations between the past and the future contained in the

vacuum. In region II these correlations may be assisted by a certain probability of photon

exchange during a given time interval.

In Fig. 12.2b-c we show numerical results for the behavior of the concurrence as a func-

tion of Ton and Toff, for coupling strengths gJ/ΩJ ' 0.1, such as in cutting-edge experiments

of ultrastrong coupling in circuit QED [285,286] and accessible values of the qubit’s gaps and

distance. We note that qubit-qubit entanglement is sizable in region II. However, the exist-

ence or not of entanglement in regions I and III depends much on the distance r between the

qubits, as expected. Fig. 12.2b-c show a certain amount of entanglement in regions I and III,

170



12.2. Theoretical model

Ton

Toff

r/v

r/2v

I

III
IIa

IIb

a

Ton

Toff

r

t

I

III

IIb

IIa

F

F
x = vt

x

F

F

P

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Toff�ns�

Ton �ns�

b�

0

0.1

0.2

0.3

b

Ton

(ns)

Toff(ns)

b C
c

Toff(ns)

Ton(ns)

C

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.140
0.06
0.12
0.18
0.24
0.3

0.062 0.064 0.066 0.0680
0.03
0.06
0.09
0.12

Figure 12.2: a) Diagram of the different spacetime regions. b) Concurrence vs. Ton and Toff for g = gP = gF ,

Ω = ΩP = ΩF = 2π × 1 GHz, g/Ω = 0.19, r/λ = 0.125. Significant entanglement is generated at both sides

of the lines which discriminate between regions. c) Concurrence vs. Ton with Toff fixed and viceversa along the

blue lines shown in b. The peaks match the position of the region edges. Entanglement is generated in region

I and III for three different values of the coupling strength g/Ω = 0.09 (blue, solid), 0.15 (red,dashed) and 0.19

(black, dotted) and Toff = 0. Toff with Ton = 0.02 ns. Ω and r are the same as in b. The generated entanglement

displays a remarkable symmetry for regions I and III.

entailing a pure transference of vacuum correlations. Remarkably, Fig. 12.2c displays also

an interesting symmetry between regions I and III: for a given interaction time the entan-

glement that can be generated only by transference of vacuum correlations is the same re-

gardless whether the qubits are spacelike or timelike separated. This kind of entanglement

vanishes as the distance grows (see Fig. 12.3). In general, entanglement is concentrated

around ΩJ Ton ' ΩJ Toff ' 1 and ξon ' ξoff ' 1. Thus, for qubit distances of the order of λ

as in Fig. 12.3, entanglement shows up in the ns regime, but drifts towards shorter times as

the distance diminishes, as can be seen in Fig. 12.2b.

From the experimental viewpoint, our protocol is equally interesting -and probably more

amenable- if the qubits are in region II, although the origin of entanglement generation may

seem at first glance less theoretically tantalizing in that case. Notice however that even if

photon exchange is allowed, our scheme does not include a projective measurement of the

field state but a trace over all the field degrees of freedom instead. Under that conditions,

the generation of entanglement immediately after the light-cone crossing is not trivial. For

instance, this feature does not show up in the standard 3D matter-radiation Hamiltonian

where the atoms would only get classical correlations until much longer times [278]. Indeed

the relationship of the light cone with entanglement without measurements is a peculiarity

of circuit QED in the ultrastrong coupling regime, together with the very high degree of

entanglement that can be achieved. Thus, even in region II, what we are introducing here

is a novel way of entanglement generation, remarkably different from the standard ones,

including quantum buses in superconducting cavities [304].

We note that in our scheme concurrence is 0 for r = 0. This could seem at variance
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with the results in [50] where extraction of vacuum correlations to pair of timelike separ-

ated qubits in the same space point is reported. But notice that in [50] a tailor-made time-

dependence for the qubit gap (∝ 1/t) is introduced, while in our scheme the gap is constant

and we just sharply tune on and off the interaction. As a matter of fact, the proposal in [50]

exploits a formal analogy [49]- only fulfilled for massless fields - between the past and the

future light cones and the left-right Rindler wedges. However, one must be very careful

about the extent to what this analogy is valid: while it is possible to think of the vacuum

state as an entangled state of modes observed by causally disconnected observers in the

left-right wedges of the space-time [138], it is not clear whether this way of thinking can be

transported to the past-future light cones case 3. This was the reason of the introduction of a

singular -and arguably difficult to implement experimentally- energy gap in [50]. However,

we have shown that if the qubits are separated by a given distance r and the interaction can

be switched on and off fast enough to have finite interaction times, past-future entanglement

can be generated between qubits with constant energy gaps.

12.3 Circuit QED realization

We will thus focus on the following setting, aiming to test the results shown in Fig. 12.2. As

mentioned in the introduction, it consists of a circuit QED design where two superconduct-

ing qubits interact with the vacuum field in such a way that the interaction is on during a

finite time [221] and not at the same time for each qubit (see Fig. 12.1a). A first superconduct-

ing qubit P (prepared in its excited state by driving it with a microwave pulse) interacts for a

time Ton with the vacuum field. Subsequently the interaction is switched off. Finally, after a

time Toff, we switch on the interaction of a second qubit F, generating a certain amount of en-

tanglement between P and F, which can be quantified with quantum state tomography [305].

It must be noted that, even if what we calculate here is a standard entanglement measure

(namely the concurrence at time t = t2), we could still use this quantity as a measure of

quantum correlations between past and future for the case where qubit P does no longer

exist after t = −t1. In this case, the only novelty of the tomography process will be that the

local measurements with correlated outcomes would occur at different times.

DISCUSS ULTRASTRONG BRIEFLY

3To have a mirror interpretation for a plane-wave-like basis like that provided in [49] we would need ob-

servers undergoing forbidden trajectories in the spacetime -horizontal hyperbolas in past and future light cones.

172



12.4. Discussion

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Toff�ns�

Ton �ns�

0

0.1

0.2

0.3

0.4

Ton

(ns)

Toff(ns)

Figure 12.3: Same as in Fig.12.2b except for r/λ = 2 and g/Ω = 0.09. Entanglement is restricted to region II for

long distances.

12.4 Discussion

From the quantum technologies point of view, the ability to extract past-future entanglement

from the field using a pair of qubits could be used to implement a device which teleports

a quantum state in time - as first suggested in [50] -, or in other words, we could use the

field in the transmission line for building up a novel kind of quantum memory. In order to

achieve this goal, an observer - say, Paula - in possession of the qubit P and another qubit P ′

that she wants to teleport, should be able to carry out measurements on her qubits once the

interaction had been disconnected at −t1. At some time in the future after t2, an observer -

say, Frank - would use the results of Paula’s measurements stored as classical information

and locally manipulate the qubit F , in order to transfer the state of P ′ to F . The fidelity will

be a function of the amount of quantum correlations between P and F . Note that during

Toff the information of the quantum state of P ′ is codified in the field along the transmission

line, regardless whatever happened to P after its interaction and measurement. Then, this

information is recovered and embodied in F after its Ton and the use of the stored classical

bits.

The experimental realization of quantum teleportation has already been achieved in

cQED with high fidelity [306], up to the final step of single-shot qubit measurements. The

fact that P and F are non-pure states should not prevent us from using them as a resource for

teleportation [307, 308]. As shown in figure 12.3, entanglement is strong enough to consider

high-fidelity teleportation for quantum states that are separated by times of nanoseconds.
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This interval might in principle be even similar to the coherence times of the qubit and the

scheme might be used as a quantum memory - provided that the coherence of the field is

long enough. In our setting, that time-lapse grows with the qubit spatial separation and the

inverse of the qubit gap.

We have proposed a experimentally feasible circuit QED setup to test the extraction of

quantum correlations between different times contained in the vacuum of a quantum field.

We have shown in particular that sizable past-future vacuum correlations can be transferred

to a pair of qubits P and F, which only interact with the field in the past or the future respect-

ively, even if the qubits do not coexist at the same time. Moreover, we discuss the possible

technological uses of that entanglement extraction and the potential of our scheme to work

as a quantum memory.
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CHAPTER 13

Local Quanta

13.1 Introduction

Quantum Field Theory (QFT in short) has proven to be one of the most successful the-

ories in Physics. Its potential to describe the properties of elementary particles has been

richly demonstrated within the framework of the Standard Model of Particle Physics. The

extraordinary agreement between theoretical and experimental values of the muon g − 2

anomaly [309], or the recent experimental success vindicating the Higgs mechanism after

decades of search [310, 311], are just two examples among many.

Elementary particles in modern physics are commonly thought of as small localized en-

tities moving around in space. A careful examination, however, reveals such an interpreta-

tion to be problematic: in QFT a free particle is represented by a superposition of positive-

frequency complex-valued modes which satisfy some field equation (e.g. the Klein-Gordon

equation). Yet, no superposition of positive-frequency modes can be localized within a re-

gion of space, even for an arbitrarily small period of time [292].

This confusing issue is sometimes mistaken as superluminality, see [312] for a clarifica-

tion. In fact, it can be shown that the time derivative ψ̇, for any wave-packet ψ composed

exclusively out of positive frequency modes, is non-zero almost everywhere in space.1 .

For that reason, even if ψ propagates in a perfectly causal manner according to the Klein-

Gordon equation, it can hardly represent a localized entity. It is problematic to think of the

fundamental field excitations of QFT as ‘particles’ in any common sense of the word.

The problem of localization can be analysed from other angles, for example in terms of

1One way of seeing this is by noting that positive frequency solutions also satisfy the square root of the

Klein-Gordon equation, i.e. the Schrödinger equation iφ̇(~x, t) =
√
−∇2 +m2φ(~x, t). From there, using the

antilocality property of the operator
√
−∇2 +m2, it follows that the time derivative φ̇ is necessarily non-zero

almost everywhere in space [298]
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localization systems. These are defined in terms of a set of projectors E∆ on bounded spatial

regions ∆ whose expectation values yield the probability of a position measurement to find

the particle within ∆. A theorem by Malament [53] shows that in a Minkowski spacetime,

under reasonable assumptions for the projector algebra, no such non-trivial set of projectors

exists. There is also a general result (valid for both, relativistic or non-relativistic cases) due

to Hegerfeldt [292] proving that, assuming a Hamiltonian with spectrum bounded from be-

low, the expectation value of those projectors is non-zero for almost all times. In particular

this applies also to states naively thought to be localized. Also along this line, but in order

to describe unsharp localization systems, Busch [313] replaced the use of projectors by more

general operators, "effects" (or Positive-Operator Valued Measures – POVM), showing that

it is impossible to localize with certainty a particle in any bounded region of space. Fur-

thermore, completing the collection of no-go theorems, Clifton and Halvorson [314] have

shown, under a set of natural requirements, that it is not possible to define local number op-

erators associated to any finite region of space. At this point it is also worthwhile mention

the well-known problems of other efforts, based on the use of putative observables such as

the Newton-Wigner position operator [300, 315, 316].

In addition, there is also a different notion of localization called strict localizability [294,

296]. The basic idea is that a state, localized within a region of space at some specific moment

in time, should be such that the expectation value of any operator associated to a spacelike

separated region should be the same as in the vacuum. In other words, average values of

local operators will depend on the state only if the observation is made in the region where

the state is localized. However, as shown by Knight, no finite superposition of N -particle

states can be strictly localized. Some researchers have adopted the view that the notion of

strict localizability is therefore too strong, and suggested that it should be relaxed by allow-

ing for asymptotic localization, implemented by exponential fall-offs out of the localization

region. This was called essential localization and proposed as a criterion for deciding whether

a QFT could describe particles [174].

Although the results and theorems discussed above are well-understood mathematic-

ally, they nevertheless remain puzzling from a physical point of view, as they indicate that

the quanta of QFT are not, at the fundamental level, particles in any common sense of the

word. The situation is further complicated when we consider quantum fields in curved

spacetimes, or in the presence of an external field, where there is, in general, no well-defined

notion of a particle. This is the well-known particle number ambiguity, which have led some

researchers to claim that the notion of particle is ultimately not a useful concept. For ex-

ample, in his book [165], Wald writes:
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“Indeed, I view the lack of an algorithm for defining a preferred notion of ‘particles’ in

QFT in curved spacetime to be closely analogous to the lack of an algorithm for defining

a preferred system of coordinates in classical general relativity. (Readers familiar only

with presentations of special relativity based on the use of global coordinates might well

find this fact to be alarming.) In both cases, the lack of an algorithm does not, by itself,

pose any difficulty for the formulation of the theory.” R. Wald

We shall not be concerned here with the usefulness of the particle concept in QFT. We will

rather make practical use of this ambiguity to provide a non-standard quantization proced-

ure yielding a QFT which, by construction, contains strictly localized one-particle states.

Our approach can be viewed as a modification and further elaboration on a previous

work by Colosi and Rovelli [317]. Instead of quantizing the field using the standard station-

ary modes, we employ non-stationary modes which are, together with their time-derivatives,

completely localized within a region of space at some arbitrary chosen time. These modes

then evolve freely and spread out to become completely de-localized. The associated cre-

ation and annihilation operators can then be used to construct a local Fock space FL which

is distinct from the Fock space FG associated with the standard quantization based on the

global (i.e. non-localizable) stationary modes.

The local quantization brings along a notion of strictly localized particle states which means

that one or more assumptions of the theorems and results discussed above do not hold in

our construction. Intriguingly, the local Fock representation of the CCR can be shown to

be unitarily inequivalent to the global Fock representation. This could be taken as an indica-

tion that the local quantization, and the associated localized particle states, are problematic.

However, they yield a self-consistent QFT with well-defined state evolution and quanta hav-

ing a well-defined energy expectation value after the relevant local vacuum energy has been

subtracted.

This chapter is organized as follows. Section 13.2 serves to fix notation and conven-

tions as well as to provide the basic background material. In particular, we make explicit

the arbitrariness of the choice of a complete set of orthonormal modes for the quantization

procedure. In Section 13.3 we briefly discuss the standard quantization based on station-

ary modes yielding the standard Fock space FG. We then discuss the relationship between

quantum theories obtained by different choices of modes and provide a sufficient condition

for unitary inequivalence. In Section 13.4 a new set of local modes is introduced in order

to construct the local Fock space FL. Later, in Section 13.5, we prove that the local and the

global representations, are unitarily inequivalent. In Section 13.6 we show the local one-

particle states are strictly localized and evolve causally. We also prove that the Hamiltonian
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can be regularized by subtraction of the local vacuum energy. By showing in Section 13.7

that the local creators and annihilators are well-defined operators in the global Fock space

FG, we end up with a mathematical toolbox enabling us to analyse and characterize states

in FG. We later check the properties of the vacuum in terms of local number operators. We

exhibit the expectation values of the local number operators and quantify their correlations

between the two regions. We also introduce a set of quasi-local states on FG. In the section

13.8 we study the properties of these quasi-local states, including the positivity of energy

and their failure to be strictly localized, while comparing them to local and global states.

Then we discuss the possibility of quantum steering using the vacuum and how it relates

to the Reeh-Schlieder theorem. We end up with an outline of future extensions of this work

and a summary of the conclusions.

13.2 Background material, notation, and conventions

In this section we shall review some background material while fixing notations and con-

ventions used throughout this chapter.

13.2.1 Classical scalar field

Consider a free real scalar field φ(x, t) in a one dimensional cavity of size R. Varying the

Klein-Gordon action

S =
1

2

∫
dx
(
ηµν∂µφ∂νφ− µ2φ2

)
, (13.2.1)

and imposing Dirichlet boundary conditions φ(0, t) = φ(R, t) = 0, we obtain the Klein-

Gordon equation

∂µ∂
µφ+ µ2φ = (2 + µ2)φ(x, t) = 0, (13.2.2)

where we have put ~ = c = 1 and ηµν = diag(+1,−1). The linearity of the equation implies

that the space of solutions forms a vector space S.

13.2.2 Klein-Gordon inner product

The classical field is throughout this chapter taken to be real valued φ(x, t) : [0, R] × R →
R. Nevertheless, at the QFT level, complex valued solutions φ : [0, R] × R → C occur

naturally and describe one-particle states. The vector space SC of complex valued solutions
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of (13.2.2) is equipped with a sesqui-linear (pseudo) inner product called the Klein-Gordon

inner product:

(φ1|φ2) = i

∫ R

0
dxφ∗1(x, t)

↔
∂ tφ2(x, t) = i

∫ R

0
dx(φ∗1(x, t)φ̇2(x, t)− φ̇∗1(x, t)φ2(x, t)), (13.2.3)

with˙≡ ∂t. The quantity (φ1|φ2) is conserved in time only if φ1 and φ2 are both solutions and

subject to the same boundary conditions, i.e. φ1, φ2 ∈ SC. We note that the Klein-Gordon

inner product is not positively definite on SC. Thus, although SC is a vector space, it is not a

Hilbert space. In fact, the Klein-Gordon product partitions the solutions space SC into three

subsets of solutions:

φ ∈ SC
+ ⇒ (φ|φ) > 0,

φ ∈ SC
− ⇒ (φ|φ) < 0,

φ ∈ SC
0 ⇒ (φ|φ) = 0,

(13.2.4)

corresponding to solutions with positive, negative, and zero Klein-Gordon norm. Real-

valued solutions are members of SC
0 . Moreover, neither of the three subsets SC

+, SC
−, and

SC
0 form vector spaces, let alone Hilbert spaces.

13.2.3 Mode bases and the one-particle Hilbert space

We can isolate a one-particle Hilbert space by introducing a complete and orthonormal basis,

{fm(x, t), f∗m(x, t)}withm ∈ N+, of the vector space SC.2 We will require all fm(x, t) to have

positive norm, which implies that the complex conjugate ones f∗m(x, t) have negative norm.

The orthonormality conditions read

(fm|fn) = δmn, (f∗m|f∗n) = −δmn, (f∗m|fn) = 0. (13.2.5)

A set of modes form a complete set if for any solution φ(x, t) ∈ SC we have the following

identity

φ(x, t) =
∑
m

(fm|φ)fm(x, t)− (f∗m|φ)f∗m(x, t), (13.2.6)

up to a zero measure set of points x ∈ [0, R]. Writing out this identity using the definition of

the Klein-Gordon inner product (13.2.3) yields

φ(x, t) = i

∫
dx′
∑
m

(
f∗m(x′, t)fm(x, t)− fm(x′, t)f∗m(x, t)

)
φ̇(x′, t)

2The corresponding complex structure takes the form J = i
(∑

N |fm)(fm|+ |f∗m)(f∗m|
)
.
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−
(
ḟ∗m(x′, t)fm(x, t)− ḟm(x′, t)f∗m(x, t)

)
φ(x′, t). (13.2.7)

Since the Klein-Gordon equation is a second-order partial differential equation, φ(x′, t) and

φ̇(x′, t) are independently specifiable. Thus, for the identity to hold for any solution φ, and

at any time t, we deduce the following completeness relations

0 =
∑
m

f∗m(x′, t)fm(x, t)− fm(x′, t)f∗m(x, t),

δ(x− x′) = i
∑
m

ḟm(x′, t)f∗m(x, t)− ḟ∗m(x′, t)fm(x, t). (13.2.8)

If we restrict ourselves to real fields, any such a field φ(x, t) can be expanded as

φ(x, t) =
∑

fm(x, t)am + f∗m(x, t)a∗m, (13.2.9)

where am = (fm|φ) are complex numbers and a∗m = −(f∗m|φ), the complex conjugates of am.

The Hilbert space of one-particle states H is then defined to be the vector space spanned

by the positive norm modes fm, i.e.

H = span(fm). (13.2.10)

The Klein-Gordon product, when restricted to the subspace H ⊂ SC, is by construction a

positive definite sesqui-linear product. Therefore, H is a Hilbert space. In general H will

depend on the choice of basis {fm, f∗m} as defined in (13.2.10), leading to the well-known

particle number ambiguity in QFT [164].

13.2.4 Dirac notation

To keep notation tidy and transparent it will be useful to introduce a Dirac notation to denote

the vectors of SC. To that end we make the identification φ(x, t) ∼ |φ) ∈ SC. We will also

consider the dual space SC∗; the vector space of linear maps m : SC → C. The Klein-

Gordon product (·|·) → C associates any vector |φ) ∈ SC to a member of the dual vector

space through (φ|·) ∈ SC∗ and so we will write (φ| ∈ SC∗. In this notation the completeness

relations (13.2.8) take the succinct form∑
m

|fm)(fm| − |f∗m)(f∗m| = 1, (13.2.11)

where 1 denotes the identity operator on the vector space of solutions SC. Note that we use

‘round’ brackets |φ) for vectors in SC. In contrast we will use the standard brackets |ψ〉 to

denote states of the corresponding QFT to which we now turn.
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13.2.5 Quantization

In order to quantize the real-valued classical field φ(x, t) we first perform the Legendre

transformation, which yields the Hamiltonian and canonical momenta

H =

∫
dx

1

2

[
π2 + (∇φ)2 + µ2φ2

]
, π = φ̇. (13.2.12)

Standard Dirac quantization now requires us to turn φ and π into operators φ̂ and π̂, satis-

fying equal-time canonical commutation relations

[φ̂(x, t), π̂(y, t)] = iδ(x− y), [φ̂(x, t), φ̂(y, t)] = 0, [π̂(x, t), π̂(y, t)] = 0. (13.2.13)

For notational convenience and since no confusion arises, we will refer to these operators

from now on as φ and π, with the hats ‘ˆ’ omitted.

In order to provide a Fock representation of the CCR (13.2.13) we expand the field in

some complete and orthonormal basis {fm, f∗m} and write

φ(x, t) =
∑
m

fm(x, t)am + f∗m(x, t)a†m,

π(x, t) = φ̇(x, t) =
∑
m

ḟm(x, t)am + ḟ∗m(x, t)a†m, (13.2.14)

where ḟm ≡ ∂tfm, and am and a†m have been promoted into operators. If the modes {fm, f∗m}
satisfy the (second of the) completeness relations (13.2.8) then the following standard com-

mutator algebra of creation and annihilation operators

[am, a
†
n] = δmn, [a†m, a

†
n] = 0, [am, an] = 0, (13.2.15)

ensures that we satisfy (13.2.13). As usual, we will define the vacuum state |0〉 to be the state

annihilated by all operators am, i.e.

am|0〉 = 0 ∀m ∈ N+. (13.2.16)

A complete and orthonormal set of basis vectors |n1, n2, . . . 〉 of the corresponding Fock space

F is obtained by repeated application of the creation operators on the vacuum state:

|n1, n2, . . . 〉 =
∏
m

(a†m)nm√
nm!

|0〉, (13.2.17)

where the total number of particles in each basis state is required to be finite,
∑

k nk < ∞,

ensuring that F is a separable Hilbert space [179].

181



CHAPTER 13. LOCAL QUANTA

F is, as spanned by this basis, nothing but the symmetrized Fock space associated with

the bosonic one-particle Hilbert space H, i.e.

F(H) =
∞⊕
n=0

n⊗
S
H = C⊕ H⊕ (H⊗S H)⊕ . . . . (13.2.18)

Here we note that the one-particle subspace spanned by the states |1m〉 ≡ a†m|0〉 is indeed

the same as H, or explicitly fm(x, t) = 〈0|φ(x, t)|1m〉 [318].

13.3 Non-uniqueness of the quantization procedure

In the previous section we described how to quantize a classical real-valued Klein-Gordon

field, and deliberately kept the choice of orthonormal modes {fk, f∗k} unspecified. Although

this choice does not affect the classical field theory the situation is different at the QFT level.

In fact, different choices of modes may lead to unitarily inequivalent Fock representations.

A well-known example in this regard is of course the Fulling-Rindler quantization [172].

Examples of a different kind are given in [173]. By the Stone-von-Neumann theorem [319]

this is something that can happen only for systems with infinitely many degrees of freedom,

which is precisely the case of QFT [320].

13.3.1 Standard (global) quantization

The standard set of complete and orthonormal modes for a quantum field in a cavity is given

by the normal modes

UN (x, t) = UN (x)e−iΩN t =
1√
RΩN

sin
πNx

R
e−iΩN t, U∗N (x, t) = UN (x)e+iΩN t, (13.3.1)

with Ω2
N = π2N2

R2 + µ2. We note that {UN , U∗N} are all stationary solutions with the time

dependence confined to a complex phase e±iΩN t. By computing the Klein-Gordon inner

products, e.g. (UN |UM ), it is easily checked that these modes satisfy the orthogonality con-

ditions (13.2.5). That they form a complete set of modes, and so satisfy the completeness

relations (13.2.8), follows from the fact that they are stationary: the first of the completeness

relations is identically satisfied, while the second one is satisfied because of the identity of

Fourier analysis

∑
N

2

R
sin

Nπx

R
sin

Nπx′

R
= δ(x− x′). (13.3.2)

Thus we have:
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∑
N

|UN )(UN | − |U∗N )(U∗N | = 1. (13.3.3)

With this choice of modes, the field operator φ and its conjugate momentum π take the

form

φ(x, t) =
∑
N

UN (x, t)AN + U∗N (x, t)A†N ,

π(x, t) =
∑
N

−iΩN

(
UN (x, t)AN − U∗N (x, t)A†N

)
. (13.3.4)

Now, by making use of the commutation relations (13.2.15), a very simple expression of the

(regularized) Hamiltonian operator can be obtained

HG = H − 〈0G|H|0G〉 =
∑
N

ΩNA
†
NAN , (13.3.5)

where the infinite vacuum energy 〈0G|H|0G〉 =
∑

N
1
2ΩN has been removed. The state |0G〉

annihilated by all AN , will be referred to hereafter as the global vacuum. The basis vectors of

the corresponding global Fock space, denoted by FG, are then

|n1, n2, . . . 〉 =
∏
N

(A†N )nN√
nN !

|0〉, (13.3.6)

and correspond to energy eigenstates of the Hamiltonian HG. Needless to say, the useful-

ness of the global modes (13.3.1) stems from the fact that they diagonalize the Hamiltonian

operator.

We call the basis (13.3.1) a global basis, since no state in the corresponding one-particle

Hilbert space HG = span(UN ) can be fully contained within a subregion of [0, R] for any

arbitrarily small time interval ∆t. As follows from a theorem by Hegerfeldt [292], there is

no state such that φ(x, τ) = φ̇(x, τ) = 0 for all r < x < R at any time instant t = τ . Instead,

all states in HG have, at almost all time, support in the entire cavity, i.e. they are global.

As a matter of fact, the non-localizability of one-particle states in Minkowski spacetime is

well-known and it has been noted and widely studied in several works, e.g. [294, 296, 312].

13.3.2 Positive norm vs positive frequency

It is important to stress that in the standard global quantization the positive (negative) norm

modes coincide with positive (negative) frequency modes; two conceptually distinct notions,

which should not be confused. In fact, what is important for the quantization procedure and

the construction of a Fock space is not the partitioning of modes into positive and negative
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frequencies, but rather the partitioning into positive and negative norm modes. The latter

notion does not require the basic field equations to admit symmetry under time translations

but generalizes straightforwardly to non-stationary equations such as a quantum field in a

time-dependent spacetime, or in the presence of a varying external field. This is so since

the Klein-Gordon inner product, which defines the partitioning into positive and negative

norm solutions, remains well defined also in these situations.

We shall exploit this fact in the next section.

13.4 Quantization based on local non-stationary modes

The elementary excitations of the field, defined by the Fock quantization described in Sec-

tion 13.3.1, consist of global modes which are also stationary. As already mentioned before,

using only positive frequencies it is not possible to construct wave packets that are com-

pletely localized within a subregion R ⊂ [0, R] of the cavity in the sense that φ(x, t) =

φ̇(x, t) = 0 if x /∈ R. This feature is a consequence of Hegerfeldt’s theorem [292]. Forcing

φ = 0 outside the region R implies a non-zero φ̇ outside the subregion resulting in a wave-

packet that at an infinitesimal time later would become non-zero almost everywhere outside

the subregion of localization. For such a case, the Hamiltonian density would be non-zero

outside the subregion, and in this sense, states in HG cannot be localized.

The standard quantization of a free field relies on global non-localized excitations. Given

the freedom in the choice of modes when quantizing a field (see Section 13.2.5) it is suggest-

ive to try, alternatively, to quantize the scalar field using modes representing local excita-

tions. Such an excitation would be, at some instant t = τ , localized and hereafter free to

evolve and causally spread out.

These local modes can then be used to find a Fock representation of the CCR as outlined

previously, and a ‘local’ Fock space FL which hopefully admits strictly localized one-particle

states. Nevertheless, as will be demonstrated in Section 13.5, the local Fock representation

will turn out to be unitarily inequivalent to the global one.
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a b

Figure 13.1: a) Simple scheme for quantization in a cavity. Global modes are used to define the one-particle

Hilbert space. b) The local modes (defined by imagining an instant partitioning of the cavity), can be used to

define a local one-excitation space. They form a complete set of modes, which can expand the global modes

almost everywhere. In particular we see in the figure how a decomposition in local modes (up to a cutoff)

would look for a global mode N = 1 at t = 0.

13.4.1 Defining a new set of local modes

In order to motivate the form of the local modes we consider what happens if we place a

perfect mirror at x = r, imposing a Dirichlet boundary condition at that point, φ(x = r, t) =

0, ∀t ∈ R. Mathematically speaking we now have two distinct cavities, each with a quantum

field. The complete set of orthonormal modes, {vl(x, t), v∗l (x, t)} and {v̄l(x, t), v̄∗l (x, t)} for

the left and right cavities respectively, are taken to be the usual stationary modes

vl(x, t) =
1√
rωl

sin
lπx

r
e−iωlt, v∗l (x, t) =

1√
rωl

sin
lπx

r
e+iωlt,

v̄l(x, t) =
1√
r̄ω̄l

sin
lπ(x− r)

r̄
e−iωlt, v̄∗l (x, t) =

1√
rω̄l

sin
lπ(x− r)

r̄
e+iω̄lt, (13.4.1)

where ω2
l = π2l2

r2 + µ2, and ω̄2
l = π2l2

r̄2 + µ2, with r̄ = R − r. We now quantize the two sys-

tems yielding two quantum fields in two distinct cavities. The Fock spaces of the quantum

excitations for each cavity are, by construction, localized within [0, r] and [r,R], respectively.

We could now try to analyse the quantum field in the entire cavity [0, R] using such local

excitations. It is clear that the introduction of a mirror at x = r necessarily changes the

physical conditions and we therefore are no longer dealing with the same physical system,

i.e. the original cavity in [0, R]. At the mathematical level, the introduction of the Dirichlet

boundary condition changes the solution space to something different than SC. Specifically,

the modes {vl(x, t), v∗l (x, t)} and {v̄l(x, t), v̄∗l (x, t)} no longer form a basis for SC. For this

reason, modes of this type are not appropriate for quantizing the field of the full cavity [0, R].

The remedy, however, is simple: instead we will use the local modes (13.4.1) to define the

Cauchy initial conditions. Although we could take modes well localized at different moments

in time, we shall only consider here, for simplicity, modes {ul, u∗l } and {ūl, ū∗l } localized at

time t = 0 . These modes are then free to spread out over the entire box [0, R] with no
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Dirichlet boundary condition imposed at x = r. This guarantees that they are still members

of the complex solution space, i.e. ul, u∗l , ūl, ū
∗
l ∈ SC.

In order to mimic the local modes we simply read off the initial conditions from the

modes (13.4.1) evaluated at t = 0. This yields,

ul(x, t = 0) =
θ(r − x)√

rωl
sin

lπx

r
= χl(x), u̇l(x, t = 0) = −iωlχl(x),

ūl(x, t = 0) =
θ(x− r)√

r̄ω̄l
sin

lπ(x− r)
r̄

= χ̄l(x), ˙̄ul(x, t = 0) = −iω̄lχ̄l(x). (13.4.2)

Before we determine the form of the local modes {ul(x, t), u∗l (x, t)} and {ūl(x, t), ū∗l (x, t)}
for an arbitrary time t, i.e. solve the Cauchy problem, we should make sure that they do in-

deed provide a complete and orthonormal basis for the complex solutions space SC. Indeed,

by explicit calculation (conveniently done at the specific time t = 0) we can verify that

(um|ul) = δml, (u∗m|u∗l ) = −δml, (ū∗m|ū∗l ) = −δml, (ūm|ū) = δml. (13.4.3)

That the modes form a complete set of solutions for SC can be seen as follows. First

we note that at time t = 0 the modes coincide with the Fourier basis on [0, r] and [r,R].

By Carleson’s theorem of Fourier analysis [321] we have pointwise convergence for almost

all points x ∈ [0, R], i.e. we have convergence in L2([0, R],C) norm.3 This means that

we can generate any initial conditions at t = 0 (up to equivalence in L2([0, R],C) norm)

and thus any solution of SC (Check Figure 13.1 for an illustration). By relating the local

modes to the global ones through the Bogoliobov transformations and using the well-known

completeness properties for the latter, one can also show that the local modes satisfy (13.2.8)

for an arbitrary time t. Hence, in Dirac notation we have∑
l

|ul)(ul|+ |ūl)(ūl| − |u∗l )(u∗l | − |ū∗l )(ū∗l | = 1. (13.4.4)

13.4.2 Bogoliubov coefficients and evolution

In order to obtain the modes um(x, t) and ūm(x, t) for any time t we simply make use of the

completeness property (13.3.2):

|um) =

(∑
N

|UN )(UN | − |U∗N )(U∗N |
)
|um) =

∑
N

(UN |um)|UN )− (U∗N |um)|U∗N ),

|ūm) =

(∑
N

|UN )(UN | − |U∗N )(U∗N |
)
|ūm) =

∑
N

(UN |ūm)|UN )− (U∗N |ūm)|U∗N ), (13.4.5)

3We note that if the field φ is expanded using the local modes, its value in that mode basis at x = r at time

t = 0 is identically zero. Thus, we cannot expect to have convergence at x = r. Nevertheless, for almost all

other points in [0, R] we will have pointwise convergence.
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or equivalently

um(x, t) =
∑
N

αmNUN (x, t) + βmNU
∗
N (x, t) =

∑
N

(UN |um)UN (x, t)− (U∗N |um)U∗N (x, t),

ūm(x, t) =
∑
N

ᾱmNUN (x, t) + β̄mNU
∗
N (x, t) =

∑
N

(UN |ūm)UN (x, t)− (U∗N |ūm)U∗N (x, t).

(13.4.6)

The Bogoliubov coefficients, αmN = (UN |um), βmN = −(U∗N |um), etc., are independent of

which time twe calculate them. Indeed, they can be conveniently calculated by easily taking

t = 0 and using the relations (13.4.6). A straightforward calculation then yields

αmN = (UN |um) = (ΩN + ωm)VmN (13.4.7a)

βmN = −(U∗N |um)= (ΩN − ωm)VmN (13.4.7b)

ᾱmN = (UN |ūm) = (ΩN + ωm)V̄mN (13.4.7c)

β̄mN = −(U∗N |ūm)= (ΩN − ωm)V̄mN (13.4.7d)

where

VmN =

∫ R

0
dxUN (x)χm(x) =

mπ
r (−1)m√

RrΩNωm(Ω2
N − ω2

m)
sin

Nπr

R
(13.4.8)

V̄mN =

∫ R

0
dxUN (x)χ̄m(x) =

−mπ
r̄√

Rr̄ΩN ω̄m(Ω2
N − ω̄2

m)
sin

Nπr

R
(13.4.9)

Using (13.4.6) we can see that the local modes at any time t are given by:

um(x, t) =
∑
N

(
(ωm + ΩN )e−iΩN t − (ωm − ΩN )eiΩN t

)
VmNUN (x),

ūm(x, t) =
∑
N

(
(ω̄m + ΩN )e−iΩN t − (ω̄m − ΩN )eiΩN t

)
V̄mNUN (x). (13.4.10)

Although it is not manifest from the form of the mode expansions (13.4.10), at t = 0 the local

modes um and ūm and their time derivatives u̇m and ˙̄um are zero outside their respective

region of localization. Furthermore, the local modes uk(x, t) and ūk(x, t) and their time-

derivatives spread out causally from the initial region . This is illustrated for the first-excited

mode um=1 in Figure 13.2.
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Figure 13.2: Evolution of the first-excited local mode um=1(x, t) for different times t = 0, 0.1R . . . 0.5R. The

mode is localized at t=0 in R = [0, 0.21R] within a cavity of size R . The blue dashed line represents the light-

cone. a) Massless case. b) Same but with µ = 1/r = 1/(0.21R). c) Same but with µ = 5/r = 5/(0.21R). We can

verify that, after the localization event in R at t = 0 the elementary excitation causally spreads out, and so does its

time derivative u̇k=1(x, t). The mixing of both positive and negative global frequencies has allowed us to build

up a localized mode avoiding the non-causal infinite tails that Hegerfeldt’s theorem would imply.

13.4.3 Local quantization

We now turn to the quantization using these local modes. First we expand the field operator

φ(x, t) using the local modes

φ(x, t) =
∑
m

um(x, t)am + ūm(x, t)ām + u∗m(x, t)a†m + ū∗m(x, t)ā†m. (13.4.11)

The expressions relating the local and global annihilators are given by

am =
∑
N

(um|UN )AN + (um|U∗N )A†N , a†m =
∑
N

(UN |um)A†N + (U∗N |um)AN ,

ām =
∑
N

(ūm|UN )AN + (ūm|U∗N )A†N , ā†m =
∑
N

(UN |ūm)A†N + (U∗N |ūm)AN . (13.4.12)

The commutation relations

[am, an] = 0, [am, a
†
n] = δmn, [ām, ān] = 0, [ām, ā

†
n] = δmn, [am, ān] = 0, [am, ā

†
n] = 0,

and their Hermitian conjugates ensure that the canonical commutation relations (13.2.13)

are satisfied. Besides, the local vacuum state |0L〉 is defined as the state annihilated by both

am and ām

am|0L〉 = ām|0L〉 = 0 ∀m ∈ N+. (13.4.13)

The orthonormal basis vectors are given, as usual, by the repeated application of the creation

operators

|n1, n2, . . . 〉 =
∏
m

(a†m)nm√
nm!

|0〉L, |n̄1, n̄2, . . . 〉 =
∏
m

(ā†m)n̄m√
n̄m!

|0〉L, (13.4.14)
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We note that the creator and annihilation operators corresponding to different subregions

necessarily commute. From this we see that the Fock space built from local modes has a

tensor product structure

FL = f⊗ f̄, (13.4.15)

where f and f̄ are Fock spaces associated with the two regions [0, r] and [r,R]. These Fock

spaces are defined in the usual fashion by first defining vacuum states |0〉 ∈ f and |0̄〉 ∈ f̄

and then the basis states by repeated application of the creators a†m and ā†m. For example,

the local vacuum for the whole cavity is then the tensor product |0L〉 = |0〉⊗ |0̄〉 and product

states can be written as |ψ, φ〉 = |ψ〉 ⊗ |φ〉.
Notice that |0L〉 is not a standard vacuum [179]. Indeed, |0L〉 is neither separating nor

cyclic with respect to any local algebra. It is not separating since al|0L〉 = 0 does not imply

al = 0. It is not cyclic since it is a product state.

13.5 Unitary inequivalence

So far we have shown that a quantization based on a different choice of modes, i.e. the local

modes, yields a different Fock representation to the one based on stationary global modes.

However, as we shall now see, this local Fock representation is not unitarily related to the

standard global one.

13.5.1 The unitary inequivalence of global and local representations

By the sufficient condition for unitary inequivalence stated in Section 2.2, all we have to do

is to demonstrate that the sum

∑
m

〈0G|nm + n̄m|0G〉 =
∑
N

〈0L|NN |0L〉 =
∑
m,N

|(U∗N |um)|2 + |(U∗N |ūm)|2 , (13.5.1)

diverges. To that end it is enough to establish that (13.5.1) diverges for each value ofN ∈ N+.

Explicitly evaluating the sum yields

∑
m

|(U∗N |um)|2 + |(U∗N |ūm)|2 =
∑
m

∣∣∣∣∣ sin Nπr
R√

RrΩNωm

mπ
r

ΩN + ωm

∣∣∣∣∣
2

+

∣∣∣∣∣ sin Nπr
R√

Rr̄ΩN ω̄m

mπ
r̄

ΩN + ω̄m

∣∣∣∣∣
2

.

(13.5.2)

We now proceed by making use of the integral test for convergence: the sum diverges iff the

corresponding integral diverges. The integral is obtained by simply replacing the index m
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with a continuous variable x, i.e.

∫ ∞
1
dx

 sin2 Nπr
R

RrΩN

√
π2x2

r2 + µ2

x2π2

r2(
ΩN +

√
π2x2

r2 + µ2

)2 +
sin2 Nπr

R

RrΩN

√
π2x2

r̄2 + µ2

x2π2

r̄2(
ΩN +

√
π2x2

r̄2 + µ2

)2

.
This integrand has the asymptotic behavior ∼ 1/x and therefore (13.5.2) diverges, which

implies that ∑
N

〈0L|NN |0L〉 = 〈0L|N |0L〉 =∞. (13.5.3)

13.5.2 Analysis of the divergences

In order to proceed, it is important to understand why the sum (13.5.1) diverges. As shown

in the previous section this behavior comes from summing over m and not N . Specifically,

it is easy to show that although summing over m yields an infinite result

〈0L|NN |0L〉 =
∑
m

|(U∗N |um)|2 + |(U∗N |ūm)|2 =∞. (13.5.4)

The same is not true when summing only over N , i.e. we have

〈0G|nm + n̄m|0G〉 =
∑
N

|(U∗N |um)|2 + |(U∗N |ūm)|2 <∞. (13.5.5)

Thus, the global number operators NN are ill defined in the local Fock space FL, which also

implies that AN and A†N are not well-defined operators in FL. Nevertheless, as we shall see

in Section 13.7.1, it will turn out that the local number operators nm and n̄m are perfectly well

defined in the global Fock space FG. This mathematical asymmetry could be taken as a sign

that the global Fock space FG is in this respect preferred. However, as we shall see below

in Section 13.6.1, the canonical Hamiltonian (13.2.12) can be regularized by subtracting the

relevant infinite (local) vacuum energy thus rendering the energy expectation values of all

basis states in FL finite and well-defined. Furthermore, we will see in Section 13.6.3 that

states in FL can be consistently evolved. In this sense, it seems that the unitarily inequivalent

global and local quantum field theories are both possible quantizations of the real Klein-

Gordon field in the one-dimensional box.

13.6 Strictly localized one-particle states and their causal evolu-

tion

In this section we shall see that the local quantization leads to a mathematically meaningful

notion of local particles. We show that these states are strictly localized and that the evolution
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is causal.

13.6.1 Local quanta and their average energy

The canonical Hamiltonian H defined by equation (13.2.12) contains an infinite vacuum

energy, which is regularized by subtraction, i.e.

HG = H − 〈0G|H|0G〉. (13.6.1)

This regularized Hamiltonian HG defines a notion of energy of states in the global Fock

space FG. 4

We now turn to the question of whether we can define a meaningful notion of energy in

the local Fock space FL. A good guess is that the regularized Hamiltonian

HL = H − 〈0L|H|0L〉, (13.6.2)

obtained by subtracting the infinite energy of the local vacuum, is well defined in the local

Fock space FL. Let us see how this works out. We first define E as the expectation value of

HG on the local vacuum, i.e.

E ≡ 〈0L|HG|0L〉. (13.6.3)

Next we compute the energy expectation value of a local n-particle state 〈ml, 0̄|HG|ml, 0̄〉.
Substituting the Bogoliobov relations

AN =
∑
l

(UN |ul)al + (UN |u∗l )a†l + (UN |ūl)āl + (UN |ū∗l )ā†l ,

A†N =
∑
l

(ul|UN )a†l + (u∗l |UN )al + (ūl|UN )ā†l + (ū∗l |UN )āl, (13.6.4)

into the definition of HG we obtain

〈ml, 0̄|HG|ml, 0̄〉 = ml

∑
N

ΩN

(
|(ul|UN )|2 + |(u∗l |UN )|2

)
+ E .

For ml = 0 we would have 〈0L|HG|0L〉 = E and therefore we can write

〈ml, 0̄|HL|ml, 0̄〉 = ml

∑
N

ΩN

(
|(ul|UN )|2 + |(u∗l |UN )|2

)
. (13.6.5)

4Although the global Hamiltonian HG is an operator in FG, some states in FG may lie outside its domain

and thus have an infinite/ill-defined average energy, being for this reason unphysical.
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From here we see that the local n-particle state |ml, 0̄〉 contains ml units of quanta with the

manifestly positive average energy

εl =
∑
N

ΩN

(
|(ul|UN )|2 + |(u∗l |UN )|2

)
. (13.6.6)

A simple integral test of convergence reveals that ε is indeed convergent (the corresponding

integrand has the asymptotic behavior ∼ sin2 x
x2 ). Thus, the regularized Hamiltonian HL

yields finite expectation values for all n-particle particle states |ml, 0̄〉. Repeating the above

calculations we can also see that the n-particle states |0, n̄l〉 have finite energy and so do all

basis states |nl, n̄m〉. Thus, all basis states of FL and finite superpositions of them will have

finite average energy.

13.6.2 Strict localization on the local vacuum

We now proceed to construct strictly localized one-particle states in FL. As briefly mentioned

in the introduction, a state |ψ〉 is said to be strictly localized [294] within a region of space R if

the expectation value of any local operator O(x) outside that region (i.e. x /∈ R) is identical

to that of the vacuum, i.e.

〈ψ|O(x)|ψ〉 = 〈0|O(x)|0〉 ifx /∈ R.

Since we have based our local quantization on modes um and ūm which are localized within

the regions [0, r] and [r,R] it is reasonable to expect that the one-particle excitation

|1m, 0̄〉 ≡ a†m|0L〉 = a†m|0, 0̄〉,

is strictly localized within [0, r].

Indeed this is the case. The only operators we can build outside the region [0, r], i.e. in

[r,R], are expansions in the annihilators and creators ām and ā†m, and these all commute

with a†m. Hence, we have

〈ψ|O(ām, ā
†
m)|ψ〉 = 〈0L|amO(ām, ā

†
m)a†m|0L〉 = 〈0L|O(ām, ā

†
m)ama

†
m|0L〉 = 〈0L|O(ām, ā

†
m)|0L〉,

verifying that the state |1m, 0̄〉 is a strictly localized one-particle state. Clearly, the quant-

ization based on local non-stationary modes provides us with a natural notion of a local

particle within the local QFT. Notice however that the notion of strict localization introduced

by Knight in [294] made use of the Minkowski vacuum based on stationary solutions of the

Klein-Gordon equation. The analogous vacuum state would not be the local vacuum |0L〉,
but rather the global vacuum |0G〉, which is also constructed using stationary modes. As a
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matter of fact, the possibility of strictly localized states in FL has to do with the separability

of |0L〉 = |0〉 ⊗ |0̄〉, a property not shared by |0G〉. Furthermore, local one-particle states do

not belong to the global Fock space FG, which is, as we have shown above, associated with

a Fock representation unitarily inequivalent to the local one. We see here that the possibility

of local particle states is in our construction intimately related to the existence of unitarily

inequivalent representations within QFT.

This construction result should not be considered a mathematical counter-example to

the no-go theorems presented in [53, 294, 300]. Indeed, our system does not exhibit transla-

tional covariance since we are dealing with a finite box with Dirichlet boundary conditions

imposed at the endpoints. It seems nonetheless plausible to us that additional assumptions

might be violated in the limit of an infinite unbounded box admitting translation invariance.

This possibility should be investigated further.

13.6.3 Causal propagation of local states

The evolution of states in FL is defined by the unitary operator UL(t) = exp(−iHLt) which

trivially commutes with HL, implying that the total energy is conserved. We also note that

none of the local n-particle states are eigenstates of HL, in particular not the local vacuum

|0L〉. For this reason it will be interesting to study the evolution of these strictly localized

states and verify whether they propagate causally, or not.

To do this we shall have to introduce a third region [r̃, R] with r̃ > r and the local modes

associated with it. We define these modes to be completely localized within [r̃, R] at a later

moment in time t = τ > 0:

ũl(x, t = τ) =
θ(x− r̃)√

r̃ω̃l
sin

lπ(x− r̃)
R− r̃ = χ̄l(x), ˙̃ul(x, t = 0) = −iω̃lχ̃l(x) ω̃2

l =
π2l2

(R− r̃)2
+ µ2

This defines a new set of creators and annihilators ãl and ã†l related to the global ones as

ãl =
∑
N

(ũl|UN )AN + (ũl|U∗N )A†N ,

ã†l =
∑
N

(UN |ũl)A†N + (U∗N |ũl|)AN . (13.6.7)

The local operators Õ(τ) associated with the region [r̃, R] at time t = τ will be generated by

series expansions in ãl and ã†l .

We can now calculate the commutator [am, ã
†
n] obtaining

[ãn, a
†
m] =

∑
M,N

[
(ũn|UN )AN + (ũn|U∗N )A†N , (UM |um)A†M + (U∗M |um)AM

]
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=
∑
M,N

[
(ũn|UN )(UM |um)[AN , A

†
M ] + (ũn|U∗N )(U∗M |um)[A†N , AM ]

]

= (ũn|
(∑

N

|UN )(UN − |U∗N )(U∗N |
)
|um) = (ũn|um).

An identical calculation yields [ãn, am] = −(ũn|u∗m).

The fact that the local modes propagate causally (see Section 13.4.2) means that (ũn|um)

and (ũn|u∗m) are zero whenever τ < |r − r̃|, which in turn implies that am and a†m commute

with ãn and ã†n. Thus, any local observable Õ(τ) will commute with a†m and am whenever

τ < |r − r̃|, that is, whenever the spacetime regions associated with the operators Õ(τ) and

the pair {am, a†n} are spacelike. This way, micro-causality is built into the construction.

Besides, we have clearly that

〈1m, 0̄|Õ(τ)|1m, 0̄〉 = 〈0L|amÕ(τ)a†m|0L〉 = 〈0L|Õ(τ)ama
†
m|0L〉 = 〈0L|Õ(τ)|0L〉, (13.6.8)

for τ < |r− r̃|, which implies that the local one-particle state |1m, 0〉 propagates causally as it

should. This situation should be contrasted to Knight’s strict localization [294] which would

state

〈0G|amÕ(τ)a†m|0G〉 = 〈0G|Õ(τ)|0G〉, (13.6.9)

which in fact does not hold since, as will become clear below, ama
†
m|0G〉 6= |0G〉.

13.7 Local analysis of the global vacuum

In Section 13.5.2, we pointed to a mathematical asymmetry between the local and global

quantum theories. We saw that, while the global number operators are ill defined in FL,

the case is different for the local number operators as defined in FG. In this section we shall

demonstrate that the local creators and annihilators are indeed well-defined operators in

FG, which will allows us to analyse global states using number operators associated with

the local quantization. In particular, we will examine the spectrum of local particles and

numerically quantify existent space-like correlations of the global vacuum |0G〉.

13.7.1 Local operators in FG

Let us now show that the local creator and annihilators al, a
†
l , āl, and ā†l are well-defined

operators in FG. Here we will prove this for al. The proof is identical for a†l , āl, and ā†l .
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It suffices to show that 〈ψ|a†lNal|ψ〉 <∞ for any basis state |ψ〉 = |n1, n2, . . . 〉 of FG. We

first expand the local annihilator

al =
∑
N

(ul|UN )AN + (ul|U∗N )A†N . (13.7.1)

We have that

al|n1, . . . , nN , . . . 〉 =

(∑
N

(ul|UN )AN + (ul|U∗N )A†N

)
|n1, . . . , nN , . . . 〉

=
∑
N

(ul|UN )
√
nN |n1, . . . , nN − 1, . . . 〉+ (ul|U∗N )

√
nN + 1|n1, . . . , nN + 1, . . . 〉.

Multiplying by the number operator N =
∑

N NN , we obtain

Nal|n1, . . . , nN , . . . 〉 =
∑
N

(ul|UN )
√
nN (n− 1)|n1, . . . , nN − 1, . . . 〉

+ (ul|U∗N )
√
nN + 1(n+ 1)|n1, . . . , nN + 1, . . . 〉, (13.7.2)

where n is the number of particles of the basis state, i.e. N |n1, n2, . . . 〉 ≡ n|n1, n2, . . . 〉.
Sandwiching with 〈n1, . . . , nN , . . . |a†l now gives

〈n1, . . . , nN , . . . |a†lNal|n1, . . . , nN , . . . 〉 =
∑
N

|(ul|UN )|2nN (n− 1) + |(ul|U∗N )|2(nN + 1)(n+ 1).

Since ∑
N

|(ul|UN )|2 <∞,
∑
N

|(ul|U∗N )|2 <∞, (13.7.3)

and given that |n1, n2, . . . 〉 is a basis state of FG (therefore satisfying n =
∑

N nN < ∞), we

see that the action of al on any basis state is not pathological . An analogous demonstration

with minor changes shows that finite expectation values for the global Hamiltonian are also

obtained for these vectors. Thus, since both demonstrations also go through for a†l , āl, and

ā†l , we have shown that the local creators and annihilators are well-defined linear operators

in FG and gi. Nevertheless, as we have stressed above in Section 13.5.2, the situation is not

symmetric since AN and A†N are not well defined in FL.

13.7.2 Local particle spectrum of the global vacuum

The global vacuum is defined to have zero global particles, i.e 〈0G|NN |0G〉 = 0. On the

other hand, the local quantization developed above yields a natural notion of local particle

number nl = a†l al, n̄l = ā†l āl, corresponding to the number of local excitations we have

in the left and right regions of the box, [0, r] and [r,R], respectively. Let us now ask what
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Figure 13.3: Number of local quanta of energy ωl expected value for the global vacuum for different masses

µ = µ̃
R

with µ̃ ∈ (10, 50). The region of localization is taken to be r̃−1 = R/r = π. The inset shows discrete

values in the same interval for the masses. Higher plots correspond to smaller values. The distribution of local

particles in the global vacuum resembles a Planckian spectrum, i.e. a thermal bath of particles.

the distribution of local particles is for the global vacuum. To see this we compute the

expectation values

〈0G|nl|0G〉 = 〈0G|a†l al|0G〉 =
∑
N

l2π2

Rr3ΩNωl

1

(ΩN + ωl)2
sin2 πNr

R
. (13.7.4)

These depend on three distinct quantities: the size of the cavity R, the size of the region of

localization r < R, and the mass µ. We could plot the expectation values for different values

of these three magnitudes. However, it is more adequate to vary dimensionless quantities,

e.g. r/R, rµ, and Rµ. We might as well fix R = 1, ending up with two independent dimen-

sionless quantities r̃ = r/R and µ̃ = Rµ. Figures 13.3 and 13.4 show the dependence of the

expectation values (13.7.4) on these two variables.

In Figure 13.3 we see that when we increase the mass µ we have that

〈0G|nl|0G〉 =
∑
N

|(ul|U∗N )|2 → 0.

In fact, in the large mass limit the coefficients (ul|U∗N ) have the asymptotic behavior ∼ µ−2

while (ul|UN ) converge to a non-zero value. Indeed, it is well known that the Compton

wavelength λC = µ−1 determines how well localized a wave-packet, made out of positive

frequency modes, can be [315, 322, 323]. Thus, in the limit λC → 0, or equivalently µ → ∞,

the β-coefficients (ul|U∗N ) should approach zero.
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Another interesting limit is when r → R, case in which local and global modes converge.

Intuitively we would expect the local description to approach the global one so that the ex-

pectation value of local particles goes to zero (since the global vacuum is defined to have

zero global particles). This is illustrated in Figure 13.4. This intuition can be made mathem-

atically precise by studying the convergence of the operators am → Am as r → R. 5 The

relationship between the operators is given by

al =
∑
N

(ul|UN )AN + (ul|U∗N )A†N , (13.7.5)

where

(ul|UN ) =
1√

RrΩNωl

lπ
r (−1)l

ΩN − ωl
sin

Nπr

R
,

(ul|U∗N ) = − 1√
RrΩNωl

lπ
r (−1)l

ΩN + ωl
sin

Nπr

R
. (13.7.6)

From here it is easy to show that (ul|U∗N ) → 0 and (ul|UN ) → δlN in the limit r → R. It is

now clear that we have convergence of al and Al in the strong operator topology.

It is important to note that because of unitary inequivalence, the total number of local

particles is necessarily infinite, i.e.
∑

m〈0G|nm+n̄m|0G〉 =∞. In fact, even though Bogoliobov

coefficients converge to finite values when r → R, the sum diverges for any r arbitrarily

close to R. This is due to the fact that the sum over m and the limit r → R do not commute,

i.e.

lim
r→R

∑
m

〈0G|nm + n̄m|0G〉 6=
∑
m

lim
r→R
〈0G|nm + n̄m|0G〉 = 0. (13.7.7)

5We note that for any notion of convergence to make mathematical sense, the operators must act in the same

vector space. For example, it is meaningless to claim that ak converges to AN as operators defined in the local

Fock space FL. Indeed, the operatorsAN are not even well defined in FL. Nonetheless, it is meaningful to study

the convergence ak → Ak as operators defined in FG.
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Figure 13.4: Number of particles for the global vacuum for different sizes of the localization region r ∈
(0.25R,R) with fixed R = 1 and λc = R

10
. As expected, when r = R the expectation value of the vacuum

is zero for all modes, since local and global modes are the same.

Another interesting case is the limit r → 0. Inspecting the coefficients reveal that both

(ul|UN ) and (ul|U∗N ) have the asymptotic behavior ∼ r and thus vanish in the limit. How-

ever, the sum
∑

m〈0G|nm|0G〉 approaches a finite non-zero value when r → 0.

13.7.3 Vacuum entanglement

As a second application we will look at vacuum entanglement. We shall study the entangle-

ment between the two regions [0, r] and [r,R] by computing the correlations between local

particle numbers as given by cov(nm, n̄l) defined by

cov(nm, n̄l) ≡ 〈ψ|nmn̄n|ψ〉 − 〈ψ|nm|ψ〉〈ψ|n̄n|ψ〉. (13.7.8)

We note that if we choose |ψ〉 = |0L〉 then cov(nn, n̄m) is identically zero. However, this is

not so for the global vacuum |ψ〉 = |0G〉. The correlations of the global vacuum are more

conveniently characterized by the dimensionless values

corr(nm, n̄n) =
〈0G|nmn̄n|0G〉 − 〈0G|nm|0G〉〈0G|n̄n|0G〉√

〈0G|n2
m|0G〉 − 〈0G|nm|0G〉2

√
〈0|n̄2

n|0G〉 − 〈0G|n̄n|0G〉2

=
cov(nm, n̄n)√

cov(nm, nm)cov(n̄n, n̄n)
, (13.7.9)

which are known as the correlation coefficients.
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Figure 13.5: Values for the dimensionless correlation coefficients corr(nm, n̄n) for (a) a massless field, and (b) a

massive field with µ = 5/r. For both cases the localization region R has a size r = R/π. Notice that instead of

plotting with respect to the mode indexes, we are using the mode frequencies. The green line in figure (b) shows

the points for which ω ' ω̄

From equation (13.4.12) we have

〈0G|nmn̄n|0G〉 = 〈0G|a†mamā†nān|0G〉 =

=
∑
M,N

(U∗M |um)(um|UN )(UN |ūn)(ūn|U∗M ) + (U∗M |um)(um|UN )(UM |ūn)(ūn|U∗N )

+ (U∗M |um)(um|U∗M )(U∗N |ūn)(ūn|U∗N ) (13.7.10)

On the other hand we have that

〈0G|nm|0G〉〈0G|n̄n|0G〉 =
∑
M,P

(U∗M |um)(um|U∗M )(U∗P |ūn)(ūn|U∗P ) (13.7.11)

and thus

〈0G|nmn̄n|0G〉 − 〈0G|nm|0G〉〈0G|n̄n|0G〉 =

=
∑
M,P

(U∗M |um)(um|UP )(UP |ūn)(ūn|U∗M ) + (U∗M |um)(um|UP )(UM |ūn)(ūn|U∗P ) (13.7.12)

and using the computed inner products (13.4.7) and equation (13.7.4) we obtain

corr(nm, n̄n) =

2π4m2n2

R2r3r̄3ωmω̄n

∑
N,P

[
sin2 Nπr

R
ΩNΩP (ΩN+ωm)

sin2 Pπr
R

(ΩNΩP−ω̄2
n)

(ΩP−ωm)(Ω2
N−ω̄2

n)(Ω2
P−ω̄2

n)

]
√∑

l,N
l2π2

Rr3ΩNωl
1

(ΩN+ωl)2 sin2 πNr
R

√∑
l,N

l2π2

Rr̄3ΩN ω̄l
1

(ΩN+ω̄l)2 sin2 πNr̄
R

(13.7.13)
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an expression that can be numerically evaluated, see Figure 13.5.

A first look to the figures 13.5a and 13.5b reveals that high frequency modes are less

correlated than low frequency ones. For small masses (µ � 1/r i.e. λC � r) we observe

that the maximum of correlations corresponds to the smallest possible frequency value π/r

for the localization region (top left corner of figure 13.5a). As the value of the field mass µ

increases, the magnitude of the correlations reduces. This is seen by just directly comparing

the color scales of 13.5a and 13.5b. Also, as the mass grows, the position of the correlation

maximum (ωmax, ω̄max) increases linearly, moving along a line of equal frequencies ω and ω̄.

For big masses (µ� 1/R, i.e. λC � r) this is easier to see. For that case ωmax ' ω̄max ∝ µ, as

can be checked in Fig. 13.6a.

Fig. 13.6b, on the other hand, shows the maximum value of the correlations for increas-

ing values of the mass. For the values considered we can see the existence of a power law

showing that the correlations decrease as corrmax ∝ µ−1.
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Figure 13.6: a) Frequency plot corresponding to the maximum of correlations for highly massive fields (λC < r).

ωmax is shown in grey dots, ω̄max in blue dots. As we can see both values almost coincide. The inset shows the

behavior for small masses. The grey line (solid) corresponds to the minimum frequency value ωmin = π/r, while

the blue line (dashed) corresponds to the minimum ω̄min = π/(R−r). b) Value of the logarithm of the maximum

correlation coefficient versus the logarithm of the mass µr. The slope takes the value -1. The localization region

R has a size r = R/π for both cases (a) and (b).

13.8 Properties of quasi-local states on the global Fock space

As we have seen in Section 13.6.2, the local quantization based on non-stationary modes

yields a natural notion of local one-particle states in FL defined by a†m|0L〉. On the other

hand, since the local creators are well-defined in FG, this suggests a natural class of one-
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particle states a†m|0G〉 that we will call quasi-local states defined in FG. In this section we shall

examine the properties of these states. In particular, their failure to be strictly localized states

is directly related to the Reeh-Schlieder theorem and vacuum entanglement.

13.8.1 Positivity of energy

For historical reasons - coming from the early attempts of interpreting the solutions of

second order Klein-Gordon equation as one-particle wave-functions - it is commonplace

to associate the negative frequency states U∗N with negative energies, and for this reason

to regard them as unphysical states. From that point of view it might seem alarming that

we have constructed our local modes using both positive and negative frequency energy-

eigenstates, i.e. both UM and U∗N . Nonetheless, the problem with negative frequencies is a

problem in that interpretation and not in relativistic QFT. Indeed, when we adopt the per-

spective that relativistic QFT arises from the quantization of a relativistic field, no problems

associated with negative frequencies appear. Instead the frequencies are related to energy

changes associated with the creation or annihilation of individual quanta.

The classical canonical Hamiltonian

H =

∫
dx

1

2
(π2 + (∂xφ)2 + µ2φ2) ≥ 0, (13.8.1)

being a sum of squares, is manifestly positive definite and is thus bounded from below by

zero. As a quantum operator in the corresponding QFT, it is of course ill-defined due to

the infinite vacuum energy. Notwithstanding, the regularized Hamiltonian is a sum of the

positive operators NN , i.e.

HG ≡ H − 〈0G|H|0G〉 =
∑
N

ΩNNN . (13.8.2)

It is thus clear that any state in FG has manifestly positive energy and the problem with

negative energies is thus avoided by viewing the system, to be quantized, as a classical field

rather than a classical relativistic particle [324].

One may be worried that acting with the local creators and annihilators (which were

constructed using both positive and negative frequencies) on the global vacuum |0G〉, one

would obtain unphysical states, perhaps with negative energy. However, as we have demon-

strated, the action of the local creators and annihilators on any state |ψ〉 ∈ FG is well defined.

Since all states in FG have manifestly positive energy expectation value it is clear that no

problems with negative energy arise.

Nevertheless it is instructive to elaborate on this a bit further. To that end let us invest-

igate whether the state |ψl〉 = a†l |0G〉 has negative energy. Calculating explicitly the average
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energy of a state |ψl〉 = a†l |0G〉, we get

〈ψl|HG|ψl〉 =
∑
N

ΩN 〈0G|alNNa
†
l |0G〉 =

∑
M,N,P

ΩN (ul|UM )(UP |ul)〈0G|AMA†NANA
†
P |0G〉

=
∑
N

ΩN (ul|UN )(UN |ul) =
∑
N

ΩN |(UN |ul)|2 > 0, (13.8.3)

verifying that the energy is manifestly positive. To demonstrate that the energy is finite we

first note that al|0G〉 is not yet normalized:

〈ψl|ψl〉 = 〈0G|ala†l |0G〉 = 1 + 〈0G|nl|0G〉 6= 1. (13.8.4)

The normalized state is therefore given by

|ψl〉 =
a†l |0G〉√

1 + 〈0G|nl|0G〉
. (13.8.5)

By inspecting the Bogoliubov coefficients (13.4.7) and making use of the integral test of con-

vergence we see that 〈ψl|HG|ψl〉 < ∞. Hence, we see that the application of the local cre-

ation operator a†k on the global vacuum |0G〉 keeps the state in the global Fock space FG, i.e.

|ψ〉 ∈ FG.

We can also consider the state

|φl〉 =
al|0G〉√
〈0G|nl|0G〉

, (13.8.6)

which is not zero since al contains both AN and A†N , nor does it have less energy than the

global vacuum state. A calculation similar to the one above shows that the energy is mani-

festly positive 〈φ|H|φ〉 > 0. Again by the integral test of convergence we could check that

the state has, in fact, a finite energy expectation value.

13.8.2 Quantum steering and the Reeh-Schlieder theorem

We are now in a position to address the question of whether the normalized state

|ψm〉 =
a†m|0G〉√

1 + 〈0G|nm|0G〉
, (13.8.7)

can be viewed as a strictly localized one-particle state. The associated wave-packet defined

by ψm(x, t) ≡ 〈0G|φ(x, t)|ψm〉 is in fact the positive frequency part of um, defined in (13.4.10).

One might naively suspect that these states should be localized states since they are created

by a local operation on the vacuum state, i.e. |0G〉 → a†m|0G〉. The components of this state in

the global basis (13.3.6) are given by

a†m|0G〉√
1 + 〈0G|nm|0G〉

=

∑
N (UN |um)A†N + (U∗N |um)AN |0G〉√

1 + 〈0G|nm|0G〉
=

∑
N (UN |um)|1N 〉√
1 + 〈0G|nm|0G〉

, (13.8.8)
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which we recognize as a superposition of global one-particle excitations. From an analysis

by Knight [294] showing that no finite superposition of N -particle states can be strictly loc-

alized, we already know that |ψm〉 is not strictly localized. We could stop here, but it is

interesting to gain more understanding why this happens.

To investigate this fact, let us see whether the expectation value 〈ψm|n̄l|ψm〉 is different

from 〈0G|n̄l|0G〉. Computing this difference yields

〈ψm|n̄l|ψm〉 − 〈0G|n̄l|0G〉 =
〈0G|amn̄la†m|0G〉
1 + 〈0G|nm|0G〉

− 〈0G|n̄l|0G〉,

=
〈0G|nmn̄l|0G〉 − 〈0G|n̄l|0G〉〈0G|nm|0G〉

1 + 〈0G|nm|0G〉
∝ corr(nm, n̄l), (13.8.9)

which not only shows that the one-particle state |ψm〉 is not strictly localized, but also tells us

that the reason for it is vacuum entanglement. Indeed, making the replacement |0G〉 → |0L〉
and |ψm〉 → |1m, 0̄〉we have corr(nm, n̄l) = 0 and the above difference disappears.

It may seem puzzling that we can change the expectation values in the region [r,R] by

performing a local operation in [0, r]. Does this not imply the possibility of superluminal sig-

nalling? The answer is no, the reason being that the operation |0G〉 → |ψm〉 is not a unitary

operation on the vacuum state since ama
†
m 6= 1. This local operation does not correspond to

something which can be achieved physically by local manipulations solely in [0, r]. How-

ever, with suitable post-selection, the operation |0G〉 → |ψm〉 could perhaps be implemented,

but only by informing the observer in the region [r,R] which states to post-select. This of

course would require classical communication, limited by the speed of light [325].

We can view this in the context of the Reeh-Schlieder theorem [40]. This theorem states

that by a local non-unitary operation in a finite region in space we can obtain, to arbitrary

precision, any state at a spatially separated region. The theorem does not go through if we

restrict ourselves to local unitary operations.

The situation is different when we replace the global vacuum |0G〉with the local vacuum

|0L〉. As seen in Section 13.6.2 the key difference is that the local vacuum |0L〉 neither cyclic

nor separating, or more simply, it is a product state |0L〉 = |0〉 ⊗ |0̄〉 which is therefore not

entangled. Thus, no steering whatsoever could take place in this case.

13.8.3 Further properties

In the section 13.8.1 we analysed the positivity of energy of the pseudo-local states

|ψl〉 =
1√

1 + 〈0G|nl|0G〉
a†l |0G〉 |φl〉 =

1√
〈0G|nl|0G〉

al|0G〉, (13.8.10)
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which are in fact superpositions of global one-particle states |1N 〉 = A†N |0G〉, i.e.

|ψl〉 =
1√

1 + 〈0G|nl|0G〉
∑
N

(ul|UN )|1N 〉 |φl〉 =
1√

〈0G|nl|0G〉
∑
N

(ul|U∗N )|1N 〉 (13.8.11)
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Figure 13.7: Quasi-local modes as compared with local modes. The picture shows the particular case of r =

0.21R, µ = 1/r with mode number m = 1. It portraits local modes (zero valued out of the light cone) and

quasi-local modes, showing exponential decaying fall-offs around the light cone. The inset shows the difference

of both modes at the same scale.

Let us define |ψ(r)
l 〉 = a

(r)†
l |0G〉, where the (r) superindex refers to the operator corres-

ponding to a localization region of size r. We would expect that state to resemble a one-

particle local state, in the sense that the corresponding mode would just be the positive

frequency part of the one-particle local mode. That is indeed the case. Figure 13.7 illustrates

this case for a particular case of those shown in figure 13.2. We would therefore call these

modes, which lie in the global Fock space FG, quasi-local modes. For all practical purposes

this kind of states could be used as localized and causal to a very good approximation.

Besides that, it is interesting to study how much |ψ(r)
l 〉 states resemble to the one-particle

global states, and therefore we will calculate the expectation value :

〈ψ(r)
l |A

†
NAN |ψ

(r)
l 〉 (13.8.12)

which happens to be identically equal to

|〈1N |ψ(r)
l 〉|2 = |〈0G|AN |ψ(r)

l 〉|2 =
|〈0G|ANa(r)†

l |0G〉|2
1 + 〈0G|nl|0G〉

=
|(UN |ul)|2

1 + 〈0G|nl|0G〉
(13.8.13)
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Figure 13.8a shows the expansion of |ψ(r)
l 〉 in terms of global particle states |1N 〉 for the

massless case. We can see that the decomposition is a rather peaked one, and in particular,

we can estimate a bandwidth ∆Ω for the expansion in global modes. We can define it as the

smallest ∆Ω for which:

∑
ΩN∈(ωl−∆Ω/2,ωl+∆Ω/2)

|〈1N |ψ(r)
l 〉|2 > 0.95 (13.8.14)

In the general case, ∆Ω depends on the frequency of the mode ωl, but tends to an asymp-

totic value in the limit of big l’s, as we can see in the inset of Figure 13.8b, where the depend-

ence with the Klein Gordon mass µ is also plotted. The asymptotic value is independent on

the mass, and only dependent on the r/R value. The relationship between these two can be

seen in Figure 13.8b. In the limit of small values of r/R, which would correspond to strongly

“localized particles”, the bandwidth tends to infinity, i.e. we need an infinite amount of

global modes to describe the quasi-local particle. For high values of r/R the bandwidth ap-

proaches a minimum and we can approximately identify the quasi-local particle states with

global states.
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Figure 13.8: Quasi-local state analysis. a) Decomposition of |ψl〉 states in terms of |1N 〉 global states for a massless

case with r=R/9. In the inset, the particular case for l = 20, ωl = πl/r ' 571/R. b) The estimated bandwidth

∆Ω for quasi-local states is independent of the mode l for big l, but shows a strong dependence with r/R. The

inset shows the dependence of ∆Ω with l for different masses µ for the case r = R/9.

13.9 Discussion

In the extant literature there are several theorems and results that indicate the impossibility

of having local particle states, e.g. [53, 292, 294, 300]. We believe that the main obstruction
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comes from postulating that the one-particle Hilbert space is spanned by positive frequency

modes. In particular, no wave-packet built from these modes can be localized within a finite

spatial region, even for an arbitrarily small time interval. However, as pointed out in Wald’s

exposition of the quantization procedure [165], there is nothing preventing us from making

use of a different set of modes. The basic idea of this work was that, basing the quantization

procedure on localized modes, we might account for localized one-particle states. Indeed,

this turns out to be the case.

These local modes are defined by their initial data. Both the value and time-derivative of

the modes are taken to be completely localized within either the right or left partition of the

box. This data defines a well-posed Cauchy problem. By Hegerfeldt’s theorem, these solu-

tions of the Cauchy problem must contain both positive and negative frequency modes. This

marks, at the classical level, a point of departure from the standard quantization procedure.

The creation and annihilation operators associated with these local modes can then be

used to build a Fock space FL, whose basis states describe local elementary excitations of the

quantum field. A set of these basis states, e.g. |nk, 0̄〉, does in fact represent strictly localized

states with respect to the local vacuum |0L〉 ∈ FL. This vacuum state, however, does not

share the typical properties of a quantum field vacuum. In particular, it is neither cyclic not

separating, as it is free from correlations between left and right partitions.

Intriguingly, the local and standard (global) quantum field theories turn out to be unit-

arily inequivalent. Specifically, by computing the Bogoliobov coefficients relating the global

and local quantum theories we have found that

Tr β†β ≡
∑
k,N

|(uk|UN )∗|2 + |(ūk|U∗N )|2, (13.9.1)

diverges, which is a sufficient condition for establishing unitary inequivalence. Never-

theless, it is important to note that both standard and local quantizations produce self-

consistent quantum theories of the field. As a matter of fact, as we have demonstrated, we

can evolve states and we also have a well-defined notion of energy after the local vacuum

energy has been subtracted from the canonical Hamiltonian.

The existence of unitarily inequivalent representations would seem to confront us with

a problem of which Fock representation to choose [326]. The problem of unitary inequival-

ence disappears, however, when some form of regularization is introduced [327]. Imposing

of a wave-number k = πm/r cutoff, for example, could solve the issue. Such a cut-off

would come naturally, for example, from a quantum theory of gravity requiring a discretiz-

ation of space(time). A restatement of the theory, which considers the use of measurement

apparatuses for a finite time, would also imply the introduction of a frequency cut-off, cir-

206



13.9. Discussion

cumventing the divergences present in (13.5.2).

Within our approach we nevertheless find that there is a mathematical asymmetry between

the two Fock representations. In fact, the divergence of the sum (13.9.1) originates from the

summation over the local-mode numbers m. On the other hand, the sum over global-mode

numbers N is finite for each specific value of m. A consequence of this fact is that the local

creators and annihilators are well-defined operators in the global Fock space, and so are the

local number operators. However, the global creators and annihilators turn out to be ill-

defined on FL. This asymmetry could perhaps be taken as an indication that the global Fock

representation is preferred.

In any case, the fact that both local creators and annihilators are well-defined in FG

provides us with a useful set of mathematical tools to analyse the properties of the states

in FG. In particular, by computing the expectation values of the local number operators, we

have shown that the global vacuum |0G〉 is characterized by a bath of local particles. We

also showed, by calculating the correlation coefficients of local number operators, that the

local particles associated with the left and right regions are highly entangled in the global

vacuum, a feature not shared by the local vacuum |0L〉.
Again, the well-defined character of local creators and annihilators in FG also allows us

to introduce a new set of quasi-local states defined by applying the local creation operator

on the global vacuum, i.e. |ψm〉 ∼ a†k|0G〉. These are natural candidates for essentially localized

states [174]. We have also shown how these states fail to be strictly localized, a fact related

to vacuum entanglement and the Reeh-Schlieder theorem.

Unitary inequivalence seems to be the key problem in the construction of particle loc-

alized states, and that could connect with the abstract no-go results by Malament [53] and

Clifton et. al [300]. However, a proper analysis of this matter would require an adaptation

of our setup to incorporate translation covariance, which is an essential assumption in the

theorems mentioned.

Clearly there are several topics that deserve further exploration. Here we mention a

few of them. For example, it would be nice to express the global vacuum state using the

eigenstates |nk, n̄l〉 of the local number operators.6 Such an expression would allow us

to construct the reduced density matrix for the regions [0, r] and [r,R] by partial tracing.

From there it would be interesting to see whether the reduced state takes the form of a KMS

state. Hopefully we could make contact with existing literature, which examines the entan-

6Although the local number operators nm and n̄l are well-defined Hermitian operators in FG we note that

their eigenstates |nm, n̄l〉 belong to FL and not to FG. The situation is similar for a non-relativistic quantum

particle in a box where the eigenstates of the self-adjoint momentum operator p = −i∂x do not belong to the

Hilbert space because they do not satisfy the Dirichlet conditions at the boundary.
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glement and thermality connected to localized regions of space [328]. In that respect it is

perhaps interesting to note that our construction, in contrast to the Minkowski and Rindler

quantizations, was not based on standard stationary states. Indeed, while the Minkowski

and Rindler quantizations both rely on stationary modes with respect to time translation

and boost operators respectively, our construction makes use of manifestly non-stationary

states. Whether this provides some advantage remains to be seen. In any case, it would be of

interest to analyse in detail the differences and similarities between the Rindler quantization

and the one presented here.
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CHAPTER 14

Alice and the Slamming Mirror

It is well known that the vacuum state of a quantum field is spatially entangled. This is true

both in free and confined spaces, for example in an optical cavity. The obvious consequence

of this, however, is surprising and intuitively challenging. Namely, that in a mathematical

sense half of an empty box is not empty. Formally this is clear, but what does this physically

mean in terms of, say, measurements that can actually be made? In this chapter we utilize the

tools of Gaussian quantum mechanics to easily characterize the reduced state of a subregion

in a cavity and expose the spatial profile of its entanglement with the opposite region. We go

on and discuss a Gedankenexperiment in which a mirror is introduced between the regions.

In so doing we expose a simple and physically concrete answer to the above question: the

vacuum excitations resulting from entanglement are mathematically equivalent to the real

excitations generated by suddenly introducing a mirror. Such an experiment would ideally

allow to retain all entanglement present between left and right regions. We conclude by

discussing different possibilities for doing a similar experiment in the lab.

14.1 Introduction

It has long been known that the vacuum state of a quantum field displays quantum entan-

glement between space-like separated regions [329, 330]. Much work has been performed,

using a variety of mathematical approaches and models, to understand and characterize the

properties of this entanglement [331]. In addition, it has been proposed that this entangle-

ment may be “harvested" (i.e. swapped) to an auxiliary quantum system without the need

for causal interaction [41, 70, 278, 332, 333], which may then be used for quantum informa-

tional procedures. The existence of spatial entanglement is similarly present in condensed

matter and lattice systems [334,335], being a generic property of extended systems with local

interactions, of which a quantum field can simply be viewed as a continuum limit. While in
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such systems experimental proposals have been put forth for the verification of vacuum en-

tanglement (e.g. a pair of trapped ions) [42], to the authors’ knowledge no feasible concrete

proposal has yet been suggested for its verification in a true, relativistic, quantum field (e.g.

the photon field).

One immediate consequence of vacuum entanglement is that, due to the vacuum being

a pure state, the reduced state over any local region in space must necessarily be mixed

and thus excited. Relativistic quantum phenomena involving the observer-dependence of

particle number, such as the Unruh and Hawking effects, are often attributed to this [164].

Moreover, vacuum entanglement occurs also in enclosed systems, such as an optical cavity

or a superconducting circuit. This introduces a conceptually challenging fact: at least form-

ally, half of an empty box is not empty. This is a mathematical result which alone gives us little

intuition towards actual physical consequences. Under what operational conditions does

this phenomenon present itself; what physically sensible measurements (in general) can be

made to give this mathematical fact experimental significance?

If an experimentalist has such an empty cavity then what can they do to detect photons

in, say, the left half of the cavity (that supposedly contains many)? The answer, as will be

explained, is to very quickly introduce a physical boundary (in this case a mirror) between

the two sides of the cavity, thus blocking off any influence from the right-hand side while

the experimentalist measures the left-hand side. Of course, quickly introducing a boundary

(i.e. quickly modifying the Hamiltonian) produces particles similar to what occurs in the dy-

namical Casimir effect (DCE) [336], which has recently been experimentally observed [58].

The key observation we want to make here, however, is that these real excitations, created

by slamming down the mirror, are mathematically equivalent to the vacuum excitations of

the reduced state that we attribute to entanglement. That is what it means operationally for

half of an empty box to be non-empty. In addition to giving a satisfying interpretation to

the problem of local particle content, we will discuss how this realization provides a simple

experimental setup that can be used to measure, and perhaps even utilize, local vacuum

excitations.

In this chapter we consider both massive and massless scalar fields in a one-dimensional

cavity with Dirichlet boundary conditions (i.e. mirrors on the ends). We perform several

tasks. To begin, we discuss the difficulties that appear when we intend to measure vacuum

excitations and the different alternative scenarios that could allow us to circumvent them.

We will present a recently introduced formalism of local quantization [2] that allows us to

characterize the reduced state of a sub-region in the cavity and study its local properties

formally. At that point we will consider what occurs if a mirror is very quickly introduced
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in the middle of the cavity.

We will utilize Gaussian quantum mechanics [337] in order to easily compute and char-

acterize the reduced states of sub-cavity regions and the correlations between them, ex-

plaining how this equivalently describes the physics of slamming mirror(s) into the cavity.

We will discuss and analyse the spatial structure of entanglement between regions, similar

to what has been done in [338] for lattice systems. We will furthermore discuss the time-

evolution of the system after slamming a mirror and observe what one would expect: a

burst of particles propagating away from it. These excitations, however, are mathematic-

ally one and the same with those previously attributed to vacuum entanglement in the local

analysis (the only difference is that now they evolve according to a different Hamiltonian).

Equivalently, the real excitations produced in the left and right-hand sides are quantum en-

tangled. We also consider the case in which two mirrors are simultaneously introduced,

some distance apart. In this case the particles produced in the left and right-hand sides (but

ignoring the middle section) can similarly be entangled, despite no common mirror between

them. This is possible because, as follows from the main point of our research, the entangle-

ment is simply that which was already present in vacuum prior to the introduction of the

mirror.

Lastly, we discuss the experimental feasability of using this scenario to verify vacuum

entanglement using current technologies. We note that introducing a mirror in fact repres-

ents an very efficient means of harvesting the vacuum entanglement, since afterwards you

have two new cavities that contain all of the entanglement (up to a UV cut-off determined by

how fast the mirror is introduced). This entanglement could then be a resource for quantum

computational tasks. This method of harvesting could potentially be much more promising

than the usual proposed method of locally interacting a pair of other quantum systems (e.g.

artificial atoms) with the field [42, 46, 70], since this is severely limited by the interaction

strength.

Throughout this chapter we will work in natural units such that ~ = c = kB = 1.

14.2 How does one measure the vacuum excitations in a subre-

gion?

To begin, we need to ask ourselves in a general sense what one must do in order to measure

localized vacuum fluctuations. What operational procedures can be implemented to do this?

Mathematically these fluctuations can arise when tracing out a spatial region of a vacuum

field. That is, because there is entanglement between spatial regions, the reduced state of
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such a region must necessarily be mixed (and therefore excited). This thus motivates the

idea that at least one possible way of measuring these excitations is to isolate oneself to

only the subregion of interest. But this means more than simply staying at a fixed location.

As we will show later in more detail, a stationary detector interacting with a vacuum field

only at a given point or region will still register zero particle detection if it is allowed to

measure for a long enough time. Rather, isolating oneself to only a subregion means losing

causal contact with the outside; information cannot be allowed to reach our observer from

outside the region of interest. Uniform acceleration, for example, is one way of achieving

this [54, 164]. Another way is for one to turn their detection device on for only a short time

∆t; doing this ensures that the detector is causally isolated from any part of space more than

a distance c∆t away from it. Indeed switching one’s detector on fast enough does cause

spurious detection events [7, 136] , however it is questionable if this can be fully attributed

to vacuum excitations (i.e. to entanglement) inside a cavity since formally the probability of

detection limits to zero only as ∆t→∞, which is clearly larger than the cavity length.

Are there any other ways to isolate oneself from outside influence? Indeed, another op-

tion that gets the job done is simply to erect a physical boundary. In the cavity scenario this

corresponds to placing a perfect mirror at the bipartition boundary. Certainly once such a

mirror is installed then an observer in the left-side of the cavity will receive no information

from the right-side. Would such an observer then be free to measure local vacuum excit-

ations? How could it be that such a setup suddenly allows the observer to measure what

they could not have beforehand? Furthermore, one should be concerned about the fact that

quickly placing a mirror in the middle of the cavity is expected to create real particle excit-

ations, similar to what occurs in the dynamical Casimir effect (DCE) [58, 336]. That is, by

rapidly changing (in this case, introducing) a boundary condition we are rapidly modifying

the Hamiltonian of the system. This will create real excitations in the field that will propag-

ate away from the mirror upon being introduced, and an observer located on one side of

this mirror will detect these excitations. Will these particles interfere with the observer’s

ability of detect the local vacuum excitations that are associated with entanglement between

regions?

The answer, as we will elaborate, is that a detection of the mirror-created particles is

exactly a detection of the local entanglement excitations.
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Figure 14.1: Sketch of the one dimensional cavity setting. We start (t < 0) considering a cavity in its vacuum state

|0〉G. At some instant (t = 0) we slam a mirror in the cavity separating it into two regions. As explained in the

text, the normal modes in these separated subcavities correspond to the localized modes of the cavity without

mirror, which we will show suffice to analize states, correlations and particle production when slamming the

mirror. The horizontal line corresponds to t = 0, the diagonal lines represent the light cone starting at the

slamming event.

14.3 Formulation and setting

The first purpose of this section is to present a mathematical framework for the computation

and analysis of global cavity states using a local formalism. We will start describing the

quantum states in the cavity by introducing a bipartition of it into two subregions, precisely

those in which the cavity will eventually be separated by the introduction of a slamming

mirror at some instant of time. Later on, in the second part of this section, we will use

this formalism to study the physical scenario where a mirror is abruptly introduced in the

middle of the cavity.

14.3.1 Local mathematical analysis: local vs. global modes

Here we will briefly introduce the field-theoretic formalism required for our analysis [2,164].

The aim is to spell out what can be ascertained about the physics of a non-localized state

spanning the whole cavity, as is the case of the quantum vacuum and generic cavity states,

by using localizing mathematical tools. We do not yet introduce a mirror in the middle of

the cavity. We will postpone it to the next subsection, once the present goal is achieved.

Let us consider a quantum scalar field φ̂(x, t) of mass µ within a cavity of length R, such

that x ∈ [0, R] . Specifically, we will consider a cavity with Dirichlet (i.e. mirror) boundary

conditions, as would be the case in a physical optical cavity, for example. The field is thus

constrained to satisfy φ̂(0, t) = φ̂(R, t) = 0.
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Our field can be expanded in the standard form:

φ̂(x, t) =

∞∑
m=1

(fm(x, t)b̂m + f∗m(x, t)b̂†m). (14.3.1)

Here, the set of chosen mode functions {fn} are required to satisfy the Klein-Gordon equa-

tion (2 + µ2)f(x, t) = 0 as well as the correct boundary conditions. In addition, they must

form a complete and orthonormal set with respect to the Klein-Gordon inner product [164].

Aside from these constraints the choice is arbitrary. Making such a choice is equivalent to a

choice of Fock basis, for which the operators {b̂n, b̂†n} are the corresponding ladder operators.

The standard choice for a Dirichlet cavity, which we will refer to as the global modes Un,

are given by

Un(x, t) =
1√
RΩn

sin
(πnx
R

)
e−iΩnt = Un(x)e−iΩnt, (14.3.2)

where Ω2
n = π2n2

R2 + µ2 is the frequency of mode n. This choice is convenient because the

corresponding Fock states are energy eigenstates of the free-field regularised Hamiltonian

(which we will also call the global Hamiltonian)

ĤG =
∞∑
n=1

ΩnÂ
†
nÂn, (14.3.3)

where here {Ân, Â†n} are the ladder operators corresponding to the global modes. A state of

principal importance for us is the global vacuum state |0G〉, defined to satisfy Ân |0G〉 = 0 for

all n. This is the state of lowest energy with respect to ĤG, and is said to be the state of zero

particles, because no A quanta can be removed from it, i.e. a cavity in this state is empty

(although not from a local point of view as we discuss later).

While the field decomposition into the global modes is often the most convenient and

physically relevant choice, we can also consider a decomposition into a mode basis better

suited to study the local physics of a subregion inside the cavity. Say that we decompose

our cavity into two regions, one that runs within x ∈ [0, r] (the left side) and the other within

x ∈ [r,R] (the right side). The lengths of these two sides are thus r and r̄ ≡ R−r, and we can

define a new set of modes {um(x, t)} and {ūm(x, t)} for the left and right sides, respectively.

The obvious way of doing this is to define these modes to have support at a certain time

t = 0 only over their corresponding subregions. As pointed out in [2], however, one must be

careful that the new basis modes still satisfy the correct boundary conditions of the cavity

(and in particular, not extra ones). This requirement immediately implies that if, say the set

{um} are supported only in the left region at t = 0, then their support will necessarily exceed

this region for later times (um satisfies the wave equation and we have not placed an extra
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boundary condition between the two regions). This does not turn out to be a hindrance in

exploring local physics, however.

Since the global vacuum |0G〉 is a stationary state it does not matter at what time we

examine its properties; we will choose time t = 0. The solution is then to simply define our

local modes to be appropriately compactly supported at this instant. To this end, we will

define our local modes um(x, t) to have initial conditions

um(x, 0) =
θ(r − x)√
rωm

sin
(πmx

r

)
,

u̇m(x, 0) = −iωmum(x, 0),

ūm(x, 0) =
θ(x− r)√
r̄ω̄m

sin

(
πm(x− r)

r̄

)
,

˙̄um(x, 0) = −iω̄mūm(x, 0), (14.3.4)

where ω2
m = π2m2

r2 + µ2 and ω̄2
m = π2m2

r̄2 + µ2. Given the above initial conditions, the local

modes will evolve throughout the cavity according to the Klein-Gordon equation. These

modes satisfy the proper boundary conditions and constitute a complete and orthonormal

basis for the whole cavity [2], and thus form a proper expansion of the field. For our pur-

poses in this section, however, we need only consider the instant t = 0 at which they are

localized to their respective sides of the cavity. Examining the global vacuum in this basis,

at this instant, allows us to fully characterize the reduced state of the subregions and the

quantum correlations between them.

Let us denote the local ladder operators associated with the above modes as {âm, â†m}
for the left side, and {ˆ̄am, ˆ̄a†m} for the right.

Solutions sets to the Klein-Gordon equation are related by a linear Bogoliubov transform-

ation [164, 339]. This means that our local modes are related to the global modes via some

transformation of the form

um(x, t) =
∞∑
n=1

(αmnUn(x, t) + βmnU
∗
n(x, t)),

ūm(x, t) =

∞∑
n=1

(ᾱmnUn(x, t) + β̄mnU
∗
n(x, t)). (14.3.5)

Equivalently, in terms of the annihilation operators (from which the creation operators are

trivially obtained) we have

âm =

∞∑
n=1

(α∗mnÂn − β∗mnÂ†n),

ˆ̄am =

∞∑
n=1

(ᾱ∗mnÂn − β̄∗mnÂ†n). (14.3.6)
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The Bogoliubov coefficients, which are time-independent, are computed via the Klein-Gordon

inner products between local and global modes. In our case, they evaluate to [2]

αmn = (Un|um) = (Ωn + ωm)Vmn, (14.3.7)

βmn = −(U∗n|um)= (Ωn − ωm)Vmn, (14.3.8)

ᾱmn = (Un|ūm) = (Ωn + ωm)V̄mn, (14.3.9)

β̄mn = −(U∗n|ūm)= (Ωn − ωm)V̄mn, (14.3.10)

where

Vmn =

∫ R

0
dxUn(x)um(x, 0) (14.3.11)

=
mπ
r (−1)m√

RrΩnωm(Ω2
n − ω2

m)
sin

nπr

R
, (14.3.12)

V̄mn =

∫ R

0
dxUn(x)ūm(x, 0) (14.3.13)

=
−mπ

r̄√
Rr̄Ωnω̄m(Ω2

n − ω̄2
m)

sin
nπr

R
. (14.3.14)

The fact that the β coefficients are non-vanishing implies that the global vacuum |0G〉 is,

in the local basis, an excited state in the sense that âm |0G〉 6= 0 and ˆ̄am |0G〉 6= 0, i.e. local

quanta can be removed from it, so in this picture the vacuum cannot be considered to be

empty. Indeed, the reduced state of, say, the left side of the cavity, is a mixed state. These

local excitations, and the local mixedness, are associated with the entanglement present

between the two sides of the cavity.

Lastly, as with any Bogoliubov transformation, the above coefficients satisfy the neces-

sary conditions [164] ∑
k

(αmkα
∗
nk − βmkβ∗nk) = δmn, (14.3.15)

∑
k

(αmkβnk − βmkαnk) = 0, (14.3.16)

and similarly for the barred coefficients.

14.3.2 Slamming down a mirror

If we compute the vacuum expectation value of the local number operators n̂m = â†mam

and ˆ̄nm = ˆ̄a†mˆ̄am we find that these are non-zero for the global vacuum state |0G〉, indicating
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Figure 14.2: The cavity for the cases studied. Top and bottom left figures correspond to the full cavity without

mirrors, the light dotted vertical bars indicating the border of the regions chosen in sections IIIA and IIIC to

study localization in two or three spatial regions. Top left: Normal modes after slamming a mirror which at

t = 0 would be equal to the localized modes of the whole cavity in the left and right regions. Bottom left: The

same as above for the case when two separated mirrors are slammed simultaneously.

the presence of a bath of ‘local particles’. While this observation is mathematically correct

we must nevertheless ask ourselves if any operational significance can be attached to this

theoretical notion of “local quanta". Can we somehow detect the presence of such local

quanta in the lab?

Taking as inspiration the discussion in Sect. 14.2, we claim that a generic (but perhaps

not exhaustive) method of achieving this is to informationally block the local region of in-

terest from the rest of the system. In a cavity-field system this can be achieved by introdu-

cing a mirror, separating the cavity into two new smaller ones. Indeed, as we will discuss,

such an operation does allow the detection and characterization of local excitations. This is

fundamentally due to the fact that we identify a “real" (i.e. measurable) particle to be an

elementary excitation of a stationary field mode. By the act of introducing the mirror, what

were nonstationary local modes of the full cavity translate into stationary modes of the new

small cavity, thus facilitating the measurement of their excitations.

One may be concerned with the unique identification of “a real particle" with “an ele-

mentary excitation of a stationary mode". In this work, however, we attempt to be opera-

tionally unambiguous and connect as closely as possible with the kinds of measurements

that can actually be achieved in the laboratory, necessitating long measurement times as

compared to the fundamental time-scale of the cavity. As a detection model let us consider
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an idealized, point-like, DeWitt monopole detector that remains at some specific location x0.

The following observation, however, is valid for any choice of detector. Let the initial state

of the system is taken to be the |0G〉 ⊗ |g〉 where |g〉 is the ground state of the detector. We

will present two cases:

First, without slamming a mirror, we imagine adiabatically switching on the coupling

between field and detector. The adiabatic theorem guarantees that if the system was ori-

ginally in the ground state of the non-interacting theory, then the system at much later times

will be found in the interacting ground state.1 When we then adiabatically switch off the

interaction the combined system will then be found in the non-interacting vacuum and thus

will fail to detect the presence of local quanta. This then immediately shows that such a

detector will not get excited. Such a procedure does not detect particles when the global

system is in its ground state (allowing us to use the adiabatic theorem), which requires the

global stationary modes to be in their ground states. It is for this reason that we relate the

particle notion with the free stationary modes, which are the ones corresponding to the free

eigenstates.

If, on the other hand, we slam down a mirror and then follow the same adiabatic detection

procedure within one of the sub-cavities then we will detect the presence of particles. This

is because the local modes, which are stationary after the mirror is introduced, are excited.

Critical to our message is that the measurement statistics that will be obtained from this

procedure are equivalent to the local virtual particle statistics (i.e. those corresponding to

one half of the box) obtained from the transformation presented in Sect. 14.3.1, which simply

describes the local physics of the cavity and does not assume the introduction of a mirror.

Concretely, we consider what happens when we instantaneously introduce a mirror at

x = r and t = 0, i.e. we impose the Dirichlet boundary condition φ(r, t) = 0 for t ≥ 0. Clearly

the instantaneous assumption is not physically realistic, however this turns out not to be a

hindrance in elucidating the most realistic, finite-time case. This will be further discussed in

Sect. 14.5.2. Given this scenario, it is clear that the set of local modes with initial conditions

(14.3.4), which were non-stationary for t < 0 prior to the introduction of the mirror, will have

a different evolution than before, u′m(x, t) and ū′m(x, t), which for t ≥ 0 will correspond to

stationary modes , i.e.

u′m(x, t) =

um(x, t) when t ≤ 0

um(x, 0)e−iωmt when t > 0
(14.3.17)

1The adiabatic theorem requires a gap between the vacuum energy eigenvalue and other eigenvalues. This

is guaranteed since we are dealing with a cavity with a naturally infrared cut-off defined by the size of the cavity

R.
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ū′m(x, t) =

ūm(x, t) when t ≤ 0

ūm(x, 0)e−iω̄mt when t > 0
(14.3.18)

Please note that after this section we will only need to consider the times t ≥ 0, and thus will

abuse notation by dropping the primes from the mode functions, meaning that for t > 0 we

will define um(x, t) = um(x, 0)e−iωmt.

Furthermore and analogously, the corresponding global modes U ′m(x, t) would only be

stationary modes for t < 0; for t ≥ 0 these modes would be non-stationary.

Equivalently, the sudden introduction of the mirror translates mathematically into a

time-dependent Hamiltonian, i.e. we have

Ĥ =

{ ∑
m ΩmÂ

†
mÂm t < 0∑

m ωmâ
†
mâm + ω̄mˆ̄a†mˆ̄am t ≥ 0

. (14.3.19)

Physically, the time dependence of the Hamiltonian will cause particle creation similar to

the Dynamical Casimir Effect [58, 336].

To determine exactly the amount of particle creation we need to calculate the Bogoliubov

coefficients between the modes U ′m and u′m and ū′m. These are nothing but the Klein-Gordon

inner products αmn = (u′m|U ′n), βmn = (u′m|U ′∗n ), ᾱmn = (ū′m|U ′n), and β̄mn = (ū′m|U ′∗n ),

which we can conveniently evaluate at time t = 0. Importantly, due to the specific choice

of initial data at t = 0 these Bogoliubov coefficients necessarily coincides with those of the

previous section, i.e. Eq. (14.3.7). This means that the particle content generated by the

mirror is exactly equivalent to the local particle content (a†mam, ā
†
mām) before the mirror is

introduced, i.e. the particle content that is associated with entanglement between the two

sides of the cavity. Thus, although the sudden introduction of a mirror is usually understood

as causing particle creation, it is at the same time an operation that does not change the

local particle number of the state. The difference now being that these particle contents

are associated with stationary modes, meaning that they can be measured using standard

techniques of quantum optics.

Moreover, it is not just the particle content, but the state in general that does not change.

That is, all particle statistics and correlations (including entanglement) are unchanged by

the action of slamming the mirror. Slamming the mirror does of course change the time

evolution of the system. For t < 0 the system is time-independent, the global vacuum state

being stationary with respect to the global Hamiltonian, whereas for t > 0 the change of

Hamiltonian will cause time evolution (e.g. particles propagating away from the mirror).

The key observation, however, is that this difference in evolution is fully encompassed by

the difference in spatial evolution of the mode functions themselves and not by any changes

in particle content or correlations between them.
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14.3.3 Three spatial regions

Before continuing we would also like to describe the case in which the cavity is split into

three spatial regions, rather than only two. This will prove useful later when we discuss the

operational implications of slamming down mirrors and the possible experimental verific-

ation of vacuum entanglement. Note that the extension to any number of regions follows

analogously.

Let us proceed by considering a division of our cavity into three sections ∆A = [A0, B0],∆B =

[B0, C0], and ∆C = [C0, R] with sizes A,B and C respectively. Let us define:

ΠZ(x) =

{
1 : x ∈ ∆Z

0 : x /∈ ∆Z

,

and set

A0 = 0, B0 = A, C0 = A+B, R = A+B + C. (14.3.20)

We can build the local modes for these three regions uZl (x, t) by demanding that:

uZl (x, 0) =
ΠZ(x)√
ZωZl

sin
lπ(x− Z0)

Z
, (14.3.21)

u̇Zl (x, 0) = −iωZl uZl (x, 0). (14.3.22)

With:

ωZl =

√(mπ
Z

)2
+ µ2, Z = A,B,C.

The new Bogoliubov transformation, analogous to Eq. (14.3.5), is:

uZm =
∑
n

αZmnUn + βZmnU
∗
n, Z = A,B,C, (14.3.23)

where

αZmn = (Un|uZm) = (Ωn + ωZm)VZmn, (14.3.24)

βZmn = −(U∗n|uZm) = (Ωn − ωZm)VZmn, (14.3.25)

and

VAmn =

∫ A

0
dx Un(x)uAm(x, 0) =

mπ
A (−1)m√

RAΩnωAm(Ω2
n − ωA2

m )
sin

nπA

R
, (14.3.26)

VBmn =

∫ A+B

A
dx Un(x)uBm(x, 0) =
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mπ
B

[
(−1)m sin

(
nπ(A+B)

R

)
− sin

(
nπA
R

)]√
RBΩnωBm(Ω2

n − ωB2

m )
, (14.3.27)

VCmn =

∫ R

A+B
dx Un(x)uCm(x, 0) =

−mπ
C√

RCΩnωCm(Ω2
n − ωC2

m )
sin

nπ(A+B)

R
. (14.3.28)

Transforming to this mode basis allows us to describe the local physics of, and the cor-

relations between, these three regions. Similar to the scenario discussed in Sect. 14.3.2, the

mode basis described here can be used to describe the process of slamming down two mir-

rors simultaneously, thereby splitting the cavity into three regions. Exactly the same physics

applies in this case, and we will thus not reiterate the material of Sect. 14.3.2.

14.4 Computing the state

In this section we will focus on obtaining a local description of the global vacuum state 2.

This includes the evaluation of the reduced field state of a subregion of a cavity, and a de-

scription of the of vacuum entanglement between regions of the cavity. We rely on the form-

alism of Gaussian quantum mechanics [337] for our exposition. The unfamiliar reader is

encouraged to read Appendix. A, which outlines the concepts of Gaussian quantum mech-

anics that are necessary to understand the main text. A key point to keep in mind, as dis-

cussed in the previous section, is that the Bogoliubov transformation (and thus the resulting

state) is the same whether we consider this to be with or without the introduction of the

mirror. As discussed further in Sect. 14.5.1, the covariance matrix that we compute (i.e. the

state) equally well describes both cases.

14.4.1 The state of two regions

We will start by computing the form of the global vacuum upon transforming to the local-

mode basis, in the case that we split the cavity into two regions. Let us define the canonically

conjugate quadrature operators for the field modes, both global and local. Letting {Ân, Â†n}
be the ladder operators for the global modes, we define the corresponding quadrature op-

erators to be

Q̂n =
1√
2

(Ân + Â†n), P̂n =
i√
2

(Â†n − Ân). (14.4.1)

2It must be pointed out that the mathematical toolbox presented here allow us to work with any Gaussian

state, not just the global vacuum. We could, for example, start with with a global thermal state.
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Similarly, for the ladder operators {âm, â†m} and {ˆ̄am, ˆ̄a†m} of the local modes we have

q̂m =
1√
2

(âm + â†m), p̂m =
i√
2

(â†m − âm),

ˆ̄qm =
1√
2

(¯̂am + ˆ̄a†m), ˆ̄pm =
i√
2

(ˆ̄a†m − ˆ̄am). (14.4.2)

For notational convenience let us define the phase-space vectors X̂ = (Q̂1, P̂1, Q̂2, P̂2, · · · )T ,

x̂ = (q̂1, p̂1, q̂2, q̂2, · · · )T , and ˆ̄x = (ˆ̄q1, ˆ̄p1, ˆ̄q2, ˆ̄p2, · · · )T .

Within this representation it is straightforward to see that the Bogoliubov transformation

from global to local modes, as given in Eq. (14.3.6), is given by the matrix transformations

x̂ = SX̂, ˆ̄x = S̄X̂, (14.4.3)

where the matrix S takes the block form

S =


S11 S12 · · ·
S21 S22 · · ·

...
...

. . .

 , (14.4.4)

with

Smn =

(
Re(αmn − βmn) Im(αmn + βmn)

−Im(αmn − βmn) Re(αmn + βmn)

)
, (14.4.5)

and similarly for S̄ using the barred Bogoliubov coefficients. It is straightforward to show

that such a transformation preserves the canonical commutation relations iff the Bogoliubov

conditions Eq. (14.3.15,14.3.16) are satisfied.

Using the specific transformation for our scenario, Eq. (14.3.7), we find the 2 × 2 blocks

of matrices S and S̄ to be

Smn = 2Vmn
(
ωm 0

0 Ωn

)
, S̄mn = 2V̄mn

(
ω̄m 0

0 Ωn

)
(14.4.6)

We note that the off-diagonal entries of these blocks are zero, resulting from the fact that our

Bogoliubov coefficients are purely real. This means that the transformation does not mix

canonical position and momentum operators, rather the q̂ operators of the local basis are

combinations of the global Q̂’s only, and similarly for the momentum operators.

It is important to keep in mind that individually the matrices S and S̄ are not symplectic.

This is because individually they only map onto a subspace of the total Hilbert space of the
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field. 3 This is easily concluded from the fact that the reduced field states of the subregions

of the cavity are mixed states, despite the global state being pure (the vacuum). A proper

symplectic transformation in phase space can always be associated with a unitary operation

acting in the Hilbert space, which will always bring a pure state to another pure state.

Rather, it is the combined transformation

SBogo =

(
S

S̄

)
(14.4.7)

that is formally symplectic (see the discussion in Sect. 14.6.2). This matrix transforms the

global mode basis to the local mode basis, including both sides of the cavity:(
x̂

ˆ̄x

)
= SBogoX̂. (14.4.8)

Given all of this, we are ready to transform the state itself. The global vacuum |0〉G
is an example of a Gaussian state, which means that the state is fully characterized by its

covariance matrix (see Appendix A). We will label σG the covariance matrix of the global

vacuum, represented in the global-mode basis. This is simply given by the identity: σG = I.

To Bogoliubov transform this state to the local basis, σloc, we apply the above symplectic

transformation to σG:

σloc = SBogoσGSTBogo ≡
(
σ γ

γT σ̄

)

=

(
SσGST SσGS̄

T

S̄σGST S̄σGS̄
T

)
. (14.4.9)

Here the covariance matrix σ = SσGST = SST represents the reduced field state for the

left side of the cavity. Similarly, σ̄ = S̄S̄
T fully characterizes the reduced state of the right

side. The off-diagonal matrix γ = SS̄
T , on the other hand, contains the correlation structure

between the two sides of the cavity.

These matrices are easily computed. We see that each can be split into 2 × 2 blocks, for

example the reduced state of the left side takes the form

σ =


σ11 σ12 · · ·
σ21 σ22 · · ·

...
...

. . .

 . (14.4.10)

3The definition of a symplectic matrix S requires that it be square. However if a linear phase space trans-

formation is not square it is still required to preserve the canonical commutation relations. That is, if we have an

m× n transformation matrix S on phase space then it must still satisfy SΩnST = Ωm, where Ωn is the n-mode

symplectic form. If n > m then such a transformation corresponds to a symplectic transformation followed by

a partial trace, which can of course bring a pure state to a mixed one.
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Here the 2 × 2 block σmm is the covariance matrix (i.e. it is the reduced state) of the m’th

local (left side) mode. The off-diagonal block σmn, where m 6= n, contains the correlations

between local modes m and n. Using the fact that the Smn are symmetric we see that these

blocks are given by σmn =
∑

` Sm`Sn`. Similarly, the state σ̄ and the correlation matrix γ

can be split into 2 × 2 blocks that are given by σ̄mn =
∑

` S̄m`S̄n` and γmn =
∑

` Sm`S̄n`,

respectively.

These are given by

σmn =
∑
l

4VmlVnl
(
ωmωn 0

0 Ω2
l

)
, (14.4.11)

σ̄mn =
∑
n

4V̄mlV̄nl
(
ω̄mω̄n 0

0 Ω2
l

)
, (14.4.12)

γmn =
∑
l

4VmlV̄nl
(
ωmω̄n 0

0 Ω2
l

)
. (14.4.13)

Together, these blocks constitute a full characterization of the global vacuum in the local-

mode basis, and in particular σ fully characterizes the reduced state of the left side of the

cavity. Although we have derived the full analytical expressions, it should be noted that

in the remainder of the chapter, when we present quantitative results, we have done so by

computing the above matrix elements numerically, by performing the sums to convergence.

There are several observations that we can make from this result. The first is that the

reduced states σ and σ̄ are clearly excited states, meaning in this language that they are not

equal to the identity (the vacuum). Mathematically, this is what is meant by the statement

“half of an empty box is non-empty". Equivalently, this is a mathematical description of

the particle creation due to instantaneously slamming down a mirror. Another observation

is that the correlation structure of the global vacuum in this basis is extremely connected,

meaning that every local mode is correlated (if perhaps not entangled) with every other

local mode. That is, since the blocks γmn are nonzero this means that every local mode of

the left side is correlated with every local mode of the right, and vice versa. Similarly, every

local mode is correlated with every other local mode of the same side, as demonstrated by

the fact that the blocks σmn and σ̄mn are nonzero.

14.4.2 The state of three regions

We will now outline exactly the same procedure for the case of three regions in the cavity

(equivalently, the case where two mirrors are simultaneously introduced). This will allow

us to consider the entanglement between spatially-separated regions (i.e. the leftmost and
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rightmost regions). As we will see, this is crucial for demonstrating that the entanglement

obtained by slamming mirrors is derived from the previously existing vacuum entangle-

ment, rather than having been created by the slamming process.

The procedure follows from the Bogoliubov transformation described in Sect. 14.3.3. We

will also describe how to obtain the reduced state of two out of the three regions (in fact this

is trivial in the language of covariance matrices). In the phase space representation we have

equivalent matrix equations as those in Eq. (14.4.3,14.4.4,14.4.5), i. e.:

x̂Z = SZX̂, Z = A,B,C (14.4.14)

where SZ has the block form as given in Eq. (14.4.4):

SZmn =

(
Re(αZmn − βZmn) Im(αZmn + βZmn)

−Im(αZmn − βZmn) Re(αZmn + βZmn)

)
(14.4.15)

= 2VZmn

(
ωZm 0

0 Ωn

)
. (14.4.16)

The combined transformation, that which is formally symplectic, is given in analogy to

Eq. (14.4.7):

SBogo =


SA

SB

SC

 , (14.4.17)

and transforms the global mode basis to the local mode basis of the three regions:
x̂A

x̂B

x̂C

 = SBogoX̂. (14.4.18)

Again, to Bogoliubov transform the global state σG = I to the local basis we apply this

transformation to σG:

σloc = SBogoσGSTBogo ≡


σA γAB γAC

γTAB σB γBC

γTAC γTBC σC



=


SAσGSA

T
SAσGSB

T
SAσGSC

T

SBσGSA
T

SBσGSB
T

SBσGSC
T

SCσGSA
T

SCσGSB
T

SCσGSC
T

 . (14.4.19)

225



CHAPTER 14. ALICE AND THE SLAMMING MIRROR

The blocks again represent the reduced state of, and the correlations between, the three

regions. For example σA is the reduced state of the left-most region and γAC contains the

correlations between the left-most and right-most regions. As before, each matrix can be

further split into 2x2 blocks given by σZmn =
∑

` SZm`S
Z
n`, γ

Y Z
mn =

∑
` SYm`S

Z
n`. These are given

by

σZmn =
∑
l

4VZmlVZnl

(
ωZmω

Z
n 0

0 Ω2
l

)
(14.4.20)

γY Zmn =
∑
l

4VYmlVZnl

(
ωYmω

Z
n 0

0 Ω2
l

)
. (14.4.21)

From here, one may easily study the reduced state of two of the three regions by simply

taking the appropriate blocks of Eq. 14.4.19. For example the reduced state of system AC

(the left-most and right-most regions) is obtained by tracing outB, which here simply results

in the covariance matrix

σAC =

(
σA γAC

γTAC σC

)

=

(
SAσGSA

T
SAσGSC

T

SCσGSA
T

SCσGSC
T

)
. (14.4.22)

14.5 With vs. without a mirror

Before we proceed to analyse other local features like the entanglement between left and

right regions of the cavity, we would like to make a stop to discuss a little bit more concep-

tually the differences between the analysis of the two possible scenarios, with and without

introducing the mirror. Again, what does it mean for half of an empty box to be non-empty?

We know that in some sense the reduced state of a subregion of the global vacuum is ex-

cited; certainly the state σ in Eq. (14.4.11) is an excited state (that is, excited with respect to

the local-mode basis, which is the whole point). However, what does this mathematical fact

have to do with reality? As discussed earlier, the answer, in fact, is that the real excitations

produced by the mirror are mathematically equivalent to the virtual local excitations attrib-

uted to vacuum entanglement. Their measurement, therefore, constitutes an achievement

of our goal.
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14.5.1 Time evolution

Both of the scenarios, with and without a mirror, are equivalent at time t = 0. This im-

plies that the Bogoliubov transformation will be exactly the same for both sets (primed and

unprimed modes as discussed in the previous sections) as the transformation coefficients are

computed using the Klein-Gordon inner product, which contains only the mode functions

and their first time-derivatives [164]). Thus, the field state of the left-cavity immediately fol-

lowing the introduction of the mirror will, in fact, be given exactly by the covariance matrix

σ as given by Eqs. (14.4.10,14.4.11). The only difference now is that the mode-basis that σ

is associated with is different, in the sense that it evolves differently for t > 0. Similarly the

reduced state of the right-cavity will be given by σ̄ and the correlations between the two

(separated) cavities will be contained in γ, the blocks of each being given by Eqs. (14.4.11).

Importantly, this means that the entanglement structure contained in the state is exactly the

same in both cases . That is, the real particles created in the left-side by slamming down a

mirror are entangled with the created particles in the right-side, and this entanglement has

exactly the same structure that the original vacuum entanglement present before the mirror

was introduced. We will fully discuss this entanglement in Sect. 14.6.

But surely the state of the field has been changed due to the introduction of the mirror.

Clearly in some sense it has. We have created real particles. We have added energy to the

system by changing the Hamiltonian. The state of the new left-side cavity (for example) is

certainly time-dependent. This is not surprising, as we would expect a burst of particles

to be propagating away from the newly introduced mirror (shortly we will discuss this

further). The reduced state of the left-side of the larger cavity (without a mirror), on the

other hand, is by construction time-independent. The global vacuum |0〉G is a stationary

state with respect to the global Hamiltonian ĤG, and thus the reduced state will be time-

independent as well. In this sense the two states are certainly different.

Nevertheless the state is described by exactly the same covariance matrix. We will now

elucidate the nature of time evolution in the case that a mirror has been slammed; indeed

we will take advantage of a subtlety in the time evolution that is particularly apparent when

working with covariance matrices. First consider, for example, working in the Schrödinger

picture. In this case the field in the left-cavity is time-independent: φ̂(x, t) = φ̂(x, t = 0) =∑
m(um(x, 0)âm + u∗m(x, 0)â†m), where a um(x, 0) = 1

rωm
sin πmx

r . The state ρ̂(t) is what

evolves, and this gives a corresponding time evolution to the covariance matrix elements

via σmn(t) = Tr(ρ̂(t)(x̂mx̂n + x̂nx̂m)). This free evolution can be represented symplectically:
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σ(t) = SF (t)σSF (t)T where [136]

SF (t) =
⊕
m

(
cosωmt sinωmt

− sinωmt cosωmt

)
. (14.5.1)

Alternatively we can work in the Heisenberg picture, in which the field is the time-dependent

operator

φ̂(x, t) =
∑
m

(um(x, 0)âme
−iωmt + u∗m(x, 0)â†me

iωmt)

=
∑
m

(um(x, t)âm + u∗m(x, t)â†m). (14.5.2)

A subtle issue, however, is that the Heisenberg evolution of the field can be viewed

in two ways, as given by the two lines above. In the first line it is the operators themselves

that evolve: âm(t) = âme
−iωmt. This corresponds to an evolution of the quadrature operators

x̂m(t) that leads to a symplectic evolution SF (t) of the covariance matrix, equivalent to what

was obtained in the Schrödinger picture. A key observation is that in both of these pictures

it is the time-independent mode-functions um(x, 0) that the time-dependent covariance matrix σ(t)

is associated with. The other way of viewing the evolution, as indicated by the second line

in Eq. (14.5.2), is to keep the operators themselves time-independent (thus giving a time-

independent σ) and to rather let the mode-functions u(x, t) contain the time evolution. In

this case the covariance matrix does not change, but it is understood that the mode-functions

with which it is associated do evolve.

This last picture is the one that we will adopt here, in all work below. In this way we

do not need to actually consider any evolution in the covariance matrix directly; our state

will always be described by the matrix σ, the same one used to describe the spatial reduced

state in the case without a mirror. The time-evolution induced by slamming a mirror is

then trivial: it is simply given by the time-dependence already present in the t > 0 mode

functions defined within the left cavity as um(x, t) = um(x, 0)e−iωmt and within the right

cavity as ūm(x, t) = ūm(x, 0)e−iω̄mt

14.5.2 Finite-time mirror

In the calculations of the next section we will continue to assume an instantaneous intro-

duction of the mirror(s) in the cavity. Before devoting ourselves to this, however, we should

briefly discuss how the physics changes if the introduction of the mirror takes place within a

finite time window ∆t, as of course will always be the case in any physical realization. Let us

continue to assume that the introduction happens very fast as compared to the fundamental
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time scales of the reduced cavities: ∆t � 1/ω1 and ∆t � 1/ω̄1. In this case the low-energy

local modes will still see the mirror appear very quickly (i.e. as compared to their free evol-

ution time scale), and so their reduced states and correlations amongst themselves will be

well approximated by the covariance matrices of Eqs. (14.4.11). That is, within a low energy

sector (the limit of which is determined by how fast the mirror can be introduced) the res-

ults that we will present will hold to a good approximation. On the other hand for the very

high-energy modes (that see the introduction of the mirror occur very slowly) we can make

an adiabatic approximation to conclude that they will evolve to their local ground states.

That is, if m is large enough such that ∆t � 1/ωm then after the cavity is introduced the

reduced state of this mode will approximately be |0〉m, defined to satisfy âm |0〉m = 0, and

will have vanishing correlation with the rest of the system. Clearly there will be a smooth

transition between these two regimes, which our work does not capture. Nevertheless by

considering only a finite number of modes N , as we will be doing, our description of this

set will be accurate as long as ∆t� 1/ωN .

Note also that, in terms of application, the amount of entanglement that one obtains

between cavities after slamming a mirror (which we will discuss in the next section) depends

on how fast one’s mirror is slammed. The faster it can be achieved, the more entanglement

will remain in the two cavities afterwards. This is because the high-energy modes contain

entanglement, and thus the more of these modes whose states are not significantly altered

by introducing the mirror. the more entanglement we will retained. For modes of too-high

energy, ∆t � 1/ωm, the act of slamming the mirror will destroy the correlations that they

have with the opposite side of the cavity.

14.6 Entanglement

We will now enter the results section. We will discuss various aspects of entanglement

between the two sides of the cavity (equivalent in both the cases of with and without a cav-

ity, as discussed above). As part of our exposition we will propose a spatial distribution

of entanglement between the two sides of the cavity, and see how this naturally leads to

the physical picture of bursts of (entangled) particles being produced by slamming down

a mirror. We will begin by just discussing a single mirror, and later will move on to the

two-mirror case. We will show that with two mirrors, slammed simultaneously some dis-

tance apart, there is still entanglement retained between separated regions (i.e. left-most and

right-most). We will also discuss how the act of slamming down a mirror can be interpreted

as an efficient method of vacuum entanglement harvesting.
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Our result are computed numerically from the covariance matrices presented Sect. 14.4.

To do so, however, we must restrict to finite matrices. This means taking only a finite number

of local modes N , both on the left and right sides. That is, what we actually consider is

the reduced state of the first N local modes on each side. This is actually not physically

unrealistic since, as discussed in Sect. 14.5.2, our analysis will only be valid for some low-

energy regime anyway, depending on how fast the mirror is slammed. Numerically, unless

otherwise stated we will take N = 200. Note, however, that the reduced state of these

first N local modes is exact up to numerically negligible addends. That is, in performing

the Bogoliubov transform we made sure to include enough global modes in the sum of Eq.

(14.4.11), such that our results converge.

14.6.1 Mode-mode entanglement

With the state of the global vacuum represented in the local-mode basis, as given by Eqs.

(14.4.11), we can characterize the entanglement between the two sides of the cavity. We can,

for example, consider the two-mode entanglement between each pair of local modes on the

left and right side. The correlations between each pair (as given by the two-point correlators

of the number operators) have already been computed in [2]. However, for each two-mode

pair the fact that they are correlated does not imply that they are entangled because the two-

mode state of this pair is mixed. Thus, to extend upon the results of [2] we compute the

logarithmic negativity EN [340] of each pair between the two sides.

To this end, we take the 4 × 4, two-mode covariance matrix (i.e. the reduced state) of

mode m on the left and mode n on the right of the cavity. This is simply

σtwo mode =

(
σmm γmn

γTmn σ̄nn

)
. (14.6.1)

From here, we can apply Eq. (A.0.14) to compute EN between the two modes. The result

is displayed in Fig. 14.3, where we consider field masses µ = 0 and µ = 15/R . The

cavity is split in two equal regions as r = 0.5R. We observe that, perhaps remarkably,

nearly every mode is entangled with almost every other. Eventually as m and n become

sufficiently different the two-mode entanglement tends to vanish (although they will always

have nonzero correlation), but we can see that the decay is very slow. It should be noted that

we can similarly compute the entanglement between different local modes from the same

side, and in fact doing so produces a qualitatively equivalent plot. A particularly striking

feature of the mode-mode entanglement is that the peak entanglement moves to higher

mode numbers as the mass of the field is increased. 4 This figure clearly demonstrates that
4This behavior is actually expected from the fact that the correlation length in a field goes as the Compton
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a b

a b

a b a b

a b

Figure 14.3: (Color online) The logarithmic negativity EN between local modes um and ūn on the left and right

sides of the cavity, respectively. The cavity is divided in two equal regions r = 0.5R . Left: a field mass of µ = 0.

Right: a field mass of µ = 15/R.

the two sides of the cavity are entangled. Even a single pair with nonzero entanglement

demonstrates this. However even if every pair were separable this would not constitute a

proof that the two sides as a whole are separable.

This leads to the question of the full, many-mode entanglement between the two sides.

We can certainly compute this, given some set of N local modes on either side [337] (spe-

cifically we would compute the negativity, not the reduced entropy, as we explain in a mo-

ment). This of course gives a non-zero answer, however it is questionable how useful the

numerical answer actually is because it will always depend on the number of local modes

N considered. The entanglement increases with N , and we expect that it diverges in the

N →∞ limit (check footnote 5), given that the vacuum entanglement is typically known to

be UV-divergent. We will thus not concern ourselves with this calculation explicitly. Nev-

ertheless there is a related issue that should be discussed before moving on, which we will

now focus on.

14.6.2 The mixedness problem

One would assume that in order to compute the entanglement one should simply compute

the reduced entropy (as given by Eq. (A.0.9)) of one side of the cavity, since the global state

wavelength [341], meaning that correlations become more spatially confined with higher mass µ. It follows that

what correlations are present between the two sides should be more supported within the modes of smaller

wavelength, i.e. those of higher frequency.
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is pure. Formally this is true of course, but interestingly the reduced entropy will never be

an entanglement measure if one only considers a finite number of local modesN , and in fact

this can never be remedied by simply increasing N .

This occurs because, as we have just seen, there is quite a lot of correlation between

local modes of different number. This means that the left-side state σ (with finite number

of modes) will not just be entangled with the opposite side of the cavity but also with the

higher-number modes on the same side. That is, the entropy S(σ) is not a measure of en-

tanglement with the other side, but rather with the other side plus all of the higher modes

that we have traced away. Put another way: if we compute the full state of both sides σloc,

but with the understanding that this corresponds to the reduced state of the first N local

modes on the left with the first N on the right (and their correlations), then this state will be

mixed despite the fact that the global vacuum is pure. Equivalently, the transformation of

Eq.(14.4.7) will never in practice be sympletic. What’s more (and rather interestingly) this

problem does not get better as N is increased 5.

Importantly, such an issue will never arise in any real scenario of a slamming mirror; a

finite slamming time ∆t fixes this mixedness problem. The introduction of a mirror is just

represented by a time-dependent Hamiltonian, and so of course the evolution of the field

under this action must be unitary. The system of the two new cavities combined, therefore,

must be in a pure state. As discusses in Sect. 14.5.2, a finite ∆t will mean that local modes of

high enough frequency will not actually be in the state nor share the correlations as predicted

5In fact, as we increase the numberN of local modes considered (on both sides of the cavity) the global state

we obtain becomes more mixed, with a higher entropy. We suspect that the entropy diverges in the N → ∞
limit, despite the fact that in a formal sense the result should be a pure state. After a moment of thought this

is actually not overly surprising. Consider for a moment the very different system of a spatial volume in free

Minkowski space with a field in the Minkowski vacuum. It is well known that the entropy of the reduced state

inside the volume scales as its area, meaning that as this region is expanded it becomes more mixed. Thus,

despite the field over all of space being in a pure state, one can never approach this by taking the limit of larger

and larger regions (the entropy will diverge as the region expands to infinity). In this example the area-law can

be physically understood by taking a spatial discretization of the field. A given spatial degree of freedom will

largely only be entangled with its nearest neighbors, and thus the area law can be understood considering that

the area is proportional to the number of nearest-neighbor connections that the entangling surface crosses. In our

scenario we have seen that the global vacuum has a very densely connected entanglement structure in the local-

mode basis. Every local mode is entangled with many others, including many others of higher frequency. Thus,

by increasing the number of local modes N that we consider we are increasing the number of “entanglement

connections" between low and high modes that are separated by the cutoff. Given this intuition it makes sense

that the entropy of our global state should increase with increasing N ; it arises as a consequence of the system

being highly connected. Even so, it is interesting (and perhaps disconcerting) that in the local-mode basis one

can never approach purity by considering more and more modes. We suspect that this is deeply connected to

the note made in [2] regarding the unitary inequivalence between the global and local mode bases.
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from the covariance matrices in Sect. 14.4, which were computed assuming instantaneous

slamming. For a real situation, high-frequency local modes will be nearly in their ground

states, and importantly have vanishing correlations with anything else, thus remedying the

origin of the mixedness problem. The global state in the local basis will indeed be pure

beyond a given energy scale, as it must be.

14.6.3 Symplectic diagonalization

Here we will describe the process of symplectically diagonalizing the local states σ and σ̄.

This is method by which we can greatly simplify the entanglement structure between the

two sides which, given the complexity seen in Fig. 14.3, will be a considerable advantage.

We will see in later sections how this process also allows us to make conclusions about the

spatial distribution of entanglement as well as see very clearly the propagating “burst" of

particles that is produced by slamming down a mirror.

The specifics of local, symplect diagonalization and the method for finding the cor-

rect transformations matrices are described in Appendices A and A. We (numerically) find

symplectic matrices SD and S̄D that diagonalize σ and σ̄, respectively: SDσSTD = D and

S̄Dσ̄S̄
T
D = D̄ where

D =
⊕
m

(
νm 0

0 νm

)
, D̄ =

⊕
m

(
ν̄m 0

0 ν̄m

)
. (14.6.2)

Here νm and ν̄m are the symplectic eigenvalues of σ and σ̄, respectively. Let’s just consider

the left side for a moment: σ → D. This is simply a change of mode-basis, and we can

compute the mode functions associated with this new basis by reading off the Bogoliubov

coefficients from SD via reversing Eqs. (14.4.4,14.4.5) . Here we will label these coefficients

ζ`m and η`m (in place of the usualα and β notation, respectively). These new mode functions,

which we will label v`(x, t), are thus given by

v`(x, t) =
∑
m

(ζ`mum(x, t) + η`mu
∗
m(x, t))

=
∑
m

1√
rωm

sin
(πmx

r

)
(ζ`me

−iωmt + η`me
iωmt). (14.6.3)

We can similarly define a new set of local modes v̄`(x) on the right side of the cavity.

We remind the reader that (as discussed in Sect. 14.5.1) we are working in the “Heisen-

berg picture", but not such that the q̂ and p̂ operators evolve (i.e. our covariance matrix is

time-independent) but rather such that the mode functions with respect to which we rep-

resent the state themselves evolve. In this picture the diagonalizing transformations are of
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course time-independent (since the covariance matrix is time-independent). We could, how-

ever, arrive at the same set of v-modes working directly in the Schrödinger picture, in which

the diagonalizing transformation would be time-dependent 6.

This is a change of mode basis which results in all left-side modes v`(x, t) being in a

product state with respect to each other, and similarly with the right-side modes v̄(x, t). I.e.

the transformation SD removes all correlations between modes on the left side. In this way

we are isolating exactly the local spatial modes that contain the entanglement between σ

and the rest of the system. Furthermore, it turns out that in our system the first mode in

this new basis, the one associated with symplectic eigenvalue ν1 and spatial mode v1(x, t),

is the mode that contains the large majority of the mixedness in σ. That is, almost all of

the symplectic eigenvalues have values very near to unity, meaning that the corresponding

modes are very nearly pure. The first value, ν1, is by far the largest. For example with the

parameters r = 0.5R, µ = 0, and N = 200 (the number of local modes considered) the first

several symplectic eigenvalues take the values {ν`} = (1.840, 1.051, 1.004, 1.000, · · · ). Note

that as N is increased these values (and thus the entropy of σ) increase as well. All of this

applies equally well to the right-side transformation σ̄ → D̄ via S̄D.

As elaborated on in Appendix A, if the state σloc of both sides were pure then applying

the local transformation SD ⊕ S̄D to σloc would also diagonalize the off-diagonal (correl-

ation) block γ. Were this the case then the local mode v1(x, t) on the left side would be

solely correlated with the corresponding mode v̄1(x, t) on the right side, and similarly for

the higher v-modes. Unfortunately, as discussed above, when taking a finite N we necessar-

ily find that σloc is a mixed state. This means that a local symplectic diagonalization does

not produce this one-to-one correspondence between the two sides. Despite this, however,

we have found that in fact we very nearly do obtain this correspondence upon local diag-

onalization. This can be seen in Fig. 14.4 where we plot the logarithmic negativity between

modes v`(x, t) and v̄`(x, t) similarly to what is plotted in Fig. 14.3 for the u-modes. Here we

have taken N = 200 for both the left and right sides. We see that indeed, despite σloc being

mixed, the majority of the entanglement between the two sides is contained in v1(x, t) and

6This can also be done in either of the pictures in which it is the covariance matrix that evolves, σ(t) =

SF (t)σSF (t)T , and in which the spatial modes are time independent, um(x, 0). In this case the diagon-

alizing transformation will be time-dependent: SD(t). However the symplectic spectrum of σ(t) will be

time-independent, being symplectically invariant. Thus we have D = SDσSTD = SD(t)σ(t)SD(t)T =

SD(t)SF (t)σSF (t)TSD(t)T , from which we can represent the time-dependent diagonalizing transformation

as SD(t) = SDSF (−t). We can use this to compute the corresponding time-dependent Bogoliubov coefficients

γ`m(t) and η`m(t). Using Eq. (14.5.1) and the relation between a symplectic transformation and its correspond-

ing Bogoliubov coefficients, as given by Eqs. (14.4.4,14.4.5), it is straightforward to find that γ`m(t) = γ`me
−iωmt

and η`m(t) = η`me
iωmt, in agreement with Eq. (14.6.3).
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Figure 14.4: (Color online) The logarithmic negativity EN between local, diagonalizing modes vm and v̄n on the

left and right sides of the cavity, respectively. The cavity is split into two equal sides, r = 0.5R, and N = 200 for

both the left and right sides. Left: a field mass of µ = 0. Right: a field mass of µ = 15/R.

v̄1(x, t) (we could also plot the mutual information between modes, in order to get a better

idea of the correlations in general, but the result looks nearly identical qualitatively).
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Figure 14.5: (Color online) The function |v1(x)| in the left-side of the cavity, representing the spatial structure of

entanglement with the opposite side. The parameters are given by r = 0.5R, and N = 200, with different field

masses µ considered: 0 (blue), 10/R (light blue) and 50/R (green). As can be seen: the larger the mass of the

field, the closer the entanglement straddles the boundary between the two sides of the cavity, as expected.

14.6.4 Spatial structure of entanglement

One immediate application of finding the locally, symplectically diagonalizing basis is that

we are able to discuss and make observations about the spatial structure of entanglement

between the two sides of the cavity. For this section we will take t = 0, by which we are

discussing the local physics of the cavity before the mirror has been introduced. That is,
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Figure 14.6: (Color online) Evolution of the entanglement spatial structure for the massive case µ = 50/R after

an elapsed time t = r/2. We can see a peak for the correlations at exactly the position of the particle-burst front

as originated from the slamming. The cavity parameters are the same as in Fig. 14.5

in this section we are simply asking about the local properties of a vacuum field, and not

considering yet the time evolution caused by introducing a mirror.

We know that there is spatial vacuum entanglement; the two sides of the cavity are

entangled. This fact alone, however, gives no information on how entanglement is spatially

distributed. From what is known about vacuum entanglement we expect it to be spatially

focused near the boundary between the two regions, since the correlation in a field decays

with distance [331, 334, 335]. It is this that leads, for example, to the well-known area-law

for the entanglement entropy. There is also evidence that the entanglement characteristic

distance goes as the Compton wavelength of the field [341], thus we should also expect the

entanglement spatial distribution to hug the boundary more closely as we increase the mass

µ of the field.

To obtain information on the spatial structure of entanglement we use a technique very

similar to that in [338], which there was used within the context of lattice systems. Since the

mode function v1(x) contains the majority of the entanglement (right now working at t = 0),

what we propose is that the function |v1(x)| gives information about the spatial structure of

entanglement. The larger |v1(x)| is at a given x, the more entanglement is localized at that

point. Operationally this proposal makes sense; if one were to try to swap this entanglement

into an Unruh-deWitt type detector model then it makes sense to place the detector where

|v1(x)| is largest, since this directly translates into the coupling strength between this mode

and the detector. Of course there is also entanglement in the higher v-modes, and these

would form corrections to our |v1| estimate. Seen another way, we can consider measuring

the entanglement between regions by means of local projective measurements onto a pair of

spatial modes [139,342]. Since most of the entanglement is isolated between v1(x) and v̄1(x),

it is these modes that we would want to measure in order to obtain the greatest amount of
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entanglement.

In Fig. 14.5 we plot the function |v1(x)| at time t = 0 using the parameters r = 0.5R,

N = 200, and for three mass values µ of 0, 10/R, and 50/R. As can be seen, both of the condi-

tions discussed above are satisfied. Namely, the distribution indeed straddles the boundary

between the two sides of the cavity (in this case the boundary is to the right because we are

looking at the left side). Furthermore, as the mass µ of the field is increased we see that the

distribution becomes more localized at the boundary, representing a decreasing correlation

length.

Note that the small vibrations that can be seen in Fig. 14.5 are due solely to taking a finite

number N of local modes. As N is increased these vibrations become smaller. However the

overall shape of the function does not change upon increasingN ; a fact that further indicates

that the function |v1(x)|, as plotted, well represents the entanglement structure despite the

mixedness problem.

All that we have done here is show the shape of the left-side mode function that contains

most of the entanglement with the right side, and how much this can truly be considered a

distribution of entanglement is questionable. A more thorough approach to discuss the en-

tanglement spatial structure could be to consider the local reduced states for infinitesimally

small regions and see how much these regions are entangled with the right side of the box.

14.6.5 Entangled bursts of particles

In the previous section we have looked at the form of |v1(x, t = 0)| and claimed it to a

good representation of the spatial distribution of entanglement. A next obvious questions

is: in the case that we slam down a mirror at t = 0, how does |v1(x, t)| evolve for t > 0

and what significance does this have? The time evolution is simply given by Eq. (14.6.3),

i.e. v1(x, t) evolves according to the Klein Gordon equation with initial conditions given

by v1(x, 0), v̇1(x, 0), as shown in Fig. 14.5. As can be expected, the evolution is that of a

wavepacket propagating away from the newly slammed mirror. For example in Fig. 14.6

we plot |v1(x, t)| at time t = r/2 for parameters r = 0.5R, N = 200, and with a field mass of

µ = 50/R.

By construction, however, the state of this evolving mode and the correlations between

it and the right-hand cavity are exactly the same as at t = 0 (i.e. highly excited and highly

entangled with right-hand mode v̄1), when these correlations could be interpreted solely as

vacuum entanglement. That is, the state of the propagating wavepacket seen in Fig. 14.6

is highly excited, and is highly entangled with the symmetrically evolving wavepacket in

the right-hand cavity. That is, we see exactly the physics we expect, namely that slamming
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down a mirror produces bursts of particles that propagate away from it! Similarly in the

right-hand cavity the function v̄1(x, t) represents a burst of particles propagating to the right.

A detector placed within one of these cavities will then be able to measure these particles

once they hit it. 7 Additionally we see that the bursts on the two sides are entangled, and

that they are entangled exactly in the same manner that the vacuum was entangled prior to

the introduction of the mirror! In fact, their entanglement directly results from (or rather, it

simply is) the vacuum entanglement prior to the mirror being slammed.

This emphasizes and illustrates nicely our primary message: that the real excitations

created by slamming down a mirror are identical to the “virtual" excitations attributed to the

original vacuum entanglement. Furthermore, this perspective motivates an experimental

approach to verifying, and perhaps even harvesting and using, vacuum entanglement. That

is, if we were able to slam a mirror and measure the real particles, in such a way that we

could confirm quantum correlation statistics on the two sides, then this would constitute a

verification of vacuum entanglement. We discuss this further in Sect. 14.7.

a b

a b

a b

a b

a b

Figure 14.7: (Color online) Two mirror case: logarithmic negativity EN between local, diagonalizing modes

vAm and vCn on the left and right-most sides of the cavity, respectively. The cavity is in this case split into three

regions, ∆A = [0, 0.5R−B/2], ∆B = [0.5R−B/2, 0.5R+B/2], ∆C = [0.5R+B/2, R]. We have takenN = 200.

Left: Size of the middle section B = 0.1R. Right: Size of the middle section B = 0.2R.

The reader should know that this is an approximate picture in regards to visualizing the

burst of particles, as we are just using a single delocalized mode v1(x, t). It is a good approx-

7One may be concerned that in Fig. 14.6 there appears to be an amount of acausal signaling. Of course, for a

delocalized mode, it makes no sense to strictly talk about causality [136]. In any relevant calculation all modes

would be considered and no acausal behavior would be seen.
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imate picture, given that this mode contains the majority of excitations. However, in order

to gain the full structure of the burst one could instead monitor the change at different times

of the expectation values of local number operators attached to small (perhaps infinitesimal)

regions. As the burst reaches these small regions we expect these number expectation val-

ues to jump, and they will be different from the vacuum expectation values only inside the

future light cone of the spacetime point at which we slam the mirror.

14.6.6 Two mirrors

We have just stated that the entanglement between the bursts of particles produced by the

slammed mirror, in the left and right-hand sides, comes from the vacuum entanglement that

was previously there to begin with. One may, however, be concerned that this is simply one

perspective on the situation. One may argue that what really physically occurs is that the act

of slamming the mirror locally creates entangled quanta which then propagate away, rather

than this entanglement having been previously present.

To debunk this view we need simply consider a slightly different scenario: that of slam-

ming two mirrors down simultaneously, some distance apart from each other. It is known

(and we will confirm) that there is entanglement between regions of space even when they

are separated. This means that when we slam two mirrors the resulting field states in the

left-most and right-most cavities will be entangled, as would be measurable from the real

particle statistics. In this case one cannot claim that this entanglement was simply created by

the mirror, because now there is no common mirror connecting the two regions. In this case

it is clear that the entanglement between the two cavities comes directly from the vacuum

entanglement that was already present beforehand as no causal signal can connect them.

The mathematics of this scenario is exactly the same as before except that now we must

consider splitting the cavity into three regions, as we have already discussed in Sect. 14.4.2.

We choose some size for the three regions (here we will take regions A and C to be the same

size, and separated by some distance B). We can then take the reduced state of the left-most

and right-most regions, as given by Eq. (14.4.22) and perform exactly the same entangle-

ment analysis as we have done above. The result in short is that they are entangled. This

validates our above argument since, by construction, this entanglement is present between

real, stationary mode excitations after the mirrors have been introduced.

In particular, it is interesting to again perform the local, symplectic diagonalization such

that we go to the local mode basis {vAm, vCn }. As discussed in Sect. 14.6.3, this procedure

fails to produce a nice one-to-one entanglement structure when one’s state is mixed. As

we saw, the mixedness problem above only causes slight deviations from this structure.
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Now, however, the extra mixedness in the AC system caused by tracing out B really ruins

this structure. We plot in Fig. 14.7 the mode-mode logarithmic negativity between the vA

and vC-modes for the cases in which the distance B between the two regions is 0.1R and

0.2R, where we have taken N = 200 for each region and we use a massless field µ = 0.

As we can see, the entanglement rapidly decays with the distance between the regions, as

should be expected. We also note that in this case the higher v-modes become the dominant

entanglement carriers, meaning that to actually measure such entanglement one should try

to change the wavepacket form that one is measuring to conform with the shape of |v2(x, t)|
or |v3(x, t)| or whichever mode carries the most entanglement. It is not overly surprising

that v1(x, t) becomes superseded for a large enough distanceB once one realizes that v1(x, t)

largely contains the entanglement localized on the boundary between regions. Once there

is no common boundary we therefore rapidly lose this entanglement.

14.7 Experimental motivations and prospects

We would like to devote this section to discuss possible experimental platforms where to

observe the phenomena here described. The primary motivation for such an experiment

would be the verification of vacuum entanglement and, possibly in the future, an effective

method of entanglement harvesting.

We must point out that the description of our model so far has considered an idealized

theoretical scenario and has not been adapted to any particular experiment. Moreover, a

first analysis shows that such an experiment would be highly challenging and some of the

requirements needed (mirror slamming times, high sensitivities...) may require considerable

effort before becoming feasible.

First of all, let us focus on the essential elements of the theoretical scheme, which should

be imperatively implemented in any experiment of this sort. We require a quantum field

in a cavity, which should be taken into its lowest energy state (the vacuum), and a bound-

ary condition (here, a mirror) which will quickly appear somewhere inside the cavity and

produce particles similar to the dynamical Casimir effect. For most platforms to be con-

sidered the field would be massless, as we will be dealing with electromagnetic fields. In

addition, after these particles have been produced they must be detected and, if possible,

their entanglement measured.

Before anything else, we should check the amount of particles created. Based on previ-

ous results [2], Fig. 14.8 shows the average number of local particles created after slamming

the mirror, dividing the cavity in two equal sides. We can see that the maximum amount of
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Figure 14.8: The number expectation value of local modes um for the case of a massless field µ = 0 and a cavity

split in half r/R = 0.5.

particles creation is achieved by the first local mode, but that even this is quite small (0.052).

The expected value is independent of the cavity size or the speed of the mirror, which sets

only the adiabatic UV-cutoff. Any detector that aims to extract those particles would there-

fore be highly sensitive (and the experiment would need to be ran many times). The relative

positioning of the mirror could be modified in order to improve those numbers, but that im-

provement is only slight and, from our point of view, not relevant enough to be discussed

at this point.

The most natural set-up for such an experiment, given the theoretical set-up, would

involve the use of an optical cavity [343]. In practice, however, this setup would be almost

impossible to implement. In order to obtain reasonable particle production we require a

slamming time that satisfies tslam � 2L/c. For optical cavity setups this would require a

slamming on the order of picoseconds, which is entirely mechanically unattainable with

present technology. We conclude that this platform is unsuitable for our needs.

The more promising candidate would be Circuit Quantum Electrodynamics [211, 237].

Several experiments concerned with the peculiar properties of the quantum vacuum (sim-

ilar to the one here discussed) have been carried on this platform. In particular the first

observation of the Dynamical Casimir effect [58]. The kinds of techniques used in that ex-

periment could be very useful in a future proposal. The build up of a mirror inside the

cavity, is however, a very different matter, as it implies the “activation” of a boundary that

previously was not there. In the case of circuit QED, meandering resonators of lengths ∼ 20

mm have been built [254,344] but longer lengths could be achieved, say of 100 mm. For that

size a mirror slamming time of 0.7 ns may be enough to show the effects that we want.

Along these lines, recent work in Circuit QED [345,346] has shown that a superconduct-
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ing qubit coupled to a waveguide can fully reflect single photons, while it being possible to

modulate the coupling to the natural mode of the cavity in the ns timescale. That could be

the first candidate for the slamming mirror. However for a mirror to reflect all photons the

qubit would not be enough; rather the possibility of replacing the qubit with a frequency-

tunable cavity which couples to the middle of the cavity could be studied. Very fast tuning

of cavities has been proven before (∼ 3 ns) and it is expected to be achievable in the subn-

anosecond regime 8.

Finally, another experimental platform worthy of consideration would be cold atoms in

optical lattices. Although we would be dealing in that case with a discrete quantum field

theory (e.g. Bose-Hubbard model), the possibilities for creating “mirror-like” conditions by

raising and lowering potential barriers using holographic techniques in the subnanosecond-

picosecond regime [347] might very well fit our needs.

14.8 Discussion

We have given an answer to the question of “what does it mean for half of an empty box

to be full" by considering a physical scenario in which this statement actually has opera-

tional meaning. The procedure that we considered is that of very quickly introducing one

or more mirrors into a cavity scalar field prepared in its vacuum state and observing the

consequences. Unsurprisingly such an action induced particle creation in the field. The key

observation, however, is that these real excitations are mathematically equivalent to the local

vacuum excitations related to spatial entanglement in the field. As a result, the real particles

that one obtains on either side of the newly introduced mirror are entangled with each other.

Furthermore we have proven that this entanglement can not simply have been created by

slamming down a mirror, and rather derives directly from the previously present vacuum

entanglement. We proved this by also studying the case in which two mirrors, rather than

one, are slammed down simultaneously and some distance apart. In this scenario the ex-

citations in the left-most and right-most regions created from this cavity splitting are also

entangled with each other, despite there being no common mirror and no possible commu-

nication between them. This entanglement is exactly the spatial vacuum entanglement that

was already present.

As part of our exposition we utilized Gaussian quantum mechanics to easily derive the

reduced states and correlations of the vacuum field in different subregions of the cavity. We

have used this technology to discuss the entanglement structure between regions of the cav-

8Per Delsing - in a private communication
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ity and the time evolution that follows upon slamming down a mirror, including directly

relating the entanglement between regions with the burst of particles created by the mir-

ror. This work provides a solid operational interpretation for vacuum entanglement and the

local excitations that derive from it; these “virtual" excitations are simply the real excitations

that one gets when slamming down a mirror. In addition, this realization motivates a simple

experimental proposal for the verification of vacuum entanglement in a cavity system. In-

deed we discuss how the act of slamming down a mirror may represent a very effective way

of harvesting the vacuum entanglement. We finished by briefly discussing some prelimin-

ary experimental prospects for the laboratory realization of this proposal.

In addition to working towards an experimental realization there are many shorter term,

theoretical questions in regards to this scenario that can be the subject of future projects.

Such projects could include properly taking into account a finite-time introduction of the

mirror, computing the response of a detector due to the burst of the particles (and the sub-

sequent entanglement harvesting), and extending the analysis into free space or higher di-

mensions. Furthermore, the notion of quickly introducing a mirror and the resulting excit-

ations may in fact have strong connections to quantum black hole physics, such as holo-

graphy [348] and firewalls [349]. An extended study of how our work relates to these areas

may be the subject of future research.
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Conclusions

This thesis has been centered in the study of vacuum correlations in space and time and

the use of distinct techniques to probe them: detector models, on the theoretical side, and

quantum simulations, on the more practical side. Along this exploration we have obtained

results that lie on three different categories, which correspond to the three parts in which

the thesis is divided. In the first part, we have studied different detector models when it

comes to analyze localized, realistic states. We have also made an experimental proposal

to simulate the UDW when accelerated uniformely in the presence of a single-mode field.

In the second part of the thesis we have focused on phenomena beyond rotating wave and

how they are related to fascinating a priori non-expected detector behaviors. In the last

part of the thesis, we discuss vacuum correlations starting with an experimental proposal to

extract them, followed by a local formalism based on a constructive approach to build local

particles. Finally, based on the knowledge and intuitions gathered along the whole thesis,

we show how these local particles can actually be produced by slamming a mirror down in

a cavity and describe a feasible experiment where a Casimir-like phenomenon is predicted

to take place.

Specific outcomes

• Detector models

– We have analyzed the problem of wavepacket detection by an UDW model. We

have found that, in order to respond to a given frequency, the spatial profile con-

sidered must verify certain properties. We have studied the origin of such a pro-

file function for the case of an atomic detector by deriving an UDW equation

from first principles, relating the smeared UDW model to the usual p · A form

of the QED interaction coupling atoms to the electromagnetic field. We have dis-

covered a way of relating the smearing profile with the electronic wavefunction

of the relevant orbitals of an atom.
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– We have also shown that if we want the detector to succeed in detecting resonant

radiation, some information about the spectral response of the detector must be

fed in general to the spatial profile and we have suggested how to introduce it as

spatial oscillations. We have fully described how to use this formalism while cal-

culating the probability of detection of a wavepacket for an accelerated detector.

– Using A projector detector model we have devised a scheme to analyse field en-

tanglement in non-inertial frames for arbitrary single-photon field states and de-

tector frequency response. As a particular case, we have analyzed entanglement

behaviour of a two-mode photon state entangled in helicities and shown that

the quantum effects of relativistic acceleration can actually amplify entanglement

and not only destroy it. We have therefore found that entanglement amplification

phenomena, contrary to the extended belief, can exist beyond the rather unphys-

ical families of states where it had been found before. On top of that we have

thoroughly analysed the case of peaked detectors and studied the rapidly scaling

computational costs of considering wide-band detection. These difficulties may

be overcome through the use of quantum simulations. Also all the conclusions

are exportable to a a static black hole scenario.

– A method for simulating a set of accelerated Unruh-DeWitt detectors coupled to

a single-mode field has been presented in both circuit QED and trapped ions.

The idea relies on the induction of time-dependent sidebands in atom-field coup-

lings. We have shown that our idea may be extended to many-particle exper-

iments which could simulate results that are not affordable for classical com-

puters such as arbitrary non-inertial trajectories of detectors or many detectors

coupled to quantum fields. Finally, we have made a new connection between

non-equilibrium Physics and quantum effects due to acceleration.

• Quantum Simulations

– We have considered a system of two superconducting qubits coupled to a trans-

mission line to study the Fermi problem beyond the rotating wave approxima-

tion. In particular we have proposed an experiment feasible with current techno-

logy that would solve the controversy on the issue and that, in principle, would

show the expected causal behavior. By using a novel approach to switch on an

ultrastrong interaction using Landau Zener processes we can effectively connect

and disconnect the qubits from the line and perform independent measurements.

– Inspired by the previous results we have extended the typical regime considered
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for cases beyond rotating wave to short times. We have shown that for typical

cQED parameters, the information given by a detector from an initially excited

source is negligible due to the detector self excitations. It is only after a significat-

ive amount of time that we can start start trusting a detector click as informative

in that respect. We have seen that this is due to the breakdown of the RWA in

cQED. Our result applies to other setups and quantum detectors, although it is in

the case of cQED where it might affect the interpretation of coming experimental

results.

• Vacuum Entanglement and Localization

– We have analyzed the possibility of extraction of quantum correlations between

different times contained in the vacuum of a quantum field. We have proposed a

experimentally feasible circuit QED setup to test the sizable past-future vacuum

correlations can be transferred to a pair of qubits P and F, which only interact with

the field in the past or the future respectively, even if the qubits do not coexist at

the same time. We discuss the possible technological uses of that entanglement

extraction and the potential of our scheme to work as a quantum memory.

– Concerned about the theoretical impossibility of having local particle states in

QFT, we have explored how these issues would arise in a particular construc-

tion. We have identified the main obstruction to be the requirement that the

one-particle Hilbert space is spanned by positive frequency modes. In particular,

wave-packets built from these modes cannot be localized within a finite spatial

region, even for an arbitrarily small time interval. By basing the quantization pro-

cedure on localized modes instead, we account for localized one-particle states.

We carry on such a task for a KG field in a box. By computing the Bogoliubov

coefficients relating local and standard (global) quantizations, we show that both

representations are unitarily inequivalent. In spite of this, we find that the local

creators and annihilators remain well defined in the global Fock space FG, and so

do the local number operators,ending up with a useful mathematical toolbox to

analyse and characterise local features of quantum states in the global Fock space

FG. Specifically, we analyze the global vacuum state |0G〉 ∈ FG in terms of local

number operators and show, as expected, the existence of entanglement between

the left and right regions of the box. We study the character of the local vacuum

|0L〉 ∈ FL, and we find that on the contrary, has no entanglement. When seen

under this light we prove that the global vacuum also exhibits a distribution of
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local excitations reminiscent, in some respects, of a thermal bath.

– To the question “what does it mean for half of an empty box to be full" we give an

answer. By considering a physical scenario where one or more mirrors are very

quickly introduced into a cavity, we verify that such an action induces particle

creation in the field. By using the local formalism developed earlier we check that

these real excitations are mathematically equivalent to the local vacuum excita-

tions related to spatial entanglement in the field. We show that the real particles

that one obtains on either side of the newly introduced mirror are entangled with

each other. We have proven that this entanglement can not simply have been cre-

ated by slamming down a mirror, and rather derives directly from the previously

present vacuum entanglement. We also show the case in which two mirrors,

rather than one, are slammed down simultaneously and some distance apart. In

this scenario the excitations in the left-most and right-most regions created from

this cavity splitting are also entangled with each other. We use Gaussian quantum

mechanics to easily derive the reduced states and correlations of the vacuum field

in different subregions of the cavity.
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APPENDIX A

Appendix: Gaussian Quantum

Mechanics

Here we very quickly review the concepts from Gaussian quantum mechanics that are re-

quired to understand the material in chapter 14. We do not attempt to justify or derive

anything here. Everything that is presented (and much more) can be found in the active

literature, for example [337].

Let us deal with a system of N continuous-variable bosonic modes (e.g. harmonic os-

cillators, or modes of a field). Let the annihilation and creation operators of mode m be âm
and â†m, respectively. We can then define the internal position and momentum quadrature

operators of this mode to be the canonically conjugate, Hermitian pair

q̂m ≡
1√
2

(âm + â†m), p̂m ≡
i√
2

(a†m − am). (A.0.1)

For notational convenience we will arrange these operators into the vector

x̂ = (q̂1, p̂1, q̂2, p̂2, · · · , q̂N , p̂N )T (A.0.2)

, with the m’th entry of this vector labeled x̂m. In this notation the canonical commutation

relations take the form

[x̂m, x̂n] = iΩmn, (A.0.3)

where Ωmn are the entries of a matrix called the symplectic form, which is given by

Ω =
N⊕
m=1

(
0 1

−1 0

)
. (A.0.4)

The state ρ̂ of our system is said to be Gaussian if its corresponding Wigner function is

Gaussian over phase space. Equivalently, the state is fully characterized by the first and
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second moments, 〈x̂m|=〉Tr(ρ̂x̂m) and 〈x̂mx̂n|=〉Tr(ρ̂x̂mx̂n). In this work we only need to

consider states that have zero-mean (i.e. zero first moments). In this case only the second

moments are required. Thus, rather than using the density operator to characterize the state

we instead use the 2N × 2N covariance matrix σ, the entries of which are defined to be

σmn = 〈x̂mx̂n + x̂nx̂m|.〉 (A.0.5)

We use this matrix to fully characterize the state.

We can decompose the covariance matrix in 2× 2 blocks:

σ =


σ11 σ12 · · ·
σT21 σ22 · · ·

...
...

. . .

 . (A.0.6)

Here the matrix σmm is in fact the covariance matrix (i.e. reduced state) of mode m. Simil-

arly, σmn contains information about the correlations (e.g. entanglement) between modes m

and n, which are completely uncorrelated (i.e. in a product state) iff σmn = 0. Taking a par-

tial trace within the covariance matrix formalism is entirely trivial; for example the reduced

state of the first two modes is simply the upper-left 4× 4 block of σ.

An important example of a Gaussian state is the ground (vacuum) state of the free

Hamiltonian Ĥ =
∑N

m=1 ωmâ
†
mâm. For this state the covariance matrix is straightforwardly

seen to be given by the identity: σvac = I.

In general, unitary transformations Û in the Hilbert space that are generated by quad-

ratic Hamiltonians preserve Gaussianity. Such transformations are represented by a sym-

plectic transformation S in the phase space. Namely, such a quadratically generated Û trans-

forms the elements x̂m to a new set of quadratures x̂′ = Û x̂Û † such that the new quadratures

are a linear combination of the old: x̂′ = Sx̂, where in order to preserve the canonical com-

mutation relations the matrix S must be symplectic,

SΩST = STΩS = Ω. (A.0.7)

In addition, a matrix must be square in order to be considered symplectic, meaning that it

transforms N modes to N modes. It is easily seen that on the level of the covariance matrix

this transformation takes the form

σ → σ′ = SσST . (A.0.8)

An important characterization of a given Gaussian state is its symplectic spectrum. Every

N -mode Gaussian state σ has N symplectic eigenvalues {νm}, which are invariant under
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symplectic transformations. The covariance matrix is symplectically diagonalizable, meaning

that there exists a symplectic matrix S which brings the state to a diagonal form given by

SσST = D = diag(ν1, ν1, ν2, ν2, · · · , νN , νN ). This diagonalized form is also known as the

Williamson normal form of the state. We note, for example, that the vacuum state σvac = I is

already in its Williamson normal form, and that all of its symplectic eigenvalues are equal to

unity. Note that the symplectic eigenvalues of σ are not the same as its regular eigenvalues.

The symplectic eigenvalues of a state must always be larger than or equal to unity:

νm ≥ 1 ∀ m. This is simply a statement of the uncertainty principle, which is saturated

iff all symplectic eigenvalues are equal to unity. The symplectic spectrum also specifies the

mixedness of a Gaussian state: such a state is pure iff all symplectic eigenvalues are equal

to unity. That is, a pure Gaussian state saturates the uncertainty principle. Any uncertainty

in the state beyond this must be caused by classical uncertainty, i.e. mixedness. An inform-

ationally rigorous measure of mixedness, the von Neumann entropy S(σ) of the state, can

be computed from the symplectic eigenvalues via

S(σ) =

N∑
m=1

f(νm), (A.0.9)

where

f(x) =
x+ 1

2
log

(
x+ 1

2

)
− x− 1

2
log

(
x− 1

2

)
. (A.0.10)

The entropy is zero for a pure state, when νm = 1 for all m.

The easiest way to compute the symplectic eigenvalues of a state (if one does not care

about the diagonalizing transformation) is to compute the regular eigenvalues of the matrix

iΩσ, which come in pairs of {±νm}. There are situations, however, in which one would also

like to compute the diagonalizing symplectic transformation itself. The method of doing this

is provided in Appendix A. Of particular importance for us is the joint, local diagonalization

of a bipartite, pure state. Imagine that we split our set of modes into two groups, A and B.

The joint state can then be decomposed as

σ =

(
σA γ

γT σB

)
, (A.0.11)

whereσA andσB are the reduced states for groupsA andB, respectively, and γ contains the

correlations between the two groups. Let us assume that the global state is pure. That is, we

assume that the symplectic eigenvalues νm of σ are all equal to unity. This does not mean,

however, that the symplectic eigenvalues of σA and σB are all equal to unity; indeed they

will not be if the bipartitions are entangled. Let us label the “local" symplectic eigenvalues
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of these reduced states as ν(A)
m and ν

(B)
m . Because σ is pure these two spectrums will in fact

be equivalent (with the larger of the two systems having extra symplectic eigenvalues equal

to unity); this is equivalent to the fact that the standard local spectrums of reduced density

operators in a pure bipartition are equal. Let SA be the local symplectic transformation that

diagonalizes σA, and similarly we have SB . Let us then apply these local transformations

to our state by acting on σ with the joint transformation SA ⊕ SB :

(SA ⊕ SB)σ(SA ⊕ SB)T =

(
DA γD

γTD DB

)
. (A.0.12)

The reduced states have now been put into their Williamson normal forms. Because this is a

purely local operation the entanglement between the two sides has not been modified. Im-

portantly, if the global state is pure then this transformation produces a correlation matrix

γD that is diagonal as well [337]. This is analogous to the Hilbert space Schmidt decom-

position of a pure, bipartite state. In the literature on Gaussian quantum mechanics such a

covariance matrix is said to be in standard form. The fact that γD is diagonal means that in

this locally transformed basis we obtain a product of pure, two-mode states. That is, each

pair is uncorrelated with any others. Generally each such pair of modes will be entangled

(in particular, they will be in a two-mode squeezed state). Performing this local symplectic

diagonalization is therefore a method of isolating the entanglement between A and B into

simple pairs of modes (rather than the entanglement between a given mode in A and the

rest of the system being spread across multiple modes in both A and B).

In the case that σ is mixed we unfortunately cannot perform the same feat. We can, of

course, still locally diagonalize the reduced systems. This removes any mode-mode cor-

relation within A and B themselves. However in this case the resulting correlation matrix

γD will not generally be diagonal, meaning that we can still have a given mode in A being

correlated with multiple modes in B, and vice versa.

Lastly, we wish to have a measure of entanglement in Gaussian states. In the case of a

globally pure state the entanglement across a bipartition is simply the entropy, Eq. (A.0.9), of

either of the two reduced states. In the case in which the state is globally mixed, on the other

hand, one can use the logarithmic negativity EN [337, 340]. For bipartite Gaussian states a

non-zero value of EN is a sufficient condition for non-separability [350] 1. For a two-mode

Gaussian state with covariance matrix

σtwo mode =

(
σ11 σ12

σT21 σ22

)
(A.0.13)

1For (1xN)-mode Gaussian states the condition is also necessary. For 2x2 or larger cases one may find bound

entangled states, which are entangled yet their EN is zero [351].

256



the logarithmic negativity between the modes is given by

EN = max(0,− log z), (A.0.14)

where

2z2 = ∆−
√

∆2 − 4 detσtwo mode, (A.0.15)

and where ∆ = detσ11 + detσ22 − 2 detσ12.

Symplectic diagonalization

Here we describe the method of symplectically diagonalizing a covariance matrix, i.e. put-

ting into its Williamson normal form. To do this it is easier to work in a re-ordered phase

space basis in which the q’s are packaged together and similarly for the p’s:

x̂ = (q̂1, q̂2, · · · , p̂1, p̂2, · · · ). (A.0.16)

In this basis the reduced covariance matrix of Eq. (14.4.10), for example, takes a block form

σ =

(
σ(Q) 0

0 σ(P )

)
, (A.0.17)

where the entries of these blocks, σ(Q)
mn and σ(P )

mn , are given by the upper left and lower right

entries of σmn in Eq. (14.4.11), respectively. The off-diagonal blocks of Eq. (A.0.17) are zero

due to the fact that the Bogoliubov transformation to the local basis is purely real. This

circumstance in fact makes it considerably easier to symplectically diagonalize σ, and here

we will only cover this case.

Note that in the new basis ordering the symplectic form is given by

Ω =

(
0 I

−I 0

)
. (A.0.18)

Also in this basis the Williamson normal (symplectically diagonalized) form of a covariance

matrix is given by D = ν ⊕ ν, where ν = diag(ν1, ν2, · · · ) contains the symplectic eigenval-

ues.

We would like to find the symplectic transformation S̃ that achieves this transformation.

Specifically we will let S̃
T

(ν ⊕ ν)S̃ = σ. To this end, we will make an Ansatz and then

prove that it is the correct choice. Let us define a matrix A ≡
√
σ(Q)
√
σ(P ). We claim that

the symplectic eigenvalues {νm} of σ are given by the singular values of A. That is, there

are orthogonal matrices O1 and O2 such that

A = OT
1 νO2. (A.0.19)
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Let us take these and form another orthogonal matrix given by their direct sum O ≡ O1⊕O2.

We now claim that the symplectic matrix S̃ that diagonalizes σ is given by

S̃ = (ν ⊕ ν)−1/2Oσ1/2. (A.0.20)

Clearly from this definition it is true that S̃
T

(ν⊕ν)S̃ = σ, since O is orthogonal. However, is

it symplectic: S̃ΩS̃
T

= Ω? By expanding the left-hand side of this equation it is straightfor-

ward to see that the transformation will be symplectic iff O1AOT
2 = ν, which is equivalent

to Eq. (A.0.19).

Thus, finding the symplectic diagonalization is equivalent to finding the singular value

decomposition of the matrix A, which is easily done numerically. Note that to go from

the matrix σ to ν ⊕ ν in the sense of SDσSTD = ν ⊕ ν, the correct transformation will be

SD = (S̃
T

)−1 = (ν ⊕ ν)1/2Oσ−1/2.
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