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Abstract. We have studied the dynamics of a generalized toric code based on
qudits at finite temperature by finding the master equation coupling the code’s
degrees of freedom to a thermal bath. We find that in the case of qutrits, new
types of anyons and thermal processes appear that are forbidden for qubits. These
include creation, annihilation and diffusion throughout the system code. It is
possible to solve the master equation in a short-time regime and find expressions
for the decay rates as a function of the dimension d of the qudits. While we
provide an explicit proof that the system relaxes to the Gibbs state for arbitrary
qudits, we also prove that above a certain crossover temperature the qutrits’
initial decay rate is smaller than the original case for qubits. Surprisingly, this
behavior only happens for qutrits and not for other qudits with d > 3.
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1. Introduction

It is known that the fragility of quantum states in the presence of interaction with an
environment represents the main challenge for the large-scale implementation of quantum
information devices in quantum computation and communication. Quantum error correction
is the theoretical method that was devised to protect a quantum memory or communication
channel from external noise [1–8]. In these quantum error correction schemes, to improve the
stability of quantum information processing, the logical qubits should be implemented in many-
particle systems, typically N physical spins per logical qubit. This is the quantum version of the
classical method based on encoding information by repetition or redundancy of logical bits in
terms of physical bits [9, 10]. The logical qubits should be stable objects with efficient methods
of state preparation, measurements and application of gates. By efficiency we mean a certain
scaling behavior, e.g. the lifetime of a logical qubit should grow with N .

In order to implement fault-tolerant methods for quantum information processing, we need
to find a physical system with good enough properties to accomplish this protection from a
noisy environment and decoherence. One promising candidate is topological orders in strongly
correlated systems. Here, the ground state is a degenerate manifold of states whose degeneracy
depends on the topological properties of a certain lattice of qubits embedded into a surface with
nontrivial topology [11]. Many-body interacting terms in a Hamiltonian are responsible for the
existence of this topological degeneracy. The logical qubits are stored in global properties of the
system represented by nontrivial homological cycles of the surface. In these topological codes,
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the property of locality in error detection and correction is of great importance both theoretically
and for practical implementations [12–14]. It is also possible to generalize these topological
codes for units of quantum information based on multilevel systems known as qudits, i.e.
d-level systems [15–18], and study their local stability [19]. An alternative scheme to
manipulate topological quantum information is based not in the ground-state properties of the
system but in its excitations [11]. These are non-Abelian anyons that can implement universal
gates for quantum information [20]. However, being within the framework of topological codes
based on ground state properties, it is possible to formulate new surface codes known as
topological color codes (TCCs) [21] such that they have enhanced quantum computational
capabilities while preserving nice locality properties [21–23]. TCCs in two-dimensional (2D)
surfaces allow for the implementation of quantum gates in the whole Clifford group. This
makes possible quantum teleportation, distillation of entanglement and dense coding in a fully
topological scenario. Moreover, with TCCs in 3D spatial manifolds it is possible to implement
the quantum gate π/8, thereby allowing for universal quantum computation [24, 25]. Very nice
applications of topological surface codes can be seen in other fields [26, 27].

Acting externally on topological codes, in order to cure the system from external noise
and decoherence, produces benefits from the locality properties of these codes. Namely, a very
important figure of merit is the error threshold of the topological code, i.e. the critical value
of the external noise below which it is possible to perform quantum operations with arbitrary
accuracy and time. For toric codes with qubits, the error threshold is very good, about 11% [12].
This value is obtained by mapping the process of error correction to a classical Ising model
on a 2D lattice with random bonds. Interestingly enough, this type of mapping can be made
more general and applied to TCCs yielding the same error threshold [28] while maintaining
enhanced quantum capabilities [29, 30]. These results have been confirmed using different
types of computation methods [31–35]. It is also possible to carry out certain computations
by changing the code geometry over time, something called ‘code deformation’ [12, 36, 37]
that allows us to perform quantum computation in a different way. A more general type of code
can be constructed with quantum lattice gauge theories based on quantum link models [38].

In this paper, we adopt a different approach than external protection of topological codes.
Hence, instead of performing active error correction, we just rely on the robustness of a
Hamiltonian that has a gap above the ground state manifold where the quantum information
is stored. Thus, we leave the system to interact with the surrounding environment and study the
fate of the topological order under these circumstances. This source of noise is inescapable: the
microscopic interactions of the physical spins with thermal particles or excitations of the local
environment. The analogous situation for classical information processing is well understood,
but the existence of a similar mechanism for quantum information is still an open problem.
The quantum theory of open systems provides a natural framework for studying stability in
the presence of thermal noise. The particularly simple properties of Kitaev’s model allow us to
apply Davies’ theory, namely the dynamics of a quantum system weakly interacting with a heat
bath in the Born–Markov approximation [39–46]. There have also been some related studies
regarding thermal effects on adiabatic quantum computation [47, 48].

The first indication that the toric code for qubits in 2D spatial dimensions is unstable
against thermal noise was shown in [12]. Further analytical and quantitative arguments of
thermal instability were given in [49]. Later, a rigorous proof of this fact has been established
using the theory of quantum open systems [50, 51]. Subsequently, other investigations have
been conducted for Abelian models, non-Abelian models, TCCs [52–56], etc. Remarkably
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enough, while with qubits in 2D lattice models the topological protection is lost under the
action of thermal fluctuations [57], it is however possible to set up a fully fledged topological
quantum computation using certain types of TCCs in higher-dimensional lattices [58]. Under
these conditions, it is possible to prove that self-correcting quantum computation, including
state preparation, quantum gates and measurement can be carried out in the presence of the
disturbing thermal noise. Additionally, note that thermal noise does not always turn out to be
detrimental in quantum information, even for systems without topological order [59, 60].

In this work, we extend those results regarding the thermal effects on generalized toric
codes constructed out of qudits. Here in we summarize briefly some of our main results.

1. We formulate the dynamics of a generalized toric code based on qudits at finite
temperature. To this end, we find the master equation coupling the qudits of the system
code to a thermal bath.

2. We study and classify the different types of thermal processes that may occur when the
anyonic excitations are created, annihilated or diffused throughout the system. In particular,
we find that for qutrits new types of anyons and thermal processes appear that are forbidden
for qubits.

3. The master equation is too involved so as to yield an explicit expression for the decay rate
of the topological order initially present in the code. However, in a short-time regime it is
possible to solve it and find expressions for the decay rates as a function of the dimension
d of the qudits. Interestingly enough, we find that the decay rate for qutrits presents a
crossover temperature Tc that is absent for any other qudits.

4. We can give an explicit proof that for long enough times, the non-local order parameter
representing the topological order in the system decays to zero.

This paper is organized as follows. In section 2, we review the formulation of the master
equation of the 2D Kitaev code for qubits in order to establish the notation and the necessary
tools to study thermal effects in more general toric codes. We also introduce a non-local
order parameter and study the fate of topological orders for two different regimes: the short-
time regime and the long-time regime. In section 3, we find the master equation describing
topological qutrits coupled to a thermal bath. This allows us to see new energy processes
for the anyonic excitations that are not present when the toric code is made up of qubits.
Likewise, the short-time regime has a different behavior that can be seen in the initial decay rate
of the topological order. In particular, we can define a crossover temperature for qutrits where
the decay rate is better than that with other qudits. Section 4 presents the conclusions. See
appendix A for the evolution of the order parameter for qutrits and appendix B for a proof of
the irreducibility of the computational representation of the d-Pauli group needed to study the
master equation in the long-time regime.

2. Thermal stability of the Kitaev two-dimensional (2D) model

We shall not dwell upon the details of Kitaev’s toric code [4]; however, we will introduce the
basic ideas to understand how to apply a thermal stability analysis to it, as well as to establish
the notation and methods. We will consider a k × k square lattice embedded in a 2-torus. Let us
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Figure 1. Square lattice on the torus. The yellow points represent qubits.

attach a qubit, such as a spin 1/2, to each edge of the lattice. So we have N = 2k2 qubits. For
each vertex s and each face p, we denote the stabilizer operators in the following form:

As :=
∏

j∈star(s)

X j , Bp :=
∏

j∈boundary(p)

Z j , (1)

where X j and Z j are the Pauli matrices applied to the qubit on site j . As and Bp commute
among each other for they have either 0 or 2 common edges. They are also Hermitian and have
eigenvalues 1 and −1 (see figure 1). Therefore, they constitute an Abelian subgroup of the Pauli
group of n qubits that is a stabilizer group.

Let H be the Hilbert space of all n = 2k2 qubits and define the topological quantum code
or protected subspace C ⊆H as follows:

C =
{
|9〉 ∈H : As|9〉 = |9〉, Bp|9〉 = |9〉 for all s, p

}
. (2)

This construction defines a quantum code called the toric code. The operators As and Bp are the
stabilizer operators of this code, i.e. operators that leave trivially invariant the code space. As
we want to analyze the physical properties of this code, in particular the thermal properties of
the topological order, it is convenient to define its associated Hamiltonian in the form

H sys := −

∑
s

As −

∑
p

Bp. (3)

Complete diagonalization of this Hamiltonian is possible since operators As, Bp commute. In
particular, the ground state coincides with the protected subspace of the code C; it is fourfold
degenerate (see figure 2). All excited states are separated by an energy gap1E > 4. This is due
to the fact that the difference between the eigenvalues of As(Bp) is equal to 2. Excitations come
in pairs since they correspond to violations of the plaquette and/or vertex stabilizer operators
and these must comply with the overall constraints

∏
s As = 1 and

∏
p Bp = 1. Thus, excitations

are represented as open strings in the direct or the dual lattice of the original square lattice.
An essential feature of this Hamiltonian is its locality in terms of four-body interactions,

very useful for practical purposes. Another key property is that this Hamiltonian model
is gapped, which led to the initial expectation that all types of ‘errors’, i.e. noise-induced
excitations, will be removed automatically by some relaxation processes. Of course, this
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Figure 2. Schematic spectrum of the toric code Hamiltonian. The ground state is
the code space C where we codify our information.

requires cooling, i.e. some coupling to a thermal bath with low temperature (in addition to the
Hamiltonian (3)), as we shall describe later on. It can be shown that this Hamiltonian is robust
under local quantum perturbations at zero temperature [57]: there would be a level splitting that
will vanish as exp(−ak), where k is the length of the lattice [4].

Due to this unavoidable coupling to a thermal bath, our system is subject to thermal
errors as well. These can be seen as violations on the plaquette and vertex conditions As|9〉 =

|9〉, Bp|9〉 = |9〉. Moreover, As and Bp are unitary, and also Hermitian in the case of qubits.
Therefore, violations on the plaquette and/or vertex condition are given by

As|9〉 = −|9〉, Bp|9〉 = −|9〉, (4)

for a certain number of sites s and/or plaquettes p.
These violations cost energy to our system, thereby becoming excitations. As long as they

always come in pairs (to satisfy the conditions
∏

s As = 1 and
∏

p Bp = 1), they can be seen
(pictorially) as string operators with plaquette or vertex violations at the ends.

Errors on the system can be expressed in terms of operators σ x , σ z or products among
themselves. These operators act on each edge j where the physical qubits are placed. We use
the notation σ x for a Pauli operator of type X when it refers to an error, i.e. a bump operator
acting due to the coupling to the thermal bath. Likewise with σ z. It is just a matter of notation
to distinguish when we have an operator that defines our stabilizer operators in As, Bp and
when we have an error acting on the system. To see what effect they produce, we will see
how the ground state changes by applying these σ x,z. We will see that this corresponds to the
creation, annihilation and movement of a pair of excitations, which from now on we shall refer
to as anyons. These are called anyons since their wave function picks up a different phase than
fermions or bosons when we exchange the end-particles of string operators of x-type with z-
type. According to this notation, when we apply a bump operator from the thermal bath, it will
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act on the ground state of the system as follows:

σ z
j |9〉, (5)

where |9〉 is the ground state of the system where our information is encoded. This means that
the physical qubit at the edge j has been bumped. The energy cost will be 1E = 4 in energy
units of the system corresponding to the definition of H sys.

As a first step, one is interested in designing a stable quantum memory, i.e. an N -particle
system that can support at least a single encoded logical qubit for a long time, preferably with
this time growing exponentially with N . This is the notion of stability we shall refer to from
now on. In the paper by Alicki et al [50], they provide a rigorous method to prove thermal
instability of the 2D Kitaev model and obtain a master equation that describes the dynamics
of the system weakly coupled to a thermal environment. We will study the problem of thermal
instability within the framework of topological orders obtaining complementary and interesting
results.

2.1. Davies’ formalism

Let us consider a small and finite system that is coupled to one or more heat baths at the same
inverse temperature β = (kBT )−1, leading to the total Hamiltonian

H = H sys + H bath + V with V =

∑
α

Sα ⊗ fα. (6)

Here H sys represents the Hamiltonian of the system where the quantum information is encoded
and which we want to protect from the external thermal noise. H bath is the bath Hamiltonian,
i.e. it describes the internal dynamics of the bath that is out of our control. Finally, V represents
the coupling between the system and the thermal bath. Sα and fα are operators that act on
the system and bath, respectively. Both the coupling operators Sα and fα are assumed to be
Hermitian (without loss of generality [41]).

In the weak-coupling regime that we shall assume throughout this work, the Fourier
transform ĝα of the auto-correlation function of fα plays an important role, as it describes the
rate at which the coupling is able to transfer energy between the bath and the system [39–42].
Often a minimal coupling to the bath is chosen, minimal in the sense that the interaction part
of the Hamiltonian is as simple as possible but still addresses all energy levels of the system
Hamiltonian in order to have an ergodic reduced dynamics. This last condition is ensured if
[41, 43–46]

{Sα, H sys
}
′
= C1, (7)

i.e. no system operator apart from those proportional to the identity commutes with all the Sα
and H sys.

The weak-coupling limit [39–42] results in a Markovian evolution for the system given in
the Heisenberg picture by the master equation

dX

dt
= G(X) := iδ(X)+L(X). (8)

The generator of the evolution G(X) is a sum of two terms: the first is a usual
Liouville–von Neumann term as in the quantum mechanics of closed systems, while the second
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|ψ
σzjσxk

Figure 3. Toric code coupled to a heat bath. Outgoing arrows in the upper part
of the figure mean information flowing from the system to the bath, and ingoing
arrows in the lower part mean information flowing from the bath to the system.

is a particular type of the Kossakowski–Lindblad generator:

δ(X)= [H sys, X ], (9)

L(X)=

∑
α

∑
ω>0

Lα ω(X) (10)

=

∑
α

∑
ω>0

ĝα(ω)
{
(Sα(ω))

† [X, Sα(ω)] +
[
(Sα(ω))

†, X
]

Sα(ω)

e−βω Sα(ω)
[
X, (Sα(ω))

†
]

+ e−βω [Sα(ω), X ] (Sα(ω))
†
}
. (11)

Here the Sα(ω) are the Fourier components of Sα as it evolves under the system Hamiltonian

eit H sys
Sα e−it H sys

=

∑
ω

Sα(ω) e−iωt , (12)

where theωs are the Bohr frequencies of the system Hamiltonian (h̄ω = E1 − E2, for two energy
levels E1 and E2).

In addition, the temperature of the environment appears in (11) through β, and this
generator is the so-called Davies’ generator [39] or the Born–Markov generator in the quantum
optics literature.

2.2. Master equation for the 2D Kitaev model with qubits

Given the simplicity of Kitaev’s model, we can apply Davies’ theory for studying its stability in
the presence of thermal noise. This is represented pictorially in figure 3.
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The interaction Hamiltonian is assumed to be local and associated with σ x and σ z errors:

V =

∑
j

σ x
j ⊗ f x

j + σ z
j ⊗ f z

j , (13)

where f x
j and f z

j are associated with two different baths. Thus, first of all, we need to compute
the Fourier transform of the system operators eit H sys

σ x
j e−it H sys

and eit H sys
σ z

j e−it H sys
in order to

define the dynamical operators of the system. Here H sys := H0 = −
∑

s As −
∑

p Bp, with
[As, Bp] = 0, [As, σ

z
j ] = 0 and [Bp, σ

x
j ] = 0. Thus, stabilizers As only play a role in the Fourier

transform of σ x
j and Bp only in σ z

j . By computing this Fourier transform, we obtain the
dynamical operators of the system due to the coupling to the thermal bath. With1= 4 denoting
the gap of the Toric code Hamiltonian, then the expressions for these operators Sα(ω) that appear
in equation (11) are as follows [50].

1. Operators associated with σ x
j errors:

Sx
j (0) := b0

j = σ x
j R0

j ,

Sx
j (1) := b j = σ x

j R+
j , (14)

Sx
j (−1) := b†

j = σ x
j R−

j ,

with R0
j := 1

2(1 − Bp Bp′) and R±

j := 1
4(1 ∓ Bp)(1 ∓ Bp′) being orthogonal projectors.

2. Operators associated with σ z
j errors:

Sz
j(0) := a0

j = σ z
j P0

j ,

Sz
j(1) := a j = σ z

j P+
j , (15)

Sz
j(−1) := a†

j = σ z
j P−

j (16)

and the projectors: P0
j := 1

2(1 − As As′) and P±

j := 1
4(1 ∓ As)(1 ∓ As′).

These operators have a nice interpretation in terms of anyonic properties of the system.

1. a†
j (b

†
j) creates a pair of anyons of z-type (x-type) on the lattice at position j . See figure 4.

2. a j(b j) annihilates a pair of anyons of z-type (x-type) on the lattice at position j . See
figure 5.

3. a0
j (b

0
j) moves a pair of anyons of z-type (x-type) on the lattice. See figure 6.

Thus, the dissipator of the master equation L(X) for the system is

L(X) = Lz(X)+Lx(X),

Lx(X)=

∑
j

1

2
R(4){(−b†

j b j X − Xb†
j b j + b†

j Xb j)+ e−4β(−b j b
†
j X − Xb j b

†
j

+ b j Xb†
j} −

1
2 R(0)[b0

j , [b0
j , X ]],

Lz(X) =

∑
j

1

2
R(4){(−a†

j a j X − Xa†
j a j + a†

j Xa j)+ e−4β(−a ja
†
j X − Xa ja

†
j

+ a j Xa†
j } −

1
2 R(0)[a0

j , [a0
j , X ]],

where R(4) and R(0) are the exchange rates between the system and the bath associated with
each Bohr frequency, namely ω = 0, 4, assuming units of J = 1.
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σz

a†

Figure 4. Dynamics induced by the heat bath on the toric code. Creation of a
new pair of anyons. Energy increases by 1E = 4.

σz

a

Figure 5. Dynamics induced by the heat bath on the toric code. Annihilation of
a pair of anyons. Energy goes down by 1E = 4.

σz

a0

Figure 6. Dynamics induced by the heat bath on the toric code. Pure decoherence
by moving an anyon with no energy change.

2.3. Topological order

We shall study the evolution of the expectation value 〈GS| Xc |GS〉 as a simple order parameter,
where Xc is the tensor product of σ x Pauli operators along one non-contractible loop on
the surface of the torus and |GS〉 denotes a generic ground state of the system Hamiltonian.
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This ground state is a superposition of the degenerate states in the ground state manifold of
H sys, namely C. This gives us a sufficient measure of the topological order of the system [49].
If this quantity falls to zero during the time evolution for every element of C, there is not a
global and self-protected way to encode quantum information. The evolution of the operator Xc

is given by equation (47),

dXc(t)

dt
= iδ[Xc(t)] +L[Xc(t)].

In order to simplify the computation, we remove the free evolution by performing the
transformation

X̃c(t)= e−iH syst Xc(t)e
iH syst . (17)

Since the dissipator is invariant under this transformation, we obtain

dX̃c(t)

dt
= L[X̃c(t)]. (18)

Interestingly, for the expectation value we obtain 〈GS| Xc(t) |GS〉 = 〈GS| X̃c(t) |GS〉, as |GS〉 is
an eigenstate of H sys.

Taking into account expressions (14) and (15), the action of the dissipators on Xc can be
simplified to

Lx(Xc)= −
1

2

∑
j

R(1)
(

[R j
+, [R j

+, Xc]] + e−1β[R j
−, [R j

−, Xc]]
)

+ R(0)[R j
0 , [R j

0 , Xc]] (19)

and

Lz(Xc)=

∑
j

R(1)[P j
+ σ

z
j Xcσ

z
j P j

+ − P j
+ Xc + e−1β(P j

−σ
z
j Xcσ

z
j P j

− − P j
− Xc)]

+ R(0)[P j
0 σ

z
j Xcσ

z
j P j

0 − P j
0 Xc],

where we have used the fact that [P j
±,0, Xc] = 0 for every j , as these projectors are only

functions of vertex operators. However, the same assertion is not true for R j
±,0 in general. If

j 6∈ c, i.e. j does not belong to the path where Xc is acting on, every element commutes with
each other and their contribution is zero. On the other hand, if j ∈ c, as σ z

j σ
x
j σ

z
j = −σ x

j , the
string operator yields σ z

j Xcσ
z
j = −Xc. Therefore, simplifying we obtain

Lz(Xc)= −
1

2
|c|Xc{R(1)[P j

+ + e−1βP j
−] + R(0)P j

0 }, (20)

where |c| is the number of points in the path c.

2.4. Short-time regime

The solution to the master equation (18) is formally written as X̃c(t)= eL(t)Xc. However, this
expression is too involved to be computed analytically except for short and long times to be
specified hereby. In the first case, at lowest order we have

X̃c(t)' (1 + tL)Xc. (21)
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The evolution of 〈GS| Xc(t) |GS〉 is given by

〈X̃c(t)〉 ' [1 − 2t |c|R(1)e−1β]〈Xc(0)〉. (22)

To arrive at this equation, we have used the fact that for all j :

P j
+,0 |GS〉 = 0,

P j
− |GS〉 = |GS〉 ,

R j
+,0 |GS〉 = 0,

R j
− |GS〉 = |GS〉 .

Thus, the contribution of Lx is zero:

〈GS|Lx(Xc) |GS〉 = −
1

2

∑
j

R(1)e−1β
〈GS| [R j

−, [R j
−, Xc]] |GS〉

= −
1

2

∑
j

R(1)e−1β
(
〈GS|[R j

−, Xc]|GS〉 − 〈GS|[R j
−, Xc]|GS〉

)
= 0,

(23)

whereas for Lz, we have

Lz(Xc)= −
1

2
|c|R(1)e−1β

〈GS| Xc|GS〉. (24)

Finally, as 〈GS| Xc(t) |GS〉 = 〈GS| X̃c(t) |GS〉, the desired equation valid at short times is

〈Xc(t)〉 '

[
1 −

1

2
t |c|R(1)e−1β

]
〈Xc(0)〉, (25)

with 1= 4.
It is important to remark that R(0) does not appear in the initial decay rate, as long as short

times are concerned. The diffusion of anyons is a second-order process in time as it requires
first the creation of a pair of anyons with R(1), and later free diffusion with R(0).

2.5. Long-time regime

On the other hand, in order to analyze the thermal properties for long times, we write the Davies
generator in the Schrödinger picture through the relation Tr[L†(ρ)X ] = Tr[ρL(X)] for any X
and ρ. It is a well-known result [39–42] that the Gibbs state is a stationary state for L†,

L†(ρβ)= 0, (26)

where ρβ = e−βH sys
/Z , β is the same to the inverse temperature as the surrounding bath, and

Z := Tr(e−βH sys
) is the system partition function. To guarantee that any initial state of the system

relaxes to ρβ , we can resort to condition (7). In our case this follows from Schur’s lemma as
Sα = σ x

j , σ
z
j and {1, σ x , σ z, σ xσ z

} form an irreducible representation of the Pauli group.
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Thus 〈GS| Xc(t) |GS〉 ' Tr[Xcρβ] for large t , and we have Tr[Xcρβ] = 0. This is simply
due to the fact that ρβ is diagonal in any of the possible eigenbases of H sys, and it is not difficult
to choose one such that Xc vanish on diagonal elements,

Tr[Xcρβ] =
1

Z

∑
i

e−βλi 〈ψi | Xc |ψi〉 = 0, (27)

for some eigenbases {|ψi〉} of H0, Kitaev’s Hamiltonian.
In conclusion, whatever the initial value of the order parameter 〈Xc(0)〉, it decays to zero

during the time evolution of the system, provided that the temperature is finite. The decay rate at
short times is equal to 1

2 |c|R(1)e−1β . Note the detrimental effect of the factor |c|: the larger size
of the system, the higher the decay rate. In order to keep the order parameter above a certain
finite value such that 〈Xc(0)〉 6= 0, this decay rate must decrease, which is not the case when
increasing the system size.

3. The Kitaev 2D model for qudits

In this section, we consider again a 2D toric code, but instead of assuming that we have a two-
level system on each site, we will consider that particles arranged on the torus have d accessible
levels. We will first derive a general theory for qudits and then consider the case d = 3 (qutrits).
A qutrit can be represented, for instance, as a particle of spin 1 or a three-level system in an
atom, etc.

This problem is very interesting since qutrits have certain advantages with respect to qubits.

1. Qutrits have a larger capacity for information storage.
2. Quantum channels are more robust for qutrits. For example, Bell inequalities are proved

with more accurate bounds. This is relevant for quantum key distribution.
3. Entanglement quantum distillation is more efficient with qutrits than with qubits [61].
4. Qutrit logic gates [62] are also capable of providing universal quantum computation, i.e.

the necessary computational power to construct all possible logic gates [8].

To build a system like that, we will try to choose the Hamiltonian and the operators acting
on the system in the same way as before. Previously, for two-level systems, we have considered
the Pauli matrix algebra to be the basis of operators in our system. Now, we have to use a
proper generalization for dimension d. As iX Z = Y gives the second Pauli matrix, it is enough
to consider X and Z in this generalization to quantum states with d multilevels. However,
the generalization of Pauli matrices to dimension d is not unique2. Thus, we shall select the
most important properties of Pauli matrices of dimension 2 for our purpose of quantum error
correction.

In d = 2, we defined a basis: |0〉 , |1〉 in the Fock space of each particle. They are defined
as the eingenstates of the Z Pauli matrix. And the X Pauli matrix takes |0〉 to |1〉 and vice versa.

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

2 Indeed, there are different generalizations for the operators X and Z . What makes simple the generalization of
the toric code to higher dimensions is to keep the action of X and Z on the computational basis to be analogous
to the case of qubits. This implies a specific structure for the anticommutation rule, namely X Z = ωZ X , where
ω is a primitive d-root of unity. Note, for instance, that another common generalization of X and Z , based on the
generators of the Lie algebra su(d), does not fulfill these anticommutation relations.
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Z |0〉 = + |0〉 , Z |1〉 = − |1〉 ,

X |0〉 = + |1〉 , X |1〉 = |0〉 .

The key important properties of these matrices for doing error correction are the following.

• They satisfy a cyclic condition (i.e. applying twice Z or X Pauli matrices is the identity),
i.e. they are unitary.

• They anticommute, which means X Z = −Z X .

Those are the properties that are generalized to the d-dimensional case. Hermiticity is not
taken into account as a basic ingredient, as we can always add the Hermitian conjugate obtaining
a Hermitian operator, e.g. Z̃ = Z + Z †, then Z̃ is Hermitian. Now we consider a basis for the
particle Fock space: |0〉 , |1〉 , . . . , |d − 1〉, which will be the eingenvectors of the generalized Z
matrix with a certain eingenvalue. We define X as the operator which takes the state |0〉 to |1〉,
then |1〉 to |2〉 and so on. We will also ask for a cyclic condition as in the previous case:

X d
= 1, Z d

= 1. (28)

All these requirements can be cast on to the following defining relations:

Z |0〉 = + |0〉 , Z |1〉 = ω |1〉 , Z |2〉 = ω2
|2〉 , . . . , Z |d − 1〉 = ωd−1

|d − 1〉 ;

X |0〉 = + |1〉 , X |1〉 = |2〉 , . . . , X |d − 1〉 = |0〉 . (29)

Looking at equation (29) we can deduce the meaning of operators X and Z . X is the
displacement operator in the computational basis (i.e. in the Fock space basis of the physical
qudits). Z is the dual operator of X under a discrete Fourier transform. In other words, Z
is diagonal in the computational basis and its eingenvalues are the weights of the Fourier
transform. Thus, X plays the role of the displacement operator and Z is the dual operator on a
system with discrete states of qudits [8].

Due to the cyclic condition (28) of Z (Z d
= 1), we have the relation ωd

= 1 where, in
general, ω is a complex number. This implies that ω is a primitive d-root of unity,

ω = ei(2π/d). (30)

Additionally, we can easily verify that Z X = ωX Z , as follows from equation (29).
We have already the algebra of operators that we are going to use in order to built the

stabilizer operators on this qudit toric code. The problem is that if we construct the vertex and
plaquette operators as before, namely,

As =

∏
j∈star(s)

X j , Bp =

∏
j∈boundary(p)

Z j , (31)

then [As, Bp] 6= 0 for all s and p. They commute with each other provided that they do not share
any common edge, but that is not the case if they share two. This happens because in this case
the operators X and Z are no longer Hermitian.

As shown in figure 7, we have

[As, Bp] = [X1 X2 X3 X4, Z3 Z4 Z5 Z6] = (1 −ω2)As Bp, (32)

which does no vanish for dimension d > 2, (1 −ω2) 6= 0. The case of d = 2 is a very special
case with ω = −1 and therefore (1 −ω2)= 0. This happens because for d = 2, X and Z are
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Figure 7. New lattice for qudits showing vertex As and plaquette Bp operators:
orientation of the lattice is necessary.

Hermitian operators. We need to think of another way to define our operators to have the same
commutation rules as before, and this leads to defining an orientation on the lattice. This is
shown in figure 7. Defining an orientation on the lattice is a direct consequence of the non-
Hermiticity of operators X and Z .

Using the orientation of the lattice, we define the stabilizer operators in the following way.
To build the vertex operators As we assign an operator X or X−1 depending on the arrows of
the edges of the lattice. If an arrow is pointing towards the vertex j , we will use X−1

j to build
As, and if the arrow is pointing out another vertex, we use X j . For plaquette operators Bp, Zk is
taken if the arrow is pointing clockwise and Z−1

k for anti-clockwise, as shown in figure 7. To
see now that we obtain the correct commutation rule, we look again at figure 7 and check,

[As, Bp] = [X−1
1 X2 X−1

3 X4, Z−1
3 Z6 Z5 Z−1

3 ] = (1 −ωω−1)As Bp = 0. (33)

Then, the Hamiltonian could be written as follows:

Haux := −

∑
s

As −

∑
p

Bp. (34)

Although, according to the definition of As and Bp, this operator is unitary, it is important to note
that the operators As and Bp are no longer Hermitian, so Haux is no longer Hermitian. However,
we may redefine the Hamiltonian in the following way:

H sys := 1
2(Haux + H †

aux), (35)

where H sys is Hermitian now. The effect that H †
aux has in the system is a redefinition of the

orientation on the lattice. So we have a superposition of a lattice orientated in the way of
figure 7 (arrows up and right) and another with arrows down and left. Nevertheless, one can
always think in terms of Haux for the pictorial image and then use H sys to compute energies and
derive equations.

3.1. The anyon model

The theory developed above was done for the general case of qudits. From now on and
to be concrete concerning thermal effects, we will focus on the case where d = 3 (qutrits).
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Later on we will be able to extract conclusions for qudits as well. There are still many
important aspects to be studied about this model and its coupling to a thermal bath. We need to
compute the energy gap of the Hamiltonian, i.e. the energy difference between the ground state
where the code lies and the excited states which represent the errors. It is also important to
calculate the anyon statistics, as long as they are associated with the excitations of a topological
system with qutrits.

At d = 3, the phase factors are ω = ei(2π/3), ω2
= ei(4π/3), ω3

= 1. We will see, for this
particular case, how excitations can be created, moved and annihilated. This will give us the
properties of the anyon model that is going to be associated with the group Z3.

As before, we use a notation in which σ z
j = Z j and σ x

j = X j , except that we use the symbol
σ to denote errors acting on the system, i.e. bump operators acting because of the coupling to
the thermal bath, whereas we shall use X, Z for the Hamiltonian interactions defined by the
vertex and plaquette operators of H sys.

Errors on the system can be expressed in terms of operators σ x , σ z or products containing
them, and acting on each edge j where the qutrits are placed. And the same goes for σ z. To
see what effect these errors have on the system, we will see how the ground state changes
by applying σ x,z. We will see that this corresponds to processes in which anyons are created,
annihilated or moved throughout the torus.

Let us see what happens when we bump a qutrit in a position j from the outside and then
act with the Hamiltonian Haux,

Hauxσ
z
j |ψ〉.

Note that every operator of the Hamiltonian commutes with this σ z
j except two As operators

which share a leg with this qubit j . But, contrary to the case of d = 2, there is an orientation
defined on the lattice. So, for instance, if an error (σ z

j ) occurs in a certain vertical edge, one of
these As (the one below) is defined with an X j , thus:

Asσ
z
j |ψ〉 = ω−1σ z

j As |ψ〉 = ω2σ z
j |ψ〉 , (36)

but the As′ above the edge is defined with X−1
j , then:

As′σ z
j |ψ〉 = ωσ z

j As′ |ψ〉 = ωσ z
j |ψ〉 . (37)

Hence, we have two violations of the vertex condition, one with charge ω and the other with ω2.
This is one of the two types of anyons that we will have in this system, and we shall denote it as
an ω2–ω anyon. It is important to point out that these are only labels to classify the excitations
based on the violations of the operator As (and Bp). In principle, we could classify anyons based
on the violation of stabilizers A−1

s (and B−1
p ) that appears in H †

aux. It is just a matter of labeling;
the physics is the same.

Now we can act with σ z
j again and obtain the other anyon type called ω–ω2. Actually, they

could be considered as the same anyon type as before but with opposite orientation. However,
it is convenient to define them as two types of anyons as they will have different braiding
properties. Moving anyons of the same type around each other will be different from the case
of having anyons of different types. Likewise, it will be necessary to have anyons of different
types in order to have fusion of anyons without annihilation. We shall explain this in the next
subsection in more detail.

Note that acting twice with σ z
j is equivalent to acting with (σ z

j )
−1. Thus, although every

error can be expressed in terms of X and Z operators, it will be useful to think sometimes as if

New Journal of Physics 14 (2012) 033044 (http://www.njp.org/)

http://www.njp.org/


17

σz

σz σz
σz

σx

σx

σx

ω

ω

ω2

ω2

>>>>>

>>

>

>

>>>

> > > >

>>

>> >>

>>>

σσσσσ

σσσσσσ

Figure 8. Anyons of type x (red) on the direct lattice. Anyons of type x (green)
on the dual lattice.

we act with either X, Z or X−1, Z−1. All these arguments are exactly the same in the case of Bp

operators and σ x errors. Therefore, we have four types of anyons, two of plaquette type and two
of vertex type.

Let us study now the braiding of the anyons. We will consider two chains of different types:
plaquette anyon and vertex anyon (as in figure 8). In this case, we get something remarkably
different from the d = 2 case. Now it is not the same to let one anyon remain still and move the
other around it as it is to do it the other way around. Thus, let us move particles around each
other. For example, let us move an x-type particle around a z-type particle (see figure 9). Then,

|9initial〉 = Sz(t) |ψ x(q)〉, |9final〉 = Sx(c) Sz(t) |ψ x(q)〉 = ω2
|9initial〉,

because Sx(c) and Sz(t) cross each other on just one qutrit satisfying the relation

X Z = ω2 Z X

and Sx(c)|ψ x(q)〉 = |ψ x(q)〉. We see that the global wave function, i.e. the state of the entire
system, acquires the phase factor ω2. Nonetheless, if the operation is the opposite, i.e. if we
move a z-type particle around a x-type particle, then

|9initial〉 = Sx(q) |ψ z(t)〉, |9final〉 = Sz(c) Sx(q) |ψ z(t)〉 = ω|9initial〉,

since Sx(q) and Sz(c) cross each other just on one qutrit again satisfying the relation

Z X = ωX Z (38)

and Sz(c)|ψ z(t)〉 = |ψ z(t)〉. We see that the global wave function acquires now the phase
factor ω.
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Figure 9. Anyons of type Z (red) on the direct lattice attached to a string t .
Anyons of type x (green) on the dual lattice associated with a string q . The
x-type particle moves around a z-type particle on a closed string c.

Thus, we arrive at a very important novelty for qutrits that is different from the case when
we dealt with qubits in two aspects.

1. The phase that the anyon picks up is different from −1.

2. The phase depends on the orientation in which the braiding close path is traversed.

3.2. New anyon energy processes

First of all, let us look at the gap of the Hamiltonian. We will reach our first excited state by
applying a σ z or σ x operator to the ground state. Let us see what is the energy difference between
the ground state and the first excited state. Remember that 2H sys

= Haux + H †
aux. We denote by

P and S the number of plaquette and vertex operators, respectively, with P + S = N being the
number of qutrits in the lattice, and {l, l ′

} are the adjacent vertices of the site of a qutrit j :

H |ψ〉 =
1

2

{
−

∑
s

As −

∑
p

Bp + h.c.

}
|ψ〉 = −(P + S) |ψ〉 , (39)

Hσ z
j |ψ〉 =

1

2

{
−

∑
s

As −

∑
p

Bp + h.c.

}
σ z

j |ψ〉 = −(P + S − 2)σ z
j |ψ〉 −

1

2
(Alσ

z
j |ψ〉

−Al ′σ
z
j |ψ〉 + A†

l σ
z
j |ψ〉−A†

l ′σ
z
j |ψ〉)=−(P + S−2)σ z

j |ψ〉−ω2σ z
j |ψ〉−ωσ z

j A†
l ′ |ψ〉

= −(P + S − 2 +ω +ω2)σ z
j |ψ〉 = −

(
P + S − 2 + 2 cos

2π

3

)
σ z

j |ψ〉

= −(P + S − 3)σ z
j |ψ〉 .
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Figure 10. (1) Fusion of anyons (ending tied, not annihilated). (2) Movement of
an anyon. We plot just one dimension as long as the rest of the lattice is irrelevant,
i.e. the process is the same everywhere.

Thus, the energy difference is

1E = 3.

The action of σ x produces the same energy increment but we have to do the commutation
with the operators Bp.

This calculation can be easily extended to the case of qudits with arbitrary d , obtaining the
gap equation

1E =1d = 2

(
1 − cos

2π

d

)
. (40)

Note that there is a reduction of the energy gap for d = 3 in comparison with the case of
qubits, where it was 4. It is also important to point out that if we act again on the same bond
of the lattice with (σ z)−1, there would be an energy reduction of the same amount of energy.
Moreover, if at the endpoint of an anyon ω — ω2 we act with σ z, we obtain the same pair of
anyons again, and the same energy, but longer (see figure 10.(2)). In this process, the energy is
preserved, 1E = 0. This means that there is no energy exchange between the thermal bath and
the system. We can understand the process as a diffusion of the anyon with no energy cost. In
analogy to the case d = 2, this is what is called moving an anyon. It is also important to remark
that for qutrits, all processes that involve moving a simple pair of anyons still have no energy
cost.

Until now, there is a complete analogy with the case of d = 2. But we are going to see now
a process that only occurs at d > 2. Imagine that there have been two excitations on the system,
and two anyons of opposite orientation have been created. Moreover, they are separated by just
one vertex operator. The situation is plotted in figure 10.(1).
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Imagine that we act now with a σ z on the bond, which is error-free, that links the anyons
ω2—ω and ω—ω2 (opposite orientation). Let us analyze the energy process.

H
∣∣ψ ′
〉
= −

1

2

(
−

∑
s

As −

∑
p

Bp

) ∣∣ψ ′
〉
+ h.c.= −(P + S − 6) |ψ〉 ,

Hσ z
j

∣∣ψ ′
〉
= −

1

2

(
−

∑
s

As −

∑
p

Bp

)
σ z

j

∣∣ψ ′
〉
+ h.c.= −

1

2
(P + S −ω−ω−ω2ω2)σ z

∣∣ψ ′
〉

−
1

2
(P + S −ω2

−ω2
−ωω)σ z

∣∣ψ ′
〉
= −

(
P + S − 6 +

3

2

)
σ z
∣∣ψ ′
〉
, (41)

so the energy difference is

1E = −3/2.

What has occurred is that two anyons have been tied together, but not annihilated. This
process lowers the energy of the system by a smaller amount than the process of annihilation. If
in this situation we would act with a (σ z

j )
−1 on the point where the two pairs of anyons are tied

together, the two anyons would split apart, and this process would cost energy 1E = 3/2. This
could be analyzed exactly the same way with σ x errors and Bp operators.

It is remarkable that this phenomenon cannot happen at d = 2, as at d = 2 the product
ωω = (−1)(−1)= 1. Therefore, d = 3 is the first nontrivial case to have processes like these in
a toric code with qudits.

3.3. Master equation for topological qutrits

As we have seen, all these processes are generated by the action of operators σ z, (σ z)2 and
σ x , (σ x)2; as in this case, the square of the Pauli operators is their Hermitian conjugate.
Nevertheless, the energy exchange depends on the situation of the system when we bump it with
the thermal bath from outside. Before writing the master equation that describes the dynamics
of the system, it will be useful to distinguish between these situations by local projectors. The
answer to the question whether this is possible or not in this case is not trivial. However, we
show that it is possible to classify into groups of processes that have the same energy gain from
the bath. Furthermore, they could be distinguished by certain projection operators that only
involve two adjacent vertex or plaquette operators.

We arrive at the following classification:

1−−−1 P j
++ = 4A(1)α=+1(s)A

(1)
α=−1(s)A

(1)
α=+1(s

′)A(1)α=−1(s)

ω−−−1 P j
+(1) = 8A(2)α=0(s, s ′)A(2)α=+1(s, s ′)1A(s, s ′)1A†(s, s ′)A(1)α=−1(s)A

†(1)
α=−1(s)

1−−−ω P j
+(2) = 8A(2)α=0(s, s ′)A(2)α=+1(s, s ′)1A(s, s ′)1A†(s, s ′)A(1)α=−1(s)A

†(1)
α=−1(s)

ω2
−−−1 P j

0(1) = 8A(2)α=0(s, s ′)A(2)α=−1(s, s ′)1A(s, s ′)1A†(s, s ′)A(1)α=+1(s
′)A†(1)

α=+1(s
′)

1−−−ω2 P j
0(2) = 8A(2)α=0(s, s ′)A(2)α=−1(s, s ′)1A(s, s ′)1A†(s, s ′)A(1)α=+1(s)A

†(1)
α=+1(s)

ω−−−ω P j
0(3) = 8A(2)α=0(s, s ′)A(2)α=−1(s, s ′)A(1)α=+1(s)A

†(1)
α=+1(s)A

(1)
α=+1(s

′)A†(1)
α=+1(s

′)
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Figure 11. (1) Initial state 1—1 ⇒ Final state ω2—ω. (2) Initial state ω2—ω⇒

Final state ω—ω2. This is an example of what happens to the topological charges
when there is a bump from the thermal bath outside. The first one the energy gain
is 1E = 3. The second one 1E = 0.

ω2
−−−ω P j

−(1) = 8A(2)α=+1(s, s ′)A(2)α=−1(s, s ′)1A(s, s ′)1A†(s, s ′)A(1)α=+1(s
′)A†(1)

α=+1(s
′)

ω−−−ω2 P j
−(2) = 8A(2)α=+1(s, s ′)A(2)α=−1(s, s ′)1A(s, s ′)1A†(s, s ′)A(1)α=+1(s)A

†(1)
α=+1(s)

ω2
−−−ω2 P j

−− = 8A(2)α=0(s, s ′)A(2)α=+1(s, s ′)A(1)α=−1(s)A
†(1)
α=−1(s)A

(1)
α=−1(s

′)A†(1)
α=−1(s

′)

(42)

In this table, we have represented all combinations of two adjacent topological charges. In
the first column, we depict a representation of the different types of anyons, with two topological
charges attached at their ends and linked by a dash. Correspondingly, all these anyons have an
intrinsic orientation. At the left side of the dash there is the eigenvalue of the operator As and
at the right side, the eigenvalue of the adjacent operator A′

s. A physical qutrit j would be in the
middle of the dash (see the example in figure 11). In the second column, we write the projector
that gives 1 for that situation and 0 for the others.

Here we have defined the following operators in order to simplify the notation:

A(1)α=0,+1,−1(s) := (1 −ωαAs),

A(2)α=0,+1,−1(s, s ′) := (1 −ωαAs A′

s),

1A(s, s ′) :=A(1)α=0(s
′)−A(1)α=0(s),

where s and s ′ are the two vertexes surrounding the qutrit j . The index α takes values on the
exponent of the phases ω that appear from the braiding processes. These projectors tell us which
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charges of the system surround a certain qutrit. That is why they are local projectors. Moreover,
it is easy to verify that they form a set of orthogonal projectors:∑

α

P j
α = 1,

P j
α = P j†

α ,

(P j
α )

2
= P j

α .

As we have already explained, we classify the situation of the system in terms of the charges
according to the eingenvalues of the operators As associated with the part of the Hamiltonian
Haux. One could do the same thing for A−1

s , but the situation of the system will be the same
independently of the label we assign them. So these projectors can discriminate perfectly
between eigenstates of the Hamiltonian H sys.

Now, given a certain state of the system |ψ ′〉, by applying these projectors we can figure out
which situation we have. This means that if an operator σ z or σ x (or their Hermitian conjugate)
is going to act on our system, we will know which energy process is bound to happen. Based on
this, and studying the different situations that we can encounter, one can define a set of operators
that tells us whether an anyon has been moved, created, annihilated or fused when we apply the
generalized Pauli operators (as we did in figure 10). This is done by analyzing the initial and the
final state after the action of a bump operator and seeing which would be the energy after and
before the process, as shown in figure 11. Therefore, we have:

a(1)†j := σ z
j P j

++ + (σ z
j )

−1 P j
++,

a(1)j := (σ z
j )

−1 P j
−(1) + σ z

j P j
−(2),

a(2)†j := (σ z
j )

−1 P j
+(1) + σ z

j P j
+(2) + σ z

j P j
0(1)(σ

z
j )

−1 P j
0(2), (43)

a(2)j := (σ z
j )

−1 P j
0(3) + σ z

j P j
0(3) + σ z

j P j
−− + (σ z

j )
−1 P j

−−,

a0
j := σ z

j P j
+(1) + (σ z

j )
−1 P j

+(2) + σ z
j P j

0(2)(σ
z
j )

−1 P j
0(1) + σ z

j P j
−(1) + (σ z

j )
−1 P j

−(2).

Here the upper indices of operators a j are related to the energy cost of the process.

• a(1)†j creates a pair of anyons of z-type and a(1)j annihilates it. The energy cost is 1E = 3.

• a(2)†j and a(2)j are related to the process of fusion or separation, respectively, of anyons as in
figure 10.(1) and also to the process of creation (and annihilation) of a pair of anyons tied
to a previous pair. The energy cost is 1E =

3
2 .

• a0
j moves anyons and also it can invert the orientation of a pair of anyons (as in figure 11.(2).

There is no energy cost in these processes.

For the plaquette operators Bp we proceed in the same way, obtaining a similar result.
The corresponding local projectors that we denote as R j are built analogously just by changing
As for Bp, where p and p′ are the adjacent plaquettes to the qutrit j . Then the operators that
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describe the analogous process for x-type anyons are

b(1)†j := σ x
j R j

++ + (σ x
j )

−1 R j
++,

b(1)j := (σ x
j )

−1 R j
−(1) + σ x

j R j
−(2),

b(2)†j := (σ x
j )

−1 R j
+(1) + σ x

j R j
+(2) + σ x

j R j
0(1)(σ

x
j )

−1 R j
0(2),

b(2)j := (σ x
j )

−1 R j
0(3) + σ x

j R j
0(3) + σ x

j R j
−− + (σ x

j )
−1 R j

−−,

b0
j := σ x

j R j
+(1) + (σ x

j )
−1 R j

+(2) + σ x
j R j

0(2)(σ
x
j )

−1 R j
0(1) + σ x

j R j
−(1) + (σ x

j )
−1 R j

−(2).

(44)

Some of these operators are associated with more than one projector, unlike for qubits. That is
because for three-level systems, the possibilities for different excitation scenarios have grown
significantly.

As we have seen in the previous section, these operators arise naturally as the Fourier
transform of the interaction Hamiltonian when a thermal bath is weakly coupled with our
system,

eit H sys
Sα e−it H sys

=

∑
ω

Sα(ω) e−iωt . (45)

In this case, the interaction Hamiltonian will be of the form

V =

∑
α

Sα ⊗ fα =

∑
j

σ z
j ⊗ f z

j + (σ z
j )

−1
⊗ ( f z

j )
† + σ x

j ⊗ f x
j + (σ x

j )
−1

⊗ ( f x
j )

†, (46)

and it is quite important to remark that there are only three Bohr frequencies this time,
ω = 0,±3

2 ,±3.
We can check that the dynamical operators obtained are indeed compatible with this

interaction potential as
∑

α Sα =
∑

α Sα(ω). In our case, it is trivial to check:

σ z
j + (σ z

j )
−1

=

∑
n

an
j ,

σ x
j + (σ x

j )
−1

=

∑
n

bn
j ,

with n = 0, 1, 2, using equations (44) and (45).
Moreover, [H, an] ∝ an, based on the fact that H sys is made of stabilizers, which at most

introduces a phase when they are applied to states ai |φ〉. Thus, As(Bp)ai |φ〉 ∝ ai |φ〉 and
ai As(Bp) |φ〉 ∝ ai |φ〉; therefore [H, ai ] ∝ ai ,∀ai a dynamical operator of our system. With this
proviso, the Davies generator turns out to be given by

dX

dt
= G(X)= iδ(X)+L(X), (47)
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with

δ(X)= [H sys, X ] =
1
2 [Haux + H †

aux, X ],

L(X)= Lz(X)+Lx(X),

Lx(X)=

∑
j

1

2
R(3){(−b(1)†j b(1)j X − Xb(1)†j b(1)j + 2b(1)†j Xb(1)j )+ e−3β(−b(1)j b(1)†j X − Xb(1)j b(1)†j

+2b(1)j Xb(1)†j )} + 1
2 R(3/2){(−b(2)†j b(2)j X − Xb(2)†j b(2)j + 2b(2)†j Xb(2)j )

+e−
3
2β(−b(2)j b(2)†j X − Xb(2)j b(2)†j + 2b(2)j Xb(2)†j )} −

1
2 R(0)[b0

j , [b0
j , X ]],

Lz(X)=

∑
j

1
2 R(3){(−a(1)†j a(1)j X − Xa(1)†j a(1)j + 2a(1)†j Xa(1)j )+ e−3β(−a(1)j a(1)†j X − Xa(1)j a(1)†j

+2a(1)j Xa(1)†j )} + 1
2 R(3/2){(−a(2)†j a(2)j X − Xa(2)†j a(2)j + 2a(2)†j Xa(2)j )

+e−
3
2β(−a(2)j a(2)†j X − Xa(2)j a(2)†j + 2a(2)j Xa(2)†j )} −

1
2 R(0)[a0

j , [a0
j , X ]]. (48)

3.4. Topological order

Similarly to the case of qubits, we will study the evolution of the expectation value 〈GS| Xc |GS〉,
where Xc is the tensor product of σ x generalized Pauli operators (d = 3) along a non-
contractible loop, and |GS〉 denotes a certain ground state in the stabilizer subspace; namely,
a superposition of the degenerate states in the ground state manifold of H sys.

In the weak-coupling limit, the master equation that describes the dynamics of this quantity
is

dXc(t)

dt
= i[H sys, Xc(t)] +L[Xc(t)]. (49)

In order to simplify the calculation, we remove the free evolution part of the equation

X̃c(t)= e−iH syst Xc(t)e
iH syst

H⇒
dX̃c(t)

dt
= L[X̃c(t)], (50)

both the dissipator L and the mean value 〈GS| Xc |GS〉 being invariant under this transformation.

3.5. Short-time regime

In the short-time regime, we can approximate X̃c(t)' (1 + tL)Xc; here we denote Xc := Xc(0).
Thus, the evolution of 〈GS| Xc(t) |GS〉 is

〈X̃c(t)〉 ' 〈GS| Xc |GS〉 + t 〈GS|L(Xc)|GS〉. (51)

We need to calculate 〈GS|L(Xc) |GS〉, with L(Xc)= Lx(Xc)+Lz(Xc). This calculation is
done in appendix A, obtaining

〈GS|L(Xc) |GS〉 = −
1

2
R(1)e−1β

|c| 〈GS| Xc|GS〉. (52)

Hence, we can define 0 := 1

2 R(1)e−1β
|c| as the initial decay rate of the system. For qutrits,

1= 3, while for qubits (see equation (25)) we have obtained an analogous expression but with
1= 4 instead.
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This result can be generalized for the case of qudits with arbitrary d. We have already seen
that, at short times, only the creation of anyons contributes to the decay of topological order. The
free diffusion of anyons and the fusion processes among them will not appear as they are second
order processes in time. However, as we increase d there are more types of anyons with different
energies. Moreover, a pair of anyons should always be compatible with the conditions

∏
s As = 1

and
∏

p Bp = 1. That means that the possible types of anyons with different energies are of the
form ωn

−ωd−n with n = 1, . . . , bd
2 c, and respective energies 1n = 2(1 − cos 2πn

d ). Note that
n = 1 refers to the lowest energy pair of anyons, i.e. the energy gap of the Hamiltonian. Thus,
the initial decay rate has to be the sum of all these contributions:

0d =

b
d
2 c∑

n=1

1n

2
|c|R(1n)e

−1nβ . (53)

It is important to point out that in the case of qudits, an analogous expression for the interaction
with the environment to (13) involves Sα = σ x , (σ x)2, . . . , (σ x)d−1, σ z, (σ z)2, . . . , (σ z)d−1. All
nontrivial powers of σ x and σ z are included to allow for excitations of physical qudits from one
level to another, at first order in time.

Using equation (53) it will be possible to establish a crossover temperature Tc as the limit
for which the initial decay rate 0 will be larger for qubits than for qudits. For the sake of
comparison, we take R(1n) the same for qubits and qudits. This is reasonable since 1n are
of the same order, and R(1n) are the Fourier transforms of the bath coupling that induces
the excitations on the physical qudits. Thus, we set up the condition 0d(Tc) := 02(Tc). Using
equation (53) we arrive at the following expression:

4 =

b
d
2 c∑

n=1

1ne−(1n−4)β >

b
d
2 c∑

n=1

1n, (54)

as 1n < 4 for d > 2, ∀n. Therefore, this equation only has a solution for such values of d

satisfying
∑b

d
2 c

n=11n < 4. But, this is only true for d = 3. Thus, there exists only such a Tc for
qutrits. For other values of d, the initial decay rate for qudits will always be larger than for
qubits. This happens as

∑
n 1n increases almost linearly with d , and d = 3 is the only case

when this quantity is smaller than 4, i.e. the gap in the case of qubits. Let us now compute Tc

for qutrits:

3E0 e−3E0βc = 4E0 e−4E0βc, (55)

with E0 being the natural energy unit of the system. This leads to the following crossover
temperature:

Tc =
E0

kB ln 4
3

. (56)

The meaning of this temperature is the following. Above this temperature Tc, the initial decay
rate for qutrits is smaller than that for qubits, something that makes qutrits better in this
comparison. For E0 ∼ 100 kHz used in the proposal of a Rydberg quantum simulator [63] for
the operators of the 2D toric code, we obtain an estimate of Tc ∼ 20µK.

In addition, it could be computed a Tc comparing systems with d odd and (d − 1) even.
There is always a temperature above which the system of qudits with d odd has a lower initial
decay rate than the previous (d − 1) even.
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It is also important to point out that 0 is only the initial decay rate. It is possible that the
dynamics of anyons, with free diffusion, etc, play an important role in the loss of topological
order. Beyond short times, our conjecture is that the new processes that appear in the case of
qutrits, i.e. fusion of anyons that end tied up, will be an obstacle to the free diffusion of anyons.
This would represent an improvement for the stability of the generalized toric code in some
intermediate time regime for this is the cause of the loss of topological order in the system.

3.6. Long-time regime

Now we want to study the master equation (49) in the opposite time regime. We are interested
in the fate of the non-local order parameter we are using to describe the topological order in
a system of qudits in a generalized toric code. We conjecture that the final state will be given
by a thermal Gibbs state. To show that our observable for the order parameter 〈Xc〉 approaches
the expectation value of Xc in the Gibbs state for times long enough, we resort again to the
condition (7). In the generalized case, it reads as

{σx , σ
2
x , . . . , σ

d−1
x , σz, σ

2
x , . . . , σ

d−1
z }

′
= C1, for any d. (57)

This is due to the fact that if some generic operator, say A, commutes with every element
of the set {σx , σ

2
x , . . . , σ

d−1
x , σz, σ

2
x , . . . , σ

d−1
z }, so does it with every element of the d-Pauli

group. This follows from the Jacobi identity and the fact that σzσx = ωσxσz. Therefore, given
the irreducibility of the computational representation of the d-Pauli group (the technical details
of this proof are given in appendix B), the condition (57) holds.

With this result, we may obtain the behavior in the long-time regime

〈Xc(t → ∞)〉 = Tr(Xcρ(t → ∞))=
1

Z

∑
i

e−βλi 〈ψi | Xc |ψi〉 = 0, (58)

which implies that the topological order is also destroyed for qudits in the generalized toric code
when times of interaction with a thermal bath are long enough.

Now, let us summarize and combine the results for both time regimes, i.e. short- and
long-time behaviours. We have proved that at short times the global order parameter we are
considering behaves as

〈Xc(t)〉β = e−0t
〈Xc(0)〉, (59)

with 0 =
1

2 R(1)e−1β
|c| and 1= 3 for qutrits. We have also shown that there exits a crossover

temperature Tc above which the initial decay rate for qutrits is smaller than for qubits.
Furthermore, we have shown this event only occurs in the case of qutrits, as for other values
of d, the initial decay rate is always larger than for qubits. On the other hand, far from this
initial short-time regime, the topological order of the system decays to zero for long enough
times.

4. Conclusions

We have introduced the basic concepts of the 2D Kitaev model for qubits as well as a
generalization of the code for qudits, i.e. d-level systems with the main purpose of studying
its decoherence properties due to thermal effects. To this end, we have coupled these systems to
thermal baths in order to study the thermal stability within a quantum open system’s formalism,
namely Davies’ theory.
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The generalization of the toric code leads to new physics. Indeed, we have specialized
for the case of qutrits and obtained very interesting results. First of all, new Abelian anyons
have arisen with novel braiding properties, i.e. new statistics by exchange of particles. For
instance, let us move a pair of anyons around another pair that stays still. We would pick up a
different phase, letting the first pair remain still and moving the other one around. Furthermore,
new energy processes appear which are forbidden for qubits, d = 3 being the first nontrivial
system where these new processes can be observed. Moreover, we present a master equation
that describes the dynamics of any observable of the system coupled to a thermal bath, giving a
complete description of the problem.

We have proposed a new way to study thermal stability regarding the loss of topological
order in the system. At short times, the system starts losing its order with a certain decay rate
that we are able to compute explicitly. We have checked that the system relaxes to the thermal
state for any value of d, as expected. However, we have proved that above a certain crossover
temperature, the initial decay rate for qutrits is smaller than in the original case for qubits.
Surprisingly, this behavior only happens with qutrits and not with other qudits with d > 3.

It would be very interesting to be able to generalize this study further to other topological
codes [64–70] coupled to thermal baths by deriving appropriate master equations for them.
Other challenges in this direction are to study thermal effects with non-Abelian topological
codes [71–77], higher-dimensional codes [12, 78–88] and systems with topological order based
on two-body interactions [89–92], instead of many-body interactions in the Hamiltonian. This
would facilitate the physical simulation of these topological quantum models [63, 93–99].
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Appendix A. Evolution of the order parameter for qutrits

In order to compute 〈GS|L(Xc)|GS〉 (with L(Xc)= Lx(Xc)+Lz(Xc)), we need the expressions
for the system operators that appear in equation (48) which were defined previously in
equations (44) and (45). These operators are expressed in terms of some orthogonal projectors
whose definition is given in equation (42). However, there are only two projectors that are
relevant here, namely

P j
++ |GS〉 = |GS〉 and R j

++ |GS〉 = |GS〉 , (A.1)

as the rest of them vanish when acting on the ground state. Remember that P j are the projectors
associated with the stabilizers As and R j with stabilizers Bp. Moreover, we have

b(1)j |GS〉 = 0, b(2)j |GS〉 = 0, b(2)†j |GS〉 = 0, b(0)j |GS〉 = 0. (A.2)

Thus, after doing some simplifications on equation (48):

〈GS|Lx(Xc)|GS〉 =
R(1)

2
e−1β

∑
j

〈GS|(2b(1)j Xcb
(1)†
j − b(1)j b(1)†j Xc − Xcb

(1)
j b(1)†j )|GS〉

= 2|c| 〈GS| (σ x
j + (σ x

j )
−1)Xc |GS〉 = 0, (A.3)
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as Xc |GS〉 ∝ |GS〉 but σ x
j |GS〉 is orthogonal to |GS〉, and we have used the fact that [P j

±,0, Xc] =

0 for every j , as these projectors are only functions of vertex operators. This is not true for R j
±,0

if j ∈ c, i.e. j belongs to the path where Xc is acting on. In that case, since σ z
j σ

x
j (σ

z
j )

−1
= ωσ x

j ,
we obtain σ z

j Xc(σ
z
j )

−1
= ωXc for the string operator. In addition, by making use of

a(1)j |GS〉 = 0, a(2)j |GS〉 = 0, a(2)†j |GS〉 = 0, a(0)j |GS〉 = 0, (A.4)

the result for 〈GS|Lz(Xc) |GS〉 turns out to be

〈GS|Dz(Xc) |GS〉 =
R(1)

2
e−1β

∑
j

〈GS| (2a(1)j Xca
(1)†
j − a(1)j a(1)†j Xc − Xca

(1)
j a(1)†j ) |GS〉

=
R(3)

2
e−3β

∑
j

〈GS| (σ z
j + (σ z

j )
−1)Xc(σ

z
j + (σ z

j )
−1) |GS〉 − 〈GS| P j

++ Xc |GS〉

−
1

2
〈GS| P j

++(σ
z
j + (σ z

j )
−1)P j

++ Xc |GS〉 − 〈GS| Xc P j
++ |GS〉

− 〈GS| Xc P j
++(σ

z
j + (σ z

j )
−1)P j

++ |GS〉

=
R(3)

2
e−3β

∑
j

δ j 6∈c(〈GS| (2 + σ z
j + (σ z

j )
−1)Xc |GS〉 − 〈GS| Xc |GS〉

−
1

2
〈GS| (σ z

j + (σ z
j )

−1)Xc |GS〉 − 〈GS| Xc |GS〉

−
1

2
〈GS| (σ z

j + (σ z
j )

−1)Xc |GS〉)

+ δ j∈c(〈GS| (σ z
j + (σ z

j )
−1)(ω2σ z

j +ω(σ z
j )

−1)Xc |GS〉 − 2 〈GS| Xc |GS〉

− 〈GS| (σ z
j + (σ z

j )
−1)Xc |GS〉)= −

3

2
R(3)e−3β

|c| 〈GS| Xc |GS〉

= −
1

2
R(1)e−1β

|c| 〈GS| Xc |GS〉 ,

where |c| is the number of points in the path c.

Appendix B. Irreducibility of the computational representation of the d-Pauli group

The d-Pauli group is generated by products of σx and σy such that σ d
x = σ d

z = 1 and σzσx =

ωσxσz, where ω is a primitive d-root of unity. Its order is d3, which is a direct consequence that
any element of the group can be written as ωnσm

x σ
k
z for some n, m and k.

We take the representation of the d-Pauli group when acting on the computational basis:

σx |n〉 = |n + 1〉 mod. d, (B.1)

σz|n〉 = ωn
|n〉, (B.2)

and we want to show that this representation is irreducible. We proceed by computing the
character χ of every one of its elements, which is given by the trace of the matrices. Using
the computational basis when taking the trace, from the above relations, χ(σm

x )= 0 for m ∈

{1, . . . , d − 1}. Similarly χ(σm
z )= 0 for m ∈ {1, . . . , d − 1} as the sum of the roots of unity
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vanishes. On the other hand, because σzσx = ωσxσz and the cyclic property of the trace, we
conclude that the character of every element of the form σm

x σ
k
z is zero for any representation.

The rest of the terms are proportional to the identity ωn1, and so χ(ωn1)= ωnd.
The irreducibility criterion asserts [9, 100] that a representation of a group G is irreducible

if and only if the scalar product of characters is the identity, that is

(χ ,χ)=
1

|G|

∑
g∈G

χ∗(g)χ(g)= 1, (B.3)

where |G| is the order of the group. For the computational representation of the d-Pauli group
we have

(χ ,χ)=
1

d3

d−1∑
n=0

(ωnd)∗ωnd =
1

d

d−1∑
n=0

|ω|
n
= 1, (B.4)

thus, the representation is irreducible.
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