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Abstract

The next generation of galaxy surveys will shed new light on our understanding of the

Universe on large scales. Thanks to the large number of galaxies and the accuracy of these

galaxy maps, the cosmological parameters will be measured at the 1 % level and below.

This makes it necessary to develop forecast analysis to explore what are the parameters

that galaxy surveys will constrain with better accuracy, and also the best configurations

of these surveys to exploit the maximum potential of the observables.

From the theoretical point of view, there are many different models that have been pro-

posed in recent years to describe the yet unknown dark sector of cosmology. Regarding

models for the late-time accelerated expansion of the Universe, they can be classified in two

types: dark energy models and modified gravity models. The former considers a modifica-

tion in the matter-energy term, this modification extends the constant dark energy term

of ΛCDM model into a dynamical dark energy. Instead, modified gravity models consider

a modification in the gravity term that generates accelerated expansion.

In the context of galaxy surveys and cosmological models of the dark sector and modified

gravity, this thesis aims at providing model-independent parametrizations of possible mod-

ifications of the standard ΛCDM cosmology. We will also perform Fisher forecast analysis

in order to estimate the sensitivity of future galaxy surveys for the detection of such devi-

ations.

Regarding modified gravity models, we analyze theories in which a vector degree of free-

dom is included. We obtain a parametrization of this kind of models in the sub-Hubble

regime within the quasi-static approximation. We find that in the case in which dark

matter obeys standard conservation equations, eight parameters are needed to fully char-

acterize the theory. In addition, if dark matter vorticity can be neglected, the number of

independent parameters is reduced to four. Secondly, we consider models with imperfect

vii



and non-conserved dark matter. We parametrize this kind of models and prove that they

can be described with five general functions of time and scale.

Once we have described the parametrizations, we obtain the observable power spectra

of galaxy surveys considering these models. In the case of vector field theories with non-

vanishing spatial components in the background, we find that a preferred direction is added

to the observables. We obtain the expressions for the multipole galaxy power spectrum

in redshift space and for the weak-lensing shear, convergence and rotation spectra in the

presence of the preferred direction. In the case of non-standard dark matter models, we

calculate the observable power spectra of the galaxy distribution, galaxy velocities and

weak lensing and find that these observables are only sensitive to three combinations of

the initial five functions of the model. Deviations of these three observable functions with

respect to ΛCDM give us different characteristic signals which allow us to determine in

which cases it is possible to discriminate a modification of gravity from an imperfect or

non-conserved dark matter.

Finally, we perform Fisher forecast analysis for each observable parameter of the different

models. We start by calculating the Fisher matrices for each observable power spectrum.

This is particularly interesting for the case in which a preferred direction is considered.

Then we obtain future constraints for preferred direction and non-standard dark matter

parametrizations. Finally, we present the results of two additional projects related with

Fisher forecast analysis of galaxy surveys. First, we have performed a Fisher forecast anal-

ysis of modified gravity models for the J-PAS collaboration; and we have developed the

Fisher code FARO for forecast analysis with the linear multitracer 3D galaxy power spec-

trum, the linear convergence power spectrum for weak lensing, and the linear multitracer

power spectrum for the correlation between galaxy distribution and convergence.
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Resumen

La próxima generación de mapas de galaxias arrojará luz en nuestra comprensión del Uni-

verso a gran escala. Gracias al gran número de galaxias y a la precisión de éstos mapas,

se podrán medir los parámetros cosmológicos con precisión del 1 % y menor. Es por ello

que es necesario el desarrollo de estimaciones de las futuras medidas para explorar qué

parámetros se podrán medir con mayor precisión, así como encontrar las mejores configu-

raciones de los mapas de galaxias para explotar el máximo potencial de los observables.

Desde el punto de vista teórico, hay una gran cantidad de modelos que se han propuesto

recientemente para describir el aún desconocido sector oscuro de la cosmología. En cuanto

a los modelos que describen la actual expansión acelerada del Universo, se pueden clasificar

principalmente en dos tipos: modelos de energía oscura y modelos de gravedad modificada.

El primer tipo considera una modificación en el término de materia y energía, ésta modi-

ficación generaliza la constante cosmológica del modelo de ΛCDM en una energía oscura

dinámica. Por otro lado, los modelos de gravedad modificada generalizan el término de

gravedad de la Relatividad General estándar para poder generar una expansión acelerada.

En el contexto de mapas de galaxias y modelos cosmológicos del sector oscuro y gravedad

modificada, la presente tesis tiene como objetivo estudiar parametrizaciones independi-

entes del modelo para modelos de gravedad modificada. Además, realizaremos un análisis

de Fisher con el fin de estimar la sensibilidad de futuros mapas de galaxias a la hora de

detectar tales desviaciones.

En relación a los modelos de gravedad modificada, analizamos teorías con un grado de

libertad vectorial. Para su estudio, consideramos el régimen sub-Hubble y la aproximación

quasiestática. Encontramos que, en el caso en el cual la materia oscura sigue las ecua-

ciones estándar de conservación, se necesitan ocho parámetros para describir la teoría. En

cambio, si podemos despreciar la vorticidad de la materia oscura, el número de parámetros

ix



independientes se reduce a cuatro. En segundo lugar, se consideran modelos de materia

oscura imperfecta y no conservada. Se obtiene una parametrización de éste tipo de modelos

y probamos que se pueden describir con únicamente cinco funciones arbitrarias del tiempo

y la escala.

Una vez descritas las parametrizaciones, obtenemos los espectros de potencias observables

de los mapas de galaxias para los modelos anteriores. En el caso de los modelos con grados

de libertad vectoriales y con una componente espacial de fondo no nula, encontramos que

aparece una dirección privilegiada en los observables. Obtenemos las expresiones para el

espectro de potencias multipolar en espacio de redshift y para los espectros de lente grav-

itacional débil en presencia de ésta dirección privilegiada. En el caso de los modelos de

materia oscura no estándar, calculamos los espectros de distribución de galaxias, distribu-

ción de velocidades peculiares y el espectro de lente gravitacional débil; encontramos que

éstos observables son sensibles únicamente a tres combinaciones de las cinco funciones del

modelo. Las desviaciones de éstos tres parámetros observables respecto de ΛCDM generan

diferentes señales características que permiten determinar en qué caso es posible distinguir

una modificación de la gravedad de un modelo de materia oscura no estándar.

Finalmente, realizamos un análisis de Fisher para estimar futuros errores para cada modelo

anteriormente descrito. Empezamos calculando las matrices de Fisher de cada espectro de

potencias observable. Es de particular interés el cálculo de las matrices de Fisher en el caso

de una dirección privilegiada. A continuación, obtenemos restricciones a las parametriza-

ciones de los modelos con dirección privilegiada y de los modelos de materia oscura no

estándar. Por último, presentamos los resultados de dos proyectos adicionales relacionados

con el análisis de Fisher para mapas de galaxias. Hemos realizado la estimación de fu-

turas cotas a los modelos de gravedad modificada en la colaboración internacional J-PAS;

y hemos desarrollado el código FARO para el análisis de Fisher de los espectros de poten-

cias lineales de distribución de galaxias con distintos trazadores, espectro de convergencia

de lente gravitacional débil, y el espectro de correlación cruzada entre la distribución de

distintos trazadores y el efecto de lente gravitacional débil.
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Chapter 1

The standard cosmological model and
its standard modifications

General relativity (GR) theory has achieved a lot of success since it was first proposed more

than hundred years ago [1–4]. It has explained the anomalous advance of Mercury perihe-

lion, the light deflection by the Sun, the dynamics of binary pulsar systems as an indirect

signal of gravitational waves, and finally, the direct measure of gravitational waves [5, 6].

When GR is applied to cosmological scales, it describes very well the evolution of Universe

but, unlike small scale astrophysical probes, at a higher cost. On cosmological scales, two

new components have to be introduced: dark matter and dark energy [7]. The cold dark

matter (CDM) component is a non-relativistic matter fluid that is seemingly not interact-

ing with visible matter, and the dark energy (Λ) component is a negative pressure fluid

that would be responsible for the late acceleration of the Universe. With these unexpected

ingredients, GR is able to explain the observations, however fundamental theoretical prob-

lems and some recent experimental tensions show that the standard cosmological model

might be only the first step in our understanding of Universe.

1.1 The standard ΛCDM model

The ΛCDM model is known as the standard cosmological model [8–10]. It is a GR-

based theory with the inclusion of the dark matter and dark energy components, and

also with the presence of an early epoch of huge acceleration named inflation [11]. Due
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2 1.1. THE STANDARD ΛCDM MODEL

to the cosmological principle, i.e. the assumption that at large scales the Universe is

homogeneous and isotropic, the geometry can be described by the metric of Friedmann-

Lemaître-Robertson-Walker [12],

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (1.1.1)

where a(t) is the scale factor, and k is the curvature constant that determines the geometry

of the spatial sections. In the context of GR, the field equations that relate the matter

content with the geometry are,

Gµν = 8πGTµν , (1.1.2)

where Gµν ≡ Rµν − 1
2
gµνR is the Einstein tensor, Rµν the Ricci tensor, R the Ricci scalar

and gµν the metric tensor. The matter and energy content of the Universe is represented

by the energy-momentum tensor Tµν , that in standard cosmology is described by a perfect

fluid,

Tµν = (ρ+ p)uµuν + pgµν , (1.1.3)

here uµ is the four-velocity, ρ is the matter-energy density and p the isotropic pressure.

The matter-energy density and the isotropic pressure are related by the equation of state,

p = ωρ. (1.1.4)

Considering (1.1.1) in the field equations (1.1.2) we can obtain the Friedmann equations,

1

a2

(
da

dt

)2

=
8πG

3
ρ− k

a2
, (1.1.5)

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p) . (1.1.6)

ΛCDM considers, in addition to photons, neutrinos and baryonic matter, a dark matter

component and a dark energy component in the form of a cosmological constant. This

former energy content follows a state equation with ω = −1. The Friedmann equation

(1.1.5) can be solved to obtain the Hubble parameter defined as,

H(t) ≡ 1

a

da

dt
. (1.1.7)
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Using the conservation equations of the energy-momentum tensor ∇νTµν = 0, and defining

the density parameters as,

Ωi(a) =
ρi(a)

ρc(a)
, (1.1.8)

where ρc = 3H2/8πG; we obtain the expression for the Hubble parameter (1.1.7) as,

H(t) = H0

√
Ωm a−3 + Ωr a−4 + Ωk a−2 + ΩΛ, (1.1.9)

with Ωi = Ωi(a = 1) the density parameters today and Ωk ≡ −k/H2
0 , m denotes the

total pressureless matter, r denotes radiation, k denotes curvature and Λ the dark energy

component. The latest data set Planck [13] agree that Ωbh
2 = 0.02222 ± 0.00023 for

baryonic matter, ΩCDMh
2 = 0.1197 ± 0.0022 for cold dark matter, Ωk = −0.052+0.049

−0.055 so

the curvature compatible with zero and ΩΛ = 0.685± 0.013.

1.2 The new challenges for ΛCDM cosmology

The ΛCDM model shows an excellent agreement with most of the observational data to

date, from Cosmic Microwave Background (CMB) [14, 15], the accelerated expansion of

Universe via the Supernovae measurements [9,16] or large scale structure (LSS) observables

from galaxy maps [17–19]. However, these successes bring a series of controversies: the

unsatisfactory explanation of the acceleration of Universe, the coincidence problem, the

recent experimental tensions between the CMB and local observables, and some problems

related to the standard CDM [20–23].

Although a standard cosmological constant is enough to explain the late-time cosmic

acceleration, from a theoretical point of view the cosmological constant Λ could be just

an effective constant within the context of a more fundamental theory, either involving

modifications of gravity on cosmological scales or extended models with additional degrees

of freedom [24,25]. In this line, many models can be proposed to reproduce the acceleration.

These models can be mainly classified in two types: dark energy and modified gravity

models. The former refers to a new energy component which acts as a source of gravity

within the standard GR equations of motion. By modified gravity we understand extensions

of GR which include new degrees of freedom that mediate the gravitational interaction.

Even though it may seem that these two types of models are radically different, in practice



4 1.2. THE NEW CHALLENGES FOR ΛCDM COSMOLOGY

it is hard to distinguish them with observations because, in most of the situations, a

dark energy model can be seen to be equivalent to a modified gravity model at least

at the background level. In addition to explain the late-time acceleration, these type of

alternative models could alleviate the so called coincidence problem, i.e. why the dark

energy density is comparable to matter density precisely today. The coincidence problem

is a fine-tuning problem that appears when a cosmological constant is used to explain the

Universe acceleration. In this situation, the value of the cosmological constant energy is of

the order of the matter component in the present day.

On the other hand, there are some experimental tensions between CMB and local

observables. The most important one tension is the known Hubble constant tension. In

particular, the latest data from CMB temperature and polarization coming from Planck

experiment givesH0 = 67.4±0.5 km/s/Mpc, assuming ΛCDM [10]. While recent local data

givesH0 = 73.24±1.74 km/s/Mpc [26], so there is a tension of order 4σ. Another important

discrepancy comes from the measurement of σ8, the amplitude of matter fluctuations,

that can be measured by Planck data and by weak lensing surveys such as KiDS450 and

CFHTLenS [27, 28]. Considering ΛCDM, Planck and KiDS-450 results have a tension of

2.3σ [27]. Although unresolved systematics can play an important role in explaining these

discrepancies, these tensions could be a signal of deviations with respect to the standard

cosmology.

Finally, there are some problems related with standard CDM: the problem of missing

satellites [20,21], the fact that the Planck collaboration observed less clusters than expected

[22] or the cusp-core problem [23]. These problems are related with the form in which dark

matter behaves, specially at sub-galactic scales. They could point towards the existence

of self-interactions in the dark matter component [29, 30], or a interaction in the dark

sector [31,32].

All these problems motivate the interest on studying modifications with respect to

the standard ΛCDM model. Recently, the observation of the binary neutron star merger

GW170817 [33] thanks to the joint detection of the gravitational wave emission and the

electromagnetic counterpart, has provided a tight bound on the speed of propagation of

gravitational waves, |cgw/c − 1| . 10−15 [34–36]. This detection ruled out all modified

gravity theories that predict different propagation speed of gravitational waves. Good news
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was only the beginning, future measurements from gravitational waves will be able to give

new information about the H0 tension, and also future large-scale structure experiments

will give new powerful constraints of ΛCDM and modified gravity models.

1.3 Beyond the standard ΛCDM model

The theoretical and experimental issues presented before motivate to look for some mod-

ifications of the standard ΛCDM cosmology. In this context, we have a large number of

different modified gravity and dark energy models, but we are going to review the most

important ones. As mentioned before, these alternative models can be roughly classified as

dark energy and modified gravity models. Given the Einstein equations (1.1.2), in the dark

energy scheme a modification of ΛCDM appears as a non-standard energy content in Tµν .

On the other hand, a modified gravity model assumes a modification in the gravity part

Gµν . From a deeper theoretical point of view, this can also be seen in the Einstein-Hilbert

action defined as,

S =

∫
d4x
√
−g

[
1

2κ
R + LM

]
, (1.3.1)

where κ = 8πG, R is the Ricci scalar and LM is the matter content Lagrangian. If we

modify the geometric part R/2κ we can define it as a modified gravity model, and if we

modify the matter-energy part LM we can see it as a dark energy model. Then, using the

action principle δS = 0 we can obtain the modified Einstein equations of motion. At the

background level, it can be proved that a cosmological evolution given by modified gravity

can be mimicked by a dark energy model. However, at the perturbation level it is possible

to distinguish between dark energy and modified gravity models [37,38].

1.3.1 Dark energy models

The first approach to generalize ΛCDM is to consider a dynamical dark energy. The easiest

way is to consider a quintessence model. In this situation a scalar field φ is introduced in

the action with a potential V (φ) [7, 39],

S =

∫
d4x
√
−g

[
1

2κ
R + LM−

1

2
gµν ∂µφ ∂νφ− V (φ)

]
. (1.3.2)
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Unlike the cosmological constant case, now we have a time-dependent equation of state

that, using a convenient V (φ), can reproduce the late-time cosmic acceleration. Also, it can

be used to generate the inflationary epoch [40] and, due to some attractor-like solutions,

this type of models alleviate the coincidence problem [41].

A more general way to consider dynamical dark energy are the K-essence models. Now

a scalar field with non-canonical kinetic term is considered [42,43],

S =

∫
d4x
√
−g

[
1

2κ
R + LM +P (φ,X)

]
, (1.3.3)

being X = − 1/2 gµν ∂µφ ∂νφ. In this situation, the cosmic acceleration can also be carried

out by the kinetic energy X. Usually these K-essence models are restricted to the form

P (φ,X) = f(φ)P̂ (X), see for instance [44] for models inspired in string theory.

Finally, a phenomenological way to parametrize deviations with respect to ΛCDM is

to take into account an effective equation of state ω(a) for a perfect fluid, being a(t) the

scale factor. In this situation the most typical parametrization is the so called Chevallier-

Polarski-Linder (CPL) parametrization [45,46],

ω(a) = ω0 + ωa (1− a), (1.3.4)

with w0 and wa constants and which reduces to the standard ΛCDM model when ω0 = −1

and ωa = 0.

1.3.2 Modified gravity models

In this second approach, a generalization of ΛCDM is done in the gravity sector. Now

new degrees of freedom that mediate the gravitational interaction are introduced. Then,

the cosmic acceleration is no longer generated by dark energy, instead, it is realized by

a modified gravity law. Nevertheless, not all modifications are allowed because there are

some local constraints that a modified gravitation law has to satisfy [47, 48]. For the

sake of concreteness, we will summarize some important modified gravity models: f(R),

scalar-tensor theories and finally the Horndeski theory.

We start with the action in f(R) theories [49–52],

S =

∫
d4x
√
−g

[
1

2κ
f(R) + LM

]
, (1.3.5)
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where f(R) is an arbitrary function of the Ricci scalar R. To obtain the modified Einstein

equations, there are two different approaches: the metric and the Palatini formalisms. In

the Palatini formalism [53], both gµν and the affine connection Γρµν are treated as inde-

pendent variables when the action is varied. As we will see below, a f(R) theory can be

written as a scalar-tensor model with an extra scalar degree of freedom. In that context

and considering the Palatini formalism, the scalar field degree of freedom does not propa-

gate so the resulting equations of motion are of second order. In addition, a large coupling

between the scalar field and ordinary matter is induced [54], this effect generates important

growth of perturbations if the model is far from GR.

On the other hand, the metric formalism considers only gµν as independent variables

when the action is varied. In this case, an additional dynamical term is introduced and

there is one propagating scalar degree of freedom. As can be seen in (1.3.5), GR is recovered

when f(R) = R. Some examples of viable f(R) models are the Starobinsky model [55],

f(R) = R− αRc

[
1−

(
1 +

R2

R2
c

)−n]
, (1.3.6)

with α > 0, n > 0 and Rc > 0, and the Hu-Sawick model [47],

f(R) = R− αRc
(R/Rc)

2n

1 + (R/Rc)
2n , (1.3.7)

with α > 0, n > 0 and Rc > 0.

As we have seen, scalar fields are a useful tool to modify ΛCDM from the dark energy

point of view. But we can also construct a modified gravity model using scalar-tensor fields.

This is the situation with the scalar-tensor theories in which the action reads [56,57],

S =

∫
d4x
√
−g

[
1

2κ
[f(ϕ,R)− ξ(ϕ) gµν ∂µϕ∂νϕ] + LM

]
, (1.3.8)

where f(ϕ,R) is a general function of the Ricci scalar R and the scalar field ϕ, and ξ(ϕ)

is a general function of the scalar field ϕ. As you can see from (1.3.8), f(R) theory is

included as a particular case of scalar-tensor theories. As another example of scalar-tensor

gravity we have the Brans-Dicke theory in which f(ϕ,R) = ϕR and ξ(ϕ) = ωBD/ϕ being

ωBD the Brans-Dicke parameter [58].

These modifications to the Einstein-Hilbert action can lead to higher derivative order

equations of motion. This can be a problem due to the Ostrogradsky theorem that states
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that equations of motion of order higher than two typically generate ghost instabilities [59].

This fact led to the construction of the so-called Horndeski theory. The Horndeski theory

is the most general scalar-tensor theory in four dimensions that ensures that the equations

of motion are of second order [60,61]. The action reads,

S =

∫
d4x
√
−g

[
1

2κ

5∑
i=2

Li + LM

]
, (1.3.9)

where,

L2 = G2(φ,X), (1.3.10)

L3 = G3(φ,X)�φ, (1.3.11)

L4 = G4(φ,X)R +G4 ,X(φ,X)
[
(�φ)2 − φ;µν φ

;µν
]
, (1.3.12)

L5 = G5(φ,X)Gµν φ
;µν− 1

6
G5 ,X(φ,X)

[
(�φ)3 + 2φ ν

;µ φ
α

;ν φ µ
;α − 3φ;µν φ

;µν �φ
]
, (1.3.13)

being X = − 1/2 gµν ∂µφ ∂νφ, �φ = φ µ
;µ , φ;µ = ∇µφ the covariant derivative and Gi ,X =

dGi/dX. GR is recovered when G2(φ,X) = G3(φ,X) = G5(φ,X) = 0 and G4(φ,X) = 1.

It can be proved that all theories commented before: quintessence, K-essence, f(R) theories

and scalar-tensor theories; are enclosed in the Horndeski theory [62].

1.4 Phenomenological scalar modified gravity

As we have seen, the standard ΛCDM cosmology model can be modified in a wide number

of manners so it is interesting to look for parametrizations that, considering some approx-

imations, enclose a large number of models in a model-independent way. On the other

hand, and we will give more details in next sections, given the importance that large-scale

structure observables will have in the future era of precision cosmology, it is also interest-

ing to parametrize our gravity model in the context of these observables. The two main

approximations that can be done in this framework are: the quasi-static approximation

(QSA), and the sub-Hubble regime. The former sets that time derivatives of gravitational

potentials can be neglected compared to spatial derivatives [63, 64]. That approximation

can be safely taken for models with large speed of sound of dark energy perturbations.

However as shown in [64] it should never be used for the integrated Sachs-Wolfe effect

analysis. The second approximation is basically to consider that the scales involved are
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much smaller than the Hubble horizon. Taking into account these two approximations, it is

possible to parametrize a modified gravity model in a general and model-independent way.

In this section we will show how to parametrize a modification of gravity with additional

scalar degrees of freedom [65].

To describe the cosmological observables we have mainly two approximation levels: the

background and the first order perturbations. For the background we have the Friedmann-

Robertson-Walker metric (1.1.1) which describes a homogeneous and isotropic Universe.

In the particular case of flat spatial sections this metric reads [39],

ds2 = a2(τ)[−dτ 2 + dx2], (1.4.1)

where τ is the conformal time, a(τ)dτ = dt, and a(τ) is the scale factor. Thus, the

background can be described in a model-independent way with only one function of time:

the Hubble parameter (1.1.7),

H(t) =
1

a

da

dt
=
a′

a2
≡ H

a
, (1.4.2)

where primes denote derivatives with respect to τ . In addition to the background, we have

that the growth of structures are due to the evolution of inhomogeneities. To describe the

evolution we have to perturb, first linearly, the background Friedmann-Robertson-Walker

metric. In this section we perturb it in the longitudinal gauge with scalar perturbations

Ψ(x, t) and Φ(x, t),

ds2 = a2[−(1 + 2Ψ)dτ 2 + (1− 2Φ)dx2], (1.4.3)

as you can see, the scalar gravitational potentials Ψ and Φ are time and space dependent in

general. The perturbed Einstein equations in ΛCDM considering only pressureless matter

are,

∇2Φ− 3H (Φ′ +HΨ) = 4πGa2 ρ δ, (1.4.4)

∇2Φ−∇2Ψ = 0. (1.4.5)

Considering that gravity is modified with N scalar degrees of freedom φn, the modified

Einstein equations at the perturbation level are,

δḠµ
ν = 8πG δT µν , (1.4.6)
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where the perturbed modified Einstein tensor δḠµ
ν can depend on both the metric po-

tentials Φ, Ψ and the perturbed fields δφn to first order. The only matter-energy content

relevant at late times is pressureless matter so that,

δT 0
0 = −ρ δ, (1.4.7)

δT 0
i = −ρ vi, (1.4.8)

δT ij = 0, (1.4.9)

where vi is the three-velocity of matter, ρ is the density and δ ≡ δρ/ρ is the density contrast.

In components, we have, a priori, the following modified Einstein equations corresponding

to δḠ0
0, δḠ0

i and δḠ
j
i, but not all of them are independent because of the Bianchi identities.

Thus, imposing ∇µḠ
µ
ν = 0 at the perturbation level and in the sub-Hubble regime, we find

∂iδḠ
i
ν = 0, so that in the Fourier space we have,

k̂iδḠ0
i = 0, k̂iδḠj

i = 0, (1.4.10)

being k̂i = ki/k. Taking these restrictions into account we have only two independent

equations which we take as those corresponding to δḠ0
0 and δḠi

i. Additionally, we have

the equations of motion for the scalar fields φn so that the system reads,

a11 Ψ + a12 Φ +
N∑
n=1

a1n+2 δφn = −8πGρ δ, (1.4.11)

a21 Ψ + a22 Φ +
N∑
n=1

a2n+2 δφn = 0, (1.4.12)

δφn = b1nΨ + b2nΦ, (1.4.13)

where aij and bij are general differential operators with time and space derivatives. Now

if we apply QSA and the sub-Hubble regime, these operators have only space derivatives

so that, in Fourier space, they are just polynomials in the scale k. This approximation

is very useful because, in the Fourier space, we are able to convert differential equations

into algebraic equations. Thanks to these approximations we can resolve the system and

obtain the gravitational potentials as,

k2 Φ = −4πGa2 µ η ρ δ, (1.4.14)
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k2 Ψ = −4πGa2 µ ρ δ, (1.4.15)

where,

η = −a21 +
∑N

i=1 a2i+2b1i

a22 +
∑N

i=1 a2i+2b2i

, (1.4.16)

µ =
2k2a−2

a11 +
∑N

i=1 a1i+2b1i + γ
(
a12 +

∑N
i=1 a1i+2b2i

) .
(1.4.17)

If a concrete dependence in k is chosen for aij and bij we automatically have the k depen-

dence of µ and η parameters. Notice that this result means that, considering QSA in the

sub-Hubble regime, any modified gravity theory with only scalar degrees of freedom can

be described with two time and scale functions µ(a, k) and η(a, k). These two functions

can be seen as the effective gravitational constant Geff and the gravitational slip,

µ(a, k) =
Geff

G
, (1.4.18)

η(a, k) =
Φ

Ψ
. (1.4.19)

In fact, any deviation of µ = η = 1 will be a signal of the breakdown of standard ΛCDM.

Although there are two independent functions, different choices can be made. For example,

it is also common to choose (µ,Σ) instead of (µ, η) where,

Σ ≡ µ(1 + η)

2
, (1.4.20)

this is a useful choice for weak lensing because the power spectra for lensing depends on

the potential (Ψ + Φ)/2.

Finally, if we want to complete the problem we need the dark matter conservation

equations. In the standard case we consider,

∇µT
µ
ν = 0, (1.4.21)

where for presureless matter,

T µν = ρ uµuν , (1.4.22)
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being

ρ = ρ0 + δρ, (1.4.23)

and the four-velocity of matter uµ = dxµ/ds is

uµ = a−1(1−Ψ, vi), (1.4.24)

so that

uµ = a(−1−Ψ, vi). (1.4.25)

Because we are considering only scalar perturbations, the velocity perturbation is longitu-

dinal so v̂ = k̂. Then we can obtain from (1.4.21) two scalar equations: ∇µT
µ
0 = 0 and

ki∇µT
µ
i = 0. If we apply the quasi-static approximation we obtain,

δ′ = −θ, (1.4.26)

θ′ = −Hθ + k2Ψ, (1.4.27)

where θ = ikiv
i. If we derive equation (1.4.26) with respect to τ and use equations (1.4.26)

and (1.4.27) we can obtain the equation for the evolution of δ,

δ′′ +H δ′ + k2Ψ = 0. (1.4.28)

Finally using equation (1.4.15) in (1.4.28) we obtain,

δ′′ +H δ′ − 3

2
H2 Ωm(a)µ δ = 0, (1.4.29)

here we have used 4πGa2 ρ = 3
2
H2 Ωm(a), being Ωm(a) = ρm(a)/ρc(a), ρc(a) = 3H(a)2/8πG.

Thus we can solve for all the perturbations all physical observable perturbations: gravita-

tional potentials Ψ and Φ, and the matter density contrast δ. In the following sections we

will see how these theory observables can be measured using galaxy surveys.



Chapter 2

Galaxy surveys: the new era of
precision cosmology

In the next decade new cosmological probes will drive the new era of precision cosmology,

these observables are the galaxy surveys. Galaxy maps such as J-PAS [66], DESI [67],

Euclid [68], TAIPAN [69], LSST [70], or SKA [71], will be able to measure the distribution

of galaxies, their peculiar velocities and their shapes. With this type of information for

millions of objects, these surveys will shed new light on the dark sector and on the behaviour

of the gravitational interaction on cosmological scales. In the following, we will summarize

how these observables are measured and how they can be connected to theory.

2.1 Galaxy surveys and their observables

As we have seen, the recent epoch of cosmic acceleration can be explained by the existence

of dark energy or by a modification of the gravitational interaction. From the observational

point of view, the most accurate cosmological probe we have to date is the CMB [10,72,73].

Unfortunately, CMB observations provide a very precise description of the universe around

recombination era, but they are poorly sensitive to the late-time evolution. So the fact that

the Universe is accelerating is basically sustained on a combination of CMB observations

and late-time observables such as the Hubble diagram measured from SNIa [9,16]. In this

sense, galaxy surveys probing the dark-energy dominated era are an excellent tool to explore

the physics of cosmic acceleration. On the other hand, at the background level, there are

13
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strong degeneracies bewteen different dark energy and modified gravity theories which

predict the same expansion history of the universe. For this reason, a good determination

of the evolution of perturbations is of the outmost importance to discriminate among the

different models. The possibility of measuring the growth rate of perturbations or the

lensing function with galaxy surveys will thus open a new avenue for model selection.

Galaxy surveys can be classified mainly in three types: spectroscopic surveys, photo-

metric surveys and spectro-photometric surveys. Spectroscopic surveys obtain high-quality

spectra from a number of pre-selected extragalactic objects [74–76]. Using the spectra in-

formation they are able to extract the spectroscopic redshift of an object with very high

precision. However, these type of measurements do not provide any information on the

shapes of galaxies and therefore they are not sensitive to the lensing effect. On the other

hand, we have the photometric surveys. In this type of surveys a large field of view camera

is used to obtain images of the sky. These cameras have a specific number of broadband

filters (BB) in which the light intensity at some wavelengths is recorded [77, 78]. Using

this information, a reconstruction code is able to obtain photo-spectra of each object and

their photo-redshift [79, 80]. Thanks to this technique, a higher number of objects can

be detected compared to spectroscopic surveys but with a poorer redshift accuracy. For

this reason, these surveys are focused on the determination of 2D power spectra. In ad-

dition, from the objects images, it is possible to measure the galaxy shapes and then to

perform measurement of the cosmic shear. Finally, the spectro-photometric surveys are

also imaging surveys but with a higher number of narrow band filters (NB) than a standard

photometric survey [66,81,82]. Thanks to this high number of filters, a photo-redshift with

higher accuracy can be reached making the survey competitive with spectroscopic surveys

to obtain 3D power spectrum. Also, they can measure galaxy shapes as usual photometric

surveys.

The main observable power spectra of the galaxy surveys are: the galaxy distribu-

tion power spectrum, the peculiar velocity power spectrum and the weak lensing power

spectrum. The galaxy distribution power spectrum can be constructed from two basic

measurements, the redshift of a galaxy and its sky position. Thus, the galaxy power spec-

trum is obtained in the so called redshift space and the redshift of an object contains two

different contributions, the redshift due to the cosmological expansion and the redshift due
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to peculiar velocities. Peculiar velocities imprint a redshift space distortion effect (RSD)

in the galaxy power spectrum that is sensitive to the growth of structures [83, 84]. In ad-

dition, to compute the galaxy power spectrum in real space, we need to translate redshifts

into radial distance assuming a fiducial cosmology. If the fiducial cosmology chosen is not

the real one, an additional observable effect is induced in the power spectrum. This is

known as the Alcock-Paczynski effect [85]. Finally, we are measuring galaxies as tracers of

the total matter perturbation evolution but these galaxies may not be in the center of the

gravitational potentials. In fact, in the early Universe, the dark matter density contrast

starts to grow earlier than the baryon density contrast due to electromagnetic interactions.

Thus, a bias factor should be considered and modeled. In general, this bias factor depends

on the galaxy formation and evolution, the selection effects of the galaxy survey and the

different galaxy tracers [86–89].

Secondly, galaxy surveys are able to measure the peculiar velocity power spectrum. To

construct this power spectrum we need an independent determination of the real distance

to an object, in addition to the standard redshift [90]. This independent distance can

be obtained with empirical relations like the Tully-Fisher [91] and Fundamental Plane

relations [92, 93]; or with standard candles like supernovae [94]. In that situation, we

are able to distinguish between the redshift due to the cosmological expansion and the

redshift due to peculiar velocities, so that we can obtain the peculiar velocity along the

line of sight of the object. Notice that there is no direct observable that can measure the

transverse velocity of an extragalactic object. Due to the need of an independent distance

measurement, it is hard to have enough statistical significance compared with other galaxy

survey observables.

Finally, imaging galaxy surveys can measure the weak lensing power spectrum. This

power spectrum is obtained with weak lensing maps in which size and ellipticity of galaxies

are obtained [95–97]. When the light of a galaxy travels through the Universe and reaches

us, it is weakly deflected by the gravitational potentials of the intervening objects. This

subtle effect modifies the size and ellipticity of galaxy images in a particular way. This

effect is not observable for an individual galaxy because we do not know its real size and

ellipticity. However, if we observe a group of near lensed galaxies, coherent shape and

size distortions can be seen and we are able to reconstruct the gravitational potentials
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that generate them. Thus, the weak lensing power spectrum has information about the

evolution of gravitational perturbations.

When these observables are analyzed at small scales, new non-linear effects appear.

These effects are in general harder to model due to baryon and halo interactions. For

the galaxy clustering power spectrum, the main non-linear effects in addition to the non-

linear matter power spectrum are the non-linear bias and the non-linear RSD. In the

linear and Gaussian case, the galaxy bias can be described by a proportionality parameter

that relates the dark matter density contrast and the galaxy density contrast. However,

at small scales this is no longer possible and more parameters have to be included to

take into account non-linear and non-Gaussian effects [98,99]. These parametrizations are

usually based on numerical simulations. On the other hand, the RSD effect has extra

terms in non-linear scales. The main effect is known as finger of God effect (FOG) which

causes an elongation along the line of sight of overdensities in redshift space compared

to those in real space [100]. For the weak lensing power spectrum the non-linear effects

are difficult to model. In addition to the non-linear matter power spectrum, non-linear

intrinsic alignments are present [101–103].

In the following sections we will construct in detail each observable power spectrum

considering only linear effects.

2.2 Clustering power spectrum

One of the main observables is the galaxy distribution power spectrum. This power spec-

trum basically measures the matter perturbation evolution using the galaxy positions in

redshift space. To do that in the linear regime, we have three main effects: the RSD ef-

fect [83, 84], the bias effect [104] and the Alcock-Paczynski effect [85]. We start with the

RSD effect. This effect is due to the fact that we use redshifts to obtain real distances to

objects. When we do not have an independent determination of the real distance, we are

not able to disentangle the cosmological redshift from the redshift due to peculiar veloc-

ities [90]. In that situation we have to distinguish between the real space r: the real 3D

position of a galaxy, and the redshift space s: the 3D position of a galaxy obtained with
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the measured redshift,

s = r
(

1 +
v‖(r)
H r

)
, (2.2.1)

where v‖ denotes the line-of-sight (LOS) component of the peculiar velocity. In Fourier

space, we are interested in relating the redshift space matter perturbation δs(k) and the

real space matter perturbation δr(k). Thus we write,

δs(k) =

∫
d3s δs(s) e−ik·s. (2.2.2)

Using matter conservation in a given volume we have that,

[1 + δs(s)] d3s = [1 + δr(r)] d3r, (2.2.3)

and using (2.2.3) in (2.2.2) we obtain,

δs(k) =

∫
d3r

[
1 + δr(r)− d3s

d3r

]
e−ik·s. (2.2.4)

The jacobian d3s
d3r

is in general of the form,

d3s

d3r
=
s2ds

r2dr
=

(
1 +

v‖(r)
H r

)2(
1 +

1

H
∂v‖(r)
∂r

)
, (2.2.5)

and using the distant observer approximation in which,

v‖(r)
r
�

∂v‖(r)
∂r

, (2.2.6)

we obtain that the Jacobian becomes,

d3s

d3r
' 1 +

1

H
∂v‖(r)
∂r

. (2.2.7)

Now we apply the plane-parallel approximation by considering a global LOS in the z

direction [83,105]. Using this approximations on equation (2.2.4) we obtain,

δs(k) =

∫
d3r

[
δr(r)− 1

H
∂vz(r)
∂z

]
e−ik·r[1+vz/Hr], (2.2.8)

where we have chosen the LOS to be in z axis. As we only want to keep linear terms in

perturbation in (2.2.8) we can approximate,

e−ik·r[1+vz/Hr] ' e−ik·r, (2.2.9)
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so that we obtain,

δs(k) = δr(k)− 1

H

∫
d3r

∂vz(r)
∂z

e−ik·r, (2.2.10)

which yields, ∫
d3r

∂vz(r)
∂z

e−ik·r = ikzvz(k). (2.2.11)

Because we are considering only scalar perturbations, the peculiar velocity perturbation

can be written as,

vi(k) = −i ki
k2
θ(k), (2.2.12)

being θ = ikiv
i, so that using vz = −i θ kz/k2 and µ̂ ≡ k · n̂/k with n̂ an unitary vector

parallel to the LOS direction, we obtain the final result,

δs(k) = δr(k)− µ̂2 θ(k)

H
. (2.2.13)

This is the famous Kaiser equation for the linear RSD effect [83, 84]. It relates the direct

density contrast in redshift space δs with the density contrast in real space δr and the

velocity divergence θ.

On the other hand, galaxy surveys cannot directly determine the total matter density

contrast since they only detect galactic tracers of the total matter. In the linear regime,

the simplest model of a linear bias between galaxies and total matter is [88,89,104],

δg = b(a) δ, θg = θ, (2.2.14)

δg is the density contrast of galaxies and δ the total matter contrast. On the other hand, it

is assumed that there is no bias between the peculiar velocities of galaxies and those of the

total matter. However, this assumption might not be correct and, in fact, several studies

have attempted to calculate this velocity bias by comparing the velocity divergence power

spectrum from simulated halos and the corresponding dark matter field [106–109]. As we

commented before, since dark matter perturbations start to grow in the early universe

before baryonic perturbations do, there is a bias between galaxy overdensities and total

matter overdensities. This bias evolves during galaxy formation so that it depends on the

type of the tracer and also on the selection model of each galaxy survey. Nevertheless,
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as galaxies tend to follow total matter, the bias is expected to decrease with cosmic time

approaching one. For these reason, a simple model for the lineal bias is [110,111],

b(a) =
b0

D(a)
, (2.2.15)

where D(a) ≡ δ(a)/δ(1) is the growth factor.

The bias factor will depend on the specific tracer under considerations. There are several

tracers but the main ones for surveys are the Luminous Red Galaxies (LRGs), the Emission

Line Galaxies (ELGs) and the quasars (QSO). LRGs are selected on the basis of color and

magnitude to yield a sample of luminous, intrinsically red galaxies; typically they are large

elliptical galaxies with redshifts from 0 to 1. ELGs are young main sequence galaxies with

high stellar formation, they can be detected for higher redshifts than LRGs. QSO are

extremely luminous active galactic nucleus of young galaxies generated by supermassive

black holes. Taking the bias effect into account, expression (2.2.13) becomes,

δsg = δrg − µ̂2 θg
H
, (2.2.16)

so that using equations (2.2.14) and (1.4.26) we obtain,

δsg = (1 + βµ̂2) b δ, (2.2.17)

where we have rewritten (1.4.26) as,

θ = −H f δ, (2.2.18)

with f(a) the growth function defined as,

f(a) =
d log δ(a)

d log a
, (2.2.19)

and where β ≡ f/b. Now we define the galaxy power spectrum as,

〈δsg(k) δs ∗g (k′)〉 = (2π)3 δ3(k− k′)Pgg(k), (2.2.20)

here 〈〉 is the ensamble average where δg(k) are Gaussian random variables. Thus, consid-

ering the RSD and bias effects with only one tracer, the observable linear power spectrum

for galaxy distribution is,

Pgg(z, µ̂, k) =
(
1 + β(z)µ̂2

)2
b(z)2 Pm(z, k), (2.2.21)
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with Pm(z, k) the matter power spectrum at redshift z and scale k. To see how the

RSD effect is relevant for the power spectrum, we calculate the multipole expansion of

Pgg(z, µ̂, k),

Pgg(z, µ̂, k) =
∑
`

P`(z, k)L`(µ̂), (2.2.22)

where L` are the Legendre polynomials so that

P`(z, k) =
2`+ 1

2

∫ 1

−1

dµ̂ Pgg(z, µ̂, k)L`(µ̂). (2.2.23)

The only ` that are different from zero are,

P0 =

(
1 +

2

3
β +

1

5
β2

)
b2 Pm(z, k), (2.2.24)

P2 =

(
4

3
β +

4

7
β2

)
b2 Pm(z, k), (2.2.25)

P4 =
8

35
β2 b2 Pm(z, k). (2.2.26)

Considering that b may vary between 1 and 2, and f is order 0.8, the RSD correction in

the monopole is order 30− 60% which is a very relevant correction.

Nevertheless, an additional effect should be taken into account: the Alcock-Paczynski

effect. This effect is due to the fact that, to obtain physical distances and volumes using

the redshift we have to assume a reference background cosmology. Thus, we want to relate

observables obtained in a reference cosmology to observables in any other cosmology. Given

a transverse comoving length λ that subtend an angle θ at redshift z we have,

DA =
λ

(1 + z)θ
, (2.2.27)

being DA the angular distance in a given cosmological model. Thus, for the same angle

and redshift but in different cosmologies that we denote by 1 and 2, we obtain the relation,

DA 1

λ1

=
DA 2

λ2

. (2.2.28)

In Fourier space this relation implies that a transverse mode k⊥ in a given cosmology

corresponds to the k⊥r mode in the fiducial cosmology given by,

k⊥ =
DAr

DA

k⊥ r. (2.2.29)
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Figure 2.1: Diagrams of transverse and longitudinal distances for the Alcock-Paczynski effect.

On the other hand, for a longitudinal comoving length λ between redshifts z1 and z2

(z2 > z1) we have,

λ =
z2 − z1

H
. (2.2.30)

Accordingly for the same redshifts in different cosmological models,

λ1H1 = λ2H2, (2.2.31)

that in Fourier space reads,

k‖ =
H

Hr

k‖ r, (2.2.32)

where again the subscript r denotes the fiducial cosmology. As we can see, this effect

introduces additional anisotropies because transverse and longitudinal modes to the LOS

are modified in different ways.

Using these relationships we can obtain how (k, µ̂) have to be modified,

k = Qkr, (2.2.33)

µ̂ =
H µ̂r
HrQ

, (2.2.34)

Q =

√
H2D2

A µ̂
2
r −H2

r D
2
Ar (µ̂2

r − 1)

HrDA

. (2.2.35)
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Finally, since the power spectrum is proportional to the measured volume, we need also

the relation between volumes in different cosmologies,

V =
HrD

2
A

H D2
Ar

Vr. (2.2.36)

Considering the Alcock-Paczynski effect, the galaxy distribution power spectrum of equa-

tion (2.2.21) becomes,

Pgg(z, µ̂r, kr) =
HrD

2
A

H D2
Ar

(
1 + β(z)µ̂2

)2
b(z)2 Pm(z, k), (2.2.37)

where k = k(kr) and µ̂ = µ̂(µ̂r) follow equations (2.2.33) and (2.2.34). These are the

main effects in the linear galaxy clustering power spectrum. However, since the redshift

measurement has an error, the observed power spectrum contains an additional term. To

take into account this error, since dr = dz/H(z), a redshift uncertainty can be translated

into a distance error σr = σz/H(z). Thus, we assume that a radial distance r has a

probability distribution function of the form [7],

f(r, r0) =
1√

2πσr
e
− (r−r0)2

2σ2
r , (2.2.38)

where r0 is the true distance, so that the observed correlation function is convolved with

this distribution and after the Fourier transform, the observed power spectrum becomes,

Pgg(z, µ̂r, kr) =
HrD

2
A

H D2
Ar

(
1 + β(z)µ̂2

)2
b(z)2 Pm(z, k) e−k

2
r µ̂

2
r σ

2
r . (2.2.39)

Typically, redshift uncertainties are parametrized as σz = δz(1 + z). For a spectroscopic

survey δz ∼ 0.001 or less, whereas for a photometric survey δz ∼ 0.01− 0.05.

Finally, when we are considering different types of tracers we can build the auto and

cross correlation galaxy density power spectra for each galaxy tracer. In that situation we

have,

δgi = (bi + fµ̂2) δ, (2.2.40)

where index i denote the different tracers, so the galaxy power spectrum becomes,

P δδ
ij (z, µ̂r, kr) =

HrD
2
A

H D2
Ar

(
bi + f µ̂2

) (
bj + f µ̂2

)
Pm(z, k) e

−k2
r µ̂

2
r σ

2
i

2 e
−k2
r µ̂

2
r σ

2
j

2 , (2.2.41)

where the radial distance error for tracer i is σi = (δzi (1 + z))/H(z).
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2.3 Peculiar-velocity power spectrum

As we have commented before, if there are independent distance measurements like su-

pernovae data, Tully-Fisher [91] or Fundamental Plane relations [92, 93], it is possible to

distinguish between the cosmological redshift and the peculiar velocity redshift. In that

situation an additional observable is the LOS peculiar velocity defined as [90],

u(r) ≡ v(r) · r̂, (2.3.1)

where r̂ is an unitary vector parallel to r. In Fourier space,

u(k, µ̂) = iµ̂
θg
k
. (2.3.2)

Using equations (2.2.14) and (2.2.18) we obtain,

u = −iHfµ̂
k

δ. (2.3.3)

With this result we can obtain the LOS peculiar velocity power spectrum defined as Puu =

〈uu∗〉. In addition, we can obtain the cross-correlation between galaxy distribution Pgu =

〈δsgu∗〉 where δsg follows equation (2.2.16). Thus, we can write,

Puu(z, µ̂r, kr) =
HrD

2
A

H D2
Ar

(
H f µ̂
k

)2

Pm(z, k), (2.3.4)

Pgu(z, µ̂r, kr) = i
HrD

2
A

H D2
Ar

H f µ̂
k

(
1 + β µ̂2

)
b Pm(z, k), (2.3.5)

where we have also taken into account the Alcock-Paczynski effect, with k = k(kr) and

µ̂ = µ̂(µ̂r) following equations (2.2.33) and (2.2.34). It can be seen with equations (2.2.37)

and (2.3.4) that,

Puu
Pgg

=
f 2µ̂2

(b+ fµ̂2)2

(
H
k

)2

∝
(
H
k

)2

, (2.3.6)

so that in the sub-Hubble regime in which H/k � 1 we have that Puu � Pgg. This is one

of the reasons why galaxy surveys extract more information from the galaxy distribution

than from direct peculiar velocities.
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2.4 Weak-lensing power spectrum

Here we will discuss how the weak lensing effect can be measured and how to define the

observable power spectrum [96, 97, 112–115]. This effect is due to the distortion effect of

the light trajectories due to the perturbed gravitational potentials on large scales. As we

will prove, this effect induces extra ellipticities in galaxy shapes that can be statistically

measured. First of all, we will describe how light trajectories are modified in a perturbed

cosmology, then we will introduce the distortion tensor and finally the observable weak

lensing power spectra.

2.4.1 Weak lensing: null geodesics with scalar perturbations

We start with the scalarly perturbed FRW metric in terms of the cosmological time t,

ds2 = −(1 + 2Ψ) dt2 + a(t)2 (1− 2Φ) dx2. (2.4.1)

For this metric, we are interested in deriving the corresponding null geodesics, satisfying

d2xi

dλ2
+ Γiαβ

dxα

dλ

dxβ

dλ
= 0. (2.4.2)

We will consider the angular perturbation with respect to the line of sight induced by

the metric perturbations. With that purpose, three approximations will be taken into

account: the small-angle approximation, the Limber approximation and the flat sky ap-

proximation. The small-angle approximation assumes that the deflection angle induced

by lensing is small [113]. The Limber approximation is valid for large wavenumber k and

simplifies calculations by replacing Bessel with delta functions [116, 117]. Finally, the flat

sky approximation assumes that angular effects are negligible in the fields so the geome-

try of the angular component is assumed to be planar. From the mathematical point of

view, this approximation replaces an spherical harmonic expansion by a Fourier expan-

sion [116, 118]. Thus, we define xi = χ θi where χ = χ(z) is the comoving radial distance

and θi = (θ1, θ2, 1), so that θi for i = 1, 2 are first order in the gravitational perturbations

and x3 = χ. The goal is to obtain the geodesics (2.4.2) for i = 1, 2,

d2xi

dλ2
=
dχ

dλ

d

dχ

(
dχ

dλ

d

dχ

(
χ θi
))

, (2.4.3)
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Figure 2.2: Diagram for the perturbed trajectory of a light geodesic. We consider that θi for i = 1, 2

are first order in the gravitational perturbations.

where,

dχ

dλ
=
dχ

dt

dt

dλ
, (2.4.4)

and dχ
dt

= − 1
a
. In order to obtain dt

dλ
we define P µ = dxµ

dλ
, where, for null geodesics,

gµνP
µP ν = 0, (2.4.5)

so, at order zero in perturbations, we have,

−(P 0)2 + gijP
iP j = 0. (2.4.6)

By defining p2 ≡ gijP
iP j we find,

dt

dλ
= p, (2.4.7)

so that we obtain dχ
dλ

= − p
a
and, since for i = 1, 2, θi is first order in perturbations, we can

write

d2xi

dλ2
= −p

a

d

dχ

(
−p
a

d

dχ

(
χ θi
))

. (2.4.8)

Thus we only need p to zeroth order, which satisfies p a ∝ const so that,

d2xi

dλ2
= p2 d

dχ

(
1

a2

d

dχ

(
χ θi
))

. (2.4.9)
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On the other hand, we have the Christoffel symbol term,

Γiαβ
dxα

dλ

dxβ

dλ
=

(
dχ

dλ

)2

Γiαβ
dxα

dχ

dxβ

dχ
. (2.4.10)

For the metric (2.4.1), we have,

Γi00 = a−2 Ψ,i, (2.4.11)

Γij0 = δij (H − Φ,0) , (2.4.12)

Γijk = Φ,i δjk − Φ,k δij − Φ,j δki, (2.4.13)

where a comma denotes derivative with respect to the coordinates (t, x1, x2, x3). Let us

analyze the different terms of equation (2.4.10):

• α = β = 0 : in this case we only have the term Γi00

(
dt
dχ

)2

, and dt
dχ

= −a to zeroth

order, so that we obtain,

Γi00

(
dt

dχ

)2

= Ψ,i. (2.4.14)

• α = j, β = 0 (and the symmetric case): now we have Γij0
dt
dχ

dxj

dχ
. For j = 1, 2 the

derivative dxj

dχ
is first order in perturbations, so that in this case Γij0 must be order

zero. However, when j = 3, we have dx3

dχ
= 1 then Γi30 has to be first order in

perturbations. Taking all the terms into account we obtain,

Γij0
dt

dχ

dxj

dχ
= −aH d

dχ
(χ θi). (2.4.15)

Notice that since we also have Γi0j, the term (2.4.15) contributes twice to the final

expression.

• α = j, β = k : finally we have Γijk
dxj

dχ
dxk

dχ
, because xj is order one when j 6= 3 and

Γijk is always order one, the only term that contributes corresponds to j = k = 3

(i = 1, 2),

Γi33

(
dx3

dχ

)2

= Φ,i. (2.4.16)
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As we can see in the previous analysis, Γiαβ
dxα

dχ
dxβ

dχ
is first order in perturbations, so that

the prefactor
(
dχ
dλ

)2
in (2.4.10) must be of zeroth order. Finally, equation (2.4.10) becomes,

Γiαβ
dxα

dλ

dxβ

dλ
=
(p
a

)2
[
(Φ + Ψ),i − 2 aH

d

dχ
(χ θi)

]
. (2.4.17)

If we expand (2.4.9), and taking into account that d
dχ

= −a2H d
da
, we find,

d2xi

dλ2
=
(p
a

)2
[
d2(χ θi)

dχ2
+ 2 aH

d

dχ
(χ θi)

]
. (2.4.18)

Thus, using (2.4.17) and (2.4.18) we can obtain from the geodesic equation (2.4.2),

d2

dχ2
(χ θi) = −(Φ + Ψ),i. (2.4.19)

It will be useful to define the source term of equation (2.4.19) as,

Yi ≡ − (Φ + Ψ),i . (2.4.20)

Thus, we have found how light propagates through a scalarly perturbed Universe. In the

following section we will proceed with the integration of equation (2.4.19) and the definition

of the distortion tensor.

2.4.2 The distortion tensor

Once we know how a light ray is weakly deflected due to the perturbed gravitational

potentials, we derive the observable effects on galaxy shapes. This weak deflection will

induce an ellipticity in the galaxy shape, which can be measured calculating the quadrupole

of the galaxy image [7]. The ellipcity can be related with the distortion tensor defined as,

ψij ≡
∂θSi
∂θj
− δij, (2.4.21)

with θS the angle of the source without perturbations. In absence of inhomogeneities, this

angle is equal to the apparent angle θ and then the distortion tensor is zero. Thus, we can

obtain the distortion tensor using the results of previous section. By integrating equation

(2.4.19) twice we obtain,

θSi =
1

χ

∫ χ

0

dχ′′
∫ χ′′

0

dχ′ Yi(χ
′θ) + const. (2.4.22)
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Since the integrand is just a function of χ′, we can integrate over χ′′ and fix the integration

constant as the initial angle θi. So that,

θSi = θi +

∫ χ

0

dχ′ Yi(χ
′θ)

(
1− χ′

χ

)
. (2.4.23)

By using ∂
∂θj

= ∂xk
∂θj

∂
∂xk

= χ ∂
∂xj

we obtain,

ψij =

∫ χ

0

dχ′ χ′ Yi,j

(
1− χ′

χ

)
, (2.4.24)

where ψij = ψij(χ,θ). We want to integrate over χ to project into the two-dimensional

(θ1, θ2) plane. In general the survey contains a distribution of galaxies W (χ), which is

normalized as
∫ χ∞

0
dχW (χ) = 1, where χ∞ = limz→∞ χ(z) so that the projected distortion

tensor is,

ψij(θ) =

∫ χ∞

0

dχW (χ)

∫ χ

0

dχ′ χ′ Yi,j

(
1− χ′

χ

)
. (2.4.25)

By changing the order of integration, we can obtain,

ψij(θ) =

∫ χ∞

0

dχ χ g(χ)Yi,j(χ,θ), (2.4.26)

where we have defined,

g(χ) ≡
∫ χ∞

χ

dχ′
(

1− χ

χ′

)
W (χ′). (2.4.27)

As we have seen, i = 1, 2 so that ψij is a 2× 2 matrix. Now, we use equation (2.4.20) into

(2.4.26) so that

ψij(θ) = −
∫ χ∞

0

dχ χ g(χ) (Φ + Ψ),ij , (2.4.28)

i.e. the distortion tensor with scalar perturbations is symmetric, and in this case the

distortion matrix can be written as,

ψij ≡
(
−κ− γ1 −γ2

−γ2 −κ+ γ1

)
Thus, the convergence and shear parameters are,

κ = −ψ11 + ψ22

2
, (2.4.29)
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γ1 = −ψ11 − ψ22

2
, (2.4.30)

γ2 = −ψ12 + ψ21

2
. (2.4.31)

It can be proved that the observed ellipticities ε1 and ε2 can be related at first order with

the shear γ1 and γ2 as [7],

ε1 ' 2γ1, ε2 ' 2γ2. (2.4.32)

Now, we want to go to the Fourier space of θ so that we define,

ψ̃ij(`) =

∫
d2θ e−i `·θ ψij(θ). (2.4.33)

Taking into account that,

∂

∂xi
=

1

χ

∂

∂θi
, (2.4.34)

the Fourier transform of the distortion matrix is,

ψ̃ij(`) =

∫ χ∞

0

dχ
g(χ)

χ
`i `j

(
Φ̃ + Ψ̃

)
. (2.4.35)

The power spectrum of this distortion matrix is the weak-lensing observable.

2.4.3 Weak-lensing power spectra

We start by defining the power spectrum of the distortion tensor in the following way,

Pψ
ijlm(`) ≡ 1

(2π)2

∫
d2`′ 〈ψ̃ij(`) ψ̃∗lm(`′)〉. (2.4.36)

Using expressions (1.4.14) and (1.4.15), we can obtain the power spectrum (2.4.36) as a

function of the matter power spectrum,

〈δ(z,k) δ∗(z,k′)〉 = (2π)3 δ3(k− k′)Pm(z,k). (2.4.37)

With that purpose it is first necessary to relate the Fourier transforms in θ and x variables.

Let us thus denote with a bar the Fourier transform in x at a given time i.e.

f̄(k) ≡
∫

d3x e−ik·x f(x). (2.4.38)
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Thus, we can write

f̄(k3, `) =

∫
dχ

∫
χ2 d2θ e−i `·θ e−i k3 χ f(x), (2.4.39)

where we have used `i = χki for i = 1, 2 so that using the definition of the Fourier transform

in θ in (2.4.33) we obtain,

f̄(k3, `) =

∫
dχχ2 e−i k3 χ f̃(χ, `). (2.4.40)

By performing the inverse transform in k3 we get,

f̃(χ, `) =
1

2πχ2

∫
dk3 ei k3 χ f̄(k3, `). (2.4.41)

In order to obtain the power spectrum in (2.4.36), we rewrite equation (2.4.35) for ψ̃ij(`)

in the following compact way,

ψ̃(`) =

∫ χ∞

0

dχ
∑
α

Cα(χ, `) f̃α(χ, `), (2.4.42)

where we have omitted the indices, fα are the different metric perturbations and Cα the

corresponding coefficients. Using this expression we obtain,

Pψ(`) =
1

(2π)2

∫
d2`′

∫ χ∞

0

dχ

∫ χ∞

0

dχ′
∑
α,β

Cα(χ, `)C∗β(χ′, `′) 〈f̃α(χ, `) f̃ ∗β(χ′, `′)〉,

(2.4.43)

and using (2.4.41) in 〈f̃α(χ, `) f̃ ∗β(χ′, `′)〉, we obtain

〈f̃α(χ, `) f̃ ∗β(χ′, `′)〉 =
1

2πχ2

1

2πχ′2

∫
dk3 eik3χ

∫
dk′3 e

−ik′3χ′ 〈f̄α(k3, `) f̄
∗
β(k′3, `

′)〉. (2.4.44)

As we can see from (1.4.14) and (1.4.15), metric perturbations f̄ can be related to the

density perturbations according to the following generic form,

f̄α(k3, `) = Bα(k) δ(k), (2.4.45)

where ki = `i/χ for i = 1, 2, so that, formally we obtain,

〈f̄α(k3, `) f̄
∗
β(k′3, `

′)〉 = Bα(k)B∗β(k′) 〈δ(k) δ∗(k′)〉.

(2.4.46)
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Using equation (2.4.37) and considering,

δ3(k− k′) = δ2

(
`

χ
− `

′

χ′

)
δ(k3 − k′3), (2.4.47)

we obtain,

〈f̃α(χ, `) f̃ ∗β(χ′, `′)〉 =
2π

χ2 χ′2
δ2

(
`

χ
− `

′

χ′

)∫
dk3 ei k3 (χ−χ′) Bα(k)B∗β(k′)Pm(z,k). (2.4.48)

For small distortion angles θ, we can consider k3 � k1, k2 so that, k ' `/χ and accordingly,

〈f̃α(χ, `) f̃ ∗β(χ′, `′)〉 =
(2π)2

χ2 χ′2
δ2

(
`

χ
− `

′

χ′

)
δ(χ− χ′)Bα

(
`

χ

)
B∗β

(
`′

χ′

)
Pm

(
z,
`

χ

)
.

(2.4.49)

Using this expression in (2.4.43) and writing δ2
(

1
χ
(`− `′)

)
= χ2 δ2(`− `′), we obtain

Pψ(`) =

∫ χ∞

0

1

χ2
Pm

(
z,
`

χ

)[∑
α,β

Cα(χ, `)C∗β(χ, `)Bα

(
`

χ

)
B∗β

(
`

χ

)]
dχ. (2.4.50)

Finally changing from χ to the redshift variable z = 1/(1 + a) and using [4πGa2ρ]
2

=
9H4

0

4
Ω2
m (1 + z)2 we get,

Pψ
ijlm(`) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

`i `j `l `m
`4

µ2 (1 + η)2 Pm

(
z,

`

χ(z)

)
, (2.4.51)

where

g(z) =

∫ ∞
z

(
1− χ(z)

χ(z′)

)
n(z′) dz′, (2.4.52)

with n(z)dz = W (χ)dχ and n(z) the galaxy density function as a function of redshift. Now

we can use expressions (2.4.29)-(2.4.31) to construct the power spectra for convergence and

shear,

Pκ =
1

4

(
Pψ

1111 + Pψ
2222 + Pψ

1122 + Pψ
2211

)
, (2.4.53)

Pγ1 =
1

4

(
Pψ

1111 + Pψ
2222 − P

ψ
1122 − P

ψ
2211

)
, (2.4.54)
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Pγ2 =
1

4

(
Pψ

1212 + Pψ
2121 + Pψ

1221 + Pψ
2112

)
. (2.4.55)

These expressions can be written in a more compact fashion by introducing the following

variables. We define `1 ≡ ` cosϕ and `2 ≡ ` sinϕ where ϕ is the polar angle of ` given a

reference frame in the plane. So the expressions (2.4.53 - 2.4.55) can be written as,

Pκ =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

µ2 (1 + η)2

4
Pm

(
z,

`

χ(z)

)
, (2.4.56)

Pγ1 = cos2 (2ϕ) Pκ, (2.4.57)

Pγ2 = sin2 (2ϕ) Pκ, (2.4.58)

As we can see from equations (2.4.57) and (2.4.58), we have the following closing rela-

tion,

Pγ1 + Pγ2 = Pκ. (2.4.59)

Finally, if we want to analyze the weak lensing signal at different redshift bins, we define

the following window functions,

ga(z) =

∫ ∞
z

(
1− χ(z)

χ(z′)

)
na(z

′) dz′, (2.4.60)

where we consider a galaxy density function of the form [119],

n(z) =
3

2 z3
p

z2 e−(z/zp)3/2

, (2.4.61)

being zp = zmean/
√

2 and zmean the survey mean redshift. Then, for each bin we have the

following galaxy distribution function, where we have take into account the photometric

redshift error σa in the corresponding bin,

na(z) ∝
∫ z̄a

z̄a−1

n(z′) e
− (z′−z)2

2σ2
a dz′, (2.4.62)

being σa = δz (1+za), z̄a is the upper limit of the a-bin and na(z) is normalized to one. An

example can be seen in Fig. 2.3. With these definitions, the convergence power spectrum

is,

P κκ
ab (`) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
ga(z) gb(z)

µ2 (1 + η)2

4
Pm

(
z,

`

χ(z)

)
. (2.4.63)
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Figure 2.3: Example of galaxy densities (2.4.61) and (2.4.62) for a galaxy survey with zmean = 0.9 and
δz = 0.05.
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2.5 Cross-correlation power spectra

In this section we will obtain the cross-correlation power spectrum of galaxy distribution

and weak lensing [115,120]. In those galaxy surveys that measure galaxy distribution and

also galaxy shapes, it is possible to take into account the cross correlation between them

in the 2D plane. To do that, we have to project the 3D matter perturbation into the 2D

plane. Notice that, when we perform this projection, we are no longer sensitive to the RSD

effect. The 2D matter perturbation for tracer i is defined as [7],

δia(`) =

∫ χ∞

0

dχna(χ) bi(χ)δ̃ (χ, `) , (2.5.1)

where na(χ) is the galaxy distribution density for the bin a, and bi(χ) is the linear bias for

tracer i. In addition, looking at (2.4.29) and (2.4.35), we can write the convergence in the

Fourier space as,

κa(`) = −1

2

∫ χ∞

0

dχ
ga(χ)

χ
`2
(

Φ̃ + Ψ̃
)
, (2.5.2)

so that with these two definitions we can calculate the following power spectra,

P δ2δ2
ab ij(`) ≡

1

(2π)2

∫
d2`′ 〈δia(`) δ

j ∗
b (`′)〉, (2.5.3)

and,

P κδ2
ab i(`) ≡

1

(2π)2

∫
d2`′ 〈κa(`) δi ∗b (`′)〉. (2.5.4)

As can be seen in the last section, these types of power spectra follow the derivation of

equation (2.4.50). Thus, using that recipe we obtain,

P δ2δ2
ab ij(`) =

∫ χ∞

0

dχ

χ2
Pm

(
z,
`

χ

)
na(χ)nb(χ) bi(χ) bj(χ), (2.5.5)

and,

P κδ2
ab i(`) =

∫ χ∞

0

dχ

χ2
Pm

(
z,
`

χ

)
3H2

0 Ωm

2
(1 + z)χ

µ(1 + η)

2
ga(χ)nb(χ) bi(χ), (2.5.6)

where we have used once again that 4πGa2ρ =
3H2

0

2
Ωm(1 + z). Now we change from χ to

z using that for the galaxy distribution na(χ) = na(z)H(z) and dχ = dz/H(z),

P δ2δ2
ab ij(`) =

∫ ∞
0

dz
H(z)

χ2(z)
na(z)nb(z) bi(z) bj(z)Pm

(
z,

`

χ(z)

)
, (2.5.7)
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and,

P κδ2
ab i(`) =

3H2
0 Ωm

2

∫ ∞
0

dz
(1 + z)

χ(z)

µ(1 + η)

2
ga(z)nb(z) bi(z)Pm

(
z,

`

χ(z)

)
. (2.5.8)

Finally, we can assume for the galaxy distribution with a small redshift error, that galaxies

in two redshift bins are not correlated with each other. In this situation integrals in (2.5.7)

and (2.5.8) can be simplified as,

P δ2δ2
ab ij(`) = δab

H(za)

χ2(za)
bi(za) bj(zb)Pm

(
za,

`

χ(za)

)
, (2.5.9)

P κδ2
ab i(`) =

3H2
0 Ωm

2

(1 + zb)

χ(zb)

µ(1 + η)

2
ga(zb) bi(zb)Pm

(
zb,

`

χ(zb)

)
. (2.5.10)
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Chapter 3

Fisher matrix analysis for galaxy
surveys

The goal of physics is to identify patterns in nature and to determine how they work. To

do that, physical models have to be confronted with measurements. Although it seems to

be a straightforward procedure, when experiments are designed, technical and theoretical

problems may appear. On one hand, experiments are always imperfect and it is necessary to

avoid the presence of uncontrolled systematic effects. On the other hand, even if systematic

effects are controlled, measurements have always statistical uncertainties which complicate

the interpretation of the results of any experiment. This complication is related with the

definition of probability, basically in a frequentist or a Bayesian way. In the frequentist

approach, a probability is understood as the relative frequency of an event when we repeat

an experiment many times. Because of this definition, a probability can only be defined for

a repeatable experiment. In this context, for cosmology and ΛCDM, we can not attribute

a probability to a parameter like, for example Ωm, because our Universe being described

by a LCDM model with a given value of Om is not a repeatable event. In general, the

frequentist approach do not attach probabilities to hypotheses or to any fixed but unknown

value. A different probabilistic interpretation has to be used: the Bayesian approach. In

this case, a probability is understood in a more general way as a degree of confidence of

an event. Now, a probability of 60% that our Universe is modeled by ΛCDM with Ωm

between 0.2 and 0.3 can be interpreted as a degree of confidence with the same level of, for

instance, drawing a red ball from a drawer with six red balls and four blue balls. With this

37
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probability definition, we are able to attribute probabilities to hypotheses and unknown

physical parameters. Also, we can update our probabilistic knowledge of an hypothesis

with independent proves thanks to the Bayes theorem. Given a prior probability (P (θ1))

of the event θ1, the conditional and posterior probability (P (θ1|θ2)) of θ1 given θ2 is,

P (θ1|θ2) =
P (θ2|θ1)

P (θ2)
P (θ1), (3.0.1)

where P (θ2|θ1) is the conditional probability (likelihood) of θ2 given θ1 and P (θ2) is the

probability (evidence) of θ2. To understand this theorem in a simple way, let us give an

example. Assume the event θ1 is that it will rain this afternoon, so that we have a prior

information based on some weather forecast P (θ1). Now we will consider three different

events θ2 that update our probabilistic knowledge of θ1. First, we consider θ2 is that it

was cloudy this morning. In this case the probability of been cloudy in the morning given

that it is raining in the afternoon (P (θ2|θ1)) is larger than the generic probability of been

cloudy in the morning (P (θ2)). So our knowledge has been updated and the probability of

rain in the afternoon has increased P (θ1|θ2) > P (θ1). Otherwise, if θ2 is that it is clear in

morning, P (θ2|θ1) < P (θ2) and then we have P (θ1|θ2) < P (θ1) i.e. the probability of rain

in the afternoon decrease. Finally, if θ2 is that we saw a woman in the morning with red

shoes, because this event is not correlated with the rain in the afternoon P (θ2|θ1) = P (θ2)

and then P (θ1|θ2) = P (θ1). As it can be seen, the Bayes theorem is the main tool to

update probabilistic information of an event in the Bayes approach.

Now we explain in detail the experimental physics case. In a frequentist approach, we

can only obtain the likelihood f(xi; θα) where xi are random variables that describe the

data and θα are the fixed unknown values of the parameters of the model; the likelihood is

the conditional probability of having data xi given the theoretical parameters θα. However,

in the Bayesian approach, we can calculate the posterior distribution L(θα;xi) which is the

conditional probability of having the theoretical parameters θα given data xi,

L(θα;xi) ∝ f(xi; θα) p(θα), (3.0.2)

where we have used the Bayes theorem. Because we are only interested in the probability

density function of the theoretical parameters θα, we do not take into account explicitly

the evidence in (3.0.2). The prior information of θα is p(θα). The most typical prior is the
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information of a previous experiment but there are also other kinds of priors, for example

the exclusion of a non-physical range for theoretical parameters. Also, the trivial prior

p(θα) = 1 or the choose of a particular theory are also priors after all. In the cosmology

context and using the Bayesian approach, the statistical knowledge of the cosmology is

updated with the independent observations like CMB, supernovae data or galaxy maps.

Notice that, due to the fact that a posterior from a experiment can be taken as a prior

for another experiment, it is common to refer the posterior also as a likelihood. The

advantage of adding cosmological information from independent experiments is the reason

why Bayesian statistics plays a fundamental role in observational cosmology.

Once we have the normalized posterior distribution L(θα), the preferred values θ̂α given

the data and the priors are those maximizing the likelihood, i.e.

∂L
∂θ

(θ̂α) = 0, (3.0.3)

and the confidence regions R(γ), which are delimited by a constant value of L(θα) < L(θ̂α),

satisfy, ∫
R(γ)

L(θα) dθ = γ, (3.0.4)

where 0 < γ < 1. Typically, the values of γ are chosen as γ = 0.683, 0.954, 0.997... and are

defined as the regions of 1σ, 2σ, 3σ... by analogy with the Gaussian case. With these basic

tools, we are able to obtain constraints to theories and models. In addition, we can also use

these tools to forecast the future capability of experiments to obtain physical information.

Forecast analysis consist on estimating the precision that future experiments will have

on their observables and in particular determining the covariance matrix of future data.

Then, using a model to describe the data, it is possible to obtain the estimated future

constraints on the physical parameters. The two main ways to do that are the numerical

simulations and the Fisher matrix approach [121–125]. In the former, a numerical simu-

lation of the experiment is computed using some expected specifications for it. Then we

can analyze the mock data as real data and obtain the model constraints. The advantage

of this method is that no approximation of the likelihood has to be done. However, the

disadvantages are the numerical cost of the mocks and that the data simulation may in-

troduce some biases in the mock covariance matrix. On the other hand we have the Fisher

approach, in this approach an approximation of the likelihood is done. Around a fiducial
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model, a Gaussian likelihood is considered. Thanks to this approximation, a linear change

of variable can be done from the inverse of the data covariance matrix, i.e. the Fisher

matrix of data, to the Fisher matrix of the model parameters, so that we can obtain the

estimated constraints for theories. Comparing the two approaches, it can be proved that

the Fisher matrix case gives the same order of magnitude for the parameter constraints as

the numerical approach [126].

3.1 The Fisher matrix approach

Here we explain in detail the Fisher matrix approach [7,121]. In general, the likelihood of

an observable can be written as,

L ∝ e−
χ2

2 ≡ exp

[
−1

2
(xi − x̃i)C−1

ij (xj − x̃j)
]
, (3.1.1)

where xi are the observable quantities, x̃i is the prediction of a model with parameters θk,

Cij is the covariance matrix of the data and we are using the Einstein sum convention.

Notice that if data are uncorrelated, the covariance matrix is diagonal with elements given

by the square of the error of xi, denoted as σ2
i . The Fisher matrix is then defined as,

Fij ≡ C−1
ij . (3.1.2)

Although the likelihood defined as (3.1.1) is Gaussian in the observables xi, the likelihood

of the parameters θα is not necessarily Gaussian. This is the reason why obtaining the

posterior for the parameters θα is in general a hard task. Notice that the posterior can

have the same expression as (3.1.1) in the case in which we choose a flat prior. In the

Fisher approach, an approximation is used that allows to simplify the problem. This

approximation consists of expanding the χ2 of (3.1.1) linearly in the parameters θα around

the maximum of the likelihood. Then the likelihood for the parameters is now Gaussian

and a linear change of variable from the Fisher matrix of the data to the Fisher matrix of

the parameters can be done,

F θ
αβ =

∂xi
∂θα

∣∣∣∣
θ̃

F x
ij

∂xj
∂θβ

∣∣∣∣
θ̃

, (3.1.3)

where subscript θ̃ denotes that the derivative is evaluated in the values of θα that maximize

the likelihood. Thanks to this definition it is straightforward to see that, once we have the
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Fisher matrix for the parameters θα, the error for each θα is,

σα ≡
√
F−1
αα . (3.1.4)

Then, with a flat prior, the likelihood of the data (3.1.1) can be rewritten as the posterior

for the parameters as,

L ∝ exp

[
−1

2

(
θα − θ̃α

)
F θ
αβ

(
θβ − θ̃β

)]
. (3.1.5)

This approach can be used to analyze the data in a simple way. However, the Fisher

analysis is more interesting to forecast the capability of future experiments. In that case,

we have to estimate the covariance matrix of the experiment and then make a linear change

of variable to obtain the Fisher matrix for physical parameters,

F θ
αβ =

∂xi
∂θα

∣∣∣∣
r

F x
ij

∂xj
∂θβ

∣∣∣∣
r

, (3.1.6)

now the derivatives are evaluated in a reference fiducial model denoted by the subscript

r. Once we have the Fisher matrix, we have all the information about the parameter

constraints. As commented before, by definition, the marginalized errors are obtained

with equation (3.1.4). If we want to change from parameters θ to θ̂, the Fisher matrix of

the new parameters simply reads,

Fθ̂ = PtFθP, (3.1.7)

where P = Q−1 and Qαβ = ∂θ̂α/∂θβ, evaluated on the fiducial model. If instead of

marginalizing a parameter we want to fix it to the value that maximizes the likelihood, we

just have to remove the corresponding row and column of this parameter from the Fisher

matrix. Finally, if we want to add a non trivial prior, looking at the Bayes theorem (3.0.2),

we just have to multiply the likelihoods. If the prior (p) on the parameters is also Gaussian,

the total Fisher matrix is,

F tot
αβ = F θ

αβ + F p
αβ. (3.1.8)

Notice that if the prior does not include some subset of parameters we just have to fill

a zero matrix of the range of F θ
αβ with the sub matrix of the prior F p

αβ. Finally, given a

n × n Fisher matrix we can obtain the 2D contours for two parameters by obtaining the
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marginalized 2 × 2 Fisher matrix of these two parameters F2. As we are working with

Gaussian distributions, the p− σ confidence contours are ellipses. They are oriented along

the eigenvectors of F−1
2 with lengths 1.51, 2.49, 3.44 times the respective eigenvalue for

contours of 1σ, 2σ, 3σ [7]. Once we have introduced in detail the Fisher matrix formalism,

we will calculate the Fisher matrices for galaxy surveys observables in next sections.

3.2 Fisher matrices for galaxy-clustering observables

We start with the observables from galaxy distribution [120, 127]. To analyze the most

general case, we will consider the multitracer galaxy power spectrum (2.2.41). The strategy

is always the same: first we define an estimator for the observable which satisfies that the

average of the estimator is the observable power spectrum. Then we compute the covariance

matrix using the estimator and taking into account the shot noise effect [7, 128]. Finally

by summing in redshifts and scales we obtain the Fisher matrix.

The (differential) Fisher matrix for the multitracer galaxy power spectrum as a function

of redshift and scale interval is,

dF δδ
αβ =

∂P δδ
ij (z, µ̂c, kc)

∂θα

∣∣∣∣∣
r

C−1
ijlm(µ̂c, kc, µ̂d, kd)

∂P δδ
lm(z, µ̂d, kd)

∂θβ

∣∣∣∣
r

. (3.2.1)

To define the estimator for P δδ
ij (z, µ̂c, kc) we have to take into account the distant observer

or plane-parallel approximation. In this approximation the LOS direction for different

galaxies can be approximated by an average direction. Therefore to compute the power

spectrum we consider a global LOS direction. The estimator for the multitracer galaxy

power spectrum is,

P̂ij(z, µ̂c, kc) = Vf

∫
c

d3k

Vs(kc, µ̂c)
δi(z,k) δj(z,−k), (3.2.2)

where Vf = (2π)3/V , being V the volume of the survey and
∫
c
d3~k = Vs(kc, µ̂c) =

2πk2
cdkcdµ̂c the volume of the kc bin. The average of the observed galaxy contrast is,

〈δi(z,k)δj(z,k′)〉 = δD(k + k′)Cij(z, µ̂, k), (3.2.3)

where δD(x) is the Dirac distribution with δD(0) = 1/Vf . Here Cij(z, µ̂, k) is the observ-

able power spectrum (2.2.41) with the shot noise effect. The shot noise effect is a white
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noise intrinsic of experiments based on counts and it is modeled by a Poisson process.

Considering this effect, the observable matter perturbations are,

δobs(k) = δ(k) + ε(k), (3.2.4)

where ε(k) is a random Gaussian variable with 〈ε(k)〉 = 0 and 〈ε(k)ε(k′)〉 = δD(k − k′)/n̄
with n̄ the average galaxy number density. With these properties the observable power

spectrum is P obs(k) = P (k) + 1
n̄
. It is possible to consider a non-Gaussian shot noise Ps(k)

and in that case the observable power spectrum is parametrized as P obs(k) = P (k) + 1
n̄

+

Ps(k). Taking into account just the Gaussian shot noise,

Cij(z, µ̂, k) = P δδ
ij (z, µ̂, k) +

δij
n̄i(z)

, (3.2.5)

being n̄i(z) the observed galaxy density of tracer i as a function of redshift and P δδ
ij (z, µ̂, k)

follows equation (2.2.41). With these definitions, it can be proved that 〈P̂ij(z, µ̂c, kc)〉 =

Cij(z, µ̂c, kc) which is the observed power spectrum. Now we calculate the covariance

matrix of (3.2.1),

Cijlm(µ̂c, kc, µ̂d, kd) = 〈P̂ij(z, µ̂c, kc)P̂lm(z, µ̂d, kd)〉

− 〈P̂ij(z, µ̂c, kc)〉〈P̂lm(z, µ̂d, kd)〉. (3.2.6)

Using the estimator (3.2.2) and Gaussian statistics,

〈F (s1)F (s2)F (s3)F (s4)〉 = 〈F (s1)F (s2)〉〈F (s3)F (s4)〉

+ 〈F (s1)F (s3)〉〈F (s2)F (s4)〉

+ 〈F (s1)F (s4)〉〈F (s2)F (s3)〉, (3.2.7)

we obtain,

Cijlm(µ̂c, kc, µ̂d, kd) = V 2
f

∫
c

∫
d

d3k d3k′

Vs(kc, µ̂c)Vs(kd, µ̂d)
[〈δi(z,k)δl(z,k′)〉〈δj(z,−k)δm(z,−k′)〉

+〈δi(z,k)δm(z,−k′)〉〈δj(z,−k)δl(z,k′)〉] .

(3.2.8)

Now using equation (3.2.3) and the property δ2
D(x) = δD(0)δD(x) we find,

Cijlm(µ̂c, kc, µ̂d, kd) =
Vf

Vs(kc, µ̂c)Vs(kd, µ̂d)

∫
c

d3k

∫
d

d3k′ [δD(k + k′)Cil(z, µ̂, k)Cjm(z, µ̂, k)

+δD(k− k′)Cim(z, µ̂, k)Cjl(z, µ̂, k)] .

(3.2.9)
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Considering that Cij(z, µ̂, k) is constant in the integral of the kc-bin, we can extract it from

the integral as Cij(z, µ̂c, kc). Thus, the integrals in k and k′ become,∫
c

d3k

∫
d

d3k′ δD(k± k′) = Vs(kc, µ̂c) δcd. (3.2.10)

Finally, the covariance matrix is,

Cijlm(µ̂c, kc, µ̂d, kd) =
4π2 δcd

V k2
c dkc dµ̂c

[Cil Cjm + CimCjl] , (3.2.11)

where Cij = Cij(z, µ̂c, kc). We use this result in equation (3.2.1),

dF δδ
αβ =

V k2
c dkc dµ̂c
4π2

∂P δδ
ij (z, µ̂c, kc)

∂θα

∣∣∣∣∣
r

δcd [Cil Cjm + CimCjl]
−1 ∂P δδ

lm(z, µ̂d, kd)

∂θβ

∣∣∣∣
r

,

(3.2.12)

due to the fact that Cij is symmetric and that all indices in (3.2.12) are summed, we can

simplify the expression as,

dF δδ
αβ =

V k2
c dkc dµ̂c
8π2

∂P δδ
ij (z, µ̂c, kc)

∂θα

∣∣∣∣∣
r

C−1
jl

∂P δδ
lm(z, µ̂c, kc)

∂θβ

∣∣∣∣
r

C−1
mi . (3.2.13)

This Fisher matrix contains the information of a given scale at redshift z, if we want to sum

over a scale range we have to integrate equation (3.2.13) but keeping only linear scales. To

do that, there are mainly two approaches. First, we can integrate since a minimum scale

kmin up to a maximum scale kmax defined so that σ(z, π/2kmax(z)) = 0.35 [129], being,

σ2(z, R) =

∫
k2 dk

2π2
Pm(z, k) |Ŵ (R, k)|2, (3.2.14)

where Ŵ (R, k) is a top-hat filter,

Ŵ (R, k) =
3

k3R3
[sin(kR)− kR cos(kR)] . (3.2.15)

Then, the Fisher matrix for a given redshift bin is [130,131],

F δδ
αβ(za) =

V (za)

8π2

∫ kmax

kmin

k2 dk

∫ 1

−1

dµ̂
∂P δδ

ij (za, µ̂, k)

∂θα

∣∣∣∣∣
r

C−1
jl

∂P δδ
lm(za, µ̂, k)

∂θβ

∣∣∣∣
r

C−1
mi . (3.2.16)

The comoving volume V (za) of the redshift bin with center za is,

V (za) =
4πfsky

3

(
χ(z̄a)

3 − χ(z̄a−1)3
)
, (3.2.17)
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where fsky is the fraction of the sky of the survey, χ(z) is the comoving distance and z̄a
is the upper limit of the a-th redshift bin. As an alternative, a cutoff term can be added
in the scale integration to remove the contributions from non-linear scales [123]. In that
situation,

F δδαβ(za) =
V (za)

8π2

∫ ∞
kmin

k2 dk

∫ 1

−1
dµ̂

∂P δδij (za, µ̂, k)

∂θα

∣∣∣∣∣
r

C−1
jl

∂P δδlm(za, µ̂, k)

∂θβ

∣∣∣∣
r

C−1
mi e

−k2 Σ2
⊥−k

2 µ̂2 (Σ2
‖−Σ2

⊥)
,

(3.2.18)

where,

Σ⊥(z) = 0.785D(z) Σ0, (3.2.19)

Σ‖(z) = 0.785D(z) (1 + f(z)) Σ0, (3.2.20)

being f(z) the growth function defined as (2.2.19), D(z) ≡ δ(z)/δ(0) the growth factor
normalized to one today, and Σ0 is a parameter that determines the cutoff scale. For the
case in which we only have one tracer, equation (3.2.18) is reduced to [129,132],

F δδαβ(za) =
1

8π2

∫ ∞
kmin

k2 dk

∫ 1

−1
dµ̂ Veff

∂ lnPgg(za, µ̂, k)

∂θα

∣∣∣∣
r

∂ lnPgg(za, µ̂, k)

∂θβ

∣∣∣∣
r

e
−k2 Σ2

⊥−k
2 µ̂2 (Σ2

‖−Σ2
⊥)
,

(3.2.21)

where Pgg(z, µ̂, k) follows equation (2.2.39) and Veff = Veff (za, µ̂, k) is [129,132],

Veff (z, µ̂, k) ≡ V (z)

(
n̄(z)Pgg(z, µ̂, k)

1 + n̄(z)Pgg(z, µ̂, k)

)2

. (3.2.22)

3.2.1 Fisher matrix for the multipole power spectrum

We can also consider that the observable is the multipole power spectrum P`(z, kc) defined

as (2.2.23) instead of considering Pgg(z, µ̂, k). In this situation the Fisher matrix can be

defined as [133],

dF δ`δ`
αβ =

∂P`(z, kc)

∂θα

∣∣∣∣
r

C−1
``′ (z, kc, kd)

∂P`′(z, kd)

∂θβ

∣∣∣∣
r

. (3.2.23)

The estimator is constructed using (3.2.2) and (2.2.23) so that,

P̂`(z, kc) = Vf

∫
c

d3k

Vs(kc)

2`+ 1

2

∫ 1

−1

dµ̂ δ(z, µ̂, k)2 L`(µ̂), (3.2.24)

where we have considered that, in the standard case, P`(z, k) depends only on the modulus

of k so that
∫
c
d3k = Vs(kc) = 4πk2

cdkc. Considering one tracer, equation (3.2.3) becomes,

〈δ(z, µ̂, k)δ(z, µ̂, k′)〉 = δD(k − k′)
[
Pgg(z, µ̂, k) +

1

n̄(z)

]
, (3.2.25)



46 3.2. FISHER MATRICES FOR GALAXY-CLUSTERING OBSERVABLES

where we have taken into account the shot noise effect. With this estimator we can calculate

the covariance matrix,

C``′(z, kc, kd) = 〈P̂`(z, kc)P̂`′(z, kd)〉 − P`(z, kc)P`′(z, kd). (3.2.26)

As before, we consider only Gaussian perturbations satisfying (3.2.7), so that

C``′(z, kc, kd) = V 2
f

(2`+ 1)(2`′ + 1)

2

∫
c

d3k

Vs(kc)

∫
d

d3k′

Vs(kd)∫ 1

−1

dµ̂

∫ 1

−1

dµ̂′L`(µ̂)L`′(µ̂′) 〈δ(z, µ̂, k)δ(z, µ̂′, k′)〉2, (3.2.27)

now we use the distant observer approximation in which we assume that the integrand of

(3.2.27) is non negligible only when µ̂′ ' µ̂, then we obtain,

C``′(z, kc, kd) = V 2
f (2`+ 1)(2`′ + 1)

∫
c

d3k

Vs(kc)

∫
d

d3k′

Vs(kd)∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂) 〈δ(z, µ̂, k)δ(z, µ̂, k′)〉2, (3.2.28)

so that using (3.2.25), (3.2.10) and considering that Pgg(z, µ̂, k) ' Pgg(z, µ̂, kc) in the

integral, we obtain,

C``′(z, kc, kd) =
4π2δcd
V k2

cdkc

(2`+ 1)(2`′ + 1)

2

∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂)

[
Pgg(z, µ̂, kc) +

1

n̄(z)

]2

.

(3.2.29)

Finally, the Fisher matrix for the multipole power spectrum at redshift bin za is [133],

F δ`δ`
αβ (za) =

V (za)

4π

∫ kmax

kmin

k2 dk
∂P`(za, k)

∂θα

∣∣∣∣
r

Ĉ−1
``′ (za, k)

∂P`′(za, k)

∂θβ

∣∣∣∣
r

(3.2.30)

where we have summed over scales with a maximum scale defined as before, and with,

Ĉ``′(z, k) =
(2`+ 1)(2`′ + 1)

2

∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂)

[
Pgg(z, µ̂, k) +

1

n̄(z)

]2

. (3.2.31)

Notice that the difference in a factor 1/2 in (3.2.30) with respect to (3.2.16) is due to

the fact that, since in this case the integrand does not depend on µ̂, we have integrated

µ̂ between −1 and 1. These are the main Fisher matrices for galaxy distribution power

spectra. We will analyze the results of the forecast for different galaxy surveys in next

sections.
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3.3 Fisher matrices for peculiar-velocity observables

In this section we will calculate the Fisher matrix for the peculiar velocity power spectra

(2.3.4) and the cross correlation between velocities and galaxy distribution (2.3.5). To

do that in a simple way, we will use the same procedure as for the Fisher matrix of the

multitracer power spectrum. Following (3.2.2), we define the following estimator,

Σ̂ij(z, µ̂c, kc) = Vf

∫
c

d3k

Vs(kc, µ̂c)
σi(z,k)σj(z,−k), (3.3.1)

being σ1 ≡ δ and σ2 ≡ u. Then, considering the shot noise effect, the observable is,

Σ =

(
Pgg + n̄−1

g Pgu
Pug Puu + n̄−1

u σ2
u

)
, (3.3.2)

where n̄g is the galaxy density and n̄u is the galaxy density for the velocity field. In

general, the number of galaxies for which the velocity can be obtained is smaller than the

total number of galaxies so that n̄g > n̄u. σu is the velocity noise,

σ2
u = σ2

∗ + ε z, (3.3.3)

with σ∗ = 10−3 (c = 1) and ε = 0.2 the fractional error [134]. Notice that, because the shot

noise is a white noise uncorrelated with any other fluctuation, the cross-correlation power

spectrum has no shot noise term. This is a general result and one of the advantages of using

cross-correlation terms. Considering the estimator (3.3.1) we follow the same procedure as

in the previous section and we obtain the following Fisher matrix [134],

F σσ
αβ (za) =

V (za)

8π2

∫ kmax

kmin

k2 dk

∫ 1

−1

dµ̂
∂Σij(za, µ̂, k)

∂θα

∣∣∣∣
r

Σ−1
jl

∂Σlm(za, µ̂, k)

∂θβ

∣∣∣∣
r

Σ−1
mi. (3.3.4)

Now we can obtain the isolated Fisher matrices for Pgg, Puu or Pgu using expression (3.3.2),

F ggαβ =
V

8π2

∫ kmax

kmin

k2 dk

∫ 1

−1
dµ̂

∂ lnPgg
∂θα

∣∣∣∣
r

∂ lnPgg
∂θβ

∣∣∣∣
r

[
n̄gPgg

1 + n̄gPgg

]2

, (3.3.5)

F uuαβ =
V

8π2

∫ kmax

kmin

k2 dk

∫ 1

−1
dµ̂

∂ lnPuu
∂θα

∣∣∣∣
r

∂ lnPuu
∂θβ

∣∣∣∣
r

[
σ−2
u n̄uPuu

1 + σ−2
u n̄uPuu

]2

, (3.3.6)

F guαβ =
V

4π2

∫ kmax

kmin

k2 dk

∫ 1

−1
dµ̂

∂ lnPgu
∂θα

∣∣∣∣
r

∂ lnP ∗gu
∂θβ

∣∣∣∣
r

[
σ−2
u n̄un̄gPguP

∗
gu

(1 + n̄gPgg)
(
1 + σ−2

u n̄uPuu
)

+ σ−2
u n̄un̄gPguP ∗gu

]
.

(3.3.7)

Notice that P ∗gu = Pug because Pgu is purely imaginary.



48 3.4. FISHER MATRICES FOR WEAK LENSING

3.4 Fisher matrices for weak lensing

In this section we will obtain the Fisher matrix for the convergence power spectrum P κκ
ab (`)

that follows (2.4.63). The Fisher matrix for the convergence power spectrum is defined as,

dF κκ
αβ =

∂P κκ
ab (`c)

∂θα

∣∣∣∣
r

C−1
aba′b′(`c, `d)

∂P κκ
a′b′(`d)

∂θβ

∣∣∣∣
r

. (3.4.1)

The estimator for the convergence power spectrum is [135,136],

P̂ab(`c) = Af

∫
c

d2`

As(`c)
κa(`)κb(−`), (3.4.2)

where Af = (2π)2/Ω, being Ω = 4πfsky the total area of the survey and
∫
c
d2` = As(`c) =

2π`cd`c the area of the `c bin. Then we have,

〈κa(`1)κb(`2)〉 = δD(`1 + `2)Cab(`1), (3.4.3)

where Cab(`) is the observable convergence power spectrum considering the shot noise

effect,

Cab(`) = P κκ
ab (`) +

γ2
int δab
n̂a

, (3.4.4)

being γint is the intrinsic ellipticity due to the alignment of the galactic plane with respect

to our LOS direction. The typical value is γint = 0.22 [137] and n̂a are the number of

galaxies per steradian in the a-th bin,

n̂a = nθ

∫ z̄a
z̄a−1

n(z) dz∫∞
0
n(z) dz

, (3.4.5)

where nθ is the areal galaxy density and n(z) follows (2.4.61). Using this estimator, we

build the covariance matrix,

Caba′b′(`c, `d) = 〈P̂ab(`c)P̂a′b′(`d)〉 − Cab(`c)Ca′b′(`d). (3.4.6)

As before, we take into account (3.2.7) for Gaussian perturbations so that,

Caba′b′(`c, `d) =
A2
f δD(0)

As(`c)As(`d)

∫
c

d2`

∫
d

d2`′[δD(`+ `′)Caa′(`)Cbb′(`) + δD(`− `′)Cab′(`)Cba′(`)].

(3.4.7)
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where δD(0) = 1/Af . By assuming that Cab(`) is constant within the `c bin, we can extract

it from the integral as Cab(`c). Then, the integrals in ` and `′ become,∫
c

d2`

∫
d

d2`′ δD(`± `′) = As(`d) δcd. (3.4.8)

Using this result, the covariance matrix is,

Caba′b′(`c, `d) =
Af δcd
As(`c)

[Caa′(`c)Cbb′(`c) + Cab′(`c)Cba′(`c)]. (3.4.9)

If we use the expressions for Af and As(`c) and consider ` ' (2` + 1)/2 for large `, we

obtain the known result [120],

Caba′b′(`c, `d) =
δcd

(2`c + 1)fsky d`c
[Caa′(`c)Cbb′(`c) + Cab′(`c)Cba′(`c)], (3.4.10)

finally using equation (3.4.1) and summing in `, we obtain the Fisher matrix for the

convergence power spectrum [138],

F κκ
αβ = fsky

∑
`

∆ ln `
(2`+ 1)`

2

∂P κκ
ab (`)

∂θα

∣∣∣∣
r

C−1
ba′

∂P κκ
a′b′(`)

∂θβ

∣∣∣∣
r

C−1
b′a , (3.4.11)

where we sum in ` up to a `max. The value of `max depends on the model and the survey.

In this situation it is not straightforward to remove the non-linear scales considering a

cutoff term in the sum of ` because, as can be seen in equation (2.4.63), the matter power

spectrum is evaluated at the scale k = `/χ(z).

3.4.1 Cross-correlation power spectrum Fisher matrix

Finally, we will obtain the Fisher matrix for the cross-correlation power spectrum P κδ2
ab i(`)

that follows equation (2.5.10). The Fisher matrix is defined as,

dF κδ2
αβ =

∂P κδ2
ab i(`c)

∂θα

∣∣∣∣
r

[
Cij
aba′b′(`c, `d)

]−1 ∂P κδ2
a′b′ j(`d)

∂θβ

∣∣∣∣∣
r

. (3.4.12)

We define the estimator for the cross-correlation power spectrum as,

P̂ab i(`c) = Af

∫
c

d2`

As(`c)
κa(`)δ

i
b(−`), (3.4.13)
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where δib is the 2D galaxy distribution of redshift bin b and tracer i. These perturbations

satisfy equation (3.4.3),

〈δia(`1)δjb(`2)〉 = δD(`1 + `2)Cij
ab(`1), (3.4.14)

and

〈κa(`1)δib(`2)〉 = δD(`1 + `2)P κδ2
ab i(`1), (3.4.15)

where, considering the shot noise effect,

Cij
ab(`) = P δ2δ2

ab ij(`) +
δab δij
n̂ia

, (3.4.16)

where P δ2δ2
ab ij(`) follows equation (2.5.9), and n̂ia is the number of galaxies per steradian in

the a-th bin for the tracer i. We calculate this number of galaxies using the galaxy density

n̄i(za),

n̂ia =
1

3

(
χ(z̄i)

3 − χ(z̄i−1)3
)
n̄i(za). (3.4.17)

The covariance matrix is then,

Cij
aba′b′(`c, `d) = 〈P̂ab i(`c)P̂a′b′ j(`d)〉 − P κδ2

ab i(`c)P
κδ2
a′b′ j(`d). (3.4.18)

Considering also Gaussian statistics (3.2.7),

Cij
aba′b′(`c, `d) = A2

f

∫
c

d2`

As(`c)

∫
d

d2`′

As(`d)

[
〈κa(`)κa′(`′)〉〈δib(`)δ

j
b′(`

′)〉+ 〈κa(`)δjb′(`
′)〉〈κa′(`′)δib(`)〉

]
.

(3.4.19)

Using (3.4.3), (3.4.14) and (3.4.15); considering that the power spectra are constant within

the `c bin, and taking into account (3.4.8) we obtain the covariance matrix,

Cij
aba′b′(`c, `d) =

Af δcd
As(`c)

[
Caa′(`c)C

ij
bb′(`c) + P κδ2

a′b i(`c)P
κδ2
ab′ j(`c)

]
, (3.4.20)

where Caa′(`c) follows equation (3.4.4) and Cij
bb′(`c) equation (3.4.16). Using this expression

in the Fisher matrix (3.4.12) and summing in `, we obtain the Fisher matrix for the cross

correlation power spectrum [120],

F κδ2
αβ = fsky

∑
`

∆ ln `
(2`+ 1)`

2

∂P κδ2
ab i (`)

∂θα

∣∣∣∣
r

[
Ĉij
aba′b′

]−1 ∂P κδ2
a′b′ j(`)

∂θβ

∣∣∣∣∣
r

, (3.4.21)

where

Ĉij
aba′b′ ≡ Caa′(`)C

ij
bb′(`) + P κδ2

a′b i(`)P
κδ2
ab′ j(`). (3.4.22)



Chapter 4

Parametrizing non-standard cosmology

In Chapter 1, we have shown how non-standard cosmological models based on modified

gravity theories with additional scalar degrees of freedom can be described phenomenolog-

ically with two additional parameters µ and η. In this Chapter we will extend this analysis

to more general models in which not only additional scalar degrees of freedom, but also

vectors, can be present . Moreover, we will also consider the possibility that the dark mat-

ter sector is modified including imperfect and non-conserved fluids. We will find the new

set of effective parameters that describe these extensions in the quasi-static approximation

and in the sub-Hubble regime. The results of this chapter correspond to [139–141].

4.1 Vector modified gravity models

As a natural extension of modified gravity with scalar degrees of freedom, modified gravity

with vector degrees of freedom has been proposed to model late-time cosmic acceleration

and inflation [142–146]. However, this type of theories has a main challenge: to deal with

the cosmological principle. This principle ensures that at large scales, the Universe is

isotropic and homogeneous. From a theoretical point of view, this is related with the fact

that the gravitational interaction respects Lorentz invariance in standard GR [39,147,148].

On the other hand, Lorentz invariance is supported by current observations [149]. In

this situation, a vector modified gravity model seems to be quite restricted. Nevertheless,

certain anomalies could suggest the existence of Lorentz symmetry breaking on cosmo-

logical scales. For example, anomalies have been detected in the low multipoles of the

51
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CMB [149, 150], including the alignment of quadrupole, octupole and ecliptic plane, a

dipole anomaly in the power spectrum that breaks statistical isotropy and the hemispher-

ical anomaly whose maximum asymmetry is observed in the ecliptic frame. On the other

hand, large scale bulk flows have also been detected with an amplitude which has been

claimed to exceed the predictions of standard ΛCDM [151–153]. These observations moti-

vates cosmological descriptions with a vector degree of freedom and thus a small Lorentz

symmetry breaking.

One of the simplest frameworks to explore the consequences of Lorentz symmetry break-

ing is the presence of tensor fields acquiring non-vanishing vacuum expectation values

(VEV). This is indeed the case of the so called Standard Model Extension (SME) [154].

In particular, in the case in which such VEV is acquired by a vector field, the first models

were proposed by Nambu already in the sixties [155]. Depending on the particular type

of vector, this mechanism can induce two kinds of gravitational effects. On one hand, if

the vector field is timelike, preferred frame effects would be present. On the other hand, a

space-like VEV for the vector field will generate preferred directions effects.

Preferred frame effects have been explored in local gravitational experiments through

the so called parametrized post-Newtonian (PPN) formalism [147,156]. In particular, two

PPN parameters, α1 and α2, have been restricted by Solar System and pulsar observations.

Also, modifications in the gravity wave dispersion relations have been studied in [157].

From a theoretical point of view, theories of gravity such as Horava gravity [158] or Einstein-

aether [159] have been shown to generate this kind of preferred frame effects. Also on

the cosmological framework, different kinds of vector-tensor theories including temporal

background vector fields have been analyzed in the context of dark energy [160–166].

Preferred directions effects have been explored in the framework of the anisotropic

PPN formalism [167] and bounds from laboratory experiments have been obtained in [168].

The possible cosmological implications have been studied both on the CMB temperature

power spectrum [149, 169] and in the matter distribution in [170–173]. In those works,

the evolution both of the background and perturbations is assumed to be the standard in

ΛCDM and the anisotropy is assumed to be present only in the primordial power spectra.

Such anisotropic power spectrum can be generated for instance in models of inflation with

vectors [174–176] or higher-spin fields [177]. A different kind of effects would be those
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associated to the presence of non-comoving fluids singling out a preferred direction as

those considered in [178–180].

In next section, we will focus on the case in which we have a preferred direction which

weakly breaks the background isotropy. This preferred direction can be described with

a vector degree of freedom in a modified gravity theory. These type of theories with

extra vector degrees of freedom have also been widely studied in recent years. Since

the first proposal in [142], different models of vector inflation have been studied in the

literature [143–146]. Vector models for dark energy based on massive [160,161] or massless

[162–164] vector fields have also been proposed. Vector dark matter based on hidden

sector gauge bosons have been analyzed in [181], and the role of vectors in the generation

of metric perturbations in the so called curvaton scenario has also been considered in [182].

Oscillating massive vector fields were considered as non-thermal dark matter candidates

in [183] and ultra-light vector dark matter models have been explored in [184]. The most

general framework considered so far for modifications of gravity induced by vectors is given

by the so called beyond generalized Proca models [165,166] which propagate three degrees

of freedom (two transverse and one longitudinal) corresponding to a massive spin 1 field.

The aim of our parametrization is to include all these different types of theories in a simple

set of parameters considering QSA approximation and sub-Hubble regime.

4.2 Parametrizing vector modified gravity

Most of the work done with modified gravity theories with vector degrees of freedom focus

on the case in which the background field is purely temporal. In that situation, it can be

proved that within the QSA approximation and the sub-Hubble regime, a general modified

gravity theory with a vector degree of freedom can be described with the usual µ and η

parameters. Here, we generalize that result for the case in which a small spatial vector field

in the background is present. This preferred direction can produce modifications in the

evolution of dark matter perturbations thus introducing anisotropies in the cosmological

observables. Our aim is to analyze this kind of effects in a model independent way for the

context of galaxy survey observables. We will prove that, when a background preferred

direction is considered, we need two independent modified gravity parameters in addition
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to µ and η (if dark matter vorticity can be neglected as is usually the case) which relate

matter density perturbations to vector and tensor metric perturbations. In addition, and

apart from the standard time a and scale k dependence, those four effective parameters can

have an additional x = k̂ · Â dependence on the angle between the wave-vector direction

k̂ and the preferred direction fixed by the background vector field Â.

We start considering an extra vector field Aµ. Very much as in the scalar case, we will

decompose Aµ in a homogeneous background and a perturbation as Aµ = A
(0)
µ (τ) + δAµ.

Notice that unlike previous works [63, 185], we will allow for the background vector A(0)
µ

to have both non-vanishing temporal and spatial components. For simplicity we will limit

ourselves to the case of linearly polarized A(0)
i (τ). In such a case, the background metric is

no longer of the Robertson-Walker type but an axisymmetric Bianchi I metric. This metric

is characterized by the spatial metric tensor Ξij that in general can be written as [186],

Ξij = e2βi(τ)δij (4.2.1)

with

3∑
i=1

βi = 0 (4.2.2)

This guarantees that ΞikΞkj = δij. Using this metric we can now define a unit spatial vector

field Âi in the direction of the background vector field as

Âi =
A

(0)
i

A
(4.2.3)

with A = (ΞijA
(0)
i A

(0)
j )1/2. In terms of the unit vector, the spatial metric can be written as

Ξij = C1 δij + C2 ÂiÂj, (4.2.4)

being C1 and C2 functions of time only and satisfying C2 = 1 − C3
1 by virtue of (4.2.2).

This tensor reduces to Ξij = δij in the isotropic limit. The perturbed Bianchi metric

in the longitudinal gauge, including scalar (Φ,Ψ), vector Qi and tensor hij perturbations

reads [186],

ds2 = a2
[
−(1 + 2Ψ) dτ 2 + [(1− 2Φ) Ξij + hij] dx

idxj − 2Qi dτ dx
i
]
. (4.2.5)
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Additionally, the perturbed vector field can be decomposed as δA0, δA
‖
i , δA⊥i , where the

different perturbations satisfy in Fourier space

k̂iQi = 0, (4.2.6)

k̂i hij = 0, (4.2.7)

hi i = 0, (4.2.8)

k̂i δA⊥i = 0, (4.2.9)

δA
‖
i = δA‖ k̂i, (4.2.10)

being k̂i the unitary direction of the perturbation wavevector k with respect to the spatial

metric Ξij. Notice that indices in spatial vectors are raised and lowered with the metric

Ξij. As in the scalar field case (1.4.6), we have the perturbed equations,

δḠµ
ν = 8πG δT µν , (4.2.11)

δLµ = 0, (4.2.12)

being Ḡµ
ν the modified Einstein tensor and δLµ the perturbed vector field equations. The

only matter-energy content we consider is presureless matter as in the scalar field case so

that

T µν = ρ uµuν (4.2.13)

where

ρ = ρ0 + δρ (4.2.14)

and the four-velocity of matter uµ = dxµ/ds is

uµ = a−1(1−Ψ, vi) (4.2.15)

so that

uµ = a(−1−Ψ, vi) (4.2.16)
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where as mentioned before vi = Ξijv
j. The velocity perturbation can also be decomposed

in a longitudinal and transverse (vorticity) components as

vi = v
‖
i + v⊥i (4.2.17)

such that in Fourier space

k̂i v⊥i = 0, (4.2.18)

v
‖
i = v‖ k̂i. (4.2.19)

Additionally, Bianchi identities imply the conditions (1.4.10). Taking such conditions into

account, and contracting the spatial components with k̂i or Âi we obtain the following set

of independent scalar equations: δḠ0
0, ÂiδḠ0

i, ÂiÂjδḠ
j
i and δḠi

i. From the vector field

equations we have: δL0, k̂iδLi and ÂiδLi. Thus we obtain the following seven independent

equations,

δḠ0
0 = −8πGρ δ, (4.2.20)

ÂiδḠ0
i = −8πGρ Âivi, (4.2.21)

ÂjÂ
iδḠj

i = 0, (4.2.22)

δḠi
i = 0, (4.2.23)

δL0 = 0, (4.2.24)

k̂iδLi = 0, (4.2.25)

ÂiδLi = 0, (4.2.26)

for seven variables: Φ, Ψ, δA0, δA‖, Q̄ ≡ ÂiQi, δĀ⊥ ≡ ÂiδA⊥i and h̄ ≡ ÂiÂjhij. If we

apply the QSA, the system (4.2.20)-(4.2.26) transforms into an algebraic system for the

above variables in terms of the matter variables δ and Âiv⊥i (notice that very much as in

the scalar case, the scalar velocity perturbation v‖ does not contribute to the equations in

the QSA),

A11 Ψ + A12 Φ + A13 Q̄+ A14 h̄+ A15 δA0 + A16 δÂ
⊥ + A17 δA

‖ = −4πGa2ρδ, (4.2.27)

A21 Ψ + A22 Φ + A23 Q̄+ A24 h̄+ A25 δA0 + A26 δÂ
⊥ + A27 δA

‖ = 16πGa2ρÂiv⊥i ,

(4.2.28)
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Am1 Ψ + Am2 Φ + Am3 Q̄+ Am4 h̄+ Am5 δA0 + Am6 δÂ
⊥

+ Am7 δA
‖ = 0, m = 3, 4, 5, 6, 7 (4.2.29)

here we have introduced a −4πGa2 factor in (4.2.27) and 16πGa2 factor in (4.2.28)

for convenience. Here Amn with m,n = 1 . . . 7 are assumed to be arbitrary independent

functions of background quantities and k where k2 = kikjΞ
ij. Had we made additional

assumptions, such as diffeomorphisms invariance of the starting action, a simplification of

the system of equations would be possible. However the approach we will follow in this

work is to keep the most general expressions for the equations. Solving for δA0, δA‖ and

δĀ⊥ from (4.2.29) with m = 5, 6, 7 and substituting in the rest of equations we can obtain

each perturbation as a general linear function of δ and Âiv⊥i . Restoring indices, we have

the following effective equations for the metric perturbations,

k2 Φ = −4πGa2 ρ (µΦ δ + ηΦ Â
iv⊥i ), (4.2.30)

k2 Ψ = −4πGa2 ρ (µΨ δ + ηΨ Â
iv⊥i ), (4.2.31)

k2Qi = 16πGa2 ρ (µQAi δ + ηQ v
⊥
i ), (4.2.32)

k2 hij = −4πGa2 ρ (µh Σij δ + ηh Λij), (4.2.33)

so that, defining x ≡ Âik̂i, we have

Ai = Âi − x k̂i, (4.2.34)

Σij = 2AiAj − (1− x2)(δij − k̂i k̂j), (4.2.35)

Λij = 2 v⊥(i Aj) −
(δij − k̂i k̂j) Âkv⊥k

1− x2
. (4.2.36)

These quantities satisfy the following properties,

k̂iAi = 0, (4.2.37)
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Σij = Σji, k̂
iΣij = 0, Σi

i = 0, (4.2.38)

Λij = Λji, k̂
iΛij = 0,

Λi
i = 0, ÂiÂjΛij = Âkv⊥k . (4.2.39)

With these definitions we see that eight dimensionless parameters (µΦ, ηΦ, µΨ, ηΨ, µQ, ηQ,

µh, ηh) are needed to parametrize the theory. In General Relativity they take the values

(1, 0, 1, 0, 0, 1, 0, 0). Notice that if we consider only a temporal component for the back-

ground vector field, so that A(0)
i = 0 then the number of parameters is reduced to three

(µΦ, µΨ, ηQ), in agreement with previous works [63,185]. In the general case, if dark matter

vorticity can be neglected, the number of parameters can be reduced from eight to four

and, in this case, we can define the standard (µ, η) parameters as µ = µΨ and η = µΦ/µΨ.

In the following we are going to obtain explicit expressions of the complete set of pa-

rameters as a function of k and x. With that purpose, we will firstly derive the dependence

in k and x of each Aij coefficient of equations (4.2.27), (4.2.28) and (4.2.29). Notice that

on general grounds, Einstein and field equations can be classified in three categories: scalar

equations δS = {δḠ0
0, δL0}, vector equations δVi = {δḠ0

i, δLi} and tensor equations δḠi
j.

These equations have the following general structure taking into account the different linear

perturbations. For the left hand side of scalar equations we have

δS =EΦ Φ + EΨ Ψ + E0 δA0 + EQiQi

+ E⊥ i δA⊥i + E‖ i δA
‖
i + Eij hij . (4.2.40)

For the vector ones

δV i =EΦ
i Φ + EΨ

i Ψ + E0
i δA0

+ EQQi + E⊥ δA⊥i + E‖ δA
‖
i

+ EQj
i Qj + E⊥ ji δA

⊥
j + E

‖ j
i δA

‖
j

+ Ejk
i hjk + Ej hji , (4.2.41)
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and for the tensor one

δḠi
j =EΦ i

j Φ + EΨ i
j Ψ + E0 i

j δA0

+ EQiQj + E⊥ i δA⊥j + E‖ i δA
‖
j

+ EQ
j Q

i + E⊥j δA
⊥ i + E

‖
j δA

‖ i

+ EQik
j Qk + E⊥ ikj δA⊥k + E

‖ ik
j δA

‖
k

+ ET ilm
j hlm + ET il hlj + ET l

j h
i
l + ET hi j , (4.2.42)

where taking into account the QSA, the E operators are second order differential operators

involving only spatial derivatives. Notice also that for the scalar and vector equations we

have different E operators for each equation, but all of them will have the same structure.

Thus in Fourier space the most general form of the operators are:

E = A1 + Ai2 ki + A3 k
2 + A4 lm k

lkm, (4.2.43)

Ei =B1 i +B j
2 i kj +B3 ki

+B4 i k
2 +B5 l k

lki +B jk
6 i kjkk, (4.2.44)

Ei
j =C i

1 j + C2 j k
i + C i

3 kj

+ C i
4 jl k

l + C i
5 j k

2 + C i
6 jlm k

lkm

+ C7 k
ikj + Ci

8 l k
lkj + C l

9 j k
ikl, (4.2.45)

Eik
j =D ik

1 j +D k
2 j k

i +Di
3 j k

k +D ik
4 kj

+D ik
5 jl k

l +D ik
6 j k

2 +D ik
7 jlm k

lkm

+D8 j k
ikk +D i

9 kjk
k +D k

10 kikj

+Dk
11 jl k

lki +Di
12 jl k

lkk +Dik
13 l k

lkj. (4.2.46)

Eilm
j =F ilm

1 j + F ilmn
2 j kn + F il

3 j k
m

+ F im
4 j k

l + F lm
5 j k

i + F ilm
6 kj

+ F ilmkn
7 j kkkn + F iln

8 j knk
m + F imn

9 j knk
l

+ F lmn
10 j knk

i + F ilmn
11 knkj + Fm

12 j k
ikl

+ F l
13 j k

ikm + F lm
14 k

ikj + F i
15 j k

lkm

+ F im
16 klkj + F il

17 k
mkj + F ilm

18 j k
2 , (4.2.47)
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where A, B, C, D and F coefficients are in general functions of background quantities

(depending only on time) and their indices only come from the vector field A(0)
i and the δij

tensor in all possible combinations. Once we have the form of the l.h.s of (4.2.20)-(4.2.26),

we can obtain the most general form of the Aij coefficients from the scalar equations and

from the equations obtained by contracting the vector type equations as ÂiδV i and the

tensor one as ÂiÂjδḠj
i. We summarize in Table 4.1 the general structure of each coefficient.

We can now solve the system of equations (4.2.27), (4.2.28) and (4.2.29), and obtain

the coefficients for {Φ,Ψ, Q̄, h̄} in terms of δ and Âiv⊥i which leads to equations (4.2.30)-

(4.2.33). We have to notice that apart from k, the other dimensional (comoving) scales

appearing in the E operators are the Hubble rate H and the mass scale of the vector

field. Unlike the usual assumptions in modified gravities with scalar degrees of freedom

[65, 187], there is no general argument with which we can determine the dependence of

each parameter A . . . F on H or on the vector mass. Moreover, the comoving mass scale

could be of order H due to the background equations. For these reasons, we cannot a

priori neglect any of the Aij terms and we will consider two generic cases: a) we consider

the general case in which we keep all the terms in the E operators and b) we assume

that all the dimensional parameters of the E coefficients are of order H or H2 so that the

corresponding terms can be neglected compared to the k2 terms in the sub-Hubble limit.

Aij for i, j = 1, ... 6 b1 + b2 x k + (b3 + b4 x
2) k2

A7i, Ai7 for i = 1, ... 6 b1 x+ (b2 + b3 x
2) k + (b4 + b5 x

2)x k2

A77 b1 + b2 x
2 + (b3 + b4 x

2)x k + (b5 + b6 x
2 + b7 x

4) k2

Table 4.1: Generic structure of the Aij coefficients of the system of equations (4.2.20). Notice
that for every Aij coefficient the corresponding bα(a) are different functions of time only.

a) General case:

We find the following form for the parameters

M(a, k, x) =
[P 14
M (a, k, x) + P 12

M (a, k, x)xk] k2

P 16
D (a, k, x) + P 14

D (a, k, x)xk
(4.2.48)

withM = µΦ, µΨ, ηΦ, ηΨ, ηQ, ηh
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whereas for µQ and µh we obtain,

µQ(a, k, x) =

[
P 14
µQ

(a, k, x) + P 12
µQ

(a, k, x)xk
]
k2

[P 16
D (a, k, x) + P 14

D (a, k, x)xk] (1− x2)
, (4.2.49)

µh(a, k, x) =

[
P 14
µh

(a, k, x) + P 12
µh

(a, k, x)xk
]
k2

[P 16
D (a, k, x) + P 14

D (a, k, x)xk] (1− x2)2
, (4.2.50)

where we have defined the following function,

P n
A(a, k, x) =

n/2∑
i=1

i∑
j=0

p
(A)
ij (a)x2j k2i, (4.2.51)

being p (A)
ij (a) functions of background quantities and we define P n

A(a, x) ≡ P n
A(a, 1, x) which

are polynomials of order n with only even powers of x. Notice also that the polynomials in

the numerators are in general different for the different parameters, whereas those in the

denominators P 14
D (a, k, x) and P 16

D (a, k, x) are the same for all of them as they come from

the inverse of the determinant corresponding to the system of linear equations [65].

Notice that if we take x = 0 i.e. we neglect the anisotropic contributions coming from

the spatial components of the background vector field in equation (4.2.48) we get

M(a, x, k) =
k2 P 12

M (a, k)

P 14
D (a, k)

, (4.2.52)

i.e. the ratio of two degree-fourteen polynomials in k. We could have anticipated that in

this case the result should agree with that corresponding to two scalar degrees of freedom

(which can be identified with δA0 and δA‖). But we see that this is not the case because,

unlike the scalar case, we did not neglect k-independent terms in the E expressions. Only

if we neglect k-independent terms in all equations, except for those of the vector field

perturbations in the vector field equations, we recover the scalar field case:

M(a, x, k) =
P 4
M(a, k)

P 4
D(a, k)

. (4.2.53)

b) Coefficients of order H:

If we consider the dimensional coefficients of the E operators to be of order H and take

the sub-Hubble limit, so that only k2 terms survive, we obtain,

M(a, x, k) =
P 14
M (a, x)

P 16
D (a, x)

, (4.2.54)

for M = µΦ, µΨ, ηΦ, ηΨ, ηQ, ηh
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and

µQ =
P 14
µQ

(a, x)

(1− x2)P 16
D (a, x)

, (4.2.55)

µh =
P 14
µh

(a, x)

(1− x2)2P 16
D (a, x)

. (4.2.56)

As we can see, the expressions are scale independent. If we expand them in multipoles

we only have even powers of x, odd powers are suppressed in the sub-Hubble limit. Thus,

for small anisotropy, A � A
(0)
0 , we can find an expansion for any of the eight parameters

(that we denote as β) of the form,

β(a, x) = β0(a) + β2(a)x2 + β4(a)x4 +O(x6), (4.2.57)

where β0(a) provides the isotropic contribution. In particular we can find this kind of

expansion for the standard parameter µ and, without vorticity, also for the parameter η.

As the main result of this section we have found that a general modified gravity theory with

a vector degree of freedom, and neglecting dark matter vorticity, can be described with

four modified gravity parameters in the QSA approximation and the sub-Hubble regime.

In addition, these modified gravity parameters have an extra dependence on x = k̂ · Â so

the growth evolution is anisotropic in general. In the following sections, we will analyze

the effect of this anisotropic growth in the galaxy survey observables.

4.3 Imperfect and non-conserved dark matter models

As we have seen before, ΛCDM model has some observational tensions. Some of those

tensions are related with the standard CDM and could indicate an interaction in the dark

sector or an imperfect behavior of dark matter. In this sense, in addition to the high variety

of dark energy and modified gravity models, there are also several proposals for imperfect

and non-conserved dark matter. These models can be classified into three main types:

interacting dark sector models [31, 32], models of an imperfect fluid with bulk and shear

viscosity [29, 30, 188], and models of an imperfect fluid with heat flux. There are different

approaches for interacting models but in most of them, the interaction term is assumed

proportional to the dark matter or dark energy densities [189]. These interacting models
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have been proved to be compatible with current observations [190, 191]. On the other

hand, imperfect fluid models for dark matter have been considered as possible solutions

to the small-scale problems of CDM [29]. Regarding models with bulk viscosity, it has

been shown that they can generate a negative pressure contribution that can accelerate

the universe expansion [192, 193]. Nevertheless, if we consider it as the only contribution

to the late-time acceleration, we find problems and it seems necessary to include dark

energy [194,195]. Finally, models of dark matter with heat flux are proposed in the context

of two interacting fluids [196] and the Generalised Dark Matter (GDM) model [197]. This

last approach considers a general energy-momentum tensor for dark matter with bulk and

shear viscosities. The main difference with the three previous types of models is that, in

the GDM approach, a general equation of state for dark matter is considered [198,199].

Due to the interest of considering this type of models, we will generalize the standard

phenomenological parametrization for the case in which, in addition to modified gravity, we

include an imperfect and non-conserved dark matter fluid. As in the vector case, we assume

the QSA approximation and the sub-Hubble regime. In general, the energy-momentum

tensor for an imperfect presureless non-conserved fluid reads [200],

Tµν = T pfµν + T visµν + T hµν , (4.3.1)

with,

T pfµν = ρ uµuν , (4.3.2)

T visµν = −ξΘhµν − 2 η̃ σµν , (4.3.3)

T hµν = qµuν + qνuµ, (4.3.4)

being,

σµν =
1

2

(
hαµ∇αuν + hαν ∇αuµ

)
− 1

3
Θhµν , (4.3.5)

hµν = gµν + uµuν , (4.3.6)

Θ = ∇αu
α. (4.3.7)
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Here qµ is a general energy current, ξ is the bulk viscosity parameter and η̃ is the shear

viscosity parameter. Finally, we will consider that, due to a possible interaction between

dark matter and another species (like dark energy), this energy-momentum tensor is not

conserved then,

∇µT
µ
ν = Qν . (4.3.8)

The interaction term is usually a purely temporal four-vector but we will also consider

spatial perturbations. The aim of the following section will be to generalize the conservation

equations (1.4.26) and (1.4.27) to take into account a general modification due to an

imperfect and non-conserved dark matter fluid. Then we will prove that to describe these

type of models in a phenomenological way, we need three new effective parameters in

addition to the standard µ and η parameters.

4.4 Parametrizing non-standard dark matter models

Here we will set the most general form of the conservation equations of dark matter in order

to describe in a model-independent way an imperfect and non-conserved dark matter fluid.

Then, we find that we need five parameters to characterize a general modification of gravity

and dark matter conservation equations. Finally we will obtain the general form of these

parameters for the three possible type of models: a fluid with bulk and shear viscosities, a

fluid with heat flux and a non-conserved fluid.

We start by modifying equations (1.4.26) and (1.4.27) in a general way. We can consider

also a general modification of gravity with scalar degrees of freedom which can be encoded

in µ and η parameters via equations (1.4.14) and (1.4.15). Because the scalar perturbations

are (θ, δ,Ψ,Φ), the most general way we can modify (1.4.26) and (1.4.27) is,

δ′ = −c11 θ + c12Hδ + c13HΨ + c14HΦ, (4.4.1)

θ′ = −c21Hθ + c22H2δ + c23 k
2Ψ + c24 k

2Φ. (4.4.2)
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Considering this parametrization, cij are in general dimensionless functions of time and

scale, and we recover the standard case when c11 = c21 = c23 = 1 and cij = 0 for the

rest of i, j. We could have other scalar degrees of freedom with perturbations δqi but, in

this situation, we would also have equations for these degrees of freedom and we could

find the relations δqi = δqi(θ, δ,Ψ,Φ). Then we can always find equations of the form of

(4.4.1-4.4.2).

Now, we derive equation (4.4.1) with respect to the conformal time. Using (4.4.1) and

(4.4.2) and considering the modified gravity equations (1.4.14-1.4.15) we obtain,

δ′′ +Hµd δ′ −
3

2
H2 Ωm(a)µm δ = 0, (4.4.3)

being,

µm = c11 µ

(
c23 −

H2

k2
C3 + η

[
c24 −

H2

k2
C4

])
− 2c11

3Ωm(a)
(c22 − C2) , (4.4.4)

µd = c21 − c12 −
c′11

H c11

, (4.4.5)

with,

Ci ≡
c1i

c11

[
c21 −

c′11

H c11

+
H′

H2
+

c′1i
H c1i

]
. (4.4.6)

As we can see, if we want to parametrize the density contrast evolution, we need only

two independent parameters (µm, µd). On the other hand, in order to obtain the velocity

perturbation θ as a function of the matter density contrast δ, we can rewrite equation

(2.2.1) in the following form,

θ = −µθ δ′, (4.4.7)
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where,

µθ =
1

c11

− H δ
c11 δ′

[
c12 −

3

2

H2

k2
Ωm(a)µ (c13 + η c14)

]
.

(4.4.8)

Here δ and δ′ are obtained from the solutions of (1.4.29). Thus we see that in order

to describe the general modified system of equations for matter and gravity perturbations,

we need in total five effective parameters (µ, η, µm, µd, µθ). Notice that now, the presence

of an imperfect dark matter implies that, in general, the effective Newton constant that

controls the growth of matter perturbations given by µm may be different from the effective

constant that light sees, which is given by the combination η(1 + µ)/2, even when η = 1.

In the following section we will prove that a very broad class of models can be parametrized

with these five parameters.

4.4.1 Dark matter with bulk and shear viscosity

In this first case, we consider only the viscosity term so that Tµν = T pfµν + T visµν and assume

it is conserved. We consider a general perturbation in the bulk and shear viscosities,

ξ(τ,x) = ξ0(τ) + δξ(τ,x), (4.4.9)

η̃(τ,x) = η̃0(τ) + δη̃(τ,x). (4.4.10)

These perturbations can be related with the matter density contrast by the following

definition,

δξ ≡ aρ

H
ξp δ, (4.4.11)

δη̃ ≡ aρ

H
ηp δ, (4.4.12)

where ξp and ηp are arbitrary dimensionless functions of time and scale, and the prefactors

aρ/H are introduced for convenience. Then the conservation equations take the form of
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(4.4.1-4.4.2) with,

c11 = 1− 6ξ̄, c12 = 9(ξp − ξ̄), c13 = 9ξ̄,

c21 =
1

1− 3ξ̄

[
1− 27ξ̄2 + 6ξ̄ − 3

ξ̄′

H
+

(
4

3
η̄ + ξ̄

)
k2

H2

]
,

c22 = − 3ξp
1− 3ξ̄

k2

H2
, c23 =

1

1− 3ξ̄
, c14 = c24 = 0, (4.4.13)

being,

ξ̄ =
Hξ0

aρ
, η̄ =

Hη̃0

aρ
. (4.4.14)

Notice that in order to avoid large modifications, in the sub-Hubble regime, ξ̄, ξp, η̄ � 1.

In this situation,

c21 = 1 +

(
4

3
η̄ + ξ̄

)
k2

H2
, c22 = −3ξp

k2

H2
,

c11 = c23 = 1, c12 = c13 = c14 = c24 = 0, (4.4.15)

using these expressions and relations (4.4.4-4.4.7) we obtain,

µm = µ+
2ξp

Ωm(a)

k2

H2
, (4.4.16)

µd = 1 +

(
4

3
η̄ + ξ̄

)
k2

H2
, (4.4.17)

µθ = 1. (4.4.18)

Notice that, using (4.4.16) in (1.4.29), an effective sound speed c2
s = 3ξp appears for dark

matter.

4.4.2 Dark matter with heat flux

Now we consider only the heat flux contribution so that Tµν = T pfµν + T hµν and assume it

is conserved. As we are considering an isotropic background, the perturbed heat flux is in

general,

qµ = [q0(τ) + δq0(τ,x), δqi(τ,x)] . (4.4.19)
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Again we can always relate these perturbations to the dark matter perturbations in the

following way,

δq0 ≡ qd aρ δ, (4.4.20)

δqi ≡ qv aρ vi, (4.4.21)

where qd and qv are arbitrary dimensionless functions of time and scale. The conservation

equations take also the form of (2.2.1-2.2.2) with,

c11 =
1

1− 2qd
[1 + qv − q̄0],

c12 =
2

1− 2qd

[
q′d
H

+

(
2 +

(aρ)′

Haρ

)
qd

− q̄
′
0

H
−
(

2 +
(aρ)′

Haρ

)
q̄0

]
,

c13 = − 2

1− 2qd

[
q̄′0
H

+

(
2 +

(aρ)′

Haρ

)
q̄0

]
,

c21 =
1

1 + qv − q0

[
1 +

q′v
H

+

(
3 +

(aρ)′

Haρ

)
qv

+
q̄′0
H

+

(
1 +

(aρ)′

Haρ

)
q̄0

]
,

c23 =
1

1 + qv − q0

[1− 2q̄0] ,

c14 = c22 = c24 = 0, (4.4.22)

being q̄0 = q0/aρ. Then we can use equations (4.4.4-4.4.7) and obtain µm, µd and µθ that

are in general different from one. They are lengthy expressions which we do not show

explicitly.

4.4.3 Non-conserved dark matter

Finally, we consider that the energy-momentum tensor is not conserved in general. This

may be due to an interaction between dark matter and dark energy. We perturb the Qµ

four-vector considering an isotropic background,

Qµ = [Q0(τ) + δQ0(τ,x), δQi(τ,x)] . (4.4.23)
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We relate these perturbations with the dark matter perturbations in the following way,

δQ0 ≡ ν0 ρH δ, (4.4.24)

δQi ≡ νv ρH vi, (4.4.25)

where ν0 and νv arbitrary dimensionless functions of time and scale. The cij coefficients

of equations (4.4.1-4.4.2) are,

c12 = x− ν0, c21 = 1− x− νv,

c11 = c23 = 1, c13 = c14 = c22 = c24 = 0, (4.4.26)

with x = Q0/Hρ. If we use equations (4.4.4-4.4.7) we obtain,

µm = µ+
2

3 Ωm(a)
[ν0 νv − x νv − (1− x) (ν0 − x)

+
(Hx)′

H2
− (Hν0)′

H2

]
, (4.4.27)

µd = 1 + ν0 − νv − 2x, (4.4.28)

µθ = 1− H δ
δ′

(x− ν0). (4.4.29)

To summarize what we have shown in the last subsections, a general model for an im-

perfect non-conserved fluid in a modified gravity scenario can be described with parameters

(µ, γ, µm, µd, µθ). The corresponding modified gravity and modified dark matter equations

are,

k2 Φ = −3

2
H2 Ωm(a)µ η δ, (4.4.30)
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k2 Ψ = −3

2
H2 Ωm(a)µ δ, (4.4.31)

δ′′ +Hµd δ′ −
3

2
H2 Ωm(a)µm δ = 0, (4.4.32)

θ = −µθ δ′. (4.4.33)

4.5 Growth function analytical parametrizations

Once we have described how to parametrize modifications of gravity and dark matter in

different cases, we have to resolve the evolution equations of matter perturbations (1.4.29)

and (4.4.32). Although it is always possible to resolve them numerically, it is interesting

to find analytical approximations to use in data analysis. Instead of obtaining analytical

solutions for δ, it is easier to change from δ to the growth function f(a) defined in (2.2.19).

Notice that, with this change, we have to analyze a first order differential equation. In the

case of ΛCDM, a good approximation for the growth function is given by,

fΛ(a) = Ωγ
m(a), (4.5.1)

where γ is known as the growth index which has a value in ΛCDM of γ∗ ' 0.55 [201,202].

This expression provides accuracies below 0.25% which allows it to be used in the data

analysis of present and future surveys such as J-PAS [66], DESI [67] or Euclid [68] which

will be able to measure f(z) with precision around 1 − 3% depending on the survey and

the redshift bin.

In the modified gravity case, (4.4.33) does not necessarily provide a good fit of the

growth function and different alternatives have been considered in the literature, mainly

focused on the modification of the growth index. Such alternative expressions have been

obtained on a case by case basis and to the best of our knowledge no model-independent

analysis has been performed so far. Here, the purpose is to determine accurate fitting

functions for the modified growth function in terms of the phenomenological parameters

discussed before. We will start with the simplest case in which dark matter is a perfect
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and conserved fluid, so the conservation equation follows (1.4.29). Finally, we will look

at the most general case for a imperfect and non-conserved dark matter fluid so that the

conservation equation follows (4.4.32).

4.5.1 Time-independent case µ = µ(k)

We start by studying the simplest case in which µ (a, k) = µ(k) does not depend on the

scale factor. Although in general for modified gravities with extra scalar or vector degrees

of freedom we expect both time and scale dependence of the µ factor, the time-independent

case can be used for phenomenological parametrizations of the effective Newton constant

at different length scales. This is also the case in scalar-tensor models as [203] in which

Geff rapidly tends to a constant at high redshift. In this simple case, we can develop an

analytical study. Making the change of variable from δ to f in equation (1.4.29) we have,

ḟ + f 2 +

(
2 +

Ḣ

H

)
f − 3

2
µ (k) Ωm(a) = 0, (4.5.2)

where dots denote derivatives with respect to N ≡ ln a. Let us first assume for simplicity

a ΛCDM background. Later on we will consider a more general case with time-dependent

effective equation of state for the dark energy or modified gravity extra components. The

Hubble parameter in ΛCDM reads,

H(a) = H0

√
Ωm a−3 + ΩΛ, (4.5.3)

with this expression and taking into account the definition of Ωm(a) as a function of H

(1.1.8), we can obtain,
Ḣ

H
= −3

2
Ωm(a), (4.5.4)

and

Ω̇m(a) = −3 Ωm(a) (1− Ωm(a)). (4.5.5)

Inspecting the numerical solutions of (4.5.2), we can see that a parametrization that

provides a good fit is of the form,

f(a, k) = β(k) Ωγ(k)
m (a), (4.5.6)
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where for each Fourier mode, β(k) and γ(k) are in general the constants to adjust. This

parametrization type was considered in [204] for the particular case of a scalar-tensor

theories. Using equations (4.5.4) and (4.5.5) together with (4.5.6) in equation (4.5.2) we

have,

(2− 3γ) Ωγ−1
m (a) +

(
3γ − 3

2

)
Ωγ
m(a) + β Ω2γ−1

m (a)− 3

2

µ

β
= 0. (4.5.7)

Although this expression can be satisfied exactly only in the case in which Ωm(a) = Ωm

is a constant, as commented before, it is possible to obtain approximate solutions in the

general case. Thus, for example, substituting µ = β = 1, we recover the case of ΛCDM so

that for γ = γ∗ equation (4.5.7) is satisfied so that,

(2− 3γ∗) Ωγ∗−1
m (a) + (3γ∗ − 3/2) Ωγ∗

m (a) + Ω2γ∗−1
m (a)− 3

2
' 0, (4.5.8)

Thus, if we take γ = γ∗ in the case with µ and β different from one, we get from (4.5.7)

and (4.5.8)

3

(
1− µ

β

)
+ 2(β − 1) Ω2γ∗−1

m (a) ' 0. (4.5.9)

We consider a final approximation. Since γ∗ ' 1/2, we assume that Ω2γ∗−1
m (a) ' 1. Thus

we are able to find a relationship between µ and β,

β =
1

4

[√
1 + 24µ− 1

]
. (4.5.10)

Therefore, we have an analytic expression which is an approximate solution of equation

(4.5.2) for redshift-independent µ(k)

f(a, k) =
1

4

[√
1 + 24µ(k)− 1

]
Ωγ∗
m (a). (4.5.11)

The error of this approximation generally depends on the scale factor and reaches a maxi-

mum at a = 1 as discussed below. In Fig. 4.1, we plot the maximum error as a function

of µ for Ωm = 0.271. We have taken this particular value in order to compare with pre-

vious works although we have checked that the results remain unchanged in the range

Ωm = 0.27 − 0.31 which includes the latest Planck value [13]. The error corresponds to

the difference between the fitting function and the numerical solution of (4.5.2) divided by
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Figure 4.1: From left to right: γ, β and relative error in the growth function as a function of
µ. The dashed red line corresponds to analytical approximation in (4.5.11) with γ = γ∗ and β in
(4.5.10). The continuous blue line, corresponds to the numerical fitting of β and γ to expression
(4.5.13).

their average value. We can see that the error is always below 2%. Notice that we have

considered a wide range of µ values, although relatively small deviations from µ = 1 could

generate a large integrated Sachs-Wolfe effect.

It is however possible to improve the fit if we allow also the growth index γ to depend

on µ. In this case, it is possible to find a good agreement with

γ (µ) =
1

2
+

0.161

1.967 + β (µ)
, (4.5.12)

with β(µ) given in (4.5.10). In Fig. 4.1 we plot this relation together with the error

corresponding to the improved growth function

f(a, k) =
1

4

[√
1 + 24µ(k)− 1

]
Ωγ(µ(k))
m (a). (4.5.13)

We can see that in this case, the maximum error can be below 0.25%. Also, we see that for

GR (µ = 1), we obtain γ∗ = 0.554 as the value for the best fit, which is slightly different

from that quoted in [201] (γ∗ = 0.550). In order to understand the difference, we analyze

the error in three different functions, f(z), δ(z) and f(z)δ(z) (see also [205]). As we can see

in Fig. 4.2, the error in f(z) is larger for low redshift than the error in δ(z), but in general

the errors for the three functions are of the same order. Notice that the value γ∗ = 0.554

minimizes the error in f(z), however, the error in δ(z) is minimized by γ∗ = 0.550 [201].
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Figure 4.2: Errors for f(z), δ(z) and f(z)δ(z) in ΛCDM using γ∗ = 0.554 (left) and γ∗ = 0.550

(right). We see that for γ∗ = 0.554 the error in f(z) is below 0.25% but that in δ(z) reaches 0.15%,
whereas for γ∗ = 0.550, the error in δ(z) can be reduced below 0.05%, however the corresponding
error for f(z) grows to 0.7%.

This value also minimizes the error both in f(z) and f(z)δ(z) for z > 0.4 Since the error in

the observable f(z)σ8(z) is dominated by the error in f(z) we have taken γ∗ = 0.554 as our

reference value in this thesis. On the other hand, at early times, in the matter dominated

era, Ωm(a) ' 1 and equation (4.5.2) can be solved exactly

f(a, k) =
1

4

[√
1 + 24µ(k)− 1

]
, (4.5.14)

therefore f(a, k) is just constant in time. The fitting function (4.5.11) exactly agrees with

this result for Ωm(a) = 1 and this is the reason why the error increases as we move away

from the matter era. Thus for matter domination the density contrast grows as

δ(a, k) ∝ a
1
4

[√
1+24µ(k)−1

]
, (4.5.15)

in agreement with [203,206]. This implies that if we want to preserve the growth of density

contrast proportional to the scale factor in the matter era, µ should depend on the scale

factor and tend to unity at early times.

Beyond the ΛCDM background

We now consider modifications of the background expansion. In order to keep the

approach model-independent, we will parametrize them with an extra component ΩDE(a)
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with arbitrary equation of state ωDE(a). This extra component could correspond directly

to dark energy or to the effective fluid description of the modified gravity. At late times,

i.e. neglecting the radiation contribution, we can write

H(a) = H0

√
Ωm a−3 + ΩDE(a), (4.5.16)

with

ΩDE(a) = ΩDE exp

(∫ a

0

3(1 + ωDE(â))

â
dâ

)
. (4.5.17)

Using (4.5.16) to obtain Ωm(a), we get the expressions that replace (4.5.4) and (4.5.5),

Ḣ

H
= −3

2
Ωm(a) +

Ωm(a)

2 Ωm

a3 Ω̇DE(a), (4.5.18)

and

Ω̇m(a) = −3 Ωm(a) (1− Ωm(a))− Ω2
m(a)

Ωm

a3 Ω̇DE(a). (4.5.19)

Following the same procedure as above, we obtain the analogous equation to (4.5.7) with

an extra term,

(2− 3γ) Ωγ−1
m (a) +

(
3γ − 3

2

)
Ωγ
m(a) + β Ω2γ−1

m (a)

− 3

2

µ

β
+

(
1

2
− γ
)

Ω̇DE(a)

Ωm

a3 Ωγ
m(a) = 0. (4.5.20)

We see that the new term is proportional to (1
2
− γ), so it is expected that it does not

increase the errors in an important manner. Thus, considering the fitting function with

γ = γ∗ in (4.5.11), we can see that the errors increase in comparison with those for the

ΛCDM background up to 3%. As we did in the ΛCDM case, we can obtain better fits by

modifying the expressions for β(k) and γ(k). Thus, the analysis shows that β(k) is not

sensitive to ωDE(a) and therefore (4.5.10) provides a good approximation also in this case.

The expression for γ is however modified. For example for the effective equation of state

given by [45,46],

ωDE(a) = ω0 + ω1 (1− a), (4.5.21)

with ω0 and ω1 constants, we find

γ(µ, ω0, ω1) =
1

2
+

0.161

β(µ)− 1.967ω0 − 0.4789ω1

. (4.5.22)
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Thus, the growth function reads in this case

f(a, k) =
1

4

[√
1 + 24µ(k)− 1

]
Ωγ(µ(k),ω0,ω1)
m (a). (4.5.23)

In Fig. 4.3 and Fig. 4.4 we can see that the error can be reduced to 0.5% with this

parametrization.
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Figure 4.3: From left to right, functions γ (µ) (4.5.22), β (µ) (4.5.10) and growth function
relative error, for time-independent µ for different values of ω0 with ω1 = 0. We have assumed
that Ωm = 0.271.
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4.5.2 Scale-independent case µ = µ(a)

We have just seen that in the time-independent µ case, an ansatz of the form,

f(a) = β Ωγ
m(a), (4.5.24)

provides a good fit to the numerical solutions. Let us now consider the case in which

µ = µ (a; p1, ..., pn) where [p1, ..., pn] are the set of n cosmological parameters that µ depends

on, i.e. µ can depend on redshift(time) but not on the scale k. We will explore a similar

ansatz for the growth function,

f(a) = β (a; p∗1, ..., p
∗
n) Ωγ

m(a), (4.5.25)

where, in general, p∗i = p∗i (p1, ..., pn), γ = γ(p1, ..., pn) and let us assume that the β function

has the same a-dependence as the µ function (see [207,208] for similar proposals in partic-

ular models). Thus, let us consider a simple example. For instance if µ (a) = 1+b a being b

dimensionless constant, then we consider β = 1 + b∗a, with b∗ = b∗(b). In Fig. 4.5 we show

the fit error for different values of b. In Fig. 4.6 we can see the growth functions for the

corresponding values of b. A ΛCDM background with Ωm = 0.271 has been assumed. It

can be seen how it grows with redshift reaching values larger than one and then decreases

tending to one when matter starts dominating. We can see that in this simple example,

the parametrization (4.5.25) provides fitting errors below 0.5% in the whole redshift range,

but they are even below 0.2% for z > 0.1 .

After we have studied this simple model, and checked the usefulness of parametrization

(4.5.25), we will apply it to more realistic models of modified gravity, such as DGP and

certain phenomenological parametrizations of µ (a).

DGP Model

In the DGP model [209], the background evolution differs from ΛCDM so that

Ωm (a) =
Ω0 a

−3

[(1− Ω0)/2 +
√

Ω0 a−3 + (1− Ω0)2/4]2
, (4.5.26)

and
Ḣ

H
= − 3 Ωm(a)

1 + Ωm(a)
. (4.5.27)
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Figure 4.5: Relative difference between the numerical solution and the fitting function (4.5.25) for the
model µ (a) = 1 + b a. As we see, the maximum error is reached at z = 0.

being Ω0 = Ωm(a = 1) the only free parameter at the background level. The modified

gravity parameters in this case read [210]

µ (a) =
2(1 + 2 Ω2

m (a))

3(1 + Ω2
m (a))

(4.5.28)

and

η (a) =
2 + Ω2

m(a)

1 + 2 Ω2
m(a)

. (4.5.29)

which are both k-independent, so that we try the parametrization in (4.5.25). Thus,

using (4.5.26), (4.5.27) and (4.5.28) in equation (1.4.29), solving numerically and fitting to

(4.5.25), we get

f(a) =
2(1 + 2 Ω2

m (a; Ω∗0))

3(1 + Ω2
m (a; Ω∗0))

Ωγ(Ω0)
m (a), (4.5.30)

where Ωm (a; Ω∗0) follows equation (4.5.26) replacing Ω0 by Ω∗0. So we have two parameters

to fit Ω∗0 (Ω0) and γ (Ω0), which are given by the following expressions

Ω∗0(Ω0) = 0.8 Ω0.536
0 (4.5.31)

and

γ(Ω0) = 0.52− 0.47 Ω0 + Ω2
0 − 1.2 Ω3

0 (4.5.32)



CHAPTER 4. PARAMETRIZING NON-STANDARD COSMOLOGY 79

0 2 4 6 8

z

0.5

0.6

0.7

0.8

0.9

1

1.1

f (
z)

b = 0
b = 0.25
b = 0.5
b = 0.75
b = 1

Figure 4.6: Numerical solutions in the model µ (a) = 1+b a for different values of b. The fit according to
the equation (4.5.25) is not represented because it differs in less than 0.6 % with respect to the numerical
solution.

In Fig. 4.7 we plot the maximum error for f(z) which is always reached at z = 0 as

a function of Ω0. We see that for typical values of Ω0 ' 0.3, the maximum error is below

0.5 %.

Other procedure used to parametrize growth in DGP is to assume that the growth index

depends on redshift. Thus, for example, from equation (4.5.2), γ (z) has been obtained to

first order in (1− Ωm (a)) in [211]. Another possibility is to use a parametrization like,

γ (z) = γ0 + γ1
z

1 + z
. (4.5.33)

Adding more terms, and therefore more fixing constants, a reduced error was obtained

in [212]. See also [213], for a different parametrization. In the best cases, these methods

reach errors similar to those obtained in the present work.

Phenomenological parametrizations

As a second example, we will study the parametrization for µ (a) introduced in [214]

and also considered in [15],

µ (a) = 1 + (µ0 − 1)
1− Ωm (a)

1− Ωm

. (4.5.34)



80 4.5. GROWTH FUNCTION ANALYTICAL PARAMETRIZATIONS

0.1 0.2 0.3 0.4

Ω
0

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

γ

0.1 0.2 0.3 0.4

Ω
0

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ω
* 0

0.1 0.2 0.3 0.4

Ω
0

0

0.5

1

1.5

2

E
rr

or
 (

%
)

Figure 4.7: From left to right, the functions γ (Ω0), Ω∗0 (Ω0) and the relative error of the growth
function for the DGP model. The error decreases as we increase the value of Ω0. The maximum
error is less than 0.5 % for typical values of Ω0.

Let us consider once more the effective equation of state (4.5.21), thus,

Ωm (a) =
Ωm

Ωm + (1− Ωm) a−3 (ω0+ω1) e−3ω1 (1−a)
, (4.5.35)

where we have fixed Ωm = 0.271. Thus following (4.5.25), the growth function becomes,

f(a) =

(
1 + (µ∗0 − 1)

1− Ωm (a)

1− Ωm

)
Ωγ
m (a), (4.5.36)

In this case, we only need to fit the parameters γ = γ (µ0) and µ∗0 = µ∗0 (µ0). We plot

in Fig. 4.8 functions µ∗0 (µ0), γ (µ0) along with errors in f(a), for different values of ω0,

setting ω1 = 0. In Fig. 4.9 the same functions are shown, in this case varying ω1 with

ω0 = −1. In the ω0 = −1 and ω1 = 0 case, i.e. ΛCDM background, the fitting functions

read

µ∗0 = 0.961− 0.132µ0 + 0.245µ2
0 − 0.066µ3

0 + 0.0065µ4
0

(4.5.37)

and

γ = 0.456 + 0.012µ0 + 0.403 e−1.37µ0 . (4.5.38)

We can see that the error is less than 0.25 % even changing the effective equation of

state. In this case, a fit of the form (4.5.33) does not reproduce well the numerical results.
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Figure 4.8: From left to right, the functions γ (µ0), µ∗0 (µ0) and relative error of the growth
function for the phenomenological model (4.5.34) for different values of ω0, setting ω1 = 0. The
case with ω0 = −1 is parametrized in (4.5.37) and (4.5.38).
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Figure 4.9: From left to right, the functions γ (µ0), µ∗0 (µ0) and relative error of the growth
function for the phenomenological model (4.5.34) for different values of ω1, setting ω0 = −1. The
case with ω1 = 0 is parametrized in (4.5.37) and (4.5.38).
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4.5.3 General case: perturbative analysis

Let us consider the general case in which µ = µ(a, k). In order to get closed expressions

for the growth function, we will restrict ourselves to small perturbations around the GR

case µ = 1. Thus, we start with equation (4.5.2) and write

µ(a, k) = 1 + α(a, k) (4.5.39)

being |α| � 1. Let us now write the perturbed growth function in the following form,

f(a, k) = [1 + ε (a, k)] f0(a), (4.5.40)

with |ε| � 1 and f0(a) = Ωγ∗
m (a) the growth function in ΛCDM. We insert (4.5.40) into

(4.5.2) and using that f0 satisfies equation (4.5.2) with µ = 1, we obtain,

ε̇+

[
3

2
Ω1−γ∗
m + Ωγ∗

m

]
ε =

3

2
Ω1−γ∗
m α. (4.5.41)

We can solve this equation analytically for a given initial condition at a = ai well inside

the matter era where α(ai, k) ' 0 and ε(ai, k) ' 0, so that

ε (a, k) =
3

2
e−g(a)

∫ a

ai

Ω1−γ∗
m (a′)α(a′, k) e g(a

′) da
′

a′
, (4.5.42)

being,

g(a) =

∫ a

ai

[
3

2
Ω1−γ∗
m (a′) + Ωγ∗

m (a′)

]
da′

a′
. (4.5.43)

The result does not depend on the particular value chosen (for concreteness, we took

ai = 10−2). If we consider as a hard approximation that Ωm ' 1 then we can simplify

equation (4.5.42) as,

ε (a, k) =
3

2
a−

5
2

∫ a

ai

α(a′, k) a′
3
2 da′, (4.5.44)

and we can integrate by parts obtaining,

ε (a, k) =
3

5

∞∑
n=0

(
−2

5

)n
α(n)(a, k), (4.5.45)

where α(n) is the n-th derivative with respect to ln a. Then, if we take α as a constant in

a, ε (a, k) = 3
5
α(k) and we recover the time-independent case that we analyzed above in

(4.5.14). In the following, we apply these results to different examples of modified gravity

theories.
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f(R) Model

Let us consider f(R) gravities [47,215–218]. The growth function in this kind of models

has been studied in several works [219–222]. In particular, we will consider here the Hu-

Sawicki model [47] written in the simple form,

f(R) = R− 2Λ

1 + bΛ
R

, (4.5.46)

which, for b = 0, reduces to the standard ΛCDM model with a cosmological constant Λ.

The corresponding µ function reads [218]

µ (a, k) =
1

f,R

1 + 4(f,RR(R0)/f,R(R0))(k/a)2

1 + 3(f,RR(R0)/f,R(R0))(k/a)2
, (4.5.47)

where f,R and f,RR denote the first and second derivatives with respect to R and R0 is the

scalar curvature assuming that the background agrees with that of ΛCDM

R0(a) = 3H2
0 [Ωm a

−3 + 4 (1− Ωm)]. (4.5.48)

For small enough b, we can approximate,

f,RR(R0)

f,R(R0)

(
k

a

)2

' 4 b

3

(1− Ωm)2

a2r2(a)

k2

H2
0

, (4.5.49)

where r(a) = R0(a)/3H2
0 . Also, using that for small x,

1 + 4 x

1 + 3 x
' 1 + 0.44x0.77, (4.5.50)

we can finally approximate (4.5.47) by

µ(a, k) ' 1 + 0.44

[
4 b

3

(1− Ωm)2

a2r2(a)

k2

H2
0

]0.77

, (4.5.51)

which allows to extract the explicit b and k/H0 dependence from the integral in equation

(4.5.42). We compare in the left panel of Fig. 4.10 this approximation with the exact

expression. We see that it provides an excellent fit for b(k/H0)2 < 10. Then, using (4.5.42)

we get

ε(a, k) =

[
b

(
k

H0

)2
]0.77

F (a), (4.5.52)
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Figure 4.10: Left panel: µ(a, k) with a = 1 as a function of b (k/H0)2 for the f(R) theory
in (4.5.46). We compare the exact expression in (4.5.47) with the approximation in equation
(4.5.51). Right panel: the growth function relative error for the approximation (4.5.51) for the
ΛCDM background.

being,

F (a) = 0.8236 (1− Ωm)1.54 e−g(a)

∫ a

ai

Ω1−γ∗
m (a′)

r2.31(a′)a′2.54
e g(a

′) da′. (4.5.53)

The fitting functions for F (a) in terms of Ωm(a) can be easily obtained and reads

F (a) = 0.140 Ωm(a)− 0.545 Ω2
m(a) + 0.994 Ω3

m(a)− 0.905 Ω4
m(a) + 0.315 Ω5

m(a). (4.5.54)

On the right panel of Fig. 4.10, we plot the growth function errors as a function of

b (k/H0)2 using the expressions above. We see that the agreement with the numerical

solution is better than 1% when |µ − 1| < 0.12. Since these fits have been obtained for a

ΛCDM background, using the above expressions with different backgrounds would increase

the errors up to 2%.

Phenomenological parametrization

Let us consider the limit |µ0 − 1| � 1 in the parametrization given in (4.5.34). Using

equation (4.5.42) we find that,

ε(a) =
3

2
(µ0 − 1) e−g(a)

∫ a

ai

Ω1−γ∗
m (a′)

1− Ωm(a′)

1− Ωm

e g(a
′) da

′

a′
, (4.5.55)
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Figure 4.11: Errors in f(z) for the phenomenological parametrization (4.5.54) for the ΛCDM back-
ground.

and we can fit this expression as follows,

ε(a) = (µ0 − 1) (0.505− 0.646 Ωm(a) + 0.141 Ωm(a)2).

(4.5.56)

In this case, as we can see in Fig. 4.11, the error in the growth function is below 1%

for |µ0 − 1| < 1. Since, as in the f(R) case, these fits have been obtained for a ΛCDM

background, using the above expressions with different backgrounds would increase the

errors up to 2%.

4.5.4 Growth fuction parametrization for µm and µd

Finally, we will consider the case in which dark matter is an imperfect and non-conserved

fluid. In this situation the growth equation follows (4.4.32). Thus we will calculate useful

analytical approximations of the growth function in terms of µm and µd parameters. We

will take into account two cases: first of all the simplest case in which µm and µd are

constants, and then the case in which |1− µm(a, k)| � 1 and |1− µd(a, k)| � 1. We start

with the growth equation (4.4.32) and we do the following variable change,

δ′ = H δ f, (4.5.57)
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δ′′ = H2 δ

[
ḟ + f 2 +

Ḣ
H
f

]
. (4.5.58)

Using (4.5.57-4.5.58) in (4.4.32) and H = aH we obtain,

ḟ + f 2 +

[
1 + µd +

Ḣ

H

]
f =

3

2
Ωm(a)µm. (4.5.59)

Let us assume a solution of the form,

f(a) = ζ(µm, µd) Ωγ
m(a), (4.5.60)

we also consider a ΛCDM background as before so we use (4.5.4) and (4.5.5). Using (4.5.60)

in (4.5.59) and considering the approximation Ωm(a) ' 1 we obtain,

ζ2 −
[

1

2
− µd

]
ζ − 3

2
µm = 0. (4.5.61)

Thus we can obtain ζ(µm, µd) and extend the result in (4.5.23),

f(a) =
1

4

[√
(1− 2µd)2 + 24µm + 1− 2µd

]
Ωγ
m(a). (4.5.62)

Let us know check the accuracy of this analytic approximation with respect to the

numerical solution. As we can see in the left panel of Fig. 4.12, if the modifications of µm
and µd are below the 10 %, the analytic approximation has errors of order 1 %.

Now we analyze the case |1 − µm(a, k)| � 1 and |1 − µd(a, k)| � 1. Proceeding as in

the previous sections, we assume a solution of the form,

f(a, k) = [1 + ε(a, k)] Ωγ
m(a), (4.5.63)

with ε � 1. We use (4.5.63) into (4.5.59), keeping linear in 1 − µm, 1 − µd and ε; and

considering the approximation Ωm(a) ' 1 we obtain,

ε̇+
5

2
ε = (1− µd)−

3

2
(1− µm) , (4.5.64)

solving this last equation and changing to the variable z, we obtain the correction to the

growth function ε as,

ε(z, k) = (1 + z)5/2

∫ zmat

z

[
(1− µd(z′, k))− 3

2
(1− µm(z′, k))

]
(1 + z′)

−7/2
dz′,(4.5.65)
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Figure 4.12: Left panel: errors (%) of the analytic expression (4.5.62) with respect to the
numerical solution of f(a) for µm and µd constants. Right panel: errors (%) of the analytic
expression (4.5.65) with respect to the numerical solution of f(z) for µm(z) and µd(z) following
expressions (4.5.66-4.5.67).

where zmat is the redshift for the matter dominated era (zmat ' 10), and limz→zmat µm(z, k) =

limz→zmat µd(z, k) = 1. We test this approximation using the following expressions for µm(z)

and µd(z),

µm(z) = 1 + (µ0
m − 1)

1− Ωm(z)

1− Ωm

, (4.5.66)

µd(z) = 1 +
(µ0

d − 1)

1 + z
. (4.5.67)

We plot the errors of this analytic approximation respect to the numerical solution in the

right panel of Fig. 4.12. As in the case before, the analytic approximation has errors of

order 1 % for modifications of µm and µd order 10 %, . In addition, we can do an analytical

check of expression (4.5.63) for the case in which µm and µd are constants, using,

(1 + z)5/2

∫ zmat

z

(1 + z′)
−7/2

dz′ ' 2

5
, (4.5.68)

for z � zmat, we obtain,

f(a) =

[
4

5
− 2

5
µd +

3

5
µm

]
Ωγ
m(a). (4.5.69)

We also recover this result if we apply the approximation |1−µm| � 1 and |1−µd| � 1

in equation (4.5.62).
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Chapter 5

Testing modified cosmologies with
galaxy surveys

As we have seen in previous chapters in bayesian statistics there are many types of priors

when a theory is tested with data. One of these priors is the model choice itself. The

effect of this prior is the most challenging to measure as it is difficult to analyze data

in a totally model-independent way. The phenomenological parametrizations described

before are a first approach to make a model-independent treatment of theory. In this

chapter we will use this approach to analyze the potential signals generated in galaxy

surveys by modified gravity theories involving additional vector degrees of freedom with

explicit preferred directions effects. We will also analyze the possible obervational impact

of modified dark matter models. In both cases, the model-independent approach discussed

in Chapter 4 will be employed. The results of this chapter correspond to [139,223].

5.1 Signals of preferred directions in galaxy surveys

The main observables that we will analyze to detect a gravitational preferred direction are

the galaxy distribution power spectrum and the weak-lensing power spectrum. We do not

take into account the peculiar-velocity power spectrum here because it is not particularly

sensitive to the parameters and the additional information provided is negligible compared

to that obtained from the galaxy distribution power spectrum.

Our starting point will be the phenomenological description of vector modified gravities

89
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introduced in Section 4.2. For simplicity, we will consider a negligible dark matter vorticity,

so that we are left with only four effective parameters µ = µ(a, k, x), η = η(a, k, x),

µQ = µQ(a, k, x) and µh = µh(a, k, x), where µ = µΨ and η = µΦ/µΨ are given in (4.2.30)

and (4.2.31), and x = k̂ · Â. In addition, we will also assume that the background vector

field is a subdominant contribution with respect to matter so that the background evolution

can be correctly described by a Robertson-Walker metric, i.e. Ξij = δij. The first main

effect of parametrization (4.2.30)-(4.2.33) is the modification of the growth evolution,

δ̈ +

(
2 +

Ḣ

H

)
δ̇ − 3

2
µ(a, k, x) Ωm(a) δ = 0. (5.1.1)

By solving this equation we obtain the growth factor D(z, k, x) = δ(z, k, x)/δ(0, k, x),

where as usual the redshift is related to the scale factor by a = 1/(1 + z), and the growth

function f(z, k, x) = Ḋ(z, k, x)/D(z, k, x) which unlike in the ordinary General Relativity

case is anisotropic because of the x dependence. Then the matter power spectrum is in

general anisotropic Pm(z,k) = Pm(z, k, x). Considering the standard contribution of RSD,

the galaxy distribution power spectrum (2.2.21) becomes,

Pgg(z, µ̂, x, k) =
(
1 + β(z, k, x)µ̂2

)2
b(z)2 Pm(z, k, x). (5.1.2)

As we can see, the redshift-space galaxy power spectrum has two different kinds of anisotropic

contributions: on one hand the standard contribution from redshift space distortions (RSD)

which introduces a quadrupole and hexadecapole in µ̂, and on the other, an extra contribu-

tion coming from the x dependence of the growth function. Thus performing a multipole

expansion with respect to the line of sight we find,

Pgg(z, µ̂, x, k) =
∑
`

P`(z, k, x)L`(µ̂), (5.1.3)

where L` are the Legendre polynomials so that

P`(z, k, x) =
2`+ 1

2

∫ 1

−1

dµ̂ Pgg(z, µ̂, x, k)L`(µ̂). (5.1.4)

As in the standard case, P`(z, k, x) are different from zero for ` = 0, 2, 4 i.e. we recover

the well-known monopole, quadrupole and hexadecapole contributions but with the new x

dependence. Thus we have,

P0(z, k, x) =

(
1 +

2

3
β(z, k, x) +

1

5
β2(z, k, x)

)
b2 Pm(z, k, x), (5.1.5)



CHAPTER 5. TESTING MODIFIED COSMOLOGIES WITH GALAXY SURVEYS 91

P2(z, k, x) =

(
4

3
β(z, k, x) +

4

7
β2(z, k, x)

)
b2 Pm(z, k, x), (5.1.6)

P4(z, k, x) =
8

35
β2(z, k, x) b2 Pm(z, k, x). (5.1.7)

The multipole coefficients P`, depend in turn on the angular variable x and therefore could

be additionally expanded in a different multipole expansion with respect to x. Alterna-

tively, a bi-polar expansion in (µ̂, x) [172], could have been performed. However for the

Fisher analysis that we will perform, we will directly work with the P` coefficients. So,

the main effect of a preferred direction in the galaxy distribution power spectra is the

apparition of a new direction that induces an extra angular dependence.

On the other hand we have the weak lensing power spectrum. In this case we will see

how the standard derivation of the convergence power spectrum is affected by scalar, vec-

tor and tensor perturbations; and the presence of a preferred direction. We start with

the Bianchi perturbed metric (4.2.5), where as before we have considered for simplicity

Ξij ' δij. We will also work in cosmological time t so that the metric reads

ds2 = −(1 + 2Ψ) dt2 + a(t)2 [(1− 2Φ) δij + hij] dx
idxj − 2Qi a(t) dt dxi. (5.1.8)

We are interested in the corresponding null geodesics satisfying (2.4.2). For the metric

(5.1.8), we have that the Christoffel symbols are,

Γi00 = a−2 Ψ,i − a−1 (H Qi +Qi,0) , (5.1.9)

Γij0 = δij (H − Φ,0)− a−1Q[i,j] +
1

2
hij,0, (5.1.10)

Γijk = Φ,i δjk − Φ,k δij − Φ,j δki + aH Qi δjk +
1

2
(hij,k + hik,j − hjk,i), (5.1.11)

where a comma denotes derivative with respect to the coordinates (t, x1, x2, x3). Arguing

as in the standard case, the remaining contributions at linear level in the Christoffel symbol

term (2.4.10) are,

Γi00

(
dt

dχ

)2

= Ψ,i − a [H Qi +Qi,0] , (5.1.12)
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Γij0
dt

dχ

dxj

dχ
= −aH d

dχ
(χ θi) +Q[i,3] −

1

2
a hi3,0, (5.1.13)

and

Γi33

(
dx3

dχ

)2

= Φ,i + aH Qi + hi3,3 −
1

2
h33,i. (5.1.14)

So considering these contributions at linear regime we obtain that equation (2.4.10) be-
comes,

Γiαβ
dxα

dλ

dxβ

dλ
=
(p
a

)2
[
(Φ + Ψ),i − 2 aH

d

dχ
(χ θi) + 2Q[i,3] + hi3,3 −

1

2
h33,i − a (Qi + hi3),0

]
.

(5.1.15)

Thus, as in the standard case, we can obtain from the geodesic equation (2.4.2),

d2

dχ2
(χ θi) = −(Φ + Ψ),i − 2Q[i,3] − hi3,3 +

1

2
h33,i + a (Qi + hi3),0. (5.1.16)

At this point we apply the quasi-static approximation (QSA) and the sub-Hubble regime

in which we can neglect the time derivatives of perturbations with respect to the spatial

derivatives,

d2

dχ2
(χ θi) = −(Φ + Ψ),i − 2Q[i,3] − hi3,3 +

1

2
h33,i. (5.1.17)

It will be useful to define the source term of equation (5.1.17) as,

Yi ≡ −
(

Φ + Ψ +Q3 +
1

2
h33

)
,i

− (Qi + hi3),3. (5.1.18)

This is how standard equation (2.4.20) is modified when we have vector and tensor pertur-

bations in the QSO approximation and the sub-Hubble regime. Now we will look at the

modified distortion tensor defined as (2.4.21),

ψij(θ) =

∫ χ∞

0

dχ χ g(χ)Yi,j(χ,θ). (5.1.19)

Notice that it is no longer symmetric due to the extra terms in (5.1.18). The general

distortion tensor can be written as,

ψij ≡
(
−κ− γ1 −γ2 − ω
−γ2 + ω −κ+ γ1

)
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Although the convergence and shear parameters are defined as in the standard case

as (2.4.29)-(2.4.31), an additional parameter responsible for a rotational effect has to be

defined,

ω = −ψ12 − ψ21

2
. (5.1.20)

Now, we use equation (5.1.18) into (5.1.19) so that

ψij(θ) = −
∫ χ∞

0

dχ χ g(χ)

(
Φ + Ψ +Q3 +

1

2
h33

)
,ij

−
∫ χ∞

0

dχ χ g(χ) (Qi + hi3),3j .

(5.1.21)

As we can see from the previous equation, the vector and tensor perturbations generate

the rotation effect in the distortion tensor [224]. Since x3 = χ, we can integrate by parts

the second integral to obtain,∫ χ∞

0

dχ χ g(χ) (Qi + hi3),3j =
((((((((((((
[χ g(χ) (Qi + hi3),j]|χ∞0

−
∫ χ∞

0

dχ

(
g + χ

dg

dχ

)
(Qi + hi3),j , (5.1.22)

so that the distortion tensor becomes,

ψij(θ) = −
∫ χ∞

0

dχ χ g(χ)

[(
Φ + Ψ +Q3 +

1

2
h33

)
,ij

− 1

χ

(
1 +

χ

g

dg

dχ

)
(Qi + hi3),j

]
.

(5.1.23)

Now, we want to go to the Fourier space of θ so that we define,

ψ̃ij(`) =

∫
d2θ e−i `·θ ψij(θ). (5.1.24)

Taking into account that,

∂

∂xi
=

1

χ

∂

∂θi
, (5.1.25)

the Fourier transform of the distortion matrix is,

ψ̃ij(`) =

∫ χ∞

0

dχ
g(χ)

χ

[
`i `j

(
Φ̃ + Ψ̃ + Q̃3 +

1

2
h̃33

)
+ i `j

(
1 +

χ

g

dg

dχ

)
(Q̃i + h̃i3)

]
.

(5.1.26)
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Compared to the standard case (2.4.35), we can see in (5.1.26) that there are two modifi-

cations: a new non-symmetric term responsible for the rotational effect, and an additional

symmetric term that, as we will see, introduces anisotropic terms. To obtain the power

spectrum for the distortion tensor we can use the result of (2.4.50). If we change from χ

to the redshift variable z = 1/(1 + a) and using [4πGa2ρ]
2

=
9H4

0

4
Ω2
m (1 + z)2 we get,

Pψ
ijlm(`) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

κi `j κ
∗
l `m

`4
Pm

(
z,

`

χ(z)

)
, (5.1.27)

where

κi ≡ `i α− i

(
1 +

1

g

dg

dz

(
1

χ

dχ

dz

)−1
)

vi, (5.1.28)

α ≡ µ(1 + η)− 4µQA3 +
1

2
µh Σ33, (5.1.29)

vi ≡ 4µQAi − µhΣi3, (5.1.30)

where

g(z) =

∫ ∞
z

(
1− χ(z)

χ(z′)

)
n(z′) dz′, (5.1.31)

with n(z)dz = W (χ)dχ and n(z) the galaxy density function as a function of redshift.

Now we can use expressions (2.4.29)-(2.4.31) and (5.1.20) to construct the power spectra

for convergence, shear and rotation,

Pκ =
1

4

(
Pψ

1111 + Pψ
2222 + Pψ

1122 + Pψ
2211

)
, (5.1.32)

Pγ1 =
1

4

(
Pψ

1111 + Pψ
2222 − P

ψ
1122 − P

ψ
2211

)
, (5.1.33)

Pγ2 =
1

4

(
Pψ

1212 + Pψ
2121 + Pψ

1221 + Pψ
2112

)
, (5.1.34)

Pω =
1

4

(
Pψ

1212 + Pψ
2121 − P

ψ
1221 − P

ψ
2112

)
. (5.1.35)
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These expressions can be written in a more compact fashion by introducing the following

variables. We define `1 ≡ `Υ and `2 ≡ `
√

1−Υ2 where,

Υ ≡ Âi`i

`

√
1− Â2

3

. (5.1.36)

Considering the small-angle approximation k3 � k1, k2, the conditions k̂iQi = 0 and

k̂ihij = 0 imply,

`ivi = 0. (5.1.37)

Using this expression we can write v2 as a function of v1 and then we relate it with

v2 ≡ v2
1 + v2

2,

v2
1 = (1−Υ2) v2. (5.1.38)

Finally using (5.1.36) and (5.1.37) in the expressions of the power spectra (5.1.32) - (5.1.35)

we obtain,

Pκ = Pα, (5.1.39)

Pγ1 = (1− 2 Υ2)2 Pα + 4 Υ2 (1−Υ2)Pv, (5.1.40)

Pγ2 = 4 Υ2 (1−Υ2)Pα + (1− 2 Υ2)2 Pv, (5.1.41)

Pω = Pv, (5.1.42)

where Pα and Pv are,

Pα =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

α2

4
Pm

(
z,

`

χ(z)

)
, (5.1.43)

Pv =
9H4

0 Ω2
m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g2(z)

(
1 +

1

g

dg

dz

(
1

χ

dχ

dz

)−1
)2

v2

4 `2
Pm

(
z,

`

χ(z)

)
.

(5.1.44)
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As we can see from equations (5.1.39)-(5.1.42), we have the following closing relation,

Pγ1 + Pγ2 = Pκ + Pω, (5.1.45)

this is a useful relation since it allows to determine the rotation power spectrum, which

is not directly measurable in lensing surveys, from shear and convergence measurements.

We can use the expressions of Ai and Σij considering k̂3 � 1, and the definition of Υ, to

obtain expressions for α and v2,

α = µΨ (1 + γ)− 4 ξ µQ + (2 ξ2 + (1− ξ2)Υ2 − 1)
µh
2
, (5.1.46)

v2 = (4µQ − 2 ξ µh)
2 (1− ξ2)(1−Υ2), (5.1.47)

being ξ ≡ Â3 with −1 ≤ ξ ≤ 1. Since Â3 is the projection of Â along the line of sight, we

can perform a multipole expansion of α2 and v2 above, using the Legendre polynomials in

ξ. Thus for α2 =
∑4

r=0 M
r
αLr(ξ) we have

M0
α =

1

20
f 2

1 +
1

6
f1 f2 +

1

4
f 2

2 +
16

3
µ2
Q, (5.1.48)

M1
α = −4

(
3

5
f1 + f2

)
µQ, (5.1.49)

M2
α =

(
1

7
f1 +

1

3
f2

)
f1 +

32

3
µ2
Q (5.1.50)

M3
α = −8

5
f1 µQ, (5.1.51)

M4
α =

2

35
f 2

1 (5.1.52)

where f1 ≡ (2 − Υ2)µh and f2 ≡ 2µ (1 + η) − (1 − Υ2)µh. On the other hand for

v2 =
∑4

r=0 M
r
vLr(ξ)

M0
v =

8

15
µ2
h +

32

3
µ2
Q, (5.1.53)
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M1
v = −M3

v = −32

5
µQ µh, (5.1.54)

M2
v =

8

21
µ2
h −

32

3
µ2
Q, (5.1.55)

M4
v = −32

35
µ2
h. (5.1.56)

With these definitions we obtain,

P r
α =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g(z)2 M

r
α

4
Pm

(
z,

`

χ(z)

)
, (5.1.57)

P r
v =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g(z)2

(
1 +

1

g

dg

dz

(
1

χ

dχ

dz

)−1
)2

(1−Υ2)M r
v

4 `2
Pm

(
z,

`

χ(z)

)
,

(5.1.58)

with r = 0, 1, 2, 3, 4. Finally, if we want to analyze the weak lensing signal at different

redshift bins, we define the window functions as (2.4.60). With those definitions, the

convergence, shear and rotation multipole power spectra are,

P r
κ ab(`,Υ) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
ga(z) gb(z)

M r
α

4
Pm

(
z,

`

χ(z)

)
, (5.1.59)

P r
ω ab(`,Υ) =

9H4
0 Ω2

m

4

∫ ∞
0

dz
(1 + z)2

H(z)
g̃a(z) g̃b(z)

(1−Υ2)M r
v

4 `2
Pm

(
z,

`

χ(z)

)
, (5.1.60)

P r
γ1 ab

(`,Υ) = (1− 2 Υ2)2 P r
κ ab(`,Υ) + 4 Υ2 (1−Υ2)P r

ω ab(`,Υ), (5.1.61)

P r
γ2 ab

(`,Υ) = 4 Υ2 (1−Υ2)P r
κ ab(`,Υ) + (1− 2 Υ2)2 P r

ω ab(`,Υ), (5.1.62)

with

g̃a(z) ≡ ga(z)

(
1 +

1

ga

dga
dz

(
1

χ

dχ

dz

)−1
)
, (5.1.63)
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where a denote the different redshift bins. As we can see, vector and tensor perturbations

induce anisotropies in the convergence power spectrum and an additional rotation effect

in the galaxy shapes. This rotation effect can not be directly measured but it could

be inferred indirectly from the closing relation (5.1.45). This is the simplest effect of a

preferred direction in the weak lensing power spectrum, however, if we consider the full

dependence in x of the effective parameters µ, η, µQ or µh, additional multipoles r could

appear in (5.1.57) and (5.1.58).

5.2 Signals of modified dark matter in galaxy surveys

Here we want to analyze how an imperfect and non-conservated dark matter fluid affects

the galaxy power spectra. As in this type of theories the conservation equations are modi-

fied, LOS velocity field is modified so we will analyze, in addition to the galaxy distribution

power spectrum and the weak lensing power spectrum, the velocity field power spectrum.

We will follow a model-independent approach in which we will consider each modified grav-

ity parameter to have a different value for each redshift bin. In this approach, we will see

that galaxy survey observables are sensitive to a concrete combination of these parameters.

First of all, as we analyzed in the parametrization of the growth function (4.5.62), the

growth is affected by a combination ζ(µm, µd) of the effective parameters so, as a function

of the redshift, it is not possible to distinguish µm and µd in a model independent way. We

will be sensitive to a combination ζ(µm, µd) of them which, in the constant case, follows

(4.5.61). However, because the conservation equation (4.4.33) is modified with µθ, the

velocity divergence is also modified and then the RSD reads,

δsg =
(
1 + µθ β µ̂

2
)
b δ. (5.2.1)

In addition, the LOS peculiar velocity (2.3.3) is modified as,

u = −iHµθ f µ̂
k

δ. (5.2.2)

Taking into account these modifications, the power spectra Pgg, Puu and Pgu now read,

Pgg(z, µ̂r, kr) =
HrD

2
A

H D2
Ar

(
1 + µθ βµ̂

2
)2
b2 Pm(z, k), (5.2.3)
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Puu(z, µ̂r, kr) =
HrD

2
A

H D2
Ar

(
Hµθ f µ̂

k

)2

Pm(z, k), (5.2.4)

Pgu(z, µ̂r, kr) = i
HrD

2
A

H D2
Ar

Hµθ f µ̂
k

(
1 + µθ β µ̂

2
)
b Pm(z, k). (5.2.5)

Thus, using galaxy distribution and peculiar velocity power spectra, we are sensitive to

(µθ, ζ). Notice that with these power spectra we can not distinguish µ from µm so we can

not distinguish modified gravity from an imperfect dark matter fluid.

On the other hand, for the weak lensing power spectrum, we can see that the modifi-

cation only enters in the growth evolution thanks to Pm(z, k) or the growth factor D(z).

In addition, the convergence power spectrum depends on the combination Σ(z) (1.4.20).

Σ ζ µθ Underlying theory

1 1 1 ΛCDM

6= 1 1 1 MG η 6= 1

1 6= 1 1 BSV

1 1 6= 1 -
1 6= 1 6= 1 BSV +HNC

6= 1 1 6= 1 -
6= 1 6= 1 1 MG+BSV

6= 1 6= 1 6= 1 MG+BSV +HNC

Table 5.1: MG stands for modified gravity, BSV for bulk and shear viscosity, and HNC for
heat flux and non-conserved fluid. If the underlying theory is − means that this possible theory
has a finetuning of the parameter values.

Thus, as shown in Chapter 4, we need (µ, η, µm, µd, µθ) to describe, in a model in-

dependent way, a general modification of Einstein equations and conservation equations,

however, using galaxy power spectra, as we can see in equations (5.2.3-5.2.5) and (2.4.56),

we are only sensitive to the following combinations: D b, µθDf , ΣD and the Hubble pa-

rameter H. Assuming that the galaxy bias is fixed by a bias model, the observables are

able to constrain the three combinations (Σ, ζ, µθ) where,

ζ(z, k) ≡ f(z, k)

Ωγ
m(z)

, (5.2.6)
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µθ(z, k) ≡ − θ(z, k)

H(z)f(z, k)δ(z, k)
. (5.2.7)

Therefore, parameters (µ, η) and (µm, µd) are degenerate.

Any deviation from one of any of the three mentioned parameters will imply a modifica-

tion of General Relativity or a modification of the perfect-fluid description of dark matter.

We summarize in Table 5.1 the different combinations of parameters and the compatible

underlying theories. Thus, for example, we see that a detection of Σ 6= 1 with ζ = µθ = 1

is only compatible with modified gravity. On the other hand, ζ 6= 1 with Σ = µθ = 1

can only be produced by modified dark matter. Similarly, ζ 6= 1 and µθ 6= 1 with Σ = 1

cannot be generated by modified gravity. On the contrary, we see that different from one

measurements of the three parameters will not allow to distinguish whether the underlying

theory is a modification of gravity or an imperfect dark matter.



Chapter 6

Forecasting non-standard cosmologies
with galaxy surveys

In this chapter we will apply the Fisher formalism presented in previous chapters to fore-

cast the precision with which future surveys will be able to measure our phenomenological

parameters. Firstly, we will study the possibility of detecting a preferred direction. To

do that, we need to generalize the Fisher matrices for galaxy distribution and weak lens-

ing to allow the extra angular dependencies. Then we will analyze the simplest cases in

which a preferred direction is considered which, for the galaxy distribution power spectra,

correspond to the case with µ = µ(x2). In such a case, we can use the useful analytical

approximation for the constant µ case (4.5.11). For the weak lensing power spectrum, we

will consider the simplest case in which modified gravity parameters are constants. Notice

that in this situation we have already an anisotropic effect due to the µQ and µh parame-

ters. On the other hand, we will constrain the imperfect and non-conserved dark matter

fluid model. In this situation we do not need to modify the standard Fisher matrices. We

will consider the simplest case in which the effective parameters parameters are constant,

then we will take into account time dependent phenomenological parametrizations. The

results of this chapter correspond to [139,223].

101
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6.1 Forecasts on gravitational preferred directions

As mentioned above our goal is to analyze the impact of preferred directions effects in

galaxy and weak lensing surveys. We will analyze the Fisher matrices for galaxy clustering,

first considering the multipole power spectrum and then the redshift-space power spectrum.

Then we will analyze the Fisher matrix for the weak lensing power spectrum. Finally, we

will study the effects of primordial anisotropies.

6.1.1 Fisher analysis for the multipole power spectrum

We will start with the analysis of the multipole power spectrum for galaxy distribution

(2.2.23). As we show in Chapter 3, considering a set of cosmological parameters {θα} the
Fisher matrix for the multipole power spectrum can be written as [133],

F δ`δ`
αβ (z) =

∑
c,c′

∑
`,`′

∂P`(z,kc)
∂θα

∣∣∣∣
r

C−1
``′ (kc,kc′)

∂P`′(z,kc′)
∂θβ

∣∣∣∣
r

, (6.1.1)

where sub-index r denotes that the corresponding quantity is evaluated on the fiducial

model, kc are the discrete modes and C``′(kc,kc′) is the covariance matrix. Now we need

to extend the calculation of the covariance matrix done in Chapter 3 to the case in which

we have an anisotropic power spectrum depending not only on the full wavevector k, but

also on its orientation with respect to the line of sight n̂. We consider the estimator for the

multipole power spectrum as (3.2.24) but in this situation the sum in modes is
∫
kc d

3k =

Vs(kc) = k2
c dkc dxc dφc, being xc = cos θc, where the matter perturbation satisfies,

〈δ(z, µ̂,k)δ(z, µ̂,k′)〉 = δD(k + k′)
[
Pgg(z, µ̂,k) +

1

n̄(z)

]
. (6.1.2)

With this estimator we can calculate the covariance matrix,

C``′(kc,kd) = 〈P̂`(z,kc)P̂`′(z,kd)〉 − 〈P̂`(z,kc)〉〈P̂`′(z,kd)〉. (6.1.3)
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As in the isotropic case, we consider only Gaussian perturbations satisfying (3.2.7), so that

C``′(kc,kd) = V 2
f

(2`+ 1)(2`′ + 1)

4

∫
kc

d3k

Vs(kc)

∫
kd

d3k′

Vs(kd)∫ 1

−1

dµ̂

∫ 1

−1

dµ̂′L`(µ̂)L`′(µ̂′)

[〈δ(µ̂,k)δ(µ̂′,k′)〉 〈δ(µ̂,−k)δ(µ̂′,−k′)〉

+ 〈δ(µ̂,k)δ(µ̂′,−k′)〉 〈δ(µ̂,−k)δ(µ̂′,k′)〉] . (6.1.4)

At this stage we use the distant observer approximation in which we assume that the

integrand of (6.1.4) is non negligible only when µ̂′ ' µ̂, then we obtain,

C``′(kc,kd) ' V 2
f

(2`+ 1)(2`′ + 1)

2

∫
kc

d3k

Vs(kc)

∫
kd

d3k′

Vs(kd)∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂)

[〈δ(µ̂,k)δ(µ̂,k′)〉 〈δ(µ̂,−k)δ(µ̂,−k′)〉

+ 〈δ(µ̂,k)δ(µ̂,−k′)〉 〈δ(µ̂,−k)δ(µ̂,k′)〉] . (6.1.5)

Using (6.1.2) and taking into account once again that δ2
D(x) = δD(0)δD(x) and δD(0) =

1/Vf , we obtain,

C``′(kc,kd) = Vf
(2`+ 1)(2`′ + 1)

2

∫
kc

d3k

Vs(kc)

∫
kd

d3k′

Vs(kd)∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂) [δD(k + k′) + δD(k− k′)][
Pgg(z, µ̂,k) +

1

n̄(z)

] [
Pgg(z, µ̂,−k) +

1

n̄(z)

]
. (6.1.6)

As done before, we consider that Pgg(z, µ̂,k) ' Pgg(z, µ̂,kc) in the integral and also that∫
kc
d3k

∫
kd
d3k′ δD(k− k′) = Vs(kd) δkc,kd δxc,xd δφc,φd , (6.1.7)

and ∫
kc
d3k

∫
kd
d3k′ δD(k + k′) = Vs(kd) δkc,kd δxc,−xd δφc,φd+π. (6.1.8)
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Using these expressions we obtain,

C``′(kc,kd) =
Vf δkc,kd
Vs(kc)

[δxc,xd δφc,φd + δxc,−xd δφc,φd+π]
(2`+ 1)(2`′ + 1)

2∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂)

[
Pgg(z, µ̂,kc) +

1

n̄(z)

] [
Pgg(z, µ̂,−kc) +

1

n̄(z)

]
. (6.1.9)

Now, in our case, we can consider that the fiducial power spectrum is of the form Pgg(z, µ̂,kc) =

Pgg(z, µ̂, kc). The anisotropic contribution of the power spectrum only depends on x2 due

to the effective parameters so, when we sum indices in the Fisher matrix we can replace

δxc,−xd by δxc,xd , and we can integrate in φc so that Vs(kc) = 2πk2
c dkc dxc. Considering this

approximations the covariance matrix is,

C``′(kc,kd) = δkc,kd
2Vf
Vs(kc)

(2`+ 1)(2`′ + 1)

2

∫ 1

−1

dµ̂L`(µ̂)L`′ (µ̂)

[
Pgg(z, µ̂, kc) +

1

n̄(z)

]2

.

(6.1.10)

Summing in the modes, the Fisher matrix (6.1.1) becomes,

F δ`δ`
αβ (z) =

V (z)

8π2

∫ kmax

kmin

dk

∫ 1

−1

dx k2 ∂P`(z, k, x)

∂θα

∣∣∣∣
r

C−1
``′ (z, k)

∂P`′(z, k, x)

∂θβ

∣∣∣∣
r

, (6.1.11)

being,

C``′(z, k) =
(2`+ 1)(2`′ + 1)

2

∫ 1

−1

dµ̂L`(µ̂)L`′(µ̂)

[
Pgg(z, µ̂, k) +

1

n̄(z)

]2

. (6.1.12)

Notice that this Fisher matrix is reduced to the standard one (3.2.30) when P`(z, k, x) =

P`(z, k) and we integrate in x. Now we will analyze our phenomenological parametriza-

tion for a preferred direction (5.1.5)-(5.1.4). For simplicity, we do not considering the

Alcock-Paczynski effect for the multipole power spectrum analysis because, as can be see

in Chapter 2, it would introduce complicated terms in expressions (2.2.24-2.2.26). We will

study the simplest case in which,

µ = µ0 + µ2 x
2 + µ4 x

4 +O(x6). (6.1.13)

In this situation the galaxy distribution power spectrum can be written as,

Pgg(z, µ̂, x, k) =
[
(1 + ξ βΛ µ̂

2) b(z)Dξ
Λ

]2

P (k, x), (6.1.14)
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where the ξ = ξ(µ(x)) parameter follows equation (4.5.10) and µ equation (6.1.13). Here

we have extracted the growth factor form the matter power spectrum

Pm(z, k, x) = D(z, x)P (k, x), (6.1.15)

being P (k, x) the matter power spectrum today which can be related with the matter

power spectrum today in ΛCDM model PΛ(k) as,

P (k, x) = exp

[
2

∫ zmat

0

f(z′, k, x)− fΛ(z′)

1 + z′
dz′
]
PΛ(k), (6.1.16)

where fΛ(z) is the growth function in ΛCDM and we have assumed that for z > zmat,

f(z, k, x) = fΛ(z). For the sake of concreteness in the forecast analysis we will assume that

zmat = 10 although the results are not very sensitive to its precise value. Finally, βΛ ≡ fΛ/b

and, since we are considering the constant case, D(z, x) = DΛ(x)ξ. In each redshift bin,

we will consider as free parameters bDΛ and the parameters of the model µ0, µ2, µ4. For

simplicity, we will not marginalize with respect to PΛ(k). As we will see in detail in next

chapter, the galaxy distribution power spectrum depends on three independent parameters

in each redshift bin considering the Alcock-Paczynski effect and two without considering it.

For the case of a preferred direction, each additional independent anisotropic dependence

in x adds an additional freedom. For the fiducial model we assume ΛCDM and we will

obtain the constraints for specifications of an Euclid like survey, these specifications can

be found in 6.A. We will first consider as independent parameters in each bin [bDΛ, µ0, µ2]

z kmax δµ0/µ0(%) δµ2/µ0(%)

0.6 0.195 1.77 3.88
0.8 0.225 1.08 1.99
1.0 0.260 0.73 1.06
1.2 0.299 0.66 0.77
1.4 0.343 0.62 0.59
1.8 0.447 0.65 0.57

Table 6.1: Redshift bins, kmax values in h/Mpc units and relative errors for µ0 and µ2 for an
Euclid-like survey. We compare δµ2 with respect to µ0 because the fiducial value of µ2 is zero.

and we present the marginalized errors for µ0 and µ2 in Table 6.1. In Fig. 6.1 left panel we
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plot the 1-sigma and 2-sigma contours summing all the information in the whole redshift

range. In such a case we obtain errors for µ0 and µ2 of order 1 %. Then, we add the

parameter µ4 in each bin and we present the marginalized errors for µ0, µ2 and µ4 in Table

6.2. In Fig. 6.1 right panel we plot the 1-σ and 2-σ contours for µ2 and µ4 summing all

the information in the full redshift range. As we can see, if we add a x4 dependence, the

errors for µ2 increase in a factor 3− 4 but the errors for µ0 remain the same. Errors for µ4

are slightly larger than for µ2.

z kmax δµ0/µ0(%) δµ2/µ0(%) δµ4/µ0(%)

0.6 0.195 2.20 13.6 15.2
0.8 0.225 1.27 6.96 7.78
1.0 0.260 0.81 3.71 4.15
1.2 0.299 0.71 2.69 3.01
1.4 0.343 0.66 2.06 2.30
1.8 0.447 0.67 1.99 2.22

Table 6.2: Redshift bins, kmax values in h/Mpc units and relative errors for µ0 and µ2 and µ4

for an Euclid-like survey. We compare δµ2 and δµ4 with respect to µ0 because the fiducial values
of µ2 and µ4 are zero.

6.1.2 Fisher analysis for the redshift-space power spectrum

An alternative way to perform the Fisher analysis consists in using the redshift-space power

spectrum Pgg rather than the multipoles considered in the previous analysis. This, in fact,

allows to take into account the Alcock-Paczynski effect [85] so that we can write

Pgg(z, µ̂r, x, kr) =
HrD

2
A

H D2
Ar

[
(1 + ξ βΛ µ̂

2) b(z)Dξ
Λ

]2

P (k, x), (6.1.17)

where k = k(kr) and µ̂ = µ̂(µ̂r) are given by equations (2.2.33)-(2.2.35). Thus, considering

a set of cosmological parameters {θα}, the corresponding Fisher matrix for clustering at a

given redshift bin centered at za and for a solid angle of the survey centered at the line of

sight n̂ is,

dF δδ
αβ =

1

2

∫
d3k

(2π)3

∂ logPgg
∂θα

∣∣∣∣
r

∂ logPgg
∂θβ

∣∣∣∣
r

[
n̄Pgg

1 + n̄Pgg

]∣∣∣∣
r

dVs, (6.1.18)
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Figure 6.1: Top: marginalized 1σ and 2σ regions for µ0 and µ2 for an Euclid-like survey from the
multipole power spectrum information. Bottom: marginalized 1σ and 2σ regions for µ2 and µ4 for an
Euclid-like survey from the multipole power spectrum information.
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where,

dVs = Vz dϕ dθ sin θ, (6.1.19)

and

Vz =
1

3

[
χ(z̄a)

3 − χ(z̄a−1)3
]
, (6.1.20)

with n̂(θ, ϕ) where ϕ and θ are the azimuthal and polar angles in the axes frame on the

left panel of Fig. 6.2.

Since we are interested in summing all the angular information, we have to integrate

over the angles ϕ and θ but taking into account that ∂ logPgg
∂θα

∣∣∣
r
may depend on these angles.

Thus, we integrate a spherical cap that encloses a fraction fsky of the sky,

F δδ
αβ =

1

2

∫
d3k

(2π)3

∫ 2π

0

dϕ

∫ arccos(1−2fsky)

0

sin θ dθ
∂ logPgg
∂θα

∣∣∣∣
r

∂ logPgg
∂θβ

∣∣∣∣
r

[
n̄Pgg

1 + n̄Pgg

]∣∣∣∣
r

Vz.

(6.1.21)

The only angular dependences we have are µ̂ = k̂ · n̂ and x = k̂ · Â. It is useful to keep

µ̂ as an integration variable, so that we have to relate x with µ̂. With the choice of axes

of Fig. 6.2, we find that,

x = sinα′
√

1− µ̂2 cos ρ+ cosα′ µ̂, (6.1.22)

and,

cosα′ = sinα sin θ cos(ϕ− φ) + cosα cos θ, (6.1.23)

being Â(α, φ) with α and φ the polar and azimuthal angles in the axes frame in Fig. 6.2

left, where the Z axis is chosen in the direction of the center of the survey c. Thus,

x = x(α, φ, µ̂, ρ, θ, ϕ) so that we have the following integration variables [k, µ̂, ρ, θ, ϕ].

Finally, we have chosen as independent parameters for the Fisher matrix in each bin:

[E, bDΛ, µ0, µ2, µ4], where E ≡ H/H0. For these parameters the derivatives are,

∂ logPgg
∂E

∣∣∣∣
r

= 1 +
2 ∆za

E2H0 χ(za)
+

4βΛµ̂
2(1− µ̂2)

1 + βΛ µ̂2

(
1

E
− ∆za
E2H0 χ(za)

)
, (6.1.24)

∂ logPgg
∂ (bDΛ)

∣∣∣∣
r

=
2

bDΛ

, (6.1.25)
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Figure 6.2: From top to bottom, reference frame for the Fisher analysis of the redshift space
power spectrum, and auxiliary reference frame to calculate the integral in k.
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∂ logPgg
∂µ0

∣∣∣∣
r

=
6

5

[
logDΛ +

∫ z̄i

z̄i−1

fΛ(z′)

1 + z′
dz′ +

βΛ µ̂
2

1 + βΛ µ̂2

]
, (6.1.26)

∂ logPgg
∂µ2

∣∣∣∣
r

=
∂ logPgg
∂µ0

∣∣∣∣
r

x2, (6.1.27)

∂ logPgg
∂µ4

∣∣∣∣
r

=
∂ logPgg
∂µ0

∣∣∣∣
r

x4. (6.1.28)

As we can see, the only angular dependence appears in the derivatives with respect to µ2

and µ4 which involve even powers of x. Thus, we can extract this dependence and define

the following function,

fxαβ(µ̂, α, φ) =

∫ 2π

0

dϕ

∫ arccos(1−2fsky)

0

sin θ dθ

∫ 2π

0

dρ (δ1α + δ2α + δ3α + x2 δ4α + x4 δ5α)

× (δ1β + δ2β + δ3β + x2 δ4β + x4 δ5β),
(6.1.29)

here x = x(α, φ, µ̂, ρ, θ, ϕ) and α, β = E, bDΛ, µ0, µ2, µ4 = 1, 2, 3, 4, 5. Notice that for

α, β = 1, 2, 3 we have fxαβ = 8π2 fsky, and we recover the isotropic case for the Fisher

matrix. Finally, the Fisher matrix for the redshift-space power spectrum in the presence

of a preferred direction pointing in the (α, φ) direction can be written as,

F δδ
αβ(z, α, φ) =

Vz
16 π3

∫ 1

−1

dµ̂

∫ kmax

kmin

k2 ∂ logPgg
∂θα

∣∣∣∣
r

∂ logPgg
∂θβ

∣∣∣∣
r

fxαβ(µ̂, α, φ)

[
n̄Pgg

1 + n̄Pgg

]∣∣∣∣
r

dk,

(6.1.30)

where in this expression,

∂ logPgg
∂p4

∣∣∣∣
r

=
∂ logPgg
∂p5

∣∣∣∣
r

=
∂ logPgg
∂µ0

∣∣∣∣
r

. (6.1.31)

Notice that the final Fisher matrix (6.1.30) depends on the angles (α, φ). We could have

considered them as additional cosmological parameters θα and obtain and extended Fisher

matrix. However, since we are considering an isotropic fiducial model, the corresponding

entries would be identically zero. Instead, we will study that dependence of the errors on
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the orientation of the vector Â. Thus, we find that errors are maximized for α = 0, i.e.

when the preferred direction points towards the center of the survey, for any value of φ,

whereas they are minimized for α = π/2 for any value of φ. Notice that in any case errors

vary at most in a 10% of their values. We use the same fiducial cosmology as before for

an Euclid-like survey 6.A. Results are summarized in Table 6.3 and in Fig. 6.3 we plot the

1-σ and 2-σ contours for µ2 and µ4 summing all the information in each bin.

z kmax δµ0/µ0(%) δµ2/µ0(%) δµ4/µ0(%)

0.6 0.195 2.60 14.8 17.1
0.8 0.225 1.47 7.39 8.68
1.0 0.260 0.99 4.03 4.67
1.2 0.299 0.92 3.03 3.48
1.4 0.343 0.89 2.40 2.74
1.8 0.447 0.87 2.30 2.61

Table 6.3: Redshift bins, kmax values in h/Mpc units and relative errors for µ0, µ2 and µ4 for
an Euclid-like survey using the redshift space power spectrum with α = 0. We compare δµ2 and
δµ4 with respect to µ0 because their fiducial values are zero.

As we can see, with this method we obtain slightly larger errors for µ0, µ2 and µ4 than

in the previous analysis. This is because in this situation we are also marginalizing E(z)

due to the Alcock-Paczynski effect.

6.1.3 Fisher analysis for the weak lensing power spectrum

Now we will perform the Fisher analysis for the weak lensing power spectrum. Once

again, with that purpose we have to extend the Fisher matrix formalism to consider the

presence of a preferred direction. Thus, we analyze the multipole power spectrum for the

convergence (5.1.57) and sum over all the multipoles r and `. The Fisher matrix is of the

following form,

F κκ
αβ =

∑
`c,`d

∑
rr′

∂P r
κ ab(`c)

∂θα

∣∣∣∣
r

[
Covrr

′

ba′b′a(`c, `d)
]−1 ∂P r′

κ a′b′(`d)

∂θβ

∣∣∣∣
r

, (6.1.32)

where we are summing in indexes a, b, a′ and b′. Now we have to obtain the covariance

matrix for the case in which the power spectrum depends not only on the full ` vector but
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Figure 6.3: Marginalized 1σ and 2σ regions for µ2 and µ4 using the information of the redshift space
power spectrum and considering α = 0 for an Euclid-like survey

also we have a dependence on the observation direction n̂, in particular a polar dependence

(ξ = n̂ · Â) where Â is the preferred direction. We define the estimator for this multipole

power spectrum in the following way,

P̂ r
ab(`c) = Af

∫
`c

d2`

As(`c)

2r + 1

2

∫ 1

−1

dξ κa(`, ξ)κb(−`, ξ)Lr(ξ), (6.1.33)

being
∫
`c
d2` = As(`c) = `cd`cdφc, where cosφc = Υc (5.1.36). Where the perturbation κa

satisfies,

〈κa(`1, ξ)κb(`2, ξ)〉 = δD(`1 + `2)Cab(`1, ξ), (6.1.34)

being Cab the observable convergence power spectrum with the shot noise effect (3.4.4).

Using this estimator we can calculate the covariance matrix,

Crr′

aba′b′(`c, `d) = 〈P̂ r
ab(`c)P̂

r′

a′b′(`d)〉 − P r
ab(`c)P

r′

a′b′(`d). (6.1.35)
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As in the previous case, we consider only Gaussian perturbations (3.2.7), so that

Crr′

aba′b′(`c, `d) = A2
f

(2r + 1)(2r′ + 1)

4

∫
`c

d2`

As(`c)

∫
`d

d2`′

As(`d)∫ 1

−1

dξ

∫ 1

−1

dξ′Lr(ξ)Lr′(ξ′)

[〈κa(`, ξ)κa′(`′, ξ′)〉 〈κb(−`, ξ)κb′(−`′, ξ′)〉

+ 〈κa(`, ξ)κb′(−`′, ξ′)〉 〈κb(−`, ξ)κa′(`′, ξ′)〉] . (6.1.36)

At this stage we use once again the distant observer approximation, in which we assume

that the integrand of (6.1.36) is non negligible only when ξ′ ' ξ, then we obtain,

Crr′

aba′b′(`c, `d) ' A2
f

(2r + 1)(2r′ + 1)

2

∫
`c

d2`

As(`c)

∫
`d

d2`′

As(`d)∫ 1

−1

dξ Lr(ξ)Lr′(ξ)

[〈κa(`, ξ)κa′(`′, ξ)〉 〈κb(−`, ξ)κb′(−`′, ξ)〉

+ 〈κa(`, ξ)κb′(−`′, ξ)〉 〈κb(−`, ξ)κa′(`′, ξ)〉] . (6.1.37)

Using (6.1.34) and taking into account once more δ2
D(x) = δD(0)δD(x) and δD(0) = 1/Af ,

we obtain,

Crr′

aba′b′(`c, `d) ≈ Af
(2r + 1)(2r′ + 1)

2

∫
`c

d2`

As(`c)

∫
`d

d2`′

As(`d)∫ 1

−1

dξ Lr(ξ)Lr′(ξ) [δD(`+ `′)Caa′(`, ξ)Cbb′(−`, ξ) + δD(`− `′)Cab′(`, ξ)Cba′(−`, ξ)] ,

(6.1.38)

As done before, we consider that Cab(`, ξ) ' Cab(`c, ξ) in the integral and also that,∫
`c

d2`

∫
`d

d2`′ δD(`− `′) = As(`d) δ`c`d δφcφd , (6.1.39)

and ∫
`c

d2`

∫
`d

d2`′ δD(`+ `′) = As(`d) δ`c`d δφcφd+π, (6.1.40)

so that we finally obtain,
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Crr′

aba′b′(`c, `d) =
Af δ`c`d
As(`c)

(2r + 1)(2r′ + 1)

2

∫ 1

−1

dξ Lr(ξ)Lr′(ξ)

× [δφcφd+π Caa′(`c, ξ)Cbb′(−`c, ξ) + δφcφd Cab′(`c, ξ)Cba′(−`c, ξ)] . (6.1.41)

Notice that if the only dependence in φc is in the form of Υ2
c , then δφcφd = δφcφd+π =

δΥcΥd . If we further consider that the fiducial power spectrum is isotropic, we obtain the

final result,

Crr′

aba′b′(`c, `d) =
2π (2r + 1) δ`c`dδrr′

fsky (2`c + 1)d`cdφc
[Caa′(`c)Cbb′(`c) + Cab′(`c)Cba′(`c)], (6.1.42)

here δ`c`d = δ`c`dδΥcΥd and we have approximated once more ` ' (2` + 1)/2. Notice

that, because we are considering that in the fiducial model the convergence power spectrum

has no extra anisotropies, different multipoles in r are not mixed in the covariance matrix

unlike in the covariance matrix for the multipole power spectrum of galaxy distribution.

Considering this covariance matrix, the Fisher matrix (6.1.32) becomes,

F κκ
αβ = fsky

∫ 1

−1

dΥ

π
√

1−Υ2

∑
r

∑
`

∆ ln `
(2`+ 1) `

2 (2r + 1)

∂P r
κ ab

∂θα

∣∣∣∣
r

C−1
ba′

∂P r
κ a′b′

∂θβ

∣∣∣∣
r

C−1
b′a ,

(6.1.43)

where Cab follows equation (3.4.4). We sum in ` with ∆ ln ` = 0.1 from `min = 5 to `max,

where `max values are obtained in order to consider linear scales [225] and can be found in

Table 6.4. For the multipole power spectrum we use the following expression,

P r
κ ab(`,Υ) =

1

4

∑
a′

Pab(za′ , `) M
r
α(Υ). (6.1.44)

where

Pab(za′ , `) =
9H3

0 Ω2
m

4

(1 + za′)
2

Ea′
∆za′ ga(za′) gb(za′)D

2
a′ P

(
`

χ(za′)

)
. (6.1.45)

Regarding the parameters θα, it can be proved that in each bin, the power spectrum

depends on four independent parameters, which are chosen as (Ea, ηa, µQ a, µh a) where

the sub-index a denotes different redshift bins, so that we have a total Fisher matrix of size

4n × 4n, being n the total number of z bins. For the sake of simplicity, we will consider
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z `max δη/η(%) δµQ/µ(%) δµh/µ(%)

0.6 311 6.75 0.64 1.48
0.8 385 5.43 1.45 3.04
1.0 515 9.27 2.71 4.73
1.2 609 20.6 6.70 9.18
1.4 760 70.5 23.0 24.9
1.8 959 816 250 324

Table 6.4: Redshift bins, `max values calculated following Section 3.4 and relative errors for η,
µQ and µh for the Euclid forecast. We compare µQ and µh with µ because the fiducial values of
µQ and µh are zero.

that the modified gravity parameters are isotropic and scale invariant, i.e. ηa = η(za),

µQa = µQ(za) and µh a = µh(za). The (non-vanishing) derivatives, which are evaluated in

ΛCDM as fiducial model, are,

∂P 0
κ ab

∂ηa′

∣∣∣∣
r

= Pab(za′), (6.1.46)

∂P 1
κ ab

∂µQ a′

∣∣∣∣
r

= −4Pab(za′), (6.1.47)

∂P 0
κ ab

∂µh a′

∣∣∣∣
r

=
2

3
(2−Υ2)Pab(za′), (6.1.48)

∂P 2
κ ab

∂µh a′

∣∣∣∣
r

=
4

3
(2−Υ2)Pab(za′), (6.1.49)

∂P 0
κ ab

∂Ea′

∣∣∣∣
r

= −Pab(za
′)

Ea′
+
∑
b′

1

ga(zb′)

∂ga(zb′)

∂Ea′
Pab(zb′)

+
∑
b′

1

gb(zb′)

∂gb(zb′)

∂Ea′
Pab(zb′), (6.1.50)
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with,

∂ga(zb′)

∂Ea′
=

∆za′

H0E2
a′

[
−θ̂(za′ − zb′)χ(zb′)

∫ ∞
za′

na(z
′)

χ(z′)2
dz′

+ θ(zb′ − za′)
∫ ∞
zb′

(
1− χ(zb′)

χ(z′)

)
na(z

′)

χ(z′)
dz′

]
,

(6.1.51)

where we have discretized the integration of E(z)−1 in χ(z) for the different bins, and the

step functions θ(z) and θ̂(x) are defined so that θ̂(0) = 0 and θ(0) = 1. We consider an

Euclid like survey, the specifications are detailed in (6.A). We summarize the results in

Table 6.4 and in Fig. 6.4 left panel. Finally, if we further assume that η, µQ and µh are

just constants, we can sum the information in all redshift bins. We plot the corresponding

1-σ and 2-σ contours for µQ and µh in Fig. 6.4 right panel.

We can see that lensing convergence measurements are very sensitive to the dipole term

P 1
κ ij, so that errors in µQ are much smaller than for η and µh. Notice also that multipoles

r = 3, 4 do not appear in the derivatives (6.1.46)-(6.1.50) since those terms are quadratic in

µQ and µh so that on the fiducial ΛCDM cosmology the corresponding derivatives vanish.

For the same reason, the Fisher matrix for the rotation power spectrum also vanishes.

6.1.4 Forecasting primordial anisotropies

So far we have studied the effects of preferred directions in the evolution of density and

metric perturbations, but anisotropies could also be present in the primordial curvature

power spectrum [169,170]. In this case, and assuming parity symmetry, the leading effects

can be described by a modification of the primordial power spectrum from P (k) to P ′(k)

such that,

P ′ (k) =
(
1 + g∗ x

2
)
P (k). (6.1.52)

Assuming a scale-independent modification, g∗ is just a dimensionless constant. We can use

the Fisher formalism described before to forecast the sensitivity with which future surveys

could measure the g∗ parameter. With that purpose, we consider both, the multipole

power spectrum for the matter distribution and the multipole power spectrum for lensing
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Figure 6.4: Top: Relative errors for η, µQ and µh using weak lensing information for an Euclid-like
survey. Bottom: Marginalized 1σ and 2σ regions for for µQ and µh summing the information of the whole
redshift range for an Euclid-like survey.
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convergence. For clustering we consider the following independent parameters in the Fisher

analysis (βa, bDa, g∗ a), whereas for lensing we take (Ea, La, g∗ a) where the sub-index a

denotes the different redshift bins and La ≡ Ω2
mD

2
aσ

2
8. We summarize the results in Table

6.5 for an Euclid-like survey as in previous sections.

z kmax `max 100× δgC∗ 100× δgL∗
0.6 0.195 311 0.61 4.23
0.8 0.225 385 0.43 7.36
1.0 0.260 515 0.32 9.65
1.2 0.299 609 0.30 16.1
1.4 0.343 760 0.29 38.4
1.8 0.447 959 0.29 591

Table 6.5: Redshift bins, kmax values in h/Mpc units, `max values calculated following Section
3.4 and forecasted absolute errors for g∗ from clustering (C) and lensing (L) for an Euclid-like
survey.

As we can see, we have better precision with the multipole power spectrum of galaxy

distribution. If we sum the information of clustering and lensing and in each bin, we obtain

and absolute error δg∗ = 1.4× 10−3.

6.2 Forecasts for non-standard dark matter

Now we will analyze the phenomenological parametrization for an imperfect and non-

conserved dark matter fluid. As shown in the last chapter, the galaxy survey observables

are sensitive to the combination (µθ, ζ,Σ) where Σ is defined in (1.4.20), µθ is defined in

(4.4.33) and ζ is defined as,

f(z, k) = ζ(z, k) fΛ(z), (6.2.1)

where fΛ(z) follows (4.5.1). In the case in which µm and µd defined in (4.4.32) are time

independent, ζ follows equation (4.5.62). We will consider two different galaxy surveys,

an Euclid-like survey with clustering and weak lensing information; and the WALLABY

survey with clustering and peculiar velocity information. The Fisher matrices are the
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standard ones,

F σσ
αβ (za) =

V (za)

8π2

∫ kmax

kmin

k2 dk

∫ 1

−1

dµ̂
∂Σij(za, µ̂, k)

∂θα

∣∣∣∣
r

Σ−1
jl

∂Σlm(za, µ̂, k)

∂θβ

∣∣∣∣
r

Σ−1
mi. (6.2.2)

F δδ
αβ(za) =

1

8π2

∫ kmax

kmin

k2 dk

∫ 1

−1

dµ̂ Veff
∂ lnPgg(za, µ̂, k)

∂θα

∣∣∣∣
r

∂ lnPgg(za, µ̂, k)

∂θβ

∣∣∣∣
r

, (6.2.3)

F κκ
αβ = fsky

∑
`

∆ ln `
(2`+ 1)`

2

∂P κκ
ab (`)

∂θα

∣∣∣∣
r

C−1
ba′

∂P κκ
a′b′(`)

∂θα

∣∣∣∣
r

C−1
b′a , (6.2.4)

where we have used the convention of summing up to a kmax scale defined as σ(z, π/2kmax(z)) =

0.35 using (3.2.14). For the weak lensing power spectrum we sum in ` with ∆ ln ` = 0.1

from `min = 5 to `max(zα′) = χ(zα′) kmax(zα′) being α′ = min(α, β). The fiducial cosmology

we consider is given in the subsection 6.A. For this cosmology E(z) ≡ H(z)/H0,

E(z) =
√

Ωm (1 + z)3 + (1− Ωm). (6.2.5)

For the fiducial cosmology we obtain the present matter power spectrum P (k) from

CLASS [226]. Finally, because we use ΛCDM for the fiducial model, [Σ, ζ, µθ]|r = [1, 1, 1].

6.2.1 Euclid survey

In this subsection we would obtain future errors for our parametrization using an Euclid

like survey, the survey specifications can be found in 6.A. This survey will measure Pgg
and Pκ power spectra. First, we will obtain errors for each parameter in each redshift bin

using the constant case for ζ and then we will consider a time-dependent phenomenological

parametrization. In the former case, we consider (µθ, ζ, E) for clustering and (E,Σ) for

lensing. Then we combine clustering and lensing information in (µθ, ζ,Σ, E). We summa-

rize these errors in Table 6.6 and Fig. 6.5. Finally, we sum all the information in each bin

and we find δµθ/µθ = 0.43%, δζ/ζ = 0.31% and δΣ/Σ = 0.44%.

As a second example, we obtain errors for a particular phenomenological time-dependent

parametrization. Following [214] we consider (µθ(a), ζ(a),Σ(a)) described by

µθ(a) = 1 +
(
µ0
θ − 1

) 1− Ωm(a)

1− Ωm

, (6.2.6)
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z kmax `max ∆µCθ /µθ(%) ∆ζC/ζ(%) ∆ΣL/Σ(%) ∆µTθ /µθ(%) ∆ζT/ζ(%) ∆ΣT/Σ(%)

0.6 0.195 300 3.03 2.61 2.90 3.00 2.58 0.88
0.8 0.225 437 1.78 1.46 2.08 1.66 1.36 1.58
1.0 0.260 597 1.25 0.97 3.60 1.18 0.92 2.96
1.2 0.299 782 1.00 0.75 8.96 0.97 0.72 7.22
1.4 0.343 994 0.96 0.68 30.0 0.95 0.67 23.7
1.8 0.447 1510 0.84 0.56 340 0.83 0.56 249

Table 6.6: Redshift bins, kmax in h/Mpc, `max values calculated following [225], and relative
errors for µθ, ζ and Σ for Euclid survey. Super-index C denotes clustering information, L denotes
lensing information and T denotes clustering + lensing information.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
z

100

101

p i
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i (
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)

Figure 6.5: Forecasted errors (%) for Σ, ζ and µθ using clustering and lensing information for
the Euclid survey.
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Figure 6.6: Regions for 1 and 2 sigmas for µ0
θ, ζ0 and Σ0 of expressions (6.2.6,6.2.7,6.2.8) using

clustering and lensing information for the Euclid survey.

ζ(a) = 1 + (ζ0 − 1)
1− Ωm(a)

1− Ωm

, (6.2.7)

Σ(a) = 1 + (Σ0 − 1)
1− Ωm(a)

1− Ωm

, (6.2.8)

For a small deviation from ΛCDM we are only sensitive to a combination of these

parameters. Using equation (4.2.13) we find,

f(z) =

[
1 + (ζ0 − 1)

5

2
(1 + z)5/2

∫ zmat

z

1− Ωm(z′)

1− Ωm

(1 + z′)
−7/2

dz′
]

Ωm(z)γ, (6.2.9)

and then we obtain the forecast for (Σ0, ζ0, µ
0
θ). We find δΣ0/Σ0 = 2.21%, δζ0/ζ0 =

8.90% and δµ0
θ/µ

0
θ = 5.08%. We plot the 1 and 2 σ regions for Σ0, ζ0 and µ0

θ in Fig. 6.6.

6.2.2 The WALLABY survey

WALLABY [227] (Widefield ASKAP L-band Legacy All-sky Blind surveY) is one of the

ASKAP Survey Science Projects and is focused on enhancing our understanding of the

extragalactic neutral hydrogen (HI) universe. It will be able to map the galaxy distribution

and galaxy velocity distribution up to redshift z = 0.26. Here we will forecast the size
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of errors for our dark matter parametrization using the WALLABY survey which will

measure Pgg, Puu and Pgu power spectra. The fraction of the sky, the bias and the kmax are

respectively fsky = 0.75, b = 0.7 and kmax = 0.2. For kmin we take the value kmin = 0.007

h/Mpc [225]. We summarize the redshift bins and galaxy densities in Table 6.7. As

independent parameters we consider (µθ, ζ, E) in each bin (considering the constant case

for ζ). We summarize the relative errors in Table 6.7.

z ng × 10−3 nu × 10−3 ∆µθ/µθ(%) ∆ζ/ζ(%)

0.0175 67.4 8.50 2130 2130
0.0350 23.1 1.06 494 492
0.0525 8.59 0.15 870 865
0.0700 3.00 0.031 510 506
0.0875 1.09 0.0026 342 340
0.105 0.45 0.00097 308 307

Table 6.7: Redshift bins, galaxy densities in (h/Mpc)3 and relative errors for µθ and ζ for
WALLABY forecast.

As we can see, due to the low galaxy densities at low redshift, WALLABY is not

competitive measuring modified gravity and imperfect fluid effects. Although peculiar

velocity power spectrum could be an interesting observable, current and future surveys

will not have enough precision for a competitive measurement of the effective parameters.

6.2.3 Imperfect dark matter with shear viscosity: present con-
straints and forecasts

Finally as an example, we analyse a particular model for dark matter shear obtaining

current constraints using SDSS data and comparing it with the expected precision for

Euclid forecast. We consider the particular model of shear viscosity (4.3.3) where we

define the dimensionless parameter η̃ ≡ 24πGη0/H0 [29]. We analyze the case in which

this parameter is constant. In that situation we have found a good analytical approximation

for the growth function f(z),
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k 0.012 0.015 0.018 0.021 0.024 0.028 0.032 0.037 0.043 0.049 0.057 0.065 0.075 0.087
P 124884 118814 134291 58644 105253 77699 57870 56516 50125 45076 39339 39609 31566 24837

∆P 18775 29400 21638 16647 12736 9666 7264 5466 3991 2956 2214 1679 1284 991

Table 6.8: SDSS luminous red galaxies data [228]: k values in h/Mpc, LRG power spectrum and
errors, both in (Mpc/h)3.
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Figure 6.7: Left: likelihood and confidence regions for shear viscosity model using SDSS luminous
red galaxies and considering b and η̃ as free parameters. Right: likelihood and confidence regions
for shear viscosity model using SDSS luminous red galaxies and considering Ωm, b and η̃ as free
parameters.

f(z) =

(
1 +

a1

[1 + a2z + a3z2]3/2

)
Ωγ
m(z), (6.2.10)

a1 = exp
[
−0.146 η̂0.948

]
− 1, (6.2.11)

a2 = 1.447− 0.106 η̂ + 0.003 η̂2, (6.2.12)

a3 = 0.429− 0.014 η̂ + 0.0004 η̂2, (6.2.13)
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where γ = 0.545 and η̂ = η̃ (k/H0)2. We will use SDSS luminous red galaxies data [228] to

constrain η̃. The observable is the galaxy power spectra today PLRG(k),

PLRG(k) = b2

(
δ(0)

δ(zmat)

δΛ(zmat)

δΛ(0)

)2

PΛ(k), (6.2.14)

being δΛ(z) and PΛ(k) the growth factor and the matter power spectrum in ΛCDM

respectively, and,

δ(0)

δ(zmat)

δΛ(zmat)

δΛ(0)
= exp

[∫ 0

Nmat

(f(N ′)− fΛ(N ′)) dN ′
]
, (6.2.15)

with N = − ln(1 + z) and Nmat ≈ −3. The observational data of PLRG(k) and errors are

in Table 6.8.

We compute the corresponding χ2 for expression (6.2.14) and obtain the best fit and

the confidence regions. First of all we consider parameters (b, η̃) in Fig. 6.7 left panel,

fixing the rest of parameters to the fiducial ones. The best fit corresponds to the values

b = 1.916+0.055
−0.051 and η̃ =

(
0.953+1.579

−0.953

)
×10−5. We see that although the best fit corresponds

to a non-vanishing viscosity, it is compatible with zero within one sigma. As a matter of

fact, we find η̃ < 3.71× 10−5 at 95% C.L.

We have also considered (Ωm, b, η̃) as fitting parameters in Fig. 6.7 right panel. In this

case, the best fit corresponds to Ωm = 0.280+0.027
−0.019, b = 1.82+0.08

−0.05, η̃ =
(
0.261+6.875

−0.261

)
× 10−6,

which again is compatible with vanishing viscosity at the one-sigma level. We find η̃ <

7.55× 10−6 at 95% C.L.

Finally, we forecast the precision for the future measurements of η̃ with Euclid. We

compute clustering and lensing power spectra and we obtain the Fisher matrices (6.2.3)

and (6.2.4) using the information of 6.A and considering ΛCDM as the fiducial model. We

summarize the results in Table 6.9.

As we can see, Euclid improves 1−2 orders of magnitude the accuracy of η̃ with respect

to SDSS luminous red galaxies.

6.A Fiducial cosmology and survey specifications

The fiducial cosmology we consider is given by Ωc h
2 = 0.121, Ωb h

2 = 0.0226, Ων h
2 =

0.00064, ns = 0.96, h = 0.68, H−1
0 = 2997.9Mpc/h, Ωk = 0 and σ8 = 0.82 in the standard
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z kmax `max ∆η̃C × 10−7 ∆η̃L × 10−7 ∆η̃T × 10−7

0.60 0.195 300 2.53 8.18 2.41
0.80 0.225 437 1.55 7.00 1.51
1.00 0.260 597 1.15 8.14 1.14
1.20 0.299 782 1.05 13.1 1.04
1.40 0.343 994 0.97 30.6 0.97
1.80 0.447 1510 0.94 257 0.94

Table 6.9: Redshift bins, kmax in h/Mpc, `max values calculated following [225], and errors for η̃
for Euclid forecast. Super-index C denotes clustering information, L denotes lensing information
and T denotes clustering + lensing information.

ΛCDM model. For this cosmology,

H(z) = H0

√
Ωm (1 + z)3 + (1− Ωm). (6.A.1)

The growth function fΛ follows equation (4.4.33) and the growth factor DΛ is,

DΛ(z) = exp

[∫ N(z)

0

fΛ(N ′) dN ′

]
, (6.A.2)

being N(z) = − ln(1 + z). For the fiducial cosmology we obtain the present matter power

z kmax n × 10−3

0.6 0.195 3.56
0.8 0.225 2.42
1.0 0.260 1.81
1.2 0.299 1.44
1.4 0.343 0.99
1.8 0.447 0.33

Table 6.10: Redshift bins, kmax values in h/Mpc units and galaxy densities in (h/Mpc)3 units
for an Euclid-like survey.

spectrum PΛ(k) from CLASS [226]. For the survey specifications, we consider an Euclid-

like survey. Euclid is a spectroscopy and photometric survey that will be able to cover
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15000 deg2 up to redshift z = 2 with a very high number of emission light galaxies. The

redshift bins, values of kmax and galaxy densities can be found in Table 6.10. For kmin

we take the value kmin = 0.007 h/Mpc [225]. For the bias, we use a fiducial value of the

form [68],

b(z) =
√

1 + z. (6.A.3)

The fraction of the sky is fsky = 0.364 corresponding to 15000 deg2, the redshift error for

galaxy distribution power spectrum is δz = 0.001. For the weak lensing power spectrum,

the mean redshift is zmean = 0.9, the areal galaxy density nθ = 35 galaxies per square arc

minute and the redshift error for weak lensing power spectrum is δz = 0.05.



Chapter 7

FARO: a new galaxy forecast code

As we have shown in this thesis, Fisher forecast is a useful tool to analyze the impact

of future experiments. In addition, in the cosmology context, galaxy surveys will provide

useful observables to constrain cosmological parameters. Thus, it is interesting to analyze

how these experiments can measure those parameters and the precision they would reach.

Also, it is useful to analyze how the different survey configurations and observation strate-

gies affects the precision of cosmological measurements. There are several Fisher matrix

codes (BFF [229], CarFisher [68], FisherMathica [230], fishMath [231], SOAPFish [232],

SpecSAF [233], ...) for galaxy clustering, cosmic shear and the cross correlation power spec-

tra that have been developed in the last years, although most of them are not public [234].

These codes compute the Fisher matrix for the 3D galaxy power spectrum, the 2D galaxy

power spectrum, the convergence power spectrum and the cross correlation. The main

approach in these codes is to numerically calculate the derivatives of the power spectra

with respect to a given set of cosmological parameters using the outputs of a Boltzmann

code. In this chapter we present the Fisher gAlaxy suRvey cOde (FARO) which we have

developed in [235]. This is a public code that allows to perform forecasts analysis in a

model-independent way, avoiding the numerical evaluation of derivatives, and it is thus

particularly useful to test the modified cosmological models discussed in previous chapters

in a faster way than existing codes.1

1The code can be downloaded from https://www.ucm.es/iparcos/faro

127
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7.1 Observables and approach of the code

We start by explaining the main features of the code and the parameters that are consid-

ered. FARO is a Fisher matrix code for galaxy surveys that is totally public and made to

be easy to use and modify. The main characteristics of FARO can be summarized as:

• Python code: The code is written in Python for an easy use and manipulation.

It makes extensive use of the powerful function np.einsum and it allows to use the

Python CLASS [226] functions to obtain the matter power spectrum.

• Observables: 3D galaxy power spectrum, convergence power spectrum and cross-

correlation power spectrum in the linear regime.

• Multitracer: an arbitrary number of different galaxy tracers can be considered. The

corresponding multitracer galaxy-lensing cross-correlation is implemented.

• Redshift and scale binning: arbitrary number and sizes of redshift and k bins can

be chosen in an easy way.

• Model independent: A set of model-independent parameters are considered which

allows to extract information on the constraining power of a given survey for a wide

range of cosmologies. The chosen parameters allow, in addition, to obtain the deriva-

tives involved in the Fisher matrix calculation in an analytical way thus making the

code faster.

• Tomographic errors: Error information is provided for each redhsift and k bin.

• Flexible and user friendly: FARO has a simple use mode in which numerical and

graphical results can be generated in a simple way. In addition, the code structure

is built to be flexible and easy to modify.

The main assumptions of the code are:

• Flat FRW background: This approximation simplifies the code and makes the

calculations faster.
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• Scale-independent growth factor: In order to factorize the redshift and scale de-

pendencies of the observables and keep the analysis as model independent as possible,

the growth function is assumed to be scale independent.

Once we have described the main characteristics, we summarize here the model-independent

parameters that FARO considers. Unlike other codes which focus on particular sets of cos-

mological parameters for specific cosmological models such as ΛCDM, wCDM, modified

gravity models described by a generic growth index γ, etc, FARO uses a set of model-

independent parameters more closely related to the observables [225, 236]. Thus, first of

all, we introduce the redshift-dependent functions, given by

Ai(z) = σ8(z) bi(z), (7.1.1)

R(z) = σ8(z) f(z), (7.1.2)

L(z) = Ωm σ8(z) Σ(z), (7.1.3)

E(z) =
H(z)

H0

, (7.1.4)

where bi(z) is the bias for tracer i, H(z) is the Hubble parameter, σ8(z) = σ8D(z) being

D(z) = δm(z)/δm(0) and σ8 the normalization of the matter power spectrum on scales of

8 h−1Mpc today; and f(z) is the growth function defined as,

D(z) = exp

[
−
∫ z

0

f(z′)

1 + z′
dz′
]
. (7.1.5)

Finally, Σ(z) is a general function of redshift which takes into account possible modifications

of the lensing potential [65, 237] and that in ΛCDM model is Σ(z) = 1.

Notice that we will not consider an arbitrary non-Gaussian shot noise term Ps(z) as

additional parameters in each redshift bin, the reasons are, on one hand, that we are not

interested in constraining them, and on the other, that it can be proved that they are

poorly correlated with other parameters.

In addition to the redshift-dependent functions, we have the parameters associated to

the shape of the matter power spectrum. Thus we define,

P̂ (k) =
P (k)

σ2
8

, (7.1.6)
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P (k) being the matter power spectrum today. Notice that we have to consider P̂ (k)

as independent function instead of P (k) because σ8 is already taken into account in the

redshift dependent functions (7.1.1-7.1.4).

Thus FARO considers the following set of independent parameters:

• Redshift-dependent parameters: [Ai(za), R(za), L(za), E(za)], where the a index de-

notes the different redshift bins and the i index the different tracers.

• Power-spectrum parameters: an corresponding to the amplitude of P̂ (k) in the n-th

log-spaced k bin.

Notice that this set of parameters exhausts the information that can be extracted from a

galaxy and lensing survey at the linear level within the mentioned assumptions2. There

are two main aspects that differentiate FARO from other Fisher codes: on one hand the

possibility of performing multitracer analysis, not only at the clustering level, but also with

lensing cross-correlations, and on the other, the fact that the parametrization of the matter

power-spectrum is fully model-independent. This allows FARO to perform forecast analysis

of features and other scale-dependent deviations in the standard power-law primordial

curvature spectrum or transfer function.

7.1.1 Galaxy surveys observables

Now we summarize the main observables of the galaxy maps that FARO computes to obtain

the Fisher matrices. These observables are the 3D galaxy power spectrum, the convergence

power spectra for weak lensing measurements and the cross-correlation power spectrum

for distribution and convergence. So we will rewrite these power spectra, that have been

explained in detail before, as a function of the model independent parametrization (7.1.1)-

(7.1.4). One of the main observables that the code considers is the multitracer galaxy

power spectra. We take into account three effects, the linear Kaiser term for redshift space

distortion [105], the convolution redshift error term [7] and the Alcock-Paczynski effect [85].

2In principle it would be possible to consider the angular diameter distances DA(za) as independent set
of parameters from E(za), however in our case, since the background metric is assumed to be flat FRW,
this is no longer the case.
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Considering these terms the power spectrum for tracers i and j reads reads [125,238],

P δδ
ij (z, µ̂r, kr) =

D2
Ar E

D2
AEr

(Ai +R µ̂2) (Aj +R µ̂2) P̂ (k) e
−k2
r µ̂

2
r σ

2
i

2 e
−k2
r µ̂

2
r σ

2
j

2 , (7.1.7)

where we have rewritten the power spectrum (2.2.41) as a function of Ai, E and R. Notice

that due to the Alcock-Paczynski effect k = k(kr) and µ̂ = µ̂(µ̂r) which follow equations

(2.2.33) and (2.2.34). For the weak lensing effect, the convergence power spectra reads [116],

P κκ
ab (`) =

9H3
0

4

∫ ∞
0

(1 + z)2

E(z)
ga(z)gb(z)L(z)2P̂

(
`

χ(z)

)
dz, (7.1.8)

where the window functions ga(z) are defined in (2.4.60). The code assumes the standard

galaxy distribution used for weak lensing (2.4.61), however it is easy to modify it if nec-

essary. If we have distribution and convergence informations, it is possible to relate the

distribution of galaxies in the 2D plane with the convergence of the weak lensing galaxy

sample. The 2D galaxy distribution and the cross-correlation power spectra can be written

as,

P δ2δ2
ab ij(`) = δabH0

E(za)

χ2(za)
Ai(za)Aj(zb) P̂

(
`

χ(za)

)
, (7.1.9)

P κδ2
ab i(`) =

3H2
0

2

(1 + zb)

χ(zb)
ga(zb)Ai(zb)L(zb) P̂

(
`

χ(zb)

)
, (7.1.10)

where we have assumed for the 2D galaxy distribution that galaxies in two redshift bins

are not correlated with each other. Here a, b denote redshift bins and i, æ galaxy tracers.

These are the galaxy survey power spectra that FARO considers to obtain constraints on

the parameters (7.1.1)-(7.1.4) and (7.1.6).

7.1.2 Matter power spectrum parametrization

Here we explain how to parametrize the normalized matter power spectrum today P̂ (k)

defined in (7.1.6) in a model-independent way. We want the free parameters to be the values

of P̂ (k) in p logarithmically spaced k bins. However, because of the fixed normalization we

will have only p− 1 degrees of freedom to parametrize P̂ (k). Considering that the fiducial

model is ΛCDM, a general and model-independent parametrization of P̂ (k) with p degrees

of freedom can be written as,

P̂ (k) = g(k) P̂Λ(k) (7.1.11)
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where P̂Λ(k) is the normalized matter power spectrum for the fiducial ΛCDM model, and

g(k) is an arbitrary dimensionless function with the form,

g(k) = 1 +

p−1∑
n=0

an gn(k). (7.1.12)

Notice that, although gn(k) with n = 0, ..., p − 1 can be general base functions, we

will consider them as window functions for each logarithmic spaced k bins. Due to the σ8

constraint, these gn(k) functions cannot be independent so that the following condition is

satisfied ∫
k′2 dk′

2π2
P̂ (k′)|Ŵ (8, k′)|2 = 1, (7.1.13)

where

Ŵ (R, k) =
3

k3R3
[sin(kR)− kR cos(kR)] (7.1.14)

being R = 8 Mpc/h. Substituting (7.1.12) in (7.1.13) we obtain,

p−1∑
n=0

an αn = 0, (7.1.15)

where,

αn ≡
∫
k′2 dk′

2π2
gn(k′) P̂Λ(k′)|Ŵ (8, k′)|2. (7.1.16)

Using condition (7.1.15) we can reduce the independent parameters to p−1 and, without

loss of generality, we can rewrite (7.1.12) as,

g(k) = 1 +

p−1∑
n=1

an

[
gn(k)− αn

α0

g0(k)

]
. (7.1.17)

Once we obtain the Fisher matrix for an with n = 1, ..., p− 1 the corresponding errors

for P̂ (k) can be calculated by projecting the covariance matrix Cnm using the following

expression,
σP̂ (k)

P̂ (k)
=

√(
gn(k)− αn

α0

g0(k)

)
Cnm

(
gm(k)− αm

α0

g0(k)

)
. (7.1.18)

In particular we will consider gn(k) as a logarithmically-spaced step function of the form,

gn(k) = θ̃

(
log(k)−

[
log kn −

∆ log kn
2

])
θ̃

([
log kn +

∆ log kn
2

]
− log(k)

)
, (7.1.19)
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where log kn are the centers of the log(k) bins with size ∆ log kn, and θ̃(x) the Heaviside

function with θ̃(0) = 1/2. Using these functions, parameters αn are,

αn =

∫ log kn+ ∆ log kn
2

log kn−∆ log kn
2

k′3 d log k′

2π2
P̂Λ(k′)|Ŵ (8, k′)|2. (7.1.20)

7.1.3 Fisher matrices

Once we have defined the observables, we show the Fisher matrices for each power spec-

trum. For the clustering multitracer power spectrum the parameters that are considered

are: [an, A
i
a, Ra, Ea], for the convergence power spectra: [an, Ea, La]; where i denotes dif-

ferent galaxy tracers, a different redshift bins and n the different p− 1 scale bins. Finally,

when we combine clustering and lensing information with the cross-correlation, the pa-

rameters are: [an, A
i
a, Ra, La, Ea]. The Fisher matrix for the multitracer power spectrum

reads [130,131],

F δδ
αβ =

∑
a,d,c

Va ∆µ̂d ∆ log kc k
3
c

8π2

∂P δδ
ij (za, µ̂d, kc)

∂θα

∣∣∣∣∣
r

C−1
jl

∂P δδ
lm(za, µ̂d, kc)

∂θβ

∣∣∣∣
r

C−1
mi e−k

2
c Σ2
⊥−k

2
c µ̂

2
d (Σ2

‖−Σ2
⊥), (7.1.21)

where we have discretized the integrals in µ̂ and k of equation (3.2.18), and also we sum

over the redshift bins. The code fixes the value kmin = 0.007 h/Mpc [225]. Now we show

the derivatives with respect to the parameters [an, A
i
a, Ra, Ea],

∂P δδ
ij (za, µ̂d, kc)

∂an

∣∣∣∣∣
r

=

[
gn(kc)−

αn
α0

g0(kc)

]
P δδ
ij (za, µ̂d, kc), (7.1.22)

∂P δδ
ij (za, µ̂d, kc)

∂Alb

∣∣∣∣∣
r

=

[
δliδba

Aia +Ra µ̂2
d

+
δljδba

Aja +Ra µ̂2
d

]
P δδ
ij (za, µ̂d, kc), (7.1.23)

∂P δδ
ij (za, µ̂d, kc)

∂Rb

∣∣∣∣∣
r

=

[
δba µ̂

2
d

Aia +Ra µ̂2
d

+
δba µ̂

2
d

Aja +Ra µ̂2
d

]
P δδ
ij (za, µ̂d, kc), (7.1.24)
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∂P δδ
ij (za, µ̂d, kc)

∂Eb

∣∣∣∣∣
r

=

[
δba
Eb
− 2

χ(za)

∂χ(za)

∂Eb
+
d logP

d log k
(kc)

(
µ̂2
dδba
Eb
− (1− µ̂2

d)

χ(za)

∂χ(za)

∂Eb

)

+

(
2Raµ̂

2
d(1− µ̂2

d)

Aia +Ra µ̂2
d

+
2Raµ̂

2
d(1− µ̂2

d)

Aja +Ra µ̂2
d

)
×
(
δba
Eb

+
1

χ(za)

∂χ(za)

∂Eb

)]
P δδ
ij (za, µ̂d, kc),

(7.1.25)

evaluated on the fiducial model, with,

∂χ(za)

∂Eb
= −θ(za − zb)

∆zb
H0E2

b

, (7.1.26)

being θ(x) the Heaviside function with θ(0) = 1. The resulting Fisher matrix has the

following form for parameters [an, A
i
a, Ra, Ea],

a1a1 a1a2 ... a1A
1
1 a1A

2
1 ... a1R1 a1E1 ...

a2a1 a2a2 ... a2A
1
1 a2A

2
1 ... a2R1 a2E1 ...

... ... ... ... ... ... ... ... ...
A1

1a1 A1
1a2 ... A1

1A
1
1 A1

1A
2
1 ... A1

1R1 A1
1E1 ...

A2
1a1 A2

1a2 ... A2
1A

1
1 A2

1A
2
1 ... A2

1R1 A2
1E1 ...

... ... ... ... ... ... ... ... ...
R1a1 R1a2 ... R1A

1
1 R1A

2
1 ... R1R1 R1E1 ...

E1a1 E1a2 ... E1A
1
1 E1A

2
1 ... E1R1 E1E1 ...

... ... ... ... ... ... ... ... ...


.

The Fisher matrix for the convergence power spectrum follows (3.4.11) where we sum

in ` with ∆ ln ` = 0.1 from `min = 5 [225] to `max with `max(zα′) = χ(zα′) kmax(zα′) where

α′ = min(α, β) and kmax(za) is defined so that σ(za, π/2kmax(za)) = 0.35. Now we show

the derivatives respect to the parameters [an, Ea, La],

∂P κκ
ab (`)

∂an
=
∑
b′

[
gn

(
`

χ(zb′)

)
− αn
α0

g0

(
`

χ(zb′)

)]
P κκ
ab (zb′ , `), (7.1.27)

∂P κκ
ab (`)

∂Ea′
= − 1

Ea′
P κκ
ab (za′ , `) (7.1.28)

+
∑
b′

1

ga(zb′)

∂ga(zb′)

∂Ea′
P κκ
ab (zb′ , `)

+
∑
b′

1

gb(zb′)

∂gb(zb′)

∂Ea′
P κκ
ab (zb′ , `)

−
∑
b′

1

χ(zb′)

∂χ(zb′)

∂Ea′

d logP

d log k

(
`

χ(zb′)

)
P κκ
ab (zb′ , `),
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∂P κκ
ab (`)

∂La′
=

2

La′
P κκ
ab (za′ , `), (7.1.29)

where,

P κκ
ab (za′ , `) =

9H3
0

4

(1 + za′)
2∆za′

Ea′
ga(za′)gb(za′)L

2
a′ P̂

(
`

χ(za′)

)
, (7.1.30)

∂ga(zb)

∂Ea′
=

∆za′

H0E2
a′

[
−θ̂(za′ − zb)χ(zb)

∫ ∞
za′

na(z
′)

χ(z′)2
dz′ + θ(zb − za′)

∫ ∞
zb

(
1− χ(zb)

χ(z′)

)
na(z

′)

χ(z′)
dz′

]
,

(7.1.31)

with θ̂(0) = 0 and θ(0) = 1 and ∆za is the size of the redshift bin za. The resulting

Fisher matrix has the following form for parameters [an, Ea, La],

a1a1 a1a2 ... a1E1 a1L1 a1E2 a1L2 ...
a2a1 a2a2 ... a2E1 a2L1 a2E2 a2L2 ...
... ... ... ... ... ... ... ...
E1a1 E1a2 ... E1E1 E1L1 E1E2 E1L2 ...
L1a1 L1a2 ... L1E1 L1L1 L1E2 L1L2 ...
E2a1 E2a2 ... E2E1 E2L1 E2E2 E2L2 ...
L2a1 L2a2 ... L2E1 L2L1 L2E2 L2L2 ...
... ... ... ... ... ... ... ...


.

The Fisher matrix for cross-correlation power spectrum follows (3.4.21). As we can

see in (7.1.10), the cross-correlation power spectrum depends on the product Qi(z) ≡
Ai(z)L(z). It can be proved that the Fisher matrix has only two independent param-

eters in each redshift bin: [Qi(za), E(za)]. The degeneracy of Ai(z) and L(z) can be

broken when we combine the Fisher matrices for clustering and the convergence power

spectrum. Because we are not interested in the information of the cross-correlation power

spectrum alone, we project the initial Fisher matrix of [Qi(za), E(za)] into a Fisher matrix

of [Ai(za), L(za), E(za)] and then we combine it with the Fisher matrices for clustering

[Ai(za), R(za), E(za)], and the convergence power spectrum [E(za), L(za)].

In addition to the redshift-dependent parameters, we also have the scale dependence

of P̂ (k). Thus, the derivatives of the cross-correlation power spectrum with respect to the

parameters [an, A
i
a, La, Ea] are,

∂P κδ2
ab i (`)

∂an
=

[
gn

(
`

χ(zb)

)
− αn
α0

g0

(
`

χ(zb)

)]
P κδ2
ab i (`), (7.1.32)
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∂P κδ2
ab i (`)

∂Ala′
=
δa′b δil
Ala′

P κδ2
ab i (`), (7.1.33)

∂P κδ2
ab i (`)

∂La′
=
δa′b
La′

P κδ2
ab i (`), (7.1.34)

∂P κδ2
ab i (`)

∂Ea′
=

[
1

ga(zb)

∂ga(zb)

∂Ea′
− 1

χ(zb)

∂χ(zb)

∂Ea′
(7.1.35)

− 1

χ(zb)

∂χ(zb)

∂Ea′

d logP

d log k

(
`

χ(zb)

)]
P κδ2
ab i (`).

The total Fisher matrix for clustering and weak lensing considering the cross-correlation

power spectrum has the following form for parameters [an, A
i
a, Ra, La, Ea],

a1a1 a1a2 ... a1A
1
1 a1A

2
1 ... a1R1 a1L1 a1E1 ...

a2a1 a2a2 ... a2A
1
1 a2A

2
1 ... a2R1 a2L1 a2E1 ...

... ... ... ... ... ... ... ... ... ...
A1

1a1 A1
1a2 ... A1

1A
1
1 A1

1A
2
1 ... A1

1R1 A1
1L1 A1

1E1 ...
A2

1a1 A2
1a2 ... A2

1A
1
1 A2

1A
2
1 ... A2

1R1 A2
1L1 A2

1E1 ...
... ... ... ... ... ... ... ... ... ...
R1a1 R1a2 ... R1A

1
1 R1A

2
1 ... R1R1 0 R1E1 ...

L1a1 L1a2 ... L1A
1
1 L1A

2
1 ... 0 L1L1 L1E1 ...

E1a1 E1a2 ... E1A
1
1 E1A

2
1 ... E1R1 E1L1 E1E1 ...

... ... ... ... ... ... ... ... ... ...


.

7.1.4 Change of variable module

Once we have analyzed how to extract all the tomographic information using clustering

and weak lensing observables, we want to obtain constraints on other parameters in each

redshift bin. For that purpose, a change of variable module is created. The change of

variable module can be used to project from the initial set of parameters to the desired

ones. Given an initial Fisher matrix for parameters {θα}, we can obtain the Fisher matrix

for a new set of parameters {qα} as,

Fq = PtFpP, (7.1.36)

where Pαβ = ∂θα/∂qβ is evaluated on the fiducial model. The module is built as general

as possible to make an arbitrary change of variables. To illustrate how to use it, the code

contains an explicit example of a change of variable that we explain below.
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Example: breaking degeneracies with σ8 priors

The redshift-dependent parameters that we are considering [Ai(z), R(z), L(z), E(z)], ex-

hibit degeneracies among different pairs of parameters. In particular, σ8(z) and bi(z),

σ8(z) and f(z) or σ8(z) and Σ(z). In flat ΛCDM since the E(z) measurement fixes ΩM

and Σ(z) = 1, L(z) allows to determine σ8(z). In such a case, it is possible to break the

above mentioned degeneracies and determine observationally [ bi(z), f(z), σ8(z), E(z) ]. In

more general cosmologies with Σ(z) 6= 1, as is the case of modified gravity models, this is

no longer possible and we need additional information to break the mentioned degenera-

cies. We can consider, for example, the Planck measurement of the matter power spectrum

amplitude, σ8, as a prior [13]. Introducing this prior in the Fisher matrix and using the

relation (7.1.5), we can obtain the Fisher matrix for [ bi(z), f(z),Σ(z), E(z) ]. For that

purpose, we need the following non-zero derivatives to perform the change of variable from

the initial variables (7.1.1-7.1.4) to the new ones,

∂Aia
∂σ8

=
1

σ8

Aia, (7.1.37)

∂Ra

∂σ8

=
1

σ8

Ra, (7.1.38)

∂La
∂σ8

=
1

σ8

La, (7.1.39)

∂Aia
∂bja′

=
δaa′ δij

bja′
Aia, (7.1.40)

∂Aia
∂fa′

=
Aia
Da

∂Da

∂fa′
, (7.1.41)

∂Ra

∂fa′
= σ8Da δaa′ + σ8 fa

∂Da

∂fa′
, (7.1.42)

∂La
∂fa′

=
La
Da

∂Da

∂fa′
, (7.1.43)

∂La
∂Σa′

= La δaa′ , (7.1.44)

being,
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∂Da

∂fa′
=

{
−Da ∆za′

1+za′
, if a ≥ a′

0, if a′ > a
(7.1.45)

This explicit change of variable has been implemented explicitly in the code as an

example.

7.1.5 Code structure

Here we explain how FARO is structured and the content of each folder. The code is designed

in such a way that all the basic functions are included in an independent module. We also

describe the modules included in each of the four folders that constitute the code. The

structure and the relation between different modules are represented in the flux chart in

Fig. 7.1.

• ./FARO/: in this folder we have the modules Input_file.py and FARO.py. These

modules are used to enter the inputs and run the code in a simple way.

• ./FARO/Modules/: in this folder we have the modules Plot_table_gen.py and

Data_Import.py. The purpose of these modules is to manipulate the results of

the Fisher matrices and generate the tables and plots of the outputs.

• ./FARO/Modules/Change_control/: in this folder we have the modules Control.py,

Change.py and Change_b_f_Sigma.py. These modules have two roles, on one hand

to run the basic functions to compute the initial Fisher matrices in each case; and on

the other, to compute the change of variable from the initial Fisher matrices to the

desired ones. An example of change of variable is explained in 7.1.4, but this case

could be modified to take into account any other set of variables.

• ./FARO/Modules/Change_control/Basic_prog/: in this folder we have the modules

Fisher_matrices.py, Spec_cov.py, DP_param.py, Aux_fun.py, Win_dens.py and

Functions.py. Finally, this folder contains the basic FARO functions. The main

output of these modules are the initial Fisher matrices for the Ai(z), R(z), L(z) and

E(z) parameters in each redshift bin and an parameters for the discretization of P̂ (k)

in each k-bin.
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Figure 7.1: Flowchart of the structure of FARO. The module color refer the folder in
which module is located. In green the modules that are contained in ./FARO/. In yellow
the modules that are contained in ./FARO/Modules/. In orange the modules that are con-
tained in ./FARO/Modules/Change_control/. Finally, in red the modules that are contained in
./FARO/Modules/Change_control/Basic_prog/. Arrows from a module indicate which modules
are used in each one. As can be seen, when FARO.py is runned all modules are called.
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The code is built to define each quantity in the most general way. To do that, each

element is defined as a multidimensional matrix and the operations are made with the

numpy function np.einsum which is very useful to calculate products and sums over indices

of multidimensional tensors. This is the reason why Fisher matrices are defined with finite

sums in (7.1.21), (3.4.11) and (3.4.21), then the observable power spectra are evaluated

and summed over discrete bins for k, µ̂, ` or z. For example, the derivative ∂P δδij (za,µ̂d,kc)

∂θα

∣∣∣
r

from the Fisher matrix (7.1.21) is defined in the code as a multidimensional matrix with

the structure:
∂P δδ

ij (za, µ̂d, kc)

∂θp

∣∣∣∣∣
r

≡ DPT[p][a][d][c][i][j]. (7.1.46)

This is very useful because if we want to modify the code in a particular point, we just

have to calculate numerically or analytically the concrete multidimensional matrix and

substitute it in the code. The structure of each matrix is specified in the code. In addition,

this approach is useful to compute the inverse covariance matrices of the power spectra, in

particular the covariance matrix for the cross correlation power spectrum (3.4.21).

7.2 Forecasts for future surveys

Finally, we will use FARO with the current specifications of several future galaxy and lensing

surveys and compare their sensitivity in different redshift and scale ranges. Thus, in

particular, we will focus on Euclid [68], DESI [67], J-PAS [66] and LSST [70]. For Euclid

we will use the latest specifications from [234] and analyze separately the photometric

and spectroscopic surveys. All the surveys specifications can be found in subsection 7.A.

Note that in some cases there are redshift bins in which we only have one or two galaxy

tracers. In this situation one should make the multitracer galaxy analysis separately. For

example, in DESI we have some redshift bins with only BGS, so we should do, on one

hand, the BGS forecast and, on the other hand, the LRG+ELG+QSO forecast. Zero

values for galaxy densities should never be considered, unless they are in the last redshift

bins. For the sake of performing a correct comparison of different galaxy surveys, we have

to use redshift bins of the same size. If we used different sizes we would not be comparing

the same parameters. In most cases, a larger redshift-bin size implies more information

for the parameters in each redshift bin, and smaller errors. However, for the multitracer
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Figure 7.2: Galaxy densities for each galaxy survey and each tracer in units of (h/Mpc)3 [67,
70,234,239].

power spectra, there are correlations between different redshift bins due to (7.1.26) that

can increase errors if they are important. In order to avoid this effect, 1/χ(za) ∂χ(za)/∂Eb

should be negligible in (7.1.25) when using (7.1.26). This implies that the redshift bin size

should satisfy ∆za < H0 χ(za)E
2(za).

Regarding the k bining, the error in P̂ (k) increases with the number of k bins as

expected. Correlations between redshift and scale-dependent parameters are negligible

for a reasonable number of k bins. However, if we increase the number of k bins, these

correlations can be relevant and errors for redshift-dependent parameters would increase.

As we have checked for the k range of the example, the number of k-bins should be between

4 and 20 depending on the volume of the survey to have reasonable relative errors below

10% for P̂ (k). In the examples of this paper, a number of 10 bins in k is appropriate for

all the surveys except for DESI BGS that requires only 5 bins in k due to the reduced z

range.
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Figure 7.3: Upper left panel: percentage relative errors for E(z) in each redshift bin for different
galaxy surveys using clustering information. Upper right panel: percentage relative errors for P̂ (k)

in each k bin for different galaxy surveys using clustering information. Lower panel: Percentage
relative errors forR(z) in each redshift bin for different galaxy surveys using clustering information.
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7.2.1 Multitracer 3D galaxy power spectrum information

Here we analyze the results for the multitracer 3D galaxy power spectrum. In Fig. 7.2 we

plot the galaxy densities for each survey and each tracer.

First we focus on the initial model-independent parameters. In Fig. 7.3 we plot errors

for E(z), P̂ (k) and for R(z). As we can see, in order to have good accuracy for E(z)

and R(z), it is necessary to have large number densities of galaxies with precise redshifts,

δzC <∼ 0.01. So the most appropriate surveys to measure these parameters are spectroscopic

and spectro-photometric surveys. On the other hand, for P̂ (k), it can be seen that the

main characteristic that determines the sensitivity of the survey is the effective volume. In

this case, all the surveys analyzed have comparable precision in most of the k range, with

more remarkable differences around k = 2× 10−1 h/Mpc. On the other hand, considering

the change of variable with the Planck prior for σ8 mentioned before, we plot errors for the

growth function f(z) using clustering information in Fig. 7.4 left panel.

Finally, in order to assess the impact of multitracer measurements, in Fig. 7.5 we

compare the precision in R(z) for the J-PAS survey using their different galaxy tracers

alone and the total combination. As it can be seen, the total combination improves the

sensitivity obtained with the best galaxy tracer only that, in this case, are the ELGs. A

recent analysis of the improvement from multiple tracer using Fisher formalism can be

found in [240].

7.2.2 Lensing convergence power spectrum information

Now we show the results for the lensing convergence power spectrum, focusing on the

model-independent parameters. In Fig. 7.6 we plot errors for E(z), P̂ (k) and for L(z). As

we can see in the survey specifications, DESI and the spectroscopic Euclid do not collect

weak lensing data. In this situation the constraints are essentially dominated by the angular

density of galaxies nθ. Notice that despite the low redshift precision of the pure photometric

surveys, still good measurements of E(z) are possible using lensing information alone.



144 7.2. FORECASTS FOR FUTURE SURVEYS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z

101

f/
f (

%
)

Euclidsp

Euclidph

DESI
JPAS
LSST

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z

101

f/
f (

%
)

Euclidsp

Euclidph

DESI
JPAS
LSST

Figure 7.4: Left: percentage relative errors for f(z) in each redshift bin for different galaxy
surveys using clustering information. Right: percentage relative errors for f(z) in each redshift
bin for different galaxy surveys using clustering, lensing and the cross correlation information. In
both plots, the Planck prior on σ8 has been imposed as shown in Section 7.1.4.

7.2.3 Multitracer, convergence and cross-correlation power spec-
tra information

Finally, we combine information from clustering and lensing. First we will focus on the

initial model-independent parameters. In Fig. 7.7 we plot errors for E(z), P̂ (k), R(z)

and for L(z). The combination of clustering and lensing improves the constraints of both

clustering and lensing parameters thanks to the improved constraints on the dimensionless

Hubble parameter E(z). The improvement on the Hubble parameter constraints depends

on the relative differences of the clustering and lensing sensitivities. In general, if those

sensitivities alone are comparable, the combined one improves significantly as is the case

of LSST and Euclidph.

Also, as expected, if one of the sensitivities is much larger than the other, such sensitiv-

ity dominates the combined one. For P̂ (k), it can be seen that the combination of clustering

and lensing improves the clustering constraints specially at small scales k >∼ 10−1 h/Mpc.

Finally, considering the change of variable with the Planck prior for σ8 mentioned before,

we plot in Fig. 7.4 right panel the errors for f(z) and in Fig. 7.8 the errors for Σ(z).

Notice that one of the main advantages of combining clustering and lensing, and using a

prior on σ8, is that it is possible to measure Σ(z) in each redshift bin.
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Figure 7.5: Percentage relative errors for R(z) considering different galaxy tracers of J-PAS
survey and the combination of all these tracers.

The impact of cross-correlation

In order to estimate the impact of the cross-correlation between clustering and lensing, in

Fig. 7.9 we plot the ratio between the precision of the lensing parameter L(z) obtained

with and without cross-correlation. As it can be seen the cross-correlation can improve

the precision, up to three orders of magnitude depending on redshift. Similarly, the con-

straints on Σ(z) obtained with the σ8 prior depends strongly on both clustering and lensing

information. In particular, as it can be seen in Fig. 7.10, the cross-correlation information

between clustering and lensing improves significantly the precision. The relevant role of

cross-correlation in the determination of certain parameters has been recently discussed

for Euclidph in [241].

This analysis has been done considering the different data of all future surveys sep-

arately. Thus, each galaxy survey has its best targets and redshift ranges. A combined

analysis of the data collected by different surveys would give more precise cosmological

measurements. In particular, the combination of spectroscopic and photometric surveys

improves significantly the constraints, as can be seen with a spectro-photometric survey

like J-PAS.
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Figure 7.6: Upper left panel: percentage relative errors for E(z) in each redshift bin for different
galaxy surveys using lensing information. Upper right panel: percentage relative errors for P̂ (k)

in each k bin for different galaxy surveys using lensing information. Lower panel: Percentage
relative errors for L(z) in each redshift bin for different galaxy surveys using lensing information.
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Figure 7.7: Upper left panel: percentage relative errors for E(z) in each redshift bin for different
galaxy surveys using clustering, lensing and the cross correlation information. Upper right panel:
percentage relative errors for P̂ (k) in each k bin for different galaxy surveys using clustering,
lensing and the cross correlation information. Lower left panel: percentage relative errors for R(z)

in each redshift bin for different galaxy surveys using clustering, lensing and the cross correlation
information. Lower right panel: percentage relative errors for L(z) in each redshift bin for different
galaxy surveys using clustering, lensing and the cross correlation information.
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Figure 7.8: Percentage relative errors for Σ(z) in each redshift bin for different galaxy surveys
using clustering, lensing and the cross correlation information. The Planck prior on σ8 has been
imposed as shown in Section 7.1.4.
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Figure 7.9: Ratio between errors of L(z) considering clustering, lensing and the cross correlation
information, and the errors of L(z) considering clustering and lensing informations without cross
correlation. The cross correlation information improves L(z) constraints from one to three orders
of magnitude depending on redshift.
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Figure 7.10: Relative errors for Σ(z) using J-PAS survey with clustering and lensing information;
and with clustering, lensing and the cross correlation information.

7.A Fiducial cosmology and survey specifications

Now we summarize all the specifications of each galaxy survey to compute the Fisher

matrices. The fiducial cosmology we use for all the forecast have the following values:

Ωm = 0.31, ωb = 0.0226, ns = 0.96, h = 0.68, H−1
0 = 2997.9Mpc/h, γ = 0.545 [202] and

σ8 = 0.82. In addition, we use the same values for the non linear cut off Σ0 = 11 Mpc/h

and the intrinsic ellipticity γint = 0.22. Redshift bin centers of each survey are shown in

Table 7.1. Scale bins are logspaced in 10 bins from k = 0.007 h/Mpc to k = 1 h/Mpc. The

sky area of each survey is the following: 8500 deg2 for J-PAS, 14000 deg2 for DESI, 14300

deg2 for LSST and 15000 deg2 for both Euclid surveys. The redshift error for clustering

information is: δzC = 0.003 for J-PAS, δzC = 0.0005 for DESI, δzC = 0.03 for LSST,

δzC = 0.001 for spectroscopic Euclid and δzC = 0.05 for photometric Euclid. For the bias,

we consider four different types of galaxies: Luminous Red Galaxies (LRGs), Emission

Line Galaxies (ELGs), Bright Galaxies (BGS) and quasars (QSO) [242, 243]. Each type

has different fiducial bias given by

b(z) =
b(0)

D(z)
, (7.A.1)
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being b0 = 0.84 for ELGs, b0 = 1.7 for LRGs and b0 = 1.34 for BGS. For photometric Euclid

survey we use a fiducial bias for ELGs of the form b(z) =
√

1 + z [68], for spectroscopic

Euclid the fiducial bias are shown in Table 7.1, while the bias for quasars is b(z) = 0.53 +

0.289 (1+z)2. Finally the bias of LSST galaxies follows equation (7.A.1) with b0 = 0.95 [70].

Finally, for lensing features we have that the redshift errors are: δzL = 0.03 for J-PAS and

δzL = 0.05 for LSST and photometric Euclid. The areal galaxy densities are: nθ = 12.32

for J-PAS, nθ = 27 for LSST and nθ = 30 for Euclid. Values of the mean redshift are

zmean = 0.5 for J-PAS and zmean = 0.9 for Euclid, for LSST the galaxy density distribution

is, following [70],

n(z) ∝ z2 e−(z/0.11)0.68

, (7.A.2)

this galaxy distribution is used instead of (2.4.61) for LSST.
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J-PAS

z LRG ELG QSO

0.3 226.6 2958.6 0.45
0.5 156.3 1181.1 1.14
0.7 68.8 502.1 1.61
0.9 12.0 138.0 2.27
1.1 0.9 41.2 2.86
1.3 0 6.7 3.60
1.5 0 0 3.60
1.7 0 0 3.21
1.9 0 0 2.86
2.1 0 0 2.55
2.3 0 0 2.27
2.5 0 0 2.03
2.7 0 0 1.81
2.9 0 0 1.61
3.1 0 0 1.43
3.3 0 0 1.28
3.5 0 0 1.14
3.7 0 0 0.91
3.9 0 0 0.72

Euclidph

z ELG

0.3 7440
0.5 6440
0.7 5150
0.9 3830
1.1 2670
1.3 1740
1.5 1070
1.7 620
1.9 341
2.1 178
2.3 88.3
2.5 41.8

DESI

z BGS LRG ELG QSO

0.1 2240 0 0 0
0.3 240 0 0 0
0.5 6.3 0 0 0
0.7 0 48.7 69.1 2.75
0.9 0 19.1 81.9 2.60
1.1 0 1.18 47.7 2.55
1.3 0 0 28.2 2.50
1.5 0 0 11.2 2.40
1.7 0 0 1.68 2.30

LSST

z n

0.3 14170
0.5 9720
0.7 6790
0.9 4810
1.1 3420

Euclidsp

z ELG b(z)

1.0 68.6 1.46
1.2 55.8 1.61
1.4 42.1 1.75
1.6 26.1 1.90

Table 7.1: From left to right: redshift bins and densities of luminous red galaxies, emission
line galaxies and quasars for J-PAS. Redshift bins and densities of emission line galaxies for
photometric Euclid survey. Redshift bins and densities of bright galaxies, luminous red galaxies,
emission line galaxies and quasars for DESI. Redshift bins and galaxy densities for LSST. Finally,
redshift bins, emission line galaxy densities and bias for spectroscopic Euclid survey. Galaxy
densities in units of 10−5 h3 Mpc−3.
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Chapter 8

J-PAS: Javalambre Physics of the
Accelerating Universe Astrophysical
Survey

The Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) [66] is a

spectro-photometric survey to be conducted at the Observatorio Astrofísico de Javalambre

(OAJ) in the Javalambre Survey Telescope (JST/T250), a 2.5m diameter, altazimuthal

telescope that will be equipped with the Javalambre Panoramic Camera (JPCam), a 14-

CCD mosaic camera using a new large format e2v 9.2 k-by-9.2 k 10µm pixel detectors, and

will incorporate a 54 narrow- and 4 broad-band filter set covering the optical range [244].

Thanks to this large number of filters, J-PAS will be able to measure photo redshifts with

a high accuracy in addition to obtain galaxy shapes. In this chapter we will review the

characteristics of J-PAS survey in addition with the already finished mini-JPAS survey.

Then we will discuss the cosmology forecast of J-PAS survey applied to dark energy and

modified gravity theories. The results of this chapter correspond to [239].

8.1 The J-PAS survey

As we have explained before, a spectro-photometric survey is a photometric survey with

a high number of narrow band (NB) filters that is able to reach photo-z with an error

comparable to that of a spectroscopic measurement. J-PAS being a imaging survey will

153
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Figure 8.1: Left: JPCam, the 14-CCD mosaic camera, with the new e2v 9k-by-9k 10µm-pixel 16-channel
detectors that is already equipped at the OAJ. Right: The J-PAS filter system with a redshifted spectrum
of an early type galaxy at z = 1.0.

allow to measure galaxy shapes to compute weak lensing power spectra. The J-PAS survey

will be the reference spectro-photometric survey in the next decades. As it can be seen

in [245], a filter system with contiguous NB filters with order 100Å width is able to measure

photometric redshifts with a precision σz = 0.003(1 + z) for LRGs. This was the original

goal of the PAU survey [245,246] but J-PAS generalizes it to measure also ELGs and QSO

at high redshifts and also with a larger sky area. In addition to obtain valuable cosmological

information on dark energy and modified gravity, J-PAS will be able to explore galaxy and

star formation science. Now we will summarize the main J-PAS characteristics, the camera

with which JST will be equipped JPCam, the filter system that will be implemented in

the camera and finally the J-PAS sky footprint. The JPCam is a mosaic camera with 14

CCDs that is equipped with the NB filters. In each CCD, four filters can be incorporated.

The camera has also three main subsystems, the non-cryogenic subsystem or filter shutter

unit (FSU) which comprises the filter exchange mechanism and shutter working at ambient

temperature; a cryogenic camera subsystem (Cryo-Cam), and a hexapod actuator system

(HAS) which actuates the Cryo-Cam. The filter system of J-PAS is adapted to the JPCam,

so there are 56 main filters, 54 of them NB, 1 medium band (MB) and 1 broad band (BB).

The NB filters are spaced by 100Å but they have a width of 145Å, so the NB filters overlap.

In addition to these filters, three BB filters are added: the filters u, g and r. The r BB is
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Figure 8.2: Sky footprint of mini-JPAS, with tiles shown as red squares. The footprints of other projects
are also shown.

the main filter used for the detection of weak lensing effect. We show the filter system in

Fig. 8.1 right panel. The J-PAS survey is planned to measure 9 × 107 LRGs and ELGs

up to z = 1.3 plus several million QSOs up to z = 3.9 over 8500 sq. deg of the northern

hemisphere. Considering these specifications and the prior galaxy distribution from [247],

mocks are generated to obtain expected galaxy densities for LGRs, ELGs and QSO. The

galaxy densities are given in Table 7.1 of Section 7.A [66].

8.2 The mini-JPAS survey

The mini-JPAS survey [248, 249] was conducted before the JPCam was installed at the

OAJ. A pathfinder camera (PF) with one 9k × 9k CCD camera, 0.3 deg2 field-of-view and

0.225 arcsec pixel size, was used to obtain mini-JPAS data as a prove of the potential of the

upcoming JPAS survey. Between May and September 2018, a total of approximately one

square degree was observed with 60 filters. The 54 NB filters of J-PAS, two BB filters and

the u, g, r, i SDSS BB filters. With this measurement, a detailed analysis of the photo-z

and the galaxy densities has been done which allow to update the initial prediction in [66].
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The one square degree of mini-JPAS is on the famous Extended Gorth Stip (EGS) field,

overlaping with other surveys like AEGIS, ALHAMBRA or HSC.

8.3 J-PAS forecasts on modified gravity

In this section, we will obtain future constraints to modified gravity for the J-PAS sur-

vey and we will compare with other upcoming surveys like Euclid and DESI. We will

constraint µ and η parameters (1.4.18, 1.4.19) using clustering and weak lensing power

spectra, then we consider the combined information without the cross correlation power

spectrum. Fiducial cosmology and the survey specifications can be found in Section 8.A.

We have adopted a model-independent parametrization that considers all the free and in-

dependent parameters that are needed to describe such power spectra in the linear regime,

and then we project them to µ and η parameters. In this analysis, we have fixed the initial

matter power spectrum P̂ (k) defined in (7.1.6) to the fiducial model, corresponding to a

flat ΛCDM cosmology. As a main difference with respect to Chapter 7, we do not take into

account the cross-correlation power spectrum because these results were obtained before

the code was able to compute it.

We will consider two different cases for µ and η. First, considering the time-independent

case, we have performed both a tomographic redshift bin analysis and an analysis in k-

bins. By summing over all the redshift range we have obtained errors for the modified

gravity parameters. Second, for a time-dependent case, we have considered the particular

parametrization in terms of µ0 and η0 (6.2.6-6.2.7) usually employed in the literature.

For clustering power spectrum, we consider the redshift dependent parameters Ai, R

and E with i denoting the different tracers, defined in (7.1.1)-(7.1.4). Because we have

checked that marginalizing with respect to a non-Poissonian shot noise component has a

minimal effect, for simplicity, we do not consider it as a free parameter in this case. Once

we have obtained the Fisher matrix for [Ai, R, E ], we project first into [Ai, f, E ], and

then to [Ai, µ, E ] using the relation (4.5.11).

Forecasts for the relative errors in µ and f(z) in the different redshift bins can be seen

in Figure 8.3. As we can see, ELGs provide the tightest constraints for J-PAS. Compared

to Euclid or DESI, we find that J-PAS provides the best precision in the redshift range
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Figure 8.3: Left: tomographic relative errors of µ for J-PAS with ELGs, LRGs and
quasars. Right: tomographic relative errors of µ for J-PAS (ELGs+LRGs+QSOs), DESI
(BGS+ELGs+LRGs+QSOs) and Euclid (ELGs) using clustering information.

z = 0.3 − 0.6. Notice this is also the case in the 4000 sq. deg. configuration. This is

mainly thanks to the large number of expected ELG detection in that redshift range which

compensates the smaller fraction of sky of J-PAS as compared to other surveys.

In Figure 8.4 we show f(z) and fσ8(z) with the expected error bars. To obtain errors

for µ in different k-bins we just calculate the Fisher matrix (3.2.16) considering the kmin
and kmax values the edges of each different k-bin and summing all the information in z.

Results can be seen in Figure 8.5 left panel. We find that the best precision is obtained

for scales around k = 0.1 h/Mpc, which are slightly below Euclid and DESI best scales.

Finally, in Figure 8.6 left panel we show errors for the Hubble dimensionless parameter

E(z) in the different redshift bins. Once more, J-PAS provides better precision below

z = 0.6, but also thanks to QSOs observation at higher redshifts, J-PAS will be able to

measure the expansion rate in the practically unexplored region up to redshift z = 3.5 with

precision below 30%.

For weak lensing power spectrum, we will obtain the errors on the η parameter. First,

we compute the Fisher matrix for [E, L] in each bin. Now it is necessary to change the

initial parameters [E,L] to the new ones [E, η]. Using (7.1.1) we obtain ∂η
∂L

= 2
L

and
∂η
∂E

= 0. For time-independent parameters, we show in Figure 8.5 middle panel the relative

errors in η for the different redshift bins for J-PAS and Euclid. Again, J-PAS provides the
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Figure 8.4: Growth function and fσ8 function for the fiducial cosmology with error bars for
J-PAS 8500 and 4000 square degrees, using ELGs+LRGs+QSOs.

best errors in the range z = 0.3− 0.6. In order to obtain the errors of η in different `-bins

we introduce a window function in the Fisher matrix (3.4.11) in order to take into account

only the information of a bin `c of width ∆`c,

F κκ
αβ (`c) = fsky

∑
`

∆`
(2`+ 1)

2
Wc(`)Tr

[
∂P
∂θα

C−1 ∂P
∂θβ

C−1

]
, (8.3.1)

where Wc(`) is defined as

Wc(`) = θ

(
`−

[
`c −

∆`c
2

])
θ

([
`c +

∆`c
2

]
− `
)
, (8.3.2)

being θ(x) the Heaviside function. We first change from [E,L] to [E, η] in each redshift

bin and then sum the information of η for the different redshift bins. The corresponding

errors can be seen in Figure 8.5 right panel for Euclid and J-PAS.

Now, we analyze the case in which information from clustering and lensing are combined

without cross correlation. We take the Fisher matrix of parameters [Ai, µ, E] for clustering

and [E, η] for weak lensing and build the full matrix with parameters [Ai, µ, E, η]. By

inverting this Fisher matrix, we obtain the errors for µ and η. These results are shown in

Figure 8.7 where we compare the sensitivity of Euclid and J-PAS for time-independent µ

and η in the different redshift bins. For completeness, we also show the same comparison

for the function E(z) in Figure 8.6. As we can see, the combination of clustering and

lensing information improves the sensitivity in around a 10% for all the parameters. We
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Figure 8.5: Upper left panel: relative errors of µ(k) for J-PAS (ELGs+LRGs+QSOs), DESI
(BGS+ELGs+LRGs+QSOs) and Euclid (ELGs) using clustering information. Upper right panel:
tomographic relative errors of η for J-PAS (ELGs+LRGs) and Euclid (ELGs) using lensing infor-
mation. Lower panel: relative errors of η(`) for J-PAS (ELGs+LRGs) and Euclid (ELGs) using
lensing information.
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Figure 8.6: Relative errors for E(z) for J-PAS (ELGs+LRGs+QSOs), DESI
(BGS+ELGs+LRGs+QSOs) and Euclid (ELGs) using clustering information (left panel),
and using clustering and lensing information (right panel). In the case of DESI and J-PAS
quasars, only clustering information is taken into account. For lensing in J-PAS the redshift error
is δz = 3%.

sum all the information in the whole redshift range for µ and η and plot their error ellipses

in the right panel of Figure 8.8. These results are summarized in Table 8.1.

Finally, we consider the phenomenological time-dependent parametrization (6.2.6-6.2.7).

Using the analytical fitting function for this particular expressions obtained in 4.5.2, we

obtain errors for µ0 and η0 with fiducial values µ0 = η0 = 1. We plot on the left panel of

Figure 8.8 error ellipses for µ0 and η0.

From the tomographic analysis, we find that using the clustering information alone, J-

PAS will allow to measure the expansion rate H(z) with precision 3% in the best redshift

bin (z = 0.7) and the µ parameter with a precision around 5% in the best redshift bin.

From lensing alone, J-PAS will be able to measure η with a precision around 8% in the best

redshift bin. The combination of clustering and lensing will allow to improve the precision

in µ down to 4% in the best bin. Considering the information in the whole redshift range,

we have found that J-PAS will be able to measure time-independent µ and η with precision

better than 3% for both parameters. For µ0 and η0 we have obtained errors of 10% and

5%, respectively.

When compared to future spectroscopic surveys such as DESI or spectroscopic and

photometric ones such as Euclid, we have shown that from clustering and lensing infor-
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Figure 8.7: From left to right, tomographic relative errors for µ and η for J-PAS
(ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs) and Euclid (ELGs) using clustering
and lensing information. In the case of DESI and J-PAS quasars only clustering information is
taken into account. For lensing in J-PAS the redshift error is δz = 3%.

0.04 0.02 0.00 0.02 0.04

0 - 1

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0 -
 1

0.06 0.04 0.02 0.00 0.02 0.04 0.06
 - 1

0.04

0.02

0.00

0.02

0.04

 - 
1

EUCLID
JPAS 4000 deg2

JPAS 8500 deg2

Figure 8.8: 1σ contour error for µ0 and η0 (left panel) defined in (6.2.6) and (6.2.7), and (right
panel) for constant µ and η. All in J-PAS (ELGs+LRGs+QSOs) and Euclid (ELGs) surveys
combining clustering and lensing information, for 8500 deg2 and 4000 deg2.
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Survey ∆µ/µ(%) ∆η/η(%) ∆µ0/µ0(%) ∆η0/η0(%)

Euclid 0.98 1.37 7.13 3.38
J-PAS 8500 2.08 2.89 9.66 4.58
J-PAS 4000 3.03 4.21 14.1 6.68

Table 8.1: Relative errors for constant µ and η, and µ0 and η0 for Euclid and JPAS (with 8500
and 4000 square degrees), considering clustering and lensing information.

mation, J-PAS will have the best errors for redshifts between z = 0.3− 0.6, thanks to the

large number of ELGs detectable in that redshift range. Note also that thanks to QSOs

observation at higher redshifts, J-PAS will be able to measure the expansion rate and mod-

ified gravity parameters in the practically unexplored region up to redshift z = 3.5 with

precision below 30%.

In the whole redshift range, the J-PAS precision in both µ and η will be a factor 1.5-2

below Euclid in their respective best bins. For the time-dependent (µ0, η0) parametrization

(6.2.6-6.2.7), we have shown that J-PAS is closer to Euclid than in the constant case. This

is due to the fact that low-redshift measurements are more sensitive to µ0 and η0 than

high-redshift ones, and at low redshift J-PAS precision surpasses that of Euclid.

8.A Fiducial cosmology and survey specifications

The fiducial J-PAS cosmology [250] assumed in our analysis is the flat ΛCDM model with

the parameters Ωm = 0.31, Ωb = 0.049, ns = 0.96, h = 0.68, H−1
0 = 2997.9Mpc/h, and

σ8 = 0.82 which are compatible with Planck 2018 [10]. For this cosmology, the E(z)

function defined previously is given by

E(z) =
√

Ωm (1 + z)3 + (1− Ωm) , (8.A.1)

whereas the growth function can be written as

fΛ(z) =

(
Ωm (1 + z)3 1

E2(z)

)γ
, (8.A.2)

with the growth index γ = 0.545 [202]. For the bias, we consider four different types of

galaxies: Luminous Red Galaxies (LRGs), Emission Line Galaxies (ELGs), Bright Galaxies
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(BGS) ans quasars (QSO) [242,243]. Each type has different fiducial bias given by

b(z) =
b(0)

D(z)
, (8.A.3)

being b0 = 0.84 for ELGs, b0 = 1.7 for LRGs and b0 = 1.34 for BGS. For Euclid survey we

use a fiducial bias for ELGs of the form b(z) =
√

1 + z [68], while the bias for quasars is

b(z) = 0.53 + 0.289 (1 + z)2. Finally, we summarize the surveys specifications necessary to

compute the different Fisher matrices. For clustering we have considered: redshift bins and

galaxy densities for each bin which can be found in the left panel of Table 8.2 for J-PAS,

in the center panel of Table 8.2 for DESI and in the right panel of Table 8.2 for Euclid.

We consider two configurations of total area for J-PAS, namely 8500 deg2 and 4000 deg2

which correspond to fractions of the sky of fsky = 0.206 and fsky = 0.097 respectively.

fsky = 0.339 for DESI with 14000 deg2 and fsky = 0.364 for Euclid with 15000 deg2. The

redshift error is δz = 0.003 for galaxies and QSO in J-PAS, δz = 0.0005 for galaxies in

DESI and δz = 0.001 for QSO in DESI and galaxies in Euclid.

For the weak lensing analysis we have used: redshift bins and the fraction of the sky

fsky, which are the same as in the clustering analysis; mean redshifts for the galaxy density

which are zmean = 0.5 for J-PAS and zmean = 0.9 for Euclid; the angular number density nθ
for J-PAS considering ELGs and LRGs with δz = 0.03 is nθ = 12.32. For Euclid, nθ = 35

galaxies per square arc minute with δz = 0.05.

Notice that there are some differences with respect to Subsection 7.A, mainly in the Eu-

clid specifications. This is because, in Subsection 7.A, we considered updated specifications

for Euclid [234] that were not available when the J-PAS forecast was performed.
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J-PAS

z LRG ELG QSO

0.3 226.6 2958.6 0.45
0.5 156.3 1181.1 1.14
0.7 68.8 502.1 1.61
0.9 12.0 138.0 2.27
1.1 0.9 41.2 2.86
1.3 0 6.7 3.60
1.5 0 0 3.60
1.7 0 0 3.21
1.9 0 0 2.86
2.1 0 0 2.55
2.3 0 0 2.27
2.5 0 0 2.03
2.7 0 0 1.81
2.9 0 0 1.61
3.1 0 0 1.43
3.3 0 0 1.28
3.5 0 0 1.14
3.7 0 0 0.91
3.9 0 0 0.72

DESI

z BGS LRG ELG QSO

0.1 2240 0 0 0
0.3 240 0 0 0
0.5 6.3 0 0 0
0.7 0 48.7 69.1 2.75
0.9 0 19.1 81.9 2.60
1.1 0 1.18 47.7 2.55
1.3 0 0 28.2 2.50
1.5 0 0 11.2 2.40
1.7 0 0 1.68 2.30

Euclid

z ELG

0.6 356
0.8 242
1.0 181
1.2 144
1.4 99
1.6 66
1.8 33

Table 8.2: Left panel: redshift bins and densities of luminous red galaxies, emission line galaxies
and quasars for J-PAS. Center panel: redshift bins and densities of bright galaxies, luminous red
galaxies, emission line galaxies and quasars for DESI. Right panel: redshift bins and densities of
emission line galaxies for Euclid. Galaxy densities in units of 10−5 h3 Mpc−3.
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Conclusions

The goal of this thesis has been the model-independent parametrization of modified cos-

mologies and the forecast of the precision with which future galaxy surveys will be able to

detect such modifications. We have analyzed in detail non-standard cosmologies involving

vector degrees of freedom and non-standard dark matter behaviour. We have parametrized

them in a phenomenological way, considering the QSA approximation in the sub-Hubble

regime, by introducing extra effective parameters. Once we obtain these parametrizations,

we have performed a forecast analysis considering galaxy survey observables. With that

purpose, we have developed the publicly available FARO Fisher code and we have applied

this formalism to obtain modified gravity constraints for the J-PAS survey. The main

results of this thesis are summarized below:

• We have shown that general modified gravity models with a vector degree of freedom

can be described with eight effective parameters, in contrast with the two parame-

ters needed in the standard scalar case. In the case in which dark matter vorticity

is negligible, the number of independent parameters is reduced to four. Unlike pre-

vious works, we consider a spatial component in the background vector field that

introduces a preferred direction. For this reason, the effective parameters have an

extra dependence on the direction of the wavevector. We have analyzed the general

dependence of the parameters with x = k̂ · Â being Â the background vector field.

In the simplest case, we have shown that the effective parameters depend only on

even powers of x.
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• We have considered models with modified dark matter, either imperfect or non-

conserved. We have shown that five independent effective parameters (µ, γ, µm, µd, µθ)

are needed to describe this type of models. In addition and in order to make forecast

codes faster, we have analyzed how to analytically parametrize the growth function

in different cases.

• When we apply the vector phenomenological parametrization to galaxy survey ob-

servables, we have shown that the existence of a preferred direction modifies the

observable power spectra. For the galaxy distribution power spectrum, we find that

a new angular dependence on the line of sight appears which is different from the

usual effect induced by redshift space distortions. For the weak-lensing power spec-

trum, a dependence on the line of sight is introduced in the shear and convergence

power spectra which is absent in the isotropic case. In addition, images rotation is

induced in addition to the standard convergence and shear effects. Finally, we have

found a useful relation between the different power spectra, Pγ1 + Pγ2 = Pκ + Pω,

which shows that even though Pω cannot be measured directly using weak lensing

maps, it can be derived from Pγ1 , Pγ2 and Pκ.

• Considering the non-standard dark matter parametrization for galaxy survey observ-

ables, we have shown that, in the simplest case in which the effective parameters are

constant, the observables only depend on a reduced subset of parameters (Σ, ζ, µθ).

This is interesting because a measurement of these parameters can give us some clues

about the underlying theory. There are two cases in which we would extract a lot of

information. If ζ = µθ = 1 but Σ 6= 1 i.e. we measure standard galaxy and peculiar

velocity power spectra but a non-standard convergence power spectrum, this can only

be generated by a modified gravity with µ = 1 but γ 6= 1. If Σ = µθ = 1 but ζ 6= 1

i.e. we measure standard power spectra but with a non-standard growth function,

this can only be generated by a modified dark matter theory with bulk and shear

viscosity. More complicated situations produce a degeneration between underlying

theories as we can see in Table 5.1.

• In order to analyze the capability of future surveys to measure this type of models,

we have performed a Fisher forecast analysis. With that purpose, we have extended
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the standard Fisher matrix approach in order to include the presence of preferred

directions. We have considered two cases for the galaxy distribution power spectrum.

First, we have obtained the Fisher matrix for the multipole power spectrum, and

then we have obtained the Fisher matrix for the power spectrum in redshift space,

which allows us to include the Alcock-Paczynski effect. In both cases, we obtain that

the precision on measurements of the effective Newton constant µ = µ0 + µ2x
2 +

µ4x
4 for an Euclid-like survey will be around 1% for µ0 and a few percent for µ2

and µ4. On the other hand, the weak-lensing forecast analysis indicates that the

γ parameter could be measured with a few percent precision, wheras µQ and µh

parameters could be determined with precision around 1%. The forecast analysis for

the non-standard dark matter parametrization shows that an Euclid-like survey could

measure (Σ, ζ, µθ) with accuracy of order 1 %. However, peculiar velocity surveys will

not be competitive measuring these parameters.

• One important contribution of this thesis is the development of the new public Python

FARO code, which has been designed to perform model-independent Fisher forecast

analysis for multitracer galaxy and lensing surveys. The main observables used by

the code are the multitracer 3D power spectrum, the lensing convergence power

spectrum and the power spectrum for the multitracer cross correlation between galaxy

distribution and shapes. The code follows a model-independent approach in which

we consider as free parameters Aa(z), R(z), L(z) and E(z) in each redshift bin, in

addition to a model-independent parametrization of P̂ (k) in logarithmically spaced k

bins. Using the code, we have analyzed as an example the forecast of future surveys

like Euclid, DESI, JPAS or LSST. In particular, we have shown that the combination

of clustering, lensing and the cross-correlation information improves significantly the

constraints.

• Finally, in this thesis we have analyzed the ability of the J-PAS survey to constrain

modified gravity models. We have considered the µ and η phenomenological param-

eterization of modified gravity models. As can be seen in Section 8.3, comparing

J-PAS with other future surveys like DESI and Euclid, J-PAS will have the best

precision for redshifts between z = 0.3− 0.6.
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Forecasting the capability of future galaxy surveys to constrain alternative cosmologies

is an important topic in cosmology. The results of this thesis provide a model-independent

approach to test preferred directions and non-standard dark matter models. In addition,

the presented results show that future galaxy surveys like J-PAS, Euclid or DESI, will

be able to measure the parameters of these models at the one percent level. For future

analysis, the results of this thesis can contribute to improve forecast analysis of galaxy

surveys. In particular, it will be interesting to perform forecasts for combined galaxy

surveys, to explore survey configurations to maximize constraints or to combine large-scale

structure information with other observables like the CMB. Thanks to the upcoming galaxy

surveys, we will know more about the nature of dark matter and dark energy. In the most

optimistic scenario, we will be able to determine if standard GR needs to be modified on

cosmological scales.
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