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“We are not going in circles, we are going upwards. The path is a spiral; we have already
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Prelude and outline of the thesis

The physical theory which deals with the strong interactions between quarks and
gluons in known as Quantum Chromodynamics (QCD). This theory, together with
the ones that deal with electromagnetic and weak interactions (unified in electroweak
theory) are combined into the Standard Model (SM). The gravitational interaction,
the other known force in nature, is well described by General Relativity. The Stan-
dard Model is built in terms of a Lagrangian of quantized fields describing funda-
mental degrees of freedom, quarks and leptons, and bosons that act as carriers of the
cited interactions.

One of the more fundamental open questions in QCD is to understand how the
observed properties of hadrons are generated by the dynamics of their inner con-
stituents. In order to shed some light on this question physicists use different theo-
retical approaches from different perspectives, like perturbative QCD, effective field
theories, lattice QCD, etc. A very interesting research field to test and understand
QCD is the exploration of the multi-dimensional structure of hadrons. The main goal
of this field is to reconstruct multi-dimensional images of a hadron investigating the
distribution of partons, namely quarks and gluons, inside it. In this way, issues
such as the the role of quarks and gluons in generating the nucleon’s spin or par-
tonic angular momentum can be investigated. There is a high interest into hadron
structure in the experimental community, with important facilities such JLab, DESY,
BNL, CERN, KEK, running experiments to study the multi-dimensional structure
of hadrons. Also, the LHC can help a lot in this field, especially to understand the
role of gluons inside the protons. Recently, the US government has approved the
construction of a new accelerator, the Electron-Ion Collider (EIC) at BNL. Part of the
predictions given in this thesis are suitable to be tested in this new accelerator.

A very interesting type of observables that can give information about hadron
structure are the ones with non-vanishing transverse momentum dependence. This
interest was already there in the first years after the establishment of QCD as a fun-
damental theory of strong interactions [1–5]. These observables are very interesting
for hadron colliders and have very relevant impact on, e.g., the study of Higgs bo-
son production and the search for physics Beyond Standard Model. A crucial point
to deal with these type of processes is obtaining well defined factorization theorems
and resumming large logarithmic contributions to perform phenomenological anal-
yses and predictions. A large amount of work has been done to establish factoriza-
tion theorems with un-integrated transverse momentum for very relevant processes
as Drell-Yan production (proton-proton collision leading to a pair of leptons in the fi-
nal state) or semi-inclusive deep inelastic scattering (electron-proton collisions lead-
ing to a hadron in the final state) [6–17]. In general terms, a factorized cross section
is written in terms of a hard factor that includes all the high-energy physics and two
objects that include information about the distribution of partons inside the hadrons
in the process. These elements are known as transverse momentum dependent par-
ton distribution functions (TMDPDFs 1). In the derivation of factorization theorems

1The TMD acronym stands for transverse momentum distributions or to indicate transverse mo-
mentum dependence of a particular object. Along the thesis we will use TMDPDF for transverse
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we use the machinery of Soft Collinear Effective Theory (see chapter 1). A more
dedicated study about factorization theorems is given in chapter 2.

The main body of this thesis is divided in two parts, studying factorization theo-
rems and the hadronic information in two different contexts, but aiming at the same
goal: improving the extraction of the three-dimensional information of hadrons.

Part I of this thesis is dedicated to the study of spin dependent TMDPDFs arising
from factorization theorems established for processes involving hadrons with a par-
ticular polarization. In chapter 3 the definition of the unpolarized TMDPDF of [18]
is extended in order to obtain definitions for spin dependent TMDPDFs. At lead-
ing dynamical twist we obtain different spin-dependent distributions for quarks and
gluons. The results of the perturbative information derived from the large transverse
momentum limit of these TMDPDFs (known as matching coefficients) up to second
order in perturbation theory will be given in chapter 4. In this way we achieve
the same level of precision for spin dependent TMDPDFs as for their unpolarized
counterparts. This improvement of the perturbative order known for the different
spin-dependent TMDs will help to decrease the theoretical errors in phenomenolog-
ical predictions involving polarized hadrons and will allow a cleaner extraction of
nonperturbative physics associated to the transverse momentum dependent distri-
butions. As an application, in chapter 5 we use the new perturbative results obtained
for linearly polarized gluon TMD to see their impact in the transverse momentum
spectrum of the Higgs boson.

Part II of this thesis is dedicated to establishing factorization theorems including
jets in final states of the considered processes. In principle, the use of jets in the fi-
nal state decreases the nonperturbative contamination compared to using hadrons
in a final state, because jet properties can be calculated to a large extent in perturba-
tion theory. Thus, processes with jets in the final state (e.g. jet SIDIS) should offer a
cleaner way to access information about the structure of hadrons in the initial state.
Of course, some hadronization effects associated with the jets appear (e.g. due to the
determination of the position of the axis). Thus, in this part of the thesis we study
the establishment of different factorization theorems for some particularly interest-
ing processes using different jet definitions. This allows one to study the advan-
tages and disadvantages of different jet definitions in the extraction of information
about hadrons in initial states. In chapter 6 a new definition for TMD jets is given
through the establishment of different factorization theorems in different regimes
related mainly to the size of the considered jet. This leads to a particular choice of
the jet axis that allows the establishment of factorization theorems in any regime
and will allow us to obtain numerical predictions that can be tested in future experi-
ments as the EIC. Finally, in chapter 7 a different definition of the jet is used in order
to obtain numerical predictions. In this case, we introduce the concept of grooming
that removes the soft contamination to the jet. Thus only the collinear core of the
jet remains and the hadronization effects should be mostly suppressed. So, this way
to proceed represent another way to access to the nonperturbative information of
hadrons in a cleaner manner of using processes with hadrons in the final state.

momentum parton distribution functions and TMDFF for transverse momentum fragmentation func-
tions.
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Chapter 1

Introduction to Soft-Collinear
Effective Theory

The study of problems with at least two different energy scales, in quantum field
theory is usually simplified with the use of Effective Field Theories (EFTs). These
theories allow one to expand physical quantities in the small ratio of the scales and
to separate the low energy contributions from the high energy part of the problem.
The expansion in this ratio of scales usually simplifies this problem and it is often
necessary in order to attack field-theory problems. In Quantum Chromodynamics
(QCD) the low-energy part of the problem is usually nonperturbative, while the
high-energy part can be computed perturbatively. EFTs are able to separate the two
pieces and compute them individually with appropriate techniques. In particular,
as this thesis is focused on hadron-collider observables, the leading nonperturbative
contributions will be encoded in parton distribution functions.

Commonly EFTs are used in low energy QCD, in particular in flavor physics.
However, in recent years several applications of EFTs to high energy physics were
developed. This is not surprising, since processes at high energy colliders are per-
fect examples of problems with different energy scales. Processes in hadron colliders
involve physics from large scales such as the center-of-mass-energy and very low
scales such as the proton mass. Thus, in order to obtain some theoretical predictions
for any process in a hadron collider we need to disentangle the physics associated
with these scales. Traditionally this factorization is obtained using diagrammatic
methods, establishing some properties at all orders in perturbation theory from the
Feynman diagrams in the high-energy limit. Reviews of these traditional diagram-
matic techniques can be found in [6, 10]. Soft-Collinear Effective Theory (SCET)
[19–21] provides an alternative formalism which allows to derive these factorization
theorems. This EFT provides an effective Lagrangian that simplifies the way we or-
ganize the computations. The existence of an EFT to do this kind of computations is
extremely useful because for more complex problems, such as calculations of power
corrections, a purely diagrammatic approach can be too difficult. Although the EFT
approach has important advantages, there is a close connection between both ap-
proaches, because the diagrams of SCET are in one-to-one correspondence with the
expanded QCD diagrams.

A typical example for the type of processes that can be studied with SCET and
that lead to hadron collider observables is two jet production from electron-positron
annihilation. This process involves sprays of energetic particles along two direc-
tions with momenta pn and pn̄ which form the jet and additional soft radiation with
momentum ps. Also, if the hadronic sources are in the initial state, another impor-
tant process is the Drell-Yan production in which a proton-proton collision leads to
a dilepton pair in the final state. The factorization of this process will be studied in
detail in chapter 2. Graphically this kind of process is sketched in fig. 1.1.
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FIGURE 1.1: Typical two hadron/jet production.

The momenta involved in the process are related by a scale hierarchy

Q2 ≡ (pn + pn̄)
2 � p2

n ∼ p2
n̄ � p2

s , (1.1)

where Q2 represents the hard scale of the process and its associated physics can be
isolated and absorbed into Wilson coefficients of effective theory operators. This
procedure is analogous to integrating out a heavy particle when one is constructing
a low energy effective theory for light particles only. Then, SCET involves two dif-
ferent types of fields, collinear and soft. They describe the physics associated with
the two low energy scales p2

n and p2
s .

In this thesis, we will use SCET to analyze cross sections of processes such as the
one presented in fig. 1.1 (see e.g. chapter 2). The result of these kind of analyses is
often a factorization theorem of the cross section as

σ = H · F⊗ F̄⊗ S. (1.2)

The hard function H encodes the integrated physics at the scale Q2. The hadron
or jet function F (F̄) depends on the scale p2

n (p2
n̄) and the soft function S describes

the physics at the soft momentum scale, p2
s . Depending on the observable consid-

ered these elements are multiplied or convolved as indicated by the symbol ⊗. The
formula in eq. (1.2) is obtained expanding in the ratios of the scales in eq. (1.1). Its
main virtue is that each piece is sensitive only to one scale and they fulfill indepen-
dent renormalization group (RG) equations (see section 1.3.5). This fact allows us to
solve one dimensional differential equations for each piece of the cross section and
to evolve them from their natural scales to the matching scale in order to do reliable
phenomenological predictions.

Two main extra complications arise when SCET is compared to other traditional
EFTs. The first one is that quarks and gluons are present in all the regimes of en-
ergies. So, we cannot simply integrate out particles. Instead the quark and gluon
fields are split into modes associated with the different energy scales. There is a hard
mode which describes the contributions when the particles are purely off-shell. This
term is integrated out in a path integral sense (this mode would not appear as an
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external state) and the low-energy collinear and soft modes are the fields of the ef-
fective theory. Section 1.1 is dedicated to illustrate in a simple form the concept of
modes and their factorization with a simple example based in QED, in which only
hard and soft modes appear. Then, we introduce collinear modes in sections 1.2 and
1.3 to complete the picture.

A second complication is that the different momentum components of the fields
scale differently. The components of the momentum that are transverse to the hadron
or jet direction are always small, but the ones along the hadron or jet direction are
large. To perform a derivative expansion of the effective Lagrangian one needs to
split the momenta into different components. This is done by introducing two vec-
tors in the directions of the two hadrons or jets, i.e. nµ ∼ pµ

n and n̄µ ∼ pµ
n̄.

1.1 An example of factorization: electron scattering

To study all the main features of SCET in an understandable way, we begin studying
an illustrative example of soft photon production in electron scattering. This is a
simple study case because only hard and soft modes are present. This case will give
us a clear picture of the definition of modes and how they are separated from each
other. With this example we will obtain some results faster and then the study of the
complete theory introducing collinear modes will be easier. Thus, we dedicate this
section to study electron-electron scattering in QED as in [22].

We cannot avoid the presence of soft photons in QED processes, i.e. soft photons
which cost little energy to produce are always included in final states. Indeed, trying
to compute higher order cross sections without taking into account the contribution
of soft photons leads to divergent results. These divergences tell us that completely
exclusive QED cross sections are not physical. So, when we talk about electron-
electron scattering we are referring to the inclusive process,

e−(p1) + e−(p2)→ e−(p3) + e−(p4) + Xs(qs), (1.3)

where Xs is any state with an arbitrary number of soft photons which carry the total
momentum qs. In this section we assume that the electron energies are of the order
of the electron mass, me. Instead of SCET we will study Soft Effective Theory (SET)
to study the factorization of these soft photon radiation in QED. In this case we
will assume that the energy of these bunch of soft photons fulfills Es � me and we
will analyze the cross section of this process up to leading powers of the expansion
parameter λ = Eγ/me.

The first step is the study of the effective Lagrangian for soft photons with Eγ �
me. So, we should organize the operators in the effective Lagrangian by their dimen-
sion

Lγ
eff = L

γ
4 +

1
m2

e
Lγ

6 +
1

m4
e
Lγ

8 , (1.4)

where the coefficients of the non-leading terms of the Lagrangian are suppressed by
inverse powers of the hard scale of the process, in this case me. Thus, these operators
are suppressed by powers of λ and will not be further considered in our analysis. A
further dedicated study about power correction operators can be found in [23, 24].
The leading Lagrangian only involves the term

Lγ
4 = −1

4
FµνFµν, (1.5)
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FIGURE 1.2: Outgoing electron with soft photon emissions. Note that
q′ = k + k′ and q = k

where its coefficient can be adjusted to its canonical value by rescaling the photon
field, Fµν. Thus, the leading power effective Lagrangian is simply the one for free
photons. This makes sense, because the effective theory is made integrating out all
the particles which are not photons.

However, Lγ
eff is not sufficient by itself. Even if the energy is too small to produce

electron-positron pairs we do need to include the incoming and outgoing electrons
in the effective theory. To obtain this contributions we consider an outgoing electron
with momentum pµ = mevµ, as in fig. 1.2. Consider a soft photon with momen-
tum q. We can expand the internal fermion propagator in the limit where qµ/me is
suppressed. We find

∆F = i /p + /q + me

(p + q)2 −m2
e + i0

=
1 + /v

2
i

v · q + i0
≡ Pv

i
v · q + i0

(1.6)

where we have defined the projector

Pv =
1 + /v

2
, (1.7)

which has the properties

/vPv = Pv, P2
v = Pv, Pv/ε Pv = Pv ε · v. (1.8)

Using these properties, the outgoing leg part of the diagram in fig. 1.2 can be written
as

ū(p)Pv
1

v · q (−ie ε · v)Pv
1

v · q′ (−ie ε′ · v)... . (1.9)

This expansion of soft emissions is called eikonal approximation. At this point we
should study if this expanded expression can be obtained from an effective La-
grangian. To do this, we need to view the expanded propagator in eq. (1.6) as the
propagator in the effective theory and the emissions in the expanded diagram must
result from a Feynman rule−ievµ for the electron-photon vertex. Knowing the Feyn-
man rules ,we need to construct an effective Lagrangian which reproduces them. We
consider

Lv
eff = h̄v(x) iv · D hv(x), (1.10)
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where hv should be considered as an auxiliary fermion field which fulfills Pvhv =

/vhv = hv. As usual, the propagator can be obtained by inverting the quadratic part
of the Lagrangian in Fourier space and multiplying by i. This yields i/(v · q) as
obtained in eq. (1.6). The factor Pv arises because the external spinor fulfills the con-
dition Pvhv = hv and due to the property P2

v = Pv only one projector remains in
the result. Due to the fact that Dµ = ∂µ + ieAµ the vertex Feynman rule is −ievµ as
expected. So, the Lagrangian in eq. (1.10) reproduces correctly the eikonal expres-
sion in eq. (1.9) obtained by expanding the original QED diagram. Note that the
propagator of the field hv has only a single pole in the energy corresponding to the
fermion. This is fine because the field hv describes a fermion close to its mass-shell
with momentum mevµ + qµ where q is the momentum of a soft photon. In this situa-
tion anti-fermions cannot arise as external particles and their effects are going to be
absorbed into the Wilson coefficients of the theory.

We need more than one of the recently defined fermion fields to describe all the
fermions in the problem. So, we should introduce copies of the fermion field hv to
take into account the different velocities of the fermions. Thus, we write the effective
Lagrangian as

Leff =
4

∑
i=1

h̄vi(x) ivi · D hvi(x)− 1
4

FµνFµν + Lint, (1.11)

where the velocities are defined as vµ
i = pµ

i /me. There are some interesting fea-
tures of this Lagrangian that will be also present in the SCET one. First of all, the
Lagrangian depends on reference vectors along the directions of the energetic par-
ticles. In SCET we will see that light-cone vectors in the directions of the massless
particles are used. On the other hand, we need different fields to represent fermions
in different directions in the effective theory but they are described with the same
field as in usual QED. In this case they are modes of the full field used in QED,
living in small momentum region around mev

µ
i . The same will happen in SCET.

Now we should study the interaction term, Lint, which has the form

Lint = ∑
i

Ci({v}, me) h̄v3(x)Γihv1(x)h̄v4(x)Γihv2(x), (1.12)

where Γi is a basis of Dirac matrices and {v} = {vi, i = 1, ..., 4} is a set of velocity
vectors. Terms with only two fermion fields in the interaction Lagrangian are zero
when velocities are different. Note that in eq. (1.12) contraction of Dirac indices of
the coefficients and the fermion field are implicit.

At this point, the effective Lagrangian is complete. The only object we should
calculate are the coefficients Ci (Wilson coefficients). To do this, we should compute
the total amplitude in QED and compare with the effective theory. We use the am-
putated on-shell Green’s function for the process in eq. (1.3) calculated in full QED
to do the matching.

Thus, our effective theory separates high and low energy energy physics. On
one side, the hard scattering of the electrons is calculated in QED and is part of
the Wilson coefficient, which depend on the hard scale, me. On the other side, low
energy diagrams in the effective theory depend only on scales of order of the photon
energy. We introduce a very elegant form of the low energy matrix by introducing
the Wilson line in the direction of vi

Si(x) = exp
[
−ie

∫ 0

−∞
ds vi · A(x + svi)

]
. (1.13)
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We can see that the Wilson line introduced in eq. (1.13) reproduces the emission of
an incoming electron taking the matrix element with a photon in the final state. To
obtain this contribution we expand the Wilson line up to first non-vanishing order,

〈γ(k)|Si(0)|0〉 = −ie
∫ 0

−∞
ds vµ

i 〈γ(k)|Aµ(svi)|0〉 (1.14)

= −ie
∫ 0

−∞
ds vi · ε(k)eisvi ·k = e

vi · ε(k)
−vi · k + i0

.

Indeed, we reproduce the eikonal rule obtained in eq. (1.9). Analogously, we can
define a Wilson line describing the radiation of an outgoing particle

S̄†
i (x) = exp

[
−ie

∫ ∞

0
ds vi · A(x + svi)

]
. (1.15)

It is important to note that the Wilson line fulfills the equation

vi · DSi(x) = 0. (1.16)

Now we redefine the fermion fields in the Lagrangian as

hvi(x) = Si(x)h(0)vi (x), (1.17)

where h(0)vi (x) is a new fermion field. So, introducing conditions in eqs. (1.16, 1.17) in
the fermion part of the Lagrangian we have

h̄vi(x) ivi · Dhvi(x) = h̄(0)vi (x)S†
i (x) ivi · D[Si(x)h(0)vi (x)] (1.18)

= h̄(0)vi (x)S†
i (x)Si(x) ivi · ∂h(0)vi (x)

= h̄(0)vi (x) ivi · ∂h(0)vi (x).

This result tell us that the field h(0)vi is a free field and we were able to remove the
interactions with soft photons. The same procedure is used in SCET to decouple soft
gluons. Note that while in the fermion Lagrangian the soft photons are decoupled,
they are still present in the interaction part, so

Lint = ∑
i

Ci({v}, me) h̄(0)v3 S̄†
3ΓiS1h(0)v1 h̄(0)v4 S̄†

4ΓiS2h(0)v2 . (1.19)

We see that this expression has Wilson lines along the directions of all particles in
the scattering process.

Finally, we use the effective Lagrangian recently constructed to compute the scat-
tering amplitude for the process in eq. (1.3), M, where the final state contains n
photons, Xs(k) = γ(k1) + ... + γ(kn). Using the interaction Lagrangian obtained in
eq. (1.19) the amplitude is written as

Mint = ∑
i

Ci ū(v3)Γiu(v1) ū(v4)Γiu(v2)〈Xs(k)|S̄†
3S1S̄†

4S2|0〉 (1.20)

= Mee〈Xs(k)|S̄†
3S1S̄†

4S2|0〉,

where Mee is the amplitude of the process in eq. (1.3) without photons and calcu-
lated in full QED. So, we have proven that the amplitude factorizes in a hard part
that takes into account purely electron-electron scattering and a soft part that takes
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into account the contribution of soft photons. Analogous statements hold for soft
gluons in QCD, taking into account that Wilson lines are matrices in color space.

The cross section of this process is obtained squaring the amplitude, so

σ = H(me, {v})S(Es, {v}) , (1.21)

where the hard function is the cross section of the process without soft photons

H(me, {v}) =
1

2E12E2|v1 − v2|
(1.22)

× d3 p3

(2π)32E3

d3 p4

(2π)32E4
|Mee|2(2π)4δ(4)(p1 + p2 − p3 − p4),

and the soft function is the Wilson line matrix element squared with the phase space
constraints on the soft radiation

S(Es, {v}) =
∫

Xs

|〈Xs|S̄†
3S1S̄†

4S2|0〉|2θ(Es − EXs). (1.23)

The integral in eq. (1.23) means that one has to sum over the different multiphoton
final states and integrate over their phase space. This kind of Wilson line matrix
elements have the very interesting property of exponentiation, i.e.

S(Es, {v}) = exp
[ α

4π
S[1](Es, {v})

]
, (1.24)

so the all order result is obtained by exponentiating the first order result. The deriva-
tion of this formula is based in the eikonal identity

1
v · k1 v · (k1 + k2)

+
1

v · k2 v · (k1 + k2)
=

1
v · k1

1
v · k2

, (1.25)

which allows one to rewrite sums of diagrams with multiple emissions as products
of diagrams with single one. In non-abelian gauge theories such as QCD, there are
genuine higher order corrections since the different diagrams (and thus the different
terms in l.h.s. of eq. (1.25)) have different color factors and cannot be combined.
However, these higher order corrections only involve certain maximally non-abelian
color structures.

Finally, we should note that the inclusive cross section is finite, but the hard and
soft functions contain divergences individually. The soft function contains ultravi-
olet (UV) divergences which are regularized using dimensional regularization. The
renormalization of these divergences gives a finite hard function but introduces a
new scale µ, which is called factorization scale. After renormalization the factoriza-
tion theorem takes the form

σ = H(me, {v}, µ)S(Es, {v}, µ) , (1.26)

where the µ-dependent objects fulfill RG equations.

1.2 The method of regions

In last section we have constructed the effective Lagrangian, Leff, expanding over
the soft photon momenta. This is fine for tree level diagrams but we should pay
attention to what happens with loop corrections. In this section we study the part
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FIGURE 1.3: Loop correction to an outgoing fermion line

that gets lost in the low energy expansion and we will see that it can be recovered
by expanding the loop integrals in the region of large loop momentum. This kind
of expansions are part of a general technique called the method of regions [22, 25,
26] to expand loop integrals about various limits. As this method is used in the
construction of SCET we discuss here a simple example based in the computation of
the diagram in fig. 1.3. Note that for our discussion we will consider the associated
scalar integral because the numerator does not include relevant compications, so we
should compute

F =
∫

ddk
1

(k + q)2 [(mev− k)2 −m2
e ]

, (1.27)

where q is a soft photon momentum.
In the low energy theory, we assumed that kµ ∼ qµ � me. Thus, we expand the

integral in this region

Flow =
∫

ddk
1

(k + q)2
1

−2mev · k

(
1 +

k2

2mev · k
+ ...

)
. (1.28)

This expansion produces the propagators i/(v · k) found in the tree-level discussion.
As the loop momentum is integrated up to infinity the approximation in eq. (1.28) is
no longer valid when kµ ∼ me or longer. Looking at the integral in eq. (1.28) we see
that this expansion produces UV divergences stronger than in the original integral in
eq. (1.27), but the integral are well defined in dimensional regularization. To correct
the problems we consider the difference

Fhigh = F− Flow (1.29)

=
∫

ddk
1

(k + q)2

[
1

(mev− k)2 −m2
e
− 1
−2mev · k

(
1 +

k2

2mev · k
+ ...

)]
.

Note that this integral has support only in the limit kµ � qµ since the square bracket
tends to zero for kµ ∼ qµ. So, we can expand the integrand around qµ = 0 by
expanding the first propagator denominator

Fhigh =
∫

ddk
1
k2

(
1− q2

2q · k + ...
)

(1.30)

×
[

1
(mev− k)2 −m2

e
− 1
−2mev · k

(
1 +

k2

2mev · k
+ ...

)]
.
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FIGURE 1.4: One loop correction to the Sudakov form factor

Dropping the scaleless integrals we get

Fhigh =
∫

ddk
1
k2

(
1− q2

2q · k + ...
)

1
(mev− k)2 −m2

e
, (1.31)

which is the expansion of the integrand of eq. (1.27) in kµ ∼ me � qµ. The main mes-
sage of this procedure is that we obtain the full result by performing the expansion
of the integrand in two regions, integrating each term and adding the results. In our
case, the relevant regions are the hard region (kµ ∼ me) and the soft region (kµ ∼ qµ).

1.3 SCETI

1.3.1 The Sudakov form factor

The first step to understand the construction of the full effective theory, SCET, will
be the study of the simplest object in which soft and collinear particles play a role,
the Sudakov form factor. This object is not a physical quantity by itself but it is
important and enters in many processes in collider physics. Based in the method
of regions explained in section 1.2 we can study this object and explicitly see how
collinear modes enter. This generalizes the cases studied in last sections where only
soft modes are considered. In fig. 1.4 the one loop correction to the Sudakov form
factor is considered. We define the following Lorentz invariants from the different
momenta of physical particles in the diagram

L2 = −l2 − i0, P2 = −p2 − i0, Q2 = −(l − p)2 − i0 (1.32)

and we study the form factor in the limit

L2 ∼ P2 � Q2, (1.33)

which is the limit of high momentum transferred and small invariant mass. This
limit is the used in hadron/jet production processes. We put a small off-shellness in
the external lines due to the existence of soft and collinear emissions.

The study of the Sudakov form factor is based on finding which momentum
modes are relevant and how the different components of the momenta scale com-
paring with the external momenta. As a tensor loop integral contains exactly the
same momentum regions that its analogous scalar integral we work with the last
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one

I = iπ−d/2µ2ε
∫

ddk
1

(k2 + i0)[(k + p)2 + i0][(k + l)2 + i0]
, (1.34)

where we make the usual choice in dimensional regularization for dimensions, d =
4− 2ε.

To perform the expansion of the integral in eq. (1.34) around the limit in eq. (1.33)
we introduce two light-like reference vectors along pµ and lµ, in analogy with the
velocity vectors vµ

i which we introduced in the case of soft photons. Thus, our light-
cone coordinates are

nµ = (1, 0, 0, 1) ≈ pµ/p0, (1.35)
n̄µ = (1, 0, 0,−1) ≈ lµ/l0,

with n2 = n̄2 = 0 and n · n̄ = 21. Using these light-cone vectors any four vector,pµ,
can be decomposed as

pµ = n · p n̄µ

2
+ n̄ · p nµ

2
+ pµ

⊥ = pµ
+ + pµ

− + pµ
⊥. (1.36)

So, (n · p, n̄ · p, pµ
⊥) are the light-cone components of the vector and we should dis-

cuss how they scale. We define a small expansion parameter

λ2 ∼ P2/Q2 ∼ L2/Q2 � 1. (1.37)

Note that as p2 = n · pn̄ · p + p2
⊥ and due to p2 ∼ λ2Q2 and pµ = pµ

− +O(λ) the
components of the external momental scale as

pµ ∼ (λ2, 1, λ)Q, (1.38)
lµ ∼ (1, λ2, λ)Q.

Now we perform the region expansion of the integral in eq. (1.34) assigning dif-
ferent scales to the loop momentum kµ and expanding in each region. The scalings
that yield to non-zero contributions are

hard (h) (1, 1, 1)Q, (1.39)
collinear to pµ (c) (λ2, 1, λ)Q,
collinear to lµ (c̄) (1, λ2, λ)Q,
soft (s) (λ2, λ2, λ2)Q, (1.40)

where the components of kµ are (n · k, n̄ · k, kµ
⊥). From now on, we refer to momenta

which are collinear to pµ as collinear and to the ones collinear to lµ as anti-collinear.
Since in the soft region all the components of the loop momentum scale as λ2 we
have

k2
s ∼ λ4Q2 ∼ P2L2

Q2 � P2 ∼ L2, (1.41)

that is the hierarchy shown in eq. (1.1). Since k2
s � k2

c these modes are sometimes
called ultrasoft. This is to differenciate them from soft modes in other observables
that scale as (λ, λ, λ)Q. The version of SCET for this situation is called SCETII and

1Note that in some part of the literature n · n̄ = 1 is chosen.
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it involves the rapidity logarithms that will be present along this thesis and we will
study how to treat them. We will study SCETII later, however to make clear this
introduction we limit ourselves to the present case, SCETI.

Now we expand the integrand of eq. (1.34) in the different regions up to leading
power. To get the leading power in the hard region we simply set all the suppressed
components of momenta to zero, i.e. pµ → pµ

− and lµ → lµ
+. So,

Ih = iπ−d/2µ2ε
∫

ddk
1

(k2 + i0)(k2 + 2k− · l+ + i0)(k2 + 2k+ · p− + i0)

=
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

2l+ · p−

)ε

(1.42)

Expanding the integral in the collinear region implies that integration momen-
tum scales as kµ ∼ (λ2, 1, λ)Q and k2 ∼ λ2Q2. So, we can expand (k + l)2 =
2k− · l+ +O(λ2). The integral we should compute is

Ic = iπ−d/2µ2ε
∫

ddk
1

(k2 + i0)(2k− · l+ + i0)[(k + p)2 + i0]

= −Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

P2

)ε

. (1.43)

Note that the contribution to the anticollinear integral is obtained replacing P2 → L2

in eq. (1.43).
The only missing contribution is the expansion of the integral in the soft region,

where we can expand (k + l)2 = 2k− · l+ + l2 +O(λ3) and (k + p)2 = 2k+ · l−+ p2 +
O(λ3). Thus, we obtain

Is = iπ−d/2µ2ε
∫

ddk
1

(k2 + i0)(2k− · l+ + i0)(2k+ · p− + p2 + i0)

= −Γ(1 + ε)

2l+ · p−
Γ(ε)Γ(−ε)

(
2l+ · p− µ2

L2P2

)ε

. (1.44)

Adding the results for the different integrals calculated we find the final result

Itot = Ih + Ic + Ic̄ + Is =
1

Q2

(
ln

Q2

L2 ln
Q2

P2 +
π2

3

)
, (1.45)

that is finite and reproduces the leading power of the expansion of the full integral
in eq. (1.34).

1.3.2 Effective Lagrangian

The exercise done in the last section teaches us to identify the relevant momentum
regions for the Sudakov problem. Now we work analogously to section 1.1 to write
an effective Lagrangian whose Feynman rules reproduce the diagrams obtained us-
ing the method of region expansion.
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1.3.2.1 Scaling of the fields

We introduce effective theory fields whose momenta scale as appropriate for each
momentum region. Thus, for quark and gluons fields we can substitute

ψ → ψc + ψc̄ + ψs, (1.46)
Aµ → Aµ

c + Aµ
c̄ + Aµ

s , (1.47)

in the QCD Lagrangian, then remove the suppressed terms and read off the effective
Lagrangian. Of course this is valid at tree-level. At loop level some matching correc-
tions arise but can be fixed modifying the coefficients of tree-level operators. These
matching corrections only affect the terms involving both collinear and anticollinear
fields. So, to construct the purely soft and collinear Lagrangian the tree-level substi-
tution for fields is fine.

Both fermion and gauge fields have several components, which scale differently
with the expansion parameter λ. To study the scaling of the fields we consider the
propagators. We start with the gluon propagator

〈0|T{Aa
µ(x)Ab

ν(0)}|0〉 =
∫ d4 p

(2π)4
i

p2 + i0
e−ip·x

[
−gµν + ξ

pµ pν

p2

]
δab, (1.48)

where a, b are the color indices of the fields. in the following we work with Aµ =
Aa

µta, where ta are the generators of SU(N), to keep color implicit. The position xµ

is the Fourier conjugate of the momentum pµ so p · x ∼ O(λ0). The part of the
propagator that involves the gauge parameter ξ scales like d4/(p2)2 pµ pν ∼ pµ pν.
As gauge symmetry transforms as their associated momentum we expect that in a
general gauge Aµ ∼ pµ. For soft and collinear gluons the field components scale as

(n · As, n̄ · As, Aµ
s⊥) ∼ (λ2, λ2, λ2), (1.49)

(n · Ac, n̄ · Ac, Aµ
c⊥) ∼ (λ2, 1, λ). (1.50)

From the scaling we see that in terms including soft and collinear gluons, the soft
gluons are power suppressed except for the contribution from the n · As component.

We do the same exercise with the fermion propagator. For a soft fermion the
propagator is written as

〈0|T{ψs(x)ψ̄s(0)}|0〉 =
∫ d4 p

(2π)4
i/p

p2 + i0
e−ip·x ∼ (λ2)4 λ2

λ4 = λ6. (1.51)

From this propagator we see that soft fermions scale as ψs(x) ∼ λ3. The collinear
case is more complicated because the numerator of the propagator should be de-
composed as

/p = n · p /̄n
2
+ n̄ · p /n

2
+ /p⊥ (1.52)

and the three terms have different scaling. This implies that different parts of the
field scale differently. So, one splits the fermion field into two parts

ψ = ξc + ηc = P+ψ + P−ψ, (1.53)
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where we have define the projectors

P+ =
/n/̄n
4

, P− =
/̄n/n
4

, (1.54)

which fulfills the properties P+ + P− = 1 and P2
± = P±. Now we can investigate the

propagators of these fields, so

〈0|T{ξc(x)ξ̄c(0)}|0〉 =
∫ d4 p

(2π)4 e−ip·x /n/̄n
4

i/p
p2 + i0

/̄n/n
4

(1.55)

=
∫ d4 p

(2π)4 e−ip·x in̄ · p /n
2

p2 + i0
∼ λ4

λ2 = λ2.

Thus, we can observe that ξc ∼ λ. Repeating the exercise for ηc we observe that
ηc ∼ λ2. From these results we see that soft fermions are suppressed with respect to
collinear ones.

1.3.2.2 Effective Lagrangian at leading power

Once we know how the fields scale with the expansion parameter we can insert the
decomposition shown in eq. (1.46) into the full QCD action and we get the tree-level
effective action and Lagrangian,

S = Ss + Sc + Sc̄ + Sc+s + Sc̄+s + ... , (1.56)

where the different terms are collected in terms of their content. Ss contains purely
the soft terms, Sc the collinear terms and Sc+s describes the collinear-soft interac-
tions. Anticollinear terms are obtained from collinear ones with simple substitu-
tions, thus we suppress a dedicated study on them.

The soft part of the action has the same form that the total QCD action, but re-
placing the QCD fields by soft ones,

Ss =
∫

d4x ψ̄si /Dsψs −
1
4
(Fs,a

µν )
2, (1.57)

where the covariant derivative is iDµ
s = i∂µ + Aµ

s and the soft field strength tensor
Fs,a

µν is built from this derivative. Note that all terms in the action are O(λ0) since the
integration measure d4x ∼ O(λ−8).

Next, we consider the collinear part of the action that is again a simple copy of
the full QCD one but with ψc = ξc + ηc. Thus,

Sc =
∫

d4x(ξ̄c + η̄c)

[
/n
2

in̄ · Dc +
/̄n
2

in · Dc + i /Dc⊥

]
(ξc + ηc)−

1
4
(Fc,a

µν )
2

=
∫

d4xξ̄c
/̄n
2

in · Dcξc + ξ̄ci /Dc⊥ηc + η̄ci /Dc⊥ξc + η̄c
/n
2

in̄ · Dcηc −
1
4
(Fc,a

µν )
2.

(1.58)

This form of the collinear action is not convenient because it includes large and small
components of the collinear fermion field, mixing each other. It is simple to avoid
this complication integrating over the smallest one. As the action is quadratic in ηc
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we can integrate over this field exactly. So, we perform the shift

ηc → ηc −
/̄n
2

1
in̄ · Dc

i /Dc⊥ξc (1.59)

to complete the square in the action Sc. Then, the action takes the form

Sc =
∫

d4xξ̄c

[
in · Dc + i /Dc⊥

1
in̄ · Dc

i /Dc⊥

]
ξc −

1
4
(Fc,a

µν )
2 + η̄c

/̄n
2

in̄ · Dcηc (1.60)

that can be integrated over the field ηc. This integration leaves a det
(

/̄n
2 in̄ · Dc

)
that

can be done (as the inverse derivative in eq. (1.59)) adopting an i0 prescription for the
in̄ ·Dc operator. The prescription does not introduce physical consequences because
it concerns the region close to n̄ · p = 0, while the effective theory study the region
n̄ · p = Q. The determinant is trivial and this fact can be seen evaluating in light-
cone gauge, where n̄ · Ac = 0, and noting that it is gauge invariant. After dropping
the trivial determinant, the collinear SCET action is given by

Sc =
∫

d4xξ̄c

[
in · Dc + i /Dc⊥

1
in̄ · Dc

i /Dc⊥

]
ξc −

1
4
(Fc,a

µν )
2. (1.61)

Finally we consider the soft-collinear effective action, Ss+c. The general con-
struction of these type of terms is involved and it is performed in position space
formalism in [27] but we restrict ourselves to study the leading power terms. So, we
should take into account some considerations: ψs is power suppressed compared to
the collinear fermion fields, so there are no soft fermion fields in leading power inter-
actions with collinear fields. Also, as n̄ · As and Aµ

s⊥ are power suppressed compared
to their collinear counterparts only terms with n · As arises. Thus, these conditions
imply that the leading power term of Ss+c is obtained substituting

Aµ
c → Aµ

c + n · As
n̄µ

2
(1.62)

in Sc. To get the final result we should perform a derivative expansion in the result-
ing action which corresponds to the expansion in small momentum components.
Thus, we consider the interaction of a soft gluon with a collinear fermion

Ss+c =
∫

d4xξ̄c(x)
/̄n
2

n · As(x)ξc(x), (1.63)

which arises from the substitution of the condition in eq. (1.62) in Sc action in eq. (1.61).
The momentum is given by a soft and a collinear momentum which scales like a
collinear one so xµ is conjugate to a collinear momentum. Explicitly, this implies the
scaling

pµ
c + pµ

s ∼ pµ
c ∼ (λ2, 1, λ), (1.64)

xµ ∼ (1, λ−2, λ−1),

coming from the fact that

pc · x =
1
2

n · pcn̄ · x +
1
2

n̄ · pcn · x + pc⊥ · x⊥ ∼ 1, (1.65)

ps · x =
1
2

n · psn̄ · x +
1
2

n̄ · psn̄ · x + ps⊥ · x⊥ (1.66)
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= ps+ · x− + ps− · x+ + ps⊥ · x⊥, (1.67)

where only the term involving x− is leading power. Thus, we expand the action Ss+c
into a Taylor series

Ss+c =
∫

d4xξ̄c(x)
/̄n
2

ξc(x) [1 + x⊥ · ∂⊥ + x+ · ∂+ + ...] n · As(x)
∣∣∣

x=x−
(1.68)

=
∫

d4xξ̄c(x)
/̄n
2

ξc(x)n · As(x−) +O(λ),

because all the terms with derivatives in eq. (1.68) result in subleading terms. This
expansion is called multipole expansion in [21]. In the original SCET papers [19, 20] a
different method is used to expand in small momentum limit. In this approach, one
splits the momentum in a large and a small components and treats the large com-
ponents in Fourier space and the small ones in position space. This is similar to the
procedure used in the study of soft photons, where we split the electron momentum
into pµ = mevµ + kµ and we expand over the soft residual momentum kµ. Thus,
the position dependence of the field hv(x) is conjugate to the residual momentum kµ

and the large part mevµ is used as a label on the field, hv(x). This hybrid position
and space formulation of SCET is called label formalism. Further details about this
formalism not covered in this introduction can be found in [28].

Once we have studied the different terms of the SCET effective action we arrive
to the final expression for the leading power SCET Lagrangian,

LSCET = ψ̄si /Dsψs + ξ̄s
/̄n
2

[
in · D + i /Dc⊥

1
in̄ · Dc

i /Dc⊥

]
ξc −

1
4

(
Fs,a

µν

)2
− 1

4

(
Fc,a

µν

)2
,

(1.69)

where soft and collinear covariant derivatives are involved

iDs
µ = i∂µ + gAs

µ(x), iDc
µ = i∂µ + gAc

µ(x), (1.70)

and also the mixed covariant derivative

in · D = in · ∂ + g n · Ac(x) + g n · As(x−). (1.71)

The soft and collinear strength tensors are defined as usual

igFs,a
µν ta =

[
iDs

µ, iDs
ν

]
, igFc,a

µν ta =
[
iDµ, iDν

]
, (1.72)

where the covariant derivative that appears in the second commutator is defined as

Dµ = n · D n̄µ

2
+ n̄ · Dc

nµ

2
+ Dµ

c⊥. (1.73)

We stated above that we do not consider terms involving c̄ fields in the effec-
tive Lagrangian, but they can be obtained from the ones involving c fields with the
substitutions n↔ n̄ and x− ↔ x+.



22 Chapter 1. Introduction to Soft-Collinear Effective Theory

1.3.2.3 Gauge transformations

In this section we briefly discuss gauge transformations of the effective Lagrangian
recently studied. As we split the gauge field into different soft and collinear compo-
nents, we consider different gauge transformations

soft: Vs(x) = exp [iαa
s(x)ta] , (1.74)

collinear: Vc(x) = exp [iαa
c(x)ta] , (1.75)

where the gauge transformations scale as their associated fields ∂ αa
s(x) ∼ λ2αa

s(x)
and ∂µαa

c(x) ∼ (λ2, 1, λ)αa
c(x). The soft gauge transformation act over the soft fields

as usual,

ψs(x) → Vs(x)ψs(x), (1.76)

Aµ
s (x) → Vs(x)Aµ

s (x)V†
s (x) +

i
g

Vs(x)∂µV†
s (x), (1.77)

so the soft covariant derivative transforms as Dµ
s (x)→ Vs(x)Dµ

s V†
s (x). On the other

hand, the soft gauge transformations act over collinear fields as

ψc(x) → Vs(x−)ψc(x), (1.78)
Aµ

c (x) → Vs(x−)Aµ
c (x)V†

s (x−). (1.79)

Note that the multipole expansion is used and we have replaced x → x− in the
soft fields. Without this expansion a tower of inconvenient power corrections would
appear. Also, the gauge collinear field transforms as a matter field, without an inho-
mogeneous term. This ensures that the mixed covariant derivative transforms at it
should be, Dµ → Vs(x−)Dµ(x)V†

s (x−).
Now we consider the collinear gauge transformation over collinear and soft fields.

Soft fields remain invariant under these transformations while collinear fields trans-
form as usual

ξc(x)→ Vc(x)ξc(x), Dµ → Vc(x)DµV†
c (x), (1.80)

ψs(x)→ ψs(x), Dµ
s → Dµ

s , (1.81)

Aµ
c → Vc(x)Aµ

c V†
c (x) +

1
g

Vc(x)
[

i∂µ + g
n̄µ

2
n · As(x−), V†

c (x)
]

. (1.82)

Once we know the transformation of the covariant derivatives is straightforward
to verify that the effective Lagrangian in eq. (1.69) is invariant under both soft and
collinear gauge transformations.

1.3.3 The SCET vector current

We have constructed terms in the effective Lagrangian which describe the interac-
tion between soft, (anti)collinear and (anti)collinear-soft fields. What is missing are
operators describing the interaction between collinear and anticollinear fields. In the
Sudakov problem only the electromagnetic current connects both fields. The neces-
sary hard momentum transferred is provided by the external virtual photon. The
tree-level diagram in QCD can be replaced by the SCET operator

Jµ = ψ̄γµψ→ ξ̄cγµξ c̄. (1.83)
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Due to the projection properties of the collinear fermion fields we simplify the oper-
ator in eq. (1.83) as

ξ̄cγµξ c̄ = ξ̄c

[
nµ /̄n

2
+ n̄µ /n

2
+ γ

µ
⊥

]
ξ c̄ = ξ̄cγ

µ
⊥ξ c̄. (1.84)

However, this operator is insufficient when one wants to make loop calculations
or introduce collinear gluons. Usually operators with derivatives are power sup-
pressed but in SCET the derivatives corresponding to the large momentum compo-
nent of the collinear fields i.e. in general n̄ · ∂φc ∼ λ0Qφc. So, to construct the more
general gauge invariant operator at leading power we consider the series

φc(x + tn̄) =
∞

∑
n=0

tn

n!
(n̄ · ∂)n φc(x). (1.85)

We insert this expansion into a convolution obtaining∫
dtC(t)φc(x + tn̄) =

∞

∑
n=0

Cn

n!
(n̄ · ∂)n φc(x), (1.86)

where Cn is the n-th moment of the coefficient function

Cn =
∫

dtC(t)tn. (1.87)

So, instead of including an arbitrary number of derivatives we smear the field φc
along the light-cone as in eq. (1.86). The function C(t) encodes the information about
the Wilson coefficients of the higher derivative operators. With the smearing of this
field the operator becomes non-local and we should be careful to maintain gauge in-
variance. We consider the operator that defines the quark parton distribution func-
tion

ξ̄c(x + tn̄) [x + tn̄, x]
/̄n
2

ξc(x). (1.88)

This operator is not gauge invariant. To solve this problem we need to transport the
gauge transformation at point x to the point x + tn̄. This can be achieved using the
collinear version of the already known Wilson line

[x + tn̄, x] = P exp
[

ig
∫ t

0
dt′ n̄ · Ac(x + tn̄)

]
. (1.89)

Note that the exponent is a color matrix, so the symbol P specifies an ordering pre-
scription. The path ordering defines that the color matrix at later time is to the left
to the earlier ones. The Wilson line transforms under gauge transformations as

[x + tn̄, x]→ Vc(x + tn̄) [x + tn̄, x]V†
c (x), (1.90)

which renders the operator in eq. (1.88) gauge invariant. In SCET is useful to define
a Wilson line running from infinity along n̄µ to xµ as

Wc(x) = [x, x−∞n̄] , (1.91)
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so a Wilson line defined over a finite segment can be written as

[x + tn̄, x] = Wc(x + tn̄)W†
c (x). (1.92)

This means that to go from x to x + tn̄ we first move from x to infinity and then back
to x + tn̄. The segment that we travel in both directions drops out by unitarity of the
matrix, leaving the finite matrix element. With the Wilson line, Wc(x) we can define
the building blocks

χc(x) ≡ W†
c (x)ξc(x), (1.93)

Aµ
c ≡ W†

c Dµ
c Wc, (1.94)

which are invariant under collinear gauge transformations that vanish at infinity.
These building blocks allow us to easily construct gauge-invariant SCET operators.
Later, we will introduce the soft Wilson line to decouple soft interactions as we did
in eq. (1.13).

Now we can write the more general SCET current operator at leading power. So,

Jµ(0) =
∫

ds
∫

dt C̃V(s, t)χ̄c(tn̄)γ
µ
⊥χc̄(sn). (1.95)

Note that at leading order the matching coefficient C̃V(s, t) = δ(s)δ(t) in order to
reproduce eq. (1.84). We should take into account that the Fourier transform of the
coefficient encodes a dependence only on the large component of the momentum
transferred, Q2 = n · l n̄ · p. In order to see this, we shift the field to the origin x = 0
with the momentum operator and we take the matrix element between a state with
an incomng quark with momentum lµ and a outgoing quark with momentum pµ,

〈q(p)|Jµ(0)|q(l)〉 =
∫

ds
∫

dt C̃V(s, t)e−isn·leitn̄·pū(p)γµ
⊥u(l) (1.96)

= CV(n · l n̄ · p)ū(p)γµ
⊥u(l).

We observe that the Fourier transform of the Wilson coefficient, CV , only depends
on Q2 = n · l n̄ · p as we notice before. This fact derives also from the fact that
SCET is invariant under a rescaling nµ → αnµ and n̄µ → 1/αn̄µ, which is known
as reparametrization invariance [29]. This makes the physics independent of the exact
choice of the reference vectors used to set up the effective theory.

1.3.4 Application: one-loop result of CV

At this point, we briefly discuss the determination of the explicit one-loop contri-
bution of CV . The Feynman diagrams we should consider are shown in fig. 1.5. In
addition to loop diagrams involving (anti)collinear fields and soft exchanges, there
is a contribution from the one-loop correction to the Wilson coefficient. The ver-
tices in which an (anti)collinear gluon is emitted from the current are obtained after
expanding the Wilson line in the building blocks in terms of the coupling. The dia-
grams are in one to one correspondence to the diagrams computed when we studied
the method of regions for Sudakov factor except for the fact that in that case we left
out the numerators of the diagrams, and now we have to include them. Setting the
low energy scales P2 and L2 to zero the soft and collinear integrals become scaleless.
In this way the full theory becomes equal to the hard region and on the effective the-
ory side only the one loop contribution of the Wilson coefficient remains. Thus, we
extract the Wilson coefficient computing the on-shell form factor with P2 = L2 = 0.
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FIGURE 1.5: Diagrams contributing to the one loop Sudakov form
factor in SCET. The Feynman rules for gluons emitted from the cur-
rent are obtained after the expansion of the collinear Wilson lines in

the strong coupling, g.

We obtain then the bare Wilson coefficient

Cbare
V (ε, Q2) = 1 + as(µ)CF

(
− 2

ε2 −
3
ε
+

π2

6
− 8 +O(ε)

)(
Q2

µ2

)−ε

+O(a2
s ), (1.97)

where as(µ) = αs(µ)/(4π) and the color structure is given by tata = CF1 = (N2
c −

1)/(2Nc)1. As this is the bare coefficient we still have to renormalize it, absorbing
the divergences into a multiplicative Z−factor,

CV(Q2, µ2) = Z−1(ε, Q2, µ)Cbare
V (ε, Q2). (1.98)

So, we have the renormalized result

CV(Q2, µ2) = 1 + as(µ)CF

(
−ln2 Q2

µ2 + 3ln
Q2

µ2 +
π2

6
− 8
)
+O(a2

s ). (1.99)

The unusual feature of this calculation in comparison with another analogous calcu-
lations in quantum field theory is the emergence of a 1/ε2 divergence. This diver-
gence arises because we have both soft and collinear divergences. As a consequence,
the Wilson coefficient contains double logarithms and the anomalous dimension that
governs the RG equation of the Wilson coefficient contains a logarithmic part,

d
dlnµ

CV(Q2, µ) =

[
Γcusp(as)ln

Q2

µ2 + γV(as)

]
CV(Q2, µ). (1.100)

The cusp (Γcusp) and non-cusp (γV) anomalous dimensions are known up to O(a4
s ).

Their explicit expressions up to three-loops are given in appendix A and the four-
loop result has been recently obtained in [30]. The matching coefficient CV is also
known up to the same accuracy [31, 32] and the explicit results used along this the-
sis (up to O(a2

s )) are given in appendix A as well. The presence of this extra log-
arithm in the anomalous dimension is a distinguishing feature of the RG equation
in eq. (1.100). It is important to note that the dependence on this logarithm is only
linear, so the expansion of the anomalous dimensions is not spoiled by the presence
of large logarithms. We study the origin of this linearity in the next section.
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The last point we should study is the decoupling of the soft radiation from the
collinear fields. As we did with soft effective theory the soft radiation can be decou-
pled by considering the soft Wilson line

Sn(x) = P exp
[

ig
∫ 0

−∞
ds n · As(x + sn)

]
, (1.101)

which fulfills the equation n · DsSn(x) = 0. At this point, we can redefine the
collinear fields as

ξc = Sn(x−)ξ
(0)
c , (1.102)

Aµ
c = Sn(x−)A(0)µ

c S†
n(x−). (1.103)

So the soft-collinear interaction term becomes

Lc+s = ξ̄c
/̄n
2

in · Dξc = ξ̄c
/̄n
2
(in · Ds + n · Ac)ξc (1.104)

= ξ̄
(0)
c

/̄n
2
(in · ∂s + n · A(0)

c )ξ
(0)
c = ξ̄

(0)
c

/̄n
2

in · D(0)
c ξ

(0)
c , (1.105)

where the decoupling has removed the soft-collinear interactions from the leading
power Lagrangian. Performing an analogous decoupling for the anticollinear fields,
the SCET effective Lagrangian takes the form

LSCET = L(0)
c + L(0)

c̄ + Ls, (1.106)

which tells us that we are dealing with independent theories fo soft and collinear
particles. Also, the states separate as

|X〉 = |Xc〉 ⊗ |Xc̄〉 ⊗ |Xs〉. (1.107)

As in the soft photon case, this does not mean that the soft radiation is totally re-
moved. It is manifested as soft Wilson lines along the direction of energetic particles.
For example, the vector current is rewritten as

χ̄c(tn̄)γ
µ
⊥χc̄(sn) = χ̄

(0)
c (tn̄)S̄†

n(0)γ
µ
⊥Sn̄(0)χc̄(sn). (1.108)

1.3.5 Resummation by renormalization group evolution

In the decoupled theory, the form factor studied above can be written in its factorized
form

F (Q2, L2, P2) = CV(Q2, µ)F(P2, µ)F̄(L2, µ)S(Λ2
s , µ), (1.109)

which can be understood graphically with the help of fig. 1.6. The collinear and
anticollinear functions F and F̄ are identical and the soft function has a scale Λ2

s =
L2P2/Q2.

Each of these objects fulfill individual RG equations. Solving them one can resum
the large perturbative logarithms that arise in the fixed order calculations. This is
done evaluating each function in eq. (1.109) at its natural scale and evolving them
to a common reference scale where they are combined. In this way, logarithms as
αnlnm (Q2/p2) with m ≤ 2n and p2 = P2, L2, Q2 are resummed, preventing us to
spoil the standard perturbative expansion of these objects. It is characteristic that in
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FIGURE 1.6: Factorized form of the Sudakov form factor.

processes as the one presented in fig. 1.6 logarithms with m = 2n appear. They are
known as Sudakov logarithms and are the result of an interplay of soft and collinear
physics.

We have indicated that all the matrix elements in the effective theory depend
on the renormalization scale, µ. This dependence must cancel in the product in
eq. (1.109), so the sum of the anomalous dimensions of the ingredients should be
zero. In eq. (1.100) we gave a RG equation for the Wilson coefficient and here we
show the RG equations corresponding to collinear and soft factors,

d
dlnµ

F(P2, µ) = −
[

Γcusp(as)ln
P2

µ2 + γF(as)

]
F(P2, µ), (1.110)

d
dlnµ

S(Λ2
s , µ) =

[
Γcusp(as)ln

Λ2
s

µ2 + γS(as)

]
S(Λ2

s , µ). (1.111)

So, the fact that F is independent of µ implies

Γcusp(as)ln
Q2

µ2 + γV(as)− Γcusp(as)

(
ln

P2

µ2 + ln
L2

µ2

)
− 2γF(as) (1.112)

+Γcusp(as)ln
Λ2

s
µ2 + γS(as) = 0.

In order to obtain a total cancellation of the logarithms we need that all the anoma-
lous dimensions are linear in the logarithms and their coefficient is the same in every
case, Γcusp.

To resum the large logarithms in the form factor, we evaluate every element at
its characteristic scale and then we evolve it to a common scale solving the corre-
sponding RG equation. For example, for the hard factor, whose characteristic scale
is µh ∼ Q, the evolution is

CV(Q2, µ) = exp
{ ∫ µ

µh

dlnµ̄

[
Γcusp(as)ln

Q2

µ̄2 + γV(as)

] }
CV(Q2, µh)

= U(µh, µ)CV(Q2, µh). (1.113)
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1.4 SCETII

Once we have studied the construction of the SCETI effective Lagrangian, the study
of the known as SCETII can be achieved in a systematic way. The main difference
between both effective theories is the scaling of the modes with respect to the expan-
sion parameter. In SCETII the scaling of collinear and soft modes are

pn ∼ (1, λ2, λ)Q, (1.114)
ps ∼ (λ, λ, λ)Q, (1.115)

where in this case the expansion parameter is, λ = ΛQCD/Q. Note that if we change
the expansion parameter to λ =

√
ΛQCD/Q the soft modes scale as the soft modes in

SCETI (or ultrasoft modes) did. However collinear modes scale different than they
did in SCETI. It is interesting that in SCETII the collinear modes do not interact with
soft ones because they would be off-shell i.e. pn + ps = (1, λ, λ). This difference is
crucial with respect to SCETI and makes the construction of the effective Lagrangian
of SCETII much simpler. Thus, we write the effective Lagrangian of SCETII as

LSCETII = Lc + Lc̄ + Ls, (1.116)

where the collinear Lagrangians are the same as the ones derived for SCETI and the
soft Lagrangian is analogous to the one in SCETI but changing the ultrasoft modes
by the soft ones recently defined.

Another important feature in SCETII is that the invariant mass of both soft and
collinear particles scale as Q2λ2, so in a physical process they are only distinguished
by their rapidities. Thus, a boost can interchange the roles of both types of particles,
letting the physical process invariant. This does not happen in SCETI, where the
mass of the collinear particles scales as Q2λ2 while the mass of soft particles scales
as Q2λ4.

Due to the fact that the soft modes in SCETII are basically the same as their corre-
sponding soft modes in SCETI, the matching between both theories is done changing
ultrasoft Wilson lines in eq. (1.101) by the corresponding Wilson lines for soft fields.
As the functional form of these Wilson lines is exactly the same that the ones for
ultrasoft modes, they are written in the same way given in eq. (1.101).

This EFT is particularly useful when one analyses transverse momentum dis-
tributions because it allows to separate the perturbative information obtained at the
scale of the transverse momentum from the low energy nonperturbative information
(see eq. (2.34)).
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Chapter 2

Transverse momentum dependent
factorization theorems

The main goal of this thesis is the study of the structure of hadrons by extracting
information from cross sections of processes which include hadronic sources. In
particular, we focus on the extraction of information about the three-dimensional
structure of hadrons, i.e., we study processes with a non-vanishing (or unintegrated)
transverse momentum, qT.

The study of processes involving hadrons is involved due to the fact that one
cannot calculate their contributions to the cross section with the perturbative ap-
proach used in QCD. Hadrons are made of partons (quarks and gluons) distributed
inside them and an image of the probability distribution of the partons inside the
hadron is given by the so called parton distribution functions (PDF). Because of the
nonperturbative nature of these objects they cannot be calculated in perturbation
theory in QCD and generally they are extracted from the experiments. As in this
thesis the interesting processes depend on a non-vanishing transverse momentum
we focus on transverse momentum parton distribution functions (TMDPDF) giving a
three-dimensional information of the probabilistic distribution of partons inside the
hadron.

The TMDPDFs are defined in an energy regime qT � Q where Q is the hard scale
of the process. Thus, we will see that for qT � ΛQCD (where ΛQCD represents the
position of the Landau pole) one will be able to derive some perturbative informa-
tion which will be complemented by a nonperturbative information extracted from
the experiments or Lattice QCD (see e.g. [33–35]). So, having perturbative informa-
tion of the TMDPDF is crucial in order to reduce theoretical errors and obtaining
cleaner information about the nonperturbative physics. In particular, part I of the
thesis is devoted to the study of the perturbative information for different TMDPDF
depending on their polarization up to the highest known order.

The proper definition of TMDPDFs is given by transverse momentum dependent
factorization theorems. This issue was considered years ago by Collins, Soper and
Sterman [5, 36] where notions of factorization and resummation of large logarithms
(in the form αn

s lnm(q2
T/Q2)) were systematically investigated. Those results yielded

the well known CSS-formalism. However, in this section we use the principles of
SCET revised in chapter 1 to derive factorization theorems for the qT-differential
cross section. Within this framework other observables have been considered in
[9, 37–40].

In this section we present the derivation of a factorization theorem for one of the
most relevant processes known as Drell-Yan (DY) process. In this process a proton-
proton collision leads to a pair of leptons in the final state,

p p→ l+ l− + X, (2.1)
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where X represents all the unidentified particles that are emitted in the process. Let
us consider a hard partonic reaction of two incoming partons with momenta p1 and
p2 along directions n and n̄ defined in eq. (1.35), respectively. They are going to gen-
erate a virtual photon with virtuality Q2 = q2 > 0, where qµ is its four-momentum.
A neutral gauge boson, as the Z boson could be generated as well, but for simplic-
ity in the exposition we do not consider this case. The virtual photon has a non-
negligible transverse momentum, qT, defined in light-cone coordinates in the sense
of eq. (1.36). The momenta of the initiating partons corresponds to collinear (n) and
anticollinear modes (n̄) and therefore the momentum of the outgoing photon scales
as Q(1, 1, λ) where λ ∼ qT/Q is the expansion parameter of SCETqT .

The DY cross section factorizes in a very similar way to eq. (1.2)

dσ = H(Q2, µ2
H)Fn(µF, ζ)⊗ Fn̄(µF, ζ)⊗ S(µF, ζ), (2.2)

where the physics at the hard scale is encoded in the hard factor, H, the collinear
modes are encoded in the TMDPDF, Fn(n̄), and the soft modes are encoded in the
soft function, S. In next section we will give explicit definitions for these objects.
The symbol ⊗ represent a multiplication or convolution depending on the space
we are working in and µH, µF play the role of the high-energy and factorization
scales, respectively. Finally, the scale ζ is an extra scale that appear as a consecuence
of the transverse momentum and it is related with a new type of divergence that
appears characteristically in these types of processes. They are a kind of light-cone
singularities called rapidity divergences and will be studied in detail in section 2.2.
Note that in eq. (2.2) the power corrections of order (q2

T/Q2)n are omitted.
In the effective theory approach used to derive factorization theorems, soft parti-

cles scale as Q(λ, λ, λ) and collinear particles scale as Q(1, λ2, λ) (and Q(λ2, 1, λ) for
anticollinear ones) where λ ∼ qT/Q. They are not allowed to interact because the
collinear particles would be driven off-shell. This fact is not true in the case of ultra-
soft gluons, which scale as Q(λ2, λ2, λ2), but they are not relevant to the kinematical
region of interest. The relevant framework to describe soft gluons interacting with
collinear particles was named SCET-qT in [37] and we use here the same denomi-
nation. In this theory the virtuality of the particles is of order q2

T and it is different
from SCETII where it is of order ΛQCD. However, SCETII is needed to perform an
operator product expansion (OPE) at the scale qT to separate the perturbative part of
the TMDPDF of the integrated PDF (in qT). In both theories soft gluons are decou-
pled from the collinear ones with the effect of the introduction of soft Wilson lines
as happened in chapter 1.

As the soft function in eq. (2.2) has a non-vanishing contribution one needs to
consider the problem of double counting arising from the overlapping of soft and
collinear modes. This fact is important and can affect to the proper definition of
the TMDPDFs. In order to cancel the overlapping contributions (known as zero-bin
contribution) we rewrite the factorization theorem as

dσ = H(Q2, µ2)
[

F̂n ⊗ S−1
]
⊗
[

F̂n ⊗ S−1
]
⊗ S, (2.3)

where hatted quantities represent a perturbative calculation of the collinear elements
that still include the contamination from soft radiation region. This version of the
factorization theorems is still problematic, because individually the collinear and
soft functions are plagued of unregularized and uncancelled divergences which ren-
der them ill defined. These divergences appear perturbatively as integrals of the
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form ∫ 1

0

dt
t

, (2.4)

which are manifestations of light-cone singularities. These type of divergences ap-
pear for some kind of IR regulators also in the fully integrated PDFs but they are
cancelled when real and virtual contributions are combined. But this is not the case
for TMDPDFs. These light-cone divergences are a consequence of having soft and
collinear Wilson lines defined along light-like trajectories that allow gluons with in-
finite rapidities to interact with. To avoid these singularities an idea due to Collins
and Soper is to tilt the Wilson lines going off-the-light-cone. This trick is used in
[41, 42]. However in this thesis a different path is taken. In our approach all the Wil-
son lines remain on-the-light-cone and we will define the TMDPDF consequently. A
more detailed explanation is given in section 2.2 where we explain how to deal with
light-cone singularities in our framework.

2.1 Drell-Yan cross section in TMD factorization

The initial form of the cross section for the DY process [11] is

dσ =
4πα2

em
3Q2s

d4q
(2π)4

1
4 ∑

σ1σ2

∫
d4y e−i(q·y) (2.5)

×(−gµν)〈N1(P1, σ1)N2(P2, σ2)|Jµ†(y)Jν(0)|N1(P1, σ1)N2(P2, σ2)〉,

where N1,2 represent the two hadrons in the process with momenta P1,2 and s =
(P1 + P2)2. Note that the scaling of the position variable y is 1/Q(1, 1, 1/λ). On the
other hand, Jµ is the electromagnetic current

Jµ = ∑
q

eqψ̄γµψ, (2.6)

with eq the quark electric charge in units of the electron charge. The full QCD current
is matched onto the SCETqT one

Jµ = CV(Q2/µ2)∑
q

eqχ̄n̄ST†
n̄ γµST

n χn, (2.7)

where CV is the quark form factor introduced in chapter 1 and the n- and n̄-collinear
fields are described by the building blocks χn(n̄) = WT†

n(n̄)ξn(n̄). The collinear fields ξn(n̄)

were introduced in eq. (1.53). The collinear and soft Wilson lines, WT
n(n̄) and ST

n(n̄)
are defined as presented in chapter 1 with the difference of the introduction of the
superscript T, that represent an extra transverse Wilson line. The transverse Wilson
lines are essential to ensure gauge invariance of χn(n̄) among regular and singular
gauges [43–46]. In this thesis Feynman gauge is used so transverse Wilson lines are
presented in this chapter but they will not be relevant in further calculations. For
DY kinematics collinear Wilson lines are defined as

WT
n(n̄) = Tn(n̄)Wn(n̄), (2.8)

Wn(x) = P̄ exp
[

ig
∫ 0

−∞
ds n̄ · An(x + sn̄)

]
, (2.9)
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Tn(x) = P̄ exp
[

ig
∫ 0

−∞
dτ l⊥ · An⊥(x+, ∞−, x⊥ + l⊥τ)

]
, (2.10)

Tn̄(x) = P̄ exp
[

ig
∫ 0

−∞
dτ l⊥ · An̄⊥(∞+, x−, x⊥ + l⊥τ)

]
. (2.11)

Note that Wn̄ can be obtained from Wn by substitution of n ↔ n̄ and P ↔ P̄. On the
other hand soft Wilson lines for DY kinematics are defined as

ST
n(n̄) = Tsn(n̄)Sn(n̄), (2.12)

Sn(x) = P exp
[

ig
∫ 0

−∞
ds n · As(x + sn)

]
, (2.13)

Tsn(x) = P exp
[

ig
∫ 0

−∞
dτ l⊥ · As⊥(x+, ∞−, x⊥ + l⊥τ)

]
, (2.14)

Tsn̄(x) = P exp
[

ig
∫ 0

−∞
dτ l⊥ · As⊥(∞+, x−, x⊥ + l⊥τ)

]
, (2.15)

where, analogously to the collinear case, Sn̄ is obtained with the substitutions n↔ n̄
and P↔ P̄.

Averaging over nucleon spins and with the help of Fierz transformations we can
rewrite the hadronic element in eq. (2.5) as

(−gµν)〈N1(P1, σ1)N2(P2, σ2)|Jµ†(y)Jν(0)|N1(P1, σ1)N2(P2, σ2)〉 →

|CV(Q2/µ2)|2 ∑
q

e2
q

1
Nc
〈N1(P1, σ1)N2(P2, σ2)|

(
χ̄n̄(y)

/̄n
2

χn̄(0)
)

(2.16)(
χ̄n(y)

/n
2

χn(0)
)

Tr
[

T̄
(

S†
n(y)Sn̄(y)

)
T
(

S†
n̄(0)Sn(0)

)]
|N1(P1, σ1)N2(P2, σ2)〉.

The n- and n̄-collinear and soft fields act on different Hilbert spaces and one can
disentagle the general Hilbert space itself into a direct product of three different
Hilbert spaces, corresponding to the different modes [19, 47].

At this point, the cross section in eq. (2.5) is rewritten as

dσ =
4πα2

em
3Q2s

d4q
(2π)4 ∑

σ1σ2

∫
d4y e−i(q·y)H(Q2/µ2)∑

q
e2

qFn(y)Fn̄(y)S(y) (2.17)

where H(Q2/µ2) = |CV(Q2/µ2)|2 encodes the physics in the hard region and

Fn(y) =
1
2 ∑

σ1

〈N1(P1, σ1)|χ̄n(y)
/̄n
2

χn(0)|N1(P1, σ1)〉, (2.18)

Fn̄(y) =
1
2 ∑

σ2

〈N2(P2, σ2)|χ̄n̄(y)
/̄n
2

χn̄(0)|N1(P2, σ2)〉, (2.19)

S(y) = 〈0|Tr
[

T̄
(

S†
n(y)Sn̄(y)

)
T
(

S†
n̄(0)Sn(0)

)]
|0〉. (2.20)

Taylor expanding eq. (2.17) in the physical limit that we are interested in, and
taking into account that the derivatives of the fields scale analogously to their corre-
spondent momentum scaling(

y−
∂

∂y−
Fn, y+

∂

∂y+
Fn, y⊥

∂

∂y⊥
Fn

)
∼ (1, λ2, 1) (2.21)
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(
y−

∂

∂y−
Fn̄, y+

∂

∂y+
Fn̄, y⊥

∂

∂y⊥
Fn̄

)
∼ (λ2, 1, 1) (2.22)(

y−
∂

∂y−
S, y+

∂

∂y+
S, y⊥

∂

∂y⊥
S
)
∼ (1, 1, λ) (2.23)

we write the leading power term of the cross section as

dσ =
4πα2

em
3NcQ2s

d4q
(2π)4 ∑

σ1σ2

∫
d4y e−i(q·y)H(Q2/µ2) (2.24)

×∑
q

e2
qFn(0+, y−, y⊥)Fn̄(y+, 0−, y⊥)S(0+, 0−, y⊥) +O(λ).

It can be noted that if ultrasoft gluons would be considered instead of soft ones, after
the Taylor expansion the soft function would be one to all orders in perturbation
theory, as studied in [9]. The fact that the soft function depends only on transverse
components is a crucial point in order to have final well defined TMDPDFs.

From now on, we consider the leading power contribution to the partonic cross
section but abusing the notation we denote the partonic versions as their hadronic
counterparts. So, in momentum space

dσ =
4πα2

em
3NcQ2

dx1dx2d2qT

2(2π)4 H(Q2/µ2)∑
q

e2
q (2.25)

×
∫

d2kn⊥d2kn̄⊥d2ks⊥δ(qT − kn⊥ − kn̄⊥ − ks⊥)Fn(x1, kn⊥)Fn̄(x2, kn̄⊥)S(ks⊥).

Note that x1,2 are the Bjorken variables defined as

x1,2 =

√
Q2 + q2

T√
s

e±y, y =
1
2

ln
(

q0 + qz

q0 − qz

)
(2.26)

where y is the rapidity of the photon. Thus, the collinear and soft objects are

Fn(x1, kn⊥) =
1
2

∫ dr−d2r⊥
(2π)3 e−i(r−x1 p+1 /2−r⊥·kn⊥)Fn(0+, r−, r⊥), (2.27)

Fn̄(x1, kn̄⊥) =
1
2

∫ dr+d2r⊥
(2π)3 e−i(r+x2 p−2 /2−r⊥·kn̄⊥)Fn(r+, 0−, r⊥), (2.28)

S(ks⊥) =
∫ d2r⊥

(2π)2 eir⊥·ks⊥S(0+, 0−, r⊥). (2.29)

The cross section in eq. (2.25) has a problem related with the existence of a new
type of unregulated and uncancelled divergences in collinear and soft functions
which complicate both the renormalization and the nonperturbative interpretation
of such elements. These divergences are called rapidity divergences and will be stud-
ied in detail in section 2.2. In conclusion each of the three elements in eqs. (2.27-2.29)
are ill defined and have no physical meaning by themselves. However, considering
the combinations

FR
n (x1, kn⊥) =

1
2

∫ dr−d2r⊥
(2π)3 e−i(r−x1 p+1 /2−r⊥·kn⊥)Fn(0+, r−, r⊥)

√
S(0+, 0−, r⊥),

FR
n̄ (x1, kn̄⊥) =

1
2

∫ dr+d2r⊥
(2π)3 e−i(r+x2 p−2 /2−r⊥·kn̄⊥)Fn(r+, 0−, r⊥)

√
S(0+, 0−, r⊥),
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(2.30)

can be proved that these quantities are free from rapidity divergences, and we re-
name them with the superscript R. This redefinition of the collinear elements is also
valid for any considered polarization as we will discuss along chapters 3 and 4 of
this thesis.

In the section 2.2 we will discuss that with the regulator used to regulate rapidity
divergences, the modified δ-regulator, the overlap between collinear and soft regions
(known as zero-bin contribution) is analogous to the soft function. With the use of
this regulator we can find a simple definition of the TMDPDF in which the zero-bin
contribution can be extracted explicitly, i.e. in our notation Fn → Fn/S. Thus,

FR
n (x1, kn⊥) =

1
2

∫ dr−d2r⊥
(2π)3 e−i(r−x1 p+1 /2−r⊥·kn⊥) Fn(0+, r−, r⊥)√

S(0+, 0−, r⊥)
, (2.31)

FR
n̄ (x1, kn̄⊥) =

1
2

∫ dr+d2r⊥
(2π)3 e−i(r+x2 p−2 /2−r⊥·kn̄⊥) Fn(r+, 0−, r⊥)√

S(0+, 0−, r⊥)
,

where the square root of the soft function is subtracted from the naive collinear ma-
trix elements, affected by rapidity divergences.

Thus, we can rewrite the cross section in eq. (2.25) as

dσ =
4πα2

em
3NcQ2

dx1dx2d2qT

2(2π)4 H(Q2/µ2)∑
q

e2
q (2.32)

×
∫

d2kn⊥d2kn̄⊥d2ks⊥δ(qT − kn⊥ − kn̄⊥ − ks⊥)FR
n (x1, kn⊥)FR

n̄ (x2, kn̄⊥),

where the soft function is absorbed into both collinear matrix elements in order to
have a well defined TMDPDF.

To finish this section we study the form of the cross section in the regime qT �
ΛQCD. This regime is interesting because eq. (2.32) is not the final form of the cross
section and the TMDPDFs can be refactorized. This means a second matching of
SCETqT , that describes the physics on the intermediate scale qT onto SCETII, that
studies the nonperturbative physics at the scale ΛQCD. This second matching is very
interesting because it allows one to separate the perturbative information computed
from TMDPDF from its purely nonperturbative behavior.

Since the scale of this region, qT, is big enough to be perturbative, its conjugate
coordinate, the impact parameter b, is small enough to perform an operator prod-
uct expansion (OPE) in impact parameter space. Thus, we refactorize the TMDPDF
defined in impact parameter space

Fn(x, b, µ) =
∫

d2kn⊥eikn⊥·bFn(x1, kn⊥, µ), (2.33)

as

Fn(x, b, µ) =
∫ 1

x

dx′

x′
C
( x

x′
, b, µ

)
fn(x′, µ) +O(b2ΛQCD), (2.34)

where µ is known as the factorization scale and fn is the integrated PDF defined as

fn(x, µ) =
1
2

∫ dy−

2π
eiy−xp+〈p|χ̄n(0+, y−, 0⊥)

/̄n
2

χn(0)|p〉, (2.35)
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with p the momentum of the considered parton. On the other hand, the matching
coefficients C are the perturbatively calculable part of the TMDPDF and part I of
thesis is dedicated to find them up toO(a2

s ) for different polarizations of TMDPDFs.
Note that along the derivation of the TMDPDF only the factorization scale is ex-

plicitly written but due to the existence of rapidity divergences a new scale arises
and the TMDPDF has a double-scale dependence that is studied in section 2.3. Also,
in section 2.2 we will see how this new scale arises with an explicit one-loop calcu-
lation of an unpolarized TMDPDF.

2.2 Rapidity divergences

At the beginning of this chapter, it was pointed out the emergence of rapidity di-
vergences due to some unregulated and uncancelled logarithmic divergences that
appear in perturbative calculations of the collinear and soft elements of the factoriza-
tion theorem in e.g. eq. (2.25). Particularly, these divergences appear in the integra-
tion of eikonal propagators given by the Feynman rules of soft and collinear Wilson
lines. To regularize these divergences a particular regularization scheme should be
chosen. Multiple options in the literature are used in order to regulate rapidity diver-
gences (see e.g. [11, 14, 48–52]) but we will use the known as modified δ-regularization
scheme developed in [51, 52]. Also, in this section an explicit calculation to see how
rapidity divergences are explicitly cancelled is presented.

2.2.1 Modified δ-regularization scheme

The original δ-regularization was proposed in [11] and it is based in an infinitesimal
shift of the i0-prescriptions that appear in eikonal propagators. So, at the level of di-
agrams the regularization scheme is based on the substitution (e.g. in the absorption
of one gluon by a Wilson line [∞+, 0])

1
k+ − i0

→ 1
k+ − iδ+

, (2.36)

with δ+ → +0. However, this regularization is not accurate enough to do calcu-
lations at higher-orders (in particular from NNLO). Particularly, with this simple
substitution the soft function and the zero-bin contribution are only equal to each
other at NLO but not for higher-orders. Therefore, eq. (2.30) would not be true at all
orders in perturbation theory. In [51, 52] the original δ-regularization scheme was
modified to solve this and other issues. Thus, a modified δ-regularization scheme is
implemented at operator level and constructed in a way that non-abelian exponen-
tiation and the equality of the soft function and the zero-bin are preserved.

This operator level redefinition consists on a modification of the operational def-
inition of the collinear and soft Wilson lines. In particular, the soft Wilson lines in
eq. (2.13) are modified as

S̃n̄(0) = P exp
[
−ig

∫ ∞

0
dsAs+(sn̄)

]
→ S̃n̄(0) = P exp

[
−ig

∫ ∞

0
dsAs+(sn̄)e−iδ+s

]
,

Sn(0) = P exp
[

ig
∫ 0

−∞
dsAs−(sn)

]
→ Sn(0) = P exp

[
ig
∫ 0

−∞
dsAs−(sn)e+iδ−s

]
,

(2.37)
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where δ± → +0. At the level of Feynman diagrams in momentum space the modi-
fied expressions for the eikonal propagators are (e.g. for absorption of n gluons by a
Wilson line [∞+, 0])

1
(k+1 − i0)(k+2 − i0)...(k+n − i0)

→ 1
(k+1 − iδ+)(k+2 − 2iδ+)...(k+n − niδ+)

, (2.38)

where the gluons are ordered in the way that kn is the gluon that fulfills the con-
dition |k+n | ≤ |k+i |∀i. As a consequence of the rescaling invariance of the Wilson
lines, now broken by the regulators δ±, the expression of the diagrams depend on
a unique combination of regulators, δ+δ−. The ordering of the poles in the eikonal
propagators is crucial to preserve the non-abelian exponentiation theorem for color
factors [53, 54]. Within modified δ-regularization only diagrams with non-abelian
color prefactor arise in the exponent. Thus, the soft function can be written as usual

S̃(b) = exp
[

asCF

(
S[1] + asS[2] + ...

)]
. (2.39)

Analogously to the soft Wilson lines, the collinear Wilson lines are modified, for
the TMDPDF as,

Wn(x) = P exp
[

ig
∫ 0

−∞
dsA−(x + sn)

]
→ P exp

[
ig
∫ 0

−∞
dsA−(x + sn)e+iδ−xs

]
,

(2.40)

and for the TMDFF as

Wn(z) = P exp
[

ig
∫ 0

−∞
dsA−(z + sn)

]
→ P exp

[
ig
∫ 0

−∞
dsA−(z + sn)e+i(δ−/z)s

]
.

(2.41)

This type of regularization of Wilson lines at operator level is also used in the cal-
culation of multiparticle webs [55–59]. Note that the δ-regularized Wilson line vio-
lates the rules of gauge transformations, but this violation is power-suppressed in δ.
Therefore, in the calculations δ should be considered as an infinitesimal parameter
in order to avoid contributions that violate gauge invariance.

As the soft function is split in order to be combined with the bare definition of
the TMDPDF and cancels rapidity divergences (see eq. (2.30)), a new scale is intro-
duced. In the calculation of the soft function the whole dependence on the rapidity
regulators appears in terms of a unique function ln(µ2/(δ+δ−)). As each δ regulator
represents the rapidity divergences coming form each TMDPDF in the factorization
theorem one can separate the soft function introducing new scales, ζ±,

S
(

b, ln
(

µ2

δ+δ−

))
= S1/2

(
b, ln

(
µ2

(δ+/p+)ζ+

))
S1/2

(
b, ln

(
µ2

(δ−/p−)ζ−

))
,

(2.42)

where ζ+ζ− = (p+p−)2 = Q4, with Q2 the hard scale of the considered process. In
order to introduce this new scale in the calculation of a single TMD, one can do the
following substitution

δ− = δ+
ζ

(p+)2 , (2.43)
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FIGURE 2.1: Feynman diagrams contributing to the TMDPDF at NLO
in QCD. The star in a Feynman diagram indicates that its complex

conjugate should be added.

where the subscripts ± are omitted for the variable ζ.

2.2.2 One-loop calculation. Cancellation of rapidity divergences

In this section we present a sketch of a one-loop calculation of an unpolarized quark
TMDPDF as in [18] that will help to understand explicitly the cancellation of rapidity
divergences between a bare TMDPDF and the soft function, extracting the matching
coefficient considered in eq. (2.34) at one-loop accuracy. On the other hand, this
calculation helps to understand the way to proceed in the calculation of matching
coefficients for polarized TMDs presented in part I of this thesis. Here and along the
thesis, Feynman gauge is used.

The Feynman diagrams corresponding to the bare TMDPDF are drawn in fig.
2.1. As we consider massless external particles the only Lorentz invariant present
in the calculation is the conjugate coordinate of the transverse momentum, b. This
quantity appears only in the diagrams whose left and right parts are connected,
so purely virtual diagrams (without any cut propagator) are set to zero. The only
relevant piece of the virtual diagrams is the UV-divergent part, that enters in the
renormalization constant, Zq, of the quark TMDPDF1. At one loop we have

Z[1]
q = −CF

(
2
ε2 +

4 + 2lζ

ε

)
, (2.44)

where we introduce the following notation for logarithms, useful along all the thesis,

Lµ = ln

(
X2b2

4e−2γE

)
, lX = ln

(
µ2

X

)
, λδ = ln

(
δ+

p+

)
. (2.45)

Note that we denote euclidean vectors with bold font, i.e. b2 = −b2.
The computation of the non-zero diagrams for the quark TMDPDF provides the

quark-to-quark bare matrix element,

FB[1](x, δ) = 2CFΓ(−ε)Bε

(
x̄(1− ε) +

2xx̄
x̄2 + x2δ2

)
, (2.46)

where B = b2/4 and x̄ = 1 − x. Before combining the collinear and soft matrix
elements we should develop our result in the limit δ → 0. This step implies to

1More information about the renormalization of the TMDPDF is given in chapter 3, while in this
section we introduce only the necessary information to perform this calculation.
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proceed from analytical functions to distributions, where the singularity at x → 1 is
regularized by the (..)+-distribution

[ f (x)]+ = f (x)− δ(x̄)
∫ 1

0
dy f (y). (2.47)

Within δ-regularization, this transformation can be done as

FB[1](x, δ) =
(

FB[1](x, δ)
)
+
+ δ(x̄)

∫ 1

0
dy FB[1](y, δ) +O(δ). (2.48)

Using this relation the result in eq. (2.46) is rewritten as

FB[1] = 2CFΓ(−ε)Bε

((
2x

1− x
+ x̄(1− ε)

)
+

+ δ(x̄)
(
−3

2
− ε

2
− 2λδ

))
. (2.49)

The soft function, necessary to cancel rapidity divergences remaining in eq. (2.48),
is calculated up to NNLO within modified δ-regularization scheme in [52]. At NLO
the soft function is given by

S[1] = −4CKBεΓ(−ε)
(

L√ζ + 2λδ − ψ(−ε)− γE

)
, (2.50)

where the color factor, CK = CF(CA), for quark (gluon) initiating partons. Combin-
ing results in eq. (2.49) and eq. (2.50) we find a result free of rapidity divergences.
Thus, the final expression for the TMDPDF (ε-expanded) is written as

F[1] = CF

[(
−2

ε

1 + x2

1− x
− 2Lµ

1 + x2

1− x
+ 2x̄

)
+

+ δ(x̄)
(
−L2

µ + 2Lµlζ + 3Lµ + 1− ζ2

)]
.

(2.51)

This expression is free from rapidity and UV divergences. However, one rec-
ognizes the ε-pole which is part of the corresponding integrated function. In order
to get the result of the matching of the TMDPDF over its corresponding integrated
function we have to calculate the matrix elements of the integrated part. The dia-
grams contributing to this object are all zero, because there is no Lorentz invariant
scale. Therefore, the only non-zero contribution is the UV renormalization factor,
which is deduced from the DGLAP kernel. For quark-to-quark channel we have

f [1]q←q = −
2CF

ε

(
1 + x2

1− x

)
+

. (2.52)

Finally, we find matching coefficients where ε-poles totally cancelled. Up to one
loop we find

C[0]
q←q = δ(x̄), (2.53)

C[1]
q←q = CF

[
−2Lµ

1 + x2

1− x
+ 2x̄ + δ(x̄)

(
−L2

µ + 2Lµlζ − ζ2

)]
, (2.54)

where the divergent terms at x → 1 should be undestood as (..)+-regularized. In
eq. (2.54) we see explicitly how the dependence over the rapidity scale ζ enters due
to the procedure to cancel rapidity divergences.
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2.3 Evolution of TMD distributions

In this section we discuss the properties of the TMD operator under renormalization
scales. From this point, we can derive evolution equations of the TMD distributions,
whose solution helps us to obtain the evolution factor which resums logarithms in
order to obtain trustable predictions of cross sections. An important point about the
evolution of TMD distributions is its spin independence. Thus, the discussion in this
section is valid to all the considered TMD distributions. We use the generic notation
F for a generic spin (in)dependent TMD.

2.3.1 Double scale evolution

The dependence on renormalization scales is given by the pair of evolution equa-
tions

µ2 d
dµ2 F(x, b; µ, ζ) =

γF(µ, ζ)

2
F(x, b; µ, ζ), (2.55)

ζ
d

dζ
F(x, b; µ, ζ) = −D(µ, b)F(x, b; µ, ζ). (2.56)

The anomalous dimensions γF and D are defined via the corresponding renormal-
ization constants and are known up to three-loop order [60–63]. Their explicit per-
turbative expressions can be found in appendix A. As the TMD distributions have
two types of divergences renormalized in two different ways, we have a system of
two differential equations. A detailed study of this system has been recently pre-
sented in ref. [16] and a summary of the main features can be found in the next
subsection.

Anomalous dimensions γF and D satisfy the integrability condition (also known
as Collins-Soper equation [64])

2µ2 dD(b, µ)

dµ2 = −ζ
dγF(µ, ζ)

dζ
= Γcusp(µ), (2.57)

where Γcusp is the anomalous dimension for a cusp of two light-like Wilson lines.
Due to this equation the expression for γF can be rewritten in the form

γ
f
F(µ, ζ) = Γ f

cusp(µ)lζ − γ
f
V , (2.58)

where γ
f
V is anomalous dimension of the vector form factor for quarks ( f = q) or

gluons ( f = g). The rapidity anomalous dimension D has not such a simple rep-
resentation due to the presence of an extra dimensional parameter b2. It generally
contains all powers of logarithms ln(µ2b2), that at some large values of b2 turns to
some non-perturbative function [65].

Due to the integrability condition in eq. (2.57) the system of evolution equations
in eqs. (2.55, 2.56) has a unique solution:

Ff←h(x, b; µ1, ζ1) = R f [b; (µ1, ζ1)→ (µ2, ζ2)]Ff←h(x, b; µ2, ζ2), (2.59)

where the TMD renormalization factor reads

R f [b; (µ1, ζ1)→ (µ2, ζ2)] = exp
[ ∫

P

(
γ f (µ, ζ)

dµ

µ
−D f (µ, b)

dζ

ζ

) ]
. (2.60)
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Here, P is arbitrary path in (µ, ζ)-plane connecting (µ1, ζ1) and (µ2, ζ2). Eq. (2.60) is
in principle independent of the path P, however the truncation of the perturbative
series makes some choices more preferable, for a detailed discussion see ref. [16]
and next subsection. In particular, we use the special practically-convenient path
that corresponds to the ζ-prescription introduced in [16, 66]. We again stress that
the TMD evolution equations and their solution of eq. (2.59) do not depend on the
polarization.

In eq. (2.34) we pointed out that the small-b limit of the renormalized TMD distri-
bution can be related to the collinear PDF through calculable matching coefficients.
So, it is important to know the evolution of collinear PDF with the DGLAP kernel
evolution equation

µ2 d
dµ2 f f (x, µ) =

∫ 1

x

dy
y

Pq← f

(
x
y

)
f f (y, µ), (2.61)

where the DGLAP kernel P is known up to two (or even three) loop order for every
polarization in [67–71]. Combining together eqs. (2.55, 2.56) with eq. (2.61) we obtain
the evolution properties of the matching kernels. They are

µ2 d
dµ2 Cq← f (x, Lµ, lζ) (2.62)

= ∑
f ′=q,q̄

∫ 1

x

dy
y

Cq← f ′

(
x
y

, Lµ, lζ

)(
γV(µ, ζ)

2
δ f f ′δ(ȳ)− Pf ′← f (y)

)
,

ζ
d

dζ
Cq← f (x, Lµ, lζ) = −D(µ, b)Cq← f (x, Lµ, lζ). (2.63)

In perturbation theory, the expression for the coefficient function can be presented
as

δC f← f ′(x, Lµ, lζ) =
∞

∑
n=0

an
s

n+1

∑
k=0

n

∑
l=0

Lk
µ ll

ζ δC(n;k,l)
f← f ′ (x). (2.64)

The coefficients δC(n;k,l) with k + l > 0 are fixed order-by-order with the help of the
renormalization group equations in eqs. (2.62, 2.63). Thus, the only non-trivial part
to evaluate is C(n;0,0). The expressions for these coefficients in their generic form
up to two-loop are given in the chapter 4 of this thesis, devoted to the systematic
calculation of matching coefficients of polarized TMD distributions.

2.3.2 ζ-prescription

The implementation of the ζ-prescription leads to the definition of the so-called op-
timal TMDs. We sketch here the procedure to obtain optimal TMDs referring to
the original work [16] for further details. The anomalous dimensions γF(µ, ζ) and
D(µ, b) governing the evolution can be thought as two components of a vector field
in the plane (lnµ2, lnζ). The integrability condition, e.g. eq. (2.57), states that such
field is irrotational, i.e. locally conservative. This allows to define a scalar potential
and guarantees that the evolution between two points in the (lnµ2, lnζ) space is in-
dependent of the path; in particular, no evolution occurs along equipotential lines.
However, the perturbative expansion breaks the validity of such statement and in
fact it was shown that numerical predictions largely depend on the choice of path.
This limit is overcome by the improved γ solution, that reinstates path-invariance by
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�cusp µ2

FIGURE 2.2: Sketch of the geometry of the (ζ, µ) plane where the dou-
ble scale evolution takes place. The anomalous dimensions determine
a conservative field (grey arrows) and the evolution is null among
equipotential lines (shades of red). The intersection of two special
equipotential lines (bright red) determines a saddle point; the zeta-
prescription corresponds to running the evolution from this point, af-
ter reinstating path invariance. The equations for the special equipo-

tential lines in the figure correspond to the one-loop result.

supplementing γF with formally higher-order terms. If we let F be a generic TMD,
then the evolution kernel R, implicitly defined as

F(x, b, µ f , ζ f ) = R(b; µ f , ζ f ; µi, ζi)F(x, b, µi, ζi) , (2.65)

within the improved γ solution yields

R(b; µ f , ζ f ; µi, ζi) = exp
{
D(µ f , b)ln

(µ2
f

ζ f

)
−D(µi, b)ln

(µ2
i

ζi

)
(2.66)

−
∫ µ f

µi

dµ

µ

[
2D(µ, b) + γV(µ)

]}
,

where γV is the noncusp anomalous dimension.
Path independence allows one to apply the ζ-prescription, the key point of the

method. The idea is setting the initial rapidity scale ζi = ζµi as a function of µi such
that the scale-dependence of the initial TMDs vanishes independent of µi. At one
loop, this simply reads

ζµ = e−
γV

Γcusp µ2 , (2.67)

and the corrections to higher loops are evaluated in [16].
The relation between ζ and µ draws a line in the (lnζ, lnµ2) plane (fig. 2.2). Since

by requirement the TMDs are constant along it, this must be an equipotential line,
which is well defined only if path-independence is restored. The remarkable fact
with the ζ prescription is that, contrarily to standard evolution, the cancellation of
large rapidity logarithms affecting the un-evolved TMDs is an internal mechanism.
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The rapidity evolution is still responsible for cancelling the large logarithms in the
hard function, but the scale uncertainty of the evolution is now entirely decoupled
from the definition of the TMDs (and in particular, from the non-perturbative model
that enters their definition).

The definition of optimal TMDs requires one more specification, which concerns
the choice of initial scale µi (and consequently ζµi ), and follows from TMD factor-
ization. Considering TMD PDFs for definiteness, we have up to nonperturbative
corrections

Fa←h(x, b, µ, ζµ) = ∑
b

∫ 1

x

dy
y
Ca←b(

x
y , b, µ, ζµ, µOPE) fb←h(y, µOPE)

[
1 +O

(
b2Λ2

QCD
)]

,

(2.68)

where fb←h are the collinear PDFs, Ca←b are transverse momentum matching coeffi-
cients known at two loop from ref. [18]. The matching is performed at the scale µOPE.
The choice of µOPE is in general constrained by µi, as they need to lie on the same
half-plane with respect to the saddle point. This undesired feature is eliminated by
choosing µi = µsaddle.
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Part I

Spin effects in transverse
momentum distributions
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Chapter 3

Polarized transverse momentum
distributions

3.1 Definition of spin dependent transverse momentum dis-
tributions

The transverse momentum dependent factorization theorems for semi-inclusive deep
inelastic scattering (SIDIS) and Drell-Yan type processes formulated in [10, 11, 13, 14]
and revisited in chapter 2 yield a well defined spin (in)dependent transverse mo-
mentum dependent distributions (TMDs) free of rapidity divergences. These dis-
tributions describe the three-dimensional distribution of quarks and gluons inside
a hadron, due to the extra dependence on the transverse momentum in addition to
the one-dimensional Bjorken momentum fraction [72].

In chapter 2 we studied the definition of the quark TMD obtained from the fac-
torization theorem. In terms of operators, the quark and gluon component of a TMD
can be written as

Φij(x, b) =
∫ dλ

2π
e−ixp+λq̄i (λn + b)W(λ, b)qj (0) , (3.1)

Φµν(x, b) =
1

xp+

∫ dλ

2π
e−ixp+λF+µ (λn + b)W(λ, b)F+ν (0) , (3.2)

where i, j and µ, ν are Dirac and Lorentz indices, respectively. In addition, n is the
lightlike vector and we use the standard notation for the light-cone coordinates.
Also, gµν

T = gµν − nµn̄ν − n̄µnν). The operatorW is

W(λ, b) = W̃T
n (λn + b)∑

X
|X〉〈X|W̃T†

n (0) , (3.3)

with Wilson lines defined in eq. (2.9) taken in the appropriate representation of
gauge group. The staple contour of the gauge link (see fig. 3.1) results in the rapidity
divergences, the unique feature of TMD operators. The superscript T in Wilson lines
indicates that they are incorporated by an additional transverse link at light-cone
infinity, which ensures the gauge invariance of the operator. However, transverse
links do not give additional contributions in non-singular gauges.

The hadron matrix elements of the TMD operators in eqs. (3.8, 3.9) with open
vector and spinor indices are to be decomposed over all possible Lorentz variants,
which define all the possible TMDPDFs. In the literature this decomposition is com-
monly made in momentum space, e.g. see [8, 73] (for quark operators) and [74, 75]
(for gluon operators). As in TMD factorization theorems parton distributions are
naturally defined in impact parameter space, it is convenient to do the decomposi-
tion in this space. The correspondence between decomposition in momentum and
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FIGURE 3.1: Staple contour for the gauge linkW of the TMD operator.

impact parameter spaces can be found in e.g.[76, 77]. To study the distributions
considered in this thesis we need only a part of the complete decomposition,

Φq←h,ij(x, b) = 〈h|Φij(x, b)|h〉 = 1
2

(
f1γ−ij + g1LSL(γ5γ−)ij (3.4)

+ (STµiγ5σ+µ)ijh1 + (iγ5σ+µ)ij

(
gT,µν

2
+

bµbν

b2

)
Sν

T
2

h⊥1T + ...
)

,

Φµν
g←h(x, b) = 〈h|Φµν(x, b)|h〉 (3.5)

=
1
2

(
− gµν

T f g
1 − iεµν

T SLgg
1L + 2h⊥g

1

(
gµν

T
2

+
bµbν

b2

)
+ ...

)
,

where the vector bµ is a 4-dimensional vector of the impact parameter (b+ = b− = 0
and −b2 ≡ b2 > 0), and ST,L are components of the hadron spin vector

Sµ = SL

(
p+

M
n̄µ − M

2p+
nµ

)
+ Sµ

T, (3.6)

and ε
µν
T = ε+−µν = nαn̄βεαβµν. On the r.h.s. of eqs. (3.4, 3.5) we omit arguments

of TMD distributions (x, b), unless they are necessary. Note that in eq. (3.4) we use
the normalization for the distribution h⊥1T different from the traditional one [73]. The
traditional definition can be recovered substituting h⊥1T → h⊥1Tb2M2, with M being
the mass of hadron. The dots include non-studied TMDs and the TMD distributions
that match the twist-3 and higher parton distribution functions.

Depending on the relation between hadron and quark (gluon) polarization, the
different TMD distributions which appear in the decomposition are named as: un-
polarized quark (gluon) distribution, f q(g)

1 , helicity quark (gluon) distribution, gq(g)
1L ,

transversity quark distribution, h1, pretzelosity quark distribution, h⊥1T and linearly
polarized gluon distribution, h⊥g

1 . To clarify the meaning of the different TMD dis-
tributions in terms of quark/gluon and hadron polarization, we can organize the
TMD distributions in table 3.1.

The unpolarized TMD distribution is the most studied case and it has been treated
using different regularization schemes at the next-to-leading order (NLO) [9–11, 13,
78–80], the next-to-next-to-leading order (NNLO) [18, 51, 81, 82] and recently at next-
to-next-to-next-to-leading order (N3LO) [? ]. For polarized distributions there were
calculations performed only for helicity, transversity and linearly polarized gluon
distributions at NLO [77, 83]. However, these works miss a systematic discussion
on the relevant renormalization schemes, which are fundamental to establish their
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U L T
U f q,g

1 h⊥,q
1

L gq,g
1 h⊥,q

1L
T f⊥,q,g

1T gq,g
1T hq

1 , h⊥,q
1T

TABLE 3.1: Overview of leading-twist unpolarized (U), longitudi-
nally polarized (L) or transversely polarized (T) quark/gluon (row)
TMDs for unpolarized, longitudinally polarized and transversely po-
larized hadrons (column). The distributions marked in bold also also
appear in its collinear version, the ones marked in red are T-odd and

not studied in this thesis.

calculation and to provide a path to higher order analysis. In this thesis NNLO re-
sults for some polarized TMD distributions are presented and discussed [84–86]. The
importance of using highest available perturbative inputs for TMD distributions is
important for the successful description of the experimental data, and significantly
increases the predictive power of the framework [16, 66]. In this way, we reduce
the theoretical error of the proper TMD distributions, allowing a better description
of the interesting non-perturbative physics. Also as a consequence of performing
high order perturbative calculation, the evolution of TMD distributions has been
calculated at two and three loops [52, 62, 63]. This fact make possible to obtain phe-
nomenological predictions up to N3LL [17, 87].

For convenience we introduce the universal notation

Φ[Γ]
q =

Tr(ΓΦ)

2
, Φ[Γ]

g = ΓµνΦµν. (3.7)

Thus, we can write the spin (in)dependent quark and gluon TMD distribution
definition in a process-independent way,

Φ[Γ]
q←h(x, b) =

1
2

∫ dλ

2π
e−ixp+λ (3.8)

〈P, S|T̄{q̄(λn + b)W̃T
n (λn + b)} Γ T{W̃T†

n (0)q(0)}|P, S〉,

Φ[Γ]
g←h(x, b) =

1
xp+

∫ dλ

2π
e−ixp+λ (3.9)

〈P, S|T̄{F+µ(λn + b)W̃T
n (λn + b)} Γµν T{W̃T†

n (0)F+ν(0)}|P, S〉,

where Γ represents the different Dirac or Lorentz variants for each polarization. We
will investigate the Dirac or Lorentz variants allowed in order to have well defined
spin dependent with cancellation of rapidity divergences in section 3.3.

3.2 Renormalization of TMD operator

The TMD operator defined in eqs. (3.8, 3.9) are affected by ultraviolet (UV) and ra-
pidity divergences. In these sense, the TMD distributions obtained from the hadronic
matrix elements of these operators are the unsubstracted TMD distributions. Both
these divergences are renormalized by appropriate renormalization constants [15].
Consequently, the renormalized, and hence physical, TMD distributions depends on
two scales. Traditionally, UV renormalization scale is denoted by µ and the rapidity
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renormalization scale is denoted by ζ. The renormalized TMDPDF has the form

Φren(x, b; µ, ζ) = Z(µ, ζ|ε)R(b, µ, ζ|ε, δ)Φunsub.(x, b|ε, δ), (3.10)

where we explicitly show the dependence on regularization parameters. In partic-
ular, ε is the parameter of dimensional regularization (d = 4− 2ε) and regularizes
UV divergences, which are renormalized by the factor Z. The δ is the parameter
of δ-regularization [18, 52], and R is the rapidity renormalization factor. The singu-
larities in ε and δ cancels in the product of eq. (3.10). The renormalization factors
are independent of the Lorentz structure but they change according the parton color
representation. The renormalization factors Z and R are intertwined and it is impor-
tant to specify in which order the divergences are subtracted. Here we work in the
scheme where renormalization of rapidity divergences is made prior to the renor-
malization of UV divergences. The final result for Φren is of course independent of
the subtraction order.

The renormalization factors are scheme dependent. For the UV renormalization
we use the MS-scheme. To specify the renormalization scheme for rapidity diver-
gences we recall that within the TMD factorization theorem the rapidity divergences
are compensated by the soft factor [10, 11, 15]. As before, the soft factor is defined as
a product of soft Wilson lines

S(b) =
Trcolor

Nc
〈0|
[
ST†

n S̃T
n̄

]
(b)

[
S̃T†

n̄ ST
n

]
(0)|0〉. (3.11)

In perturbation theory, the soft function is calculated up to two-loop accuracy in δ-
regularization scheme in [52]. An example of the Feynman diagrams that should be
evaluated to obtain the first non-trivial result (NLO) for the soft function are given
in fig. 3.2. The factors R introduced in eq. (3.10) also renormalize the soft factor, such
that the whole factorization expression is finite, see the proof and detailed derivation
in [15]. It can be shown that within a properly defined scheme the renormalized soft
factor is trivial, i.e.

R(b, µ, ζ|ε, δ+)S(b|ε, δ+, δ−)R(b, µ, ζ̄|ε, δ+) = 1, (3.12)

where δ± regularize rapidity divergences in the corresponding direction. In this
scheme the rapidity renormalization factor has an exceptionally simple form [12, 15,
52]

R(b, µ, ζ|ε, δ+) = S−1/2
(

b|ε,
δ+

2p+
√

ζ,
δ+

2p+
√

ζ

)
. (3.13)

Such a scheme is very natural since it does not leave any remnant of soft factor
in the factorization theorem, and therefore, coincides with other popular schemes
of rapidity renormalization, e.g. with the one suggested in [10]. Although here we
adopt the δ-regularization notation, these expressions could be translated to other
regularization schemes, e.g. the translation dictionary of δ-regularization to the reg-
ularization by tilted Wilson lines is given in [88].
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FIGURE 3.2: Feynman diagrams contributing to the TMD soft func-
tion at NLO in QCD.

3.3 Small-b OPE. Leading dynamical twist TMDs

Regardless of the non-perturbative nature of the TMD distributions, the large-qT
(or small-b) matching of TMD distributions on the corresponding integrated func-
tions can be evaluated. Such consideration is practically very important because the
resulting matching coefficients serve as an initial input to a model or a phenomeno-
logical ansatz for TMD distributions.

The small-b operator product expansion (OPE) is the relation between TMD op-
erators and lightcone operators. Its leading order can be written as

Φij(x, b) = (3.14)[ (
Cq←q(b)

)ab
ij ⊗ φab

]
(x) +

[ (
Cq←g(b)

)αβ

ij ⊗ φαβ

]
(x) + ...,

Φµν(x, b) = (3.15)[ (
Cg←q(b)

)ab
µν
⊗ φab

]
(x) +

[ (
Cg←g(b)

)αβ

µν
⊗ φαβ

]
(x) + ...,

where symbol ⊗ denotes the Mellin convolution in the variable x, i.e.

( f ⊗ g)(x) =
∫ 1

x

dz
z

f (z) g
( x

z

)
. (3.16)

The functions C(b) are dimensionless, i.e. they depend on b only logarithmically.
The dots represent the power suppressed contributions, which presently have been
studied only for the unpolarized case (see discussion in [65]). At this order of OPE,
the functions φ(x) are the formal limit of the TMD operators Φ(x, 0). The hadronic
matrix elements of φ are the PDFs

φq←h,ij(x) = 〈h|φij(x)|h〉 (3.17)

=
1
2

(
f1,q(x)γ−ij + g1L,q(x)SL(γ5γ−)ij

+(STµiγ5σ+µ)ijh1

)
+O

(
M
p+

)
,

φ
µν
g←h(x) = 〈h|φµν(x)|h〉 (3.18)

=
1
2
(
−gµν

T f1,g(x)− iεµν
T SLg1L,g

)
+O

(
M
p+

)
,
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where M is the mass of hadron. Both sides of eqs. (3.14, 3.15) should be supple-
mented by the ultraviolet renormalization constants.

The matching coefficients defined above should be free of rapidity divergences
when the TMD distribution is renormalized. But the cancellation of rapidity diver-
gences for the spin-dependent distributions is a non-trivial statement. Let us con-
sider the small-b OPE for a generic TMD quark operator. At one loop we find

Φ[Γ]
q = Γabφab + asCFBεΓ(−ε)

[
(3.19)

− (γ+γ−Γ + Γγ−γ+)ab + x̄

(
gαβ

T
2
− bαbβ

4B
ε

)
(γµγαΓγβγµ)

ab

+

(
1

1− x
− ln

(
δ

p+

))(
γ+γ−Γ + Γγ−γ+ +

iεγ+6 bΓ
2B

+
iεΓ6 bγ+

2B

)ab

− iπ
2

(
γ+γ−Γ− Γγ−γ+ +

iεγ+6 bΓ
2B

− iεΓ6 bγ+

2B

)ab ]
⊗ φab +O(a2

s ),

where the divergent part at x → 1 should be understood as (..)+-distributed. Along
this thesis, all the divergent contributions at x → 1 should be understood as (..)+
regularized. In eq. (3.19), we omit the gluon operator contribution for simplicity.
The complex term in the last line of eq. (3.19) is the artifact of δ-regularization. The
logarithm of δ represents the rapidity divergence which is to be eliminated by the
factor R defined in eq. (3.13) which at this perturbative order reads

R = 1 + 2asCFBεΓ(−ε)

×
(

L√ζ + 2ln
(

δ

p+

)
− ψ(−ε)− γE

)
+O(a2

s ). (3.20)

The rapidity divergence cancels in the product RΦ if and only if

γ+Γ = Γγ+ = 0 , (3.21)

yielding

RΦ[Γ]
q = Γabφab + asCFBεΓ(−ε) (3.22)

×
[ (
−4 +

4
1− x

+ 2δ(x̄)(L√ζ − ψ(−ε)− γE)

)
Γab

+x̄

(
gαβ

T
2
− bαbβ

4B
ε

)
(γµγαΓγβγµ)

ab
]
⊗ φab +O(a2

s ) .

The cancellation of rapidity divergences is the fundamental pre-requisite to obtain
the matching coefficients of the renormalized operator Φ and φ.

The conditions analogue to eq. (3.21) for the gluon operator are

Γ+µ = Γ−µ = Γµ+ = Γµ− = 0. (3.23)

They follow from OPE for a generic gluon TMD operator Φµν similar to eq. (3.19),
which we do not present here, since it is rather lengthy and not instructive. The
conditions in eqs. (3.21, 3.23) are satisfied only for the following Dirac and Lorentz
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structures

Γq = {γ+, γ+γ5, σ+µ}, Γg = {gµν
T , ε

µν
T , bµbν/b2}, (3.24)

which exactly correspond to the Lorentz structures for the so called “leading dy-
namical twist” TMD distributions. In this way, the relations eqs. (3.21, 3.23) pro-
vide a definition of the leading dynamical twist for TMD operators that can be used
with no reference to a particular cross-section. On the other hand, our work shows
that TMD operators of non-leading dynamical twist have rapidity singularities that
are not canceled by the soft factor in eq. (3.11). While we have no knowledge of
a calculation of the correction to the leading order of TMD factorization, our find-
ing demonstrates that it has a different structure of rapidity divergences (which can
spoil the factorization). The relation in eq. (3.21) will be used in chapter 4 to fix the
definition of γ5 in the dimensional regularization.

In order to calculate the matching coefficients, we consider the quark and gluon
matrix elements with the momentum of parton set to pµ = p+n̄µ. This choice of kine-
matic is allowed for consideration of twist-2 contribution only (which is the case of
this thesis). Then, the calculations are greatly simplified. In particular, the pertur-
bative corrections to the parton matrix element of φ’s are zero, due to the absence
of a scale in the dimensional regularization. Therefore, such matrix elements are
equal to their renormalization constant, i.e., they have not finite ε-terms. In prac-
tice, it implies that the matching coefficient is the ε-finite part of the parton matrix
element of the renormalized TMD operator (3.10). The evaluation of OPE for a gen-
eral Lorentz structure (as in eq. (3.22)) is not very representative because one needs
only the components associated with the TMDPDFs. Therefore, we project out the
required components and present the expressions for each particular distribution.
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Chapter 4

Matching of polarized transverse
momentum distributions

This chapter is devoted to the study of the perturbative information which can be
derived from the TMDPDFs. By means of the small-b limit of the TMDPDF we can
isolate the perturbative information inside the matching coefficients, target of our
calculations for the different polarizations of TMDs we consider. In order to find the
expression for the matching coefficients, we evaluate the matrix elements with free
quark or gluon states. The spinor and Lorentz indices of the in/out-going quarks
and gluons can be contracted with the different Lorentz variants allowed for the
leading dynamical twist quark or gluon TMDs considered. Schematically, we deal
with the equation

Φ f← f ′(x, b) = ∑
r=q,q̄,g

C f←r ⊗ φr← f ′(x), (4.1)

where φ f← f ′(x) represents the different polarized PDFs evaluated on free-quark
states. This equation can be solved recursively starting from the first non-zero con-
tribution. We obtain expressions for the matching coefficients up to second order in
perturbation theory (NNLO). Then, the leading order expression is

C[0]
f← f ′ = C(0;0,0)

f← f ′ (x) = δ f f ′Φ
[0]
f← f ′ . (4.2)

Using it as a starting expression for iteration we obtain

C[1]
f← f ′ = Φ[1]

f← f ′(x, b)− φ
[1]
f← f ′(x), (4.3)

C[2]
f← f ′ = Φ[2]

f← f ′(x, b)−∑
r

C[1]
f←r ⊗ φ

[1]
r← f ′(x)− φ

[2]
f← f ′(x). (4.4)

The evaluation of TMD is made using the δ-regularization, which is described in
details in chapter 2. Evaluating Feynman diagrams in fig. 4.1 we keep the momen-
tum of quark collinear, pµ = p+n̄µ. This choice of kinematics significantly simplifies
the calculation. In particular, it implies that b2 is the only (Lorentz invariant) scale
that is present in the diagrams. Since the scaleless loop-integrals are zero in the di-
mensional regularization, many diagrams vanish. For example, this is the case of all
pure virtual correction diagrams. Thus, the outcome of each diagram up to NNLO
has a generic form

diag. = (b2)2ε
[

f1(x, ε) +

(
δ+

p+

)ε

f2(x, ε) +

(
δ+

p+

)−ε

f3(x, ε) (4.5)
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FIGURE 4.1: Feynman diagrams contributing to the TMDPDF at NLO
in QCD. The external lines represent the final states. The dashed lines
represent the quark or gluon Wilson lines. The star in a diagram in-

dicates that its complex conjugate should be added.

+ln
(

δ+

p+

)
f4(x, ε) + ln2

(
δ+

p+

)
f5(x, ε)

]
.

where the functions fi are regulated in the limit x → 1 with (..)+-distributions and
at NLO only functions f1, f3, f4 are present. The second and the third terms here
represent the IR divergence. Therefore, the functions f2 and f3 exactly cancel in the
sum of all the diagrams (and this fact can be also traced in the sum of sub-classes of
diagrams). The last two terms represent the rapidity diverging pieces and thus the
functions f4 and f5 are canceled by the rapidity renormalization factor. Altogether
these cancellations serve as a good intermediate check of the computation.

Summing together the diagrams we obtain the un-subtracted expression for TMD-
PDF on free-quark or gluon states. Let us denote it as

Φunsub.
f← f ′ = Φ[0]unsub.

f← f ′ δ f f ′ + asΦ
[1]unsub.
f← f ′ δ f f ′ + a2

s Φ[2]unsub.
f← f ′ +O(a3

s ), (4.6)

and it is UV and rapidity divergent. Starting from eq. (3.10) the renormalization
procedure reads (for quarks)

Φ[0]
f← f ′ = Φ[0]unsub.

f← f ′ (4.7)

Φ[1]
f← f ′ = Φ[1]unsub.

f← f ′ −
S[1]Φ[0]unsub.

f← f ′

2
+
(

Z[1]
q − Z[1]

2

)
Φ[0]unsub.

f← f ′ (4.8)
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Φ[2]
f← f ′ = Φ[2]unsub.

f← f ′ −
S[1]Φ[1]unsub.

f← f ′

2
−

S[2]Φ[0]unsub.
f← f ′

2
+

3S[1]S[1]Φ[0]unsub.
f← f ′

8

+
(

Z[1]
q − Z[1]

2

)Φ[1]unsub.
f← f ′ −

S[1]Φ[0]unsub.
f← f ′

2


+
(

Z[2]
q − Z[2]

2 − Z[1]
2 Z[1]

q + Z[1]
2 Z[1]

2

)
Φ[0]unsub.

f← f ′ , (4.9)

where superscript in square brackets indicates the perturbative order of a quantity.
In this expression we have Z = Z−1

2 Zq with Z2 the quark-field renormalization con-
stant, and Zq the quark TMD renormalization constant. Note that for gluons we
have the same expressions for the renormalized TMD but Z = Z−1

3 Zg with Z3 the
gluon-field renormalization constant, and Zq the gluon TMD renormalization con-
stant The expression for them can be found e.g. in [18]. The soft function up to
NNLO in δ-regularization can be found in the appendix A.

On the other hand, all loop-integrals contributing to collinear PDFs are zero.
Thus the only non-zero part of φ(x) is the renormalization constant. That is, the
needed expression for PDF evaluated on quarks or gluons is a pure singularity,
which can be found using renormalization group equations. It reads

φ
[0]
f← f ′(x) = P[0]

f← f ′ , φ
[1]
f← f ′(x) = −δ f f ′

ε
P[1]

f← f ′(x), (4.10)

φ
[2]
f← f ′(x) =

1
2ε2

(
∑

r
P[1]

f←r ⊗ P[1]
r← f ′ +

β0

2
P[1]

f← f ′

)
(x)− 1

2ε
P[2]

f← f ′(x),

where P[n] are perturbative coefficients of DGLAP kernel at an
s -order for each polar-

ization, and β0 = 11
3 CA − 2

3 N f is the QCD β-function.
With this information we can calculate the matching coefficients for different po-

larizations using the different Lorentz variants related to each case. Depending on
the distributions studied we achieve different levels of precision in each calculation.

4.1 Helicity TMD distribution

We begin studying the distribution of longitudinally polarized quarks or gluons in-
side a longitudinally polarized hadron, the helicity distribution. In this case the
Lorentz structures for quark and gluon operators are

Γ = γ+γ5, Γµν = iεµν
T . (4.11)

The corresponding “orthogonal” projectors are

Γ = Nsch.
γ−γ5

2
, Γµν

= iNsch.
ε

µν
T
2

, (4.12)

where the factor Nsch. depends on the definition of γ5 matrix in dimensional regu-
larization. The definition of the γ5 in dimensional regularization is a crucial point to
make a systematic calculation of the perturbative part of this distribution at differ-
ent orders in perturbation theory. Historically the most popular schemes (for QCD
calculations) are ’t Hooft-Veltman-Breitenlohner-Maison (HVBM) [89, 90], and Larin
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scheme [91, 92]. In both schemes the combination γ+γ5 can be presented as

γ+γ5 =
i

3!
ε+ναβγνγαγβ, (4.13)

where εµναβ is the antisymmetric Levi-Civita tensor. The difference between schemes
is hidden in the definition of Levi-Civita tensor. In HVBM the εµναβ is defined only
for 4-dimensional set of indices. I.e. εµναβ = 1 if {µναβ} is even permutation of
{0, 1, 2, 3}, εµναβ = −1 if the permutation is odd, and εµναβ = 0 for any another case.

Due to the fact that in dimensional regularization the integration over loop mo-
menta are done in d 6= 4 but the γ5 matrix is four dimensional we should split the
quantities which enter into the calculation in a 4-dimensional part and in a (d− 4)-
dimensional part. For example, the metric tensor in d-dimensions is written as,

gµν = ḡµν + ĝµν, (4.14)

where ḡµν is the part of the tensor with µ, ν = 0, 1, 2, 3 and ĝµν is the part with
µ, ν = 4, ..., d − 4. Consequently, for a general d-dimensional vector pµ, we have
the notation ḡµν pν = p̄µ and ĝµν pν = p̂µ for physical and unphysical components,
respectively. Note that v̂+ = v̂− = 0, i.e. the unphyisical components are transverse.
Thus, one can see that the relation of the Dirac matrices γµ with γ5 are

{γ̄µ, γ5} = 0,
[
γ̂µ, γ5] = 0, (4.15)

so, the well known 4-dimensional relation {γµ, γ5} = 0 is replaced by its analogous
expression in d dimensions

{γµ, γ5} = 2γ̂µγ5. (4.16)

Also we conserve that γ5γ5 = 1. The relation in eq. (4.16) allows to make the calcu-
lation os the diagrams in an analogous way to a case without γ5 matrices. The only
difference is an extra(d− 4)-dimensional piece that can be calculated using deriva-
tives with respect to the impact parameter of the 1-loop integrals presented in the
appendix B. To see another way to apply the HVBM scheme to calculation in dimen-
sional regularization see [88].

In Larin scheme the ε-tensor is non-zero for all set of d-dimensional indices, so
we do not need to split our quantities in 4 and (d− 4)-dimensional ones. The value
of individual components are undefined, however, the product of two ε-tensors is
defined as,

εµ1ν1α1β1 εµ2ν2α2β2 = −gµ1µ2 gν1ν2 gα1α2 gβ1β2 + gµ1ν2 gν1µ2 gα1α2 gβ1β2 − ..., (4.17)

where the dots mean all 4! permutations of indices with alternating signs.
The drawback of both schemes is the violation of Adler-Bardeen theorem for

the non-renormalization of the axial anomaly. This must be fixed by an extra finite
renormalization constant Z5

qq, derived from an external condition. A detailed discus-
sion about this point can be found in [91, 93, 94]. The NNLO calculation of polarized
deep-inelastic-scattering and Drell-Yan process in refs.[93, 94] made in (HVBM) have
shown that the finite renormalization is required only for the the quark-to-quark part
(both singlet and non-singlet cases). The same finite renormalization constant can be
used for Larin scheme up to ε-singular terms at NNLO [69]. However, it seems that
for higher order terms (in ε or in the coupling constant) the constant should be mod-
ified [69].
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Needless to say, that Larin scheme is far more convenient then HVBM, because
it does not violate Lorentz invariance. However, the Larin scheme, as it is originally
formulated and used in modern applications [69], is inapplicable for TMD calcula-
tions. The point is that it does violate the definition of the leading dynamical twist
eq. (3.21). Indeed, in the Larin scheme we have

γ+Γ = γ+
(
γ+γ5)

Larin =
i

3!
ε+ναβγ+γνγαγβ 6= 0, (4.18)

because there is a contribution when all indices {ναβ} are transverse. Note, that
in HVBM scheme there is not such problem, since in the 4-dimensional ε+ναβ, one
of the indices is necessarily "−". To ensure the existence of eq. (3.21) we perform a
small modification of Larin scheme, and call it Larin+ scheme. We define

(γ+γ5)Larin+ =
iε+−αβ

2!
γ+γαγβ =

iεαβ
T

2!
γ+γαγβ. (4.19)

The εT-tensor is d-dimensional, and for calculations it should be supplemented by
the relation

ε
α1β1
T ε

α2β2
T = −gα1α2

T gβ1β2
T + gα1β2

T gβ1α2
T . (4.20)

In the case the ε-tensor is 4-dimensional, the definition eq. (4.19) coincides with
HVBM. The normalization factors presented in the eq. (4.12) are

Nsch. =

{
1 HVBM,

(1− ε)−1(1− 2ε)−1 Larin+.
(4.21)

Due to the fact that the helicity distribution is present in all the quark and gluon
channels at leading twist and to the extra complications that the treatment of γ5

matrix in dimensional regularization introduces in the calculation it is done only up
to NLO.

The expression of the matching of quark and gluon helicity distribution onto
integrated functions are

g1L(x, b) = [∆Cq←q(b)⊗ g1L](x) + [∆Cq←g(b)⊗ gg
1L](x) +O(b2),

gg
1L(x, b) = [∆Cg←q(b)⊗ g1L](x) + [∆Cg←g(b)⊗ gg

1L](x) +O(b2), (4.22)

where ∆C are the helicity matching coefficient we calculate. We can write their ex-
pressions up to NLO as

∆Cq←q = δ(x̄) + asCF

{
2BεΓ(−ε)

[ 2
1− x

− 2

+ x̄(1 + ε)Hsch. + δ(x̄)
(

L√ζ − ψ(−ε)− γE

) ]}
ε-finite

,

∆Cq←g = asCF

{
2BεΓ(−ε)

[
x− x̄Hsch.

]}
ε-finite

,

∆Cg←q = asCF

{
2BεΓ(−ε)

[
1 + x̄Hsch.

]}
ε-finite

,
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∆Cg←g = δ(x̄) + asCA

{
2BεΓ(−ε)

1
x

[ 2
1− x

− 2 (4.23)

− 2x2 + 2xx̄Hsch. + δ(x̄)
(

L√ζ − ψ(−ε)− γE

) ]}
ε-finite

,

where the subscript "ε-finite" implies the removal of ε-singular terms. The terms di-
vergent in the limit x → 1 should be understood as (..)+-distributed, see eq. (2.47).
The coefficientHsch. accumulates the difference between HVBM and Larin+ schemes,

Hsch. =

 1 + 2ε HVBM,
1 + ε

1− ε
Larin+.

(4.24)

One can see that the expressions within HVBM and Larin+ schemes coincide up to
ε-suppressed parts at this perturbative accuracy.

In the regime of large-qT, the TMD factorization reproduces the collinear factor-
ization. Therefore, it is natural to normalize the helicity TMDPDF such that at large-
qT it reproduces the cross-section for polarized Drell-Yan, which in turn is normal-
ized onto cross-section of unpolarized Drell-Yan process [94]. The TMD equivalent
of this statement is the requirement of equality between helicity and unpolarized
matching coefficients[

Z5
qq(b)⊗ ∆Cq←q(b)

]
(x) = Cq←q(x, b). (4.25)

The constant Z5
qq is universal, in the sense that it is independent on the rapidity

regularization scheme. We find the following finite renormalization constant for the
TMD matching

Z5
qq = δ(x̄) + 2asCFBεΓ(−ε) (1− ε− (1 + ε)Hsch.) x̄. (4.26)

Note, that HVBM version of Z5
qq coincides with the NLO part of the one presented

in [94] up to logarithmic terms (which are dependent on the kinematics of process) .
Concluding the section we present the expressions for the helicity TMD distribu-

tion in the regime of small-b where the matching coefficients are taken in the limit
ε→ 0,

∆Cq←q ≡ Cq←q = δ(x̄) + asCF

(
− 2Lµ∆pqq + 2x̄

+ δ(x̄)
(
−L2

µ + 2Lµlζ − ζ2

) )
+O(a2

s ),

∆Cq←g = asTF
(
−2Lµ∆pqg + 4x̄

)
+O(a2

s ),

∆Cg←q = asCF
(
−2Lµ∆pgq − 4x̄

)
+O(a2

s ),

∆Cg←g = δ(x̄) + asCA

(
− 2Lµ∆pgg − 8x̄

+ δ(x̄)
(
−L2

µ + 2Lµlζ − ζ2

) )
+O(a2

s ), (4.27)

with lζ = lnµ2/ζ. The functions ∆p are the combination of helicity evolution kernel
(which can be found e.g. in [69]) and the TMD anomalous dimension. They are

∆pqq(x) =
2

1− x
− 1− x,
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∆pqg(x) = 2x− 1, ∆pgq(x) = 2− x,

∆pgg(x) =
2

1− x
+ 2− 4x. (4.28)

The coefficients ∆Cq←q and ∆Cq←g have been evaluated in [83]. Our expressions
agree with ones presented in [83] apart of ζ2 term in ∆Cq←q. This disagreement is
the result of different renormalization schemes. We use the conventional MS scheme
with eεγE factor, while MS-scheme of [83] is defined with Γ−1(1 + ε) factor. The
coefficients ∆Cg←q and ∆Cg←g have been evaluated in [77] and we agree with them.
To see an older calculation in which helicity TMDs are used see e.g. [95].

4.2 Transversely polarized distribution

In this section, we consider the transversely polarized TMD distribution and we
focus on the leading twist distributions in which it can be decomposed. These distri-
butions are the so called transversity and pretzelosity (also called quadrupole) TMD
distributions. Our aim is the evaluation of their twist-2 matching up to two loop
order, in order to do a calculation of a polarized TMD distribution at the same level
of the unpolarized TMD distribution. Both these distributions have been recently
subject of experimental, phenomenological and theoretical investigations. The SIDIS
data relevant for this extractions come mainly from HERMES [96] and COMPASS [97,
98]. Recently also RHIC has provided data in this direction [99] and it is expected
that transversity will be one of the central measurements in future EIC and LHC-
Spin. The transverse momentum dependent transversity has been extracted using
SIDIS data by Anselmino et al. in [100–102] with Gaussian models without taking
into account the TMD evolution. In refs. [103, 104] the lowest order evolution has
been considered. An issue of these extractions is the size of the theoretical error.
The reduction of it essentially requires the inclusion of the higher order perturba-
tive information. Let us also mention here the attempts to extract the transversity
distribution making use of lattice input [105]. Also, the integral of the transversity
distribution over the light-cone momentum is related to the tensor charge of the nu-
cleon. This quantity is relevant because it can be computed by lattice QCD, offering
a chance to test lattice results and it is an useful quantity to search for physics be-
yond the Standard Model [106]. The transversity TMDFF is also an interesting and
practically important object (see [107] for a recent review) and we show a calculation
of it twist-2 matching up to NNLO. For what concerns pretzelosity, we mention here
the recent analysis made in [108, 109]. According to this analysis, the pretzelosity
distribution is very small and practically consistent with a null value.

The transversely polarized TMD distribution is parameterized in terms of four
TMDPDFs, which were originally introduced in momentum space [7, 73]. For our
purposes we need the equivalent parametrization in the position space. It reads

Φ[iσα+γ5]
q←h (x, b) = Sα

Th1(x, b)− iλbα Mh⊥1L(x, b) (4.29)

+iεαµ
T bµ Mh⊥1 (x, b) +

M2b2

2

(
gαµ

T
2

+
bαbµ

b2

)
STµh⊥1T(x, b),

where sT is the transverse part of the hadron spin, λ is helicity, M is the mass of
hadron and b2 = −b2 > 0. The detailed relation between momentum and posi-
tion space definitions can be found in [76, 110]. The function h1, is known as TMD
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transversity distribution, and the function h⊥1T, is known as the pretzelosity distribu-
tion. Note that the general Lorentz structure for a transversely polarized operator
is usually addressed as iσ+αγ5 = εαν

T σ+ν. However, at leading twist the transver-
sity and pretzelosity distributions have no mixture with gluon distributions and the
common practice is to eliminate the γ5 or εT from the definition of these operators.
Thus, the Lorentz structure for these two distributions is simply expressed using
σα+. On the contrary, in a longitudinally polarized operator there is mixture with
gluons at leading twist and the γ5 cannot be dropped nor in definition nor in com-
putations (see [84] for a discussion of the different schemes for γ5 used in a NLO
calculation of the helicity distribution).

The small-b operator product expansion (OPE) allows the systematic expansion
of the TMD operator in powers of b. The operators that are associated to the powers
of b are then classified by twists. The evaluation of the matrix element of the small-b
OPE results into an expression of the form

Φ[iσα+γ5]
q←h (x, b) = ∑

f

[
Cαβ

q← f ;tw-2(b)⊗ hβ;tw-2
f←h

]
(x) (4.30)

+bβ ∑
f

[
Cαβγ

q← f ;tw-3(b)⊗ hγ;tw-3
f←h

]
(x) + ... ,

where h are collinear distributions, C are coefficient functions and ⊗ is the inte-
gral convolution in the momentum fractions. The terms in eq. (4.30) incorporate all
tensor structures of the TMD distribution parametrization in eq. (4.29). Extracting
particular tensors, one can find the matching of individual TMDPDFs onto collinear
functions. In particular, the tensor structure of h1 and h⊥1T appears in the twist-2
term, while the tensor structure for h⊥1L and h⊥1 can be produced only at the twist-3
[110]. In this thesis we only concentrate in twist-2 distribution so we only study the
first line on eq. (4.30).

The OPE in transversely polarized case has an exceptionally simple structure,
since there are no gluon operators. The only PDF that contribute to the matching
of these twist-2 distributions is the collinear transversity PDF. Its expression reads
[111]

Sα
Th1(x) =

1
2

∫ dλ

2π
e−ixp+λ〈P, S|T̄{q̄(λn)[λn, 0] iσα+γ5 q(0)}|P, S〉. (4.31)

The PDF h1(x) can also be interpreted as the probability distribution to find a trans-
versely polarized quark in a hadron.

The coefficient functions of the OPE are dimensionless and the dependence on b
enters only via logarithms, or via dimensionless tensors. Generally, the twist-2 coef-
ficient functions can have structures∼ gαβ

T and∼ bαbβ/b2. It is natural to decompose
it as

Cαβ
q← f ;tw-2(x, b) = gαβ

T δCq← f (x, Lµ) +

(
gαβ

T
2(1− ε)

+
bαbβ

b2

)
δ⊥Cq← f (x, Lµ), (4.32)

where δCq← f and δ⊥Cq← f are the twist-2 matching coefficients for transversity and
pretzelosity TMD distributions respectively. Note that the normalizations are take
in d = 4− 2ε dimensions. In this way, the pieces of this decomposition do not mix.
In particular, the tensor in the second term of eq. (4.32) has zero trace (in d = 4− 2ε
dimensions). Comparing the parametrization in eq. (4.32) with the parametrization
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for TMD distributions we find that the matching for individual TMDPDFs are

hq
1(x, b) =

∫ 1

x

dy
y ∑

f=q,q̄
δCq← f

(
x
y

, Lµ

)
h f

1(y) +O(b2), (4.33)

h⊥,q
1T (x, b) =

2
b2M2

∫ 1

x

dy
y ∑

f=q,q̄
δ⊥Cq← f

(
x
y

, Lµ

)
h f

1(y) +O(b2), (4.34)

where we explicitly express the Mellin convolution integral. In these formulas we
also suppress the scale dependence of functions because it is common to all the TMD
distributions independently on their polarization. The sum over flavors runs only
over non-singlet combinations, since there are no gluon operator with transverse
polarized configuration that could mix with the quarks.

The coefficient functions δC and δ⊥C can be evaluated perturbatively. At tree
order, ∼ a0

s , the coefficient function in eq. (4.32) is proportional to gαβ
T , and thus only

δC is non-zero. The terms proportional to∼ bαbβ/b2 are generated by loop-diagrams
and appear already at one-loop level [84].

4.2.1 Transversity TMDPDF

The evaluation of the transversity matching coefficient is very similar to the evalua-
tion of the unpolarized matching coefficient made in [18]. The main technical details
to perform this calculation (an also the unpolarized one) up to NNLO are expained
in the appendix B. The main difference, which only simplifies the evaluation, is the
absence of the mixing with the gluon operator.

The LO contribution expression for transversity TMDPDF is

h[0]1 f← f ′(x) = δ(1− x)δ f f ′ . (4.35)

Substituting it in eq. (4.1), we find the LO matching coefficient

δC[0]
f← f ′ = δC(0;0,0)

f← f ′ (x) = δ f f ′δ(1− x). (4.36)

The NLO expression for matching coefficient reads

δC[1]
f← f ′(x, b) = CFδ f f ′

(
− 4xLµ

1− x
+ δ(x̄)

(
−L2

µ + 2Lµlζ − ζ2

))
. (4.37)

This result agrees1 with the ones obtained in refs. [83, 84, 88]. It is easy to see that log-
arithmic part of eq. (4.37) satisfies renormalization group equations eqs. (2.62, 2.63).
The finite part is

δC(1;0,0)
f← f ′ (x) = −CFζ2δ f f ′δ(x̄). (4.38)

Note, that in order to evaluate NNLO matching coefficient one needs the terms sup-
pressed by ε, since they interfere with the singularities of the PDF, and produce a
non-zero finite and 1/ε contribution to eq. (4.4). The complete expression at all or-
ders of ε can be found in [84].

Now we focus on the expression for δC[2]. Firstly we present the only non-trivial
part that is the finite part δC(2;0,0). At NNLO we have the mixing with anti-quark

1The calculation made in [83] is made in a non-standard MS-scheme. And for this reason, the
coefficient presented in [83] is different from eq. (4.37) by ζ2δ(x̄) term.



62 Chapter 4. Matching of polarized transverse momentum distributions

operator, therefore, the matching is split into two channels

δC(2;0,0)
f← f ′ (x) = δ f f ′δC(2;0,0)

q←q (x) + δ f f̄ ′δC(2;0,0)
q←q̄ (x), (4.39)

where

δC(2;0,0)
q←q (x) = C2

F

{
δp(x)

[
4Li3(x̄)− 20Li3(x)− 4lnx̄ Li2(x̄) + 12lnx Li2(x) (4.40)

+2ln2 x̄ lnx + 2lnx̄ ln2x +
3
2

ln2x + 8lnx + 20ζ3

]
− 2lnx̄ + 4x̄

}
+CFCA

{
δp(x)

[
8Li3(x)− 4Li3(x̄) + 4lnx̄ Li2(x̄)− 4lnx Li2(x)

− ln3x
3
− 11

6
ln2x− 76

9
lnx + 6ζ3 −

404
27

]
+ 2lnx̄ +

14
3

x̄
}

+CF N f

{
δp(x)

[ ln2x
3

+
10
9

lnx +
56
27

]
− 2x̄

3

}
+δ(x̄)

[
C2

F
5ζ4

4
+ CFCA

(
5ζ4 −

77
9

ζ3 −
67
6

ζ2 +
1214
81

)
+CF N f

(
14
9

ζ3 +
5
3

ζ2 −
164
81

) ]
,

δC(2;0,0)
q←q̄ (x) =

(
C2

F −
CFCA

2

){
δp(−x)

[
8Li3

(
1

1 + x

)
− 8Li3

(
x

1 + x

)
(4.41)

+4Li3(x2)− 4lnxLi2(x2) + 4ln2xln(1 + x)− 4lnxln2(1 + x)

−2
3

ln3x− 4ζ3

]
+ 2x̄

}
.

Here,

δp(x) =
2x

1− x
, (4.42)

is the regular part of LO DGLAP kernel.
It is intriguing to observe that the parts of eqs. (4.40, 4.41) enclosed by the square

brackets literally coincide with corresponding parts for the unpolarized matching
coefficient, see [18] eqs. (7.3, 7.8). In other words, the matching coefficient for both
unpolarized and transversity distributions has the form

C(2;0,0)(x) = P[1](x)F1(x) + F2(x) + δ(x̄)F3, (4.43)

where P[1](x) is the corresponding LO DGLAP kernel, for the corresponding PDF.
Then we observe that the function F1(x) and the constant F3 are the same for unpo-
larized and transversity kernels (for both flavor channels). Such behavior is expected
since the contributions proportional to 1/(1− x), as well as δ(x̄) contributions, that
primary form the LO DGLAP kernel, come from the diagrams where the quarks
interact with the Wilson lines. Such diagrams are insensitive to the polarization
structure of the operator. The rest of diagrams are not singular in the limit x → 1,
and thus form a regular contribution. For more detailed discussion on the internal
structure of transversity kernel see [71].
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For completeness, we present here the non-zero logarithmic terms of the match-
ing coefficients. These terms can be calculated from the renormalization group equa-
tions and serve as a strong check of our calculation. So,

δC(2;4,2)
q←q (x) = −δC(2;4,1)

q←q (x) = 4δC(2;4,0)
q←q (x) = 2C2

Fδ(x̄), (4.44)

δC(2;3,0)
q←q (x) = 2C2

Fδp(x) + CF

(
−22

9
CA +

4
9

N f

)
δ(x̄), (4.45)

δC(2;3,1)
q←q (x) = 4C2

Fδp(x) + CF

(
11
3

CA −
2
3

N f

)
δ(x̄), (4.46)

δC(2;2,0)
q←q (x) = 4C2

Fδp(x)(2lnx̄− lnx) + CFδp(x)
(

2
3

N f −
11
3

CA

)
(4.47)

+δ(x̄)
[
− 7C2

Fζ2 + CFCA

(
−67

9
+ 2ζ2

)
+

10
9

CF N f

]
,

δC(2;2,1)
q←q (x) = δ(x̄)

[
− 2C2

Fζ2 + CFCA

(
134

9
− 4ζ2

)
− 20

9
CF N f

]
, (4.48)

δC(2;1,0)
q←q (x) = C2

F

[
2δp(x) ((3 + 4lnx̄)lnx + ζ2)− 4x̄

]
(4.49)

CFCA

[
2δp(x)

(
−2lnx

(
11
3

+ lnx
)
− 134

9
+ 4ζ2

)
+ 2x̄

]
+CF N f δp(x)

8
9
(5 + 3lnx) + CFδ(x̄)

[
− 22

3
CAζ2 +

4
3

ζ2N f

]
,

δC(2;1,1)
q←q (x) = CFδ(x̄)

[
− 112

27
+ CA

(
404
27
− 14ζ3

) ]
, (4.50)

δC(2;1,0)
q←q̄ (x) = 4

(
C2

F −
CFCA

2

){
δp(−x)

[
4Li2(−x) + 4lnxln(1 + x) (4.51)

−ln2x + 2ζ2

]
+ x̄
}

.

4.2.2 Transversity TMDFF

In the case of the transversity TMDFF the calculation of the matching coefficients can
be done with the available tools developed for the calculation of the TMDPDF. This
is because despite the different origin and interpretation of these distributions, their
perturbative treatment is analogous. Thus, in this section we discuss the fundamen-
tal definitions to translate the theory developed for PDFs to FFs and we present the
results up to the same order of unpolarized TMDFF calculated in [18].
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The unsubtracted transversity TMDFFs are defined with the following hadronic
matrix elements,

∆[iσα+γ5]
q→N (z, b) =

1
4zNc

∑
X

∫ dλ

2π
e−ip+λ/z

× 〈0|T
[
W̃T†

n qj

]
a
(nλ + b)|P, S; X〉iσα+γ5〈P, S; X|T̄

[
q̄i W̃T

n

]
a
(0)|0〉,

where z represents the momentum fraction of the final state parton fragmenting into
a hadron. The hadronic matrix element can be parameterized in a similar way that
in eq. (4.29)

∆[iσα+γ5]
q→h (z, b) = Sα

T H1(z, b)− iλbα MH⊥1L(z, b) (4.52)

+iεαµ
T bµ MH⊥1 (z, b) +

M2b2

2

(
gαµ

T
2

+
bαbµ

b2

)
STµH⊥1T(z, b),

where again ST is the transverse part of the hadron spin, λ is helicity, M is the mass of
hadron and b2 = −b2 > 0. We recall that the parametrization presented here is valid
for produced hadrons with spin-1/2. For the scalar or pseudo-scalar hadrons, the
functions, H1, H⊥1L and H⊥1T are absent. The transversity TMDFF, or Collins function,
is represented by the function H1. The matching onto the fragmentation function is
done as

Hq
1(z, b) =

∫ 1

z

dy
y3−2ε ∑

f=q,q̄
δCq→ f

(
z
y

, Lµ

)
H f

1 (y) +O(b2). (4.53)

The factor z2−2ε is added to meet the common normalization of collinear FF function,
that is defined as

Sα
T H1(x) =

z1−2ε

4Nc
∑
X

∫ dλ

2π
e−ip+λ/z (4.54)

×〈0|T
[
W̃T†

n qj

]
a
(nλ)|P, S; X〉iσα+γ5〈P, S; X|T̄

[
q̄i W̃T

n

]
a
(0)|0〉,

where the γ5 can be dropped as in the TMDPDF case. The evolution kernels for the
collinear FFs are known at two loops [70, 71].

The main difference in evaluation of TMDFFs in comparison to TMDPDFs is the
origin of parton momentum in diagrams, which is incoming in the PDF case, and
outgoing in the FF case. Therefore, the expressions for TMDFFs could be obtained
by the application of the crossing symmetry x → z−1 at the diagram level. This,
however, should be done with caution since there is a brunch cut for x > 1, which
should be transformed into a branch cut for z > 1. Additionally, one should take
into account the zε factors that are present in definitions of FFs, and that mix in
the ε-expansions with various contributions. For the detailed discussion on relation
between PDFs and FFs see [112] and references within. To avoid these complications,
we re-evaluate the PDF master integrals with x → z−1 and reassemble the final
result. The LO matching of transversity TMDFF is elementary

δC
[0]
f→ f ′ = δ f f ′δ(z̄). (4.55)

Therefore, the renormalization properties of the FF case are similar to the case of
PDFs and the matching procedure follows the same pattern as in the unpolarized
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case [18]. For this reason we skip the details of evaluation and present the final
result.

For the presentation of the NLO and NNLO coefficient functions we introduce
again logarithmic decomposition (see eq. (2.64))

δC f→ f ′(z, Lµ, lζ) =
∞

∑
n=0

an
s

n+1

∑
k=0

n

∑
l=0

Lk
µ ll

ζ δC
(n;k,l)
f→ f ′ (z). (4.56)

The terms accompanied by logarithms, i.e. with k + l > 0 can be restored with
renormalization group equation. The NLO matching coefficient is given by

z2δC[1]
f← f ′(x, b) = CFδ f f ′

(
2δp(z)

(
2lnz− Lµ

)
+ δ(x̄)

(
−L2

µ + 2Lµlζ − ζ2

))
. (4.57)

At NNLO we have the same mixing with anti-quark operator. The matching is
split into two channels

δC
(2;0,0)
f→ f ′ (z) = δ f f ′δC

(2;0,0)
q→q (z) + δ f f̄ ′δC

(2;0,0)
q→q̄ (z), (4.58)

where,

z2δC
(2;0,0)
q→q (z) = C2

F

{
δp(z)

[
40Li3(z)− 4Li3(z̄) + 4lnz̄Li2(z̄)− 16lnzLi2(z) (4.59)

−40
3

ln3z + 18ln2zlnz̄− 2ln2z̄lnz +
15
2

ln2z

−8 (1 + ζ2) lnz− 40ζ3

]
+ 4z̄(1 + lnz) + 2z(lnz̄− lnz)

}
+CFCA

{
δp(z)

[
4Li3(z̄) + 12Li3(z)− 4lnz̄Li2(z̄)− 8lnzLi2(z) + 3ln3z

−4lnz̄ln2z− 11
6

ln2z− 12ζ2lnz +
70
3

lnz + 2ζ3 −
404
27

]
+

14
3

z̄− 2zlnz̄− 2(1− 2z)lnz
}

+CF N f

{
δp(z)

[
ln2z

3
− 10

3
lnz +

56
27

]
− 2

3
z̄
}
+ δ(z̄)

{
5
4

ζ4C2
F

+CFCA

[
1214

81
− 67

6
ζ2 + 65ζ4 −

77
9

ζ3

]
+ CF N f

[
− 164

81
+

5
3

ζ2 +
14
9

ζ3

]}
,

z2δC
(2;0,0)
q→q̄ (z) =

(
C2

F − CFCA
2

){
δp(−z)

[
8Li3

( 1
1+z

)
− 8Li3

( z
1+z

)
(4.60)

−4Li3
(
z2)+ 16lnzLi2 (z)− 4lnzLi2

(
z2)− 4lnzln2(1 + z)

−12ln2zln(1 + z) + 6ln3z + 4ζ3

]
+ 2z̄

}
.

The singularity at z→ 1 is understood as a (..)+-distribution (see eq. (2.47)). Sim-
ilarly to the PDF case, the expressions enclosed by square brackets in eqs. (4.59, 4.60)
literally coincide with the ones of the unpolarized fragmenting function case, (see
eqs. (7.11, 7.17) in [18]). In other words, it can be written in the form of eq. (4.43),
and the functions F1(z) and F3 coincide for polarized and unpolarized cases.
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For completeness, we present here the non-zero logarithmic terms of the match-
ing coefficients as in the TMDPDF case,

z2δC
(2;4,2)
q←q (z) = −z2δC

(2;4,1)
q←q (z) = 4z2δC

(2;4,0)
q←q (z) = 2C2

Fδ(z̄), (4.61)

z2δC
(2;3,0)
q←q (z) = 2C2

Fδp(z) + CF

(
−22

9
CA +

4
9

N f

)
δ(z̄), (4.62)

z2δC
(2;3,1)
q←q (z) = −4C2

Fδp(z) + CF

(
11
3

CA −
2
3

N f

)
δ(z̄), (4.63)

z2δC
(2;2,0)
q←q (z) = −8C2

Fδp(z)(lnz− lnz̄) + CFδp(z)
(

2
3

N f −
11
3

CA

)
(4.64)

+δ(z̄)
[
− 7C2

Fζ2 + CFCA

(
−67

9
+ 2ζ2

)
+

10
9

CF N f

]
,

z2δC
(2;2,1)
q←q (z) = 8C2

Fδp(z)lnz + δ(x̄)
[
− 2C2

Fζ2 + CFCA

(
134

9
− 4ζ2

)
(4.65)

−20
9

CF N f

]
,

z2δC
(2;1,0)
q←q (z) = C2

F

[
4δp(x)

(
−3(1 + 4lnz̄)lnz + 8ln2z + ζ2

)
− 2z̄

]
(4.66)

+CFCA

[
2δp(x)

(
22
3

lnz− 2ln2z− 134
9

+ 4ζ2

)
+ 2z̄

]
+CF N f δp(z)

8
9
(5− 3lnz) + CFδ(z̄)

[
− 22

3
CAζ2 +

4
3

ζ2N f

]
,

z2δC
(2;1,1)
q←q (z) = CFδ(z̄)

[
− 112

27
+ CA

(
404
27
− 14ζ3

) ]
, (4.67)

z2δC
(2;1,0)
q←q̄ (z) = 4

(
C2

F −
CFCA

2

){
δp(−z)

[
4Li2(−z) (4.68)

−lnz(lnz− 4ln(1 + z)) + 2ζ2

]
+ z̄
}

.

4.3 Pretzelosity TMDPDF

The calculation for the matching of the pretzelosity TMDPDF over the transversity
integrated PDF is in principle similar to the one of the transversity TMDPDF. In this
case one has a different projector, see eq. (4.32),

bµbν

b2 +
gµν

T
2(1− ε)

, (4.69)
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to be compared to gµν
T used in the transversity calculation. Moreover the relation

σµ+

(
bµbν

b2 +
gµν

T
2(1− ε)

)
σ−ν = 0 (4.70)

allows a simplification of many diagrams. In particular, the diagrams with a non-
interacting quark line are exactly zero, according to the expression (4.70). This fea-
ture reduces the number of diagrams that we have to calculate for the pretzelosity
TMD distribution. The pretzelosity projector is built as a sum of two terms. The first
one is gµν

T and it is the same as in the transversity calculation. As the topology of the
diagrams is the same in both cases the integrals that appear in the calculation of the
diagrams are also the same. The second term of the projector is bµbν/b2 and this im-
plies new types of master integrals, that has scalar products (b · q)2 in the numerator
(here, qµ is a loop-momentum). The explicit expressions for these integrals can be
found in the appendix B. Such structures appear due to the convolution of a generic
diagram with open indices with the projector (4.69).

The small-b expression for the matching of the pretzelosity distribution is written
in a form equivalent to the transversity case,

h⊥1T, f← f ′(x, b) = ∑r=q,q̄,q′
[
δ⊥C f←r(b)⊗ δ fr← f ′

]
(x) +O(b2). (4.71)

Note, that the collinear function in eq. (4.71) is the transversity PDF. As in the transver-
sity case, at NLO we have only the quark-to-quark channel, and at NNLO we have
quark-to-quark and quark-to-antiquark channels.

Due to eq. (4.70), the un-subtracted pretzelosity distribution is zero at LO, i.e.
δ⊥Φ[0](x) = 0. Consequently, the LO matching coefficient is also zero, i.e.

δ⊥C[0]
q←q(x) = 0. (4.72)

This fact induces a simplification in the renormalization of the pretzelosity TMDPDF
at NLO, demanding the absence of any divergences at this order. Moreover, due
to the absence of the tree order collinear counterpart for the matching procedure
the pretzelosity is suppressed by as. As a result, the expression for the matching
coefficient is given solely by the one-loop TMD matrix element

δ⊥C[1]
q←q(x, b) = δ⊥Φ[1]

q←q(x, b) = −4CFBεΓ(−ε)x̄ε2. (4.73)

We see that the obtained matching coefficient is ε-suppressed, so, in the limit ε → 0
it is zero, i.e. δ⊥C[1]

q←q(x, b) = 0. According to eq. (4.73), the perturbative part of the
pretzelosity distribution is suppressed numerically. This result coincides with the es-
timation made in [8]. This observation is indeed supported by the measurements of
sin(3φh− φS)-asymmetries by HERMES and COMPASS, see e.g.[108] and references
within. We also mention that it is not possible to obtain the small-b matching at the
helicity distribution. The helicity distribution as a part of pretzelosity distribution is
suggested by various model calculations (see [113] and references within).

The nullity of the LO pretzelosity distribution and the ε-suppressed behavior of
the NLO contribution yields in a simple expression for the renormalized pretzelosity
TMDPDF at NNLO

h⊥[2]1T, f← f = δ⊥Φ[2]
f← f ′ −

S[1]δ⊥Φ[1]
f← f ′

2
+
(

Z[1]
q − Z[1]

2

)
δ⊥Φ[1]

f← f ′ (4.74)
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In this expression it is important to keep all ε-terms of δ⊥Φ[1]
f← f ′ , since they are mul-

tiplied by factors with leading 1/ε2-behavior (the TMD renormalization factor, and
soft factor). Thus, these terms produce 1/ε singularities, despite the suppressed
behavior of δ⊥Φ[1]

f← f ′ . Naturally, these terms cancel the corresponding ultraviolet
singularities of the un-subtracted TMD matrix element. We have also checked the
exact cancellation of infrared divergences, and rapidity divergences. It is interesting
to trace the distribution of the contributions between diagrams with different color
factor. There are four types of contribution

δ⊥Φ[2]
f← f ′ = C2

F AF + CF

(
CF −

CA

2

)
AFA +

CFCA

2
AA + CF N f AN . (4.75)

The contribution AN is ε-suppressed in a similar manner as the one-loop expression.
The contribution AF is canceled by the renormalization factor entirely up terms sup-
pressed in ε. Thus, the only non-zero contribution to the TMD matrix element comes
from AFA and AA, which we find to be equal up to higher powers of ε. So, conclud-
ing we have found

AF =
S[1]δ⊥Φ[1]

f← f ′

2
−
(

Z[1]
q − Z[1]

2

)
δ⊥Φ[1]

f← f ′ +O(ε), (4.76)

AFA = AA +O(ε), AN = O(ε). (4.77)

Therefore, the contribution proportional to CA disappears from the final expression,
despite only these diagram are non-trivial. The resulting TMD matrix element in the
pretzelosity channel is proportional to C2

F only, and it reads

h⊥[2]1T,q←q = −4C2
F (x̄ (3 + 4lnx̄) + 4xlnx) +O(ε), (4.78)

h⊥[2]1T,q←q̄ = 0. (4.79)

Expanding eq. (4.71) up to order a2
s we obtain the following expressions for

matching coefficient

δ⊥C[2]
q←q(x, b) = h[2]1T,q←q(x, b)−

[
δ⊥C[1]

q←q(b)⊗ δ f [1]q←q

]
(x) (4.80)

δ⊥C[2]
q←q̄(x, b) = 0. (4.81)

The convolution term that appears in eq. (4.80) is different from zero because the
NLO matching coefficient is ε-suppressed but the NLO transversity integrated PDF
is ε-divergent. So, the result for the convolution term is finite,[

δ⊥C[1]
q←q(b)⊗ δ f [1]q←q

]
(x) = −4C2

F (x̄ (3 + 4lnx̄) + 4xlnx) , (4.82)

which is the same that we get in eq. (4.78). Using eq. (4.80) we obtain a null value
for the NNLO pretzelosity to transversity matching coefficient. So,

δ⊥C[2]
q← f (x, b) = 0 +O(ε), (4.83)

where f = q, q̄.
We stress once more that the cancellation that leads to the zero result has a non-

trivial structure. Because the topologies of diagrams that contribute to convolution
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term in eq. (4.80) and to the TMD matrix element eq. (4.78) are completely differ-
ent. In the first case, these are ladder diagrams, while in the second case we have
diagrams with tree-gluon vertex and non-planar diagrams. All this indicates the
presence of a not yet understood concept behind these cancellations, and it suggests
that such cancellations take a place at higher orders as well. Therefore we conjecture
that

δ⊥Cq← f (x, b) = 0, (4.84)

at all orders of perturbation theory. Recently, this conjecture has been confirmed
in [114], where the first non-zero matching of the pretzelosity distribution has been
found at twist-3.

4.4 Linearly polarized gluon TMDPDF

The definition of the linearly polarized gluon TMDPDF (lpTMDPDF) comes from
the definition of the global gluon TMDPDF distribution and its decomposition over
independent Lorentz structures. This decomposition contains 8 components [74, 77].
If we constraint ourselves to the case of a unpolarized hadron only two of these
structures survive,

Φµν
g←h(x, b) = − gµν

T
2(1−ε)

f1,g←h(x, b) + h⊥1,g←h(x, b)
(

gµν
T

2(1−ε)
+ bµbν

b2

)
, (4.85)

where f1 is the unpolarized gluon TMDPDF and h⊥1 is known as linearly polarized
gluon TMDPDF. Its name results from the fact that this distribution study the dis-
tribution of linearly polarized gluons inside an unpolarized hadron. Both f1 and
h⊥1 contribute to the gluon-induced TMD processes on equal foot. Although these
functions share some common properties, they are completely independent non-
perturbative functions that are to be extracted from the experiment. Both these func-
tions have a lot of interest because they participate of processes of the standing of
Higgs boson production by gluon-gluon fusion. The study of the lpTMDPDF at the
same level of accuracy of the unpolarized TMDPDF is important in order to study its
effect in the transverse momentum spectrum of the Higgs boson. A detailed study
of this process is discussed in the chapter 5 of this thesis.

The usage of a d-dimensional definition for the decomposition in eq. (4.85) is
important for the following two-loop calculation because the ε-dependent parts in-
fluence the result. The definition in eq. (4.85) is the standard one [81, 84] written such
that the unpolarized part coincides with the standard definition of the unpolarized
TMDPDF, see e.g. [10, 18, 81],

f1,g←h(x, b) = −gµν
T Φg←h,µν(x, b), (4.86)

whereas the linearly-polarized tensor is orthogonal to it. In turn the lpTMDPDF is
given by

h⊥1,g←h(x, b) =
1

1− 2ε

(
gµν

T + 2(1− ε)
bµbν

b2

)
Φg←h,µν(x, b). (4.87)

Sometimes, one would like to use TMD distributions defined in the momentum
space. The relation between coordinate and momentum representation is the usual



70 Chapter 4. Matching of polarized transverse momentum distributions

one [74, 77] (here in d = 4 dimensions),

Φg←h,µν(x, k) =
∫ d2b

(2π)2 ei(bk)Φg←h,µν(x, b) (4.88)

= − gµν
T
2

f1,g←h(x, k) + h⊥1,g←h(x, k)

(
gµν

T
2

+
kµkν

k2

)
,

where

f1,g←h(x, k) =
∫ ∞

0

|b|d|b|
2π

J0(|b||k|) f1,g←h(x, b), (4.89)

h⊥1,g←h(x, k) = −
∫ ∞

0

|b|d|b|
2π

J2(|b||k|) h⊥1,g←h(x, b). (4.90)

As with the other distributions studied, a small-b expansion can be performed in
order to obtain perturbative calculable matching coefficients. In the present case, it
results into the following expressions

f1,g←h(x, b; µ, ζ) = ∑
f

∫ 1

x

dy
y

Cg← f (y, b; µ, ζ; µ̃) f1, f←h

(
x
y

, µ̃

)
+O(b2) (4.91)

h⊥1,g←h(x, b; µ, ζ) = ∑
f

∫ 1

x

dy
y

δLCg← f (y, b; µ, ζ; µ̃) f1, f←h

(
x
y

, µ̃

)
+O(b2),

(4.92)

where the sum runs over the active parton flavors (quarks and gluon), and f1(x, µ)
is unpolarized collinear distributions defined as usual

f1,q←h(x, µ) =
∫ dλ

2π
e−ixp+λ〈P|T̄{q̄ (λn) W̃n(λn)}γ+

2
T{W̃†

n (0)q(0)}|P〉, (4.93)

f1,g←h(x, µ) =
1

xp+
(4.94)

×
∫ dλ

2π
e−ixp+λ〈P|T̄

{
F+µ(λn)W̃n(λn)

}
T
{

W̃†
n (0)F+µ(0)

}
|P〉.

The scales µ and ζ in eqs. (4.91, 4.92) are the scales of TMD evolution discussed in
the chapter 2. The scale µ̃ is the scale of OPE, that is not related to the TMD evolution
scales and whose dependence cancels in the convolution of coefficient function and
collinear distribution.

The tree-order of matching coefficients, C and δLC, are to be calculated in QCD
perturbation theory.

Cg← f (x, b; µ, ζ; µ̃) = δg f δ(1− x) +O(as), (4.95)

δLCg← f (x, b; µ, ζ; µ̃) = O(as), (4.96)

Nowadays, the coefficients C f←h(x, b) are known at a2
s -order (NNLO) [18, 51, 81,

82], whereas coefficients δLC f←h(x, b) are known at as-order (NLO). Note that in
literature related to TMD calculations, e.g. in refs. [77, 84], the orders of δLC f←h are
traditionally counted alike the unpolarized case. So, the linear as-terms are denoted
as NLO. Here we use the same convention. In this thesis we present expression for
δLCg← f up to NNLO.

The higher order coefficient function for OPE at twist-2 level can be deduced
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from the calculation of matrix elements with free parton states with subsequent
matching of the result on the desired OPE structures eq. (4.92). Therefore, the task
is naturally split into two steps: the evaluation of parton-matrix element and the
matching as explained at the beginning of this chapter. The evaluation of parton
matrix elements of the TMD operators at two-loop level is the most complicated
part of this calculation because it has some extra difficulties than in the analogous
calculation for the unpolarized case. In the case of lpTMDPDF the main complica-
tion comes from the rich vector structure, which is reduced to scalar products by
projection factor in eq. (4.87), and the use of unpolarized parton states with mo-
mentum pµ = p+n̄µ. In this aspect the current computation is similar to evaluation
of the pretzelosity distribution [85] albeit with significantly larger number of loop-
integrals. The reduction of integrals to master integrals and some details of their
evaluation is presented in the appendix B.

The NLO expression of the matching coefficients read

δLC[1]
g←g(x, b) =

(
4CABεΓ(−ε)

x̄
x

ε
)

ε-finite
, (4.97)

δLC[1]
g←q(x, b) =

(
4CFBεΓ(−ε)

x̄
x

ε
)

ε-finite
, (4.98)

We write the full ε-dependent NLO expressions here because they are needed in
the calculation of the NNLO matching coefficients. Using the same notation intro-
duced in eq. (2.64), the finite parts of these results are

δLC(1;0,0)
g←g (x) = −4CA

x̄
x

, (4.99)

δLC(1;0,0)
g←q (x) = −4CF

x̄
x

, (4.100)

The results in eqs. (4.99, 4.100) agree with [77, 84, 115].
The NNLO calculation has a more involved expression but we can write it in

terms of its finite and logarithmic parts in a simple form as

δLC[2]
g← f (x, b; µ, ζ, µ) =

(
−1

2
L2

µ + Lµlζ

)
δLC(2,1,1)

g← f (x) + LµδLC(2,1,0)
g← f (x)(4.101)

+δLC(2,0,0)
g← f (x).

The finite part result for the two available channels is,

δLC(2;0,0)
g←g (x) = C2

A

[
− 16

x̄
x
(Li2(x)− lnx) +

124
3

lnx +

(
148
9

+ 20ζ2

)
x̄
x

(4.102)

−8ln2x− 100
9

x̄− 4
9

x(11x− 14)
]

+CF N f · 4
[
ln2x− 2

(x̄3

x

]
+ CAN f ·

4
9

[
17

x̄
x
+ 1− 3x− x2 + 6lnx

]
,

δLC(2;0,0)
g←q (x) = CF(CF − CA)

[
8

x̄
x
(lnx̄ + ln2 x̄)− 20lnx + 4ln2x + 8x̄

]
(4.103)

+CFCA

[
16

x̄
x

(
11
18

+
5
4

ζ2 −
lnx̄
3
− Li2(x)

)
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+4
lnx
x

(4 + 5x− xlnx)
]
+ CF N f ·

16
9

x̄
x
[2 + 3lnx̄].

These results have been recently obtained in ref. [116] with an independent calcu-
lation using the exponential regulator of ref. [50] to regularize rapidity divergences.
We find full agreement with the final results presented.

Due to fact that the logarithmic terms can be calculated solving the renormaliza-
tion group eqs. (2.55, 2.56) they can be written in terms of the NLO finite part and
anomalous dimensions as

δLC(2,1,1)
g← f (x) =

Γg
0

2
δLC(1,0,0)

g← f (x), (4.104)

δLC(2,1,0)
g← f (x) = 2β0δLC(1,0,0)

g← f (x)− ∑
f ′=g,q,q̄

[δLC(1,0,0)
g← f ′ ⊗ P[1]

f ′← f ](x),

where Γg
0 = 4CA is LO cusp anomalous dimension, β0 = 11/3CA − 2/3N f is LO

β−function, and we have used that γ
g[1]
V = −2β0. The explicit expressions for these

coefficients are given here for completeness,

δLC(2,1,1)
g←g (x) = −8C2

A
x̄
x

, (4.105)

δLC(2;1,0)
g←g (x) = −16C2

A

{1 + x
x

lnx +
x̄
x

[
x
6
(2− x) +

15
4
− lnx̄

] }
(4.106)

+16CFTr N f

[
1
3

x̄
x
(2 + (2− x)x) + lnx

]
+

16
3

CATr N f
x̄
x

,

δLC(2,1,1)
g←q (x) = −8CFCA

x̄
x

, (4.107)

δLC(2;1,0)
g←q (x) = −4CFCA

[
x̄
x

(
43
3

+ x
)
+ 4

1 + x
x

lnx
]

(4.108)

+4C2
F

[
x̄
x
(x + 4lnx̄) + 2lnx

]
+

32
3

CFTr N f
x̄
x

.

In the expressions above we have set µ̃ = µ, which is a poor choice. In particular,
due to this choice one obtains the double-logarithms in the coefficient function and,
as the result, a badly convergent perturbative series. A much better behaved coef-
ficient function can be achieved by distinguishing the scales of evolution and OPE.
For example, this is realized by applying the ζ-prescription, which consists in the
selection of TMD evolution scales along the null-evolution line in the plane (µ, ζ)
(for further information see chapter 2). This line is parameterized as ζ = ζµ(b), and
it is defined by the boundary condition that it passes through the saddle point of the
evolution potential [16]. The expression for the coefficient function can be obtained
by the substitution (here for gluon distributions)

in ζ-prescription: lζ =
Lµ

2
− 2β0

Γg
0
+O(as). (4.109)

The higher order terms and the derivation of this expression can be found in ref. [16,
66]. The coefficient function in ζ-prescription satisfies DGLAP equation, and thus
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the remaining scale is the OPE scale µ̃. In other words, we have

δLCg← f (x, b; µ, ζµ(b), µ̃) = δLCg← f (x, b; µ̃), (4.110)

where the logarithmic part has simple form

δLC[2]
g← f (x, b; µ̃) =

(
β0δLC(1,0,0)

g← f (x) (4.111)

− ∑
f ′=g,q,q̄

[δLC(1,0,0)
g← f ′ ⊗ P[1]

f ′← f ](x)

)
Lµ̃ + δLC(2,0,0)

g← f (x).

The finite part δLC(2,0,0)
g← f (x) remains unaffected. Note that, generally the ζ-prescription

also modifies the finite part of NNLO expression, as it is happens e.g. for the unpo-
larized TMDPDF. The use of the expression of matching coefficients with the elec-
tions of scales provided by ζ-prescription is important in order to do phenomeno-
logical predictions because the software artemide [117] needs as an input the coef-
ficient functions in this scheme.
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Chapter 5

Higgs transverse momentum
spectrum

Gluon-gluon fusion is the leading channel for Higgs boson production in hadron-
hadron collisions [118–120]. The transverse momentum dependent (TMD) factoriza-
tion of Higgs production has been demonstrated to follow the same pattern as the
Drell-Yan/vector boson case studied in chapter 2 in different frameworks [10, 11, 13,
15, 121] and in this sense it has been reviewed in [77]. Within the TMD factoriza-
tion theorem, which describes the Higgs production at small transverse momentum,
there are two dominant terms in the factorized cross-section. Those terms corre-
spond to the fusion of unpolarized and the linearly polarized gluons [115, 122, 123].
Schematically, it reads

dσ

dyd2qT
= σgg→H

∫ d2b
(2π)2 e−i(bqT)

(
f1,g(xA, b) f1,g(xB, b) + h⊥1,g(xA, b)h⊥1,g(xB, b)

)
,

(5.1)

where σgg→H is the factorized gluon-gluon-Higgs cross-section, xA,B are the collinear
fractions of gluon momenta, f1 is the unpolarized gluon traverse momentum de-
pendent parton distribution function (TMDPDF) and h⊥1,g is the linearly polarized
gluon TMDPDF (lpTMDPDF) that was proposed as an independent distribution
long ago by Mulders and Rodrigues [74] and whose matching is presented in chap-
ter 4. Eq. (5.1) allows to understand the importance of having information of the
lpTMDPDF at same order of the unpolarized TMDPF to study of the Higgs trans-
verse momentum spectrum. In this chapter we study the impact of considering the
lpTMDPDF at different orders of accuracies in the calculation of the Higgs produc-
tion cross section.

The modern state-of-the-art of perturbative calculations is the next-to-next-to-
leading order as we have studied in chapter 4. However, phenomenological appli-
cations for the NNLO Higgs transverse momentum spectrum only use the matching
coefficients for the linearly polarized gluons up to NLO. The counting in many phe-
nomenological applications is different from the one required by TMD factorization.
In fact, using standard resummation, see e.g. [37, 115, 124–127], the small-b expan-
sion is incorporated into the factorization formula, ignoring the non-perturbative
TMD effects and one worries only about the perturbative expansion of the cross
section. The TMD factorization includes the resummation for large enough qT, how-
ever one has different requirements in the realization of the perturbative series. So,
while in the usual resummation the whole bracketed factor in eq. (5.1) should be
given at a certain perturbative order, in TMD factorization each distribution should
be matched independently to its collinear counterpart at the same given order. Both
approaches are consistent with computing the small-b expansion at the same order.
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The case of linearly polarized gluon contribution to eq. (5.1) is special because the
tree-level matching accidentally vanishes.

In this chapter we use the calculation of h⊥1,g at two loops presented in chapter 4
and we estimate the impact of this correction on the Higgs transverse momentum
spectrum.

The result presented in this chapter is relevant for many cases beyond Higgs bo-
son production. In particular, there are processes that are also sensitive to lpTMD-
PDF and that are addressed in the literature [128–132]. Among these it is worth a
special mentioning the case of heavy-quark production [133–139], which is relevant
at LHC, future Electron-Ion Collider (EIC) or the LHeC.

In TMD factorization each TMD distribution ( f1,g and h⊥1,g in this case) is an in-
dependent fundamental non-perturbative function. In order to sensibly construct a
TMD for any practical purpose it is fundamental to include the asymptotical small-
b limit, where each TMD distribution match to collinear parton distributions and
the matching coefficient calculated up to NNLO in chapter 4. In practice, for the
description of the TMD distributions one typically uses a phenomenological ansatz
that matches the OPE results at small-b to a non-perturbative input at large-b. It can
be written in the form

h⊥1,g←h(x, b) = ∑
f

∫ 1

x

dy
y

δLCg← f (y, b) f1, f←h

(
x
y

)
h⊥1NP(x, b2), (5.2)

and a similar expression can be used for f1(x, b) with a different f1NP(x, b2) and
the corresponding matching coefficient. In eq. (5.2) we omit scale variables, and the
function h⊥1NP is an arbitrary function with the only constraint

lim
b2→0

h⊥1NP(x, b2) ' 1 +O(b2), (5.3)

which is necessary to be consistent with the small-b limit of the TMD. A similar
ansatz has been used also for the quark TMD, and the respective non-perturbative
correction has been called

fNP(x, b) = exp

(
−λ1 x̄ + λ2x + λ3xx̄√

1 + λ3xλ4 b2
b2

)
(5.4)

where the values of the parameters λi, i = 1, ..., 5 used are the same obtained in
the study of the extraction of the unpolarized TMDPDF form experimental data in
refs. [17, 140]. In order to have some phenomenological result here we also choose
fNP = f1NP = h⊥1NP. We will comment about the consistency of this choice later in
this chapter, making a comparison of our result with the one obtained with Pythia.

5.1 Contribution of lpTMDPDF to Higgs production

The lpTMDPDF and the unpolarized gluon TMDPDF use to be present at the same
time in many processes. A particularly important place to study the effect of lpT-
MDPDF is Higgs production in hadron-hadron collision. The dominating channel
for Higgs production is gluon-gluon fusion via the top-quark loop [118], which can
be written via an effective interaction term in the Lagrangian [141]

LggH =
as(µ)Ct(µ)

3v
FA

µνFA,µνH, (5.5)
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where H is the Higgs field, Fµν is the gluon field strength tensor, and v is the Higgs
vacuum expectation value. The effective coupling constant at NNLO is derived in
[142, 143]. Using the effective vertex in eq. (5.5) one can derive the TMD factorization
theorem for Higgs production following the same steps as in the Drell-Yan case (see
chapter 2 of this thesis). The resulting expression is

dσ

dyd2qT
=

2σ0(µ)

π
C2

t (µ)U(µ,−µ)|CH(−m2
H,−µ2)|2 (5.6)∫ d2b

4π
ei(bqT)Φµν

g←h1
(x1, b; µ, ζ1)Φ

µν
g←h2

(x2, b; µ, ζ2),

where y is the Higgs boson rapidity and x1,2 =
√
(m2

H + q2
T)/se±y. The function

CH is the gluon scalar form-factor (the NNLO expression can be found in [61]). The
coefficient function |CH |2 in Drell-Yan like cross section is evaluated at a space like
momentum(−q2). Thus, some contributions of order π2 which could be large, es-
pecially in the case of Higgs boson production (see refs. [144, 145]) appear. These
corrections can be resummed by the technique introduced in [145], so,

|CH(−q2)|2 → U|CH(q2)|2, (5.7)

where U is the so called “π2-resummation” exponent. At LO it reads [145]

U = exp
(

Γ0

2asβ2
0

[
2a arctan a− ln(1 + a2)

])
, a = πas. (5.8)

The TMD distributions Φµν are defined in eq. (3.9). The scale µ is of the order of
the hard scale, mH in this case, and ζ1ζ2 = m4

H.
With the decomposition in eq. (4.85) the product of TMD distributions turns into

Φµν
g←h1

(x1, b)Φµν
g←h2

(x2, b) =
1
2

(
f1,g←h1(x1, b) f1,g←h2(x2, b)

+h⊥1,g←h1
(x1, b)h⊥1,g←h2

(x2, b)
)

(5.9)

Therefore, for a consistent phenomenological application of this formula one should
consider f1 and h⊥1 at the same perturbative order. The perturbative inputs up to
NNLO are reported in tab. 5.1.

Function H Cg← f , δLCg← f Γcusp D γF αs running PDF evolution

NLO αs αs α2
s

αs
resummed

α2
s

NLO provided by
NNPDF3.1 [146]

NNLO α2
s α2

s α3
s

α2
s

resummed
α3

s
NNLO provided by

NNPDF3.1 [146]

TABLE 5.1: Summary of perturbative orders used for each part of the
cross section. The symbol H stands for the first line of eq. (5.6).

It is interesting to mention that if the Higgs boson were a pseudo-scalar particle,
then the main change in the structure of cross-section in eq. (5.6) would be a sign of
h⊥1 h⊥1 term in eq. (5.9). In this case, the expressions for perturbative corrections in Ct
and CH are also changed although their LO remains the same [123].
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In order to study the numerical impact of the NLO and NNLO matching for lpT-
MDPDF together with the cross-section in eq. (5.6) a new module has been added to
artemide [117]. The non-perturbative parts of gluon TMD distributions and gluon
rapidity anomalous dimension are unknown, and nowadays the data are not suffi-
cient to fix it. In order to provide some value for a cross section we use the inputs
in eqs. (5.2-5.3) with fNP = f1NP = h⊥1NP, where fNP is the non-perturbative func-
tion for quarks extracted from a fit of Drell-Yan and Z-boson production data using
artemide 2.01, see eq. (5.4). The perturbative calculable parts of the evolution
kernel differ in quark and gluon case (at the order that we work) by the Casimir
scaling factor CA/CF. Here we have assumed the same scaling for the un-calculable
non-perturbative pieces of the evolution kernel. The error band of our prediction
come from scale variations of a factor of 2, consistently with the ζ-prescription [16].

In order to check the validity of the model assumptions we have compared the
cross section in eq. (5.6), integrated in rapidity, with PYTHIA [147, 148]. The agree-
ment of our prediction at NNLO and PYTHIA is shown in fig. 5.1 and it is extremely
good in the range of qT where the TMD factorization theorem is expected to hold. In
that figure we have also included the error provided by PYTHIA, although it is not
clearly visible and we have not used any normalization factor.

FIGURE 5.1: The cross section in eq. (5.6) integrated over all rapid-
ity range with artemide2.01 at NNLO and PYTHIA. The errors of
PYTHIA are included, although not clearly visible. The shaded area

shows the variation band in µ̃, see eq. (4.110).

In fig. 5.2 we have plotted the lpTMDPDF, eq. (5.2-5.3), as a function of b at
x = 0.01 at NLO and at NNLO. The NNLO includes the perturbative correction to
the first non-trivial order (which is NLO). This correction appears to be large, almost
a factor 2. The bands show the sensitivity of the distribution to the change of the
OPE scale µ̃ → c4µ̃ with c4 ∈ (0.5, 2), see eq. (4.110). The relative size of the band
decreases between NLO and NNLO. Altogether, this figure points to the fact that the
lpTMDPDF effects could have been underestimated up to now.

The experimental data on the Higgs differential cross section are still affected by
big errors. For a demonstration we have considered the cross section in eq. (5.6)
measured at CMS collaboration, where the rapidity is integrated in the interval in-
dicated by that experiment [149]. Because the experimental cross section just uses
the data from one particular decay of the Higgs boson we have normalized our cross
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FIGURE 5.2: The lpTMDPDF, eq. (5.2-5.3), as a function of b at x =
0.01. The shaded area shows the variation band in µ̃, see eq. (4.110).

FIGURE 5.3: Comparison of Higgs-production cross-section with
variation band to the measurement presented in [149] by CMS col-

laboration.

section with the experimental one integrating in the interval of transverse momenta
shown in fig. 5.3. From this figure it is clear that currently the data are not sensitive
to the TMD structures.

In the Higgs production cross-section the lpTMDPDF mainly affects the low-qT
region, as it is demonstrated in fig. 5.4. Practically, the lpTMDPDF can be distin-
guished from the unpolarized TMDPDF at qT . 5-8GeV, where it modifies the val-
ues of cross-section by about 5%. Such value of variation band is typical for NNLO
approximation, see e.g. [127]. In fig. 5.4 (right) we compare the NNLO cross sections
the size of the variation band, which is the maximum deviation value obtained from
the variation of all three scales (in ζ-prescription) by factors ci ∈ (0.5, 2) [16]. The
variation band is of the order of few percents and the main contribution to it is the µ-
band (the scale between hard part and the TMD-evolution factor). Nowadays, these
factors can be pushed to N3LO reducing the variation band further, if necessary.
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FIGURE 5.4: Cross section for Higgs production including linearly
polarized gluon effects at different orders. (left)The variation of cross-
section integrated over all rapidities at different perturbative orders
for lpTMDPDF. The black (blue) lines correspond the case of positive
(negative) contribution for h⊥1 h⊥1 -term in eq. (5.9). (right) The scale-
variation band for the cross section at NNLO. The parity even (odd)
Higgs case is represented with a green (orange) band. In both figures
the center of mass energy is set as in [149] and rapidity is integrated

over its complete range.

5.2 Positivity relations

Finally, we comment on the positivity relation formulated in ref. [74]:

| f1(x, qT)| − |h⊥1 (x, qT)| > 0. (5.10)

This relation is a consequence of positive definiteness of the gluon-polarization ma-
trix in a free theory, and certainty holds at LO. However, it does not need to be
accomplished at higher order in perturbation theory. The positivity bound is for-
mulated in momentum space, whereas all perturbative calculation are performed in
coordinate space. This causes an additional problem since the Hankel transform of
a positive function is not necessary a positive function.

FIGURE 5.5: (left) Ratio of linearly polarized and unpolarized gTMD
to check eq. (5.10) as a function of qT at fixed x = 0.01. (right) Ratio
of linearly polarized and unpolarized gTMD to check eq. (5.10) as a

function of qT at fixed qT = 1 GeV.

Within our model we have checked that it is easy to get a violation of this bound,
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for any fixed value of x and qT. Typically, the violation happens in the vicinity of
sign change point of f1 (note, that our realization of f1 is positive-definite in b-space).
Outside of this point the inequality in eq. (5.10) is respected. The situation is exem-
plified in fig. 5.5, where we plot the ratio of | f1|/|h⊥1 | at different values of qT with
fixed x (left) and viceversa (right).

We also note that the positions of zeros in TMDPDFs strongly depends on the
non-perturbative input. In particular, selecting some appropriate model one can,
possibly, remove the zero from unpolarized TMDPDF, or fix positions of zeros equal
in both gluon TMDPDFs. In other words eq. (5.10) can be used as a serious constraint
on non-perturbative part of the TMD distributions. However, we do not see enough
justification for such an approach at the moment.

We have also observed that the ratio |h⊥1 |/| f1| tends to saturate at smaller val-
ues of x as it is suggested for instance by [150]. Then for extreme small values of
x ∼ 10−4 it is violated again. However, such values can be outside the applicabil-
ity region of our calculation since the perturbative expressions for f1 [18] and h⊥1
eqs. (4.103, 4.104) have contributions ∼ an+1

s lnn(x)/x that should be resummed for
a proper comparison.





83

Part II

Transverse momentum
distributions with jets
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Chapter 6

TMD factorization theorems for
processes with jets

The part I of this thesis was focused on the improving of perturbative information
of the TMD distributions that enter in the factorization theorems defined for pro-
cesses where the transverse momentum of partons in the proton is probed. Since
a transverse momentum measurement can also be thought of as the measurement
of an angle, it is natural that TMD factorization theorems generically involve two
TMD distributions. Traditionally, the relative transverse momentum of two hadrons
in e+e−, the transverse momentum of a hadron semi-inclusive deep-inelastic scat-
tering (SIDIS), ep → ehX, and the transverse momentum of a γ∗/Z boson in pp
collisions have been considered.

In general the extraction of non-perturbative effects in such processes with final-
state hadrons is harder, due to the fact that the behavior of the nonperturbative parts
of hadronic TMD fragmentation functions is less studied than its analogues for initial
states. Thus, in this section we propose to replace individual final-state hadrons by
jets in e+e− or SIDIS measurements [151]. The geometry of these events is sketched
in fig. 6.1. Jets are collimated sprays of hadrons, that appear in high-energy collisions
because of the collinear singularity of quantum chromodynamics (QCD). In practice
they are identified by clustering particles according to a specified algorithm. The ad-
vantage of this new approach is that the TMD jet functions that should be defined are
perturbatively calculable, thus removing an important source of uncertainty. Specif-
ically, the intrinsically nonperturbative distribution of the momentum fraction of
individual hadrons is removed by using jets. This improvement allows one to re-
duce the theoretical uncertainties in phenomenological predictions. Due to this fact,
the channel to investigate the non-perturbative effects of the TMD distributions and
then to improve the knowledge about structure of hadrons is simplified.

On the theoretical side, we should demonstrate that similar factorization theo-
rems holding in the hadronic cases hold when they are substituted by jets. One of
the key ingredients to probe these factorization theorems is the axis selection in the
calculation of the TMD jet functions. We discuss two different axis selections and
clustering algorithms commonly used: standard jet axis (SJA) and Winner-Take-All
(WTA) recombination scheme [152]. They works as follows: as long as at least one
pair of particles exists whose angular distance is smaller than R, the two particles
with the smallest distance are selected and merged. The rule to merge two particles
of four-momenta p1, p2 into a new “particle" with momentum p(12) reads

SJA : E(12) = E1 + E2, p(12) = p1 + p2 , (6.1)

WTA : E(12) = E1 + E2, p(12) = E(12)

[ p1

|p1|
θ(E1 − E2) +

p2

|p2|
θ(E2 − E1)

]
,
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FIGURE 6.1: Geometry of the event for e+e− → dijet (left) and SIDIS
(right). The horizontal direction represents the beam axis. For dijets
the relevant quantities q and θ are the transverse momentum decorre-
lation and angular decorrelation of the system, defined with respect
to the relative orientation of the two jets. We consider almost back-
to-back jets, θ � 1, and study different hierarchies between θ and the
jet radius R. In SIDIS q represents the transverse mometum of the jet,
and the corresponding angle is measured with respect to the beam
axis. We work in the Breit frame, where the jet recoils almost in the

direction of the incoming proton, θ � 1.

i.e. with the SJA the two four-momenta are added, while with the WTA the new pair
is massless by definition, and its direction coincides with the one of the most ener-
getic particle. The algorithm stops when the angular separation between each pair
of remaining particles exceeds R. Once the algorithm stops, the resulting particles
are defined to be the final jets. We will discuss how they affect to the factorization.

In the context of SIDIS experiments, replacing the nonperturbative TMD frag-
mentation functions with calculable jet functions would allow one to increase the
sensitivity to initial-state nonperturbative physics. It could be interesting to see
whether this can be investigated with existing HERA data, and exciting to explore at
the electron-ion collider (EIC), which will enable the extraction of PDFs with un-
matched precision, with SIDIS experiments playing an important role [153]. Of
course, for small transverse momenta, the jet functions themselves will also receive
nonperturbative corrections. However, this can be addressed by exploiting the uni-
versality of the nonperturbative structure of the TMD jet function, with e+e− →
dijet providing a useful testing ground. In principle, data from e+e− collisions could
be used to fit a model for nonperturbative corrections to the jet function to be later
applied to SIDIS.

A number of other jet observables that account for transverse momentum de-
pendence have recently been considered. The main focus has been on the trans-
verse momentum of hadrons fragmenting in jets, in both inclusive [154] and semi-
inclusive [155, 156] processes. In the same context, we will do a similar study to this
one in chapter 7 using soft drop jet grooming to reduce sensitivity to soft radiation
within the jet in the same line of refs. [157–159] . These studies consider the trans-
verse momentum with respect to the standard jet axis (SJA); instead, as an alternative
way to reduce sensitivity to soft radiation, refs. [160, 161] performed a similar anal-
ysis for the transverse momentum with respect to the Winner-Take-All (WTA) axis.
The transverse momentum of the jet itself was also recently considered in photon +
jet production [162] and lepton-jet correlation in deep-inelastic scattering [163].
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6.1 Regimes of application. The TMD jet function and choice
of axis

To probe factorization theorems we focus on e+e− annihilation process because the
application of the framework is simpler. However, from this discussion the probe of
factorization for a SIDIS process is straightforward and we only give some kinemat-
ical information.

In the case of e+e− → dijet, the main physical quantity we consider is the trans-
verse momentum decorrelation. It is defined as

qT =
pT1
z1

+
pT2
z2

, (e+e− → dijet) (6.2)

where pTi are the jet transverse momenta measured with respect to a common direc-
tion and zi = 2Ei/

√
s are their energy fractions,

√
s is the center-of-mass energy of

the collision. Since factorization requires a small transverse momentum decorrela-
tion, we will always assume

qT ≡ |qT| �
√

s
2

. (6.3)

A related quantity is the angular decorrelation, shown in the left panel of fig. 6.1,

θ = arctan
(2qT√

s

)
≈ 2qT√

s
, (6.4)

where the final expression exploits eq. (6.3). This makes it explicit that we consider
configurations where jets are almost back to back. Another interesting small-angle
configuration occurs for two jets moving in almost the same direction, which we do
not study in this thesis. The angular decorrelation is similar to the azimuthal decor-
relation in hadronic collisions, calculated at next-to-leading logarithmic accuracy in
refs. [164–167].

In principle, the definitions in eqs. (6.2, 6.4) depend on the choice of axis with
respect to which the jet transverse momenta are measured. However, differences
induced by this choice are suppressed by powers of q2

T/s. Of course, the defini-
tion is sensitive to the details of the jet algorithm. We use the so called kT-type
algorithms [168] that introduce an specific definition of the distance between two
particles i and j,

dij = min
(

p2p
Ti , p2p

Tj

) ∆R2
ij

R2 , (6.5)

and a distance between each particle and the beam,

diB = p2p
Ti . (6.6)

In each case, p = 1, 0,−1 correspond to the kT, Cambridge/Aachen, and anti-kT
algorithm, respectively. R is the jet radius understood as an angular distance and

∆Rij =
√
(∆ηij)2 + (∆φij)2, (6.7)

where ∆ηij and ∆φij the rapidity and azimuthal differences between both particles
i and j. The algorithm identifies the smallest distance between dij and diB. If it is
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the beam distance, diB, the particle is defined as a jet and removed from the list of
particles. If the smallest distance is dij the two particles are merged into a single
one. The procedure is repeated until no particles are left in the event. Our default
throughout this chapter will be the WTA axis with anti-kT [169], but we will also
consider the SJA and other clustering algorithms of the kT family.

In SIDIS, shown in the right panel of fig. 6.1, we choose to work in the Breit frame
and define the transverse momentum as

qT =
PTJ

z
+ qTin , (SIDIS) (6.8)

where PTJ is the transverse momentum of the jet with respect to the beam axis, qTin
is the transverse momentum of the initial-state quark in the proton, and z = 2EJ/Q
is the jet energy normalized to (minus) the virtuality of the photon Q2. In analogy
with eq. (6.4) we define a corresponding angle θ and require

θ = arctan
(2qT

Q

)
' 2qT

Q
� 1 . (6.9)

We use the same symbols qT and θ for analog quantities in different processes since
they play the same role in factorization formulae, and their meaning should be clear
from the context.

The other relevant quantity that enters in the factorization of the cross section is

R ≡ 2 tan
R
2

. (6.10)

For small values,R is just the jet radius parameter R, but in general the parameterR
allows us to capture some power corrections. In the following we will use R when
considering transverse momenta, while we use R when considering angles. In this
section we discuss the factorization formulas for all possible hierarchies between θ
and R.

Our factorization analysis is carried out using Soft-Collinear Effective Theory
(SCET) (see chapter 1), in which the jets are described by collinear modes and the ra-
diation outside the jets is described by a soft mode. In the framework of this effective
field theory we begin introducing the jet function, which is the main new ingredient
of our analysis, providing its definition and briefly discussing its renormalization.

The jet function, that enters the factorization theorem for θ ∼ R, is written in
b-space as the following collinear matrix element

Jq(z, b, ER) =
z

2Nc
(6.11)

×Tr
[ n̄/

2
〈0|
[
δ
(
2E/z− n̄·P

)
eib·Pχn(0)

]
∑
X
|Jalg,RX〉〈Jalg,RX|χ̄n(0) |0〉 .

Here, z is the light-cone momentum fraction of the jet with respect to the initiating
quark, E is the energy of the initiating quark, and P is the momentum operator. The
trace in eq. (6.11) is over Dirac indices, and χn(y) = W†

n (y)ξn(y), where ξn is the
collinear quark field in the light-like direction nµ and Wn is a collinear Wilson line
as the defined in eq. (2.9), ensuring collinear gauge invariance. The subscript alg
serves as a reminder that the jet function depends on the jet axis selection discussed
in eq. (6.1).
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Mode R� θ � 1 θ ∼ R� 1 θ � R (WTA) θ � R� 1 (SJA) θ � R ∼ 1 (SJA)
hard (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
n-coll. (1, θ2, θ) (1, θ2, θ) (1, θ2, θ)
n̄-coll. (θ2, 1, θ) (θ2, 1, θ) (θ2, 1, θ)
n-coll2 (1, R2, R) (1, R2, R)
n̄-coll2 (R2, 1, R) (R2, 1, R)
n-csoft θ/R(1, R2, R)
n̄-csoft θ/R(R2, 1, R)
soft (θ, θ, θ) (θ, θ, θ) (θ, θ, θ) (θ, θ, θ) (θ, θ, θ)

TABLE 6.1: The parametric scaling of the momenta (p−, p+, p) corre-
sponding to the modes in SCET, for the various hierarchies between θ
and R. For θ � R the modes differ between the Winner-Take-All and

standard jet axis.

Gluon-initiated jets do not enter for e+e− and SIDIS, but we give the correspond-
ing definition for completeness,

Jg(z, b, ER) =
zE

N2
c − 1

(6.12)

× 〈0|
[
δ
(
2E/z− n̄ · P

)
eib·P Bn⊥µ(0)

]
|Jalg,RX〉 〈Jalg,RX| Bn⊥µ(0) |0〉 ,

where

Bn⊥µ =
1

n̄ · P in̄αg⊥µβW†
n Fαβ

n Wn (6.13)

is the collinear gluon field, with Fαβ
n the collinear field strength tensor. In this section

we will perform the calculation in both momentum and impact parameter spaces.
To go from one to another simply involves replacing

eib·P →
∫ d2b
(2π)2 eib·(P−qT) = δ(2)(qT − P) . (6.14)

in eqs. (6.11, 6.12).
The above definitions are for the bare jet functions, as indicated by the absence of

renormalization scales. A perturbative calculation shows that both ultraviolet (UV)
and rapidity divergences affect these distributions, so that one should consider the
renormalized quantities

Jq(z, b, ER, µ, ζ) = Zq(ζ, µ)Rq(ζ, µ)Jq(z, b, ER) (6.15)

and similarly for Jg. Here Zq is the UV renormalization factor, Rq is the rapidity
renormalization factor, and rapidity divergences are removed first, as in the hadronic
TMD case. A key observation is that these renormalization factors are the same as in
the case of TMDs, as we discuss in section 6.2.2.

6.1.1 R ∼ θ � 1

We turn to the factorization analysis, starting with dijet production in e+e− scattering
at a center-of-mass energy

√
s, where θ ≈ 2qT/

√
s ∼ R � 1. This is the simplest

case since there are only two scales,
√

s and qT. The cross section differential in the
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momentum decorrelation q and the jet energy fractions zi = 2EJ,i/
√

s factorizes as

dσe+e−→J JX

dz1 dz2 d2qT
= σe+e−

0 (s) He+e−(s, µ) (6.16)

×
∫ d2b
(2π)2 e−ib·qT Jq(z1, b,

√
s

2 R, µ, ζ) Jq̄(z2, b,
√

s
2 R, µ, ζ)

×
[

1 +O
(q2

T
s

)]
.

The hard function He+e− encodes the hard scattering process, in which a quark-anti-
quark pair is produced. It contains virtual corrections, but no real radiation because
that would result in qT ∼

√
s. For convenience we have extracted the tree-level cross

section σe+e−
0 , which contains a sum over quark flavors. The jet functions describe the

fraction zi of energy of the initial (anti)-quark that goes into the jet, as well as their
transverse momentum through the impact parameter b (its Fourier conjugate). They
depend on the jet algorithm, as indicated by the argument

√
s

2 R, but this does not
affect their anomalous dimension, as required by RG consistency. Soft radiation does
not resolve the jet because its typical angle is order 1, whereas R� 1. Consequently,
we do not have to consider clustering soft radiation in the jet algorithm, and we can
simply include its effect as an overall recoil of the system, as indicated in eq. (6.16).
The soft function has been absorbed into the jet functions in the above expression, as
we will discuss in sec. 6.2.2. There we will also show that the RG evolution between
the hard scale µH ∼

√
s and jet scale µJ ∼ qT in eq. (6.16) resums invariant mass

logarithms of µH/µJ ∼
√

s/qT, and similarly that ζ is related to the resummation of
invariant rapidity logarithms of

√
s/qT [16, 66], see also refs. [9, 10, 14, 36, 49].

The corresponding factorization theorem for the cross section of semi-inclusive
deep-inelastic scattering is given by

dσep→eJX

dQ2 dx dz d2qT
= ∑

q
σDIS

0,q (x, Q2) HDIS(Q2, µ) (6.17)

×
∫ d2b
(2π)2 e−ib·qFq(x, b, µ, ζ) Jq

(
z, b,

QR
2

, µ, ζ
)

×
[

1 +O
( q2

T
Q2

)]
,

which is differential in the photon virtuality Q2, Bjorken x, the energy fraction z of
the jet generated by the splitting of the quark, and the jet transverse momentum qT.
We work in the Breit frame, where z = 2EJ/Q, and apply an e+e− jet algorithm. The
modification to the factorization theorem compared to eq. (6.16) is fairly modest: the
hard function is replaced by the one for SIDIS, one of the jet functions is replaced by a
TMD PDF, and the sum over quark flavors must be explicitly included because both
σDIS

0,q and Fq depend on it (Jq does not, as long as we can treat quarks as massless).
The hard function is slightly different,

He+e−(Q2, µ) = |CV(Q2, µ)|2 = 1 + 2asCF

(
−l2

Q2 − 3lQ2 − 8 +
7π2

6

)
+O(a2

s ) ,

HDIS(Q2, µ) = |CV(−Q2, µ)|2 = 1 + 2asCF

(
−l2

Q2 − 3lQ2 − 8 +
π2

6

)
+O(a2

s ) ,

(6.18)
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(6.19)

where CV is the Wilson coefficient for the hard matching, lQ2 = ln(µ2/Q2) and as =

g2/(4π)2. The NNLO and NNNLO expression can be found in ref. [61], taking into
account that He+e−(Q2, µ) is the same as for the Drell-Yan process. The two loop
expressions are provided in eqs. (A.6, A.7) of the appendix A.

6.1.2 R� θ � 1

We now consider the case where we have an additional hierarchy due to the small
size of the jet radius, R � θ � 1. This regime will be of limited phenomenological
interest to us but we discuss it because it allows us to make contact between our
framework and TMD measurements with final state hadrons, corresponding to the
R→ 0 limit. The modes are again listed in table 6.1, and involve additional collinear
modes whose scaling is set by R.

The factorization in this case is an extension of eqs. (6.16, 6.17). The jet function
contains two scales

√
sR � qT, which can be separated through a further collinear

factorization,

Ji(z, b, ER, µ, ζ) = ∑
j

∫ 1

z

dz′

z′
[
(z′)2Ci→j(z′, b, µ, ζ)

]
Jj

( z
z′

, ER, µ
)

(6.20)

×
[
1+O(b2

TE2R2)
]

.

Only collinear radiation at angular scales θ, encoded in Ci→j (matching coefficient
for unpolarized hadronic TMDFF) can affect qT. However, subsequent splittings
down to angles of order R will change the parton j with momentum fraction z′ into
a jet with momentum fraction z. This is described by the semi-inclusive jet function
Jj, which has been calculated to O(αs) in refs. [170, 171] (our notation matches that
of ref. [170]). Explicitly, the one-loop result of the semi-inclusive quark jet function
given by [170] is

J [1]
q (z, 2zER, µ) = 2CF

[
δ(1− z)

(
13
2 − 2π2

3 + 3
2 LR

)
+ (LR − 2lnz)

(
pqq(z) + pgq(z)

)
−2pgq(z)ln(1− z)− 2(1 + z2)L1(1− z)− 1

]
. (6.21)

The distinction between WTA vs. standard jet axis is irrelevant, since θ � R. The
additional RG evolution between µJ ∼ qT and µJ ∼ ER sums single logarithms of
µJ/µJ ∼ qT/(ER) ∼ θ/R.

The (z′)2 in front of Ci→j was chosen to ensure that these matching coefficients
coincide with those for TMD fragmentation, given to O(α2

s ) in refs. [18, 51]. It is
not surprising that same matching coefficients enter here, since for R → 0 the semi-
inclusive jet function becomes the fragmentation function (summed over hadron
species) [172]. Thus in this limit we reproduce the known results for TMD fragmen-
tation to hadrons.

6.1.3 θ � R for the Winner-Take-All axis

We now consider θ � R for the Winner-Take-All axis. For R ∼ 1, the modes in
table 6.1 are expected and factorization takes on a rather simple form. Even if soft
radiation sees the jet boundary, it does not affect the position of the jet axis, due to the
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WTA recombination scheme. Specifically, the merging prescription in eq. (6.1) im-
plies that soft radiation never affects the direction of the jet (it always “loses” against
collinear radiation), while its contribution to the jet energy is power suppressed. The
only effect of soft radiation, either inside or outside the jet, is thus therefore a total
recoil of the two collinear sectors, which is therefore described by the standard TMD
soft function. In particular, the observable is insensitive to the distinction between
soft radiation inside and outside the jet. Since θ � R, the collinear modes do not
resolve the jet boundary, so z = 1 and the ER dependence drops out,

JWTA
i (z, b, ER, µ, ζ) = δ(1− z)J WTA

i (b, µ, ζ)
[
1 +O

(
1

b2
T E2R2

)]
. (6.22)

For completeness we also provide a definition of J WTA
q ,

J WTA
q (b) = 1

2Nc
Tr
[

n̄/
2 〈0|

(
1

n̄·P eib·Pχn(0)
)

∑X |JWTA〉〈JWTA|χ̄n(0)|0〉
]
, (6.23)

and a similar formula can be written for the gluon case.
For θ � R � 1, one would expect the same modes as are listed for the standard

jet axis in table 6.1. In this case the soft function does not resolve the jet boundary,
because R� 1, but collinear-soft modes with scaling

(p−, p+, pT) ∼ θ/R(1, R2, R) , θ/R(R2, 1, R) , (6.24)

resolve the jet boundary and contribute to qT. However, by the same reasoning
as before, their only effect is a total recoil on the system, independent of whether
emissions are inside or outside the jet. Consequently, these additional modes do
not need to be considered, since they will simply be removed by the zero-bin sub-
traction [173], due to their overlap with the soft mode. This leads to the interesting
conclusion that, for the WTA axis, the cross section for θ � R is independent of R.

6.1.4 θ � R for the standard jet axis

For completeness we also discuss θ � R for the standard jet axis. We do not present
any numerical results for this case, and therefore limit our discussion to the dijet
momentum decorrelation in e+e− collisions. First we consider the case θ � R ∼ 1,
for which the modes are given in table 6.1. Energetic emissions outside the jet are
not allowed because these would lead to θ ∼ R. Because the standard jet axis is
along the total momentum of the jet, momentum conservation implies that qT is
simply determined by the transverse momentum of soft radiation outside the jets.
In particular, the angle of energetic emissions inside the jet is unrestricted. Since
R ∼ 1, these emissions are hard, explaining the absence of a collinear mode. Each
of these hard emissions induces a soft Wilson line, implying the presence of non-
global logarithms (NGLs) [174] of

√
sR/qT. The corresponding cross section can be

described using the framework of refs. [175, 176] (see also refs. [177, 178])

dσSJA
e+e−→J JX

d2qT
=

∞

∑
m=2

Trc[Hm({ni},
√

s,R)⊗ Sm({ni}, q,R)]
[

1 +O
( q2

T
Q2

)]
. (6.25)

We have eliminated the measurement of the momentum fractions of the jets, since
zi = 1 in this limit. Hm denotes the hard function with m real emissions inside the
jets, along the light-like directions ni. The soft function Sm describes the transverse
momentum qT of soft radiation outside the jets, produced by the Wilson lines along
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the directions ni. The color indices describing the representation of the hard emis-
sions/Wilson lines connects the hard and soft function, and Trc denotes the trace
over these color indices. Finally, ⊗ denotes integrals over the light-like directions ni.

Moving on to θ � R � 1, we have collinear modes whose angular size is set by
R, and additional collinear-soft modes with scaling

(p−, p+, p) ∼ θ/R(1, R2, R) , θ/R(R2, 1, R) , (6.26)

which are fixed by the requirement that they resolve the jet boundary and contribute
to qT. Because R � 1, no hard real emissions are allowed, and the soft function
does not resolve the jet. However, each collinear emission produces a collinear-soft
Wilson line, in direct analogy to the soft Wilson lines generated by hard emissions
for R ∼ 1. Using again the framework of refs. [175, 176], the corresponding cross
section is given by

dσSJA
e+e−→J JX

d2qT
= σe+e−

0 (s) He+e−(s, µ)
∫ d2b
(2π)2 e−ib·q S(b) (6.27)

×
[ ∞

∑
m=2

Trc[Jm({ni},
√

s
2 R)⊗Um({ni}, b,R)]

]2

×
[

1 +O
( q2

T
Q2

)]
.

The hard and soft function are the same as for θ ∼ R. The jet function Jm describes
m collinear emissions inside a jet along light-like directions ni, and the collinear-soft
function Um describes the resulting qT from collinear-soft emissions of these Wilson
lines.

To summarize: when using the WTA axis, the same factorization formulae valid
for hadrons hold for jets, independently of the hierarchy between the angle θ and the
jet radius parameter R. Because the factorization theorem ensures that hadroniza-
tion effects in the jets are universal, they can be estimated in e+e− and then used
in the analysis of SIDIS experiments. We anticipate that the main nonperturbative
effects come from the evolution factor. These effects are universal (i.e. the same in
e+e−, SIDIS, and Drell-Yan experiments and independent of the polarization of the
hadrons) and their estimation is one of the major goals of TMD analyses. In this
context we note the vital role played by the ζ-prescription [16], which ensures that
the nonperturbative contribution to the evolution factor (that is responsible for the
resummation) is uncorrelated with other nonperturbative effects.

Another observation has lead us to focus on the large radius regime of the jets. In
fact, at one-loop order we notice that our jet function is well described by its large-
R limit. In this limit the jet functions simplify considerably, and are determined
by renormalization group evolution (RGE) up to a constant. We exploit this fact to
numerically extract the two-loop, large-radius jet function from Event2 and push
the accuracy of the calculation to N3LL in this case. Surprisingly, the validity of
this regime extends down to fairly small values of the jet radius, allowing us to
get precise results across the whole range in transverse momentum. This brings the
perturbative precision of TMDs with jets on par with TMDs with final-state hadrons.
We will discuss further about numerical results in the section 6.4.
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FIGURE 6.2: Cut diagrams that contribute to the one-loop quark jet
function in SCET. Here⊗ represents the collinear (anti-)quark field χn
(χ̄n), which contains a collinear Wilson line that can emit gluons. A
sum over cuts is understood, where cuts through loops describe real
emissions, while only cutting the quark line corresponds to virtual

corrections. The latter vanish for our choice of regulators.

6.2 Quark jet function at one loop

In this section we present a detailed calculation of the one-loop quark jet function
that enters the factorization formula in eqs. (6.16, 6.17). We use dimensional regular-
ization with d = 4− 2ε to handle UV divergences, and the modified δ-regulator for
the rapidity divergences [51, 179]. We present a detailed calculation in momentum
space in section 6.2.1.1 and in impact-parameter space in section 6.2.1.2, that pro-
vides a cross check of our results. The advantage of performing the calculation in
momentum space is that this is the space in which the jet algorithm is defined. On the
other hand, the renormalization and resummation are simpler in impact-parameter
space.

6.2.1 Unsubstracted jet function

The one-loop diagrams that contribute to the quark function are given in fig. 6.2.
This leads to the following expression for the bare jet function up to one loop,

Jalg
q (z, q, ER) = ∑

n
an

s J[n]q (z, q, ER) 1
π

δ(q2
T)δ(1− z) + g2 ∑

cases
CF

(µ2eγE

4π

)ε

×
∫ ∞

0

d`+

2π`+

∫ ddk
(2π)d

[
2

2E−k−

k−−iδ−
+ (1−ε)

(
1− k+

`+

)
+ h.c.

]
×(2π)δ+(k2) (2π)δ+

[
(`− k)2]Θcase

1
π

δ(q2
T−q2

Tcase)

× δ
(

z−EJ case

E

)
+O(a2

s ). (6.28)

Here E is the energy of the quark field initiating the jet, and its small light-cone com-
ponent `+ (and thus virtuality) is integrated over. The phase space of the outgoing
gluon, with momentum kµ, and quark, with momentum `µ − kµ is integrated over,
subject to the qT and z measurement. The δ+(k2) ≡ δ(k2)θ(k0) and δ+[(k− `)2] de-
note the corresponding on-shell conditions. The coupling has been replaced by the
renormalized one in the MS scheme.

There are three different cases we need to consider:

(a) both partons are inside the jet,
(b) the gluon is outside the jet,
(c) the quark is outside the jet.

These cases are identified by Θcase, and the transverse momentum q2
Tcase and jet en-

ergy EJ,case depend on the case and jet algorithm, and are given in table 6.2 in terms
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case algorithm Θcase EJ case q2
Tcase

(a) both in
SJA

θ
(
x(1− x)ER− kT

)
E 0

WTA
k2

T
max2(x, 1− x)

(b) gluon out SJA/WTA θ
(
kT − x(1− x)ER

)
Ex

k2
T

x2

(c) quark out SJA/WTA θ
(
kT − x(1− x)ER

)
E(1− x)

k2
T

(1− x)2

TABLE 6.2: The Θcase that encodes the various regions of phase space,
and the corresponding jet energy EJ case and transverse momentum
q2

Tcase. At this order the only difference between jet algorithms is the
recombination scheme, i.e. standard jet axis vs. Winner-Take-All.

of the energy fraction of the quark

x ≡ 1− k−

2E
(6.29)

and of the jet sizeR, defined in eq. (6.10).
At one loop, there are only two partons, so every distance measure gives the

same clustering condition (as we will see in section 6.3, this is no longer true at
two loops). There are differences between the standard and WTA recombination
scheme that directly follow from the different rules in eq. (6.1). This distinction is
only relevant when both partons are inside the jet, in which case the standard jet
axis is along their total momentum while the WTA axis is along the most energetic
one.

Switching from k− to the quark energy fraction x, using the on-shell conditions,
and exploiting azimuthal symmetry, we rewrite the one-loop term of eq. (6.28) as

Jalg [1]
q (z, q, ER) = ∑

cases

4CF

π

(
µ2eγE

)ε

Γ(1− ε)

∫ 1

0
dx
∫ ∞

0

dkT

k1+2ε
T

Θcase δ(q2
T − q2

Tcase)

× δ
(

z− EJ case

E

)[ (1 + x2)(1− x)
(1− x)2 + (δ−E )

2
− (1− x)ε

]
. (6.30)

Here we replaced the δ− regulator by its dimensionless counterpart

δ±E ≡
δ±

2E
. (6.31)

After similar manipulations, the corresponding one-loop gluon jet function is

Jalg [1]
g (z, q, ER) = ∑

cases

4
π

(
µ2eγE

)ε

Γ(1− ε)

∫ 1

0
dx
∫ ∞

0

dkT

k1+2ε
T

Θcase δ(q2
T − q2

Tcase)

δ
(

z− EJ case

E

)
×
{

CA(1− x)
[

x +
1
x
+

x
(1− x)2 + (δ−E )

2

]
+

n f

2

[
1− 2x(1− x)

1− ε

]}
. (6.32)

From this expression one can obtain the one-loop result for the gluon jet function
presented in ref. [151], following step by step the calculation of the quark function
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detailed below.

6.2.1.1 Result in momentum space

In order to perform the calculation in transverse momentum space we directly solve
the two integrals in eq. (6.30), inserting the measurements for the various cases in
table 6.2. We start with the case of both partons inside the jet.

In the case of the standard jet axis, the dependence on the transverse momentum
is trivial and the calculation reduces to the one performed in ref. [170] for the semi-
inclusive quark jet function. After integration over the transverse momentum,

JSJA [1]
q(a) = −2CF

π

( µ2

E2R2

)ε eεγE

εΓ(1− ε)
δ(1− z) δ(q2

T) (6.33)

×
∫ 1

0
dx x−2ε(1− x)1−2ε

[ 1 + x2

(1− x)2 − ε
]
.

Here we set the rapidity regulator δ−E to zero because the endpoint x = 1 is al-
ready regulated by dimensional regularization. The remaining integral over the en-
ergy fraction is a combination of Euler Beta functions, whose expansion up to O(ε0)
yields

JSJA [1]
q(a) =

2CF

π
δ(1− z) δ(q2

T)

[
1
ε2 +

1
ε

(
LR +

3
2

)
+

1
2

L2
R +

3
2

LR +
13
2
− 3π2

4

]
, (6.34)

where

LR = ln
( µ2

E2R2

)
. (6.35)

For the WTA axis, the transverse momentum dependence becomes nontrivial.
The condition max(x, 1− x) reduces to x > 1

2 if we symmetrize the integrand,

JWTA [1]
q(a) =

2CF

π

eεγE

Γ(1− ε)

µ2ε

(q2
T)

1+ε
δ(1− z)

∫ 1

1
2

dx x−2εθ
(
(1− x)ER− qT

)
×
[(
− 3 +

2
x
− ε
)
+ 2

1− x
(1− x)2 + (δ−E )

2

]
. (6.36)

Performing the remaining integral requires to treat the integrand as a two-dimensional
distribution. We should expand

µ2ε

q2+2ε
T

1− z
(1− z)2 + (δ−E )

2
θ
(

z− 1 +
qT

ER
)

(6.37)

= δ(q2
T)

{
δ(1− z)

[
− 1

2ε2 +
1
ε

(
lnδ−E −

1
2

LR

)
− 1

4
L2

R

]
+LRL0(1− z)− 2L1(1− z)

}
+ L0(qT, µ)

[
− δ(1− z)lnδ−E + L0(1− z)

]
−Lcut

0
(
qT, ER(1− z)

)
L0(1− z) ,

where the last term involves a genuine two-dimensional distribution. This identity
was obtained by switching to cumulative distributions in both variables, then ex-
panding in δ−E , and finally expanding in ε. At this point, some notation used in this
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part of the thesis, and closer to the used in jet community should be clarified. We
define plus distributions in a compact form as

Ln(x) =
[ lnnx

x

]
+

, (6.38)

which satisfy ∫ 1

0
dxLn(x) = 0 . (6.39)

Plus distributions in terms of the transverse momentum qT are needed in momen-
tum space calculation and can be derived from eq. (6.38),

Ln(qT, q0) =
1
q2

0
Ln

(q2
T

q2
0

)
, (6.40)

such that ∫ p2
T

0
dq2

T f (q2
T)Ln(qT, q0) =

∫ p2
T/q2

0

0
dx f (q2

0x)Ln(x) . (6.41)

The related “cut” distribution that appear in eq. (6.37) is defined as

Lcut
n (qT, q0) = Ln(qT, q0)θ(q0 − qT) . (6.42)

Thus, solving the integral in eq. (6.36) we have

JWTA [1]
q(a) = 2CF

π δ(1− z)
{

δ(q2
T)

[
1
ε2 +

1
ε

(
LR + 3

2

)
+ 1

2 L2
R + 3

2 LR + 7
2 − 2ln22− 5π2

12

]
−Lcut

1

(
qT, ER

2

)
+
(

2ln2− 3
2

)
Lcut

0

(
qT, ER

2

)
+θ
(

ER
2 − qT

)
1

q2
T

[
3 qT

ER + 2ln
(

1− qT
ER
)]}

. (6.43)

Finally we consider the cases where only one particle is inside the jet, that are
independent of the jet algorithm. We use x → 1− x to combine the case where the
gluon is outside the jet with the case where the quark is outside. Both the integrals
over transverse momentum and energy fraction are fixed by the δ functions enforc-
ing the measurement, resulting in

J[1]q(b)+(c) =
2CF

π

µ2ε

(q2
T)

1+ε

eεγE

Γ(1− ε)
θ
(

z− 1 +
qT

ER
)

(6.44)

×
[(
− 3 +

2
z
− ε
)
+

2(1− z)
(1− z)2 + (δ−E )

2

]
z−2ε.

Expanding the result in ε and δ−E we obtain

J[1]q(b)+(c) =
2CF

π

{
δ(q2

T)δ(1− z)
[
− 1

ε2 +
1
ε

(
2lnδ−E − LR

)
− 1

2
L2

R +
π2

12

]
+
(
− 3 +

2
z
+ 2L0(1− z)

)[
L0(qT, µ)−Lcut

0
(
qT, ER(1− z)

)
+LRδ(q2

T)
]
− 2lnδ−E L0(qT, µ)δ(1− z)
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−2δ(q2
T)
[(
− 3 +

2
z

)
ln(1− z) + 2L1(1− z)

]}
. (6.45)

We now combine the expressions in eqs. (6.34, 6.43) with eq. (6.45), to obtain the bare
quark jet function at one loop

Jaxis [1]
q = 2CF

π

{
δ(1− z)

[
δ(q2

T)
(

2
ε lnδ−E + 3

2ε +
3
2 LR

)
− 2lnδ−E L0(qT, µ) + ∆axis

q (q2
T)
]

+
(

pqq(z) + pgq(z)
)[

δ(q2
T)LR + L0(qT, µ)−Lcut

0
(
qT, ER(1− z)

)]
−2
[(
− 3 + 2

z

)
ln(1− z) + 2L1(1− z)

]
δ(q2

T)

}
. (6.46)

The dependence on the algorithm occurs via the functions ∆axis
q , that explicitly read

∆SJA
q (q2

T) = δ(q2
T)
(13

2
− 2π2

3

)
, (6.47)

∆WTA
q (q2

T) = δ(q2
T)
(7

2
− 2ln22− π2

3

)
+ θ
(ER

2
− qT

) 1
q2

T

[
3qT

ER + 2ln
(

1− qT

ER
)]

+
(

2ln2− 3
2

)
Lcut

0

(
qT,

ER
2

)
−Lcut

1

(
qT,

ER
2

)
. (6.48)

The expression for the WTA axis is more involved because it introduces the threshold
z > 1

2 . We notice that

∆WTA
q (q2

T) = ∆SJA
q (q2

T)

[
1 +O

(E2R2

q2
T

)]
. (6.49)

This implies that the dependence on the jet algorithm vanishes in the regime R �
θ, as predicted from the factorization formula in eq. (6.20) (the semi-inclusive jet
function J that enters there is independent of the jet axis).

6.2.1.2 Result in impact-parameter space

The calculation of the quark jet function at one loop can also directly be performed
in impact-parameter space. This calculation provides a check of the results in the
previous section. We perform the same two integrals of eq. (6.30) with the cases
shown in the table 6.2 as in the momentum-space calculation, but first carry out the
Fourier transform of the jet function

Jalg[1]
q (z, b, ER) =

∫
dq eib·q Jalg[1]

q (z, q, ER). (6.50)

The case with both partons inside the jet is the only one that depends on the choice
of axis. The result for SJA has a trivial dependence on the transverse momentum
and can be written as

JSJA [1]
q(a) = 2CF δ(1− z)

[
1
ε2 +

1
ε

(
LR +

3
2

)
+

1
2

L2
R +

3
2

LR +
13
2
− 3π2

4

]
. (6.51)

Note that for this calculation the IR divergences are regulated by ε and we can safely
neglect the δ−E regulator.
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The WTA axis choice introduces a non trivial dependence on the transverse mo-
mentum of the jet function. Symmetrizing the integral over x, as in eq. (6.36), we
rewrite the jet function as

JWTA [1]
q(a) = 8πCF

(µ2eγE

4π

)ε
δ(1− z)

∫ 1

1/2
dx
[1 + x2

1− x
− ε(1− x) +

1 + (1− x)2

x
− εx

]
∫ dd−2kT

(2π)d−2
1
k2

T
θ
(

x(1− x)ER− kT
)
eib·k/x . (6.52)

Integration over the transverse momentum allows us to rewrite eq. (6.52) as

JWTA [1]
q(a) = 2CF

(
µ2eγE

)ε

Γ2(1− ε)
δ(1− z)(ER)−2εΓ(−ε)

∫ 1

1/2
dx x−2ε(1− x)−2ε

×
[1 + x2

1− x
− ε(1− x) +

1 + (1− x)2

x
− εx

]
−2CFδ(1− z)B2

ER

∫ 1

1/2
dx
[
(1 + x2)(1− x) +

(1 + (1− x)2)

x
(1− x)2

]
×2F3

(
1, 1; 2, 2, 2;−B2

ER(1− x)2
)
+O(ε). (6.53)

The jet function depends on the transverse position in terms of the dimensionless
combination

BER =
1
2

bTER . (6.54)

The remaining step is the integration over x. The integral in the first term (first
two lines) is straightforward to perform analytically. On the other hand, the second
integral has a part for which we were unable to obtain a closed analytical expression.
The result of this second integral is given by the function G(BER), whose explicit
expression is

G(BER) = −11− 5
8

B2
ER 2F3

(
1, 1; 2, 2, 2;−B2

ER
4

)
− 2B2

ER 2F3
(
1, 1; 2, 2, 2;−B2

ER
)

ln2

+

(
4πB2

ERHS
0 (BER) +

3
2

πHS
0 (BER)− 8BER

)
J1(BER)

+

(
−4πB2

ERHS
1 (BER) + 8B2

ER −
3
2

πHS
1 (BER) + 11

)
J0(BER) + S (6.55)

where HS
n are the Struve functions of order n. S is a remainder that we did not

manage to simplify further,

S = 2B2
ER

∞

∑
n=0

Γ(1 + n)
Γ3(2 + n)

(−B2
ER)

n
[

H2n − n 3F2

(
1, 1, 1− 2n; 2, 2;

1
2

)]
(6.56)

with Hn the n-th harmonic number.
Thus we have

JWTA [1]
q(a) = 2CF δ(1− z)

[
1
ε2 +

1
ε

(
LR +

3
2

)
+

1
2

L2
R +

3
2

LR +
13
2
− 3π2

4
+ G(BER)

]
.

(6.57)
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Note that the only difference between the SJA and WTA results is G. When BER � 1
the function G is zero, as required by the axis independence in this limit.

Next we consider the case when only one parton is inside the jet. By using x →
1− x, we can combine case (b) and (c). As we now have an explicit dependence on
the momentum fraction of the jet, the rapidity regulator δ−E needs to be kept. We
find,

J[1]q(b)+(c) = 2CF

{(
pqq(z) + pgq(z)

)[
LR − Lµ − 2ln(1− z) (6.58)

+B2
ER(1− z)2

2F3

(
1, 1; 2, 2, 2;−B2

ER(1− z)2
)]

+δ(1− z)
[2

ε
lnδ−E + 2Lµlnδ−E

]
+ δ(1− z)

[ 3
2ε

+
3
2

LR +
13
2
− 2π2

3

]
−δ(1− z)

[ 1
ε2 +

1
ε

(
LR +

3
2

)
+

1
2

L2
R +

3
2

LR +
13
2
− 3π2

4

]}
.

The terms with a divergent behavior in the limit z → 1 should be understood as
regulated under the +-prescription. For clarity we have split the δ(1− z) contribu-
tion into three pieces: the first term will be eliminated after the renormalization of
rapidity divergences, and the third term is exactly cancelled by the corresponding
part of the case with both particles inside the jet, removing IR divergences presented
here as double poles in ε.

The final result for the quark jet function for both choices of axis is obtained
summing eq. (6.51) (SJA) or (6.57) (WTA) with (6.58),

Jaxis [1]
q = 2CF

{(
pqq(z) + pgq(z)

)[
LR − Lµ − 2ln(1− z) (6.59)

+B2
ER(1− z)2

2F3

(
1, 1; 2, 2, 2;−B2

ER(1− z)2
)]

+δ(1− z)
(2

ε
lnδ−E + 2Lµlnδ−E

)
+ δ(1− z)

(3
2

LR +
3
2ε

+ ∆̃axis
q (BER)

)}
,

where

∆̃SJA
q (BER) =

13
2
− 2π2

3
, ∆̃WTA

q (BER) =
13
2
− 2π2

3
+ G(BER). (6.60)

We have checked that these expressions agree with those obtained in section 6.2.1.1,
which is partially numerical for the WTA axis. For the numerical implementation,
we use the above expressions when a closed analytic expression is available, while
we find it more convenient to estimate the sum S , defined in eq. (6.56), by numeri-
cally Fourier transforming its momentum-space counterpart.

6.2.2 Renormalization and resummation

6.2.2.1 Renormalized jet function

The jet function in eq. (6.11) has the same renormalization as in the case of TMDs
as it was pointed out in eq. (6.15). As in all the cases where factorization with jets
holds the soft function is the same that the one of the hadronic TMD case. Thus, the
rapidity renormalization factor is the same that the one used in eq. (3.13). As the
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operators in the jet function are the same that for hadronic TMDs, the UV renormal-
ization constants are the same as well.

Then, we can easily compute the renormalized NLO quark jet functions from the
unsubstracted expressions obtained in the section 6.2.1. The final expression for the
renormalized jet function in transverse momentum space is given by

J[1], axis
q (z, q, ER, µ, ζ) = 2CF

{
δ(1− z)

[3
2

LRδ(q2
T)− lζ L0(qT, µ) (6.61)

−L1(qT, µ) + daxis
q (q2

T)
]
+
(

pqq(z) + pgq(z)
)

×
[

LRδ(q2
T) + L0(qT, µ)−Lcut

0
(
qT, ER(1− z)

)]
−2
[(
− 3 +

2
z

)
ln(1− z) + 2L1(1− z)

]
δ(q2

T)

}
,

where the axis-dependent functions are simply related to eqs. (6.47, 6.48) by daxis
q =

∆axis
q − π2

12 and the π2/12 difference comes from the soft function at NLO,

dSJA
q (q2

T) = δ(q2
T)
(

13
2 − 3π2

4

)
, (6.62)

dWTA
q (q2

T) = δ(q2
T)
(7

2
− 2ln22− 5π2

12

)
+ θ
(ER

2
− qT

) 1
q2

T

[
3qT

ER + 2ln
(

1− qT

ER
)]

+
(

2ln2− 3
2

)
Lcut

0

(
qT,

ER
2

)
−Lcut

1

(
qT,

ER
2

)
. (6.63)

In impact-parameter space the renormalized jet function reads

J[1], axis
q (z, b, ER, µ, ζ) = 2CF

{
δ(1− z)

[3
2

LR −
1
2

L2
µ + Lµlζ + d̃axis

q (BER)

+
(

pqq(z) + pgq(z)
)[

LR − Lµ − 2ln(1− z) (6.64)

+B2
ER(1− z)2

2F3
(
1, 1; 2, 2, 2;−B2

ER(1− z)2) ]},

where the axis-dependent functions are again related to eq. (6.60) by d̃axis
q = ∆̃axis

q −
π2

12 ,

d̃SJA
q =

13
2
− 3π2

4
,

d̃WTA
q =

13
2
− 3π2

4
+ G(BER). (6.65)

From eq. (6.61) one can take the limits R → 0 and R → ∞, to approach the fac-
torization regimes described respectively in section 6.1.2 and in sections 6.1.3, 6.1.4.
In the small-R limit the two axes give the same result, and we explicitly checked that
the jet function factorizes further as in eq. (6.20). The large-R limit is particularly
interesting for the WTA axis, where the jet function simplifies as in eq. (6.22). We
verified that the dependence on the jet radius drops out in this limit, obtaining

J WTA[1](b, µ, ζ) = 2CF

(7
2
− 5π2

12
− 3ln2− 1

2
L2

µ + Lµlζ +
3
2

Lµ

)
. (6.66)
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6.2.2.2 Resummation and ζ-prescription

The renormalization group equations (RGEs) of the TMD jet function are the same
as for the standard hadronic TMD,

µ
d

dµ
Jq(b; µ, ζ) = γq(µ, ζ)Jq(b; µ, ζ)

ζ
d

dζ
Jq(b; µ, ζ) = −Dq(µ; b)Jq(b; µ, ζ) (6.67)

where Dq and γq are the rapidity and UV anomalous dimension, respectively. We
only consider the quark jet function, because the gluon does not enter in our phe-
nomenological results. As in the hadronic TMD case we have that the rapidity
anomalous dimension is

Dq = −
dlnRq

dlnζ

∣∣∣
f .p.

= −1
2

dlnRq

dlnδ+

∣∣∣
f .p.

, (6.68)

where | f .p. denotes the finite parts.
Since the order of derivatives can be interchanged, one obtains [49, 52],

µ
d

dµ

(
−Dq(µ

2, b)
)
= ζ

d
dζ

γq(µ, ζ) = −Γcusp
q . (6.69)

where Γcusp
q is the quark cusp anomalous dimension. Consequently,

γq = Γcusp
q lζ − γV,q, (6.70)

where

lζ ≡ ln
(

µ2

ζ

)
, (6.71)

and γV is the finite part of the renormalization of the vector form factor. Both γV
and D are the same that the used in hadronic TMD analysis and their perturbative
expressions are known up to O(a3

s ) are collected in appendix A.
The high energy scale value for µ is always set at the hard scale, i.e.

√
s for e+e−

and Q for SIDIS. As for the TMD case, the evolution of the jet function in the plane
(µ, ζ) is governed by eq. (6.67). A systematic treatment of this case has been provided
in ref. [16] and a revision of the main features of evolution are studied in the chapter
2 of this thesis. In our results we have implemented the optimal solution suggested
in [16]. At this point we are left to choose an initial equipotential line ζµ(b), which
is known as the ζ-prescription. A special line is provided by the saddle point of the
evolution potential. This line exists for all values of b (at least for bT < 1/ΛQCD) and
covers all the ranges on µ and ζ, providing the optimal solution

Jq(b; µ, ζµ(b)) = Jq(b). (6.72)

Explicitly, at two-loop order

lζµ
≡ ln

µ2

ζµ
=

1
2

Lµ −
3
2
+ as

[
11CA − 2TF

36
L2

µ + CF

(
− 3

4
+ π2 − 12ζ3

)
(6.73)

+CA

(649
108
− 17π2

12
+

19
2

ζ3

)
+ TF

(
− 53

54
+

π2

6

)]
.
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The evolution of the optimal distribution to a generic set of scales (µ, ζ) is then
simply given by

Jq(b; µ, ζ) = Jq(b)U
q
R[b; (µ, ζ), (µ0, ζµ0(b))], (6.74)

where (µ0, ζµ0(b)) is a point on the special line and Uq
R is the TMD evolution factor

Uq
R[b; (µ1, ζ1), (µ2, ζ2)] = exp

[∫
P

(
γq(µ, ζ)

dµ

µ
−Dq(µ, b)

dζ

ζ

)]
. (6.75)

Choosing the simplest possible line which connects the initial and final point of the
evolution in the improved-γ scheme, eq. (6.75) reduces to

Uq
R[b; (µ, ζ), (µ, ζµ(b))] = Uq

R[b; (µ, ζ)] =

(
ζ

ζµ(b)

)−Dq(µ,b)

, (6.76)

which is convenient for numerical calculations.
The rapidity anomalous dimension Dq has a nonperturbative part, which is in-

dependent of other nonperturbative inputs of the jet distribution and should be es-
timated by itself. The ζ-prescription (unlike e.g. the b∗-prescription) allows this sep-
aration theoretically. The extractions of the nonperturbative part of the evolution
factor from data within this prescription has been carried out in ref. [17, 140, 180]. In
our phenomenological analysis we use the parametrization of [140] for the nonper-
turbative contribution to the rapidity anomalous dimension,

Dq(µ, b) = Dres
q (µ, b∗(b)) + g(b). (6.77)

Here Dres
q is the resummed perturbative part of Dq, and

b∗(b) =

√
b2

TB2
NP

b2
T + B2

NP
, g(b) = c0 bT b∗(b) , (6.78)

where the constants BNP and c0 parametrize the nonperturbative effects. The pertur-
bative expansion of the resummed rapidity anomalous dimension Dres

q is

Dres
q (µ, b) =

∞

∑
n=0

an
s (µ)Dres[n]

q (X) (6.79)

where X = β0as(µ)ln(µ2b2
Te2γE /4), β0 is the leading coefficients of the QCD beta

function and as = g2/(4π)2. The leading term reads

Dres[0]
q (X) = − Γ[0]

q

2β0
ln(1− X), (6.80)

and we have used this expansion up to third order in as, which incorporates the four-
loop anomalous dimension. The complete expression up this order can be found in
ref. [16, 181]. The unresummed expression for the rapidity anomalous dimension is
reported in the appendix A.
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FIGURE 6.3: The difference between the O(α2
s ) contribution to e+e−

cross section with a cut on the angular decorrelation θ ≤ θcut, ob-
tained from Event2 and from our factorization theorem. The pan-
els correspond to the (e+e− version of) anti-kT , Cambridge/Aachen
and kT jet algorithm, and the curves correspond to the different color
structures, see eq. (6.82). The uncertainty bands indicate the statistical
uncertainty. The missing two-loop constant in the quark jet function

is the value of the plateau at small θcut.

6.3 Quark jet function for large R at two loops

As we will see in our numerical analysis, the large-R limit captures the dominant
part of the perturbative corrections. This justifies focusing on the quark jet function
in the large-R limit, J WTA

q , which is completely determined at two loops by known
anomalous dimensions, except for a constant j[2]. Explicitly,

J
[2] ,WTA

q (b, µ, ζ) = CF

{
CF

[
1
2

L4
µ − (3 + 2lζ)L3

µ +
(

2l2
ζ + 6lζ −

5
2
+ 6ln2 +

5π2

6

)
L2

µ

+
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14− 12ln2− 5π2

3

)
lζ +

45
2
− 18ln2− 9π2

2
+ 24ζ3

)
Lµ

]
+CA

[
− 22

9
L3
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3
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35
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+
π2

3

)
L2

µ +
(404

27
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+
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9
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)
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− 22ln2− 11π2
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+
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2
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8
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L3
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+
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9
− 4

3
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)
L2

µ −
112
27

lζ +
(
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9
lζ − 10 + 8ln2 +

4π2

9

)
Lµ

]}
+j[2] . (6.81)
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We extract this constant using the Event2 generator [182], which we run with n f =

5 and an infrared cutoff ρ = 10−12, generating about a trillion events. Specifically,
we consider the difference at O(a2

s ) between the the cross section with a cut on the
angular decorrelation θ ≤ θcut obtained from Event2 and our factorization theorem,
extracting the overall factor of a2

s . This is shown in fig. 6.3, where the different panels
correspond to the (e+e− version of) anti-kT [169], Cambridge/Aachen [183, 184] and
kT [185] jet algorithm. The different curves in each panel correspond to the C2

F, CFCA
and CFTF color structure, with the bands indicating the statistical uncertainty. From
varying the infrared cutoff we conclude that the cross section obtained from Event2
can be trusted for log10θcut > −3, corresponding to the plotted range.

The clear plateau at small values for θcut shows that our factorization theorem
predicts the singular part of the cross section correctly. The value of the plateau cor-
responds to the missing two-loop constant j[2] (the overall factor of 1/2 was chosen
to cancel the factor of 2 from the two jet functions in the factorization theorem). The
decomposition of j[2] in terms of the C2

F, CFCA and CFTF color structures is given by

j[2] = j[2]CF
+ j[2]CA

+
n f

5
j[2]TF

, (6.82)

i.e. the color structures are inside the constants. We extracted the result by fitting the
plateau to a constant, assuming n f = 5, and the generalization to arbitrary number

of flavors only involves rescaling j[2]TF
. The best range for this fit is not a priori clear,

since we have no control over the power corrections, corresponding to contributions
to the cross section not included our factorization theorem. These become more
relevant as θcut increases; on the other hand, lowering θcut increases the statistical
uncertainties. We choose to consider the fit range−3 ≤ log10θcut ≤ log10θcut

max, where
we vary log10θcut

max between −2.9 and −2 in steps of 0.02 (this corresponds to the size
of our binning). We perform a different fit in each window, including the uncertainty
from the Event2 integration. We take the lowest and highest value obtained in this
way as the error, and their average as the central value, leading to

anti-kT : j[2]CF
= 25.3± 0.6 , j[2]CA

= −6.3± 0.2 , j[2]TF
= −12.5± 0.3 ,

C/A : j[2]CF
= 24.5± 0.6 , j[2]CA

= −6.7± 0.2 , j[2]TF
= −12.5± 0.2 ,

kT : j[2]CF
= 12.2± 1.1 , j[2]CA

= −9.3± 0.2 , j[2]TF
= −13.0± 0.3 . (6.83)

While these constants are remarkably similar for anti-kT and Cambridge/Aachen,
they differ substantially for kT.

6.4 Numerical results

This section is focused on the obtention of phenomenological predictions for cur-
rent and future experiments. A comparison of this type of predictions with future
data would allow us to extract nonperturbative information about the jet functions
recently defined and due to the universality of these function, information about
nonperturbative effects of hadronic TMDs. The region of interest for TMDs is small
qT, for which the regimes θ ∼ R and θ � R are most relevant. This leads us to ex-
clusively focus on the WTA axis, which is well behaved in the large-R limit. We start
by considering the transverse momentum decorrelation in e+e− collisions, obtaining
numerical predictions for the Belle II and LEP experiments. We use e+e− to test the
perturbative convergence, and explore the dependence on the jet radius R and cut
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FIGURE 6.4: Dependence of the cross section differential in the trans-
verse momentum decorrelation on the jet radius parameter R, for cuts
on jet energy fraction z > 0.25 (left) and z > 0.75 (right). We use the
NLO jet function computed in the regime R ∼ θ, and show the large-

R result (red solid) for comparison.

on the jet energy fraction z. This process is a perfect playground for this kind of
studies because only the jet functions are involved. In the case of SIDIS we provide
numerical predictions for HERA and the EIC, and investigate the sensitivity of our
cross section to nonperturbative effects.

In our numerical implementation we build on the arTeMiDe code [16, 66] to ob-
tain resummed predictions for TMD cross sections. The original version of arTeMiDe
[186] provides cross sections for Drell-Yan and SIDIS with fragmentation into hadrons.
However, its modular structure allowed us to extend it to processes involving jets
with a modest amount of modification. Specifically, we have added e+e− → dijet
and jet-SIDIS high-level modules, and a jet TMD low-level module that provides
our perturbative input for the quark jet functions in b-space at the initial scale.

A key point at the time of obtaining reliable phenomenological predictions is the
implementation of the double scale evolution share by TMD jet function/PDF. We
should run the evolution factor in eq. (6.76) from the initial scale

(µ0, ζ0) =
(2e−γE

bT
+ 2 GeV , ζµ0

)
, (6.84)

where µ0 is frozen at 2 GeV to avoid the Landau pole and (µ0, ζ0) belongs to the
special line, to the hard scale

(µH, ζH) =

{
(
√

s, s) e+e−

(Q, Q2) SIDIS
(6.85)

The rapidity resummation is the dominant source of uncertainty. Consistently
we use the nonperturbative parameters extracted in ref. [140] and we will always
use the highest known order in the evolution (N3LL), even though the jet function
for generic R is only calculated at one-loop order. The nonperturbative parameters
of the evolution kernel in eqs. (6.77, 6.78) are set to

BNP = 2.5 GeV−1 , c0 = 0.037 . (6.86)
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6.4.1 Momentum decorrelation in e+e− collisions

In our analysis of the e+e− cross section, differential in the transverse momentum
decorrelation, we consider two experiments:

• Belle II:
√

s = 10.52 GeV, 4 quark flavors.

• LEP:
√

s = 91.1876 GeV, 5 quark flavors.

We account for both the photon and Z-boson contribution, and restrict the plotted
qT range to a region where the power corrections to the factorization theorem can be
neglected. In the Belle analysis we omit b-jets, since we do not include quark mass
effects in our calculation of the jet function. (Experimentally, these are of course
relatively easy to distinguish from light quark jets.)

We start our analysis by studying the dependence on the jet radius parameter
R in fig. 6.4 for LEP. The cross section is shown for various jet radii, ranging from
R = 0.1 to 0.7, using the factorization formulae for θ ∼ R in section 6.1.1. We
consider two representative cuts on the jet energy fraction: z > 0.25 (left panel) and
z > 0.75 (right panel). For comparison we also show the large-R limit, discussed
in section 6.1.3. We use the one-loop jet function (since we only have the one-loop
result for θ ∼ R), but include the hard function at two-loop order and perform the
resummation at N3LL accuracy.

As expected, as R increases the results approach the R → ∞ limit. In both cases,
the cross section for R = 0.7 is indistinguishable from the large-R result, and for
z > 0.25 the difference is even minimal for R = 0.5. This means that in the factor-
ization in eq. (6.22) the power corrections O(θ/R) ∼ O(1/b2

TE2R2) have a limited
impact even for θ . R. This observation will be used in the rest of our analysis, to
justify including the two-loop jet function in the large-R limit, as this will capture
the dominant two-loop contribution. Explicitly, we will combine results according
to (

dσ

dqT

)N3LL

=

(
dσ

dqT

)NLO

+

(
dσ

dqT

)NNLO

R→∞
−
(

dσ

dqT

)NLO

R→∞
, (6.87)

where NLO and NNLO indicate the order of the jet function. In each term we use
the NNLO hard function and include the resummation at N3LL accuracy. The above
approximation contains all large logarithms of θ (or equivalently, qT) at N3LL accu-
racy. It reduces to NNLL accuracy for θ ∼ R � 1, since it misses some O(θ/R)
corrections. We have shown that their effect is small, except in the tail region.

Next we study the perturbative convergence of the TMD cross section in fig. 6.5.
We take R = 0.5, z > 0.25 and show results for the cross section for Belle II (left
panel) and LEP (right panel) at NLL, NNLL and N3LL. The ingredients that enter
in the various perturbative orders are summarized in table A.1. The perturbative
uncertainty is estimated by varying the scales µi in eqs. (6.84, 6.85) up and down by
a factor 2 around their central value and taking the envelope. The band obtained
by this procedure at NLL is artificially small and not shown. As expected, the N3LL
correction is small compared to the NNLL one, and the uncertainty bands overlap
and are reduced at higher order.

In fig. 6.6 we investigate the dependence of the cross section on the cut on the
jet energy fraction z > zcut for a fixed value of the jet radius, which provides a
complementary picture to fig. 6.4. We show results for Belle II with R = 0.7 (left
panel) and LEP with R = 0.3 (right panel), imposing z > zcut and varying zcut = 0.01
to zcut = 0.75. As in fig. 6.4, we use NLO jet functions. For R = 0.7 the dependence
on the cut on z is relatively mild, which reflects the fact that in the large-R limit
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FIGURE 6.5: Perturbative convergence of the cross section differen-
tial in transverse momentum decorrelation, for Belle II (left) and LEP
(right), for jet radius R = 0.5 and jet energy fraction z > 0.25. The
N3LL result is obtained with the prescription in eq. (6.87). The bands

encode the perturbative uncertainty, as described in the text.

FIGURE 6.6: Dependence of the transverse momentum decorrelation
distribution on the cut on jet energy fraction z, for Belle II with R =
0.7 (left panel) and LEP with R = 0.3 (right panel). The dependence
on this cut is larger for smaller R, as discussed in the text. In both
cases, the results for z > 0.5 (solid red curve) exactly coincide with

the large-R limit, see footnote.

the jet function is proportional to δ(1 − z), and thus independent of this cut. For
R = 0.3 there is a stronger dependence, and at very small (large) values of z the cross
section shows unphysical features. This is not surprising, since the cross section
diverges as zcut → 0 (every single low-energy particle originates a different jet) and
has large logarithms of 1 − zcut for zcut → 1. We found that, regardless of the jet
radius, for zcut = 0.5 the cross section coincides with the large-R result. This is
due to a one-loop accident. At this perturbative order, the initial quark undergoes
a single splitting, see fig. 6.2. When integrating over 0.5 < z < 1, each phase-
space configuration contributes to the cross section with exactly one jet (either a jet
containing two particles or a jet containing the most energetic particle). Due to the
WTA recombination prescription, the resulting jet axis is the same in either case,
independent of R. Thus it must in particular coincide with the large-R limit.

As a next step, we study how sensitive these cross sections are to BNP and c0
that parametrize the nonperturbative contribution to the rapidity evolution, see eqs.
(6.77, 6.78). We considered both the “fixed BNP” and “variable BNP” schemes used
in the fit in ref. [140], and varied the parameters within the statistical errors listed
in their table 4. In practice, we found that the BNP variation is subdominant, so in
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FIGURE 6.7: Estimate of the sensitivity of the TMD to nonpertur-
bative effects in the rapidity resummation at Belle II (left) and LEP
(right). We vary the parameter c0 in the range of its statistical uncer-
tainty, testing both the fixed and variable BNP schemes of ref. [140].

Results are obtained with the prescription in eq. (6.87).

fig. 6.7 we simply plot variations of c0. As one would expect, the sensitivity to non-
perturbative effects is much larger at Belle, commensurate with its smaller center-
of-mass energy, and increases at low transverse momenta. The conclusions obtained
from the two schemes are compatible with each other. The situation is similar for
LEP, though the relative variation is substantially lower (below 1% for most of the
range in qT).

Finally, we have investigated the impact of the choice of jet algorithm, specif-
ically, the impact of the different two-loop constants in eq. (6.83). We found the
difference with respect to anti-kT to be negligible for Cambridge-Aachen (< 0.1%)
and very small for the kT algorithm (< 1%).

6.4.2 Transverse momentum dependent distributions in SIDIS

In this section we show representative results for TMD measurements with jets in
SIDIS, showing results for

• HERA:
√

s = 318 GeV,

• EIC:
√

s = 100 GeV.

The EIC is a future facility for the study of TMD distributions, and the above value
for its center-of-mass energy is an assumption. We take 10 ≤ Q ≤ 25 GeV and
study the transverse momentum distribution for qT ≤ 3 GeV, ensuring that power
corrections of order q2

T/Q2 to the factorization theorem can be neglected. In this
kinematic range we expect quark mass effects to be negligible, so we ignore them.
We work in the Breit frame, impose a cut on the jet energy fraction z > 0.25 and set
the jet radius to R = 0.5. Our e+e− analysis in the left panel of fig. 6.4 shows that in
this case the large-R approximation works extremely well, so we again include the
two-loop, large-R jet function of sec. 6.3, using eq. (6.87).

We use the quark TMD PDFs obtained in ref. [140]. In this fit the matching of the
TMDs onto PDF is incorporated at NNLO, using the NNPDF 3.1 PDFs [146] with
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FIGURE 6.8: TMD cross section for SIDIS with jets at the EIC (left)
and at HERA (right), with 10 < Q < 25 GeV and different intervals
in elasticity within the range 0.01 < y < 0.95. Results are obtained

with the prescription in eq. (6.87).
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FIGURE 6.9: Sensitivity of the cross section to nonperturbative effects
at the EIC (left) and HERA (right). This is estimated by varying the
parameter c0, that controls the nonperturbative contribution to the
evolution kernel, within its current statistical uncertainty [140]. Re-

sults are obtained with the prescription in eq. (6.87).

αs(MZ) = 0.118. The additional nonperturbative component of the TMD PDFs is
modeled with the ansatz

fNP = exp
(
− λ1(1− x) + λ2x + λ3x(1− x)b2

T√
1 + λ4xλ5 b2

T

)
, (6.88)

where the values for λi were fit in ref. [140].
Our results are shown in fig. 6.8, for which we consider different intervals in the

elasticity y in the range 0.01 < y < 0.95. In each case, we obtained the uncertainty
band by independently varying the scales µH and µ0 up and down by a factor of 2
around their central values, and taking the envelope. We find that roughly half of the
contribution to the cross section comes from low elasticity (y < 0.2). The variation in
shape between the different elasticity intervals is modest; at high elasticity the peak
of the distribution is shifted towards larger transverse momenta.
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We now investigate the sensitivity of our observable to nonperturbative hadronic
physics. A rough impression can be obtained by varying the parameters BNP, c0 and
λi (see eqs. (6.77, 6.78, 6.88)) that enter our nonperturbative model. In principle,
these parameters are highly correlated and a full error estimate would require tak-
ing data with a large number of replicas, along the lines of the original analysis in
ref. [140]. In practice, we observe that the nonperturbative uncertainty is dominated
by the variation of the single parameter c0. Therefore, we obtain a realistic estimate
of the size of NP effects by simply varying c0 within its statistical uncertainty, which
we show in fig. 6.9. The effect of varying c0 is not large (below 5% at the EIC and 3%
at HERA), but non-negligible, and grows for small qT. This plot suggests that such a
measurement can likely be used to improve our knowledge of the nonperturbative
part of the evolution kernel, parametrized by c0, which is very relevant because it is
universal. We have explored the dependence on R, zcut and the range in Q and y,
finding similar sensitivity to nonperturbative effects.





113

Chapter 7

TMD factorization theorems for
processes with groomed jets

In chapter 6 of this thesis we considered the possibility of studying processes with
jets in final states defining a jet-TMD. Thus, we replace a final state hadron with a jet
[151, 160, 187] in SIDIS and e+e− processes. The check of this possibility has revealed
that standard jet definitions are compatible with a factorization theorem only in the
case of small enough radii, which is a not obvious experimental condition in the
planned electron-hadron collider like EIC or LHeC. Instead large jet-radii need a
specific definition of jet, which allows soft radiation to be independent of radius.
It was achieved using the winner-take-all (WTA) axis [152], and the perturbative
calculations were done with a precision similar to the case of fragmenting hadrons.

In this chapter we consider the possibility of groomed jets in SIDIS or e+e− →
2 jets. Developments in jet substructure have shown that applying a grooming al-
gorithm to a jet, using for example the so called “soft-drop” procedure, robustly re-
moves the contamination from both underlying event and non-global correlations.
Since this process essentially removes wide angle soft radiation, retaining only a
collinear core, it also dramatically reduces hadronization effects (see fig. 7.1), thus
allowing an easier access to the TMD non-perturbative physics which we want to
probe. Groomed jets with an identified light/heavy hadron in the jet were also pro-
posed as probes of TMD evolution and distribution in [157, 158]. The residual non-
perturbative effects contain pieces that depend on the soft-drop grooming procedure
and require careful analysis as was pointed out in [188]. In addition, with the use
of soft-drop we can derive factorization theorems for large jet radius (R ∼ 1), which
we consider to be the relevant case for low energy experiments, such as EIC. So, in
the case of groomed jets we do not need an extra discussion for large-radius jets as
with the definition used along chapter 6.

In order to focus on collimated jet configurations, we also impose an upper cutoff
in the groomed jet invariant mass. Note that the small transverse momentum con-
straint does not necessarily ensure collimated configurations since topologies with
two or more widely separated sub-jets are also permitted. This constraint allows
us to derive a factorization theorem involving the same universal soft function that
appears in traditional hadronic TMD, and which is independent of the jet radius for
R ∼ 1. This is a key feature for groomed jets and it is necessary for the universality
of TMDs and for this reason, in this chapter, we only consider R ∼ 1. The cutoff is
imposed using groomed jet-thrust, e ≡ (m/Q)2, where m is the groomed invariant
mass and Q is the center of mass energy. This allows us to introduce a single cutoff
parameter, ecut, independent of the jet energy or transverse momentum. We shall
see that imposing this constraint still allows us to capture a majority of events and
hence does not significantly impact the cross-section.



114 Chapter 7. TMD factorization theorems for processes with groomed jets

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

0.00 0.05 0.10 0.15 0.20 0.25

0.6
0.8
1.0
1.2
1.4
1.6
1.8

FIGURE 7.1: Hadronization effects in a typical e+e− → 2 jets from
PYTHIA 8 [147, 148]. at center of mass values, LEFT: Q = 100 GeV,

RIGHT: Q = 50 GeV.

As in chapter 6 the measurement that we are considering is a generalization of
the di-hadron momentum de-correlation,

qT =
pTh1

z1
+

pTh2

z2
(7.1)

where one or both of the identified hadrons is replaced by a jet, defined through
an infrared-safe jet algorithm. Here pThi and zi are the transverse momentum and
energy fraction of the hadron i respectively. The factorization theorem is usually
written for this normalized vector sum of the transverse momenta rather than just
the sum of the transverse momenta. It can be verified by momentum conservation
and simple geometry that the quantity pTh1 /z1 represents the transverse momen-
tum of the radiation recoiling against the hadron with respect to the axis defined by
the hadron itself. This makes it convenient to write a factorization theorem which
matches onto the standard hadron fragmentation function as explained in [157].

We consider three possible scenarios as illustrated in fig. 7.2 and we refer to them
as di-hadron, hadron-jet, and di-jet momentum de-correlation. To simplify the dis-
cussion we focus on the case of di-jets (fig. 7.2c) and we briefly comment how our
results are generalized for the case of hadron-jet de-correlation where the Breit frame
in eq. (6.8) is used.

For the case of groomed jets the observable qT is defined with the groomed quan-
tities, i.e., pµ

jet is the groomed jet four-momentum and zjet = 2p0
jet/Q. The transverse

component pT jet is measured with respect to an axis close to the full or groomed jet
axes. The exact choice of the axis only differs by power corrections. For concrete-
ness in the results that follow we make the choice of the axis to lie along one of the
groomed jets.

Since we want to probe the non-perturbative physics, we wish to work in the
small transverse momentum regime (qT �

√
s where qT ≡ |qT|).

7.1 Grooming procedure: Soft-drop

The grooming procedure that we use is the soft-drop algorithm. We give here a brief
review of the soft-drop groomer and eventually discuss the various hierarchies, the
relevant modes and the factorization of the cross section in the next sections.

Soft-drop grooming [159] removes contaminating soft radiation from the jet by
constructing an angular ordered tree of the jet, and removing the branches at the
widest angles which fail an energy requirement. The angular ordering of the jet is
constructed through the Cambridge/Aachen (C/A) clustering algorithm [183, 184,
189–191]. As soon as a branch is found that passes the test, it is declared the groomed
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(c) di-jet decorrelation  
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FIGURE 7.2: Three possible transverse momentum de-correlation
measurements in e+e− annihilation: (a) Identify two hadrons h1 and
h2 with momenta ph1 , ph2 and energy fractions zh1 , zh2 respectively, (b)
Identify a jet and a hadron with momenta pjet, ph with energy frac-
tions zjet, zh, (c) Identify two jets with momenta pjet1

, pjet2
and energy

fractions zjet1
, zjet2

.

jet, and all the constituents of the branch are the groomed constituents. At the end
of the grooming procedure only the narrow energetic core remains from the original
jet. Since at large angles all collinear energetic radiation is to be found at the center of
the jet, no cone is actually imposed to enclose this core. One simply finds the branch
whose daughters are sufficiently energetic. Formally the daughters could have any
opening angle, though their most likely configuration is collinear.

The strict definition of the algorithm is as follows. Given an ungroomed jet
(which itself is identified first using a suitable algorithm such as the anti-kT, [169]),
first we build the clustering history by starting with a list of particles in the jet. At
each stage we merge the two particles within the list that are closest in angle. This
merging is usually taken to be summing the momenta of the particles, though one
could use winner-take-all schemes [152, 192, 193]. This gives a pseudo-particle, and
we remove the two daughters from the current list of particles, replacing them with
the merged pseudo-particle. This is repeated until all particles are merged into a sin-
gle parent. Then we open the tree back up working backwards so that at each stage
of the declustering, we have two branches available, label them i and j. We require:

min{Ei, Ej}
Ei + Ej

> zcut

( θij

R

)β
, (7.2)

where zcut is the modified mass drop parameter, β is the parameter which controls
the angularities, θij is the angle between ith and jth particle, R is the jet radius and
Ei is the energy of the branch i. If the two branches fail this requirement, the softer
branch is removed from the jet, and we decluster the harder branch, once again
testing eq. (7.2) within the hard branch. The pruning continues until we have a
branch that when declustered passes the condition eq. (7.2). All particles contained
within this branch whose daughters are sufficiently energetic constitute the groomed
jet. Intuitively we have identified the first genuine collinear splitting.
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For a hadron-hadron collision, one uses the transverse momentum (pT) with
respect to the beam for the condition of eq. (7.2),

min{pTi, pTj}
pTi + pTj

> zcut

( θij

R

)β
. (7.3)

We formally adopt the power counting zcut � 1, though typically one chooses
zcut ∼ 0.1. See [194] for a study on the magnitude of the power corrections with
respect to zcut for jet mass distributions. To be specific, in this thesis we consider
only the case β = 0. Note that for β = 0 the energy of the groomed jet constituents
is a collinear unsafe observable [159, 195], however, the additional constraint of the
measured transverse momentum qT provides a physical collinear cutoff in a similar
way a jet shape measurement does.

7.2 Factorization. Hierarchies and modes

In order to compute the transverse momentum de-correlation qT, defined in eq. (7.1),
for two groomed jets in di-jet events in e+e− annihilation (fig. 7.2 (c)) we are going to
impose a normalized jet mass measurement on both jets through e = (mjet/Q)2. The
other parameters that enter our cross section are the soft-drop parameters zcut ∼ 0.1,
β = 0. Ultimately we are going to integrate over the jet mass measurement up to an
appropriate (but still small) cut-off value ecut.

We have a rich spectrum of possible hierarchies of momenta, which are all con-
sistent with maintaining qT/Q, ecut, zcut � 1. We have that qT/Q, ecut, zcut are now
expansion parameters in the effective field theory (EFT), and they should be taken
into account in the factorization of the process. We first list and briefly discuss these
hierarchies and the corresponding factorization theorems within an EFT. The gen-
eral modes that we will consider will fall into three classes. Modes that explicitly
pass soft drop (usually the highly energetic collinear modes), modes that explicitly
fail soft-drop (the global soft function modes) and finally those which can live on the
border and need to be tested, as to whether they pass or fail. Only the modes that
pass soft-drop will contribute to e, while qT receives contributions from all radiation
that fails soft-drop.

The first regime in which we are interested is Q � Qzcut � qT & Q
√

e �
Q
√

ezcut. Here we have low values of qT which are of the order of Q
√

e. We identify
the following modes to be relevant to the cross section:

soft: pµ
s ∼ qT(1, 1, 1);

collinear: pµ
c ∼ Q(λ2

c , 1, λc), λc =
√

e, (7.4)

and the factorization of the cross section in this region is schematically

dσ

de1de2d2qT
= Hij

2 (Q; µ)× S(qT)⊗J ⊥i (e1, Q, zcut, qT)⊗J ⊥j (e2, Q, zcut, qT). (7.5)

Apart from the hard factor H all the other terms in this equation are affected by
rapidity divergences. The global soft function S that appears in the factorization
theorem in eq. (7.5) (and later in the SIDIS case eq. (7.18)) is the universal function
that is also present in the factorization theorem of Drell-Yan, di-hadron production
in electron-positron annihilation, and semi-inclusive DIS with TMDs. The operator
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definition of the soft function is given by

S(qT) =
1

NR
tr 〈[S†

nSn̄](0)δ(2)(qT −P⊥)[S†
n̄Sn](0)〉 , (7.6)

where NR = Nc for Sn/n̄ in the fundamental and N2
c − 1 for the adjoint representation

of SU(Nc). This function has been calculated at NNLO in [52] in b-space and the
main results are presented in the appendix A. This function is responsible for the
TMD evolution which is actually known up to third order [62, 63]. Because of the
universality of this soft function the non-perturbative corrections that it generates in
the TMD-evolution factor are process independent [10, 11, 65].

The soft factor provides finally a rapidity renormalization factor for the jets which
is totally analogous to the TMD case in eq. (3.13). So, in this sense we can re-write
eq. (7.5) as

dσ

de1de2d2qT
= Hij

2 (Q; µ)×J ⊥i (e1, Q, zcut, qT; µ, ζA)⊗J ⊥j (e2, Q, zcut, qT; µ, ζB) ,

(7.7)
with ζAζB = Q4z4

cut , which recalls clearly the all-order factorization for the di-
hadron fragmentation case using TMD. The hadronization corrections to eqs. (7.5-
7.7) are discussed in more detail in section 7.7.

The jet-TMD of eq. (7.7) can be re-factorized depending on the relative magni-
tudes of the effective scales which define it so that one can identify the more com-
plete set of modes

soft: pµ
s ∼ qT(1, 1, 1);

collinear: pµ
c ∼ Q(λ2

c , 1, λc), λc =
√

e;

soft-collinear: pµ
sc ∼ Qzcut(λ

2
sc, 1, λsc), λsc = qT/(Qzcut);

collinear-soft: pµ
cs ∼ Qzcut(λ

2
cs, 1, λcs), λcs =

√
e/zcut (7.8)

and we illustrate this in fig. 7.3. We start considering the limit qT & Q
√

e� Q
√

ezcut,
which corresponds to region II in fig. 7.3, when the unintegrated and unsubtracted
jet function, J ⊥i , in eq. (7.5) can be re-factorized into three terms,

J ⊥i (e, Q, zcut, qT) = S⊥sc,i(Qzcut, qT)×
∫

de′ Scs,i(e− e′, Qzcut)Ji(e′, Q) (7.9)

where all the rapidity divergent part and transverse momentum dependence is con-
tained in the calculable S⊥sc,i. The subtracted and unsubtracted jet-TMD are related
by

J ⊥i (e, Q, zcut, b, µ, ζ) =
√

S(b)J ⊥i (e, Q, zcut, b) (7.10)

where we have expressed all the subtraction in b-space. Throughout this chapter we
will interchange between qT, b spaces for the transverse spectrum and between e, s
spaces for the jet mass. We use the same symbol for any function in either space.
The variable we are working in should be clear from the argument of the function.
A dictionary to translate between spaces is given in the appendix C. For smaller
values of qT: Q � Qzcut & Q

√
e � qT ∼ Q

√
ezcut, the collinear-soft and soft-

collinear merge into the same mode which we still refer to as collinear-soft. The soft
and collinear modes remain unchanged in their scaling compared to region II. The
form of factorization theorem in eq. (7.5) does not change but now the corresponding
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= contributes to the transverse momentum measurement 
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FIGURE 7.3: Three possible hierarchies for qT . Shaded region is one
that fails Soft-Drop. (I) Largest qT ∼ Qzcut. The cross section is fac-
torized into 3 function s, cs and c. (II) The soft function s splits into

two s and sc.(III) The sc function merges with the cs function.

jet TMDs are re-factorized as (see region III in fig. 7.3),

J ⊥i (e, Q, zcut, qT) =
∫

de′ S⊥cs,i(e− e′, Qzcut, qT)Ji(e′, Q). (7.11)

Several of the parameters in the differential cross-secion in eq. (7.7) are in practice
integrated in experiments, so that it is convenient to explicitly write the cumulant
(or partially integrated) distribution

dσ

d2qT
(ecut) =

∫ ecut

0
de1de2

dσ

de1de2d2qT
. (7.12)

For this cross section we work with the integrated jet function which depends on ecut
rather than e,

J ⊥j (ecut, Q, zcut, qT; µ, ζ) =
∫ ecut

0
de J ⊥j (e, Q, zcut, qT; µ, ζ) . (7.13)

and the factorization theorem for electron-positron annihilation is

dσ

d2qT
(ecut) = Hij

2 (Q; µ)
∫ d2b

4π
eib·qTJ ⊥i (ecut, Q, zcut, b; µ, ζ)J ⊥j (ecut, Q, zcut, b; µ, ζ) .

(7.14)
The resummation of logarithms inside the jet-TMD implied by eqs. (7.9-7.11) is taken
into account defining the cumulant jet function as

J ⊥i (ecut, Q, zcut, b; µ, ζ) =
√

S(b)J ⊥i (ecut, Q, zcut, b) , (7.15)

J ⊥i (ecut, Q, zcut, b) = S⊥sc,i(Qzcut, b)Ji(ecut, Q, zcut; µ), (7.16)

Ji(ecut, Q, zcut; µ) =
∫ ecut

0
de
∫

de′ Scs,i(e− e′, Q, zcut; µ)Ji(e′, Q; µ) (7.17)

and we recall that the rapidity divergences are present only in S and S⊥sc,i, canceling
in their product in eq. (7.15). With the exception of the soft-collinear function, S⊥sc, all
other ingredients of the factorization are already known at least up to NLO accuracy.
In section 7.4 we report the defining matrix elements of each function, we summarize
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the NLO results and we perform the NLO calculation of S⊥sc. We have performed
the calculation using analytic η rapidity regulator, so in section 7.4 we present the
NLO result of the soft function with this regulator, despite it is presented in the
appendix A in modified δ-regularization scheme. The connection between rapidity
regulator obtained in this calculation and the ζ-parameter we used in the part I of
this thesis is outlined in the section 7.5.

The factorization for DIS-like processes is analogous, with the difference that
here we demand that the hard scattering of the lepton on the proton produces a
single jet. In the Breit frame we measure the transverse component, qT, of the trans-
ferred momentum, qµ = k′µ − kµ with respect to the single groomed jet. As before,
we impose a jet mass cut-off ecut and the grooming parameter zcut. In this frame-
work the initial state proton is moving along the −z direction and the final state jet
is moving in the opposite +z-direction, so that we can assign the directions n and n̄
to the beam and jet definition. The contribution to this transverse momentum mea-
surement comes from the initial state radiation which forms part of the TMDPDF
and the radiation that fails soft-drop in the final state jet. We demand that there is a
single energetic jet with EJ ∼ Q/2 =

√
−q2/2 with accompanying soft radiation.

Since we are working with two back-to-back directions, our usual definition of
the soft function holds: in other words the change from future pointing to past point-
ing Wilson lines does not affect its value [10, 11, 13, 15, 196].

Since we still impose the same jet mass measurement on the final state jet, we
have all the modes that we had in the e+e− case. The main difference is that now the
initial hadronic state is a TMDPDF. The form of the factorized cross section follows
again the hierarchy Q� Qzcut � qT, R ∼ 1 and

dσ

dxdQ2d2qT
=

σ0(x, Q)

xs
H2(Q, µ)× S(qT)⊗ Bi←h(x, Q, qT)⊗J ⊥j (ecut, Q, zcut, qT) ,

(7.18)
where x = −q2/(2P · k), k is the momentum of the incoming electron, and σ0(x, Q)
is the Born cross section of this process given in the appendix A. The un-subtracted
TMDPDF is Bi←h. In our rapidity regularization scheme the (subtracted) TMDPDF
is defined as

Fi←h(x, b; µ, ζ) =
√

S(b)Bi←h(x, Q, b). (7.19)

At perturbative values of qT, the Fi←h can be matched onto the collinear PDF as is
discussed in the part I of this thesis. The matching coefficients at NNLO are the
unpolarized ones evaluated in [18, 81].

Once the subtracted quantities are included we can write

dσ

dxdQ2d2qT
=

σ0(x, Q)

xs
H2(Q, µ) (7.20)

×
∫ d2b

(2π)2 eib·qT Fi←h(x, Q, b, µ, ζA)J ⊥j (ecut, Q, zcut, b; µ, ζB) .

Finally we observe that using monte-carlo simulations (particularly PYTHIA 8 [147,
148]) most of the events fall in the kinematic regime

Q� Qzcut � qT ∼ Q
√

ecut . (7.21)

An important consequence of the jet function refactorization in eq. (7.9) is that the
transverse momentum dependent elements decouple from the jet mass elements.
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FIGURE 7.4: LEFT: The normalized cross sections for different values
of the jet mass cutoff parameter ecut. We also include the correspond-
ing ratios with respect to the case ecut = 0.01. RIGHT: The relatively
normalized cross section for fixed ecut = 0.01 and for different value
of the jet radius R. The corresponding ratios are with respect to R = 1.

This suggests that, as long as we remain within the hierarchy of eq. (7.21), then the
exact mass cutoff on the invariant mass will only influence the overall normaliza-
tion and not the shape of the TMD distribution. We test this observation against
the monte-carlo simulations by comparing the normalized TMD distributions for
various values of ecut. We show the results in fig. 7.4 (left). The jet algorithm is im-
plemented through FASTJET-3 [168]. In addition we note that as long as we measure
qT � Qzcut and for R ∼ 1 the shape and normalization of the cross section is inde-
pendent of the choice of R. We also demonstrate this with the help of simulations.
We simulate events at Q = 50 GeV and we analyze them for different values of
R & 1. We show the resulting distributions in fig. 7.4 (right). Note that for that plot
we preserve the relative normalizations of the curves.

7.3 Renormalization group evolution

7.3.1 Solution of renormalization group equations

The main quantity involved in the factorization procedure carried out in previous
section is the subtracted jet-TMD for which we have

µ
d

dµ
J ⊥(e, Q, zcut, b, µ, ζ) = γ

q
F(µ, ζ)J ⊥(e, Q, zcut, b, µ, ζ), (7.22)

ζ
d

dζ
J ⊥(e, Q, zcut, b, µ, ζ) = −Dq(µ, b)J ⊥(e, Q, zcut, b, µ, ζ), (7.23)

where on the r.h.s. we have considered just quark initiated jets and we have Fourier
transformed with respect to qT the jet functions appearing in eq. (7.7). Of course this
result recalls literally the standard TMD case.

However, because of the refactorization of J ⊥ (see eqs. (7.9-7.11)) this resum-
mation is not complete and large logarithms can still spoil the convergence of the
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perturbative series. Defining s as the variable conjugate to e in Laplace space (see
appendix C) and

G ∈
{

Ssub
sc (Qzcut, b), Scs(s, Qzcut), J(s, Q)

}
; Ssub

sc (Qzcut, b) =
√

S(b)Ssc(Qzcut, b) ,

(7.24)

we have
µ

d
dµ

G = γG(µ, αs)G =
(

ΓG[αS]lm2
G
+ ∆γG[αS]

)
G, (7.25)

which are formally similar to the TMD case. Note that lm2
G
= ln

(
µ2/m2

G
)

and the
values of mG are reported in table 7.1. The only function in G which has a rapid-
ity evolution equation is Ssub

sc and it scales like J ⊥ in eq. (7.23). The cusp part of
eq. (7.25) is proportional to the standard cusp anomalous dimension

ΓG
µ [as] =

ΓG
0

Γcusp
0

Γcusp =
ΓG

0

Γcusp
0

∞

∑
n=0

a1+n
s Γcusp

n , (7.26)

For the non-cusp part we have also a perturbative expansion

∆γG[αS] =
∞

∑
n=0

a1+n
s γG

n . (7.27)

The anomalous dimensions that enter in the calculations for each case are given in
the appendix A. The evolution in rapidity and factorization scales of all quantities
can be implemented using the the ζ-prescription whose general framework can be
found in ref. [16] and sketched in chapter 2 of this thesis.

The solution to the RGE in eq. (7.25) is

G(µ) = UG(µ, µ0)G(µ0) , UG(µ, µ0) = exp (KG(µ, µ0))

(
µ0

mG

)2 ωG(µ,µ0)

, (7.28)

with

KG(µ, µ0) = 2
∫ α(µ)

α(µ0)

dα

β[α]
ΓG[α]

∫ α

α(µ0)

dα′

β[α′]
+
∫ α(µ)

α(µ0)

dα

β[α]
∆γG[α], (7.29)

ωG(µ, µ0) =
∫ α(µ)

α(µ0)

dα

β[α]
ΓG[α]. (7.30)

Since we are interested only in the NLL and NLL’ result we may keep only the first
two terms in the perturbative expansion of the cusp part (i.e., ΓG

0 , Γcusp
0 , and Γcusp

1 )
and only the first term form the non-cusp part (γG

0 ). Performing this expansion we
get,

KG(µ, µ0) = −
γG

0
2β0

lnr− 2πΓG
0

(β0)2

[ r− 1− rlnr
αs(µ)

+

(
Γcusp

1

Γcusp
0
− β1

β0

)
1− r + lnr

4π
+

β1

8πβ0
ln2r

]
,

(7.31)

ωG(µ, µ0) = −
ΓG

0
2β0

[
lnr +

(
Γ1

cusp

Γ0
cusp
− β1

β0

)
αs(µ0)

4π
(r− 1)

]
, (7.32)
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Function ΓG
0 γG

0 mG

Hij −4(Ci + Cj̄) −4γ̄i(Ci + Cj) Q

Scs −8Ci 0 Q
√

zcut/s̃

Ji 8Ci 4γ̄iCi Q/
√

s̃

Bi/h 0 4γ̄iCi + γ0
sc 0

S 4(Ci + Cj) 0 νs

S⊥sc 0 γsc
0 n.a

TABLE 7.1: Anomalous dimensions coefficients for up to NLL accu-
racy: γ̄q = 3/2, γ̄g = β0/(2CA), and γsc

0 = 2αs(µ)CF/πln(ν/Qzcut).

where r = α(µ)/α(µ0) and βn are the coefficients of the QCD β-function,

β[αs] = µ
dαs

dµ
= −2αs

∞

∑
n=0

( αs

4π

)1+n
βn . (7.33)

The expressions for all ingredients necessary to perform the evolution of any func-
tion that appears in the factorization theorems we considered in this paper are given
in tab. 7.1. The two loop non-cusp anomalous dimensions we need to NNLL RGEs
are given by ref. [197]

1
2

γs
1 + γsc

1 =
Ci

2

[
34.01CF +

(1616
27
− 56ζ3 − 9.31

)
CA −

(448
27

+ 14.04
)

n f TR −
2
3

π2β0

]
,

γcs
1 = Ci

[
− 17.00CF +

(
− 55.20 +

22
9

π2 + 56ζ3

)
CA +

(
23.61− 8

9
π2
)

n f TR

]

γ
q
1 = CF

[(
3− 4π2 + 48ζ3

)
CF +

(1769
27

+
22
9

π2 − 80ζ3

)
CA

+
(
− 484

27
− 8

9
π2
)

n f TR

]
,

γs
1 + γsc

1 + γB
1 = Ci

[(
20− 4π2 + 48ζ3

)
CF +

(
60.87 +

22
9

π2 − 80ζ3

)
CA

+
(
− 24.94− 8

9
π2
)

n f TR

]
. (7.34)

The resummation of potentially large logarithms inside the jet-TMD is done per-
forming the evolution in Laplace space and then integrating such that we get the
cumulant before we take the inverse transform. In this way we resum logarithms
which are associated to ecut. All this works as follows. Starting from eq. (7.17), then
taking the Laplace and consecutively the inverse transform with respect to e we find

Ji(ecut, Q, zcut; µ) =
1

2πi

∫ γ+i∞

γ−i∞
ds

exp(secut)− 1
s

Scs,i(s, Q, zcut; µ)Ji(s, Q; µ) . (7.35)

Then solving the RGE equations for the collinear-soft and jet function as described
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before, and performing the last remaining integral over the Laplace conjugate vari-
able s we get

Ji(ecut, Q, zcut; µ) = exp
(

Kcs(µ, µcs)+KJ(µ, µJ)
)

Scs,i(Lcs → ∂ωcs ; µcs)Ji(LJ → ∂ωJ ; µJ)( µcs

Q
√

zcutecut

)2ωcs(µ,µcs)( µJ

Q
√

ecut

)2ωJ(µ,µJ) exp(γE(ωcs(µ, µcs) + ωJ(µ, µJ)))

Γ(1−ωcs(µ, µcs)−ωJ(µ, µJ))
. (7.36)

This is our final result for the resummed cumulant jet function. The order of loga-
rithmic accuracy is then determined by the order of which the kernels KF, ωF, and
the fixed order collinear-soft and jet functions are evaluated. At this stage of the cal-
culation the canonical scales, µcs and µJ , are not yet fixed. This allows us to choose
the scales such that potentially large logarithms are minimized in momentum space.
From the above is clear that the canonical choice of scales such as the fixed order
logarithms are minimized are,

µcs = Q
√

zcutecut , µJ = Q
√

ecut . (7.37)

In numerical applications one needs to perform variations around these scales in
order to obtain an estimate of the theoretical uncertainty.

7.4 Operator definitions and one-loop results

In this section we give the operator definitions of the factorization elements dis-
cussed in section 7.2 and their NLO expansions. From those we determine the renor-
malization functions, group equations, and corresponding anomalous dimensions.
Many of the results presented here are already known and found in literature.

7.4.1 Jet functions

The quark and gluon jet function definitions, one loop calculation, and the corre-
sponding Laplace transforms can be found in ref. [197]. Here we summarize their
results. The quark jet function is given by,

Jq(e, Q) =
(2π)3

Nc
tr 〈 /̄n

2
χn(0)δ(Q−P−)δ(2)(P⊥)δ(e− E)χ̄n〉 , (7.38)

and the gluon

Jq(e, Q) =
(2π)3

Nc
tr 〈 /̄n

2
Bµ

n⊥(0)δ(Q−P−)δ(2)(P⊥)δ(e− E)Bn⊥µ〉 , (7.39)

where Nc is the number of colors and Bµ
n⊥ is the gauge invariant gluon building

block of the effective field theory,

Bµ
n⊥ =

1
g
[W†

n (Pµ
⊥ + gAµ

n,⊥)Wn] . (7.40)

As demonstrated earlier when working with the cumulant distribution (i.e., when
integrating out to ecut) it is useful to work in Laplace space. The renormalized
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groomed jet function up to NLO contributions in Laplace space is given by

Ji(s, Q; µ) = 1 +
αsCi

2π

{
L2

J + γ̄iLJ −
π2

3
+ ci

}
+O(α2

s ) , (7.41)

where for quark initiated jets we have

Cq = CF =
N2

c − 1
2Nc

, γ̄q =
3
2

, cq =
7
2

, (7.42)

and for gluon initiated jets we have

Cg = CA = Nc , γ̄g =
β0

2CA
, cg =

67
18
− 10

9
n f TR

CA
, (7.43)

The logarithms, LJ that appear in eq. (7.41) and the corresponding one loop anoma-
lous dimensions are

LJ = ln
(µ2s̃

Q2

)
, γJ =

αsCi

π

(
2LJ + γ̄i

)
+O(α2

s ) . (7.44)

The anomalous dimension is defined through the RG equation satisfied by renor-
malized jet functions. In Laplace space this is

d
dlnµ

Ji(s, Q; µ) = γJ(s, Q; µ)Ji(s, Q; µ) . (7.45)

In momentum space the above equation is written as convolution (in the invariant
mass variable e), of the anomalous dimension and the renormalized jet function.

7.4.2 Collinear-soft function

The operator definition of the invariant equation mass measurement collinear soft
function is given by

Scs(e, Qzcut) =
1

NR
tr〈T

(
U†

nWt

)
MSD

e T̄
(

W†
t Un

)
〉 , (7.46)

whereMSD
e is the invariant measurement function,

MSD
e = δ (e− (1−ΘSD) E) . (7.47)

Here we dropped the jet flavor (quark/anti-quark or gluon) for simplicity of nota-
tion and the normalization constant NR is simply the size of the representation for
SU(Nc) of the Wt and Un Wilson lines. For quark jets (fundamental representation)
we have NR = Nc and for gluon jets (adjoint representation) we have NR = N2

c − 1.
At NLO the bare collinear soft function is given by

Scs,bare(e, Qzcut) = δ(e) (7.48)

+
αsCi

π

{
− 1

ε2 δ(e) +
1
ε
L0(e, ξ)−L1(e, ξ) +

π2

12
δ(e)

}
+O(α2

s ) ,

where

ξ ≡ µ2

Q2zcut
. (7.49)
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Therefore we have for the renormalized function

Scs(e, Qzcut) = δ(e) +
αsCi

π

{
−L1(e, ξ) +

π2

12
δ(e)

}
+O(α2

s ) , (7.50)

where

Scs,bare(e, Qzcut) = Zcs ⊗ Scs(e, Qzcut) , (7.51)

with

Zcs(e) = δ(e) +
αsCi

π

{
− 1

ε2 δ(e) +
1
ε
L0(e, ξ)

}
+O(α2

s ) . (7.52)

In Laplace space for the renormalized collinear-soft function we get,

Scs(s, Qzcut; µ) = 1− αsCi

2π
L2

cs +O(α2
s ) , (7.53)

which satisfies the following RGE

d
dlnµ

Scs(s, Qzcut; µ) = γcs(s, µ)Scs(s, Qzcut; µ) . (7.54)

The logarithm Lcs and the corresponding anomalous dimension are

Lcs = ln(ξ s̃) , γcs(s, µ) = −2
αsCi

π
Lcs +O(α2

s ) . (7.55)

7.4.3 Soft function

The soft function that appears in the factorization theorems in eqs. (7.14, 7.18) is
defined in eq. (7.6) and it has been calculated in several schemes at higher orders in
QCD, as reported in sec. 7.2. Here we report a one loop expression using the analytic
regulator in momentum space,

Sbare = δ(2)(qT)+
αs(µ)Ci

π

{ 4
η

[
L0(q2

T, µ2)− 1
2ε

δ(2)(qT)
]
+

1
ε

[1
ε
− 2ln

( ν

µ

)]
δ(2)(qT)

+ 4L0(q2
T, µ2)ln

( ν

µ

)
− 2L1(q2

T, µ2)− π2

12
δ(2)(qT)

}
+O(α2

s ). (7.56)

The renormalized soft function, S, is defined through

Sbare = Z⊥s (µ, ν)⊗ S(µ, ν), (7.57)

and satisfies the following renormalization group equations

d
dlnµ

S(µ, ν) = γs(µ, ν)S(µ, ν) ,
d

dlnν
S(µ, ν) = γs

ν(µ, ν)⊗ S(µ, ν) . (7.58)

Therefore we find for the one-loop corresponding impact parameter space quantities

S(µ, ν) = 1 +
αs(µ)Ci

π

{
4ln
(µE

µ

)
ln
( ν

µ

)
− 2ln2

(µE

µ

)
− π2

12

}
+O(α2

s ) , (7.59)
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(a) virtual gluon (b) real gluon

FIGURE 7.5: The order O(αs) diagrams that contribute to the soft-
collinear function.

Z⊥s (µ, ν) = 1 +
αs(µ)Ci

π

{ 4
η

[
ln
(µE

µ

)
− 1

2ε

]
+

1
ε

[1
ε
− 2ln

( ν

µ

)]}
+O(α2

s ) , (7.60)

with

γs(µ, ν) = −4
αs(µ)Ci

π
ln
( ν

µ

)
+O(α2

s ) , γs
ν(µ, ν) = 4

αs(µ)Ci

π
ln
(µE

µ

)
+O(α2

s ) .(7.61)

The rapidity and renormalization scales used to produce our result are fixed us-
ing the ζ-prescription [16] adapted for this case. Later in section 7.5 we give a de-
scription of how one can use the rapidity regulated objects that have ν dependence
to construct the subtracted rapidity divergences free objects but yet keep trace of the
rapidity logs using the ζ parameter.

7.4.4 Soft-collinear function

The soft-collinear function is defined by the matrix element

S⊥sc(Qzcut) =
1

NR
tr〈T

(
U†

nWt

)
MSD
⊥ T̄

(
W†

t Un

)
〉 , (7.62)

and the groomed jet measurement function,MSD
⊥ is given in terms of the label mo-

mentum operator, P ,

MSD
⊥ = ΘSD × δ2 (qT −ΘSDP⊥) , (7.63)

where ΘSD denotes the soft drop groomer. The collinear-soft modes only contribute
to the invariant mass measurement if they pass soft-drop, which is implemented
by the ΘSD term. The NLO calculation involves one real and one virtual diagram
shown in fig. 7.5. While the virtual diagram is scaleless. The diagram with a real
gluon needs to be integrated over the phase-space of soft gluon. This then yields
non-vanishing contribution from when the soft gluon fails the grooming,

S⊥sc,NLO(Qzcut) = 4g2Ciµ̃
2ε νη

∫ ddk
(2π)d−1

δ(k2) δ(2)(qT − k⊥)
k+ (k−)1+η

θ(Qzcut − k−) . (7.64)

Performing the integrals we find for the bare quantity

S⊥sc,bare(Qzcut) = δ(2)(qT) +
αsCi

π

{
− 2

η

[
L0(q2

T, µ2)− 1
2ε

δ(2)(qT)
]

(7.65)
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+
1
ε

ln
( ν

Qzcut

)
δ(2)(qT)− 2ln

( ν

Qzcut

)
L0(q2

T, µ2)
}
+O(α2

s ) ,

and for the renormalized quantity, S⊥sc,(Qzcut; µ, ν) we have

S⊥sc,bare(Qzcut) = Z⊥sc(µ, ν)⊗ S⊥sc(Qzcut; µ, ν) , (7.66)

and satisfies the following renormalization group equations

d
dlnν

S⊥sc(µ, ν) = γsc
ν (µ, ν)⊗ S⊥sc(µ, ν) ,

d
dlnµ

S⊥sc(µ, ν) = γsc(µ, ν)S⊥sc(µ, ν) , (7.67)

where the Qzcut dependence is suppressed to improve readability. In MS scheme the
corresponding Fourier transform can be obtained using eq. (C.5)

S̃⊥sc(Qzcut; µ, ν) = 1 +
αsCi

π

{
− 2ln

( ν

Qzcut

)
ln
(µE

µ

)}
+O(α2

s ) , (7.68)

Z̃⊥sc(µ, ν) = 1 +
αsCi

π

{
− 2

η

[
ln
(µE

µ

)
− 1

2ε

]
+

1
ε

ln
( ν

Qzcut

)}
+O(α2

s ) , (7.69)

and thus for the one-one-loop anomalous dimensions we get

γsc
ν (µ, ν) = −2

αs(µ)Ci

π
ln
(µE

µ

)
+O(α2

s ) (7.70)

γsc(µ, ν) = 2
αs(µ)CF

π
ln
( ν

Qzcut

)
+O(α2

s ). (7.71)

7.5 The connection between ζ-parameter and rapidity regu-
lator

In the standard EFT approach one used the rapidity renormalization group (RRG)
equations in order to resum large logarithms at the level of individual rapidity reg-
ulated terms [14, 49]. A more recent approach for performing the resummation of
large logarithms in the TMD evolution, known as ζ-prescription, was introduced in
ref. [16] and scketched in section 2. Here we rewrite the fixed order results using the
rapidity regulator in the past sections in the form appropriate for implementing the
ζ-prescription. In the framework of ref. [16] one works with the rapidity divergent
free quantity,

Ssub
sc (b; µ, ζ) ≡

√
S⊥2 (b; µ, νs) S⊥sc(b, Qzcut; µ, νsc) , (7.72)

where we have explicitly show the dependence on the rapidity regulator parameters
νs and νsc. In the RRG approach this combination does not acquire rapidity evolution
thus here in order to establish the rapidity evolution we fix the rapidity scales at
two different values. Particularly we evaluate the soft-collinear rapidity scale at its
canonical value, νsc = Qzcut, and we allow for the corresponding soft scale to float
through a parameter ζ: νs =

√
ζ.Note that this is not a unique choice of scales since

any choice for which νs/νsc =
√

ζ/(Qzcut) will give the same result. With this choice
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of scales we have,

Ssub
sc (b; µ, ζ) = 1 +

αs(µ)Ci

2π

{
2ln
(µE

µ

)
ln
( ζ

µ2

)
− 2ln2

(µE

µ

)
− π2

12

}
+O(α2

s ) , (7.73)

and according to the notation of eqs. (7.22, 7.23) satisfies the following equations

µ2 d
dµ2 Ssub

sc (b; µ, ζ) =
1
2

γsc/sub(µ, ζ)Ssub
sc (b; µ, ζ) , (7.74)

ζ
d

dζ
Ssub

sc (b; µ, ζ) = −D(µ)Ssub
sc (b; µ, ζ) . (7.75)

Its easy to show that the anomalous dimensions γsc/sub and D are related to the
RG and RRG anomalous dimensions of the global soft and soft-collinear function as
follows,

γsc/sub(µ, ζ) =
1
2

γs + γsc = Γcusp[αs]ln
(µ2

ζ

)
+

1
2

∆γs[αs] + ∆γsc[αs] , (7.76)

and
D(µ) = Γcusp[αs]ln

( µ

µE

)
− 1

4
∆γs

ν[αs] , (7.77)

where

∆γs
ν = −

(αs(µ)

4π

)2
Ci

[(128
9
− 56ζ3

)
CA +

112
9

β0

]
+O(α3

s ). (7.78)

It is easy to confirm by looking the above equations that the anomalous dimensions
γsc/sub and D satisfy the following differential equations,

d
dlnζ

γsc/sub(µ, ζ) = −Γcusp ,
d

dlnµ
D(µ) = +Γcusp . (7.79)

Also comparing against the notation of eq. (7.25) we see that the non-cusp part,
∆γsc/sub, of the anomalous dimension γsc/sub is a linear combination of the corre-
sponding non-cusp pieces of the global soft and soft-collinear functions. Particu-
larly:

∆γsc/sub(µ) =
(1

2
∆γs[αs(µ)] + ∆γsc[αs(µ)]

)
, (7.80)

and this statement is true to all orders in perturbative expansion.

7.6 Numerical results

7.6.1 Numerical results for e+e−

In this section, we provide the results of our calculation for e+e− → 2 jets computed
up to NNLL accuracy. The implementation necessarily needs a choice for the ra-
pidity scales and we have done it using the ζ-prescription as described in ref. [16]
and adapting the code artemide to the present case. This consisted of perform-
ing the evolution of the transverse momentum dependent components within the
artemide framework, while for all other scales not involved in the rapidity evolu-
tion, i.e., the hard and jet functions we applied the virtuality evolution presented in
section 7.3.1.
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There are some important modifications to the ζ-prescription framework for our
case which affect the numerics. One of this is that now ζAζB ∼ Q4z4

cut compared to
the di-hadron decorrelation case where ζAζB ∼ Q4. This means that the effective
hard scale to which the distributions are sensitive is lower. Because the TMD factor-
ization is valid when qT is much lower than the hard scale of the process, one needs
that the product Qzcut be sufficiently high. In our plots we have considered the case
qT . Qzcut. Then the evolution of the jet-TMD given in eq. (7.25) is also slightly dif-
ferent from the standard hadron TMD, although the changes are implemented easily
in the artemide code.
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FIGURE 7.6: Comparison of the NLL result against the partonic
shower of PYTHIA 8 for R = 1 and ecut = 0.01 for two different center

of mass energies, LEFT: 50 GeV, RIGHT: 100 GeV.

In fig. 7.6 we compare our analytic result for NLL cross section (normalized)
against PYTHIA simulations for Q = 50 and 100 GeV. For the purposes of com-
parison we turn hadronization off in the simulation and we compare against our
purely perturbative result. The perturbative calculation depends on the parameter
BNP which in practice implements a cutoff in the inverse Laplace transform such
that the soft scale, that behaves as 1/b, does not hit the Landau pole. As long as
we choose this parameter such that convergence of the integral is reached before the
cutoff, then the perturbative result is not much sensitive to the value of BNP. Al-
though, as we now discuss, the theoretical uncertainty of the cross section for these
energies at NLL is quite large, we find very good agreement with the simulations
for the canonical choice of scales.

In fig. 7.7 we give the NNLL results including a theoretical uncertainty band.
We compare against the NLL cross section and although the error bands seem to
be larger than what is typically expected we can clearly see that the result conver-
gences and the theory error decreases by approximately factor of two. To estimate
the theoretical uncertainty we first vary all the factorization scales of a factor 2 (0.5)
around their canonical value, then we separately take the envelope of the variations
involved in rapidity evolution, µ, µsc, and of the ones involved only in the virtu-
ality evolution of the jet function, µcs, µJ . The final error bands we show are the
quadrature of the two contributions. The reason for this prescription is that rapidity
and virtuality evolutions are in principle uncorrelated. The uncertainty is somewhat
larger than what one might expect for a NNLL calculation, and is practically dom-
inated by the variations in the jet function. This is attributed to the small values
of the collinear-soft scale, µcs ∼ Q

√
ecutzcut, which approaches the non-perturbative

regime even for values of Q ∼ mZ. One might attempt to reduce the uncertainty by
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FIGURE 7.7: Transverse momentum de-correlation for e+e− → dijets
with center of mass energy at the Z mass.

increasing either ecut or zcut, but caution is needed not to invalidate the correspond-
ing hierarchy. We will see later that when only the mass of one jet is measured (e.g.,
in DIS or hadron-jet decorrelation) then the error band decreases significantly.

7.6.2 Numerical results for DIS

In this section we use the factorization theorem in eq. (7.18) to obtain numerical
results for the TMD spectrum of groomed jets in DIS process. Our analysis is done
for two center-of-mass energies, EIC:

√
s = 100 GeV and HERA: 318 GeV. For both

energies we integrate over y = Q2/(xs) and Q =
√
−q2 in the regions 0.01 < y <

0.95 and 40 < Q < 50 GeV. For the TMDPDFs we use the fits obtained from Drell-
Yan data [140] with the use of ζ-prescription. In fig. 7.8 we show our results for
NLL and NNLL accuracies for the two center of mass choices, including theoretical
uncertainties. We estimate the theoretical scale variations as described in sec. 7.6.1.
The groomed jet parameters that we choose are the same as in the di-lepton case: β =
0, zcut = 0.2, and ecut = 0.01. As before we find good convergence between the NLL
and NNLL result. The absolute value of theoretical scale variation is improvable
with higher logarithmic accuracy (NNLL-prime or perhaps N3LL), which needs the
explicit calculation of several jet hadronic matrix elements at two loops.
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FIGURE 7.8: The NLL and NNLL TMD spectra for groomed jets in
DIS for EIC (left:

√
100 GeV) and HERA (right:

√
s = 318 GeV)

kinematics. The cross section are integrated in y = Q2/(xs) and
Q =

√
−q2 (see details in the main text).
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FIGURE 7.9: The NNLL cross-section including modeling of the ini-
tial hadronic state effects fitted from Derll-Yan processes using two

different scenes: fixed and variable BNP.

We further investigate the size of the uncertainty due to the hadronic initial state
and the non-perturbative effects induced by TMD evolution. We do that by varying
the model parameters as constrained by the phenomenological analysis in ref. [140]
for our NNLL result. We consider both variable and fixed BNP = 2.5 GeV−1 (for
details on the difference of the two schemes see [140]). We find that the effects (for
our kinematics) are particularly small, of the order of ∼ 5%, which is much smaller
than the theoretical uncertainties. This suggests that we need a better control over
the theoretical uncertainties in order to further constrain TMD distributions from
groomed jets in DIS. As mentioned earlier the uncertainty can be mitigated with
higher logarithmic accuracy or by choosing larger values of ecut, still compatible
with factorization. This, will require to treat the region III shown in fig. 7.3. For
this reason it is interesting to investigate the range of values of ecut for which the
energetic wide angle radiation is avoided.

7.7 Hadronization effects

One of the goals of this thesis is to study the non-perturbative effects associated with
TMD distributions, in this case the TMDPDF. Usually in any experiment, there are
multiple sources of non-perturbative corrections associated with both the initial and
final states. To have access to a specific source of corrections, its therefore necessary
to separate out the pieces of interest from the uninteresting ones, which in this case
constitute the final state hadronization corrections. To access the TMD then, we must
already have a good extraction of the rest of the non-perturbative effects. This is the
reason why we consider distinct experiments in this chapter. The idea, as we shall
demonstrate, is that the final state hadronization corrections are exactly the same in
the two experiments. The e+e− → 2 jets case can be used to extract out all the final
state hadronization corrections, which can then be used for DIS.

For the e+e− observable, the factorization takes the form in eq. (7.7). Then, we
can study the non-perturbative corrections for each collinear object J ⊥i , which by
symmetry, are the same for the two objects. If we now look at the factorization
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for DIS, eq. (7.20), the key point to note is that J ⊥j (ecut, Q, zcut, b; µ, ζB) is the same
object that appears in the the case of e+e−, while Fi←h is just the TMDPDF. Thus it
now becomes possible to exclusively access the complete TMDPDF. We now wish
to systematically list the sources of the non-perturbative corrections associated with
each factorized function that appear in our cross section.

In order to use jets it is important to consider all the non-perturbative effects for
the case of our observables and in particular the ones coming from the implementa-
tion of (groomed) jets. In fig. 7.1 we have shown that such corrections are expected
to be particularly small and we provide here a discussion about their origin from a
theory perspective. We have two measurements on the jet: the jet mass, which is
ultimately integrated over some interval and acts as a normalization, and the trans-
verse momentum (p⊥) of the radiation that is groomed away. Since we are interested
in the shape of the qT spectrum, we will only consider the non-perturbative effects
in cross sections sensitive to it. We are working in the region II of EFT and we are
going to discuss how non-perturbative effect arise when we increase the value of
qT (that is, we discuss here the non-perturbative corrections in the small-b limit,
where b ≡ |b|). Our factorization theorem has four functions in the IR, the collinear,
the global soft, the collinear-soft, the soft-collinear functions, see eqs. (7.9-7.10), and
all of them can potentially contribute to non-perturbative power corrections. Even
though the collinear and collinear-soft functions do not contribute to qT perturba-
tively, they can still give a non-perturbative power correction to the qT spectrum.
There are also power corrections of similar magnitude in this region due to the fac-
torization of the sc function from the cs, but they are perturbative in nature and can
be handled by making a smooth transition to region III.

There are two types of non-perturbative corrections that we will consider here.
We call shift non-perturbative effects the ones which are not altered by the pass and
fail procedure of the grooming conditions. An example is the global soft function
that is independent of the grooming procedure and it is common to other TMD anal-
ysis. We refer to this kind of correction as shift non-perturbative effects since, as we
will see later, in the simplest case it generates a shift in the TMD spectrum. The
second correction instead is related to the grooming procedure with cs and sc soft
functions and the jet shape function. In this case non-perturbative effects are driven
by the so called “non-perturbative particles” and it is obviously only possible when
perturbative modes are on the boundary of passing and failing soft-drop. We refer
to these contributions as boundary non-perturbative effects.

7.7.1 Shift non-perturbative correction

For the case of shift correction, we assume that the soft-drop condition remains unal-
tered by any non-perturbative emissions. Now consider the contribution to the shift
correction by each function in turn.

The non-perturbative part of the global soft function defined in eq. (7.6) has been
studied in the literature in several frameworks [65, 198–202]. Up to O(b4) terms it
can be written as

〈0|T[SnS†
n̄(b)]T̄[Sn̄S†

n(0)]|0〉 = S̃(b) + b2 C̄(s)
i (b)〈0|Oi|0〉 , (7.81)

where Oi is the complete set of local operators that have the same quantum numbers
as the soft function. Summation over i is implied. Here S̃ is the perturbative calcu-
lable part of the soft function and it contains rapidity and UV divergences as well as
the rest of other terms in the equation. We can pull this out as a common factor to
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write

〈0|T[SnS†
n̄(b)]T̄[Sn̄S†

n(0)]|0〉 = S̃(b)
(

1 + b2 C(s)
i (b)〈0|Oi|0〉

)
. (7.82)

To maintain the UV scale invariance of the cross section, we need that the second
term in the brackets be independent of UV divergences. However additional ra-
pidity divergences may be present in the non-perturbative matrix element on the
r.h.s. that cancel with the corresponding rapidity divergence arising in the non-
perturbative power corrections to the collinear or soft-collinear functions. This is
related to the origin of the non-perturbative correction to the rapidity anomalous
dimension and it is usually included also in TMD analysis.

We can perform a similar analysis for the soft-collinear (sc) function. When an
sc (perturbative) mode passes soft-drop, then it does not contribute to qT since it
becomes part of the groomed jet. But since it has a large + component, it drives
the groomed jet mass outside the region of measurement and hence such events are
dropped. Therefore, we only need to consider the case when the sc mode fails soft
drop. In this case the non-perturbative emission contributes to the qT measurement
if it lies outside the groomed jet. Given the angular scaling of this mode, which is
much larger than the collinear-soft (cs) and collinear modes that form the groomed
jet, the phase space region available is effectively unconstrained (this is also the rea-
son why we ignore any phase space constraints on the soft non-perturbative emis-
sions). Hence the correction in this case will also be a simple shift type and is imple-
mented in the same manner as in the case of the global soft function. As before, we
can pull out a common perturbative factor (that includes the perturbative soft drop
condition), and write

S̃⊥sc(b, zcut)|hadr. = S̃⊥sc(b, Qzcut)
(

1 + b2C(sc)
i (b, zcut) 〈0|Oi|0〉

)
. (7.83)

Notice that now all the zcut dependence of the power correction is included in the
perturbative calculable coefficient C(sc)(b, zcut), which multiplies the same non-perturbative
power correction present also in the global soft function case. The calculation of
C(s), C(sc) is doable perturbatively, although this consideration goes beyond the
present work.

We can then combine all shift corrections that have an unconstrained phase space
for non-perturbative emissions together so that in b space we have a multiplicative
correction to the perturbative cross section of the form

SS⊥sc|hadr. = (1 + b2(Ωs + Ωsc))SS⊥sc|pert. , (7.84)

where Ωs is the same as the TMD case and Ωs is a single parameter to be fitted
from e+e− experiments. It is clear that, in the event of non-trivial C{(s), (sc)}, Ωs, sc can
have a mild (logarithmic) dependence on qT so that this model will work well over
a limited range of qT which may be sufficient for most cases.

We now consider the shift corrections coming from the collinear-soft and the
collinear functions. Since these modes determine the region of the groomed jet, we
can consider two possible scenarios which give a non-trivial power correction.

1. Collinear-soft (cs) particles pass soft-drop:
If the cs particles pass the soft-drop then any non-perturbative emission scal-
ing as the cs mode can contribute to qT when it lies outside the groomed jet.
In this case, we need to calculate the catchment area of the groomed jet that
is determined by the angular distance of the cs subject that passed soft-drop.
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As was pointed out in [188], it is possible at NLL, using a coherent branching
formalism, to factorize a purely non-perturbative function from all the calcu-
lable perturbative effects (including grooming). A detailed analysis of these
corrections will be presented in a future work.

Phasespace for 
cs-NP emissions

(a) (b) Phasespace for 
collinear-NP emissions

cs cs

collinearcollinear
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FIGURE 7.10: (a) When the collinear-soft (cs) function passes soft
drop, the non-perturbative (NP) emissions, with the angular scaling
of the cs mode , with a virtuality ΛQCD must fall in the phase space
shown by the blue shaded area in order to contribute to qT . (b) When
the cs function fails soft drop, the NP emission with the angular scal-
ing of the collinear modes must not be clustered with the collinear

sub-jet in order to contribute to qT .

2. Collinear-soft particles fail soft-drop:
In this case collinear modes are the only ones that pass soft-drop, so that any
non-perturbative mode scaling as cs has an unconstrained phase space, by the
same logic as for the soft and the sc functions, so that we get a simple shift
correction of the same form as the soft, sc and TMD collinear functions.1 There
is another possible interesting correction that will come from the collinear NP
emission that lies outside the catchment region that is now determined by the
collinear modes alone.

In this case there are two ways of approaching the problem. In one, we con-
sider separating out the non-perturbative corrections before factorizing the cs
and collinear modes. The other way is to realize that in the case where cs
fails soft-drop, the entire groomed jet mass measurement comes from the jet
function alone and using this condition we can define a catchment area for
the collinear non-perturbative emissions without explicitly accessing any infor-
mation from the cs function, so that the factorization between the collinear and
cs modes is maintained. In this case, we can do a diagrammatic analysis, sim-
ilar to [188], for the collinear function, to check if it is possible to factorize the
non-perturbative effects from the perturbative. We leave this work for the fu-
ture.

1Technically in this case the perturbative value of p⊥cs would give a larger correction. However,
this correction can eventually be handled by transitioning to a new EFT in which the sc and cs func-
tions merge together. For now we will ignore them and only keep track of the other non-perturbative
corrections.
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7.7.2 Boundary corrections

We now consider boundary corrections that leave the qT measurement function un-
changed but only require an expansion of the soft-drop condition in q−/Q. The func-
tions that do not explicitly have a soft-drop condition can then be ignored, which
leaves us with only the sc and cs functions. We can follow the same line of reasoning
as in [188].

(a) Phasespace for loss 
of sc-NP emissions
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(b) Phasespace for gain 
of sc-NP emissions
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collinear+cs

FIGURE 7.11: (a) The case where the sc subjet loses an NP emission
(b) The case when the sc subjet gains an NP emission

1. sc emissions
In this case we demand that either an addition or removal of the non-perturbative
emission cause the soft-collinear function to fail soft-drop. Otherwise it will
drive up the jet mass outside the measured range. If we consider a non-
perturbative emission qµ along with a perturbative momentum pµ, then we
can expand out the soft-drop condition in the non-perturbative momentum.
We can write the complete measurement function as

Θp±q = Θ
(

p + q
EJ
− zcut

)
δ2(p⊥sc − p⊥ ∓ qT) , (7.85)

where p is the momentum of the perturbative sc sub-jet while qµ is the momen-
tum of the non-perturbative emission. The ± signs indicate whether the per-
turbative cs subject gains or loses a non-perturbative momentum after hadroniza-
tion. In the case where the sc sub-jet gains a non-perturbative emission, the
measurement expanded to leading order looks like

Θp+q ≈ Θp
sdδ2(p⊥sc − p⊥) +

q−

EJ
Θb.c.(θq, θp, ∆φ)δ

p
sd

[
δ2(p⊥sc − p⊥)

]
, (7.86)

with

Θp
sd ≡ Θ

(
p

EJ
− zcut

)
, δ

p
sd ≡ δ

(
p

EJ
− zcut

)
. (7.87)
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In this case, the non-perturbative emission qµ gets clustered with the sc subject.
Note that we have expanded qi from the p⊥ measurement since we are work-
ing at leading order. The phase-space constraint, Θb.c., gives the condition that
ensures qµ gets clustered with the sc part.

The second case is when qµ is emitted off pµ but it is not clustered with the
sc jet. The short distance condition now acts on p− q, which can then be ex-
panded out to give

Θp−q ≈ Θp
sdδ2(p⊥sc − p⊥)−

q−

EJ
Θ̄b.c.(θq, θp, ∆φ)δ

p
sd

[
δ2(p⊥sc − p⊥)

]
, (7.88)

Θ̄b.c. is the phase space region for q so that it falls outside the sc subjet. We can
see that the leading power correction scales as q−/EJ , which, given the angular
scaling of the sc mode, scales as qTzcut/Q. Given a typical value of zcut ∼ 0.1,
this factor is then comparable to the q2

T/Q2 correction that we get from the shift
terms.

2. Soft -Collinear function
We expect that since perturbatively this function does not contribute to qT, the
boundary correction should have no effect on the qT measurement.

We now have listed out all the possible NP corrections to the transverse momen-
tum measurement.
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Chapter 8

Conclusions

“We are all apprentices in a craft where no one ever becomes a master.”

Ernest Hemingway

In this thesis we investigated how the extraction of transverse momentum distri-
butions from experiments can be improved and how these methods can be applied
to future experiments as the Electron-Ion Collider (EIC).

Part I of this thesis was devoted to study transverse momentum distributions
(TMDs) with different polarizations and their matching over their corresponding in-
tegrated PDFs in perturbation theory. These TMDs are crucial objects to study pro-
cesses with polarized hadrons that will be relevant in future experiments as EIC [203]
or LHCSpin [204]. Increasing the perturbative order of the matching coefficients of
the polarized TMD distributions at least up to the same order that their unpolarized
counterparts is important in order to decrease the theoretical errors and improve
the extraction of nonperturbative information from the experiments. A fundamental
tool to understand theoretically cross sections with hadronic components are the fac-
torization theorems derived using the tools provided by Soft-Collinear Effective The-
ory (SCET) discussed in chapter 1 that allow to obtain a proper definition of the TMD
distributions as we summarized in chapter 2.

Chapter 3 completed the definition of the TMD given in chapter 2 introducing the
dependence on the polarization. Also, the renormalization of the TMD operator was
discussed in details, reinforcing the idea that it is independent on the polarization
of the operator. A complete discussion on the matching of TMD distributions to the
twist-2 integrated distributions in the regime of small-b (or equivalently, large-qT)
was provided. To perform the matching we have evaluated the operator product
expansion (OPE) of a generic TMD operator near the light-cone.

The evaluation of OPE for a generic TMD operator revealed the condition which
should be satisfied in order match the rapidity divergences of a TMD operator and
the leading order TMD soft factor. The conditions presented in eqs. (3.21, 3.23)
restrict the Dirac and Lorentz structure of the TMD operators. The TMD distribu-
tions whose operators meet these conditions, are known as TMD distributions of
leading dynamical twist (twist-2). In this way, we demonstrated that the next-to-
leading-dynamical-twist contributions to the TMD factorization theorem (i.e., the
power suppressed contributions to the TMD cross-section) with different Dirac or
Lorentz structures necessarily have a different structure of rapidity divergences.
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In chapter 4 the matching coefficients of the twist-2 parton distributions were
evaluated and they constitute the first original results of this thesis. The TMD dis-
tributions that have non-zero matching are helicity (g1L, gg

1L), transvesity (h1), pret-
zelosity (h⊥1T) and linearly polarized gluon (h⊥g

1 ) distributions (we do not take the
unpolarized TMD distribution into consideration because it has been considered in
many articles. The evaluation was performed using the same regularization as the
one used here can be found in [18]). Most part of the coefficient functions at NLO
were evaluated separately for quarks and gluons by different groups [77, 83]. We
agreed with their evaluations (taking into account that in ref. [83], a different renor-
malization scheme was used). In addition, we provided new results for transversely
polarized distributions and linearly polarized gluons up to NNLO.

First of all, the matching of the helicity distribution up to NLO was discussed.
We provided a discussion on the schemes of γ5 and εT-definition in dimensional
regularization, which had been neglected by previous authors and it is important
in order to perform a systematic study of helicity distribution. We have shown that
the definition of γ5 suggested by the popular Larin scheme [91] was not compati-
ble with the condition of the leading dynamical twist, and thus, it is inapplicable
in TMD calculations. We suggested an updated version of Larin scheme (Larin+

scheme eq. (4.19)), which supports the condition and has simpler properties than the
traditional one. Our calculation has been performed in Larin+ and HVBM [89, 90]
schemes. At NLO the difference between schemes arised only in the ε-suppressed
terms. We discussed about the normalization of the distributions and derive the fi-
nite renormalization constant (4.26) for TMD helicity distributions in both schemes.
The evaluation of the matching has been performed at finite ε. The ε-suppressed
terms, although do not contribute directly to NLO, contribute to higher perturbative
orders (see e.g. discussion in [18]).

We studied the twist-2 matching of transversity and pretzelosity (or quadrupole)
TMD distributions. We derived the matching coefficients for these distributions at
next-to-next-to-leading order (NNLO) in the strong coupling. We checked that the
renormalization of rapidity divergences worked exactly in the same way as for un-
polarized distributions, as it was predicted by the transverse momentum dependent
factorization theorem. The present calculation had a structure similar to the one of
the NNLO matching of unpolarized TMDs made in [18].

In the case of transversity, we considered both the TMDPDF and the TMDFF
cases. We found several analogies and identities between the matching coefficients
of transversity and unpolarized distributions, that can serve as a cross-check of both
results. The matching coefficients for transversity (see eqs. (4.39, 4.40, 4.41) and
eqs. (4.58, 4.59, 4.60)) can be readily used in phenomenological applications. A re-
cent review of the phenomenology of transversity in fragmentation can be found in
[107]. Our result is the first calculation of the NNLO matching for transversely polar-
ized TMD operator. To our knowledge the NLO matching coefficient for transversity
TMDFF (eq. 4.57)) is also given in this thesis for the first time. We stress that this is
also the first NNLO evaluation of the matching for a polarized TMD distribution.
Therefore, given the result of this work, the transversity TMD distribution is known
to the same perturbative order as unpolarized distributions. This fact is important
to establish phenomenologically the universality of TMD evolution.

The pretzelosity distribution has ε-suppressed matching coefficients up to NNLO.
This offers a natural explanation of the smallness of this distribution in phenomeno-
logical analyses [108]. We have found that the expected two-loop matching coef-
ficient is actually zero, despite the fact that the matrix element over free quark for
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pretzelosity distribution is non-zero. This is an unexpected result, since the analo-
gous quadrapole distribution in the gluon sector (namely linearly polarized TMD
gluon distribution) has a non-zero matching already at one-loop level. We have also
checked that the LO of the large-N f expansion (given by diagrams with an arbitrary
number of fermion bubble insertions, for details see [66]) also vanishes. Although
these facts do not demonstrate completely that the twist-2 part of pretzelosity is zero
at all orders in perturbation theory, certainly they are an evidence for this statement.
We conjecture that the pretzelosity distribution does not match the twist-2 distribu-
tion. Recently, this conjecture has been proved in ref. [114] and its non-zero matching
at twist-3 has been demonstrated. We performed the calculation of pretzelosity only
for the case of TMDPDF, but, we expect the same result for the TMDFF.

We closed this chapter showing the NNLO matching of the linearly polarized
gluon transverse momentum dependent parton distribution function (lpTMDPDF)
over the unpolarized PDF. Thanks to this calculation, lpTMDPDF can be considered
at the same level of theoretical accuracy as the unpolarized gluon TMDPDF [18,
81]. This distribution typically accompanies unpolarized gluon TMDPDF within a
TMD factorized cross-section and an interesting example is the factorization formula
for the Higgs-production cross-section, where these distributions enter in a plain
sum. For this reason, both distributions should be considered at the same order
of perturbative accuracy. In chapter 5 we apply the perturbative result obtained
to study the influence of the lpTMDPDF over the Higgs production cross section.
The module for the numerical evaluation of lpTMDPDF is added to the artemide
package that can be downloaded from [117].

The impact of NNLO correction for lpTMDPDF is very significant and practically
doubles the value of the function for moderate b. This fact should not be considered
very surprising given that LO term (a0

s -term) for lpTMDPDF vanishes. The relevance
of this effect in the Higgs cross section has been discussed in sec. 5.1 and it is sum-
marized in figs. 5.2-5.4. Unfortunately, at the moment we have not a reliable model
for the non-perturbative part of the gluon TMD distribution, and in this chapter, we
have adapted values for distributions extracted in refs. [66, 140]. A more detailed
study on the non-perturbative part of the gluon TMDPDF is certainly warranted in
the future (for work done in this sense see [205]).

In several papers, it has been suggested that unpolarized and linearly polarized
gluon TMDPDFs can be measured in association with heavy-quark production [133–
139]. We leave an analysis of these processes for future work because at the moment
we miss a full factorization theorem for these cases. Nevertheless, the consistency
of data with the factorization hypothesis can always be checked with the result pro-
vided in this work.

Part II of this thesis studied different methods to extract information about trans-
verse momentum distributions. Instead of increasing the perturbative accuracy of
the matching coefficients for TMD distributions in this part we studied new ways to
access the hadronic information through processes involving jets. A clear advantage
is that the jet momentum can be calculated in perturbation theory to a large extent,
while the fragmentation of hadrons is an intrinsically nonperturbative process.

In chapter 6 we provide an initial formulation of this idea, using a modern def-
inition of jets. There we observed, for the first time, that the cross section for dijet
production in e+e− collisions and SIDIS with a jet in the final state can have the same
factorization as for hadronic TMD measurements, simply replacing a TMD fragmen-
tation function by our TMD jet function. This factorization depends on the jet radius
R and recombination scheme, holding only for all values of R if the Winner-Take-
All axis is used. In particular, in the regime of small qT, which is interesting for
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extracting the intrinsic transverse momentum of partons in the proton, the cross
section for the standard jet axis does not satisfy the usual TMD factorization. To
explore the ramifications of these ideas, we presented numerical results for Belle II
and LEP (e+e− collisions), and HERA and the EIC (SIDIS), building on the existing
artemide code. We reported the details of the NLO calculations of the TMD jet
function, and have also numerically evaluated the NNLO contribution in the large-
radius limit with Event2. This was motivated by the observation that the NLO
result is well described using the large-R jet function, for all experimental cases we
consider. Consequently we achieved the same N3LL accuracy as in the correspond-
ing hadronic TMD cases. We verified the perturbative convergence of our numerical
predictions, achieving perturbative uncertainties of order 5% in the peak of the dis-
tribution at N3LL. We also found that our cross sections have similar sensitivity to
nonperturbative effects as the corresponding hadronic case, without the burden of
additional nonperturbative effects from fragmentation. Specifically, we investigated
how the cross section changes when varying the nonperturbative parameters within
the errors provided in [140], concluding that in principle these experiments can pro-
vide important constraints on these parameters. Here we benefit from using the
ζ-prescription, which ensures that the nonperturbative parts of the evolution ker-
nel and the rest of the TMD are uncorrelated. The nonperturbative effects to the jet
TMD have not been estimated in this chapter. However our factorization theorems
ensure that these effects can be included in the definition of the jet functions and are
therefore universal, i.e., the same in e+e− collisions and SIDIS. In this respect, the
hadronization of jets can be treated in the same way as the nonperturbative part of a
hadron TMD, and is therefore expected to be subdominant compared to the nonper-
turbative part of the evolution. Consequently, jet measurements may provide one of
the best ways to constrain the nonperturbative part of the evolution kernel.

In chapter 7, we presented the computation of the transverse momentum de-
correlation observable for fat jets groomed using the Soft-Drop algorithm. We con-
sidered two scattering experiments: e+e− → di-jets and semi-inclusive DIS. In the
former, we measured the transverse momentum imbalance between the two groomed
jets. We imposed a jet mass constraint on our jets in order to ensure collimated jet
configurations. Simulation using PYTHIA showed that grooming greatly reduces
the impact of underlying events as well as final state hadronization. We showed
that the factorization theorem for this observable involves the universal soft func-
tion which also appears in the traditional definition of TMDs. We proposed that this
observable can be used as a probe of the non-perturbative rapidity anomalous di-
mension, which is a universal parameter for TMD distributions. We proved within
our EFT that the cumulant jet mass constraints only add to the overall normaliza-
tion of the perturbative cross section and hence do not impact the shape of the trans-
verse momentum distribution although it does contribute to the uncertainty. We
collected or computed all the ingredients necessary to evaluate the cross section to
NNLL accuracy and a numerical study for the cases of interest. In the implemen-
tation we used the artemide code [66, 117, 140] which contains the most recent
extraction TMDPDF at higher perturbative orders. As part of the numerical anal-
ysis we used the ζ-prescription [16] which allows a complete disentanglement of
non-perturbative effects of rapidity evolution from the rest. An uncertainty analysis
gave us an error band of approximately ± 10 %. The main ingredient of this error
is the perturbative uncertainty which can be systematically improved. As shown
in fig. 7.1 the hadronization corrections at low qT are significantly smaller than the
case of a standard jet axis and it is therefore one of the major advantage of using
grooming. These effects are expected to be the same in e+e− and SIDIS because of
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the factorization of the cross section. In the case of e+e− these corrections constitute
all of non-perturbative effects and they are associated with the final state shower.
In order to do a meaningful extraction of non-perturbative parameters in this case,
it is therefore necessary to improve the uncertainty from perturbative physics to be
better than 5%. This can be achieved by moving to a higher order in resummation
accuracy (N3LL).

In the SIDIS case we measured the transverse momentum imbalance between
the groomed jet and the recoiling lepton. Once again we demanded a jet mass mea-
surement in order to ensure sensitivity to collinear physics only. A large part of the
contribution to this comes from the soft and collinear radiation that lies outside the
jet and, for low transverse momentum, probes the complete TMDPDF. The cross
section was again presented to NNLL accuracy and involves much of the same in-
gredients as in the case of e+e− → dijets. A higher order perturbative calculation is
expected to reduce significantly errors also in this case.

Concerning the hadronization effects we observed that grooming the jet allows
us to have a wide angle jet, which is preferred in low energy experiments, while
still being free from non-global logarithms, which are non-factorizable and they are
usually present in un-groomed jets. Nevertheless it is possible to measure directly
the hadronization effects due to grooming. The idea is to parametrize and extract
all of the non-perturbative effects from e+e− → dijets and use them in SIDIS since
they contain all the same matrix elements (in addition to the TMDPDF) as explained
in section 7.7. This gives us a robust way to access the TMDPDF while maintaining
control over all other non-perturbative effects.
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Appendix A

Perturbative ingredients

In this appendix we present the perturbative results for quantities needed along this
thesis but which are not calculated for first time in the context of the original work
made in this thesis. These are: anomalous dimensions for the TMD/jet operators,
hard functions of the considered processes to make phenomenological predictions,
soft function and renormalization constants for TMD distributions.

A.1 Anomalous dimensions

We list the anomalous dimensions that enter the double-scale evolution described
in eqs. (2.55, 2.56). The phenomenological predictions obtained along this thesis
use N3LL resummation by default, corresponding to the first row in table A.1. An
exception is fig. 6.5, where we compare different orders to test the convergence of
resummed perturbation theory.

• The QCD β-function, β(αs) = dαs/dlnµ, with β = −2αs ∑∞
n=1 β(n) ( αs

4π

)n

β(1) =
11
3

CA −
4
3

Tr N f ≡ b0 ,

β(2) =
34
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C2
A −

20
3

CATr N f − 4CFTr N f ,
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C3
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(
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CFCA −
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27

C2
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Tr N f
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T2

r N2
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β(4) =
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(
1078361

162
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27
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N f +

(
50065
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+
6472
81
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f

Order F.O. Γcusp γV D
N3LL a2

s a4
s a3

s a3
s

NNLL a1
s a3

s a2
s a2

s
NLL a0

s a2
s a1

s a1
s

TABLE A.1: Various orders in resummed perturbation theory, and
the fixed-order (F.O.) and resummation ingredients they involve. The
fixed-order ingredients are the perturbative expansion of the hard
function, jet function and the coefficients in the matching of the TMD
PDFs onto collinear PDFs. We also use the PDFs extracted at this or-

der as well, and use the corresponding running of the coupling.
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• The cusp anomalous dimension Γq
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• The anomalous dimension γV = ∑∞
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• It is convenient to write the expression for the function D as an expansion:

D f (µ, bT) = C f
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s
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∑
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Lk
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where C f = CF for quarks and C f = CA for gluons, and
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The result for d(3,0) has been recently computed in [63]. The rest of d(3,i) can be
found also in [181].

A.2 Hard functions and tree-level cross sections

The hard function for Drell-Yan production/electron-positron annihilation up to
two-loop accuracy is [61, 206, 207]
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where ls = ln
(
s/µ2) and s stands for the center of mass energy of hadrons (Drell-

Yan) or leptons (electron-positron anmihilation).
DIS-like processes are related to Drell-Yan production/electron-positron annihi-

lation at the level of the amplitude by s → −Q2 (where Q2 is the virtuality of the
transferred photon). For the hard function this leads to

HDIS(Q2, µ) = HDY/e+e−(Q2, µ)− 2asπ
2CF
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The respective tree-level cross sections are given by
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where the effective lepton charge ē2
q includes the contribution from Z boson produc-

tion,
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Here eq is the electric charge of the quark, vi and ai are its vector and axial couplings,
mZ is the mass of the Z and ΓZ its decay width. Our numerical predictions always
include Z boson corrections, though their effect is small for Belle and SIDIS.

A.3 Soft function

The soft function used along this thesis to renormalize rapidity divergences in un-
substracted TMD distributions and jet functions is written as

S(b) = exp
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. (A.11)

This function is calculated in modified δ-regularization scheme up to NNLO
in [52]. The NLO expression given in the exponent of eq. (A.11) is
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where CK = CF(CA) for quark (gluon) case. The NNLO contribution reads
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where CK = CF(CA) for quark (gluon) soft-factor. Here, the logarithm lδ = ln
(
µ2/|δ+δ−|

)
,

while after substitution δ− = δ+ζ/(p+)2 it reads

lδ = ln
(

µ2

(δ+/p+)2ζ

)
= lζ − 2λδ. (A.14)

The constants d(n,k) are given in section A.1.

A.4 Renormalization constants for fields and TMD operators

For the completeness of exposition we also present the renormalization constants for
quark and gluon fields up to NNLO [208]
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The quark and gluon TMD operator constants are calculated up to NNLO in [18]
and read
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Appendix B

Loop integrals for TMD higher
order calculations

B.1 1-loop integrals

We present here the integrals needed in the evaluation of the Feynman diagrams that
give the one-loop contribution to the different (un)polarized TMDPDF and TMDFF
along this thesis. At 1-loop accuracy we have one loop particle to integrate over
its momentum. This particle can be a real or virtual one. Once we simplify the
integrand of the diagrams we have only one non-trivial integral

Fα [R] =
∫ ddk

(2π)d
Disc D(k)δ(K+ − k+) R ei(kb)

[(k + p)2]1+α
, (B.1)

where K+ = −x̄p+ (for PDFs) or K+ = z̄/z p+ (for FFs) and the value of R can
be R = 1 (unpolarized or transversity TMD), R = {1, k̂2} (helicity TMD) or R =
{1, (kb)2} (pretzelosity or linearly polarized gluon TMD). The integral in eq. (B.1)
can be obtained from the basic transverse integral

∫ dd−2kT

(2π)d−2
ei(kb)

(k2
T)

1+δ
=

1

(4π)
d−2

2

Γ(−ε− δ)

Γ(1 + δ)

(
b2

4

)ε+δ

(B.2)

because all the non trivial structures in R are transverse. So, we can do derivatives
with respect to the impact parameter and then contract the result with ĝµν (to get the
integral with R = k̂2) and bµbν (to get the integral with R = (kb)2

T). The final results
of these integrals (for PDFs) are

F0 ≡ F0[1] =
Bε

(4π)d/2 Γ(−ε), (B.3)

F1[(kb)2]/B =
−2x̄

(4π)d/2 (1 + 2ε)Γ(−ε)
Bε

p+
, (B.4)

F1[k̂2] =
x̄

(4π)d/2 Γ(1− ε)
Bε

p+

(
1 +

B̂
B

)
, (B.5)

where B = b2/4 > 0 and the term B̂/B � 1 is supressed. These integrals are
used in intermediate passages on two-loop integrals presented in the next section.



150 Appendix B. Loop integrals for TMD higher order calculations

B.2 2-loop integrals

Three different types of diagrams arise in the calculation of the unsubstracted TMD-
PDF matrix element for the diferent (un)polarized TMD distributions and they can
be addressed on the basis that the exchanged gluons are pure-virtual, virtual-real
or real-real. The pure-virtual diagrams, are zero in the dimensional regularization
due to the absence of a Lorentz-invariant scale in our scheme of calculation. The
virtual-real and real-real diagrams have respectively one and two cut propagators
and should be computed directly. The calculation of these two types of diagrams
draws from two general master integrals. The first one is the master integral for
virtual-real diagrams,

Fabcde[R] = −(2π)
∫ ddk ddl

(2π)2d
Rp+ δ(ωp+ + l+)δ(K+ − k+) ei(kb)δ(k2)θ(±k−)

[(l + p)2]a[(k + p)2]b[(k + l + p)2]c[(k + l)2]d[(l2)]e
,

(B.6)

where K+ has the same values that in the 1-loop case and the positive (negative) sign
inside the step function stands for the PDF (FF) case. The second type of integrals is
the corresponding to real-real diagrams,

Fabcd[R] = (2π)2
∫ dd−1k dd−1l

(2π)2d
R ei(kb)ei(lb)δ(k2)θ(−k−)δ(l2)θ(−l−)

[(l + p)2]a[(k + p)2]b[(k + l + p)2]c[(k + l)2]d
. (B.7)

In both cases, R = {1, (kb)2, (kb)(lb), (lb)2} because the two-loop momenta
structure is richer than the discussed in section before. The collinear components
of loop momenta can be integrated with the help of the introduction of a delta func-
tion in each case, introducing the parameter ω (for virtual-real diagrams) as

1 =
∫ ∞

−∞
dω p+δ

(
ωp+ + l+

)
(B.8)

and the parameter η (for real-real diagrams) as

1 =
∫ ∞

−∞
dη p+δ

(
η̄p+ + l+

)
. (B.9)

the residual dependence on these parameters should be integrated out at the end
of the calculation of each integral over momenta.

B.2.1 Integrals for unpolarized and transversity TMDPDFs

The integrals which appear in the study of these two distributions have a simple
momenta structure in their integrands, due to the simplicity of the projectors related
to this particular polarizations, see eqs. (3.4,3.5). So, the only possible value of R for
these particular TMDs is R = 1. So, we rename Fabcde[1] ≡ Fabcde and Fabcd[1] ≡ Fabcd.
These type of integrals were calculated for first time in [18].

In the following we discuss the possible integrals which appear in the calculation
of diagrams for these TMD distributions. For virtual-real like integrals all the cases
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with a decoupled virtual loop are zero. So,

F02001 = F02100 = F11001 = F11100 = F12000 (B.10)
= F01110 = F02010 = F02100 = F01011 = 0.

Also, integrals with negative index can be rewritten using identity

(k + l + p)2 + l2 = (p + l)2 + (p + k)2 + (k + l)2.

The only non-zero integrals with positive indices are (see)

FFF
01101 =

−i(−1)−ε

p+(4π)d
Γ(−2ε)

ε

(
z̄
z

)ε

B2ε zθ(0 < ωz < 1)
(zω(1− zω))ε

,

FPDF
01101 =

i
p+(4π)d

Γ(−2ε)

ε
x̄εB2ε θ(0 < ω/x < 1)/x

(ω/x(1−ω/x))ε
, (B.11)

FFF
10101 =

−i(−1)−ε

p+(4π)d Γ(−2ε)

(
z̄
z

)ε

B2ε
∫
[dx]

δ
(
ω− x1 − x2

z

)
(x2x3)1+ε

,

FPDF
10101 =

i
p+(4π)d Γ(−2ε)x̄εB2ε

∫
[dx]

δ (ω− x1 − xx2)

(x2x3)1+ε
, (B.12)

where [dx] = δ(1 − x1 − x2 − x3)dx1dx2dx3. We leave the integral over Feynman
parameters, since it is convenient to integrate first over ω with the help of δ-function
in eq. (B.8). Note that only integrals with sum of indices equal to 3 participate. There
are two another integrals that appear in calculation and can be reduced to the previ-
ous cases

F00111 (ω) = F10101

(
p+ + k+

p+
−ω

)
,

FFF
021(−1)1 = − (zω + z̄ (1− 2zω)) FFF

01101,

FPDF
021(−1)1 = −

(
ω

x
− x̄

x

(
1− 2

ω

x

))
FPDF

01101. (B.13)

For the real-real diagrams, only integrals with sum of indices equal to 2 partici-
pate. The list of non-zero integrals is

F0110 =
−1

(4π)d B2ε Γ(−2ε)

ε

1
k+ + p+

(
l+p+(k+ + p+ + l+)

k+(k+ + p+)2

)ε

2F1

(
−ε,−2ε, 1− ε;

−k+(k+ + p+ + l+)
p+l+

)
,

F1010 =
−1

(4π)d B2ε Γ(−2ε)

ε

1
l+ + p+

(
k+p+(k+ + p+ + l+)

l+(l+ + p+)2

)ε

2F1

(
−ε,−2ε, 1− ε;

−l+(k+ + p+ + l+)
p+k+

)
,

F1100 =
1

(4π)d B2ε Γ2(−ε)

p+
,

F0020 =
1

(4π)d B2ε Γ(−2ε)

k+ + l+ + p+

(
(k+ + l+)2(k+ + l+ + p+)

k+l+p+

)ε

,
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F1001 =
1

(4π)d B2ε Γ2(−ε)

l+

(
k+ + l+

l+

)2ε

,

F0101 =
1

(4π)d B2ε Γ2(−ε)

k+

(
k+ + l+

k+

)2ε

, (B.14)

To obtain the values of the integrals in eq. (B.14) for the PDF/FF cases, k+, l+ should
be substituted by their corresponding values given by the corresponding delta func-
tions in each case. The integrals with negative indices can be obtained from the ones
presented here, by differentiation with respect to k+ or l+.

B.2.2 Integrals for pretzelosity and linearly polarized gluons

In the study of pretzelosity and linearly polarized gluon TMD distributions there
are some further difficulties to be taken into account. Due to the more complicated
projector used, with a richer momentum structure we have all the possible values of
R indicated before. This new feature introduces scalar products of the loop momenta
with the impact parameter space vector, b in the numerator of the integrands that
complicates the calculations of these integrals.

For virtual-real diagrams this difficulty can be by-passed by calculating sepa-
rately virtual subdiagrams. This approach allows to contract the projector only with
the real loop-momentum, simplifying the calculation of integrals. For real-real inte-
grals no subdiagrams can be calculated, but the results can be obtained in terms of
the integrals given for R = 1 in eq. (B.14). Thus,

F0210[(kb)2]/B = 2
(
(1 + 2ε)(x− η)− ε(1− 2ε)

1 + ε

η̄

x

)
F0110 −

2(1− 2ε)

1 + ε
x̄F0020,

F0210[(kb)(lb)]/B =
2(1− 2ε)

1 + ε

η̄

η̄ + x

(
ε

η̄

x
F0110 − (1 + ε)(η − x)F0110 + x̄F0020

)
+2(η̄ + x)F(−1)210 + 2ηF0110,

F0210[(lb)2]/B =
x

(η̄ + x)2

(2(1− 2ε)

1 + ε
(x(η − x)− (1 + ε)η̄)F0110

+ε
2(1− 2ε)

1 + ε
xx̄F0020 − 2(1− 2ε)η̄2F0110

)
− 4η̄F(−1)210

− 1
(η̄ + x)2

(
2ε(1− 2ε)

1 + ε

η̄3

x
− 2η(1− 2ε)η̄2

)
F0110

−2(1− 2ε)

1 + ε

η̄2

(η̄ + x)2 x̄F0020,

F0120[(kb)2]/B =

(
4(x− η) +

2(1− 2ε)

1 + ε

x̄
x
(η̄ + x)

)
F0020

+ε
2(1− 2ε)

1 + ε

η̄

x2 (η̄ + x)F0110,

F0120[(kb)(lb)]/B = −2(1− 2ε)

1 + ε

η̄

x

(
εη̄

x
F0110 + x̄F0020

)
−2F0110 + 2(η̄ + x)F(−1)210 + 2ηF0020,

F0120[(lb)2]/B =
2(1− 2ε)

1 + ε

η̄2

x(η̄ + x)

(
ε

η̄

x
F0110 + (1 + ε)

x
η̄

F0110 + x̄F0020

)
−4η̄F(−1)210,
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F1020[(kb)2]/B =
2(1− 2ε)

1 + ε

(η − x)2

xη

(
ε

η − x
x

F1010 + (1 + ε)
x

η − x
F1010 + x̄F0020

)
+4(x− η)F1(−1)20,

F1020[(kb)(lb)]/B = −2(1− 2ε)

1 + ε

η − x
x

(
ε

η − x
x

F1010 + x̄F0020

)
−2F1010 + 2(η̄ + x)F0020 + 2ηF1(−1)20,

F1020[(lb)2]/B =
2(1− 2ε)

1 + ε

η

x

(
ε

η − x
x

F1010 + x̄F0020

)
− 4η̄F0020,

F0021[(kb)2]/B = −2(1− 2ε)

1− ε

η − x
x̄

((η̄ + x)F0020 − (η − x)F0011)

+4(x− η)
(

F0011 − F0020 − F(−1)021

)
,

F0021[(kb)(lb)]/B =
2(1− 2ε)

1− ε

(η − x)η̄
x̄

(F0020 + F0011) + 2(1 + x− 2η)F(−1)021

−2η̄ (F0011 − F0020)− 2F0020,

F0021[(lb)2]/B = −2(1− 2ε)

1− ε

η̄

x̄
(ηF0020 − η̄F0011)− 4η̄F(−1)021, (B.15)

Note that in the new integrals for these quantities the sum of the indices abcd of
the new integrals is 3. Also, the integrals with R = 1 appear by themselves as parts
of the diagrams calculated.

Additionally, we have met three integrals that could not be reduced to a combi-
nation of known results: F1110[(kb)2], F1110[(kb)(lb)], F1110[(lb)2]. For these integrals
we have derived the expressions in the Schwinger parameterization, and evaluated
them in ε-expansion up to the finite term following the strategy described in the
book [209]. We make an sketch of the evaluation of these type of integrals from the
general integral,

Fabc0[R] =
(−1)a+b+c

(4π)2
p+

k+l+

(
− l+

p+

)a (
− k+

p+

)b

(B.16)

∫ dd−2kTdd−2lT

(2π)2d−4
Rei(kb)+i(lb)

[l2
T]

a[k2
T]

b(x1k2
T + 2(kl)T + x2l2

T)
c ,

where

x1 = − l+ + p+

k+
, x2 = − k+ + p+

l+
. (B.17)

As the distributions in whose calculation this integral enters are calculated only for
the TMDPDF case we focus only in PDF kinematics. So,

x1 =
η

η − x
= 1 +

x
η − x

> 1, x2 =
η̄ + x

η̄
= 1 +

x
η̄
> 1. (B.18)

We call the integral in eq. (B.16)

fabc[R] =
∫ dd−2kTdd−2lT

(2π)2d−4
Rei(kb)+i(lb)

[l2
T]

a[k2
T]

b(x1k2
T + 2(kl)T + x2l2

T)
c , (B.19)
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which is to be solved in terms of derivatives with respect of the parameters of
the following integral

gabc =
∫ dd−2kTdd−2lT

(2π)2d−4
Rei(kb1)+i(lb2)

[l2
T]

a[k2
T]

b(x1k2
T + 2(kl)T + x2l2

T)
c (B.20)

=
π

d−2
2

Γ(a)Γ(b)Γ(c)

∫ ∞

0
dαdβdγ

αa−1βb−1γc−1 exp
[
− b2

1a1−2(b1b2)a12+b2
2a2

4∆1

]
∆1−ε

1

,

where

∆1 = a1a2 − a2
12, a1 = (α + x2γ), a2 = (β + x1γ), a12 = γ. (B.21)

Next we make the change of variables

α→ Lx2(α2 − 1), β→ Lx1(α1 − 1), γ→ L, (B.22)

with

J =
dαdβdγ

dα1dα2dL
= x1x2L2, L > 0, α1,2 > 1. (B.23)

Thus, we obtain

gabc =
π

d−2
2

Γ(a)Γ(b)Γ(c)
(B.24)

∫ ∞

0
dL
∫ ∞

1
dα1,2

L2ε+a+b+c−3xa
2xb

1(α2 − 1)a−1(α1 − 1)b−1 exp
[
− b2

1x2α2−2(b1b2)+b2
2x1α1

4L∆2

]
∆1−ε

2

,

where ∆2 = x1x2α1α2 − 1.
The integration over L is straightforward (a + b + c + 2ε < 2)

gabc = xa
2xb

1π
d−2

2
Γ(−2ε− a− b− c + 2)

Γ(a)Γ(b)Γ(c)
(B.25)

∫ ∞

1
dα1,2(α2 − 1)a−1(α1 − 1)b−1∆1−a−b−c−ε

2

(
b2

1x2α2 − 2(b1b2) + b2
2x1α1

4

)2ε+a+b+c−2

.

Using the derivative over b1,2 we obtain

f111[k
µ
Tkν

T] =
x1x2

2
π

d−2
2 B2εΓ(−2ε)

∫ ∞

1
dα1,2 (B.26)

×
[

α2x2(x1α1 + x2α2 − 2)2ε

(x1x2α1α2 − 1)2+ε
gµν

T − 4ε
bµbν

b2
(x2α2 − 1)2(x1α1 + x2α2 − 2)2ε−1

(x1x2α1α2 − 1)2+ε

]

f111[l
µ
Tlν

T] =
x1x2

2
π

d−2
2 B2εΓ(−2ε)

∫ ∞

1
dα1,2 (B.27)

×
[

α1x1(x1α1 + x2α2 − 2)2ε

(x1x2α1α2 − 1)2+ε
gµν

T − 4ε
bµbν

b2
(x1α1 − 1)2(x1α1 + x2α2 − 2)2ε−1

(x1x2α1α2 − 1)2+ε

]
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f111[l
µ
Tkν

T] =
x1x2

2
π

d−2
2 B2εΓ(−2ε)

∫ ∞

1
dα1,2 (B.28)

×
[
− (x1α1 + x2α2 − 2)2ε

(x1x2α1α2 − 1)2+ε
gµν

T − 4ε
bµbν

b2
(x1α1 − 1)(x2α2 − 1)(x1α1 + x2α2 − 2)2ε−1

(x1x2α1α2 − 1)2+ε

]
.

We can also write the following relations

F1110[k
µ
Tkν

T] = gµν
T Akk +

bµbν

b2 Bkk, (B.29)

F1110[k
µ
Tlν

T] = gµν
T Akl +

bµbν

b2 Bkl , (B.30)

F1110[l
µ
Tlν

T] = gµν
T All +

bµbν

b2 Bll . (B.31)

Using some algebra we get

2(1− ε)Akk + Bkk = −(η − x)F1010, (B.32)
2(1− ε)All + Bll = −η̄F0110, (B.33)

2(1− ε)Akl + Bkl = −1
2

F1100 +
η

2
F0110 +

η̄ + x
2

F1010. (B.34)

Using these relations we can reduce the number of integrals to evaluate, since

F1110[(kb)2] = b2(Akk + Bkk), (B.35)
F1110[(lb)2] = b2(All + Bll), (B.36)

F1110[(kb)(lb)] = b2(Akl + Bkl). (B.37)

Additionally knowing that b is the only dimensional parameter we derive

4ε(Akk + 2Akl + All) = Bkk + 2Bkl + Bll . (B.38)

Using the definition in eq. (B.16) we obtain

∂x1 Fabc0[R] = −cFa,b−1,c+1,0[R], (B.39)
∂x2 Fabc0[R] = −cFa−1,b,c+1,0[R]. (B.40)

And parameterizing

Fabc0[k
µ
Tkν

T] = gµν
T Aabc0

kk +
bµbν

b2 Babc0
kk , (B.41)

Fabc0[k
µ
Tlν

T] = gµν
T Aabc0

kl +
bµbν

b2 Babc0
kl , (B.42)

Fabc0[l
µ
Tlν

T] = gµν
T Aabc0

ll +
bµbν

b2 Babc0
ll . (B.43)

We obtain

2(1− ε)Aabc0
kk + Babc0

kk = −(η − x)Fa,b−1,c0, (B.44)

2(1− ε)Aabc0
ll + Babc0

ll = −η̄Fa−1,bc0, (B.45)

2(1− ε)Aabc0
kl + Babc0

kl = −1
2

Fab,c−1,0 +
η

2
Fa−1,bc0 +

η̄ + x
2

Fa,b−1,c0, (B.46)

Aabc0
kk + 2Aabc0

kl + Aabc0
ll =

Babc0
kk + 2Babc0

kl + Babc0
ll

2(2ε + a + b + c− 3)
. (B.47)
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So, we can get the relation

Fabc0[(kb)(lb)]/B = −1
2

Fabc0[(kb)2]/B− 1
2

Fabc0[(lb)2]/B

+
1 + 4ε

1 + ε

(
− Fab,c−1,0 + (1 + 2x− 2η)Fa,b−1,c0 − (1− 2η)Fa−1,bc0

)
,

where a + b + c = 3.
Another three integrals that could not be reduced to a combination of known

integrals but that can be related with F1110[R] through a change of variable are:
F0111[(kb)2], F0111[(kb)(lb)], F0111[(lb)2].
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Appendix C

Laplace and Fourier
transformations

We define the Fourier transform,FT [ f ](b) = f (b) of a function, f (qT) = FT −1[ f ](qT)
as follows,

f (b) =
∫ +∞

−∞
dqT f (qT) exp(−ib · qT) , (C.1)

and the inverse transform

f (qT) =
∫ +∞

−∞

db
(2π)2 f (b) exp(ib · qT) . (C.2)

In order to get the Fourier transforms of the plus distributions that appear in the
factorization theorem we use,

1
(2π)µ2

(µ2

q2
T

)1+α
= − 1

2α
δ(2)(qT) + L0(q2

T, µ2)− αL1(q2
T, µ2) +O(α2) . (C.3)

Taking the Fourier transform of the left-hand-side (LHS) we get (see eq. (E.2) of
ref. [14])∫ +∞

−∞

dqT

(2π)

1
µ2

(µ2

q2
T

)1+α
exp(−ib · qT) = − e−2αγE

2α
Γ(1−α)
Γ(1+α)

(
µ

µE

)2α

= − 1
2α + ln

(
µ

µE

)
+ αln2

(
µ

µE

)
+O(α2) ,(C.4)

where µE = 2 exp(−γE)/b and b ≡ |b| and in the second line we expanded in α.
Comparing this result with the RHS of eq. (C.3) we get,

FT
[
δ(2)(qT)

]
(b) = 1 ,

FT
[
L0(q2

T, µ2)
]
(b) = ln

(
µE
µ

)
,

FT
[
L1(q2

T, µ2)
]
(b) = ln2

(
µE
µ

)
. (C.5)

We define the convolution f ⊗ g with[
f ⊗ g

]
(qT) =

∫
d`⊥ f (qT − `⊥)g(`⊥) , (C.6)

such that
F
[

f ⊗ g
]
(b) = f (b)× g(b) . (C.7)

Similarly for the distribution in the jet-thrust we often work in Laplace space
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where the corresponding convolutions translate to products. For these reason we
define the Laplace transformation LT [ f ](s) = f (s) of jet-trust distribution f (e) =
LT −1[ f ](e) as follows:

f (s) =
∫ ∞

−∞
de exp(−se) f (e) , (C.8)

and the corresponding inverse transform

f (e) =
1

2πi

∫ γ+i∞

γ−i∞
ds exp(se) f (s) . (C.9)

Similarly with the case of Fourier transform we use the following expansion to iden-
tify the Laplace transform of plus distributions that are present in the fixed order
expansion of the jet and collinear-soft functions,

1
ξ

( ξ

e

)1+α
|e>0 = −1

α
δ(e) + L0(e, ξ)− αL1(e, ξ) +O(α2) , (C.10)

taking the Laplace transform of the LHS we get∫ ∞

0

de
ξ

( ξ

e

)1+α
exp(−se) = sαΓ(−α) = −1

α
− ln(ξ s̃)− α

(1
2

ln2(ξ s̃) +
π2

12

)
+O(α2) ,

(C.11)
where s̃ ≡ s exp(γE) and thus from comparing eq. (C.10) and (C.11) we have

LT
[
δ(e)

]
(s) = 1 ,

LT
[
L0(e, ξ)

]
(s) = −ln(ξ s̃) ,

LT
[
L1(e, ξ)

]
(s) = 1

2 ln2(ξ s̃) + π2

12 . (C.12)
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Title: Transverse momentum dependent distributions for the Electron-Ion Collider
era

Introduction and outline

The physical theory which deals with the strong interactions between quarks and
gluons in known as Quantum Chromodynamics (QCD). This theory, together with
the ones that deal with electromagnetic and weak interactions (unified in electroweak
theory) are combined into the Standard Model (SM). This theory is built in terms of a
Lagrangian of quantized fields describing fundamental degrees of freedom, quarks
and leptons, and bosons that act as carriers of the cited interactions.

One of the more fundamental open questions in QCD is to understand how the
observed properties of hadrons are generated by the dynamics of their inner con-
stituents. In order to shed some light on this question physicists use different theo-
retical approaches from different perspectives, like perturbative QCD, effective field
theories, lattice QCD, etc. A very interesting research field to test and understand
QCD is the exploration of the multi-dimensional structure of hadrons. The main
goal of this field is to reconstruct multi-dimensional images of a hadron investigat-
ing the distribution of partons, namely quarks and gluons, inside it. In this way,
issues such as the role of quarks and gluons in generating the nucleon’s spin or par-
tonic angular momentum can be investigated. There is a high interest into hadron
structure in the experimental community, with important facilities such JLab, DESY,
BNL, CERN, KEK. Also, the LHC can help a lot in this field, especially to understand
the role of gluons inside the protons. Recently, the US government has approved the
construction of a new accelerator, the Electron-Ion Collider (EIC) at BNL. Part of the
predictions given in this thesis are suitable to be tested in this new accelerator.

A very interesting type of observables that can give information about hadron
structure are the ones with non-vanishing transverse momentum dependence. This
interest was already there in the first years after the establishment of QCD as a fun-
damental theory of strong interactions [1–5]. These observables are very interesting
for hadron colliders and have very relevant impact on, e.g., the study of Higgs bo-
son production and the search for physics Beyond Standard Model. A crucial point
to deal with these type of processes is obtaining well defined factorization theorems
and resumming large logarithmic contributions to perform phenomenological anal-
yses. A large amount of work has been done to establish factorization theorems
with un-integrated transverse momentum for very relevant processes as Drell-Yan
production (proton-proton collision leading to a pair of leptons in the final state)
or semi-inclusive deep inelastic scattering (electron-proton collisions leading to a
hadron in the final state) [6–17]. In general terms, a factorized cross section is writ-
ten in terms of a hard factor that includes all the high-energy physics and two objects
that include information about the distribution of partons inside the hadrons in the
process. These elements are known as transverse momentum dependent parton dis-
tribution functions (TMDPDFs).
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Main results and conclusions

The main body of this thesis is divided in two parts, studying factorization theorems
and the hadronic information in two different contexts, but aiming at the same goal:
improving the extraction of the three-dimensional information of hadrons.

Part I of this thesis is dedicated to the study of spin dependent TMDPDFs aris-
ing from factorization theorems established for processes involving hadrons with
a particular polarization. In chapter 3 the definition of the unpolarized TMDPDF
of [18] is extended in order to obtain definitions for spin dependent TMDPDFs. At
leading dynamical twist we obtain different spin-dependent distributions for quarks
and gluons. The results of the perturbative information derived from the large trans-
verse momentum limit of these TMDPDFs (known as matching coefficients) up to
second order in perturbation theory are given in chapter 4. In this way we achieve
the same level of precision for spin dependent TMDPDFs as for their unpolarized
counterparts. This improvement of the perturbative order known for the different
spin-dependent TMDs will help to decrease the theoretical errors in phenomenolog-
ical predictions involving polarized hadrons and will allow a cleaner extraction of
nonperturbative physics associated to the transverse momentum dependent distri-
butions. As an application, in chapter 5 we use the new perturbative results obtained
for linearly polarized gluon TMD to see their impact in the transverse momentum
spectrum of the Higgs boson.

Part II of this thesis is dedicated to establishing factorization theorems including
jets in final states of the considered processes. In principle, the use of jets in the fi-
nal state decreases the nonperturbative contamination compared to using hadrons
in a final state, because jet properties can be calculated to a large extent in perturba-
tion theory. Thus, processes with jets in the final state (e.g. jet SIDIS) should offer a
cleaner way to access information about the structure of hadrons in the initial state.
Of course, some hadronization effects associated with the jets appear (e.g. due to the
determination of the position of the axis). Thus, in this part of the thesis we study
the establishment of different factorization theorems for some particularly interest-
ing processes using different jet definitions. This allows one to study the advan-
tages and disadvantages of different jet definitions in the extraction of information
about hadrons in initial states. In chapter 6 a new definition for TMD jets is given
through the establishment of different factorization theorems in different regimes
related mainly to the size of the considered jet. This leads to a particular choice of
the jet axis that allows the establishment of factorization theorems in any regime
and will allow us to obtain numerical predictions that can be tested in future experi-
ments as the EIC. Finally, in chapter 7 a different definition of the jet is used in order
to obtain numerical predictions. In this case, we introduce the concept of grooming
that removes the soft contamination to the jet. Thus only the collinear core of the
jet remains and the hadronization effects should be mostly suppressed. So, this way
to proceed represent another way to access to the nonperturbative information of
hadrons in a cleaner manner of using processes with hadrons in the final state.
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Resumen

Título: Distribuciones dependientes de momento transverso para la era del Electron-
Ion Collider

Introducción y esquema

La teoría física que se ocupa de las interacciones fuertes entre quarks y gluones se
conoce como la Cromodinámica Cuántica (QCD por sus siglas en inglés). Esta teoría,
junto con las que se ocupan de las interacciones electromagnéticas y débiles (unifi-
cadas en la teoría electrodébil) se combinan en el Modelo Estándar. El Modelo Es-
tándar se construye en términos de un lagrangiano de campos cuantizados que de-
scriben grados fundamentales de libertad, quarks y leptones, y bosones que actúan
como portadores de las interacciones citadas.

Una de las preguntas abiertas más fundamentales en QCD se basa en entender
cómo las propiedades de los hadrones observadas son generadas por la dinámica
de sus componentes internos. Para dar algo de luz a esta pregunta, los físicos usan
diferentes enfoques teóricos desde diferentes perspectivas, como QCD perturbativa,
teorías de campo efectivas, QCD en el retículo, etc. Un campo de investigación muy
interesante que puede ayudar mucho en este sentido, es la exploración de la estruc-
tura tridimensional de los hadrones. El objetivo principal de este campo es hacer
una imagen tridimensional de un hadrón investigando la distribución de partones,
conocidos como quarks y gluones, dentro de él. De esta manera, se pueden investi-
gar cuestiones como el papel de los quarks y los gluones en la generación del espín
del nucleón o el momento angular partónico. Por otro lado, existe un gran interés en
la estructura de hadrónica por parte de la comunidad experimental con importantes
instalaciones como JLab, DESY, BNL, CERN o KEK. Además, el LHC puede ayudar
mucho en este tema, especialmente para comprender el papel de los gluones den-
tro de los protones. Recientemente, el gobierno de los Estados Unidos ha dado luz
verde para comenzar la construcción de un nuevo acelerador, el Electron-Ion collider
(EIC). Parte de las predicciones dadas en esta tesis están orientadas a ser probadas
en este nuevo acelerador.

Un tipo muy interesante de observables que pueden proporcionar información
sobre la estructura hadrónica son los que tienen una dependencia no nula del mo-
mento transverso. Este interés proviene de poco tiempo después del establecimiento
de QCD de una teoría fundamental de las interacciones fuertes [1–5]. Un punto cru-
cial para tratar con este tipo de procesos es obtener teoremas de factorización bien
definidos y así resumar las contribuciones de logaritmos grandes para realizar análi-
sis fenomenológicos. Se ha trabajado mucho en este sentido para establecer teoremas
de factorización para procesos con momento transverso no nulo para procesos muy
relevantes como la producción de Drell-Yan (colisión protón-protón que conduce
a un par de leptones en el estado final) o dispersión profundamente inelástica (coli-
siones electrón-protón que conducen a un hadrón en el estado final) [6–17]. En líneas
generales, una sección eficaz factorizada se escribe en términos de un factor hard que
incluye toda la física de altas energías y dos objetos que incluyen información sobre
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la distribución de partones dentro de los hadrones en el proceso. Estos elementos
se conocen como funciones de distribución de partones dependientes del momento
transverso (TMDPDF por sus siglas en inglés).

Resultados principales y conclusiones

El cuerpo principal de esta tesis se divide en dos partes, estudiando los teoremas de
factorización y la información hadrónica en dos contextos diferentes, pero persigu-
iendo el mismo objetivo: mejorar la extracción de la información tridimensional de
los hadrones.

La parte I de esta tesis está dedicada al estudio de TMDPDF dependientes del
espín que surgen de los teoremas de factorización establecidos para procesos que in-
volucran hadrones con una polarización particular. En el capítulo 3, la definición de
la TMDPDF despolarizada de [18] se amplía para obtener definiciones de TMDPDF
dependientes del espín. En el llamado leading dynamical twist, obtenemos diferentes
distribuciones dependientes del espín para quarks y gluones. Los resultados de la
información perturbativa extraída de la coincidencia de estas TMDPDF sobre las
PDF integradas (conocidos como coeficientes de matching) hasta el conocido como
next-to-next-to-leading order se obtienen en el capítulo 4. De esta forma, alcanzamos
el mismo nivel de precisión para las TMDPDF dependientes del espín que para sus
contrapartes no polarizadas. Esta mejora del orden perturbativo conocida por las
diferentes TMD dependientes del espín ayudará a disminuir los errores teóricos en
las predicciones fenomenológicas que involucran hadrones polarizados y permitirá
una extracción más limpia de la física no perturbativa asociada a las distribuciones
dependientes del momento transverso. En el capítulo 5 utilizamos los nuevos re-
sultados perturbativos obtenidos para la TMD de gluones linealmente polarizados
para ver su impacto en el espectro de momento transverso del bosón de Higgs.

La parte II de esta tesis está dedicada a ayudar a mejorar la extracción de las
TMD hadrónicas con una estrategia diferente a la utilizada en la primera parte de
la tesis, es decir, establecer teoremas de factorización que incluyen jets en estados
finales de los procesos considerados. En principio, el uso de jets en el estado fi-
nal de los procesos disminuye la contaminación no perturbativa que un hadron en
un estado final introduce en el problema, porque pueden calcularse completamente
en teoría de perturbaciones. Por lo tanto, el canal para obtener información sobre
un hadron en un estado inicial (por ejemplo, en un proceso de SIDIS+jet) sería más
limpio. Por supuesto, aparecen algunos efectos de hadronización asociados a los
jets (por ejemplo, debido a la determinación de la posición del eje). Por lo tanto, a
lo largo de esta parte de la tesis, estudiamos el establecimiento de diferentes teore-
mas de factorización para algunos procesos particularmente interesantes utilizando
diferentes definiciones de jet. Ésto permite estudiar las ventajas y desventajas de las
diferentes definiciones de jet en la extracción de información sobre hadrones en esta-
dos iniciales. En el capítulo 6 se da una nueva definición para las jet TMDs mediante
el establecimiento de diferentes teoremas de factorización en diferentes regímenes
relacionados principalmente con el tamaño del jet considerado. Ésto nos llevará a
una elección particular del eje del jet que permitirá el establecimiento de teoremas de
factorización en cualquier régimen y nos permitirá obtener predicciones numéricas
que se pueden probar en experimentos como el futuro EIC. Finalmente, en el capí-
tulo 7 se usa una definición diferente del jet para obtener predicciones numéricas. En
este caso, presentamos el concepto de grooming que elimina la contaminación soft del
jet. Por lo tanto, sólo queda el núcleo colineal del jet y los efectos de hadronización
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deben suprimirse en su mayoría. Entonces, esta forma de proceder representa otra
forma de acceder a la información no perturbativa de los hadrones de una manera
más limpia que al utilizar procesos con hadrones en el estado final.
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