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Resumen

En los últimas décadas se ha avanzado mucho en la neuroimagen cerebral. Han

surgido varias técnicas que miden distintos aspectos de la función cerebral, como el

matabolismo, las respuestas hemodinámicas o las corrientes neuronales. Entre ellas,

la magnetoencefalografía (MEG) destaca por su alta resolución temporal, que permite

inspeccionar la dinámica de la actividad cerebral. En esta tesis estudiamos la utilidad

de medidas de potencia y conectividad funcional (FC, functional connectivity) de

MEG en estado basal en el estudio de deterioro cognitivo leve (DCL) y evaluamos su

fiabilidad.

Alzheimer y deterioro cognitivo leve

Alrededor de al 20% de la población mayor de 70 años presenta DCL: su estado

cognitivo es peor del que se considera normal para su edad, aunque el deterioro no

es tan severo como para ser considerado demencia. Hay varios tipos de DCL, según el

(o los) dominio (s) cognitivo (s) afectados. El DCL amnésico es el tipo más frecuente, y

también es el tipo de interés en esta tesis, ya que presenta altas tasas de conversión

(hasta 45% en 30 meses) a enfermedad de Alzheimer (EA). A su vez, la EA es una

enfermedad neurodegenerativa que suele manifestarse primero como un déficit en

la memoria a corto plazo, aunque también se caracteriza por deterioro en funciones

visio-espaciales, lenguaje, o cambios de humor o personalidad. La EA es hoy en día

especialmente relevante, ya que afecta a un 5-7% de la población mayor de 60 años

en la actualidad, y se calcula que de aquí a 2050 su tasa de incidencia podría incluso

duplicarse. Sin embargo, no hay tratamientos efectivos contra la EA, y ni siquiera

están claras sus causas. Por lo tanto, es importante investigar qué cambios ocurren

en DCL/EA, ya que esto ayudaría a conocer los procesos que subyacen a la EA. En

esta tesis se pretende evaluar la utilidad de la MEG para detectar alteraciones en la

actividad electrofisiológica en DCL. Aunque la MEG no es la modalidad de neuroim-

agen más comúnmente usada en el estudio de DCL/EA, puede ser de mucha utilidad

ya que, al contrario que otras técnicas de neuroimagen, es una medida directa de la
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actividad neuronal, con una resolución espacial adecuada (entorno a 1cm) y una muy

buena resolución temporal (entorno a 1ms), además de ser totalmente no invasiva.

Así pues, en esta tesis se evaluaron primero diferencias en el espectro de potencia y en

FC en registros MEG en estado de reposo entre sujetos con DCL y controles sanos de

la misma edad. Después, se cuantificó la fiabilidad test-retest de la potencia y FC en

estado de reposo, para evaluar la potencialidad de estas medidas en la caracterización

de sujetos individuales.

MEG

La MEG mide flujos magnéticos en varios sensores repartidos en un casco, sobre el que

se apoya la cabeza del sujeto. Estos flujos magnéticos son generados por las pequeñas

corrientes neuronales, y son por tanto muy débiles, de forma que la MEG requiere

sensores muy precisos, una habitación aislada que apantalle el ruido magnético

ambiental, y un preprocesado cuidadoso que elimine ruido ambiental y biológico.

Se considera que la MEG es sólo sensible a las corrientes post-sinápticas generadas

por la actividad síncrona de cientos de miles de neuronales piramidales, que for-

man pequeños dipolos de corriente. Estas corrientes (y en consecuencia los campos

magnéticos) varían rápidamente con el tiempo, y contienen actividad oscilatoria a

distintos ritmos: delta (2-4 Hz), zeta (4-8 Hz), alfa (8-13 Hz), beta (12-30 Hz), y gama

(30-45 Hz). Todos estos ritmos están involucrados en una gran variedad de funciones

cognitivas y sensoriales. Para extraer esta actividad oscilatoria de los datos MEG, se

realizó un procesado de datos, que se describe a continuación. Primero, se eliminó

gran parte del ruido (campo magnético no procedente de corrientes neuronales)

mediante un filtrado espaciotemporal que separa componentes internas y externas

a la cabeza del sujeto (tSSS o spatiotemporal signal space separation) y una detección

de artefactos oculares, musculares y de salto. Segundo, se procedió a la reconstrucción

de fuentes de los datos MEG limpios. Así pues, la MEG mide flujos magnéticos en la

superficie de un casco exterior a la cabeza, y es necesaria la resolución de un problema

inverso para estimar qué corrientes neuronales generaron esa actividad en sensores.

A su vez, el problema inverso requiere resolver un problema directo, que calcula el

campo magnético producido en sensores por determinadas corrientes neuronales. El

problema directo tiene solución única determinada por las ecuaciones de Maxwell,

una vez conocidas las conductividades de los tejidos atravesados. Esto se estimó

aplicando un modelo directo a la geometría de las superficies del cerebro, cráneo y

cuero cabelludo extraídas de imágenes de resonancia magnética (RM) ponderadas en

T1. Una vez resuelto el problema directo, el problema inverso no es inmediato, ya que

tiene infinitas soluciones. Es por lo tanto necesario aplicar una hipótesis o elegir un
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modelo inverso para restringir este espacio infinito de soluciones. En esta tesis, esto

se realizó mediante beamforming, El tercer paso consistió en, a partir de la actividad

de las corrientes neuronales en espacio de fuentes reconstruidas con beamforming,

estimar potencia y FC. La potencia se calculó directamente a partir del espectro de po-

tencia de las series temporales en fuentes. La FC, que mide dependencias estadísticas

entre las actividades de distintas regiones, se calculó con medidas de sincronización

de amplitud y de fase en las series temporales en fuentes para cada uno de los ritmos

cerebrales.

Alteraciones en el espectro y la red por defecto en DCL

Para estudiar las alteraciones en el espectro y FC en DCL, se realizaron registros en

estado de reposo a sujetos con DCL y controles. Estos datos MEG se usaron después

en dos estudios distintos.

• El primer estudio se centra en el pico alfa, que es un marcador comúnmente uti-

lizado en espectros electrofisiológicos. Se ha descrito que el espectro de poten-

cia EEG/MEG está enlentecido en EA, ya que pacientes con EA suelen mostrar

más potencia que controles a bandas de frecuencia lentas y menos potencia a

bandas de frecuencia altas. Aquí pretendíamos ver si este enlentecimiento está

ya de manifiesto en DCL. Para ello, se procesaron los datos MEG siguiendo los

pasos descritos anteriormente, y se calculó el espectro de potencia para cada

región del atlas Harvard-Oxford. Después, se detectó el pico alfa (su frecuencia

y su amplitud) ajustando por mínimos cuadrados el espectro de potencias a una

gaussiana sobre una ley de potencia. Finalmente, se compararon la frecuencia

y amplitud del pico alfa entre controles y DCL con un modelo ANOVA de 4

factores: diagnóstico, edad, sexo y nivel educativo. Se encontró que la frecuencia

del pico alfa era significativamente menor en DCL que en controles en amplias

zonas del cerebro, sobretodo en regiones posteriores. Sin embargo, la frecuencia

y amplitud del pico alfa dependían también de otros factores como la edad y

el sexo. Además, la frecuencia del pico alfa correlacionó positivamente con el

volumen de hipocampo, que es un marcador de deterioro comúnmente uti-

lizado en EA. Esto indica que los DCL presentan un enlentecimiento del pico

alfa, y que este enlentecimiento es patológico.

• En el segundo estudio nos centramos en FC en la red por defecto (DMN, de-

fault mode network). Esta red fue descubierta por Raichle et al (2001), y está

fuertemente activada en estado de reposo, mientras que se desactiva cuando

el sujeto está inmerso en la realización de una tarea. También tiene relevancia
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en EA, ya que, por un lado las regiones que la componen como precúneo y

cingulado posterior son de las primeras en presentar acumulación de placas

de beta-amiloide y bajo metabolismo, y por otro lado varios estudios con RM

funcional han encontrado que está más desconectada en EA y en DCL que en

controles. Ya que la DMN ha sido principalmente estudiada con RM funcional,

que es una medida indirecta de las fluctuaciones hemodinámicas asociadas

a la actividad cerebral, en este estudio pretendíamos evaluar las bases elec-

trofisiológicas de las alteraciones de la DMN en DCL a distintas bandas de

frecuencia (delta, zeta, alfa, beta, gama). Para ello, se aplicó el esquema de

análisis descrito anteriormente, y se calculó la FC entre regiones de la DMN

(precúneo, cingulados anterior y posterior y parietal inferior) con la técnica de

correlación de envolventes. Además, se calcularon dos tipos de conectividad

estructural (dSC y wSC) entre estas mismas regiones, que estimaban el número

de tractos que conectan las regiones y la anisotropía fraccional media a lo largo

de estos tractos, respectivamente. Los tractos se reconstruyeron con tractografía

tipo streamline a partir de imágenes de RM ponderadas por difusión. Después,

se aplicaron tests de Mann-Whitney para comparar los valores de FC, dSC y wSC

entre controles y DCLs. Se encontró que tanto la wSC como la FC en la banda

alfa estaban disminuidas en DCL frente a controles.

En ambos estudios encontramos que la MEG es sensible a alteraciones en el estado

de reposo de sujetos con DCL: tanto enlentecimiento del pico alfa como disminución

de FC en alfa en la DMN. Sin embargo, antes de poder usar estos resultados en

un ámbito clínico, es necesario evaluar la fiabilidad de estas medidas de potencia y

conectividad.

Fiabilidad de medidas de potencia y conectividad en estado basal en MEG

Los estudios de DCL descritos anteriormente siguen un esquema de análisis habitual

en MEG, que consiste en hacer estadística entre grupos o condiciones testeando la

hipótesis nula de que no hay diferencias entre las dos poblaciones. Esto sirve para

identificar efectos de grupo, pero no da resultados a nivel individual. Antes de dar

ese paso, es necesario evaluar la variabilidad intrasujeto y la fiabilidad test-retest de

estas medidas. Para ello, se realizaron 3 sesiones de registros MEG en estado basal a

24 sujetos sanos (una a la semana). La fiabilidad de una medida se puede cuantificar

a partir de varias mediciones en los mismos sujetos como
σ2

r

σ2
r +σ2

w
, donde σ2

r es la

varianza real de la medida y σ2
w la varianza del error. En un estudio test-retest como

el presente, σ2
r corresponde a la varianza intersujeto y σ2

w a la varianza intrasujeto.
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Cualquier variabilidad en la medida de un sujeto se considera por lo tanto error,

independientemente de si se debe a ruido en la medición o a un cambio real en la

actividad neuronal del sujeto. De esta forma, se analizó la fiabilidad de medidas de

potencia y FC por separado mediante el coeficiente de correlación intraclase (ICC,

intraclass correlation coefficient).

• Primero, se calculó la potencia tanto en sensores como en fuentes en delta,

zeta, alfa, beta baja (13-20Hz), beta alta (20-30Hz) y gama (30-45 Hz) para cada

sujeto y sesión. Después, se calculó el ICC para cada sensor, fuente, y banda

de frecuencia. En general, zeta, alfa y beta baja presentaban altos valores de

ICC (ICC>0.7) en amplias zonas de la corteza cerebral. En cambio, delta, beta

alta y gama presentaban valores más bajos de ICC (ICC<0.6) en la mayoría

de regiones, aunque también alcanzaron ICC altos en zonas concretas, como

regiones frontales en delta. Para comprobar si la fiabilidad (y los valores de ICC)

dependían de la relación señal a ruido, se estimó la probabilidad condicional

de obtener una determinada variabilidad intrasujeto dado un cierto valor de

potencia. Se observó que existía una dependencia entre ambas variables, ya

que valores de potencia bajos estaban asociados a alta variabilidad intrasujeto.

Sin embargo, está relación no era lineal, ya que potencias altas no siempre

conllevaban baja variabilidad intrasujeto.

• Segundo, se calculó FC entre 17 nodos y el resto de fuentes repartidas a lo largo

de la corteza cerebral, para todas las bandas de frecuencia y cuatro medidas

de FC distintas: d-ecor (correlación de envolventes), lc-ecor (correlación de

envolventes con corrección por volumen de conducción), PLV (phase locking

value) y PLI (phase lag index). Estos nodos componen 7 redes de reposo (RSN,

resting state network): visual, sensori-motora, auditiva, DMN, fronto-insular y

fronto-parietales izquierda y derecha, y se definieron a partir de la literatura

de RSNs con RM funcional. Después, se estimó la fiabilidad de estas medidas

con el ICC, y la concordancia intra- e intersujeto en los mapas de FC con el

coeficiente W de Kendall. La fiabilidad de los mapas de FC era muy dependiente

de la medida utilizada, de la banda de frecuencia y de la región. Los valores de

PLV eran en general los más fiables, especialmente en alfa, beta y gama, aunque

también se alcanzaron valores altos de ICC con d-ecor y con lc-ecor en beta. Por

el contrario, se encontró que el ICC era consistentemente bajo para el PLI. Por

otro lado, para todas las medidas, las conexiones intrared eran más fiables que

la interred. De hecho, el ICC correlacionaba positivamente con el valor de FC:

conexiones más intensas eran más fiables. En cuanto a la concordancia intra-
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e intersujeto, se obtuvieron resultados parecidos a los el ICC: se alcanzaron los

valores más altos para el PLV; intermedios para d-ecor y PLI y más bajos para

lc-ecor. La concordancia intrasujeto era además mayor que la intersujeto.

En conjunto, tanto la potencia como la FC con PLV fueron altamente fiables. Esto

indica que ambos tipos de medidas podrían tener utilidad en la caracterización de

sujetos individuales. Por ejemplo, se podrían aplicar los resultados de los estudios

anteriores para la clasificación entre sujetos con DCL y controles a nivel individual.

Sin embargo, la fiabilidad caracteriza a un grupo concreto, ya que depende de la vari-

abilidad intra- e intersujeto, así que sería necesario realizar un estudio de fiabilidad

test-retest en DCL y controles de la misma edad, para evaluar si es mayor o menor que

en un grupo de controles sanos y jóvenes.



Abstract

Although neuroimaging techniques are rapidly progressing, the accurate and non-

invasive imaging of brain function remains a challenge. Imaging modalities emerge

from the measurement of distinct aspects of brain function, such as metabolic con-

sumption, hemodynamic responses or neuronal currents. Amongst them, magne-

toencephalography (MEG) is a direct measure of neuronal activity which measures

tiny magnetic fields that are produced by neuronal currents. MEG offers a great insight

into the fast dynamics of the brain, by enabling the mapping of electrophysiological

brain rhythms and functional connectivity (FC). Brain rhythms consist in oscillatory

activity which ranges from the delta (<4Hz) to fast gamma oscillations (>30Hz), and

they are engaged in a variety of cognitive and sensorimotor functions. FC assesses

brain integration by measuring statistical dependencies between the activities of dis-

tinct brain regions. FC is therefore a measure of information transfer between brain

regions, and can be computed separately for the distinct electrophysiological rhythms.

The evaluation of resting-state MEG brain rhythms and FC is only possible after a

great deal of signal processing, which includes noise reduction techniques, signal

segmentation, filtering, source reconstruction, and a FC metric (Chapter 2).

MEG enables the study of several neurological diseases, such as Alzheimer’s dis-

ease (AD) and mild cognitive impairment (MCI). On the one hand, AD is a neurode-

generative disease which is accompanied by a severe cognitive decline. On the other

hand, MCI is characterized by a smaller cognitive decline, which is not severe enough

to be classified as dementia. As amnestic MCI patients show both an intermediate

cognitive state between healthy subjects and AD patients and high conversion rates to

AD, the study of amnestic MCI benefits AD research by casting some light into how

the memory impairment develops. This is nowadays especially relevant due to the

rapidly increasing prevalence of AD and the lack of understanding of its pathological

pathways. In this thesis, we explored the resting state spectral and FC profiles of

amnestic MCI patients and age-matched healthy controls. For that, samples from both

populations underwent resting state MEG recordings, and their power spectra and
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FC were computed in source space. Statistical analysis showed differences between

controls and MCIs: slowing of the alpha peak frequency and a decreased FC in the

alpha band (Chapter 3).

Although such group statistics reveal alterations in the spectral and FC patterns

of MCI, the potential use of these patterns as markers of MCI is not easy to assess.

This is a well-known challenge for MEG research, and it is not limited to the study of

MCI/AD. In fact, although extensive literature has used MEG spectral and FC measures

to distinguish between two conditions or two subject samples, the reliability of such

measures remains unclear. The second part of this thesis focuses on this matter.

For that, healthy subjects underwent three resting state MEG recordings over three

consecutive weeks, and spectral and FC measures were computed for each subject

and session. The reliability of such measures was then estimated with the intraclass

correlation coeffcient, which accounts for between- and within-subject variability. In

general, power and FC values showed medium to good reliability. This was however

dependent on the brain region and frequency band (Chapter 4).

Overall, our results indicate that MEG power and FC measures are sensible to

early brain alterations, and that these measures are fairly reliable, suggesting that MEG

could be employed in the individual characterization of MCI subjects.
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Chapter 1

Introduction to neuroimaging and
MCI

The brain is an intricate structure which is responsible for our sensorimotor process-

ing and cognition. Although many of the brain’s mysteries remain unresolved, scien-

tific research over the past century has provided much insight into its structure and

function. This has been enabled by a variety of neuroimaging techniques. Upon such,

magnetoencephalography (MEG) emerges as an ideal technique to non-invasively

investigate the fast dynamics of brain activity. Neuroimaging facilitates the investi-

gation of the structural and functional substrate of neurological pathologies such as

Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI). In this chapter we

present an overview of brain imaging modalities and their findings in the study of MCI

and AD.

1.1 Brain imaging

1.1.1 Overview of brain structure and function

The human brain has three main parts: brainstem, cerebellum and cerebrum. First,

the brainstem is responsible for mantaining sleep cycle, consciouness and automatic

functions such as breathing, heart rate or body temperature. Second, the cerebellum

has an important role in motor control and coordination, and maintaining posture

and balance. Finally, the cerebrum is responsible for higher functions such as cogni-

tion or movement control.

The cerebrum can be separated into two main systems: cerebral cortex and deep

structures. Deep structures are located further away from the scalp and include,

1
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among others, thalamus, basal glanglia and amygdala. Within these structures, the

thalamus has a crucial role, since it acts as a relay between sensory information,

subcortical nuclei and the cerebral cortex. The cerebral cortex consists in a thin sheet

(2-4 mm thick) that is folded forming gyri (ridges) and sulci (fissures), so that its great

surface (around 1700 cm2) can be contained within the scalp (see Figure 1.1). It is sep-

arated into 2 hemispheres, each one consisting in 4 lobes: occipital, parietal, frontal,

and temporal. Within the medial temporal lobe, the hippocampus is a remarkable

structure that is widely mentioned throughout this dissertation, as it is decisive for

memory and learning, and plays an important role in Alzheimer’s disease.

At a cellular level, the brain is mainly constituted of glial cells, which have a variety

of functions such as synaptic modulation or structural and metabolic support, and

neurons, which are responsible for the transfer of information with electrical and

chemical signals. A neuron is built from three main parts: dendrites, soma and axon. A

dendrite receives input from another neuron at a synapse, and then this information

(either excitation or inhibition) travels through the dendrite in the direction of the

soma. The soma or cell body integrates the input from the neuron’s dendrites, and

triggers an action potential if it reaches enough depolarization. Action potentials

propagate very quickly through the axon (1-100 m/s), and reach many other neurons

by means of thousands of synapses. This axon may be short and communicate with

nearby neurons, but it may also be very long and communicate with neurons in distant

brain regions. Large axons are usually covered by a myelin sheath, which speeds the

impulse and prevents axonal currents from leaving the axon, and therefore enable

action potentials to reach distant targets.

When observing a brain slice, one can rapidly identify three types of tissue: grey

matter, white matter and cerebrospinal fluid (CSF). First, grey matter assembles neural

nuclei. However, it is not only composed of neural cell bodies, since it also contains

glial cells and unmyelinated axons. Second, white matter mainly consists in glial

cells and myelinated axons that connect different brain regions. Finally, CSF is found

around and inside the brain (in the ventricles) and in the spinal cord. It provides

nutrients necessary for the correct brain function, and protects the nervous system

by working as a cushion against mechanical damage.

The brain is a highly active organ and consumes around 20% of the body’s 02,

although it only accounts for 2% of the body weight (Clarke and Sokoloff, 1999). It

is constantly working, even during sleep or in the absence of externally-driven tasks.

Engaging in some task may produce local brain activations and deactivations, but

these task-induced changes represent less than 5% of the local metabolic consump-

tion (Raichle and Gusnard, 2002).
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Figure 1.1: Basic brain structure. A. Sagittal slice in a T1-weighted magnetic resonance image,
showing different brain structures, such as brainstem, cerebellum, and cerebral cortex. The
cerebral cortex is folded into gyri and sulci. Gray matter, white matter and cerebrospinal
fluid regions have different intensities. B. Surface of the right cerebral cortex, separated into
occipital, parietal, temporal and frontal lobes.

Although the functional organization of the brain is still unclear,many discoveries

have been made over the past two centuries. Over the nineteenth and early twentieth

century, much knowledge was extracted from brain injury. If damage to a region

impairs a certain cognitive or sensory ability, one can argue that this brain region is

responsible for this process or, at least, involved in it. This led to the concept of brain

segregation, in which regions specialize in particular functions; and an early brain

mapping could be inferred from brain damage reports. For instance, Broca noticed

that damage to a particular region in the frontal lobe, that was then named Broca’s area

after him, related consistently to speech impairment in his patients. He concluded

that this region is functionally specialized in speech production. The use of evoked

responses provided also useful information on brain specialization. For example, the

hearing of tones trigger evoked responses in the primary auditory cortex 100 ms

after the sound onset, indicating a fixed latency for auditory processing (Roberts and

Poeppel, 1996).

The concept of brain segregation is being progressively completed with the con-

cept of brain integration, in which networks rather than isolated regions are involved

in distinct brain processes. Any set of interconnected regions could be considered a

brain network. A distinction can be made between structural and functional networks.

In the first case, regions are anatomically connected, possibly with the use of densely

packed axons, or fiber tracts. In the latter, the time dynamics of the regions is somehow

linked. Functionally connected regions may exhibit the same pattern of activation

or deactivation in response to some stimulus, or show similar dynamics. In both
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cases, connectivity, which quantifies the connections or dependencies between two

regions, comes in handy to characterize these networks. For instance, the amount

of tracts connecting two regions is a valid structural connectivity metric. Functional

connectivity may be defined as statistical dependencies between neural, metabolic

or hemodynamic activity of two brain regions (Friston, 2011). Functional connectivity

can be assessed with a variety of algorithms, as will be introduced in section 2.4.

1.1.2 Structural brain imaging

Structural imaging techniques such as computed tomography (CT) and magnetic

resonance imaging (MRI) have variable sensitivity to different tissue types, and can

therefore be used to locate and inspect brain structures. CT emits x-rays in many di-

rections to reconstruct a 3D image of the region of interest. Because of its relatively low

cost and short scanning times, it is commonly used in the clinical scenario to detect

abnormalities such as contusions, bleeding or edemas. MRI offers generally higher

sensitivity and contrast for soft tissue, and it does not employ ionizing radiation, but

it is also more expensive and takes longer scanning times.

Basics of magnetic resonance imaging (MRI)

MRI devices use strong magnetic fields to align nuclear spins (although only 1H nuclei

are considered relevant, due to their abundance in soft tissue), and measure how

these spins return to equilibrium after they have been transiently excited (Brown and

Semelka, 2003). When placed in a strong magnetic field B0 = B0uz with B0 ≈ 0.5-7T,

hydrogen atoms align in the z-direction (either +uz, or −uz), and precess around

the z-axis at a rate ω0 = γB0/2π, where γ is the gyromagnetic ratio (γ ≈ 42.6 MHz/T

for the 1H nucleus). Overall, a net magnetization M0 = M0uz is established. Then, a

radiofrequency (RF) pulse at a frequencyω0 is applied, which releases energy to the 1H

nuclei and enables transitions to excited states. This modifies the net magnetization,

so that the longitudinal Mz decreases, whereas a transversal Mx y emerges. When the

RF pulse is turned off, the nuclei gradually return to equilibrium, thereby releasing RF

waves which are detected by receiver coils in the MRI system.

This process of relaxation, which is detected indirectly by measuring RF waves,

depends on the proton density and other molecular properties of the target tissue. Re-

laxation can be separated into longitudinal (along the z-direction) and transversal (in

the xy plane) relaxation. Both relaxation processes can be modelled with exponential

decays: Mz (t ) = M0(1−exp(−t/T1)) and Mx y (t ) = Mx y,max exp(−t/T2), where T1 and

T2 are tissue-specific decay times. Various MRI sequences can be used, depending on
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the desired contrast. For instance, T1-weighted images have great sensitivity to the T1

longitudinal relaxation time and are of use to distinguish cerebrospinal fluid and white

and grey matter. Conversely, T2-weighted images are sensitive to the T2 transversal

relaxation and are useful to detect soft tissue pathologies.

Diffusion Tensor Imaging (DTI)

MRI can be used to map the diffusion of water molecules within the brain (Le Bihan

et al., 2001; Alexander et al., 2007). Diffusion represents the transport of material from

one spatial location to another, and can be characterized with Einstein’s equation:

〈∆u2〉 = 2Du∆t (1.1)

where Du is the diffusion coefficient along the u-axis and ∆u represents the u-

displacement over the time ∆t . By using specific sequences in the MRI scanner, one

obtains diffusion-weighted (DW) 3D images, from which the Du coefficient for every

3D voxel (i , j ,k) along a fixed direction u can be inferred. DW acquisitions consist in

several images with varying u-directions. In a homogeneous and isotropic medium,

D has the same value over all diffusion directions. For instance, D ≈ 2 · 10−3 mm2/s

for pure water at 20°C. However, in a general case, D has to be determined for every

position or voxel (i , j ,k) and every direction (φ,θ): D = D(i , j ,k,φ,θ). This general case

can be simplified by using a diffusion tensor, in which the diffusion coefficient at a

certain voxel (i , j ,k) is modeled as a tensor:

D(i , j .k) =

Dxx D y x Dzx

Dx y D y y Dz y

Dxz D y z Dzz

 (1.2)

In this model, the diagonal coefficients Duu , u = x, y, z represent the diffusion

coefficient along the u-direction, and the off-diagonal coefficients are symmetric

Duv = Dvu . The tensor is diagonalizable:

D = P

λ1 0 0

0 λ2 0

0 0 λ3

P−1,P =
(
v1 v2 v3

)
(1.3)

where vu and λu are the matrix’ eigenvectors and eigenvalues, respectively. The tensor

can then be visualized as an ellipsoid with vu as principal axes and λu as radii. This in-

forms about the region’s structure. For example, in a highly isotropic medium diffusion

is very similar along all directions (λ1 ≈ λ2 ≈ λ3), and the ellipsoid is rather spherical.
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This is usually the case in cerebrospinal fluid and grey matter. However, if diffusion

occurs predominantly in one direction (λ1 À λ2,λ3), the ellipsoid resembles a cigar.

This is common in white matter regions, since diffusion is hindered in directions

perpendicular to white matter fibers.

Several magnitudes that derive from DTI are commonly used in neuroscience and

neurology studies (Le Bihan et al., 2001), such asmean diffusivity (MD) and fractional

anisotropy (FA):

MD = 1

3
(λ1 +λ2 +λ3) (1.4)

F A =
√

3
[
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

]
√

2
[
λ2

1 +λ2
2 +λ2

3

] (1.5)

DTI can also be used to estimate structural connectivity (SC), with tractography

techniques (Mori and van Zijl, 2002; Lazar et al., 2003; Jbabdi and Johansen-Berg,

2011). Assuming that tracts are oriented along the direction of higher diffusion, tracts

can be reconstructed with a variety of line propagation techniques. Once they have

been estimated, a SC metric can be calculated. For instance, the amount of recon-

structed tracts connecting two regions and the FA along these tracts are SC metrics.

In this dissertation, both metrics are used to compare SC between MCI patients and

controls in section 3.2.

1.1.3 Electrophysiological techniques

Electrophysiological activity is generated by electrical currents in the brain. Measure-

ment techniques differ in the recording site (at the scalp, invasively with electrodes

directly at the brain surface or even inserted into a brain structure) and the type of

measured signal (either electric potential or magnetic field) (Buzsáki et al., 2012). They

all have great temporal resolution (∼1) ms, and medium to excellent spatial resolution,

as shown in Figure 1.2.

Electroencephalography (EEG)

EEG measures electric potential at the scalp by placing electrodes directly at its surface

and applying conducting gel and a slight abrasion to the skin in order to reduce the

skin-electrode impedance. There is a wide offer of EEG systems, most systems ranging

from 19 to 256 electrodes. EEG has relatively low cost and is frequently used both for
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Figure 1.2: Spatial and temporal resolutions of functional neuroimaging modalities. Colors
indicate the invasiveness of the technique (red: invasive, green: non-invasive).

research and the diagnosis of several pathologies such as epilepsy, sleep disorders, or

coma (Noachtar and Rémi, 2009; Kaplan, 2004).

Magnetoencephalography (MEG)

MEG measures magnetic fields in a helmet-shaped set of sensors. The head has a

rather constant magnetic permeability µ ≈ µ0, but a very variable electrical con-

ductivity σ(br ai n)
σ(skul l ) > 20 (Stenroos and Sarvas, 2012), so that magnetic fields are less

distorted than electric fields when they reach the scalp. MEG has therefore higher

spatial resolution than EEG. MEG systems are further described in section 2.1.

Electrocorticography (ECoG)

To reach higher spatial resolution one may resort to ECoG, which uses subdural

electrodes to record electric potentials directly at the surface of the brain. Electric

fields do not cross the scalp or the skull, and are therefore less distorted than in

EEG. Since it is a highly invasive measurement (it requires a craniotomy), its use in

humans is restricted to clinical applications. For instance, some patients suffering

from untreatable epilepsy undergo a resection of their epileptic foci. ECoG is of use in

this case to obtain the precise localization of the epileptogenic tissue (Nakasatp et al.,

1994).
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Intracranial encephalography (iEEG)

Even higher spatial resolution can be achieved with iEEG: electrodes are inserted

directly into the target brain region in order to measure the local field potential (LFP)

(Buzsáki et al., 2012). Modern electrodes contain many close contacts and allow for a

precise mapping of the region of interest. iEEG is widespread in animal studies, since

it enables a detailed inspection of the functional organization of brain structures. As

in the case of ECoG, iEEG with human subjects is restricted to clinical applications.

1.1.4 Other functional imaging techniques

While electrophysiological techniques measure neural activity directly, other func-

tional imaging techniques measure brain functioning indirectly, via hemodynamic

or metabolic activity. Positron emission tomography (PET), functional magnetic reso-

nance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) are included

in this group (Dale and Halgren, 2001; Menon, 2001; Uludağ and Roebroeck, 2014).

PET detects gamma-rays that result from the annihilation of positrons and electrons,

which are triggered by a radioactive tracer. When using fluorodeoxyglucose (FDG)

as a tracer, PET gives a 3D image of brain metabolic activity. fMRI detects a blood-

oxygen-level dependent signal and thereby measures hemodynamic responses to

brain activation, so that it is commonly used to investigate event-related responses

and brain networks. fNIRS measures hemodynamic responses by detecting changes

in light scattering and absorption. It is non-invasive and has lower cost than other

functional neuroimaging techniques, but it is only sensitive to activity close to the

scalp surface, since its signal to noise ratio decreases rapidly with distance from the

measurement site.

1.2 Introduction to MCI and AD

1.2.1 MCI and AD pathology

Aging is usually accompanied by some cognitive decline, and this is considered nor-

mal (Goh et al., 2012; Naveh-Benjamin, 2000). However, MCI individuals show a worse

cognitive decline than normal, but not severe enough to be classified as dementia (Pe-

tersen, 2001, 2011). MCI could therefore be grasped as an intermediate stage between

normal aging and dementia. It is usually classified into two subtypes: amnestic and

non-amnestic. While amnestic-MCIs show memory impairment, non-amnestic MCIs

show decline in other cognitive functions such as language, attention, visuospatial or
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executive functions. MCI can be further subdivided into single-domain or multiple-

domain, depending on whether a single or various cognitive functions are affected,

respectively.

MCI individuals present higher conversion rates to dementia than their age-

matched controls (Petersen and Negash, 2008). Dementia is a wide term that refers

to a cognitive decline that is severe enough to interfere with daily activities. It includes

a variety of disorders, such as Alzheimer’s disease (AD), vascular dementia, dementia

with Lewy bodies or frontotemporal dementia. AD is the most prevalent form: it

accounts for 60-80% of the cases (Barnes and Yaffe, 2011). It is a chronic neurodegen-

erative disease, which usually first manifests as short-memory impairment but also

includes other symptoms such as deficits in language and visuospatial functions, poor

judgment and changes in mood or personality (Alzheimer’s Association, 2011). The

conversion rate from MCI to AD is high: 10-17% annually vs. 1-4% for age-matched

controls (Petersen, 2011; Petersen and Negash, 2008; Landau et al., 2010). Additionally,

conversion rates from MCI to AD are higher for amnestic MCI than for non-amnestic

MCI, and for multiple-domain MCI than for single-domain MCI (Fischer et al., 2007;

Vos et al., 2013). For instance, Fischer et al. (2007) obtained that, after a 30-month

follow-up, 48.7% of amnestic MCI and 26.8% of non-amnestic MCI developed AD.

The study of MCI could therefore shed some light into the early stages of AD by

informing about how the disease develops. It should nonetheless be mentioned that

MCI is not equivalent to early stage AD, as MCI individuals can progress to develop

other dementias, stay MCI indefinitely or even revert to a control status. However,

since MCI individuals present both an intermediate cognitive status between con-

trols and AD and high conversion rates to AD, they constitute a decent population

to investigate early AD-related changes. This is especially relevant because AD is a

progressive pathology with no clear and abrupt onset (Albert et al., 2013). In fact, AD-

related changes are thought to initiate decades before any clinical symptoms appear

(Sheline and Raichle, 2013). Although AD is mainly characterized by the accumulation

of amyloid β (Aβ) plaques and neurofibrillary tangles, brain atrophy, neuronal and

synaptic loss (Ballard et al., 2011; Verghese et al., 2011), the pathway of the pathology

is unclear. AD diagnosis can indeed only be confirmed post-mortem during autopsy.

Moreover, AD-related research is nowadays especially relevant, since it has be-

come one of the most concerning health conditions, both for human and economic

reasons (see Figure 1.3). Around 5-7% of the population older than 60 and 15-30%

of the population older than 85 are affected with AD (Prince et al., 2013), and often

require institutional or home healthcare. What is more, as the world’s population ages,

AD threatens to spread rapidly. Brookmeyer et al. (2007) predicted that by 2050 1 in 85
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Figure 1.3: Some AD facts. A. AD causes a cognitive decline with age that is worse than in
normal aging. Depending on the extent of this cognitive decline, individuals may be classified
as either showing no objective cognitive decline (preclinical phase), MCI, or dementia. B.
Prevalence of amnestic MCI (a-MCI), non-amnestic MCI (na-MCI), AD and other dementias in
a population aged 70 years and above. Prevalence rates are extracted from (Katz et al., 2012). C.
AD prevalence for different age groups in Europe, according to (Qiu et al., 2009). D. Prevision
of the number of AD patients in USA from 2010 to 2050 for distinct age ranges, according to
(Hebert et al., 2013).
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people could be affected with AD. Although some promising drugs were developed

(Barnes and Yaffe, 2011), they failed in the clinical trials and the existing pharma-

ceutical treatments for mild to severe AD (Roberson and Mucke, 2006) have a limited

efficiency, so that new developments are essential.

We note that the knowledge on MCI and AD is rapidly changing, and the consensus

on the proper terminology and diagnostic criteria is often updated. In this disserta-

tion we use the terminology that was valid when the experiments were carried out,

although some terms and concepts may be outdated for the reader. In particular, the

newest edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-

5) (American Psychiatric Association, 2013), introduced some changes relative to its

previous edition (DSM-IV) (American Psychiatric Association, 2000). Roughly, within

the DSM-5 the terms mild and major neurocognitive disorders are preferred to MCI

and dementia, respectively (Simpson, 2014). This highlights the continuum between

both diagnoses. Although the DSM-5 was released before the ending of this disserta-

tion, we decided to maintain the terms MCI and AD throughout this text, because they

were the accepted terms when the studies were performed and they were employed in

the resulting publications.

1.2.2 In-vivo investigation in MCI/AD

Much research is nowadays invested to face the AD disease: understanding how the

pathology initiates and how it progresses could contribute to developing appropriate

strategies to deal with it. Current research is targeting AD from different perspec-

tives: animal studies, post-mortem histological studies, computational models, de-

mographic studies, neuroimaging, etc. Although all these approaches have provided

interesting information into the matter, we here focus exclusively on the in-vivo inves-

tigation of MCI/AD in humans. Different approaches in such studies are illustrated in

Figure 1.4 and overviewed in the following.

Cognitive evaluation

A detailed neuropsychological evaluation is essential to diagnose MCI and AD.

Episodic-memory impairment is typically associated with AD and MCI due to

AD, but other cognitive domains should be examined with the use of appropri-

ate neuropsychological tests, such as language, executive functions, attention,

or visuospatial skills (Albert et al., 2013). A detailed cognitive evaluation is also

useful in the prognosis, since individuals with higher cognitive impairment tend

to convert faster to AD (Dickerson et al., 2007).

Aβ



12 CHAPTER 1. INTRODUCTION TO NEUROIMAGING AND MCI

Aβ deposition 

Aβ deposits in 

the brain 

Aβ42 in CSF 

Aggregated tau 

tau in CSF 

glucose 

metabolism 

Brain atrophy 

global grey 

matter volume hippocampal 

volume 

Cognitive decline 

overall cognitive 

function episodic 

memory 

Spontaneous 

electrophysiological rhythms 

low frequency 

activity 

high frequency 

activity 

Functional  and structural 

connectivity 

non-linear 

model 

linear disconnection 

model 

Task-related activity 

non-linear 

model 

linear deactivation 

model  

Hypometabolism 

pathology progression 

c
h
a
n
g
e
s
 r

e
la

ti
v
e

 

to
 c

o
n
tr

o
ls

 

preclinical MCI due to 

AD 
AD 

0 

AD-related 

changes 

Figure 1.4: Distinct approaches to the in-vivo study of AD. The AD pathology is related to
many alterations, which are illustrated in separate rectangles and described in the follow-
ing. 1- Hypometabolism, which can be evidenced with fluorodeoxyglucose-PET. 2- Amyloid
deposits, which can be observed with PET-PIB as increased intensities or as decreased Aβ42

concentrations in the cerebrospinal fluid (CSF). 3- Aggregated tau, which can be measured
as increased tau concentrations in the CSF. 4- Brain atrophy, specially in medial temporal
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first affects episodic memory and executive functions. 6- Slowing of the electrophysiological
brain rhythms, which can be evidenced by increased low frequency activity and decreased
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are altered in AD. Although AD is usually associated with decreased task-related activations,
some studies found task-related hyperactivations in MCI, possibly indicating compensatory
mechanisms. Based on (Ewers et al., 2011; Jack and Holtzman, 2013).
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Aβdeposition is a hallmark of AD. This can be assessed in vivo as either de-

creased concentrations of Aβ42 in the CSF, or as increased intensities in PET

imaging when using amyloid-specific agents. For instance, PIB (11C-Pittsburgh

Compound B) binds to the amyloid deposits, and enables a 3D image of the

amyloid deposits in the brain (Adlard et al., 2014).

Aggregated tau

Aggregated tau protein, in the form of neurofibrillary tangles, is characteristic

of AD. Although neurofibrillary tangles are best inspected postmortem during

autopsies, they can also be assessed in-vivo as increased levels of total tau and

phosphorylated tau in the CSF (Visser et al., 2009; Jack and Holtzman, 2013).

Atrophy

AD is accompanied by a progressive brain atrophy, which generally starts in

the entorhinal cortex, and then spreads first to the hippocampus and later to

the neocortex. This atrophy can be detected with structural MRI (such as T1-

weighted MRI) and quantified as a volume loss. MCIs that convert to AD show

greater and accelerated atrophy than non-converting MCIs (Jack et al., 2005,

2008). Particularly, the hippocampal volume has been proven relevant, since it

correlates with cognitive decline (Petersen et al., 2000), and predicts conversion

from MCI to AD (Apostolova et al., 2006; Jack et al., 2010).

Metabolism

Hypometabolism in temporal and parietal regions is characteristic of AD. It can

be measured with 18F-fluorodeoxyglucose-PET and it was found to be a decent

predictor of conversion from MCI to AD (Landau et al., 2010).

Intensity of spontaneous electrophysiological rhythms

AD is associated with an increased electrophysiological activity in the lowest

frequency bands (delta and theta) and a decreased activity in higher frequency

bands such as alpha and beta (Berendse et al., 2000). This “slowing” of the EEG

rhythms seems to occur progressively from controls to MCI and then to AD and

to correlate with other AD markers such as brain atrophy (Moretti et al., 2012;

Babiloni et al., 2013). It does not occur uniformly across all brain regions, as

it is accompanied by changes in the topography of the main cortical genera-

tors (Osipova et al., 2006). The functional significance of electrophysiological

brain rhythms, their quantification from MEG raw data and their alterations in

MCI/AD are further discussed in Chapters 2 and 3.
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Task-related activations

Neuroimaging of the brain when performing a cognitive task evaluates the

neural correlates of the cognitive changes in MCI/AD. As expected, MCI and

AD patients have worse performance than controls. More interestingly, some

studies found increased activity in MCI in trials with correct responses or in

a subgroup of MCI patients with high performance, and decreased activity for

wrong responses or worse performance subjects (Celone et al., 2006; Kircher

et al., 2007; Chechko et al., 2014). This has been hypothesized to reflect a com-

pensatory mechanism, in which MCI patients require additional activation to

reach the same performance level than controls. The task-related activation

would then follow a non-linear trajectory as the AD pathology advances, and

exhibit first a hyperactivation to achieve a normal performance followed by a

hypoactivation when approaching the AD stage.

Functional and structural connectivity

AD is accompanied by a loss in structural connectivity, as revealed by DWI

studies (Shao et al., 2012). Functional disconnection was also found in AD for

several networks such as the default mode network (DMN), the sensory network

or the dorsal attention network (Brier et al., 2012; Greicius et al., 2004). Some

studies have suggested that this disconnection occurs progressively (Sheline

and Raichle, 2013), while others point out the existence of a transitory hypersyn-

chronization in the MCI stage, possibly reflecting a compensatory mechanism

(Bajo et al., 2012; López et al., 2014). Connectivity in MCI is further discussed in

Chapter 3.

Genetics

Increased AD risk is associated with some genotypes. Although early onset AD

(at ages 30-65) only accounts for a small fraction of the cases, it is worthwhile

studying, as it informs about the AD pathways. Such early onset AD is usually

caused by mutations that influence either the production or the clearance of Aβ,

highlighting the role of Aβin the AD pathology (Hardy and Selkoe, 2002; Jack and

Holtzman, 2013). Additionally, the APOE (apolipoprotein E) gene is attracting

widespread interest, since its thee alleles ε2, ε3 and ε4, which are relatively

frequent in the population (1-5%, 50-90% and 5-35% of people, respectively),

are thought to modulate Aβdeposition and therefore the risk for AD (Verghese

et al., 2011). In particular, ε4 is associated with higher risk for AD than ε3, and

ε3 with higher risk than ε2. Many neuroimaging studies with MCI or AD include

APOE genotype as a variable to investigate its role in the MCI/AD process. For
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example, Cuesta et al. (2015) evaluated the effect of diagnosis (MCI/Control) and

APOE genotype in resting state functional connectivity.

1.2.3 Towards reliable AD biomarkers

Although all the previous approaches reveal changes in MCI/AD patients relative to

age-matched controls, it is still unknown how they fit into a global model of AD. In

fact, much research needs yet to be done before achieving a global picture and the

accurate characterization of the various stages of the pathology. In particular, work

needs to be done in two directions:

Building the timeline of AD

The progress of AD is unclear. Some theories point out that it may be triggered

by deposition of Aβ(Sheline and Raichle, 2013), which in turn causes aggregated

tau, brain atrophy and other abnormalities reviewed in section 1.2.2. Other

theories indicate that neurodegeneration precedes the Aβdeposition. It is also

possible that the AD timeline is not fixed, and that different timelines account

for different AD etiologies (see Jack and Holtzman (2013) for a review). Early-

onset AD is for instance thought to be generated differently than late-onset

AD, In any case, establishing the timeline(s) of AD and the causality between

its different markers is essential. Big multimodal and longitudinal studies are

needed for this purpose.

Establishing reliable biomarkers for specific stages of the AD pathology

AD-related changes can be observed with several approaches: decreased Aβin

the CSF, decreased metabolism in PET images, altered functional connectivity,

etc. However, none of these markers constitutes a true biomarker, or a definite

indicator of AD. For instance, (Albert et al., 2013) recommend including markers

of Aβand neuronal injury to diagnose MCI due to AD in research studies, but

they clarify that these markers only modulate the likelihood that the MCI is

due to the AD pathology. In fact, much work must be done before any of these

markers becomes a trustworthy AD biomarker: it should first be proven that

the underlying alteration is pathognomonic of AD (e.g. that Aβdeposition is a

definite indicator of AD), and second, that the measurement instrument and

methodology are reliable (e.g. evaluate the precision of the instrument, the

magnitude of the systematic and random error, the within and between subject

variability, etc.). Furthermore, the sensitivity of the marker to characterize a

specific stage of the pathology should be established. For example, early markers

of AD may be sensitive to the asymptomatic stage or the MCI stage and remain
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stable during the dementia stage, while late markers of AD may only exhibit

variations once the dementia stage is reached (Frisoni, 2012).

In this thesis we focus on the second direction. In particular, our goal is to evaluate

the potential use of MEG to produce reliable biomarkers of the MCI stage. Although

MEG is not the most popular approach to the study of MCI/AD, it could provide

promising biomarkers. Contrary to CSF and PET measures, it is completely non-

invasive and escapes lumbar punctures and radioactivity side effects. Moreover it

provides an interesting insight into brain functioning, since it measures neural activity

directly, with excellent temporal resolution. It has additionally been proven to be

sensitive to AD-related changes (section 1.2.2). In this work we follow two distinct

approaches. We first compare the MEG resting state power spectrum and functional

connectivity in MCI patients and their age matched controls, and look for differences

between both populations samples (Chapter 3). Then, we quantify the test-retest

reliability of MEG spectral and connectivity measures by examining their within- and

between-subject variability (Chapter 4).



Chapter 2

MEG measurements and analysis

In Chapter 1 we introduced neuroimaging and formulated our objective to evaluate

the potential use of MEG spectral and functional connectivity measures in producing

reliable biomarkers of MCI. In this chapter we introduce MEG measurements, elec-

trophysiological activity and the analysis pipeline that is used throughout Chapters 3

and 4. MEG systems measure tiny magnetic fields that result from coherent neural

firing. These measurements contain a variety of electrophysiological rhythms, but are

also contaminated with unwanted magnetic fields. Although magnetically shielded

rooms and the use of gradiometers reduce greatly this noise, MEG recordings remain

contaminated with non-brain signals. We deal with this issue when preprocessing: a

great amount of noise is eliminated with a signal space separation filter and then ocu-

lar, muscular and jump artifacts are located and all artifacted segments are excluded

from the subsequent analysis. Once clean segments of data are obtained, we aim at

determining the neural currents that generated the sensor-level measured data. This

is called source reconstruction, and requires (1) a forward model that determines how

fields propagate from an original current to the MEG sensors, and (2) an inverse model

that estimates the original current distribution from its resulting MEG measurements.

Source reconstruction can then be employed to estimate the power distribution and

time dynamics of the distinct electrophysiological brain rhythms. Alternatively, a func-

tional connectivity analysis can be performed, which assesses statistical dependencies

between brain regions and examines the coordinated activity of the brain.

17
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2.1 Introduction to MEG

2.1.1 Electrophysiological basis of MEG signals

MEG detects magnetic fields induced by electrical currents in the brain, which can be

generated by a variety of different neural processes such as action potentials, synaptic

events, post-synaptic potentials, calcium spikes or fluctuations in glia (Buzsáki et al.,

2012). However, the main generators of the detectable MEG/EEG signal are thought

to be post-synaptic potentials, as the other processes either generate low magnitude

fields or they do not add into a measurable signal (Papanicolaou, 2009; Lopes da

Silva, 2010). For instance, action potentials are strong and rapid changes in membrane

potential that propagate along a neuron’s axon, but they are so fast (around 1-2ms)

that they are unlikely to synchronize over a population of neurons. Additionally, they

can be described as quadrupoles, which produce fields that decay rapidly with dis-

tance (proportional to 1/r 3 vs. proportional to 1/r 3 for dipolar fields), so that their

contribution to EEG/MEG is negligible (Milstein and Koch, 2008).

At a chemical synapse, when an action potential reaches a presynaptic neuron,

neurotransmitters that can either excite or inhibit the postsynaptic neuron are re-

leased. When an excitatory synapse is activated, positive ions flow inwards the postsy-

naptic neuron, creating an active sink at the level of the synapse and a membrane de-

polarization. Conversely, when an inhibitory synapse is activated, either negative ions

flow inwards the postsynaptic neuron or positive ions flow outwards the postsynaptic

neuron, creating an active source at the level of the synapse and causing a membrane

hyperpolarization. In both cases a primary current propagates through the dendrite,

and secondary or passive currents flow through the extracellular medium to ensure

electroneutrality.

With this procedure, small currents can be generated at the many dendrites of

a neuron that propagate towards the soma. According to (Hämäläinen et al., 1993),

for each dendrite, the strength of the postsynaptic current decays exponentially as

it separates from the synapse, and it can be modeled as a really small dipole, with

a dipole moment Q = λI , where λ is the constant rate of the exponential decay,

which lies typically around 0.1-0.2mm for a cortical neuron, and I is the post-synaptic

current, which is usually 102 −103 pA.

The neuron’s geometry is now a crucial factor that determines whether these post-

synaptic currents add up into a non vanishing total dipole moment. For example,

spherically symmetric neurons that can be found in thalamo-cortical modules have

dendrites that emanate from the soma in all directions (Buzsáki et al., 2012). Assuming

that there is no prominent direction of presynaptic firing for these cells, the small
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dendritic currents would be distributed in a spherically symmetric fashion, produc-

ing a closed field configuration and no measurable signal. It is considered that the

EEG/MEG signals are mainly generated by pyramidal neurons in the cortex (Baillet

et al., 2001; Lopes da Silva, 2010). A pyramidal neuron has a long apical dendrite

which integrates the currents generated at many synapses (see Figure 2.1). Moreover,

pyramidal neurons are arranged in the cerebral cortex in a regular fashion, with apical

dendrites oriented parallel to each other and perpendicular to the surface of the cor-

tex. This enables a spatial summation of the apical dendrite currents over neighboring

neurons.
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Soma 
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B-field 
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Figure 2.1: Electrophysiological basis of MEG signals. A. Pyramidal neuron, which is composed
of many dendrites, a single apical dendrite, a soma and an axon. A primary intracellular
current (red) propagates along the apical dendrite and secondary or passive currents (green)
flow though the extracellular space. B. A population of pyramidal neurons in the cortex that
is activated synchronously produces a net current in the direction of their apical dendrites.
This can be modeled as an equivalent current dipole (red): a small current that generates a
magnetic field (blue) around its axis.

Apart from this spatial summation, temporal summation is needed in order to

produce a measurable signal. This means that MEG measures does not detect the

activity of individual neurons. Instead, it measures the activity of a population of

neurons that are arranged parallel to each other and excited synchronously. Around
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50·103 synchronously firing neurons may be necessary to produce a net current dipole

moment that is intense enough to be detected with EEG/MEG (Murakami and Okada,

2006).

2.1.2 Electrophysiological brain rhythms

The coherent neural firing gives rise to a variety of electrophysiological rhythms,

which are now introduced. In 1929 Hans Berger discovered prominent oscillations at

approximately 10Hz in the brain, which he named alpha oscillations (Berger, 1929).

Since then, the oscillatory nature of electrophysiological activity has become evident,

and different rhythms have been discovered in human and animal studies, ranging

from the infraslow (<1Hz) to the ultrafast (>100Hz). The most commonly employed

frequency bands in human cognitive studies are delta (0.5-4Hz), theta (4-7Hz), alpha

(8-12Hz), beta (13-30Hz) and gamma (>30Hz) (Lopes da Silva, 2013; Jafarpour et al.,

2013; Engel and Fries, 2010), as shown in Figure 2.2. Electrophysiological activity is

always oscillatory, even during resting state, sleep, or the performance of externally-

driven tasks. However, the intensity and connectivity of brain rhythms change with

the condition, so that brain rhythms seem to be functionally distinct and relevant, as

is introduced below.
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Figure 2.2: Electrophysiological brain rhythms. Spectrogram of a resting state recording.
Wavelet power is represented as a function of time and frequency (blue: low power, red: high
power). The frequency spectrum consists in separate brain rhythms: delta, theta, alpha, beta
and gamma, which have different time-dynamics.
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Functional significance

Oscillatory activity at different frequency bands seems to be involved in perceptual,

sensorimotor and cognitive functions (Klimesch, 1999; Başar et al., 2001). In general,

slower rhythms, such as delta, theta and alpha, which extend over wide cortical re-

gions, have been linked to the coordination and integration of different brain regions

in long temporal windows. In contrast, faster rhythms (beta and gamma), are believed

to be responsible for a local and faster cortical processing (von Stein and Sarnthein,

2000; Knyazev, 2012; Harmony, 2013). Delta, theta, alpha, beta and gamma oscillations

are now separately introduced.

Delta

Delta activity has been involved in basic functions such as deep sleep, heart

rate, motivational processes or fetal and infant development (Platt and Riedel,

2011; Jurysta et al., 2005; Scher, 2008; Knyazev, 2007). As these are early pro-

cesses both phylogenetically and ontogenetically, some authors believe that

delta activity could represent evolutionary old processes (Knyazev, 2012). While

sleep and sleep disorders are the most popular topics for the study of delta in

adult humans, much interest has also been drawn to gestation and early child

development. In fact, delta oscillations are dominant during the third trimester

of gestation (Scher, 2008), and decrease progressively during childhood (John

et al., 1980). Abnormally high delta power in children is indicative of various

developmental disorders such as attention-deficit/hyperactivity disorder (Barry

et al., 2003). Additionally, delta relates to motivation, with high delta powers

found during hunger and drug craving (Knyazev, 2007, 2012).

Aside from these basic functions, delta activity has been considered relevant in

cognitive tasks: several studies have found increased delta power both during

concentration (i.e. mental calculation, semantic tasks) and in attentional tasks

(Fernández et al., 1995; Harmony et al., 1996; Harmony, 2013). High delta power

could also indicate different pathological states, such as tissue damage (Gloor

et al., 1977; Spironelli and Angrilli, 2009), schizophrenia (Boutros et al., 2008),

depression (Korb et al., 2008), Parkinson’s disease (Zijlmans et al., 1998) and

Alzheimer’s disease (Babiloni et al., 2004).

Theta

Theta activity has been predominantly studied in the hippocampus of rodents,

since it seems to play an important role in spatial navigation and learning. Theta

activity dominates the hippocampal LFP of moving rodents and it increases
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during locomotion or orienting (Kahana, 2006). Hippocampal theta, along with

the firing of specific neurons called “place cells”, encode a moving rat’s location

(O’Keefe and Recce, 1993; Jensen and Lisman, 2000). In humans, some iEEG

studies have shown similar results. Theta activity increased when subjects were

engaging in a taxi driver game, in which they virtually drove through a town

searching for passengers and delivering them to their destination (Ekstrom

et al., 2005).

Theta activity has also been involved in cognitive processing during memory

tasks. Theta power and coherence increase in memory tasks during successful

encoding and recognition, as shown repeatedly over the past years (Klimesch,

1999; Sederberg et al., 2003; Kahana, 2006; Khader et al., 2010). Additionally,

theta coherence correlates with task load (Deiber et al., 2007; Cashdollar et al.,

2009).

Alpha

Alpha waves are the first documented brain oscillations. Their discovery dates

from the late 1920s, when Hans Berger recorded large oscillations at approxi-

mately 10Hz in the brain of his human patients (Berger, 1929). In fact, alpha

oscillations are the largest oscillations in the resting state brain, and they have

higher amplitude in the occipital lobe when subjects close their eyes. This led

scientists to believe that alpha oscillations were a mere representation of the

idling brain. However, this vision has rapidly faded, as the role of alpha oscil-

lations in perception and cognition has become clear (Bonnefond and Jensen,

2013; Lopes da Silva, 2013).

Alpha oscillations are involved in the perception of visual stimuli. First of all,

alpha power is strongly modulated by eye opening, which triggers a decrease

in alpha activity. Moreover, attention to visual stimuli causes changes in alpha

activity. When a subject attends to the left hemifield, alpha power decreases

in the right occipito-parietal cortex (responsible for the left hemifield) while it

increases in the left occipito-parietal cortex (responsible for the right hemifield)

(Worden et al., 2000; Rihs et al., 2009). This pattern of alpha power decrease

over task-relevant regions and increase over task-irrelevant regions seems to

be functionally important, as it relates to task performance (Ergenoglu et al.,

2004; Thut et al., 2006) and to neural firing rate (Haegens et al., 2011). This

led to the hypothesis that alpha power has an inhibiting role (Lopes da Silva,

2013). Using transcranial magnetic stimulation (TMS) at different frequencies,

Romei et al. (2010) could test this hypothesis. Authors found that the detection
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of visual stimuli contralateral to the TMS site was impaired when stimulating

over occipito-parietal areas at 10Hz, thereby showing that alpha oscillations can

cause inhibition over the affected areas.

Beta

Beta band oscillations have been traditionally linked to motor control (Engel

and Fries, 2010). First, beta amplitude decreases in the motor cortex prior to and

during both voluntary and imagined movements (de Lange et al., 2008), which

has found application in the design of brain computer interfaces (Bai et al., 2008;

Pasqualotto et al., 2012). This amplitude decrease could be functionally relevant

since both high beta amplitude and 20Hz TMS slow down voluntary movements

(Gilbertson et al., 2005; Pogosyan et al., 2009). Second, the function of high beta

amplitude could be the maintenance of a steady-state motor output, since beta

amplitude increases in holding periods and tonic contraction and relates to the

performance in postural tasks (Androulidakis et al., 2006; Engel and Fries, 2010).

Beta is believed to have a similar role in cognition (Engel and Fries, 2010).

According to this theory, high beta amplitude would contribute to maintaining

the ongoing state in perceptual and cognitive tasks. In fact, tasks that are mainly

stimulus-driven usually produce a decrease in beta activity while tasks that

are rather endogenous relate to beta increases (Iversen et al., 2009). Higher

amplitudes were also found to correlate with faster responses to visual stimuli

(Kamiński et al., 2012).

Gamma

Gamma activity is thought to represent active sensory and cognitive processing

(Jensen et al., 2007; Jerbi et al., 2009). It increases during a variety of tasks,

such as auditory (Crone et al., 2001), visual (Hoogenboom et al., 2006), sen-

sorimotor (Aoki et al., 1999), attentional (Sokolov et al., 2004), language (Dalal

et al., 2009) or memory (Pesaran et al., 2002) tasks. It also seems to relate to

the task demands, and was for instance found to increase with memory load

(Howard, 2003). Additionally, gamma usually activates in task-specific small

areas, in opposition to slower brain rhythms which show coherent oscillations

in widespread regions of the brain (Jerbi et al., 2009).

Mu

Mu rhythm overlaps in frequency with alpha and beta, although historically it

has been considered separately. Mu oscillations are found over rolandic regions

and decrease with limb movements and tactile stimulation (Tiihonen et al.,



24 CHAPTER 2. MEG MEASUREMENTS AND ANALYSIS

1989; Hari and Salmelin, 1997). Mu has also been often considered in analogy

to the posterior alpha rhythm which decreases by eye opening.

Cross-frequency coupling

In previous sections, brain rhythms have been described separately. This reflects

the way most studies have been carried out, but it also constitutes a simpli-

fied model of the actual neural processes. Not only may different rhythms be

responsible for the same function, but their interaction may be essential. This

interaction is called cross-frequency coupling (CFC), and is mediated by various

processes. Phase-amplitude CFC is particularly important from a physiological

perspective (Canolty and Knight, 2010): the phase of lower frequency is thought

to modulate the excitability of the region whereas the higher frequency ampli-

tude is thought to represent active neural processing. One popular example is

that of theta-gamma CFC in the hippocampus, which seems to relate to memory

and learning. It has been found in rats performing a T-maze task during naviga-

tion and decision making (Tort et al., 2008), and in humans during maintenance

of multiple items in a working memory task (Axmacher et al., 2010).

Biophysical origin

The actual biophysical mechanisms responsible for oscillatory activity are unclear.

Some believe that they can be generated locally, while others point out that feedback

loops including other regions are necessary to generate them. While some neurons

can oscillate intrinsically (Steriade et al., 1990), this is not considered to be the sole

responsible for brain oscillations. Different mechanisms account for the distinct brain

rhythms, and simulations, in-vitro and in-vivo studies have provided rhythm-specific

theories. For instance, gamma oscillations are thought to be generated locally, and to

be controlled by GABAergic interneurons (Mann and Paulsen, 2007; Vierling-Claassen

et al., 2010). In contrast, larger circuitry is believed to be needed for alpha oscillations.

Earlier studies highlighted the role of thalamus as a pacemaker of alpha oscillations

(Hughes and Crunelli, 2005), while others have pointed out the existence of cortical

generators (Bollimunta et al., 2008). Computational models that include cortical and

thalamic nuclei have shown that both thalamo-cortico-thalamic and cortico-cortical

circuits are needed to explain alpha amplitude and frequency responses (Hindriks and

van Putten, 2013).
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2.1.3 MEG systems

An MEG system is a device that captures the magnetic fields produced by the small

neuronal currents. This is a tricky task, since the brain magnetic fields are extremely

small. On the one hand, the brain and the MEG system have to be shielded from the

huge ambient magnetic fields, using a magnetically shielded room. These ambient

magnetic fields are in fact 104−1010 times higher than brain fields. On the other hand,

usual magnetic sensors are not adequate for this task, since they are not sensitive to

such small variations in magnetic field. Cohen performed in 1968 the first successful

MEG recording using a 1-million turn coil at different head positions (Cohen, 1968).

Although he did not reach a good sensitivity, he was able to detect human alpha

oscillations, which are the strongest oscillations in resting state condition, when sub-

jects close their eyes. MEG technology has rapidly evolved ever since, and modern

MEG systems have achieved much better sensitivity using SQUID (superconducting

quantum interference device) based sensors.

Magnetically shielded room

Neural magnetic fields are several orders of magnitude weaker than ambient magnetic

fields. These ambient fields include the Earth’s magnetic field and the ones produced

by different mechanical or electrical devices that can be found in modern buildings

(i.e. motor, air conditioning, etc.), as shown in Figure 2.3. Therefore, in order to mea-

sure the weak neural fields, the MEG system needs to be shielded from ambient fields.

This is done by placing the MEG system inside a magnetically shielded room (MSR).

It is to note that the MSR does not eliminate completely interfering magnetic fields.

Firstly, some external fields penetrate the MSR walls. For instance, MEG spectra show

a strong peak at 50Hz and harmonics, which originates in the power line. Secondly,

some interfering fields are generated inside the MSR. In fact, biological activity such

as eye movements, muscular activity or heart beating generates magnetic fields. This

is controlled for in the preprocessing stage of the MEG analysis.

MEG sensors

SQUID Kamerlingh Onnes discovered superconductivity in 1911 when examining

the variation in electrical resistance of mercury at low temperatures. He found that,

under a critical temperature Tc , mercury reached a state with null resistance (Kamer-

lingh Onnes, 1911). In 1933 Meissner and Ochsenfeld discovered that this super-

conducting state is also a state of perfect diamagnetism (Meissner and Ochsenfeld,

1933). This means that the magnetic field inside of a superconducting element is
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Figure 2.3: Intensity of environmental and biological magnetic fields. Neural magnetic fields
are represented in green, biological interfering fields in orange and ambient fields in red.
Intensity values are extracted from (Hämäläinen et al., 1993; Vrba, 2002; Fishbine, 2003; Portier
and Wolfe, 1998).

zero. In fact, if a superconducting element is placed in an external magnetic field, an

everlasting current circulates at the material’s surface and shields its interior, provided

that temperature, magnetic field and intensity do not exceed critical values (Tc , Bc and

Ic ) that would destroy the superconducting state. Superconductivity can be used to

measure very small magnetic fields with the use of SQUIDs, which can be conceived

as devices that convert magnetic flux to voltage. Modern MEG systems use DC SQUIDs

that consist in a loop of superconducting element (i.e. niobium) that is separated

into two parts united by weak links or Josephson junctions. If a constant bias current

Ib enters the superconducting loop, it creates a voltage across it that oscillates with

increasing magnetic flux across the loop (Jenks et al., 1997). This V = f (B) dependence

is indirectly employed in a negative feedback configuration that maintains a fixed

operating point in the SQUID. The feedback loop compensates the external magnetic

field and provides an estimation of its value (Vrba and Robinson, 2001; Parkkonen,

2010).

Magnetometers and gradiometers The SQUID does not measure directly the mag-

netic field outside the head. The magnetic field is first detected by a pick-up coil that

has larger area than the SQUID (and thus larger flux and larger signal to noise ratio).

First, neural magnetic fields reach this superconducting pick-up coil, and shielding

currents are created that then generate a magnetic flux across the SQUID loop. There-

fore, the SQUID receives a signal that is proportional to the magnetic flux across the

pick-up coil. For a coil in the x y plane, the whole pick-up coil + SQUID + negative feed-
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Figure 2.4: MEG sensors. A: Brain magnetic fields are measured with a pick-up coil (green).
Magnetic flux is transformed and applied into the SQUID (blue). A negative feedback con-
troller (orange) generates a correcting magnetic field that keeps the SQUID at a certain op-
erating point. B: A magnetometer consists in a pick-up coil and measures the magnetic flux
Φ= ∮

B·ds ∝ Bz . C: A planar gradiometer measures spatial derivative of the flux in a transversal
direction x or y . D: An axial gradiometer measures spatial derivative of the magnetic flux in
the longitudinal z-direction. E: Elekta triple sensor unit combines a magnetometer (green), a
planar gradiometer in the y-direction (red) and a planar gradiometer in the x-direction (blue).
Modified from (Elekta-Neuromag, 2005)

back system measures then a signal proportional to the fluxΦ= ∮
B ·ds ≈ Bz ·S, where

S is the area of the pickup coil. This is however not the only possible configuration.

Other sensors called gradiometers measure spatial derivatives of Bz , by using a pickup

and a compensating coil (see Figure 2.4). This is useful since the spatial derivative of

Bz is less sensitive than Bz to distant magnetic sources, such as non-biological sources

(i.e. power line, air conditioning) or muscular and heart activity. If both coils are placed

in two parallel planes along the z-axis, ∆Bz
∆z is measured, and the sensor is called axial

gradiometer. If both coils are placed in the same x y plane, ∆Bz
∆x or ∆Bz

∆y are measured,

and the sensor is called planar gradiometer.

Cryogenics

To reach their superconducting state, MEG sensors are placed inside a Dewar flask

filled with liquid helium at its boiling temperature (4.2K). The Dewar flask is thermally

insulated, so that the outside of the MEG helmet remains at room temperature. He-
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lium is refilled periodically (i.e. once a week) to compensate for helium gas constantly

flowing out of the flask, which accounts for the high economical cost of MEG record-

ings.

Description of our MEG system

All MEG experiments in this dissertation were performed with an Elekta Neuromag

Vectorview System with 306 sensors (see Figure 2.5). It has 102 detector units spread

in a whole head MEG helmet and separated on average 34 mm. Each detector unit

contains one magnetometer and two planar gradiometers in orthogonal directions

(see Figure 2.4-E). The system is shielded from external fields with a Vacuumschmelze

(Hanau, Germany) MSR. The system enables the continuous determination of the

head position relative to the sensor array (and therefore the possibility to correct for

movements). For that, three anatomical reference points are located that define the

head reference frame: nasion and left- and right- preauricular points. Then, four coils

are attached to the scalp and their position relative to these three reference points

is determined with a Polhemus digitizer (FASTRAK®) prior to the MEG recording.

These coils produce sinusoidal magnetic fields at distinct frequencies, so that the MEG

measurements at these particular frequencies can be used to continuously estimate

the position of the coils relative to the MEG sensor array (Uutela et al., 2001). This

ultimately means that one can continuously switch from device to head coordinate

frame, and vice versa.

2.2 Preprocessing of MEG raw data

2.2.1 Signal space separation (SSS)

The signal space separation algorithm (SSS) roughly separates magnetic fields orig-

inating from inside and outside the head, and is applied in a first denoising step

to MEG raw data. SSS and its spatiotemporal version tSSS are implemented in the

Maxfilter software (Elekta Oy, Helsinki, Finland) and they are routinely applied to MEG

data recorded with Elekta systems. Their rationale is now briefly described, following

(Taulu, 2008; Taulu and Kajola, 2005).

First, we assume the presence of three separate volumes: (see Figure 2.6): (1) an

inner volume containing the currents jjj i n , (2) an intermediate volume which includes

the MEG sensors and is current-free and (3) an outer volume containing currents jjj out .
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Figure 2.5: Elekta Neuromag Vectorview system. A. The MEG helmet is surrounded by liquid
helium contained in a Dewar flask. The whole system is placed inside a MSR (magnetically
shielded room). B,C. MEG sensor layout viewed from the side (B) and from the top (C). Each
red square represents a triple sensor containing a magnetometer and two planar gradiometers.
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Figure 2.6: Illustration of the SSS method. Three distinct volumes are defined, using a reference
point at the center of the head (or at the center of the MEG helmet). rmi n and rmax are defined
as the minimum and maximum distances between this reference point and the MEG sensors.
Brain currents jjj i n are assumed to lie inside a sphere r < rmi n , and external currents jjj out are
assumed to lie in the volume r > rmax . No currents should exist in the intermediate volume
rmi n < r < rmax . Adapted from (Elekta-Neuromag, 2005).

Then, the magnetic field B(rrr ) at a source-free sensor position rrr is:

BBB(rrr ) =BBB i n(rrr )+BBB out (rrr ) (2.1)

where BBB i n and BBB out are the magnetic fields generated by jjj i n and jjj out respectively.

As proven in (Taulu and Kajola, 2005), under the quasi-static approximation, BBB i n

and BBB out at a sensor position rrr can be written as series expansions in spherical

coordinates:

BBB i n(rrr ) =−µ0

∞∑
l=0

l∑
m=−l

αl m
νννlm(θ,ϕ)

r l+2
(2.2)

BBB i n(rrr ) =−µ0

∞∑
l=0

l∑
m=−l

βl mr l−1ωωωlm(θ,ϕ) (2.3)

where νννl m(θ,ϕ) andωωωl m(θ,ϕ) are modified vector spherical harmonics.



2.2. PREPROCESSING OF MEG RAW DATA 31

By truncating the previous series expansions to l ≤ Li n in (2.2) and l ≤ Lout in (2.3)

and applying the previous formulae at all the sensor locations, the Ncoi l s ×1 matrixφφφ

containing the magnetic flux at the sensor locations can be written as:

φφφ≈
Li n∑
l=1

l∑
m=−l

αl maaalm +
Lout∑
l=1

l∑
m=−l

βlmbbblm (2.4)

where aaalm and bbblm are Ncoi l s ×1 vectors that result from applying (2.2) and (2.3) to the

sensor positions. This summation contains

n = (Li n +1)2 + (Lout +1)2 −2 (2.5)

terms. Li n=8 and Lout =3 are used as default values in Maxfilter, since they are consid-

ered to produce a negligible residual (Taulu and Kajola, 2005; Taulu et al., 2005). The

summation (2.4) can be written in matrix form:

φφφ≈SxSxSx =
[
SSSi n SSSout

][
xxxi n

xxxout

]
(2.6)

where SSS is a Ncoi l s ×n matrix which contains aaal m and bbblm for the (l ,m) pairs, and xxxi n

and xxxout are vectors which contain the αl m and βlm coefficients.

Once SSS is computed from the sensors’ coordinates, xxx can be estimated as:

x̂xx =
[

xxxi n

xxxout

]
=SSS−1φφφ (2.7)

Finally, a cleaner version of the MEG measurements, without the external contri-

bution of jjj out , is:

φ̂φφi n =SSSi nx̂xxi n (2.8)

Another version of the SSS, called spatiotemporal-SSS or tSSS, further refines the

previous model by adding the time dimension, so that errors in the SSS model can be

detected as strong correlations between inside and outside components (Taulu and

Simola, 2006). The rationale behind this is that if deviationsφφφε from (2.6) are included,

φφφ=SxSxSx +φφφε, and then the estimation of xxx becomes:

x̂xx =SSS−1φφφ=SSS−1SxSxSx +SSS−1φφφε = xxx +
[

xxxi n,ε

xxxout ,ε

]
(2.9)

Since xxxi n,ε and xxxout ,ε originate from the same φφφε, they are expected to be temporally
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correlated, while the true xxxi n and xxxout are temporally independent and uncorrelated.

tSSS has been applied to MEG recordings in all experiments presented in the

following chapters, using the default Maxfilter parameters. This tSSS also allows for

movement compensation, by continuously tracking the position of the head relative

to the MEG sensor array and projecting the signals into the original sensor positions.

Therefore, MEG sensor positions can be considered as fixed throughout the MEG

measurements. Beforehand, the MEG sensor data are visually inspected for broken

and noisy channels, and bad channels are excluded from the estimation of the SSS

components. However, SSS components are projected to all MEG sensors, and all 306

sensors can be used in the subsequent analysis.

2.2.2 Artifact detection

After the tSSS filtering, MEG measurements are scanned for artifacts. This procedure

can be done automatically, visually or combining both methods. Artifacts may arise

from biological (eye movements, blinking, or contraction of cardiac and skeletal mus-

cles) or external sources (fields originating outside the MEG, or electronic artifacts in

the MEG system).

Artifact prevention is crucial to achieve good quality MEG recordings. Firstly, sub-

jects should remove all objects containing ferromagnetic particles before entering the

MSR. These include evident metal objects (phones, keys, rings, etc.) and also products

that are apparently non-metallic but contain tiny ferromagnetic particles, such as

some sorts of make-up and clothing. Therefore, subjects with permanent metals in

their bodies (non-removable dental work, pacemakers, metal implants or even some

sorts of tattoos) should be excluded from MEG studies. Secondly, subjects should be

instructed to sit quietly and relaxed throughout the measurements, and avoid tensing

their muscles (especially jaw and shoulders) or moving.

However, even when dealing with appropriate metal-free subjects that sit com-

pletely relaxed, some artifacts arise in MEG signals. These artifacts have to be located

(for instance automatically with the FieldTrip software (Oostenveld et al., 2011)) and

excluded from any subsequent analysis.

Ocular artifacts

Ocular artifacts produce fatal interference in MEG signals, since eye move-

ments and blinking generate strong magnetic fields. They are usually easily

distinguished in MEG frontal sensors. However, to detect them more accurately,

electrooculogram (EOG) signal can be measured by placing two electrodes sur-

rounding one eye (above and below for vertical EOG, and to the left and right
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side for horizontal EOG) and a third electrode as ground (usually at the earlobe).

Deviations in the amplitude of the EOG channel indicate the presence of ocular

artifacts.

Muscular artifacts

The contraction of skeletal muscles produces disturbing magnetic fields, which

manifest as high frequency activity especially when muscles lie close to the MEG

sensor array. Muscular artifacts may for instance be detected as time intervals

with higher amplitude than usual in the 110-140 Hz range.

Sensor artifacts

MEG sensors may transiently malfunction, creating artificial jumps in MEG

signals. These artifacts are easily identified visually as abrupt changes in sensor

measurements. Quantitatively, jumps may be seen as extreme values in the

derivative of a smoothed MEG signal.

External artifacts

The tSSS filtering does not completely remove the fields generated outside the

MSR. For instance, the power line at 50 Hz (or 60 Hz in some countries) contam-

inates MEG signals. For this reason, spectral content at 50 Hz and harmonics

is not used in MEG analysis, either by focusing in a band that does not contain

these frequencies (i.e. from 1 to 40 Hz), or by using broader frequency range for

analysis but applying notch filters at 50, 100 and 150 Hz to eliminate the power

line noise. Additionally, low frequency content of MEG recordings (i.e. <1 Hz)

is highly contaminated, and is usually filtered out from the MEG data analysis.

Movements of large ferromagnetic objects in the neighborhood of the MEG

system (elevators, car, chairs, etc.) may produce such intense low frequency

noise.

2.3 Source reconstruction

MEG preprocessing yields clean MEG sensor fields that are generated by neural cur-

rents. The next step in our MEG analysis pipeline is called source reconstruction,

and consists in determining the dynamics and topography of these neural currents,

as illustrated in Figure 2.7. Source reconstruction is an inverse problem: it consists

in estimating the distribution of currents within the brain volume that generated

a given set of MEG experimental measurements. This inverse problem cannot be

solved directly. In fact, it requires solving the forward problem beforehand: find the
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MEG sensor measurements that result from a given distribution of neural currents. In

this section, inverse and forward problems are introduced, as well as some common

models to solve them.

Brain currents 

FORWARD PROBLEM 
Find the magnetic fields produced 

by brain currents 

INVERSE PROBLEM 
Find brain currents that have 

produced sensor measurements  
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Figure 2.7: Forward and inverse problems. The forward problem finds the magnetic field
produced by a known distribution of brain currents, while the inverse problem finds the brain
currents that originated the MEG measurements.

2.3.1 General formulation

The relation between brain currents and magnetic fields is governed by Maxwell’s

equations. For EEG/MEG analysis, a few assumptions are employed to obtain a set of

simplified equations that relate neural currents and EEG/MEG sensor measurements.

In this text, vectors and matrices are represented with bold characters and scalars with

plain characters.

Assumption 1: Brain currents and field measurements have low frequency (< 150

Hz) and travel short distances (< 50 cm), so that the quasi-static approximation of

Maxwell’s and continuity equations are valid (Heller and van Hulsteyn, 1992; Hämäläi-

nen et al., 1993). Under this assumption, Ampère’s Law can be written as:

∇×BBB(rrr ) =µ0

(
jjj (rrr )+ε∂EEE(rrr )

∂t

)
≈µ0 jjj (rrr ) (2.10)

where BBB(rrr ), EEE(rrr ) and jjj (rrr ) are the magnetic field, electric field and current density

at point rrr , respectively, µ0 = 4π1̇0−7Tm/A is the vacuum permeability and ε is the

tissue permittivity. All media involved are non-magnetic (i.e. brain, skull, scalp), so
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that µ(rrr ) =µ0 is assumed for any rrr . Biot Savart’s law is therefore also valid:

BBB(rrr ) = µ0

4π

∫
G

jjj (rrr ′)× rrr −rrr ′

|rrr −rrr ′|3 d 3r ′ (2.11)

where G is a closed volume that encloses currents jjj (rrr ′).

Under the quasi-static approximation, the time derivative in Faraday’s law is also

negligible:

∇×EEE(rrr ) =−∂BBB(rrr )

∂t
≈ 0 (2.12)

One can therefore relate EEE(rrr ) and the electric potential V (rrr ) by:

EEE(rrr ) =−∇V (rrr ) (2.13)

Finally, in the quasi-static approximation the continuity equation is:

∇· jjj (rrr ) =−∂ρ
∂t

≈ 0 (2.14)

In the EEG/MEG inverse problem, jjj (rrr ′) is not directly the current source of in-

terest. Instead, it represents the total current, which has a primary and a volume

component:

jjj (rrr ′) = jjj p (rrr ′)+ jjj vol (rrr ′) (2.15)

jjj p (rrr ′) is the primary cellular current, which comprises the currents inside the neuron

and across its membrane, and reflects the neural activity that we intend to reconstruct.

In contrast, jjj vol (rrr ′) = σ(rrr ′)EEE(rrr ′) is the return ohmic current and results from the

macroscopic electric field EEE(rrr ′).

Inserting (2.13) and (2.15) into (2.11) and (2.14), one obtains two main equations

(Mosher et al., 1999; Stenroos and Sarvas, 2012):

BBB(rrr ) = µ0

4π

∫
G

(
jjj p (rrr ′)−σ(rrr ′)∇V (rrr ′)

)× rrr −rrr ′

|rrr −rrr ′|3 d 3r ′ (2.16)

∇· (σ(rrr ′)∇V (rrr ′)
)=∇· jjj p (rrr ′) (2.17)

G is often called the volume conductor, and encloses all currents jjj (rrr ′). It is usually

considered to be the head, assuming thereby that no currents reach the neck.

Solving the forward problem means calculating BBB(rrr ) for a given distribution of

jjj p (rrr ′). To do that, one can use equations (2.16) and (2.17), once the conductivity distri-

bution σ(rrr ′) is known. In other words, one has to model the head and its conductivity
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profile first, insert it into equations (2.16) and (2.17), and then use a numerical method

to solve the problem.

The problem is then simplified by adding a further assumption:

Assumption 2: The primary current jjj p (rrr ′) can be modelled by Ndi p point-like

current dipoles with moments qqqk , k = 1,2, . . . , Ndi p at positions rrr k .

jjj p (rrr ′) =
Ndi p∑
k=1

qqqkδ(rrr ′−rrr k ) (2.18)

One can solve equations (2.16) and (2.17) for a single unit dipole at a given position

rrr k , and then calculate the total field BBB(rrr ) with the superposition principle. In fact, the

goal of the forward problem is to find the 3×1 vectors LLLi k , called leadfields, that relate

dipole k and sensor measurement i :

mi (t ) =
Ndi p∑
k=1

LLLi kqqqk (t ), i = 1,2, . . . , Nsensor s (2.19)

mi relates directly to the magnetic field BBB(rrr ) at the MEG sensor position. For magne-

tometers, mi =
∫

S BBB(rrr ) ·dsss ≈ Bz (rrr ) ·S, where S is the small surface of the pick-up coil.

For gradiometers, mi =
∫

S1
BBB(rrr )·dsss−∫

S2
BBB(rrr )·dsss ≈ Bz (rrr 1)·S1−Bz (rrr 2)·S2, where S1 and

S2 are the surfaces of the i -th gradiometer’s pick-up coils, with center at positions rrr 1

and rrr 2.

(2.19) is usually expressed with matrices MMM , LLL and QQQ:

MMM =LQLQLQ (2.20)

where

MMM =


m1(t = t1) · · · m1(t = tT )

...
. . .

...

mNsensor s (t = t1) · · · mNsensor s (t = tT )

 (2.21)

is a Nsensor s ×NT matrix which contains the MEG measurements for all time samples

t = t1, · · · , t = tT ,

LLL =


L1,1 · · · L1,Ndi p

...
. . .

...

LNsensor s ,1 · · · LNsensor s ,Ndi p

 (2.22)
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is the Nsensor s ×Ndi p leadfield matrix and

QQQ =


q1(t = t1) · · · q1(t = tT )

...
. . .

...

qNdi p (t = t1) · · · qNdi p (t = tT )

 (2.23)

is the Ndi p ×NT dipole matrix. With this notation, elements of matrix QQQ are scalar, so

that if the dipole orientation is not fixed, 3 dipoles per source location with orthogonal

directions have to be included separately.

2.3.2 Forward problem

Equations (2.16) and (2.17) show that the forward problem can only be solved once the

conductivity map σ(rrr ′) is known. Conductivity values for different tissue types have

been evaluated with in-vivo and in-vitro experiments (Haueisen and Knösche, 2014).

Table 2.1 contains conductivity values of relevant tissue types. We note that in this ta-

ble (and in most forward models) σ(rrr ′) is assumed to be isotropic, although this is not

strictly the case, especially in white matter regions with highly anisotropic fibers. To

build a forward model one should ideally locate precisely each tissue type within each

individual (and relative to the MEG sensor array), and assign a conductivity value to it.

Luckily, in equation (2.16) the contribution ofσ(rrr ′)∇V (rrr ′) is smaller than that of jjj p (rrr ′),

so that errors in conductivity modelling do not have a fatal impact on the calculation

of BBB(rrr ). In fact, coarse models with isotropic conductivities and rough geometries are

surprisingly accurate. The volume conductor is commonly modelled as an N-shell

volume, with shells of homogeneous and isotropic conductivity. For instance, in a

1-shell model, the space inside the skull represents the volume conductor, which is

considered to be homogeneous. This is possible because the skull has much lower

conductivity than the tissues it encloses (Table 2.1), so that in a rough approximation

one can assume that no currents cross the inner skull surface. More realistic models

include scalp, skull or cerebrospinal fluid as separate shells.

Spherical model

The head volume conductor can be modeled as a homogeneous sphere, which is fitted

to the inner skull surface, as shown in Figure 2.8. In this simplified spherical model, the

forward problem has an analytical solution (Sarvas, 1987):

BBB(rrr ,rrr k ) = µ0

4π
· F (rrr ,rrr k )qqqk ×rrr k −

(
qqqk ×rrr k ·rrr

)∇F (rrr ,rrr k )

F 2(rrr ,rrr k )
(2.24)
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Table 2.1: Isotropic electrical conductivity values of head tissue types. Values are extracted
from (Haueisen and Knösche, 2014; Dannhauer et al., 2011), and correspond to low frequency
conductivities.

Electrical conductivity (S/m)

Gray matter 0.3
White matter 0.2

Cerebrospinal fluid 1.79
Average brain 0.33

Compact bone 0.0064
Spongy bone 0.029

Fat 0.05
Scalp 0.43

with

F (rrr ,rrr k ) = d
(
r d + r 2 + (rrr k ·rrr )

)
(2.25)

and

F (rrr ,rrr k ) =
(

d 2

r
+ ddd ·rrr

d
+2d +2r

)
rrr −

(
d +2r + ddd ·rrr

d

)
rrr k (2.26)

where rrr is the measurement position,rrr k is the position of dipole k and ddd = rrr − rrr k

separates dipole and measurement point.

A B 

Figure 2.8: Spherical forward model. A. In the single sphere model, a sphere is fitted to the
inner skull surface. B. In the local spheres model, a sphere is fitted to a portion of the inner
skull surface that lies close to the MEG sensor of interest.

It is interesting to note that (2.24) does not depend on the radius of the sphere,

as long as the dipole is inside the sphere and the measurement point in its exterior.
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Additionally, the dependence of BBB(rrr .rrr k ) with the orientation of dipoles rrr k is easy to

grasp from (2.24). On the one hand, for radially oriented dipoles, qqq ∥ rrr k and qqq ×rrr k = 0,

so that there is no external magnetic fields: BBB(rrr .rrr k ) = 0. On the other hand, for dipoles

that are tangential to the sphere surface (which ideally represents the inner skull

surface), ‖qqq ×rrr k‖ = ‖qqq‖ ·‖rrr k‖ and BBB(rrr .rrr k ) is strongest.

Although it constitutes a very simplistic approximation, the spherical model is ad-

equate for many applications in MEG and standard subjects. Inaccuracies are higher

in frontal and temporal regions, which deviate strongly from the global sphere fit.

Huang et al. (1999) introduced a local spheres model which achieved higher accuracy

than the single sphere model by fitting a different sphere for each MEG sensor. A set of

overlapping spheres are then generated that reproduce the geometry of the head near

the MEG sensor.

Single shell model with Nolte method

The Nolte method (also called corrected-sphere model) uses a single-shell volume

conductor with arbitrary geometry (Nolte, 2003) and calculates the magnetic field

by adding correcting terms to the spherical solution (2.24). Nolte proved that, in the

quasi-static approximation, the leadfields of two single-shell volume conductors differ

by the gradient of a scalar function. In particular, the leadfield LLL(rrr ,rrr ′) for a given MEG

sensor at position rrr and a dipole at position rrr ′ can be written as:

LLL(rrr ,rrr ′) =LLLspher e (rrr ,rrr ′)−∇U (rrr ′) (2.27)

for a given measurement position rrr , where Lspher e (rrr ,rrr ′) is the solution of the forward

problem with a single-sphere model and U (rrr ′) is a harmonic function, chosen such

that L(rrr ,rrr ′) is tangential to the volume conductor at its surface. It is useful to consider

U (rrr ′) as a series expansion:

U (rrr ′) =
M∑

m=1
amUm(rrr ′) (2.28)

where Um(rrr ′), m = 1,2, · · · , M are basis harmonic functions. For instance, spherical

harmonics are adequate Um(rrr ′) functions. Then, calculating the leadfield requires

finding the coefficients am that satisfy the boundary condition:

nnn(rrr ′) · (Lspher e (rrr ,rrr ′)−∇U (rrr ′)
)= 0 (2.29)

for all rrr ′ on the shell’s surface. To find the am that best satisfy (2.29), one defines P

points in the inner skull surface and finds the optimal am values by minimizing the
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error of the boundary condition at these P points:

min
P∑

p=1

[
nnn(rrr p ) ·LLLspher e (rrr p )−

M∑
m=1

(
amnnn(rrr p )Um(rrr p )

)]2

(2.30)

In summary, for each MEG sensor, one should: (1) find the coefficients am that

minimize (2.30) and (2) evaluate the leadfield with (2.27) for all source dipoles at

positions rrr ′ = rrr k , k = 1,2, · · · , Ndi p .

Boundary element method (BEM)

If the volume conductor is modeled as a piecewise homogeneous and isotropic vol-

ume of arbitrary geometry, the forward problem can be solved with BEM (Mosher

et al., 1999; Stenroos and Sarvas, 2012). For that, equations (2.16) and (2.17) are first

transformed into integral equations at the boundary surfaces between the volume

conductor’s shells. Then, these surfaces are discretized into small surface elements

(usually triangles) and the forward problem is reduced to a system of linear equations.

BEM solutions take remarkably longer computation times than analytical spherical

or Nolte methods. This was historically considered an important drawback for BEM.

However, this is no longer a big issue, as BEM calculations may only last for a few

minutes in modern computers.

1-shell and 3-shell models are the most popular. While 1-shell models consider

that the volume inside the skull is homogeneous and that currents jjj (rrr ′) do not cross

the inner skull boundary, 3-shell models include skull and scalp as separate shells

within the volume conductor (see Figure 2.9). Other more detailed models include

additional layers such as cerebrospinal fluid or a distinction between hard bone and

spongy bone (Stenroos et al., 2014).

Finite element Method(FEM)

While the methods presented before were restricted to piecewise homogeneous vol-

ume conductors, FEM can handle more realistic and complicated models. The volume

conductor is discretized into a 3D mesh of small volumes, or elements (Haueisen and

Knösche, 2014). Each of these elements is characterized by a local conductivity tensor.

One advantage of FEM is therefore the possibility to include anisotropic conductivity

models. Although FEM enables very detailed and realistic solutions, it is rarely used

in EEG/MEG, despite recent efforts to include FEM solvers in free EEG/MEG software

(Ziegler et al., 2014).
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A B 

Figure 2.9: Boundary surfaces produced by MRI segmentation. A. Surfaces are overlaid into a
subject’s MRI. White matter and pial surfaces produced by Freesurfer software are displayed
in yellow. Inner skull, outer skull and skin surfaces produced by NFT software are represented
in pink. B. 3D view of the inner skull, outer skull and scalp surfaces that can be used as input
to the 3-shell BEM solution of the forward problem.

Choosing the right forward model

Choosing an appropriate forward solution is crucial for performing a decent source

reconstruction. Extremely detailed and realistic solutions involving anisotropic mod-

els with 3D FEM meshes could seem like the most accurate ones. However, this is only

true if the conductivity profile in the head is accurately known for each small volume,

which is rarely the case. Therefore, piecewise homogeneous models are employed for

nearly all applications. While various studies have compared forward models, it is

still unclear which is the best one (Hämäläinen and Sarvas, 1987, 1989; Huang et al.,

1999; Lalancette et al., 2011; Acar and Makeig, 2013; Stenroos et al., 2014). In general,

although spherical models work quite decently for MEG, they are outperformed by

realistically shaped models, based on the subject-specific anatomy. Moreover, 3-shell

BEM models were found to produce slightly more accurate leadfields than 1-shell

models (either 1-shell BEM or Nolte method) (Stenroos et al., 2014). In Appendix C we

compared single sphere, local spheres, Nolte, 1-shell BEM and 3-shell BEM models,

and obtained results comparable to (Stenroos et al., 2014): 3-shell BEM, 1-shell BEM

and Nolte methods produced similar results and the spherical models differed from

the realistically-shaped ones, especially in medial temporal regions. We conclude that
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3-shell BEM, 1-shell BEM and Nolte offer decent solutions for the forward problem,

and that 3-shell BEM is probably the most accurate one. 3-shell BEM was therefore

used in Chapter 4. Nevertheless, the forward solutions in Chapter 3, which were

computed before the publication of (Stenroos et al., 2014) and the computation of

Appendix C, were performed with Nolte method, which was the recommended option

for MEG in FieldTrip software (Oostenveld et al., 2011).

Finally, the choice of the right forward model depends on the study’s resources.

If a T1-weighted MRI is available for each subject, it is best use Nolte method or

BEM. In fact, tissue surfaces can be extracted from a T1-weighted image using any

segmentation software, such as Freesurfer (Fischl and Dale, 2000; Fischl et al., 2002),

SPM (Penny et al., 2011), FieldTrip or NFT (Neuroelectromagnetic Forward Modeling

Toolbox) (Acar and Makeig, 2010). In contrast, if no MRI is available, a good estimation

of the leadfield can be obtained with the local-spheres method. The headshape, which

is routinely digitalized before MEG scans, can be used to determine the spheres. This

is possible because (2.24) does not depend on the radius of the sphere, so that one can

fit a sphere to the headshape instead of the inner skull surface and use it directly in

(2.24), assuming thereby that the spherical fits to the headshape and the inner skull

are concentric.

2.3.3 Inverse problem

Solving the forward problem yields the value of the leadfield matrix LLLi k in (2.19). Once

LLLi k is known, the inverse problem can be tackled, in which one attempts to derive

the brain currents qqqk (t ), k = 1,2, · · · , Ndi p from the MEG measurements mi (t ), i =
1,2, · · · , Nsensor s :

qqqk (t ) = f ({mi (t ),LLLi k } , i = 1, · · · , Nsensor s) (2.31)

This is a tricky task, since infinite functions f explain the MEG sensor measure-

ments and verify equation (2.19). The inverse problem has therefore infinite solutions

and is said to be ill-posed. This has been known since 1853, when Helmholtz stated

that infinite distribution of currents in a conductor produce the same fields and

potentials at its surface (Helmholtz, 1853). Then, in order to solve the inverse problem,

additional hypotheses should be introduced to select a single solution f . The validity

of the inverse solution depends then on the validity of these hypotheses in the specific

MEG experiment. Different hypotheses have been proposed over the past years, and

each of them has led to a source reconstruction method. In the following, we describe

three of the most popular techniques and focus on beamforming, which is used in

Chapters 3 and 4. We note however that other models, such as MUSIC (Mosher and
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Leahy, 1998) or LORETA (Pascual-Marqui et al., 1994), have been proposed as inverse

models and are commonly used in some research centers.

Dipole fitting

The oldest and perhaps simplest hypothesis is that MEG activity is created from

only a few dipoles (typically less than 5). Under this hypothesis, the inverse problem

becomes well-conditioned, and the dipole positions rrr k and activations qqqk (t ) can be

obtained for all modelled dipoles k = 1,2, · · · , Ndi p . For each dipole, 6 values have to

be estimated: its 3D location rrr k , its orientation (θk ,ϕk ) and its moment qk . This is

usually solved as an optimization problem, which consists in finding the set of values{
rrr k ,θk ,ϕk , qk

}
that minimize the error between the actual measurements MMM and the

predicted measurements LQLQLQ (Baillet et al., 2001; Darvas et al., 2004):

min
{rrr k ,θk ,ϕk ,qk }

∣∣∣∣MMM −LLL(rrr k ,θk ,ϕk )QQQ
∣∣∣∣2 (2.32)

This is a non-linear optimization problem, and it has to be solved carefully to avoid

terminating at a local minimum. To deal with this problem, it can be combined

with global optimization methods such as genetic algorithms or simulated annealing

(Uutela et al., 1998; Khosla et al., 1997). Dipole fitting can be performed either sepa-

rately for each time point, or jointly for a time interval (Wood, 1982; Baillet et al., 2001),

yielding either free moving dipoles or dipoles with fixed position and time-dependent

activation. Although dipole fitting is a simplistic model, it has proven to be adequate

for source reconstruction of evoked responses, such as auditory and somatosensory

responses (Salmelin, 2010).

Minimum norm estimates (MNE) and minimum current estimates (MCE)

Imaging methods such as minimum norm or minimum current estimates (MNE or

MCE, respectively) estimate dipole moments at a set of fixed source positions that

cover the entire brain activation area (Baillet et al., 2001). This source space may result

from the tessellation of the subject’s cortical surface or from a regular grid of 3D points

that are spread over the subject’s gray matter. If the subject’s MRI is not available,

its cortical surface and gray matter cannot be located, and the source space may be

defined in a template space such as MNI space (see 2.3.4). The orientation of these

source positions may be fixed (for instance perpendicularly to the cortical surface),

or span 3 possible directions x, y, z. In all cases the source space consists in a few

thousands dipoles, while MEG measurements are sampled at a few hundred sensors,
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so that the source reconstruction problem is severely underdetermined.

Constraints or a priori information must then be included to find a unique so-

lution. Although a Bayesian framework is commonly introduced to describe MNE

and MCE, they are easier to grasp as the solution of a simple minimization problem

(Gramfort et al., 2012):

min
QQQ

[
f1(QQQ)+λ f2(QQQ)

]
(2.33)

The cost function is then composed of two terms f1(QQQ) and f2(QQQ) which are weighted

by the regularization parameter λ> 0:

• f1(QQQ) measures how well source estimations fit the model, or how much the

estimated fields LQLQLQ deviate from the actual MEG measurements MMM .

• f2(QQQ) is a regularization or penalty term, and introduces a priori information. f2

is necessary to ensure that the ill-posed inverse problem has a unique solution.

For the basic MNE and MCE, f1(QQQ) = ||MMM −LQLQLQ|| and f2(QQQ) = ||QQQ||, where ||· · · ||
refers to the L2 norm for MNE and to the L1 norm for MCE (Uutela et al., 1999). The

L2 norm results generally in smeared solutions, while the L1 norm produces sparse

source activations (Darvas et al., 2004). With this approach, source estimations are

biased towards superficial sources, since deeper sources require stronger activation

than superficial sources to produce the same field intensity in MEG sensors. To deal

with this bias, depth-weighting factors or noise normalization may be introduced in

the MNE and MCE solutions (Lin et al., 2006; Hauk et al., 2011).

Beamforming

Beamformers are adaptive spatial filters (Sekihara and Nagarajan, 2008). They are

called spatial filters because the source activity qqq(rrr , t ) at a source position rrr is esti-

mated as a linear combination of sensor measurements MMM(t ):

qqq(rrr , t ) =wwwT (rrr )MMM(t ) (2.34)

where the Nsensor s × 3 weights www(rrr ) are computed independently from all other

sources rrr ′ 6= rrr . www(rrr ) depends not only on the source position rrr and its corresponding

leadfield LLL(rrr ), but also on the measurements MMM : beamformers are therefore called

adaptive spatial filters.

For the beamforming formulation, the data covariance matrix RMRMRM (Nsensor s ×



2.3. SOURCE RECONSTRUCTION 45

Nsensor s) is introduced:

RMRMRM = 1

NT
MMMMMM T =


〈

m1(t )2
〉 · · · 〈

m1(t ) ·mNsensor s (t )
〉

...
. . .

...〈
mNsensor s (t ) ·m1(t )

〉 · · · 〈
mNsensor s (t )2

〉
 (2.35)

We note that the covariance is not defined here in the usual way, which removes signal

average prior to multiplication with other signals. However, this is irrelevant since

magnetic fields and source activations are considered to have zero average.

Source variance VVV (rrr ) (also referred to as power) can then be expressed as:

VVV (rrr ) =qqq(rrr , t )qqqT (rrr , t ) =wwwT (rrr )RMRMRM www(rrr ) (2.36)

Ideally, the filter www(rrr ) should be defined to enable that signals coming from loca-

tion rrr pass, while signals coming from any other location are blocked. In other words,

an ideal spatial filter should satisfy:

wwwT (rrr )LLL(rrr ′) =
III , for rrr = rrr ′.

000, for rrr 6= rrr ′.
(2.37)

where LLL(rrr ′) is the Nsensor s ×3 leadfield matrix for a source at position rrr ′.
Such a filter cannot be built in practice, and more permissive constraints are used

to derive real beamformers. For instance, the linearly constrained minimum variance

(LCMV) beamformer results from minimizing source power while keeping unit gain at

the source position (Van Veen et al., 1997):

min
www(rrr )

trace
(
wwwT (rrr )RMRMRM www(rrr )

)
, subject to wwwT (rrr )LLL(rrr ) = III (2.38)

This minimization problem can be solved with Lagrange multipliers, and the

weight www(rrr ) becomes:

www(rrr ) =RMRMRM
−1LLL(rrr )

[
LLLT (rrr )RMRMRM

−1LLL(rrr )
]−1

(2.39)

The source power is then:

VVV (rrr ) =wwwT (rrr )RMRMRM www(rrr ) = [
LLLT (rrr )RMRMRM

−1LLL(rrr )
]−1

(2.40)

Weights www(rrr ) and power VVV (rrr ) can then be computed at a set of predefined locations

rrr in order to produce a whole brain image of source power or of source time-courses
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with (2.34).

We note that beamforming solutions are derived under a few assumptions (Seki-

hara and Nagarajan, 2008):

• Sources are uncorrelated. This means that source time series should be linearly

independent.

• There are less active sources than MEG sensors: Nsensor s > Nsour ces .

• MEG sensors capture only a small amount of noise, and this noise is uncorre-

lated.

However, beamformers may still perform adequately if these conditions are not

strictly satisfied. For instance, in an experiment with a phantom device, Belardinelli

et al. (2012) proved that only extremely high source correlations (>0.95) resulted in a

poor spatial resolution (>1.5 cm). Additionally, since beamformers do not attempt to

explain the entire measurements MMM(t ) (contrary to dipole fitting or MNE), they are

particularly robust to noisy interference as cardiac artifacts (Brookes et al., 2011a).

In fact, beamformers have been recommended for the source-space analysis of func-

tional connectivity of resting state data (Hillebrand et al., 2005; Brookes et al., 2011a;

Schoffelen and Gross, 2009; Brookes et al., 2011b; Hillebrand et al., 2012; Hipp et al.,

2012). They were therefore used throughout Chapters 3 and 4 for source reconstruc-

tion.

Matrix regularization The accuracy of the beamforming solution in (2.39) and (2.40)

depends on the accuracy of the estimation of the data covariance matrix RMRMRM and its

inverse RMRMRM
−1. First of all, RMRMRM as estimated from (2.35) differs from the true covariance

matrix. This estimation error decreases with measurement time and signal bandwidth

(Brookes et al., 2008), so that before applying beamforming we should ensure that

enough time samples are available to produce a decent covariance matrix. Secondly,

RMRMRM should be invertible. This is not the case if the matrix is rank deficient (e.g. after

SSS has been applied). In such cases a regularization factor is included, and RMRMRM
−1 is

replaced in (2.39) and (2.40) by:

RMRMRM
−1 → [

RMRMRM +µσ2III
]−1

(2.41)

where µ is called the regularization parameter and σ quantifies the white noise at the

MEG sensors. σ may be extracted from empty room recordings or estimated as the

smallest singular value of RMRMRM . This regularization procedure is equivalent to adding

some uncorrelated noise to the MEG recordings. It is helpful because it reduces the
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condition number of RMRMRM but also produces a smearing in the source reconstruction.

The value of regularization parameter must then result from a trade-off between both

considerations.

Source orientation We have previously employed a vector formulation: source ac-

tivities qqq(rrr , t ) : 3× 1 are described as vectors with (x, y, z) components. Alternatively,

a scalar formulation fixes the source orientation, and the source activity becomes

scalar q(rrr , t ) : 1× 1. For instance, if the source locations are placed over the cortical

surface, one can assume that their dipoles are oriented perpendicularly to this surface

and choose a scalar beamforming solution. In this case, the solution to the unit-gain

beamformer (2.38) is (Sekihara and Nagarajan, 2008):

www(rrr ) = RMRMRM
−1LLL(rrr )

LLLT (rrr )RMRMRM
−1LLL(rrr )

(2.42)

where www(rrr ) : Nsensor s × 1 has now a single dimension and LLL(rrr ) : Nsensor s × 1 is the

leadfield for position rrr and the previously determined orientation.

It is generally not recommended to use this scalar formulation directly: even if

detailed geometrical information of the cortical surface is available, co-registration

errors between MEG sensor positions and the source mesh may yield to considerable

errors in the estimation of the source orientation. However, even when choosing the

vector beamformer option, we still want to get rid of the orientation parameter and

obtain a scalar source power VVV (rrr ) and a single time-course per source location rrr .

The global source power at rrr can be directly computed by combining all orienta-

tions as:

VVV (rrr ) = trace
[
wwwT (rrr )RMRMRM www(rrr )

]
(2.43)

Another option is finding a data-driven optimal orientation ηηηopt (rrr ) and use it to

project source power and time-series. This option is used in Chapters 3 and 4, since

we aimed at obtaining not only power values but also time series. This ηηηopt (rrr ) can be

extracted from maximizing the power in direction ηηη(rrr ):

max
ηηη(rrr )

ηηηT (rrr )VVV (rrr )ηηη(rrr ) (2.44)

For the LCMV beamformer, this is reduced to (Sekihara and Nagarajan, 2008):

max
ηηη(rrr )

ηηηT (rrr )
[
LLLT (rrr )RMRMRM

−1LLL(rrr )
]−1

ηηη(rrr ) = θmax

([
LLLT (rrr )RMRMRM

−1LLL(rrr )
]−1

)
(2.45)

= θmi n
(
LLLT (rrr )RMRMRM

−1LLL(rrr )
)
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where θmax (· · · ) is the eigenvector with maximum eigenvalue of matrix (· · · ) and

θmi n(· · · ) is the eigenvector with minimum eigenvalue of matrix (· · · ).

Finally, the weight matrix is projected along this optimal direction:

wwwηηη(rrr )(rrr ) =www(rrr )ηηη(rrr ) (2.46)

and the new weight vector wwwηηη(rrr ) is used in (2.34) and (2.36) to compute source time

series and power.

Frequency resolution Frequency resolution can be introduced into the source re-

construction with either:

• filtering the measurement data MMM(t ) into the target frequency band and then

employing a time-domain beamformer (such as LCMV).

• using a frequency domain beamformer, as explained in the following.

Frequency-domain beamformers rely on the cross-spectrum matrix CCC ( f ) rather

than on the covariance matrix:

CCC ( f ) =GGG( f )GGG H ( f ) (2.47)

where H denotes the Hermitian transpose (transpose + complex conjugate) and GGG( f )

is the Nsensor s ×1 vector containing the Fourier transform gi ( f ), i = 1,2, · · · , Nsensor s

of the MEG measurements mi (t ), i = 1,2, · · · , Nsensor s .

GGG( f ) =

 g1( f )

· · ·
gNsensor s ( f )

 (2.48)

Similarly as for its time-domain counterpart, for a frequency-resolved filter the

source activity is given by:

qqq(rrr , f ) =www H (rrr , f )GGG(fff ) (2.49)

The weights www(rrr , f ) can be obtained by imposing the desired constraints. The unit

gain minimum variance filter results in the following optimization problem:

min
www(rrr , f )

trace
(
www H (rrr , f )CCC ( f )www(rrr , f )

)
, subject to www H (rrr , f )LLL(rrr ) = III (2.50)
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which has the solution (Gross et al., 2001; Sekihara and Nagarajan, 2008)

www(rrr , f ) =CCC ( f )−1LLL(rrr )
[
LLLT (rrr )CCC ( f )−1LLL(rrr )

]−1
(2.51)

Then, inserting this solution into (2.49), source activity and power can be computed

at any desired position rrr and frequency f .

To study a given frequency band BW instead of a particular frequency f , a cross-

spectrum matrix CBW ( f ) which covers the desired frequency range can be used in the

previous equations. CBW ( f ) may be defined as:

CBW ( f ) = ∑
f ∈BW

GGG( f )GGG H ( f ) (2.52)

Alternatively, more sophisticated spectral estimation methods can be employed to

estimate CBW ( f ), such a multi tapers or wavelets.

2.3.4 Group analyses

After performing MEG source reconstruction, we want to compare or combine the

results from all the study participants. However, before tackling any statistical analysis,

we should make sure that the source reconstruction can be compared across subjects.

Both source locations and source activation values should be comparable across indi-

viduals. This is now further explained.

Spatial matching

To compare source reconstructions from multiple subjects, the correspondence be-

tween source locations in any pair of subjects should be established. In other words,

for any source location rrr i in subject i , the source location rrr j in subject j that cor-

responds to the same structure should be found. This is commonly achieved via a

reference or template space, such as the MNI (Montreal Neurological Institute) space

(Evans et al., 2012). MNI space was created from a large series of MRI images from

healthy controls and constitutes a general and reference space. Some normalization

routines are available in software such as SPM can determine the correspondence

between subject and MNI space by matching the template MNI T1-weighted image

and the subject’s T1-weighted volume:

rrr M N I = fff i (rrr i ), i = 1,2, · · · , Nsub j ect s (2.53)
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where fff i depends on the individual, and may be a simple affine transformation or a

more complicated non-linear transformation.

Once the transformation from each subject to MNI space fff i , i = 1,2, · · · , Nsub j ect s

is known, the location correspondence between two subjects i and j can be obtained

via:

rrr i = fff −1
i

[
fff j (rrr j )

]
(2.54)

Therefore, one may create the source meshes separately for each subject, and then

compare their source reconstructions by calculating the correspondence between

source locations and interpolating. As illustrated in Figure 2.10, a more straightfor-

ward alternative is to define the source meshes in MNI space, transform this template

mesh to subject’s space with (2.53) and use this transformed mesh in subject space

for source reconstruction. In this case, source k in subject i can be directly compared

with source k in subject j , since source k corresponds to the same MNI location for all

subjects. This approach was followed in section 3.1.

Additionally, when performing MEG group analyses, it is often of use to assign

anatomical labels to source activations, or to group results into anatomical brain

regions. For both cases one may resort to a brain atlas. Many atlases have been

built over the past years (Evans et al., 2012), such as the Harvard-Oxford probabilis-

tic atlas (Desikan et al., 2006), the AAL atlas (Tzourio-Mazoyer et al., 2002) or the

Desikan-Killiany and Dextrieux atlases in Freesurfer (Fischl et al., 2002, 2004). While

the Harvard-Oxford and the AAL atlases assign anatomical labels (and a probability

value for the Harvard-Oxford) to MNI coordinates, Freesurfer’s cortical parcellation

routine employs both geometrical information from the subject’s gyri and sulci and a

training set model to separate the cortical surface into atlas regions.

Intensity normalization

Source reconstruction yields the time dynamics qqqk (t ) of all dipoles included in the

source model. Although absolute units such as Am could be assigned to the qqqk (t )

solutions, these qqqk (t ) values should often not be inserted directly in a statistical

analysis. In fact, the source reconstruction algorithm may introduce some bias. For

instance, beamforming overestimates source power in the center of the brain, which

has a low magnitude leadfield and low signal to noise ratio (Hall et al., 2013; Luckhoo

et al., 2014). A common workaround to this is to use a relative qqqk (t ), using either a

baseline or source activation from a different condition to normalize its value.

However, a normalization condition is difficult to obtain for resting state. This

is often not an issue, since for some purposes a rescaling of the source intensity
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Figure 2.10: Combining spatial information from different subjects. A. A regular template mesh
with 2cm spacing is created in MNI space, and then it is transformed into subject space with
a non-linear normalization routine from SPM software. If this mesh is used for MEG source
reconstruction, source locations can be compared across subjects, since they correspond to
the same MNI coordinates. B. Source locations are grouped into regions using the Desikan-
Killiany atlas implemented in Freesurfer. Each color corresponds to an atlas region.
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is irrelevant. For instance, powerspectra are often normalized with the broadband

power, yielding relative power estimates (section 3.1). Additionally, most functional

connectivity (FC) algorithms are insensitive to rescaling in their input, so that qqqk (t )

can usually be employed directly in an FC analysis. However, normalization is neces-

sary when aiming at obtaining absolute resting-state power, and power values V (rrr )

are replaced by their normalized version:

Z (rrr ) = V (rrr )

N (rrr )
(2.55)

where N (rrr ) represents the power of the noise estimates, and is obtained by replacing

the resting state covariance RMRMRM in (2.36) with a noise covariance. The noise covari-

ance is often a diagonal matrix, assuming thereby uncorrelated noise (Luckhoo et al.,

2014), but it can also be calculated from actual MEG data (such as an empty room

recordings). We followed this second option for the normalization of absolute power

estimates in Chapter 4.

2.4 Functional connectivity (FC)

Correct brain functioning requires the coordinated activity of distinct brain areas

(Singer, 1999; Varela et al., 2001; Fries, 2005). Such brain integration is studied by

structural, functional and effective connectivity (SC, FC and EC, respectively). SC

targets the anatomical substrate of the connectivity, and can be assessed for instance

with diffusion weighted imaging (DWI) (3.2). FC measures statistical dependencies

between the activity of separate brain regions (Friston, 2011) and can be assessed with

any functional imaging modality, such as fMRI or MEG. While with fMRI data FC is

almost exclusively calculated with covariance between slow BOLD signals, a variety of

FC measures are used with MEG data. Finally, EC studies the influence of one region

on another, and distinguishes between unidirectional and bidirectional information

flow. This section targets FC: we introduce some FC measures and detail how they are

applied to MEG source space data.

2.4.1 FC measures

Essentially, any measure that captures some sort of coupling between two time series

is a valid FC metric. As reviewed in (Pereda et al., 2005; Sakkalis, 2011; Niso et al.,

2013), many algorithms have been used to quantify FC. We briefly overview here

some families of connectivity measures, and then describe with further details the

implementation of phase and amplitude synchronization, since they are relevant for
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the remaining chapters of this thesis. For that, let us first define two time series x(t )

and y(t ), that are sampled simultaneously at a given frequency, producing two vectors:

xxx = [x1, x2, · · · , xn] and yyy = [
y1, y2, · · · , yn

]
.

• Linear connectivity. Correlation (or cross-correlation) is the most straightfor-

ward measure of coupling. It measures the degree of linear dependency between

xxx and yyy :

rx y =
∑n

k=1 (xk − x̄)
(
yk − ȳ

)√∑n
k=1 (xk − x̄)2 ·

√∑n
k=1

(
yk − ȳ

)2
(2.56)

where x̄ and ȳ denote signal averages. rx y = ±1 for completely linearly related

variables xxx and yyy and rx y reaches 0 for linearly independent variables. The

frequency-domain counterpart of the correlation is the coherence:

κx y ( f ) =
√√√√ ∣∣〈Cx y ( f )〉∣∣2∣∣〈Cxx ( f )〉∣∣ · ∣∣〈Cy y ( f )〉∣∣ (2.57)

where Cx y ( f ) is the cross-spectrum between x(t ) and y(t ) and 〈· · · 〉 indicates

that the cross-spectra are averaged over segments or time windows.

• Phase and envelope synchronization. Oscillatory signals can be separated into

phase and envelope. While the phase indicates the moment within the cycle

and is measured as an angle ]−π,π], the envelope (or amplitude) represents the

power. Synchronization can be assessed with both phase and envelope.

• Information theory techniques. Information can be quantified with Shannon

entropy, which can be computed for xxx and yyy separately, and for both signals

jointly. This can be used to determine the amount of information that is shared

between xxx and yyy (by means of mutual information) and even estimate the

direction of the information flow (Sakkalis, 2011).

• Generalized synchronization. Generalized synchronization captures coupling

between the states of two systems, based on various underlying connectivity

models. Synchronization likelihood, which relies on the detection simultaneous

patterns in two time series, is the most popular generalized synchronization

technique. (Niso et al., 2013).
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Extracting phase and envelope

A narrow-band oscillatory neural signal x(t ) can be conceived as having phase ϕx (t )

and envelope Ax (t ) (Rosenblum and Pikovsky, 2003). The phase indicates the moment

within a cycle and the envelope relates to the amplitude or strength of the oscillations.

This is usually represented in a 2D polar coordinate plot, in which angles and radii

correspond to ϕx (t ) and Ax (t ), respectively (see Figure 2.11). Envelopes and phases

are usually extracted with either Hilbert of wavelet transforms. While the wavelet

transform allows for a flexible and complete time-frequency representation of x(t ),

Hilbert transform is simpler, but only is only meaningful for narrow-band oscillatory

signals. In Chapters 3 and 4 we employed Hilbert transform, since the signals of

interest were narrow-band (filtered in classical frequency bands) and Hilbert is a

simpler and parameter-free approach which gives equivalent results to wavelet (Le

Van Quyen et al., 2001).

𝑥 𝑡  

𝑥𝐻 𝑡  

𝑥(𝑡) 
Hilbert 

transform 

Figure 2.11: Phase and envelope of an oscillatory signal. An oscillatory signal x(t ) can be
separated into phase ϕx (t ) and envelope Ax (t ). The right plot is obtained when plotting x(t )
and its Hilbert transform xH (t ) in the x and y axis, respectively. In this representation, for every
time point t , ϕx (t ) is the angle with the positive x axis and Ax (t ) is the distance to the origin.

ϕx (t ) and Ax (t ) are extracted as argument and modulus of the complex analytical

signal (Rosenblum et al., 2001)

ζ(t ) = x(t )+ i xH (t ) = Ax (t )e iϕx (t ) (2.58)

where xH (t ) is the Hilbert transform of x(t ) and is defined as:

xH (t ) = 1

π
P.V.

∫ +∞

−∞
x(t )

t −τdτ (2.59)
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and P.V. refers to the Cauchy principal value. Although this could seem a rather long

calculation, it can be easily and rapidly computed when using the Fourier transform

to switch between time and frequency domains (Marple, 1999).

Phase synchronization

Strictly, phase synchronization between x(t ) and y(t ) occurs when their phases ϕx (t )

and ϕy (t ) are locked:

lϕx (t )−mϕy (t ) = const ant (2.60)

where l and m are two integer numbers that specify the type of coupling. The most

common synchronization is l = m = 1, and indicates that x(t ) and y(t ) are separated

by a fixed phase. In other words, ϕx (t ) can be deduced from ϕy (t ), and vice versa.

Such strict phase locking is in practice not fulfilled, and phase synchronization

algorithms search for more flexible couplings. For instance, phase locking value (PLV)

measures how much the phase difference differs from a random uniform distribution

(Lachaux et al., 1999)

PLVx y = 1

n

∣∣∣∣∣ n∑
k=1

exp
[
i
(
ϕx,k −ϕy,k

)]∣∣∣∣∣ (2.61)

PLVx y varies between 1 for a constant phase difference and 0 for a randomly dis-

tributed phase difference (within ]−π,π]). Its calculation is illustrated in Figure 2.12.

An alternative algorithm is the Phase Lag Index (PLI), which is insensitive to zero

and π phase differences (Stam et al., 2007):

PLIx y = 1

n

∣∣∣∣∣ n∑
k=1

sign
[
sin

(
ϕx,k −ϕy,k

)]∣∣∣∣∣ (2.62)

PLIx y also varies between 0 (no synchronization or synchronization centred around

0 or ±π) and 1 (maximal synchronization). It quantifies the asymmetry in the phase

difference over the upper and lower half-unit circle (]0,π] and ]−π,0], respectively).

For instance, PLIx y = 1 if ϕx −ϕy always remains in the [0,π] interval.

Envelope correlation

As explained in section 2.4.1, envelopes Ax (t ) and Ay (t ) (also called amplitudes) can

be extracted from the modulus of the analytical signal. They represent the power or

strength of the source activation, and vary more slowly than the phases ϕx (t ) and

ϕy (t ), typically over seconds (see Figure 2.12). This means that, although the original
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bandpass filtering 

broadband signal 𝑥 𝑡  broadband signal 𝑦 𝑡  

narrowband signal 𝑥𝑛 𝑡  narrowband signal 𝑦𝑛 𝑡  

phases 𝜑𝑥 𝑡 , 𝜑𝑦 𝑡  amplitudes 𝐴𝑥 𝑡 , 𝐴𝑦 𝑡  

phase difference 𝜑𝑥 𝑡 − 𝜑𝑦 𝑡  

 

amplitude correlation 
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𝐴
𝑦
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Figure 2.12: Phase and envelope synchronization. First, two broadband time series x(t ) and
y(t ) are filtered into the frequency band of interest and produce narrowband signals xn(t ) and
yn(t ). Then, phases and envelopes are extracted from xn(t ) and yn(t ). Phase synchronization
is computed from the phases ϕx (t ) and ϕy (t ). For instance, PLV derives from the phase
differenceϕx (t )−ϕy (t ). Envelope synchronization (such as envelope correlation) derives from
Ax (t ) and Ay (t ).
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time series x(t ) and y(t ) result in discretized envelope and phase vectors of same

length, the envelopes contain effectively less time-related variations. In fact, envelopes

are often smoothed and downsampled before being included in any connectivity

algorithm (Brookes et al., 2011a). Envelope synchronization is usually assessed with

the correlation coefficient between Ax (t ) and Ay (t ), which captures simultaneous

power increases/decreases between x(t ) and y(t ). Envelope correlations are partic-

ularly relevant, since they seem to be closely related to fMRI bold fluctuations, and

they were used to successfully extract MEG resting state networks (Brookes et al.,

2011a,b; Maldjian et al., 2014). Section 3.2, employs therefore envelope correlation to

investigate electrophysiological alterations in a well-known fMRI network in a sample

of MCI patients and controls.

2.4.2 Applying FC to source space MEG data

Previous FC metrics can be applied to pairs of sources, to produce either:

• Nsour ces ×Nsour ces FC matrices when applied to all pair of sources.

• 1×Nsour ces FC vectors when selecting a given source as a seed and computing

FC with all other sources. This is called seed-based connectivity.

• NROI s × NROI s FC matrices when grouping the source space into regions of

interest (ROIs).

Volume conduction

Even when working in source space, the reconstructed source time-series contain

some undesired volume conduction or source leakage. This means that the source

reconstruction at position rrr j is influenced by the activity at position rrr k . This effect is

notably important if rrr j and rrr k are spatially close, but it also depends on the signal to

noise ratio of the specific region and on the validity of the hypotheses that were used

in the inverse modelling. Let us consider these three effects separately (Brookes et al.,

2014):

• Distance. Source leakage is especially relevant for neighboring sources. For this

reason, displays of seed-based connectivity before leakage correction show a

blur of high connectivity around the seed-point (Maldjian et al., 2014). This

could also be grasped as a limitation in the spatial resolution in the source

reconstruction (1-2cm).
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• Signal to noise ratio. Source leakage is larger for sources with low signal to noise

ratio. For instance, deep regions are recorded with lower signal to noise ratio

than superficial regions in MEG, and their source reconstruction is therefore

blurrier.

• Inverse modelling. All inverse models hypothesize some properties about the

source activity to yield a unique solution to the inverse problem. For instance,

beamformer assumes that sources are uncorrelated. Then, the more correlated

two sources are, the greater the blur in their beamforming reconstruction.

Even after the previous risk factors for volume conduction have been identified,

it is not possible to exactly determine the extent of the volume conduction without

knowing the true source activations. However, it can be indirectly assessed with the

beamforming weights correlation:

corr
(
www(rrr j ),www(rrr k )

)
(2.63)

In fact, if two source locations have highly correlated weights, the reconstructed

time series are also highly correlated. In the opposite case, if two source locations

have weakly correlated weights but their corresponding reconstructed time series are

correlated, it is unlikely that this high correlation results from volume conduction.

Although this does not constitute an accurate measure of source leakage, it is a useful

estimate. In section 3.2, we intend to compare FC between MCI patients and controls.

For that we compute envelope correlation as a FC metric and then compare weights

correlation in both groups to ensure that the FC differences between MCI and controls

do not result from volume conduction.

For other applications one may want to eliminate the volume conduction bias

from the FC metric. For instance, one may want to display a seed-based connectivity

map without a big blur at the seed point. A possible solution is to employ a FC metric

that is insensitive to zero-lag synchronization, such as PLI or imaginary coherence

(Pereda et al., 2005). The rationale behind this is that volume conduction is zero-

lag: a source at rrr j leaks instantly to another source at rrr k . However, these metrics

are far from ideal since they discard both artifactual and true zero-lag interactions.

An alternative is to perform some kind of orthogonalization in order to eliminate

the contribution from one source in rrr j to the other in rrr k . When using envelope

correlation, this orthogonalization can be performed in the time (Brookes et al., 2012)

or in the frequency domain (Hipp et al., 2012).The time domain orthogonalization

uses a linear regression between each pair of sources in rrr j and rrr k . In other words, prior

to envelope correlation, the source time series x(rrr j , t ) is replaced by its orthogonalized
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version:

xR,k (rrr j , t ) = x(rrr j , t )−βx(rrr k , t ) (2.64)

where β is the linear regression coefficient between x(rrr j , t ) and x(rrr k , t ). This leakage-

corrected envelope correlation (lc-ecor) is employed in Chapter 4, and compared to

the non-corrected or direct version (d-ecor).

Grouping FC into regions of interest (ROIs)

Source models typically include thousands of dipolar sources spread all over the brain,

so that computing FC between each pair of modeled dipoles produces huge Nsour ces×
Nsour ces FC matrices that are difficult to manipulate and interpret. Hence, sources are

often grouped into ROIs, producing smaller NROI s ×NROI s matrices. As explained in

section 2.3.4, these ROIs may simply correspond to regions in a standard atlas, so that

the FC matrix is comparable across individuals.

Let us define two ROIs m and n, which contain M and N sources respectively. To

estimate FC between ROIS m and n, we can use any of these two options:

• Calculate FC for all pair of sources and combine all M ×N FC estimates into a

single FC(ROI=m,ROI=n) value. For instance, using the average value between

all pairs of sources:

FC(ROI = m,ROI = n) = mean
(
FC(source = i , source = j )

)
(2.65)

where i ∈ ROI = m and j ∈ ROI = n

• Select a representative time-series for ROIs m and n and then calculate FC

between these two time series (Hillebrand et al., 2012). These representative

time-series may simply be the source activity of a selected source within the

ROIs, such as the source that has highest correlation with its ROI neighbors.

Although both options could seem radically different, they produce similar results.

In fact, atlases divide the cortex into 80-100 ROIs, and this number is close to the

number of inside components in the tSSS expansion. This means that, on average,

source reconstructions within a single ROI are very similar. In Chapters 3 and 4 we

employed the second option, because it is much faster to compute and produced good

results in its testing phase.





Chapter 3

Resting state spectral and
functional connectivity alterations
in amnestic-MCI

In Chapter 1 we introduced various neuroimaging techniques and their use in the

study of MCI and AD. Then, in Chapter 2 we introduced the MEG technology and the

analysis techniques for MEG raw data. In this Chapter we search for abnormalities

in the resting state power spectrum and functional connectivity of amnestic-MCI

patients. For that, MEG recordings were performed in MCI patients and age matched

controls. Then, spectrum and connectivity values were compared in both populations.

Here we present two studies that are adapted from their original publications version

in (Garcés et al., 2013, 2014).

3.1 Study I. Brain-wide slowing of spontaneous alpha rhythms

in MCI

3.1.1 Introduction

As introduced in Chapter 1, electrophysiological rhythms have been found relevant in

AD. In particular, both EEG and MEG studies have shown a slowing of the oscillatory

rhythms in AD (Huang et al., 2000; Berendse et al., 2000). MCI patients exhibit a

reduced mean frequency score in MEG power spectra (Fernández et al., 2006), indi-

cating that the AD-related oscillatory slowing may have its onset in the predementia

stage. Additionally, specific spectral profiles have been considered as pathological

61
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biomarkers. For example, an increased delta and a decreased alpha1 power were found

to be related to a lower cortical grey matter volume (Babiloni et al., 2013). It has also

been reported that changes in the high alpha / low alpha ratio or in the theta / gamma

ratio are associated with the cognitive status, conversion to AD, hippocampal and

amygdalar atrophy or grey matter changes (Moretti et al., 2011, 2012, 2009a).

An essential property of the electrophysiological spectra is the dominant alpha

rhythm or alpha peak. Alpha oscillations have been measured over wide regions of

the exposed human cortex (Jasper and Penfield, 1949). Sensor-level EEG studies have

found that their frequency rises from childhood to adolescence or young adulthood,

and then decreases slowly with age (Chiang et al., 2011). Abnormally low alpha peak

frequencies can be found in demented patients (Samson-Dollfus et al., 1997). Some

studies of MCI have used the posterior dominant frequency to perform spectral anal-

ysis. For instance, Moretti et al. (2011, 2012, 2009a) used the individual alpha peak to

define individual frequency ranges for theta, alpha, and beta bands. Babiloni et al.

(2009, 2013) considered the alpha peak frequency as a covariate when performing

statistical analysis. Nevertheless, although utilized as an intermediate step in the anal-

ysis pipeline of many studies, the importance of alpha peak amplitude and frequency

values per se to define neurophysiological characteristics in MCI has been scarcely

investigated.

Here we investigated the spatial distribution of resting state alpha peak frequency

and amplitude over the whole brain for MCI patients and age-matched healthy con-

trols. To this aim, beamforming was used to estimate MEG spectral parameters for the

alpha peak (frequency and amplitude) in source space. Also, we analyzed how these

parameters were modulated by age and sex for each brain region. Finally, we examined

the relation between peak parameters and hippocampal volume, which is commonly

used as a structural biomarker of AD (Dubois et al., 2007).

3.1.2 Materials and methods

Subjects

27 patients with a diagnosis of amnestic-MCI and 24 controls were included in this

study. Table 3.1 summarizes their characteristics. MCI patients were recruited at the

Geriatric and Neurological Units of the “Hospital Universitario San Carlos”, Madrid,

Spain, where they were diagnosed by clinical experts. As introduced in (Grundman

et al., 2004), inclusion criteria for MCI comprised: (1) memory complaint confirmed

by an informant, (2) normal cognitive function, (3) no or minimal impairment in

activities of daily living, (4) abnormal memory function, (5) not being sufficiently
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impaired to meet the criteria for dementia.

Table 3.1: Subjects characteristics. Data are given as mean ± standard deviation. M = males,
F = females. Educational level was grouped into five levels: 1: Illiterate, 2: Primary studies, 3:
Elemental studies, 4: High school studies, 5: University studies. MMSE = Mini Mental State Ex-
amination score. Hippocampal volume was normalized with the overall intracranial volume.

Age (years) Gender
(F/M)

Educational
level

MMSE Hippocampal volume

Left Right

Control (n=24)

71.8 ± 3.6 18/6 3.8 ± 1.3 29.3 ± 0.9 (2.62±
0.37) ·10−3

(2.59±
0.28) ·10−3

MCI (n=27)

71.8 ± 3.6 13/14 2.7 ± 1.3 27.5 ± 2.2 (2.1±0.41) ·
10−3

(2.08±
0.49) ·10−3

Additionally, all subjects were in good health and had no history of psychiatric

or neurological disorders. They underwent an MRI brain scan to rule out infection,

infarction or focal lesions. Subjects meeting any of the following criteria were excluded

from the study: Hachinski score (Rosen et al., 1980) higher than 4, geriatric depression

scale score (Yesavage et al., 1982) higher than 14, alcoholism, chronic use of anxiolyt-

ics, neuroleptics, narcotics, anticonvulsants, or sedative hypnotics. Additionally, MCI

patients underwent an exam to rule out possible causes of cognitive decline such as

B12 vitamin deficit, thyroid problems, syphilis, or HIV. Drugs that could affect MEG

measurements such as cholinesterase inhibitors were removed 48 hours before the

MEG scan. The investigation was approved by the local Ethics Committee.

MEG recordings

Three-minute MEG resting state recordings were acquired at the Center for Biomedi-

cal Technology (Madrid, Spain) with the Elekta Vectorview system described in sec-

tion 2.1.3. During the measurements, subjects sat with their eyes closed and were

instructed to remain calm and move as little as possible. Each subject’s head was

digitized in 3D with a Fastrak Polhemus system and four coils were attached to the

forehead and mastoids, so that the head position with respect to the MEG helmet was

continuously determined. Activity in electrooculogram channels was also recorded to

keep track of ocular artefacts. Signals were sampled at 1000 Hz with an online filter of
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bandwidth 0.1-330 Hz. A tSSS (section 2.2.1) was then applied with Maxfilter software

(version 2.2., Elekta Neuromag) to remove external noise.

MRI acquisition

3D T1 weighted anatomical brain MRI scans were collected with a General Electric

1.5T magnetic resonance scanner, using a high-resolution antenna and a homoge-

nization PURE filter (Fast Spoiled Gradient Echo (FSPGR) sequence with parameters:

TR/TE/TI = 11.2/4.2/450 ms; flip angle 12º; 1 mm slice thickness, a 256x256 matrix and

FOV 25 cm). For volumetric analysis, Freesurfer software package (version 5.1.0) and

its automated sub-cortical segmentation tool (Fischl et al., 2002) were employed. For

the source analysis, the reference system of the T1 volumes was transformed manually

using 3 fiducial points and headshape, until a good match between MEG and T1

coordinates was reached.

Source analysis

Data analysis was done using both FieldTrip software (Oostenveld et al., 2011) and

in-house scripts.

MEG preprocessing For the definition of artefact-free epochs, the continuous MEG

resting state recording was split into non-overlapping segments of 4 seconds. Seg-

ments with ocular, jump or muscular artefacts were identified and discarded. Per

subject, a minimum of 20 artefact-free segments (80 seconds) remained (controls:

(25.7±4.8), MCI: (24.6±6.6)). After filtering of the continuous original data using a

finite impulse response filter of order 1000 and a bandwidth of 1-30Hz, the artifact-

free segments of the data identified in the previous step were extracted for further

analysis

Headmodels First, a regular grid of 2459 points with 1cm spacing was created in the

template Montreal Neurological Institute (MNI) brain. This set of points was trans-

formed to subject’s space using a linear normalization between the native T1 image

and a standard T1 in MNI space with 2mm resolution. This grid constituted the source

locations. The forward model was solved with Nolte method (section 2.3.2).

Beamforming Source reconstruction was performed with linearly constrained min-

imum variance (LCMV) beamformer (section 2.3.3). For each subject, the covariance

matrix was averaged over all trials to compute the spatial filter’s coefficients, and
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then these coefficients were applied to individual trials, obtaining a time series per

segment and source location. This reconstruction was performed for magnetometers

and gradiometers separately, yielding two different source estimates per subject.

Spectral analysis

Power spectra were obtained from the time series via a multitaper method with

discrete prolate spheroidal sequences as tapers and 1 Hz smoothing for frequencies

between 2 and 30 Hz, with a 0.25 Hz step. These spectra were averaged over trials

and normalized with the sum of the spectral power in the range [2-30] Hz. Then, an

average power spectrum per region of interest (ROI) and subject was obtained. 88 ROIs

were used in this study and they were defined in MNI space using the Harvard-Oxford

probabilistic atlas (Desikan et al., 2006), as implemented in the fMRIb Software Library

(FSL) (Jenkinson et al., 2012). 37 cortical and 7 subcortical ROIs per hemisphere were

included (merging subdivisions within gyri in the Harvard-Oxford atlas).

Then, to extract alpha peak parameters, experimental spectra were fitted with a

non-linear least-square procedure to:

log
(
P ( f )

)= B −C · log( f )+ A ·exp

(
−( f − fp )2

∆2

)
(3.1)

where A, B , C , ∆ and fp are adjustable parameters and a wide range (4-13 Hz) is used

for the fitting. Such a Gaussian peak fit with power-law background has been proven

useful for alpha rhythm detection in EEG (Lodder and van Putten, 2011; Chiang et al.,

2008).

With this procedure, a peak per ROI was identified separately for the recon-

structions based on magnetometers and gradiometers. Then, magnetometer and gra-

diometer data were combined. Thus, the final peak amplitude and frequency per ROI

and subject was calculated by averaging the peak values obtained for both types of

sensors. In order to optimize the reliability of the alpha peak estimation, two criteria

were considered: Peaks with (1) high inter-trial amplitude variability for any sensor

type or (2) a frequency difference between the magnetometer and the gradiometer

fit bigger than 1Hz, were considered spurious and removed from the subsequent

statistical analysis.

Statistical analysis

Peak amplitudes and frequencies were compared with univariate ANOVA tests, sep-

arately for each ROI. Shapiro-Wilk and Levene tests were used to ensure normality
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of the data and equal variances across groups. For the peak amplitude, the transfor-

mation x → log(x/(1−x)) was applied prior to statistical analysis to obtain values

following a normal distribution. A 4-way ANOVA analysis was performed considering

diagnosis, age, sex and educational level as factors to investigate differences between

controls and MCIs and the influence of age and sex on the alpha peak. Finally, we

examined whether peak parameters depended on hippocampal volume (which was

normalized with the overall intracranial volume). For that, we computed the Pearson

correlation coefficient between peak amplitude or frequency and hippocampal vol-

ume across all subjects, for every ROI separately. To establish the statistical signifi-

cance of these correlations, an 4-way ANOVA test with hippocampal volume, age, sex

and educational level as factors was used, taking all subjects (Control and MCI) as a

single group.

The p-values of all ANOVA tests were corrected for multiple comparisons with a

procedure based on clustering and permutations, as introduced by (Maris and Oost-

enveld, 2007). For that, spatially adjacent ROIs with p<0.05 were first grouped into

clusters. Then, the obtained peak values (frequency or amplitude) were 2000 times

randomly assigned to the original groups. The sum of F-values over each cluster in the

original dataset was compared with the same measure in the randomized data. For

each cluster, the proportion of randomizations with F-values higher than the ones in

the original data corresponded to the final p-value.

3.1.3 Results

Peak fitting

Peaks were successfully identified for most ROIs and subjects, especially in posterior

and temporal ROIs. Overall, the peak was harder to find in anterior areas of the brain,

since for around 10-15% of the subjects the criteria for robustness introduced before

were not fulfilled in frontal ROIs. On the whole, a peak was fit in 80±14 ROIs (given as

mean±std) for the control group and in 85±5 ROIs for the MCI group. For the following

ROIs, less than 85% of the subjects showed a robust peak: right paracingulate gyrus,

right frontal operculum cortex, right inferior and middle frontal gyri, both superior

frontal gyri, both supplementary motor cortices and right pallidum. These ROIs were

not considered for statistical analysis. The average peak frequency over all ROIs was

9.68±0.71 Hz for controls and 9.05±0.90 Hz for MCIs and the average normalized

amplitude was (2.57±0.59) ·10−2 for controls and (2.70±0.49) ·10−2 for MCIs.
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Control vs. MCI

Both groups presented a similar spatial distribution of peak parameters, with higher

amplitude and frequency in posterior ROIs, as shown in Figure 3.1. However, peak

frequencies were higher in controls than in MCIs, especially over parietal and tem-

poral ROIs, where differences were statistically significant (p<0.05). Amplitudes were

similar in controls and MCIs, although values tended to be higher in MCIs, but this was

significant only for six temporal and medial ROIs. As amplitude and frequency values

are usually inversely related in electrophysiological power spectra, the amplitude

increase in MCIs could be just a consequence of the frequency decrease. To investigate

this effect, amplitude values were plotted as a function of frequency (Figure 3.1C). For

controls, amplitudes were higher within the 9-11Hz frequency range, while for MCIs

this range seemed to be broader, with high magnitude alpha peaks from 7 to 11 Hz. On

the whole, this leads to the idea that alpha peak frequency is reduced in MCI.
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Figure 3.1: Peak distribution in controls and MCIs. Peak (A) frequency and (B) amplitude grand
averages for controls and MCIs. Clusters with significant differences between controls and
MCIs (p<0.05) are enclosed with black lines and scattered with black crosses. (C) represents
a scatter plot of the peak parameters (frequency and amplitude) for every ROI and subject.
Frequency and amplitude histograms are projected into the y and x axis respectively.
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Age and sex influence

Sex and age did not exert a significant influence on peak amplitude, while significant

effects were found for the peak frequency. Figure 3.2 displays sex differences and

age correlations for peak frequency in Controls and MCIs separately. Peak frequency

was higher for females than for males both in controls and MCIs. This trend was

present over the whole brain, although only statistically significant (p<0.05) over some

posterior and right frontal ROIs. Additionally, peak frequency was found to correlate

negatively with age. This correlation was strongest in frontal ROIs, where a significant

effect (p<0.05) was found.
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Figure 3.2: Influence of age and sex on peak frequency in controls and MCIs. (A) Peak frequency
difference of grand averages: females – males (B) Correlation coefficient between age and peak
frequency. Clusters with significant effect of age or sex upon peak frequencies (p<0.05) are
enclosed with black lines and scattered with black crosses. Additionally, the p-value specifies
the transparency of the plotted intensities: a region with p-value of 0 shows a full opaque color,
whereas a region with p-value of 1 is transparent.

Hippocampal volume

To further assess whether differences in peak parameters could be considered as a

pathological sign, the dependence of peak amplitude and frequency values with hip-

pocampal volume was examined. Results are illustrated in Figure 3.3. Peak frequency

correlated positively with hippocampal volume, reaching correlation values up to 0.6,

which denote a strong association between both measures. This trend was significant

(p<0.05) over most of the postrolandic ROIs of the brain and implies that a slowing in

the main alpha rhythm is related with a greater atrophy in the medial temporal lobe.
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The opposite effect was found for the peak amplitude, which correlated negatively

with hippocampal volume over the whole brain, especially over occipital and frontal

ROIs, where the trend was significant (p<0.05).
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Figure 3.3: Peak frequency and amplitude correlations with hippocampal volume. The dis-
tribution of correlation coefficient between peak (A) frequency and (B) amplitude with hip-
pocampal volume (normalized with intracranial volume) for all subjects (Controls and MCIs)
is shown. Clusters with significant effect of hippocampal volume (p<0.05) are marked as in
Figure 3.2. As an example, scatter plots of the average peak frequency and amplitude over
posterior ROIs as a function of hippocampal volume are displayed in the right side. The
included ROIs are plotted in green in the upper right side of the figure. Controls are represented
as blue circles and MCIs as red crosses.

3.1.4 Discussion

Here the alpha peak parameters (frequency and amplitude) were investigated in a

sample of MCI patients and controls. Differences between both groups were exam-

ined, as well as the influence of age and sex, and the correlation between peak param-

eters and hippocampal volume. To attain such goal, a novel method was introduced,

that combined beamforming for reconstruction of the power spectra in the source

space, and a fitting algorithm that has been successfully used for peak identification

with scalp EEG recordings in sensor space (Chiang et al., 2011; Lodder and van Putten,

2011).

The alpha peak was robustly identified in most regions and subjects. This is not the
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first attempt to assess the alpha peak spatial distribution of frequency and amplitude

values in resting state, since clusters of alpha peaks in EEG recordings within a large

sample of healthy population have been analyzed in sensor space (Chiang et al.,

2011). However, in the present study the MEG source space analysis allows a better

understanding of the spatial distribution of this dominant alpha rhythm. Most studies

of pathological aging have only focused on the posterior alpha peak (Osipova et al.,

2006). Here we intentionally decided to consider sources of alpha rhythm other than

the posterior ones, since alpha rhythms have been detected over wide regions of the

brain (for a review, see Nunez et al. (2001)).

One of the main findings of our study is that the alpha rhythm of MCIs is slower

when compared with a control population, especially over posterior regions. This is

not surprising, since abnormally low alpha peak frequencies in AD have already been

described (Passero et al., 1995). In the MCI literature less attention has been drawn to

the alpha peak, but a reduced mean frequency score has been reported (Fernández

et al., 2006). To gain further insight into the meaning of these peak alterations, their

relationship with the hippocampal volume was considered. In fact, atrophy in medial

temporal structures such as the hippocampus is a pathological marker of AD (Dubois

et al., 2007; Prestia et al., 2013) . Some studies have related a lower hippocampal

volume to a higher delta and theta dipole density in AD (Fernández et al., 2003),

lower power in the 8-10.5 Hz range (Babiloni et al., 2009), and an increase in the al-

pha3/alpha2 ratio (Moretti et al., 2009b). Our results show that hippocampal volumes

correlated positively with peak frequencies in temporo-parieto-occipital regions of

the brain and negatively with peak amplitude in occipital and frontal regions. This

contributes to the idea that the peak frequency slowing is associated with a degener-

ative process, evolving in parallel with the loss of hippocampal volume. Two different

hypotheses have been introduced over the past years to explain the increased low

frequency power in AD and MCI. It could be explained through either (1) a slowing

down or (2) a redistribution of the oscillatory sources in the theta-alpha frequency

range (Osipova et al., 2005, 2006). This study supports the first hypothesis, although

bigger samples and an analysis of the possible spatial shift of the sources would be

needed to make stronger statements and investigate the second hypothesis.

The exact physiological origin of alpha rhythm remains unclear. Some studies

indicate a prominent role of the thalamus (Hughes and Crunelli, 2005; Lőrincz et al.,

2009; Bollimunta et al., 2011), while others point out the existence of cortical genera-

tors (Flint and Connors, 1996; Bollimunta et al., 2008). With a thalamo-cortical model

of EEG generation, Hindriks and van Putten (2013) established that the resonance

properties of cortico-thalamo-cortical, intra-cortical and feedforward circuits deter-
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mine alpha responses. They found that both a decreased firing of excitatory neuronal

populations and an increased firing rate in inhibitory neuronal populations related to

a decrease in alpha frequency. This modulation was particularly intense in the intra-

cortical circuit: a decreased delay in this circuit produced a strong frequency slowing.

Moreover, a decrease in the number of active synapses in thalamic nuclei could also

explain an alpha power shift towards lower frequencies, as proved in a recent study

with a thalamico-cortical-thalamic neural mass model (Bhattacharya et al., 2011).

This model showed that the alpha frequency shift is especially sensitive to damage

in inhibitory interneurons in the thalamus. Within this theory, the MCI alpha slowing

found in this study would suggest that a synaptic damage is already present in the

MCI stage. This in turn could be related with Aβ, since its deposition has been shown

to contribute to synaptic loss in AD (Reddy and Beal, 2008; Bate and Williams, 2011).

Additionally, the peak frequency is not determined exclusively by the pathology,

but also depends on other factors like age or sex. In fact, we found a frequency

decrease with age, and higher frequency values in females than in males. Such trends

have been previously found in studies with large healthy samples (Chiang et al., 2011).

In our study, we report that this trend is maintained in MCI patients. Most studies

of sex differences in the alpha band have focused on childhood and young age, with

mixed outcomes, some of them finding higher frequencies and earlier maturation

in girls than boys (Petersén and Eeg-Olofsson, 1971). Our results also show higher

frequencies in females than in males, although within a completely different age

profile. Dustman et al. (1993) found that a slowing of alpha rhythms and an increase

in delta, theta and beta activity are common age-associated changes in EEG spectra.

This means that the alpha slowing is normal in healthy aging, and suggests that the

MCI disease speeds up the natural aging process.

The methodological procedure followed here enabled the examination of ampli-

tude and frequency shifts of the alpha peak. It combined beamforming of MEG resting

state data, alpha peak fitting and ANOVA tests for statistical analysis, corrected for

multiple comparisons with a procedure including clustering and permutations. Al-

though it was tested with a rather small sample of subjects, it revealed a slowing of the

alpha oscillatory sources in MCI and established that age, sex and hippocampal vol-

ume affect peak amplitude and frequency. However, larger samples would be needed

to confirm these effects and to evaluate others, such as an interaction between age,

sex, or educational level. Additionally, longitudinal follow-up studies could provide

insight into the evolution of the slowing process and the onset of the AD-related

pathology.
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3.2 Study II. The default mode network is functionally and

structurally disrupted in MCI

3.2.1 Introduction

Recent literature has identified that the Default Mode Network (DMN) is involved

in the AD pathology. This network was first introduced by Raichle et al. (2001) and

has garnered increasing attention from the neuroscience and neurology communities

ever since (see Rosazza and Minati (2011) for a review). It is highly active during an

idle state and deactivates during task performance. It includes brain regions such

as the precuneus, posterior and anterior cingulate, and the inferior parietal cortex

(Greicius et al., 2003; Raichle and Snyder, 2007; Buckner et al., 2008). The precuneus

and posterior cingulate cortex have been found to be relevant in AD as they show

decreased metabolic activity (Matsuda, 2001) and accumulate Aβplaques at an early

stage in the disease (Mintun et al., 2006). DMN alterations such as decreased activity

and connectivity have been reported in AD and MCI (Greicius et al., 2004; Rombouts

et al., 2005; Qi et al., 2010; Sorg et al., 2007; Jones et al., 2011; Agosta et al., 2012).

Furthermore, these alterations were found to be related to the severity of the disease

and its progression (Petrella et al., 2011; Brier et al., 2012).

To date, fMRI is the most widespread technique used to explore the DMN in MCI

or AD. Blood-oxygenation-level-dependent (BOLD) fMRI signals measure hemody-

namic responses to neuronal activity with great spatial resolution and have led to

the discovery of multiple resting state networks, including the DMN. Other imaging

modalities can also provide insight into DMN integrity in MCI: structural MRI reveals

brain atrophy; DTI reconstructs white matter tracts; PET detects metabolic activity

or Aβplaques and MEG/EEG measure magnetic/electric fields generated by neural

currents. Based on this fact, researchers have combined fMRI (often controlling for

brain atrophy with T1-weighted structural MRI) with other neuroimaging modalities

such as PET (Hedden et al., 2009; Sperling et al., 2009; Sheline et al., 2010) and DTI

(Wee et al., 2012), or DTI with PET (Bozoki et al., 2012) to investigate DMN functional

and structural connectivity impairment in AD and MCI.

While fMRI and PET give an indirect estimation of neural activity, EEG/MEG

are direct measures of neural firing. Therefore, these neurophysiological techniques

enable us to gain a better understanding of the time-frequency dynamics of the DMN,

providing us with useful information as to how its regions are connected at different

frequency bands. Complementary structural information about DMN connectivity is

given by DTI, as it enables the modelling of the white matter connections that support

the network. Using this technique, we can compute direct or weighted structural con-
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nectivity measures that estimate the number of tracts connecting two regions and the

integrity of anatomical connections, respectively. However, thus far, the combination

of MEG and DTI has not been used to unravel DMN abnormalities in MCI. In this

study, we investigated the DMN in MCI patients compared to age-matched controls

using resting-state MEG and DTI data to extract both functional and structural net-

works. Our purpose was to determine the functional connections that are altered

in MCI relative to controls at different frequency bands, and how this relates to the

underlying structural network. For that, source space MEG functional connectivity

(FC) was computed and two different structural connectivity (SC) measures were used

to evaluate whether the amount of tracts or their integrity influence the organization

of the functional networks. Our initial hypothesis is that both functional and structural

connections will be significantly impaired in MCI patients and there will be a strong

correlation between FC and SC abnormalities.

3.2.2 Materials and methods

Subjects

This study included 26 patients with a diagnosis of amnestic-MCI and 31 age-matched

controls. MCI patients were diagnosed as in the previous study (section 3.1), following

(Grundman et al., 2004). Table 3.2 summarizes the subject’s characteristics.

Table 3.2: Subject characteristics. Data are given as mean ± standard deviation. M = males,
F = females, Educational level was grouped into five levels: 1: Illiterate, 2: Primary studies, 3:
Elemental studies, 4: High school studies, 5: University studies. MMSE = Mini Mental State
Examination score. Controls and MCIs differed in MMSE (p=0.0012) and educational level
(p=0.03), and did not differ in age (p=0.39) or sex (p=0.44).

n Age (years) Gender
(F/M)

Educational
level

MMSE

Control 31 70.8 ± 4.2 21/10 3.5 ± 1.2 29.5 ± 0.7

MCI 26 72.5 ± 6.7 15/11 2.8 ± 1.3 27.7 ± 2.4

MEG and MRI acquisition

Resting-state MEG recordings and T1-weighted MRI images were acquired as the in

previous study (section 3.1.2). Diffusion weighted images (DWI) were acquired with

a single shot echo planar imaging sequence with the following parameters: TE/TR

96.1/12000 ms; NEX 3 for increasing the SNR; 2.4 mm slice thickness, 128x128 matrix
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and 30.7 cm FOV yielding an isotropic voxel of 2.4 mm; 1 image with no diffusion

sensitization (i.e., T2-weighted b0 image) and 25 DWI (b=900 s/mm2).

Definition of the regions of interest

For this bimodal connectivity analysis, we defined Regions of Interest (ROIs) in the

individual’s structural T1 volume using the Freesurfer (version 5.1.0) cortical parcel-

lation in 66 regions (Desikan et al., 2006), such as in (Hagmann et al., 2008; Honey

et al., 2009). We selected four ROIs per hemisphere, which are the most common brain

structures included in the DMN (Greicius et al., 2003; Raichle and Snyder, 2007; Buck-

ner et al., 2008): precuneus (lPr and rPr), anterior cingulate (lAC and rAC), posterior

cingulate (lPC and rPC) and inferior parietal (lIP and rIP).

MEG functional connectivity (FC)

MEG preprocessing and source reconstruction were performed with FieldTrip soft-

ware (Oostenveld et al., 2011).

Source reconstruction First, ocular, jump and muscular artefacts were identified

and located in the 3 minute resting state recordings. Then, the continuous resting

time-series were segmented into artefact-free segments of 4 seconds. All subjects had

a minimum of 16 artefact-free segments (control: (27.5±5.9), MCI: (27.2±6.1)). Data

was filtered in the 1-45Hz band for spectral analysis and in delta (2-4Hz), theta (4-

8Hz), alpha (8-12Hz), low beta (12-20Hz), high beta (20-30Hz) and gamma (30-45Hz)

bands and for the functional connectivity analysis. To do so while avoiding edge

effects, the continuous 3 minute data was first filtered with a finite impulse response

filter of order 1000, and then the artefact-free segments were extracted for further

analysis.

Source locations were defined in the subject’s space using the cortical segmenta-

tion produced by Freesurfer. A regular mesh of points with 1cm spacing was created

inside each ROI. The number of source locations depended on individual’s data (con-

trol: (124±14), MCI: (118±15)). The forward model was solved with a realistic single-

shell model (Nolte, 2003).

Source reconstruction was performed with Linearly Constrained Minimum Vari-

ance beamformer (section 2.3.3) separately for each frequency band. For each subject,

the average covariance matrix over all trials was used to compute the spatial filter’s

coefficients, and then these coefficients were applied to individual trials, obtaining

a time series per segment and source location. To avoid mixing MEG sensors with
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different sensitivities or resorting to scaling, only magnetometers were used for this

source reconstruction step. We must note, however, that gradiometer information is

indirectly present as both magnetometers and gradiometers were used in the tsss

filtering.

Preliminary power spectrum analysis The goal of this work was to study FC in

classical frequency bands, defined with fixed frequency limits. Prior to that, we tested

if power spectrum was altered in the MCI sample in these frequency bands. Power

spectra were obtained from the time series via a multitaper method with discrete pro-

late spheroidal sequences as tapers and 1 Hz smoothing for frequencies between 2 and

45 Hz, with a 0.25 Hz step. Average spectra over trials were used and normalized with

the sum of the spectral power in the 2-45 Hz range. Then, an average power spectrum

per ROI and subject was obtained. Power was averaged per frequency band and Mann-

Whitney tests were performed to compare power values between controls and MCIs.

Alpha peaks were computed as in section 3.1.2 to evaluate a possible slowing of the

spectra.

Functional connectivity FC was obtained from the source reconstruction with the

amplitude correlation method (Brookes et al., 2011a). For this, the amplitude of the

bandpass filtered time series was extracted with Hilbert transforms and correlation

coefficients between the amplitude of all source locations were computed. Then,

connectivity values were averaged over links connecting the same ROIs, producing

an average 8×8 connectivity matrix per subject. Additionally, we calculated the cor-

relation between beamformer weights in both groups in order to have an estimate of

volume conduction.

Structural connectivity

Diffusion weighted images were pre-processed with FMRIB’s Diffusion Toolbox (FDT1).

Pre-processing consisted of eddy-current correction, motion correction and removal

of non-brain tissue using the robust Brain Extraction Tool (Smith, 2002). Diffusion

Toolkit (DTK2) was used to fit the diffusion tensor model. We used tensorline tractog-

raphy (Lazar et al., 2003) to estimate the fiber tracts between the selected ROIs. Stop-

ping criteria for the streamlines propagation were a maximum angle of 35° between

consecutive steps and a lower threshold of fractional anisotropy of 0.2 (Johansen-

Berg et al., 2004). A streamline was considered a connection between two ROIs if it

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslOverview/
2http://www.trackvis.org

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslOverview/
http://www.trackvis.org
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entered at least one voxel of each ROI. We then computed two different SC estimates:

direct SC (dSC) and weighted SC (wSC). dSC was defined as the number of streamlines

connecting a given pair of ROIs and represents the number of tracts that connect two

ROIs. wSC is weighted with fractional anisotropy (FA) and evaluates the integrity of the

structural connection:

wSC = 1

N

N∑
n=1

1

Vn

Vn∑
v=1

FAn,v (3.2)

where N =dSC is the number of streamlines connecting a pair of ROIs, v = 1. . .Vn is

the set of voxels that are crossed by a given streamline n and FAn,v is the FA in the voxel

v of the streamline n.

Statistical analysis

To examine the differences between controls and MCIs in spectral power and FC or

SC we used non-parametric Mann-Whitney tests. In all cases, in order to correct for

multiple comparisons we followed a permutation approach which was introduced

in (Maris and Oostenveld, 2007). First, the original values were 2000 times randomly

assigned to the original groups (controls and MCIs) and a Mann-Whitney test was

performed for each randomization. Then, the U-value in the original dataset was

compared to the ones obtained with the randomized data. The final p-value was

defined as the proportion of permutations with U-values higher than the one in the

original data.

3.2.3 Results

MEG power spectrum

Preliminary spectral analyses were carried out to determine whether power spectrum

was altered in MCI. MCIs tended to have higher spectral power in the theta band,

and lower power in the beta and gamma bands, but no significant differences were

obtained. Alpha peak frequency was lower for MCIs than for controls in all ROIs,

although differences were only significant for the inferior parietal cortex bilaterally

(p<0.05).

Functional connectivity

MEG FC networks differed significantly between controls and MCIs in the alpha band,

while no differences were found for the delta, theta, beta and gamma bands. Table 3.3
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contains the p-values of the statistical analysis for each link and frequency band.

In the alpha band, FC was lower in the MCI group, especially in links including Pr

and IP, as displayed in Figure 3.4. To determine whether volume conduction could

be causing these differences, we calculated the correlation between beamforming

weights, which is an estimate of source leakage. If two source locations have similar

weights (or a high correlation between their weights), the reconstructed time series

would be highly correlated. In the opposite case, if two source locations have a low

weight correlation but the corresponding reconstructed time series are correlated, it

is unlikely that the high FC results from volume conduction. Beamformer weights did

not differ between controls and MCIs in any frequency band, which makes it unlikely

that the FC differences were caused by volume conduction.

right 

left 

rPr 

rIP 

rPC 

rAC 

lIP 

lPr 

lPC 

lAC 

Figure 3.4: FC differences between controls and MCIs in the alpha band. Green links display
connections with a significant decrease in MEG FC in the MCI group (p<0.05). ROIs are
represented as circles (Pr: Precuneus, IP: Inferior parietal, PC: Posterior cingulate, AC: Anterior
cingulate, l: left, r: right).

Structural connectivity

Streamlines connecting all ROIs were reconstructed with tensorline tractography,

yielding a dSC measure. Thousands of streamlines were found between most ROIs
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Table 3.3: FC and SC differences between controls and MCIs. p-values are indicated for each
link, after correction for multiple comparisons. Significant p-values (p<0.05) are shown in
bold. All significant differences corresponded to MCI<control. For structural connectivity, n.i.
indicates that this link was not included in the statistical analysis. (Pr: Precuneus, IP: Inferior
parietal, PC: Posterior cingulate, AC: Anterior cingulate, l: left, r: right).

Link FC SC

Delta Theta Alpha Low
beta

High
beta

Gamma

lPr - rPr 0.32 0.40 0.24 0.29 0.24 0.34 0.06
lPr - lPC 0.18 0.19 0.15 0.12 0.55 0.20 0.10
lPr - rPC 0.73 0.56 0.78 0.37 0.35 0.55 0.005
lPr - lIP 0.44 0.32 0.004 0.46 0.42 0.65 0.13
lPr - rIP 0.26 0.87 0.012 0.19 0.74 0.54 0.024
lPr - lAC 0.68 0.46 0.014 0.97 0.34 0.35 0.26
lPr - rAC 0.68 0.69 0.08 0.82 0.77 0.72 n.i.
rPr - lPC 0.23 0.23 0.15 0.09 0.16 0.08 0.052
rPr - rPC 0.99 0.96 0.47 0.85 0.85 0.82 0.15
rPr - lIP 0.87 0.77 0.003 0.06 0.29 0.29 0.014
rPr - rIP 0.09 0.21 0.002 0.08 0.72 0.65 0.072
rPr - lAC 0.18 0.71 0.008 0.68 0.60 0.18 n.i.
rPr - rAC 0.82 0.35 0.29 0.25 0.59 0.12 0.17
lPC - rPC 0.75 0.43 0.73 0.29 0.42 0.59 0.007
lPC - lIP 0.30 0.61 0.45 0.78 0.78 0.93 0.008
lPC - rIP 0.90 0.99 0.004 0.12 0.89 0.87 0.029
lPC - lAC 0.17 0.42 0.30 0.92 0.22 0.89 0.49
lPC - rAC 0.71 0.59 0.07 0.85 0.23 0.25 n.i.
rPC - lIP 0.36 0.51 0.34 0.13 0.38 0.97 0.002
rPC - rIP 0.88 0.83 0.09 0.19 0.79 0.89 0.041
rPC - lAC 0.27 0.22 0.003 0.84 0.38 0.13 n.i.
rPC - rAC 0.52 0.97 0.38 0.85 0.41 0.82 0.75
lIP - rIP 0.83 0.58 0.009 0.21 0.32 0.85 0.11
lIP - lAC 0.54 0.55 0.40 0.27 1.00 0.85 n.i.
lIP - rAC 0.60 0.51 0.93 0.29 0.87 0.78 n.i.
rIP - lAC 0.84 0.72 0.06 0.97 0.85 0.08 n.i.
rIP - rAC 0.30 0.26 0.50 0.67 0.65 0.38 n.i.
lAC - rAC 0.79 0.74 0.94 0.98 0.94 0.94 0.031



3.2. THE DMN IN MCI 79

(on average over all links and subjects, dSC = 4413 ± 5594 tracts, given as mean ±

std). Higher dSC values (∼ 104) were obtained between pairs of neighboring regions

(such as lPr–rPr, lAC–rAC or lPC-rPC). Conversely, lower dSC values were found (∼
102) for some long distance connections such as AC-Pr and AC-IP. Small amounts of

reconstructed tracts, especially in long connections, can be caused by the inherent

limitations of the DTI and tractography techniques: fiber crossing, fanning or kissing

impair the accuracy of the tractography. To control for this effect, links between ROIs

were not included in the statistical analysis if, for at least three subjects, less than

100 streamlines were reconstructed (dSC<100). Following this criterion, the following

8 links were removed from the statistical analysis: lAC–lIP, lAC–rIP, rAC–lIP, rAC–rIP,

lAC–rPr, rAC–lPr, lAC-rPC and rAC-lPC. For the remaining links, we compared dSC

and wSC (the mean FA along the reconstructed tracts) between controls and MCIs.

No differences were found for dSC (p<0.05). However, wSC was significantly lower in

the MCI group than in the control group (p<0.05), especially in links involving IP and

PC, as displayed in Figure 3.5. P-values for each link are included in Table 3.3.

right 

left 

rPr 

rIP 

rPC 

rAC 

lIP 

lPr 

lPC 

lAC 

Figure 3.5: SC differences between controls and MCIs. Green links display connections with
a significant decrease in wSC in the MCI group (p<0.05). ROIs are represented as circles (Pr:
Precuneus, IP: Inferior parietal, PC: Posterior cingulate, AC: Anterior cingulate, l: left, r: right).
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Figure 3.6: Relation between SC and FC. FC is plotted as a function of SC for all subjects and
pairs of ROIs, separately for controls and MCIs (in the left and right column respectively). The
dependence with the direct SC (dSC) is shown in the top row, and the dependence with frac-
tional anisotropy weighted SC (wSC) is shown in the bottom row. The Spearman correlation
coefficient between FC and SC is plotted along in each case.

Correlation between FC and SC

To determine the relationship between FC and SC, we examined how FC values

changed with dSC and wSC for all links and subjects with Spearman correlations,

as shown in Figure 3.6. All links between ROIs with dSC > 100 were employed in the

correlation. FC and dSC were positively correlated in both MCIs (r = 0.68, p < 10−5) and

controls (r = 0.69, p < 10−5), and high values of FC corresponded with high dSC values.

FC and wSC were not significantly correlated for MCIs (r = 0.03, p = 0.48) or controls

(r = -0.01, p = 0.84). For both dSC and wSC, the dependency pattern was similar for

controls and MCIs.
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3.2.4 Discussion

In this study, we examined FC and SC within the DMN in a sample of MCI patients and

healthy elderly subjects. FC derived from MEG source space reconstruction of resting

state data, and SC was extracted from tensorline tractography of DTI images. Three

main findings were obtained. Firstly, the DMN was functionally disrupted in the MCI

group, specifically in the alpha band, as shown by a decreased FC relative to controls.

Secondly, the DMN was also structurally damaged in the MCI group, as indicated by

a reduction in FA along the reconstructed white matter pathways connecting DMN

regions. Lastly, FC and dSC measures were related, while no significant correlation

was obtained for wSC.

The overall results are in line with some previous studies in MCI. Functional

disruption of the DMN in MCI has already been reported in fMRI experiments (Sorg

et al., 2007; Agosta et al., 2012). Recent reports indicate that lower FC values relate

to a worse performance in cognitive tests, a higher conversion rate from MCI to AD

(Binnewijzend et al., 2012) or to AD progression (Damoiseaux et al., 2012). Thus, FC

appears to offer valuable information in MCI-AD continuum. Using fMRI, Sambataro

et al. (2010) observed that FC in the DMN decreased with age along with task perfor-

mance in a sample of healthy young and old subjects.

Our MEG findings confirm and extend the notion that the DMN is functionally

impaired in MCI, and show that this FC disruption occurs specifically in the alpha

frequency band, while no differences were found in delta, theta, beta or gamma

frequency bands. Alpha band alterations are in fact well-known in MCI and they have

been shown to relate for instance to the stability of the clinical condition (Babiloni

et al., 2011) or amygdalo-hippocampal atrophy (Moretti et al., 2009b). Additionally,

the alpha band seems to be the most relevant frequency band in the DMN, even

in healthy subjects. For instance, Brookes et al. (2011b) performed an independent

component analysis to extract resting state networks from MEG data, and achieved a

great similarity for the DMN between fMRI and MEG data filtered in the alpha band.

Knyazev et al. (2011) identified the DMN exclusively in the alpha band using EEG

activity during rest and during the performance of a cognitive task, and Mayhew et al.

(2013) demonstrated an interaction between alpha power and fMRI responses in the

DMN. For this study, this could imply that the coupling between DMN regions is im-

paired in MCI in its main working rhythm (alpha), while their FC remains unaffected

for the other frequency bands.

With regard to SC, anatomical disconnection or loss of white matter integrity

(often assessed through FA) has been repeatedly observed in MCI, especially in cingu-

lum fibers (Kiuchi et al., 2009; Bozoki et al., 2012). These white matter abnormalities
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have been considered relevant, as they have been associated with performance in

neuropsychological tests (Fellgiebel et al., 2005) or conversion rate to AD (Fu et al.,

2013). We also noted that differences between controls and MCIs in SC were only

significant for wSC but not for dSC. This indicates that SC disruption of the DMN in

MCI may be mainly attributed to an abnormal structural integrity of tracts rather than

to a reduction of the number of streamlines connecting DMN regions. Therefore, FA

along reconstructed tracts appears to have a higher sensibility to detect this disruption

than the dSC index.

We observed that dSC correlated positively with FC, while no significant correla-

tion was found for wSC and FC. This suggests that the FC measure is more dependent

on the amount of tracts connecting two ROIs than on the integrity or FA of these tracts.

Other studies had also found positive correlations between SC and fMRI FC in the

DMN (Honey et al., 2009; Khalsa et al., 2014), although this is to our knowledge the

first study that combines MEG FC and SC in MCI patients. Additionally, we found that

the topographic pattern of network disruption in MCI was similar for FC and SC. FC

and SC were reduced in MCI patients in the posterior part of the DMN, particularly

affecting links connecting IP with Pr or PC. While FC between anterior cingulate and

the posterior part of the DMN was reduced in MCI, no differences could be seen

with SC, although this may be attributed to limitations in the tractography technique

(Jbabdi and Johansen-Berg, 2011; Jones et al., 2013).

The exact physiological mechanisms that underlie functional and structural dis-

connections are unknown. However, some bimodal PIB-PET - fMRI studies have

provided an insight into the matter: reduced FC seems to relate to Aβin healthy

controls and AD patients (Hedden et al., 2009; Sperling et al., 2009; Sheline et al., 2010).

Similar findings have been obtained in transgenic mice with an optical intrinsic signal

imaging technique (Bero et al., 2012). The present MEG study provides additional

information to this functional disruption seen in MCI: it is strongest in the alpha

band. Interestingly, alpha rhythms are especially sensitive to the number of active

synapses and firing rate in cortical and thalamic neuronal populations (Bhattacharya

et al., 2011; Hindriks and van Putten, 2013), and Aβdeposition has been shown to

contribute to synaptic loss in AD (Reddy and Beal, 2008; Bate and Williams, 2011). With

regard to the structural white matter abnormalities, although they are often attributed

to Wallerian degeneration (Bozzali, 2002), some studies point out that Aβdeposition

could be involved as well (Serra et al., 2010).

It is important to note that this study is subjected to some methodological and

experimental limitations. Firstly, quantifying FC from resting state MEG data is not

trivial. Here, we used beamforming for source space reconstruction and amplitude
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correlation as a FC metric. This amplitude correlation algorithm has a clear draw-

back: it is sensitive to volume conduction. Other methods such as Phase Lag Index

(Stam et al., 2007) overcome this problem since they are not affected by zero-phase

lag interactions. However, they have the disadvantage of discarding true zero-phase

lag interactions. Given that the amplitude correlation method has been proven to

be suitable for reproducing fMRI networks (Brookes et al., 2011a), we chose this

method to asses FC within the DMN network: the DMN was in fact discovered and

mainly explored in the fMRI community. However, taking into account that volume

conduction could contaminate this FC metric, we used the weight correlation as an

estimate of volume conduction to ensure that differences between groups were not

caused by this factor. Secondly, quantifying structural connectivity is also a delicate

task: tractography techniques are prone to errors, especially when fibers cross, kiss or

bend (Jbabdi and Johansen-Berg, 2011; Jones et al., 2013). Long distance connections

tend to be biased due to error accumulation and are therefore difficult to evaluate.

Thus, we decided not to include connections with a small amount of reconstructed

fibers into the statistical analysis. Thirdly, we employed anatomically defined ROIs to

study the DMN. We relied on the literature and selected 8 ROIs that are commonly

included in the DMN, and thereby assumed that these ROIs really form the DMN in

our sample. However, it would be interesting to explore the spatial extent of the DMN

in a MCI sample with MEG at different frequency bands, possibly with an independent

component analysis (Brookes et al., 2011b; Luckhoo et al., 2012) or combining resting

state with task activity (Petrella et al., 2011; Wang et al., 2013).

3.3 Conclusions

In conclusion, our studies revealed some abnormalities in the resting state activity

of amnestic-MCI patients, when compared to age-matched controls. First, the alpha

peak was altered in the MCI sample: MCIs presented lower peak frequencies. This

slowing correlated with the degree of hippocampal atrophy, highlighting its patho-

logical meaning. Second, the DMN was functionally disrupted in MCI subjects in

the alpha band and also structurally disconnected, as indicated by a reduction in

FA in the tracts connecting different DMN regions. These findings are in agreement

with previous fMRI and DTI experiments and indicate that MEG is sensitive to early

functional connectivity abnormalities that occur in MCI disease. Before attempting to

use these MEG differences as a clinical tool, their reliability should be established. In

fact, we cannot speculate about the potential use of MEG measures as biomarkers of

amnestic MCI before evaluating their test-retest reliability. This is further discussed in
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the next Chapter.



Chapter 4

Reliability of MEG functional
connectivity and spectral estimates

In the previous chapter we investigated differences between MCI patients and controls

in spectral and FC estimates measured with MEG. For that we followed a common

analysis approach: comparing the scores of two populations (MCI patients and con-

trols) against the null-hypothesis that they are extracted from identical distributions.

Although this reveals differences between both populations, it fails to provide results

at the individual level. In fact, before MEG is used to provide conclusions for individual

subjects, the reliability of MEG measurements should be assessed. This is the goal of

this chapter. To estimate MEG test-retest reliability, we recorded three sessions of MEG

resting state data per subject, and we evaluated the intraclass correlation coefficient,

the within- and the between-subject reliability in power and FC estimates.

4.1 Introduction to reliability

4.1.1 Some definitions

Before tackling the study of reliability of MEG spectral and connectivity measures, let

us define some related concepts: accuracy, precision, agreement, reliability, repeata-

bility and reproducibility, based on (Barnhart et al., 2007; JCGM, 2008; Bartlett and

Frost, 2008).

Accuracy and precision

On the one hand, the accuracy of a measurement refers to the closeness between

the measurement and the true value of the targeted quantity. On the other hand,

85
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precision refers to the closeness between replicate measurements of the same targeted

quantity (Barnhart et al., 2007; JCGM, 2008). However, there is some confusion about

the use of both terms in the literature. In fact, accuracy is sometimes used to designate

systematic error and precision for random error, and both terms are occasionally used

indistinctly.

Repeatability and reproducibility

Repeatability refers to the closeness between measurements results that were ob-

tained under the same exact conditions (Barnhart et al., 2007; Bartlett and Frost, 2008).

It is therefore virtually impossible to perform repeatability studies, since any variation

in the object/subject to be measured, instrumentation or environmental factors from

measurement to measurement cancels the repeatability conditions. This is especially

critical with human subjects, which present some inherent variability over time.

In contrast, reproducibility requires less strict conditions. It refers to the closeness

between measurement results that were obtained under simply similar conditions.

Usually one wants to investigate the reproducibility of some results when changing

a given condition, such as the instrumentation (i.e. MEG system) or the analysis

method (i.e. beamforming vs. minimum norm), and keeping the remaining conditions

as constant as possible. The ultimate goal of all research is to be reproducible. Ideally,

results obtained with a given subject sample, imaging system, analysis method and

laboratory should be reproducible with a similar subject sample, an equivalent imag-

ing system and a different analysis method in any other laboratory. This is however

a very ambitious goal, especially nowadays in MEG research. Before confronting the

reproducibility of MEG studies results, we should explore its reliability, as introduced

below.

Agreement and reliability

The agreement between two results simply refers to the closeness between them, or

the degree to which they are identical (Bartlett and Frost, 2008; Gisev et al., 2013).

Reliability is a more complicated concept, which relates to the variability of the mea-

surement values (or scores) and errors. Although absolute estimates of reliability are

occasionally used, reliability is usually considered as a relative quantity, which can be

defined as (Weir, 2005):

reliability = σ2
r

σ2
r +σ2

w
(4.1)
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whereσ2
r andσ2

w represent the true score variance and the error variance, respectively.

Reliability ranges therefore from 0 (no reliability) to 1 (perfect reliability), and various

measurements are required to estimate it. Depending on the conditions on which

these measurements are performed, different reliability types can be distinguished

(Scholtes et al., 2011):

• Internal consistency: it is only applicable when the score consists in different

items, which in turn reflect distinct constructs. It refers to the consistency or

interrelatedness between these items.

• Inter-rater reliability: it is applicable when the same target scores are obtained

by different raters.

• Intra-rater reliability: it is applicable when the scores are obtained by the same

rater at different times.

• Test-retest reliability: the scores are obtained with the same objects (or subjects)

at different instances.

In neuroimaging, we focus on test-retest reliability, which is estimated by carrying

out various measurement sessions for each subject. Let us call xi j the measured (or

observed) score for subject i in session j . For instance, xi j can designate the resting

state alpha power in the precuneus for subject i and session j . Then, reliability is

defined as (Weir, 2005; Bartlett and Frost, 2008; Scholtes et al., 2011):

reliability =
σ2

x,i

σ2
x,i +σ2

w
(4.2)

where σ2
x,i corresponds to the true between-subject variance, and the measurement

error w is defined as:

xi , j = xtr ue,i +wi , j (4.3)

We assume thereby that a true quantity xtr ue,i exists for each subject i , and we call

error any deviation between xi , j and xtr ue,i . This deviation may be caused by the

instrumentation (e.g. MEG sensors deviating from their ideal working point), the mea-

surement situation (e.g. varying magnetic fields interfering in the MEG measurement,

acoustic noise that could induce interfering brain activity in the subject, etc.) or the

subject itself (varying brain activity from session to session, changes in cognitive

status, etc.).

It is important to note that reliability is population-specific: it relates to the ability

of the score x to distinguish between subjects in a given group. In fact, it increases
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with the between subject variability. This means that, for a fixed error variance σ2
w ,

the more heterogeneous the subject sample, the higher the reliability.

4.1.2 Quantifying test-retest reliability and agreement

Intraclass correlation coefficient (ICC)

The intraclass correlation (or intraclass correlation coefficient, ICC) is the most com-

monly employed reliability estimate when dealing with interval and ratio values. It

evaluates between-subject variance σ2
x,i and error variance σ2

w from a measurement

sample, and then uses equation (4.2) to quantify reliability. Various ICC types exist,

depending on the model used to estimateσ2
x,i andσ2

w . In this text, we focus on the ICC

type 1-1 described in (McGraw and Wong, 1996; Shrout and Fleiss, 1979; Weir, 2005),

which applies to our study of the test-retest reliability of MEG estimates. This model

is based on a one-way random effects model, in which the ordering of j is assumed to

be irrelevant. This is equivalent to assuming that there is no systematic error between

observations, or that subjects do not change consistently across MEG sessions.

Let us consider the measurements xi j , where i = 1,2, · · · ,n represents the subject

index and j = 1,2, · · · ,k represents the observation index (or session number). We

suppose therefore that all subjects have been measured an equal amount of times (k).

In our random effects model, xi j can be written as:

xi j =µ+ ri +wi j (4.4)

where µ is the population mean, ri accounts for the deviation between the population

mean and the subject true score, and wi j are the residuals or errors. ri and wi j are

assumed to be independent and normally distributed, following ri ∼ N (0,σ2
r ) and

wi j ∼ N (0,σ2
w ). We then introduce two sums of squares terms:

SSR =
n∑

i=1
(x̄i ·− x̄··)2 (4.5)

SSW =
n∑

i=1

k∑
j=1

(
xi j − x̄i ·

)2 (4.6)

which have n − 1 and (k − 1)n degrees of freedom, respectively. Their corresponding

mean squares values are:

MSR = SSR

n −1
(4.7)
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MSW = SSW

n(k −1)
(4.8)

and have the following expected values (Shrout and Fleiss, 1979)

E (MSR) =σ2
w +kσ2

r (4.9)

E (MSW ) =σ2
w (4.10)

One can therefore estimate reliability as in (4.2) with MSR and MSW with the follow-

ing ICC:

ρ = MSR −MSW

MSR + (k −1)MSW
(4.11)

Additionally, we can test the null hypothesis H0 : ρ = ρ0 against the alternative ρ > ρ0

by defining the F-value:

F0 = MSR

MSW
· 1−ρ0

1− (k −1)ρ0
(4.12)

which follows an F-distribution with n − 1 and n(k − 1) degrees of freedom, and

computing the corresponding p-value. When testing for H0 : ρ = 0, F0 simplifies to

F0 = MSR/MSW , and the (1-α) confidence interval for the ICC estimate is (Shrout

and Fleiss, 1979):
FL −1

FL + (k −1)
< ICC < FU −1

FU + (k −1)
(4.13)

where FL = F0/F1−α/2 (n −1,n(k −1)), FU = F0·F1−α/2 (n(k −1),n −1) and F1−α/2 (ν1,ν2)

refers to the (1−α)·100th percentile of an F-distribution with ν1 and ν2 degrees of

freedom.

Other methods

Although the ICC is the most standard method to quantify reliability, other methods

can be employed to evaluate either reliability or agreement. We introduce some of

them in the following:

• Pearson correlation coefficient. It has been historically employed in some re-

liability studies, although it is usually not recommended (Bland and Altman,

2010). It is not a reliability or agreement measure per se, instead it tests for a

linear dependency between two sets of measurement scores:
{

xi j
}
, i = 1, · · · ,n,

j = j1, j2.

• Standard error of measurement. It is an absolute measure of reliability and

indicates the expected error from session to session (or trial to trial). It can be
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estimated from the ICC as SD(1−ρ), where SD is the standard deviation over all

measurements (Bland and Altman, 2010). It is of use to estimate the confidence

interval of a subject’s true score from its measurements.

• Bland-Altman plot. It is commonly used to visualize the agreement between two

sets of measurements. It displays a scatter plot of the difference between the

scores obtained in the two sets versus their average value (Myles and Cui, 2007),

along with horizontal lines for mean difference and 95% limits of agreement. It

is for instance useful for the careful inspection of the results obtained using two

different methodologies.

• Coefficient of variation. It measures the relative variability in the measurements

scores xi j as:

CV = 1

n

n∑
i=1

SD
(
xi j

)∣∣
j=1,··· ,k

mean
(
xi j

)∣∣
j=1,··· ,k

(4.14)

where the same notation as before was used (Shechtman, 2013). Contrary to the

ICC, which compares within- and between-subject variability, the coefficient of

variation focuses on the relative within-subject variability.

• Cluster overlap. It has been used in test-retest fMRI experiments to investigate

the reliability of task-related activations. It can be calculated as:

Rover l ap = 2
Vover l ap

V1 +V2
(4.15)

where V1 and V2 are the activation volumes in measurements 1 and 2 and

Vover l ap is the volume that is activated in both measurements (Bennett and

Miller, 2010). It requires therefore the definition of a threshold to separate the

total brain volume into active and inactive voxels.

• Kendall’s coefficient of concordance. Kendall’s W was originally proposed to mea-

sure the agreement amongst several judges who assign ranks to a single set of

objects (Legendre, 2005). It was also applied to the present study of quantifying

the between-subject and within-subject agreement of FC maps. This is further

explained in section 4.3.

4.1.3 Study design

To evaluate the test-retest reliability of resting-state MEG spectral and FC measure-

ments, we performed the following experiment. Three MEG resting state sessions
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were recorded from 24 healthy subjects. We selected a test-retest interval of one week,

which was long enough to ensure that subsequent sessions were not affected by the

previous one (e.g. fatigue effects), but short enough for the subjects to change consid-

erably from one session to the other (Scholtes et al., 2011). Additionally, recordings

were performed on the same time of the day to minimize the impact of circadian

rhythms. Then, we evaluated within- and between-subject variability in MEG power

and FC estimates for distinct brain rhythms (delta, theta, alpha, beta and gamma).

4.2 Study I. Reliability of resting state power

4.2.1 Introduction

MEG/EEG resting-state spectral measures have been applied to a multitude of studies,

including both healthy and pathological states. The work introduced in section 3.1,

which compared source space power spectra between MCI patients and controls, is an

example of such a study. MEG/EEG spectral measures have however been applied to

many other fields, such as developmental disorders like autism (Cornew et al., 2012),

psychiatric disorders like schizophrenia (Fehr et al., 2001) and neurodegenerative

diseases such as Alzheimer’s disease (Fernández et al., 2006) or multiple sclerosis (Van

Der Meer et al., 2013). MEG/EEG power can also be employed in monitoring longitudi-

nal changes in population groups, such as Parkinson’s disease (Olde Dubbelink et al.,

2013). Similarly, sensor space MEG power could assist in evaluating the effect of drug

treatments, for instance in children with attention deficit with hyperactivity disorder

(Wienbruch et al., 2005).

However, spectral measures need to be proven reliable before they can be routinely

employed in drug testing or health status monitoring. To this date, reliability studies

have been only performed with sensor space EEG, usually concluding that sensor

space EEG power is highly reliable (Fingelkurts et al., 2006; McEvoy et al., 2000). Results

were however dependent on the frequency band, and reliability was found to be high-

est for theta, alpha and beta bands and lowest for delta and gamma bands (Burgess

and Gruzelier, 1993; Cannon et al., 2012; Gasser et al., 1985; Gudmundsson et al., 2007;

Kondacs and Szabó, 1999; McEvoy et al., 2000; Pollock et al., 1991). The reliability was

also dependent on the sensor location. Fingelkurts et al. (2006) described a decrease in

reliability from frontal to occipital EEG sensors, while others found higher reliability in

occipital than in frontal sensors (Gudmundsson et al., 2007; McEvoy et al., 2000). Re-

sults are therefore inconclusive, and source space reliability studies could contribute

to clarifying this issue. Although source space reliability has already been explored in

evoked somatosensory and auditory responses (Atcherson et al., 2006; Schaefer et al.,
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2002), it is is undetermined in resting state. Cannon et al. (2012) provided the only

attempt to the source space reliability of resting state, although their analysis was

restricted to eight regions of interest. In consequence, the reliability of source space

MEG/EEG estimates remains unclear.

Here we provide the first test-retest reliability assessment of MEG resting state

power at both sensor and source space. To achieve this aim, three weekly resting state

MEG recordings were acquired from 24 healthy individuals. Then, power at classical

frequency bands (delta, theta, alpha, low beta, high beta and gamma) was calculated

at sensor space and at source space after beamforming source reconstruction. ICC,

within- and between-subject variability were then computed to evaluate reliability.

4.2.2 Materials and methods

Subjects

Twenty-four healthy volunteers (14 females, 10 males; mean age 28.9 years; range

20–41; 2 left-handed) with normal or corrected-to-normal vision participated in this

experiment. They did not present history of psychiatric, neurologic or endocrine dis-

eases. They were informed about the aims of the study and signed a written informed

consent before participating.

MEG acquisition and preprocessing

As introduced in section 4.1.3, subjects underwent three MEG sessions at the Center

for Biomedical Technology (Madrid, Spain) with a test-retest interval of seven days and

the MEG system described in section 2.1.3. For each subject and session, four minutes

of eyes open resting state, four minutes of eyes closed resting state and two minutes

of empty room were recorded. A vertical electrooculogram was also recorded to keep

track of ocular artefacts. MEG data were sampled at 1000 Hz with an online filter of

bandwidth 0.1-330 Hz. tSSS (section 2.2.1) was then applied with Maxfilter software

(version 2.2., Elekta Neuromag) to remove external noise. Jumps, muscular and ocular

artifacts were automatically detected with FieldTrip. Resting state data was then split

into artifact-free epochs of 4 seconds, yielding 26.8 ± 6.3 (mean ± standard deviation)

clean trials in eyes open condition, 29.9 ± 3.6 clean trials for the eyes closed condition,

and 21.3 ± 8.5 clean trials for the empty room data.
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Sensor space reliability

Power spectra were obtained for all artifact-free epochs with a multi-taper method us-

ing discrete prolate spheroidal sequence tapers and 1 Hz smoothing, as implemented

in FieldTrip. Then, the average power values in delta (2-4 Hz), theta (4-8 Hz), alpha (8-

13 Hz), low beta (13-20 Hz), high beta (20-30 Hz) and gamma (30-45 Hz) were obtained

by averaging power estimates over trials. The mean alpha frequency was calculated

as the center of gravity of the power spectrum within the 8-13 Hz range, following

(Klimesch, 1999). This was performed for every MEG sensor, subject, session and

condition separately. Next, for each condition, frequency band and sensor, reliability

was assessed with the ICC, following (4.11).

Source reconstruction

To ensure an accurate source and forward modelling, source reconstruction was only

performed for 16/24 subjects, for which a T1-weighted MRI was available. For these

subjects source locations were placed regularly over their cortical surface with 6mm

spacing using Freesurfer (version 5.1.0, Fischl et al. (2002); Ségonne et al. (2007)) and

MNE softwares (Gramfort et al., 2014). The forward model was solved with a 3-shell

BEM: inner skull, outer skull and skin surfaces were extracted from the subject’s MRI

with NFT software (Acar and Makeig, 2010) and leadfields were computed with MNE.

Then, the absolute power for each source location and frequency band was com-

puted with a frequency-domain beamformer (see section 2.3.3). To avoid mixing sen-

sor information with different noise profiles or resort to an arbitrary scaling, we per-

formed source reconstruction with magnetometer and gradiometer data separately.

This chapter presents the source space reliability obtained with magnetometers, al-

though gradiometer data yielded similar results which can be found in Appendix D.

We note that magnetometer and gradiometer data are not independent measures after

preprocessing, since they both are employed in the tSSS filtering, and thus result from

the back-projection of the same inside components.

As required in the beamformer computation, sensor space cross-spectral density

matrices were first computed for each frequency band using FieldTrip. Then, beam-

former filters www(rrr i , fb) (Nsensor s ×3 matrices) were computed for each source location

rrr i and frequency band fb , following (2.51) and using 5% regularization and an un-

constrained source orientation. The power for each source location rrr i and frequency

band fb was then defined as:

V
(
rrr i , fb

)= θmax
(
www H (

rrr i , fb
)
CCC ( fb)www

(
rrr i , fb

))
(4.16)
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where CCC ( fb), superscript H and θmax (· · · ) refer to the cross-spectral density matrix for

frequency band fb , the Hermitian transpose and the maximum eigenvalue of a matrix

(· · · ), respectively.

However, V (rrr i , fb) was not employed directly in the reliability analysis. In fact,

beamforming estimates are biased, particularly towards the center of the brain, where

the signal-to-noise ratio of MEG signals is lowest. Therefore, the following normalized

power estimates were used:

Z (rrr i , fb) = V (rrr i , fb)

N (rrr i , fb)
(4.17)

where N (rrr i , fb) is a noise estimate in source space, and is obtained by employing

(4.16) and substituting the original cross-spectral density matrix CCC ( fb) with the empty

room cross-spectral density matrix CCC N ( fb). Although the noise is sometimes assumed

to be independent and uncorrelated across sensors (yielding a diagonal CCC N ( fb)), we

considered that this assumption reflects poorly the specific noise characteristics of

our data. For instance, we preprocessed the raw MEG recordings with a tSSS filtering,

which reduces the dimensionality of the data. Therefore, we decided to compute

CCC N ( fb) from the empty-room recordings following the same analysis pipeline than

for the resting-state data: tSSS, artifact detection, segmentation into clean epochs and

spectral estimation.

Finally, the noise-normalized power estimates Z (rrr i , fb) were transformed into

MNI space. First, a template mesh of source locations was created from the subjects

with Freesurfer. Then, Z (rrr i , fb) was transformed from the subject’s to the standard

surface and a smoothing with a 15mm moving average filter was applied. Overall, this

yielded Nsub j ect s ×Nsessi ons = 16×3 power estimates for each template source loca-

tion, frequency band and condition. We note that these power values were computed

for each subject and session separately. Reliability was then assessed with the ICC.

Additionally, relative powers were calculated for each frequency band. For that,

beamformer filters www(rrr i ) were computed with the average cross-spectral density

matrices over the entire 2-45 Hz range, and then applied to individual-band cross-

spectral density matrices CCC ( fb) as in (4.16). Then, the relative power of each frequency

band was obtained by dividing the band power V (rrr i , fb) with the total power over all

frequency bands.

Within-subject variability vs. source power

To test whether within-subject variability is dependent on the source intensity, we

evaluated the joint distribution of both magnitudes. For a given subject, source posi-

tion and frequency band, the representative power was simply defined as the average
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source power over the three MEG sessions:

Z̄ = mean(Zs)|s=1,2,3 (4.18)

where Zs represents the source power for a session s. The corresponding within

subject variability was defined as the relative inter-session variations:

∆z = std(Zs)|s=1,2,3

Z̄
(4.19)

Further, for a given frequency band, we computed the bivariate histogram of Z̄ and

∆z across all subjects and source positions. Then, in order to estimate the conditional

probability distribution of ∆z given Z̄ , we normalized the histogram by the sum of its

counts for each Z̄ bin separately.

4.2.3 Results

Sensor space reliability

We first estimated sensor space power reliability in eyes open, eyes closed and empty

room conditions. Table 4.1 shows ICC values for the average power over five helmet

areas for all the frequency bands. Overall, ICC values ranged from 0.48 to 0.95 in resting

state. As expected, the empty room ICC values were appreciably lower. Figure 4.1

displays the sensor space ICC distribution. In general, power in sensors covering the

parieto-occipital area of the scalp remained fairly reliable for all the frequency bands.

Reliability varied somewhat across the frequency bands and the scalp areas. Delta

power showed the highest ICC values in frontal and parietal areas. Theta power re-

mained highly reliable (range 0.74-0.86) except in the frontal area in the eyes open

condition (ICC=0.54). In turn, alpha power showed the highest ICC (range 0.83-0.95) in

all sensor areas. Moreover, ICC values were slightly higher in the eyes closed condition.

Low beta power presented high ICC values (range 0.74-0.91), especially in the occipital

and parietal areas. ICC values in high beta were slightly smaller (range 0.70-0.89)

than in low beta, especially in the frontal and temporal sensors, although the ICC

distribution was quite similar. Finally, gamma power showed the lowest ICC across

all the frequency bands, and only the sensors covering the parietal area of the scalp

showed fairly ICC>0.6.
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Table 4.1: ICC of the average power over five MEG sensor regions for each frequency band and
condition. The right column contains the ICC of the MAF (mean alpha frequency).

Delta Theta Alpha Low
beta

High
beta

Gamma MAF

Eyes open Occipital 0.52 0.79 0.86 0.86 0.75 0.64 0.91
Left temporal 0.72 0.75 0.92 0.85 0.85 0.59 0.85

Right temporal 0.79 0.76 0.83 0.82 0.79 0.59 0.89
Parietal 0.76 0.85 0.86 0.86 0.85 0.77 0.93
Frontal 0.78 0.82 0.85 0.76 0.74 0.48 0.70

Eyes closed Occipital 0.78 0.86 0.94 0.91 0.89 0.59 0.88
Left temporal 0.69 0.74 0.92 0.87 0.75 0.50 0.87

Right temporal 0.55 0.83 0.95 0.83 0.75 0.49 0.89
Parietal 0.66 0.82 0.93 0.85 0.79 0.63 0.90
Frontal 0.90 0.54 0.84 0.74 0.70 0.53 0.82

Empty room Occipital 0.02 0.19 0.38 0.42 0.17 0.34 -0.09
Left temporal 0.06 0.01 0.03 0.07 -0.01 0.08 -0.08

Right temporal -0.01 -0.01 0.05 0.14 0.02 0.17 -0.03
Parietal -0.07 -0.07 -0.02 -0.01 0.01 -0.00 -0.15
Frontal -0.09 -0.11 -0.05 -0.01 -0.04 -0.03 0.03

Source space reliability

ICC was calculated for the power estimates of each source location and frequency

band, and represented in Figures 4.2 and 4.3 for eyes open and eyes closed condition,

respectively. In general, these source space results were similar to the previously

described sensor space ones. On the one hand, highest ICC values were obtained in

widespread regions for alpha, low beta and theta bands. On the other hand, for delta,

high beta and gamma bands, reliability was medium to low (ICC<0.6) for most brain

areas, although high ICC values (ICC>0.6) were found in restricted brain regions.

Delta power yielded mainly medium to low reliability, although high ICC was

found in some frontal regions such as superior and orbitofrontal cortices. In turn, ICC

was high (ICC>0.7) for theta in regions surrounding the central sulcus such as superior

parietal and superior frontal gyrus, paracentral and posterior cingulate. Note that

parahippocampal gyrus showed high ICC values in the eyes open condition, whereas it

decreased along with other temporal regions in the eyes closed one. Similarly as in the

sensor space analysis, alpha power showed high ICC for most brain areas, especially in

frontal and parietal cortices. High ICC regions were however more spatially restricted

in the eyes closed condition. For low beta, highest reliability was reached in the left
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Figure 4.1: Topography of the intraclass correlation coefficient (ICC) of sensor space power for
each resting state condition, frequency band, sensor.

parietal, precuneus and the isthmus of the cingulate gyrus. The power reliability

distribution seemed to be more anterior and bilateral in the eyes closed condition,

especially in the medial orbitofrontal, superior frontal and paracentral gyri. High

beta and gamma were the frequency bands with fewer regions with high reliability.

The former showed medium to low ICC values except in precuneus, paracentral and

parahippocampal gyrus in the eyes open condition (ICC>0.6). Power in gamma band

showed widespread low ICC values, except in the left precentral gyrus in the eyes open

condition (ICC>0.7).

Absolute vs. relative power

While previous results referred to absolute power estimates, ICC was also computed

for relative power. Sensor space relative power yielded overall high reliability (ICC>0.7)

for all frequency bands (Table D.1 in Appendix D). The ICC distribution was similar

than for the absolute power, although higher values (ICC=0.8-0.9) were reached in high

beta and gamma bands. Source space reliability was appreciably higher for relative

than for absolute power. ICC distributions for the relative power are displayed in the

Figures D.1 and D.2 in Appendix D (note that the colorbars span higher ICC values than

for the absolute power). For instance, ICC values for high beta were higher in more

regions than for the absolute power. However, relative power in delta and theta showed

smaller ICC values than absolute power in some regions such as the frontal cortex.

On the whole, whereas for the absolute power high ICC values were restricted to

specific regions, ICC for relative power estimates seemed to present broader patterns,

especially in low beta and high beta. Relative power in parietal and occipital cortices
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Figure 4.2: ICC of source space power for the resting state eyes open condition. ICC values were
computed for each source location and frequency band separately.

was fairly reliable even when low ICC was obtained for absolute power, such as the

right cuneus in low beta.

Dependence between within-subject variability and source power

To determine whether the within-subject variability depends on the source power, the

joint distribution of within-subject variability and average power for each frequency

band is displayed in Figures 4.2 and 4.3 for eyes open and eyes closed condition,

respectively. In general, low power levels result in high within-subject variability. This

trend was present in all frequency bands, and was particularly evident in gamma,

where power values were small (<2) throughout the brain. However, the relation be-
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Figure 4.3: ICC of source space power for the resting state eyes closed condition. ICC values
were computed for each source location and frequency band separately.

tween power and within-subject variability was not linear. In fact, although power and

within subject variability were inversely related for low power values, this tendency

was not maintained for moderate to high power values (3-6), for which within-subject

variability remained rather constant. In addition, the lowest within-subject variability

was not invariably found for highest power values. For instance, in alpha band eyes

closed condition, high power values (8-11) resulted in higher within-subject variability

than moderate power values (3-8). Overall, this indicates that, although a general in-

verse relation was found between within-subject variability and power values, within-

subject variability did not exclusively result from power intensity.
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Figure 4.4: Dependence of within-subject variability with the average power, for the resting
state eyes open condition. The surface plots estimate the conditional probability of obtaining
a given relative within-subject variability ∆z for a source power Z̄ . The right plot represents
the average within-subject variability as a function of the source power Z̄ .
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Figure 4.5: Dependence of within-subject variability with the average power, for the resting
state eyes closed condition. The surface plots estimate the conditional probability of obtaining
a given relative within-subject variability∆z for a source power Z̄ . The right plot represents the
average within-subject variability as a function of the source power Z̄ .
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4.2.4 Discussion

In this work, we examined the test-retest reliability of MEG resting state power in

classical frequency bands at sensor and source space. To achieve this aim, three weekly

MEG recordings were performed and the ICCs of power values at each sensor and

source location were calculated. Moreover, to evaluate how power intensity modulates

reliability, we explored the relation between source power and within-subject variabil-

ity for each frequency band. To our knowledge, this is the first attempt to evaluate the

reliability of source space MEG resting state power. We obtained two main findings. On

the one hand, theta, alpha and low beta were the most reliable brain rhythms at sensor

and source space, in contrast to high beta and gamma power, which showed poor

reliability. On the other hand, within-subject variability was partially dependent on

power intensities, as shown by the inverse relation found between both magnitudes.

Our results are in line with previous sensor space EEG test-retest literature, which

also found reliable theta, alpha and beta power estimates (Gasser et al., 1985; Kon-

dacs and Szabó, 1999; McEvoy et al., 2000). Amongst them, highest reliability was

obtained in alpha in groups of children or young adults and in theta when including

healthy elderly people (Gudmundsson et al., 2007). Further, gamma and delta power

presented low to moderate reliability (ICC<0.7 generally), which is also in agreement

with previous EEG studies (Gasser et al., 1985; Gudmundsson et al., 2007; Kondacs and

Szabó, 1999; Pollock et al., 1991).

Additionally, reliability differed between absolute and relative power estimates. In

line with previous EEG studies (Gudmundsson et al., 2007; Kondacs and Szabó, 1999;

Pollock et al., 1991), sensor space reliability was generally similar for absolute than for

relative power in theta, alpha, and beta bands, although relative power yielded lower

ICC in alpha and higher ICC in high beta and gamma. Since relative power values

are normalized with the overall power, which is dominated by the high intensities in

theta and alpha bands, it is possible that the relative power in gamma became reliable

because of the high reliability of theta and alpha bands. Source space results followed

nonetheless a different trend: higher ICC values were generally found for relative than

for absolute power for all frequency bands. This could be attributed to the source

reconstruction process. Beamformer solutions are in fact biased, especially in regions

with low signal to noise ratio (Sekihara and Nagarajan, 2008). Beamfomer intensities

are therefore usually not directly employed in any statistical analysis: they are rather

normalized with another condition or with a noise estimate (Luckhoo et al., 2014).

Although this is often performed by assuming uncorrelated noise, we used empty

room recordings, since they are a more realistic estimate of the noise present in the

MEG data. Empty room data fail however to account for biological noise emerging
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from the subject. Relative power escapes this issue by normalizing source intensities

with the overall source power, thereby avoiding any a priori assumptions on the noise

characteristics. Nevertheless, relative powers are also more unspecific, as they mix

intensities from all frequency bands, and they do not enable the separate inspection of

brain rhythms. For instance, changes in the relative power of low intensity frequency

bands (high beta or gamma), could be overshadowed by small variations in alpha or

theta bands.

Additionally, the signal-to-noise ratio (SNR) of power estimates may be partially

responsible for the variability in its reliability across brain regions and rhythms. This

was previously proposed to explain the low reliability of delta band power (Deuker

et al., 2009; Gasser et al., 1985; Pollock et al., 1991), as delta measurements are greatly

affected by environmental and biological noise. In this work we demonstrated that

the reliability of power estimates was modulated by the signal intensity. Low power

was in fact related to high within-subject variability. This was particularly evident in

the gamma band, which presented low power throughout the brain. However, power

intensity was not entirely responsible for its reliability, since source locations with

highest power did not consistently present the lowest within-subject variability. For

instance, the alpha power in occipital regions was more intense and yet less reliable

during the eyes closed than during the eyes open condition, as it presented both

higher intensities and higher within-subject variability.

Moreover, reliability might result from the inherent nature of brain oscillations.

For instance, although the biophysical original of alpha oscillations is not completely

clear, some studies have pointed out that it could be paced by the thalamus (Buzsáki

and Moser, 2013; Hughes and Crunelli, 2005), contributing therefore to creating sta-

ble oscillations and a high test-retest reliability. As for the other brain rhythms, the

highest reliability was in general found in those regions where the brain rhythm had

been previously described as dominant (Hillebrand et al., 2005). For example, theta

power presented high ICC around the central sulcus and the parahippocampal gyrus,

thus coinciding with previous literature which identified theta oscillations in the hip-

pocampus (Buzsáki, 2002) and midfrontal regions such as the dorsal anterior cingulate

cortex (Cavanagh and Frank, 2014; Congedo et al., 2010; Wang, 2010). Furthermore,

low beta power showed high reliability in frontal regions such as the superior frontal

or the paracentral gyrus. In agreement, beta rhythm has been typically identified in

the primary motor cortex (Wang, 2010) and frontal regions related to the inhibitory

control of movement (Sauseng and Klimesch, 2008). Finally, gamma oscillations are

associated with high level processing such as perceptual binding, episodic memory

retrieval or working memory (Jensen et al., 2007), and adapt rapidly to the presence



104 CHAPTER 4. RELIABILITY OF MEG FC AND SPECTRAL ESTIMATES

of incoming events or stimuli. Therefore, although gamma power presented low ICC

in resting state, it could be expected to have higher reliability during a controlled task.

This effect was previously found for FC measures (Deuker et al., 2009).

4.3 Study II. Reliability of resting state FC

4.3.1 Introduction

Since Biswal et al. (1995) observed highly correlated brain activity between bilateral

motor cortices, resting state brain networks (RSNs) have become increasingly popular

(van den Heuvel and Hulshoff Pol, 2010). They consist in separate brain regions that

spontaneously exhibit coordinated activity and are engaged in distinct sensory or

cognitive functions, such as visual or motor processes, attention or executive control

(Rosazza and Minati, 2011). These networks are usually characterized with FC (sec-

tion 2.4), which can be seen a mechanism of information transfer between a network’s

nodes, and has been proven to be indicative of an individual’s brain functioning. In

fact, it was shown to account for inter-subject variability in task performance (Bal-

dassarre et al., 2012; Yamashita et al., 2015) and to distinguish between healthy and

pathological populations, such as schizophrenia (Lynall et al., 2010) or Alzheimer’s

disease (Damoiseaux et al., 2012; Greicius et al., 2004).

RSNs have been traditionally examined with fMRI as correlations between blood-

oxygenated-level-dependent (BOLD) signals. While fMRI is of great use in the ex-

ploration of human brain function, slowly fluctuating BOLD signals constitute only

an indirect measure of brain activity. Therefore, over the past few years, attention

has been drawn to the electrophysiological basis of RSN. In fact, although MEG is

often overshadowed by the high spatial resolution of fMRI, MEG provides an excellent

insight into the time-frequency dynamics of brain activity. It is indeed a direct measure

of neuronal firing and offers unmatched temporal resolution in non-invasive neu-

roimaging. RSNs have been successfully reproduced with MEG by computing source

space FC and using either independent component analysis (ICA) (Brookes et al.,

2011b; Hall et al., 2013; Luckhoo et al., 2012) or seed-based connectivity (Brookes

et al., 2011a; de Pasquale et al., 2010; Hipp et al., 2012; Wens et al., 2014). While ICA

RSNs are built by temporally concatenating source reconstructions along subjects

(Brookes et al., 2011b), seed-based connectivity is applied individually after the a

priori selection of some seed locations.

Overall, this indicates that RSNs can be robustly extracted with MEG. However,

the subjects’ cognitive or emotional state and measurement noise could affect FC

estimates, and it is unclear to what extent MEG-derived RSNs are representative of
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an individual. This prevents the potential use of MEG RSN in the characterization of

individual subjects, or in the proper classification between healthy and pathological

populations. Therefore, the reliability of FC estimates needs to be carefully examined.

In fact, only a handful of studies have tackled test-retest reliability of MEG/EEG FC

(Deuker et al., 2009; Jin et al., 2011; Hardmeier et al., 2014), and they were restricted

to sensor space, therefore failing to provide the spatial resolution necessary for the

evaluation of RSNs. To our knowledge, no study has quantified test-retest reliability

on FC estimates of MEG RSNs.

In the present work we investigated the test-retest reliability of MEG RSNs. For

that, MEG resting state recordings were pooled from the study presented in section 4.2

(Sixteen subjects scanned three times with a one-week test-retest interval). Then,

source reconstruction of the sensor space data was performed with beamforming,

and FC was computed with four metrics (envelope correlation or d-ecor, envelope

correlation with source leakage correction or lc-ecor, PLV and PLI) using the nodes

of 7 well-known RSNs (visual, motor, auditory, DMN, fronto-parietal or FP, insular)

as seeds. Test-retest reliability was then assessed with ICC for within-network FC and

seed-based FC.

4.3.2 Materials and methods

Subjects and MEG acquisition

16 healthy subjects were included in this analysis (age 30.4 ± 5.8, 10 women), Subjects

underwent three MEG sessions of resting-state (two conditions: 4min eyes open, 4

min eyes closed) with an Elekta Vectorview system. Details on data acquisition can be

found in section 4.2.2.

Source reconstruction

Similarly as in section 4.2.2, jump, muscle and ocular artifacts were located with

FieldTrip, and non-overlapping artifact-free 6-second epochs were located in the con-

tinuous resting state recordings. This yielded 24.3 ± 5.7 clean epochs for the eyes open

condition and 26.8 ± 4.7 clean epochs for the eyes closed condition. Then, MEG data

were filtered into delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and

gamma (30-45 Hz) frequency bands with a finite impulse response (FIR) filter of order

1000, and down-sampled to a 250Hz rate.

Source and forward models were built as in the previous study (section 4.2.2):

source locations were spread over the cortical surface and the forward problem was

solved with a 3-shell BEM. However, here we employed the time-domain beamformer
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LCMV instead a frequency domain beamformer, since we aimed at computing FC be-

tween source time-series. Beamforming filters were computed using equation (2.39)

and all clean trials in the covariance calculation. These filters were then applied to

the continuous resting state data, yielding a 4-min time series per source location.

To avoid edge artefacts, source time series were not split into clean trials before the

FC computation. Source reconstruction was performed for every frequency band,

condition, subject and session separately.

FC computation

FC was computed between source time-series using four different metrics, which were

introduced in section 2.4:

• Envelope correlation (d-ecor): Pearson correlation between the envelopes of the

source time series.

• Envelope correlation with leakage correction (lc-ecor): similar to d-ecor, but in-

cludes a regression of the source time series prior to the envelope computation,

following equation (2.64).

• PLV: a classical measure of phase synchronization (equation (2.61)).

• PLI: another measure of phase synchronization, which is insensitive to zero and

π phase differences (equation (2.62)) .

Envelopes and phases were extracted from the Hilbert transform of the source time

series and then envelopes were smoothed with a 0.5 second moving average filter.

To avoid edge artefacts, envelopes and phases were estimated in the whole 4-min

time series, but correlations, PLV and PLI were only computed for the previously

determined 6-second clean trials. FC values were averaged over trials to produce a

final FC estimate per pair of source locations, condition, frequency band, subject and

session.

Within-network reliability

FC was first assessed between the nodes of 7 RSNs: visual, sensorimotor, auditory,

DMN, left FP, right FP and fronto-insular networks. These nodes were defined in MNI

space (see Table 4.2 for their coordinates) and transformed into subject space with a

homogeneous transformation extracted from Freesurfer’s cortical segmentation pro-

cess. The FC between two nodes was defined as the average FC between all sources
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Table 4.2: MNI coordinates of the nodes forming the resting state networks (RSNs). MNI
coordinates are obtained from the fMRI RSNs released by Laird et al. (2011) and Smith et al.
(2009). Labels are assigned with FSL atlas tools (Desikan et al., 2006; Eickhoff et al., 2005;
Jenkinson et al., 2012). DMN: default mode network, FP: fronto-parietal, BA: Broadmann area.

Network Node MNI coordinate BA
x y z

Visual Left visual cortex -41 -77 3 19
Right visual cortex 41 -72 1 19

Sensorimotor Left primary somatosensory cortex -38 -27 52 1
Right primary somatosensory cortex 40 -25 50 1

Auditory Left primary auditory cortex -55 -21 7 41
Right primary auditory cortex 57 -20 7 41

DMN Precuneus 1 -57 28 31
Left inferior parietal -45 -65 30 39

Right inferior parietal 52 -60 26 39
Anterior cingulate 2 42 7 32

Left FP Left angular gyrus -40 -58 56 39
Left middle frontal gyrus -42 28 23 9

Right FP Right angular gyrus 53 -50 43 39
Right middle frontal gyrus 45 28 26 9

Fronto-insular Left insula -38 16 2 13
Right insula 38 16 2 13

Median cingulate -2 12 40 32
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located within 1cm from the nodes’ positions. Then, test-retest reliability for every

link, frequency band and condition was computed with the ICC.

Reliability of seed-based FC maps

Whole brain FC maps were computed from every seed in Table 4.2 to the remaining

source locations. Then, they were transformed into a template mesh in MNI space

with Nsour ces = 4739 sources generated with Freesurfer from the subjects’ cortical

segmentations. FC values were then spatially smoothed with a 15mm moving average

filter, yielding Nsub j ect s×Nsessi ons = 16×3 FC estimates for each target template source

location, seed, frequency band, FC metric and condition. The reliability of the FC

estimates was then assessed with the ICC. Additionally, in order to explore whether

ICC values depended on the FC strength, joint histograms of both magnitudes were

computed. Histograms were normalized with the product of total histogram count and

bin width.

Within- and between-subject agreement of seed-based FC maps

For a given condition, FC metric, frequency band and seed location, seed-based FC

maps were sorted across template source locations l and transformed into ranks ri j l

(1 ≤ ri j l ≤ Nsour ces), for every subject i and session j separately. Then, the agreement

between two sessions j1 and j2 (or within-subject agreement) was assessed with

Kendall’s W (Legendre, 2005)

Ww =
12

∑Nsour ces

l=1

(
Ai l − Āi

)2

23
(
N 3

sour ces −Nsour ces
) (4.20)

where Ai l = ∑
j={ j1, j2} ri j l and Āi = 1

Nsour ces

∑Nsour ces

l=1 Ai l . Analogously, the agreement

between two subjects i1 and i2 (or between-subject agreement) was assessed with:

Wb =
12

∑Nsour ces

l=1

(
B j l − B̄ j

)2

23
(
N 3

sour ces −Nsour ces
) (4.21)

where B j l = ∑
i={i1,i2} ri j l and B̄ j = 1

Nsour ces

∑Nsour ces

l=1 B j l . W ranges from 0 to 1 and

reaches 1 when the ranks obtained in two sessions/subjects are in perfect agreement.

Wilcoxon ranksum tests were performed to compare within- and between-subject W

values, and false discovery rate (q=0.05) was applied to correct for multiple compar-

isons (Benjamini and Yekutieli, 2001).
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4.3.3 Results

Within-network reliability

The reliability of FC for links connecting RSNs regions was assessed with the ICC.

Results are listed in Table 4.3 for the resting state eyes closed condition, and Table E.1

for the resting-state eyes open condition. ICC values were dependent both on the FC

metric and frequency band. Highest ICC values were found for PLV, usually ranging

from 0.7 to 0.9. PLV ICC varied across frequency bands, and it was generally larger

in alpha, beta and gamma bands. High ICC values (>0.7) were however also found

in delta and theta bands for the sensorimotor network and the DMN. d-ecor and lc-

ecor presented greater variability across frequency bands than PLV. The ICC of both

FC metrics topped in the beta band (ICC=0.43-0.77 for d-ecor and ICC=0.72-0.63 for

lc-ecor), while medium to low ICC (<0.5) was found for delta, theta, and gamma bands.

Although ICC was rather low in the alpha band, high values (>0.7) were found with d-

ecor in the visual and sensorimotor networks. Finally ICC values were considerably

low for the PLI in all frequency bands and networks, and rarely exceeded 0.45.

Reliability of seed-based FC maps

FC was computed from each seed to the remaining source locations for each condi-

tion, frequency band and FC metric separately. Then, the ICC of the FC values was

computed for each link. Average ICC values over all source locations for each seed

are listed in Table 4.4. ICC was lower than for the within-network FC (Table 4.3),

indicating greater within- than between-network reliability. Moreover, the variability

over frequency bands and FC metrics was similar than in the within-network analysis.

First, highest values (ICC>0.6) were found for PLV, especially in alpha, beta and gamma

bands. Second, ICC values for d-ecor and lc-ecor peaked in the beta band (0.27-0.53),

and remained low for the remaining frequency bands (<0.36). Of note, ICC was slightly

higher for d-ecor than for lc-ecor. Third, average ICC was fairly poor for PLI (<0.14).

ICC values were unevenly distributed across brain regions. As an example, beta

band ICC and average FC maps for three selected seeds are displayed for lc-ecor in

Figure 4.6 and for PLV in Figure 4.7 (corresponding figures for d-ecor and PLI can

be found in Appendix E). Average FC was higher between regions belonging to the

same network. For instance, seeds in sensory networks (visual, somatosensory and

auditory cortices) were strongly connected to their homologous contralateral areas.

This was less evident for DMN, FP and fronto-insular networks. For instance strong

precuneus/anterior cingulate FC was only appreciable for PLV and d-ecor. ICC maps

resembled average FC maps, showing high ICC for links between homologous sensory
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Table 4.3: ICC of the within-network FC for the resting-state eyes closed condition. ICC values
are computed for every frequency band, FC metric and RSN separately. For RSNs with more
than two nodes (DMN and fronto-insular), the average ICC across links within the network is
displayed.

Network Visual Sensori-
motor

Auditory DMN Left FP Right
FP

Fronto-
insular

d-ecor Delta 0.45 0.48 0.18 0.18 0.17 0.28 0.05
Theta 0.56 0.62 0.08 0.30 0.10 0.22 0.12
Alpha 0.73 0.73 0.58 0.38 0.34 0.32 0.14
Beta 0.60 0.70 0.45 0.43 0.52 0.77 0.57

Gamma 0.38 0.37 0.41 0.38 0.24 0.32 0.11

lc-ecor Delta 0.34 0.46 0.41 0.16 0.03 0.42 0.11
Theta 0.46 0.27 0.36 0.31 0.22 0.15 -0.01
Alpha 0.27 0.38 0.07 0.39 0.02 0.47 0.21
Beta 0.63 0.53 0.49 0.44 0.44 0.60 0.42

Gamma 0.17 0.34 0.34 0.22 0.24 0.15 0.07

PLV Delta 0.59 0.88 0.72 0.79 0.31 0.44 0.68
Theta 0.73 0.87 0.63 0.79 0.39 0.68 0.70
Alpha 0.85 0.94 0.59 0.76 0.80 0.49 0.62
Beta 0.82 0.88 0.70 0.81 0.77 0.77 0.74

Gamma 0.83 0.81 0.66 0.87 0.70 0.91 0.83

PLI Delta 0.28 0.05 0.30 0.44 -0.02 0.32 0.41
Theta 0.29 -0.31 0.26 0.46 0.05 0.32 0.40
Alpha 0.43 -0.07 -0.28 0.38 0.22 0.21 0.46
Beta 0.05 0.17 0.07 0.44 0.17 0.14 0.53

Gamma 0.16 0.01 0.23 0.28 0.12 0.03 0.49
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Table 4.4: Average ICC values of seed based FC maps for the resting-state eyes closed condition.
ICC values are computed for every seed, FC metric and frequency band separately. Values are
displayed as mean (standard deviation).

Delta Theta Alpha Beta Gamma

Left visual d-ecor 0.16 (0.26) 0.17 (0.28) 0.27 (0.29) 0.42 (0.22) 0.20 (0.26)
lc-ecor -0.01 (0.15) -0.01 (0.14) 0.20 (0.17) 0.32 (0.15) 0.07 (0.16)

PLV 0.44 (0.27) 0.56 (0.24) 0.63 (0.19) 0.76 (0.14) 0.80 (0.11)
PLI 0.08 (0.17) 0.05 (0.15) 0.14 (0.15) 0.10 (0.16) 0.08 (0.17)

Left somato- d-ecor 0.12 (0.26) 0.19 (0.27) 0.31 (0.27) 0.52 (0.20) 0.18 (0.28)
sensory lc-ecor 0.04 (0.14) -0.02 (0.13) 0.28 (0.18) 0.52 (0.14) 0.09 (0.17)

PLV 0.49 (0.27) 0.59 (0.25) 0.67 (0.22) 0.75 (0.16) 0.73 (0.19)
PLI 0.06 (0.13) 0.06 (0.16) 0.08 (0.17) 0.10 (0.17) 0.11 (0.17)

Left auditory d-ecor 0.18 (0.27) 0.24 (0.28) 0.36 (0.24) 0.50 (0.19) 0.23 (0.29)
lc-ecor 0.03 (0.13) 0.03 (0.14) 0.19 (0.14) 0.46 (0.12) 0.03 (0.14)

PLV 0.56 (0.23) 0.62 (0.21) 0.72 (0.16) 0.75 (0.15) 0.77 (0.16)
PLI 0.09 (0.15) 0.10 (0.15) 0.13 (0.16) 0.06 (0.16) 0.06 (0.15)

Precuneus d-ecor 0.15 (0.27) 0.18 (0.26) 0.29 (0.25) 0.46 (0.18) 0.24 (0.28)
lc-ecor 0.01 (0.14) 0.02 (0.14) 0.22 (0.16) 0.27 (0.14) 0.03 (0.15)

PLV 0.48 (0.25) 0.62 (0.22) 0.69 (0.17) 0.79 (0.12) 0.82 (0.11)
PLI 0.09 (0.17) 0.10 (0.16) 0.12 (0.15) 0.14 (0.17) 0.10 (0.17)

Left middle d-ecor 0.03 (0.23) 0.09 (0.23) 0.19 (0.25) 0.45 (0.18) 0.07 (0.24)
frontal lc-ecor 0.02 (0.15) -0.00 (0.13) 0.11 (0.14) 0.53 (0.15) -0.04 (0.14)

PLV 0.33 (0.27) 0.47 (0.26) 0.63 (0.22) 0.67 (0.17) 0.65 (0.19)
PLI 0.05 (0.14) 0.04 (0.14) 0.12 (0.14) 0.09 (0.16) 0.07 (0.17)

Right middled-ecor 0.08 (0.24) 0.10 (0.23) 0.18 (0.25) 0.49 (0.17) 0.16 (0.28)
frontal lc-ecor -0.01 (0.14) -0.03 (0.13) 0.12 (0.16) 0.34 (0.13) -0.02 (0.14)

PLV 0.34 (0.27) 0.50 (0.25) 0.60 (0.21) 0.73 (0.14) 0.75 (0.17)
PLI 0.08 (0.16) 0.07 (0.15) 0.12 (0.16) 0.11 (0.17) 0.04 (0.15)

Median d-ecor 0.08 (0.25) 0.09 (0.25) 0.25 (0.25) 0.47 (0.19) 0.15 (0.26)
cingulate lc-ecor 0.03 (0.15) 0.04 (0.13) 0.20 (0.16) 0.39 (0.15) -0.02 (0.15)

PLV 0.35 (0.29) 0.50 (0.26) 0.63 (0.22) 0.75 (0.14) 0.76 (0.15)
PLI 0.12 (0.16) 0.08 (0.19) 0.19 (0.19) 0.12 (0.20) 0.13 (0.18)
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areas. DMN and FP networks presented lower ICC than sensory networks for all FC

metrics. Moreover, FC increased along with ICC values for d-ecor, lc-ecor and PLV,

as revealed by the joint distribution of both magnitudes. This relation was however

not linear, especially for FC metrics without zero-lag correction (PLV and d-ecor), for

which the ICC increased first rapidly along with FC values and then saturated for

medium to high FC (Figure 4.7 and Figure E.1).

Within- and between-subject agreement of seed-based FC maps

The within- and between-subject agreement of seed-based FC maps was computed

with Kendall’s W from pairwise maps of a single and distinct subjects. W values

for every frequency band, FC metric and seed are listed in Table 4.5. High within-

and between-subject W indicate low within-subject variability and robust networks

across subjects, respectively. Additionally, high within- relative to between-subject W

contributes to high reliability. First, highest within- and between-subject W values

were found for PLV (0.68-0.96). Moreover, within-subject W was generally significantly

higher than between-subject W for PLV (19% increment on average), and W values

tended to increase with increasing frequencies. Second, similar W values were found

for d-ecor and PLI, although d-ecor tended to present slightly higher W. For both

metrics, W was medium to high (0.57-0.80), and within-subject W was higher than

between-subject W (5% difference on average). Finally, lc-ecor presented low W (0.49-

0.59) and also little variability across frequency bands and seeds. Additionally, within-

subject W was only marginally higher than between-subject W for lc-ecor (1% higher

on average), and differences between both W estimates failed to reach significance for

most frequencies and seeds. Of note, W values for the seeds in visual, sensorimotor,

auditory cortices and precuneus were generally higher than for the frontal seeds

selected from fronto-parietal and fronto-insular RSNs.

Table 4.5: Kendall’s W of within and between-subject agreement between pairwise seed-based
FC maps. Average Kendall’s W for within-subject (w) and between-subject (b) agreement are
listed for each frequency band, seed and FC metric. The standard deviation of W is displayed in
parenthesis below its average value. Asterisks denote significant differences between within-
and between-subject W (Wilcoxon ranksum test, corrected with false discovery rate and
q=0.05).

Delta Theta Alpha Beta Gamma

w b w b w b w b w b

Left d-ecor 0.64 0.62 0.67* 0.64 0.70* 0.67 0.74* 0.69 0.69* 0.65

visual (0.06) (0.04) (0.06) (0.05) (0.07) (0.05) (0.08) (0.06) (0.06) (0.05)

lc-ecor 0.50 0.49 0.50 0.50 0.52 0.51 0.56* 0.53 0.53* 0.50
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Delta Theta Alpha Beta Gamma

w b w b w b w b w b

(0.06) (0.05) (0.05) (0.05) (0.06) (0.06) (0.07) (0.07) (0.05) (0.05)

PLV 0.83* 0.73 0.87* 0.75 0.88* 0.75 0.94* 0.78 0.95* 0.76

(0.05) (0.07) (0.07) (0.08) (0.05) (0.07) (0.04) (0.09) (0.03) (0.08)

PLI 0.65 0.63 0.65* 0.63 0.69* 0.65 0.67* 0.65 0.68* 0.65

(0.07) (0.06) (0.06) (0.07) (0.06) (0.06) (0.06) (0.06) (0.07) (0.07)

Left d-ecor 0.64* 0.62 0.66* 0.62 0.71* 0.65 0.79* 0.74 0.68* 0.64

somato (0.06) (0.05) (0.06) (0.05) (0.05) (0.05) (0.08) (0.07) (0.06) (0.04)

sensory lc-ecor 0.52 0.50 0.49 0.50 0.51 0.50 0.59 0.55 0.51 0.51

(0.05) (0.05) (0.05) (0.05) (0.07) (0.06) (0.12) (0.09) (0.06) (0.05)

PLV 0.84* 0.72 0.87* 0.73 0.91* 0.77 0.94* 0.77 0.93* 0.75

(0.06) (0.06) (0.05) (0.07) (0.04) (0.07) (0.04) (0.06) (0.04) (0.06)

PLI 0.66 0.64 0.64* 0.62 0.65 0.63 0.65* 0.61 0.66* 0.62

(0.06) (0.07) (0.05) (0.06) (0.06) (0.06) (0.07) (0.06) (0.06) (0.06)

Left d-ecor 0.70* 0.68 0.73* 0.69 0.76* 0.71 0.78* 0.72 0.71* 0.67

auditory (0.06) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.06) (0.06) (0.05)

lc-ecor 0.50 0.50 0.51 0.50 0.51 0.50 0.54 0.52 0.49 0.50

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.08) (0.07) (0.05) (0.05)

PLV 0.91* 0.80 0.93* 0.82 0.95* 0.83 0.96* 0.82 0.96* 0.81

(0.03) (0.06) (0.02) (0.05) (0.02) (0.05) (0.03) (0.05) (0.02) (0.06)

PLI 0.66* 0.63 0.66* 0.63 0.69* 0.65 0.65* 0.63 0.66* 0.63

(0.06) (0.06) (0.06) (0.06) (0.06) (0.05) (0.06) (0.06) (0.06) (0.06)

Precuneus d-ecor 0.68* 0.65 0.71* 0.69 0.75* 0.71 0.80* 0.75 0.74* 0.70

(0.05) (0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.06) (0.05)

lc-ecor 0.51 0.50 0.49 0.50 0.54* 0.51 0.57* 0.53 0.50 0.50

(0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.10) (0.08) (0.05) (0.05)

PLV 0.87* 0.77 0.92* 0.80 0.93* 0.79 0.96* 0.84 0.96* 0.83

(0.04) (0.05) (0.04) (0.06) (0.03) (0.05) (0.03) (0.06) (0.03) (0.06)

PLI 0.70* 0.66 0.72* 0.69 0.70* 0.68 0.75* 0.72 0.74* 0.72

(0.06) (0.06) (0.11) (0.10) (0.11) (0.10) (0.06) (0.05) (0.06) (0.05)

Left d-ecor 0.58 0.58 0.61* 0.59 0.63* 0.60 0.70* 0.64 0.61 0.60

middle (0.05) (0.05) (0.06) (0.05) (0.05) (0.05) (0.08) (0.08) (0.05) (0.04)

frontal lc-ecor 0.50 0.50 0.49 0.50 0.50 0.51 0.55* 0.51 0.50 0.50

(0.05) (0.05) (0.04) (0.05) (0.06) (0.05) (0.09) (0.08) (0.04) (0.05)

PLV 0.77* 0.67 0.82* 0.69 0.86* 0.68 0.91* 0.72 0.90* 0.74

(0.06) (0.05) (0.05) (0.06) (0.05) (0.07) (0.04) (0.09) (0.05) (0.09)

PLI 0.62* 0.60 0.62 0.61 0.65* 0.61 0.65* 0.62 0.63* 0.61

(0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.07) (0.05) (0.06) (0.06)

Right d-ecor 0.59 0.59 0.61 0.59 0.63 0.60 0.70* 0.65 0.64* 0.61
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Delta Theta Alpha Beta Gamma

w b w b w b w b w b

middle (0.05) (0.05) (0.06) (0.05) (0.06) (0.05) (0.08) (0.07) (0.05) (0.06)

frontal lc-ecor 0.49 0.50 0.51 0.50 0.50 0.50 0.53 0.52 0.50 0.50

(0.06) (0.05) (0.06) (0.05) (0.05) (0.05) (0.09) (0.07) (0.05) (0.05)

PLV 0.77* 0.68 0.82* 0.68 0.86* 0.70 0.91* 0.72 0.91* 0.74

(0.05) (0.06) (0.06) (0.07) (0.06) (0.07) (0.06) (0.10) (0.07) (0.10)

PLI 0.63* 0.60 0.60 0.59 0.63* 0.60 0.62* 0.58 0.64* 0.61

(0.06) (0.06) (0.05) (0.06) (0.07) (0.06) (0.07) (0.06) (0.06) (0.06)

Median d-ecor 0.61 0.61 0.62 0.61 0.67* 0.63 0.75* 0.70 0.66* 0.63

cingulate (0.04) (0.04) (0.05) (0.04) (0.05) (0.05) (0.07) (0.07) (0.05) (0.05)

lc-ecor 0.50 0.50 0.49 0.50 0.51 0.49 0.55 0.53 0.49 0.51

(0.05) (0.05) (0.06) (0.05) (0.06) (0.05) (0.10) (0.08) (0.05) (0.05)

PLV 0.79* 0.71 0.84* 0.72 0.88* 0.73 0.93* 0.76 0.94* 0.77

(0.05) (0.06) (0.04) (0.06) (0.04) (0.06) (0.02) (0.06) (0.03) (0.06)

PLI 0.64* 0.57 0.63* 0.58 0.68* 0.60 0.63* 0.59 0.64* 0.59

(0.09) (0.10) (0.05) (0.09) (0.08) (0.12) (0.09) (0.11) (0.10) (0.12)

4.3.4 Discussion

In this work, we assessed the test-retest reliability of 7 MEG RSNs by exploring within-

and between-subject variability of FC values in a cohort of 16 subjects. First, node

coordinates for each RSN were defined based on previously released fMRI RSNs (Laird

et al., 2011; Smith et al., 2009). Then, source space FC was computed between each

node (or seed) and the remaining RSN nodes (within-network) and all source locations

using four distinct FC metrics: d-ecor, lc-ecor, PLV and PLI. Within- and between-

subject variability was employed to assess reliability and agreement of the FC maps.

First, reliability was quantified with the ICC, yielding overall medium to high values

(ICC>0.5). ICC values depended however greatly on the FC and frequency band, and

highest values were found for PLV in alpha, beta and gamma bands and for d-ecor and

lc-ecor in beta band. Moreover, within-network FC was found to be more reliable than

between-network FC. Second, within- and between-subject agreement was evaluated

with Kendall’s coefficient of concordance W. W values ranged from medium to high

(0.5-0.97) depending on the frequency band and the FC metric. W was highest with

PLV and lowest with lc-ecor. Additionally, within-subject W was generally significantly

higher than between-subject FC.

To our knowledge, this constitutes the first test-retest reliability study of MEG

source space FC. Test-retest reliability of FC has however already been explored with

sensor space MEG/EEG and fMRI. Deuker et al. (2009) and Jin et al. (2011) employed
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Figure 4.6: FC and ICC for beta band resting-state eyes closed and lc-ecor. For three selected
seeds (left primary somatosensory, left primary auditory and precuneus), average FC maps
(1st row), ICC (2nd row) and the normalized joint histogram of ICC and FC values (3rd row) are
displayed. FC maps are averaged over all sessions and subjects. The seed location is indicated
with a white circle. For better visualization, the template brain surface was inflated with Caret
software (Van Essen et al., 2001).
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Figure 4.7: FC and ICC for beta band resting-state eyes closed and PLV. For three selected
seeds (left primary somatosensory, left primary auditory and precuneus), average FC maps
(1st row), ICC (2nd row) and the normalized joint histogram of ICC and FC values (3rd row) are
displayed. FC maps are averaged over all sessions and subjects. The seed location is indicated
with a white circle.
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the ICC to estimate the reliability of resting-state graph metrics derived from MEG

sensor space mutual information. While Jin et al. (2011) found medium ICC (0.4-0.65)

for alpha and beta bands and lower ICC for theta and gamma bands, Deuker et al.

(2009) obtained low ICC (0-0.5) for all frequency bands but alpha (0.5-0.8). Interest-

ingly, the ICC of graph metrics during a working memory task was found to be higher

than during resting-state. Using EEG and sensor space PLI, Hardmeier et al. (2014)

obtained good reliability (ICC range: 0.5-0.8) for graph metrics in theta, alpha and

beta bands. Test-retest studies of sensor space graph metrics have therefore obtained

divergent results, although they cannot be easily compared because of differences in

the processing methodology, the choice of FC metric and the test-retest interval. Using

resting-state fMRI, Shehzad et al. (2009) could directly inspect the test-retest reliability

of RSNs by computing FC between regions of interest selected from the fMRI literature.

They overall obtained low reliability (average ICC=0.10-0.40), although higher ICC

values were found when considering significant correlations exclusively. This is in

agreement with our results and suggests that strong connections are more reliable.

Although not focusing on reliability, Wens et al. (2014) studied short-term within-

subject variability in MEG FC with 4 subjects that underwent 20 scans sessions in a

single day. After selecting three seeds in visual, auditory and sensorimotor cortices,

they evaluated the spatial similarity between FC maps. They finally recommended

between 2 to 11 sessions to produce a robust subject average, depending on the

network. Moreover, in line with our work, they obtained that the sensorimotor network

presented the highest within-subject similarity, and hence required the least sessions

to produce good subject-representative average FC maps.

An interesting result in our work is the frequency specificity of the reliability of

RSNs. With PLV, RSNs reached medium to good reliability for all frequency bands,

but highest ICC values were consistently found in alpha, beta and gamma bands.

In the previously commented graph metrics studies (Deuker et al., 2009; Jin et al.,

2011; Hardmeier et al., 2014), reliability was generally highest for alpha, reasonably

good for theta and beta, and quite low for gamma. Although we cannot establish any

direct analogy between our approach and sensor space graph metrics, given that high

frequency oscillations are supposed to be more local than low frequency oscillations

(Buzsáki and Draguhn, 2004), we could speculate that we found higher gamma band

reliability because gamma network properties are not well captured with sensor space

FC. When using d-ecor and lc-ecor, reliability varied greatly amongst frequency bands

and was higher in beta. This finding is not particularly surprising, since MEG RNS

have been predominantly studied with envelope correlation in the beta band. In fact,

although the seminal work of (Brookes et al., 2011b,a; de Pasquale et al., 2010; Hipp
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et al., 2012) investigated RSNs with envelope correlation at several frequency bands,

they concluded that most networks were best extracted in the beta band, and alpha

band in (de Pasquale et al., 2010) and in (Brookes et al., 2011b) for the DMN.

Additionally, we found that the choice of FC metric greatly influenced reliability.

ICC was highest for PLV, medium for d-ecor and lc-ecor, and lowest for PLI, indicating

that PLV estimates are the most reliable ones. Recent literature of MEG RSNs has

however predominantly used d-ecor and lc-ecor. Envelope correlation has in fact

produced FC maps which resemble the ones obtained with fMRI (Brookes et al.,

2011b; de Pasquale et al., 2010, 2012). Further, lc-ecor refines d-ecor by eliminating

zero-lag volume conduction effects, using either time-domain (Brookes et al., 2012)

or frequency domain (Hipp et al., 2012; Wens et al., 2014) orthogonalization. In our

work, lc-ecor yielded similar average FC maps than in the previously commented

studies. With lc-ecor, homologous areas in sensory networks were strongly connected

and, contrary to PLV or d-ecor, the neighborhood of the seed did not present arte-

factual high values. Our results suggest nonetheless, that, although lc-ecor produces

meaningful and unbiased FC maps, PLV estimates are more reliable. Furthermore,

phase and amplitude synchronization represent different mechanisms of information

transfer, so that the choice of FC metric should depend on the underlying FC model

(Fell and Axmacher, 2011).

4.4 Conclusions

In conclusion, we provided the first source space test-retest reliability study of rest-

ing state MEG power and FC estimates. We found that such measures reach high

reliability, which encourages their use in assessing the changes produced by drug

treatments, neuropsychological rehabilitation, degenerative diseases or developmen-

tal trajectories. We evaluated the effect of a number of factors on reliability –frequency

band, brain region, FC metric– which might guide researchers and clinicians to obtain

reliable results in future MEG studies. Reliability was defined here as a relative quantity

(Weir, 2005), which represents the fraction of the measurement variability that is

accounted for by between-subject variability. Under this model, any within-subject

variability constitutes a measurement error, regardless of whether it results from the

MEG system, external or biological noise in the subject, the data processing pipeline,

or a real change in the power intensity or the coupling strength between the two

brain regions. We can therefore not conclude that power or FC estimates with highest

reliability are the most accurate or the most valid ones. It could as well be possible that

the within-subject variability was caused from a true variability in the neuronal firing
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or coupling strength. Besides, increasing between-subject variability in FC estimates

results in increasing reliability. Reliability is in fact a useful quantity to assess how good

individuals can be identified within a group using power or FC values.





Chapter 5

Conclusions and future directions

5.1 Main conclusions

In this thesis, we followed two main lines:

• In Chapter 3, we characterized resting state spectral and FC profiles in MCI.

Resting state MEG was recorded in a sample of MCI patients and age-matched

controls. Then, the activity of some regions of interest was reconstructed with

beamforming. The source-space time series were employed to estimate both the

spectral content of brain currents and FC between DMN regions. The statistical

analysis comparing controls and MCI patients revealed abnormalities in the

MCI group. MCIs presented both a widespread slowing in the alpha rhythm,

as evidenced by a decrease of the alpha peak frequency, and a decreased FC

in the DMN in this same frequency band. Both findings point out that alpha

rhythms are involved in the MCI pathology: they become slower and function-

ally disconnected. Moreover, these electrophysiological differences were found

to occur along with structural changes which are commonly associated with AD:

hippocampal volume loss and decrease of white matter fractional anisotropy.

This suggests that the alpha slowing and disconnection in the DMN could be

indicative of the neurodegeneration associated with the MCI-AD continuum.

• In Chapter 4, we evaluated the test-retest reliability of MEG power and FC

estimates. In fact, MEG power and FC are mostly used for group-level analyses

between various sets of individuals or various conditions. This was the case

of the previous studies on MCI introduced in Chapter 3: statistical analysis

revealed differences between controls and MCIs, but no conclusions could be

drawn at the individual level, since measurement noise and within-subject

121
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variability is undetermined. This hinders the use of MEG in clinical applica-

tions and in the characterization of individual subjects. To tackle this issue, a

cohort of healthy subjects underwent three MEG resting state recordings with a

one week test-retest interval. Source reconstruction was performed and power

and FC were calculated. The reliability of both measures was assessed with

the ICC. First, power reliability varied amongst brain regions and frequency

bands. It was generally high for theta, alpha and beta bands (ICC>0.7), and

lower for delta and gamma bands. Furthermore, within-subject variability cor-

related negatively with source intensity, although the dependence between both

magnitudes was not linear. In fact, while highest within-subject variability was

consistently found for low power sources, the lowest within-subject variability

was not normally found for the highest power sources. Secondly, the reliability

of FC estimates connecting seeds of interest and the remaining source locations

was assessed, for four FC metrics: d-corr, lc-corr, PLV and PLI. Seeds represented

the nodes of 7 well-known RSNs (visual, sensorimotor, auditory, DMN, left FP,

right FP and fronto-insular), and were extracted from the resting state literature.

Reliability varied across frequency bands, source locations and FC metrics. PLV

estimates were found to be highly reliable, often exhibiting ICC>0.8, especially

in alpha, beta and gamma frequency bands. D-corr and lc-corr were generally

quite unreliable (ICC<0.4), except for the beta band, for which ICC values of 0.6-

0.7 were reached. PLI yielded the least reliable FC estimates, which rarely ex-

ceeded ICC=0.4. Moreover, ICC correlated with the average FC, so that strongest

connections tended to be more reliable for all FC metrics.

Overall, we found that MCI is accompanied by changes in resting state MEG power

spectrum and FC, and that these power and FC measures are fairly reliable in healthy

subjects. This suggests that resting-state MEG alterations could be detected at the

individual level, and potentially employed in a clinical scenario.

5.2 Limitations

Our results are dependent on the employed MEG data processing methodology. De-

spite recent efforts to establish general guidelines for MEG research (Gross et al., 2013),

there are multitude of analysis techniques for each processing step (preprocessing,

source reconstruction, FC computation, etc.), and no consensus has been reached

on which are the most appropriate ones. In this work, we used beamforming for

source reconstruction, following extensive MEG resting state literature (Hillebrand

et al., 2005; Brookes et al., 2011a; Schoffelen and Gross, 2009; Brookes et al., 2011b;
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Hillebrand et al., 2012; Hipp et al., 2012). We note however that some groups prefer

minimum norm solutions (de Pasquale et al., 2012; Wens et al., 2014). As for the choice

of FC metric, we selected envelope correlation in Chapter 3 because this metric had

been previously employed in the successful reconstruction of resting state networks

using MEG data (Brookes et al., 2011a,b; Maldjian et al., 2014). However, in Chapter 4

we explored reliability with four FC metrics. Higher ICC values were found for PLV, so

that rerunning the analysis in Chapter 3 with PLV seems worthwhile. Furthermore,

bigger sample sizes in all the included studies would contribute to increasing the

robustness of the results.

5.3 Suggestions for future work

The work presented in this thesis sheds some light into the spectral and FC alterations

in MCI and their reliability. However, many related research lines remain unexplored,

and could be addressed in future studies. We suggest some of them in the following.

• Reliability in MCI. Reliability depends on the subject sample, as it accounts both

for within- and between-subject variability. This means the reliability of MEG

power and FC measures could differ when measured in a sample of healthy

young subjects and in a sample of MCI patients. On the one hand, if MCI

subjects were to be more variable across time than young healthy individuals

(higher within-subject variability), reliability in the MCI group would be smaller

than the one estimated in Chapter 3. On the other hand, if MCIs were to be more

heterogeneous than young heathy subjects (higher between-subject variability),

reliability in the MCI group would be higher than in Chapter 3.

• Longitudinal studies. Clinical and MEG follow-ups could provide information

on the clinical significance of the results. In fact, MCI individuals can either

progress to develop dementia, remain MCI or revert to control. It could be

expected that these three outcomes were characterized by distinct MEG spectral

or FC patterns. A longitudinal study could therefore contribute to evaluating

whether MEG spectral and FC patterns could have any use in the prognosis of

the cognitive decline. Of note, longitudinal studies could be perceived as a test-

retest study with a test-retest interval that is long enough for substantial changes

in the individuals’ cognitive state to take place.

• Use of classifiers. If proven reliable, the power and FC patterns distinguishing

MCIs and controls could be employed for building classifiers, possibly with the
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use of machine learning techniques. This would ideally be performed with a big

dataset of MEG resting state recordings from MCIs and controls, which would be

split into big training and testing sets and yield robust classifiers and accuracy

estimations.
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Appendix B

Acronyms

Aβ Amyloid beta

AC Anterior cingulate

AD Alzheimer’s disease

APOE Apolipoprotein E

BEM Boundary element method

BOLD Blood oxygen level-dependent

CFC Cross-frequency coupling

CSF Cerebrospinal fluid

d-ecor Envelope correlation (without leakage correction)

DMN Default mode network

dSC Direct structural connectivity

DTI Diffusion tensor imaging

DWI Diffusion weighted imaging

EC Effective connectivity

EEG Electroencephalography

FA Fractional anisotropy
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FC Functional connectivity

FEM Finite element method

FIR Finite impulse response

fMRI Functional magnetic resonance imaging

FP Fronto-parietal

ICA Independent component analysis

ICC Intraclass correlation coefficient

IP Inferior parietal

lc-ecor Envelope correlation with leakage correction

LCMV Linearly constrained minimum variance beamformer

MCE Minimum current estimate

MCI Mild cognitive impairment

MEG Magnetoencephalography

MNE Minimum norm estimate

MRI Magnetic resonance imaging

MSR Magnetically shielded room

PC Posterior cingulate

PET Positron emission tomography

PLI Phase lag index

PLV Phase locking value

Pr Precuneus

ROI Region of interest

RSN Resting state network

SC Structural connectivity
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SNR Signal to noise ratio

SQUID Superconducting quantum interference device

SSS Signal space separation

tSSS Spatiotemporal SSS

wSC Weighted structural connectivity





Appendix C

Forward model comparison

An exploratory analysis was performed to compare different forward solutions and

assess their relative validity. For that, leadfield matrices were computed with five for-

ward models that were introduced in section 2.3.2: single sphere, local spheres, Nolte,

1-shell BEM and 3-shell BEM. All forward models derived from the same original

geometries: inner skull, outer skull and scalp surfaces which were extracted from the

individuals’ MRI with NFT (Neuroelectromagnetic Forward Modeling Toolbox) (Acar

and Makeig, 2010) and realigned to the MEG coordinate system with MNE software

(Gramfort et al., 2014). These surfaces were then employed into five forward solution

calculations:

Single sphere model

A sphere was fitted to inner skull surface and Sarva’s analytical solution (2.24)

was applied. This was performed with FieldTrip (Oostenveld et al., 2011).

Local spheres model

For each MEG sensor, a sphere was fitted to the points of the inner skull surface

that lied closer than 10 cm to that sensor, and then Sarva’s formula was applied.

This was performed with FieldTrip, following (Huang et al., 1999).

Nolte or corrected-sphere model

Nolte or corrected-sphere model: Following (Nolte, 2003), this forward solution

started from the single sphere solution and then additional terms were added to

account for the full geometry of the inner skull surface. This was also performed

with FieldTrip.

1-shell BEM

The inner skull mesh consisted of 7000 small triangles, which were used to
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reduce the forward solution into a system of equations. This was solved with

MNE software.

3-shell BEM

Analogous to 1-shell BEM, but the volume conductor includes also skull and

scalp compartments, so that outer skull and scalp surfaces were also employed.

For all five models, the forward calculations were performed for the same source

locations: a mesh with 6mm spacing that covered the subjects’ cortical surface. These

source locations were extracted from Freesurfer+MNE. Then, for each model, the

leadfield can be stored as a 3D matrix: Nchannels ×Nsources × 3. The third dimension

corresponds to 3 directions (x, y, z) for the dipole moment.

At first sight, leadfield matrices were similar for all five models. In fact, for a given

channel, the distribution of leadfield values over the cortical surface for all models

looks alike. For instance, one can barely appreciate any difference between forward

solutions when looking at the distribution of leadfield values for a given subject and

channel, as shown in Figure C.1-A. However, these differences become evident when

plotting the difference between forward solutions, as in Figure C.1-B. For this channel,

the average relative difference to BEM3 model were 8.4%, 12.3%, 14.3% and 20.9% for

BEM1, Nolte, local spheres and single sphere respectively

To evaluate these differences, we performed a pairwise comparison of the relative

error between forward solutions. Figure C.2 condenses these results in a violin plot of

the pairwise relative errors: the higher the density near 0 (or area in the violin plot near

0), the smaller the relative error. The closest pairs of forward solutions were BEM3-

BEM1, followed by BEM3-Nolte, BEM1-Nolte, and Nolte-local spheres.

To further inspect the spatial dependence of these differences, we employed

Freesurfer’s Desikan-Killiany atlas (Fischl et al., 2004) and grouped the leadfield matrix

into 34 anatomical regions. Then, correlation coefficients between leadfield values

for each pair of forward models were computed separately for each region, as sum-

marized in Table C.1. High correlation values were found between BEM3, BEM1 and

Nolte models. Local spheres and single sphere models were highly correlated with the

other models for some regions such as paracentral, inferior parietal, superior parietal

or Precuneus, presumably because the inner skull surface close to these regions fits

well to a sphere. Conversely, the lowest correlation values were found in orbital and

medial temporal regions, probably because geometry of volume conductor near these

regions deviates strongly from the spherical fit.

Overall, we conclude that all models worked reasonably well (or at least similarly).

In fact, at first sight, the leadfield distribution over the cortical surface was very similar
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Single 
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𝐴𝑚
 

A. B. 

Figure C.1: Leadfield distribution for a given subject and occipital channel. Each row cor-
responds to a different forward model:. A. Distribution of leadfield values over the cortical
surface. The leadfield is projected in a direction normal to the cortical surface (which repre-
sents the direction of the pyramidal neurons). B. absolute value of the difference between all
solutions and BEM3. Note that the colorbar in B has a different scale: values are smaller than
in A.



134 APPENDIX C. FORWARD MODEL COMPARISON

0.5 

0 

-0.5 

relative 

error 

 𝐿1 − 𝐿2
𝐿1 + 𝐿2

 

Figure C.2: Relative error between forward solutions. The relative error between leadfield
matrices was computed for all pairs of forward solutions, using all MEG magnetometers and
source locations. These values are displayed in a violin plot, which represents the distribution
of relative error values.

for all five models. However, a more careful inspection revealed some differences

between forward solutions, which were in some cases not negligible. These differ-

ences were highest for frontal and medial temporal regions. Nolte, BEM1 and BEM3

performed similarly, so they all seem good choices for the forward model. Of note,

(Stenroos et al., 2014) obtained similar conclusions. However, BEM3 seems a safer

choice, especially when interested in orbital or medial temporal regions.
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Appendix D

Supplementary results on the
reliability of power estimates

This appendix contains supplementary results of the study of the reliability of resting

state power estimates introduced in section 4.2. While the main results presented in

section 4.2 referred to absolute power estimated with magnetometer data, ICC values

for relative power and gradiometer data are presented here.

Table D.1: ICC of the relative average power over five MEG sensor regions, for each frequency
band and condition. The right column contains the ICC of the MAF (mean alpha frequency).

Delta Theta Alpha Low
beta

High
beta

Gamma MAF

Eyes open Occipital 0.46 0.81 0.82 0.91 0.87 0.71 0.90
Left temporal 0.42 0.80 0.81 0.90 0.89 0.68 0.85

Right temporal 0.35 0.81 0.78 0.88 0.83 0.73 0.88
Parietal 0.48 0.87 0.87 0.94 0.92 0.66 0.93
Frontal 0.35 0.80 0.83 0.82 0.80 0.78 0.68

Eyes closed Occipital 0.62 0.70 0.89 0.90 0.87 0.83 0.88
Left temporal 0.75 0.79 0.92 0.94 0.87 0.84 0.86

Right temporal 0.70 0.70 0.91 0.91 0.92 0.86 0.88
Parietal 0.83 0.80 0.94 0.92 0.95 0.88 0.90
Frontal 0.76 0.61 0.96 0.94 0.90 0.91 0.83

Empty room Occipital 0.01 0.07 0.05 -0.00 0.11 0.08 -0.09
Left temporal 0.05 0.13 0.12 0.11 0.04 0.06 -0.10

Right temporal 0.00 0.09 0.12 -0.09 0.13 -0.03 -0.07
Parietal -0.03 0.09 0.08 0.02 0.27 -0.09 -0.15
Frontal 0.12 0.00 0.26 0.22 0.12 0.11 0.02
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Figure D.1: ICC of source space relative power for the resting state eyes open condition. ICC
values were computed for each source location and frequency band separately.
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Figure D.2: ICC of source space relative power for the resting state eyes closed condition. ICC
values were computed for each source location and frequency band separately.
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Figure D.3: ICC of source space power estimated with planar gradiometers for the resting state
eyes open condition. ICC values were computed for each source location and frequency band
separately.
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Figure D.4: ICC of source space power estimated with planar gradiometers for the resting state
eyes closed condition. ICC values were computed for each source location and frequency band
separately.





Appendix E

Supplementary results on the
reliability of FC estimates

This appendix contains supplementary results of the study of the reliability of resting

state FC estimates introduced in section 4.3. First, Table E.1 lists ICC values of the

within-network ICC, using the resting state eyes open condition. Then, Figures E.1

and E.2 display average FC and ICC for three selected seeds, using d-ecor and PLI,

respectively.

143



144 APPENDIX E. SUPPLEMENTARY RESULTS - FC RELIABILITY

Table E.1: ICC of the within-network FC for the resting-state eyes open condition. ICC values
are computed for every frequency band, FC metric and RSN separately. For RSNs with more
than two nodes (DMN and fronto-insular), the average ICC across links within the network is
displayed.

network visual sensori-
motor

auditory DMN left FP right
FP

fronto-
insular

d-ecor delta 0.34 0.52 0.62 0.27 0.35 0.19 0.12
theta 0.40 0.40 0.20 0.22 0.28 0.20 0.07
alpha 0.59 0.77 0.31 0.33 0.01 0.42 0.10
beta 0.36 0.63 0.25 0.39 0.43 0.57 0.36

gamma 0.20 0.48 0.24 0.22 0.03 0.49 0.05

lc-ecor delta -0.02 0.27 0.24 0.17 -0.02 0.18 -0.01
theta 0.14 0.25 -0.01 0.26 0.36 0.11 0.02
alpha 0.03 0.32 0.15 0.23 0.28 0.47 0.06
beta 0.21 0.57 0.00 0.27 0.27 0.34 0.20

gamma 0.11 0.21 -0.11 0.19 0.05 0.30 -0.11

PLV delta 0.78 0.83 0.53 0.73 0.48 0.52 0.64
theta 0.85 0.88 0.66 0.78 0.00 0.71 0.70
alpha 0.90 0.92 0.60 0.77 0.80 0.67 0.66
beta 0.91 0.92 0.69 0.85 0.77 0.70 0.73

gamma 0.87 0.83 0.71 0.88 0.69 0.91 0.81

PLI delta 0.07 0.48 -0.03 0.34 0.38 -0.05 0.44
theta -0.04 0.32 -0.17 0.27 0.07 -0.19 0.36
alpha 0.19 -0.05 0.10 0.39 0.13 0.04 0.41
beta 0.49 0.28 0.32 0.38 0.21 -0.14 0.45

gamma 0.13 0.24 -0.10 0.48 0.04 0.11 0.44
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Figure E.1: FC and ICC for beta band resting-state eyes closed and d-ecor. For three selected
seeds (left primary somatosensory, left primary auditory and precuneus), average FC maps
(1st row), ICC (2nd row) and the normalized joint histogram of ICC and FC values (3rd row) are
displayed. FC maps are averaged over all sessions and subjects. The seed location is indicated
with a white circle.
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Figure E.2: FC and ICC for beta band resting-state eyes closed and PLI. For three selected
seeds (left primary somatosensory, left primary auditory and precuneus), average FC maps
(1st row), ICC (2nd row) and the normalized joint histogram of ICC and FC values (3rd row) are
displayed. FC maps are averaged over all sessions and subjects. The seed location is indicated
with a white circle.
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Kamiński, J., Brzezicka, A., Gola, M., and Wróbel, A. (2012). β band oscillations

engagement in human alertness process. International journal of psychophysiology

: official journal of the International Organization of Psychophysiology, 85(1):125–8.

Kaplan, P. W. (2004). The EEG in metabolic encephalopathy and coma. Journal of

clinical neurophysiology, 21(5):307–18.



BIBLIOGRAPHY 165

Katz, M. J., Lipton, R. B., Hall, C. B., Zimmerman, M. E., Sanders, A. E., Verghese, J.,

Dickson, D. W., and Derby, C. A. (2012). Age-specific and sex-specific prevalence

and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in

blacks and whites: a report from the Einstein Aging Study. Alzheimer disease and

associated disorders, 26(4):335–43.

Khader, P. H., Jost, K., Ranganath, C., and Rösler, F. (2010). Theta and alpha oscilla-

tions during working-memory maintenance predict successful long-term memory

encoding. Neuroscience letters, 468(3):339–43.

Khalsa, S., Mayhew, S. D., Chechlacz, M., Bagary, M., and Bagshaw, A. P. (2014). The

structural and functional connectivity of the posterior cingulate cortex: Compari-

son between deterministic and probabilistic tractography for the investigation of

structure–function relationships. NeuroImage, 102:118–27.

Khosla, D., Singh, M., and Don, M. (1997). Spatio-temporal EEG source localiza-

tion using simulated annealing. IEEE Transactions on Biomedical Engineering,

44(11):1075–91.

Kircher, T. T., Weis, S., Freymann, K., Erb, M., Jessen, F., Grodd, W., Heun, R., and Leube,

D. T. (2007). Hippocampal activation in patients with mild cognitive impairment is

necessary for successful memory encoding. Journal of neurology, neurosurgery, and

psychiatry, 78(8):812–8.

Kiuchi, K., Morikawa, M., Taoka, T., Nagashima, T., Yamauchi, T., Makinodan, M.,

Norimoto, K., Hashimoto, K., Kosaka, J., Inoue, Y., Inoue, M., Kichikawa, K., and

Kishimoto, T. (2009). Abnormalities of the uncinate fasciculus and posterior cin-

gulate fasciculus in mild cognitive impairment and early Alzheimer’s disease: a

diffusion tensor tractography study. Brain research, 1287:184–91.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory

performance: a review and analysis. Brain research. Brain research reviews, 29(2-

3):169–95.

Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in

brain oscillations. Neuroscience and biobehavioral reviews, 31(3):377–95.

Knyazev, G. G. (2012). EEG delta oscillations as a correlate of basic homeostatic and

motivational processes. Neuroscience and biobehavioral reviews, 36(1):677–95.



166 BIBLIOGRAPHY

Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., and Pylkova, L. V. (2011). The

default mode network and EEGα oscillations: an independent component analysis.

Brain research, 1402:67–79.

Kondacs, A. and Szabó, M. (1999). Long-term intra-individual variability of the back-

ground EEG in normals. Clinical neurophysiology : official journal of the Interna-

tional Federation of Clinical Neurophysiology, 110(10):1708–16.

Korb, A. S., Cook, I. A., Hunter, A. M., and Leuchter, A. F. (2008). Brain electrical source

differences between depressed subjects and healthy controls. Brain topography,

21(2):138–46.

Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. (1999). Measuring phase

synchrony in brain signals. Human brain mapping, 8:194–208.

Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., Glahn, D. C.,

Beckmann, C. F., Smith, S. M., and Fox, P. T. (2011). Behavioral interpretations of

intrinsic connectivity networks. Journal of cognitive neuroscience, 23(12):4022–37.

Lalancette, M., Quraan, M., and Cheyne, D. (2011). Evaluation of multiple-sphere head

models for MEG source localization. Physics in medicine and biology, 56(17):5621–

35.

Landau, S. M., Harvey, D., Madison, C. M., Reiman, E. M., Foster, N. L., Aisen, P. S.,

Petersen, R. C., Shaw, L. M., Trojanowski, J. Q., Jack, C. R., Weiner, M. W., and Jagust,

W. J. (2010). Comparing predictors of conversion and decline in mild cognitive

impairment. Neurology, 75(3):230–8.

Lazar, M., Weinstein, D. M., Tsuruda, J. S., Hasan, K. M., Arfanakis, K., Meyerand, M. E.,

Badie, B., Rowley, H. a., Haughton, V., Field, A., and Alexander, A. L. (2003). White

matter tractography using diffusion tensor deflection. Human brain mapping,

18(4):306–21.

Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., and

Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal

of magnetic resonance imaging : JMRI, 13(4):534–46.

Le Van Quyen, M., Foucher, J., Lachaux, J.-P., Rodriguez, E., Lutz, A., Martinerie, J., and

Varela, F. J. (2001). Comparison of Hilbert transform and wavelet methods for the

analysis of neuronal synchrony. Journal of Neuroscience Methods, 111(2):83–98.



BIBLIOGRAPHY 167

Legendre, P. (2005). Species associations: the Kendall coefficient of concordance revis-

ited. Journal of Agricultural, Biological, and Environmental Statistics, 10(2):226–245.

Lin, F.-H., Witzel, T., Ahlfors, S. P., Stufflebeam, S. M., Belliveau, J. W., and Hämäläinen,

M. S. (2006). Assessing and improving the spatial accuracy in MEG source localiza-

tion by depth-weighted minimum-norm estimates. NeuroImage, 31(1):160–71.

Lodder, S. S. and van Putten, M. J. a. M. (2011). Automated EEG analysis: characterizing

the posterior dominant rhythm. Journal of neuroscience methods, 200(1):86–93.

Lopes da Silva, F. (2010). Electrophysiological Basis of MEG Signals. In Hansen, P. C.,

Kringelbach, M. L., and Salmelin, R., editors, MEG: An Introduction to Methods,

pages 1–23. Oxford University Press.

Lopes da Silva, F. (2013). EEG and MEG: relevance to neuroscience. Neuron,

80(5):1112–28.

López, M. E., Bruña, R., Aurtenetxe, S., Pineda-Pardo, J. A., Marcos, A., Arrazola, J.,

Reinoso, A. I., Montejo, P., Bajo, R., and Maestú, F. (2014). Alpha-band hyper-

synchronization in progressive mild cognitive impairment: a magnetoencephalog-

raphy study. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 34(44):14551–9.

Lőrincz, M. L., Kékesi, K. A., Juhász, G., Crunelli, V., and Hughes, S. W. (2009). Tempo-

ral Framing of Thalamic Relay-Mode Firing by Phasic Inhibition during the Alpha

Rhythm. Neuron, 63(5):683–96.

Luckhoo, H., Hale, J. R., Stokes, M. G., Nobre, A. C., Morris, P. G., Brookes, M. J.,

and Woolrich, M. W. (2012). Inferring task-related networks using independent

component analysis in magnetoencephalography. NeuroImage, 62(1):530–41.

Luckhoo, H. T., Brookes, M. J., and Woolrich, M. W. (2014). Multi-session statistics on

beamformed MEG data. NeuroImage, 95:330–5.

Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., and

Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia.

The Journal of neuroscience : the official journal of the Society for Neuroscience,

30(28):9477–87.

Maldjian, J. A., Davenport, E. M., and Whitlow, C. T. (2014). Graph theoretical anal-

ysis of resting-state MEG data: Identifying interhemispheric connectivity and the

default mode. NeuroImage, 96:88–94.



168 BIBLIOGRAPHY

Mann, E. O. and Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal

network oscillations. Trends in neurosciences, 30(7):343–9.

Maris, E. and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and

MEG-data. Journal of neuroscience methods, 164(1):177–90.

Marple, S. L. (1999). Computing the discrete-time “analytic” signal via FFT. Signal

Processing, IEEE Transactions on Signal Processing, 47(9):2600–3.

Matsuda, H. (2001). Cerebral blood flow and metabolic abnormalities in Alzheimer’s

disease. Annals of Nuclear Medicine, 15(2):85–92.

Mayhew, S. D., Ostwald, D., Porcaro, C., and Bagshaw, A. P. (2013). Spontaneous EEG

alpha oscillation interacts with positive and negative BOLD responses in the visual-

auditory cortices and default-mode network. NeuroImage, 76:362–72.

McEvoy, L. K., Smith, M. E., and Gevins, A. (2000). Test-retest reliability of cognitive

EEG. Clinical neurophysiology : official journal of the International Federation of

Clinical Neurophysiology, 111(3):457–63.

McGraw, K. and Wong, S. (1996). Forming inferences about some intraclass correlation

coefficients. Psychological methods, 1(1).

Meissner, W. and Ochsenfeld, R. (1933). Ein neuer Effekt bei Eintritt der Supraleit-

fähigkeit. Die Naturwissenschaften, 21(44):787–88.

Menon, R. S. (2001). Imaging function in the working brain with fMRI. Current Opinion

in Neurobiology, 11(5):630–36.

Milstein, J. N. and Koch, C. (2008). Dynamic moment analysis of the extracellular elec-

tric field of a biologically realistic spiking neuron. Neural computation, 20(8):2070–

84.

Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., Klunk,

W. E., Mathis, C. A., DeKosky, S. T., and Morris, J. C. (2006). [11C]PIB in a nonde-

mented population: potential antecedent marker of Alzheimer disease. Neurology,

67(3):446–52.

Moretti, D. V., Fracassi, C., Pievani, M., Geroldi, C., Binetti, G., Zanetti, O., Sosta, K.,

Rossini, P. M., and Frisoni, G. B. (2009a). Increase of theta/gamma ratio is asso-

ciated with memory impairment. Clinical neurophysiology : official journal of the

International Federation of Clinical Neurophysiology, 120(2):295–303.



BIBLIOGRAPHY 169

Moretti, D. V., Frisoni, G. B., Fracassi, C., Pievani, M., Geroldi, C., Binetti, G., Rossini,

P. M., and Zanetti, O. (2011). MCI patients’ EEGs show group differences between

those who progress and those who do not progress to AD. Neurobiology of aging,

32(4):563–71.

Moretti, D. V., Paternicò, D., Binetti, G., Zanetti, O., and Frisoni, G. B. (2012). EEG

markers are associated to gray matter changes in thalamus and basal ganglia in

subjects with mild cognitive impairment. NeuroImage, 60(1):489–96.

Moretti, D. V., Pievani, M., Fracassi, C., Binetti, G., Rosini, S., Geroldi, C., Zanetti,

O., Rossini, P. M., and Frisoni, G. B. (2009b). Increase of theta/gamma and al-

pha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy.

Journal of Alzheimer’s disease : JAD, 17(2):349–57.

Mori, S. and van Zijl, P. C. M. (2002). Fiber tracking: principles and strategies - a

technical review. NMR in biomedicine, 15(7-8):468–80.

Mosher, J., Leahy, R., and Lewis, P. (1999). EEG and MEG: forward solutions for inverse

methods. IEEE Transactions on Biomedical Engineering, 46(3):245–59.

Mosher, J. C. and Leahy, R. M. (1998). Recursive MUSIC: a framework for EEG and MEG

source localization. IEEE transactions on bio-medical engineering, 45(11):1342–54.

Murakami, S. and Okada, Y. (2006). Contributions of principal neocortical neurons

to magnetoencephalography and electroencephalography signals. The Journal of

physiology, 575:925–36.

Myles, P. S. and Cui, J. (2007). Using the Bland-Altman method to measure agreement

with repeated measures. British journal of anaesthesia, 99(3):309–11.

Nakasatp, N., Levesque, M. F., Barth, D. S., Baumgartner, C., Rogers, R. L., and Suther-

ling, W. W. (1994). Comparisons of MEG, EEG, and ECoG source localization in

neocortical partial epilepsy in humans. Electroencephalography and Clinical Neu-

rophysiology, 91(3):171–78.

Naveh-Benjamin, M. (2000). Adult age differences in memory performance: tests of

an associative deficit hypothesis. Journal of experimental psychology. Learning,

memory, and cognition, 26(5):1170–87.

Niso, G., Bruña, R., Pereda, E., Gutiérrez, R., Bajo, R., Maestú, F., and Del-Pozo, F. (2013).

HERMES: towards an integrated toolbox to characterize functional and effective

brain connectivity. Neuroinformatics, 11(4):405–34.



170 BIBLIOGRAPHY

Noachtar, S. and Rémi, J. (2009). The role of EEG in epilepsy: a critical review. Epilepsy

& behavior : E&B, 15(1):22–33.

Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation

and its use for magnetoencephalography forward calculation in realistic volume

conductors. Physics in Medicine and Biology, 48(22):3637–52.

Nunez, P. L., Wingeier, B. M., and Silberstein, R. B. (2001). Spatial-temporal structures

of human alpha rhythms: theory, microcurrent sources, multiscale measurements,

and global binding of local networks. Human brain mapping, 13(3):125–64.

O’Keefe, J. and Recce, M. L. (1993). Phase relationship between hippocampal place

units and the EEG theta rhythm. Hippocampus, 3(3):317–30.

Olde Dubbelink, K. T. E., Stoffers, D., Deijen, J. B., Twisk, J. W. R., Stam, C. J., and

Berendse, H. W. (2013). Cognitive decline in Parkinson’s disease is associated with

slowing of resting-state brain activity: a longitudinal study. Neurobiology of aging,

34(2):408–18.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip: Open source

software for advanced analysis of MEG, EEG, and invasive electrophysiological data.

Computational intelligence and neuroscience, 2011.

Osipova, D., Ahveninen, J., Jensen, O., Ylikoski, A., and Pekkonen, E. (2005). Al-

tered generation of spontaneous oscillations in Alzheimer’s disease. NeuroImage,

27(4):835–41.

Osipova, D., Rantanen, K., Ahveninen, J., Ylikoski, R., Häppölä, O., Strandberg, T., and

Pekkonen, E. (2006). Source estimation of spontaneous MEG oscillations in mild

cognitive impairment. Neuroscience letters, 405(1-2):57–61.

Papanicolaou, A. C. (2009). Part i: the method. In Clinical Magnetoencephalography

and Magnetic Source Imaging, pages 3–58. Cambridge University Press.

Parkkonen, L. (2010). Instrumentation and Data Preprocessing. In Hansen, P. C.,

Kringelbach, M. L., and Salmelin, R., editors, MEG: An Introduction to Methods,

pages 24–65. Oxford University Press.

Pascual-Marqui, R., Michel, C., and Lehmann, D. (1994). Low resolution electro-

magnetic tomography: a new method for localizing electrical activity in the brain.

International Journal of Psychophysiology, 18(1):49–65.



BIBLIOGRAPHY 171

Pasqualotto, E., Federici, S., and Belardinelli, M. O. (2012). Toward functioning and

usable brain-computer interfaces (BCIs): a literature review. Disability and rehabil-

itation. Assistive technology, 7(2):89–103.

Passero, S., Rocchi, R., Vatti, G., Burgalassi, L., and Battistini, N. (1995). Quantitative

EEG Mapping, Regional Cerebral Blood Flow, and Neuropsychological Function in

Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders, 6(3):148–56.

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E. (2011). Sta-

tistical Parametric Mapping: The Analysis of Functional Brain Images: The Analysis

of Functional Brain Images. Academic Press.

Pereda, E., Quiroga, R. Q., and Bhattacharya, J. (2005). Nonlinear multivariate analysis

of neurophysiological signals. Progress in neurobiology, 77(1-2):1–37.

Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P., and Andersen, R. A. (2002). Temporal

structure in neuronal activity during working memory in macaque parietal cortex.

Nature neuroscience, 5(8):805–11.

Petersén, I. and Eeg-Olofsson, O. (1971). The Development of the Electroencephalo-

gram in Normal Children from the Age of 1 Through 15 Years – Non-paroxysmal

activity. Neuropediatrics, 2(3):247–304.

Petersen, R. C. (2001). Current Concepts in Mild Cognitive Impairment. Archives of

Neurology, 58(12):1985–92.

Petersen, R. C. (2011). Clinical practice. Mild cognitive impairment. The New England

journal of medicine, 364(23):2227–34.

Petersen, R. C., Jack, C. R., Xu, Y.-C., Waring, S. C., O’Brien, P. C., Smith, G. E., Ivnik,

R. J., Tangalos, E. G., Boeve, B. F., and Kokmen, E. (2000). Memory and MRI-based

hippocampal volumes in aging and AD. Neurology, 54(3):581.

Petersen, R. C. and Negash, S. (2008). Mild cognitive impairment: an overview. CNS

spectrums, 13(1):45–53.

Petrella, J. R., Sheldon, F. C., Prince, S. E., Calhoun, V. D., and Doraiswamy, P. M.

(2011). Default mode network connectivity in stable vs progressive mild cognitive

impairment. Neurology, 76(6):511–7.

Platt, B. and Riedel, G. (2011). The cholinergic system, EEG and sleep. Behavioural

brain research, 221(2):499–504.



172 BIBLIOGRAPHY

Pogosyan, A., Gaynor, L. D., Eusebio, A., and Brown, P. (2009). Boosting cortical

activity at Beta-band frequencies slows movement in humans. Current biology,

19(19):1637–41.

Pollock, V., Schneider, L., and Lyness, S. (1991). Reliability of topographic quantita-

tive EEG amplitude in healthy late-middle-aged and elderly subjects. Electroen-

cephalography and Clinical Neurophysiology, 79(1):20–26.

Portier, C. J. and Wolfe, M. S. (1998). Assessment of health effects from exposure

of power-line frequency electric and magnetic fields. Technical report, National

Institute of Environmental Health Sciences.

Prestia, A., Caroli, A., van der Flier, W. M., Ossenkoppele, R., Van Berckel, B., Barkhof,

F., Teunissen, C. E., Wall, A. E., Carter, S. F., Schöll, M., Choo, I. H., Nordberg, A.,

Scheltens, P., and Frisoni, G. B. (2013). Prediction of dementia in MCI patients based

on core diagnostic markers for Alzheimer disease. Neurology, 80(11):1048–56.

Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W., and Ferri, C. P. (2013). The

global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s &

dementia : the journal of the Alzheimer’s Association, 9(1):63–75.

Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., and Li, K. (2010). Impairment

and compensation coexist in amnestic MCI default mode network. NeuroImage,

50(1):48–55.

Qiu, C., Kivipelto, M., and von Strauss, E. (2009). Epidemiology of Alzheimer’s disease:

occurrence, determinants, and strategies toward intervention. Dialogues in clinical

neuroscience, 11(2):111–28.

Raichle, M. E. and Gusnard, D. A. (2002). Appraising the brain’s energy budget.

Proceedings of the National Academy of Sciences of the United States of America,

99(16):10237–9.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and Shul-

man, G. L. (2001). A default mode of brain function. Proceedings of the National

Academy of Sciences of the United States of America, 98(2):676–82.

Raichle, M. E. and Snyder, A. Z. (2007). A default mode of brain function: A brief history

of an evolving idea. NeuroImage, 37(4):1083–90.



BIBLIOGRAPHY 173

Reddy, P. H. and Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and

synaptic damage: implications for cognitive decline in aging and Alzheimer’s dis-

ease. Trends in molecular medicine, 14(2):45–53.

Rihs, T. A., Michel, C. M., and Thut, G. (2009). A bias for posterior alpha-band power

suppression versus enhancement during shifting versus maintenance of spatial

attention. NeuroImage, 44(1):190–9.

Roberson, E. D. and Mucke, L. (2006). 100 years and counting: prospects for defeating

Alzheimer’s disease. Science (New York, N.Y.), 314(5800):781–4.

Roberts, T. P. and Poeppel, D. (1996). Latency of auditory evoked M100 as a function of

tone frequency. Neuroreport, 7(6):1138–40.

Rombouts, S. A. R. B., Barkhof, F., Goekoop, R., Stam, C. J., and Scheltens, P. (2005).

Altered resting state networks in mild cognitive impairment and mild Alzheimer’s

disease: an fMRI study. Human brain mapping, 26(4):231–9.

Romei, V., Gross, J., and Thut, G. (2010). On the role of prestimulus alpha rhythms

over occipito-parietal areas in visual input regulation: correlation or causation?

The Journal of neuroscience : the official journal of the Society for Neuroscience,

30(25):8692–7.

Rosazza, C. and Minati, L. (2011). Resting-state brain networks: literature review and

clinical applications. Neurological sciences : official journal of the Italian Neurolog-

ical Society and of the Italian Society of Clinical Neurophysiology, 32(5):773–85.

Rosen, W. G., Terry, R. D., Fuld, P. A., Katzman, R., and Peck, A. (1980). Pathological

verification of ischemic score in differentiation of dementias. Annals of neurology,

7(5):486–8.

Rosenblum, M. and Pikovsky, A. (2003). Synchronization: From pendulum clocks to

chaotic lasers and chemical oscillators. Contemporary Physics, 44(5):401–16.

Rosenblum, M., Pikovsky, A., Kurths, J., Schäfer, C., and Tass, P. (2001). Neuro-

Informatics and Neural Modelling, volume 4 of Handbook of Biological Physics.

Elsevier.

Sakkalis, V. (2011). Review of advanced techniques for the estimation of brain connec-

tivity measured with EEG/MEG. Computers in biology and medicine, 41(12):1110–7.



174 BIBLIOGRAPHY

Salmelin, R. (2010). Multi-dipole modelling in MEG. In Hansen, P. C., Kringelbach,

M. L., and Salmelin, R., editors, MEG: An Introduction to Methods, pages 124–155.

Oxford University Press.

Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H.-Y., Das, S., Weinberger, D. R., and

Mattay, V. S. (2010). Age-related alterations in default mode network: Impact on

working memory performance. Neurobiology of Aging, 31(5):839–52.

Samson-Dollfus, D., Delapierre, G., Do Marcolino, C., and Blondeau, C. (1997). Normal

and pathological changes in alpha rhythms. International journal of psychophysi-

ology : official journal of the International Organization of Psychophysiology, 26(1-

3):395–409.

Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomag-

netic inverse problem. Physics in Medicine and Biology, 32(1):11–22.

Sauseng, P. and Klimesch, W. (2008). What does phase information of oscillatory brain

activity tell us about cognitive processes? Neuroscience and biobehavioral reviews,

32(5):1001–13.

Schaefer, M., Mühlnickel, W., Grüsser, S. M., and Flor, H. (2002). Reproducibility and

Stability of Neuroelectric Source Imaging in Primary Somatosensory Cortex. Brain

Topography, 14(3):179–89.

Scher, M. S. (2008). Ontogeny of EEG-sleep from neonatal through infancy periods.

Sleep medicine, 9(6):615–36.

Schoffelen, J. M. and Gross, J. (2009). Source connectivity analysis with MEG and EEG.

Human Brain Mapping, 30:1857–65.

Scholtes, V. A., Terwee, C. B., and Poolman, R. W. (2011). What makes a measurement

instrument valid and reliable? Injury, 42(3):236–40.

Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., and Madsen, J. R. (2003).

Theta and Gamma Oscillations during Encoding Predict Subsequent Recall. J.

Neurosci., 23(34):10809–14.

Ségonne, F., Pacheco, J., and Fischl, B. (2007). Geometrically accurate topology-

correction of cortical surfaces using nonseparating loops. IEEE transactions on

medical imaging, 26(4):518–29.

Sekihara, K. and Nagarajan, S. S. (2008). Adaptive Spatial Filters for Electromagnetic

Brain Imaging. Springer.



BIBLIOGRAPHY 175

Serra, L., Cercignani, M., Lenzi, D., Perri, R., Fadda, L., Caltagirone, C., Macaluso,

E., and Bozzali, M. (2010). Grey and white matter changes at different stages of

Alzheimer’s disease. Journal of Alzheimer’s disease : JAD, 19(1):147–59.

Shao, J., Myers, N., Yang, Q., Feng, J., Plant, C., Böhm, C., Förstl, H., Kurz, A., Zim-

mer, C., Meng, C., Riedl, V., Wohlschläger, A., and Sorg, C. (2012). Prediction of

Alzheimer’s disease using individual structural connectivity networks. Neurobiology

of aging, 33(12):2756–65.

Shechtman, O. (2013). The Coefficient of Variation as an Index of Measurement Relia-

bility. In Doi, S. A. R. and Williams, G. M., editors, Methods of Clinical Epidemiology,

pages 39–49. Springer Berlin Heidelberg.

Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., Lee, S. H.,

Margulies, D. S., Roy, A. K., Biswal, B. B., Petkova, E., Castellanos, F. X., and Milham,

M. P. (2009). The resting brain: unconstrained yet reliable. Cerebral cortex (New York,

N.Y. : 1991), 19(10):2209–29.

Sheline, Y. I. and Raichle, M. E. (2013). Resting State Functional Connectivity in

Preclinical Alzheimer’s Disease. Biological Psychiatry, 74(5):340–7.

Sheline, Y. I., Raichle, M. E., Snyder, A. Z., Morris, J. C., Head, D., Wang, S., and

Mintun, M. A. (2010). Amyloid Plaques Disrupt Resting State Default Mode Network

Connectivity in Cognitively Normal Elderly. Biological Psychiatry, 67(6):584–7.

Shrout, P. E. and Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater

reliability. Psychological bulletin, 86(2):420–8.

Simpson, J. R. (2014). DSM-5 and neurocognitive disorders. The journal of the

American Academy of Psychiatry and the Law, 42(2):159–64.

Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations?

Neuron, 24(1):49–65.

Smith, S. M. (2002). Fast robust automated brain extraction. Human brain mapping,

17(3):143–55.

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N.,

Watkins, K. E., Toro, R., Laird, A. R., and Beckmann, C. F. (2009). Correspondence

of the brain’s functional architecture during activation and rest. Proceedings of the

National Academy of Sciences of the United States of America, 106(31):13040–5.



176 BIBLIOGRAPHY

Sokolov, A., Pavlova, M., Lutzenberger, W., and Birbaumer, N. (2004). Reciprocal

modulation of neuromagnetic induced gamma activity by attention in the human

visual and auditory cortex. NeuroImage, 22(2):521–9.

Sorg, C., Riedl, V., Mühlau, M., Calhoun, V. D., Eichele, T., Läer, L., Drzezga, A., Förstl,

H., Kurz, A., Zimmer, C., and Wohlschläger, A. M. (2007). Selective changes of

resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of

the National Academy of Sciences of the United States of America, 104(47):18760–5.

Sperling, R. a., Laviolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., Pihlajamaki, M.,

Marshall, G., Hyman, B. T., Selkoe, D. J., Hedden, T., Buckner, R. L., Becker, J. A.,

and Johnson, K. a. (2009). Amyloid deposition is associated with impaired default

network function in older persons without dementia. Neuron, 63(2):178–88.

Spironelli, C. and Angrilli, A. (2009). EEG delta band as a marker of brain damage in

aphasic patients after recovery of language. Neuropsychologia, 47(4):988–94.

Stam, C. J., Nolte, G., and Daffertshofer, A. (2007). Phase lag index: assessment of

functional connectivity from multi channel EEG and MEG with diminished bias

from common sources. Human brain mapping, 28(11):1178–93.

Stenroos, M., Hunold, A., and Haueisen, J. (2014). Comparison of three-shell and

simplified volume conductor models in magnetoencephalography. NeuroImage,

94:337–48.

Stenroos, M. and Sarvas, J. (2012). Bioelectromagnetic forward problem: isolated

source approach revis(it)ed. Physics in medicine and biology, 57(11):3517–35.

Steriade, M., Gloor, P., Llinás, R., Lopes da Silva, F., and Mesulam, M.-M. (1990). Basic

mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical

Neurophysiology, 76(6):481–508.

Taulu, S. (2008). Processing of weak magnetic multichannel signals: the signal space

separation method. Doctoral dissertation, Helsinki University of Technology.

Taulu, S. and Kajola, M. (2005). Presentation of electromagnetic multichannel data:

The signal space separation method. Journal of Applied Physics, 97(12).

Taulu, S. and Simola, J. (2006). Spatiotemporal signal space separation method for

rejecting nearby interference in MEG measurements. Physics in medicine and

biology, 51(7):1759–68.



BIBLIOGRAPHY 177

Taulu, S., Simola, J., and Kajola, M. (2005). Applications of the signal space separation

method. IEEE Transactions on Signal Processing, 53(9):3359–72.

Thut, G., Nietzel, A., Brandt, S. A., and Pascual-Leone, A. (2006). Alpha-band electroen-

cephalographic activity over occipital cortex indexes visuospatial attention bias and

predicts visual target detection. The Journal of neuroscience : the official journal of

the Society for Neuroscience, 26(37):9494–502.

Tiihonen, J., Kajola, M., and Hari, R. (1989). Magnetic mu rhythm in man. Neuro-

science, 32(3):793–800.

Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., and

Kopell, N. J. (2008). Dynamic cross-frequency couplings of local field potential

oscillations in rat striatum and hippocampus during performance of a T-maze task.

Proceedings of the National Academy of Sciences of the United States of America,

105(51):20517–22.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix,

N., Mazoyer, B., and Joliot, M. (2002). Automated anatomical labeling of activations

in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. NeuroImage, 15(1):273–89.
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