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Summary

Introduction

Probably one of the most important results about vector bundles over a projective space is the
following:

Theorem 0.0.1. (G. Horrock, [23]) A vector bundle F over P
n splits as a direct sum of line bundles

if and only if it does not have intermediate cohomology (i.e. Hj
∗(F ) = 0 for j = 1, 2, . . . , n− 1).

This theorem has been proved later using many different techniques, like restriction to hyper-
planes, regularity theory or Beilinson theorem (in the general framework of derived categories).
This kind of result is important, for example, since part of the celebrated Hartshorne’s conjecture
about complete intersections (see [21]) is equivalent to the splitting of vector bundles of low rank
over the projective space. Horrocks theorem can be generalized from two different points of view:

The first point of view is to regard Horrocks theorem as a characterization of arithmetically
Cohen-Macaulay (aCM for short) vector bundles (i.e. without intermediate cohomology) over the
projective space. From this point of view, Horrocks theorem states that the only indecomposable
aCM vector bundle over P

n is, up to a twist, the trivial line bundle. In this direction, Knörrer in
[28] proved that line bundles and twists of the spinor bundles are the only indecomposable aCM
vector bundles over quadrics. In a kind of converse result, Buchweitz, Greuel and Schreyer showed
in [11] that the only smooth hypersurfaces in a projective space for which there exists, up to a
twist, a finite number of aCM bundles are the hyperplanes and the quadrics. This explains why the
characterization of aCM vector bundles over projective varieties is in general a difficult problem.
There are for example results about low rank aCM vector bundles on different types of varieties, for
example general hypersurfaces over P

5 (see [12] and a series of works by C. Madonna), or different
types of Fano threefolds (see [4] and [5]).

We will be more interested in the second point of view of Horrocks theorem, namely as a criterion
to characterize vector bundles that split as a direct sum of line bundles. Such a characterization has
been extended to other projective varieties. For example, G. Ottaviani characterized such vector
bundles over Grassmannians and smooth quadrics (see [33] and [32]). Since we are going to use it,
we state the particular case of G(1, n), the Grassmannian of lines in P

n, where Q denotes the rank
two universal quotient bundle (see Definition 1.1.9).
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Theorem 0.0.2. A vector bundle F over G(1, n) splits as a direct sum of line bundles if and only
if the following conditions hold for i = 0, 1, . . . , n− 2:

Hj
∗(F ⊗ SiQ) = 0 with i ≤ j < 2n − 2− i and j > 0.

An improvement of Ottaviani’s criterion, which will be the starting point of this dissertation
was given by E. Arrondo and F. Malaspina in [7]:

Theorem 0.0.3. Let F be a vector bundles on the Grassmannian of lines G(1, n). Then F splits
as a direct sum of line bundles if and only if:

a. Hj
∗(F ⊗ SjQ) = 0 j ∈ {1, 2, . . . , n− 3, n− 2}

b. Hj
∗(F ⊗ SiQ) = 0 (i, j) ∈ {(0, 2n − 3), (1, 2n − 4), . . . , (n − 3, n), (n − 2, n − 1)}

The idea behind the proof of this result (and similar ones in that paper) is quite simple: if
a vector bundle F has a direct summand O(l), this is equivalent to have maps O(l) → F and
F → O(l) whose composition is not zero. The tricky part is to relate the composition pairing
Hom(O(l), F )×Hom(F,O(l)) → Hom(O(l),O(l)) with the perfect pairing given by Serre’s duality.

As it is also done in [7], one could be interested in characterizing cohomologically other vector
bundles, and not only line bundles. For instance, in 2005, L. Costa and R. M. Miró-Roig gave
a characterization, for a given Schur functor, of the vector bundle SλQ, where Q is the universal
quotient bundle of rank k+1 over the Grassmannian G(k, n) (see [13] and [14]). This characterization
is done in terms of the other universal vector bundle (of rank n − k) and characterizes precisely
⊕SλQ but not its twists. However we will be interested in using the same universal bundle Q for
the characterization, and we also want the characterization to be up to a twist, as it happens for
Horrocks theorem.

A result of the type we are looking for is the following by E. Arrondo and B. Graña (see [6]):

Theorem 0.0.4. Let F be a vector bundle over G(1, 4). Then F can be expressed as ⊕O(li0)
⊕

⊕Q(li1) if and only if:

i. H1
∗ (F ) = H2

∗ (F ) = H3
∗ (F ) = H4

∗ (F ) = H5
∗ (F ) = 0 (F does not have intermediate cohomology)

ii. H1
∗ (F ⊗Q) = H2

∗ (F ⊗Q) = H3
∗ (F ⊗Q) = H4

∗ (F ⊗Q) = H5
∗ (F ⊗Q) = 0 (F ⊗Q does not have

intermediate cohomology)

The idea for obtaining such result was as follows. First, one looks at Theorem 0.0.2, which
provides a characterization of the direct sums of line bundles. Since Q does not split, there must
be some hypothesis of that theorem that it does not satisfy. There is precisely one of them, and
one manage to prove (by techniques that are not relevant here) that the rest of the hypotheses
(precisely the conditions of Theorem 0.0.4) work to characterize directs sums of twists of O and Q.
In fact,the authors continue to remove conditions until getting some description (very far from an
actual classification) of aCM vector bundles over G(1, 4).

From all these ideas in mind we can concentrate now on the main goals of this thesis, which we
describe in the next item.
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Objectives

The present dissertation has one main objective. We want to give a cohomological characterization
for direct sums of twists of symmetric product of the quotient bundle Q in the Grassmannian of
lines G(1, n). We will give such a classification for symmetric powers of order not bigger than n−2.
The original reason was that a symmetric power SkQ is aCM if and only if k ≤ n− 2, so that our
result could be a help to understand aCM vector bundles over G(1, n). However such restriction is
needed anyway, sine our proof has some obstruction when k > n− 2 (see Remark 3.4.2).

As main ideas, we will use those from [6] and [7] that we already pointed out. Specifically, we
will start from the splitting criterion of Theorem 0.0.3 (which is stronger than the one of Theorem
0.0.2, the starting point of Theorem 0.0.4). Contrary to what happened in the proof of Theorem
0.0.4, removing the only hypothesis of Theorem 0.0.3 will not be now sufficient to characterize direct
sums of twists of O and Q, so we will need to add more hypotheses for such characterization. As in
[7], the idea to find direct summand of Q(l) will be to relate it with Serre’s duality. With this ideas
in mind, one can go on, removing in each step one condition and adding few ones, until arriving to
the wanted classification.

On the other hand, as A. Kuznetsov kindly indicated to us, the techniques of derived categoris
is also a natural way to get the kind of characterizations we just mentioned. Hence we decided to
study those methods, in particular Beilinson’s Theorem in order to compare the results one could
obtain with our method and this other one.

Results

The main results of this thesis are in Chapters 3 and 4. Previously, in Chapter 1 we settle the main
definitions and facts that will be used throughout this thesis. We start with some generalities on
Grassmannians and the universal vector bundles. Then we recall the notion of Eagon-Northcott
complex and apply it to the universal exact sequence of a Grassmannian of lines, which will become
crucial in most of our proofs, since it will involve the symmetric powers of the universal bundle Q.
We finish that chapter recalling some general cohomologucal result and Serre’s duality.

We devote Chapter 2 to Bott’s theorem for Grassmannians. This is the main tool to compute
the cohomology of many vector bundles obtained from the universal vector bundles, in particular
the symmetric products of the universal bundle Q. In order to do this we will introduce the notion
of Young diagram and Schur functor. We will define concretely the algorithm that compute the
cohomologies of some particular vector bundles expressed as a tensor product of Schur functor.
Moreover, we have done, in collaboration with J. Caravantes, a program for SAGE that computes
this algorithm for any Grassmannian of k−planes. We enclose the code of the program as an
appendix at the end of the thesis.

In Chapter 3 we give the main result of this dissertation, namely Theorem 3.3.1, which gives
a cohomological characterization in G(1, n) of direct sums of twists of O,Q, S2Q, . . . , SkQ with
k ≤ n − 2. In order to make the cohomological condition more visible, we introduce, in a first
section, a graphical representation of them. In a second section, we explain the use of Serre’s

III



duality and some cohomolgical conditions on a vector bundle F over G(1, n) to produce morphisms
SkQ → F and F → Q whose composition is a multiple of the identity. This will be one of the main
ingredients to prove our main result in the third section of the chapter. Then there is a section
of remarks about the sharpness of our result and how it compares with other known results. We
conclude with a section explaining how to generalize our method to other varieties. As a concrete
application, we introduce the main tool for the case of Grassmannian of k−planes.

Finally, in Chapter 4, after a first introductory section to derived categories, we pass to another
section to introduce Beilinson’s theorem, for projective spaces and for Grassmannians. In the last
section, we use Beilinson’s theorem to produce a splitting criterion for the Grassmannian of lines.
We follow the steps given in [2] by V. Ancona and G. Ottaviani in the case of the projective space.
We compare the criterion we got with the one obtained by G. Ottaviani, showing that ours is
stronger, and with the one produced by E. Arrondo and F. Malaspina. In this second case we easily
see that this new characterization made by using the Beilinson’s theorem has much more conditions
than the one we have taken as our starting point.

Conclusions

As a main conclusion, we can say that the use of the Serre’s duality as in [7] produces much stronger
cohomological characterizations of vector bundles than using the standard methods, for example
Beilinson’s theorem.

We could have applied this technique to characterize other types of vector bundles over G(1, n),
or also for any arbitrary Grassmannian. The only difficulty would have been of clearness, since
writing down the precise hypotheses in each step could become a mess.

However our main goal was to present this method and to show how it works, in the hope that
it could be useful for other projective varieties. For example, a natural variety to try with would
be a isotropic Grassmannian, for which A. Kuznetsov already studied in detail its derived category
(see [29]).
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Resumen

Introducción

Probablemente uno de los resultados más importantes sobre fibrados vectoriales sobre un espacio
proyectivo es el siguiente:

Teorema 0.0.1.(G. Horrock, [23]) Un fibrado vectorial F de P
n escinde como suma directa de

fibrados lineales si y sólo si no tiene cohomología intermedia (i.e. Hj
∗(F ) = 0 for j = 1, 2, . . . , n−1).

Este teorema se ha probado después usando muchas técnicas diferentes, como restricciones
a hiperplanos, teoremas de regularidad o el teorema de Beilinson (en el entramado general de
categorías derivadas). Este tipo de resultado es importante, por ejemplo, ya que parte de la célebre
conjetura de Hartshorne sobre intersecciones completas (véase [21]) es equivalente a la escisión
de fibrados vectoriales de rango bajo sobre un espacio projectivo. El teorema de Horrocks puede
generalizarse desde dos puntos de vista distintos:

El primer punto de vista es ver el teorema de Horrocks como una caracterización de fibrados
vectoriales aritméticamente Cohen-Macaulay (aCM para acortar) sobre el espacio projectivo (i.e.,
sin cohomología intermedia). Desde este punto de vista, el teorema de Horrocks afirma que el único
fibrado vectorial aCM indescomponible sobre P

n es, salvo twist, el fibrado lineal trivial. En esta
dirección, Knörrer en [28] probó que los fibrados lineales y twists del fibrado spinor son los únicos
fibrados vectoriales aCM indescomponibles sobre cuádricas. Para el resultado opuesto, Buchweitz,
Greuel y Schreyer mostraron en [11], que las únicas hipersuperficies lisas es un espacio projectivo
para las que existe, salvo twist, un número finito de fibrados aCM son los hiperplanos y las cuádricas.
Ésto explica por qué la caracterización de fibrados vectoriales aCM sobre variedades projectivas es
en general un problema difícil. Hay por ejemplo resultados sobre fibrados vectoriales aCM de rango
bajo en distintos tipos de variedades, por ejemplo hipersuperficies generales sobre P

5 (véase [12] y
una serie de trabajos por C. Madonna), o distintos tipos de Fano threefolds (véase [4] y [5]).

Nosotros estamos más interesados en el segundo punto de vista del teorema de Horrocks, llamado
como criterio que caracteriza los fibrados vectoriales que escinden como suma directa de fibrados
lineales. Dicha caracterización ha sido generalizada a otras variedades projectivas. Por ejemplo, G.
Ottaviani caracterizó dichos fibrados vectoriales sobre las Grassmannianas y sobre cuádricas lisas
(véase [33] y [32]). Ya que vamos a usarlo, enunciamos a continuación el resultado para el caso
particular de las Grassmannianas de rectas, G(1, n), donde Q denota el fibrado universal cociente
de rango 2 (véase Definition 1.1.9).
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Teorema 0.0.2. Un fibrado vectorial F sobre G(1, n) escinde como suma directa de fibrados lineales
si y sólo si se cumplen las siguientes condiciones para i = 0, 1, . . . , n− 2:

Hj
∗(F ⊗ SiQ) = 0 con i ≤ j < 2n− 2− i y j > 0.

Una mejora del criterio de Ottaviani, que será el punto de inicio de esta tesis, lo dieron E.
Arrondo y F. Malaspina en [7]:

Teorema 0.0.3 Sea F un fibrado vectorial sobre las Grassmannianas de rectas G(1, n). Entonces
F escinde como suma directa de fibrados lineales si y sólo si:

a. Hj
∗(F ⊗ SjQ) = 0 j ∈ {1, 2, . . . , n− 3, n− 2}

b. Hj
∗(F ⊗ SiQ) = 0 (i, j) ∈ {(0, 2n − 3), (1, 2n − 4), . . . , (n − 3, n), (n − 2, n − 1)}

La idea que hay detrás de la prueba de este resultado (y similares en el artículo) es bastante
simple: si un fibrado vectorial F tiene un sumando directo O(l), ésto es equivalente a tener las
aplicaciones O(l) → F y F → O(l) cuya composición es no nula. La parte difícil es relacionar la
composición Hom(O(l), F ) × Hom(F,O(l)) → Hom(O(l),O(l)) con un par perfecto dado por la
dualidad de Serre.

Conforme está hecho también en [7], uno podría estar interesado en caracterizar cohomológi-
camente otros fibrados vectoriales, y no sólo los fibrados lineales. Por ejemplo, en 2005, L. Costa
y R. M. Miró-Roig dieron una caracterización, para un functor de Schur dado, del fibrado vecto-
rial SλQ, donde Q es el fibrado universal cociente de rango k + 1 de la Grassmanniana G(k, n)
(véase [13] y [14]). Esta caracterización está hecha en términos del otro fibrado universal (de rango
n − k) y caracterizan precisamenete ⊕SλQ pero no sus twists. Sin embargo nosotros estaeremos
interesados en usar el mismo fibrado universal Q para la caracterización, y también queremos que
la caracterización sea salvo twist, como ocurre con el teorema de Horrocks.

Un resultado del tipo que estamos buscando es el siguiente hecho por E. Arrondo y B. Graña
(véase [6]):

Teorema 0.0.4. Sea F un fibrado vectorial de G(1, 4). Entonces F se puede expresar como
⊕O(li0)

⊕
⊕Q(li1) si y sólo si:

i. H1
∗ (F ) = H2

∗ (F ) = H3
∗ (F ) = H4

∗ (F ) = H5
∗ (F ) = 0 (i.e. F no tiene cohomología intermedia)

ii. H1
∗ (F ⊗Q) = H2

∗ (F ⊗Q) = H3
∗ (F ⊗Q) = H4

∗ (F ⊗Q) = H5
∗ (F ⊗Q) = 0 (i.e. F ⊗Q no tiene

cohomología intermedia)

La idea para obtener dicho resultado fue la siguiente. Primero, uno mira Teorema 0.0.2, que da
una caracterización de sumas directas de fibrados lineales. Ya que Q no escinde, tiene que haber
alguna hipótesis de ese teorema que no la satisfaga. Hay exactamente una de ellas, y uno es capaz de
probar (mediante otras técnicas que aquí no son pertinentes) que el resto de hipótesis (precisamente
las condiciones de Teorema 0.0.4) nos sirven para caracterizar sumas directas de twists de O y Q.
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De hecho, los autores continuan quitando condiciones hasta obtener alguna descripción (muy lejana
de una clasificación actual) de fibrados vectoriales aCM sobre G(1, 4).

Con todas estas ideas en la cabeza nos podemos concentrar ahora en nuestro objetivo principal
de la tesis, que describimos en el siguiente apartado.

Objetivos

La presente tesis tiene un objetivo principal. Queremos dar una caracterización para sumas directas
de twists de los productos simétricos del fibrado cociente Q en la Grassmanniana de rectas G(1, n).
Daremos dicha clasificación para productos simétricos de orden no mayor de n − 2. El motivo
original fue que un producto simétrico SkQ es aCM si y sólo si k ≤ n− 2, así que nuestro resultado
podría ser una ayuda para entender los fibrados vectoriales aCM sobre G(1, n). Sin embargo dicha
restricción es necesaria en cualquier caso, ya que nuestra prueba tiene alguna obstrucción cuando
k > n− 2 (véase Remark 3.4.2).

Como ideas principales, usaremas las de [6] y [7] que ya hemos señalado. Específicamente,
empezaremos por el criterio de escisión de Teorema 0.0.3 (que es más fuerte que el que da Teorema
0.0.2, punto de partida de Teorema 0.0.4). Contrariamente a lo que ocurre en la prueba de Teorema
0.0.4, quitar la única hipótesis de Teorema 0.0.3 no será suficiente para caracterizar las sumas
directas de twists de O y Q, así que necesitaremos añadir más hipótesis para dicha caracterización.
Como en [7], la idea de encontrar un sumando directo de Q(l) estará relacionada con la dualidad
de Serre. Con todas estas ideas en la cabeza, uno puede ir quitando paso a paso condiciones y
añadiendo algunas más, hasta llegar a la clasificación que queríamos.

Por otro lado, como A. Kuznetsov amablemente nos indicó, las técnicas de categorías derivadas
son también un modo natural para llegar al tipo de caracterizaciones que acabamos de mencionar.
Por lo tanto decidimos estudiar esos métodos, en particular el teorema de Beilinson para así com-
parar los resultados que uno podría obtener con nuestro método y con este nuevo.

Resultados

Los resultados principales de esta tesis están en los capítulos 3 y 4. Previamente, en Capítulo
1 establecemos las definiciones y hechos principales que serán usados a lo largo de toda la tesis.
Empezamos con algunas generalidades sobre Grassmannianas y sus fibrados vectoriales universales.
Luego recordamos la noción de complejo de Eagon-Northcott y la aplicamos a la sucesión exacta
universal de una Grassmanniana de rectas, que será crucial en la mayoría de nuestras demostraciones,
ya que conllevará los productos simétricos del fibrado universal Q. Terminaremos este capítulo
recordando algunos resultados cohomológicos generales y la dualidad de Serre.

Dedicamos el Capítulo 2 al teorema de Bott para Grassmannianas. Esta es la herramienta
principal para calcular la cohomología de muchos fibrados vectoriales obtenidos de los fibrados vec-
toriales universales, en particular el producto simétrico del fibrado universal Q. Con el propósito
de hacer esto introduciremos la noción de diagrama de Young y functor de Schur. Definiremos con-
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cretamente el algoritmo que calcula las cohomologías de algunos fibrados vectoriales particulares
expresados como producto tensorial de functores de Schur. Además, hemos hecho, en colaboración
con J. Caravantes, un programa para SAGE que computa este algoritmo para cualquier Grassman-
niana de k−planos. Adjuntamos el código como apéndice al final de la tesis.

En el Capítulo 3 damos el resultado principal de esta disertación, nombrado Teorema 3.3.1, que
da una caracterización cohomológica en G(1, n) de sumas directas de twists de O,Q, S2Q, . . . , SkQ
with k ≤ n − 2. Para poder hacer las condiciones cohomológicas más visibles, introducimos, en la
primera sección, una representación gráfica de ellas. En la segunda sección, explicamos el uso de la
dualidad de Serre y algunas condiciones cohomológicas sobre un fibrado vectorial F en G(1, n) para
producir morfismos SkQ → F y F → SkQ cuya composición es un mútiplo de la identidad. Este
será uno de los principales ingredientes para probar nuestro resultado principal en la tercera sección
del capítulo. Luego hay una sección de observaciones sobre la nitidez de nuestro resultado y cómo
se compara con otros resultados conocidos. Concluimos con una sección donde se explica como
generalizar nuestro mÃ c©todo a otras variedades. Como una aplicación concreta, introducimos la
herramienta principal para el caso de las Grassmannianas de k−planos.

Finalmente, en Capítulo 4, después de una sección introductoria de categorías derivadas, pasamos
a otra sección para introducir el teorema de Beilinson, para el caso projectivo y para Grassman-
nianas. En la última sección, usamos el teorema de Beilinson para realizar un criterio de escisión
para Grassmannianas de rectas. Seguimos los pasos dados en [2] por V. Ancona y G. Ottaviani
en el caso del espacio projectivo. Comparamos el criterio que obtenemos con el obtenido por G.
Ottaviani, mostrando que es más fuerte, y con el realizado por E. Arrondo and F. Malaspina. En
este segundo caso podemos ver fácilmente que esta nueva caracterización hecha usando el teorema
de Beilinson tiene muchas más condiciones que la que nosotros hemos tomado como nuestro punto
de partida.

Conclusiones

Como una conclusión principal, podemos decir que el uso de la dualidad de Serre en [7] produce
caracterizaciones cohomológicas mucho más fuertes que las obtenidas usando los métodos estándar,
como por ejemplo el teorema de Beilinson.

Podríamos haber aplicado esta técnica para caracterizar otros tipos de fibrados vectoriales sobre
G(1, n), o incluso para una Grassmanniana arbitraria. La única dificultad habría sido la claridad,
ya que escribir las hipótesis precisas en cada paso podría convertirse en una confusión.

Sin embargo nuestro objetivo principal era presentar este método y mostrar cómo funciona, con
la esperanza de que sea útil para otras variedades projectivas. Por ejemplo, sería natural tratar la
variedad de la Grassmanniana isotrópica, para la que A. Kuznetsov ha estudiado ya en detalle su
categoría derivada (véase [29]).
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Chapter 1

Preliminaries

In this chapter we will show some notions that we will use throughout this work. First of all we
introduce the concept of Grassmannian G(k, n) (sometimes we fix the notation G = G(k, n)) as
a projective variety and its universal bundles Q and S (see [3]). Moreover we will discuss the
Eagon-Northcott complexes (see [17]) and finally the Serre duality (see [20]) since we will use these
techniques in the proof of the characterization we give in Section 3.3.

1.1 The Grassmannian

Let V be a (n + 1)−dimensional vector space over an algebraically closed field K of characteristic
zero and let P

n = P(V ) be projective space of all the hyperplanes in V , or equivalently we can
consider P

n = P(V ) as the set of the lines in V ∗.

Definition 1.1.1. We define the Grassmann variety or Grassmannian, G(k, n) = G(k,Pn), as
the set consisting of all k−dimensional linear subspaces of Pn. This variety is naturally identified
with the set of (k + 1)−dimensional linear subspaces of the dual V ∗ or even with the set of (k +
1)−dimensional quotients of V .

By abuse of notation, we will identify a k−plane of Pn with the corresponding (k+1)−dimensional
linear subspace of V ∗ (we will denote it by Λ).

Note that the projective space P
n appears as the particular case k = 0 (G(0, n) = P

n) and its
dual, Pn

∗

appears for k = n− 1 (G(n− 1, n) = P
n∗

).

Structure variety

Let us give now the structure of a variety to G(k, n). For this purpose we will cover it by affine charts
and determine the patchings in the intersections. So let us fix a system of coordinates x0, . . . , xn
for P

n or equivalently a basis {w0, . . . , wn} of V ∗. Then we represent an element Λ ∈ G(k, n) by a
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(k + 1)× (n+ 1) matrix (that we will call Plücker matrix )

Λ =






a00 . . . a0n
...

...
ak0 . . . akn




 (1.1)

where the rows are the coordinates of a basis of Λ.

If we change the basis of Λ, the Plücker matrix changes by multiplying on the left by a non-
degenerate square matrix of order k + 1 corresponding to the change of basis in Λ.

If we assume that the minor corresponding to the first k+1 columns is not zero we can multiply
by a suitable matrix thus Λ can be represented in a unique way by a matrix:








1 0 . . . 0 b0k+1 . . . b0n
0 1 . . . 0 b1k+1 . . . b1n
...

...
. . .

...
...

...
0 0 . . . 1 bkk+1 . . . bkn








(1.2)

Hence, G(k, n) contains an open affine subset of dimension (k+1)(n−k) of coordinates b0k+1, . . . , bkn.
This subset can be described as the set of k−planes that do not meet the (n − k − 1)−plane of
equations x0 = . . . = xk = 0. Since at least one of the minors of order k + 1 of the Plücker matrix
(1.1) is not zero, G(k, n) can be covered by

(
n+1
k+1

)
affine pieces.

Notation 1.1.2. We will denote by Ui0,...,ik the open affine subset of G(k, n) corresponding to
subspaces that do not meet the (n− k− 1)−plane of equations xi0 = . . . = xik = 0, or equivalently
those subspaces such that the maximal minor of the Plücker matrix (1.1) obtained when considering
the columns i0, . . . , ik is not zero.

We can easily see that the change of coordinates from one piece to another is just given by
quotients of polynomials on the coordinates. In conclusion we have that G(k, n) can be viewed as
an abstract manifold of dimension (k + 1)(n − k).

1.1.1 The Plücker embedding

In order to view G(k, n) as a projective variety, one needs to consider the Plücker embedding

ϕk,n : G(k,P(V )) −→ P(
∧k+1 V ∗) = P

(n+1
k+1)−1

L[v0, . . . , vk] 7−→ [v0 ∧ . . . ∧ vk]

where L[v0, . . . , vk] represents the linear span in P(V ) of the points represented by independent
vectors v0, . . . , vk ∈ V ∗ and [v0∧ . . .∧vk] means the point of P(

∧k+1 V ∗) represented by v0∧ . . .∧vk
(taking in

∧k+1 V ∗ the basis {. . . , wi0 ∧ . . . ∧ wik , . . .}). We call P(
n+1
k+1)−1 = P

N Plücker space.

Let us fix a basis for V ∗ and the induced one for
∧k+1 V ∗, then ϕk,n associates to the space gen-

erated by the rows v0, . . . , vk of the Plücker matrix (1.1) the point in P(
∧k+1 V ) whose coordinates
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are just the maximal minors of the matrix. This means that, ϕk,n associates to a space defined by

(1.1) the point in P
(n+1
k+1)−1 whose coordinates consist of all the minors of order k+1 of that matrix.

Moreover it is easy to check that ϕk,n is well defined: If v′0, . . . , v
′
k is another basis of the

same space Λ and A is the matrix that changes from one basis into another, then v′0 ∧ . . . ∧ v
′
k =

(detA)(v0 ∧ . . . ∧ vk), so that we obtain the same point in P(
∧k+1 V ).

Definition 1.1.3. The homogeneous coordinates in P(
∧k+1 V ) induced by a choice of coordinates

in P(V ) are called Plücker coordinates and they are denoted by pi0,...,ik . Hence, pi0,...,ik are the
coordinates corresponding to the determinant of the (k + 1) × (k + 1) matrix obtained by taking
the columns i0, . . . , ik of the Plücker matrix (1.1).

It is not hard to see that ϕk,n provides an embedding of G(k, n) in P(
∧k+1 V ) as an algebraic

variety. For each affine open set Vi0,...,ik = {pi0,...,ik 6= 0} ⊆ P(
∧k+1 V ) we observe that

ϕk,n(G(k, n))
⋂

Vi0,...,ik = ϕk,n(Ui0,...,ik)

so it is enough to prove that ϕk,n|Ui0,...,ik
is an algebraic embedding in Vi0,...,ik . Let us work in U0,...,k

and we can use (1.2) as a matrix representation. For this matrix we have p0,...,k = 1. Consider the
rest of Plücker coordinates as the coordinates of V0,...,k. On the other hand, all the coordinates of
U0,...,k (that are just the entries (bij)) appear as coordinates of the map ϕk,n. More precisely we have
that each bij appears up to a sign as the minor of the matrix (1.2) in which we take the columns
0, . . . , i − 1, i + 1, . . . , k, j. This proves that ϕk,n is an embedding. It is also algebraic because the
rest of the Plücker coordinates are just polynomials in the previous coordinates. Hence,

Proposition 1.1.4. There exists a canonical embedding

ϕk,n : G(k,P(V )) −→ P(
∧k+1 V ∗) = P

(n+1
k+1)−1

L[v0, . . . , vk] 7−→ [v0 ∧ . . . ∧ vk]

called the Plücker embedding, whose coordinates of the arrival space are called Plücker coordinates.
Moreover, the image of G(k, n) through ϕk,n is a projective variety in the considered ambient pro-
jective space.

We also consider i0 ≤ . . . ≤ ik since pi0...ik = sg(σ)pσ(i0)...σ(ik) for any permutation σ of the
elements {i0, . . . , ik}. In fact i0 < . . . < ik since pi0,...,ik will be zero if there exists any of those
equalities.

Let us give an example that will help us to understand the definitions given before.

Example 1.1.5. Let us consider the variety G(1, 3) ⊆ P
5. Each line in P

3 can be represented by
two independent points spanning it and so the matrix associated will be:

(
a0 a1 a2 a3
b0 b1 b2 b3

)
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where ai and bj are the coordinates of the two points. In this case, the six Plücker coordinates will
be given by:

p0,1 =

∣
∣
∣
∣

a0 a1
b0 b1

∣
∣
∣
∣

p0,2 =

∣
∣
∣
∣

a0 a2
b0 b2

∣
∣
∣
∣

p0,3 =

∣
∣
∣
∣

a0 a3
b0 b3

∣
∣
∣
∣

p1,2 =

∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣

p1,3 =

∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣

p2,3 =

∣
∣
∣
∣

a2 a3
b2 b3

∣
∣
∣
∣

The vanishing of the determinant of the matrix:






a0 a1 a2 a3
b0 b1 b2 b3
a0 a1 a2 a3
b0 b1 b2 b3







allows us to write the equation that defines the Grassmannian, seen as embedded in P
5, which is:

p01p23 − p02p13 + p03p12 = 0.

This is the only equation of G(1, 3) since it defines a 4−dimensional irreducible variety that contains
G(1, 3) (that is also 4−dimensional).

1.1.2 The universal bundles

First of all, let us recall the definition of vector bundle over an algebraic variety and its main
properties.

Definition 1.1.6. A vector bundle of rank r (or line bundle if r = 1) over an algebraic variety X
is an algebraic variety F equipped with a morphism π : F −→ X such that there exists a covering
X =

⋃

i∈I Ui by (Zariski) open subsets such that:

(i) For each i ∈ I there is an isomorphism ψi : π
−1(Ui) −→ Ui×K

r satisfying that the composition
π ◦ ψ−1 : Ui ×K

r −→ Ui is the first projection.

π−1(Ui)

π

��

∼= // Ui ×K
r

yyrrr
rr
rr
rr
rr

oo

Ui

(ii) For each i, j ∈ I there is an (r× r)−matrix Aij (called transition matrix, or transition function
if r = 1) whose entries are regular functions in Ui

⋂
Uj satisfying that the composition

ϕij = ψj ◦ ψ
−1
i|Ui

⋂
Uj

: (Ui
⋂

Uj)×K
r −→ π−1(Ui

⋂

Uj) −→ (Ui
⋂

Uj)×K
r

takes the form
ϕij(x, v) = (x,Aij(x)v)

Hence,
(Ui ∩ Uj)×K

r −→ π−1((Ui ∩ Uj) −→ (Ui ∩ Uj)×K
r

(x, v) 7−→ (x,Aij(x) · v)
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It is clear that any subpartition of the covering still satisfies conditions (i) and (ii). In the case
that only one open set is needed, i.e. F = X ×K

r and π is the first projection, we say that F is a
trivial bundle of rank r.

Remark 1.1.7. Condition (i) is saying that, for any x ∈ X the set π−1(x) (called the fiber of the
vector bundle at the point x, Fx), is bijective to K

r, and that locally the fibers are glued to produce
a trivial bundle.

From this, it is clear that, in condition (ii), the first coordinate of ϕij(x, v) must be x. Thus,
condition (ii) is just saying that the fibers of F glue together in different trivial representations in
a linear way. In other words, the fibers of the vector bundle have to be regarded as vector spaces.

Now consider an element Λ ∈ G(k, n) as a k−dimensional subspace of the vector space V ∗.

Notation 1.1.8. We will use ∗ for denoting the dual of a vector space and ∨ for denoting the dual
of a vector bundle.

Depending on which point of view we take there are two incidence diagrams in which the maps
are natural projections:

I = {(p,Λ) ∈ P(V )×G | p ∈ Λ}
p

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥

q

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

P(V ) G

(1.3)

Q∨ = {(v,Λ) ∈ V ∗ ×G | v ∈ Λ}
p

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥

q

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

V ∗
G

(1.4)

Definition 1.1.9. We can define the universal bundles by considering the maps p and q of the first
incidence diagram (1.3). Consider also in P

n = P(V ) the Euler exact sequence

0 // ΩPn(1) // V ⊗OPn // OPn(1) // 0

and pull it back to I via p and them push it forward to G(k, n). Then we get the universal exact
sequence of G(k, n)

0 // S∨ ϕ // V ⊗O
φ // Q // 0 (1.5)

where the bundles
S∨ = q∗p

∗(ΩPn(1)) Q = q∗p
∗(OPn(1)) (1.6)

are called universal subbundle of rank n−k and universal quotient bundle of rank k+1 respectively.

Remark 1.1.10. We can associate to each universal bundle its corresponding locally free sheaf but
we will not distinguish between a vector bundle and its locally free sheaf of sections.
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Now consider the second incidence diagram (1.4). We can also view the vector bundle Q as the
dual of the bundle V ∗ ×G. Therefore we can also consider the quotient vector bundle,

V ∗ ×G/Q∨ ≃ S

Remark 1.1.11. The notation we use is consistent if we look the Grassmannian space as the
quotient space of V . It may not be standard notation but we prefer S and Q to have the same
behavior when dualizing since G(k,Pn) ≃ G(n−k−1,Pn

∗

). Hence, the universal exact sequence for
G(n− k− 1,Pn

∗

) is the dual of the universal exact sequence (1.5). In this way, we can interchange
the bundles S and Q:

• the universal quotient bundle can be interpreted as the dual of the subbundle Q∨ of the trivial
vector bundle V ∗ ×G,

Q∨ = {(v, l) such that v is a vector of the linear space ~l that defines L}

• the universal vector bundle S := V ∗ ×G/Q∨ can be interpreted as the dual of the subbundle
of V ∗ ×G that consists in

S = {(h, l) such that H vanishes in L}

From identities (1.6) we obtain the following properties.

Proposition 1.1.12. There exist natural identifications:

H0(G(k, n),Q) = V H0(G(k, n),S) = V ∗

Although Hj(G(k, n),Q) = 0 and Hj(G(k, n),S) = 0 for all j > 0.

Under these identifications s independent sections of Q correspond to a linear subspace A ⊂ P
n

of codimension s.

If s ≤ k + 1, the dependency locus of these sections is just the set of k−planes meeting A in
dimension at least k − s+ 1.

Analogously, r+1 independent sections of S correspond to a linear subspace B ⊂ P
n of dimension

r.

If r + 1 ≤ n− k, the dependency locus of this sections is the set of k−planes meeting B.

If we take the particular cases s = k + 1 and r + 1 = n − k in Proposition 1.1.12, then we get
the same dependency locus. Concretely we get the following corollary:

Corollary 1.1.13. The set of k−planes that meet a fixed (n−k−1)−plane is the dependency locus
of k + 1 sections of Q, or n− k sections of S. In particular we have the identification of invertible
bundles

k+1∧

Q ≃
n−k∧

S

(that can be deduced from the universal exact sequence (1.5)) and also isomorphisms to O(1).
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Remark 1.1.14. Since the cotangent bundle over G(k, n) is ΩG(k,n) = S∨ ⊗ Q∨ by taking the
top exterior power (i.e. the determinant) it follows that the canonical bundle over G(k, n) is just
ωG(k,n) ≃ O(−n− 1).

Remark 1.1.15. Let us write in this remark more natural isomorphisms that we know between
the universal bundles over the Grassmannians G(k, n):

• Q∨ ≃
∧kQ(−1). For the particular case k = 1 we get Q∨ ≃ Q(−1) and if we apply the j−th

symmetric power results SjQ∨ ≃ (SjQ)(−j)

•
∧j S∨ ≃

∧n−k−j S(−1) (where
∧j denotes the j−th wedge power)

1.2 The Eagon-Northcott complex

The complexes we are describing in this section will be used many times in the proof of the previous
lemmas to the main theorem. For more details see [17].

Theorem 1.2.1. Given an exact sequence of vector bundles:

0 −→ F1 −→ F −→ F2 −→ 0

with rank(F1) = r1, rank(F2) = r2 and rank(F ) = r then there exists the following natural maps:

i∧

F∨ ⊗ Sj−iF∨
2 −→

i∧

F∨ ⊗F∨
2 ⊗ Sj−i−1F∨

2 −→
i∧

F∨ ⊗F∨ ⊗ Sj−i−1F∨
2 −→

i+1∧

F∨ ⊗ Sj−i−1F∨
2

From these maps arise the following long exact sequence for each k ≤ r1:

0 −→ SkF∨
2 −→ F∨ ⊗ Sk−1F∨

2 −→
2∧

F∨ ⊗ Sk−2F∨
2 −→ . . .

. . . −→
i∧

F∨ ⊗ Sj−iF∨
2 −→

i+1∧

F∨ ⊗ Sj−i−1F∨
2 −→ . . .

. . . −→ F∨
2 ⊗

k−1∧

F∨ −→
k∧

F∨ −→
k∧

F∨
1 −→ 0

Example 1.2.2. In the case of G(k, n), if we apply Theorem 1.2.1 and Remark 1.1.15 to the
universal exact sequence (1.5) we obtain the following Eagon-Northcott complex:

0 −→ SjQ(−j) −→ V ∗ ⊗ Sj−1Q(−j + 1) −→ . . . −→
∧j−1 V ∗ ⊗Q(−1) −→

∧j V ∗ ⊗O −→
∧j S −→ 0

(R∨
j )

By dualizing (R∨
j ) we give its dual complex (Rj):

0 −→
∧j S∨ −→

∧j V ⊗O −→
∧j−1 V ⊗Q −→ . . . −→

∧2 V ⊗ Sj−2Q −→ V ⊗ Sj−1Q −→ SjQ −→ 0

(Rj)
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Remark 1.2.3. The universal exact sequence (1.5) is the analogue in G(k, n) of the Euler sequence
in the projective space. The long Koszul exact sequence in the projective space comes by taking
the top exterior product in the left map of the Euler sequence, while taking the smaller exterior
products produces the Koszul exact sequence truncated at the left. In the case of Grassmannaians
of lines we construct these complexes by making the j−th wedge power of ϕ in the universal exact
sequence

. . . −→

j
∧

V ∗ ⊗O
∧j ϕ∗

−→

j
∧

S −→ 0 (R∨
j )

0 −→

j
∧

S∨
∧j ϕ
−→

j
∧

V ⊗O −→ . . . (Rj)

or, on the other hand, by making the j−th symmetric power of φ in the universal exact sequence.

. . . −→ SjV ⊗O
Sjφ
−→ SjQ −→ 0

0 −→ SjQ∨ Sjφ∗

−→ SjV ∗ ⊗O −→ . . .

Remark 1.2.4. In Proposition 2.3.1, with the language of Young diagrams and Schur functors, we
will give a generalization of the complex (Rn−1) for a Grassmannian of k−planes in P

n, G(k, n):

0 −→ O(−1) −→
∧n−1 V ⊗O −→

∧n−2 V ⊗Q −→ . . . −→
∧2 V ⊗ Sn−3Q −→ V ⊗ Sn−2Q −→ Sn−1Q −→ 0

(Rn−1)

1.3 Cohomology and Serre duality

For main definitions, facts and properties about cohomology and Serre duality see [20].

Definitions and notations about cohomology

Notation 1.3.1. We denote with small letter h just the dimension of the corresponding cohomology

hp(F ) = dim(Hp(F )).

Definition 1.3.2. Suppose F a coherent sheaf of a smooth projective variety X with dimension n.
We say that F has no intermediate cohomology if

hj(F (l)) = 0 for all j = 1, 2 . . . , n− 1 and for all l ∈ Z.

Notation 1.3.3. We denote Hp
∗ (F ) :=

⊕

l∈ZH
p(F (l)).
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Properties and facts about Serre duality

We recall Serre duality (Theorem 7.6 from [20]) that we state for the case of locally free sheaves
(vector bundles) since it is the one we are going to use.

Theorem 1.3.4. Let F be a vector bundle over X with dim(X) = N , then:

(a) HN (X,ωX ) ∼= K. Fix one such isomorphism;

(b) the natural pairing

Extj(F , ωX)×HN−j(X,F) −→ HN (X,ωX) ∼= K (1.7)

is a perfect pairing of finite-dimensional vector spaces over K;

(c) for every j ≥ 0 there is a natural functorial isomorphism

Extj(F , ωX)
∼

−→ HN−j(X,F)∗

where ∗ denotes the dual vector space, which for j = 0 is the one induced by the pairing of (b).

Remark 1.3.5. Suppose now X = G(1, n) and recall from Remark 1.1.14 that ωX = O(−n − 1).
Since (c) can be expressed as:

HN−j(X,F∨ ⊗ ωX) ∼= Hj(X,F)∗. (1.8)

We can thus write:

H2n−2−j(G(1, n),F∨ ⊗O(−n− 1)) ∼= Hj(G(1, n),F)∗.

Remark 1.3.6. One of the ideas that are used in the proof of Theorem 0.0.3 and our main theorem
is the interpretation of the Serre duality as extensions. Observe, for the case of Grassmannian of
lines X = G(1, n), that H2n−2(ωX) = H2n−2(O(−n−1)) = Ext2n−2(O,O(−n−1)) and the element
that generates it is precisely,

0 −→ O(−n− 1) −→
n−1∧

V ⊗O(−n) −→
n−2∧

V ⊗Q(−n) −→ . . .

. . . −→
2∧

V ⊗ Sn−3Q(−n) −→ V ⊗ Sn−2Q(−n) −→ V ∗ ⊗ Sn−2Q(−n+ 1) −→ . . .

. . . −→
n−2∧

V ∗ ⊗Q(−2) −→
n−1∧

V ∗ ⊗O(−1) −→ O −→ 0

that comes from the Eagon-Northcott complexes of Example 1.2.2 ((R∨
n−1 ⊗O(−1)) and (Rn−1)⊗

O(−n), see Remark 1.2.4).
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Remark 1.3.7. For any coherent sheaf F on X where dim(X) = N by Theorem 5.2 (b) of [20] we
have that:

hj(F(l)) = 0 l >> 0 j > 0.

And if F is also locally free, then:

hj(F(l)) = hN−j(F∨(−l)⊗ ωX) = 0 N > j l << 0.

From these equalities we get that if 0 < j < N :
∑

l

hj(F(l)) <∞.
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Chapter 2

Cohomological tools

In the first section of this chapter we will introduce the notion of Young diagram, its corresponding
irreducible representation and also its corresponding Schur functor.

In the second section of this chapter we will discuss Bott’s Theorem. First we will study the
Littlewood-Richardson rule and then we will show two important special cases of this rule, the
Pieri’s formula. Finally we will give the algorithm of Bott’s Theorem.

2.1 Schur Functors

For any finite-dimensional complex vector space V , we have the canonical decomposition

V ⊗ V = S2V ⊕
2∧

V

The group GL(V ) acts on V ⊗ V and this is the decomposition of V ⊗ V into a direct sum of
irreducible GL(V )−representations. For the next power, we instead have

V ⊗ V ⊗ V = S3V ⊕
3∧

V ⊕ another space. (2.1)

The theory of Schur functors will allow us to compute the missing space but it requires to establish
first some definitions of irreducible representations of Sd, Young diagrams, . . ..

2.1.1 Irreducible representations and characters

Definition 2.1.1. A representation of a finite group G on a finite-dimensional complex vector space
V (or just over an algebraically closed field) is a homomorphism ρ : G→ GL(V ) of G to the group
of automorphisms of V . We call V itself a representation of G; in this way we will often suppress
the symbol ρ and write g · v or gv for ρ(g)(v). The dimension of V is called the degree of ρ. A
subrepresentation of a representation V is a vector subspace W of V which is invariant under G.
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We say that a representation V is irreducible if there is no proper nonzero invariant subspace W of
V (this means that the only subrepresentations are 0 and V ).

Example 2.1.2. Suppose G = S3 the symmetric group of permutations of 3 elements. Suppose
g ∈ S3 and v ∈ C

3. We have three natural irreducible representations,

• the trivial representation U , g · v = v, which is one-dimensional.

• the alternating representation U ′, g · v = sgn(g) · v, which is also one-dimensional.

• the standard representation, which is not so easy to compute and is a two-dimensional rep-
resentation. We have a natural permutation representation, in which S3 acts on C

3 by per-
muting coordinates. Explicitly, if {e1, e2, e3} is the standard basis, then consider g · ei = eg(i).
But this representation is not irreducible. Since the line spanned by the sum (1, 1, 1) of the
basis vectors is invariant, let us consider the complementary subspace

V = {(z1, z2, z3) ∈ C
3 : z1 + z2 + z3 = 0}

as the standard representation of S3 that we were looking for.

In fact, each representation corresponds to one of the direct summand of the equality (2.1): U
corresponds to the symmetric power, U ′ with the wedge power and finally V corresponds to the
new space we built (we will give the precise construction by making use of the Schur functor at the
end of Example 2.1.14 and in Example 2.1.16).

There is a remarkably effective tool for understanding the representations of a finite group G,
called character theory. Let us start with the main definition.

Definition 2.1.3. If V is a representation of G, its character XV is the complex-valued function
on the group defined by the trace of g on V :

XV (g) = Tr(g|V )

Note that XV (1) = dim(V ).

The character of a representation of a group G is really a function on the set of conjugacy classes
in G. Hence, we express the basic information about the irreducible representations of a group in
the form of a character table. This is a table with the conjugacy classes [g] of G listed across the
top, usually given by a representative g, with the number of elements in each conjugacy class over
it; the irreducible representations of G listed on the left; and in the appropriate box, the value of
the character XV on the conjugacy class [g].

Example 2.1.4. Let us compute the character table of S3. We take the three conjugacy classes
[1], [(12)] and [(123)] and the three representations computed in Example 2.1.2, U (trivial represen-
tation), U ′ (alternating representation) and V (standard representation). The trivial representation
U takes the values (1, 1, 1) on the three conjugacy classes, whereas the alternating representation
U ′ takes the values (1,−1, 1). In order to compute these values for the standard representation, we
provide the specific maps of the representations for each element g ∈ S3.
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S3 −→ GL(V ) S3 −→ GL(V ) S3 −→ GL(V )

(1) 7−→

(
1 0
0 1

)

(12) 7−→

(
0 1
1 0

)

(123) 7−→

(
0 1
−1 −1

)

S3 −→ GL(V ) S3 −→ GL(V ) S3 −→ GL(V )

(13) 7−→

(
−1 −1
0 1

)

(132) 7−→

(
−1 −1
1 0

)

(23) 7−→

(
1 0
−1 −1

)

We take an action on C
3 = 〈e1, e2, e3〉 that sends g(ei) = eg(i). Consider C

3/〈e1+e2+e3〉 = 〈ē1, ē2〉

Finally the character table of S3 is:

1 3 2
(1) (12) (123)

U 1 1 1
U ′ 1 −1 1
V 2 0 −1

We also notice that the values of the first column correspond to the dimension of each repre-
sentation. Moreover, the values of the first row are always 1 since each of them corresponds to the
trivial representation.

Let us remark the following:

Proposition 2.1.5. (Proposition 2.30 of [19]) The number of irreducible representations of a group
G is equal to the number of its conjugacy classes.

2.1.2 Young diagrams

We recall the notation, main definitions and properties from [19] and [37]. Let Sd be the symmetric
group of permutations over d elements.

The number of irreducible representations of Sd is the number of conjugacy classes, which
coincides with the number p(d) of partitions of d: d = λ1 + . . .+ λm, λ1 ≥ . . . ≥ λm ≥ 1.

Definition 2.1.6. To a partition λ is associated a Young diagram denoted by λ = (λ1, λ2, . . . , λm),
where λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0. It consists of a collection of boxes ordered in consecutive rows,
where the i−th row has exactly λi boxes (the rows of boxes are aligned top-left). The number of
boxes of λ is denoted by |λ| = λ1 + λ2 + . . .+ λm.

For example, the Young diagram associated to λ = (7, 4, 3, 1, 1) with |λ| = 16 corresponds to:

λ1
λ2
λ3
λ4
λ5

(2.2)
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Definition 2.1.7. The conjugate partition λ′ = (µ1, . . . , µr) = µ to a partition λ is defined by
interchanging rows and columns in the Young diagram.

With the same λ as before we have that the conjugate partition, λ′ = (5, 3, 3, 2, 1, 1, 1) = µ,
gives the following conjugate Young diagram:

µ1
µ2
µ3
µ4
µ5
µ6
µ7

(2.3)

Young diagrams can be used to describe projection operators for the regular representation, which
will then give the irreducible representations of Sd.

Definition 2.1.8. For a given Young diagram we can number the boxes. Any filling of λ with
numbers is called a Young tableau.

Just to fix convention, for a given Young diagram, number the boxes consecutively (from left
to right and top to bottom). Here we use all numbers from 1 to d in order to fill d boxes. More
generally, a tableau can allow repetitions of numbers. Each filling describes a vector in V ⊗d.

1 2 3 4 5

6 7 8

9 10 11

12 13

14

(2.4)

Given a tableau, say the canonical one shown, define two subgroups of the symmetric group (due
to the filling, we can consider the elements of Sd as permuting the boxes and the representations
constructed will be isomorphic to the ones made with the canonical tableau):

P = Pλ = {g ∈ Sd : g preserves each row}

and
Q = Qλ = {g ∈ Sd : g preserves each column}

They depend on λ but also on the filling of λ. In the group algebra CSd, we introduce two elements
corresponding to the subgroups and we set

aλ =
∑

g∈P

eg and bλ =
∑

g∈Q

sgn(g) · eg

To see what aλ and bλ do, observe that if V is any vector space and Sd acts on the d−th tensor
power V ⊗d by permuting factors, the image of the element aλ ∈ CSd → End(V ⊗d) is just the
subspace

Im(aλ) = Sλ1V ⊗ Sλ2V ⊗ · · · ⊗ SλkV ⊂ V ⊗d
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where the inclusion on the right is obtained by grouping the factors of V ⊗d according to the rows
of the Young tableau. Similarly, the image of bλ on this tensor power is

Im(bλ) =

µ1∧

V ⊗

µ2∧

V ⊗ . . .⊗

µr∧

V ⊂ V ⊗d

where µ is the conjugate partition to λ. This is because Sd acts on the d−th tensor power V ⊗d by
permuting factors.

Definition 2.1.9. Finally, we set
cλ = aλ · bλ ∈ CSd

that is called the Young symmetrizer corresponding to λ.

Example 2.1.10. Let us compute cλ in some particular examples:

• When λ = (d) we have c(d) = a(d) =
∑

g∈Sd
eg and the image of cλ on V ⊗d is SdV

• When λ = (1, . . . , 1)
︸ ︷︷ ︸

d

we have c(1,...,1) = b(1,...,1) =
∑

g∈Sd
sgn(g) · eg and the image of c(1,...,1)

on V ⊗d is
∧d V

• Suppose now the following particular Young tableau of λ = (2, 1):

1 2

3

First, let us compute the permutations that preserve rows and columns plus their correspond-
ing aλ and bλ:

P = {(1), (1, 2)} preserves rows =⇒ aλ = e(1) + e(12) changes rows

Q = {(1), (1, 3)} preserves columns =⇒ bλ = e(1) − e(13) changes columns

Finally we compute cλ:
cλ = e(1) + e(12) − e(13) − e(132)

Theorem 2.1.11. (Theorem 4.1 of [19]) Some scalar multiple of cλ is idempotent, i.e., c2λ = nλcλ,
and the image of cλ (by right multiplication on CSd) is an irreducible representation Vλ of Sd.
Every irreducible representation of Sd can be obtained in this way for a unique partition.

Note that this theorem gives a direct correspondence between conjugacy classes in Sd and
irreducible representations of Sd.

Example 2.1.12. We have computed in Example 2.1.2 the irreducible representations for S3. It
is not hard to work out which representations came from which Young diagram:

• for λ = (3) we get the trivial representation CS3 · cλ = U

• for λ = (1, 1, 1) we get the alternating representation CS3 · cλ = U ′

• for λ = (2, 1) we get the standard representation CS3 · cλ = V
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2.1.3 Definition and first properties of Schur Functor

We continue with the same notations and arguments in Section 2.1.2, so, the symmetric group Sd

acts on V ⊗d, say on the right, by permuting the factors

(v1 ⊗ . . .⊗ vd) · σ = vσ(1) ⊗ . . . ⊗ vσ(d)

This action commutes with the left action of GL(V ). We denote the image of cλ on V ⊗d by SλV .

SλV = Im(cλ|V ⊗d)

which is again a representation of GL(V ).

Definition 2.1.13. We call the functor that associates V ❀ SλV the Schur functor corresponding
to λ.

Example 2.1.14. Let us see some examples of Schur functors.

• (Symmetric power) For the partition λ = (d) corresponds to the functor V ❀ SdV

S(d)V = SdV =⇒ . . .
︸ ︷︷ ︸

d boxes

(2.5)

• (Exterior power) For the partition λ = (1, . . . , 1
︸ ︷︷ ︸

d

) corresponds to the functor V ❀

∧d V

S(1, 1, . . . , 1)
︸ ︷︷ ︸

d

V =
d∧

V =⇒ ...







d boxes (2.6)

• For the partition λ = (2, 1) we have computed cλ in Example 2.1.10:

cλ = e(1) + e(12) − e(13) − e(132)

So the image of cλ is the subspace of V ⊗3 spanned by all vectors:

cλ(v1 ⊗ v2 ⊗ v3) = v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 − v3 ⊗ v1 ⊗ v2

If we consider that
∧2 V ⊗ V is embedded in V ⊗3 by the map

∧2 V ⊗ V −→ V ⊗ V ⊗ V
u1 ∧ u2 ⊗ u3 7−→ u1 ⊗ u3 ⊗ u2 − u2 ⊗ u3 ⊗ u1

(2.7)
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then the image of cλ is the subspace of
∧2 V ⊗ V spanned by all vectors

cλ(v1 ⊗ v2 ⊗ v3) = v1 ∧ v3 ⊗ v2 + v2 ∧ v3 ⊗ v1

Finally
V ⊗ V ⊗ V

cλ−→ SλV
v1 ⊗ v2 ⊗ v3 7−→ v1 ∧ v3 ⊗ v2 + v2 ∧ v3 ⊗ v1

(2.8)

It is not hard to verify that these vectors span the kernel of the canonical map from
∧2 V ⊗V

to
∧3 V that sends u1 ∧ u2 ⊗ u3 to u1 ∧ u2 ∧ u3, so we have:

SλV = Ker(

2∧

V ⊗ V →
3∧

V )

Hence, we have found the missing space in the decomposition mention at the beginning

V ⊗ V ⊗ V = S3V ⊕
3∧

V ⊕ (S(2,1)V )⊗2

We can see this in another way:

V ⊗V ⊗V = (
2∧

V ⊕S2V )⊗V = (
2∧

V ⊗V )⊕(S2V ⊗V ) = (
3∧

V ⊕S(2,1)V )⊕(S(2,1)V ⊕S3V )

In order to give a general decomposition of V ⊗d into direct sum we state the following proposi-
tion:

Proposition 2.1.15. (Theorem 6.3 (2) of [19]) Let mλ be the dimension of the irreducible repre-
sentation Vλ of Sd corresponding to λ and |λ| = d. Then

V ⊗d ∼=
⊕

λ

SλV
⊗mλ

Example 2.1.16. For V ⊗ V ⊗ V = V ⊗3 we have three possibles Young diagrams (1, 1, 1), (3) and
(2, 1) associated to irreducible representations U (one dimensional), U ′ (one dimensional) and V
(two dimensional). Hence,

V ⊗ V ⊗ V = S(1,1,1)V ⊕ S(3)V ⊕ S(2,1) = S3V ⊕
3∧

V ⊕ (S(2,1)V )⊗2

Note that some of the SλV can be zero if V has small dimension. Let us see concretely when
this happens and how to compute the dimension of the Schur functor in the case it is not zero.

Proposition 2.1.17. (Theorem 6.3 (1) of [19]) Let k = dim(V ):

• if λk+1 6= 0 then SλV is zero

• if λk+1 = 0 then

dim(SλV ) =
∏

1≤i<j≤k

λi − λj + j − i

j − i
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If the number of rows of λ is less than the dimension of V we are allowed to complete λ with
zeros at the end.

Remark 2.1.18. Notice that the only Schur functor of a vector space V of dimension 2 are just
symmetric powers with some particular twists. This will be computed for the universal bundle Q
of rank 2 in Remark 4.1.25,

SjV (i) ❀ . . .

. . .
︸ ︷︷ ︸

i

. . .
︸ ︷︷ ︸

j

❀ S(i+j,i)V

2.2 Bott’s Theorem

The aim of this section is to compute the cohomology of Schur functors of the universal bundles of
the form

SλQ⊗ SµS
∨ (or SηS ⊗ SαQ

∨)

where λ = (λ0, . . . , λk) and µ = (µk+1, . . . , µn) (or η = (η1, . . . , ηn−k) and α = (α0, . . . , αk)). But
first, let us give the Littlewood-Richardson rule which is one important property. We use this rule
to decompose a tensor product of the form SλV ⊗SµV where V is a vector space (or vector bundle).
In Section 2.2.2 we will give two particular cases of this rule.

2.2.1 Littlewood-Richardson rule

One important property we want to discuss now is the way in which we decompose a tensor product
SλV ⊗ SµV of two Schur functors, with being λ a partition of d and µ a partition of n (we assume
λ a conjugacy class of Sd and µ a conjugacy class of Sn). The result is

SλV ⊗ SµV ∼=
⊕

υ

NλµυSυV (2.9)

where the sum is over partitions υ with |υ| = d + n, and Nλµυ are called Littlewood-Richardson
numbers that are determined by the Littlewood-Richardson rule. This equality corresponds to (6.7)
of [19] and Theorem 2.3.4 of [37].

Remark 2.2.1. One remark is in order. The Young diagram associated to each Schur Functor musts
fit inside a box with no more rows than the rank of V, otherwise we must remove this summand
from the formula (2.9). Moreover, it has to be a partition, in other cases we remove it from the
formula.

In order to compute the Littlewood-Richardson numbers we give some definitions:

Definition 2.2.2. If µ = (µ1, . . . , µr), a µ−expansion of a Young diagram is obtained by first
adding µ1 boxes to the rows, without being two boxes in the same column, and putting the integer
1 in each of these µ1 boxes. Then adding similarly µ2 boxes with a 2 in each of them, continuing
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until finally µr boxes are added with the integer r. The expansion is called strict if, when the
integers in the boxes are listed from right to left, starting with the top row and working down, and
one looks at the first t entries in this list (for any t between 1 and |µ| = µ1 + . . .+µr), each integer
p between 1 and r − 1 occurs at least as many times as the next integer p+ 1.

Example 2.2.3. Consider λ = (2, 1) and µ = (2, 1). Let us compute all the possibles strict
µ−expansions of λ.

1 1

2

1 1

2

1

1 2

1

1

2

1

2

1

1

1

2

1

1 2

1

1

2

It is not difficult to see that the following µ−expansions of λ are not strict:

2

1

1

2

1

1

2

1 1

Definition 2.2.4. We define the Littlewood-Richardson numbers Nλµυ as the number of ways in
which υ can be obtained as a strict µ−extension of λ. Therefore, υ is also a Young diagram with
as many boxes as λ and µ together.

Example 2.2.5. Let us compute Nλµυ in a particular example. Consider λ = (2, 1), µ = (2, 1) and
υ = (3, 2, 1). Taking a look to Example 2.2.3, there are only two different ways in which we can
obtain υ as a strict µ−extension of λ.

N(2,1)(2,1)(3,2,1) = 2 =⇒ 1

2

1

and 1

1

2

2.2.2 Pieri’s Formula

Two important special cases of the Littlewood-Richardson rule are easier to use. We call them
Pieri’s Formula.

Proposition 2.2.6. (Formula 6.8 and 6.9 of [19])

• SλV ⊗
∧k V ∼= ⊕µSµV where the sum goes over all partitions µ whose Young diagram is

obtained by adding k boxes to the Young diagram λ, without being two of them in the same
row

• SλV ⊗ SkV ∼= ⊕µSµV where the sum goes over all partitions µ whose Young diagram is
obtained by adding k boxes to the Young diagram λ, without being two of them in the same
column
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Example 2.2.7. Let us give some examples of Pieri’s formula.

• S(3,2,2,1)V ⊗
∧3 V we have to add three boxes but we are not allowed to add two new boxes

in the same row:

⊗ = ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

• S(3,2,2,1)V ⊗ S3V we have to add three boxes but we are not allowed to add two new boxes in
the same column:

⊗ = ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕

Remark 2.2.8. Let us state some precise properties by using Littlewood-Richardson rule and
Pier’s formula.

• SλV ⊗ V = S(λ1+1,λ2,...,λk)V ⊕ S(λ1,λ2+1,...,λk)V ⊕ . . . ⊕ S(λ1,λ2,...,λk+1)V

• Problem of Plethysm: the general problem is to decompose the functor Sλ(SµV ) into Schur
functors,

Sλ(SµV ) =
⊕

{υ : |υ|=|λ|·|µ|}

MλµυSυV
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and also to decompose Sλ(V ⊗ U) into tensor product of Schur functors,

Sλ(V ⊗ U) =
⊕

|λ|=|µ|=|υ|

M ′
λµυSµV ⊗ SυU.

There are some particular cases already solved (for example Corollary 2.3.3 of [37] that gives
the result for Sm(V ⊗U) and

∧m(V ⊗U)) but the general problem is to find the multiplicities
Mλµυ and M ′

λµυ .

• Problem of Plethysm for Grassmannian: in this particular case we already know,

SµQ = Sµ(

k∧

Q∨ ⊗
n−k∧

S).

Remark 2.2.9. Some properties of Grassmannians G(k, n) by using Pieri’s rule:

1. O(1) =
∧n−k S = S(1, . . . , 1)

︸ ︷︷ ︸
n−k

S ⇒ O(r) = O(1)⊗ . . .⊗O(1)
︸ ︷︷ ︸

r

=
n−k∧

S ⊗ . . .⊗
n−k∧

S
︸ ︷︷ ︸

r

=

S(r, . . . , r)
︸ ︷︷ ︸

n−k

S (we have to consider r columns with n− k boxes)

⊗ ⊗ . . .⊗ = . . .

. . .

. . .

. . .







n− k

2. O(1) =
∧k+1Q = S(1, . . . , 1)

︸ ︷︷ ︸
k+1

S ⇒ O(r) = O(1)⊗ . . . ⊗O(1)
︸ ︷︷ ︸

r

=

k+1∧

Q⊗ . . . ⊗
k+1∧

Q
︸ ︷︷ ︸

r

=

S(r, . . . , r)
︸ ︷︷ ︸

k+1

Q (we have to consider r columns with k + 1 boxes)

⊗ ⊗ . . .⊗ = . . .

. . .

. . .

. . .







k + 1

3. O(−1) =
∧n−k S∨ = S(1, . . . , 1)

︸ ︷︷ ︸
n−k

S∨ ⇒ O(−r) = O(−1)⊗ . . .⊗O(−1)
︸ ︷︷ ︸

r

=

=

n−k∧

S∨ ⊗ . . . ⊗
n−k∧

S∨

︸ ︷︷ ︸

r

= S(r, . . . , r)
︸ ︷︷ ︸

n−k

S∨ (as in the first case)
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4. O(−1) =
∧k+1Q∨ = S(1, . . . , 1)

︸ ︷︷ ︸
k+1

Q∨ ⇒ O(−r) = O(−1)⊗ . . .⊗O(−1)
︸ ︷︷ ︸

r

=

=

k+1∧

Q∨ ⊗ . . .⊗
k+1∧

Q∨

︸ ︷︷ ︸

r

= S(r, . . . , r)
︸ ︷︷ ︸

k+1

Q∨ (as in the second case)

2.2.3 Bott’s algorithm

Now we want to compute the cohomology of some symmetric and skew-symmetric product of the
universal bundles over the Grassmannians G(k, n), let us introduce an algorithm that calculates the
cohomology of SλQ⊗ SµS

∨ (or SηS ⊗ SαQ
∨). Since rank of Q is k+1, and rank of S∨ is n− k, let

λ = (λ0, . . . , λk) and µ = (µk+1, . . . , µn) two partitions. We call

ν(λ,µ) := SλQ⊗ SµS
∨.

By considering η = (η1, . . . , ηn−k) and α = (αn−k+1, . . . , αn+1) instead of λ and µ we can also
consider

ν(η,α) := SηS ⊗ SαQ
∨.

We put always in the first place the bundle that has sections.

We extract here from Remark 4.1.5, Corollary 4.1.7 and Corollary 4.1.9 of [37] the following
algorithm that gives the values of Hj(SλQ⊗ SµS

∨) for all j ≥ 0.

Proposition 2.2.10. Let ν := (λ0, . . . , λk, µk+1, . . . , µn) and suppose j = 0. We have two possibil-
ities:

1. If ν is a partition, then Hj(SλQ⊗ SµS
∨) = SνK

n+1 and H i(SλQ⊗ SµS
∨) = 0 for all i 6= j

2. If ν is not a partition, then consider the first l such that νl < νl+1. Two possibilities can occur:

• If νl+1 − νl = 1, then H i(SλQ⊗ SµS
∨) = 0 for all i ≥ 0

• If νl+1 − νl 6= 1, then consider ν := (ν1, . . . , νl−1, νl+1 − 1, νl + 1, νl+2, . . . , νn+1) and
j = j + 1, and go back to 1.

If we want to compute Hj(SηS ⊗ SαQ
∨), at the beginning of Proposition 2.2.10 we have to

consider ν(η,α) := (η1, . . . , ηn−k, αn−k+1, . . . , αn+1). Now let us rewrite the algorithm for this case:

Proposition 2.2.11. Let ν := (η1, . . . , ηn−k, αn−k+1, . . . , αn+1) and suppose j = 0. We have two
possibilities:

1. If ν is a partition, then Hj(SηS ⊗ SαQ
∨) = SνK

n+1 and H i(SηS ⊗ SαQ
∨) = 0 for all i 6= j

2. If ν is not a partition, then consider the first l such that νl < νl+1. Two possibilities can occur:

• If νl+1 − νl = 1, then H i(SηS ⊗ SαQ
∨) = 0 for all i ≥ 0

• If νl+1 − νl 6= 1, then consider ν := (ν1, . . . , νl−1, νl+1 − 1, νl + 1, νl+2, . . . , νn+1) and
j = j + 1, and go back to 1.
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2.2.4 Some particular computations

If we want to apply the above algorithm, we need to transform the universal bundles and their
combinations in an expression of the form ν(λ,µ) = SλQ ⊗ SµS

∨ or ν(η,α) = SηS ⊗ SαQ
∨. We give

the computation of the cohomology for some particular bundles over the Grassmannian of lines
G(1, n) that will be needed in Chapter 3.

Remark 2.2.12. We recall that, if i ≤ j, there is a decomposition,

SiQ⊗ SjQ = Si+jQ⊕ (Si+j−2Q)(1) ⊕ (Si+j−4Q)(2) ⊕ . . . ⊕ (Sj−iQ)(i) (2.10)

Proposition 2.2.13. Consider Q the quotient bundle of rank 2 over the Grassmannian of lines
G(1, n). Then:

(i) Hj(SiQ(l)) = 0 for l ≥ 0, i ≥ 0 and j > 0

(ii) Hj(SiQ(−l)) = 0 for l > 0, i ≤ n− 2 and j < 2n− 2

Proof. For (i) we have that:

SiQ(l) = SiQ⊗ S(l,l)Q = S(i+l,l)Q

The last equality comes from Pieri’s formula.

︸ ︷︷ ︸

i

⊗ ⊗ . . .⊗

︸ ︷︷ ︸

l

=

i+l
︷ ︸︸ ︷

︸ ︷︷ ︸

l

So, we have to consider ν = (i + l, l, 0, . . . , 0
︸ ︷︷ ︸

n−1

). Since l ≥ 0 ⇒ i + l > l (for all i ≥ 0), then ν is a

partition. Applying Bott’s algorithm we obtain:
{
H0(SiQ(l)) = S(i+l,l)K

n+1

Hj(SiQ(l)) = 0 for all j > 0

For (ii) we have now:
SiQ(−l) = SiQ⊗ S(l,...,l)S

∨

So, we have to consider ν = (i, 0, l, . . . , l). We discuss two cases:

• if l ≥ i+n+1 then we have to make 2n−2 transposition to get a partition ν ′ = (l−2, . . . , l−
2, i+ n− 1, n− 1) is a partition. Hence,

{
H2n−2(SiQ(−l)) = S(l−2,...,l−2,i+n−1,n−1)K

n+1

Hj(SiQ(−l)) = 0 for j < 2n− 2
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• if 0 < l < i+ n+ 1 then by making some particular transpositions there always exists t such
that νt+1 − νt = 1. Hence Hj(SiQ(−l)) = 0 for all j.

Moreove, since H0(SiQ(l)) = 0 if l ≥ 0 then by using Serre duality,

H0(SiQ(l)) = H2n−2(SiQ∨(−l − n− 1)) = H2n−2(SiQ(−l − n− 1− i))

Hence H2n−2(SiQ(−l − n− 1− i)) = 0 also if −l > n+ i+ 1.

Proposition 2.2.14. Consider Q the quotient bundle of rank 2 over the Grassmannian of lines
G(1, n). Then,

Hn−1(SiQ(−n− r)) 6= 0 for r = 0, 1, . . . , i− n+ 1 and i ≥ n− 1.

Proof. Let us discuss three different cases.

1. First we study i = n− 1. There is only one possible twist.

• Sn−1Q(−n) = Sn−1Q∨(−1) = S(n,1)Q
∨ ⇒ ν = (0, . . . , 0, n, 1)

By applying n− 1 transposition we obtain ν ′ = (1, . . . , 1) and so,
{
Hn−1(Sn−1Q(−n)) = S(1,...,1)K

n+1

Hj(Sn−1Q(−n)) = 0 for j 6= n− 1

2. Now we study j = n. There are two possible twists.

• SnQ(−n) = SnQ∨ = S(n,0)Q
∨ ⇒ ν = (0, . . . , 0, n, 0)

By applying n− 1 transposition we obtain ν ′ = (1, . . . , 1, 0) and hence,
{
Hn−1(SnQ(−n)) = S(1,...,1,0)K

n+1

Hj(SnQ(−n)) = 0 for j 6= n− 1

• SnQ(−n− 1) = SnQ∨(−1) = S(n+1,1)Q
∨ ⇒ ν = (0, . . . , 0, n + 1, 1)

By applying n− 1 transposition we obtain ν ′ = (2, 1, . . . , 1) and hence,
{
Hn−1(SnQ(−n− 1)) = S(2,1,...,1)K

n+1

Hj(SnQ(−n− 1)) = 0 for j 6= n− 1

3. Now consider the remaining cases i = n + k, k ≥ 1. Here we use also the identifications of
Remark 2.2.9. There are k + 2 possible twists.

• We can study the first k + 1 cases together (t = 0, 1, . . . , k).
Sn+kQ(−n− t) = Sn+kQ∨(k − t) ⇒ ν = (k − t, . . . , k − t, n+ k, 0)
By applying n − 1 transposition we obtain ν ′ = (k + 1, k − t + 1 . . . , k − t + 1, 0) and
hence,

{
Hn−1(Sn+kQ(−n− t)) = S(k+1,k−t+1...,k−t+1,0)K

n+1

Hj(Sn+kQ(−n− t)) = 0 for j 6= n− 1
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• Sn+kQ(−n− (k + 1))) = Sn+kQ∨(−1) ⇒ ν = (0, . . . , 0, n + k + 1, 1)
By applying n− 1 transposition we obtain ν ′ = (k + 2, 1, . . . , 1) and hence,

{
Hn−1(Sn+kQ(−n− (k + 1))) = S(k+2,1,...,1)K

n+1

Hj(Sn+kQ(−n− (k + 1))) = 0 for j 6= n− 1

Notice that for any other twists there always exists t such that νt+1 − νt = 1 for the corresponding
ν in each case, hence all the cohomology vanish.

Remark 2.2.15. We could have proved that SiQ(l) does not have intermediate cohomology for i ≥
n−1 by using the Eagon-Northcott complexes. For example, the exact sequence (R∨

n−1) of Example
1.2.2 produces a nonzero element in Extn−1(O(1), Sn−1Q(−n + 1)) = Hn−1(Sn−1Q(−n)). In fact
this is the only nonzero intermediate cohomology of Sn−1Q, while (Ri) shows that the only nonzero
intermediate cohomology of SiQ with i ≥ n− 1 is Hn−1(SjQ(−n− k)), with k = 0, 1, . . . , i−n+1.

Proposition 2.2.16. Consider Q the quotient bundle of rank 2 over the Grassmannian of lines
G(1, n). Then SiQ is simple (i.e. Hom(SiQ, SiQ) = K).

Proof. Since Hom(SiQ, SiQ) = H0(SiQ⊗SiQ∨) = H2n−2(SiQ∨⊗SiQ(−n−1))∗ we apply (2.10).

SiQ∨ ⊗ SiQ(−n− 1) = SiQ⊗ SiQ(−i− n− 1) =

S2iQ(−i− n− 1)⊕ S2i−2Q(−i− n)⊕ S2i−4Q(−i− n+ 1)⊕ . . .⊕ S2Q(−n − 2)⊕O(−n− 1)

From Proposition 2.2.13 and Proposition 2.2.14 we get that the only summand with the cohomology
of order 2n − 2 non zero is O(−n − 1). By Theorem 1.3.4 we know that H2n−2(O(−n − 1)) = K.
Hence Hom(SiQ, SiQ) = K.

Lemma 2.2.17. Consider Q the quotient bundle of rank 2 over the Grassmannian of lines G(1, n)
and k ∈ {1, . . . , n − 2}. Then,

(i) H2n−2(Sn−k−1Q∨ ⊗ Sn−k−2Q(−n+ 1)) = 0

(ii) Hn−1(Sn−k−1Q∨ ⊗ Sk−1Q(−k)) = 0

Proof. For (i) we use Pieri’s formula to transform this vector bundle into sum of some particular
Schur functors.

Sn−k−1Q∨ ⊗ Sn−k−2Q(−n+ 1) = Sn−k−1Q∨ ⊗ Sn−k−2Q∨(−k − 2) =

= Sn−k−1Q∨⊗Sn−k−2Q∨⊗O(−1)⊗ . . .⊗O(−1)
︸ ︷︷ ︸

k+2

= Sn−k−1Q∨⊗Sn−k−2Q∨⊗
2∧

Q∨ ⊗ . . . ⊗
2∧

Q∨

︸ ︷︷ ︸

k+2

In terms of Young diagrams this can be expressed as:

(
n−k−1

︷ ︸︸ ︷

⊗

n−k−2
︷ ︸︸ ︷

)⊗(
k+2

︷ ︸︸ ︷

⊗ . . .⊗ ) = (
2n−2k−3

︷ ︸︸ ︷

⊕
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⊕

2n−2k−4
︷ ︸︸ ︷

⊕

2n−2k−5
︷ ︸︸ ︷

⊕ . . .

. . .⊕

n−k
︷ ︸︸ ︷

⊕

n−k−1
︷ ︸︸ ︷

) ⊗ (
k+2

︷ ︸︸ ︷

⊗ . . .⊗ )
The last thing we have to do is to add k + 2 boxes in each row (since we cannot add two boxes in
the same column). Hence these diagrams corresponds to the following:

(2n− k − 1, k + 2), (2n− k − 2, k + 3), (2n − k − 3, k + 4), . . . , (n+ 2, n − 1), (n+ 1, n) (2.11)

So, Sn−k−1Q∨ ⊗ Sn−k−2Q(−n+ 1) = ⊕λSλQ
∨ where λ = (r, s) is as in (2.11).

Now we want to compute Bott’s algorithm to SλQ
∨ for these λ. Let us apply Proposition 2.2.11

to elements of the form ν = (0, . . . , 0
︸ ︷︷ ︸

n−1

, r, s). Making n−1 changes we get ν = (r−(n−1), 1, . . . , 1
︸ ︷︷ ︸

n−1

, s).

Since r − s ≥ 1, when we apply the changes to s we obtain at some point:

ν = (r − (n− 1), 1 . . . , 1, 2, 2, . . . , 2)

Hence, if we take the first l such that νl < νl+1 we have that νl+1−νl = 1. Furthermore, Hj(SλQ
∨) =

0 for all j ≥ 0. In particular,

H2n−2(Sn−k−1Q∨ ⊗ Sn−k−2Q(−n + 1)) = 0.

For (ii) we do not need to use Bott’s algorithm since by formula (2.10):

Sn−k−1Q∨(−1)⊗ Sk−1Q(−k) = Sn−k−1Q(−n+ k)⊗ Sk−1Q(−k) = Sn−k−1Q⊗ Sk−1Q(−n) =

= Sn−2Q(−n)⊕ Sn−4Q(−n+ 1)⊕ Sn−6Q(−n+ 2)⊕ . . .

As we say in Proposition 2.2.13, Hj(SiQ(l)) has no intermediate cohomology for i ≤ n − 2. In
particular:

Hn−1(Sn−k−1Q∨⊗Sk−1Q(−k)) = Hn−1(Sn−2Q(−n)⊕Sn−4Q(−n+1)⊕Sn−6Q(−n+2)⊕ . . .) = 0

Lemma 2.2.18. Consider Q the quotient bundle of rank 2 over the Grassmannian of lines G(1, n)
and k ∈ {1, . . . , n − 2}. Then,

(i) Hn−1(SkQ∨ ⊗ Sn−k−2Q∨(−1)) = 0

(ii) H0(SkQ∨ ⊗ Sk−1Q) = 0
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Proof. For (i) we consider,

SkQ∨ ⊗ Sn−k−2Q∨(−1) = SkQ⊗ Sn−k−2Q(−n+ 1) =

= Sn−2Q(−n+ 1)⊕ Sn−4Q(−n+ 2)⊕ Sn−6Q(−n+ 3)⊕ . . .

We notice that, since Hj(SiQ(l)) has no intermediate cohomology for i ≤ n− 2,

Hn−1(SkQ∨⊗Sn−k−2Q∨(−1)) = Hn−1(Sn−2Q(−n+1)⊕Sn−4Q(−n+2)⊕Sn−6Q(−n+3)⊕. . .) = 0

For (ii) we transform this condition with the Serre duality in order to obtain a Schur functor of
the form SαQ

∨:

H0(SkQ∨ ⊗ Sk−1Q) = H0(SkQ⊗ Sk−1Q(−k)) = H2n−2(SkQ∨ ⊗ Sk−1Q∨(k − n− 1))∗

One notice that k−n−1 < 0 always since k ∈ {1, . . . , n−2}. Now, let us express this vector bundle
as follows:

SkQ∨ ⊗ Sk−1Q∨(k − n− 1) = SkQ∨ ⊗ Sk−1Q∨ ⊗O(−1)⊗ . . . ⊗O(−1)
︸ ︷︷ ︸

n+1−k

=

= SkQ∨ ⊗ Sk−1Q∨ ⊗
2∧

Q∨ ⊗ . . .⊗
2∧

Q∨

︸ ︷︷ ︸

n+1−k

As in Example 2.2.17, we use Pieri’s formula:

(
k

︷ ︸︸ ︷

⊗

k−1
︷ ︸︸ ︷

)⊗(
n+1−k

︷ ︸︸ ︷

⊗ . . .⊗ ) = (
2k−1

︷ ︸︸ ︷

⊕

⊕

2k−2
︷ ︸︸ ︷

⊕

2k−3
︷ ︸︸ ︷

⊕ . . .

. . .⊕

k+1
︷ ︸︸ ︷

⊕

k
︷ ︸︸ ︷

) ⊗ (
n+1−k

︷ ︸︸ ︷

⊗ . . .⊗ )
The last thing we have to do is to add n+1− k boxes in each row (since we cannot add two boxes
in the same column). Hence these diagrams corresponds to the following:

(n+ k, n+1− k), (n+ k− 1, n+2− k), (n+ k− 2, n+3− k), . . . , (n+2, n− 1), (n+1, n) (2.12)

So, SkQ∨ ⊗ Sk−1Q = ⊕λSλQ
∨ where λ = (r, s) is as in (2.12).

By applying the same argument as in Lemma 2.2.17 we obtain that, Hj(SλQ
∨) = 0 for all j ≥ 0.

In particular,
H2n−2(Sn−k−1Q∨ ⊗ Sn−k−2Q(−n+ 1))∗ = 0

Hence,
H0(SkQ∨ ⊗ Sk−1Q) = 0
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Lemma 2.2.19. Consider Q the quotient bundle of rank 2 over the Grassmannian of lines G(1, n)
and k ∈ {1, . . . , n − 2}. Then,

(i) Hn−1(SkQ ⊗ Sn−k−1Q(−n)) = Hn−1(Sn−1Q(−n)) = S(1,...,1)K
n+1 =

∧n+1
K
n+1 and its di-

mension is equal to 1

(ii) Hj
∗(S

kQ⊗ Sn−k−1Q) = 0 for j 6= n− 1

(iii) Hj
∗(S

kQ⊗ SiQ) = 0 for i 6= n− k − 1 for j = 1, 2, . . . , 2n− 3

Proof. By applying (2.10) to SkQ⊗ SiQ(l) we get,

SkQ⊗ SiQ(l) = (Si+kQ⊕ Si+k−2Q(1)⊕ . . .)⊗O(l)

Notice that for i = n− k − 1 we have that,

SkQ⊗ Sn−k−1Q(l) = (Sn−1Q⊕ Sn−3Q(1) ⊕ . . .)⊗O(l)

By Proposition 2.2.14 we know that,






Hn−1(SkQ⊗ Sn−k−1Q(−n)) = Hn−1(Sn−1Q(−n)) = S(1,...,1)K
n+1

Hj
∗(S

kQ⊗ Sn−k−1Q) = 0 for j 6= n− 1

Hj
∗(S

kQ⊗ SiQ) = 0 for i 6= n− k − 1 for j = 1, 2, . . . , 2n− 3

Clearly the dimension of the determinant representation is 1 (we could have also used the formula
that appears in Proposition 2.1.17 to compute it).

2.3 Remarks about Schur functors

Although not needed for our results, we want to point out two interesting results related to Schur
functors.

First, by using the language of Young diagrams and Schur functors one can state the following
proposition from [18] which is a kind of generalization of the Eagon-Northcott introduced in Section
1.2. This proposition gives the corresponding extension Extn−k(SλQ,Sλ∗Q(−1)) for a particular
Young diagram λ with λ1 = n− k.

Proposition 2.3.1. (Proposition 5.3 of [18])
Let λ ∈ Yn,k be a diagram with λ = (n − k, λ2, . . . , λk+1) (where Yn,k is the set of Young diagrams
inscribed in a rectangle of size (k + 1)× (n− k)). Consider λ∗ = (λ2, . . . , λk+1). Then there exists
the following long exact sequence for the tautological subbundle Q∨ of rank k + 1,

0 −→ Sλ∗Q(−1) −→

υn−k∧

V ⊗ Sµn−k
Q −→

υn−k−1∧

V ⊗ Sµn−k−1
Q −→ . . .

. . . −→
υ2∧

V ⊗ Sµ2Q −→
υ1∧

V ⊗ Sµ1Q −→ SλQ −→ 0 (2.13)
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(−1)

λ

n− k

k + 1

b

b

b

b

for some 0 ≤ υi < n and µi ∈ Yn,k where υi and µi are defined in a nice combinatorial way. Given
λ ∈ Yn,k with λ1 = n− k, let us draw a stripe of width 1 as shown:

Now, µi is pictured in the following figure by the solid line. One takes the path λ going from left
to right and "jumps" upward on the path λ′(−1) in the point with abscissa n− k − i.

µi

in− k − i

k + 1

b

b

The number υi is the number of boxes one needs to remove from λ in order to get µi. These are
pictured in gray on the previous figure.

Secondly, if we consider the multideterminant of a multilinear form V ⊗ . . .⊗ V −→ K (see for
example [34] for the general definition of multideterminant) by decomposing this multilinear form
as summands of Schur functors (Proposition 2.1.15) we proof that the multideterminant vanishes
for all but two Schur functors. The concrete statement is the following, see [36]:

Theorem 2.3.2. When A ∈ SλV
⊗mλ ⊆ V ⊗p, mλ is the dimension of the irreducible representa-

tion Vλ of Sd corresponding to λ, |λ| = p and p ≥ 2, Det(A) can be nonzero only for λ = (p)
(corresponding to the symmetric power SympV ) and λ = (p − 1, 1), where S

λV (resp. SλV ) is the
Σp-module (resp. GL(V )−module) associated to λ.
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Chapter 3

Characterization of Universal Bundles

In this chapter we will give the main result of this thesis. Our starting point is the following splitting
criterion that appears in [7]:

Theorem 0.0.3. Let F be a vector bundle over the Grassmannian of lines G(1, n). Then F splits
if and only if

a. Hj
∗(F ⊗ SjQ) = 0 j ∈ {1, 2, . . . , n− 3, n− 2}

b. Hj
∗(F ⊗ SiQ) = 0 (i, j) ∈ {(0, 2n − 3), (1, 2n − 4), . . . , (n − 3, n), (n − 2, n − 1)}

Remark 3.0.3. We can try to imitate the tecnique of [6] and see which of those conditions is
not satisfied by Q and try to see whether the remaining ones characterize vector bundles of the
form (⊕O(li0))

⊕
(⊕Q(li1)). Observe that, by Lemma 2.2.19, Q satisfies all the conditions of this

splitting criteria except one:

• Hj
∗(Q⊗ SjQ) = 0 j = 1, 2, . . . , n− 3, n− 2

• Hj
∗(Q⊗ SiQ) = 0 (i, j) ∈ {(0, 2n − 3), (1, 2n − 4), . . . , (n − 3, n)}

• Hn−1
∗ (Q⊗ Sn−2Q) 6= 0

However, also F = SkQ(l) with k ≤ n − 2, satisfies all the hypothesis of Theorem 0.0.3 but
Hn−1

∗ (F ⊗ Sn−2Q) = 0. So, we have to add more conditions. In fact, this is what we are going to
do during this chapter. Once we have the characterization for the direct sums of twists of O, Q,
S2Q,. . . , Sk−1Q the idea is to remove one particular hypothesis and add a few more. In this way
we obtain the characterization of direct sums of twists of O, Q,. . . ,SkQ with k ≤ n− 2.

3.1 Graphical representation of the results

Here we will introduce a graphical representation of the results that we will obtain in the rest of
the chapter.
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Remark 3.1.1. We can express graphically the conditions of the form Hj
∗(F ⊗ SiQ) = 0 that

appear in the previous theorem as the points (i, j) in the following diagram.

0
0

1

2

3

4

...

n− 4

n− 3

n− 2

n− 1

n

n + 1

n + 2

...

2n− 6

2n− 5

2n− 4

2n− 3

2n− 2

j

A0

(n− 2, n− 1)

1 2 3 4 . . . n− 5 n− 4 n− 3 n− 2 n− 1 i

B0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 3.1: Hypothesis for Theorem 0.0.3

Definition 3.1.2. Let us define the segments A0 and B0 appearing in the previous figure as follows:

• A0 = {(0, 2n − 3), (1, 2n − 4), (2, 2n − 5), . . . , (n− 5, n + 2), (n − 4, n + 1), (n − 3, n)}

• B0 = {(1, 1), (2, 2), (3, 3), . . . , (n − 4, n− 4), (n − 3, n− 3), (n − 2, n − 2)}

Remark 3.1.3. Notice that the point (n− 2, n − 1) is the continuation of the segment A0 but we
put it separately since it is the condition we need to remove to get the next characterization.

Remark 3.1.4. We have also expressed with a dashed line the n − 1 order of the cohomology of
Hj

∗(F ⊗ SiQ) = 0 because all the cohomologies we remove in each step are in this line.

Remark 3.1.5. We can compare graphically this splitting criteria with the one made by G. Otta-
viani (Theorem 0.0.2). For this purpose let us define the following segments.

• L0 = {(0, 2n − 3), (1, 2n − 4), . . . , (n − 3, n), (n − 2, n− 1)}

• For k = 1, . . . , n− 2 we define Lk = {(0, 2n− 3− k), (1, 2n− 4− k), . . . , (n− k− 2, n− 1), (n−
k − 1, n − 2)} = {(j, 2n − 3− k − j) for j = 0, 1, . . . , n − k − 1}

• R0 = {(1, 1), (2, 2), . . . , (n− 3, n − 3), (n − 2, n − 2)}

• For k = 1, 2, . . . , n−2 we define Rk = {(0, k), (1, k+1), . . . , (n−3−k, n−3), (n−2−k, n−2)} =
{(j, k + j) for j = 0, 1, . . . , n − k − 2}
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All the cohomological vanishings of Theorem 0.0.2 consist in:

Hj
∗(F ⊗ SiQ) = 0 where (i, j) ∈

{
L0 ∪ L1 ∪ . . . ∪ Ln−2

R0 ∪R1 ∪ . . . ∪Rn−2

These points correspond to the following figure. Notice that L0 = A0 and R0 = B0.
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Figure 3.2: Hypothesis for Theorem 0.0.2

We will prove in Theorem 3.3.1 that the characterization of F = (⊕O(li0))
⊕

(⊕Q(li1)) will be
the vanishing of Hj

∗(F ⊗ SiQ) for (i, j) in A0, B0 and the points that are shown in the following
figure.
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Figure 3.3: Hypothesis to be added to characterize F = (⊕O(li0))
⊕

(⊕Q(li1))

Hence, if F satisfies Hj(F ⊗ SiQ) = 0 for (i, j) as in conditions A0 and B0 of Figure 3.1 and as
in all the conditions in Figure 3.3 then we get the characterization for F = (⊕O(li0))

⊕
(⊕Q(li1)).

All these conditions can be expressed in Figure 3.4.
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Figure 3.4: Hypothesis needed to characterize F = (⊕O(li0))
⊕

(⊕Q(li1))
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Remark 3.1.6. Notice that C1 ⊆ A0 but we highlight it in Figure 3.3 and 3.4 it since in the
iteration process we will need the segments Ck not contained in any other defined segment.

Remark 3.1.7. Let us give one more step. Observe that Hn−1
∗ (S2Q ⊗ Sn−3Q) 6= 0 (by Lemma

2.2.19), so we need to remove the condition corresponding to the point (n−3, n−1) to get the next
characterization. Notice that this point is in the intersection of the lines containing A1 and B1 but
we put it separately since we remove it.

We will prove in Theorem 3.3.1 that the characterization of

F = (⊕O(li0))
⊕

(⊕Q(li1))
⊕

(⊕S2Q(li2))

will be the vanishing of Hj
∗(F ⊗SiQ) for (i, j) as in conditions A0, B0, A1, B1, C1 and D1 of Figure

3.4 and the points that are shown in the following figure.
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Figure 3.5: Hypothesis to be added to characterize F = (⊕O(li0 ))
⊕

(⊕Q(li1))
⊕

(⊕S2Q(li2))

Remark 3.1.8. Notice that the point (n − 4, n − 1) is in the intersection of the lines containing
A2 and B2 but, as before, we put it separately since is the condition we need to remove to get the
next characterization (Hn−1

∗ (S3Q⊗ Sn−4Q) 6= 0 by Lemma 2.2.19).

Hence, if F satisfies the vanishings of Hj(F⊗SiQ) for (i, j) as in Figure 3.4 (except (n−3, n−1))
and all the conditions in Figure 3.5 then we get the characterization for

F = (⊕O(li0))
⊕

(⊕Q(li1))
⊕

(⊕S2Q(li2))
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Figure 3.6: Hypothesis needed to characterize F = (⊕O(li0))
⊕

(⊕Q(li1))
⊕

(⊕S2Q(li2))

In Theorem 3.3.1 we will iterate this process to obtain a characterization of direct sums of twists
of symmetric products of the universal bundle

F = (⊕O(li0))
⊕

(⊕Q(li1))
⊕

. . .
⊕

(⊕SkQ(lik))

until k = n− 2.

For that, we will need to give the definition of the segments Ak, Bk, Ck, Dk. Notice that we
have already introduced A0 and B0 in the first part of this chapter.

Definition 3.1.9. Let us define the following segments for 1 ≤ k ≤ n− 2:

• Ak = {(0, 2n − k − 3), (1, 2n − k − 4), (2, 2n − k − 5), . . . , (n − k − 4, n+ 1), (n − k − 3, 1)}

• Bk = {(0, k + 1), (1, k + 2), (2, k + 3), . . . , (n − k − 4, n − 3), (n − k − 3, n − 2)}

• Ck = {(0, 2n − k − 2), (1, 2n − k − 1), (2, 2n − k), . . . , (k − 2, 2n − 4), (k − 1, 2n − 3)}

• Dk = {(0, k), (1, k − 1), (2, k − 2), . . . , (k − 2, 2), (k − 1, 1)}

Observe that A0 can be defined in the same way as the Ak with k = 0 whereas B0 cannot be defined
as the Bk with k = 0.

Remark 3.1.10. Notice that An−2 = ∅ and Bn−2 = ∅. Hence, in the case that k ≥ n − 2 we are
not adding any cohomological condition with the notation of Ak and Bk.

Moreover, all the conditions corresponding to the points of the lines Ck and Dk has no sense
for k ≥ n − 1 because of the way they are defined. For example, if k = n − 1 we get that
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Cn−1 = {(0, n − 1), (1, n), (2, n + 1), . . . , (n − 3, 2n − 4), (n − 2, 2n − 3)} and Dn−1 = {(0, n −
1), (1, n − 2), (2, n − 3), . . . , (n − 3, 2), (n − 2, 1)}. The point (0, n − 1) of Cn−1 and Dn−1 cor-
responds to the condition Hn−1

∗ (F ) = 0 and this cannot be true if we want to characterize
F = (⊕O(li0))

⊕
(⊕Q(li1))

⊕
. . .

⊕
(⊕SkQ(lik)) with k = n − 1 since Hn−1

∗ (Sn−1Q) 6= 0 (see
Proposition 2.2.14).

Remark 3.1.11. Let us show graphically which are the points of the segments defined in Definition
3.1.9 (that correspond to the cohomological conditions Hj

∗(F ⊗ SiQ) = 0). We will also draw the
point (n− k− 2, n− 1) since we will use it in the lemmas and proposition of the following section.
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Figure 3.7: Ak, Bk, Ck, Dk and the point (n− k − 2, n− 1)
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Remark 3.1.12. One can easily see that the points corresponding to:

(i, j) ∈







A0 ∪A1 ∪ . . . ∪Ak−1

B0 ∪B1 ∪ . . . ∪Bk−1

C1 ∪ C2 ∪ . . . ∪Ck−1

D1 ∪D2 ∪ . . . ∪Dk−1

are inside of the set of points:

(i, j) ∈







A0 ∪A1 ∪ . . . ∪Ak
B0 ∪B1 ∪ . . . ∪Bk
C1 ∪ C2 ∪ . . . ∪ Ck
D1 ∪D2 ∪ . . . ∪Dk

This observation will be useful during the proof of the main theorem. Specifically, these last condi-
tions plus the point (n− k − 2, n− 1) form the hypothesis of the main theorem. Let us show them
graphically in the following figure. One starts drawing the lines corresponding to Ak, Bk, Ck, Dk

and fill the corresponding spaces with lines until the ones drawn in Figure 3.4 (except condition
(n − 3, n− 1)).
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Figure 3.8: Conditions to characterize direct sum of twists of O,Q, S2Q, . . . , SkQ

37



Remark 3.1.13. Finally, let us give graphically all the cohomological conditions we need for the
characterization of direct sums of twists of O, Q, S2Q, . . . , SkQ when k = n − 3 and k = n − 2
(i.e. for the last two characterizations we can make) in order to give a complete idea of what kind
of hypothesis we will need for each characterization (from k = 0 to k = n−2). As we have observed
in Remark 3.1.10, to get the classification when k = n − 2, we just have to add the line Cn−2 and
Dn−2 to the points we already have for the classification when k = n− 3, since An−2 = Bn−2 = ∅.
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Figure 3.9: Conditions to characterize direct sum of twists of O,Q, S2Q, . . . , Sn−3Q
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Figure 3.10: Conditions to characterize direct sum of twists of O,Q, S2Q, . . . , Sn−2Q
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3.1.1 Relation between cohomological vanishings

For each k there exists the complex (Rk) glued together with (R∨
n−k−1) ⊗ O(−1) from Example

1.2.2,

0 −→ Sn−1−kQ∨(−1) −→ V ∗ ⊗ Sn−2−kQ∨(−1) −→
2∧

V ∗ ⊗ Sn−3−kQ∨(−1) −→ . . .

. . . −→
n−2−k∧

V ∗ ⊗Q∨(−1) −→
n−1−k∧

V ∗ ⊗O(−1) −→
k∧

V ⊗O −→
k−1∧

V ⊗Q −→ . . .

. . . −→
2∧

V ⊗ Sk−2Q −→ V ⊗ Sk−1Q −→ SkQ −→ 0

It is glaringly clear that one cohomological condition Hs
∗(F ⊗ SrQ) = 0 (that will be represented

with a blue dot in the figures of this section) can be obtained from the vanishings of some particular
cohomological conditions related with this complex. Depending on which of the two parts of the
complex we are focused we obtain two different relations corresponding to Lemma 3.1.14 (if we fix
r ∈ {1, 2, . . . , k}) and Lemma 3.1.15 (if we fix r ∈ {1, 2, . . . , n− k − 1}).

Lemma 3.1.14. Fix k ∈ {1, 2, . . . , n − 3, n − 2}, r ∈ {1, 2, . . . , k} and consider max{k − r, 1} ≤
s ≤ n − r + k − 2. Suppose F is a vector bundle over the Grassmannian of lines G(1, n). If the
following condition hold:

Hj
∗(F ⊗ SiQ) = 0 for (i, j) ∈ P1 ∪ P2 ∪ P3

where P1, P2 and P3 are defined as the following segments and represented in Figure 3.11:

• P1 = {(k, s − k + r + 1), (k − 1, s − k + r + 2), (k − 2, s − k + r + 3), . . . , (r + 3, s − 2), (r +
2, s− 1), (r + 1, s)}

• P2 = {(r − 1, s), (r − 2, s + 1), (r − 3, s + 2), . . . , (2, s + r − 3), (1, s + r − 2), (0, s + r − 1)}

• P3 = {(0, s+ r), (1, s+ r+ 1), (2, s+ r+ 2), . . . , (n− k − 3, s+ r+ n− 3− k), (n− k − 2, s+
r + n− 2− k), (n − k − 1, s + r + n− 1− k)}

then Hs
∗(F ⊗ SrQ) = 0.

Proof. It is enough to use the Eagon-Northcott complex (Rk) glued together with (R∨
n−k−1)⊗O(−1)

from Example 1.2.2:

0 −→ Sn−1−kQ∨(−1) −→ V ∗ ⊗ Sn−2−kQ∨(−1) −→
2∧

V ∗ ⊗ Sn−3−kQ∨(−1) −→ . . .

. . . −→
n−2−k∧

V ∗ ⊗Q∨(−1) −→
n−1−k∧

V ∗ ⊗O(−1) −→
k∧

V ⊗O −→
k−1∧

V ⊗Q −→ . . .

. . . −→
k−r+1∧

V ⊗ Sr−1Q −→
k−r∧

V ⊗ SrQ −→
k−r−1∧

V ⊗ Sr+1Q −→ . . .
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. . . −→
2∧

V ⊗ Sk−2Q −→ V ⊗ Sk−1Q −→ SkQ −→ 0

and apply cohomology to each short exact sequence. Observe that the range for s is chosen to avoid
that no j coordinate in P1 ∪ P2 ∪ P3 is neither 0 nor 2n− 2.

We represent graphically the points of Lemma 3.1.14 (P1, P2 and P3) and also the point (r, s)
which corresponds to the new cohomological vanishing.
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Figure 3.11: Segments P1, P2 and P3

Lemma 3.1.15. Fix k ∈ {1, 2, . . . , n− 3, n− 2}, r ∈ {1, 2, . . . , n− 1− k} and consider 1 + r+ k ≤
s ≤ min{2n − 3, n − 1 + k + r}. Suppose F is a vector bundle over the Grassmannian of lines
G(1, n). If the following condition hold:

Hj
∗(F ⊗ SiQ) = 0 for (i, j) ∈ P ′

1 ∪ P
′
2 ∪ P

′
3

where P1, P2 and P3 are defined as the following segments and represented in Figure 3.12:

• P ′
1 = {(n− 1− k, n− k− r+ s− 2), (n− k − 2, n− k − r+ s− 3), (n− k − 3, n− k − r+ s−

4), . . . , (r + 3, s+ 2), (r + 2, s + 1), (r + 1, s)}

• P ′
2 = {(r − 1, s), (r − 2, s − 1), (r − 3, s − 2), . . . , (2, s − r + 3), (1, s − r + 2), (0, s − r + 1)}

• P ′
3 = {(0, s−r), (1, s−r−1), (2, s−r−2), . . . , (k−2, s−r−k+2), (k−1, s−r−k+1), (k, s−r−k)}
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then Hs
∗(F ⊗ SrQ) = 0.

Proof. We consider the same complex as in the proof of Lemma 3.1.14,

0 −→ Sn−1−kQ∨(−1) −→ V ∗ ⊗ Sn−2−kQ∨(−1) −→
2∧

V ∗ ⊗ Sn−3−kQ∨(−1) −→ . . .

. . . −→
n−k−r−2∧

V ∗ ⊗ Sr+1Q −→
n−k−r−1∧

V ∗ ⊗ SrQ −→
n−k−r∧

V ∗ ⊗ Sr−1Q −→ . . .

. . . −→
n−2−k∧

V ∗ ⊗Q∨(−1) −→
n−1−k∧

V ∗ ⊗O(−1) −→
k∧

V ⊗O −→
k−1∧

V ⊗Q −→ . . .

. . . −→
2∧

V ⊗ Sk−2Q −→ V ⊗ Sk−1Q −→ SkQ −→ 0

and apply cohomology to each short exact sequence. Again the range for s in the hypothesis avoids
any j to be 0 or 2n− 2.

As before we represent graphically the points of Lemma 3.1.15 (P ′
1, P

′
2 and P ′

3) and also the
point (r, s).
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Figure 3.12: Segments P ′

1, P
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2 and P ′

3
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Remark 3.1.16. The case r = n − 1 will be very useful in Remark 4.3.4 since with this method
we can obtain equivalent conditions to the one corresponding to (n− 1, n− 2) by using the Eagon-
Northcott complex (Rn−1). More precisely, these equivalent conditions are:

• P3 = {(0, s + n− 2), (1, s + n− 3), . . . , (n − 3, s+ 1), (n − 2, s)}

• P4 = {(0, s + n− 1)}

represented in the following figure.

0

...

n− 2

n− 1

n

...

2n− 6

2n− 5

2n− 4

2n− 3
...

j

1 2 . . . n− 4n− 3n− 2n− 1 i

b

b

b

b

b

b

P3

b P4

b(n− 1, n− 2)

Figure 3.13: Segments P3 and P4

Remark 3.1.17. Notice that if in Lemma 3.1.14 we have that r = k there will be only two pieces
in Figure 3.11, corresponding to P2 and P3. In the case of Lemma 3.1.15, if r = n− k− 1 there will
be only two pieces in Figure 3.12, corresponding to P ′

2 and P ′
3.

Remark 3.1.18. Observe that we cannot give this kind of relation when r = 0 since we always
need to know that Hs

∗(F ) = 0 to prove that Hs
∗(F ) = 0 if we use the same technique as before.

Remark 3.1.19. Notice that since the number of requested conditions of Lemma 3.1.14 and 3.1.15
is always n we cannot use these arguments to simplify the conditions that appear in Figure 3.8.

The following remark will be very useful to compare Theorem 0.0.2 with the splitting criterion
that we will obtain in Theorem 4.3.9 with the techniques of derived categories.

Remark 3.1.20. By applying Lemma 3.1.14 (with k = r and 2 ≤ r ≤ n − 2) to the conditions of
Theorem 0.0.2 we also obtain the vanishings of Hj

∗(F ⊗ SiQ) = 0 where:

(i, j) ∈ {(2, 1), (3, 2), (4, 3), . . . , (n− 4, n − 5), (n − 3, n − 4), (n − 2, n− 3)} = R−1
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Figure 3.14: Extended version of Theorem 0.0.2

3.2 Previous Lemmas

Before giving the main result, let us give a general idea of the technique we will use during this
chapter. To characterize when a vector bundle F decomposes as (⊕O(li0))

⊕
(⊕Q(li1)) from the

characterization of ⊕O(li0) we can assume, after twisting F , Hn−1(F⊗Sn−2Q(−n)) 6= 0. Otherwise
we could use Theorem 0.0.3. Then we use a particular Eagon-Northcott complex to transform
Hn−1(F ⊗Sn−2Q(−n)) into H0(F ⊗Q∨). By Serre duality we have also Hn−1(F∨⊗Sn−2Q∨(−n−
1)) 6= 0 and again, by a particular Eagon-Northcott complex, we transform it into H0(F∨ ⊗ Q).
Hence, we obtain the maps Q −→ F and F −→ Q and we will show that their composition is the
identity of Q or a multiple of it. Hence Q is a direct summand of F and we proceed by induction
on rank(F ).

Once we have done this, we try to characterize when F decomposes as (⊕O(li0))
⊕

(⊕Q(li1))
⊕

(⊕S2Q(li2)). But this time we can assume Hn−1(F ⊗Sn−3Q(−n)) 6= 0. By using Eagon-Northcott
complexes and Serre duality we obtain the maps S2Q −→ F and F −→ S2Q and again we will
prove their composition to be the identity or a multiple of it, which allows to complete the proof.
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In general we use induction on k to characterize (⊕O(li0))
⊕

(⊕Q(li1))
⊕
. . .

⊕
(⊕SkQ(lik))

from the characterization of (⊕O(li0))
⊕

(⊕Q(li1))
⊕
. . .

⊕
(⊕Sk−1Q(lik−1

)) and for this purpose
we assume Hn−1(F ⊗ Sn−k−1Q(−n)) 6= 0 (since Hn−1(SkQ ⊗ Sn−k−1Q(−n)) 6= 0 as we have
observed in Lemma 2.2.19). And again we will get suitable maps SkQ −→ F and F −→ SkQ.

In the Lemmas of this section we will see how to produce maps from the cohomology groups.
We will keep the notation of Definition 3.1.9.

Lemma 3.2.1. Fix k ∈ {1, . . . , n− 2}. Then there exists a natural map

H0(F ⊗ SkQ∨)
ψ1
−→ Hn−1(F ⊗ Sn−k−1Q(−n))

Moreover, if the following conditions hold:

Hj
∗(F ⊗ SiQ) = 0 with (i, j) ∈ Bk ∪Dk ∪ (n− k − 2, n − 1)

the map ψ1 is a surjective map.

Proof. Since k ≤ n− 2 we can consider the Eagon-Northcott complex (R∨
n−1−k)⊗O(−k− 1), glued

together with (Rk)⊗O(−k) from Example 1.2.2 and using Remark 1.1.15:

0 −→ Sn−k−1Q(−n) −→ V ∗ ⊗ Sn−k−2Q(−n+ 1) −→
2∧

V ∗ ⊗ Sn−k−3Q(−n+ 2) −→ . . .

. . . −→
n−k−2∧

V ∗⊗Q(−k−2) −→
n−k−1∧

V ∗⊗O(−k−1) −→
k∧

V⊗O(−k) −→
k−1∧

V⊗Q(−k) −→ . . .

. . . −→
2∧

V ⊗ Sk−2Q(−k) −→ V ⊗ Sk−1Q(−k) −→ SkQ(−k) −→ 0 (3.1)

Now we tensorize it by F and take all the short exact sequences with their corresponding
cokernels (K∨

j ). Then apply cohomology. Let us start from left to right.

Hn−2(F ⊗ Sn−k−1Q(−n)) // V ∗ ⊗Hn−2(F ⊗ Sn−k−2Q(−n+ 1)) // Hn−2(F ⊗K∨
n−k−2(−k − 1))

ϕ1

qq❞❞❞❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞

❞

Hn−1(F ⊗ Sn−k−1Q(−n)) // V ∗ ⊗Hn−1(F ⊗ Sn−k−2Q(−n+ 1))
︸ ︷︷ ︸

point (n−k−2,n−1)

// Hn−1(F ⊗K∨
n−k−2(−k − 1))

Moreover, if Hn−1
∗ (F ⊗ Sn−k−2Q) = 0, then ϕ1 is a surjective map. Let us repeat the same

argument. By using the first part of (3.1) we construct ϕj for j = 2, . . . , n− k − 2.

Hn−j−1(F ⊗K∨
n−k−j(−k − 1)) //

∧j V ∗ ⊗Hn−j−1(F ⊗ Sn−k−j−1Q(−n+ j)) // Hn−j−1(F ⊗K∨
n−k−j+1(−k − 1))

ϕj

qq❝❝❝❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝

Hn−j(F ⊗K∨
n−k−j(−k − 1)) //

∧j V ∗ ⊗Hn−j(F ⊗ Sn−k−j−1Q(−n+ j))
︸ ︷︷ ︸

point (n−k−j−1,n−j)∈Bk

// Hn−j(F ⊗K∨
n−k−j+1(−k − 1))
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We use the middle part of (3.1) for the maps ϕn−k−1 and ϕn−k.

Hk(F ⊗K∨
1 (−k − 1)) //

∧n−k−1 V ∗ ⊗Hk(F (−k − 1)) // Hk(F ⊗
∧n−k−1 S(−k − 1))

ϕn−k−1

qq❞❞❞❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞

Hk+1(F ⊗K∨
1 (−k − 1)) //

∧n−k−1 V ∗ ⊗Hk+1(F (−k − 1))
︸ ︷︷ ︸

point (0,k+1)∈Bk

// Hk+1(F ⊗
∧n−k−1 S(−k − 1))

Hk−1(F ⊗
∧k S∨(−k)) //

∧k V ⊗Hk−1(F (−k)) // Hk−1(F ⊗K ′
1(−k))

ϕn−k

rr❡❡❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡❡

Hk(F ⊗
∧k S∨(−k)) //

∧k V ⊗ Hk(F (−k))
︸ ︷︷ ︸

point (0,k)∈Dk

// Hk(F ⊗
∧n−k−1 S(−k − 1))

We repeat now for ϕj with j = n− k + 1, . . . , n− 2 by using the third part of (3.1), and finally for
ϕn−1.

Hn−j−1(F ⊗K ′
k+j−n(−k))

//
∧n−j V ⊗Hn−j−1(F ⊗ Sk+j−nQ(−k)) // Hn−j−1(F ⊗K ′

k+j−n+1(−k))

ϕj

qq❞❞❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞❞

❞❞❞❞❞❞
❞❞❞❞❞❞

Hn−j(F ⊗K ′
k+j−n(−k))

//
∧n−j V ⊗Hn−j(F ⊗ Sk+j−nQ(−k))

︸ ︷︷ ︸

point (k+j−n,n−j)∈Dk

// Hn−j(F ⊗K ′
k+j−n+1(−k))

H0(F ⊗K ′
k−1(−k))

// V ⊗H0(F ⊗ Sk−1Q(−k)) // H0(F ⊗ SkQ(−k))

ϕn−1

rr❡❡❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡

H1(F ⊗K ′
k−1(−k))

// V ⊗H1(F ⊗ Sk−1Q(−k))
︸ ︷︷ ︸

point (k−1,1)∈Dk

// H1(F ⊗ SkQ(−k))

By the composition of all ϕj for j = 1, . . . , n− 1 we have finally construct the map ψ1

H0(F ⊗ SkQ(−k))
ψ1
−→ Hn−1(F ⊗ Sn−k−1Q(−n))

Moreover, if all the cohomologies of the statement vanish then ψ1 is a surjective map.

Remark 3.2.2. Notice that the cohomological condition corresponding to the point (n−k−2, n−1)
makes no sense if k > n− 2. This is why Theorem 3.3 will be valid only for k ≤ n− 2.
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Remark 3.2.3. For the next lemma we need the conditions of the form Hj
∗(F

∨ ⊗ SiQ) = 0 for
some (i, j). More precisely, the conditions we need are:

• Hn−2
∗ (F∨ ⊗ Sn−k−3Q∨) = Hn−3

∗ (F∨ ⊗ Sn−k−4Q∨) = . . .
. . . = Hk+3

∗ (F∨ ⊗ S2Q∨) = Hk+2
∗ (F∨ ⊗Q∨) = Hk+1

∗ (F∨) = 0

• Hk
∗ (F

∨) = Hk−1
∗ (F∨ ⊗Q∨) = Hk−2

∗ (F∨ ⊗ S2Q∨) = . . .
. . . = H3

∗ (F
∨ ⊗ Sk−3Q) = H2

∗ (F
∨ ⊗ Sk−2Q) = H1

∗ (F
∨ ⊗ Sk−1Q) = 0

• Hn−1
∗ (F∨ ⊗ Sn−k−2Q∨) = 0

For simplicity, by using the Serre duality we transform them into another ones without F∨:

• Hn
∗ (F ⊗ Sn−k−3Q) = Hn+1

∗ (F ⊗ Sn−k−4Q) = . . .
. . . = H2n−5−k

∗ (F ⊗ S2Q) = H2n−4−k
∗ (F ⊗Q) = H2n−3−k

∗ (F ) = 0

• H2n−2−k
∗ (F ) = H2n−1−k

∗ (F ⊗Q) = H2n−k
∗ (F ⊗ S2Q) = . . .

. . . = H2n−5
∗ (F ⊗ Sk−3Q) = H2n−4

∗ (F ⊗ Sk−2Q) = H2n−3
∗ (F ⊗ Sk−1Q) = 0

• Hn−1
∗ (F ⊗ Sn−k−2Q) = 0

These correspond to the segments Ak, Ck and the point (n− k − 2, n − 1).

Lemma 3.2.4. Fix k ∈ {1, . . . , n− 2}. Then there exists a natural map

H0(F∨ ⊗ SkQ)
ψ2
−→ Hn−1(F∨ ⊗ Sn−k−1Q∨(−1))

Moreover, if the following conditions hold:

Hj
∗(F ⊗ SiQ) = 0 with (i, j) ∈ Ak ∪ Ck ∪ (n− k − 2, n − 1)

the map ψ2 is a surjective map.

Proof. Argue in the same way as before. Since k ≤ n − 2 we can consider the Eagon-Northcott
complex (R∨

n−1−k)⊗O(−1) glue together with (Rk) from Example 1.2.2:

0 −→ Sn−k−1Q∨(−1) −→ V ∗ ⊗ Sn−k−2Q∨(−1) −→
2∧

V ∗ ⊗ Sn−k−3Q∨(−1) −→ . . .

. . . −→
n−k−2∧

V ∗ ⊗Q∨(−1) −→
n−k−1∧

V ∗ ⊗O(−1) −→
k∧

V ⊗O −→
k−1∧

V ⊗Q −→ . . .

. . . −→
2∧

V ⊗ Sk−2Q −→ V ⊗ Sk−1Q −→ SkQ −→ 0 (3.2)

This time we tensorize it by F∨ and take all the short exact sequences with their corresponding
cokernels (K∨

j ) as before.
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Notation 3.2.5. We want to remark the following isomorphism:

K = H2n−2(O(−n− 1)) ∼= H2n−2(Sn−k−1Q(−n)⊗ Sn−k−1Q∨(−1)).

We call the following perfect pairing:

Hn−1(F ⊗ Sn−k−1Q(−n))×Hn−1(F∨ ⊗ Sn−k−1Q∨(−1))
φ

−→ H2n−2(O(−n− 1))
(α, β) 7−→ φ((α, β))

the Serre pairing.

Now we are ready to state the following proposition in which we prove that the composition of
the maps SkQ −→ F and F −→ SkQ corresponds to the identity or with a multiple of it.

Proposition 3.2.6. Fix k ∈ {1, . . . , n − 2} and consider α and β be non zero elements such that
the image of the Serre pairing,

Hn−1(F ⊗ Sn−k−1Q(−n))×Hn−1(F∨ ⊗ Sn−k−1Q∨(−1))
φ

−→ H2n−2(O(−n− 1))
(α, β) 7−→ φ((α, β))

is non zero. Suppose that the following conditions hold:

Hj
∗(F ⊗ SiQ) = 0 with (i, j) ∈ Ak ∪Bk ∪ Ck ∪Dk ∪ (n− k − 2, n− 1)

Then we can lift α to α′ ∈ H0(F ⊗ SkQ∨) and β to β′ ∈ H0(F∨ ⊗ SkQ) by the natural maps,

H0(F ⊗ SkQ∨)
ψ1
−→ Hn−1(F ⊗ Sn−k−1Q(−n))

α′ 7−→ α

H0(F∨ ⊗ SkQ)
ψ2
−→ Hn−1(F∨ ⊗ Sn−k−1Q∨(−1))

β′ 7−→ β

of Lemma 3.2.1 and Lemma 3.2.4, such that, regarding α′ ∈ Hom(SkQ, F ) and β′ ∈ Hom(F, SkQ),
their composition is a nonzero multiple of the identity map SkQ −→ SkQ.

Proof. By Lemma 3.2.1 and Lemma 3.2.4 we know that we can lift α to α′ by ψ1 and by ψ2 we can
lift β to β′. We would like also to lift φ to the composition map Hom(SkQ, F )×Hom(F, SkQ) −→
Hom(SkQ, SkQ). To do this, let us identify H2n−2(O(−n− 1)) with Hom(SkQ, SkQ). We will do
this by using the same complexes we used for the maps ψ1 and ψ2 since k ≤ n− 2.

If we tensorize now the complex (3.1) by Sn−k−1Q∨(−1) instead of by F and repeat the same
argument as in Lemma 3.2.1, but starting from 2n − 2 as the higher order of the cohomology, we
obtain that the following map is an isomorphism:

Hn−1(SkQ∨ ⊗ Sn−k−1Q∨(−1))
≃
−→
ψ3

H2n−2(Sn−k−1Q(−n)⊗ Sn−k−1Q∨(−1))

The cohomology vanishings we need are the ones given in Lemma 2.2.17.
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Now let us consider the complex (3.2) tensorized by SkQ∨ instead of by F∨ from Lemma 3.2.4.
This time we start from the cohomology of order n − 1 and obtain that the following map is an
isomorphism:

H0(SkQ∨ ⊗ SkQ)
≃
−→
ψ4

Hn−1(SkQ∨ ⊗ Sn−k−1Q∨(−1))

As before, the cohomology vanishings we need are the ones given in Lemma 2.2.18.

Putting all together we get the following commutative diagram:

Hn−1(F⊗Sn−k−1Q(−n))×Hn−1(F∨⊗Sn−k−1Q∨(−1))
φ

−→ H2n−2(Sn−k−1Q(−n)⊗Sn−k−1Q∨(−1))

↑ ψ1 × id 	 ψ3 ↑≃

H0(F ⊗ SkQ∨)×Hn−1(F∨ ⊗ Sn−k−1Q∨(−1)) −→ Hn−1(SkQ∨ ⊗ Sn−k−1Q∨(−1))

id× ψ2 ↑ 	 ψ4 ↑≃

H0(F ⊗ SkQ∨)×H0(F∨ ⊗ SkQ)
φ′

−→ H0(SkQ∨ ⊗ SkQ)

where ψ1 and ψ2 are surjective maps and ψ3 and ψ4 are isomorphisms.

Hence, the composition of the morphisms α′ ∈ Hom(SkQ, F ) and β′ ∈ Hom(F∨ ⊗ SkQ) is
a non zero map SkQ −→ SkQ. Since SkQ is simple (see Proposition 2.2.16) this composition is
necessarily a multiple of the identity.

Remark 3.2.7. We can identify the hypothesis of Proposition 3.2.6 with the points (i, j) in Figure
3.7.

3.3 Main Theorem

We prove now the main theorem of this thesis.

Theorem 3.3.1. Fix k ∈ {0, 1, . . . , n − 2} an let F be a vector bundle over the Grassmannian of
lines G(1, n). Then F is a direct sum of twists of O,Q, S2Q, . . . , SkQ if and only if the following
conditions hold:

Hj
∗(F ⊗ SiQ) = 0 for (i, j) ∈







A0 ∪A1 ∪ . . . ∪Ak
B0 ∪B1 ∪ . . . ∪Bk
C1 ∪C2 ∪ . . . ∪ Ck
D1 ∪D2 ∪ . . . ∪Dk

(n− k − 2, n − 1)

Proof. We use double induction. First we make induction on k, the case k = 0 being Theorem 0.0.3.
We suppose now the theorem true for k − 1 and we want to prove it for k. Since k ≤ n− 2 we can
now apply induction on m :=

∑

l h
n−1(F⊗Sn−k−1Q(l)) (by Remark 1.3.7 we know that m is a finite

number). When m = 0 we are in the hypothesis of the theorem when replacing k with k− 1. Hence
by induction hypothesis, F can be expressed as the direct sum of twist of O, Q, S2Q, . . . , Sk−1Q.
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Assume nowm > 0 and that we know the result form−1. In particular, Hn−1(F⊗Sn−k−1Q(l)) 6=
0 for some l. We want to show that then SkQ(−n− l) is a direct summand of F (see Lemma 2.2.19).
Since the result is independent on the twist, we can assume l = −n. We take a non zero element
α ∈ Hn−1(F ⊗ Sn−k−1Q(−n)). Since the Serre pairing:

Hn−1(F ⊗ Sn−k−1Q(−n))×Hn−1(F∨ ⊗ Sn−k−1Q∨(−1))
φ

−→ H2n−2(O(−n− 1))

is perfect we can take β ∈ Hn−1(F∨ ⊗ Sn−k−1Q∨(−1)) such that φ(α, β) 6= 0.

Since k ≤ n − 2, by Proposition 3.2.6 we can lift α to α′ ∈ Hom(SkQ) and β to β′ ∈
Hom(F, SkQ) such that the composition of α′ and β′ is a nonzero multiple of the identity map
SkQ −→ SkQ. Thus we can write F = SkQ⊕F ′ for some F ′. Clearly F ′ satisfies all the hypothesis
of the theorem (since F does). Moreover, since hn−1(SkQ⊗ Sn−k−1Q(−n)) = 1 by Lemma 2.2.19
we have hn−1(F ′ ⊗ Sn−k−1Q(−n)) = m− 1.

By induction hypothesis F ′ can be expressed as direct sums of twists of O,Q, S2Q, . . . , SkQ and
hence the same holds for F as wanted.

Remark 3.3.2. As we can observe, there are some repeated conditions in the statement of the
Theorem 3.3.1. Graphically these repetitions coincide with the intersections between segments.

3.4 Remarks about the Main Theorem

3.4.1 Some remarks about sharpness

Some remarks are in order.

Remark 3.4.1. As we have remarked the condition Hn−1
∗ (F ⊗ Sn−k−2Q) = 0 corresponding to

the point (n− k − 2, n− 1) is necessary, since for F = Sk+1Q satisfies all the other conditions (see
Lemma 2.2.19).

Remark 3.4.2. Let us discuss why we cannot include Sn−1Q (or in general SkQ with k > n− 2)
as a direct summand of F in the characterization of the main theorem.

If we are in the hypothesis of the characterization for

(⊕O(li0))
⊕

(⊕Q(li1))
⊕

. . .
⊕

(⊕Sn−2Q(lin−2))

we need to remove one cohomological condition of order n− 1 to get the characterization of

(⊕O(li0))
⊕

(⊕Q(li1))
⊕

. . .
⊕

(⊕Sn−2Q(lin−2))
⊕

(⊕Sn−1Q(lin−1))

The only possibility is Hn−1
∗ (F ) = 0. Let us suppose Hn−1

∗ (F ) 6= 0 (since Hn−1(Sn−1Q(−n)) 6= 0,
see Lemma 2.2.19). Now we should construct the map ψ1 as in Lemma 3.2.1.

H0(F ⊗ Sn−1Q∨)
ψ1
−→ Hn−1(F (−n))
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To do this we consider the complex (Rn−1)⊗O(−n−1) and apply cohomology. The first cohomology
that must vanish to construct ψ1 is Hn−1

∗ (F ) = 0, but this cannot occur since Hn−1
∗ (Sn−1Q) 6= 0.

Moreover, if one removes the condition Hn−1
∗ (F ) from the hypothesis of the theorem one expect

to characterize, with the remaining conditions, the direct sums of twists of O, Q, S2Q, . . ., Sn−2Q,
Sn−1Q, SnQ, . . . since any other symmetric product of order greater or equal than n − 1 satisfies
all the conditions required for k = n− 2 except Hn−1

∗ (F ) = 0.

On the other hand, notice that the statement of the main theorem has no sense for k ≥ n−1. We
have already mentioned that Ak = Bk = ∅ for k ≥ n−2. Observe also that conditions corresponding
to Ck and Dk for k ≥ n − 1 generate a cohomological condition of order n − 1 but this cannot be
one of the hypothesis since Hn−1

∗ (SiQ) 6= 0 when i ≥ n− 1.

3.4.2 Comparison between characterizations

We can compare our theorem with the characterizations that are already made by other authors. For
instance, we can compare the splitting criteria we assume for k = 0 (Theorem 0.0.3, by E. Arrondo
and F. Malaspina) with the one made by G. Ottaviani in the particular case of G(1, n) (Theorem
0.0.2). At the end of Chapter 4 we will also obtain a splitting criteria for the Grassmannian of lines
and we will compare these theorems with it. Let us now recall the statement of Theorem 0.0.2:

Let F be a vector bundle over G(1, n). Then F splits if and only if the following
conditions hold for i = 0, 1, . . . , n− 2:

Hj
∗(F ⊗ SiQ) = 0 with i ≤ j < 2n− 2− i and j > 0.

Remark 3.4.3. Although the original conditions for this splitting criteria are given as the vanishings
of some cohomologies of the bundles F , F ⊗Q, F ⊗Q⊗Q, . . ., F ⊗Q⊗ . . .⊗

︸ ︷︷ ︸

n−2

Q by using the well-

known expression (2.2.13) we easily achieve that these conditions are equivalent to the ones of
Theorem 0.0.2, which are represented in Figure 3.2.

As we observed in Remark 3.1.5, Theorem 0.0.2 has much more conditions than Theorem 0.0.3
(represented in Figure 3.1).

On the other hand, H. Knörrer gave a characterization of aCM bundles over quadrics (see [28]),
which in the particular case of G(1, 3) reads as;

Theorem 3.4.4. Let F be a vector bundle over G(1, 3). Then F can be expressed as
(⊕O(li0))

⊕
(⊕Q(li1))

⊕
(⊕S(li2)) if and only if Hj

∗(F ) = 0 for j = 1, 2, 3.

Two immediate corollaries of this are the following (see also [8]).

Theorem 3.4.5. Let F be a vector bundle over G(1, 3). Then F can be expressed as (⊕O(li0))
⊕

(⊕Q(li1))
if and only if,

• Hj
∗(F ) = 0 for j = 1, 2, 3
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• H1
∗ (F ⊗Q) = 0

Observe that this is exactly what we get in Theorem 3.3.1 for n = 3.

Theorem 3.4.6. Let F be a vector bundle over G(1, 3). Then F can be expressed as
⊕O(li0) if and only if,

• Hj
∗(F ) = 0 for j = 1, 2, 3

• Hj
∗(F ⊗Q) = 0 for j = 1, 2

Now this characterization has two more conditions than the one given in Theorem 0.0.3 for
n = 3, and coincides with Theorem 0.0.2.

We finally compare Theorem 0.0.4 of E. Arrondo and B. Graña with the characterization of
sums of line bundles and twists of Q that we got in Theorem 3.3.1. For that, we particularize that
resulf for k = 1 and n = 4:

Theorem 3.4.7. (Theorem 3.3.1 for k = 1, n = 4) Let F be a vector bundle in G(1, 4). Then F
can be expressed as direct sum of twist of line bundles and Q if and only if the following conditions
hold:

• H1
∗ (F ) = H2

∗ (F ) = H4
∗ (F ) = H5

∗ (F ) = 0

• H1
∗ (F ⊗Q) = H2

∗ (F ⊗ S2Q) = H3
∗ (F ⊗Q) = H4

∗ (F ⊗Q) = 0

Representing graphically the conditions of Theorem 0.0.4 and 3.4.7, we notice that our charac-
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Figure 3.15: Theorem 0.0.4 vs Theorem 3.4.7

terization has one condition less than the one made by E. Arrondo and B. Graña. This is because
our starting point was Theorem 0.0.3 instead of Theorem 0.0.2

3.4.3 Generalization to other varieties

Observe that the main underlying idea in the proof of our result is to interpret Serre’s duality as a
composition pairing of extensions Exti(F, SkQ⊗ωG(1,n))×Ext

2n−2−i(SkQ, F ) → Ext2n−2(SkQ, SkQ⊗
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O(−n− 1)), in which this last space Ext2n−2(SkQ, SkQ⊗O(−n− 1)) is one-dimensional and gen-
erated by the gluing of (3.2) and its dual twisted by O(−n − 1 + k). The starting point, which is
the splitting Theorem 0.0.3, comes in fact from the case k = 0.

Hence, in order to generalize all this to an arbitrary N−dimensional variety X we need to find
a suitable extension generating ExtN (O, ωX). For example, if X is an arbitrary Grassmannian we
have the following:

Proposition 3.4.8. The one-dimensional vector space

H(k+1)(n−k)(ωG(k,n)) = H(k+1)(n−k)(O(−n− 1)) = Ext(k+1)(n−k)(O,O(−n− 1))

is generated by the following exact sequence over G(k, n):

0 −→ O(−n− 1) −→ V ⊗ S(n−k,...,n−k,n−k−1)Q
∨(−k − 1) −→

∧2 V ⊗ S(n−k,...,n−k,n−k−2)Q
∨(−k − 1) −→ . . .

. . . −→
∧n−k−1 V ⊗ S(n−k,...,n−k,1)Q

∨(−k − 1) −→
∧n−k V ⊗ S(n−k,...,n−k)Q

∨(−k − 1) −→ . . .

...

. . . −→ V ⊗ S(n−k,n−k,n−k−1)Q
∨(−3) −→

2∧

V ⊗ S(n−k,n−k,n−k−2)Q
∨(−3) −→ . . .

. . . −→
n−k−1∧

V ⊗ S(n−k,n−k,1)Q
∨(−3) −→

n−k∧

V ⊗ S(n−k,n−k)Q
∨(−3) −→

−→ V ⊗ S(n−k,n−k−1)Q
∨(−2) −→

2∧

V ⊗ S(n−k,n−k−2)Q
∨(−2) −→ . . .

. . . −→
n−k−1∧

V ⊗ S(n−k,1)Q
∨(−2) −→

n−k∧

V ⊗ S(n−k)Q
∨(−2) −→

−→ V ∗ ⊗ Sn−k−1Q∨(−1) −→
2∧

V ∗ ⊗ Sn−k−2Q∨(−1) −→ . . .

. . . −→
n−k−1∧

V ∗ ⊗Q∨(−1) −→
n−k∧

V ∗ ⊗O(−1) −→ O −→ 0

Proof. We start with (R∨
n−k)⊗O(−1) of Example 1.2.2:

0 −→ Sn−kQ∨(−1) −→ V ∗ ⊗ Sn−k−1Q∨(−1) −→
2∧

V ∗ ⊗ Sn−k−2Q∨(−1) −→ . . .

. . . −→
n−k−1∧

V ∗ ⊗Q∨(−1) −→
n−k∧

V ∗ ⊗O(−1) −→
n−k∧

S(−1) −→ 0
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We have the identification
∧n−k S(−1) = O. We want to glue a complex on the left, hence we

identify Sn−kQ∨ = S(n−k)Q
∨ and use the dual of (2.13) of Proposition 2.3.1, tensorized by O(−2).

So λ∗ = (n− k) and λ = (n − k, n − k). We compute also µi = (n− k, n − k − i) and υi = i:

0 −→ S(n−k,n−k)Q
∨(−2) −→ V ⊗ S(n−k,n−k−1)Q

∨(−2) −→
2∧

V ⊗ S(n−k,n−k−2)Q
∨(−2) −→ . . .

. . . −→
n−k−1∧

V ⊗ S(n−k,1)Q
∨(−2) −→

n−k∧

V ⊗ S(n−k)Q
∨(−2) −→ S(n−k)Q

∨(−1) −→ 0

Now we want to glue anther complex to the left, hence we use the dual of (2.13) again tensorized by
O(−3). So λ∗ = (n−k, n−k) and λ = (n−k, n−k, n−k). We compute also µi = (n−k, n−k, n−k−i)
and υi = i:

0 −→ S(n−k,n−k,n−k)Q
∨(−3) −→ V ⊗ S(n−k,n−k,n−k−1)Q

∨(−3) −→
∧2 V ⊗ S(n−k,n−k,n−k−2)Q

∨(−3) −→ . . .

. . . −→
∧n−k−1 V ⊗ S(n−k,n−k,1)Q

∨(−3) −→
∧n−k V ⊗ S(n−k,n−k)Q

∨(−3) −→ S(n−k,n−k)Q
∨(−2) −→ 0

If we continue with the same argument, gluing k + 1 complexes of this form, we will get the
complex we want. The last part we must add corresponds with the complex dual of (2.13) where
λ∗ = (n − k, . . . , n− k

︸ ︷︷ ︸

k

), λ = (n− k, . . . , n− k
︸ ︷︷ ︸

k+1

), µi = (n− k, . . . , n− k, n − k − i
︸ ︷︷ ︸

k

) and υi = i

tensorized by O(−k − 1):

0 −→ S(n− k, . . . , n − k
︸ ︷︷ ︸

k+1

)Q
∨(−k − 1) −→ V ⊗ S(n−k,...,n−k,n−k−1)Q

∨(−k − 1) −→
∧2 V ⊗ S(n−k,...,n−k,n−k−2)Q

∨(−k − 1) −→ . . .

. . . −→
∧n−k−1 V ⊗ S(n−k,...,n−k,1)Q

∨(−k − 1) −→
∧n−k V ⊗ S(n−k,...,n−k)Q

∨(−k − 1) −→ S(n− k, . . . , n − k
︸ ︷︷ ︸

k

)Q
∨(−k) −→ 0

Finally, we have the identification:

S(n− k, . . . , n− k
︸ ︷︷ ︸

k+1

)Q
∨(−k − 1) = O(−n+ k)⊗O(−k − 1) = O(−n− 1)

Hence we obtain a complex that begins in O(−n− 1) and ends in O of length (k +1)(n− k) as we
wanted.

Observe that, for k > 1, we get Schur functors of Q∨ that are not symmetric powers. This
makes a precise writing of the conditions of a splitting theorem much more complicated to write
down. This is why we decided to concentrate on the case k = 1, which makes easier to illustrate
our general method.
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Chapter 4

Derived categories

A natural way to obtain cohomological characterizations of vector bundles is the use of derived
categories (specifically Beilinson’s Theorem). As we have shown, a first natural case is a splitting
criterion. In this chapter we will find such a criterion for the Grassmannian of lines and we will
compare with the ones we already know, showing that our starting criterion of [7] is the most
effective.

4.1 Main definitions and properties

In this section we will define the concepts of derived category and derived functors. This will be
used only to put in the right general context the Beilinson’s Theorem. Hence we are not giving
all the details, although we will for sure give the notion of shift functor and mapping cone for the
definition of derived category and the notion of "having enough injectives" and injective resolution
for the definition of (right) derived functor.

We will suppose in all the chapter that A is an abelian category. One can check the following
main definitions and properties from [24]. And for further information take a look to [10], [14]

4.1.1 Derived categories

We briefly recall the definition of abelian category and category of complexes Kom(A) of an abelian
category A..

Definition 4.1.1. An abelian category is a category A such that for each A,B ∈ Ob(A), Hom(A,B)
has a structure of an abelian group, and the composition law is linear (finite direct sums exist,
every morphism has a kernel and a cokernel, every monomorphism is the kernel of its cokernel,
every epimorphism is the cokernel of its kernel, and finally every morphism can be factored into an
epimorphism followed by a monomophirsm).

Definition 4.1.2. A complex A• in A consists of a diagram of objects and morphisms in A of the
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form
. . . −→ Ai−1 di−1

−→ Ai
di
−→ Ai+1 di+1

−→ . . .

satisfying di ◦ di−1 = 0 or, equivalently, Im(di−1) ⊂ Ker(di), for all i ∈ Z. A morphism f : A• −→
B• between two complexes A• and B• is given by a commutative diagram

. . . // Ai−1
di−1
A //

f i−1

��

Ai
di
A //

f i

��

Ai+1
di+1
A //

f i+1

��

. . .

. . . // Bi−1
di−1
B // Bi

di
B // Bi+1

di+1
B // . . .

Hence, the category of complexes Kom(A) of an abelian category A is the category whose objects
are complexes A• in A and whose morphisms are morphisms of complexes. If the objects Ai are
specified only in a certain range, for example when i ≥ 0, then we set Ai = 0 for all other i.

Now, let us define the operation of shifting one place to the left and changing the sign of the
differential of a complex A• (shift functor) and also of a morphism of complexes.

Definition 4.1.3. Let A• ∈ Kom(A) be a given complex. Then A•[1] is the complex with
(A•[1])i := Ai+1 and differential di

A[1] := −di+1
A .

The shift f [1] of a morphism of complexes f : A• → B• is the complex morphism A•[1] → B•[1]
given by f [1]i := f i+1.

Corollary 4.1.4. The shift functor T : Kom(A) → Kom(A), such that A• 7−→ A•[1] defines an
equivalence of abelian categories

More precisely, the inverse functor T−1 is given by A• 7−→ A•[−1], where A•[k]i = Ak+i and
di
a[k] = (−1)kdi+kA for any k ∈ Z.

Let us recall now the notion and some properties of the cohomology of a complex.

Remark 4.1.5. The cohomology H i(A•) of a complex A• is the quotient

H i(A•) :=
Ker(di)

Im(di−1)
∈ A,

i.e. H i(A•) = Coker(Im(di−1) → Ker(di)). A complex A• is acyclic if H i(A•) = 0 for all i ∈ Z.
Any morphism of complexes f : A• → B• induces natural homomorphisms

H i(f) : H i(A•) → H i(B•).

If 0 −→ A• −→ B• −→ C• −→ 0 is a short exact sequence of complexes, then there are natural
maps δi : H i(C•) −→ H i+1(A•) giving rise to a long exact sequence

. . . −→ H i(A•) −→ H i(B•) −→ H i(C•)
δi
−→ H i+1(A•) −→ . . .
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Now let us define the homotopy category of complexes K(A). This category is very important
since its objects are the same as the objects of the derived category of A (and also the same as
Kom(A)).

Definition 4.1.6. Two morphisms of complexes

f, g : A• → B•

are called homotopically equivalent, f ∼ g, if there exits a collection of homomorphisms hi : Ai →
Bi−1, i ∈ Z, such that

f i − gi = hi+1 ◦ diA + di−1
B ◦ hi.

The homotopy category of complexes K(A) is the category whose objects are the objects of Kom(A),
i.e. Ob(K(A)) = Ob(Kom(A)), and the morphisms HomK(A)(A

•, B•) := HomKom(A)(A
•, B•)/ ∼

Remark 4.1.7. The collection of morphisms, h = (hi) is called homotopy operator. If f ∼ g, then
f and g induce the same morphism H i(A•) −→ H i(B•) on the cohomology objects, for each i.

Now comes the precise definition of the derived category. To do this we have to give the objects
of D(A) (which are complexes) and the morphism between these complexes.

Definition 4.1.8. We set the objects of D(A) as

Ob(D(A)) := Ob(K(A)) = Ob(Kom(A)).

and the set of morphism HomD(A) between two complexes A• and B• viewed as objects in D(A)
is the set of all equivalence classes of diagrams of the form

C•

!!❈
❈❈

❈❈
❈❈

❈
qis

}}④④
④④
④④
④④

A• B•

where C• → A• is a quasi-isomorphism. By a quasi-isomorphism we mean a morphism f : A• → B•

in K(A) which induces an isomorphism in cohomology (note that two homotopic morphisms induce
the same maps in cohomology).

Two such diagrams are equivalent if they are dominated in the homotopy category K(A) by a
third one of the same sort, i.e. there exists a commutative diagram in K(A) of the form

C•

!!❇
❇❇

❇❇
❇❇

❇

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

qis

��

C•
1

}}⑤⑤
⑤⑤
⑤⑤
⑤

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯ C•

2

!!❇
❇❇

❇❇
❇❇

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐

A• B•

In this way we have defined objects and morphisms of our category D(A), but we still have to
check a number of properties. In particular we have to define the composition of two morphism.
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Definition 4.1.9. If two morphisms

C•
1

!!❇
❇❇

❇❇
❇❇qis

}}⑤⑤
⑤⑤
⑤⑤
⑤

and C•
2

!!❇
❇❇

❇❇
❇❇qis

}}⑤⑤
⑤⑤
⑤⑤
⑤

A• B• B• C•

are given, we want the composition of both be given by a commutative (in the homotopy category
K(A)) diagram of the form

C•

!!❇
❇❇

❇❇
❇❇

❇

qis

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

C•
1

qis

}}⑤⑤
⑤⑤
⑤⑤
⑤

!!❇
❇❇

❇❇
❇❇

C•
2

!!❇
❇❇

❇❇
❇❇qis

}}⑤⑤
⑤⑤
⑤⑤
⑤

A• B• C•

(4.1)

Remark 4.1.10. There are two obvious problems: one has to ensure that such a diagram exists
an that it is unique up to equivalence.

Both things hold true with the help of the mapping cone. Although we introduce this notion we
are not going to explain the previous problems because they are a bit tedious.

Definition 4.1.11. Let f : A• → B• be a complex morphism. Its mapping cone is the complex
C(f) with

C(f)i = Ai+1 ⊕Bi and the differentials diC(f) :=

(
−di+1

A 0
f i+1 diB

)

There exist two natural complex morphisms

τ : B• → C(f) and π : C(f) → A•[1]

given by the natural injection Bi → Ai+1⊕Bi and the natural projection Ai+1⊕Bi → A•[1]i = Ai+1,
respectively.

A•

f

��

. . . // Ai−1
di−1
A //

f i−1

��

Ai
di
A //

f i

��

Ai+1
di+1
A //

f i+1

��

. . .

B•

τ

��

. . . // Bi−1
di−1
B //

��

Bi
di
B //

��

Bi+1
di+1
B //

��

. . .

C(f)•

π

��

. . . // Ai ⊕Bi−1
di−1
C(f) //

��

Ai+1 ⊕Bi
di
C(f)//

��

Ai+2 ⊕Bi+1
di+1
C(f) //

��

. . .

A•[1] . . . // Ai
di
A // Ai+1

di+1
A // Ai+2

di+2
A // . . .
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Remark 4.1.12. The composition B• → C(f) → A•[1] is trivial and the composition A• → B• →
C(f) is homotopic to the trivial map. In fact, B• → C(f) → A•[1] is a short exact sequence of
complexes. In particular, we obtain the long exact cohomology sequence

. . . −→ H i(A•) −→ H i(B•) −→ H i(C(f)) −→ H i+1(A•) −→ . . .

Also, by construction any commutative diagram can be completed as follows,

A•
1

	

f1 //

��

B•
1

//

��

C(f1) //

��

A•
1[1]

��
A•

2

f2 // B•
2

// C(f2) // A•
2[1]

It will be crucial for defining the composition of morphisms in the derived category.

Proposition 4.1.13. Let f : A• → B• be a morphism of complexes and let C(f) be its mapping
cone that comes with the two natural morphisms τ : B• → C(f) and π : C(f) → A•[1]. Then there
exists a complex morphism g : A•[1] → C(τ) which is an isomorphism in K(A) and such that the
following diagram is comutative in K(A):

B• //

��

C(f) //

��

A•[1] //

g

��

B•[1]

��
B• // C(f) // C(τ) // B•[1]

If we consider a quasi-isomorphism f : A• → B• and an arbitrary morphism g : C• → B• by
using the mapping cone there exits a commutative diagram in K(A)

C•
0

qis //

��

C•[1]

g

��
A• f

qis
// B•

Furthermore the composition of roofs as proposed by (4.1) exists and is well-defined.

Now let us state the last definition we want to recall.

Definition 4.1.14. A triangle

A•
1 −→ A•

2 −→ A•
3 −→ A•

1[1]

in K(A) (respectively in D(A)) is called distinguished if it isomorphic in K(A) (respectively in
D(A)) to a triangle of the form

A• f
−→ B• τ

−→ C(f)
π

−→ A•[1] (4.2)

with f a complex morphism.
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Proposition 4.1.15. Distinguished triangles given as in (4.2) and the natural shift functor for
complexes A• 7→ A•[1] make the homotopy category of complexes K(A) and the derived category
D(A) of an abelian category into a triangulated category (additive category D with a shift functor
and a class of distinguished triangles, satisfying some properties).

Moreover, the natural functor QA : K(A) → D(A) is an exact functor of triangulated categories.

The following definition gives the notion of bounded derived categories.

Definition 4.1.16. Let Kom∗(A), with ∗ = +,−, b be the category of complexes A• with Ai = 0
for i≪ 0, i≫ 0, respectively |i| ≫ 0.

By dividing out first by homotopy equivalence and then by quasi-isomorphisms one obtains the
categories K∗(A) and D∗(A) with ∗ = +,−, b.

We are mostly interested in the bounded derived category of coherent sheaves Db(Coh(X)).

4.1.2 Derived Functors

It is convenient to recall first some definitions of covariant functors.

Definition 4.1.17. A covariant functor F : A −→ B from an abelian category to another is
additive if for any two objects A,A′ in A the induced map Hom(A,A′) −→ Hom(F (A), F (A′)) is a
homomorphism of abelian groups. F is left exact if it is additive and for every short exact sequence

0 −→ A′ −→ A −→ A′′ −→ 0

in A, the sequence
0 −→ F (A′) −→ F (A) −→ F (A′′)

is exact in B. If we write a 0 on the right instead of the left, we say that F is right exact. If it is both
left and right exact, we say that it is exact. If only the middle part F (A′) −→ F (A) −→ F (A′′) is
exact, we say that F is exact in the middle.

Remark 4.1.18. For a contravariant functor we make analogous definitions. For example, F :
A −→ B is left exact if it is additive, and for every short exact sequence as above, the sequence

0 −→ F (A′′) −→ F (A) −→ F (A′′)

is exact in B.

A short exact sequence often gives rise to a long exact sequence. Suppose given a covariant left
exact functor between two abelian categories F : A → B. Consider the following exact sequence in
A.

0 −→ A −→ B −→ C −→ 0

Applying F yields the exact sequence

0 −→ F (A) −→ F (B) −→ F (C)
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In order to continue this sequence to the right to form a long exact sequence we need to introduce
the concept of right derived functor of F . If A is nice enough, there is one canonical way for doing
so.

For all i ≥ 0 there exists the functor RiF : A → B and the above sequence continues like this:

0 −→ F (A) −→ F (B) −→ F (C) −→ R1F (A) −→ R1F (B) −→ R1F (C) −→ R2F (A) −→ . . .

From this we see that F is an exact functor if and only if R1F = 0.

The right derived functors of F measure "how far" is F from being exact.

Definition of derived functor

For a covariant left-exact functor F : A → B between abelian categories one construct the right
derived functor

RF : D+(A) −→ D+(B)

as follows:

We assume that A contains enough injectives. In particular, we will use the equivalence
ι : K+(IA) −→ D+(A) naturally induced by the functor QA : K+(A) −→ D+(A). By ι−1 we
denote a quasi-inverse of ι given by choosing a complex of injective objects quasi-isomorphic to any
given complex that is bounded below. Thus, we have the diagram,

K+(IA)
�

� //

ι

%%❑❑
❑❑

❑❑
❑❑

❑❑
K+(A)

K(F ) //

QA

��

K+(B)

QB

��
D+(A)ι−1

YY

D+(B)

Here, K(F ) is the functor that maps (. . . → Ai−1 → Ai → Ai+1 → . . .) to (. . . → F (Ai−1) →
F (Ai) → F (Ai+1) → . . .) which is well-defined for the homotopy categories.

Definition 4.1.19. The right derived functor of F is the functor

RF := QB ◦K(F ) ◦ ι−1 : D+(A) → D+(B)

Definition 4.1.20. Let RF : D+(A) → D+(B) be the right derived functor of a covariant left
exact functor F : A → B. Then for any complex A• ∈ D+(A) one defines:

RiF (A•) := H i(RF (A•)) ∈ B

The induced additive functors RiF : A → B are the higher derived functors of F .

Remark 4.1.21. Let us take a deeper look to understand better the concept of RiF . Start with
an object A of an abelian category A and choose once and all an injective resolution I• of A. Since
there are enough injectives, we can construct a long exact sequence of the form

0 −→ A −→ I0 −→ I1 −→ I2 −→ . . .

60



where Ii are injectives (injective resolution) of A.

Applying the functor F to this sequence and chopping off the first term we obtain the chain
complex

0 −→ F (I0)
φ0
−→ F (I1)

φ1
−→ F (I2)

φ2
−→ . . .

This is not in general an exact sequence anymore, but we can compute its cohomology at the
i−th position

Ker(φi)/Im(φi−1)

and we call the result RiF (A).

4.1.3 Generators of Db(A)

Now we are interested in giving the generators of the derived category of the Grassmannians of lines
which will be used at the end of this section to give some splitting criteria. But first, let us define
when a class of objects of Db(A) generate it.

Definition 4.1.22. A class of objects C generates Db(A) if the smallest full triangulated subcate-
gory containing the objects of C is equivalent to Db(A).

If C is a set, we will also call C a generating set in the sequel.

Unravelling this definition, one finds that this is equivalent to saying that, up to isomorphism,
every object in Db(A) can be obtained by successively enlarging C through the following operations:
taking finite direct sums, shifting in Db(A) (i.e. applying the shift functor), and taking a cone C(f)
of a morphism f : A → B between objects already constructed (this means we complete f to a

distinguished triangle A
f

−→ B −→ C(f) −→ A[1]).

The main result for the derived category of the projective space is due to A. Beilinson (see [9]):

Theorem 4.1.23. The derived category Db(Pn) is generated equivalently by the objects

{O(−n), . . . ,O(−1),O} or by {Ωn(n), . . . ,Ω1(1),O}.

Generated means the minimal category closed under shift and mapping cones. The category
is thus finitely generated, and we can somehow think of O(−n), . . . ,O(−1),O as an orthonormal
basis.

The above result has a generalization for Grassmannians given by M. M. Kapranov (see [26]):

Theorem 4.1.24. The derived category of the Grassmannians Db(G(k, n)) is generated by {SλQ}
where Q is the universal bundle of rank k+1 and λ goes over all the partitions that fit inside a box
of dimension (k + 1)× (n − k).
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Remark 4.1.25. Let us compute all the generators of Db(G(1, n)). We have to calculate all the
partitions λ that fits in a box of dimension 2× (n− 1):

. . .

. . .
︸ ︷︷ ︸

n−1

We have in mind also that the following Young diagram corresponds to the j−symmetric power of
Q(i):

SjQ(i) ❀ . . .

. . .
︸ ︷︷ ︸

i

. . .
︸ ︷︷ ︸

j

Let us enumerate the possibles diagrams and their corresponding SλQ:

• λ = ∅ =⇒ SλQ =
∧0 Q = O

• λ = =⇒ S(1)Q = Q

• λ = =⇒ S(2)Q = S2Q

•
...

• λ = . . .
︸ ︷︷ ︸

n−1

=⇒ S(n−1)Q = Sn−1Q

• λ = =⇒ S(1,1)Q =
∧2 Q = O(1)

• λ = =⇒ S(2,1)Q =
∧2 Q⊗Q = O(1) ⊗Q = Q(1)

• λ = =⇒ S(3,1)Q =
∧2Q⊗ S2Q = O(1)⊗ S2Q = S2Q(1)

...

• λ = . . . =⇒ S(n−1,1)Q =
∧2 Q⊗ Sn−2Q = O(1)⊗ Sn−2Q = Sn−2Q(1)

• λ = =⇒ S(2,2)Q = O(2)

• λ = =⇒ S(3,2)Q = O(2)⊗Q = Q(2)

• λ = =⇒ S(4,2)Q = O(2)⊗ S3Q = S3Q(2)

...
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• λ = . . . =⇒ S(n−1,2)Q = O(2)⊗ Sn−3Q = Sn−3Q(2)

...

• λ = . . .
. . .

︸ ︷︷ ︸

i

=⇒ S(i,i)Q = O(i)

• λ = . . .
. . .

=⇒ S(i+1,i)Q = O(i) ⊗Q = Q(i)

• λ = . . .
. . .

=⇒ S(i+2,i)Q = O(i)⊗ S2Q = S2Q(i)

...

• λ = . . . . . .
. . .

=⇒ S(n−1,i)Q = O(i)⊗ Sn−1−iQ = Sn−1−iQ(i)

...

• λ = . . .
. . .

︸ ︷︷ ︸

n−2

=⇒ S(n−2,n−2)Q = O(n− 2)

• λ = . . .
. . .

︸ ︷︷ ︸

n−1

=⇒ S(n−1,n−2)Q = O(n− 2)⊗Q = Q(n − 2)

• λ = . . .
. . .

︸ ︷︷ ︸

n−1

=⇒ S(n−1,n−1)Q = O(n− 1)

Finally we obtain that the generators of Db(G(1, n)) are

{O,O(1), . . . ,O(n− 1),Q,Q(1), . . . ,Q(n − 2), S2Q, S2Q(1), . . . , S2Q(n − 3), . . .

. . . , SjQ, SjQ(1), . . . , SjQ(n − 1− j), . . . , Sn−2Q, Sn−2Q(1), Sn−1Q}

4.1.4 Exceptional collections

The aim of this part is to give a strong complete exceptional collection in Db(Coh(G(1, n))) (which
will be similar to the generators of Db(Coh(G(1, n))) computed in Remark 4.1.25). We give the
definitions step by step.
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Definition 4.1.26. Any object E ∈ Db(A) is called exceptional if

Extl(E,E) = Hom(E,E[l]) =

{
C if l = 0
0 if l 6= 0

An n−tuple (E0, . . . , En) of exceptional objects in Db(A) is called exceptional collection if

Extl(Ei, Ej) = Hom(Ei, Ej [l]) = 0 for all 0 ≤ j ≤ i ≤ n and for all l ∈ Z

If in addition Extl(Ei, Ej) = Hom(Ei, Ej [l]) = 0 for all 0 ≤ j, i ≤ n and for all l 6= 0 we call
(E0, . . . , En) a strongly exceptional collection. The sequence is full (or complete) if E0, . . . , En
generates Db(A).

In the case all Ei’s are sheaves exceptionality condition amounts to the following

Extp(Ei, Ej) = 0 for i > j

Extp(Ei, Ei) = 0 for p > 0

Hom(Ei, Ei) = C

Definition 4.1.27. A set of exceptional objects {E0, . . . , En} in Db(A) that generates Db(A) and
such that Extl(Ej , Ei) = 0 for all 0 ≤ i, j ≤ n and all l 6= 0 will be called a full strongly exceptional
set.

Example 4.1.28. The collection (O,O(1),O(2), . . . ,O(n)) is a full strongly exceptional collection
of coherent sheaves on P

n and (Ωn(n),Ωn−1(n−1),Ωn−2(n−2), . . . ,Ω1(1),O) is also a full strongly
exceptional collection of coherent sheaves on P

n.

There exists such a full strongly exceptional collection for Grassmannian due to M. M. Kapranov
(see [26]):

Theorem 4.1.29. Let G(k, n) be the Grassmannian of k−dimensional subspaces of an n−dimen-
sional vector space V , and let Q∨ be the tautological rank k + 1 subbundle over G(k, n). Then the
bundles SλQ

∨ where λ runs over the set of Young diagrams with no more than k + 1 rows and no
more than n − k columns, are all exceptional, have no higher extension groups between each other
and generates Db(Coh(G(k, n)).

Moreover, Hom(SλQ
∨,SµQ

∨) 6= 0 if and only if λi ≥ µi for all i = 1, . . . , k + 1. Thus these
SλQ

∨ form a full strongly exceptional collection in Db(Coh(G(k, n)) when appropriately ordered).

Now we can generalize the idea of exceptional collection to the m−block exceptional collection.

Definition 4.1.30. An exceptional collection (F0, F1, . . . , Fm) of objects of Db(A) is a block if

Exti(Fj , Fk) = 0

for any i and j 6= k.
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An m−block collection of type (α0, α1, . . . , αm) of objects of Db(A) is an exceptional collection

(E1, E2, . . . , Em) = (E0
1 , E

0
2 , . . . , E

0
α0
, E1

1 , E
1
2 , . . . , E

1
α2
, . . . , Em1 , E

m
2 , . . . , E

m
αm

)

such that all the subcollections Ej = (Ej1 , E
j
2, . . . , E

j
αj ) are blocks.

Note that an exceptional collection (E0, E1, . . . , Em) is an m−block of type (1, 1, . . . , 1).

Remark 4.1.31. We know that G(1, n) has two full and strong exceptional (2n− 1)−block collec-
tions, {E0, . . . , E2n−2} and {F0, . . . ,F2n−2}, where we define:

Fr = {SλQ
∨, |λ| = 2n− 2− r} = {Far+1, Far+2, . . . , Far+1}

Er = {Sλ′S
∨, |λ| = 2n− 2− r} = {Ear+1, Ear+2, . . . , Ear+1}

considering λ a partition that fits inside a box of dimension (n − 1) × (2) and λ′ its conjugate
partition (hence, λ′ musts fit inside a box of dimensions (2) × (n− 1)).

We give with more detail the bundles of the Fr since its corresponding Schur functor is always
a symmetric power. For the case of Er there are some bundles that can only be expressed with
the language of Schur functors. Moreover, the conditions we will need for the splitting criteria will
involve the bundles from Fr and only E0 = {O(−2)}.

Let us give explicitly some of the bundles from Fr:

• r = 0 ⇒ F0 = {O(−n + 1)}

• r = 1 ⇒ F1 = {Q∨(−n+ 2)}

• r = 2 ⇒ F2 = {S2Q∨(−n+ 3),O(−n + 2)}

• r = 3 ⇒ F3 = {S3Q∨(−n+ 4),Q∨(−n+ 3)}

• r = 4 ⇒ F4 = {S4Q∨(−n+ 5), S2Q∨(−n+ 4),O(−n + 3)}

• r = 5 ⇒ F5 = {S5Q∨(−n+ 6), S3Q∨(−n+ 5),Q∨(−n+ 4)}
...

• r = n− 1 (odd) ⇒ Fn−1 = {Sn−1Q∨, Sn−3Q∨(−1), Sn−4Q∨(−2), . . .

. . . , S3Q∨(−[n−1
2 ]− 1),Q∨(−[n−1

2 ])}

• r = n− 1 (even) ⇒ Fn−1 = {Sn−1Q∨, Sn−3Q∨(−1), Sn−4Q∨(−2), . . .

. . . , S2Q∨(−n−1
2 − 1),O(−n−1

2 )}
...

• r = 2n− 8 ⇒ F2n−8 = {S6Q∨, S4Q∨(−1), S2Q∨(−2),O(−3)}

• r = 2n− 7 ⇒ F2n−7 = {S5Q∨, S3Q∨(−1),Q∨(−2)}
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• r = 2n− 6 ⇒ F2n−6 = {S4Q∨, S2Q∨(−1),O(−2)}

• r = 2n− 5 ⇒ F2n−5 = {S3Q∨,Q∨(−1)}

• r = 2n− 4 ⇒ F2n−4 = {S2Q∨,O(−1)}

• r = 2n− 3 ⇒ F2n−3 = {Q∨}

• r = 2n− 2 ⇒ F2n−2 = {O}

And now some of the bundles from Er:

• r = 0 ⇒ E0 = {O(−2)}

• r = 1 ⇒ E1 = {
∧n−2 S∨(−1)}

• r = 2 ⇒ E2 = {
∧2 S∨,S(2,...,2)S

∨}

• r = 3 ⇒ E3 = {
∧3 S∨,S(2,1)S

∨}
...

• r = 2n− 5 ⇒ E2n−5 = {
∧3 S∨,S(2,1)S

∨}

• r = 2n− 4 ⇒ E2n−4 = {
∧2 S∨, S2S∨}

• r = 2n− 3 ⇒ E2n−3 = {S∨}

• r = 2n− 2 ⇒ E2n−2 = {O}

Let us put all of them together in a table to obtain a global idea:
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r |λ| λ SλQ
∨ Fi λ′ Sλ′S

∨ Ei

r = 2n− 2 |λ| = 0 0 O F2n−2 0 O E2n−2

r = 2n− 3 |λ| = 1 (1) Q∨ F2n−3 (1) S∨ E2n−3

r = 2n− 4 |λ| = 2 (2) S2Q∨ F2n−4 (1, 1) ∧2S∨ E2n−4

(1, 1) O(−1) (2) S2S∨

r = 2n− 5 |λ| = 3 (3) S3Q∨ F2n−5 (1, 1, 1) ∧3S∨ E2n−5

(2, 1) Q∨(−1) (2, 1) S(2,1)S
∨

r = 2n− 6 |λ| = 4 (4) S4Q∨ F2n−6 (1, 1, 1, 1) ∧4S∨ E2n−6

(3, 1) S2Q∨(−1) (2, 1, 1) S(2,1,1)S
∨

(2, 2) O(−2) (2, 2) S(2,2)S
∨

...
...

...
...

...
...

...
...

r = 3 |λ| = 2n − 5 (n− 1, n− 4) S3Q∨(−n+ 4) F3 (2, . . . , 2, 1, 1, 1) ∧n−4S∨(−1) E3

(n− 2, n− 3) Q∨(−n+ 3) (2, . . . , 2, 1) S(2,...,2,1)S
∨

r = 2 |λ| = 2n − 4 (n− 1, n− 3) S2Q∨(−n+ 3) F2 (2, . . . , 2, 1, 1) ∧n−3S∨(−1) E2

(n− 2, n− 2) O(−n+ 2) (2, . . . , 2) S(2,...,2)S
∨

r = 1 |λ| = 2n − 3 (n− 1, n− 2) Q∨(−n+ 2) F1 (2, . . . , 2, 1) ∧n−2S∨(−1) E1

r = 0 |λ| = 2n − 2 (n− 1, n− 1) O(−n+ 1) F0 (2, . . . , 2) O(−2) E0
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4.2 Beilinsons’s theorem

In the first part of this section we are going to recall Beilinson’s theorem for the projective space.
In the second part of this section we give its generalization to a general Grassmannian. We will not
go through details that could be found in [15].

4.2.1 Beilinson’s theorem for projective spaces

Let us state Beilinson’s theorem (see [9]):

Theorem 4.2.1. Let X = P
n, denote by p, q : X × X → X the two projections and by ∆ the

diagonal in X ×X. For F , E ∈ Coh(X) let us put F ⊠ E := p∗F ⊗ q∗E. Let F ∈ Coh(X), t ∈ Z.
Then,
A. The diagonal ∆ has the following resolution on X ×X:

0 −→ Ωn(n)⊠O(−n)
un−→ . . .→ Ω1(1) ⊠O(−1)

u1−→ q∗O
u0−→ q∗O|∆ −→ 0 (4.3)

B. There exists a complex of vector bundles L•(t),

0 −→ L−(n−1) −→ L−(n−2) −→ . . . −→ L0 −→ L1 −→ . . . −→ Ln−2 −→ Ln−1 −→ 0

on X such that:

1. L•(t) ∼ F (t) in the derived category Db(Coh(X)). In particular:

Hk(L•(t)) =
Ker(dk)

Im(dk−1)
=

{
F (t) if k = 0
0 if k 6= 0

2. Lk(t) =
⊕

j+k=iX
i
j(t) , Xi

j(t) = Ωj(j)⊗H i(F (t− j))

3. the maps υij(t, s) : Xi
j(t) → Xi−s+1

j−s with s ∈ Z induced by the differentials Lk → Lk+1 are
zero for s ≤ 0

Remark 4.2.2. The complex L• is minimal in the sense that each natural morphisms of the form
Ωp(p) → Ωp(p) that we get from the morphisms dk are zero. This is what means the point (3.) of
the theorem.

Remark 4.2.3. Notice also that this resolution is just the Koszul complex associated to the map
Ω1(1)⊠O(−1) → O, indeed,

p
∧

(Ω1(1) ⊠O(−1) =

p
∧

Ω1(1)⊠ SpO(−1) = Ωp(p)⊠O(−p)

In order to study this in depth it is suitable to give a graphic representation that imitates the
spectral sequence above.
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Let us consider the square diagram:

Ωn(n) Ωn−1(n− 1) . . . Ω1(1) O
Ωn(n) Ωn−1(n− 1) . . . Ω1(1) O

...
...

...
...

Ωn(n) Ωn−1(n− 1) . . . Ω1(1) O

(4.4)

Consider now the table of cohomology:

Hn(F (−n)) Hn(F (−n+ 1)) . . . Hn(F (−1)) Hn(F )
Hn−1(F (−n)) Hn−1(F (−n+ 1)) . . . Hn−1(F (−1)) Hn−1(F )

...
...

...
...

H0(F (−n)) H0(F (−n+ 1)) . . . H0(F (−1)) H0(F )

(4.5)

The terms of the complex L• that appear in Beilinson’s theorem are obtained by taking the direct
sum of the terms in the diagonal. We proceed with caution considering each bundles Ωp(p) that
appears in (4.4) with its corresponding integer that appears in (4.5). The following diagram may
help:

Ωn(n)⊗Hn(F (−n)) Ωn−1(n− 1)⊗Hn(F (−n+ 1)) . . . Ω1(1)⊗Hn(F (1)) O ⊗Hn(F )

(Xn
n ) (Xn

2 ) (Xn
1 ) (Xn

0 )

Ωn(n)⊗Hn−1(F (−n)) Ωn−1(n− 1)⊗Hn−1(F (−n+ 1)) . . . Ω1(1)⊗Hn−1(F (1)) O ⊗Hn−1(F )

(Xn−1
n ) (Xn−1

2 ) (Xn−1
1 ) (Xn−1

0 )

...
...

. . .
...

...

Ωn(n)⊗H0(F (−n)) Ωn−1(n − 1)⊗H0(F (−n+ 1)) . . . Ω1(1)⊗H0(F (1)) O ⊗H0(F )

(X0
n) (X0

2 ) (X0
1 ) (X0

0 )

For the particular case in which F is a sheaf on P
2 (we use Ω2(2) ∼= O(−1)) we get the diagram:

O(−1) Ω1(1) O
O(−1) Ω1(1) O
O(−1) Ω1(1) O

and the table of cohomology:

H2(F (−2)) H2(F (−1)) H2(F )
H1(F (−2)) H1(F (−1)) H1(F )
H0(F (−2)) H0(F (−1)) H0(F )

and the following diagram with all the information:

O(−1)⊗H2(F (−2)) Ω1(1)⊗H2(F (−1)) O ⊗H2(F )

O(−1)⊗H1(F (−2)) Ω1(1)⊗H1(F (−1)) O ⊗H1(F )

O(−1)⊗H0(F (−2)) Ω1(1)⊗H0(F (−1)) O ⊗H0(F )
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Finally, by taking the sum of the diagonals of this last diagram it provide the following complex:

0 −→ O(−1)⊗H0(F (−2))
d−2
−→ O(−1)⊗H1(F (−2)) ⊕ Ω1(1)⊗H0(F (−1))

d−1
−→

d−1
−→ O(−1)⊗H2(F (−2)) ⊕Ω1(1)⊗H1(F (−1)) ⊕O ⊗H0(F )

d0−→

d0−→ Ω1(1)⊗H2(F (−1)) ⊕O ⊗H1(F )
d1−→ O ⊗H2(F ) −→ 0

Its successive groups of cohomology are 0, 0, F, 0, 0, i.e. the complex L• is always exact except
in the middle point.

Remark 4.2.4. Let us observe one important remark. The minimality of the complex L• implies
that there are no vertical arrows in the diagram. Graphically, to each summand marked with ×
arrive only the arrows indicated with © and start arrows only to the summands indicated with △.




















©

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

©

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

© // × //

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
△

△

△




















If the summands marked with © and △ are zero then the term indicated by × is:

• zero if it is outside the main diagonal

• direct summand of F if it is in the main diagonal

We will use the perspective of this remark for the theorems of Section 4.3.

4.2.2 Beilinson’s theorem for Grassmannians

As in the projective space, the main point is to have a resolution of the diagonal. This is what the
following result provides.

Theorem 4.2.5. (Kapranov) Let X be the Grassmannian variety G(k, n) of k−dimensional sub-
spaces of an n−dimensional vector space V . If S and Q are the universal bundles (see Definition
1.1.9), then the diagonal of X ×X is the zero locus of a natural section of Q∨ ×S∨. Therefore the
following Koszul complex is a resolution of the diagonal of X ×X:

0 →

(k+1)(n−k)
∧

(Q∨
⊠ S∨) → . . .

2∧

(Q∨
⊠ S∨) → Q∨

⊠ S∨ → OX×X → O∆ → 0 (4.6)
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Remark 4.2.6. The main difference now is that the wedge products of Q∨ × S∨ are much more
complicated and decompose into many pieces. Specifically:

k∧

(Q∨
⊠ S∨) =

⊕

|λ|=k

SλQ
∨ ⊗ Sλ′S

∨

where the sum goes over all Young tableau with k cells, λ′ is the conjugate Young tableau and Sλ is
the Schur functor associated to the tableau λ (see Definition 2.1.6, 2.1.7, 2.1.8 and 2.1.13). These
Schur functors correspond exactly to the {Er} and {Fr} computed in Remark 4.1.31.

We can state now Beilinson’s Theorem for Grassmannians:

Theorem 4.2.7. (M. M. Kapranov, [25]) Let X = G(1, n). Denote by p, q : X ×X → X the two
projections and by ∆ the diagonal in X ×X. For F ,G ∈ Coh(X) let us put F ⊠ G := p∗F ⊗ q∗G.
Let F ∈ Coh(X), t ∈ Z. Then:

• the diagonal ∆ has the following resolution on X ×X:

0 → ⊕a1
i=a0+1Ei ⊠ Fi → ⊕a2

i=a1+1Ei ⊠ Fi → . . . → ⊕
a2n−1

i=a2n−2+1Ei ⊠ Fi → O∆ → 0

with the notation of Remark 4.1.31.

• there exits a complex of vector bundles L•(t) on X,

0 −→ L−(2n−3) −→ L−(2n−4) −→ . . . −→ L0 −→ L1 −→ . . . −→ L2n−4 −→ L2n−3 −→ 0

such that:

– L•(t) ∼ F (t) in the derived category Db(Coh(X)). In particular

Hk(L•(t)) =







F (t) if k = 0

0 if k 6= 0

– Lk(t) = ⊕j+k=iX
i
j(t) where Xi

j(t) = ⊕
a2n−1−j

k=a2n−2−j+1Ek ⊗H i(Fk ⊗ F (t))

– the maps vij(t, s) : X
i
j(t) → Xi−s+1

j−s (t) with s ∈ Z induced by the differentials Lk → Lk+1

are zero for s ≤ 0

Using the notation given in Theorem 4.2.7 we construct the Beilinson diagram for Grassmannians
of lines. In the notation of the theorem this is shown in Table 4.1. By replacing some of the bundles
Ei ∈ Er and Fi ∈ Fr from Remark 4.1.31 we get Table 4.2.

The elements of the complex L• are just the sum of each diagonal in the Beilinson’s diagram
(Table 4.1or Table 4.2):

0 // X0
2n−2

// X0
2n−3 ⊕X1

2n−2
// X0

2n−4 ⊕X1
2n−3 ⊕X2

2n−4
// . . . // X1

0 ⊕X1
2 ⊕ . . .⊕X2n−4

2n−3 ⊕X2n−3
2n−2

//

// X0
0 ⊕X1

1 ⊕ . . .⊕X2n3
2n−3 ⊕X2n2

2n−2
// X1

0 ⊕X2
1 ⊕ . . . ⊕X2n−3

2n−4 ⊕X2n−2
2n−3

// . . . // X2n−3
0 ⊕X2n−2

1
// X2n−2

0
// 0
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⊕a1
i=a0+1H

2n−2(F ⊗ Fi)⊗ Ei . . . ⊕
a2n−3

i=a2n−4+1H
2n−2(F ⊗ Fi)⊗ Ei ⊕

a2n−2

i=a2n−3+1H
2n−2(F ⊗ Fi)⊗ Ei ⊕

a2n−1

i=a2n−2+1H
2n−2(F ⊗ Fi)⊗ Ei

(X2n−2
2n−2 ) (X2n−2

2 ) (X2n−2
1 ) (X2n−2

0 )

⊕a1
i=a0+1H

2n−3(F ⊗ Fi)⊗ Ei . . . ⊕
a2n−3

i=a2n−4+1H
2n−3(F ⊗ Fi)⊗ Ei ⊕

a2n−2

i=a2n−3+1H
2n−3(F ⊗ Fi)⊗ Ei ⊕

a2n−1

i=a2n−2+1H
2n−3(F ⊗ Fi)⊗ Ei

(X2n−3
2n−2 ) (X2n−3

2 ) (X2n−3
1 ) (X2n−3

0 )

...
. . .

...
...

...

⊕a1
i=a0+1H

2(F ⊗ Fi)⊗ Ei . . . ⊕
a2n−3

i=a2n−4+1H
2(F ⊗ Fi)⊗ Ei ⊕

a2n−2

i=a2n−3+1H
2(F ⊗ Fi)⊗ Ei ⊕

a2n−1

i=a2n−2+1H
2(F ⊗ Fi)⊗ Ei

(X2
2n−2) (X2

2 ) (X2
1 ) (X2

0 )

⊕a1
i=a0+1H

1(F ⊗ Fi)⊗ Ei . . . ⊕
a2n−3

i=a2n−4+1H
1(F ⊗ Fi)⊗ Ei ⊕

a2n−2

i=a2n−3+1H
1(F ⊗ Fi)⊗ Ei ⊕

a2n−1

i=a2n−2+1H
1(F ⊗ Fi)⊗ Ei

(X1
2n−2) (X1

2 ) (X1
1 ) (X1

0 )

⊕a1
i=a0+1H

0(F ⊗ Fi)⊗ Ei . . . ⊕
a2n−3

i=a2n−4+1H
0(F ⊗ Fi)⊗ Ei ⊕

a2n−2

i=a2n−3+1H
0(F ⊗ Fi)⊗ Ei ⊕

a2n−1

i=a2n−2+1H
0(F ⊗ Fi)⊗ Ei

(X0
2n−2) (X0

2 ) (X0
1 ) (X0

0 )

Table 4.1: Xj
i of Theorem 4.2.7

H2n−2(F ⊗O(−n+ 1))⊗O(−2) . . . H2n−2(F ⊗ S2Q∨)⊗
∧2 S∨

⊕
H2n−2(F ⊗O(−1))⊗ S2S∨ H2n−2(F ⊗Q∨)⊗ S∨ H2n−2(F ⊗O)⊗O

H2n−3(F ⊗O(−n+ 1))⊗O(−2) . . . H2n−3(F ⊗ S2Q∨)⊗
∧2 S∨

⊕
H2n−3(F ⊗O(−1))⊗ S2S∨ H2n−3(F ⊗Q∨)⊗ S∨ H2n−3(F ⊗O)⊗O

...
. . .

...
...

...

H2(F ⊗O(−n+ 1))⊗O(−2) . . . H2(F ⊗ S2Q∨)⊗
∧2 S∨

⊕
H2(F ⊗O(−1))⊗ S2S∨ H2(F ⊗Q∨)⊗ S∨ H2(F ⊗O)⊗O

H1(F ⊗O(−n+ 1))⊗O(−2) . . . H1(F ⊗ S2Q∨)⊗
∧2 S∨

⊕
H1(F ⊗O(−1))⊗ S2S∨ H1(F ⊗Q∨)⊗ S∨ H1(F ⊗O)⊗O

H0(F ⊗O(−n+ 1))⊗O(−2) . . . H0(F ⊗ S2Q∨)⊗
∧2 S∨

⊕
H0(F ⊗O(−1))⊗ S2S∨ H0(F ⊗Q∨)⊗ S∨ H0(F ⊗O)⊗O

Table 4.2: Xj
i of Theorem 4.2.7 with notation of Remark 4.1.31
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4.3 Applications of Beilinson’s theorem

Using Beilinson’s theorem, V. Ancona and G. Ottaviani obtained a splitting criteria not just for
locally free sheaves but for coherent sheaf in general. Moreover, apart from line bundles there also
appears what they call g.skyscraper sheaf (see [2] for the definition).

Theorem 4.3.1. Let F be a coherent sheaf on P
n. Suppose that for some t ∈ Z, H i(F (t−i−1)) = 0

for 0 ≤ i < n. Then F contains O(−t)h
0(F (t)) as direct summand.

Theorem 4.3.2. Let F be a coherent sheaf on P
n such that H i

∗(F ) = 0 for 0 < i < n. Then F is
a direct sum of line bundles and of a g.skyscraper sheaf.

Our goal is to obtain the corresponding splitting criteria for the Grassmannian of lines by using
Beilinson’s theorem (Theorem 4.2.7) and Kapranov’s resolution for Grassmannian of lines (4.6). To
get this analogue of Theorem 4.3.1 we have to impose the elements under the diagonal of Table 4.2
to vanish (with their corresponding twists). In order to make these vanishings easier to understand
we define the following segments of points.

Definition 4.3.3. Consider the following set of points:

• M = {(0, 2n − 3), (1, 2n − 4), (2, 2n − 5), (3, 2n − 6), . . . , (n − 5, n + 2), (n − 4, n + 1), (n −
3, n), (n − 2, n − 1), (n − 1, n− 2)}

• Mk = {(0, 2n−3−2k), (1, (2n−3−2k)−1), (2, (2n−3−2k)−2), (3, (2n−3−2k)−3), . . . , (n−
2− 2k, n − 1), (n − 1− 2k, n − 2)}

• N = {(2, 1), (3, 2), (4, 3), (5, 4), . . . , (n− 4, n− 5), (n− 3, n− 4), (n− 2, n− 3), (n− 1, n− 2)}

• Nk = {(0, 1 + 2(k − 1)), (1, (1 + 2(k − 1)) + 1), (2, (1 + 2(k − 1)) + 2), (3, (1 + 2(k − 1)) +
3), . . . , (n − 4− 2(k − 1), n − 3), (n − 3− 2(k − 1), n − 2)}

for k ∈ {1, 2, . . . , [n−1
2 ]}.
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Figure 4.1: Segments: M , Mk, N , Nk

As in Chapter 3, the points (i, j) correspond to the vanishings of Hj
∗(F ⊗ SiQ) = 0.

Remark 4.3.4. The point (n − 1, n − 2) corresponds to the vanishing of Hn−2
∗ (F ⊗ Sn−1Q) = 0.

Since we do not want the order of the symmetric power greater than n− 2 we change this condition
by making use of Remark 3.1.16 for another ones that are equivalent and defined as M ′ in the
following definition.

Definition 4.3.5. Consider the following set of points:

• M0 = {(0, 2n−3), (1, 2n−4), (2, 2n−5), (3, 2n−6), . . . , (n−5, n+2), (n−4, n+1), (n−3, n)}

• M ′ = {(0, 2n−4), (1, 2n−5), (2, 2n−6), (3, 2n−7), . . . , (n−4, n), (n−3, n−1), (n−2, n−2)}

• Mk = {(0, 2n−3−2k), (1, (2n−3−2k)−1), (2, (2n−3−2k)−2), (3, (2n−3−2k)−3), . . . , (n−
2− 2k, n − 1), (n − 1− 2k, n − 2)}

• N0 = {(2, 1), (3, 2), (4, 3), (5, 4), . . . , (n− 4, n − 5), (n − 3, n − 4), (n − 2, n− 3)}

• Nk = {(0, 1 + 2(k − 1)), (1, (1 + 2(k − 1)) + 1), (2, (1 + 2(k − 1)) + 2), (3, (1 + 2(k − 1)) +
3), . . . , (n − 4− 2(k − 1), n − 3), (n − 3− 2(k − 1), n − 2)}

for k ∈ {1, 2, . . . , [n−1
2 ]}.
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Figure 4.2: Hypothesis of Theorem 4.3.9

Theorem 4.3.6. Let F be a vector bundle over G(1, n). Suppose that for some t ∈ Z we have the
following vanishings:

Hj(F ⊗ SiQ∨(t−
j − i+ 1

2
)) = 0 for (i, j) ∈







(1, 0)
M0 ∪M

′ ∪M1 ∪ . . . ∪M[n−1
2

]

N0 ∪N1 ∪ . . . ∪N[n−1
2

]

Then F contains O(t)⊗H0(F (t)) as a direct summand.

Proof. Suppose t = 0. From the Theorem 4.2.7 and with the notation of Remark 4.1.31 we define
the vector bundles of the complex L•(t) as follows:

Lk(t) =
⊕

j+k=i

Xi
j(t) where Xi

j(t) =

a2n−1−j⊕

k=a2n−2−j+1

Ek ⊗H i(Fk ⊗ F (t))
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We can give the complex L• as follows:

0

��
L−(2n−2)

��

= X0
2n−2

L−(2n−3)

��

= X0
2n−3 ⊕ X1

2n−2

L−(2n−4)

��

= X0
2n−4 ⊕ X1

2n−3 ⊕ X2
2n−2

...

��
L−2

��

= X0
2 ⊕ X1

3 ⊕ . . . ⊕ X2n−4
2n−2

L−1

α

��

= X0
1

��

⊕ X1
2

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

⊕ X2
3

ss❢❢❢❢❢❢
❢❢❢❢

❢❢❢❢
❢❢❢❢

❢❢❢❢
❢❢❢❢

❢❢❢❢
❢❢❢❢

❢❢❢ ⊕ . . . ⊕ X2n−3
2n−2

qq❝❝❝❝❝❝❝❝❝❝
❝❝❝❝❝❝❝

❝❝❝❝❝❝❝
❝❝❝❝❝❝❝

❝❝❝❝❝❝❝
❝❝❝❝❝❝❝

❝❝❝❝❝❝❝
❝❝❝❝❝❝❝

❝❝❝❝❝❝❝
❝❝❝❝❝❝❝

❝❝

L0

β

��

= X0
0

�� ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

++❳❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳

--❬❬❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬ ⊕ X1
1 ⊕ X2

2 ⊕ X3
3 ⊕ . . . ⊕ X2n−2

2n−2

L1

��

= X1
0 ⊕ X2

1 ⊕ X3
2 ⊕ . . . ⊕ X2n−2

2n−3

L2

��

= X2
0 ⊕ X3

1 ⊕ . . . ⊕ X2n−2
2n−4

...

��
L2n−4

��

= X2n−4
0 ⊕ X2n−3

1 ⊕ X2n−2
2

L2n−3

��

= X2n−3
0 ⊕ X2n−2

1

L2n−2

��

= X2n−2
0

0

We have pointed out the maps we use:

X0
1 , X

1
2 , X

2
3 , . . . ,X

2n−3
2n−2

φ
−→ X0

0

X0
0

ψ
−→ X1

0 , X
2
1 , X

3
2 , . . . ,X

2n−2
2n−3

The maps φ are zero by hypothesis (since all the elements X0
1 , X

1
2 , X

2
3 , . . . ,X

2n−3
2n−2 vanish).

These maps correspond to vi−1
i for 0 ≤ i < 2n − 2 which end at X0

0 .

The maps ψ are zero by hypothesis of Beilinson’s Theorem (correspond to the maps v00(0, s) :
X0

0 → X−s+1
−s of Theorem 4.2.7).

Let us give a different diagrams of the elements Xj
i to understand how these maps and the

complex work:
X2n−2

2n−2 X2n−2
2n−3 . . . X2n−2

3 X2n−2
2 X2n−2

1 X2n−2
0

X2n−3
2n−2

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

X2n−3
2n−3 . . . X2n−3

3 X2n−3
2 X2n−3

1 X2n−3
0

...
...

...
...

...
...

...

X3
2n−2 X3

2n−3 . . . X3
3 X3

2 X3
1 X3

0

X2
2n−2 X2

2n−3 . . . X2
3

''PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

X2
2 X2

1 X2
0

X1
2n−2 X1

2n−3 . . . X1
3 X1

2

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚ X1

1 X1
0

X0
2n−2 X0

2n−3 . . . X0
3 X0

2 X0
1

// X0
0

OO

ZZ✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻

^^❂
❂❂
❂❂
❂
❂❂
❂❂
❂
❂❂
❂❂
❂
❂❂
❂❂
❂
❂❂
❂❂
❂
❂❂
❂
❂❂

``❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇
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Since the elements under the diagonal of this last diagram vanish we have that all the maps that
get to X0

0 are zero, and also, all the maps that start from X0
0 . Hence, H0(L•) = Ker(β)/Im(α)

and we know part of the maps α and β. Moreover, part of the kernel of β consists in X0
0 . So, X0

0

is a direct summand of H0(L•). Finally, H0(L•) coincides with F by Beilinson’s theorem.

Since X0
0 contains H0(F ⊗O)⊗O as a direct summand we can conclude that H0(F ⊗O)⊗O

is a direct summand also of H0(L•(0)) = F , as wanted.

Remark 4.3.7. Notice that for (i, j) = (1, 0) the corresponding condition is H0(F ⊗ Q∨(t)) = 0.
This condition plays an important role since it does not appear in the conditions of Theorem 4.3.9
but we prove it holds with all the conditions we have in the hypotheses.

Remark 4.3.8. As the reader probably noticed, Theorem 4.3.6 still holds if F is just a coherent
sheaf and not a vector bundle (locally free sheaf). But, since we are interested in comparing this
new criterion with the one we already have we state it just for vector bundles.

Finally we can state the splitting criteria for the Grassmannian of lines by using the technique
of derived categories where the vanishings will be now for all twist.

Theorem 4.3.9. Let F be a vector bundle over G(1, n). Suppose that:

Hj
∗(F ⊗ SiQ) = 0 for (i, j) ∈

{

M0 ∪M
′ ∪M1 ∪ . . . ∪M[n−1

2
]

N0 ∪N1 ∪ . . . ∪N[n−1
2

]

Then F is a direct sum of line bundles.

Proof. We make induction on the rank of F . Suppose h0(F ) 6= 0 and h0(F (−1)) = 0. We consider
the Eagon-Northcott complex (R∨

n−2)⊗F (−2) glue together with (R1)⊗F (−1) from Example 1.2.2.
Let us start from (R∨

n−2)⊗ F (−2):

0 → Sn−2Q∨ ⊗ F (−2) → V ⊗ Sn−3Q∨ ⊗ F (−2) →
2∧

V ⊗ Sn−4Q∨ ⊗ F (−2) → . . .

. . .→
n−4∧

V ⊗ S2Q∨ ⊗ F (−2) →
n−3∧

V ⊗Q∨ ⊗ F (−2) →
n−2∧

V ⊗ F (−2) →
n−2∧

S ⊗ F (−2) → 0

Since,
Hn−1

∗ (F ⊗ Sn−2Q) = Hn−2
∗ (F ⊗ Sn−3) = Hn−3

∗ (F ⊗ Sn−4Q) = . . .

. . . = H3
∗ (F ⊗ S2Q) = H2

∗ (F ⊗Q) = H1
∗ (F ) = 0

(this means Hj
∗(F⊗SiQ) = 0 for (i, j) ∈ N1∪(n−2, n−1)) we obtain that H1(

∧n−2 S⊗F (−2)) = 0.
Now we use the identification S∨ ≃

∧n−2 S(−1). and the complex (R1)⊗ F (−1):

0 → F ⊗ S∨(−1) → V ⊗ F (−1) → F ⊗Q(−1) → 0

Since H0(F (−1)) = 0 and H1(F ⊗ S∨(−1)) = 0 finally we get H0(F ⊗Q(−1)) = 0.
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Hence we are in the hypothesis of Theorem 4.3.6 where we have taken t = 0. Furthermore, we
can express F as follows:

F = ⊕Oh0(F ) ⊕ F ′

where the rank of F ′ is smaller than the rank of F . Applying iteration on the rank of F ′ we get our
result.

Remark 4.3.10. The splitting criterion of Theorem 4.3.9 (represented in Figure 4.2) implies
the criterion by Ottaviani. Indeed, the hypotheses of Ottaviani’s criterion (Theorem 0.0.2) are
represented also by Figure 3.14 by Remark 3.1.20. We notice that M0 = L0, M ′ = L1, M1 = L2,
M2 = L4, . . ., Mk = L2k. The same happens with the segments Ri and Ni. In this case N1 = R1,
N2 = R3,. . ., Nk = R2k−1 and N0 = R−1. Hence, all the conditions of Theorem 4.3.9 are contained
in the hypothesis of Theorem 0.0.2.

Remark 4.3.11. We can also compare the characterization of Theorem 4.3.9 (represented in Figure
4.2) with the characterization made by Arrondo and Malaspina (Theorem 0.0.3, represented in
Figure 3.1).

In Section 3.1 we define the segments A0 and B0 such that the conditions Hj
∗(E ⊗ SiQ) = 0

for (i, j) ∈ A0 ∪ B0 ∪ (n − 2, n − 1) correspond to the hypothesis of Theorem 0.0.3. If we compare
with Figure 4.2 we notice that A0 ∪ (n − 2, n − 1) coincides exactly with M0 but the points of
B0 do not coincide with any of Ni. In the figure we show with a blue line the conditions B0 and
A0∪(n−2, n−1). However, we see that Theorem 0.0.3 only needs 2n−2 conditions, while Theorem
4.3.9 requires much more conditions. The reason is implicit in Remark 4.2.6, because each of the
2n−2 terms of the resolution of the diagonal is made of many different pieces, each of them imposing
a different condition.
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Figure 4.3: Theorem 0.0.3 vs Theorem 4.3.9
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Chapter 5

Appendix: Cohomology calculator in

SAGE

We briefly explain the implementation in SAGE of Bott’s algorithm, made in collaboration with J.
Caravantes.

We call Bott bundles to those homogeneous vector bundles on flag manifolds that can be de-
composed as a direct sum of homogeneous vector bundles associated to irreducible representations.
We can use Bott’s algorithm to compute the cohomology of such bundles. This code allows the
user to create, sum and twist of Bott bundles on flag manifolds. Data such as rank and the full
cohomology can be computed.

Let us give part of the code of this package. First of all, we include some algorithms that will
be just useful for the main classes and methods.

Remark 5.0.12. Notice that in the pakage we use the notation Q for the universal bundle of rank
n− k over G(k, n) and S for the universal bundle of rank k + 1 over G(k, n).

In first place, we give Bott’s algorithm for the general linear group as described in Proposition
2.2.3 (def bott(alpha)):

• INPUT (alpha): a sequence of nonnegative integers representing the concatenated partitions
of the Schur functors of the quotients of adjacent tautological subbundles.

• OUTPUT ([i, nu]):

– i is positive if and only if there is a nonvanishing cohomology group. Such group is H i by
Bott’s Theorem, and it is the Schur Functor associated to the partition nu of the vector
space of dimension equal to the length of alpha.

– i = −1 if all cohomology groups vanish. In this case, nu has no relevant information.

de f bott ( alpha ) :
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n = len ( alpha ) − 1
nu = alpha
i = 0
goon = True
whi l e goon :

j = 0
whi l e j<=n−1 and nu [ j ] >= nu [ j +1] :

j += 1
i f j == n :

return [ i , nu ]
i f nu [ j ]+1 == nu [ j +1] :

re turn [−1 , nu ]
nu [ j ] , nu [ j +1] = nu [ j +1]−1, nu [ j ]+1
i+= 1

Now, given a partition l, we compute the dimension of the Schur functor of a vector space of
dimension len(l) with the formula given in Proposition 2.1.17 (def schur_dimension(l)):

• INPUT (l): a partition

• OUTPUT (d): The dimension of the Schur functor associated to l of an l-dimensional vector
space

de f schur_dimension ( l ) :
n = len ( l )
d = 1
f o r i in range (1 , n ) :

f o r j in range ( i +1, n+1):
d ∗= ( j−i+l [ i −1]− l [ j −1]) / ( j−i )

re turn d

Now we simplify a redundant decomposition of a Bott bundle (def simplify_decomposition(dec)).

• INPUT (dec): A list whose elements are pairs of a positive integer (multiplicity) and a list of
nonnegative integers.

• OUTPUT: A list of pairs as in the INPUT where the second entries of the pairs are pairwise
different. The function just sums up the multiplicities of the same list to simplify the data.

de f s impl i fy_decompos i t ion ( dec ) :
i = 0
whi l e i < l en ( dec ) − 1 :

j = i + 1
whi l e j < l en ( dec ) :
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i f dec [ i ] [ 1 ] == dec [ j ] [ 1 ] :
dec [ i ] [ 0 ] = dec [ i ] [ 0 ] + dec [ j ] [ 0 ]
dec . pop ( j )

e l s e :
j += 1

i += 1
return dec

We multiply a decomposition (of a Bott bundle) times an integer (def multiply_decomposition(n,
dec)).

• INPUT (n, dec):

– n: A nonnegative integer

– dec: A list whose elements are pairs of a positive integer (multiplicity) and a list of
nonnegative integers

• OUTPUT: A list of pairs as in the INPUT where the all the multiplicities are multiplied by
’n’.

de f mult iply_decompos it ion (n , dec ) :
re turn [ [ n∗ i [ 0 ] , i [ 1 ] ] f o r i in dec ]

We have some more function on process like these:
1. def plethism_of_irred(lmbd, alpha, a, n, s): Apply Schur functor to an irreducible Bott
bundle. Mainly based on [[30], Formula (8.9)].

• INPUT (lmbd, alpha, a, n, s)

– lmbd: A partition

– alpha: A list of integers: the concatenated Schur functors on the quotioent of adjacent
tautological subbundles of the flag manifold. The resulting bundle is the twist of all this
Schur functors of bundles

– a: A list of nonnegative integers (the dimensions of the projective subspaces conforming
the flags).

– n: A nonnegative integer (the dimension of the ambient projective space of the flags).

– s: It should be SymmetricFunctions(QQ).schur()

• OUTPUT: A list whose elements are pairs of a positive integer (multiplicity) and a list of
nonnegative integers.

2. def plethysmization(lmbd, dec, a, n, s): Tool to compute the decomposition of the Schur
functor of a Bundle. Based on [[30], Formula (8.8)] and function plethism_of_irred.
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• INPUT: (lmbd, dec, a, n, s):

– lmbd: A partition

– dec: A list whose elements are pairs of a positive integer (multiplicity) and a list of
nonnegative integers.

– a: A list of nonnegative integers (the dimensions of the projective subspaces conforming
the flags).

– n: A nonnegative integer (the dimension of the ambient projective space of the flags).

– s: It should be SymmetricFunctions(QQ).schur()

• OUTPUT: A list whose elements are pairs of a positive integer (multiplicity) and a list of
nonnegative integers.

Now we introduce the class we use for reducible bundles. (It intends to be defined for arbitrary
flag manifolds.)

First, we define the class BottBundle that represents homogeneous vector bundles on a given
homogeneous space (flag manifold) that can be decomposed as a sum of irreducible homogeneous
vector bundles whose cohomology can be computed by means of Bott’s algorithm (Proposition
2.2.3).

Such irreducible bundles are twists of Schur functors on the (duals of) quotients of tautological
subbundles that are adjacent in the sequence (see [37] and [19]):

• ATTRIBUTES:

– space: The “FlagManifold“ on which the bundle is defined

– decomposition: A list whose elements are pairs of a positive integer (multiplicity) and a
list of nonnegative integers (irreducible “BottBundle“)

– aspect: A simpler way to represent the bundle that keeps the way it was constructed.

• METHODS:

– _add_ : Direct sum of vector bundles “self“ and “other“ that are objects of BottBundle
class, with the same attribute “space“.

– _mul_: Ttwists “self“ times “other“ (tensor product) that are objects of BottBundle
class, with the same attribute “space“.

– rank: Returns the rank of “self“.

– cohomology: Computes the whole sheaf cohomology of “self“. (Gives a list l of integers
such that l[i] is the diension of the i-th cohomology space of the bundle. The length of l
is equal to the index of the last nonvanishing cohomology space (+1). Therefore, if the
length is zero, all cohomology vanishes.)

– schur: Performs a given partition’s schur functor of “self“ (on process).

– sym: A given integer symmetric power of “self“ (on process).
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– wedge: A given number exterior power of “self“ (on process).

• INPUT (space): A value of type FlagManifold.

• OUTPUT: The zero bundle on “space“.

c l a s s BottBundle ( ) :
de f __init__( s e l f , space ) :

s e l f . decompos it ion = [ ]
s e l f . space = space
s e l f . a spect = ’0 ’

de f __repr__( s e l f ) :
cadena = ’Homogeneous rank−’ + s t r ( s e l f . rank ( ) ) + ’ vec to r
bundle on ’ + s e l f . space .__repr__()+ ’ .\n ’ + ’ I t i s the sum
of the f o l l ow ing i r r e d u c i b l e homogeneous vec to r bundles : ’ +
’\n ’
f o r i in s e l f . decompos it ion :

p a r t i c i o n e s = ’ ’
ant = 0
contador = 1
f o r d in s e l f . space . a :

p a r t i c i o n e s = pa r t i c i o n e s + ’ Schur func to r o f
p a r t i t i o n ’ + s t r ( i [ 1 ] [ ant : d+1]) + ’ o f the dual o f
the ’ + s t r ( contador ) + ’ s t /nd/rd/th quot ioent o f
t a u t o l o g i c a l subbundles , \ n ’
contador += 1
ant = d + 1

pa r t i c i o n e s = pa r t i c i o n e s + ’ Schur func to r o f
p a r t i t i o n ’ + s t r ( i [ 1 ] [ ant : s e l f . space . n+1]) + ’ o f the
dual o f the l a s t quot ioent o f t a u t o l o g i c a l subbundles , \ n ’
cadena = cadena + ’\n ’ + s t r ( i [ 0 ] ) + ’ time ( s ) the
t enso r product o f : \n ’ + pa r t i c i o n e s

return cadena
de f __add__( s e l f , o ther ) :

i f s e l f . space <> other . space :
p r i n t ’ Error : Cannot sum bundles on d i f f e r e n t v a r i e t i e s ’
re turn

r e s u l t = BottBundle ( s e l f . space )
r e s u l t . aspect = s e l f . aspect + ’(+) ’ + other . aspect
r e s u l t . decompos it ion =
s impl i fy_decompos i t ion ( deepcopy ( s e l f . decompos it ion ) +
deepcopy ( other . decompos it ion ) )

return r e s u l t
de f __mul__( s e l f , o ther ) :

i f s e l f . space <> other . space :
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pr i n t ’ Error : Cannot tw i s t bundles on d i f f e r e n t v a r i e t i e s ’
re turn

import sage . l i b s . l r c a l c . l r c a l c as l r c a l c
n = s e l f . space . n
a = copy ( s e l f . space . a )
r = len ( a )
r e s u l t = BottBundle ( s e l f . space )
r e s u l t . aspect = ’ ( ’ + s e l f . aspect + ’ ) ( x ) ( ’ + other . aspect + ’ ) ’
f o r i in s e l f . decompos it ion :

f o r j in other . decompos it ion :
LR_Result = l r c a l c . mult ( i [ 1 ] [ 0 : a [ 0 ]+1 ] ,
j [ 1 ] [ 0 : a [ 0 ]+1 ] , a [0 ]+1)
SimpleMult = [ ]
f o r l in LR_Result . i tems ( ) :

SimpleMult . append ( [ l [ 1 ] ∗ i [ 0 ] ∗ j [ 0 ] , l [ 0 ] [ : ] ] )
f o r s in SimpleMult :

f o r index in range ( l en ( s [ 1 ] ) , a [ 0 ]+1 ) :
s [ 1 ] . append (0)

f o r k in range (1 , r ) :
LR_Result = l r c a l c . mult ( i [ 1 ] [ a [ k−1]+1: a [ k ]+1] ,
j [ 1 ] [ a [ k−1]+1: a [ k ]+1] , a [ k]−a [ k−1])
NewList = [ ]
f o r l in LR_Result . i tems ( ) :

f o r s in SimpleMult :
aux = deepcopy ( s [ 1 ] )
aux . extend ( l [ 0 ] [ : ] )
NewList . append ( [ l [ 1 ] ∗ s [ 0 ] , aux ] )

SimpleMult = NewList
f o r s in SimpleMult :

f o r index in range ( l en ( s [ 1 ] ) , a [ k ]+1) :
s [ 1 ] . append (0)

NewList = [ ]
LR_Result = l r c a l c . mult ( i [ 1 ] [ a [ r −1]+1:n+1] ,
j [ 1 ] [ a [ r −1]+1:n+1] , n−a [ r −1])
f o r l in LR_Result . i tems ( ) :

f o r s in SimpleMult :
aux = deepcopy ( s [ 1 ] )
aux . extend ( l [ 0 ] [ : ] )
NewList . append ( [ l [ 1 ] ∗ s [ 0 ] , aux ] )

SimpleMult = NewList
f o r s in SimpleMult :

f o r index in range ( l en ( s [ 1 ] ) , n+1):
s [ 1 ] . append (0)

r e s u l t . decompos it ion . extend ( SimpleMult )
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r e s u l t . decompos it ion =
s impl i fy_decompos i t ion ( r e s u l t . decompos it ion )

return r e s u l t
de f rank ( s e l f ) :

TotalRank = 0
f o r d in s e l f . decompos it ion :

Part ia lRank = 1
prev iousa = −1
f o r a in s e l f . space . a :

Part ia lRank ∗= schur_dimension (d [ 1 ] [ prev iousa +1:a+1])
prev iousa = a

Part ia lRank ∗=
schur_dimension (d [ 1 ] [ prev iousa +1: s e l f . space . n+1])
TotalRank += d [ 0 ] ∗ Part ia lRank

return TotalRank
def cohomology ( s e l f ) :

n = len ( s e l f . decompos it ion [ 0 ] [ 1 ] )
B = [ ]
f o r e l in s e l f . decompos it ion :

l i s t a = deepcopy ( e l [ 1 ] )
aux = bott ( l i s t a )
aux . append ( e l [ 0 ] )
B. append ( aux )

B. s o r t ( )
m = B[ l en (B) −1 ] [ 0 ]
Cohom = [ ]
f o r ind in range (0 , m+1):

Cohom . append (0)
f o r e l in B:

i f e l [ 0 ] <> −1:
Cohom [ e l [ 0 ] ] += e l [ 2 ] ∗ schur_dimension ( e l [ 1 ] )

f o r i in range (0 , m+1):
i f Cohom [ i ] <> 0 :

p r i n t "h^" , i , " = " , Cohom [ i ]
i f l en (Cohom) == 0 :

p r i n t ’ A l l cohomology vanishes ’
e l s e :

p r i n t ’ A l l remaining cohomology i s zero ’
return Cohom

Now we give some child classes of the BottBundle class that only work for Grassmannian.

• UniversalSubbundleDual(BottBundle): A child class of “BottBundle“ to easily initialize the
dual to the universal subbundle of an instance of “Grassmannian“
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c l a s s UniversalSubbundleDual ( BottBundle ) :
de f __init__( s e l f , fm ) :

s e l f . decompos it ion = [ [ 1 , [ 1 ] + [ 0 ] ∗ ( fm . n ) ] ]
s e l f . space = fm
s e l f . aspect = ’S_1^∗ ’

• UniversalSubbundle(BottBundle): A child class of “BottBundle“ to easily initialize the uni-
versal subbundle of an instance of “Grassmannian“

c l a s s UniversalSubbundle ( BottBundle ) :
de f __init__( s e l f , fm ) :

s e l f . decompos it ion = [ [ 1 , [ 1 ] ∗ ( fm . a [ 0 ] )+ [ 0 ]+ [ 1 ] ∗ ( fm . n−fm . a [ 0 ] ) ] ]
s e l f . space = fm
s e l f . aspect = ’S_1 ’

• UniversalQuotientDual(BottBundle): A child class of “BottBundle“ to easily initialize the dual
to the universal quotient bundle of an instance of “Grassmannian“

c l a s s UniversalQuotientDual ( BottBundle ) :
de f __init__( s e l f , fm ) :

s e l f . decompos it ion =
[ [ 1 , [ 0 ] ∗ ( fm . a [ 0 ]+1)+[1 ]+ [0 ]∗ ( fm . n−fm . a [ 0 ] − 1 ) ] ]
s e l f . space = fm
s e l f . aspect = ’Q_1^∗ ’

• UniversalQuotient(BottBundle): A child class of “BottBundle“ to easily initialize the universal
quotient bundle of an instance of “Grassmannian“

c l a s s Universa lQuot ient ( BottBundle ) :
de f __init__( s e l f , fm ) :

s e l f . decompos it ion = [ [ 1 , [ 1 ] ∗ ( fm . n ) + [ 0 ] ] ]
s e l f . space = fm
s e l f . aspect = ’Q_1’

• LineBundleGrass(BottBundle): A child class of “BottBundle“ to easily initialize line bundles
of an instance of “Grassmannian“
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c l a s s LineBundleGrass ( BottBundle ) :
de f __init__( s e l f , g ras s , k ) :

i f k > 0 :
s e l f . decompos it ion = [ [ 1 ,
[ k ] ∗ ( g ra s s . a [ 0 ]+1)+[0 ]∗ ( g ra s s . n−gra s s . a [ 0 ] ) ] ]

e l i f k < 0 :
s e l f . decompos it ion = [ [ 1 ,
[ 0 ] ∗ ( g ra s s . a [0]+1)+[−k ] ∗ ( g ra s s . n−gra s s . a [ 0 ] ) ] ]

e l s e :
s e l f . decompos it ion = [ [ 1 , [ 0 ] ∗ ( g ra s s . n+1) ] ]

s e l f . space = gras s
s e l f . a spect = ’O( ’ + s t r ( k ) + ’ ) ’

Now we introduce the classes referring the homogeneous spaces (class FlagManifold). This is
the class containing all quotients of the general linear group by a parabolic subgroup.

• ATTRIBUTES:

– a: A list of increasing integers (dimensions of the subspaces of the flag)

– n: Positive integer (dimension of the ambient projective space of the flag)

• METHODS:

– is_grassmannian: Determines wether “self“ is a grassmannian.

– is_projective_space: Determines wether “self“ is a projective space.

• INPUT

– a: A list of increasing integers (dimensions of the subspaces of the flag)

– n: Positive integer (dimension of the ambient projective space of the flag)

• OUTPUT: The space of flags of subspaces of dimensions given by “a“ in the projective space
of dimension “n“

c l a s s FlagManifo ld ( ) :
de f __init__( s e l f , a , n ) :

s e l f . a = a
s e l f . n = n

def __repr__( s e l f ) :
r e turn ’ the space o f f l a g s o f subspaces o f dimens ions ’ +
s t r ( s e l f . a ) + ’ in the ’ + s t r ( s e l f . n ) + ’−dimens iona l
p r o j e c t i v e space ’

de f is_grassmannian ( s e l f ) :
i f l en ( s e l f . a)==1:
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return True
e l s e :

re turn Fal se
de f i s_pro j e c t i v e_space ( s e l f ) :

i f s e l f . is_grassmannian ( ) :
i f s e l f . a [0]==0:

return True
e l s e :

re turn Fal se
e l s e :

re turn Fal se

Now we give the particular child class of FlagManifold (class Grassmannian(FlagManifold)),
to easily initialize Grassmannians.

• METHODS:

– O: Creates a multiple of the hyperplane section

– Q: Creates the universal quotient bundle

– Q_dual: Creates the dual of the universal quotient bundle

– S: Creates the universal subbundle

– S_dual: Creates the dual of the universal subbundle

– Om: Creates the cotangent bundle

– T: Creates the tangent bundle

• INPUT:

– k: A list of increasing integers (dimension of the projective subspace)

– n: Possitive integer (the dimension of the ambient projective space of the flag)

• OUTPUT: The grassmannian of “k“-dimensional projective subspaces in the projective space
of dimension “n“.

c l a s s Grassmannian ( FlagManifo ld ) :
de f __init__( s e l f , k , n ) :

s e l f . a = [ k ]
s e l f . n = n
pr i n t ’You have de f ined the grassmannian o f ’ +
s t r ( s e l f . a [ 0 ] ) + ’−dimens iona l subspaces o f the ’ +
s t r ( s e l f . n) + ’−dimens iona l p r o j e c t i v e space ’
p r i n t ’ Cons ider the u i v e r s a l shor t exact sequence : ’
p r i n t ’0 −−> S −−> O^ ’ + s t r ( s e l f . n+1) + ’ −−> Q −−> 0 ’
p r i n t ’ where rk (S)= ’ + s t r ( s e l f . a [0 ]+1) + ’ and rk (Q)= ’ +
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s t r ( s e l f . n−s e l f . a [ 0 ] ) + ’ . ’
p r i n t ’ These bundles can be de f ined with methods S ( ) and
Q( ) . ’
p r i n t ’ Their dua l s can be obtained with methods SDual ( ) and
Qdual ( ) ’
p r i n t ’Method O(k ) g i v e s the k power o f the hyperplane
s e c t i on . ’
p r i n t ’Method Om() g i v e s the cotangent bundle . ’
p r i n t ’Method T( ) g i v e s the tangent bundle . ’

de f __repr__( s e l f ) :
r e turn ’ the grassmannian o f ’ + s t r ( s e l f . a [ 0 ] ) +
’−dimens iona l subspaces o f the ’ + s t r ( s e l f . n ) +
’−dimens iona l p r o j e c t i v e space ’

de f O( s e l f , k ) :
re turn LineBundleGrass ( s e l f , k )

de f Q( s e l f ) :
r e turn Universa lQuot ient ( s e l f )

de f S ( s e l f ) :
r e turn UniversalSubbundle ( s e l f )

de f Q_dual ( s e l f ) :
r e turn UniversalQuotientDual ( s e l f )

de f S_dual ( s e l f ) :
r e turn UniversalSubbundleDual ( s e l f )

de f Om( s e l f ) :
r e turn s e l f . S ( )∗ s e l f . Q_dual ( )

de f T( s e l f ) :
r e turn s e l f . S_dual ( )∗ s e l f .Q( )

Example 5.0.13. Let us finally give an example. We will define G = G(1, 4) and the universal
bundles Q and S. Then we construct a bundle comming from twist and sum of Bott bundles Q and
S and compute its cohomology.

sage : G = Grassmannian (1 , 4 )
You have de f ined the grassmannian o f 1−dimens iona l subspaces o f
the 4−dimens iona l p r o j e c t i v e space
Cons ider the u i v e r s a l shor t exact sequence :
0 −−> S −−> O^5 −−> Q −−> 0
where rk (S)=2 and rk (Q)=3.
These bundles can be de f ined with methods S ( ) and Q( ) .
Their dua l s can be obtained with methods SDual ( ) and Qdual ( )
Method O(k) g i v e s the k power o f the hyperplane s e c t i on .
Method Om() g i v e s the cotangent bundle .
Method T( ) g i v e s the tangent bundle .
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sage : Q = G.Q( ) #c r ea t e s the un i v e r s a l bundle Q
Homogeneous rank−3 vec to r bundle on the grassmannian o f
1−dimens iona l subspaces o f the 4−dimens iona l p r o j e c t i v e space .
I t i s the sum of the f o l l ow ing i r r e d u c i b l e homogeneous vec to r
bundles :

1 time ( s ) the t enso r product o f :
Schur func to r o f p a r t i t i o n [ 1 , 1 ] o f the dual o f the
1 s t /nd/ rd/th quot ioent o f t a u t o l o g i c a l subbundles ,
Schur func to r o f p a r t i t i o n [ 1 , 1 , 0 ] o f the dual o f the l a s t
quot ioent o f t a u t o l o g i c a l subbundles ,

sage : S = G. S ( ) #c r ea t e s the un i v e r s a l bundle S
Homogeneous rank−2 vec to r bundle on the grassmannian o f
1−dimens iona l subspaces o f the
4−dimens iona l p r o j e c t i v e space .
I t i s the sum of the f o l l ow ing i r r e d u c i b l e homogeneous vec to r
bundles :

1 time ( s ) the t enso r product o f :
Schur func to r o f p a r t i t i o n [ 1 , 0 ] o f the dual o f the
1 s t /nd/ rd/th quot ioent o f t a u t o l o g i c a l subbundles ,
Schur func to r o f p a r t i t i o n [ 1 , 1 , 1 ] o f the dual o f the l a s t
quot ioent o f t a u t o l o g i c a l subbundles ,

sage : E = S∗Q + Q #Twist and sum of Bott bundles
Homogeneous rank−9 vec to r bundle on the grassmannian o f
1−dimens iona l subspaces o f the
4−dimens iona l p r o j e c t i v e space .
I t i s the sum of the f o l l ow ing i r r e d u c i b l e homogeneous vec to r
bundles :

1 time ( s ) the t enso r product o f :
Schur func to r o f p a r t i t i o n [ 2 , 1 ] o f the dual o f the
1 s t /nd/ rd/th quot ioent o f t a u t o l o g i c a l bundles ,
Schur func to r o f p a r t i t i o n [ 2 , 2 , 1 ] o f the dual o f the l a s t
quot ioent o f t a u t o l o g i c a l bundles ,

1 time ( s ) the t enso r product o f :
Schur func to r o f p a r t i t i o n [ 1 , 1 ] o f the dual o f the
1 s t /nd/ rd/th quot ioent o f t a u t o l o g i c a l bundles ,
Schur func to r o f p a r t i t i o n [ 1 , 1 , 0 ] o f the dual o f the l a s t
quot ioent o f t a u t o l o g i c a l bundles ,
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sage : E . cohomology ( ) #Computing the cohomology o f a Bott bundle
h^ 0 = 5
Al l remaining cohomology i s zero
[ 5 ]
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