
UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

Rapid runtime power and performance profiling of large scale applications

Caracterización rápida y en tiempo de ejecución de grandes despliegues de
aplicaciones

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Juan Carlos Salinas Hilburg

DIRECTORES

José Luis Ayala Rodrigo
Marina Zapater Sancho

José Manuel Moya Fernádez

© Juan Carlos Salinas Hilburg, 2021

U NIVERSIDAD C OMPLUTENSE DE MADRID
FACULTAD DE INFORMÁTICA.

TESIS DOCTORAL

Caracterización Rápida y en Tiempo de Ejecución de Grandes
Despliegues de Aplicaciones

Rapid Runtime Power and Performance Profiling of Large Scale
Applications

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Juan Carlos Salinas Hilburg

DIRECTORES

José Luis Ayala Rodrigo

Marina Zapater Sancho

José Manuel Moya Fernández

“output” — 2020/12/1 — 14:36 — page 1 — #1

Universidad Complutense de Madrid

Facultad de Informática

Caracterización Rápida y en Tiempo de
Ejecución de Grandes Despliegues de

Aplicaciones.

Rapid Runtime Power and Performance Profiling
of Large Scale Applications

AUTHOR:
JUAN CARLOS SALINAS HILBURG

ADVISORS:
Dr. JOSÉ LUIS AYALA RODRIGO
Dr. MARINA ZAPATER SANCHO

Dr. JOSÉ MANUEL MOYA FERNÁNDEZ

“output” — 2020/12/1 — 14:36 — page i — #2

Rapid Runtime Power and Performance Profiling
of Large Scale Applications

by
Juan Carlos Salinas Hilburg

Thesis submitted to the Universidad Complutense de Madrid in fulfillment of the
requirements for the degree of

Doctor en Ingeniería Informática
Facultad de Informática

Advisors:
Professor Dr. José Luis Ayala Rodrigo
Professor Dr. Marina Zapater Sancho

Professor Dr. José Manuel Moya Fernández

Universidad Complutense de Madrid

Madrid

“output” — 2020/12/1 — 14:36 — page ii — #3

“output” — 2020/12/1 — 14:36 — page iv — #5

“output” — 2020/12/1 — 14:36 — page v — #6

Declaration of authorship

The author, Juan Carlos Salinas Hilburg, hereby declares and confirms that this

thesis is entirely the result of the work carried out in the Department of

Architecture and Technology of Computing Systems of the School of Computer

Science at the Complutense University of Madrid. This thesis contains original

contribution by the author unless otherwise indicated.

Juan Carlos Salinas Hilburg,

November 24, 2020

v

“output” — 2020/12/1 — 14:36 — page vi — #7

“output” — 2020/12/1 — 14:36 — page vii — #8

Acknowledgement

I would like to thank my family, friends and coworkers. Their support has been
excellent through all these years.

Specially, I would like to thank my advisors. Thanks to them I have learned
many things. They are not only great and wise professionals, they have a great
human quality which is something that helped me to get through this experience.
It has been a pleasure and an honor working with them.

Thank you Jose, Marina and Jose Manuel.

ú ú ú

Financial support
This thesis has been partially founded by a research grant from

Complutense University of Madrid and Banco Santander, under grant
CT45/15-CT46/15. Furthermore, this work has been partially supported by the
following projects: i) the Spanish Ministry of Economy and Competitiveness,
under contracts TEC2012-33892, IPT-2012-1041-430000 and RTC-2014-2717-3,
ii) the EU (FEDER) and the Spanish MINECO, under grant TIN 2015-65277-R,
iii) the EC H2020 MANGO project (GA No. 671668), and iv) by the Spanish
MICINN, under grant PID2019-110866RB-I00.

vii

“output” — 2020/12/1 — 14:36 — page viii — #9

“output” — 2020/12/1 — 14:36 — page ix — #10

Table of Contents

List of Tables xiii

List of Figures xvi

Abbreviations xviii

Abstract xx

Resumen xxii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Formulation . 4
1.3 Thesis Contributions . 8
1.4 Thesis Structure . 10
1.5 Publications and Grants . 11

1.5.1 Journal papers . 11
1.5.2 Conference papers . 11
1.5.3 Mobility Grants . 12

2 Energy Estimation with an Application Signature 13
2.1 Application Signature . 13

2.1.1 Static Code Analysis . 15
2.1.2 Dynamic Profiling of the Application Signature 16
2.1.3 Energy Estimation . 17

2.2 Application Signature for Multi-Threaded Applications 18
2.3 Experimental Setup . 19
2.4 Results . 21
2.5 Conclusions . 25

ix

“output” — 2020/12/1 — 14:36 — page x — #11

TABLE OF CONTENTS

3 Related Work 27
3.1 Application Signature . 27
3.2 Energy, Power and Performance Estimation 31
3.3 Server Power Modeling . 35
3.4 Dynamic Profiling . 36
3.5 Energy-Aware Task Scheduling . 37

4 Fast Energy Estimation Framework 41
4.1 Fast Energy Estimation Framework Modules 41

4.1.1 Call Graph Set . 44
4.1.2 Estimation of Executed Instructions 45
4.1.3 Application Signature . 49
4.1.4 Application Signature Execution Manager 51

4.1.4.1 Application Signature Execution Time 54
4.1.5 Application Profile Reconstruction 55

4.1.5.1 Execution Time Estimation 55
4.1.5.2 Hardware Counter Profile Reconstruction 56

4.1.6 Energy Estimation . 56
4.1.6.1 Power Models . 56
4.1.6.2 Overall Energy Estimation 57
4.1.6.3 Compression Ratio of the Framework 58

4.2 Sever Power Modeling . 58
4.2.1 Server Power Models . 59

4.2.1.1 Dynamic CPU and Memory Power Models 61
4.2.1.1.1 Classical Approach 61
4.2.1.1.2 Grammatical Evolution 62

4.2.2 Power Prediction for Co-assigned Tasks 62
4.3 Experimental Setup . 64

4.3.1 Fast Energy Estimation Framework 64
4.3.2 Server Power Modeling . 65

4.4 Results . 70
4.4.1 Fast Energy Estimation Framework 70

4.4.1.1 Compression Ratio and Energy Error vs
Application Signature Length 70

4.4.1.2 Compression Ratio and Energy Error vs Segment
Division . 72

4.4.1.3 Evaluation of the Fast Energy Estimation Framework 73
4.4.1.3.1 Energy Estimation for the Sequential

Scenario 73

x

“output” — 2020/12/1 — 14:36 — page xi — #12

TABLE OF CONTENTS

4.4.1.3.2 Energy Estimation for the
Multi-Threaded Scenario 75

4.4.2 Server Power Modeling . 77
4.4.2.1 Overall Server Power Model 78
4.4.2.2 Overall Power of Co-assigned Applications 79

4.5 Conclusions . 80

5 Task Scheduling with the Application Signature 83
5.1 Task Scheduling with the Application Signature 83

5.1.1 Using the Application Signature for Energy-Aware Task
Scheduling . 85

5.1.2 Compression Ratio of the Batch 85
5.2 Task Scheduling Approaches . 86

5.2.1 Mixed Integer Linear Programming Formulation 87
5.2.2 Simulated Annealing . 89
5.2.3 Energy-Aware Heuristic . 91

5.3 Experimental Setup . 95
5.3.1 Data Center Simulator . 95

5.3.1.1 Server Power Model and Overall Data Center Power 95
5.3.2 Simulation Scenarios and Task Batch Composition 96

5.4 Results . 96
5.4.1 Small Scale Scenario . 97
5.4.2 Large Scale Scenario . 101
5.4.3 Compression Ratio of the Batch 103
5.4.4 Overall Results . 103

5.5 Conclusions . 104

6 Conclusions and Future Work 105
6.1 Summary and Conclusions . 105
6.2 Future Work . 108

6.2.1 Enhance and Broadening of the Scope of the Fast Energy
Estimation Framework . 108

6.2.2 Supporting a Cloud Scenario 109
6.2.3 Supporting Anomaly Detection and Prediction 109

Bibliography 111

A Grammatical Evolution Technique 123

xi

“output” — 2020/12/1 — 14:36 — page xii — #13

“output” — 2020/12/1 — 14:36 — page xiii — #14

List of Tables

2.1 Hardware counters used as inputs to the power estimation models . 20
2.2 Coe�cients values of the Speed-Up model 20
2.3 Results of the validation process . 23
2.4 Results of energy estimation using the application signature for

multi-threaded applications (Error
CP U

(%), Error
Mem

(%)) 24

3.1 Comparison of our present work against other works 34

4.1 Hardware counters collected during the execution of the application
signature . 64

4.2 Input dataset for each application 65
4.3 HW counters collected to build the server power models 67
4.4 Coe�cient Values for all models . 68
4.5 Evaluation of the fast energy estimation framework. Sequential

scenario . 74
4.6 RMSE and MAE for training and test set in classical and

grammatical evolution models . 77

5.1 Energy savings results for the small and large scale scenario when
compared to the baseline Round-Robin policy 97

xiii

“output” — 2020/12/1 — 14:36 — page xiv — #15

“output” — 2020/12/1 — 14:36 — page xv — #16

List of Figures

1.1 Motivational Example: Comparison between traditional energy
estimation techniques vs our proposed energy estimation approach . 4

1.2 Comparison between Round-Robin policy vs an energy-aware task
scheduling approach . 7

2.1 Overview of the application signature structure and execution . . . 14
2.2 Overview of the process for energy estimation using the application

signature . 16
2.3 Application Signature for Multi-threaded applications 18
2.4 Instructions per Cycle (blue) and the temporal evolution of the

independent execution paths (green). Application signature
samples (red). Benchmark: Calculix 22

4.1 Overview of the fast energy estimation framework modules 42
4.2 Call Graph and Independent Execution Path 44
4.3 Overview of the estimation of executed instructions process (for the

independent execution path 1 obtained from the Call Graph Set) . . 47
4.4 Application Signature from the Call Graph Set 49
4.5 Application signature execution manager and application profile

reconstruction . 51
4.6 Overview of the co-allocated tasks power model methodology 59
4.7 Experimental Setup. Parameters collected during the experimentsn 66
4.8 CR

fr

and Energy Est. Error vs (Application Signature Length -
Segment Division (s)) . 71

4.9 Energy and absolute errors for the parallel scenario 76
4.10 Compression Ratio for the parallel scenario 77
4.11 RMSE of the overall server power model for each frequency

configuration (Test set) . 79
4.12 Test set samples (subset). Power prediction of co-allocated tasks

using HW counter prediction . 80

xv

“output” — 2020/12/1 — 14:36 — page xvi — #17

LIST OF FIGURES

5.1 Comparison between task scheduling approaches: Round-Robin vs
Energy-Aware . 84

5.2 Energy-Aware task scheduling approaches: input, output and task
allocation . 86

5.3 Small scale scenario: Power profiles 98
5.4 Small scale scenario: Load profiles 100
5.5 Large scale scenario: Power profiles 101
5.6 Large scale scenario: Load profiles 102

xvi

“output” — 2020/12/1 — 14:36 — page xvii — #18

Abbreviations

BBV Basic Block Vectors

CFG Control Flow Graph

CG Call Graph

CGS Call Graph Set

CPU Central Processing Unit

CR Compression Ratio

DEVS Discrete EVent Systems

DIMM Dual In-line Memory Module

DVFS Dynamic Voltage and Frequency Scaling

ETF Earliest Task First

FIFO First In First Out

GA Genetic Algorithms

GE Grammatical Evolution

GHGE Global Greenhouse Gas Emissions

GPU Graphics Processing Unit

HPC High Performance Computing

HW Hardware

ICT Information and Communications Technologies

IPC Instructions Per Cycle

IR Intermediate Representation

xvii

“output” — 2020/12/1 — 14:36 — page xviii — #19

ABBREVIATIONS

IRC In Row Cooling

IT Information Technology

LLC Last Level Cache

LTF Longest Task First

MAE Mean Absolute Error

MIC Many Integrated Cores

MILP Mixed Integer Linear Programming

NMRSE Normalized Root Mean Square Error

PCA Principal Component Analysis

PSU Power Supply Unit

PUE Power Usage E�ectiveness

RAPL Running Average Power Limit

RMS Root Mean Square

RMSE Root Mean Square Error

RPM Revolutions Per Minute

RR Round-Robin

SaaS Software as a Service

SVR Support Vector Regression

xviii

“output” — 2020/12/1 — 14:36 — page xix — #20

Abstract

Data centers are one of the most power hungry sections of the Information and
Communications Technologies (ICT) sector. In the U.S in 2014, data centers
consumed around the 1.8% of the total U.S electricity consumption. Worldwide
data centers consumed in 2015 around 200 TWh of the global electricity usage.
This electricity consumption is expected to increase to around 1200 TWh in
2025, which would represent 4.5% of the global electricity usage. One of the
major contributors to the overall data center power is the IT or computing
power, therefore there is a special interest to improve its energy e�ciency.
Scientific community has developed energy e�cient techniques to reduce the
energy consumption of IT equipment, such as resource management, power
budgeting or power capping. These techniques assume the existence of a full
dynamic power profiling, obtained through a previous full execution of the
application. This full dynamic profiling is not viable in scenarios of long-running
applications that are deployed in data centers, since performing a full dynamic
profiling of a large batch of long-running applications is a time consuming
process thus not energy-e�cient. Therefore, in this work we propose the use of
an application signature to estimate the energy in a fast way without the need to
execute the application from beginning to end. The application signature is a
reduced version, in terms of execution time, of the original application. We
developed a fast energy estimation framework that uses the application signature
to make a quick energy estimation of long-running applications. The framework
estimates, without performing a full profile of the application, the dynamic CPU
and memory energy of both single-threaded and multi-threaded long-running
application versions. Additionally, the fast energy framework is automatic and it
has a modular design, allowing to change the functionality of each module
without altering the functionality of the whole framework. We validated the
accuracy of the fast energy estimation framework with a set of sequential and
multi-threaded long-running applications. For the single-threaded version of the
applications we obtained an RMS of 10.4% for the CPU energy estimation error
and an RMS of 16.8% for the memory energy estimation error. In the

xix

“output” — 2020/12/1 — 14:36 — page xx — #21

ABSTRACT

multi-threaded scenario, we used a subset of applications from the sequential
version set. We achieved an RMS of 11.4% for the CPU energy estimation error
and an RMS of 12.8% for the memory energy estimation error. We defined the
concept of Compression Ratio (CR) as the ratio of total execution time of the
original application, to the time it takes to estimate the energy through the fast
energy estimation framework. A high CR value indicates that the energy is
estimated much faster (CR times faster) than executing the whole application.
We obtained Compression Ratios in the range from 10.1 to 191.2. Finally, we
validated the usefulness of the energy estimation obtained from the application
signature by applying three di�erent energy-e�cient task scheduling approaches:
i) An optimal approach using a Mixed Integer Linear Programming (MILP)
technique, ii) An energy-aware heuristic approach that uses a Longest Task First
(LTF) algorithm together with an energy-e�cient task allocation based on the
current servers consumption, and iii) We proposed an implementation of a
metaheuristic using a Simulated Annealing process. The results obtained
through the energy estimation (obtained through the application signature)
values are compared with the real energy values. We obtained energy savings
from 8% to 19%, and more importantly the energy savings obtained with the
application signature approach are similar to the values obtained with the real
energy measurements, with an energy savings di�erence below 1.5%.

xx

“output” — 2020/12/1 — 14:36 — page xxi — #22

Resumen

Los centros de datos son una de las secciones del sector de Tecnologías de la
Información y Comunicaciones (TIC) que tienen mayor consumo energético.
Durante el año 2014 en EE. UU., los centros de datos consumieron alrededor del
1.8% del consumo eléctrico total en dicho país. A nivel mundial, los centros de
datos representaron en el año 2015 alrededor de 200 TWh respecto al consumo
eléctrico mundial. Según estimaciones, este consumo eléctrico puede aumentar
hasta unos 1200 TWh en el año 2025, lo que representaría el 4.5% del consumo
eléctrico global. Uno de los mayores contribuidores al consumo global en los
centros de datos es el representado por los equipos de computación o consumo de
IT. A nivel computacional, se han desarrollado diversas técnicas para reducir el
consumo de IT como pueden ser, la gestión de recursos, presupuestos de potencia
y la limitación de consumo de los servidores ubicados en los centros de datos.
Para poder aplicar estas técnicas se asume la existencia de un perfilado
(profiling) previo obtenido a través de una ejecución completa de la aplicación.
En escenarios donde se ejecutan grandes despliegues de aplicaciones de larga
duración no resulta viable realizar un profiling previo debido a que es un proceso
que demanda elevados tiempos de ejecución y, por lo tanto, no es eficiente
energéticamente. Teniendo en cuenta la problemática expuesta anteriormente, en
este trabajo se ha desarrollado el concepto de firma de la aplicación cuyo uso
tiene la finalidad de estimar la energía sin tener que ejecutar la aplicación en su
totalidad. La firma de la aplicación se define como una versión reducida, respecto
al tiempo de ejecución, de la aplicación original. Se ha desarrollado un framework
de estimación rápida de energía que utiliza la firma de la aplicación para estimar
la energía sin tener que ejecutar completamente las aplicaciones. El framework
estima la energía de CPU y memoria, tanto de aplicaciones secuenciales como de
aplicaciones de tipo paralelas (multihilo). A su vez, el framework se ejecuta de
forma automática y tiene un diseño modular, permitiendo de esta forma
reemplazar la funcionalidad interna de un módulo sin necesidad de alterar la
funcionalidad de todo el framework. Se ha validado la precisión del framework de
estimación rápida de energía con un conjunto representativo de ejecuciones

xxi

“output” — 2020/12/1 — 14:36 — page xxii — #23

RESUMEN

secuenciales y paralelas, obteniendo unos errores RMS de 10.4% y 16.8% de
estimación de energía de CPU y memoria respectivamente para el caso de
aplicaciones secuenciales. En el caso de aplicaciones paralelas, se ha trabajado
con un subconjunto de las aplicaciones del caso secuencial y se han obtenido
errores RMS de 11.4% y 12.8% de estimación de energía de CPU y memoria
respectivamente. Por otra parte, se ha definido el concepto Ratio de Compresión
(CR) como el ratio de la ejecución total de la aplicación original respecto al
tiempo que tarda el framework en estimar la energía de la aplicación. Un valor
alto de Ratio de Compresión indica que el framework estima la energía de forma
mucho más rápida (CR veces más rápida) que la ejecución total de la aplicación.
Se obtienen Ratios de Compresión que están en el rango entre 10.1 hasta 191.2.
Finalmente, se ha evaluado la utilidad de la información de energía obtenida
mediante la firma de la aplicación gracias a la aplicación de tres propuestas de
planificación de tareas: i) utilizando un modelo de Programación Lineal Entera
Mixta (MILP), ii) haciendo uso de una heurística energéticamente eficiente que
utiliza un algoritmo de tipo LTF (tareas de larga ejecución se ejecutan primero)
junto con una eficiente colocación de tareas en los servidores del centro de datos
y, iii) se propone una implementación de una metaheurística basada en un
algoritmo de recocido simulado (Simulated Annealing). Los resultados de
estimación de energía global del centro de datos obtenidos con los datos de la
firma de la aplicación se han comparado con los datos reales de energía de las
aplicaciones. Se han obtenido unos ahorros de energía entre el 8% y 19%, y lo
que es más importante los valores de ahorro de energía obtenidos con la
información de la firma son similares, con un error inferior al 1.5%, respecto a los
ahorros de energía obtenidos con los valores reales de energía de las aplicaciones.

xxii

“output” — 2020/12/1 — 14:36 — page xxiii — #24

“output” — 2020/12/1 — 14:36 — page xxiv — #25

“output” — 2020/12/1 — 14:36 — page 1 — #26

Chapter 1

Introduction

1.1 Motivation

Data center facilities are high power consumers. It was estimated that data centers
already accounted for at least 1.5% of the worldwide total electricity consumption
in 2010 [70]. In the U.S at the year 2014, data centers consumed about 70 billion
kWh which represented the 1.8% of the total U.S electricity consumption. It is
estimated that U.S data centers will consume, in the year 2020, approximately 73
billion kWh [111].

Moreover, worldwide data centers consumed in 2015 around 200 TWh of the
global electricity usage and it is expected to increase its electricity consumption
to around 1200 TWh in 2025, which would represent 4.5% of the global
electricity usage [5]. The sector of Information and Communication Technology
(ICT), including data centers, generates up to 2% of the global C02
emissions [122]. In terms of the global greenhouse gas emissions (GHGE), data
centers alone are projected to have the second fastest growing (behind Smart
Phones) GHGE footprint from all of the ICT sector [14].

The overall energy use of the IT equipment (servers, storage devices, and
network) has increased from 92 TWh (2010) to 130 TWh (2018) [87]. On the one
hand, the energy e�ciency solutions adopted in data centers in the last decade
have enabled a large growth in services without a high increase of the energy use.
On the other hand, there are estimations indicating that the computing resources
of the data centers are going to double within the next 3 to 4 years. Therefore,
the need to improve energy e�ciency in data centers will be required to manage
the possible energy growth [87]. This idea of improving energy e�ciency is backed
by several studies where they indicate the necessity of targeting energy e�ciency
as a key strategic initiative in data centers [120] [9] [13] [57].

1

“output” — 2020/12/1 — 14:36 — page 2 — #27

CHAPTER 1. INTRODUCTION

There is an special interest to improve energy e�ciency of computing (or
IT) power since it is the major contributor to overall data center power (another
important contributor is the cooling power) [12]. There are proactive approaches
to reduce the overall energy consumption, such as, proactive thermal management
techniques that are used to reduce the cooling energy and minimize the overheating
of IT equipment, thus, minimizing the IT power consumption due to leakage [74].
Other energy-e�cient techniques focus mainly in the IT power equipment, such
as:

i) Resource management: where an energy-e�cient or energy-aware task
scheduling approach is applied for an optimal task or job allocation [134] [1] [8].

ii) Power budgeting: where policies or rules are established to distribute
e�ciently the power budget among all the servers from the data
center [131] [108] [59].

iii) Power capping: ensures that the maximum peak power consumption of
each server remains below a cap value [107] [19] [86] [118].

Moreover, when data centers are integrated in the Smart Grid, the
regulation capabilities of servers enable the participation in demand-response
programs, allowing to reduce the energy costs in data centers [24]. The previous
techniques are usually used proactively and assume the existence of either a full
dynamic power profiling of the applications (obtained through a previous full
execution of the application), or power models that predict the power
consumption of the applications that are going to be executed in the servers.

The work of this thesis is focused on long-running, data-intensive and
iterative applications. This type of application is usually found in many scientific
computing or HPC scenarios. Additionally, besides taking too much time to
finalize the execution, these applications are CPU and memory intensive,
resulting in high energy consumption in data centers, characteristics that make
this type of application interesting for energy e�ciency purposes.

In scenarios of long-running applications deployed in data centers the
process to perform a full dynamic power profiling is not viable since performing a
full profile of a large batch of long-running applications is a time consuming
process and therefore, is not energy-e�cient. These long-running applications, as
we have previously mentioned, have the characteristic to be iterative,
data-intensive, and often they are formed by computational intensive kernels
such as, matrix multiplication. These kernels can be found in scientific
applications (e.g., fluid dynamics, climate modeling) [51] and more recently in
artificial intelligence applications [135] [123]. Long-running applications are

2

“output” — 2020/12/1 — 14:36 — page 3 — #28

1.1. MOTIVATION

executed in large-scale data centers, for example, the Barcelona Supercomputing
Center� or in small-scale data centers such as Madrid Supercomputing and
Visualization Center †.

Moreover, these types of applications can be executed with multiple
instances of the same application in a single-threaded way, and also, can be
executed in a multi-threaded way using multiple cores as occur in the High
Performance Computing (HPC) scenario. Also, long-running applications can be
found in non-cloud and cloud environments. In non-cloud environments the
applications are executed directly in the server. This type of environment is
usually present in HPC scenarios. In cloud environments the long-running
applications can present themselves as a Software as a Service (SaaS) type of
applications like in services such as Google Cloud‡.

Long-running applications are usually deployed in batches and they are
commonly executed with di�erent input datasets, hence these applications show
a di�erent behaviour each time their input changes. This would require to redo a
full dynamic profiling every time that the input changes. Obviously, this is not
an energy-e�cient process.

Therefore, in this work we propose the use of an application signature to make
a fast energy estimation of long-running single and multi-threaded applications
without the need to perform a complete execution of the original application. We
define the application signature as a reduced version, in terms of execution
time, of the original application. Also, the application signature is used to
make a performance prediction, which is a prediction of the execution time of
the applications before they are executed in the servers of the data centers. We
developed a fast energy estimation framework that uses the application signature to
estimate in a fast way the energy without executing the application from beginning
to end, thus allowing the development of proactive energy-e�cient optimization
policies adapted to the application.

Hence, in this work we use the information provided by the application
signature to apply di�erent energy-e�cient task scheduling approaches (resource
management) in order to reduce the makespan of the original batch, and
therefore improve the energy e�ciency in data centers. The makespan is
defined as the total execution time of the batch of applications that will run in
the data center. Without the application signature those energy-aware
scheduling approaches would require a full dynamic profiling from the complete
execution of the applications preventing them to be applied in an e�cient way.

�https://www.bsc.es/
†https://www.cesvima.upm.es/
‡https://cloud.google.com/

3

“output” — 2020/12/1 — 14:36 — page 4 — #29

CHAPTER 1. INTRODUCTION

In this work we do not address experimentally the problem of using other
energy-e�cient techniques such as power budgeting or power capping in an
experimental way. Nonetheless, the fast energy estimation framework using the
application signature can be used to solve the problems of such techniques.

Finally, although we have not used any stream processing applications, we
consider that the fast energy framework should be able to work with them.
Moreover, HPC over cloud applications could also be a potential target for the
proposed framework. Finally, applications such as data-intensive interactive or
latency-sensitive online applications would not be able to work with the
developed framework.

1.2 Problem Formulation

Tapp

P(W)

Power models
as function of
HW counters

Dynamic Profiling Power profile Energy

E=PxTapp

A B/C B/D A B/C B/D

H
ar

dw
ar

e
 C

ou
nt

er
s

Tapp

(a) Traditional approach: Energy estimation through the execution of the original application

Power
models as
function of

HW
counters

Tsig

H
ar

dw
ar

e
 C

ou
nt

er
s

A B/CB/D

App. Signature
profiling

Application profile
reconstruction

T'app
T'app

P'(W)

Power profile

E'=P'xT'app

Energy

ta tb/c tb/d

H
ar

dw
ar

e
 C

ou
nt

er
s

(b) Our approach: Energy estimation through the execution of the application signature

Figure 1.1: Motivational Example: Comparison between traditional energy estimation
techniques vs our proposed energy estimation approach

To illustrate our proposed solution using the application signature we
present the problem formulation as a motivational example. The code presented
in Application 1 shows a simple loop-based application. The application starts
by defining a set of variables (n, v, y and z) that represent the input data. The
input data can be defined in the Main function of the source code (as in this
example) or it can be read from an external source such as a file. The application
continues with a main loop that iterates until the threshold set by the variable n.

4

“output” — 2020/12/1 — 14:36 — page 5 — #30

1.2. PROBLEM FORMULATION

Inside the loop, two functions (FunctionA and FunctionB) are called. We can
see that the execution can be divided in three execution paths:

• Main æ FunctionA (Path 1).

• Main æ FunctionB æ FunctionC (Path 2).

• Main æ FunctionB æ FunctionD (Path 3).

The iterative structure shown in Application 1 has been selected because it
appears in many long-running applications [101] [81] [21].

Application 1 Motivational Example: Long-running application
1: function Main
2: n Ω 1000
3: v Ω [100, 100]
4: y Ω 50
5: z Ω 25
6: for i Ω 0 to n do
7: FunctionA(v)
8: FunctionB(y,z)
9: end for

10: end function
11: function FunctionA
12: for i Ω 0 to v(1) do
13: Computation

14: for j Ω 0 to v(2) do
15: Computation

16: end for
17: end for
18: end function
19: function FunctionB
20: FunctionC(y)
21: FunctionD(z)
22: end function
23: function FunctionC
24: for i Ω 0 to y do
25: Computation

26: end for
27: end function
28: function FunctionD
29: for i Ω 0 to z do
30: Computation

31: end for
32: end function

Figure 1.1a shows the traditional approach of energy estimation by doing a
full profiling of the whole execution of the application. First, we execute the whole
application and collect a set of hardware counters through a dynamic profiling.

5

“output” — 2020/12/1 — 14:36 — page 6 — #31

CHAPTER 1. INTRODUCTION

Then, we obtain a power profile (P) by using power models as a function of the
hardware counters previously collected. Finally, from the power profile and the
execution time (T

app

) of the application we can calculate the energy. In the case
of long-running applications this process is not e�cient since the execution times
are usually long (hours or days). To solve this problem we use an application

signature.
We propose an energy estimation process through the application signature,

as shown in Fig. 1.1b. First, we execute the application signature and collect a
set of hardware counters. The application signature execution is composed by a
shorter execution of each independent path, i.e we execute Path 1 for a short
period of time, then execute Path 2, and so on. Therefore, the execution time of
the application signature (T

sig

) is significantly lower than the execution time of
the original application. The next step is to reconstruct the application profile.
To reconstruct the profiles we extend in time the values of the hardware counters
obtained through the execution of the application signature. Each hardware
counter profile from each path is extended until it has a length equal to the
estimated execution time path (t

a

, t
b/c

and t
b/d

).
The execution time of each path is estimated through the estimated

executed instructions (obtained from the source code and binary of the
original application) and the Instructions per Cycle (IPC) of each path
(obtained from the application signature). The total estimated execution time of
the application (T Õ

app

) can be obtained by adding the estimated execution time of
each path. To minimize error, the value of T Õ

app

should be the closest possible to
T

app

.
Finally, we use power models as a function of hardware counters with the

application reconstructed profile to obtain a power profile (P Õ). From the power
profile we can calculate the energy (E Õ) of the application. Since the application
signature executes each independent execution path independently the power
profile P Õ is not the same as the power profile P of the original application.
However, the estimated energy E Õ is equal to the energy E estimated from the
original application, since the area under the curve of both power profiles (P and
P Õ) should be the same.

As we have previously commented, in order to apply energy-aware task
scheduling approaches we need to extract information such as power or execution
time from the applications before they are executed in the data center. When is
not possible to gather these type of information a Round-Robin process is
applied to the batch. Figure 1.2a shows the task allocation process of a batch of
T

n

tasks using the Round-Robin approach. Each task is allocated to an available
server (S

m

) in the same order as they originally arrived. The example shows a

6

“output” — 2020/12/1 — 14:36 — page 7 — #32

1.2. PROBLEM FORMULATION

T1 T2 T3 Tn

Batch

Data Center

S1

S2

Sm

T1 T1 T2 T2

T3 T3 T3 T3

T4 T4 T4 T4 S3
Original Batch

T4 T3 T2 T1Tn

Round-Robin: task allocated in
the same order as they arrived

(a) Traditional approach: Round-Robin policy

Data Center

S1

S2

Sm

T8 T8 T13 T13

T35 T35 T35 T35

T2 T2 S3

Batch rearranged

T2 T13 T35 T8TnEnergy-Aware
algorithm

Batch (with Application Signature
information)

T'app1
P'1

T'app2
P'2

T'app3
P'3

T'appn
P'n

Energy-Aware task scheduling approach

(b) Our approach: Energy-aware task scheduling approach using the application signature

Figure 1.2: Comparison between Round-Robin policy vs an energy-aware task
scheduling approach

data center with m servers with each server equipped with 4 cores. The first T1
task requires 2 cores and is allocated to server S1, similarly task T2 requires 2
cores and is allocted in server S1 since it has enough available resources. When a
task can not be allocated in a server it goes into a waiting queue until there is
enough resources available to be executed. The Round-Robin policy is simple
and therefore, easy to implement. Although, the Round-Robin policy is not an
energy-e�cient task scheduling process since the tasks are not allocated aiming
to reduce the makespan or the power consumption of the servers.

Energy-e�cient proactive task scheduling approaches can be used to reduce
the energy consumption in data centers by reducing the makespan of the original
batch. Figure 1.2b shows that an energy-aware task scheduling approach is used to
rearranged the original batch. By changing the tasks execution order the makespan
can be minimized. In the figure we can see that the tasks are allocated di�erently
when compared to the Round-Robin policy (tasks T8 and T13 are allocated in server
S1, and so on). This change in the tasks order of execution is the result of applying
an energy-aware algorithm to minimize the makespan of the original batch. The
energy-aware algorithm needs information, such as the execution time or the mean
power consumption from the tasks that will be executed. This information can be
obtained through a full dynamic profiling of each task (not very energy-e�cient
process). By executing the application signature we can obtain the information of

7

“output” — 2020/12/1 — 14:36 — page 8 — #33

CHAPTER 1. INTRODUCTION

execution time T Õ
appi

and mean power consumption P Õ
i

without the need to perform
a full profiling of each task of the batch. Thus, allowing to apply an energy-aware
task scheduling process in a more e�cient way.

1.3 Thesis Contributions

The contributions of this PhD. thesis are described in 3 sections: i) the application
signature as a proof of concept, ii) the implementation of a fast energy estimation
framework that uses the application signature and, iii) using energy-aware task
scheduling approaches with the information provided by the application signature.

• Application signature as a proof of concept:

– We present the concept of application signature and its use to obtain a
fast CPU and memory energy estimation of long-running applications.
A proof of concept of the use of the application signature is proposed
for single-threaded and multi-threaded applications.

– We obtain errors for the estimation of the dynamic CPU and memory
energy consumption below 8.0% when the estimated energy is
compared against the energy consumption of the complete execution
of the application. For the multi-threaded applications we obtain an
RMSE equal to 12.7% when we compare the dynamic energy
estimated from the application signature against the dynamic energy
from the whole multi-threaded execution of the application. We obtain
an average value of almost 9.8 for the CR (Compression Ratio,
defined as a relation between the total execution time and the time
the application signature takes to estimate the energy consumption) of
all the benchmarks, indicating that using the application signature we
are able to make a dynamic energy consumption estimation almost 10
times faster than the original execution of the application.

• Fast energy estimation framework:

– We propose a fast energy estimation framework for long-running
applications that uses the application signature to estimate the
dynamic CPU and memory energy without the need to execute the
whole application. The framework is able to estimate the energy for
both sequential and multi-threaded applications.

8

“output” — 2020/12/1 — 14:36 — page 9 — #34

1.3. THESIS CONTRIBUTIONS

– The framework estimates the energy in an automatic way. The design of
the framework is modular, allowing to change the internal functionality
of each module, due to preferences or technical availability, without
a�ecting the functionality of the whole framework.

– We validate the accuracy of the fast energy estimation framework with a
set of sequential and multi-threaded long-running applications. For the
sequential version of the applications we obtain an RMS of 10.4% for
the CPU energy estimation error and an RMS of 16.8% for the memory
energy estimation error. In case of the multi-threaded scenario we use
a subset of applications from the sequential version set. We achieve
an RMS of 11.4% for the CPU energy estimation error and an RMS of
12.8% for the memory energy estimation error. We obtain Compression
Ratios in the range from 10.1 to 191.2.

– We model dynamic CPU and memory power given the per-application
hardware counters, using Grammatical Evolution techniques. We
obtain absolute power errors equals to 4.4W and 3.7W, for the
dynamic CPU and memory power model respectively. We use
analytical fan and leakage power models to obtain overall server
power. Our models are trained and tested using a wide range of
sequential and parallel workloads, under various DVFS setups,
improving error by a 32% when compared to a traditional approach.

– We show that our model is robust enough to predict the power
consumption of two di�erent tasks when they run co-assigned in the
same server, given the hardware counters of the overall server. Also,
we develop a methodology to, given the hardware counters of
individual tasks, obtain the hardware counters when both applications
are co-allocated (without executing the co-allocated applications).

• Energy-aware task scheduling using the application signature:

– We validate the usefulness of the energy estimation information (mean
power and estimated execution time) obtained from the application
signature by applying di�erent energy-e�cient task scheduling
approaches. The results obtained through the energy estimation
values are compared with the real energy values. The values of the
energy estimation from the fast energy estimation framework are
presented as the application signature information. The real energy
values are presented as the oracle information.

– We use three di�erent task scheduling approaches:

9

“output” — 2020/12/1 — 14:36 — page 10 — #35

CHAPTER 1. INTRODUCTION

i) An optimal approach using a Mixed Integer Linear Programming
(MILP) technique.

ii) An energy-aware heuristic approach that uses a Longest Task First
(LTF) algorithm together with an energy-e�cient task allocation
based on the current servers consumption.

iii) We propose an implementation of a metaheuristic using a
Simulated Annealing process.

The resulting overall data center energy consumption from each task
scheduling approach is compared against a Round-Robin (RR)
approach.

– We obtain energy savings from 8% to 19%, and more importantly the
energy savings obtained with the application signature information are
similar as the values obtained with the oracle information, with energy
savings di�erence below 1.5%.

– We define the Compression Ratio of the Batch of applications as the
ratio of total execution time of the original batch using the Round-Robin
approach to the total execution time of extracting and executing the
Application Signature of the whole batch. We obtained Compression
Ratios around 39.7 to 45.8.

1.4 Thesis Structure
The remainder of this work is organized as follows:

• Chapter 2 explains the application signature as a proof of concept. The
concept of the application signature is explained and an experimental proof
of concept is applied to validate the use of the application signature as a
mean to estimate the energy of the applications. A proper understanding of
the proof of concept presented in this chapter makes it easier to follow the
content of Chapter 3, where we present the related work.

• Chapter 3 presents the related work associated with this PhD. thesis. We
cover works associated with similar approaches that uses an application
signature and di�erent energy estimation process applied in data centers.

• Chapter 4 describes the fast energy estimation framework that uses the
application signature. We show a full implementation of the framework and
also, the results of applying the framework in an online manner with a set
of long-running applications. Additionally, in this chapter we present a

10

“output” — 2020/12/1 — 14:36 — page 11 — #36

1.5. PUBLICATIONS AND GRANTS

methodology to obtain an overall server power model using Grammatical
Evolution techniques.

• Chapter 5 shows the results of using the information provided by the
application signature for energy-e�cient task scheduling approaches.

• Chapter 6 provides the conclusions obtained from this work and also, presents
a summary of the future research works derived from this PhD. thesis.

1.5 Publications and Grants
In this section we present the journal and conference publications associated with
this work, as well as awarded grants.

1.5.1 Journal papers
We have presented our work in an international journal. Moreover, at the moment
of writing this work there is one article in review process:

• J. C. Salinas-Hilburg, M. Zapater, J. M. Moya, J. L. Ayala, “Fast energy
estimation framework for long-running applications”, Future Generation
Computer Systems (2021) (Chapter 4 of this PhD. thesis).

• J. C. Salinas-Hilburg, M. Zapater, J. M. Moya, J. L. Ayala, “Energy-Aware
Task Scheduling in Data Centers using an Application Signature”,
Computers and Electrical Engineering (2020) (Review process) (Chapter 5
of this PhD. thesis).

1.5.2 Conference papers
Additionally, the results of this thesis were presented in the following international
peer-reviewed conferences:

• J. C. Salinas-Hilburg, M. Zapater, J. M. Moya, J. L. Ayala, “Fast Energy
Estimation Through Partial Execution of HPC Applications”, International
Conference on Application-specific Systems, Architectures and Processors
(ASAP) (2018) (Chapter 2 of this PhD. thesis).

• J. C. Salinas-Hilburg, M. Zapater, J. L. Risco Martín, J. M. Moya, J. L.
Ayala, “Unsupervised Power Modeling of Co-Allocated Workloads for Energy
E�ciency in Data Centers”, Design, Automation and Test in Europe (DATE)
(2016) (Chapter 5 of this PhD. thesis).

11

“output” — 2020/12/1 — 14:36 — page 12 — #37

CHAPTER 1. INTRODUCTION

• J. C. Salinas-Hilburg, M. Zapater, J. L. Risco Martín, J. M. Moya, J. L.
Ayala, “Using grammatical evolution techniques to model the dynamic power
consumption of enterprise servers”, International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS) (2015) (Chapter 5 of
this PhD. thesis).

1.5.3 Mobility Grants
The author of this dissertation has been awarded with a mobility research grant
from the European Network of Excellence on High Performance and Embedded
Architecture and Compilation (HiPEAC), for a research stay of 3 months in the
Performance and Energy Aware Computing lab (PeacLab) at Boston University
(2017).

In the next chapter the reader will find a proof of concept of the
application signature. We will show the technical details of how the
application signature works and also, how is used to estimate the energy
of the applications.

12

“output” — 2020/12/1 — 14:36 — page 13 — #38

Chapter 2

Energy Estimation with an
Application Signature

In this chapter we present a proof of concept where we show that is possible to
estimate the energy of an application without the need to execute it completely.
We define the concept of application signature and how it is used to estimate the
energy of the applications in a fast way. Additionally, we present the results of
energy estimation from the application signature of a large set of heterogeneous
applications.

2.1 Application Signature
In this section we present our methodology to construct the application
signature. The application signature is defined as a reduced version (in terms
of the execution time) of the original application. The main purpose of the
application signature is to estimate the energy and performance of the whole
execution of the application without the need to execute it completely.

Figure 2.1a shows an overview of the application signature structure. The
source code/binary of the application together with its correspondent input data
is analyzed statically to extract information about the Call Graph (CG) and the
estimated executed instructions per independent execution path. We define an
independent execution path as a path from the Call Graph obtained through
the following process: i) start the path search at the root node (main function),
ii) if an edge can be followed, do so; iii) if not, stop the path search. The
application signature presents a two layer architecture. The first layer is
composed by the source codes from all the independent execution paths of the
application; while the second layer contains static code analysis information

13

“output” — 2020/12/1 — 14:36 — page 14 — #39

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

Application:
- Source code
- Binary
- Input Data

Main

Function A

Function B

Function C

Function D

Independent Exec. Path 1

Independent Exec. Path 2

Independent Exec. Path 3

Call
Graph

Estimated executed instructions per independent execution path:

Static Code Analysis

Main Func. A

Main Func. B

Main Func. B

Func. C

Func. D

Application Signature

- Source code
- ,

- Source code
- ,

- Source code
- ,

(a) Application signature structure

Application

Application Signature

(b) Original application Vs Application Signature execution times

Figure 2.1: Overview of the application signature structure and execution

required for the energy consumption estimation. This information are the values
of I

EP1 , I
EP2 ,..., I

EPn that represent the estimated executed instructions from
each independent execution path and the values of D

EP1 , D
EP2 ,..., D

EPn indicate
the input data to each independent execution path. An application signature
execution manager creates the binaries of each source code and executes each
independent execution path with their respective input data. The manager stops
the execution of each independent execution path until a desired threshold
criteria of executed instructions per path is reached. By doing this we can
execute each independent execution path of the application separately and for a
very short period of time, much shorter than the original execution. The
application signature is directly associated with the input data of the original
application, therefore when the application change its input data a new
application signature is built.

14

“output” — 2020/12/1 — 14:36 — page 15 — #40

2.1. APPLICATION SIGNATURE

Figure. 2.1b shows the comparison between the execution time of the
application (T

app

) against the execution time of the application signature (T
sig

),
which must be lower by definition. The relation between the two execution times
is the Compression Ratio (CR) and indicates the acceleration of the energy
estimation process. The value of CR is defined in Eq. 2.1. The value of tÕ

EPj

represents the execution time of the partial execution of the jth independent
execution path of the application. By adding the partial execution of all the
independent execution paths we estimate the total execution time of the
application signature: T

sig

(T
sig

<< T
app

).

CR =T
app

T
sig

where T
sig

=
Nÿ

j=1
tÕ
EPj

(2.1)

2.1.1 Static Code Analysis
The main purpose of a static code analysis is to obtain information without the
need to execute the application, such as the number of resources an application will
use during runtime. The COSTA tool [3] [2] is a static code analysis tool that can
perform such task. It can estimate an upper bound of the resource consumption
of the application and, among other parameters, it can estimate the number of
instructions executed per independent execution path considering the input data
of the application. Also, COSTA builds the Call Graph listing all the functions and
the calls between them. Although COSTA is a static code analysis tool intended to
work for JAVA bytecode the concepts and techniques can be applied to the static
code analysis of applications in other programming languages. Another tool called
Mira [89] is a framework for static performance modeling and analysis and can
estimate the number of executed instructions for large scale or HPC applications
programmed in C/C++ languages.

In this chapter, we made use of the information that a regular static code
analysis profiler (such as COSTA or the Mira framework) provides. In particular,
we rely on the Call Graph extraction and the estimation of executed instructions
per each independent execution path. The Call Graph allows us to know the
number and the hierarchy of the whole set of paths. According to this, we can
isolate each independent execution path to perform its partial execution.

The static code analysis process takes into account the input data of the
application to estimate the number of executed instructions. An example of input
data typically found in large scale or HPC applications is the number of timesteps.
The number of timesteps usually determines the number of iterations of the main
loop of the application which heavily a�ects the number of estimated executed

15

“output” — 2020/12/1 — 14:36 — page 16 — #41

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

instructions. The estimated number of executed instructions together with the
Instructions per Cycle calculated from each partial execution of each independent
path is used to estimate the total execution time of each independent execution
path (T Õ

EPn
= (I

EPn)/(IPC
EPn ◊ Freq

CP U

)), as can be seen in Section 2.1.2.

2.1.2 Dynamic Profiling of the Application Signature

MEAN

MEAN

MEAN

Partial execution of independent execution path Reconstructed HW counters

Partial dynamic profiling of independent execution path

Dynamic CPU and memory
energy estimation as a

function of hardware counters

Reconstructed hardware counters signals for the
whole application4

1

2

3

Figure 2.2: Overview of the process for energy estimation using the application
signature

In order to estimate the energy consumption using the application signature
we need to apply the process shown on Fig. 2.2. The first step is to perform a partial
dynamic profiling of the application signature, which is formed by the partial
execution of each independent execution path. This partial dynamic profiling takes
much less time than the complete dynamic profiling of the whole application. The
purpose of the dynamic profiling step is to make a quick acquisition of the hardware
counters and calculate the Instructions per Cycle (IPC) of each partial execution.
By combining the information of I

EPn and the IPC from each partial execution we
are able to estimate the total execution time T Õ

app

(i.e. performance) and also obtain
an equivalent temporal profile of hardware counters for the complete execution.
As we can see in the dynamic profiling block from Fig. 2.2:

16

“output” — 2020/12/1 — 14:36 — page 17 — #42

2.1. APPLICATION SIGNATURE

1. Each independent execution path is partially executed during a short
amount of time tÕ

EPn
and the hardware counters (C1,EPn , C2,EPn , ..., C

k,EPn)
are collected. Each independent execution path is partially executed by the
application signature execution manager until the instructions retired reach
a threshold equal to – ◊ I

EPn , where – œ [0, 1] and I
EPn is the estimated

executed instructions for the nth independent execution path. The value of
– should be low enough to partially execute the path (providing the
expected acceleration), while still targeting a significant amount of
execution time to gather the hardware counters.

2. The IPC of the partial execution for the nth independent execution path is
obtained and then the estimated total execution time of the path EP

n

is
calculated as follows: T Õ

EPn
= (I

EPn)/(IPC
EPn ◊ Freq

CP U

) (CPU equation
time or basic performance equation).

3. The temporal profile of the hardware counters for the nth independent
execution path can be reconstructed by forming signals with duration T Õ

EPn

and amplitude equal to the mean value of each hardware counter
(‚C1,fn

, ‚C2,fn

, ..., ‚C
k,fn

).

4. The temporal profiles of each hardware counter for the complete application
are built by aligning the temporal profiles of the hardware counters from
each independent execution path. These hardware counter profiles have a
duration equal to the total estimated execution time T Õ

app

and amplitude
equal to the mean value of the respective hardware counters of each path.
These reconstructed profiles of hardware counters for the whole application
are equivalent, in terms of reflecting the dynamic CPU and memory energy,
to the profiles of hardware counters obtained through a full dynamic profiling
of the original application.

2.1.3 Energy Estimation
Figure 2.2 shows that the dynamic CPU and memory energy is estimated
through the reconstructed hardware counter signals obtained with the execution
of the application signature. The dynamic CPU and memory energy is estimated
using the CPU and memory power models explained in Section 4.2. We have two
separated power models for dynamic CPU and memory as a function of the
hardware counters: ‚P

x

= f(‚C1, ‚C2, ..., ‚C
k

), where x is CPU for the dynamic CPU
power or Mem for the dynamic memory power. The expression for the dynamic
CPU and Memory power (‚P

x

) can be found in Section 4.2.

17

“output” — 2020/12/1 — 14:36 — page 18 — #43

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

The energy is estimated by adding all the instantaneous dynamic CPU or
memory power values and then multiplying by the sampling period sm, as shown in
Eq. 2.2, where x is for CPU or Mem. The energy is calculated over a period equals
to T Õ

app

and for the set B formed by the temporal samples of the estimated power
signal (‚P

x

). These dynamic CPU and memory energies are obtained through the
reconstructed hardware counters signals that comes from the application signature.

‚E
x

=
5 ÿ

nœB

‚P
x

[n]
6

◊ sm (2.2)

2.2 Application Signature for Multi-Threaded
Applications

Figure 2.3: Application Signature for Multi-threaded applications

In order to obtain an estimation of the dynamic CPU and memory energy for
multi-threaded applications without the need to run the entire application we apply
the process shown in Fig. 2.3. First, we extract the application signature of the
single-threaded version of the application to obtain the dynamic CPU and memory
energy estimation („E1

cpu/mem

) and also the accumulative values of the estimated
hardware counters (‚C

iac). As a next step, we use a speed-up model to obtain an
estimated acceleration (‚S) as a function of the accumulative values of the estimated
hardware counters and the desired speed-up (S). The speed-up is defined as the
ratio between the runtime of a single-threaded execution divided by the runtime
of a multi-threaded execution (i.e, if we execute a parallel application with two
threads we should expect that the runtime of the multi-threaded execution is half
the runtime of the single-threaded execution, taking into account that the parallel
execution has minimal synchronization delays). It should be noted that the target
speed-up is equal to the numbers of threads the application will run in order to

18

“output” — 2020/12/1 — 14:36 — page 19 — #44

2.3. EXPERIMENTAL SETUP

perform a parallel execution. Finally, an energy scaling is made to estimate the
dynamic CPU and memory energy for the multi-threaded run:

‰E
S

cpu/mem

=
„E1

cpu/mem

‚S
(2.3)

The process of estimating the dynamic CPU and memory energy for
multi-threaded applications can be applied to applications that have a data
parallelism form of parallelization, where the threads are executing the same task
and the performance exhibited by each other is almost the same. This form of
parallelization can be found in multiple large scale or HPC scenarios and has
been addressed by other authors [124].

The speed-up model for the accelerations ranging from 1 to the number of
cores (c) is a linear model where the estimated speed-up is equal to the target
speed-up, while for accelerations from the number of cores plus one (c + 1) to the
total number of hardware threads (h) we develop a speed-up model as a function
the accumulative values of the estimated hardware counters (‚C

iac) and the target
speed-up (S), as shown in Eq. 2.4.

‚S =

Y
_]

_[

S S œ [1, c]

—0 +
lq

i=1
‚C

iac ú —
i

+ S ú —
l+1 S œ [c + 1, h]

(2.4)

We assume that when a parallel application runs a number of threads equal
to the number of cores each thread is going to run separately in each core, so the
speed-up must be lineal as a function of the number of cores. In the case of running
more than c + 1 threads each thread is going to share core resources with another
thread so this linear behaviour with the number of hardware threads cannot be
assumed. The speed-up model for accelerations above c + 1 is obtained o�ine
by using a partial least-squares regression model taking as input the accumulative
values of the hardware counters and the actual speed-up both obtained by running
a set of benchmarks with a variable numbers of threads (from c + 1 to h).

2.3 Experimental Setup
The validation of the aforementioned methodology takes place in an Intel server
(S2600GZ) based on the Intel Decathlete 2.0 Open Compute Project server board.
The server is equipped with one Intel 6-core SandyBridge-EP processor providing

19

“output” — 2020/12/1 — 14:36 — page 20 — #45

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

Table 2.1: Hardware counters used as inputs to the power estimation models

Description
C1 Clock cycles
C2 Instructions retired
C3 LLC misses
C4 L2D Cache misses
C5 Branch instructions retired
C6 Resource stalls
C7 µops dispatched
C8 L1D Cache misses

Table 2.2: Coe�cients values of the Speed-Up model

—0 —1 —2 —3 —4
2.78 1.02e-11 -4.34e-12 -3.02e-10 0.18

up to 12 hardware threads, 8 4GB memory modules, 4 hard disk drives, 5 fans and
2 PSUs. The server runs a CentOS 6.5 Linux OS. We use ocount, an Oprofile tool,
to gather hardware counters during runtime. The hardware counters are polled
every second. Table 2.1 shows the hardware counters collected from the execution
of the application signature. This set of hardware counters comes from the result
of a feature selection method done during the power modeling process presented
in Section 4.2. The Linux tool pstack is used to gather information about the
temporal evolution of the independent execution paths of the running application.
The pstack tool is executed with the applications pid as an input every second
(i.e., in every second pstack displays a stack trace of the current execution of the
application.).

It should be noted that for the experimental setup of the proof of concept
presented in this chapter, the independent execution paths that showed data
dependencies between them are merged into one execution path. In Chapter 4, a
real implementation of the application signature is developed where the
benchmarks used to evaluate the accuracy of the application signature are
selected to not have data dependencies between the independent execution paths.

The set of workloads used in this chapter come from the SPEC
CPU2006 [54] benchmark suite, the PARSEC suite [16] [17] and benchmarks
from the NAS Parallel suite [11]. For the estimated executed instructions per
independent execution path we make the assumption of having the executed
instructions per independent execution path values with zero % estimation
errors. It should be noted that the application signature is extracted from o�ine
data acquired from a complete execution of the heterogeneous set of workloads.

20

“output” — 2020/12/1 — 14:36 — page 21 — #46

2.4. RESULTS

In case of the speed-up model we performed a Principal Component
Analysis (PCA) on the set of features (hardware counters and target speed-up)
that are the inputs to the acceleration model. The final features selected to build
the model are: Clock cycles (C1), Instructions Retired (C2), LLC misses (C3)
and target speed-up (S). The values of the speed-up model linear regression
coe�cients are shown in Table 2.2, where —0 is the constant o�set, the
coe�cients —1, —2 and —3 are the coe�cients that multiply the hardware counters
C1, C2 and C3, respectively, and the coe�cient —4 multiplies the value of the
target speed-up. The training set was formed by the following benchmarks:
blackscholes, swaptions, freqmine, streamcluster, BT, LU, FT, and CG. The
benchmarks for the test set are the following: canneal, fluidanimate and SP. The
benchmarks selected both for the train and test set were selected manually to
represent an heterogeneous set of benchmarks with di�erent speed-ups and
accumulated hardware counters behaviours. In order to evaluate the accuracy of
the speed-up model, we calculate the error of the estimated speed-up against the
actual speed-up from each benchmark of the training and test set. The overall
speed-up model RMSE for the training set and test set are 0.69 and 0.71,
respectively.

2.4 Results
Figure 2.4a shows the Instructions per Cycle from the complete execution of the
benchmark Calculix, where the green line shows the temporal evolution of the
final functions of each independent execution path as given by the pstack output.
Each di�erent value of the green line represents a di�erent running independent
execution path from the benchmark. In order to ease the validation of the proof
of concept using the application signature, the temporal profile of the complete
execution is reorganized to group the execution of each function, as shown in
Fig. 2.4b. For example, the independent execution path that leads to the function
that goes from 0 seconds to 1500 seconds is formed by all the execution blocks from
the original execution of the Calculix function e3cd. Although we are showing the
values for the Instruction per Cycle this process is performed for all of the hardware
counters. The application signature samples are represented by the red rectangles
shown in Fig. 2.4b.

The Table 2.3 shows the complete set of benchmarks evaluated in this
chapter. The benchmarks from bwaves to tonto are sequential applications from
the SPEC CPU2006 suite, benchmarks from blackscholes to fluidanimate are
parallel applications from the PARSEC suite and benchmarks from BT to SP
are parallel applications from the NAS Parallel suite. For each benchmark, the

21

“output” — 2020/12/1 — 14:36 — page 22 — #47

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

0 500 1000 1500 2000
0

1

2

3

4

Time (s)

In
st

ru
ct

io
n
s

p
e

r
C

yc
le

0 500 1000 1500 2000
0

2

4

6

8

F
u

n
ct

io
n

Instructions per Cycle
Functions detected by pstack

(a) Original execution

0 500 1000 1500 2000
0

1

2

3

4

Time (s)

In
st

ru
ct

io
n
s

p
e
r

C
yc

le

0 500 1000 1500 2000
0

2

4

6

8

F
u
n

ct
io

n

Instructions per Cycle
Functions detected by pstack

(b) Reorganized execution

Figure 2.4: Instructions per Cycle (blue) and the temporal evolution of the independent
execution paths (green). Application signature samples (red). Benchmark: Calculix

22

“output” — 2020/12/1 — 14:36 — page 23 — #48

2.4. RESULTS

Table 2.3: Results of the validation process

Exec. Paths Total
runtime (s)

Signature
runtime (s) ErrorCP U (%) ErrorMem (%) CR

bwaves 4 1503 151 6.11 6.13 9.95
cactusADM 1 1657 166 18.22 18.25 9.98

calculix 7 2253 226 0.64 0.64 9.96
dealII 15 919 94 1.62 1.62 9.70

GemsFDTD 10 1296 131 0.66 0.66 9.89
gromacs 13 1408 142 0.20 0.20 9.91

lbm 1 756 76 0.28 0.28 9.94
leslie3d 11 1674 169 0.20 0.20 9.90

libquantum 10 966 98 1.17 1.17 9.85
mcf 13 628 64 7.34 7.34 9.81
milc 13 859 88 4.15 4.16 9.76

namd 15 1256 128 0.37 0.37 9.81
omnetpp 21 771 80 1.07 1.08 9.63
povray 27 520 56 1.63 1.63 9.28
sjeng 26 1459 149 1.36 1.36 9.79
tonto 15 1399 142 1.35 1.35 9.85

blackscholes 2 479 48 0.27 0.27 9.97
freqmine 12 2114 213 0.19 0.20 9.92
swaptions 4 824 83 0.52 0.52 9.92
canneal 10 258 27 2.42 2.42 9.55

streamcluster 4 964 96 0.53 0.54 10.04
fluidanimate 5 800 80 0.30 0.31 10.00

BT 17 674 68 0.20 0.21 9.91
CG 2 240 24 0.74 0.74 10.00
FT 8 159 17 3.65 3.67 9.35
LU 6 610 61 0.56 0.57 10.00
SP 9 513 52 0.76 0.77 9.86

table shows the total execution time (T) in seconds, the number of independent
execution paths detected by the pstack tool during runtime and the execution
time of the application signature (T

sig

) in seconds. Attending to the number of
paths detected, we observe a heterogeneous distribution, with benchmarks such
as cactusADM and lbm with only 1 independent path detected, to benchmarks
like povray with 27 paths detected.

To validate our approach we apply step by step the energy estimation process
using the application signature to each benchmark listed in the Table 2.3. The first
step is to choose the value of – to establish the threshold of retired instructions
for the partial execution of each independent execution path. The value of –

is equal to 0.1, i.e., the partial execution of each path must be stop once the
retired instructions reach 10% of the total estimated executed instructions of that
independent path. We choose that value of – to have a CR that could reach to
10 so the application signature could estimate the dynamic CPU and memory
energy with a runtime 10 times shorter than the actual execution of the whole
application. Table 2.3 shows relative errors for the dynamic CPU (Error

CP U

) and
memory (Error

Mem

) estimated energy defined in the Eq. 2.5, where x is for CPU

or Mem. The values of E
CP U

and E
Mem

represent the dynamic CPU and memory
energy of the whole execution of the application. The values of ‚E

CP U

and ‚E
Mem

23

“output” — 2020/12/1 — 14:36 — page 24 — #49

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

are the estimated energy from the application signature.

Error

x

=

---E
x

≠ ‚
E

x

E

x

◊ 100 (2.5)

The overall error for the dynamic energy of CPU and memory is below 8.0%
except for the cactusADM benchmark with an 18% CPU and memory energy
error. The error value from the cactusADM is explained by the behaviour of the
Instructions per Cycle not being steady during the execution of the only
independent execution path detected leading to function
bench_staggeredleapfrog2. We can see that the estimated energy using the
application signature performs with almost the same accuracy when calculating
both CPU and memory energy consumption.

In the case of the parallel applications (from blackscholes to SP) shown in the
Table 2.3 the application signature is applied to a single-threaded execution. The
CR is almost the same for all the benchmarks with a value around 10, meaning
that the application signature estimates the energy with an execution almost 10
times faster than the original execution of the benchmark. These values of CR are
expected since we choose a value of – equals to 0.1.

Table 2.4: Results of energy estimation using the application signature for multi-
threaded applications (Error

CP U

(%), Error

Mem

(%))

Numbers of threads
2 3 4 5 6 7 8 9 10 11 12

blackscholes 1.47 0.20 0.45 0.62 4.26 0.94 3.49 7.17 7.27 14.31 14.79
1.72 0.29 1.18 0.32 3.21 2.05 4.65 8.38 8.48 15.68 16.21

freqmine 20.26 25.71 27.37 25.50 19.77 2.56 2.99 3.35 6.80 8.50 10.11
20.67 26.55 28.64 27.11 21.56 1.11 4.63 5.01 8.58 10.35 12.03

swaptions 0.02 3.50 1.53 12.06 15.08 10.80 1.77 7.49 24.72 20.71 23.48
0.34 2.84 0.49 10.99 13.86 9.46 0.09 5.99 23.76 19.60 22.44

canneal 3.99 1.80 1.22 0.55 12.54 6.90 0.69 5.02 17.19 20.64 4.13
4.08 1.96 1.46 0.24 12.26 6.58 0.30 5.50 17.79 21.31 3.69

streamcluster 0.70 3.48 6.39 10.86 24.95 4.62 1.27 6.45 10.46 11.83 14.78
0.58 3.27 6.08 10.48 24.63 4.21 1.75 7.00 11.07 12.51 14.24

fluidanimate 4.83 - 11.05 - - - 6.78 - - - -
4.49 - 10.15 - - - 5.65 - - - -

BT 3.07 0.53 1.53 9.49 25.12 0.11 0.96 0.57 9.59 3.45 0.96
3.46 1.24 0.53 8.39 24.24 0.87 1.98 1.58 10.77 4.56 2.04

CG 2.13 0.99 3.48 9.04 24.94 5.13 0.90 5.93 9.46 6.02 18.76
2.11 0.99 3.52 9.09 25.00 5.12 0.92 5.99 9.53 6.28 18.60

FT 1.61 0.70 1.11 3.30 19.53 19.27 20.26 23.19 27.02 25.35 17.55
1.96 0.03 2.12 2.07 18.62 20.48 21.41 24.30 28.17 26.38 18.42

LU 3.54 0.25 1.02 7.58 23.99 20.49 15.42 13.52 4.96 13.39 26.99
3.87 0.85 0.18 6.62 23.23 19.78 14.61 12.63 3.88 12.44 26.30

SP 3.55 0.25 4.43 11.14 31.49 19.64 17.64 17.13 13.35 19.32 27.52
3.90 0.91 3.59 10.19 30.81 18.89 16.84 16.27 12.36 18.42 26.75

The results for the energy estimation from multi-threaded applications are
shown in Table 2.4 for both the dynamic CPU (upper-row) and Memory

24

“output” — 2020/12/1 — 14:36 — page 25 — #50

2.5. CONCLUSIONS

(lower-row) energy errors. For example, the dynamic CPU energy error for the
benchmark blackscholes is equal to 14.79% when 12 threads are executed. This
means that our approach can estimate with a 14.79% error the dynamic CPU
energy when 12 threads of blackscholes are executed without the need to run the
whole application and using the application signature from the single-thread
version of the application. Running the application signature from the
single-thread version of the application is in the majority of the cases a good
choice when compared to estimate the energy by running the multi-threaded
application since the CR is fairly high.

It should be noted that in the case of our experiments when an application
was executed with more than 10 threads almost no application show a speed-up
over 10. Therefore, a CR of 10 clearly compensates estimating the energy with
the application signature from the single-thread version of the application. The
benchmark fluidanimate can only be executed with a number of threads equals to
a power of two. We can see that the benchmark freqmine has high errors in the
range from 2 to 6 threads because the actual speed-up is higher than the target
speed-up, so the linear speed-up model for this range of target threads is not
accurate. Also, as an overall result the dynamic energy errors for an execution of
6 threads is high because the actual speed-up of all the benchmarks when are run
with 6 threads is notably lower than a speed-up equals to 6. The overall RMSE of
all the errors shown in Table 2.4 is 12.7%.

2.5 Conclusions
In this chapter, we proposed the use of an application signature to make a fast
estimation of the dynamic CPU and memory energy consumption of large scale
or HPC applications. The use of the application signature is validated in an
o�ine manner with a set of sequential CPU-intensive, memory-intensive and multi-
threaded applications, showing an overall error below 8.0% when compared to the
dynamic energy of the whole execution of the application, when the applications
are single-threaded.

For a multi-threaded scenario the RMSE is equal to 12.7% when the
dynamic energy extracted through the application signature is compared against
the complete parallel execution of the original application. The application
signatures presented an average Compression Ratio equals to 9.8, which allowed
to estimate the dynamic energy consumption almost 10 times faster when
compared with the execution time of the whole application.

The results show that it is possible to estimate the energy of the applications
without the need to execute them completely by using an application signature.

25

“output” — 2020/12/1 — 14:36 — page 26 — #51

CHAPTER 2. ENERGY ESTIMATION WITH AN APPLICATION SIGNATURE

Moreover, the results obtained in this chapter lead us to developed the fast energy
estimation framework explained in Chapter 4.

Additionally, the results of this chapter were presented in the following
international peer-reviewed conference:

• J. C. Salinas-Hilburg, M. Zapater, J. M. Moya, J. L. Ayala, “Fast Energy
Estimation Through Partial Execution of HPC Applications”, International
Conference on Application-specific Systems, Architectures and Processors
(ASAP) (2018).

In the next chapter we present the related work associated with this
work. We will show similar approaches to our application signature concept
and other methodologies to estimate the energy in data centers.

26

“output” — 2020/12/1 — 14:36 — page 27 — #52

Chapter 3

Related Work

In this chapter we present the related work associated with this work. The
related work is divided in 4 sections: i) application signature, where we show
works that use similar approaches to our application signature concept, ii)
energy, power and performance estimation, where we describe di�erent solutions
to estimate energy, power or performance of the applications that run in data
centers, iii) server power modeling, shows the state of the art regarding CPU,
memory and server power models. Additionally, the state-of-the-art for power
modeling co-allocated scenarios, iv) dynamic profiling, showing how traditional
approaches extract information through the full execution of the applications and
also identifying the program phases. Finally, v) energy-aware task scheduling,
where we present di�erent task scheduling approaches that are energy-e�cient.

3.1 Application Signature
In the previous chapter (Chapter 2) we explained our proof of concept for the
application signature. There are other works that predict or estimate performance
by using a similar concept of our application signature or in some cases, they use
partial execution of the applications.

In the work presented by Wong et al. [124] [125] the application signature is
used to predict the performance of multi-threaded applications. They extract the
application signature by executing the whole application on a platform A. Then,
the application signature is used to predict the performance on a di�erent platform
B. The methodology to create the signature and predict the performance is called
Parallel Application Signatures for Performance Prediction (PAS2P) and consists
of two stages:

1. Signature generation: in this stage the whole application is instrumented

27

“output” — 2020/12/1 — 14:36 — page 28 — #53

CHAPTER 3. RELATED WORK

and executed in a base machine (platform A). The data collected through
the profiling of the application is used to characterize the computation and
communication parts of the parallel application. This allows to identify and
extract the most relevant program phases. A program phase is defined as
a set of intervals or sections in time within a program’s execution profile that
have similar behavior. The point of this stage is to extract the phases, the
number of times they occur (weights) and their execution time. These three
components form the application signature.

2. Performance prediction: in order to predict the performance of the
application in a di�erent machine (platform B) the signature (each phase)
is executed and the execution time of each phase is measured. To estimate
the performance of the entire application all the measured execution times
from each phase are aggregated and multiplied by their respective weight.

They are able to predict performance with an average accuracy greater than
97%, using a set of well-known parallel applications such as the NAS Parallel
suite [11] applications. The work by Canillas et al. [20] uses the approach
described in [124] [125] (Wong et al.) to extract the application signature and
then predict the execution time for a range of di�erent input data sizes of the
original application. To do this they execute the application signature with
di�erent input data sizes and derive a model of the execution time as a function
of the input data size using a classical regression approach.

Yang et al. [126] uses a partial execution of the application to predict the
performance. They have the same goal as the work by Wong et al., to predict the
performance of the application in a di�erent machine (platform B). The application
is completely executed in a reference platform A and then, in platform B the
application is partially executed to predict the performance in that machine. They
argue that most of the long-running scientific type of applications have a highly
repetitive nature and therefore, is likely to extract enough information in a short
partial execution. They can predict the performance through three ways:

• Base Prediction Model via Cumulative Averages: the simplified process to
predict the performance is as follows:

1. The application is completely executed in a reference machine platform
A and its execution time is measured (T

ref

).
2. The application is partially executed a number of m times in the

reference machine (platform A). The execution time is measured in
each partial execution and then the average time execution is
calculated (t

ref_avg

).

28

“output” — 2020/12/1 — 14:36 — page 29 — #54

3.1. APPLICATION SIGNATURE

3. The same process is applied in the target machine (platform B),
resulting in an average execution time equals to t

tar_avg

.
4. A relative performance R

tar_ref

is calculated through the ratio
t
tar_avg

/t
ref_avg

.
5. Finally, the performance is calculated by multiplying the relative

performance with the execution time of the application in the
reference machine: T

estimated

= R
tar_ref

◊ T
ref

.

• Prediction via Filter Model: the filter model captures and filters out the
initial fluctuations of the partial executions. This makes possible to keep
using the base prediction model by adjusting and enhancing the average
partial execution times.

• Prediction via Sliding Window: this method enhances the previous methods
(cumulative averages and filter model) by using a sliding window through
the execution of each partial execution.

For steady and repetitive applications (best case scenario) they obtain 97%
performance prediction. In the worst cases scenarios they obtain performance
prediction errors in the range of 5 to 37%.

The work presented by Sodhi et al. [117] extracts a performance skeleton of
an application. The performance skeleton is a synthetically generated application
that has the same fundamental execution characteristics as the original application
and is also as short-running as possible. The execution time of the skeleton is
scaled down by a factor of K when compared with the original execution of the
application. The simplified steps to create the skeleton are as follows:

1. Execute the application completely to capture: CPU activity, memory
address trace and communications patterns.

2. Summarize the execution into a compact execution signature: identifying
phases of similar activities and capturing loops structure.

3. Construct the application skeleton from the execution signature: reducing
the number of loops iterations by a factor of K and converting the application
behaviour into C code segments.

They obtain an average error in predicting the performance equal to 6%, using
a set of parallel applications from the NAS Parallel suite [11] applications.

Another interesting work based on an application signature is from Jayakumar
et al. [63]. They present a performance prediction framework that has a static

29

“output” — 2020/12/1 — 14:36 — page 30 — #55

CHAPTER 3. RELATED WORK

code analysis step together with a runtime analysis step, similar to our work. The
framework predicts the performance of HPC applications using single small scale
executions. Each execution profile is analyzed to extract the respective phases,
then each phase is compared against kernel execution profiles stored in a database.
A prediction engine collects this information to obtain a performance prediction.
They refer to application signatures to the execution profiles of the small scale
complete executions. They obtain performance predictions with errors in the range
0.4-18.7%. Although this is a very robust work there are some main di�erences we
want to avoid in our present work: 1) even if the small scale executions are short
in time they execute more than one which is not viable if we have a large batch
of applications, and 2) their framework needs to have more than one version of
the application with di�erent inputs in order to obtain the small scale executions,
hence making it di�cult to automate the performance prediction since some user
interaction is needed to obtain di�erent sets of inputs. In our present work, we
avoid the complete execution of the whole application, moreover our fast energy
estimation framework only needs the original application and the original input.
Our framework does not need to rely on di�erent versions of the same application
(with a set of di�erent inputs) nor a database of previous executed kernels.

The concept of Dwarf Code is presented in the work by Zhang et al. [132].
The Dwarf Code is defined as a shorter running benchmark that mimics the
behaviour of the original parallel application and is used to predict the
performance of the application in a target machine (platform B). The Dwarf
Code is extracted in a reference machine (platform A) through a complete
profiling of the original application. They idea is to generate a sequential version
of the original application with the execution phases compressed in a small code
(dwarf). They obtain performance prediction errors below 10%.

The work presented by Combs et al. [33] shows that the power consumption
behaviour of large scale applications can be captured with power signatures.
They defined power signatures as a representation of a power trace that preserves
information about application-specific power behavior. The power signatures are
extracted through a full profiling of the applications and then calculate a series
of statistical features that represent the extracted power profile.

All these works present a similar concept of our application signature and they
inspired our concept of application signature, as well as the fast energy estimation
framework. Although, they relay on a previous execution of the whole original
application in order to either build the application signature or to predict the
performance. In scenarios of long-running applications, performing a full execution
to either build an application signature or use another technique for performance
estimation is not viable since is not an energy e�cient process. Moreover, in these

30

“output” — 2020/12/1 — 14:36 — page 31 — #56

3.2. ENERGY, POWER AND PERFORMANCE ESTIMATION

previous works when the input dataset of the application changes the whole process
to extract the application signature must be redone. An accurate performance
estimation is key to estimate correctly the energy. In our work, the application
signature is used to estimate the energy (or performance and mean power) of
the application and is obtained without the need to execute the whole original
application.

3.2 Energy, Power and Performance Estimation
In Chapter 4 we will describe the fast energy estimation framework that uses
the application signature to estimate the energy of the long-running applications.
There are works that proposed di�erent methodologies to predict either power,
energy or performance for long-running, scientific and HPC applications through
collected data from the complete execution of the applications.

Shoukourian et al. [115] proposed a methodology to build power and energy
consumption models of multi-threaded applications taking as input to the models
the available history of the power and energy data from parallel applications. The
model was validated for strong and weak scaling applications. The model takes as
input an application energy tag and the number of nodes the application will used
during execution. They achieve energy prediction errors below 5.2%.

The work described by Chetsa et al. [27] shows a methodology to estimate
the energy in large scale systems. They build a DNA-like structure of an
application that represent the phases of the program. The application is
completely executed in a reference platform to extract the DNA-like structure.
Moreover, to estimate the energy in a target platform the application is executed
and its DNA-like is extracted in runtime. When the extracted DNA-like
structure matches with a given percentage of the DNA-like structure from the
reference platform the execution is stopped. The energy is estimated by
establishing a relationship between the measured energy from the reference
platform and the measured energy of the partial execution from the target
platform. They present results showing the methodology can save up to 19% of
energy with less than 4% performance loss.

A server power model is presented in the work by Arjona et al. [6] that is
used to estimate the energy consumption of data centers. First, they perform a
thorough breakdown of the power of the subsystems inside the server. Next, they
use this information to model the server power and build an energy estimation
model. Although, the methodology needs as a parameter the total active cycles
of the execution to estimate the performance which is obtained through a full
execution of the application. They obtain energy estimation errors below 7%.

31

“output” — 2020/12/1 — 14:36 — page 32 — #57

CHAPTER 3. RELATED WORK

The work by Sirbu et al. [116] shows a data-driven model to predict the power
consumption of applications through a dedicated monitoring framework from the
Eurora system. The system is capable to collect the power with high resolution
(5-second intervals) of all the processing components (CPU, GPU and MIC). They
collected the power data from one year and build a power model using Support
Vector Regression (SVR). The regression features for the SVR model are the type
of processing unit used by the job (CPU/MIC/GPU), runtime, name, number
of nodes and the number of the same node components used by other jobs. The
regression target of the model is the power. Therefore, the power prediction derives
from historical trace data of the users rather than architectural metrics such as
hardware counters. They obtain a power NMRSE (normalized root mean squared
error) below 20%. Lee et al. [75] predicts power and performance in multicore-
based systems. They need to train the system with several executions of the
applications to find the optimal configuration for each prediction.

A performance model for long-running scientific applications is presented by
Sadjadi et al. [105]. The performance model is constructed by doing a full profile
of the execution of the application without using intrusive technique such as
instrumentation or code inspection. They measured performance errors within
10%. Another performance model for iterative applications is presented in the
work by Lu et al. [82] by using a fine-grained basic block level profiling of the
applications, with performance prediction errors below 13%. Sato et al. [109]
present a methodology to build a performance model by using a previous trace
data of the applications.

Zhang et al. [133] estimates the performance for multi-threaded applications
using the LLVM framework. The methodology build a sequential version of the
original multi-threaded application to estimate separately the computation and
communication times. The goal is to execute the sequential version of the
application in a reference node to estimate the performance in a set of target
nodes. The performance error obtained is equal to 10.86%. A similar approach is
presented by Zhai et al. [128] using deterministic replay to acquire the sequential
computation time, obtaining performance prediction errors below 7%.

The work by Escobar et al. [39] presents a performance prediction of parallel
applications using a fractal model. In order to find the model a series of small scale
execution of the original application must be performed. The fractal model can
be used to predict the performance of larger data inputs. This method presents
performance prediction errors around 12%. In a previous work [40], the same
authors use a similar approach of running small scale executions to predict the
performance. They extract phases of the small scale executions and match those
phases with a set of kernels. The performance prediction errors range from 1%

32

“output” — 2020/12/1 — 14:36 — page 33 — #58

3.2. ENERGY, POWER AND PERFORMANCE ESTIMATION

to 15%. A similar work is presented by Huang et al. [55], where they developed
a performance model using polynomial regression based on a previous execution
with a set of sample small inputs to predict the performance for a larger input.
They obtain a prediction accuracy of 97%.

There are works that predict performance for large scale applications in
runtime. Curtis et al. [34] built a performance model using multivariate
regression techniques that is used runtime when there is concurrency changes
during the execution. Another runtime performance estimation is done by Li et
al. [78] where they use artificial neural networks to predict in an online way the
execution time of each separated function of the application.

Static code analysis can also be applied to estimate either the energy or
performance of the applications. Liqat et al. [80] show a methodology to estimate
the energy of single-threaded small programs through a pure static code analysis
using the LLVM intermediate representation (IR). The energy estimation errors
are in the range of 1% to 17%. Grech et al. [49] also present a methodology to
estimate the energy of single-threaded small programs using the LLVM IR,
obtaining energy estimation errors up to 20%. Moreover, there are interesting
approaches that combine static code and dynamic analysis of the applications to
estimate the energy or the execution time. Liqat et al. [79] present an approach
to estimate the energy of single-threaded small programs by combining static
code analysis and a dynamic profiling of the basic blocks of the program,
obtaining energy estimation errors below 12%. Additionally, the work by Mera et
al. [90] estimates the performance of single-threaded programs using static code
analysis and a dynamic profiling of the program to calculate a cost function.
This cost function allows to estimate the performance of the program according
to a set of input parameters. On the one hand, using static code analysis to
estimate either energy or performance is an interesting and in some cases useful
approach since there is no need to execute completely the application. On the
other hand, static code analysis is usually bounded for small programs used in
embedded systems and also, perform a static code analysis on multi-threaded
long-running applications is often not achievable.

Our proposed energy estimation framework using the application signature
does not rely on collected power or energy data from the whole execution. This
allows to develop and implement proactive energy optimization policies that are
not feasible through a full dynamic profiling of long-running applications.
Table 3.1 shows a summary of how our proposal outperforms previous works in
the field. As aforementioned, the main advantage of our fast energy estimation
framework is that there is no need for a previous dynamic profiling of the
application, unacceptable in long-running applications. Additionally, our

33

“output” — 2020/12/1 — 14:36 — page 34 — #59

CHAPTER 3. RELATED WORK
Ta

bl
e

3.
1:

C
om

pa
ris

on
of

ou
r

pr
es

en
t

wo
rk

ag
ai

ns
t

ot
he

r
wo

rk
s

N
o

ne
ed

fo
r

a
pr

ev
io

us
pr

ofi
lin

g
or

a
hi

st
or

ic
al

tr
ac

e
da

ta

En
er

gy
Es

tim
at

io
n

Po
we

r
Es

tim
at

io
n

Pe
rfo

rm
an

ce
Es

tim
at

io
n

Su
pp

or
t

fo
r

M
ul

ti-
th

re
ad

ed
A

pp
lic

at
io

ns

Sh
ou

ko
ur

ia
n

et
al

.[
11

5]
7

3
3

3
3

C
he

ts
a

et
al

.[
27

]
7

3
3

3
3

A
rjo

na
et

al
.[

6]
7

3
3

3
3

Si
rb

u
et

al
.[

11
6]

7
7

3
7

3
Le

e
et

al
.[

75
]

7
3

3
3

3
Sa

dj
ad

ie
t

al
.[

10
5]

7
7

7
3

3
Lu

et
al

.[
82

]
7

7
7

3
3

Sa
to

et
al

.[
10

9]
7

7
7

3
3

Zh
an

g
et

al
.[

13
3]

7
7

7
3

3
Zh

ai
et

al
.[

12
8]

7
7

7
3

3
Es

co
ba

r
et

al
.[

39
][

40
]

7
7

7
3

3
H

ua
ng

et
al

.[
55

]
7

7
7

3
3

Li
qa

t
et

al
.[

80
]

3
3

3
3

7
G

re
ch

et
al

.[
49

]
3

3
3

3
7

Li
qa

t
et

al
.[

79
]

7
3

3
3

7
M

er
a

et
al

.[
90

]
7

7
7

3
7

W
on

g
et

al
.[

12
4]

[1
25

]
7

7
7

3
3

C
an

ill
as

et
al

.[
20

]
7

7
7

3
3

Ya
ng

et
al

.[
12

6]
7

7
7

3
3

So
dh

ie
t

al
.[

11
7]

7
7

7
3

3
Zh

an
g

et
al

.[
13

2]
7

7
7

3
3

Ja
ya

ku
m

ar
et

al
.[

63
]

7
7

7
3

3
C

om
bs

et
al

.[
33

]
7

7
7

3
3

O
ur

pr
es

en
t

w
or

k
3

3
3

3

34

“output” — 2020/12/1 — 14:36 — page 35 — #60

3.3. SERVER POWER MODELING

framework is able to estimate energy and not only power or performance
separately, bringing the possibility to apply energy-aware optimization policies.

3.3 Server Power Modeling
In order to estimate the energy of the applications we use power models as a
function of hardware counters that are described in Section 4.2. In this section we
will explain traditional strategies to collect or model the power from the servers
of the data center.

Energy-minimization resource management techniques usually require the a
priori knowledge of the power consumption attained by servers when running a
specific workload. Utilization and Instructions per Cycle (IPC) have traditionally
been used as metrics to predict the power [10, 18], using linear or quadratic
models [43]. However, these metrics are not su�cient to derive accurate models
for the power consumption of highly-multithreaded enterprise servers [127]. To
overcome this limitation, hardware counters have been used to model CPU and
memory power [77], as they provide information on workload or application
characteristics. Previous works perform classical feature selection (e.g.
correlation analysis, or Principal Component Analysis) to extract relevant
parameters for a set of applications. Then, models are fitted using classical
regression methods such as linear regression or multiple linear regression [91].
These methods require user interaction to discover the relevant features, train
and test the models, therefore they are not automatic. Our server power
modeling, on the contrary, leverages the usage of unsupervised techniques that
automatically perform feature selection for power prediction. Moreover, we also
consider the contribution of leakage and fan power to overall server power.

Other power-saving mechanisms, such as power-capping, reduce the
voltage-frequency setup (DVFS) of servers to minimize power. Due to the lack of
models able to predict power consumption under arbitrary workloads and
frequency constraints, some approaches experimentally derive the
power-frequency curves of each application [24]. Others enforce a power cap by
using feedback controllers [100]. Newer mechanisms such as Intel’s Running
Average Power Limit (RAPL) [35] automatically implement that feature on
newer Sandy Bridge systems. However, the former case requires profiling all the
incoming tasks, whereas the latter sets an arbitrary power limit by decreasing
frequency, potentially degrading performance. Our server power modeling
approach, on the contrary, predicts the power consumption of tasks under various
frequency setups, by using application characteristics measured via hardware
counters, overcoming the limitations of previous approaches. Moreover, it can be

35

“output” — 2020/12/1 — 14:36 — page 36 — #61

CHAPTER 3. RELATED WORK

combined with frequency optimization policies to leverage energy e�ciency.
Our server power modeling approach, also tackles power prediction in task co-

allocation. Research in this area is mainly focused on consolidation in virtualized
environments [36]. However, due to the high number of cores in today’s servers,
it is common in HPC clusters to find a certain degree of task co-allocation (i.e.
two di�erent multi-threaded tasks running on the same server). Previous work
addresses this challenge by trying to attribute the total CPU power to each of the
tasks [129], or by deriving the power consumption of co-allocated tasks given the
power of individual tasks using regression techniques [30], obtaining errors around
10% in overall server power. As opposed to our approach, theirs require profiling
all new incoming tasks to obtain per-application power profiles. Because our power
model is robust to task co-allocation, we only need application parameters. Thus,
power consumption for co-allocated tasks can be predicted using the parameters
of individual applications, reducing error when compared to previous approaches.

In our work, we use a server power model to estimate the energy of the
applications. Instead of feeding the power model with the information of a full
dynamic profile we feed the power model with the information (hardware counters)
gathered with the execution of the application signature.

3.4 Dynamic Profiling

As we have previously indicated the traditional approach to either estimate
energy, power or performance is to make a full dynamic profiling of the
application. Dynamic profiling has been a useful technique to characterize and
optimize the performance of the applications for many decades [4] [25]. The
dynamic profiling can be used to characterize and analyze energy [92] [110],
power [66] [48] or performance [84] [23]. The dynamic profiling is not limited to
the application level, it can also be used to profile complete data centers
infrastructures [103] [29]. In our work, we do not perform a full dynamic profiling
of the application. Although, we do perform a dynamic profiling of the
application signature which is a short running version of the original application.

Traditional approaches to estimate energy, power or performance usually use
the concept of program phases to build models or characterize applications. As
we previously defined, a program phase is a set of running-time sections that
have the same behaviour. The concept of program phases has been used since
many years [114] and is still used today to leverage the build of energy or power
models. The program phases are extracted through a full dynamic profiling of the
applications and can be obtained through three ways:

36

“output” — 2020/12/1 — 14:36 — page 37 — #62

3.5. ENERGY-AWARE TASK SCHEDULING

i) Basic Block Vectors (BBV): a basic block is defined as a section of code with
one entry point and one exit point. A Basic Block Vector is a vector
containing the set of basic blocks of the application [112] [113]. The set of
BBV can be used to simulate programs in fast way in simulators such as
SimPoint [52] [97]. Additionally, the BBV can be obtained through specific
tools, such as Valgrind [93]. Finally, the BBV extraction is not limited to
single-threaded applications as also can be obtained for multi-threaded
applications [64] [65].

ii) Time-series of di�erent metrics: the execution phases can be extracted directly
through the time-series profile of the application. The phases can be identified
through the time-series of the architectural features such as the hardware
counters [60] [62] [61] [68]. Moreover, the phases can be extracted in an online
way [26].

iii) Signal processing: finally, the phases can be detected by using signal domain
transformations of the time-series collected through the execution of the
application. For example, there are several works that show how to extract
the program phases through the wavelet domain [56] [22] [28].

These previous works extract program phases to characterize (to build
power or performance models) the applications by doing a full execution of the
applications. In our work, we estimate the energy by using an application
signature which is built from independent execution paths (defined in
Section 2.1) of the whole application. Each independent execution path can be
seen as a phase of the application in a coarse-grained fashion. Moreover, it is
important to emphasize that each independent execution path is extracted
without the need to execute the application completely.

3.5 Energy-Aware Task Scheduling
In Chapter 5 we use the information provided by the application signature to
apply di�erent energy-aware task scheduling approaches. In this section, we show
di�erent works and techniques used to derive energy-aware task scheduling policies.

There is an extended research on using energy e�cient task scheduling
approaches for energy savings in data center. The work proposed by Wang et
al. [121] presents scheduling heuristics to reduce energy consumption from the
execution of parallel tasks in a cluster. They developed two algorithms: the
Power Aware Task Clustering (PATC) and the Power Aware List-based
Scheduling (PALS). The PALS algorithm employs the ETF (Earliest Task First)

37

“output” — 2020/12/1 — 14:36 — page 38 — #63

CHAPTER 3. RELATED WORK

heuristic which takes into account the execution time of the tasks. Etinski et
al. [41] developed a parallel job scheduling policy for improving the e�ciency of
power budget techniques. The policy is called MaxJobPerf and is based on
integer linear programming.

The work by Auweter et al. [8] presents an energy-aware task scheduler to
improve energy savings of supercomputers. They introduce a prediction model
that forecast performance and power of large-scale applications. Finally, in the
work by Mämmelä et al. [85] is shown an energy-aware scheduler that can be
applied to HPC data centers. They used energy-aware variations of the FIFO
(First In First Out) and Backfilling schedulers and also, presents a very detailed
power consumption model.

In all of the previously commented works they assume the existence of either
energy, power or performance of the tasks that will be executed in the data center.
Whereas, in our work we use the information provided by the application signature
to estimate the energy and apply an energy-e�cient task scheduling approach.

The task scheduling approaches can be implemented in the form of Integer
Linear Programming, or by using metaheuristics or heuristics methodologies. In
the case of Integer Linear Programming based approach there is a great amount
of research. Goldman et al. [47] presents a Mixed Integer Linear Programming
task scheduling approach for parallel independent tasks. They present the MILP
formulations for either fragmented or non-fragmented systems. A fragmented
system is one where each thread of the task does not need to be using a
continuous set of resources, i.e the threads of the parallel task does not need to
be running on the same processor. The work developed by Chretien et al. [31]
shows a task scheduling approach using successive Linear Programming
approximations. They used an iterative Linear Programming scheme to find the
optimal makespan.

Metaheuristics approaches can find near optimal solutions in much less
computation time than Integer Linear Programming scheduling approaches. Lei
et al. [76] proposed a scheduling approach based on a co-evolutionary algorithm
for green data centers. In the work by Fidanova [44] a Simulated Annealing
technique is used to schedule task e�ciently in a grid computing scenario. They
compare the results of the scheduling with another metaheuristic called Ant
Colony Optimization. Kashani et al. [67] shows a task scheduling method based
on Simulated Annealing to minimize the makespan in distributed systems.

Finally, heuristic methods allows to find good solutions with much less
computation time than Integer Linear Programming and metaheuristic
approaches. Reda et al. [102] presents a Sort-Mid algorithm for e�cient
scheduling in grid computing. The algorithm uses the execution times and the

38

“output” — 2020/12/1 — 14:36 — page 39 — #64

3.5. ENERGY-AWARE TASK SCHEDULING

number of resources the tasks will use during the execution. The work presented
by Garefalakis et al. [46] shows a cluster scheduler for long-running applications.
They implement both an Integer Linear Programming and a heuristic based
scheduling approach.

In our present work we use and implement three di�erent scheduling
approaches based on Mixed Integer Linear Programming, Simulated Annealing
and a heuristic approach based on the Longest Task First method. The main
goal of the experimental work presented in Chapter 5 is to validate the use of the
application signature with di�erent scheduling approaches.

In the next chapter we will described the full implementation of the
fast energy estimation framework that uses the concept of the application
signature to estimate the energy of the applications. Moreover, we will show
the methodology to obtain the server power models.

39

“output” — 2020/12/1 — 14:36 — page 40 — #65

“output” — 2020/12/1 — 14:36 — page 41 — #66

Chapter 4

Fast Energy Estimation
Framework

In this chapter we present the design and implementation of the fast energy
estimation framework. The framework is able to estimate the dynamic CPU and
memory energy of large scale long-running applications. In Chapter 2 we present
a proof of concept where we show how it is possible to estimate the energy using
an application signature without the need to execute the original application
completely. The results obtained in Chapter 2 motivate the development of the
fast energy estimation framework presented in this chapter.

Additionally, we present the process to obtain the server power models used
in this work. We explain the use of Grammatical Evolution techniques to obtain
the dynamic CPU and memory power models.

4.1 Fast Energy Estimation Framework
Modules

The overall proposed framework is shown in Fig. 4.1. The framework takes the
source code, the binary and the input data of the original application to
estimate, through an automatic process, the dynamic CPU and memory energy
of the application without the need of a full execution. This framework uses the
concept of application signature developed in Chapter 2. The overall framework
runs in a target platform, where the original application will be executed. The
framework is composed of the following independent modules:

1. Call Graph Set

2. Estimation of Executed Instructions

41

“output” — 2020/12/1 — 14:36 — page 42 — #67

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

O
rig

in
al

 A
pp

lic
at

io
n

Application
Profile Reconstruction

Energy Estimation

Bi
na

ry

Execution
Time

Estimation

Hardware
Counters

Profile

In
pu

t
da

ta

Output

CPU and Memory Energy
(sequential or multi-threaded)

Application
Signature
Execution
Manager

Call Graph
Set

So
ur

ce
co

de

Application Signature

Estimation of Executed
Instructions

Dynamic CPU
and Memory

Power Models

6

1

2

3

4

5

Figure 4.1: Overview of the fast energy estimation framework modules

3. Application Signature

4. Application Signature Execution Manager

5. Application Profile Reconstruction

6. Energy Estimation modules.

The fast energy estimation framework is designed in a modular way. This
allows to change the functionality of any module without compromising the
functionality of the whole framework. In this section we propose an
implementation for each module which works for any compiled language.

1. The Call Graph Set module takes as input the source code of the original
application and the output is the Call Graph Set (CGS) which is a set of Call
Graphs for each independent execution path of the original application. The
Call Graph is a Control Flow Graph (CFG) that represents the calls between
the functions of the application. As we previously defined in Section 2, the
independent execution path is an execution path from the Call Graph
of the original application obtained through the following process:

i) start the path search at the root node (main function).
ii) if an edge can be followed, do so.
iii) if not, stop the path search.

2. The Module of Estimation of Executed Instructions estimates the
number of executed instructions for each independent execution path without
executing the whole application, i.e, via a static profiling approach. The
module takes as inputs the source code, binary and the input dataset of the
original application, and the Call Graph Set. The output of this module

42

“output” — 2020/12/1 — 14:36 — page 43 — #68

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

is the estimated executed instructions of each independent execution path.
From the source code we extract the upper bounds of each loop of the original
application and from the binary we extract the CPU instructions from each
independent execution path. Additionally, this module takes into account
the input dataset (e.g. number of timesteps, or the size of a matrix) of the
original application since this information a�ects the upper bound values of
the loops and therefore the number of executed instructions.

3. The Application Signature module creates the application signature
taking as inputs the source code of the original application and the Call
Graph Set. The output is the application signature and is composed by
the binaries of each independent execution path, as shown in Fig. 4.4.

4. The Application Signature Execution Manager module takes as
inputs the estimated executed instructions of each independent execution
path, the application signature and the input dataset of the original
application. This module executes the binaries from the application
signature taking as input to each binary the input dataset of the original
application and gathers a set of hardware counters profiles for each
executed binary. The output of this module is the hardware counters
profiles of each independent execution path obtained from the application
signature execution.

5. The Application Profile Reconstruction module builds the
application profile of the whole execution of the application. This module
takes as input the hardware counters profiles and the estimated executed
instructions of each independent execution path. The output of this
module is the reconstructed application profile. The reconstructed
application profile is composed by the reconstructed hardware counters
profiles of each independent execution path. This reconstructed application
profile is equivalent, in terms of energy, to the original application profile
obtained through a dynamic profiling of the whole execution of the original
application.

6. The Energy Estimation module estimates the dynamic CPU and
memory energy of the application taking as input the reconstructed
application profile. This module has two power models: the dynamic CPU
and memory power models, both as a function of the hardware counters
profiles. The output of this module is the CPU and memory estimated
energy obtained from the CPU and memory estimated power profiles.

43

“output” — 2020/12/1 — 14:36 — page 44 — #69

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

It should be noted that each step of the framework is performed
automatically and none of the steps requires a manual interaction by the user.
Additionally, it is important to point out that the input dataset of the original
application is used by the framework to 1) estimate the executed instructions,
and 2) execute the application signature. Hence, the fast energy estimation
framework is dependant on, and is tuned to, the input dataset of the application.
This fast energy estimation framework can be applied, without di�erence in the
energy estimation accuracy, to any compiled languages that provides the binary
of the original application since this is a key element to estimate the executed
instructions. Interpreted languages, such as Python, that are able to be compiled
and create a binary can also be used by this fast energy estimation framework.

It is important to notice that it is very interesting and useful to estimate
or predict the power profiles of the applications. However, we center our focus
on the energy since it encapsulates power and performance. The energy metric is
directly related to energy savings in data centers which has an impact on the carbon
footprint and the operational cost of data centers. Furthermore, energy estimation
can be used to deploy energy-aware proactive task scheduling policies, aiming to
reduce the total energy consumption of the data center, which is explained in
Chapter 5.

In the following sections we show a detailed explanation of the design and
implementation of each module of the fast energy estimation framework.

4.1.1 Call Graph Set

Main

Function A

Function B

Function C

Function D

Independent Exec. Path 1

Independent Exec. Path 2

Independent Exec. Path 3

Main Func. A

Main Func. B

Main Func. B

Func. C

Func. D

Call Graph Call Graph Set

Figure 4.2: Call Graph and Independent Execution Path

The Call Graph, as shown in Fig. 4.2, provides information of the calls
between the functions of the application. This module is equipped with the
open-source tool Doxygen to extract the complete Call Graph of the original

44

“output” — 2020/12/1 — 14:36 — page 45 — #70

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

application. Doxygen is known to have great accuracy and it is capable of
working with several programming languages.

The Call Graph of each independent execution path is obtained by applying
a partitioning algorithm to the complete Call Graph obtained through Doxygen.
We save every Call Graph of each independent execution path in a Call Graph Set
(CGS). As previously mentioned, the Call Graph is a directed graph where each
node is a function and each edge is a call between functions. We apply a graph
processing process similar to the Depth-First Search algorithm to the Call Graph
of the original application to extract the independent execution paths, as shown
in Algorithm 1.

The algorithm uses a recursive function (EP ≠ recursive) that takes as input
the Call Graph of the application (G), a node (s) from the Call Graph and a path

composed by a series of connected nodes. The process starts at the root node
(main function), for each neighbour node (w) the algorithm checks if the node has
a neighbour (line 7). If this is false an independent execution path is found and
the path is stored in the CGS (line 15). In case the node has a neighbour, the
recursive function EP ≠ recursive is called again until no neighbours are found
(line 9). For each call to EP ≠ recursive, a node s is added to the path (line 6).
The algorithm stops when all the nodes are marked as visited (line 3 and line 4).
The process to extract each independent execution path explained in Algorithm 1
is automatic.

Figure 4.2 shows an example of this process. By applying the graph processing
algorithm to the original Call Graph we obtain three independent execution paths:

• Main æ Function A

• Main æ Function B æ Function C

• Main æ Function B æ Function D

4.1.2 Estimation of Executed Instructions
The module of Estimation of Executed Instructions estimates the CPU executed
instructions for each independent execution path from the Call Graph Set. This
is an independent module, hence the process proposed to estimate the executed
instructions does not interfere with the construction of the application signature
nor the application signature execution manager. The process is automatic and
has the following phases, as shown in Fig. 4.3:

Phase 1: The binary of the original application is disassembled to obtain the CPU
instructions of each function and the loop regions are delimited with entry and

45

“output” — 2020/12/1 — 14:36 — page 46 — #71

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

Algorithm 1 Call Graph Set
1: path = []
2: function EP-recursive(G,s,path)
3: if all g of G are visited then Û g are all the nodes from G
4: stop
5: else
6: path = path + s
7: if s has a neighbour then
8: for all w of s: do Û w are the neighbours of s
9: EP-recursive(G,w,path)

10: end for
11: mark s as visited
12: update.path∆ erase nodes marked as visited
13: else
14: mark s as visited
15: CGS = append.path
16: update.path∆ erase nodes marked as visited
17: end if
18: end if
19: end function

exit tags. This process is done with the disassembler tool from the MAQAO [37]
framework. Once the loops inside each function are delimited, we count the CPU
instructions inside each function and each loop regions.

Phase 2: The upper bound limits of the loops are calculated. To do this, the
source code of the original application is modified, compiled and then executed
following these steps in an automatic way:

• A print function is added to print and label each loop. Also, the variables
of the loop are printed.

• A break (or exit) function is added at the end of each loop to stop the
execution of each loop at the first iteration.

• The modified source code is compiled with the same conditions (compiler
flags) as the original application to create a new binary.

• The binary of the modified source code is executed with the input data of
the original application. The output of this execution provides information
about the beginning and the end of the execution of each loop. Also, the
information of the upper bound limits of each loop is shown with the following

46

“output” — 2020/12/1 — 14:36 — page 47 — #72

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

Phase 4
Phase 3

Phase 2

So
ur

ce
co

de
In

pu
t d

at
a:

n=
10
00

v=
[1
00
,1
00
]

Bi
na

ry

Phase 1

Main:
n=1000
v=[100,100]
y=50
z=25
do i=0, n
 Function A(v)
enddo

subroutine Function A:
do i=0, v(1)
 do j=0, v(2)
 enddo
enddo

Begin - Main
Loop 1 entry 0 1 1000
 Begin - Function A
 Loop 2 entry 0 1 100
 Loop 3 entry 0 1 100
 Loop 3 exit
 Loop 2 exit
 End - Function A
Loop 1 exit
End - Main

Output

IExecPath1=50+10*1001+
(45*101+20*101*101)*1001

Main:
50
Loop 1 entry 0 1 1000
10
call FunctionA
Loop 1 exit

Function A:
Loop 2 entry 0 1 100
45
 Loop 3 entry 0 1 100
 20
 Loop 3 exit
Loop 2 exit

Main:
cpu instructions
Loop 1 entry
cpu instructions
call <functionA>
Loop 1 exit

Function A:
Loop 2 entry
cpu instructions
 Loop 3 entry
 cpu instructions
 Loop 3 exit
Loop 2 exit

Main:
50
Loop 1 entry
10
call FunctionA
Loop 1 exit

Function A:
Loop 2 entry
45
 Loop 3 entry
 20
 Loop 3 exit
Loop 2 exit

Execution

Main:
print "Begin - Main"
n=1000
v=[100,100]
y=50
z=25
print "Loop 1 entry" 0,1,n
do i=0, n
 Function A(v)
exit
enddo
print "Loop 1 exit"
print "End - Main"

subroutine Function A:
print "Begin - Function A"
print "Loop 2 entry" 0,1,v(1)
do i=0, v(1)
 print "Loop 3 entry" 0,1,v(2)
 do j=0, v(2)
 exit
 enddo
 print "Loop 3 exit"
exit
enddo
print "Loop 2 exit"
print "End - Function A"

Figure 4.3: Overview of the estimation of executed instructions process (for the
independent execution path 1 obtained from the Call Graph Set)

format: loop n entry a inc b, where n defines the loop number within the
function, a is the beginning value of the iteration, b is the end value of the
iteration and inc is the increment of the iteration values of the loop. The
output of this execution is saved to a file.

It should be noted that the modified source code is executed with the input
dataset of the original application since in many iterative applications the upper
bound limits of the loops are defined via the input data (i.e. matrix size, number
of time steps, etc.). Moreover, the steps explained in Phase 2 are exclusively
performed to calculate the upper bound limits of the loops and should not be
confused with the process of building and executing the application signature.
Also, it should be noted that in Phase 2 each loop is executed one iteration.

Phase 3: The information of the output from the execution of the modified
source code (upper bound of each loops) and the information from the
disassembled binary (CPU instructions of each independent execution path) is
combined. The final output has the number of CPU instructions of each function
and the number of CPU instructions within each loop with the respective upper
bound limit information.

Phase 4: The estimated executed CPU instructions for an independent execution
path are calculated (I

EPn). To do this, the CPU instructions inside the loops are
multiplied by their respective upper bound limits.

The previous phases are applied to each independent execution path of the
Call Graph Set. Therefore, the output of this module is the estimated number of

47

“output” — 2020/12/1 — 14:36 — page 48 — #73

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

instructions for every independent execution path. To find the total number of
CPU instructions (‚I

app

) that the application will execute we sum the estimated
CPU instructions (I

EPn) of all the independent execution paths, as shown in
Equation 4.1.

‚I
app

= I
EP1 + I

EP2 + ... + I
EPn (4.1)

To calculate the upper bound limits of the loops we consider the case of
loops with a constant termination. In general terms, the for-loop cases shown
in Loop 1 and Loop 2 represent two typical nested for-loop cases found in many
iterative applications. The first case is a nested for-loop where the upper bound
limit of each for-loop is a constant that is defined either in the source code of the
application or in the input data of the application. The second for-loop case is
a nested for-loop where the upper bound limit of the inner loops depends on the
iteration value of the outer loops. In the case Loop 1 the number of iterations is
straightforward: M + 1 for the i for-loop, (M + 1) ◊ (N + 1) for the j for-loop and
(M + 1) ◊ (N + 1) ◊ (P + 1) for the k for-loop. In the second case Loop 2 the
number of iterations is less straightforward since the inner loops depend on the
iteration of the outer loops but it can be calculated as: M + 1 for the i for-loop,
and for the inner loops is shown in Equation 4.2. For example, for the j for-loop
the number of iterations can be expressed as:

N+1q
x=M+1

x = (N+1)(N+2)
2 ≠ (M+1)(M)

2
�

We can also have more nested loops with this iteration value dependence and have
a general case equal to:

nq
x=m

xp, that can be solved using the Faulhaber’s formula.

nÿ

x=m

x = n(n + 1)
2 ≠ m(m ≠ 1)

2
nÿ

x=m

x2 = n(n + 1)(2n + 1)
6 ≠ m(m ≠ 1)(2m ≠ 1)

6

(4.2)

The previously explained process has some limitations regarding conditional
branches (i.e, IF/ELSE statements). On the one hand, the estimation of
instructions executed takes into account the branches that are directly dependant
of the input data of the application. On the other hand, IF/ELSE statements
that depend on data inside the functions are bypassed and therefore all the
instructions for those branches (both the IF and the ELSE) are counted in the
estimation process. This leads to an overestimation of the number of executed

�It is important to notice that the iterations begin at zero.

48

“output” — 2020/12/1 — 14:36 — page 49 — #74

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

Loop 1 For-loop case type 1
for i Ω 0 to M do

for j Ω 0 to N do
for k Ω 0 to P do
end for

end for
end for

Loop 2 For-loop case type 2
for i Ω 0 to M do

for j Ω 0 to N ≠ i do
for k Ω 0 to P ≠ j do
end for

end for
end for

instructions. In our experiments, this overestimation leads to a maximum of
2.6% error when the total estimated executed instructions are compared against
the real executed instructions of the application.

4.1.3 Application Signature

Main Func. A

Main Func. B

Main Func. B

Func. C

Func. D

Exec. Path 1
Binary

Call Graph Set Application Signature

Independent execution path 1

Independent execution path 2

Independent execution path 3

Exec. Path 2
Binary

Exec. Path 3
Binary

Figure 4.4: Application Signature from the Call Graph Set

The application signature is built in an automatic way by taking the
information of each independent execution path from the Call Graph Set. To
build the application signature we apply the following process:

• An independent execution path from the Call Graph Set is selected.

• A temporary copy of the source code of the original application is made.

49

“output” — 2020/12/1 — 14:36 — page 50 — #75

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

• We modify the copy of the source code to remove all the independent
execution paths except the one selected from the Call Graph Set. We do
this by removing the call to functions that are not in the selected
independent execution path.

• The modified source code is compiled with the same compiler and flags as
the original application to create the binary of the selected independent
execution path.

• The temporary copy of the source code is erased.

• We repeat the process for all the independent execution paths from the Call
Graph Set.

From the process explained previously it can be seen that a binary is
generated for each independent execution path. It is done this way to ease the
use of the stop criterias (explained in the following section) and execute each
independent execution path in a parallel manner by the Application Signature
Execution Manager.

In the case shown in Fig. 4.4 the Call Graph Set is composed by three
independent execution paths: Main æ Function A, Main æ Function B æ
Function C and Main æ Function B æ Function D. Finally, by applying the
process previously explained the application signature is set up with three
binaries from each independent execution path.

From Fig. 4.4 we can see that each independent execution path of the
application signature starts from the Main function. In iterative applications, it
is usually found that the Main function contains the code to load the input data
and initialize the required set of variables. This variable initialization allows to
execute each independent path successfully. However, there is a limitation for
some specific applications that exhibit data dependency between functions from
di�erent independent execution paths. This problem will be tackled as a future
line of work by using a modular compiler such as LLVM [72].

LLVM� is a modular and reusable compiler infrastructure that provides the
tools to optimize, transform and analyze source code in an easy way. Using
LLVM would made our fast energy estimation framework general for other
programming languages. With the help of LLVM, we can refine the process to
build the application signature by performing a data dependency analysis
between the functions of the applications. The data dependency analysis will
allow to add functions to independent execution paths that were not originally
on that independent path.

�https://llvm.org

50

“output” — 2020/12/1 — 14:36 — page 51 — #76

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

The benchmarks used to evaluate the accuracy of the framework in this
Chapter have strongly independent execution paths, meaning that there are not
data dependencies between them. Moreover, the input data of the benchmarks
we use to evaluate the real implementation of the framework are defined in the
Main function (for example, there is no independent function for data
initialization). Therefore, each independent execution path is executed taking
into account the original input data since each path starts at the Main function.

As we have previously commented, it is outside of the scope of this thesis
to detect the data dependencies between independent execution paths. Although,
a slicer tool called llvm-slicer can be used to detect data dependencies between
independent paths, especially to detect the data dependencies coming from data
initialization functions. As we have mention earlier, a proper future development
of the whole framework is proposed to be implemented using LLVM and its tools,
for example the llvm-slicer tool.

4.1.4 Application Signature Execution Manager

Bin - EP1

Core #1

Bin - EP2

Core #2

Bin - EPn

Core #n

Cpu cycles

Instructions Retired

Calculation of window length

Checking stability from
euclidean distance vectors

Application Signature Execution Manager Application Profile Reconstruction

HW counters profile of EPn

Application Reconstructed Profile

EP4EP1 EP2 EP3 EPn

-Mean values
-

-

Figure 4.5: Application signature execution manager and application profile
reconstruction

The application signature manager has three main objectives: (i) executes the
binaries that compose the application signature, (ii) stops at the right time the
execution of each binary and (iii) gathers a set of hardware counters from each
execution. The inputs of this module are the application signature, the estimated
executed instructions of each independent execution path and the input data of
the original application.

51

“output” — 2020/12/1 — 14:36 — page 52 — #77

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

Figure 4.5 shows the execution process of the application signature. Each
binary from each independent execution path (Bin - EPn) is executed in a di�erent
core (parallel). In Fig. 4.5 we highlight the execution process of the nth independent
execution path (EP

n

). During the execution we collect a set of hardware counters
C

i,EPn (see Table 4.1 from the Experimental Setup section).
In the case of extracting and executing the application signature for multi-

threaded applications there is two options:

1. Extract and execute the application signature for the single-threaded version
of the application and use a speed-up model to scale the energy estimation for
the multi-threaded version of the application. This is explained in Section 2.2
in Chapter 2.

2. Extract and execute the application signature directly for the multi-threaded
version of the application. In this option each binary from each independent
execution path must be executed with the same number of threads as the
original application.

The results for the multi-threaded scenario presented in Section 4.4.1.3.2 are
obtained using the second option to extract and execute the application signature
for multi-threaded applications.

In order to stop the execution of each binary and get tÕ
EPn

, the value of the
execution time of the nth independent execution path, two conditions or criterias
are applied:

1. The execution of the binary stops once the executed CPU instructions
reach a percentage p of the estimated CPU instructions I

EPn (obtained
from the module of Estimation of Executed Instructions). In some cases
this could lead to potentially large execution times since the selected value
of the percentage of executed CPU instructions can be a large number. To
alleviate this problem, a second condition is applied.

2. The execution of the binary stops once the collected hardware counter profiles
reach a stable value.

The Application Signature Execution Manager stops the execution whenever
one of the two conditions are met. To apply the second stop criteria we calculate
the length of a sliding window for each independent execution path:

• At the beginning of the execution we gather the instructions retired and
CPU cycles from the hardware counters to calculate the IPC (IPCb

EPn).
This process is done in the red rectangle region shown in Fig. 4.5.

52

“output” — 2020/12/1 — 14:36 — page 53 — #78

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

• We estimate a partial execution time TpÕ
EPn

of the nth independent execution
path by taking into account the percentage p (first condition or criteria) of
executed CPU instructions and the previously calculated IPCb

EPn .

TpÕ
EPn

= I
EPn

IPCb
EPn ◊ Freq

CP U

◊ (p/100) (4.3)

• The estimated execution time is divided in proportional s segments. The
sliding window length m

EPn is equal to the length of the segment:

m
EPn = TpÕ

EPn
/s (4.4)

Once we have the length m
EPn of the sliding window we perform the following

steps to stop the execution:

• The sliding window of fixed length of m
EPn samples is selected. The values

of all the k hardware counter signals inside the window form m
EPn vectors

of k samples (each sample is one temporal value of each hardware counter).

• The euclidean distance between the vectors is calculated to compose a new
signal inside the window. Figure 4.5 shows the euclidean distance of the
execution of the nth independent execution path (orange region).

• An algorithm to find abrupt changes is applied to the euclidean distance
signal.

• If an abrupt change (red dot) is found we move the sliding window one
sample and start the process again. Finding an abrupt change means that
the hardware counters signals are not stable.

• If an abrupt change is not found we stop the execution of the application
signature and select the values of the hardware counters signals that are
located inside this final sliding window. From Fig. 4.5 the execution stops
at the green window.

The algorithm to find abrupt changes is based from the work of Lavielle [73]
and Killick et al. [99]. The algorithm to find abrupt change points has the following
steps:

• The signal is divided into two phases by selecting an intermediate instant
point.

• A statistical property (mean) is computed for each section.

53

“output” — 2020/12/1 — 14:36 — page 54 — #79

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

• A deviation from the statistical property is calculated for each instant from
each section. The residual error is calculated for each section by summing
all the deviations.

• The residual error from each section is added to obtain a total residual error.

• A new division point is selected until the total residual error finds a minimum.

Finally, the output of this module is the hardware counter profiles from the
region of the last window that fulfill any of the two stop criteria. In the case shown
in Fig. 4.5 the output is the hardware counter profiles from the green window.

4.1.4.1 Application Signature Execution Time

The execution time of the application signature (T
sig

) depends on two factors: i)
the value of the execution time of the nth independent execution path (tÕ

EPn
), ii)

the number of available cores. There are three possible scenarios that a�ect the
execution time of the application signature:

a) If the number of independent execution paths is equal or lower to the number
of available cores the value of T

sig

is equal to the longest independent execution
path: max(tÕ

EP1 , tÕ
EP2 , . . . , tÕ

EPn
).

b) If the number of independent execution paths higher than the available cores,
a simple FIFO task-scheduling process is applied. A task-queue is composed by
a number of binaries from the application signature that wait for a core to be
available. In this case, the value of T

sig

depends on the task-scheduling process.

c) The worst case scenario, in terms of execution time, is when only one core is
available. In this scenario the value of T

sig

is equal to the sum of all the
execution times of all the binaries from the application signature:
sum(tÕ

EP1 , tÕ
EP2 , . . . , tÕ

EPn
).

It should be noted that this approach assumes a perfectly parallel execution
of the independent execution paths on each core. This is a fair assumption since
the independent execution paths do not share data between them (there is no data
dependency) and also, there is no message passing between the execution of each
independent execution path.

54

“output” — 2020/12/1 — 14:36 — page 55 — #80

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

4.1.5 Application Profile Reconstruction
Figure 4.5 shows the process to reconstruct the application profile. The module
takes as input the hardware counters profile from the region of the green window
obtained from the Application Signature Execution Manager. These hardware
counter profiles are averaged, as shown in Equation 4.5. The subindex i indicates
each of the k hardware counters and EP

n

indicates the nth independent execution
path from the application. The mean is calculated over a period equal to the
length of the window m

EPn and for the set A formed by the temporal samples of
the hardware counter profiles.

C
i,EPn = 1

m
EPn

ÿ

jœA

C
i,EPn [j] (4.5)

The IPC of each independent execution path are calculated, as shown in
Equation 4.6. The values of C

RI,EPn and C
Clk,EPn are the values of the Retired

CPU Instructions and CPU Clock Cycles, respectively, for the execution of the nth

execution path.

IPC
EPn =

q
jœA

C
RI,EPn [j]

q
jœA

C
Clk,EPn [j]

(4.6)

To reconstruct the application profile we estimate the execution time of each
independent execution path. Once we have estimated the execution time we
reconstruct the hardware counter profiles of the overall application.

4.1.5.1 Execution Time Estimation

The execution time of each independent path is estimated by applying the basic
performance equation, shown in Equation 4.7. Where IPC

EPn is the IPC of the
nth execution path. The value I

EPn corresponds to the estimated executed CPU
instructions of the nth execution path. The value of Freq

CP U

is calculated as the
mean value of the CPU Clock Cycles (C

Clk,EPn). The value of T Õ
app

is the total
estimated execution time for the whole application.

T Õ
EPn

= I
EPn

IPC
EPn ◊ Freq

CP U

T Õ
app

= T Õ
EP1 + T Õ

EP2 + · · · + T Õ
EPn

(4.7)

55

“output” — 2020/12/1 — 14:36 — page 56 — #81

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

4.1.5.2 Hardware Counter Profile Reconstruction

Figure 4.5 shows the hardware counter profiles of each independent execution
path (‚C

i,EPn). These hardware counter profiles are built by creating a signal with
amplitude equal to the average values of hardware counter profiles of each
independent execution path (C

i,EPn) and with a duration equal to to the
estimated execution time of each independent execution path (T Õ

EPn
), as shown in

Equation 4.8.

‚C
i,EPn [n] = C

i,EPn n œ [0, T Õ
EPn

] (4.8)

The application reconstructed profile ‚C
i

is obtained by concatenating each
reconstructed hardware counter profile from all the independent execution paths
(‚C

i,EPn) and for all the k hardware counters set, as shown in Eq. 4.9 and Fig. 4.5.
The value of sm is the sampling period used during the hardware counter
acquisition process.

‚C
i

[n] =
;

‚C
i,EP1 [n

EP1], ‚C
i,EP2 [n

EP2], . . . , ‚C
i,EPn [n

EPn]
<

n œ [0, T Õ
app

] and

Y
_______]

_______[

n
EP1 œ [0, T Õ

EP1]
n

EP2 œ [T Õ
EP1 + sm, T Õ

EP2]
...
n

EPn œ [T Õ
app

≠ T Õ
EPn

+ sm, T Õ
EPn

]

(4.9)

4.1.6 Energy Estimation
In order to estimate the energy of the original application we use power models as a
function of the reconstructed hardware counter profiles built from the application
signature execution.

4.1.6.1 Power Models

In Section 4.2 we will show the validation of the dynamic CPU and memory
power models as a function of hardware counters using a Grammatical Evolution
technique. The power models of the dynamic CPU and memory are shown in
Equation 4.10, which is the same as Equation 4.20, but instead of using the
hardware counters profiles of the original application we use the reconstructed
hardware counters profiles ‚C

i

(see Table 4.1). The values of x
n

and y
n

are the

56

“output” — 2020/12/1 — 14:36 — page 57 — #82

4.1. FAST ENERGY ESTIMATION FRAMEWORK MODULES

coe�cient values (see Table 4.4) of the power models for CPU and memory,
respectively. The absolute power errors of the models are 4.4W and 3.7W, for the
CPU and memory power model respectively.

‚P
CP U,dyn

=x0 · x1 · ‚C8 + 1
x2 · ‚C4 + 1

+

x3 · (x4 · ‚C6 + 1)(x5 · ‚C3 + 1)(x6 · ‚C2 + 1)2

x7 · ‚C7 + 1
≠ x8

‚P
Mem,dyn

=y0 · y1 · ‚C8 + 1
y2 · ‚C5 + 1

+

y3 · (y4 · ‚C8 + 1)(y5 · ‚C2 + 1)(y6 · ‚C3 + 1) ≠ y7

(4.10)

As previously commented, without loss of generality we use CPU and memory
power models as a function of hardware counters. However, our framework and
methodology is not limited to these power models. The CPU and memory power
can also be obtained through alternatives approaches such as RAPL [35] (when
available) without compromising the applicability and design of the framework.

4.1.6.2 Overall Energy Estimation

The energy of CPU and memory is estimated by summing all the instantaneous
dynamic CPU and memory power values and then multiplying by the sampling
period sm, as shown in Eq. 4.11, where x is for CPU or Mem. The energy
is estimated over a period equal to T Õ

app

(the total estimated execution time of
the whole execution) and for the set B formed by the temporal samples of the
estimated CPU and memory power profiles (‚P

x

).

‚E
x

=
5 ÿ

nœB

‚P
x

[n]
6

◊ sm (4.11)

The estimated energy error is defined in Equation 4.12, where x can represent
both the CPU or memory (Mem) error sub-index. The values of E

CP U

and E
Mem

represent the dynamic CPU and memory energy of the whole execution of the
original application, respectively. The values of ‚E

CP U

and ‚E
Mem

are the estimated
energy calculated from the fast energy estimation framework.

Error
x

=

----Ex

≠ ‚E
x

E
x

◊ 100 (4.12)

57

“output” — 2020/12/1 — 14:36 — page 58 — #83

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

We also define the estimated executed instructions error with Equation 4.13,
where I

app

is the total executed instructions of the original application and ‚I
app

are the estimated executed instructions.

Error
Inst

=

----Iapp

≠ ‚I
app

I
app

◊ 100 (4.13)

4.1.6.3 Compression Ratio of the Framework

In Chapter 2 we defined the concept of Compression Ratio using the application
signature. In this section we define the Compression Ratio of the framework
CR

fr

as the ratio of total execution time of the original application (T
app

) to the
execution time of the fast energy estimation framework (T

fr

), as shown in Eq. 4.14.
The value of T

fr

is the sum of the execution time of each module from the fast
energy framework (Fig. 4.1). A high Compression Ratio value indicates that the
framework estimates the energy much faster than executing the whole application.

CR
fr

=T
app

T
fr

(4.14)

4.2 Sever Power Modeling
Estimating power in highly-multithreaded enterprise servers running arbitrary
workloads under a given frequency setup is not a trivial task. Simplified linear or
quadratic models [43] exhibit high errors in these scenarios. They disregard the
impact of leakage and fan power, and assume the same trend for CPU and
memory power. Due to the complexity of modeling resource contention when
various CPU or memory intensive tasks run on the same server, task
co-allocation in non-virtualized scenarios is either not considered or limited to a
particular set of known workloads [30], usually profiled o�-line [130]. The validity
of these approaches is limited, not matching real data center conditions.

In this section we propose a methodology to model the overall power of servers
running single or co-allocated applications, given the parameters (HW counters) of
each individual task. Fig. 4.6 shows how the models developed in this paper can be
used together to predict overall server power. To predict the power attained by a
server when jointly running Tasks 1 and 2, we first gather the HW counters of each
application separately (i.e., when not sharing the server with other tasks). Then,
we develop a model to estimate the HW counters when both tasks run together in

58

“output” — 2020/12/1 — 14:36 — page 59 — #84

4.2. SEVER POWER MODELING

Overall Server Power Model

HW counters prediction of the co-allocated tasks

Target

Grammatical
Evolution technique

Overall Server
Power Model

Task 1

X: HW Counters of task 1
Y: HW Counters of task 2
Z: HW Counters of co-allocated tasks
Z': predicted HW Counters of co-allocated tasks

Task 2

Task

Server

Temperature-dependent Leakage
power model

Fan power model

Grammatical Evolution
technique

Target

Grammatical Evolution
technique

Target

Figure 4.6: Overview of the co-allocated tasks power model methodology

the same server (i.e. co-allocated tasks, as described in Sec. 4.2.2). Finally, we use
the predicted HW counters to model the power of the co-allocated tasks by using
the overall server power model (described in Sec. 4.2.1).

4.2.1 Server Power Models

The proposed server power model isolates and separately quantifies the main
contributors to power consumption: i) CPU power P

CP U

, ii) dynamic memory
power P

Mem,dyn

, iii) fans P
fan

and iv) disks P
disk

. Eq. 4.15 describes the power
consumption breakdown. CPU power can be further divided into three
contributors:

1. P
idle

: is the power consumption of the CPU and other components of the
server (motherboard, service processor, network interface, etc) when no
workload is executed; it contains a temperature-independent leakage
component plus the power consumption due to the Operating System
running.

2. P
CP U,leakT

: represents temperature-dependent leakage, which has an
exponential dependence with temperature [127].

59

“output” — 2020/12/1 — 14:36 — page 60 — #85

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

3. P
CP U,dyn

: the dynamic power consumption of the CPU due to a workload
execution. As mentioned in the Experimental Setup Section 4.3.2, we are not
able to measure directly CPU power consumption (P

CP U

), so we calculate
this term by subtracting all other power values (fan, memory and disk power)
from overall server power (P

total

).

The quantization error of P
total

is equal to 4W and this value establishes a
floor to the accuracy of the P

CP U

value.

P
total

= P
idle

+ P
CP U,leakT

+ P
CP U,dyn¸ ˚˙ ˝

PCP U

+P
fan

+ P
Mem,dyn

+ P
disk (4.15)

Leakage power was modeled using the same methodology than in a previous
work by Zapater et al. [127]. To this end, we run a CPU-intensive workload
under various fan speeds (fan speed can be manually set through the server
BIOS), while collecting CPU power and temperature. Since leakage power
depends exponentially on CPU temperature, changing fan speed under a
constant workload varies CPU temperature, and thus, leakage. We regress
leakage power to the second order Taylor series expansion of an exponential (see
Eq. 4.16), obtaining the coe�cients shown in Table 4.4. This process is done
through a normalization of the T

CP U

values. The leakage power model has an
RMSE (Root Mean Square Error) of 1.14W and a MAE (Mean Absolute Error)
of 1.03W.

P
leak

= –0 + –1 · T
CP U

+ –2 · T 2
CP U

(4.16)

Fan power consumption was modeled by changing fan speed while gathering
fan power values via the deployed sensor, as mentioned in the Experimental Setup
Section 4.3.2. As fan power has a cubic relation with fan speed, we regress fan
power to a third order polynomial, as shown in Eq. 4.17. The regression coe�cients
obtained are shown in Table 4.4. The fan power model has an RMSE of 0.09W
and a MAE of 0.05W.

P
fan

= —0 + —1 · rpm
fan

+ —2 · rpm2
fan

+ —3 · rpm3
fan

(4.17)

All the benchmarks used in this thesis presented a constant or very low
variation of power drain of disks. Hence, for the sake of simplicity we assume a
constant power drain of disks, with a mean power consumption of 16.75W and a
standard deviation of 1.3W. Nonetheless, this is not a limitation for the
presented power model since a more detailed disk power model can be developed
in the future to enhance the model.

60

“output” — 2020/12/1 — 14:36 — page 61 — #86

4.2. SEVER POWER MODELING

Power consumption when no workload is running (P
idle

) is also constant
through all the experiments, with a mean power consumption of 50.0W and a
standard deviation of 2.0W.

4.2.1.1 Dynamic CPU and Memory Power Models

In this section, we present a methodology to obtain the models for the dynamic
memory (P

Mem,dyn

) power consumption and the dynamic CPU power
consumption (P

CP U,dyn

) as a function of HW counters. We propose an
unsupervised modeling technique based on Grammatical Evolution (GE) that
automatically extracts relevant features, while obtaining a mathematical
expression for dynamic CPU and memory power. We compare our solution to a
classical modeling approach based on classical feature selection and regression.

In summary, we claim that to model the overall server power we only need to
collect the following parameters: HW counters, CPU temperature and fan speed,
as shown in Eq. 4.18:

P
total

= f(HW
counters

, T
CP U

, rpm
fan

) (4.18)

4.2.1.1.1 Classical Approach

We first present a partial least squares regression to model dynamic CPU and
memory power (P

CP U,dyn

, P
Mem,dyn

). We use Principal Component Analysis
(PCA) for feature selection, reducing the set of HW counters. In our
experiments, the first 3 principal components explain 70% of the variance,
therefore we plot the first 3 components and choose the HW counters that are
highly independent from each other. The final HW counter set is composed of:
C1, C2, C10, C11 (from Table 4.3). We train and validate our model with the
training and test sets described in the Experimental Setup Section 4.3.2.
Equation 4.19 shows the dynamic CPU and memory power linear regression
expression. The values of “

n

and ”
n

are the regression coe�cients and C
m

correspond to the HW counters. Regression coe�cients for both models are
summarized in Table 4.4.

P
CP U,dyn

=“0 + “1 · C1 + “2 · C2 + “3 · C10 + “4 · C11

P
Mem,dyn

=”0 + ”1 · C1 + ”2 · C2 + ”3 · C10 + ”4 · C11
(4.19)

61

“output” — 2020/12/1 — 14:36 — page 62 — #87

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

4.2.1.1.2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary technique, inspired on the
biological process of generating a protein from DNA, that performs symbolic
regression [104]. Given a set of composition rules that describe the mathematical
relations and the variables of a model, GE generates and evolves a model until it
fits the training data with the minimum error possible. As opposed to a classical
approach, GE performs automatic feature selection, reducing the initial set of
HW counters. We feed the GE algorithm with all the HW counters and variables
we want to model (i.e. the target): CPU dynamic power (P

CP U,dyn

) and dynamic
memory power (P

Mem,dyn

). This process is done separately for both magnitudes,
obtaining one model for P

CP U,dyn

as a function of HW counters and another for
P

Mem,dyn

, as shown in Eq. 4.20 and Table 4.4. The absolute power errors of the
models are 4.4W and 3.7W, for the dynamic CPU and memory power model
respectively.

P
CP U,dyn

=x0 · x1 · C14 + 1.0
x2 · C4 + 1 +

x3 · (x4 · C10 + 1)(x5 · C3 + 1.0)(x6 · C2 + 1)2

x7 · C11 + 1 ≠ x8

P
Mem,dyn

=y0 · y1 · C14 + 1
y2 · C5 + 1 +

y3 · (y4 · C14 + 1)(y5 · C2 + 1)(y6 · C3 + 1) ≠ y7

(4.20)

4.2.2 Power Prediction for Co-assigned Tasks

To predict the overall power of co-allocated applications we first predict the HW
counters when two tasks run co-allocated. To this end, we model each counter of
the CPU and memory models as a function of those same HW counters on the
individual tasks. For the case of the classical model (Classical Approach), HW
counters C1, C2, C10 and C11 were selected to obtain the models of P

CP U,dyn

and
P

Mem,dyn

. Thus, we predict the HW counters of the co-allocated tasks (ÊCi) as a
function of the HW counters of single tasks (Ci

tj

), using classical regression to fit
the regression coe�cients ÷ (see Table 4.4), as shown:

62

“output” — 2020/12/1 — 14:36 — page 63 — #88

4.2. SEVER POWER MODELING

S

WWWWU

ÁC1
ÁC2
ÁC10
ÁC11

T

XXXXV
=

S

WWWWU

÷00 ÷01 ÷02 ÷03 ÷04 ÷05 ÷06 ÷07 ÷08
÷10 ÷11 ÷12 ÷13 ÷14 ÷15 ÷16 ÷17 ÷18
÷20 ÷21 ÷22 ÷23 ÷24 ÷25 ÷26 ÷27 ÷28
÷30 ÷31 ÷32 ÷33 ÷34 ÷35 ÷36 ÷37 ÷38

T

XXXXV

S

WWWWWWWWWWWWWWWWWWU

1
C1

t1
C1

t2
C2

t1
C2

t2
C10

t1
C10

t2
C11

t1
C11

t2

T

XXXXXXXXXXXXXXXXXXV

(4.21)

For the GE model, the counters C2, C3, C4, C5, C10, C11 and C14 were
automatically chosen as features to model P

CP U,dyn

and P
Mem,dyn

. We feed the
GE algorithm with these counters of the single tasks to obtain the counters of the
co-allocated tasks (target). We derive 7 models, one per HW counter, as shown
next:

ÁC2=m0.C11
t1+m1.C11

t2≠m2

ÁC3=n0
(n1.C3

t2+1)(n2.C11
t1+1)

n3.C2
t1+1 ≠n4

ÁC4=p0.C4
t2+p1.C4

t1+p2

ÁC5=q0.C5
t2+q1

q2.C5
t1+1

q3.C14
t1+1≠q4

ÁC10=r0(r1·C10
t2+1)+

r2
(r3.C2

t2+1)(r4.C14
t1+1)(r5.C10

t1+1)
r6.C2

t1
≠r7

ÁC11=s0(s1.C2
t2+1)(s2.C5

t2+1)(s3.C4
t2+1)(s4.C3

t2+1)(s5.C10
t1+1)

s6.C14
t1+1 +

s7
s8.C11

t1+1
s9.C4

t2+1 ≠s10

ÁC14=w0.C4
t2+w1

(w2.C11
t1+1)(w3.C14

t1+1)(w4.C4
t1+1)

w5.C5
t2+1 ≠

w6
(w7.C4

t2+1)(w8.C3
t2+1)

w9.C2
t2+1 +w10

(4.22)

63

“output” — 2020/12/1 — 14:36 — page 64 — #89

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

4.3 Experimental Setup
In this section we present the experimental setup for the validation of the fast
energy estimation framework and the server power models.

4.3.1 Fast Energy Estimation Framework

Table 4.1: Hardware counters collected during the execution of the application
signature

Description Description
C1 Clock cycles C5 Branch instructions retired
C2 Instructions retired C6 Resource stalls
C3 LLC misses C7 µops dispatched
C4 L2D Cache misses C8 L1D Cache misses

The validation of the fast energy estimation framework takes place in an
Intel enterprise server (S2600GZ) based on the Intel Decathlete 2.0 Open
Compute Project server board. The server has one Intel 6-core SandyBridge-EP
processor with 12 hardware threads, 8 4GB memory modules, 4 hard disk drives,
5 fans and 2 power supply units. The server runs a CentOS 6.5 Linux OS. The
ocount tool, included in the open-source Oprofile tool, is used to gather hardware
counters during runtime. The hardware counters are polled every 100 ms.
Table 4.1 shows the hardware counters collected during the execution of the
application signature. The hardware counters C2 to C8 were obtained from the
automatic feature selection of the Grammatical Evolution modeling approach
(Section 4.2.1.1). The Doxygen tool is used to extract the Call Graphs of the
applications. The open-source framework MAQAO [37] is used to disassemble the
binary of the original application and also, to detect the regions of the loops in
the disassembled binary.

To validate the accuracy of the fast energy estimation framework we use an
heterogeneous set of long-running iterative workloads composed of: the
applications BT and SP from the NAS Parallel suite [11], Stream [88],
Dgemm [83] and Linpack [38] benchmarks. For the multi-threaded scenario we
use the OpenMP versions of BT and SP. These applications are formed by
computational intensive kernels, are iterative and according to their input are
long-running. We use two di�erent inputs for each application, shown in
Table 4.2. The input datasets are chosen in order to have feasible experiments
(regarding execution time) but also maintaining long-running execution times.

64

“output” — 2020/12/1 — 14:36 — page 65 — #90

4.3. EXPERIMENTAL SETUP

Our experiments are centered around long-running, data-intensive and
iterative applications. In this work, we have not evaluated the accuracy of the
framework with stream processing applications, although the fast energy
framework should work with them. Stream processing applications process data
using di�erent types of short applications or kernel operations. As long as we
have the binary and source code of this short applications or kernel operations,
we can apply the fast energy estimation framework, and benefit from the
compression ratio and fast energy/performance estimation. On the contrary, the
framework is not conceived to work with interactive or latency-sensitive
applications. The main problem for this type of applications is the estimation of
the executed instructions (which is necessary for the overall execution time
estimation) that cannot be accomplished following our methodology and,
probably, requires a complete redesign of the approach.

Table 4.2: Input dataset for each application

Applications Inputs

BT BT-B Class B
BT-D Class D

SP SP-B Class B
SP-D Class D

Stream Stream1 Stream Array Size=109

Stream2 Stream Array Size=1.059

Dgemm Dgemm1 Input matrix size N=1024
Dgemm2 Input matrix size N=2048

Linpack
Linpack1 Time Steps ntimes=20000

Size of matrices=300

Linpack2 Time Steps ntimes=30000
Size of matrices=200

4.3.2 Server Power Modeling
The experiments to obtain the server power models take place on the same Intel
S2600GZ server mentioned in the Experimental Setup from the Fast Energy
Estimation Framework (Section 4.3.1). Figure 4.7 shows a diagram of the server
internals. We use the IPMI to poll three server sensors: i) overall server power
consumption (W), ii) CPU temperature (ºC) and iii) fan speed (RPM). Since the
server is not equipped with power sensors for CPU, fans, memory or disks, we
deploy intrusive current measurement sensors in three board components: i) one
fan, ii) one memory DIMM and iii) the 4 disks. To obtain power values, we use

65

“output” — 2020/12/1 — 14:36 — page 66 — #91

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

the commercial chip from Texas Instruments INA219. To monitor the fan and
disks we placed the sensor in series with the power supply of each component.
Only one power sensor is used for the fans, as the server fan control firmware
always drives all fans to the same speed. Thus, the total fan power can be
obtained by multiplying the measured fan power by the number of fans.
Regarding memory, to measure the power of one memory DIMM, we inserted a
memory extender that incorporates a shunt resistor to enable power
measurement. We characterized memory power by running several
memory-intensive experiments with the synthetic benchmark Randmem �, and
changing the DIMM we were monitoring. This way, we experimentally validated
that memory power consumption is equally spread across all DIMMs, regardless
of the workload run. Therefore, to measure overall memory power we can
multiply the value from the power sensor by the number of DIMMs in the server.

To gather the HW counters of the applications, we use ocount. Table 4.3
shows the HW counters collected in each execution of the applications executed
to build the server power models. This set of HW counters are proved to be
correlated with the power consumption of running tasks [32]. All the parameters
(CPU temperatures, fan speed, HW counters, and overall, fan, disk and memory
power) are gathered every 10 seconds.

Task

HW counters

(Oprofile-ocount)

Current Sensor: INA219

P

PP

P

RPM (IPMI)

T

total

disk mem

cpu

fan

(IPMI)
(IPMI)

Figure 4.7: Experimental Setup. Parameters collected during the experimentsn
n This figure is based on a image found in [58].

Table 4.4 shows all the coe�cient values for all the models developed to build
the overall server power model.

�https://github.com/greenlsi/randmem

66

“output” — 2020/12/1 — 14:36 — page 67 — #92

4.3. EXPERIMENTAL SETUP

Table 4.3: HW counters collected to build the server power models

Description
C1 Clock cycles
C2 Instructions retired
C3 LLC misses
C4 L2D Cache misses
C5 Branch instructions retired
C6 Mispredicted branches retired
C7 Speculative cache-line split load µops dispatched to the L1D
C8 Speculative cache-line split Store-address µops dispatched to L1D
C9 Number of times the divider is active
C10 Resource stalls
C11 µops dispatched
C12 Memory transactions
C13 µops with memory accessed retired
C14 L1D Cache misses

To develop our overall server power model we run a subset of workloads from
the SPEC CPU 2006 [54] benchmark suite, the PARSEC [16] [17] benchmark suite
and Randmem. The SPEC and PARSEC benchmarks are selected according to
their CPU and memory power characteristics, i.e. to train our model we choose
6 benchmarks with very di�erent CPU and memory power profiles that sweep a
wide range of values. The training set consists on: lbm, calculix, gcc, bodytrack,
blackscholes, streamcluster and randmem. To validate our model we use a di�erent
set of benchmarks: mcf, perlbench, bzip2, freqmine, raytrace and facesim. Each
SPEC/PARSEC benchmark is run for a di�erent number of copies/threads: 1, 2,
3, 6 and 12. We use Randmem to stress various memory usages, ranging from 1
to 32GB. All experiments were run for the following frequency setups available in
the server: 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000 MHz and the Turbo
Boost frequency of 2001 MHz. Turbo Boost technology allows processors to run
at a higher frequency than 2001 MHz, in our case at 2400MHz. We measure the
real frequency by running several benchmarks while collecting Clock cycles (C1)
every second.

To predict the HW counters of a co-allocated task given the HW counters of
the individual tasks we run a set of experiments with co-allocated applications.
We choose only two applications running together since is a typical scenario for
large scale or HPC applications and long-running applications. The training set
is formed by the following co-allocated set of benchmarks: perlbench-mcf, bzip2-
lbm, perlbench-calculix, lbm-mcf, gcc-perlbench and calculix-mcf. The test set is

67

“output” — 2020/12/1 — 14:36 — page 68 — #93

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

Ta
bl

e
4.

4:
C

oe
�

ci
en

t
Va

lu
es

fo
r

al
lm

od
el

s

C
oe

�
ci

en
t

V
al

ue
s

0
1

2
3

4
5

6
7

8
9

10
–

27
.
50

≠
1.

02
0.

01
-

-
-

-
-

-
-

-
—

0
4.

21
E

≠
4

≠
6.

11
E

≠
8

1.
14

E
≠

11
-

-
-

-
-

-
-

“
4.

10
≠

1.
04

E
≠

10
8.

92
E

≠
11

2.
58

E
≠

10
8.

94
E

≠
12

-
-

-
-

-
-

”
5.

13
≠

4.
75

E
≠

10
2.

33
E

≠
11

6.
06

E
≠

10
1.

06
E

≠
10

-
-

-
-

-
-

x
53

.
10

1.
00

E
≠

10
1.

05
E

≠
10

9.
83

4.
03

E
≠

12
3.

72
E

≠
10

2.
49

E
≠

12
1.

12
E

≠
12

58
.
19

-
-

y
24

.
80

1.
00

E
≠

10
1.

77
E

≠
11

5.
76

1.
00

E
≠

10
2.

49
E

≠
12

3.
72

E
≠

10
24

.
80

-
-

-
÷

0
1.

70
E

9
0.

78
1.

29
0.

06
0.

08
≠

0.
02

≠
0.

08
≠

0.
05

≠
0.

10
-

-
÷

1
7.

10
E

9
0.

01
0.

32
1.

47
0.

63
≠

0.
46

≠
0.

43
≠

0.
53

0.
25

-
-

÷

2
≠

1.
35

E
9

≠
0.

19
≠

0.
07

≠
0.

34
0.

05
1.

22
1.

17
0.

34
≠

0.
01

-
-

÷

3
9.

82
E

9
0.

37
1.

32
1.

17
0.

12
≠

1.
12

≠
1.

23
≠

0.
23

0.
55

-
-

m
0.

44
0.

86
5.

15
E

9
-

-
-

-
-

-
-

-
n

1.
44

E
9

6.
24

E
≠

10
4.

68
E

≠
12

5.
34

E
≠

12
1.

39
E

9
-

-
-

-
-

-
p

0.
62

0.
50

4.
70

E
8

-
-

-
-

-
-

-
-

q
1.

27
1.

60
E

10
2.

83
E

≠
11

2.
23

E
≠

10
9.

62
E

9
-

-
-

-
-

-
r

8.
24

E
10

1.
69

E
≠

11
1.

88
E

10
5.

41
E

≠
12

2.
23

E
≠

10
1.

73
E

≠
11

5.
34

E
≠

12
1.

02
E

11
-

-
-

s
5.

97
E

10
5.

41
E

≠
12

3.
03

E
≠

11
2.

65
E

≠
10

6.
24

E
≠

10
1.

73
E

≠
11

2.
23

E
≠

10
2.

75
E

11
4.

68
E

≠
12

2.
65

E
≠

10
3.

06
E

11
w

1.
44

1.
47

E
9

4.
68

E
≠

12
2.

23
E

≠
10

2.
59

E
≠

10
3.

03
E

≠
11

9.
92

E
8

2.
65

E
≠

10
6.

24
E

≠
10

5.
41

E
≠

12
2.

71
E

7

68

“output” — 2020/12/1 — 14:36 — page 69 — #94

4.3. EXPERIMENTAL SETUP

formed by: perlbench-lbm, calculix-lbm, gcc-bzip2, calculix-bzip2 and mcf-gcc. Each
experiment is run for 1, 2 and 3 copies of each application (e.g Experiment 1: 1
copy of perlbench and 1 copy of mcf, Exp. 2: 2 copies of perlbench and 2 copies
of mcf, and so on.). Experiments were run under two frequencies: 1700 and 2001
MHz. The train and test set were selected by randomly combining benchmarks of
their respective sets.

Grammar 1 Grammar in BNF format used to obtain the power models
<expr> ::= <expr><op><expr> | <cte>*<var>*<var> | <cte>*<var>/<var>
| <cte>*<var> | <cte>
<op> ::= +|-|*|/
<var> ::= C1 | C2 | C3 | ... | C14
<cte> ::= <dig>.<dig>
<dig> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Grammar 2 Grammar in BNF format used to obtain the co-allocated hardware
counters
<expr> ::= <expr><op><expr> | <cte>*<var>*<var> | <cte>*<var>/<var>
| <cte>*<var> | <cte>
<op> ::= +|-|*|/
<var> ::= C2

t1 | C2
t2 | C3

t1 | C3
t2 | C4

t1 | C4
t2 | C5

t1 | C5
t2 | C10

t1 | C10
t2 |

C11
t1 | C11

t2 | C14
t1 | C14

t2
<cte> ::= <dig>.<dig>
<dig> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The configuration of the parameters for the Grammatical Evolution technique
is the following:

• Population size: 200 individuals

• Chromosome length: 100 codons (or genes)

• Mutation probability: inversely proportional to the number of rules.

• Crossover probability: 0.9

• Maximum wraps: 3

• Codon size: 8 bits (values from 0 to 255)

The previous configuration is used for both the power models (Equation 4.20)
and the co-allocated hardware counters models (Equation 4.22). Moreover, the
grammar used for both modeling approaches is presented in Grammar 1 and 2.

69

“output” — 2020/12/1 — 14:36 — page 70 — #95

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

The only di�erence between both grammars is the variable set definition (ÈvarÍ).
In the case of the power models the variables are the set of hardware counters from
Table 4.3. The variables from the co-allocated hardware counters models are the
hardware counters from each task obtained through the co-allocated execution.

Both grammars are defined to reach non-linear expressions to obtain more
complex relations between the variables. In the Appendix A the reader can find a
more detailed explanation of the GE technique and how to interpret the grammars
defined in Grammar 1 and 2.

4.4 Results
In this section we present the results of using the fast energy estimation
framework with a set of sequential and multi-threaded long-running applications.
Additionally, we present the results of the validation of the server power models.

4.4.1 Fast Energy Estimation Framework
We present the results of using the framework with a set of long-running
applications. First, we show the e�ect of the application signature length in the
energy estimation process. Second, we show how the segment division (to
calculate the sliding window length: m

EPn) a�ects the estimated energy. Finally,
we show the overall results for the sequential and multi-threaded scenarios.

On one hand, each step or module of the framework could lead to errors in
the multiple phases of energy estimation. On the other hand, these errors are
minimal and are aggregated on the final result of the estimated energy value. It
is important to mention that the estimated energy value is compared against the
real energy value obtained through a full execution of the application.

4.4.1.1 Compression Ratio and Energy Error vs Application Signature
Length

In this section we present a study of the e�ect of the application signature length
(in terms of execution time) on the energy estimation error and the CR

fr

. The
results are shown in Fig. 4.8. As previously explained, one of the criteria to stop
the execution of the application signature is to execute the application signature
until the number of executed instructions reaches a percentage p of the estimated
executed instructions (Section 4.1.4). Therefore, the x-axis presents the percentage
of executed instructions of the application signature. In this case we are not taking
into account the second criteria of stability of the hardware counter signals.

70

“output” — 2020/12/1 — 14:36 — page 71 — #96

4.4. RESULTS

0 5 10 15

App. Signature Length (%)

0

2

4

6

8

10

12

14

16

18

20

C
P

U
 E

n
e

rg
y

e
rr

o
r

(%
)

BT-B
BT-D
SP-B
SP-D

Dgemm1
Dgemm2
Stream1
Stream2

(a) CPU E. error Vs App. Sig. Length

4 5 8 10

Segments

0

2

4

6

8

10

12

14

16

18

20

C
P

U
 E

n
e

rg
y

e
rr

o
r

(%
)

BT-B
BT-D
SP-B
SP-D
Linpack1

Linpack2
Dgemm1
Dgemm2
Stream1
Stream2

(b) CPU E. error Vs Segment Divsion

0 5 10 15

App. Signature Length (%)

0

2

4

6

8

10

12

14

16

18

20

M
e

m
o

ry
 E

n
e

rg
y

e
rr

o
r

(%
)

BT-B
BT-D
SP-B
SP-D

Dgemm1
Dgemm2
Stream1
Stream2

(c) Mem E. error Vs App. Sig. Length

4 5 8 10

Segments

0

5

10

15

20

25

30

35

40

M
e

m
o

ry
 E

n
e

rg
y

e
rr

o
r

(%
)

BT-B
BT-D
SP-B
SP-D
Linpack1

Linpack2
Dgemm1
Dgemm2
Stream1
Stream2

(d) Mem E. error Vs Segment Divsion

0 5 10 15

App. Signature Length (%)

10

60

110

160

210

C
o

m
p

re
ss

io
n

 R
a

tio

BT-B
BT-D
SP-B
SP-D

Dgemm1
Dgemm2
Stream1
Stream2

(e) CRfr Vs App. Sig. Length

4 5 8 10

Segments

10

60

110

160

210

C
o

m
p

re
ss

io
n

 R
a

tio

BT-B
BT-D
SP-B
SP-D

Dgemm1
Dgemm2
Stream1
Stream2

(f) CRfr Vs Segment Divsion

Figure 4.8: CR

fr

and Energy Est. Error vs (Application Signature Length - Segment
Division (s))

71

“output” — 2020/12/1 — 14:36 — page 72 — #97

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

Figure 4.8a shows the distribution of the energy estimation error for the
CPU energy case as a function of the application signature length. Overall, we
can see that as the application signature length increases the energy estimation
error decreases and converges to a steady value. The application SP-B and SP-D
exhibits a di�erent behaviour since the energy estimation error increases as the
application signature length increases and then stabilizes. This unexpected
behaviour occurs because the values of the IPC obtained from the application
signature execution at the beginning of the execution are closer to the IPC values
of the execution of the original application. As the application signature length
increases the values of the IPC also increases and therefore, the performance
estimation error increases together with the energy estimation error.

Figure 4.8c shows the distribution of the energy estimation error for the
memory energy case as a function of the application signature length. The
behaviour is the same as the CPU and only presents di�erences in the energy
error estimation values. For both the CPU and memory the energy estimation
error is below 15% when the application signature length represents only 5% of
the estimated executed instructions. Figure 4.8e shows the CR

fr

as a function of
the application signature length. As expected, the CR

fr

decreases when the
application signature length increases. By looking at Figs. 4.8a, 4.8c and 4.8e we
can see how selecting a threshold to stop the execution of the application
signature between 5% and 10% of the estimated executed instructions we obtain
low energy estimation errors together with high CR

fr

values. These results give
the user the possibility to tune the estimation parameters in order to find the
desired trade-o� between execution time vs precision of the estimation.

4.4.1.2 Compression Ratio and Energy Error vs Segment Division

In this section we present the results of the energy estimation errors and CR when
both stop criteria are applied to the execution of the application signature. We use
a threshold of 5% (p) for the criteria of the executed retired instructions and for
the hardware counters stability criteria we select four cases of segment divisions
(s value in Equation 4.4 from Section 4.1.4): 4, 5, 8 and 10. The e�ects on the
energy estimation error from the segment division are shown in Fig. 4.8. The x-axis
shows the segment division (s). Figure 4.8b and Fig. 4.8d shows that for almost all
applications the energy estimation errors are steady for di�erent segment divisions,
except for the application Stream1 where increasing the segment division penalizes
the energy estimation error. This occurs because the application Stream1 has a
phase at the beginning of the execution where the IPC are di�erent than the IPC of
the rest of the execution. When a high segment division is selected the stop criteria
algorithm stops the application signature execution at the beginning phase. This

72

“output” — 2020/12/1 — 14:36 — page 73 — #98

4.4. RESULTS

results on a increase of the total execution time error and therefore an increase of
the energy estimation error.

Figure 4.8f presents the values of the CR
fr

. In general, when the segment
division increases the CR

fr

increases, as expected. For the case of a segment
division equal to 10 the CR

fr

values are higher than the CR
fr

values from only
using the stop criteria of the retired instructions with a threshold of 5% (Fig. 4.8e).
Therefore, we can see that when using both stop criteria the CR

fr

increases while
not greatly a�ecting the energy estimation errors.

4.4.1.3 Evaluation of the Fast Energy Estimation Framework

In this section we present the accuracy results of the fast energy estimation
framework in terms of the energy error estimation. Also, we present the accuracy
of the module of estimation of executed instructions. The dynamic CPU and
memory energy estimations are obtained using the following criteria to stop the
execution of the application signature: 1) 5% of the estimated executed CPU
instructions, and 2) a segment division equal to 10 to detect the stability of the
hardware counter profiles. We select those values because, as seen on
Section 4.4.1.2, they allow to have low energy estimation errors together with
high Compression Ratios.

4.4.1.3.1 Energy Estimation for the Sequential Scenario

Table 4.5 shows the energy estimation errors (Error
CP U

(%) and Error
Mem

(%))
for the single-threaded (sequential) cases. In case of the energy estimation errors
for the estimated CPU energy all the values are below 15%. The highest energy
estimation error is presented for the memory energy error of the application
Linpack1 with a value of 36.5%. The RMS of the CPU energy estimation errors
is equal to 10.4% and for the memory is equal to 16.8%. Furthermore, we can see
that the mean power absolute errors (absolute value of the di�erence between the
mean power value of the original application and the estimated mean power
value obtained from the framework), ErrorAbs

CP U

and ErrorAbs
Mem

, for all
the applications are low, below 1.7W. Additionally, these mean power absolute
errors are below the CPU and memory power model errors (4.4W and 3.7W,
respectively). It should be noted that the energy estimation module could be
replaced with a more precise CPU and memory power models. As a consequence,
the energy estimation framework would still be valid and the energy estimation
errors would be lower.

Overall, the total execution time error (absolute value of the di�erence
between the total execution time of the original application and the estimated

73

“output” — 2020/12/1 — 14:36 — page 74 — #99

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

Table 4.5: Evaluation of the fast energy estimation framework. Sequential scenario

Apps ErrorCP U

(%)
ErrorAbsCP U

(W)
ErrorMem

(%)
ErrorAbsMem

(W)
ErrorT ime

(%)
NAS BT-B 14.9 1.08 9.9 0.61 1.6
NAS BT-D 14.0 0.50 14.3 0.51 7.0
NAS SP-B 2.7 0.12 3.8 0.03 3.8
NAS SP-D 2.9 0.30 4.4 0.13 6.0
Linpack1 13.1 1.30 36.5 0.71 27.9
Linpack2 16.4 0.81 31.8 1.65 4.8
Dgemm1 5.4 0.20 1.3 0.17 2.7
Dgemm2 1.1 0.04 1.1 0.04 1.6
Stream1 13.5 0.01 11.4 0.12 13.2
Stream2 0.2 0.01 0.1 0.02 0.3

Apps ErrorInst

(%)
CRfr Tfr (s) Tsig (s) Exec.

Paths
NAS BT-B 1.0 10.1 60.3 5.6 17
NAS BT-D 0.1 100.4 547.2 490.6 17
NAS SP-B 0.2 10.9 42.0 4.8 9
NAS SP-D 0.5 96.4 403.9 365.1 9
Linpack1 1.8 33.4 42.5 20.8 5
Linpack2 2.6 13.8 35.5 13.7 5
Dgemm1 0.6 53.9 31.9 15.7 1
Dgemm2 0.1 191.2 216.6 199.5 1
Stream1 0.4 30.9 48.2 32.1 1
Stream2 0.1 54.4 282.7 265.9 1

total execution time obtained from the framework), Error
T ime

, is below 14%,
except for the application Linpack1 with an error equal to 27.9%. In case of this
application, the memory energy estimation error (36.5%) comes from a high total
execution time error (27.9% shorter than the original execution of the
application). For the CPU energy estimation error (13.1%) the high mean power
absolute error (1.30W over the power value of the original execution of the
application) compensate the high total execution time error. The application
Linpack2 also has a high memory energy estimation error with a value equal to
31.9%. In this case, the error is originated from a high mean memory power
absolute error (1.65W below the power value of the original execution of the
application).

Table 4.5 shows the relative errors of the executed instructions estimation for
all the applications (Error

Inst

(%)). All the estimation errors are below 3% with
Linpack2 presenting the maximum estimation error (2.6%). This means that the
estimation of executed instructions process is highly accurate taking into account
the we estimate the executed instructions via a static profiling and, therefore, we
avoid to execute the whole original application.

The Compression Ratio values for all the energy estimations are presented

74

“output” — 2020/12/1 — 14:36 — page 75 — #100

4.4. RESULTS

in Table 4.5. The lowest value of CR
fr

comes from the application BT-B and
is equal to 10.1. Nonetheless, this means that the energy estimated using the
framework was obtained with an execution 10.1 times faster than executing the
whole application. The application Dgemm2 has the highest CR

fr

value with
191.2.

In addition, Table 4.5 presents the execution time of the whole framework
(T

fr

) and the execution time of the application signature (T
sig

) (this value is
included in T

fr

). For example, in case of BT-B the framework spends 54.7s
(60.3s-5.6s) in all the modules (Call Graph Set, Application Signature,
Estimation of Executed Instructions, Application Profile Reconstruction and
Energy Estimation) and only 5.6s executing the application signature.

Finally, Table 4.5 shows all the independent execution paths that form the
application signature for each application. The application BT presents the
highest number of independent execution paths with 17 paths. In the case of
Dgemm and Stream there is only one independent execution path and it
corresponds to the main function.

4.4.1.3.2 Energy Estimation for the Multi-Threaded Scenario

Figure 4.9a and Fig. 4.9b show the relative energy estimation error for di�erent
multi-threaded cases (from 2 to 12 threads) for the OpenMP version of the NAS
Parallel applications BT and SP. We compare the energy estimation of the multi-
threaded scenario using the fast energy estimation framework with the energy
extracted from the real executions of the di�erent multi-threaded cases. Almost
all the energy estimation errors are below 20% for the CPU and memory energy
estimation. The application BT presents the highest energy estimation errors
around 5 and 6 threads for both CPU and memory energy estimations. The RMS
of the CPU energy estimation errors is equal to 11.4% and for the memory is equal
to 12.8%. Figure 4.9c and Fig. 4.9d show the mean power absolute errors for both
CPU and memory. All the error values, for both CPU and memory, are below
4.0W. Additionally, all the error values are below the CPU and memory power
model errors, 4.4W and 3.7W, respectively.

The CR values are presented in Fig. 4.10a and 4.10b. For the applications
BT-D and SP-D the overall CR values are over 15. This indicates that the CPU
and Energy estimation is calculated 15 times faster than executing the original
multi-threaded application. The applications BT-B and SP-B present lower CR
values, as shown in Fig 4.10b. since these applications are shorter in terms of
execution time to BT-D and SP-D. The overall CR values are over 2, indicating
that the energy estimation for these applications is achieved at least twice as fast
as executing the original application.

75

“output” — 2020/12/1 — 14:36 — page 76 — #101

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

2 3 4 5 6 7 8 9 10 11 12

Threads

0

10

20

E
n
e
rg

y
e
rr

o
r

(%
)

NAS BT-B
NAS BT-D

NAS SP-B
NAS SP-D

(a) CPU energy error (%) for the parallel scenario

2 3 4 5 6 7 8 9 10 11 12

Threads

0

10

20

30

E
n
e
rg

y
e
rr

o
r

(%
)

NAS BT-B
NAS BT-D

NAS SP-B
NAS SP-D

(b) Memory energy error (%) for the parallel scenario

2 3 4 5 6 7 8 9 10 11 12

Threads

0

2

4

A
b
so

lu
te

 e
rr

o
r

(W
)

NAS BT-B
NAS BT-D

NAS SP-B
NAS SP-D

(c) CPU absolute error (W) for the parallel scenario

2 3 4 5 6 7 8 9 10 11 12

Threads

0

1

2

3

A
b
so

lu
te

 e
rr

o
r

(W
)

NAS BT-B
NAS BT-D

NAS SP-B
NAS SP-D

(d) Memory absolute error (W) for the parallel scenario

Figure 4.9: Energy and absolute errors for the parallel scenario

76

“output” — 2020/12/1 — 14:36 — page 77 — #102

4.4. RESULTS

2 3 4 5 6 7 8 9 10 11 12

Threads

5

15

25

35
C

o
m

p
re

ss
io

n
 R

a
tio NAS BT-D NAS SP-D

(a) Compression Ratio for the parallel scenario (Class D)

2 3 4 5 6 7 8 9 10 11 12

Threads

0

2

4

6

C
o
m

p
re

ss
io

n
 R

a
tio NAS BT-B NAS SP-B

(b) Compression Ratio for the parallel scenario (Class B)

Figure 4.10: Compression Ratio for the parallel scenario

4.4.2 Server Power Modeling
In this section we present the results obtained for the overall server power model
and for the power prediction of co-assigned tasks obtained by following the process
in Fig. 4.6. We compare the GE technique against a classical modeling approach
using PCA analysis. The main advantage of the GE technique is the automatic
feature selection, as opposed to the classical approach where the feature selection
is not done in an automatic way.

Table 4.6: RMSE and MAE for training and test set in classical and grammatical
evolution models

Training set Test set
RMSE (W) MAE (W) RMSE (W) MAE (W)

GE Classical GE Classical GE Classical GE Classical
Overall Power (OP) 7.15 8.75 5.56 7.20 7.40 10.90 5.82 7.68
OP of co-allocated
applications

8.06 13.15 6.13 10.46 9.52 12.64 7.48 9.25

OP of co-allocated
applications (2vs1)

- - - - 7.77 8.76 6.26 6.92

OP of co-allocated
applications (4vs2)

- - - - 12.86 15.91 10.14 12.50

77

“output” — 2020/12/1 — 14:36 — page 78 — #103

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

4.4.2.1 Overall Server Power Model

The first row of Table 4.6 shows the RMSE and MAE of the overall server power
model without task co-allocation, for both the GE and classical models. We
observe that the GE technique has a MAE of 5.82W and a RMSE of 7.40W for
the test set, improving by 32.11% the RMSE value with respect to the classical
approach.

Figure 4.11 shows the value of the RMSE of the overall server power model
for each frequency and copy/thread configuration. For instance, the RMSE value
of the test set when the frequency is 1300MHz and we have one copy/thread is
around 8W. The RMSE value decreases when the frequency increases, for 1, 2, 3
and 6 copies/threads configuration. This means that overall server power model
is more accurate for higher frequencies than for lower frequencies. This can be
explained by the fact that lower CPU frequencies are related to lower power values
which are close to the overall idle power value. At overall idle power values the
quantization error of P

total

is more noticeable, thus obtaining a lower accuracy for
lower CPU frequencies. Again, higher frequencies increase the power consumption
of applications, increasing the accuracy of our model. As the main usage of this
modeling would be to estimate if a workload exceeds a certain cap, obtaining higher
errors at low power values is not an important limitation. We see that accuracy
is lower in the case of 12 copies/threads. This is mainly caused by the impact
of resource contention, which is very extreme in these cases, as we are assigning
highly CPU and memory bounded applications to all HW threads in the system.

However, even in these adverse conditions our model is able to obtain errors
below 10%. Another interesting case is the 2001MHz frequency (i.e. the Turbo
Boost frequency, that corresponds to 2400MHz), where the RMSE rises as the
number of copies/threads increases. This is caused both by resource contention
and due to the underfitting of the model. In this sense, for the 2001MHz
frequency we have less samples in our training sets compared to other frequencies
(due to applications running faster and finishing early). Moreover, as the there is
an important gap (400MHz) between the 2000MHz and the 2001MHz frequency,
instead of 100MHz, our models tend to overfit lower frequencies, obtaining less
accuracy for the 2001MHz. This issue is inherent to any regression technique
that tries to minimize the RMSE across samples. We observe the same behavior
for the classical modeling approach, but the GE techniques improve the error
obtained.

78

“output” — 2020/12/1 — 14:36 — page 79 — #104

4.4. RESULTS

1300 1400 1500 1600 1700 1800 1900 2000 2001
0

2

4

6

8

10

12

14

16

Frequency(MHz)

R
M

S
E

(W
)

1 2 3 6 12 − copies/threads

Figure 4.11: RMSE of the overall server power model for each frequency configuration
(Test set)

4.4.2.2 Overall Power of Co-assigned Applications

The third row of the Table 4.6 shows the RMSE and MAE in overall server power
when two tasks are running at the same time in the server. As expected, the GE
model outperforms the classical approach, with a MAE of 7.48W and a RMSE
of 9.52W for the test set. Fig. 4.12 shows the prediction of the overall, dynamic
CPU and memory power for the co-allocation scenario. We can see that both the
GE and the classical model are able to predict fairly accurately the overall server
power using HW counters prediction.

The last two rows of the Table 4.6 show the RMSE and MAE for an
asymmetric task co-allocation. In the 2vs1 scenario, we run 2 copies/threads of
one benchmark of the test set together with 1 copy/thread of another benchmark
of the test set. For example, 1 copy of perlbench together with 2 copies of lbm,
and also 2 copies of perlbench with 1 copy of lbm, and so on. In the 4vs2 scenario
the process is identical. There are no training sets for the 2vs1 and 4vs2
scenarios, as the model is robust enough to predict the HW counters for an
asymmetrical scenario and no re-training is needed. The RMSE value for the
2vs1 scenario is fairly low when compared to the 4vs2 scenario. The overall
RMSE values are below 12W when the unsupervised GE model is used, which
represents a 7.3% of the total server power.

The results of the models show errors with enough accuracy to apply
di�erent state-of-the-art policies to reduce the IT power consumption, thus
improving energy e�ciency in data centers. Policies like power-capping or
resource management could benefit from the models obtained in this work.

79

“output” — 2020/12/1 — 14:36 — page 80 — #105

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

300 400 500 600 700 800 900 1000 1100

100

120

140

160

Samples

P
o
w

e
r

(W
)

Real Power GE Model Linear Model

(a) Overall Server Power

300 400 500 600 700 800 900 1000 1100

10

20

30

40

50

Samples

P
o
w

e
r

(W
)

Real Power GE Model Linear Model

(b) Dynamic CPU Power

300 400 500 600 700 800 900 1000 1100
0

10

20

Samples

P
o
w

e
r

(W
)

Real Power GE Model Linear Model

(c) Memory Power

Figure 4.12: Test set samples (subset). Power prediction of co-allocated tasks using
HW counter prediction

4.5 Conclusions

In this chapter, we presented a fast energy estimation framework for large scale
long-running applications. The framework estimates the dynamic CPU and
memory energy of long-running applications through the application signature
without the need to execute the original application completely. We validated
the framework with a representative set of long-running applications. For the
sequential versions of the applications we obtained RMS values of 10.4% and
16.8% for the CPU and memory energy estimation errors, respectively.

In case of the multi-threaded scenario we use a subset of the original set
of applications and obtained RMS values of 11.4% and 12.8% for the CPU and
memory energy estimation errors, respectively. We have measured the speed of the

80

“output” — 2020/12/1 — 14:36 — page 81 — #106

4.5. CONCLUSIONS

energy estimation process with the Compression Ratio parameter. We obtained
Compression Ratios from 10.1 to 191.2, indicating that the energy estimation
framework can estimate the energy 191.2 times faster than executing the whole
original application.

Moreover, we present a model based on Grammatical Evolution (GE)
techniques to predict dynamic CPU and memory power in enterprise servers as a
function of HW counters. Using leakage and fan power models we develop an
overall server power model that is robust enough to predict the power of
co-allocated tasks without the need to train the model under that situation. In
order to predict the power consumption of co-allocated tasks, we develop a
methodology to predict the HW counters of two co-allocated tasks given the HW
counters of the individual tasks. All the models only need to be trained one time
per server.

Furthermore, we can predict the power consumption of a task that was not
previously trained in the models. The proposed models are generated in an
unsupervised way, leveraging the usage of the automatic feature selection and
extraction of GE techniques. Models have been trained and tested using real
traces from a multi-threaded enterprise server, running a wide range of sequential
and parallel applications, under various DVFS setups. Results have been
compared against a classical feature selection and least-squares modeling
approach. The overall RMSE values of the models are below 12W when the
unsupervised GE model is used, which represents a 7.3% of the total server
power.

The results of this chapter were presented in an international journal:

• J. C. Salinas-Hilburg, M. Zapater, J. M. Moya, J. L. Ayala, “Fast energy
estimation framework for long-running applications”, Future generation
computer systems (2021).

Additionally, results of this chapter were also presented in two international
conferences:

• J. C. Salinas-Hilburg, M. Zapater, J. L. Risco Martín, J. M. Moya, J. L.
Ayala, “Unsupervised Power Modeling of Co-Allocated Workloads for Energy
E�ciency in Data Centers”, Design, Automation and Test in Europe (DATE)
(2016).

81

“output” — 2020/12/1 — 14:36 — page 82 — #107

CHAPTER 4. FAST ENERGY ESTIMATION FRAMEWORK

• J. C. Salinas-Hilburg, M. Zapater, J. L. Risco Martín, J. M. Moya, J. L.
Ayala, “Using grammatical evolution techniques to model the dynamic power
consumption of enterprise servers”, International Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS) (2015).

In the next chapter we validate the use of the application signature
for energy-aware task scheduling approaches. We show that is possible with
negligible error to use the information provided by the application signature
to apply energy-aware task scheduling approaches to minimize the energy
consumption in data centers.

82

“output” — 2020/12/1 — 14:36 — page 83 — #108

Chapter 5

Task scheduling with the
application signature

In this chapter we use the information of the application signature, obtained
through the fast energy estimation framework (Chapter 4), to apply di�erent
energy-e�cient task scheduling approaches in order to reduce the makespan of
the original batch, and therefore improve the energy e�ciency in data centers.
As we have previously commented in the Introduction chapter (Chapter 1) the
makespan is defined as the total execution time of the batch of applications
that will run in the data center. Traditionally, the makespan is reduced by
applying an e�cient scheduling process with the information (such as power or
runtime) obtained through a full profiling of the application. This is a time
consuming process and hence, not energy-e�cient. Therefore, the application
signature is used to obtain the information needed by proactive energy-e�cient
scheduling approaches without performing a full profile (or execution) of the
applications. It should be noted that the main goal of this chapter is to show
that the information of the application signature can be used to apply proactive
energy-aware scheduling approaches. Thus, it is not the main goal of this chapter
to propose new or better energy-aware scheduling approaches.

5.1 Task Scheduling with the Application
Signature

Task scheduling techniques to improve energy e�ciency are widely used in today’s
data centers. There are energy-e�cient proactive task scheduling approaches that
require some information of the tasks that will be executed in the data center.
This information can be the execution time or even the power that the tasks

83

“output” — 2020/12/1 — 14:36 — page 84 — #109

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

T1 T2 T3 Tn
Batch

Data Center

S1
S2

Sm

T1 T1 T2 T2
T3 T3 T3 T3
T4 T4 T4 T4 S3

Original Batch
T4 T3 T2 T1Tn

Round-Robin: task allocated in
the same order as they arrived

(a) Round-Robin task scheduling policy

Data Center

S1
S2

Sm

T5 T5 T25 T25
T3 T3 T3 T3
T2 T2 S3

Batch rearranged
T2 T25 T3 T5TnEnergy-Aware

algorithm
Batch: oracle information

(Traditional approach)

T1 T2 T3 Tn

t1
P1

t2
P2

t3
P3

tn
Pn

Batch: App. Signature information
(Our approach)

t'1
P'1

t'2
P'2

t'3
P'3

t'n
P'n Energy-Aware task scheduling approach

(b) Energy-Aware task scheduling approach

Figure 5.1: Comparison between task scheduling approaches: Round-Robin vs Energy-
Aware

will consume during the execution. Traditionally, the previous information can
be obtained through a full profiling of the tasks. Nevertheless, this process is
not feasible in long-running tasks scenarios where the process to gather the tasks
information is not e�cient. A Round-Robin policy is applied when is not possible
to obtain any information of the tasks. Figure 5.1a shows the task allocation of
a batch of T

n

tasks using the Round-Robin policy, where each task is allocated
to an available server in the same order as they arrived. The example shows a
data center with m servers and each server has 4 cores. The first T1 task of the
batch requires 2 cores and is allocated to server S1, similarly task T2 requires 2
cores and since server S1 has enough resources available the task T2 is allocated
there. When a task can not be allocated in a server it goes to a queue and waits
until there is enough resources available to be executed. The Round-Robin policy
is easy to implement, although is not e�cient in terms of energy since the tasks
are not allocated aiming to reduce the makespan or the power consumption of the
servers. In this work we use the Round-Robin policy as a baseline to evaluate the
energy savings of energy-aware task scheduling approaches.

As we have previously mentioned, e�cient proactive task scheduling
approaches can be used to reduce the energy consumption in data centers, for
example by reducing the makespan of the original batch. Figure 5.1b shows that
an energy-aware task scheduling approach can be used to rearranged the original
batch and therefore minimize the makespan. In the example we can see that the
tasks are allocated in a di�erent manner when compared to the Round-Robin
policy. This change in the order of execution of the original batch is the result of
applying an energy-aware algorithm to minimize the makespan of the original

84

“output” — 2020/12/1 — 14:36 — page 85 — #110

5.1. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

batch. The energy-aware algorithm needs information (execution time t
i

of the
mean power consumption P

i

) from the tasks that will be executed. Traditionally,
this information is obtained through a full dynamic profiling of each task. In the
present chapter we call this knowledge as the oracle information of the tasks.
We propose the use of an application signature to leverage or approximate the
oracle information. By executing the application signature we can obtain the
information of execution time tÕ

i

and mean power consumption P Õ
i

without the
need to perform a full profiling of each task of the batch. The oracle information
is our gold-standard and it allows to evaluate the accuracy of the energy savings
when using the information of the application signature. Finally, it is important
to notice that each task scheduling approach performs a static scheduling of the
whole batch. Additionally, each task of the batch is allocated and executed in a
non-preemptive manner.

5.1.1 Using the Application Signature for Energy-Aware
Task Scheduling

Algorithm 2 shows the process of using the application signature information for
energy-aware task scheduling in data centers. The process starts when a batch
formed by n tasks arrives at the data center (2). Each task of the batch is sent to
an available server of the data center using a Round-Robin policy to extract and
execute the application signature and therefore, estimate the execution time and
the mean power (4). The information (execution time and mean power) obtained
from the application signature of each task is saved in a list (5). Furthermore, an
energy-aware task scheduling approach can use the applications signature
information saved in the list to rearrange the batch (changing the order of
execution of each task) aiming to reduce the makespan (7). Finally, the
rearranged batch is executed resulting in a lower makespan than the execution of
the original batch arrange (8). In section 5.2 we will show how an energy-aware
approach can use the tasks information to reduce the energy consumption in
data centers.

5.1.2 Compression Ratio of the Batch

The Compression Ratio of the batch CR
B

measures the acceleration of the
execution time and mean power information extraction of the whole batch using
the application signature. The Compression Ratio is calculated as the ratio of
total execution time or makespan of the original batch using the Round-Robin
approach (T

RR

) to the total execution time of extracting the execution time and

85

“output” — 2020/12/1 — 14:36 — page 86 — #111

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

Algorithm 2 Application Signature for Energy-Aware Task Scheduling
Require: batch of n tasks, set of batches, m servers
1: while set of batches not empty do
2: batch= New batch arrives
3: while batch not empty do
4: [Exec. Time_n, Mean Power_n]=app_signature(task_n,server_m)
5: App. Signature Info List = append values of Exec. Time_n and Mean Power_n
6: end while
7: rearrange_batch=energy_aware_task_scheduling_rearrange(App. Signature Info)
8: allocationæ energy_aware_task_scheduling_execute(rearrange_batch,m servers)
9: end while

mean power with the Application Signature (T
AS

) of the whole batch, as shown
in Eq. 5.1.

CR
B

=T
RR

T
AS

(5.1)

5.2 Task Scheduling Approaches

MILP S10 S1 S2 Sm

T1 T2 T3 Tn
Time = 100

T1 T2 T3 Tn
t1 t2 t3 tn

Data Center

S1
S2

Sm

T2 T2
T3 T3 T3 T3

Batch

(a) MILP

Simulated
Annealing Tn T1 T10 T3 Round

Robin

Batch rearranged

Time = 0

T1 T2 T3 Tn
t1 t2 t3 tn

Data Center

S1
S2

Sm

T3 T3 T3 T3
T10 T10 T1 T1

Batch

(b) Simulated Annealing

Batch rearranged (LTF)

ServersEnergy-Aware Heuristic

T1 T2 T3 Tn

t1
P1

t2
P2

t3
P3

tn
Pn

Data Center
Batch

S1
S2

Sm

T4 T4 T4 T4 S3

T1 T6 T4Tn

t1
P1

t6
P6

t4
P4

tn
Pn

(c) Energy-Aware Heuristic

Figure 5.2: Energy-Aware task scheduling approaches: input, output and task
allocation

In this section we explain the three task scheduling approaches to validate
the use of the application signature. The task scheduling approaches presented

86

“output” — 2020/12/1 — 14:36 — page 87 — #112

5.2. TASK SCHEDULING APPROACHES

rearrange the execution order of the tasks from a batch and allocate the workload
to the servers in order to improve the energy e�ciency in data centers. Three
scheduling approaches were selected and implemented based on: Mixed Integer
Linear Programming, a metaheuristic approach with Simulated Annealing and an
energy-aware heuristic. These scheduling approaches were selected because they
can be e�ciently used with the real (oracle) values of either execution time or
mean power, and this would not be possible without a full dynamic profiling of
the applications.

The goal of the present work is not to outperform existing energy-aware task
scheduling approaches, but to show that with the information provided by the
Application Signature we open the possibility to perform energy optimization in
data centers with scheduling techniques more powerful than applying reactive
heuristics. The three task scheduling approaches cover in great detail di�erent
options of searching the optimal value. The optimum of energy savings is found
with the Mixed Integer Linear Programming approach. This value serves as
reference to evaluate the accuracy of the other approaches (heuristic and
metaheuristics). Finally, the following approaches assume that the number of
copies or threads that each task will execute is a known information.

5.2.1 Mixed Integer Linear Programming Formulation

A mixed integer linear programming (MILP) formulation is presented for the task
scheduling problem of a batch execution in a data center. In the present work the
MILP formulation for the task scheduling of sequential and parallel tasks is based
on the work from Goldman et al. [47]. We use this formulation since is a generic
MILP task scheduling formulation and it solves our task scheduling problem very
e�ciently. The original MILP formulation does not consider that all the resources
of the data center are distributed along di�erent servers. Therefore, we propose
a modification of the original MILP formulation in order to send each task to a
di�erent server. The batch B

MILP

is formed by a number of n independent parallel
tasks T

i

(1 Æ i Æ n). Each task requires c
Ti cores and has an execution time equal

to t
i

. Each parallel task can only be executed in one server S
i

, and there is m

number of servers. Each server has c
server

cores.
Figure 5.2a shows the task scheduling process using the MILP formulation.

The input for the MILP problem is the execution time t
i

of each task T
i

of the
batch B

MILP

. The output for the MILP task scheduling approach is the batch
of tasks with their respective starting time (·

i

) and the assigned server (S
i

) where
the task is going to be executed. For example, at the time instant of 100 the task
T3 should begin its execution. Therefore, the 4 copies or threads (c

T3) of task T3

87

“output” — 2020/12/1 — 14:36 — page 88 — #113

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

are allocated in the server S2. The 2 copies or threads (c
T2) of task T2 were already

running in the server S1 since its starting time is equal to 0. The task T1 needs to
wait until the time instant 500.

The objective of the MILP optimization process is to minimize the makespan
(C) of the whole batch B

MILP

of tasks. The complete MILP formulation is as
follows:

Minimize C

Subject to:

1. ·
j

Ø 0 ’T
j

2. x
kj

, y
kj

œ {0, 1} ’T
j

, T
k

3. z
ji

œ {0, 1} ’T
j

, S
i

4. q
s

i=1 z
ji

= 1 ’T
j

, S
i

5. ·
j

Æ ·
k

+ t
k

+ (3 ≠ x
kj

≠ z
ji

≠ z
ki

)X ’T
j

, T
k

, S
i

6. ·
k

+ t
k

Æ ·
j

+ t
j

+ (3 ≠ x
kj

≠ z
ji

≠ z
ki

)X ’T
j

, T
k

, S
i

7. ·
k

+ t
k

+ d Æ ·
j

+ (2 + y
kj

+ x
kj

≠ z
ji

≠ z
ki

)X ’T
j

, T
k

, S
i

8. ·
j

+ t
j

+ d Æ ·
k

+ t
k

+ (3 ≠ y
kj

+ x
kj

≠ z
ji

≠ z
ki

)X ’T
j

, T
k

, S
i

9. q
n

j=1
j ”=k

c
Tj ◊ x

kj

Æ c
server

≠ c
Tk

’T
k

10. C Ø ·
k

+ t
k

’T
k

Constraint (1) indicates that the starting time (·
i

) of each task must be a
positive number. Constraints (2)-(3) show the decision variables of the MILP
formulation. The decision variables x

kj

and y
kj

indicate the condition when a task
starts the execution before or after another task. The decision variable z

ji

indicates
the condition when a task is running on server S

i

. Constraint (4) guarantees that
each parallel task runs in one server. Constraints (5)-(8) allows to calculate, with
no overlaps, the starting time (·

i

) of each task. The constraint (9) assures the
validity of the whole task scheduling process. This is done by checking that all
the tasks that are concurrently running in each server do not consume more than
c

server

cores. Finally, constraint (10) shows the objective function as given by C =

88

“output” — 2020/12/1 — 14:36 — page 89 — #114

5.2. TASK SCHEDULING APPROACHES

max{·
j

+t
j

}. The value of X is a constant and must follow the rule: X >
q

n

k=1 t
k

.
The constant d is a delay that guarantees the no presence of strict inequalities in
the MILP formulation. The value of d is selected such as: d < min1ÆiÆn

t
i

/2.
As we previously commented the output of the MILP task scheduling approach

is the starting time ·
i

and assigned server S
i

of each task T
i

of the original batch
B

MILP

. The value of the starting time ·
i

of each task is directly obtained at the
end of the MILP calculation. For the assigned server S

i

we use the final state
of the z

ji

decision variable, where each row represent a task T
i

and each column
represent a server S

i

. A value of 1 in a column indicates that the task is assigned
to that server.

5.2.2 Simulated Annealing

A metaheuristic approach is proposed to minimize the makespan (C) of the task
scheduling process based on the Simulated Annealing technique. As opposed to the
MILP technique, the Simulated Annealing process does not guarantee to find the
global optimum whereas is used to find an approximate global optimum in large
search spaces. Furthermore, the Simulated Annealing technique has the advantage,
like other metaheuristics, to be more scalable than the MILP technique. The
Simulated Annealing technique works by modeling the physical process whereby
a solid material is slowly cooled until it reaches a frozen state, which happens at
a minimum system energy [69].

We propose the use of a Simulated Annealing algorithm to rearrange the
tasks T

i

from a batch of n tasks in order to minimize the makespan (C) of the task
scheduling process. Figure 5.2b shows the Simulated Annealing task scheduling
approach. The input for the Simulated Annealing algorithm is the execution time
t
i

of each task of the batch B
SA

. The output is the batch rearranged, where the
tasks from the batch are executed in a di�erent order from the original batch using
a Round-Robin approach. In the example, we can see that after the Simulated
Annealing process is finished the positions for tasks T3, T10 and T1 are di�erent
from the original batch. Each task of the rearranged batch is allocated to the
server using a Round-Robin process. Since task T3 is the first in the batch its 4
copies or threads (c

T3) are allocated in first available server which is server S1. The
2 copies or threads (c

T10) of task T10 are allocated in the server S2, followed by the
2 copies or threads (c

T1) of task T1. Tasks T10 and T1 are allocated in the server
S2 since there is enough available cores for both of them. The rest of the tasks of
the rearranged batch are allocated in the rest of available servers.

The Simulated Annealing algorithm is shown in Algorithm 3. The input of the
algorithm is the original batch B, which has the information of the execution times

89

“output” — 2020/12/1 — 14:36 — page 90 — #115

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

t
i

of each task T
i

. The algorithm starts by setting an initial temperature Temp0.
The temperature variables Temp and Temp0 are defined in the context of the
Simulated Annealing process. They should not be confused with the temperature
values of the servers in the data center. The algorithm has two while loops: i)
the inner while loop ((5)-(15)) rearranges the original batch B

SA

to improve the
makespan C. This is done with the same temperature Temp and a number of n

iterations, and ii) the outer while loop ((2)-(17)) decrease the temperature Temp

value until a number of iterations equal to max_iterations. Inside the inner while
loop a random trial point is generated using the annealing function (6). In this
process the concept of point refers to changes in the tasks T

i

positions from the
batch B

SA

, generating a new rearranged batch B
rearranged

. Next, the algorithm
determines if the new point is better or worse (in terms of minimizing the makespan
C) than the current point with a probability of acceptance P , as shown from lines
(7) to (13). To calculate the makespan C the algorithm uses the objective function
makespan_function taking as input the rearranged batch B

rearranged

. Finally, the
temperature changes according to a function (16). Where, Temp0 is the initial
temperature and k is the iteration number until reanniling.

Algorithm 3 Simulated Annealing Algorithm
Require: batch: B

SA

1: set initial temperature Temp = Temp0
2: while k Æ max_iterations do
3: k=k+1
4: temperature_iteration=0
5: while temperature_iterationÆn do
6: B

rearranged

=annealing_function(B
SA

,Temp)
7: C=makespan_function(B

rearranged

)
8: � = C-C

old

9: if � < 0 then
10: B

SA

=B
rearranged

11: else
12: B

SA

=B
rearranged

with probability P = 1
1+exp(�

T emp)
13: end if
14: temperature_iteration=temperature_iteration+1
15: end while
16: Temp = Temp0 ◊ 0.95k

17: end while

The two important functions of the Simulated Annealing algorithm are the
annealing function and the objective function. The annealing function
(annealing_function) process is shown in Algorithm 4. The function takes as

90

“output” — 2020/12/1 — 14:36 — page 91 — #116

5.2. TASK SCHEDULING APPROACHES

input the batch B
SA

and the temperature Temp. The goal of the function is to
change the tasks T

i

positions within the batch B
SA

. The number of tasks
position changes are proportional to the actual temperature Temp state and are
done in a random manner (random_integer).

Algorithm 4 Annealing Function (annealing_function)
Require: batch: B

SA

, Temp
1: for i=1:Temp do
2: r1=random_integer(1,length(B

SA

))
3: r2=random_integer(1,length(B

SA

))
4: B

tmp

=B
SA

5: B
SA

(r1)=B
tmp

(r2)
6: B

SA

(r2)=B
tmp

(r1)
7: end for

The objective function (makespan_function) returns the makespan C of the
task scheduling process, as shown in Algorithm 5. The input for the objective
function is the batch B

SA

,a matrix with n rows (number of tasks in the batch
B

SA

) and three columns. The first column (B
SA

(i, 1)) is the task T
i

starting time
(or the task position), the second column (B

SA

(i, 2)) is the execution time t
i

of
the task T

i

and the third column (B
SA

(i, 3)) is the number of cores (c
Ti) requested

by the task T
i

. Lines (7) through (37) are the core of the algorithm, where each
task is assigned to a server until the batch is empty. The whole process is stopped
when the batch is empty and all the tasks have completed their execution ((34)-
(36)). The condition in line (8) through (30) guarantees that a task is scheduled
if there are any task in the batch and the task starting time is less or equal than
the makespan C. Then, for each task in the batch a task is assigned to a server
((9)-(29)). Lines (10) through (12) indicates that the task allocation process is
temporarily stopped until the makespan C is equal or greater to the starting time
of the next task on the batch. Lines (13) through (22) shows that a task is assigned
to the first available server (17). The batch is updated by removing the task that
has already been assigned to a server, as shown in lines (23) through (27). Line
(28) shows the update of the starting time for the tasks that are in queue waiting
for execution. Line (31) shows that the makespan C is updated every iteration
and this is the final output of the algorithm.

5.2.3 Energy-Aware Heuristic
As we have previously commented the objective of this chapter is to reduce the
makespan of the batch execution with e�cient task scheduling approaches by using

91

“output” — 2020/12/1 — 14:36 — page 92 — #117

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

Algorithm 5 Objective Function (makespan_function)
Require: Batch: B

SA

1: C=0
2: num_servers=m

3: num_cores=c

server

4: servers=ones(num_servers,num_cores) /*A matrix of ones. Saves the current
temporal state of each core of the server*/

5: used_cores=zeros(num_servers) /*A vector of zeros. Saves the available cores of
each server*/

6: flag=0 /*Flag to label if a task is allocated to a server*/
7: while true do
8: if length(B

SA

)>0 and B

SA

(1, 1) Æ C then
9: for k=1:length(B

SA

) do
10: if B

SA

(k, 1) >C then
11: break
12: end if
13: for i=1:length(servers) do
14: if used_cores(i)+B

SA

(k, 3) Æ num_cores then
15: available_cores=find_empty_cores(servers(i,:)Æ0);
16: for j=1:B

SA

(k, 3) do
17: servers(i,available_cores(j))=B

SA

(k, 2);
18: end for
19: flag=1
20: break
21: end if
22: end for
23: if flag=1 then
24: flag=0
25: B

SA

(k, :)=[]
26: break
27: end if
28: B

SA

(k, 1)=C+k
29: end for
30: end if
31: C=C+1
32: servers=servers-1 /*Reduce in one the current temporal state of each core of each

server*/
33: used_cores=sum(servers>0) /*Update the available cores of each server*/
34: if length(B

SA

)<1 and servers<0==ones(num_servers,num_cores) then
35: break
36: end if
37: end while

92

“output” — 2020/12/1 — 14:36 — page 93 — #118

5.2. TASK SCHEDULING APPROACHES

Algorithm 6 Energy-Aware Heuristic
Require: Batch: B

EA

1: B

LT F

= LTF(B
EA

(:, 1))
2: for i=1:length(B

LT F

) do
3: minEnergy=MAX
4: allocatedServer=NULL
5: for j=1:length(servers) do
6: if servers(j) has enough resources for B

LT F

(i, 3) then
7: energy=estimateEnergy(servers(j),B

LT F

(i, 1),B
LT F

(i, 2))
8: if energy < minEnergy then
9: minEnergy=energy

10: allocatedServer=server(j)
11: end if
12: end if
13: if allocatedServer ”= NULL then
14: allocate B

LT F

(i) to allocatedServer
15: end if
16: end for
17: end for

the application signature. That explains why the execution time information is
used in the MILP and Simulated Annealing approach. In this section, we leverage
the use of an energy-aware heuristic to improve the energy e�ciency in Data
Centers. In this case, we want to introduce a heuristic that is conceived to be used
with the execution time and mean power information to fully take advantage of
the information provided by the application signature. Considering both time and
mean power information is better exploited in heterogeneous scenarios, where we
have di�erent types of servers with di�erent types of power consumption behaviour.

The energy-aware heuristic is based from the work of A. Beloglazov et al. [15].
In that work the authors propose an algorithm to allocate in an energy e�cient
manner virtual machines in a cloud oriented scenario. We adapted their algorithm
to our non-cloud oriented scenario and added an heuristic to sort the original batch
of tasks. Figure 5.2c shows the overall energy-aware heuristic approach for task
scheduling in data centers. The input is the batch B

EA

of tasks T
i

. From the
batch B

EA

we have the information of execution times t
i

and the mean CPU and
memory power (both represented as P

n

) of each task of the batch. As opposed to
the MILP and Simulated Annealing approach the energy-aware heuristic is both
proactive and reactive. The first step of the process is the proactive part of the
approach, where the heuristic called Longest Task First (LTF) is used to sort the
tasks of the original batch in a descending way according to the execution time
t
i

of each task to improve the overall makespan C. This means that the tasks

93

“output” — 2020/12/1 — 14:36 — page 94 — #119

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

with higher execution times t
i

are executed first. In our example the task T4 has a
higher execution time than the rest of the tasks, therefore it will be executed first.
The second step of the process is the reactive part, where the selected task will be
send to the server where the energy consumption is increased the least. Following
our example from Fig. 5.2c the values of mean power P4 and execution time t4
of task T4 are used to estimate the increase of energy in each server of the data
center. The server that shows the minimum energy increase is server S3, thus the
4 copies or threads of task T4 are allocated in S3 of the data center.

The energy-aware heuristic algorithm is shown in Algorithm 6. The input
of the algorithm is the batch B

EA

, a matrix with a row number equal to the
number of tasks and 3 columns. The first column B

EA

(i, 1) is the execution time
t
i

, the second column B
EA

(i, 2) is the values of mean power from both CPU and
memory and the third column B

EA

(i, 3) is the number of cores (c
Ti) requested by

the correspondent task. The first step of the algorithm is to sort the original batch
in a descending way according to the execution time of each task using the LTF
heuristic (1). Then, from line (2) to line (17) each task of the sorted task list is
allocated to a server where the energy is increased the least. If a server has enough
resources for the task selected from the rearranged batch B

LT F

(6) then the energy
of that task running on that server is estimated (7).

To estimate the energy we take into account the current power state of the
server and update the mean dynamic CPU and memory power with the mean
power values from the selected task. As it is explained in the Experimental Setup
section (Section 5.3) we use a data center simulator where the server model defined
is the same as the server model used to derived the power models in Chapter 4,
Section 4.2. Therefore, in practical terms, the mean dynamic CPU and memory
power values from the selected task are added to the P

CP U,dyn

and P
Mem,dyn

of the
Equation 4.15 (Section 4.2.1) to update the server power.

Once the current power state is updated the energy is estimated taking into
account the execution time t

i

of the selected task. The variables minEnergy and
allocatedServer are updated every time a lower energy value is found ((9)-(10)).
The process is repeated for every server that has enough resources ((5)-(16)) and
the selected task is allocated to the server that shows the minimum increase in
energy consumption (14).

94

“output” — 2020/12/1 — 14:36 — page 95 — #120

5.3. EXPERIMENTAL SETUP

5.3 Experimental Setup

5.3.1 Data Center Simulator
A data center simulator is used in order to evaluate the energy savings of each
task scheduling approach when the information of the application signature is
used. The SFIDE data center simulator [96] is a simulator based on discrete
event system modeling (DEVS). The modular architecture of the simulator
allows an easy implementation of the di�erent task scheduling approaches. The
SFIDE simulator was validated against real server and data center traces of the
same type of workload we use in this work. The SFIDE data center simulator is
composed by two main modules: Room and Cooling. The Room module is where
the task allocation and processing takes place. The Cooling module regulates the
temperature of the data center according to a cooling model. In this work we do
not implement a cooling model and therefore to calculate the overall data center
power we assume a fixed Power Usage E�ectiveness (PUE) value. The Room
module is formed by the following modules: Allocator, In Row Cooling Units
(IRC), Rack and Server. The Allocator module takes a batch of tasks and assign
each task to a server. In the present work we implement di�erent Allocator
modules for each task scheduling approaches. The IRC module groups a set of
Racks and each Rack contains a set of Servers. The IRC module computes the
overall status of all the servers from all the racks. For both the Simulated
Annealing and the Energy-Aware heuristic approaches we implemented the
algorithms as an independent modules in the SFIDE data center simulator. The
MILP formulation is implemented using IBM ILOG CPLEX, version 12.8.

5.3.1.1 Server Power Model and Overall Data Center Power

The server model defined in the simulator is the same server, the Decathlete (Intel
S2600GZ), used to build the power models explained in Chapter 4, Section 4.2.
Instead of being formed by 1 SandyBridge-EP processors the server is defined in
the simulator with 2 SandyBridge-EP processor, both with 6 cores and therefore
each server has a total of 12 cores (c

server

). The simulations are done with a fixed
fan speed for all servers equal to 6000 RPM and a fixed ambient temperature value
equal to 22°C.

The SFIDE simulator is able to calculate the overall data center power,
including IT power and cooling power. We established a fixed PUE equal to 1.5
to obtain the overall data center power P

DC

, as shown in Equation 5.2. The
value of P

IT

is the power from all the servers of the data center. The PUE values
for data centers around the world are in the range of 1.1 to more than 1.5 with

95

“output” — 2020/12/1 — 14:36 — page 96 — #121

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

an average PUE value of 1.58 in 2018 [71]. Therefore, a PUE value of 1.5 is a
reasonable value for a current energy-e�cient data center. The simulator outputs
the data center power P

DC

each time there is an event (a task is send to a server,
a task ends its execution, etc.), allowing to obtain a power profile of the overall
data center power consumption. Therefore, the energy consumption of the data
center can be calculated using the data center power profile and the makespan of
the executed batch of tasks.

P
DC

= PUE ◊ P
IT

(5.2)

5.3.2 Simulation Scenarios and Task Batch Composition

We validate our results using two data center scenarios: i) a small scale scenario
formed by 1 rack and 5 servers, which creates a scenario with a total of 60 available
cores; ii) a large scale scenario formed by 5 racks and 10 servers per rack, generating
a total of 600 available cores. To validate the e�ciency of the application signatures
for energy savings we use an heterogeneous set of long-running tasks composed
of: the applications BT and SP from the NAS Parallel suite [11], Stream [88],
Dgemm [83] and Linpack [38] benchmarks. The applications and their respective
application signatures used in the simulations are the same applications/signatures
used to evaluate the energy estimation framework (Chapter 4, Section 4.4.1.3),
using the following criteria to stop the execution of the application signature: 1)
5% of the estimated executed CPU instructions, and 2) a segment division equal
to 10 to detect the stability of the hardware counter profiles. The batch for both
scenarios are generated randomly with sequential (1 Thread) and parallel tasks (2,
4 and 6 threads) from the workload set previously commented. The batch size for
both the small and large scale scenario, are equal to 66 and 900 tasks respectively.

5.4 Results

In this section we present the results of applying the three di�erent task scheduling
approaches using the information from the application signature. We compare the
energy savings against a Round-Robin task scheduling approach (baseline) of the
original task list. Additionally, we evaluate the error of the energy savings values
from the application signature with energy savings values obtained from the oracle
values of task execution times and mean CPU and memory power. The energy
savings are calculated as follows:

96

“output” — 2020/12/1 — 14:36 — page 97 — #122

5.4. RESULTS

Energy Saving (%) = Energy
RoundRobin

≠ Energy
T askSchedApproach

Energy
RoundRobin

◊ 100 (5.3)

Table 5.1: Energy savings results for the small and large scale scenario when compared
to the baseline Round-Robin policy

Small Scale Scenario
Energy Saving (%) Makespan (s)

Oracle Application
Signature Oracle Application

Signature
MILP 19.4 18.3 58467 59090
Metaheuristic 17.7 16.3 59591 62188
Heuristic 17.0 15.5 61548 64117

Large Scale Scenario
Energy Saving (%) Makespan (s)

Oracle Application
Signature Oracle Application

Signature
MILP - - - -
Metaheuristic 13.3 12.5 74119 75815
Heuristic 8.6 8.2 82899 82979

5.4.1 Small Scale Scenario
The small scale scenario consists on 5 servers (60 cores) and a batch of 66 tasks.
Table 5.1 shows the energy savings and makespan of every task scheduling approach
for the small scale scenario when compared to the baseline Round-Robin policy.
The results presented in Table 5.1 are calculated taking into account that the
application signature of all the tasks in the batch is already extracted. This means
that both energy savings and makespan values do not include the energy and
makespan of the application signature calculation process. This is a fair approach
since we are comparing the results against an oracle that extract the information
(execution time and mean power) from a full profiling of the original applications.

The MILP technique o�ers the highest energy savings when compared with
the baseline task scheduling approach (Round-Robin), both for the application
signature and the oracle. The metaheuristic and heuristic energy savings are
below the MILP technique, although presenting energy savings higher than 15%
when compared with the Round-Robin approach. The result is expected since
the MILP technique searches the global optimum while the metaheuristic and
the heuristic find an approximate global optimum. Furthermore, we can see the

97

“output” — 2020/12/1 — 14:36 — page 98 — #123

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

0 1 2 3 4 5 6 7 8

Time (s) 10 4

1

1.5

2

2.5

P
o

w
e

r
(k

W
)

Data Center Power Consumption

Round-Robin
MILP (Oracle)
MILP (App. Signature)

(a) Power profile - MILP

0 1 2 3 4 5 6 7 8

Time (s) 10 4

1

1.5

2

2.5

P
o

w
e

r
(k

W
)

Data Center Power Consumption

Round-Robin
Metaheuristic (Oracle)
Metaheuristic (App. Signature)

(b) Power profile - Metaheuristic

0 1 2 3 4 5 6 7 8

Time (s) 10 4

1

1.5

2

2.5

P
o

w
e

r
(k

W
)

Data Center Power Consumption

Round-Robin
Heuristic (Oracle)
Heuristic (App. Signature)

(c) Power profile - Heuristic

Figure 5.3: Small scale scenario: Power profiles

98

“output” — 2020/12/1 — 14:36 — page 99 — #124

5.4. RESULTS

energy savings values obtained by using the information from the application
signature are close to the energy savings values by using the information of the
original application (oracle). The di�erence of the energy savings between the
values from the application signature and the oracle is below 1.5%. Additionally,
Table 5.1 shows the makespan values for all the task scheduling approaches. As
expected, when using the application signature information, the lowest makespan
value is from the MILP approach with a value equal to 59090 seconds.

Figures 5.3a, 5.3b and 5.3c show the power profile of each task scheduling
approach when compared with the Round-Robin approach. As we can see, the
overall energy savings between all the task scheduling approaches comes from the
makespan optimization since every batch ends before the Round-Robin policy. The
power profiles from each task scheduling approach are di�erent since the tasks are
scheduled in di�erent order. For example, the MILP approach (Fig. 5.3a) shows,
at the beginning of power profile, an average power lower than the metaheuristic
and heuristic approach. The heuristic approach (Fig. 5.3c) shows a power peak at
the beginning of the power profile indicating that this approach is scheduling high
power consuming tasks at the beginning of the batch execution.

Figures 5.4a, 5.4b and 5.4c show the load profile, or the number of used cores,
of each task scheduling approach. In case of the MILP approach, the number
of used cores are between 50 and 60 cores during the whole batch execution and
it almost never gets to a value equal to 60 cores. The metaheuristic approach
shows the opposed behaviour, as shown in Fig. 5.4b. The number of used cores
is equal to 60 cores during almost all the batch execution, therefore all the data
center resources are being used during the execution. In the case of the heuristic
approach (Fig. 5.4c), the number of used cores are close to 60 at the beginning of
the batch execution, it slightly decreases until the end of the execution where the
number of used cores peaks again.

The di�erences between the load profiles reside on the task scheduling process
of each approach. In the output of the MILP approach each task of the batch has
an initial execution time together with a small delay (parameter d of the MILP
formulation) respect of the previous executed task. This explains the noisy form
of the load profile seen in the Fig. 5.4a. As opposed to the MILP approach, the
output of the metaheuristic only rearranges the original batch and then applies a
Round-Robin approach to send the tasks to available servers, the tasks from the
batch do not have the small delay shown in the MILP approach. This leads to a
more stable load profile (Fig. 5.4b), where during almost all the batch execution the
data center is completely loaded because the Allocator (from SFIDE) is assigning
each task to a server once a server is available. The heuristic approach has a similar
stable load profile as the metaheuristic approach, as seen in Fig. 5.4c. In this case,

99

“output” — 2020/12/1 — 14:36 — page 100 — #125

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

0 1 2 3 4 5 6 7 8

Time (s) 10 4

0

20

40

60

U
se

d
 C

o
re

s

Data Center Load

Round-Robin
MILP (Oracle)
MILP (App. Signature)

(a) Data Center Load - MILP

0 1 2 3 4 5 6 7 8

Time (s) 10 4

0

20

40

60

U
se

d
 C

o
re

s

Data Center Load

Round-Robin
Metaheuristic (Oracle)
Metaheuristic (App. Signature)

(b) Data Center Load - Metaheuristic

0 1 2 3 4 5 6 7 8

Time (s) 10 4

0

20

40

60

U
se

d
 C

o
re

s

Data Center Load

Round-Robin
Heuristic (Oracle)
Heuristic (App. Signature)

(c) Data Center Load - Heuristic

Figure 5.4: Small scale scenario: Load profiles

100

“output” — 2020/12/1 — 14:36 — page 101 — #126

5.4. RESULTS

the data center is not completely loaded during the batch execution. The task
scheduling process of the heuristic is allowing tasks with low number of threads
(for example, 1 or 2 threads) get assigned at the same time to di�erent servers not
allowing tasks with high number of threads getting assigned to an available server.
Thus, leaving a number of cores unused during the execution of the batch.

5.4.2 Large Scale Scenario

0 1 2 3 4 5 6 7 8 9

Time (s) 10 4

10

15

20

25

30

P
o

w
e

r
(k

W
)

Data Center Power Consumption

Round-Robin
Metaheuristic (Oracle)
Metaheuristic (App. Signature)

(a) Power profile - Metaheuristic

0 1 2 3 4 5 6 7 8 9

Time (s) 10 4

10

15

20

25

30

P
o

w
e

r
(k

W
)

Data Center Power Consumption

Round-Robin
Heuristic (Oracle)
Heuristic (App. Signature)

(b) Power profile - Heuristic

Figure 5.5: Large scale scenario: Power profiles

The large scale scenario is setup by 50 servers (600 cores) and a batch of 900
tasks. Table 5.1 shows the energy savings and makespan of every task scheduling
approach for the large scale scenario. In this scenario the MILP approach is not
used since is not scalable and the process to find the global optimum would take
too much time. We obtain energy savings higher than 8% when compared with
the Round-Robin task scheduling approach. The metaheuristic approach presents
the highest value of energy saving and is equal to 12.5% when the information of

101

“output” — 2020/12/1 — 14:36 — page 102 — #127

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

the application signature is used. The di�erence of the energy savings between the
values from the application signature and the oracle is below 0.8%.

Moreover, the makespan is shown in Table 5.1 for the metaheuristic and
heuristic approaches. As expected, the metaheuristic present better results than
the heuristic since it can find a closer approximate value to the global optimum,
which is to minimize the makespan C.

Figures 5.5a and 5.5b show the power profile of each task scheduling
approach when compared with the Round-Robin approach for the large scale
scenario. The power profile of the metaheuristic approach shows a stable signal
during the whole execution of the batch, when using the information from both
the oracle and the application signature. The main di�erence is that the batch
execution ends earlier when the information from the oracle is used. The
heuristic task scheduling approach power profiles (Fig. 5.5b) for both the oracle
and the application signature are very similar. Both power profiles show a rise of
the overall data center power around the time 7 ◊ 104 s indicating that a set of
power consuming tasks were waiting to be assigned to available servers.

0 1 2 3 4 5 6 7 8 9

Time (s) 10 4

0

200

400

600

U
se

d
 C

o
re

s

Data Center Load

Round-Robin
Metaheuristic (Oracle)
Metaheuristic (App. Signature)

(a) Data Center Load - Metaheuristic

0 1 2 3 4 5 6 7 8 9

Time (s) 10 4

0

200

400

600

U
se

d
 C

o
re

s

Data Center Load

Round-Robin
Heuristic (Oracle)
Heuristic (App. Signature)

(b) Data Center Load - Heuristic

Figure 5.6: Large scale scenario: Load profiles

102

“output” — 2020/12/1 — 14:36 — page 103 — #128

5.4. RESULTS

The load profiles for both the metaheuristic approach and the heuristic
approach are shown in Figures 5.6a and 5.6b. The loads profiles are similar to
those obtained from the small scale scenario. In the metaheuristic approach the
load profile obtained when using the information from the application signature
is very similar to the load profile when using the information of the oracle. The
load profile from the heuristic task scheduling approach when using the
information of the application signature is slightly di�erent from the oracle, since
the load profile from the oracle shows a more loaded data center until around the
time 4 ◊ 104 s. This indicates the task assigning process when using the
application signature is di�erent from the oracle. Nonetheless, the results show
that using the information of the application signature will result in energy
savings similar to the energy savings obtained when using the oracle information.

5.4.3 Compression Ratio of the Batch

In this section we compare the execution time of the application signature
extraction process against the execution time of the whole batch using the
Round-Robin approach. For the small scale scenario the execution time of the
application signature extraction of the whole batch (66 tasks) takes 1881
seconds, a 2.18% (86187 seconds) of the execution time of the whole batch using
the Round-Robin approach. This leads to a Compression Ratio CR

B

of the
whole batch equal to 45.8, when we compare the execution time of application
signature process to the execution time of the whole batch using the
Round-Robin task scheduling approach. The large scale scenario has similar
results with an execution time of the application signature process equal to 2483
seconds, a 2.51% (98667 seconds) of the execution time of the whole batch using
the Round-Robin task scheduling approach. Resulting in a CR

B

equal to 39.7.
These results show that using the application signature process is viable, when
compared to the Round-Robin approach, since the Compression Ratios have high
values.

5.4.4 Overall Results

Finally, the overall results shows that the information provided by the application
signature allows to apply the di�erent energy-aware task scheduling approaches
with similar results from the oracle information. Furthermore, we can use or
develop many other energy-aware scheduling approaches that uses the information
from the application signature and that were only possible to use with a priori full
dynamic profiling of the applications.

103

“output” — 2020/12/1 — 14:36 — page 104 — #129

CHAPTER 5. TASK SCHEDULING WITH THE APPLICATION SIGNATURE

5.5 Conclusions
In this chapter, we presented the use of an Application Signature for
energy-aware task scheduling approaches. We use the information given by the
Application Signature together with energy-aware task scheduling approaches to
obtain energy savings in data centers in the scenario of large scale long-running
applications. We validate our results by implementing three energy-aware
scheduling approaches based on: Mixed Integer Linear Programming, Simulated
Annealing and an energy-aware heuristic. Additionally, we use a heterogeneous
set of long-running applications with di�erent batch sizes. A simulator was used
to evaluate the results in a small and large scale scenario. The energy savings
from each scheduling approach were obtained by comparing the energy values of
a batch execution against a baseline scheduling approach based on a
Round-Robin policy. The energy savings values obtained with the Application
Signature were compared against the energy savings obtained through the real
(oracle) energy values of the applications. The di�erence between the energy
savings obtained with the Application Signature and the oracle values is below
1.5%. Furthermore, we obtained energy savings around 8.2% to 19.4%. Finally,
we obtained Compression Ratios around 39.7 to 45.8.

The results of this chapter were presented in an international journal and it
is currently in review process:

• J. C. Salinas-Hilburg, M. Zapater, J. M. Moya, J. L. Ayala, “Energy-Aware
Task Scheduling in Data Centers using an Application Signature”,
Computers and Electrical Engineering (2020) (Review process).

In the next chapter we present a summary of this work together with
the contributions and results from this PhD. thesis. Additionally, we present
the future lines of research derived from this work.

104

“output” — 2020/12/1 — 14:36 — page 105 — #130

Chapter 6

Conclusions and Future Work

This PhD. thesis has presented a solution to perform the fast energy estimation
of long-running applications through an application signature. In this chapter we
present the summary and conclusions of this work highlighting the contributions
and the obtained results. We conclude this chapter with a description of the future
work derived from this research.

6.1 Summary and Conclusions

As previously commented in the introduction of this PhD thesis (Chapter 1),
data centers are huge power consumers and despite the energy-e�cient solutions
adopted in the last decade there is still a need to improve energy e�ciency in
data centers during the following years. The computing or IT component of the
data centers is the major contributor to the overall data center power and
therefore, there are proactive energy aware approaches focused on reducing the
energy consumption of the IT component in data centers. These proactive
approaches are usually represented by energy-e�cient task scheduling
approaches, where the jobs or tasks are allocated e�ciently with the aim to
reduce the overall energy consumption of the data center.

These energy-e�cient task scheduling approaches assume the existence of a
full dynamic power profiling obtained through a complete execution of the
applications. This is not feasible in scenarios of time consuming long-running
applications. Therefore, in this work we present a solution to estimate the energy
of the applications without the need to execute the application completely by
using an application signature. The application signature is a short version, in
terms of execution time, of the original application. With the application
signature we are able to estimate the energy in a fast way and also, apply

105

“output” — 2020/12/1 — 14:36 — page 106 — #131

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

proactive energy-aware task scheduling approaches in an e�cient manner.
The summary of the contributions derived from this PhD thesis are the

following:

• In Chapter 2 we presented the application signature as a proof of concept:

– We explained the concept of application signature and how is used to
make a fast energy estimation for sequential and multi-threaded
applications.

– In the case of sequential applications we obtained CPU and memory
energy estimation errors below 8.0% when the estimated energy
(through the application signature) is compared against the energy of
the complete execution of the application. For the multi-threaded
scenario we obtain a RMSE equal to 12.7% when we compare the
estimated energy against the consumed energy from the whole
multi-threaded execution of the application. We obtained an average
value of almost 9.8 for the Compression Ratio of all the benchmarks
used in the experiments. This indicates that using the application
signature we are able to make an energy estimation almost 10 times
faster than the complete execution of the application.

• The fast energy estimation framework is presented in Chapter 4:

– We described the fast energy estimation framework for long-running
applications that uses the application signature to estimate the energy
without the need to execute the whole application.

– The framework estimates the energy in an automatic way. The design
of the framework is modular, allowing to change the internal
functionality of each module, due to preferences or technical
availability, without a�ecting the functionality of the whole
framework. Moreover, the framework is able to work for any compiled
language.

– The accuracy of the fast energy estimation framework is validated
with a set of sequential and multi-threaded long-running applications.
For the sequential version we obtained an RMS of 10.4% for the CPU
energy estimation error and an RMS of 16.8% for the memory energy
estimation error. In case of the multi-threaded scenario we used a
subset of applications from the sequential version set, achieving an
RMS of 11.4% for the CPU energy estimation error and a RMS of

106

“output” — 2020/12/1 — 14:36 — page 107 — #132

6.1. SUMMARY AND CONCLUSIONS

12.8% for the memory energy estimation error. We obtained
Compression Ratios in the range from 10.1 to 191.2.

– In this chapter we presented a methodology to obtain the overall
server power model. We model the dynamic CPU and memory power
as a function of the hardware counters using Grammatical Evolution
techniques. We obtained absolute power errors equal to 4.4W and
3.7W, for the dynamic CPU and memory power model respectively.
Our models were trained and tested using a wide range of sequential
and multi-threaded applications, under various DVFS setups,
improving error by a 32% when compared to a traditional approach.

– We showed that our model is robust enough to predict the power
consumption of two di�erent tasks running co-assigned in the same
server, given the hardware counters of the overall server. Additionally,
we developed a methodology to, given the hardware counters of the
individual tasks, obtain the hardware counters when both applications
are co-allocated (without the need to execute the co-allocated
applications).

• In Chapter 5 we used the application signature to apply energy-aware task
scheduling approaches:

– We validated the usefulness of the energy estimation information
obtained through the execution of the application signature by
applying di�erent energy-aware task scheduling approaches. The
results obtained through the energy estimation values (from the
application signature) are compared against the real energy values
(oracle).

– We used three di�erent energy-aware task scheduling approaches:

i) An optimal approach using a Mixed Integer Linear Programming
(MILP) technique.

ii) An energy-e�cient heuristic that uses a Longest Task First (LTF)
algorithm together with an energy-aware task allocation based on
the current servers consumption in the data center.

iii) We proposed an implementation of an energy-aware metaheuristic
using a Simulated Annealing technique.

The overall data center energy consumption from each task scheduling
approach is compared against a Round-Robin (RR) approach.

107

“output” — 2020/12/1 — 14:36 — page 108 — #133

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

– We obtained energy savings from 8% to 19%, and more importantly
the energy savings obtained with the application signature
information are similar as the values obtained with the oracle
information, obtaining a di�erence in the energy savings below 1.5%.

6.2 Future Work
As we have commented earlier the main goal of this PhD. thesis is to estimate
the energy of long-running applications avoiding a complete execution. We
presented and developed an application signature as a solution to this problem
and we limited our experiments to a non-cloud environment (among other
considerations). Therefore, taking into account the results obtained in this
research work we present di�erent lines of future research works.

6.2.1 Enhance and Broadening of the Scope of the Fast
Energy Estimation Framework

As we can see in Chapter 4 the fast energy estimation framework has its limitations.
We propose to use the LLVM compiler to address these limitations. The goal of this
future work is to implement the fast energy estimation framework using the LLVM
compiler. The modular nature of our fast energy estimation framework makes easy
to implement each module in the LLVM compiler and this way we can leverage
limitations as data-dependency or to make our framework code independent.

The energy estimation framework can be enhanced to be parametric with
respect to the input data of the application, allowing to extract/build the
application signature only once. In order to do this, a study must be done to see
how to parameterize the input data of the applications in a homogeneous way,
since each application can have di�erent types of input data.

Moreover, the framework can be used in a similar way as other approaches
presented in the related work (Chapter 3). In those approaches the full execution
information of the application in a machine A is used to estimate the performance
in a machine B. Therefore, the application signature can be extracted in a machine
A and then executed in a machine B to estimate performance and power in that
target machine without the need to extract/build the application signature again.

Finally, although in this thesis there is no work done in cooling optimization
the energy estimation framework using the application signature can be used to
optimize the cooling part of the data center. For example, the fan speed of each
server can be set to an optimal value by knowing beforehand the mean power
(obtained through the application signature) of the applications that will run.

108

“output” — 2020/12/1 — 14:36 — page 109 — #134

6.2. FUTURE WORK

Furthermore, this can be co-optimized together with an energy e�cient task
scheduling approach by allocating tasks in the servers with the objective to
reduce the energy consumption of all the servers and the cooling (fan speed) part
of the data center.

6.2.2 Supporting a Cloud Scenario
As we have previously mentioned our present work is focused on a non-cloud
scenario. The work by Arroba et al. [7] presents a consolidation of virtual
machines in an energy-e�cient way. The application signature could improve
that methodology by providing the information of energy of the applications
before they are executed in the cloud. Moreover, there is an increasing use of
scientific applications in cloud scenarios [94] [50]. This type of applications can
be presented in cloud systems such as Google Cloud [98], Amazon Elastic
Compute Cloud (Amazon EC2) [42] and in Microsoft Azure [53]. These scientific
long-running applications rely on the use of machine learning or deep learning
techniques that usually are time consuming. Therefore, a natural line of research
is to adapt our work to be useful in cloud scenarios whereheterogeneous systems
(CPU/GPU/MIC) are found.

6.2.3 Supporting Anomaly Detection and Prediction
The work by Tuncer et al. [119] describe a system to detect and predict
anomalies in HPC scenarios. The system uses machine learning techniques to
perform a diagnosis and takes as input di�erent metrics from the execution of the
applications. Moreover, the system needs to be trained in an o�ine manner
resulting in a time consuming process if the applications are long-running. The
application signature can leverage this problem by performing the training in a
fast way since there is no need to execute the whole application. Additionally, we
can use the application signature to predict possible anomalies before launching
the original application.

109

“output” — 2020/12/1 — 14:36 — page 110 — #135

“output” — 2020/12/1 — 14:36 — page 111 — #136

Bibliography

[1] Aikema, D., Kiddle, C., and Simmonds, R. Energy-cost-aware
scheduling of hpc workloads. In 2011 IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks (2011), IEEE, pp. 1–
7.

[2] Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini,
D. Cost analysis of object-oriented bytecode programs. Theoretical
Computer Science 413, 1 (2012), 142–159.

[3] Albert, E., et al. COSTA: Design and Implementation of a Cost and
Termination Analyzer for Java Bytecode. In Int. Symp. of Formal Methods
for Components and Objects (FMCO) (2007), pp. 113–132.

[4] Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S.,
Henzinger, M. R., Leung, S.-T. A., Sites, R. L., Vandevoorde,
M. T., Waldspurger, C. A., and Weihl, W. E. Continuous profiling:
Where have all the cycles gone? ACM Transactions on Computer Systems
(TOCS) 15, 4 (1997), 357–390.

[5] Andrae, A. Total consumer power consumption forecast. Nordic Digital
Business Summit 10 (2017).

[6] Arjona Aroca, J., Chatzipapas, A., Fernández Anta, A., and
Mancuso, V. A measurement-based analysis of the energy consumption
of data center servers. In Proceedings of the 5th international conference on
Future energy systems (2014), pp. 63–74.

[7] Arroba, P., Moya, J. M., Ayala, J. L., and Buyya, R.
Dynamic voltage and frequency scaling-aware dynamic consolidation of
virtual machines for energy e�cient cloud data centers. Concurrency and
Computation: Practice and Experience 29, 10 (2017), e4067.

[8] Auweter, A., Bode, A., Brehm, M., Brochard, L., Hammer, N.,
Huber, H., Panda, R., Thomas, F., and Wilde, T. A case study
of energy aware scheduling on supermuc. In International Supercomputing
Conference (2014), Springer, pp. 394–409.

[9] Avgerinou, M., Bertoldi, P., and Castellazzi, L. Trends in data
centre energy consumption under the european code of conduct for data
centre energy e�ciency. Energies 10, 10 (2017), 1470.

111

“output” — 2020/12/1 — 14:36 — page 112 — #137

BIBLIOGRAPHY

[10] Ayoub, R., and et al. Temperature aware dynamic workload scheduling
in multisocket cpu servers. IEEE TCAD (2011).

[11] Bailey, D., et al. The Nas Parallel Benchmarks. The International
Journal of Supercomputing Applications 5, 3 (1991), 63–73.

[12] Barroso, L. A., Clidaras, J., and Hölzle, U. The datacenter as
a computer: An introduction to the design of warehouse-scale machines.
Synthesis lectures on computer architecture 8, 3 (2013), 1–154.

[13] Bates, N., Ghatikar, G., Abdulla, G., Koenig, G. A.,
Bhalachandra, S., Sheikhalishahi, M., Patki, T., Rountree,
B., and Poole, S. Electrical grid and supercomputing centers: An
investigative analysis of emerging opportunities and challenges. Informatik-
Spektrum 38, 2 (2015), 111–127.

[14] Belkhir, L., and Elmeligi, A. Assessing ict global emissions footprint:
Trends to 2040 & recommendations. Journal of cleaner production 177
(2018), 448–463.

[15] Beloglazov, A., Abawajy, J., and Buyya, R. Energy-aware resource
allocation heuristics for e�cient management of data centers for cloud
computing. Future generation computer systems 28, 5 (2012), 755–768.

[16] Bienia, C. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[17] Bienia, C., and et al. The PARSEC benchmark suite: characterization
and architectural implications. In PACT (2008), pp. 72–81.

[18] Bohra, A., and et al. Vmeter: Power modelling for virtualized clouds.
In IEEE (IPDPSW) (2010), pp. 1–8.

[19] Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., and
Benini, L. Scheduling-based power capping in high performance computing
systems. Sustainable Computing: Informatics and Systems 19 (2018), 1–13.

[20] Canillas, J. M., Wong, A., Rexachs, D., and Luque, E. Predicting
parallel applications performance using signatures: The workload e�ect. In
2011 9th IEEE/ACS International Conference on Computer Systems and
Applications (AICCSA) (2011), IEEE, pp. 299–300.

[21] Casas, M., Badia, R. M., and Labarta, J. Automatic phase detection
and structure extraction of mpi applications. The International Journal of
High Performance Computing Applications 24, 3 (2010), 335–360.

[22] Casas, M., Servat, H., Badia, R. M., and Labarta, J. Extracting
the optimal sampling frequency of applications using spectral analysis.
Concurrency and Computation: Practice and Experience 24, 3 (2012), 237–
259.

112

“output” — 2020/12/1 — 14:36 — page 113 — #138

BIBLIOGRAPHY

[23] Caubet, J., Gimenez, J., Labarta, J., DeRose, L., and Vetter,
J. A dynamic tracing mechanism for performance analysis of openmp
applications. In International Workshop on OpenMP Applications and Tools
(2001), Springer, pp. 53–67.

[24] Chen, H., and et al. Dynamic server power capping for enabling data
center participation in power markets. In ICCAD (2013), pp. 122–129.

[25] Chen, H., Hsu, W.-C., Lu, J., Yew, P.-C., and Chen, D.-Y.
Dynamic trace selection using performance monitoring hardware sampling.
In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization (2003), pp. 79–90.

[26] Chetsa, G. L. T., Lefevre, L., Pierson, J.-M., Stolf, P., and
Da Costa, G. A user friendly phase detection methodology for hpc systems’
analysis. In 2013 IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical
and Social Computing (2013), IEEE, pp. 118–125.

[27] Chetsa, G. T., Lefèvre, L., Pierson, J.-M., Stolf, P., and
Da Costa, G. Exploiting performance counters to predict and improve
energy performance of hpc systems. Future Generation Computer Systems
36 (2014), 287–298.

[28] Cho, C.-B., and Li, T. Using wavelet domain workload execution
characteristics to improve accuracy, scalability and robustness in program
phase analysis. In 2007 IEEE International Symposium on Performance
Analysis of Systems & Software (2007), IEEE, pp. 136–145.

[29] Cho, H. K., Moseley, T., Hank, R., Bruening, D., and Mahlke,
S. Instant profiling: Instrumentation sampling for profiling datacenter
applications. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (2013), IEEE,
pp. 1–10.

[30] Choi, J., et al. Power consumption prediction and power-aware packing
in consolidated environments. IEEE Trans. on Computers (2010).

[31] Chrétien, S., Nicod, J.-M., Philippe, L., Rehn-Sonigo, V.,
and Toch, L. Job scheduling using successive linear programming
approximations of a sparse model. In European Conference on Parallel
Processing (2012), Springer, pp. 116–127.

[32] Cochran, R., Hankendi, C., Coskun, A., and Reda, S. Identifying
the optimal energy-e�cient operating points of parallel workloads. In 2011
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
(2011), IEEE, pp. 608–615.

[33] Combs, J., Nazor, J., Thysell, R., Santiago, F., Hardwick, M.,
Olson, L., Rivoire, S., Hsu, C.-H., and Poole, S. W. Power

113

“output” — 2020/12/1 — 14:36 — page 114 — #139

BIBLIOGRAPHY

signatures of high-performance computing workloads. In 2014 Energy
E�cient Supercomputing Workshop (2014), IEEE, pp. 70–78.

[34] Curtis-Maury, M., Blagojevic, F., Antonopoulos, C. D., and
Nikolopoulos, D. S. Prediction-based power-performance adaptation
of multithreaded scientific codes. IEEE Transactions on Parallel and
Distributed Systems 19, 10 (2008), 1396–1410.

[35] David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and
Le, C. Rapl: Memory power estimation and capping. In 2010 ACM/IEEE
International Symposium on Low-Power Electronics and Design (ISLPED)
(2010), pp. 189–194.

[36] Dhiman, G., and et al. A system for online power prediction in
virtualized environments using gaussian mixture models. In DAC (2010).

[37] Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva,
J.-T., Jalby, W., et al. Maqao: Modular assembler quality analyzer and
optimizer for itanium 2. In The 4th Workshop on EPIC architectures and
compiler technology, San Jose (2005), vol. 200.

[38] Dongarra, J. The linpack benchmark: An explanation. In Proceedings
of the 1st International Conference on Supercomputing (London, UK, UK,
1988), Springer-Verlag, pp. 456–474.

[39] Escobar, R., and Boppana, R. Performance prediction of parallel
cpu and gpu applications using fractals. In 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS) (2018),
IEEE, pp. 610–617.

[40] Escobar, R., and Boppana, R. V. Performance prediction of
parallel applications based on small-scale executions. In 2016 IEEE 23rd
International Conference on High Performance Computing (HiPC) (2016),
IEEE, pp. 362–371.

[41] Etinski, M., Corbalan, J., Labarta, J., and Valero, M. Parallel
job scheduling for power constrained hpc systems. Parallel Computing 38,
12 (2012), 615–630.

[42] Evangelinos, C., and Hill, C. Cloud computing for parallel scientific
hpc applications: Feasibility of running coupled atmosphere-ocean climate
models on amazons ec2. ratio 2, 2.40 (2008), 2–34.

[43] Fan, X., and et al. Power provisioning for a warehouse-sized computer.
In ISCA (New York, NY, USA, 2007), pp. 13–23.

[44] Fidanova, S. Simulated annealing for grid scheduling problem. In
IEEE John Vincent Atanaso� 2006 International Symposium on Modern
Computing (JVA’06) (2006), IEEE, pp. 41–45.

114

“output” — 2020/12/1 — 14:36 — page 115 — #140

BIBLIOGRAPHY

[45] García, P. A. Proactive power and thermal aware optimizations for
energy-e�cient cloud computing. 2017.

[46] Garefalakis, P., Karanasos, K., Pietzuch, P., Suresh, A., and
Rao, S. Medea: scheduling of long running applications in shared
production clusters. In Proceedings of the Thirteenth EuroSys Conference
(2018), pp. 1–13.

[47] Goldman, A., and Ngoko, Y. A milp approach to schedule parallel
independent tasks. In 2008 International Symposium on Parallel and
Distributed Computing (2008), IEEE, pp. 115–122.

[48] Govindan, S., Choi, J., Urgaonkar, B., Sivasubramaniam, A.,
and Baldini, A. Statistical profiling-based techniques for e�ective power
provisioning in data centers. In Proceedings of the 4th ACM European
conference on Computer systems (2009), pp. 317–330.

[49] Grech, N., Georgiou, K., Pallister, J., Kerrison, S., Morse,
J., and Eder, K. Static analysis of energy consumption for llvm ir
programs. In Proceedings of the 18th International Workshop on Software
and Compilers for Embedded Systems (2015), pp. 12–21.

[50] Guyon, D., Orgerie, A.-C., Morin, C., and Agarwal, D. How much
energy can green hpc cloud users save? In 2017 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP)
(2017), IEEE, pp. 416–420.

[51] Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov,
S., and Dongarra, J. Investigating power capping toward energy-
e�cient scientific applications. Concurrency and Computation: Practice and
Experience 31, 6 (2019), e4485.

[52] Hamerly, G., Perelman, E., Lau, J., and Calder, B. Simpoint
3.0: Faster and more flexible program phase analysis. Journal of Instruction
Level Parallelism 7, 4 (2005), 1–28.

[53] Hassan, H. A., Mohamed, S. A., and Sheta, W. M. Scalability and
communication performance of hpc on azure cloud. Egyptian Informatics
Journal 17, 2 (2016), 175–182.

[54] Henning, J. L. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1–17.

[55] Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P., and Naik,
M. Predicting execution time of computer programs using sparse polynomial
regression. In Advances in neural information processing systems (2010),
pp. 883–891.

[56] Huffmire, T., and Sherwood, T. Wavelet-based phase classification.
In Proceedings of the 15th international conference on Parallel architectures
and compilation techniques (2006), pp. 95–104.

115

“output” — 2020/12/1 — 14:36 — page 116 — #141

BIBLIOGRAPHY

[57] Hussain, S. M., Wahid, A., Shah, M. A., Akhunzada, A., Khan,
F., ul Amin, N., Arshad, S., and Ali, I. Seven pillars to achieve energy
e�ciency in high-performance computing data centers. In Recent Trends and
Advances in Wireless and IoT-enabled Networks. Springer, 2019, pp. 93–105.

[58] Intel. Server Board S2600GZ/GL. Technical Product Specification, 2014
(Revision 2.1).

[59] Isci, C., Buyuktosunoglu, A., Cher, C.-Y., Bose, P., and
Martonosi, M. An analysis of e�cient multi-core global power
management policies: Maximizing performance for a given power
budget. In 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06) (2006), IEEE, pp. 347–358.

[60] Isci, C., Contreras, G., and Martonosi, M. Live, runtime phase
monitoring and prediction on real systems with application to dynamic power
management. In 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06) (2006), IEEE, pp. 359–370.

[61] Isci, C., and Martonosi, M. Identifying program power phase
behavior using power vectors. In 2003 IEEE International Conference on
Communications (Cat. No. 03CH37441) (2003), IEEE, pp. 108–118.

[62] Isci, C., and Martonosi, M. Phase characterization for power:
Evaluating control-flow-based and event-counter-based techniques. In
The Twelfth International Symposium on High-Performance Computer
Architecture, 2006. (2006), IEEE, pp. 121–132.

[63] Jayakumar, A., Murali, P., and Vadhiyar, S. Matching application
signatures for performance predictions using a single execution. In 2015
IEEE International Parallel and Distributed Processing Symposium (2015),
IEEE, pp. 1161–1170.

[64] Kambadur, M., Tang, K., and Kim, M. A. Harmony: Collection
and analysis of parallel block vectors. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA) (2012), IEEE, pp. 452–463.

[65] Kambadur, M., Tang, K., and Kim, M. A. Parashares: Finding the
important basic blocks in multithreaded programs. In European Conference
on Parallel Processing (2014), Springer, pp. 75–86.

[66] Kansal, A., and Zhao, F. Fine-grained energy profiling for power-aware
application design. ACM SIGMETRICS Performance Evaluation Review 36,
2 (2008), 26–31.

[67] Kashani, M., and Jahanshahi, M. Using simulated annealing for task
scheduling in distributed systems. Computational Intelligence, Modelling
and Simulation, International Conference on 0 (09 2009), 265–269.

116

“output” — 2020/12/1 — 14:36 — page 117 — #142

BIBLIOGRAPHY

[68] Khoshbakht, S., and Dimopoulos, N. A new approach to detecting
execution phases using performance monitoring counters. In International
Conference on Architecture of Computing Systems (2017), Springer, pp. 85–
96.

[69] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by
simulated annealing. science 220, 4598 (1983), 671–680.

[70] Koomey, J., et al. Growth in data center electricity use 2005 to 2010. A
report by Analytical Press, completed at the request of The New York Times
9, 2011 (2011), 161.

[71] Koronen, C., Åhman, M., and Nilsson, L. J. Data centres in future
european energy systems—energy e�ciency, integration and policy. Energy
E�ciency 13, 1 (2020), 129–144.

[72] Lattner, C., and Adve, V. Llvm: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. (2004), IEEE, pp. 75–86.

[73] Lavielle, M. Using penalized contrasts for the change-point problem.
Signal Processing 85, 8 (Aug. 2005), 1501–1510.

[74] Lee, E. K., Kulkarni, I., Pompili, D., and Parashar, M. Proactive
thermal management in green datacenters. The Journal of Supercomputing
60, 2 (2012), 165–195.

[75] Lee, Y.-H., and Kim, J. Fast and accurate on-line prediction of
performance and power consumption in multicore-based systems. In 2013
12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (2013), IEEE, pp. 1879–1886.

[76] Lei, H., Wang, R., Zhang, T., Liu, Y., and Zha, Y. A multi-objective
co-evolutionary algorithm for energy-e�cient scheduling on a green data
center. Computers & Operations Research 75 (2016), 103–117.

[77] Lewis, A., and et al. Run-time energy consumption estimation based on
workload in server systems. In HotPower (Berkeley, CA, USA, 2008).

[78] Li, J., Ma, X., Singh, K., Schulz, M., de Supinski, B. R., and
McKee, S. A. Machine learning based online performance prediction for
runtime parallelization and task scheduling. In 2009 IEEE international
symposium on performance analysis of systems and software (2009), IEEE,
pp. 89–100.

[79] Liqat, U., BankoviÊ, Z., Lopez-Garcia, P., and Hermenegildo,
M. V. Inferring energy bounds via static program analysis and evolutionary
modeling of basic blocks. In International Symposium on Logic-Based
Program Synthesis and Transformation (2017), Springer, pp. 54–72.

117

“output” — 2020/12/1 — 14:36 — page 118 — #143

BIBLIOGRAPHY

[80] Liqat, U., Georgiou, K., Kerrison, S., López-García, P.,
Gallagher, J. P., Hermenegildo, M. V., and Eder, K. Inferring
parametric energy consumption functions at di�erent software levels: Isa vs.
llvm ir. In International Workshop on Foundational and Practical Aspects of
Resource Analysis (2015), Springer, pp. 81–100.

[81] Llort, G., Gonzalez, J., Servat, H., Gimenez, J., and Labarta,
J. On-line detection of large-scale parallel application’s structure. In 2010
IEEE International Symposium on Parallel Distributed Processing (IPDPS)
(April 2010), pp. 1–10.

[82] Lu, G., Zhang, W., He, H., and Yang, L. T. Performance modeling for
mpi applications with low overhead fine-grained profiling. Future Generation
Computer Systems 90 (2019), 317 – 326.

[83] Luszczek, P. R., Bailey, D. H., Dongarra, J. J., Kepner, J.,
Lucas, R. F., Rabenseifner, R., and Takahashi, D. The hpc
challenge (hpcc) benchmark suite. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing (2006), vol. 213, Citeseer.

[84] Malony, A. D., and Huck, K. A. General hybrid parallel profiling. In
2014 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (2014), IEEE, pp. 204–212.

[85] Mämmelä, O., Majanen, M., Basmadjian, R., De Meer, H.,
Giesler, A., and Homberg, W. Energy-aware job scheduler for high-
performance computing. Computer Science-Research and Development 27,
4 (2012), 265–275.

[86] Marathe, A., Bailey, P. E., Lowenthal, D. K., Rountree,
B., Schulz, M., and de Supinski, B. R. A run-time system for
power-constrained hpc applications. In International conference on high
performance computing (2015), Springer, pp. 394–408.

[87] Masanet, E., Shehabi, A., Lei, N., Smith, S., and Koomey, J.
Recalibrating global data center energy-use estimates. Science 367, 6481
(2020).

[88] McCalpin, J. D. A Survey of Memory Bandwidth and Machine Balance
in Current High Performance Computers, 1995.

[89] Meng, K., and Norris, B. Mira: A framework for static performance
analysis. In Cluster Computing (CLUSTER), 2017 (2017).

[90] Mera, E., López-García, P., Puebla, G., Carro, M., and
Hermenegildo, M. V. Combining static analysis and profiling for
estimating execution times. In International Symposium on Practical Aspects
of Declarative Languages (2007), Springer, pp. 140–154.

[91] Mobius, C., and et al. Power consumption estimation models for
processors, virtual machines, and servers. IEEE TPDS (2014).

118

“output” — 2020/12/1 — 14:36 — page 119 — #144

BIBLIOGRAPHY

[92] Mukhanov, L., Nikolopoulos, D. S., and de Supinski, B. R. Alea:
Fine-grain energy profiling with basic block sampling. In 2015 International
Conference on Parallel Architecture and Compilation (PACT) (2015), IEEE,
pp. 87–98.

[93] Nethercote, N., and Seward, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. ACM Sigplan notices 42, 6
(2007), 89–100.

[94] Netto, M. A., Calheiros, R. N., Rodrigues, E. R., Cunha,
R. L., and Buyya, R. Hpc cloud for scientific and business applications:
taxonomy, vision, and research challenges. ACM Computing Surveys (CSUR)
51, 1 (2018), 1–29.

[95] O’Neill, M., and Ryan, C. Grammatical evolution. IEEE Transactions
on Evolutionary Computation 5, 4 (2001), 349–358.

[96] Penas, I., Zapater, M., Risco-Martín, J. L., and Ayala, J. L. Sfide:
a simulation infrastructure for data centers. In Proceedings of the Summer
Simulation Multi-Conference (2017), pp. 1–12.

[97] Perelman, E., Hamerly, G., Van Biesbrouck, M., Sherwood, T.,
and Calder, B. Using simpoint for accurate and e�cient simulation. ACM
SIGMETRICS Performance Evaluation Review 31, 1 (2003), 318–319.

[98] Posey, B., Deer, A., Gorman, W., July, V., Kanhere, N., Speck,
D., Wilson, B., and Apon, A. On-demand urgent high performance
computing utilizing the google cloud platform. In 2019 IEEE/ACM HPC
for Urgent Decision Making (UrgentHPC) (2019), IEEE, pp. 13–23.

[99] R. Killick, P. Fearnhead, E. Optimal detection of changepoints with
a linear computational cost. Journal of the American Statistical Association
107, 500 (2012), 1590–1598.

[100] Raghavendra, R., and et al. No "power" struggles: Coordinated multi-
level power management for the data center. In ASPLOS (2008).

[101] Ramesh, S., Perarnau, S., Bhalachandra, S., Malony, A. D.,
and Beckman, P. Understanding the impact of dynamic power capping
on application progress. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (2019), pp. 793–804.

[102] Reda, N. M., Tawfik, A., Marzok, M. A., and Khamis, S. M.
Sort-mid tasks scheduling algorithm in grid computing. Journal of advanced
research 6, 6 (2015), 987–993.

[103] Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., and Hundt, R.
Google-wide profiling: A continuous profiling infrastructure for data centers.
IEEE micro 30, 4 (2010), 65–79.

119

“output” — 2020/12/1 — 14:36 — page 120 — #145

BIBLIOGRAPHY

[104] Ryan, C., Collins, J. J., and Neill, M. O. Grammatical evolution:
Evolving programs for an arbitrary language. In European Conference on
Genetic Programming (1998), Springer, pp. 83–96.

[105] Sadjadi, S. M., Shu Shimizu, Figueroa, J., Rangaswami, R.,
Delgado, J., Duran, H., and Collazo-Mojica, X. J. A
modeling approach for estimating execution time of long-running scientific
applications. In 2008 IEEE International Symposium on Parallel and
Distributed Processing (2008), pp. 1–8.

[106] Sancho, M. Z. Proactive and reactive thermal aware optimization
techniques to minimize the environmental impact of data centers. 2015.

[107] Sarood, O., and et al. Optimizing power allocation to cpu and memory
subsystems in overprovisioned hpc systems. In IEEE CLUSTER (2013).

[108] Sarood, O., Langer, A., Gupta, A., and Kale, L. Maximizing
throughput of overprovisioned hpc data centers under a strict power
budget. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2014), IEEE Press, pp. 807–
818.

[109] Sato, K., Komatsu, K., Takizawa, H., and Kobayashi, H. A
history-based performance prediction model with profile data classification
for automatic task allocation in heterogeneous computing systems. In 2011
IEEE Ninth International Symposium on Parallel and Distributed Processing
with Applications (2011), IEEE, pp. 135–142.

[110] Schubert, S., Kostic, D., Zwaenepoel, W., and Shin, K. G.
Profiling software for energy consumption. In 2012 IEEE International
Conference on Green Computing and Communications (2012), IEEE,
pp. 515–522.

[111] Shehabi, A., et al. United States Data Center Energy Usage
Report. Lawrence Berkeley National Laboratory, Berkeley, California.
LBNL-1005775 (2016).

[112] Sherwood, T., Perelman, E., and Calder, B. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In Proceedings 2001 International Conference on Parallel Architectures and
Compilation Techniques (2001), IEEE, pp. 3–14.

[113] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B.
Automatically characterizing large scale program behavior. ACM SIGPLAN
Notices 37, 10 (2002), 45–57.

[114] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., and Calder,
B. Discovering and exploiting program phases. IEEE micro 23, 6 (2003),
84–93.

120

“output” — 2020/12/1 — 14:36 — page 121 — #146

BIBLIOGRAPHY

[115] Shoukourian, H., Wilde, T., Auweter, A., and Bode, A. Predicting
the energy and power consumption of strong and weak scaling hpc
applications. Supercomputing Frontiers and Innovations 1, 2 (2014).

[116] Sîrbu, A., and Babaoglu, O. Power Consumption Modeling
and Prediction in a Hybrid CPU-GPU-MIC Supercomputer. Springer
International Publishing, Cham, 2016, pp. 117–130.

[117] Sodhi, S., Subhlok, J., and Xu, Q. Performance prediction with
skeletons. Cluster Computing 11, 2 (2008), 151–165.

[118] Tsuzuku, K., and Endo, T. Power capping of cpu-gpu heterogeneous
systems using power and performance models. In 2015 International
Conference on Smart Cities and Green ICT Systems (SMARTGREENS)
(2015), IEEE, pp. 1–8.

[119] Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung,
V. J., Egele, M., and Coskun, A. K. Diagnosing performance variations
in hpc applications using machine learning. In International Supercomputing
Conference (2017), Springer, pp. 355–373.

[120] Wahlroos, M., Pärssinen, M., Rinne, S., Syri, S., and Manner,
J. Future views on waste heat utilization–case of data centers in northern
europe. Renewable and Sustainable Energy Reviews 82 (2018), 1749–1764.

[121] Wang, L., Khan, S. U., Chen, D., Ko≥Odziej, J., Ranjan, R., Xu,
C.-Z., and Zomaya, A. Energy-aware parallel task scheduling in a cluster.
Future Generation Computer Systems 29, 7 (2013), 1661–1670.

[122] Whitehead, B., et al. Assessing the environmental impact of data centres
part 1: Background, energy use and metrics. Building and Environment 82
(2014), 151–159.

[123] Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. Deep
kernel learning. In Artificial Intelligence and Statistics (2016), pp. 370–378.

[124] Wong, A., et al. Parallel application signature for performance analysis
and prediction. IEEE Trans. on Parallel and Distributed Systems (2015).

[125] Wong, A., Rexachs, D., and Luque, E. Extraction of parallel
application signatures for performance prediction. In 2010 IEEE
12th International Conference on High Performance Computing and
Communications (HPCC) (2010), IEEE, pp. 223–230.

[126] Yang, L. T., et al. Cross-platform performance prediction of parallel
applications using partial execution. In Supercomputing, 2005. (2005).

[127] Zapater, M., and et al. Leakage-aware cooling management for
improving server energy e�ciency. TPDS PP, 99 (2014).

121

“output” — 2020/12/1 — 14:36 — page 122 — #147

BIBLIOGRAPHY

[128] Zhai, J., Chen, W., Zheng, W., and Li, K. Performance prediction
for large-scale parallel applications using representative replay. IEEE
Transactions on Computers 65, 7 (2015), 2184–2198.

[129] Zhai, Y., and et al. Happy: Hyperthread-aware power profiling
dynamically. In USENIX Annual Conference (2014), pp. 211–218.

[130] Zhan, X., and et al. Techniques for energy-e�cient power budgeting in
data centers. DAC.

[131] Zhan, X., and Reda, S. Techniques for energy-e�cient power budgeting
in data centers. In Proceedings of the 50th Annual Design Automation
Conference (2013), DAC ’13, ACM, pp. 176:1–176:7.

[132] Zhang, W., Cheng, A. M., and Subhlok, J. Dwarfcode: a performance
prediction tool for parallel applications. IEEE Transactions on Computers
65, 2 (2015), 495–507.

[133] Zhang, W., Hao, M., and Snir, M. Predicting hpc parallel program
performance based on llvm compiler. Cluster Computing 20, 2 (2017), 1179–
1192.

[134] Zheng, X., and et al. Markov model based power management in server
clusters. In GREENCOM (2010), pp. 96–102.

[135] Zhongzhi, S. Advanced artificial intelligence, vol. 4. World Scientific, 2019.

122

“output” — 2020/12/1 — 14:36 — page 123 — #148

Appendix A

Grammatical Evolution Technique

In this appendix we describe the mapping process in the Grammatical Evolution
technique. We use this technique in this thesis to develop the power (Section
4.2.1.1.2) and co-allocated hardware counters (Section 4.2.2) models. For a more
detailed explanation on the principles of Grammatical Evolution, the reader is
referred to the work by Ryan et al. [104].

In Grammatical Evolution (GE), a mapping process is applied to extract
the mathematical expression given by an individual. The individual is defined
as the phenotype. The mapping process sets the rules to obtain a mathematical
expression and this is done by using grammars expressed in Backus Naur Form
(BNF) [95]. In general terms, a BNF specification is a set of rules expressed as:

< symbol >::=< expression > (A.1)

The rules defined by the BNF are expressed as a sequence of terminals and
non-terminals symbols. Non-terminal symbols can appear in either the right or
the left part of the rule, as shown in the Equation A.1. Additionally, non-terminal
symbols are enclosed between the pair <>. The Equation A.1 defines that the
< symbol > will be replaced by an expression (< expression >). Moreover, the
terminal symbols never appear on the left side of the rules and they are usually
represented by operations, functions (such as log, sin, etc) and numbers.

A grammar is composed by the tuple N, T, P, S, where: i) N is the
non-terminal set, ii) T is the terminal set, iii) P is the production rules for the
assignment of elements on the sets N and T , and iv) S is a start symbol that
must appear in N . The “|” symbol separates the di�erent options within a
production rule.

A grammar example in BNF format is shown in Grammar 3. The final
mathematical expression is composed by the elements of the set of terminals T ,

123

“output” — 2020/12/1 — 14:36 — page 124 — #149

APPENDIX A. GRAMMATICAL EVOLUTION TECHNIQUE

Grammar 3 Example of a grammar in BNF format
N = {expr, op, preop, var, num, dig}
T = {+, -, *, /, sin, cos, log, x, y, z, 0, 1, 2, 3, 4, 5, (,), .}
S = {expr}
P = {I, II, III, IV, V, VI}
<expr> ::= <expr><op><expr> | <preop>(<expr>) | <var>
<op> ::= +|-|*|/
<preop> ::= sin|cos|log
<var> ::= x|y|z|<num>
<num> ::= <dig>.<dig> | <dig>
<dig> ::= 0 | 1 | 2 | 3 | 4 | 5

which have been combined with the rules of the defined grammar.
The Grammatical Evolution technique defines a population of individuals.

Each individual is represented by a chromosome and a fitness value. The
chromosomes are formed by a number of genes (or codons). Then, the original
population is evolved by a genetic algorithm with the objective of improving the
fitness function.

The Grammatical Evolution technique uses the genes (or codons) from the
chromosomes to map symbols onto the expressions. The genes are numbers defined
in a number of bits, for example 8 bits. This means that each gene from the
chromosome can have a value from 0 to 255. Then, the algorithm combines the
chromosomes (crossover process) of the population in order to improve the fitness
function. Additionally, a mutation of the individuals can occur with a certain level
of probability (mutation probability). Hence, we can see that process to select the
final features is done automatically by the algorithm. Finally, in order to replace
the expressions the GE technique uses the modulus operator as follows:

Rule = Codon (or gene) Value MOD Number of Rule Choices (A.2)

The process of obtaining a mathematical expression using the GE technique
can be better explained with an example. In the following example, we explain the
mapping process using the grammar shown in Grammar 3. The reader can find a
further detailed explanation of this example in the works by Zapater et al. [106]
and Arroba et al. [45].

Suppose we have a BNF grammar (Grammar 3) and the following 7-gene
chromosome: 21-64-17-62-38-254-2. In this case, the gene is an 8 bit integer. The
start symbol is S = ÈexprÍ, therefore the decoded expression will begin with the
following non-terminal:

124

“output” — 2020/12/1 — 14:36 — page 125 — #150

Solution = ÈexprÍ

We use the first value of the gene (21) of the chromosome in rule I of the
grammar. The number of choices in that rule is 3. Therefore, a mapping function
is applied: 21 MOD 3 = 0 and the first option is selected (since we obtain a value
of 0) ÈexprÍÈopÍÈexprÍ. As a consequence, the current expression is the following:

Solution = ÈexprÍÈopÍÈexprÍ

Then, we proceed to decode the first non-terminal of the current expression,
which again is ÈexprÍ. We use the value of the next gene (64) to replace the
expression: 64 MOD 3 = 1, hence, the second option ÈpreopÍ(ÈexprÍ) is selected
and the current expression is updated:

Solution = ÈpreopÍ(ÈexprÍ)ÈopÍÈexprÍ

The next gene value 17, is taken for decoding. In this case, the first
non-terminal in the current expression is ÈpreopÍ, we apply the mapping function
(modulus operator) and the third option is selected. Since ÈpreopÍ has three
options we still have to do a MOD 3 operation. We obtain the following
expression:

Solution = log(ÈexprÍ)ÈopÍÈexprÍ

The mapping process for the next genes are the following:

• Decode ÈexprÍ -> 62 MOD 3 = 2 -> Solution = log(ÈvarÍ)ÈopÍÈexprÍ

• Decode ÈvarÍ -> 38 MOD 4 = 2 -> Solution = log(z)ÈopÍÈexprÍ

• Decode ÈopÍ -> 254 MOD 4 = 2 -> Solution = log(z) ú ÈexprÍ

• Decode ÈexprÍ -> 2 MOD 3 = 2 -> Solution = log(z) ú ÈvarÍ

We can see that at this point we have run out of genes and still do not have
a mathematical expression. The GE technique solves this problem by starting
from the first gene of the chromosome. The technique of using the genes more
than once is called wrapping. By applying a wrapping process to our example
we decode ÈvarÍ with the gene 21: 21 MOD 3 = 1. Then, the final solution is the
following:

Solution = log(z) ú y

125

“output” — 2020/12/1 — 14:36 — page 126 — #151

APPENDIX A. GRAMMATICAL EVOLUTION TECHNIQUE

The fitness function express the error of the estimation process. As we
previously commented, the GE technique evolves the solution to improve the
fitness function (reduce the error). In our work, we use the Root Mean Square
Error as a fitness function f presented in Equation A.3:

f =
Û

1
N

·
ÿ

n

en2

en = |X(n) ≠ „X(n)|, 1 Æ n Æ N

(A.3)

We use the GE technique to either estimate the power or the co-allocated
hardware counters, then in Equation A.3 the value of X represents either the
real samples of power or the co-allocated hardware counters and, the value of „X
represents the power estimation or the estimated co-allocated hardware counters.
The estimation error en represents the deviation between the real samples X and
the estimation obtained by the model „X. The value of n represents each sample
of the entire set of N samples used to train the GE algorithms.

126

	List of Tables
	List of Figures
	Abbreviations
	Abstract
	Resumen
	Introduction
	Motivation
	Problem Formulation
	Thesis Contributions
	Thesis Structure
	Publications and Grants
	Journal papers
	Conference papers
	Mobility Grants

	Energy Estimation with an Application Signature
	Application Signature
	Static Code Analysis
	Dynamic Profiling of the Application Signature
	Energy Estimation

	Application Signature for Multi-Threaded Applications
	Experimental Setup
	Results
	Conclusions

	Related Work
	Application Signature
	Energy, Power and Performance Estimation
	Server Power Modeling
	Dynamic Profiling
	Energy-Aware Task Scheduling

	Fast Energy Estimation Framework
	Fast Energy Estimation Framework Modules
	Call Graph Set
	Estimation of Executed Instructions
	Application Signature
	Application Signature Execution Manager
	Application Signature Execution Time

	Application Profile Reconstruction
	Execution Time Estimation
	Hardware Counter Profile Reconstruction

	Energy Estimation
	Power Models
	Overall Energy Estimation
	Compression Ratio of the Framework

	Sever Power Modeling
	Server Power Models
	Dynamic CPU and Memory Power Models
	Classical Approach
	Grammatical Evolution

	Power Prediction for Co-assigned Tasks

	Experimental Setup
	Fast Energy Estimation Framework
	Server Power Modeling

	Results
	Fast Energy Estimation Framework
	Compression Ratio and Energy Error vs Application Signature Length
	Compression Ratio and Energy Error vs Segment Division
	Evaluation of the Fast Energy Estimation Framework
	Energy Estimation for the Sequential Scenario
	Energy Estimation for the Multi-Threaded Scenario

	Server Power Modeling
	Overall Server Power Model
	Overall Power of Co-assigned Applications

	Conclusions

	Task Scheduling with the Application Signature
	Task Scheduling with the Application Signature
	Using the Application Signature for Energy-Aware Task Scheduling
	Compression Ratio of the Batch

	Task Scheduling Approaches
	Mixed Integer Linear Programming Formulation
	Simulated Annealing
	Energy-Aware Heuristic

	Experimental Setup
	Data Center Simulator
	Server Power Model and Overall Data Center Power

	Simulation Scenarios and Task Batch Composition

	Results
	Small Scale Scenario
	Large Scale Scenario
	Compression Ratio of the Batch
	Overall Results

	Conclusions

	Conclusions and Future Work
	Summary and Conclusions
	Future Work
	Enhance and Broadening of the Scope of the Fast Energy Estimation Framework
	Supporting a Cloud Scenario
	Supporting Anomaly Detection and Prediction

	Bibliography
	Grammatical Evolution Technique

