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Summary

The role of vegetation in regional climate simulations

Introduction

Land surface atmosphere interactions are of great relevance in climate and weather. The
biophysical variables of the earth’s surface play a determining role in the exchanges of
heat, momentum and humidity with the atmosphere. In this way, the correct representa-
tion and understanding of how these variables perform in Land Surface Models (LSMs)
is crucial for the modeling of atmospheric processes.

Vegetation variability in its spatial and vertical dimension as well as the state, health
or type of vegetation is described in the numerical prediction models by parameters such
as albedo, fraction of vegetation cover (FVC), leaf area index (LAI), stomatal resistance,
conductivity or roots depth.

The variable FVC represents the horizontal density of live vegetation and is calcu-
lated through the Normalized Difference Vegetation Index (NDVI). FVC defines how
total evaporation is partitioned between evaporation from the soil and transpiration from
plants. In some LSMs it has a decreasing effect on thermal conductivity, thus reducing
heat transfer to deeper layers of the soil. These physical processes determine in a deci-
sive way surface variables such as air temperature or relative humidity. For this reason,
the variability in precipitation, fires or anthropogenic changes in the vegetation cover
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imply a temporal and spatial heterogeneity of the FVC that have a not negligible impact
in numerical simulations.

Main goals of the study

This thesis assesses the contribution of the variable FVC in the Noah LSM coupled to
a climate version of the MM5 model in the domain of the Iberian Peninsula. The main
goals are the next:

• Study the impact level of using different methodologies of calculation of FVC and its
importance in a regional climate model (RCM).

• Assess the sensitivity of the Noah LSM to variations in the FVC variable in heat and
humidity fluxes and its influence in temperature variations.

• Analyze the implications and potential improvements in the predictability of the
model in temperature at 2 meters (T2m) by using a database of FVC with high tem-
poral and spatial resolution instead of the usual climatologies.

Results

The most relevant results of this thesis are the following:

1. Based on three calculation methodologies, WETZEL, GUTMAN and ZENG and
using the GIMMS (Global Inventory Modeling and Mapping Studies) database of
NDVI, three different databases of FVC were generated in the period 1982-2006.
The differences between these databases and their subsequent effect on heat fluxes
and temperatures were evaluated when incorporated to an annual simulation. The
comparison of the simulations with different databases in which differences in FVC
are around 30 % in FVC could reach bias of 1 ◦C in monthly means of T2m.

2. For assessing the sensitivity of Noah LSM to changes in FVC, a set of ideal exper-
iments were carried out, setting values of 30 % and 90 % in vegetation cover over
space and time in a simulation of a complete year. The results showed that the mini-
mum T2m always decrease when FVC increases. Regarding the maximum T2m, the
effect of increasing the vegetation depends on the availability of soil moisture. With
hydric stress the maximum T2m can increase with higher FVC, while without hydric
stress the maximum T2m decrease.

3. By means of the Copernicus FVC database, a simulation was performed for the period
2000-2017 using monthly data for each year (COP-YEAR) and another from monthly
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data generated with a climatology elaborated for the years of the simulation (COP-
CLIM). These simulations were compared with a control simulation using the default
FVC data from the Noah LSM based on climatologies (MM5-DEF). Analyzing the
T2m fields of these simulations with observations, differences in BIAS and MAE are
observed between the Copernicus and MM5-DEF simulations. The differences are
more noticeable for the minimums and in the month of April with lower errors for the
Copernicus simulations. Comparing the Copernicus simulations between them, there
are no great difference in error globally, although some differences can be found
in extreme years of vegetation cover (excess or defect). The results obtained with
sensitivity experiment modifying the parameters that control thermal conductivity
showed a relevant effect in simulated temperatures.

Conclusions

Among the most relevant conclusions of this study can be found that:

• Differences of up to 30 % of FVC can be found both in the use of different FVC
calculation methodologies and in the interannual variability between wet and dry
years. These differences can suppose relevant deviations in monthly means of T2m
in simulations with RCMs.

• The sensitivity of T2m to changes in FVC is different depending on the month of the
year and time of the day. A greater response is found in the months with the high-
est available radiative energy. While in the case of the minimum T2m the different
response in the daily cycle is fundamentally dominated by the thermal conductivity,
the maximum is controlled by the stomatal resistance parameterization of the model.

• The use of more realistic FVC databases does not have to imply an improvement in
the predictability in RCMs. Instead, they can be a relevant element when testing and
understanding the different processes parameterized in LSMs.





Resumen

El papel de la vegetación en simulaciones climáticas regionales

Introducción

Los procesos de interacción superficie atmósfera son de gran relevancia en clima y mete-
orología. Las variables biofísicas de la superficie terrestre tienen un papel determinante
en los intercambios de calor, momento y humedad con la atmósfera. De esta manera,
la correcta representación y comprensión de como estas variables intervienen en los
modelos de superficie terrestre (LSM, del inglés) es crucial para la modelización de los
procesos atmosféricos.

La variabilidad en la vegetación en su dimensión espacial y vertical así como de
estado, salud o tipo de vegetación queda descrita en los modelos de predicción numérica
por parámetros como albedo, fracción de cubierta vegetal (FVC), índice de área foliar
(LAI), resistencia estomática, conductividad o profundidad de raíces.

La variable FVC representa la densidad horizontal de vegetación viva y se calcula a
partir del Normalized Difference Vegetation Index (NDVI). FVC define como la evap-
oración total se reparte entre la evaporación del suelo y la transpiración de las plantas.
En algunos LSMs tiene un efecto reductor de la conductividad térmica disminuyendo de
esta manera la transferencia de calor hacia capas más profundas del suelo. Estos proce-
sos físicos condicionan de manera determinante variables de superficie como la temper-
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atura del aire o la humedad relativa. Por esta causa, la variabilidad en la precipitación,
incendios o cambios antropogénicos en la cubierta vegetal implican una heterogeneidad
temporal y espacial de la FVC que tienen un impacto nada despreciable en simulaciones
numéricas.

Objetivos del estudio

La Tesis presentada evalúa la contribución de la variable FVC en el modelo Noah LSM
acoplado a una versión climática del modelo MM5 en el dominio de la Península Ibérica.
Los principales objetivos son los siguientes:

• Estudiar qué nivel de impacto puede tener emplear diferentes metodologías de cálculo
de FVC y su trascendencia en modelos climáticos regionales (RCMs).

• Evaluar la sensibilidad del Noah LSM a las variaciones de la variable FVC en los
flujos de calor y humedad y su traducción en las variaciones de temperatura.

• Analizar las implicaciones y las potenciales mejoras en la predictabilidad del modelo
en la temperatura a 2 metros (T2m) al emplear una base de datos de FVC de alta
resolución temporal y espacial en lugar de las climatologías habituales.

Resultados

Los resultados más relevantes de esta tesis son los siguientes:

1. A partir de tres metodologías de cálculo, WETZEL, GUTMAN y ZENG y emple-
ando la base de datos GIMMS (Global Inventory Modeling and Mapping Studies) de
NDVI, se generaron tres bases de datos distintas de FVC en el periodo 1982-2006. Se
evaluaron las diferencias entre estas bases de datos y su posterior efecto en los flujos
de calor y temperaturas al trasladarlo a una simulación anual. En la comparación en-
tre las simulaciones con las distintas bases de datos con diferencias de FVC de hasta
un 30%, se podían alcanzar bias de 1 ◦C en medias mensuales de T2m.

2. Se realizaron una serie de experimentos ideales fijando el valor de la FVC a un 30 %
y un 90% de cobertura vegetal en el espacio y en el tiempo en una simulación de un
año completo. Los resultados mostraron que las T2m mínimas siempre disminuyen
cuando la FVC aumenta. Respecto a las T2m máximas, el efecto de incrementar la
vegetación depende de la humedad disponible del suelo. Con stress hídrico las T2m
máximas pueden aumentar con mayor FVC, mientras que sin stress hídrico las T2m
máximas disminuyen.
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3. Empleando la bases de datos de FCV Copernicus se realizó una simulación para el
periodo 2000-2017 empleando datos mensuales para cada año (COP-YEAR) y, otra,
con datos mensuales generados a partir de una climatología elaborada para los años
simulados (COP-CLIM). Estas simulaciones se compararon con otra de control en
la que se emplearon los datos de FVC por defecto del Noah LSM basados en clima-
tologías (GUT-CLIM). El análisis de las simulaciones muestran diferencias tanto en
la media como en la varianza de las series y un efecto en las tendencias de temper-
atura en el periodo simulado. Analizando los campos de T2m de estas simulaciones
con observaciones se observan diferencias en BIAS y MAE entre las simulaciones
Copernicus y GUT-CLIM. Las diferencias son más apreciables para las mínimas y en
el mes de abril, con menores errores para las simulaciones Copernicus. Comparando
las simulaciones Copernicus entre sí, no hay grandes diferencias en error entre ellas
de manera global, aunque si que las hay en años extremos por exceso o por defecto en
la cobertura de vegetación. Los resultados de experimentos de sensibilidad realiza-
dos con los parámetros que controlan la conductividad termica mostraron un impacto
considerable en las temperaturas simuladas.

Conclusiones

Entre las conclusiones más relevantes de este estudio se encuentran:

• Diferencias de hasta un 30% de FVC se pueden encontrar tanto en el empleo de
diferentes metodologías de cálculo de FVC como en la variabilidad interanual entre
años húmedos y secos. Estas diferencias pueden suponer desvíos relevantes en medias
mensuales de T2m en simulaciones con RCMs.

• La sensibilidad de la T2m a los cambios en la FVC es diferente dependiendo de la
época del año y la hora del día. Se encuentra una mayor respuesta en los meses con
mayor energía radiativa disponible. Mientras que la diferente respuesta en el ciclo
diario, se encuentra controlada fundamentalmente en el caso de la T2m mínimas
por la conductividad térmica y en el caso de las máximas por la parametrización de
resistencia estomática del modelo.

• El empleo de bases de datos de FVC más realistas no tiene que suponer una mejora
en la predictabilidad en RCMs. En cambio, pueden ser un elemento relevante a la
hora de testar y comprender los diferentes procesos parametrizados en los LSMs.
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1
Introduction

There is a Spanish popular legend, attributed to the Greek Estrabon in his Geographica
(first century B.C.) that says the following: "the Iberian Peninsula is so leafy that an
squirrel could cross from south to north, jumping from tree to tree without touching the
ground". This legend is false, because Estrabon never wrote it, and probably is extrap-
olated from some affirmations made in a documentary of a famous spanish naturalist
called Felix Rodríguez de la Fuente. Indeed, the reality described by Pliny the Elder in
Naturalis Historia in the first century A.C. was very different. He described the Iberian
Peninsula (IP) as follows: “otherwise, the mountains of Hispanias, arid and barren and
in which nothing else grows, have no choice but to be fertile in this good kind (of gold)".
This kind of confussions about the supposed status of the vegetation two millennia ago,
are in part sustained about the popular belief that in epochs previous to industrialization
the earth surface was practically covered by vegetation. As was described by Pliny the
Elder the reality was other in the case of the IP because in that times there were also nat-
ural barren an arid landscapes like nowadays. And besides of that, there were also large
areas deforestated by human contribution, due to the massive logging carried out by Ro-
mans in the Mediterranean Basin (Hughes, 2011). So we find that a fully covered earth
by vegetation is something difficult to find due to the natural variability of landscapes
and anthropogenic changes in vegetation.

Nowadays vegetal landscape, is the result of a serie of events of various kinds,
from geologic manifestations (plate movements, orogenies, etc...) to phenomena related
with climate changes, that have implied important precipitation and temperature oscilla-
tions (marine transgressions and regressions). And of course, this landscape have been
modeled by the effects of human activities like deforestation or agropastoral practices
(Costa Tenorio et al., 1998). Sagan et al. (1979) made a interesting review of human
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Fig. 1.1: Distribution of dominant land cover types. GLC-SHARE land cover database.
Source: FAO

Fig. 1.2: Distribution of dominant land cover types. GLC-SHARE land cover database.
Source: FAO

impact in earth surface from the epochs of huntering and gathering to technologist by
way of agricultural with examples of enviromental changes and its timing. This kind
of changes in vegetation due to natural or anthropogenic causes, are long term modifi-
cations that can last from years to millenials. But we find another modifications more
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reduced in time scale as a response to seasonally varying weather patterns that are re-
lated with plants phisiology. This changes are related by the term phenology, that is
defined as the timing of seasonal developmental stages in plant life cycles including bud
burst, canopy growth, flowering, and senescence (Kimball, 2014). At last, forest fires
can change large areas of vegetation cover in the scale of weeks-days although it can
be a long term process of change too. About 65,000 fires take place every year in the
European region, burning, on average, around half a million ha of forest areas and in the
95 % of the cases are due to human causes (Schmuck et al., 2011; San-Miguel-Ayanz
et al., 2013).

In Figures 1.1 and 1.2 are depicted the distribution of dominant land covers of the
GLC-SHARE database from Food and Agriculture Organization (FAO). There is a 28
% of the emerged earth covered by non vegetated surfaces (bare soil, snow and glaciers,
water bodies and artificial surfaces) and the rest is covered by natural vegetation or crop-
lands. These terrestrial biomes have a fundamental role in earth energy balance impact-
ing weather and climate. Moreover, vegetation is a large yet variable sink and storage of
CO2 (McGuire et al., 2001) and in the process of photosynthesis is responsible for build-
ing up atmospheric oxygen to the level we enjoy today. Besides, vegetation is crucial in
water cycle, controlling soil erosion, protecting the soil surface from raindrop splashing,
increasing soil organic matter, soil aggregate stability, modifying soil chemistry, water
holding capacity, hydraulic conductivity, retarding and reducing surface water runoff.
As we can see vegetation cover has a vital importance in earth system and in our lifes.

In this framework, the work presented here will address the role of vegetation in
weather and climate assessing its influence through the use of meteorological modeling.
This introductory chapter will cover the main processes involved in land surface inter-
actions with atmosphere with the aim of understanding the physical processes in which
vegetation cover can be relevant. Then, will be reviewed how vegetation is considered
in land surface models and which parameters are usually parameterized. At last, it will
be treated how vegetation cover is relevant in the context of climate change.

1.1 Land surface interactions with atmosphere

1.1.1 Overview

Land surface interactions are mainly controlled by two processes that are basic for life
on earth, land water balance and land energy balance. These main processes involving
many others detailed processes are not separated and are coupled through evaporation.
In the schematic representation of Seneviratne et al. (2010) we can see an overview of
this two processes.
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Fig. 1.3: Schematic of land water balance (left) and land energy balance (right) for a
given surface layer. dS/dt refers to the change in water within the layer (soil moisture,
surface water, snow). dH/dt represents the changes in energy for the same layer. See text
for more details. Source: Seneviratne et al. (2010).

The land water balance for a surface layer including vegetation (Figure 1.3 left)
without considering lateral exchange between adjacent soil volumes can be formulated
as:

dS
dt

= P − E − Rs − Rg (1.1)

being dS/dt the change of water content within the given layer, P is precipitation, E is
evapotranspiration, Rs is surface runoff and Rg is drainage. The evapotranspiration term
E include bare soil evaporation, plants tranpiration, evaporation from the interception
storage, snow, sublimation, and evaporation from surface water.

Utilizing energy provided by the energy balance, water is evaporated from open water
surfaces and the soil, and is transpired by vegetation, being E the composite loss of
water to the air from all sources. The water vapour is carried up into the atmosphere and
eventually is cooled to its dewpoint and condenses as cloud droplets or ice crystals, that
can grow in size and fall to surface as precipitation P (Oke, 1987). Then, P infiltrates
into the ground and percolates downward, increasing soil moisture. The flow of Rs and
Rg into rivers, lakes and ocean complete the cycle.

The land energy balance for the same surface soil layer (Figure 1.3 right) can be
formulated as:

dH
dt

= Rn − LE − H − G (1.2)

and Rn is expressed as:

Rn = SW↓ − SW↑ + LW↓ − LW↑ (1.3)
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where dH/dt is the change of energy withing the considered surface soil layer (includ-
ing vegetation), assumed to include all water storage components considered in 1.1. The
net radiation (Rn) is separated into parts representing the incoming shortwave radiation
(SW↓) from the sun and its reflected part (SW↑), longwave downwelling radiation (LW↓)
and longwave upwelling radiation (LW↑). Finally, H is sensible heat flux, LE is latent
heat flux and G is ground heat flux to deeper layers. For an infinitesimally small layer,
dH/dt tends to zero and G is the ground heat flux at the surface.

This surface energy budget is initiated by the energy provided by sun radiation reach-
ing the Earth’s surface. The amount of solar energy absorbed by the surface (SW↓) is
reduced from the top of atmosphere value due to absorption and reflection by clouds,
scattering from air and reflection by surface albedo (SW↑). Energy from atmosphere
that reaches the surface (LW↓), is due to emmision from clouds and gases from the at-
mosphere, and increases with increasing temperature, and increased concentrations of
liquid water and greenhouse gases (H2O and CO2 mainly). The energy provided by this
two radiation sources can be stored in the ground (G) or transfered to the atmosphere
via sensible heat flux (H), latent heat flux (LE) or longwave radiation (LW↑). The par-
tiotining of this energy into the storage (ground), sensible and latent heat components
plays a significant role in determining the conditions of the atmospheric boundary layer
affecting temperature, humidity and wind profile near the ground surface.

1.1.2 Surface terms in land water and energy balance

1.1.2.1 Sensible heat flux and latent heat flux

The partitioning of H and LE has a huge influence on the near surface variables, the
depth and structure of the boundary layer, and the potential for precipitation (Stensrud,
2007).

Attending to Figure 1.4, can be seen how LE and H are significantly different consid-
ering distinct land types. For example, desert type has very low (high) LE (H) compared
with crops type or forest type. But comparing locations with the same land type, the
partition of energy can be quite different. Soil type, vegetation type and greenness and
soil moisture determine how much energy is partitioned into H (warming air) and LE
(moistening air).

H is defined as the rate of heat transfer per unit area from the ground to the atmosphere
and can be expressed as:

H =
ρcp (Tg − Tair )

rH
(1.4)
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Fig. 1.4: Numerical model
predictions of sensible
(black) and latent (gray)
heat flux for different land
types over North America.
Source: Stensrud (2007).

where ρ is air density, cp is the specific heat of air, Tg is ground temperature, Tair is
air temperature and rH is defined as the resistance to heat flux.

LE is the rate of moisture transfer per unit area from the ground surface to atmosphere
and can be expressed as:

LE =
ρLv (qza − qzb )

rV(a,b)

(1.5)

where Lv is the latent heat of vaporization, rV is the total resistance to latent heat flux
and za and zb refer to specific height where flux is calculated.

Both H and LE, are affected by the surface temperature and the air temperature, wind
speed, wind shear and stability of the lower levels of the atmosphere. Vegetation in-
fluence H, owing to the height, coverage and structure of the vegetation affecting the
ground and vegetation canopy temperatures, and the low-level wind shear. In the case of
LE, vegetation plays a more dominant role, providing that it is able to transfer moisture
from deep soil layers to the atmosphere. Soil type is important too, since water retention
and infiltration differs between various soil types. And at last, soil moisture content is
crucial in LE.
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1.1.2.2 Ground heat flux

Ground heat flux is the rate of heat transfer from the ground surface into the deeper soil
levels. As in the case of LE and H, it is influenced by surface temperature, soil type,
soil moisture and vegetation. The upper 25 cm undergoes the largest diurnals changes in
temperature, while in deeper layers changes occurs more slowly.

There is an approach implemented in multi-level soil models, that provides an equa-
tion for the ground surface and several specific soil levels below surface. This equation
considers that the amount of heat transferred is proportional to the vertical temperature
gradient (conduction):

G = −kg
∂T
∂z

(1.6)

where kg is the thermal molecular conductivity and z increases in the downward
direction. Considering no other sources and sinks of heat, and that ground heat flux
G = Gz=0 at the ground surface(z=0), the second law of thermodynamics yields:

∂T
∂t

= −
1
cg

∂Gz=0

∂z
(1.7)

where cg is the soil heat capacity and is equal to the soil density multiplied by the
soil specific heat (cg = ρsoil .csoil ). Both, soil heat capacity and thermal conductivity
are dependent upon the soil volumetric content and are depth varying.

1.1.2.3 Upwelling shortwave radiation

The upwelling shortwave radiation is controlled by albedo (0-1), that is defined as the
fraction of the incoming solar radiation that is reflected upward from the Earth’s surface.
Surface albedo can change in bare soils by soil type and in vegetated surfaces can vary
in function of type and coverage. Snow cover has a dramatically impact in albedo since
new snow has an albedo near to 1 (practically all solar radiation is reflected). And not
only that, but also the effect of human activities in land surface has a large impact in
changing albedo, with activities like urbanization, deforestation, grazing or irrigation.

1.1.2.4 Upwelling longwave radiation

Upwelling longwave radiation can be expressed as:

LW↑ = εgσT4
g (1.8)
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where εg is the ground emissivity, σ is the Stefan-Boltzmann constant and Tg is the
temperature at the ground surface. Surface emissivity is defined as the power by a body
at temperature T to the power emitted by a black body at temperature T. The emissiv-
ity is defined as the ratio of the energy radiated from the surface to the energy radiated
from an ideal emitter (black body emission / black body radiation ) under the same
conditions. It is a unitless quantity and ranges between approximately 0.6 and 1.0, but
surfaces with emissivities less than 0.85 are typically restricted to deserts and semi-arid
areas. Vegetation, water and ice have high emissivities above 0.95 in the thermal in-
frared wavelength range. In Figure 1.5 is depicted a global map from the ASTER Global
Emissivity Database, where it can be observed the spatial variability of this variable.

Fig. 1.5: Map of emmisivity calculated from ASTER Global Emissivity Database. Red
colour indicates high emissivity values and blue colour low emissivity values. Source:
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER (www.asterweb.jpl.
nasa.gov).

1.1.3 Land Surface Models (LSM)

Land surface interactions are considered from local scale to global scale in NWPM
though Land Surface Models (LSMs). LSMs provide the physical lower boundary con-
ditions in atmospheric models. The basic task of any LSM is to accurately simulate
the partitioning of net radiation at the land surface into fluxes (H, LE and G) with the
relevant information on land surface and climate data (Overgaard et al., 2006).

www.asterweb.jpl.nasa.gov
www.asterweb.jpl.nasa.gov
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1.1.3.1 Evolution of Land Surface Models

LSMs have evolved in the last 50 years with models that have been adding increasing
level of complexity that has involved multiple scientific disciplines. As a result, LSMs
have expanded from their initial simple biophysical configurations, to include repre-
sentations of soil moisture dynamics, stomatal functioning, land surface heterogeneity,
surface hydrological processes, plant and soil carbon cycling, dynamic vegetation dis-
tributions, fire, urban environments, land cover and management, nitrogen cycling and
crops. In Figure 1.6 is depicted the temporal evolution of LSMs and its increasing level
of complexity with time.

Fig. 1.6: A schematic depiction of the evolution of land surface model process repre-
sentation through time, representing the approximate timing of emergence of different
model components as commonly employed features of Earth system models. Source:
Fisher and Koven (2020). Licensed under Creative Commons CC.

As a summary the next development chronology can be considered in LSM:

• First-generation LSMs: The first LSM was implemented by Manabe (1969) into a
climate model using the Penman approach (Penman, 1948), assuming that the land
surface evaporated water at the same rate as a wet surface (Overgaard et al., 2006).
This parameterization has been considered as the "bucket" model, and used a simple
energy balance equation, ignoring heat conduction into the soil as this model did not
attempt to represent the seasonal or diurnal cycle (Pitman, 2003). This model imple-
mented a globally constant soil depth and water holding capacity, where evaporation
was limited by soil water content below a threshold. When soil moisture exceeded
a prescribed limit, further precipitation generated runoff. The Manabe (1969) LSM
and other simpler schemes considered in this group used simple bulk aerodynamic
transfer formulations and tended to use uniform and prescribed surface parameters
(albedo, z0, water-holding capacity). Furthermore, vegetation was treated implicitly
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and did not change with time and is common the inclusion of a single layer for soil
moisture.

• Second-generation LSMs: This second generation models usually represent the
vegetation-soil system such that the surface interacts with the atmosphere rather than
being passive as occurred in the first generation LSMs (Sellers et al., 1997). The main
milestone in this classification can be considered the work of Deardorff (1978) when
he introduced a method for simulating soil temperature and moisture in two layers
and vegetation as a single bulk layer. These second-generation models vary in de-
tail, but they have many components in common: multiple soil layers, differentiation
between soil and vegetation at the surface (albedo may vary spatially across a grid
square), explicitly representation of the impact of vegetation on momentum transfer,
explicit biophysical control on evaporation, model interception by the canopy and
soil moisture parameterization mostly based in the set of diffusion equations based
on Darcy’s law (Pitman, 2003). Two of the most known second generation models
are the Biosphere Atmosphere Transfer Scheme (BATS) (Dickinson, 1993) and the
Sib model (Sellers et al., 1986).

• Third-generation LSMs: This LSMs include an explicit canopy conductance in or-
der to improve the simulation of evapotranspiration and to address the issue of carbon
uptake by plants. This models are able to respond physiologically as increasing CO2
influences the canopy conductance and it can respond structurally by growing differ-
ent leaves or taller trees (Pitman, 2003). In this way, LSMs can reproduce the response
of the biosphere to increasing CO2 a crucial aspect in climate change simulations.

• Fourth-generation LSMs: A further step in LSMs is integrating how the terrestrial
biosphere respond to the atmosphere on time scales of months to years though the
inclusion of ecological models. This models known as Dynamic Global Vegetation
Models (DGVMs) incorporate a mechanism for changing the vegetation distribution
with climate change. Another aspects considered are land use changes due to human
activities with past and future estimated land use changes incorporated to climate
models. Other processes considered are soil organic carbon, CH4, N2O, phospho-
rus and Biogenic Volatile Organic Compounds (BVOCs) cycles (Sato et al., 2015).
At this moment modern LSMs encompasses a huge set of overlapping and intercon-
nected disciplines relevant to this problem, like physics, biochemistry, physiology,
ecology, hydrology, geography, statistics, mathematics, and high performance com-
puting as has been reviewed by Fisher and Koven (2020).
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1.2 Vegetation and land surface processes

Parameterization of vegetation in numerical weather prediction models (NWPM) is
a challenging issue due to the complex mechanisms that surrounds the interactions
between vegetation and atmosphere. Next is detailed how vegetation is described in
NWPM and the most commom physical processes where it has a dominant role.

1.2.1 Characterization of vegetation in NWPM

There are three parameters widely used in NWPM that describes the state and the health
of the vegetation: Leaf Area Index (LAI), Fraction Vegetation Cover (FVC) and vegeta-
tion type (Stensrud, 2007). These are defined as follows:

• Fraction Vegetation Cover is defined as the fraction of horizontal area associated
with the photosynthetically active green vegetation that occupies a model grid cell
(Gallo et al., 2001).

• Leaf Area Index is a measure of the vegetation biomass and is defined as the sum of
the one-sided area of green leaves above a specified area of ground surface and plays
an important role in determine the amount of transpiration by plants.

• Vegetation type specifies the dominant vegetation within a model grid cell.

There are ground based methods for obtaining this parameters but it would be impos-
sible to use this routinely. In this way, collected data obtained from remote sensing are
used for giving this information. One of the most common parameters used from remote
sensing in this framework, is the Normalized Difference Vegetation Index (NDVI) that
is expressed as:

N DV I =
N IR − V IS
N IR + V IS

(1.9)
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Fig. 1.7: NDVI is calculated from the visible and near-infrared light reflected by vegeta-
tion. Healthy vegetation (left) absorbs most of the visible light that hits it, and reflects a
large portion of near-infrared light. Unhealthy or sparse vegetation (right) reflects more
visible light and less near-infrared light. Illustration by Robert Simmon. Source: NASA
Earth Observatory (https://earthobservatory.nasa.gov).

where NIR and VIS are the amounts of near-infrared and red visible, respectively,
reflected by the vegetation and captured by the satellite sensor (Pettorelli et al., 2005).
As is depicted in Figure 1.7, this index is based on the fact that bare soils or unhealthy
vegetation are fairly constant in NIR and red visible and healthy vegetation absorbs most
of the visible and reflect a great part of the NIR. This index is highly correlated with the
photosynthetically active biomass, chlorophyll abundance and energy absorption (My-
neni et al., 1995).

There are several datasets of NDVI, since these are generated from different satellite
sensors and methods of postprocessing. Among these satellite sensors are remarkable
the Advanced Very High Resolution Radiometer (AVHRR), the NASA’s Moderate Res-
olution Imaging Spectrometers (MODIS), SPOT, LANDSAT, PROBA-V or Himawari.
From this sources, different methods of correction for clouds, aerosols or satellite arti-
facts can be developed for obtaining the final NDVI datasets. This can lead to products
with noteworthly differences between them and therefore influence the final calculation
of products that describe vegetation, like FVC or LAI. This matter has been treated in
Chapter 3, in Sections 3.2.1 and 3.3.

https://earthobservatory.nasa.gov
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1.2.1.1 Fraction vegetation cover

FVC acts as the weighting factor between bare soil and canopy transpiration. In Figure
1.8 can be seen an example of calculation of FVC applying a color detection algorithm,
and can be used as an illustration of how vegetation is represented through this variable
in a model grid cell of a NWPM. But as commented previously, FVC is normally cal-
culated from NDVI data since there is a strong relationship between this variables. The
problem arises with the calculation methods, since there is a great variety of them found
in the use of this variable in NWPM simulations. This has been adressed in Chapter 3,
in Sections 3.2.2, 3.3.1 and 3.3.2 where differents methods of calculation of FVC are
described and compared.

Another fact of relevance is the temporal resolution used for this variable. As com-
mented in the introductory paragraph, changes in vegetation are affected by different
temporal scales that using climatologies can mask. For example, changes related with
phenology or the response of vegetation to interannual regimes of temperature and pre-
cipitation, can lead to great differences in FVC from year to year. This issue has been
treated in Chapter 3, in Section 3.3.3 and more broadly in Chapter 5.

Spatial resolution is another aspect that matters in using FVC in NWPM. For exam-
ple, NDVI from the Global Vegetation Index (GVI) with 16 km resolution from AVHRR
sensor was employed by Gutman and Ignatov (1998) to derive the FVC dataset that is
still used in the Weather and Research Forecasting (WRF) model. Nowadays, NDVI
products can have a spatial resolution greater than 1 km, that can lead to detailed FVC
datasets with greater spatial variability and with potential to improve NWPM simula-
tions. In Chapter 5, is showed an example of using the Copernicus FVC dataset with a
original resolution of 1 km instead of the FVC dataset commented previously used in
WRF and MM5 models. In Section 5.1 are reviewed examples of using detailed FVC
datasets.

1.2.1.2 Leaf Area Index

In Figure 1.9a is depicted a visual representation of LAI for different vegetation types.
For example, semi arid shrublands have a LAI index of 0.8 compared to three-tiered
forest with a LAI of 5. More leaves or more vertical density (larger LAI values) imply a
greater amount of transpiration. One of the methods for calculation of LAI can be hemi-
spherical photographs from ground (1.9b), where the ratio of the area of canopy to sky
can gives an approximated value. LAI used in NWPM simulations is usually calculated
from NDVI although NDVI has limited sense to LAI values greater than 3-4. As can be
seen in a curve typically found when plotting values of NDVI versus LAI (Figure 1.10),
this curve slowly asymptotes to the maximum NDVI value as LAI increses. So this is
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Fig. 1.8: a) Google image of an urban area in Shenzen (China) b) Vegetation fraction ex-
tracted by applying a color detection algorithm to an RGB version of the image. Source:
Wong et al. (2019). Licensed under Creative Commons CC.

a reasonable relationship for midlatitude deciduous forests and grasslands, but is not
accurated for coniferous forests or tropical regions. As was mentioned for FVC, tempo-
ral resolution and spatial resolution also matters in the calculation of LAI from NDVI
data. FVC and LAI are not entirely independent parameters, depending on how LAI is
defined. In this way, a quadratic relationship between NDVI and FVC is more suitable
when LAI is less than 3 (Carlson and Rypley, 1997; Montandon and Small, 2008)

Fig. 1.9: a) Examples of LAI for several vegetation types. Source: Thomas C. Hart b)
Example of hemispherical photograph of forest canopy. The ratio of the area of canopy
to sky is used to approximate LAI. Source: S.B. Weiss.
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Fig. 1.10: Example of curve plotting values of NDVI and LAI. Saturation is reached
when LAI is greater than values of 3-4, and values of NDVI are constant while LAI
increase. Source: Stensrud (2007).

1.2.1.3 Vegetation type

From NDVI data, a large number of vegetation categories (255 in Eurasia, 961 globaly)
can be clustered using unsupervised classification and an extensive post-classification
stratification using remote sensing data (Loveland et al., 2000). But it would be very
difficult to implement this in a NWPM and would have a great uncertainty of improve-
ment in model results (Stensrud, 2007). In this manner, in NWPM are used normally
less than 30 categories. An example of land use classification for Europe can be seen in
Figure 1.11 where 13 land cover classes have been chosen. In most of the NWPM, veg-
etation classes are used to parameterize other physical parameters as roughness length,
emmisivity or albedo with look-up tables, so its definition can have a large impact in
land-atmosphere interactions.

1.2.2 Physical processes implied in vegetation-atmosphere interactions

1.2.2.1 Evapotranspiration control by plants

Plants use photosynthetically active radiation to combine water and CO2 into sugars and
other organic compounds. In this process of photosynthesis, is allowed the transfer of
CO2 from the atmosphere to plant’s cells and then water loss occurs. Plants regulate
the amount of CO2 exchanged and water loss, by means of valve-like structures on
the leaf surface called stomates. With this structures plants try to maximize the ratio
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Fig. 1.11: Land cover map of Europe for the year 2017 with 13 land cover classes.
Source: Malinowski et al. (2020).

between CO2 exchanged and water loss and in order to capture the CO2 needed for
photosynthesis without losing too much water.

Hereafter, are enumerated some of the process that are relevant in plants evapotran-
spiration:

• Conservation of moisture when necessary by plants closing their stomates.
• Interception of precipitation and moisture on leaf surfaces.
• Effect of increasing atmospheric CO2 due to burning fossils in some plants, acts

decreasing evapotranspiration and increasing temperatures.

An example of how this can be parameterized in LSMs can be found for the Noah
LSM in Section 2.2.3.3.

1.2.2.2 Momentum transfer

Vegetation canopies are a rough surface with large values of roughness length (z0). These
higher values of z0 result in lower values of resistance parameters rH and rV and hence
higher values of H and LE are found in vegetated surfaces (equations 1.4 and 1.5). In
NWPM usually z0 is provided as function of land cover type by means of look-up tables
as was commented in Section 1.2.1.3.

Seasonal changes in vegetation can have a large impact in modify z0 and therefore
altering surface fluxes. Furthermore, vegetation have a great spatial variation creating
a patchy landscape that can alter low level winds. For this reason is relevant a detailed
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definition of this variable although the prescription with look-up tables can be inadequate
for dealing the temporal variations that can occur in vegetation.

1.2.2.3 Soil moisture availability

Evaporation from bare soils occurs only in a shallow depth of soil. With very dry situa-
tions soil sealing and crusting can occurs acting as a barrier to further upward moisture
transport through soil. But vegetated surfaces have the ability to drain deeper moisture
sources, since rooting zone can extend over a deeper layer. In this way, rooting depth de-
termines the active soil zone that has potential to return water back into the atmosphere
via plant transpiration profoundly affecting land surface fluxes and carbon cycle (Yang
et al., 2016b). In Figure 1.12 is depicted global spatial variability of rooting depth where
deeper roots (typically greater than 1.5 m) are generally observed in tropical and sub-
tropical regions and shallower hydrologically active soil layers (less than 0.5 m) occur
in arid or cold regions.

Zr(m)
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0.6
0.8
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1.6
1.8
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Fig. 1.12: Global spatial pattern of effective plant rooting depth (Zr). Source: Yang et al.
(2016a).

This capacity of plants of extracting soil moisture from deep layers of the soil il-
lustrates the importance of the amount, the type and the variability of vegetation in the
control of LE fluxes.
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1.2.2.4 Radiation and surface albedo

Vegetation type and amount influence the radiation that reach the surface and have an im-
portant effect in determine the surface albedo as it was described in Section 1.1. Physical
schemes that considers a single temperature for the soil-vegetation surface don’t need to
take into account modifications in the radiation due to vegetation inluence. In this cases
surface albedo can be parameterized with look-up tables depending of vegetation type
or a gridded albedo can be considered using climatological or synchronous values.

More complex vegetation schemes, that include a separate temperature equations for
the ground (mixture of ground cover and vegetation canopy) and the vegetation canopy,
require some modifications to incorporate the multiple reflections of light by the leaves
and the ground surface (Stensrud, 2007). As it was commented in the explanation of the
NDVI index, leaves are highly absorbent in the visible wavelength interval between 400
and 720 nm, where absorption of radiation by chlorophyll in the leaves generally occurs
(also called direct photosynthetically active radiation, PAR), and moderately reflective in
the NIR. In this way, the approach of Sellers et al. (1986) in the Simple Biosphere Model
(Sib) takes into acount modifications to the radiation calculations to produce values for
PAR, diffuse PAR, NIR, diffuse NIR and diffuse infrared radiation. The albedo is allowed
to vary during the daytime, requiring information on leaf angle, and leaf trasnmissions
and reflection of radiation.

A sample of how surface albedo is modified by vegetation is showed in Figure 1.13
where globes cover most of Asia, eastern Europe and the Middle East, for each of the
four seasons in the years 2003 and 2004. The globes in the image show a particular
kind of albedo, formally known as Directional Hemispherical Reflectance (DHR), in
which all scattering effects from the atmosphere are removed. A heavily vegetated sur-
face area will therefore have a small DHR-PAR value (blue on the color scale) while
non-vegetated areas where absorption is small in the PAR region will tend to have high
values of DHR-PAR (green to red on the color scale). In this globes can be depicted
the annual and interannual variations in albedo that can have a non negligible impact in
NWPM.

The first example of how changes in vegetation can affect surface albedo and its
impact in climate is founded in the 1970s in Charney (1975) who proposed a mechanism
to link the Sahelian droughts to increase in albedo. This hypothesis relies only on the
radiation balance (Patil et al., 2014) but later works emphasize that vegetation cover can
change the absorption of solar energy by the surface as well as its redistribution to the
atmosphere in the form of heat fluxes (Charney et al., 1977; Eltahir, 1998; Reale and
Dirmeyer, 2000).
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Fig. 1.13: Seasonal DHR-PAR (albedo) for years 2003 and 2004 ob-
tained from NASA’s Multi-angle Imaging SpectroRadiometer(MISR). Source:
NASA/GSFC/LaRC/JPL/MISR Team (https://www.jpl.nasa.gov)).

1.2.2.5 Vegetation change on soil properties

Vegetation can have a shadowing effect in soil due to the presence of roots and abun-
dance of organic matter in the topsoil (Yang et al., 2005). This can affect heat transport
through soil due to reduced thermal conductivity and hence reduced G (see equation
1.6). This reduction in G can be important since it implies greater enegy available for
LE (Choudhury et al., 1987; Yang et al., 1999). Other changes in soil properties can in-
clude high porosity or high soil water potential that can enhance LE (Yang et al., 2005).

Different parameterizations can be found for dealing with soil and vegetation effect.
One can be found in the European Centre for Medium Weather Forecast (ECMWF)
model land surface scheme where soil heat flux is computed as the product of an empiri-
cal coefficient and the temperature difference between the surface and the (center of the)

https://www.jpl.nasa.gov)
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upper soil layer (Viterbo and Beljaars, 1995). Another example is the approximation of
Peters-Lidard et al. (1997) in which in the presence of a vegetation layer soil heat flux
is reduced lowering heat thermal conductivity. This approximation will be covered in
more detail in Section 2.2.3.

1.3 The role of human induced vegetation changes in the context of
climate change

Variations in vegetation or land use type can induce significant changes in climate. In the
early study of Sagan et al. (1979), was made an estimation of the probable anthropogenic
global albedo change over the past millenia and suggested that humans have made sub-
stantial contributions to global climate changes during the past several millennia, and
perhaps over the past million years. Chase et al. (2001) found that the historical total of
human landcover changes have had a comparable effect on climate to that of historical
increases in CO2 and aerosols. In the Mediterranean area, Reale and Dirmeyer (2000)
and Reale and Shukla (2000) performed an experiment to quantify the sensitivity of
regional climate to changes in vegetation around the Mediterranean basin, correspond-
ing to vegetation change during the Roman Classical Period (2000 years BP). Their
results suggested that this large deforestation contributed to the dryness of the current
climate through changes in surface albedo that has altered the atmospheric circulation
over northern Africa and the Mediterranean.

Another effect of vegetation in the context of climate change is related with the ability
of vegetation to effectively utilize increased carbon dioxide to increase global biomass.
One of the effects is that this may result in reduced carbon dioxide warming from what
otherwise would occur. Other effect indicated by Henderson-Sellers et al. (1995) is that
such changes can lead to decreased evapotranspiration and increased temperatures in
boreal and tropical forest, because plants open their stomata less and are therefore more
water efficient.

An important conclusion raised by Cotton and Pielke Sr (2007) analyzing regional
and global studies related with land use/land cover change (LUCC), is that the spatial
patterning of this changes result in changes over time in regional tropospheric diabatic
heating patterns. These changes in the patterns on the regional scale result in alterations
in global circulation patterns that can have more of an influence than the more spatially
homogeneous climate forcing of the radiative effect of increasing CO2. An example of
studying the characteristics of LUCC on Earth’s surface energy balance can be found
in Duveiller et al. (2018), and their results illustrate that biophysical effects of vegeta-
tion cover change vary considerably in geographic and climate space. Their assessment
shows that in ecosystems where vegetation growth is limited by water availability the
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climate impacts of a vegetation cover transition are dominated by changes in evapotran-
spiration, whereas in ecosystems where vegetation growth is limited by energy, such as
boreal shrublands, the perturbation of the surface temperature is dominated by changes
in the radiative and aerodynamic properties of those ecosystems. Comparing the effect of
greenhouse change and LUCC and their impact on 20th century anthropogenic climate, a
recent study of Yan et al. (2020b) restate the conclusions of Cotton and Pielke Sr (2007).
In this work, one of the results is that the biogeophysical effect of historical LUCC can
offset the warming induced by increased greenhouse gases, but the overall impacts of
LUCC and greenhouse gases changes tend to be linear in their combination. They pro-
pose that more attention should be paid to the interactions between external forcings and
internal variabilities, especially over the regions where nonlinearity is strong.

Another relevant fact considered by Cotton and Pielke Sr (2007) is that changes in
vegetation in the perspective of global warming potential have been considered during
a long time due to changes in surface albedo since this variable can be quantified in
terms of radiative forcing. But vegetation changes are related not only with albedo but
with LAI or FVC, that can affect partitioning of available energy into LE and H with a
direct impact on near-surface air temperature and influence as a climate forcing. As has
been commented previously, this regional land use changes induce a spatial redistribu-
tion of land surface H and LE patterns that results in a global climate change although
global averaged values are unchanged. The work of Bright et al. (2017) compared the
relevance of this non-radiative mechanisms respect to changes in surface albedo in the
local direct temperature response by commom land cover and land management change
perturbations. They found that non-radiative mechanism dominated in eight of nine of
this commom perturbations.

In several articles (Pielke Sr, 2002; Pielke, 2005; Pielke Sr et al., 2011; Mahmood
et al., 2016), Roger A. Pielke and collaborators have adressed that land use and land
cover changes have not been adequately considered in the Intergovernmental Panel on
Climate Change (IPCC). Although the effects on the impact on the atmospheric con-
centrations of CO2 and CH4 and on the global surface albedo have been included, the
role of land use and land cover change and variability in altering climate variables has
been mostly overlooked. In 2019, the IPCC special report of Climate Change and Land
(Shukla et al., 2019) have considered this gap, and assesses climate forcing of land
change at local, regional and global scales.

1.4 Study area

The study area in which the regional climate simulations are performed is the Iberian
Peninsula (IP). IP is an interesting case study due to its varied orography, its position
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affected by the Mediterranean and Atlantic Sea and its latitude in a transition between
temperate and subtropical latitudes.
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Fig. 1.14: Köppen climate classification from the Instituto Geográfico Nacional. At-
las Nacional de España (ANE) CC BY 4.0. Source: www.ign.es/resources/ane/
participantes.pdf

The surface that range the IP has the enough width to act like a little continent, in
which the interior lands can be partially out of sea influence. In this way, two areas
with a remarkable effect in temperature are differentiated, a peripheral halo open to the
Mediterranean and Atlantic influence, and a inner lands core with a clear continental
tendency. Another relevant fact is the precipitation pattern, that mainly divides the IP
in an humid and dry subregion. The humid subregion is defined mainly in the more
septentrional areas, forming a large arc of convexity to the Nortwest ranging from East-
ern Pyrenees to Southern Portugal, with an annual precipitation superior to 600 mm and
reaching some interior mountain ranges with high relief. The dry region with a precipi-
tation between 600 and 300 mm spans the rest two thirds of the IP, and this precipitation
usually does not occurs in summer causing a relevant hydric stress. This dry region can
be subdivided in a semiarid area with a precipitation less than 250 mm, that range some
parts of the Ebro Valley and a great sector in the south east angle of the IP (Vilá Valentí,
1983). From this general climatic description, mediterranean climate is the dominant
in the IP with mild and wet winters, warm and dry summers, and, autumn and springs
variables in temperature and precipitation. Oceanic climate covers north-northwest of

www.ign.es/resources/ane/participantes.pdf
www.ign.es/resources/ane/participantes.pdf
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the IP with high precipitations that are more reduced in summer and mild temperatures
throughout the year, showing a reduced annual temperature range. The Köppen climate
classification from the Instituto Geográfico Nacional is depicted in Figure 1.14 where
are depicted the location of Mediterranean (Csa and Csb types), Oceanic (Cfb), Arid
(Bw) and Semiarid (Bs) climates.

This climatic conditions and mainly the hydric regime define vegetation and soil
conditions. In the humid IP dominate deciduous forests with deep soils, tending to pines
and heather shrubs in siliceous soils. While in the dry IP, dominate shallow soils with
xerophytic perennial plants with broad and needle leaves adapted to hydric stress.

In Figure 1.15 is depicted Copernicus Land Use (Buchhorn et al., 2021) in the area of
the Iberian Peninsula. Agricultural areas cover most of the great vallleys of the IP (Ebro,
Tajo, Duero, Guadiana) and forest land types cover above all the humid subregion and
areas of high relief. Deciduous forests are represented mostly in the north of the IP .
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Fig. 1.15: Copernicus Land Use spanning the Iberian Peninsula.

1.5 Objectives of the Thesis

This Thesis assesses the contribution of the variable FVC in the Noah LSM coupled to
a climate version of the MM5 model. FVC has a determinant role in the weighting of
evaporation between bare soil and canopy transpiration. Reviewing subsection 1.2.2, the
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main physical processes implied in Noah LSM in relation with FVC are evapotranspira-
tion control by plants, soil moisture availability and vegetation change on soil properties.
This physical processes can have a large impact in surface variables like air temperature
or relative humidity due to the changes in the distribution of surface fluxes. In the frame-
work of climate change, a proper consideration and knowledge of FVC is relevant since
vegetation changes can be considered as a climate forcing at local, regional and global
scales.

Regarding the aforementioned aspects, the main goals of this Thesis are the next:

• Assess the sensitivity of the Noah LSM to the variations in FVC.
• Analyze the implications and potential improvements in model performance of using

a more realistic FVC dataset instead of the most common climatologies.

For reaching out this goals, first has been developed the task of studying the degree
of impact of calculate FVC from NDVI data using different methodologies (Chapter 3).
Three different methods of calculation have been compared and tested with the MM5
model, addressing its final impact in simulated fields of 2 meters air temperature (T2m)
in a one year simulation. In Chapter 4, has been evaluated the effect of modifying FVC
in surface fluxes and its final effect in maximum and minimum temperatures. This has
been accomplished by means of two ideal simulations running during a year with fixed
values of FVC of 30 % and 90 %, with the aim of simplify the obtained results. This has
allowed a better understanding of the impact of soil moisture in canopy resistance and
its final contribution to the allocation of energy between LE and H. Finally, in Chapter
5, a set of simulations spanning from year 2000 to 2017 have been conducted in order to
assess the difference between use a climatological dataset of FVC with coarse resolution
and the synchronous FVC dataset of Copernicus. For evaluating this differences, simu-
lated surface fields of T2m have been compared with surface observatories and gridded
datasets. Besides, simulated trends along the 18 years considered have been calculated
and intercompared for a better understanding of how long term variations of FVC can
affect simulated trends of T2m in a RCM.

This Thesis is structured in the following manner: Chapter 2 describes MM5 and
Noah LSM models and the model configurations used in the simulations. Chapter 3
compares three different FVC calculation methodologies from NDVI data and its im-
pact in a RCM. Chapter 4 address the main physical processes that affects the T2m
response to changes in FVC. Chapter 5 shows the results of 2000-2017 regional climate
simulations comparing a climatological FVC dataset with the varying temporal FVC
Copernicus dataset. Chapter 6 presents the main conclusions of this Thesis.



2
Model description and configuration

This chapter describes the Noah LSM and the modeling setup used with the MM5 model
(Grell et al., 1994) for Chapters 3, 4, 5 and 6. Although there are differences in the
simulated period of this chapters the model setup is the same. The initial and boundary
conditions for driving the simulations and the databases and look up tables used are also
described in this chapter.

2.1 MM5 Model description

MM5 is the fifth generation of the NCAR/Penn State Mesoscale Model (Grell et al.,
1994). The main characteristics of this model include (i) multiple-nest capability, (ii)
nonhydrostatic dynamics, and (iii) a four-dimensional data assimilation (Newtonian
nudging) capability, (iv) increased number of physics options, and (v) portability to a
wider range of computer platforms, including OpenMP and MPI system.

Terrestrial and isobaric meteorological data are horizontally interpolated (programs
TERRAIN and REGRID) from a latitude-longitude grid to a mesoscale, rectangular
domain on either a Mercator, Lambert Conformal, or Polar Stereographic projection.
Program INTERPF then performs the vertical interpolation from pressure levels to the σ
coordinates of the MM5 model. After preparing the data, simulations can be performed
with the module MM5.

25
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2.1.1 Model horizontal and vertical grid

The modeling system usually gets and analyzes its data on pressure surfaces, but these
have to be interpolated to the model’s vertical coordinate before being input to the
model. The vertical coordinate is terrain following ( Figure 2.1 ) meaning that the lower
grid levels follow the terrain while the upper surface is flat. Intermediate levels progres-
sively flatten as the pressure decreases toward the chosen top pressure. A dimensionless
quantity σ is used to define the model levels:

Fig. 2.1: Schematic representation of the vertical structure of the model. Example for 15
vertical layers. Dashed lines denote half-sigma levels and solid lines denote full-sigma
levels. Source: Grell et al. (1994).

σ =
(P0 − Pt )
(PS0 − Pt )

(2.1)
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where P0 is the reference-state pressure, Pt is a specified constant top pressure and
PS0 is the reference-state surface pressure. σ is zero at the model top and one at the
model surface, and each model level is defined by a value of σ. The model vertical
resolution is defined by a list of values between zero and one that do not necessarily
have to be evenly spaced. Normally the resolution in the boundary layer is much finer
than above.

Fig. 2.2: Horizontal Arakawa B-grid staggering of the dot (u,v) and cross points
(scalars). The smaller inner box is a representative mesh staggering for a 3:1 coarse-
grid distance to fine-grid distance ratio. Source: Grell et al. (1994).

The horizontal grid has an Arakawa-Lamb B-staggering of the velocity variables
with respect to the scalars. This is shown in Figure 2.2 where it can be seen that the
scalars (T, q etc.) are defined at the center of the grid square, while the eastward (u) and
northward (v) velocity components are collocated at the corners. The center points of
the grid squares will be referred to as cross points, and the corner points are dot points.
Hence horizontal velocity is defined at dot points, for example, and when data is input to
the model the preprocessors do the necessary interpolations to assure consistency with
the grid.

All the above variables are defined in the middle of each model vertical layer, referred
to as half-levels and represented by the dashed lines in Figure 2.1. Vertical velocity is
carried at the full levels (solid lines). In defining the σ levels it is the full levels that are
listed, including levels at 0 and 1. The number of model layers is therefore always one
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less than the number of full σ levels. Note also the I, J, and K index directions in the
modeling system.

2.1.2 Nesting

MM5 contains a capability of multiple nesting with up to nine domains running at the
same time and completely interacting. There are two possible options of nesting: two-
way and one-way. "Two-way interaction" means that the nest’s input from the coarse
mesh comes via its boundaries, while the feedback to the coarser mesh occurs over the
nest interior. The nesting ratio bewteen domains is always 3:1 for two-way interaction.
One-way nesting considers that the model is first run to create an output that is inter-
polated using any ratio (not restricted to 3:1), and a boundary file is also created once
a one-way nested domain location is specified. Therefore one-way nesting differs from
two-way nesting in having no feedback and coarser temporal resolution at the bound-
aries. A possible configuration of nesting is shown in Figure 2.3. It can be seen that
multiple nests are allowed on a given level of nesting (e.g. domains 2 and 3), and they
are also allowed to overlap. Domain 4 is at the third level, meaning that its grid size and
time step are nine times less than for domain 1. Each sub-domain has a "Mother domain"
in which it is completely embedded, so that for domains 2 and 3 the mother domain is
1, and for 4 it is 3.

Fig. 2.3: Horizontal Arakawa B-grid staggering of the dot (u,v) and cross points
(scalars). The smaller inner box is a representative mesh staggering for a 3:1 coarse-
grid distance to fine-grid distance ratio. Source: Grell et al. (1994).
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More details related with the basic equations of the model, derivation, coordinate
transformation, spatial and temporal finite differencing can be found in (Grell et al.,
1994).

2.2 Noah Land Surface Model

2.2.1 Brief history of Noah LSM development

The Noah land surface model (LSM) is one of the most robust and well established
models of its kind for meteorological and climate modeling (Campbell et al., 2019). The
origin of the Noah LSM is the Oregon State University LSM (OSU LSM) originally
developed by Pan and Mahrt (1987). Chen et al. (1996) extended this model, includ-
ing an explicit canopy resistance formulation used by Jacquemin and Noilhan (1990)
and a surface runoff scheme of Schaake et al. (1996). The Noah LSM is the result of
long-term, overlapping and continued development in land surface modeling initiated
by the four agencies that comprise its name: National Center for Atmospheric Research
(NCAR), Oregon State University, the U.S. Air Force, and National Centers for En-
vironmental Prediction’s (NCEP’s) Office of Hydrology (Campbell et al., 2019). This
model has a long history of development for more than three decades (Mahrt and Ek,
1984; Mahrt and Pan, 1984; Chen et al., 1996; Ek et al., 2003; Niu et al., 2011) and has
been widely studied in the MM5 and WRF community. Noah LSM has been used by the
National Centers for Environmental Prediction (NCEP) formerly in the Eta model (Ek
et al., 2003) and currently in the Global Forecast System (GFS) and North American
Mesoscale (NAM).

The Noah LSM version used in these simulations is 2.7.1 (Ek et al., 2003), currently
used in GFS. The treatment of FVC remains the same in subsequent versions of Noah
LSM, except for the calculation of z0 and emmisivity that are FVC dependent in version
3.2 (Best et al., 2015).

The evolution of Noah LSM incorporating characteristics of third generation models
(see Section 1.1.3.1) is the Noah with multiparameterization options model (Noah-MP)
(Niu et al., 2011). This LSM considers the next augmentations respect the Noah-LSM:
1) a vegetation canopy layer to compute the canopy and the ground surface temperatures
separately, 2) a modified two-stream radiation transfer scheme considering canopy gaps
to compute fractions of sunlit and shaded leaves and their absorbed solar radiation, 3)
a Ball-Berry type stomatal resistance scheme that relates stomatal resistance to photo-
synthesis of sunlit and shaded leaves, 4) and a short-term dynamic vegetation model.
The design of the augmented Noah enables the choice of multiple, alternative options
for each physical process.
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2.2.2 Description of the model

Noah LSM is based on the coupling of the diurnally dependent Penman potential evap-
oration approach of Mahrt and Ek (1984), the multilayer soil model of Mahrt and Pan
(1984), and the primitive canopy model of Pan and Mahrt (1987). It has been extended
by Chen et al. (1996) to include the modestly complex canopy resistance approach of
Noilhan and Planton (1989) and Jacquemin and Noilhan (1990). It has one canopy layer
and the following prognostic variables: soil moisture (SM) and temperature in the soil
layers, water stored on the canopy, and snow stored on the ground. For the soil model to
capture the daily, weekly, and seasonal evolution of SM and also to mitigate the possi-
ble truncation error in discretization, four soil layers are used, and the thickness of each
layer from the ground surface to the bottom are 0.1, 0.3, 0.6, and 1.0 m, respectively.
The total soil depth is 2 m, with the root zone in the upper 1 m of soil. Thus, the lower
1-m soil layer acts like a reservoir with a gravity drainage at the bottom. An schematic
representation of Noah LSM is depicted in Figure 2.4.

According to the classification given in Section 1.1.3.1, Noah LSM uses bulk aero-
dynamic transfer equations and calculates evaporation based on Penman approach that
are commom in first generation models. On the other hand, a combined surface layer of
vegetation and soil surface over which surface energy fluxes are computed and multiple
soil layers, have characteristics of second generation models.

2.2.3 Physics model

2.2.3.1 Surface energy balance

Following equations 1.2, 1.3, 1.8, land surface energy balance in Noah LSM (Ek and
Mahrt, 1991; Zheng et al., 2015) is written as:

S↓ − S↑ + εg (L↓ − σT4
g ) = G0 + H + LE (2.2)

where S↓ (Wm−2), S↑ (Wm−2), εg (unitless), L↓ (Wm−2), σ (taken as 5.67 × 10−8

W m−2 K−4) , Tg (K), G0 (Wm−2), H (Wm−2) and LE (Wm−2) were previously defined
in Section 1.1.

The sensible heat flux is described with bulk equations based on the Monin-Obukhov
similarity theory (Chen et al., 1997) as:

H = ρcpCh (θg − θair ) (2.3)
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Fig. 2.4: Schematic representation of the Noah LSM with the processes involved on
bare soil, vegetated soil, snow and open water. Representation of soil layers depicting
soil misture flux, gravitational flow and soil heat flux. Source: Chen (2007).

where ρ (kg m3), cp (J kg−1 K−1) were defined in 1.4. Ch is the surface exchange
coefficient for heat transfer (unitless), θg is the potential temperature at surface (K) and
θair is the potential air temperature (K).

The potential evapotranspiration LEp is calculated diurnally from 1.5 using a Penman-
based approach in this way (Chen et al., 1996; Mahrt and Ek, 1984):

LEp =
∆(Rn − G0 + ρLvChu(qs − q)

1 + Lv
(2.4)

where ∆ is the slope of the relation between the saturated vapor pressure and the
temperature (kPaK−1), and qs (q) is the saturated (actual) specific humidity (kgkg−1).
Rn is net radiation (Wm−2) (see equation 1.3) and Lv (Jkg−1) were defined previously
in Section 1.1.
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The ground surface heat flux, G0, is calculated following Fourier’s law using the tem-
perature gradient between the surface and the midpoint of the first soil layer according
to:

G0 = Kt

Tg − Ts,1

∆z1
(2.5)

where Kt is the thermal heat conductivity of the surface layer (W m−1 K−1), Ts,1 is
the temperature of the first soil layer (K) and ∆z1 is the depth bewteen the surface and
the midpoint of the first soil layer (m). G0 is the upper boundary condition for the soil
thermodynamic model.

The estimation of the ground surface temperature, is calculated following a lineariza-
tion based on a first-order Taylor series expansion:

T4
g ≈ T4

air

[
1 + 4

(
Tg − Tair

Tair

)]
(2.6)

Substitution of eq. 2.6 into the surface energy balance equation ( eq.2.2) yields the
following expression for the ground surface temperature:

Tg = Ta +
S↓ − S↑ + εgL↓ − H − LE − G0

4εgσT3
air

−
1
4

Tair (2.7)

2.2.3.2 Soil heat flow

Soil thermodynamics are treated by the usual diffusion prognostic equation for soil tem-
perature (T):

C(Θ)
∂T
∂t

=
∂

∂z
(Kt (Θ)

∂T
∂z

) (2.8)

where the volumetric heat capacity C (Jm−3K−1) and the thermal conductivity Kt are
formulated as functions of volumetric soil water content Θ (fraction of unit soil volume
occupied by water). C is linearly related to Θ, and Kt is a highly nonlinear function of
Θ and increases by several orders of magnitude from dry to wet soil conditions (Ek and
Mahrt, 1991). The layer-integrated form of Eq. 2.8 for the ith soil layer is:

∆ziCi
∂Ti

∂t
= (Kt

∂T
∂z

)zi+1 − (Kt
∂T
∂z

)zi (2.9)

The prediction of Ti is performed using the fully implicit Crank-Nicholson scheme.
In the top layer the last term in 2.9 represents G0, and is computed using the surface skin
temperature Tg as was showed in Eq. 2.5.
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Kt is a function of soil texture and increases by increasing SM content. The effect of
increasing Kt is greater G and leads to a more damped diurnal signal in T2m.

In the presence of a vegetation layer, G is reduced because of lowered Kt through
vegetation (Ek et al., 2003). In the Noah-LSM is used the explicit approach of Peters-
Lidard et al. (1997) where the soil thermal conductivity under vegetation (Kv) is reduced
from the "bare soil" value (Kt ) by an exponential function of LAI. In the case of the
Noah-LSM has adopted a similar formulation using the FVC where:

Kveg = Kt exp(−βvegFVC) (2.10)

where βveg is an empirical coefficient equal to 2.0 following tests with the offline
Noah LSM (see Figure2.5).

Fig. 2.5: Ratio of soil thermal conductivity under vegetation to bare soil soil thermal
conductivity (Kveg/Kt ) as a function FVC. Source: Ek et al. (2003). Copyright 2003
Wiley. Used with permission from Ek et al. (2003).

2.2.3.3 Soil hydrology

The prognostic equation for the volumetric SM content(Θ) is:

∂Θ

∂t
=

∂

∂z
(D

∂Θ

∂z
) +

∂K
∂z

+ FΘ (2.11)

where both the soil water diffusivity D and hydraulic conductivity K are functions of
Θ, and FΘ represents sources and sinks (i.e., precipitation, evaporation, and runoff) for
soil water. The above is the diffusive form of Richard’s equation derived from Darcy’s
law under the assumption of a rigid, isotropic, homogeneous, and one-dimensional ver-
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tical flow domain (Hanks and Ashcroft, 1986), and thereby the soil water diffusivity D
is given by D = K (Θ)(∂Ψ/∂Θ) where in Ψ is the soil water tension function. Cosby
et al. (1984), resolved K and Ψ by K (Θ) = Ks (Θ/Θs )2b+3 and Ψ(Θ) = Ψs/(Θ/Θs )b ,
where b is a curve-fitting parameter. Ks , Ψ and b depends on soil type.

The hydraulic conductivity ,K , and, diffusivity, D, are highly nonlinearly dependent
on the SM, changing several orders of magnitude, even for a small variation in SM,
especially when the soil is very dry.

For the case of the MM5 model, with four soil layers, expanding FΘ:

dz1

Θ1

∂t
= −D(

∂Θ

∂z
)z1 − Kz1 + Pd − R − Edir − Et1 , (2.12)

dz2

Θ2

∂t
= D(

∂Θ

∂z
)z1 − D(

∂Θ

∂z
)z2 + Kz1 − Kz2 − Et2 , (2.13)

dz3

Θ3

∂t
= D(

∂Θ

∂z
)z2 − D(

∂Θ

∂z
)z3 + Kz2 − Kz3 − Et3 , (2.14)

and

dz4

Θ4

∂t
= D(

∂Θ

∂z
)z3 + Kz3 − Kz4 , (2.15)

where dzi is the ith layer thickness, Pd the precipitation not intercepted by the canopy,
and Eti the canopy transpiration taken by the canopy root in the ith layer within the root
zone layers (three layers of root zone in the coupled MM5-LSM). At the bottom of the
soil model, the hydraulic diffusivity is assumed to be zero, so that the soil water flux is
due only to the "gravitational" percolation term Kz4 , also named subsurface runoff or
drainage (Chen and Dudhia, 2001).

Surface runoff, R, is defined as the excess of precipitation not infiltrated into the
soil (R = Pd − Imax ), that depends on saturated hydraulic conductivity determined by
specific soil texture of each type, Imax being the maximum infiltration.

The total evapotranspiration (E) from the soil canopy surface, used in the single sur-
face energy balance, is divided in three components:

E = Edir + Ec + Et (2.16)

where Edir is the direct evaporation from the top shallow soil layer, Ec is the evap-
oration of precipitation intercepted by the canopy and Et is the transpiration through
canopy and roots. FVC is critical in partitioning E in this three components and below
is detailed how this is parameterized in the MM5-Land Surface Model as is described
in Chen and Dudhia (2001). The direct evaporation from the ground surface adopts a
simple linear form (Mahfouf and Noilhan, 1991):
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Edir = (1 − FVC) βEp (2.17)

and

β = Θ1 − Θw/Θre f − Θw (2.18)

where Ep is the potential evaporation,Θre f is the field capacity andΘw is the wilting
point. Edir can reach the potential rate when the SM at the surface is rather moist. In
another way, direct evaporation can only proceed at the rate by which the top soil layer
can transfer water from below and is controlled by Θre f and Θw . These values refer to
an upper reference value, where transpiration begins to decrease due to a deficit of water
(Θre f ) and the plant wilting factor, Θw , which is the value where transpiration stops (Ek
and Mahrt, 1991; Mahrt and Pan, 1984).

The wet canopy evaporation is defined as

Ec = FVC Ep (
Wc

S
)0.5 (2.19)

where ∂Wc/∂t = FVC P − D − Ec , Wc is the intercepted canopy water content, S is
the maximum canopy capacity, P is the total precipitation reached on the vegetation, and
D is the rain through fall from the canopy. If Wc exceeds S, then the excess precipitation
or drip (D) reaches the ground.

The transpiration rate released by the canopy (Et ) is based on the potential evapo-
ration (Ep) and is controlled by plant stress through time-dependent canopy resistance
index (Rc ) and intercepted canopy water content (Wc ) :

Et = FVC Ep Bc [1 − (
Wc

S
)0.5] (2.20)

where Bc is a function of canopy resistance and (Wc )/Sn) serve as a weighting co-
efficient to suppress Et in favor of Ec as the canopy surface becomes increasingly wet
(Chen et al., 1996).

Bc is defined as

Bc =
1 + ∆

Rr

1 + RcCh
+
∆

Rr
(2.21)

where Ch is the surface exchange coefficient for heat and moisture, ∆ depends on
the slope of the saturation specific humidity curve and Rr is a function of the surface
air temperature. The canopy resistance, Rc , follows the formulation of Jacquemin and
Noilhan (1990) and is a function of the solar radiation deficit (F1) ,the vapor pressure
deficit (F2), the air temperature deficit (F3) , the SM deficit (F4), the minimum stomatal
resistance (Rcmin) and the leaf area index (LAI):
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Rc =
Rcmin

L AIF1F2F3F4
, (2.22)

F1 =
Rcmin/Rcmax + f

1 + f
, (solar radiation deficit) (2.23)

where f = 0.55 Rg

Rgl

2
LAI ,

F2 =
1

1 + hs[qs (Ta ) − qa]
, (vapor pressure deficit) (2.24)

F3 = 1 − 0.0016(Tre f − Ta )2, (air temperature deficit) (2.25)

F4 =

3∑
i=1

(Θi − Θw )dzi
(Θre f − Θw )(dz1 − dz2)

, (soil moisture deficit) (2.26)

where qs (Ta ) is the saturated water vapor mixing ratio at the temperature(Ta), Rcmax

is the cuticular resistance of the leaves and set to 5000 sm−1 and dZi is the depth of the
specific soil layer. F1, F2, F3 and F4 are constrained between 0 and 1.

The canopy resistance provides an important link in the soil-vegetation-atmosphere
continuum and describes the resistance of vapour flow through the transpiring canopy.
The inclusion of canopy resistance avoid the overestimation of evaporation in wet peri-
ods. In this manner, the water retained in the deep soil can be drawn up from the root
zone, releasing this water storage in follow-on dry periods. This point is critical in sim-
ulations of longer seasonal evolution of evaporation and in simulate properly its diurnal
and seasonal cycle.

The most important factor in modulating the canopy resistance in semiarid regions
like Mediterranean areas, is the SM deficit (F4) (Matsui et al., 2005). A nonlinear SM
stress function is implemented to take into account the sub-grid variability of SM, which
content is rarely homogeneous in nature. In this way, the evaporation can be maintained
beyond the wilting point and can be reduced when the averaged SM is near the field
capacity.

It is important to notice that the drying cycle timescales of Edir or Ec versus Et

are quite different. Edir and Ec represent fast changing evaporation due to small water
capacity and low resistance, while the higher resistance in Et combined with the deep
root zone, maintain relatively high evaporation for several weeks or more depending on
the last significant rainfall (Chen et al., 1996).
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Fig. 2.6: Main land surface processes affected by FVC during daytime

2.2.4 Summary of Fraction Vegetation Cover (FVC) parameterization
in Noah LSM

As a summary and with a didactive aim, in Figures 2.6 and 2.7 are depicted the main ef-
fects of FVC in Noah LSM. Following Figure 2.6, during the day the effect of increasing
FVC should increase proportionately Et and Ec . In contrast, Edir should decrease sim-
ply because the bare soil fraction is reduced by the higher values of FVC. In this way, in
presence of vegetation LE fluxes would be increased and following Eq. 2.2 counterbal-
anced by H and G. So as LE increases, less energy can be available for increasing near
surface temperature (H) and for heating the soil layers (G). The available soil moisture
in an important factor in canopy resistance calculation as was commented previously.
Accordingly as the the soil moisture deficit is higher, Et and Ec are reduced and an in-
crease in FVC can lead to an inhibition of total evaporation bigger than if the surface is
less vegetated since bare soil evaporation Edir is not involved.



38 2 Model description and configuration

During night, as depicted in Figure 2.7, the main process in which FVC is implied
is related with G. This variable is directly influenced by FVC because of the parame-
terization described in equation 2.10, that implies a shadowing effect of vegetation and
a reduction in the soil thermal conductivity and consequently in lowered soil heat flux.
This decrease in soil heat flux implies less energy released from deeper soil layers to
surface, and thus lower Tg values. Owing to at night, dominant flux component is G (LE
and H are less relevant) this effect can be more evident on nighttime Tg , and therefore
in T2m. The effect of FVC in diminishing soil thermal conductivity can be relevant at
daytime too, because, as G values are lowered H and LE become higher. This reduction
of G during daytime provokes less transfer of energy to deeper soil layers.

Fig. 2.7: Main land surface processes affected by FVC during nighttime
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Fig. 2.8: RCM spatial domains. Mother domain, D1 (30 km), and inner domain, D2 (10
km). Topography of the spatial domains. Source: Jiménez-Gutiérrez et al. (2019).

2.3 Model configuration

2.3.1 Domain configuration

The spatial configuration consists of two-way nested domains with 30 and 10 km hor-
izontal resolution respectively (Figure 2.8). The first domain has 80 X 80 grid points
covering southwest Europe (Spain, France, North Italy, Alps) and part of North Africa.
The second domain is centered in the Iberian Peninsula and has 136 X 136 grid points. In
the simulations performed in this work Lambert Conformal projection has been chosen
because is the most suitable for mid-latitudes regions as the Iberian Peninsula.

The vertical grid considers 24 sigma levels in the vertical up to 100mb which are:
1.00, 0.99, 0.98, 0.96, 0.93, 0.89, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45,
0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.10, 0.05 and 0.00.

The time step for the numerical resolution of the basic equations (dt) is theoretically
optimised if chosen to be (in seconds) three times the horizontal grid distance of each
domain or subdomain (expressed in km). In this way, dt = 270 s is chosen for D1 and
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dt = 90 s for D2. Sometimes time-step of D2 can led to some model instabilities and is
neeeded to reduce it and restart the simulation until it works.

A relaxation lateral boundary (6 grid boxes) has been used in the configuration of
the model, with a progressive decreasing of the boundary conditions towards the centre
of the simulation domain (Davies, 1976). Hence, first five points from the borders of each
domain, that are taken as the blending area and namely affected by the relaxation from
an outer coarser resolution to a finner one, are neglected in all the analysis performed.

2.3.2 Regional climate simulation strategy

All the simulations performed independently of the whole simulated period, consist in
one-year simulations with a previous spin-up period of 4 months starting in septem-
ber of the previous year that is discarded every time. Regarding the initialization of the
model, the most common methodologies in dynamical regional climate downscaling em-
ploys a continuous integration of the model with a single initialization. But it has been
proved that reinitialization runs, prevents the regional model from deviating too much
from the driving conditions during the course of long integrations (Lo et al., 2008).
Although this can be easier achieved by using 3-D nudging, this technique restricts so
much that the regional model develops its own variability and thus hinders the study
of the contribution of regional circulations and local processes. Considering the spin-up
period, the period that is integrated just so that the regional model reaches the dynamical
equilibrium, soil variables, especially soil moisture, present the largest requirements. In
this case, the approach of Christensen et al. (1997) letting four months at each reini-
tialization has been chosen. This simulation strategy has been considered succesfully in
several regional climate model (RCM) simulations (Jerez et al., 2010; Gómez-Navarro
et al., 2012b; Jerez et al., 2013; Lorente-Plazas et al., 2015; Fernández-Montes et al.,
2017).

Physical Schemes Option
Cumulus parameterization Grell
Microphysics Simple Ice
Radiation scheme RRTM
PBL MRF
Surface scheme Noah LSM

Table 2.1: Physical parameterizations considered in all simulations
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2.3.3 Physics options

Below are detailed the physical configuration chosen in all the simulations performed in
this work. See table 2.1 for a summary of the physics options.

• Cumulus parameterization: Grell. Based on rate of destabilization or quasi-equilibrium,
simple single-cloud scheme with updraft and downdraft fluxes and compensating mo-
tion determining heating/moistening profile. Useful for smaller grid sizes 10-30 km,
tends to allow a balance between resolved scale rainfall and convective rainfall. Shear
effects on precipitation efficiency are considered (Grell, 1993).

• Microphysics: Simple Ice. Adds ice phase processes to above without adding mem-
ory. No supercooled water and immediate melting of snow below freezing level (Dud-
hia, 1989).

• Radiation scheme: Rapid Radiative Transfer Model (RRTM). Uses a correlated-k
model to represent the effects of the detailed absorption spectrum taking into account
water vapor, carbon dioxide and ozone. It is implemented in MM5 to also interact
with the model cloud and precipitation fields (Mlawer et al., 1997).

• Planetary Boundary Layer scheme: Medium-Range Forecast PBL scheme (MRF).
Efficient scheme based on Troen-Mahrt representation of countergradient term and K
profile in the well mixed PBL, as implemented in the NCEP MRF model. See Hong
and Pan (1996) for details.

• Surface scheme: Noah LSM. Noah LSM is detailed in Section 2.2.

2.3.4 Initial and boundary conditions

2.3.4.1 ERA Interim reanalysis

ERA-Interim reanalysis (Dee et al., 2011) are used to provide atmospheric as well as soil
moisture and soil temperature initial and boundary conditions. Boundary conditions are
updated every six hours at 00, 06, 12 and 18 UTC. The ERA-Interim atmospheric model
and reanalysis system uses cycle 31r2 of ECMWF’s Integrated Forecast System (IFS),
which was introduced operationally in September 2006, configured for the following
spatial resolution: 60 levels in the vertical with the top level at 0.1 hPa, T255 spherical-
harmonic representation for the basic dynamical fields and a reduced Gaussian grid with
approximately uniform 79 km spacing for surface and other grid-point fields.
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Fig. 2.9: Description of 25-category (USGS) vegetation categories and physical parame-
ters for N.H. summer (15 April - 15 October) and winter (15 October - 15 April). Source:
Grell et al. (1994).

2.3.4.2 Topography and land use. Surface physical parameters

Topography data are derived from the GTOPO30 data from the USGS EROS Data Cen-
ter (Gesch et al., 1999). Elevation data for the simulations carried out is depicted in
Figure 2.8. Land use data are derived from the 30 sec data USGS version 2 land cover
data with 25 categories described in table 2.9 and depicted for the study area in Figure
2.10. As was treated in Section 1.2.1.3 in the MM5 model (as in other many models)
is used the consideration that each grid cell of the model has assigned a land use type
and this defines some surface parameters. In this case, emissivity, and thermal inertia de-
pends on land use type. Soil moisture is not prescribed with Noah LSM surface scheme
since it has a dynamical approach as has been commented in 2.2.
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Fig. 2.10: USGS version land cover data of D2 domain grid points considered in RCM
simulations of this work (resolution of 0.1 ◦X 0.1 ◦).

2.3.4.3 Soil types

Soil type is needed as input in Noah LSM and is derived from a 30 sec dataset from FAO
with 17 categories. As was commented with land use type, each grid cell has a soil type
and several soil parameters depends on it. A detailed list of the parameters for each soil
type is depicted in table 2.11. Soil types for the study area are showed in Figure 2.12.

2.3.4.4 Vegetation fraction

Noah LSM in MM5 and WRF model uses a default FVC monthly climatological data.
This commonly used database is described in Gutman and Ignatov (1998) which consist
of a 5-year FVC climatology derived from AVHRR, for the period April-December of
1985,from 1986 to 1990 and the period January-March of 1991 with a spatial resolution
of 0.15 ◦. More details in how this dataset is calculated can be found in 3.2.2 and more
precisely in 3.2.2.2. In Figure 2.13, is showed the original FVC climatology used by
Noah LSM in the study area for all months of the year.

In the next chapters, this FVC original database has been modified in three ways:
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Fig. 2.11: Description of 17-category Soil categories and physical parameters. Source:
Grell et al. (1994).

• FVC calculation from NDVI GIMMS data with the nominated ZENG, WETZEL and
GUTMAN methods ( Chapter 3 ).

• FVC fixed to spatial constant values of 90 % and 30 % ( Chapter 4 ).
• FVC obtained from Copernicus database ( Chapter 5 ).

2.3.4.5 Deep soil temperature

Deep soil temperature needed in Noah LSM as lower boundary condition is calculated
from a Global Annual Deep Soil Temperature Dataset from ECMWF analysis with 1
deg resolution. This temperature depends on the ECMWF model orography, so it is first
adjusted to the 1000-mb level using the ECMWF annual analyzed surface pressure ac-
cording to the standard atmosphere lapse rate. It is then adjusted to the MM5 orography
following the same procedure so it reflects the MM5 high-resolution topography. More
details can be found in Chen and Dudhia (2001).
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Fig. 2.12: Soil categories of D2 domain grid points considered in RCM simulations of
this work (resolution of 0.1 ◦X 0.1 ◦).

2.3.4.6 Vegetation parameters

There are a set of vegetation parameters used in Noah LSM that depends on land use
type. The parameters Rcmin and Rgl are used in equation 2.23 (see Section 2.2.3.3).
Rcmin together with LAI is used in equation 2.22 in the calculation of Rc . And the
parameter hs is used in the calculation of vapor pressure deficit in 2.24. In table 2.2 are
defined the values of this parameters for each vegetation type (Chen and Dudhia, 2001).

Regarding albedo, is a fundamental variable in the study of vegetation in RCM sim-
ulations as was commented in 1.2.2.4. Besides, of the prescription with a look-up table
there is an option in the MM5 model of including monthly gridded values of albedo. This
consideration has been out of the scope of this work and would have meant a more com-
plete study. Anyway, Crawford et al. (2001) showed that the impact of changing albedo
on surface heat fluxes is much smaller, an order of magnitude, than changing FVC, so
the results showed in next sections explain the main impacts of changing vegetation in
RCM simulations.

LAI in this approach of the Noah LSM is considered as a fixed value of 4. More
details of the relation between LAI and FVC are given in Chapter 3 in Section 3.1.
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Fig. 2.13: FVC from January to December in the study area for D2 domain using Gutman
and Ignatov (1998) original climatology. In the header of each plot is indicated the month
of the year. Green colours are related with high values of FVC and brown colours with
low values.
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id albedo z0 (m) Rcmin (sm−1) Rgl hs LAI Vegetation description

1 .15 1.00 200. 999. 999.0 4.0 Urban and Built-Up Land
2 .19 .07 40. 100. 36.25 4.0 Dryland Cropland and Pasture
3 .15 .07 40. 100. 36.25 4.0 Irrigated Cropland and Pasture
4 .17 .07 40. 100. 36.25 4.0 Mixed Dryland/Irrigated Cropland and Pasture
5 .19 .07 40. 100. 36.25 4.0 Cropland/Grassland Mosaic
6 .19 .15 70. 65. 44.14 4.0 Cropland/Woodland Mosaic
7 .19 .08 40. 100. 36.35 4.0 Grassland
8 .25 .03 300. 100. 42.00 4.0 Shrubland
9 .23 .05 170. 100. 39.18 4.0 Mixed Shrubland/Grassland
10 .20 .86 70. 65. 54.53 4.0 Savanna
11 .12 .80 100. 30. 54.53 4.0 Deciduous Broadleaf Forest
12 .11 .85 150. 30. 47.35 4.0 Deciduous Needleleaf Forest
13 .11 2.65 150. 30. 41.69 4.0 Evergreen Broadleaf Forest
14 .10 1.09 125. 30. 47.35 4.0 Evergreen Needleleaf Forest
15 .12 .80 125. 30. 51.93 4.0 Mixed Forest
16 .19 .001 100. 30. 51.75 4.0 Water Bodies
17 .12 .04 40. 100. 60.00 4.0 Herbaceous Wetland
18 .12 .05 100. 30. 51.93 4.0 Wooded Wetland
19 .12 .01 999. 999. 999.0 4.0 Barren or Sparsely Vegetated
20 .16 .04 150. 100. 42.00 4.0 Herbaceous Tundra
21 .16 .06 150. 100. 42.00 4.0 Wooded Tundra
22 .16 .05 150. 100. 42.00 4.0 Mixed Tundra
23 .17 .03 200. 100. 42.00 4.0 Bare Ground Tundra
24 .70 .001 999. 999. 999.0 4.0 Snow or Ice

Table 2.2: Vegetation related parameters in the Noah LSM. This parameters are albedo,
roughness length (z0, minimum stomatatal resistance (Rcmin), visible solar flux (Rgl ),
parameter used in vapor pressure deficit (hs) and LAI. Source: Grell et al. (1994).





3
Impacts of Green Vegetation Fraction derivation
methods on Regional Climate Simulations∗

This chapter is focused in present different sources of variability that can affect the
calculation of FVC and how these can be translated in simulated fields of 2 meter air
temperature (T2m) in a regional climate model (RCM). Firstly, the comparison of two
different NDVI databases from which FVC is obtained is performed in order to point
out that great differences can be found between different sources and can condition final
calculation of FVC. Then, three different methods of calculation of fraction vegetation
cover (FVC) are presented, assessing its differences and how these are translated to sur-
face simulated fields of T2m. At last, the effect of using climatological values of FVC
instead of synchronous data has been explored simulating a dry and a wet year.

3.1 Introduction

As reviewed in the introductory chapter in Section 1.1 land surface features play a very
important role in modulating surface-atmosphere interactions. Surface components like
soil moisture, albedo, emissivity, surface roughness, vegetation type and amount are

∗ The main contents of this chapter are included in:
- J. M. Jiménez-Gutiérrez, F. Valero, S. Jerez, and J. P. Montávez, 2019: Impacts of green vegeta-
tion fraction derivation methods on regional climate simulations. Atmosphere, 10(5), 281. (Jiménez-
Gutiérrez et al., 2019)
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fundamental since they control the energy partition at surface (Jerez et al., 2012). There-
fore, the representation of all these variables in land surface models (LSMs) is crucial
for modeling atmospheric processes.

Atmosphere and vegetation interact in different ways, controlling evapotranspiration,
moisture availability, momentum transfer or partitioning radiation (see Section 1.2.2 for
more details). Therefore, realistic characterization of vegetation through FVC, leaf area
index (LAI) and vegetation class as detailed in Section 1.2.1, should lead to a better
reproduction of atmosphere-surface processes.

Different methodologies have been reported for obtaining FVC and LAI through
satellite NDVI data (Chang and Wetzel, 1991; Gutman and Ignatov, 1998; Zeng et al.,
2000; Li and Zhang, 2016). According to Gutman and Ignatov (1998) both parameters
should not be used simultaneously in the same parameterization. Therefore, it is nec-
essary to prescribe one of the indices and derive the other. Gutman and Ignatov (1998)
and Carlson et al. (1990) argued that is preferable to derive FVC and prescribe LAI,
because the exponential dependence of LAI and NDVI saturates after a certain thresh-
old, becoming LAI insensitive to changes in NDVI. Some other authors (Sellers et al.,
1996; Zeng et al., 2000) recommend to derive LAI (fixing FVC), because they assume
that spatial and seasonal variations of NDVI are related with variations of LAI and val-
idation of FVC is problematical because of the requirement of information at the scale
of individual plant elements. Anyway, Godfrey et al. (2002) argue that errors introduced
by the dual specification of vegetation parameters from a single NDVI observation are
likely smaller than uncertainties associated to initial conditions.

The role of vegetation parameters (FVC and LAI) is relevant for weather forecasting
and climate change assessments (Hanamean Jr et al., 2003). Their impact on land sur-
face processes has been studied in the Eta operational model (Ek et al., 2003; Kurkowski
et al., 2003; Marshall et al., 2003) and the Weather Research and Forecasting model
(WRF) (Hong et al., 2009; Limei et al., 2015; Cao et al., 2015; Xu et al., 2017; Zhang
et al., 2017; Wen et al., 2013). The relevance of using realistic information of the veg-
etation state on RCM performance has been analyzed in several works. Meng et al.
(2014) and Müller et al. (2014a) study the impact of vegetation in concrete cases of
droughts in Australia and South America. Other works investigate the contribution of
near real time values of vegetation fraction to simulated precipitation. For instance, veg-
etationâĂŞatmosphere feedback in monsoon systems (Matsui et al., 2005; Notaro et al.,
2017), severe convection episodes (James et al., 2009), or improving model performance
in oasis-desert systems (Zhang et al., 2014). Other interesting studies focus on vegeta-
tion effects on regional climate simulations in complex urban areas like Los Angeles
(Vahmani and Hogue, 2014; Vahmani and Ban-Weiss, 2016).

However, the characterization of vegetation is subjected to several sources of uncer-
tainty. On one hand, there are several NDVI database available for obtaining FVC data.
They differ in aspects such as the methods for correcting errors, type of satellite, etc. The
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differences among these NDVI databases reach, for example, similar values to the ob-
served trends in the phenological phases (Stockli and Vidale, 2004). On the other hand,
several methodologies can be used to obtain FVC or LAI from NDVI data (Gutman and
Ignatov, 1998; Kurkowski et al., 2003; Miller et al., 2006; Stensrud, 2007). Crawford
et al. (2001) points out that differences up to 25% in LAI and FVC can easily occur
among the different methodologies, similar values to the FVC interannual variability.

In addition, most of the standard configurations of NWPM and RCM use climatolog-
ical values of vegetation parameters. However, the vegetation has a strong interannual
variability (Crawford et al., 2001; Meng et al., 2014; Xu et al., 2017) as was commented
in Section 1.2.1.1 leading this to a non-suitable characterization of surface properties. A
known limitation is that surface properties can vary at several time scales depending on
climate conditions and other processes such as urbanization, forest fires or changes in
crops (Myneni et al., 1997).

As an example of the impact of using different approaches with FVC datasets in
a LSM, Miller et al. (2006) describe, using the Noah LSM, noteworthy differences in
surface fluxes, comparing a 5-year climatology data from Advanced Very High Res-
olution Radiometer (AVHRR) and NASA’s Moderate Resolution Imaging Spectrome-
ters (MODIS) data from the year 2000. With differences of 25 % in FVC in monthly-
averaged values for all pixels of dry land and cropland of the same 2-degree box, tran-
spiration was modified in 30 W m−2, latent heat fluxes in 10 W m−2, and sensible heat
fluxes in -20W m−2. Other works, where real-time satellite data have been used instead
of climatological values, have found improvements in the forecasts of T2m in RCM sim-
ulations (Kurkowski et al., 2003; Refslund et al., 2014). While other studies, indicates
that the model sensitivity is not reliable with improved vegetation parameters (Matsui
et al., 2005; Godfrey et al., 2002; Hong et al., 2009), stressing the significance of mini-
mizing errors in surface initial conditions (especially soil moisture) or canopy resistance
parameterization.

The objective of this Chapter is to assess the impact on T2m simulated by a RCM,
of the uncertainty associated to the use of different NDVI data, different methodologies
for obtaining FVC, as well as the temporal variability of surface properties in regional
climate simulations.

3.2 Methods and data

3.2.1 Normalized Difference Vegetation Index (NDVI) data

The Normalized Difference Vegetation Index (NDVI) defined in Section 1.2.1 is highly
correlated with the photosynthetically active biomass, chlorophyll abundance and energy
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absorption (Myneni et al., 1995) and has been widely used in studies involving land-
biosphere interactions (Gutman and Ignatov, 1998; Crawford et al., 2001; Kurkowski
et al., 2003; Zhou et al., 2003; Miller et al., 2006).

Among the NDVI datasets reviewed in Section 1.2.1, products from Advanced
Very High Resolution Radiometer (AVHRR) sensor are an invaluable and irreplace-
able archive of historical land surface information and the most used dataset for de-
riving NDVI due to its long record. Since 1984 several global land surface NDVI data
have been derived from AVHRR, as can be the Global Vegetation Index (GVI) dataset
(Tarpley et al., 1984; Gutman et al., 1995), the NASA Pathfinder 8-km dataset (James
and Kalluri, 1994) and the GIMMS-NDVI(Pinzon, 2002; Tucker et al., 2005). Others
datasets in turn, as the EFAI-NDVI (Stockli and Vidale, 2004), have been derived from
the NASA Pathfinder 8-km data. These datasets are corrected taking into account arti-
facts from sensors, orbital drifting, atmospheric corrections and cloud screening.

Therefore, NDVI values can vary from a database to another in an remarkable way.
The GIMMS-NDVI and EFAI-NDVI datasets were chosen to perform our analysis of
comparison of NDVI data. The selection was done following criteria of NDVI data al-
ready processed, easily/free availability and temporal extension.

The EFAI-NDVI covers the period 1982-2001 and corrects the original AVHRR data
to create a continuous dataset of 10-day temporal and 0.1◦ spatial resolutions with global
coverage. The correction method implies a spatial interpolation of missing values and
processing artifacts as well as a temporal interpolation of the NDVI series throughout a
Fourier adjustment algorithm (Sellers et al., 1996; Stockli and Vidale, 2004).

The GIMMS-NDVI (Tucker et al., 2004) from AVHRR dataset covers from 1982 to
2006 with a spatial resolution of 8 km. This database has been corrected for calibration,
view geometry, volcanic aerosols, and other effects non related to vegetation change.
In particular, NOAA-9 descending node data from September 1994 to January 1995,
volcanic stratospheric aerosol correction for 1982-1984 and 1991-1994, and improved
NDVI using empirical mode decomposition/reconstruction to minimize effects of the
orbital drift.

3.2.2 Deriving FVC from NDVI data

FVC calculation from NDVI data (Montandon and Small, 2008) can be based on lin-
ear models (Gutman and Ignatov, 1998) or quadratic models (Carlson and Rypley,
1997). These methods take as reference bare soil (N DV I0) and dense green vegetation
(N DV I∞). Such values can be prescribed or estimated from the actual NDVI data. For
instance, Montandon and Small (2008) studied the impact of varying N DV I0, showing
how its underestimation yields a FVC overestimation.
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In this study, three linear models, WETZEL, GUTMAN and ZENG have been se-
lected as a basis to study the uncertainty in FVC calculation and its impacts on RCMs
runs. These methods present different degrees of complexity, being the WETZEL/ZENG
method the most simple/complex, while GUTMAN is of intermediate complexity. This
latter has been extensively used in generating data for NWPMs.

The three methodologies have been applied to the GIMMS-NDVI data. Monthly FVC
values have been calculated from 1982 to 2006 with a spatial resolution of 0.1 ◦.
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Fig. 3.1: Relationship between FVC and NDVI for the ZENG (red area), GUTMAN,
WETZEL, and GUTMAN Quadratic methods. Source: Jiménez-Gutiérrez et al. (2019).

3.2.2.1 WETZEL method

In Chang and Wetzel (1991) a two-line-segment method is presented. The slope of the
linear relationship between NDVI and FVC changes when NDVI exceeds 0.547. The
relation is as follows:
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FVC =



1.5(N DV I − 0.1),N DV I ≤ 0.547
3.2(N DV I) − 1.08,N DV I > 0.547

(3.1)

being FVC constrained to be between 0 and 1.
The FVC data obtained by this method is used in the MM5 LSM model by Crawford

et al. (2001) and in the ETA model by Kurkowski et al. (2003).

3.2.2.2 GUTMAN method

This method uses the following simple linear relationship between NDVI and FVC:

FVC =
N DV Ival − N DV I0

N DV I∞ − N DV I0
(3.2)

where N DV I0 and N DV I∞ are the values for bare soil and dense green vegetation.
Gutman and Ignatov (1998) take N DV I0=0.04 and N DV I∞=0.52, which correspond

respectively to the minimum NDVI value of the desert cluster and the maximum NDVI
value of the evergreen cluster in their study with GVI data. These values are in principle,
region and season specific, since they depend on the soil and vegetation types and the
vegetation chlorophyll content (Price, 1992). However, the authors take this assumption
because there are many intermediate cases that make the evaluation difficult for other
surface types. In this work, N DV I0 and N DV I∞, have been set to 0.1 ( 2% percentile
of bare soil) and 0.91 ( 98% Evergreen vegetation) using the GIMMS-NDVI database.

3.2.2.3 ZENG method

This method includes procedures that involve the analysis of NDVI data as a function
of biome or land cover type. This approach has been used in several works (Zeng et al.,
2000; Gallo et al., 2001; Miller et al., 2006; Hong et al., 2009). It follows the simple
relationship between FVC and NDVI described by Gutman and Ignatov (1998) (Eq. 3.2).
The values of N DV I∞ are calculated analyzing the frequency distribution of maximum
NDVI for each land cover type.

This study uses the University of Maryland Department (UMD) global land cover
classification (Hansen et al., 1998, 2000). This land cover database has been chosen be-
cause it was created using the same NDVI data as the GIMMS-NDVI database. Figure
3.5a (forest types) and 3.6a (shrubland, cropland and grassland) show the spatial distri-
bution as well as the relative frequency distributions of NDVI.
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According to Zeng et al. (2000) N DV I∞ is low sensitive to the exact percentile
used for a given vegetation type. In this work the N DV I∞ is chosen getting the 98th
percentile as adopted in other studies ((Sellers et al., 1996);(Gallo et al., 2001)). For
N DV I0, the 5th percentile of the no-vegetation category is taken for all vegetation types.
North Africa has been included to have a more suitable value for bare soil. Regarding
N DV Ival , Zeng et al. (2000) estimated FVC as independent of season, then N DV Ival
(eq. 3.2) is the annual maximum in a given pixel in order to minimize the effects of cloud
contamination. However, in our case, N DV Ival correspond with each of the 15-day val-
ues of the GIMMS-NDVI database in a given pixel, since we precisely want that FVC
varies with time.

As a help for understanding differences between the methods, Figure 3.1 shows the
relationships between FVC and NDVI for the three methods. The ZENG method (red
area) provides wider range of values of FVC depending of land type frequency distribu-
tion of NDVI. The GUTMAN method (green line) agrees with the lower correspondence
between NDVI and FVC of the ZENG method, explaining the lower values of FVC. On
the other hand, the WETZEL method produce higher FVC values in areas where NDVI
is larger than the rupture point (0.547), especially in the north of IP.

3.2.3 Regional climate model experiments

The description of the model configuration and the simulated domains is given in Sec-
tion 2.3. The way for accomplish the objectives of this Chapter is with a two set of
experiments. The first set investigates the effect of using different methodologies in con-
structing the FVC database used in the simulations. For this task, firstly a 5-year FVC
climatology has been constructed for the same period of Gutman and Ignatov (1998)
(april 1985-march 1991) with the ZENG, GUTMAN and WETZEL methods from the
GIMMS-NDVI data. Then three runs for the year 1995 were performed using such
FVC climatologies. The second set of simulations explores the role of introducing syn-
chronous FVC data for a given year respect to the use of climatological values of this
variable. For this case, two pairs of runs were carried out choosing the ZENG method
for the years 1995 (a dry year) and 1996 (a wet year). Each pair consists of a simulation
using the period of the 5-year FVC climatology (CLIM) described before and the other
one using the FVC values for such year (YEAR). The ZENG method has been chosen,
among the three options,because it presents and intermediate behaviour between WET-
ZEL and GUTMAN (see Figure 3.4) as well as it has been evaluated in previous works
(Zeng et al., 2000). In all simulations the FVC databases generated have a resolution of
0.1 ◦ X 0.1 ◦, instead of the original resolution of 0.15 ◦ X 0.15 ◦ used by Gutman and
Ignatov (1998).
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3.3 Results

NDVI database comparison

Figure 3.2 shows the NDVI for the two datasets in a dry year (1995) and a wet year
(1996) for January and July over the IP. It is remarkable that they differ in magnitude
but spatial variability is quite similar (spatial correlation over 0.97). The differences are
higher when comparing years with different precipitation regime, where NDVI values
differ up to 30% in the summer (not shown).
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Fig. 3.2: EFAI-NDVI and GIMMS-NDVI for January and July for a wet year (1996) and
a dry year (1995) in the IP. Source: Jiménez-Gutiérrez et al. (2019).

The 12 months run-mean series of the spatially averaged NDVI over the IP for the
period 1982-1998 is shown in Figure 3.3a. Series show a quite different interannual vari-
ability for the whole period; the EFAI-NDVI has a greater variability and lower mean
values than the GIMMS-NDVI. We attribute the disagreement (almost a periodical sig-
nal not attributable to natural variability) to the solar zenith angle correction imple-
mented in the GIMSS-NDVI that avoids artificial trends derived from orbital drifting.
At this point we conclude that the EFAI-NDVI should not be used for characterizing
the vegetation properties in RCMs. Therefore, we will focus our study on the GIMMS-
NDVI data. In addition, GIMMS-NDVI has a longer record, because of the compatibility
with AVHRR data with MODIS and SPOT Vegetation satellite data, that have continua-
tion till nowadays.

Usually FVC is implemented using climatological values in NWPMs and RCMs. We
compare the spatially averaged NDVI over the IP, with monthly climatological values



3.3 Results 57

0.350

0.375

0.400

0.425

0.450

1983 1985 1987 1989 1991 1993 1995 1997 1999
Date

N
D

V
I

NDVI database EFAI GIMMS

Spatial averaged over IP

12−month run. mean NDVIa)

0.40

0.45

0.50

01 02 03 04 05 06 07 08 09 10 11 12
Month

N
D

V
I

Year 1995 1996 Climatology

Spatial averaged over IP

GIMMS−NDVI seasonal cycleb)

Fig. 3.3: a) NDVI 12 month run mean of the spatially averaged series for the IP de-
rived from the EFAI-NDVI (red line) and GIMMS-NDVI (green line) b) GIMMS-NDVI
monthly values for a wet year (1996, green line), a dry year (1995, orange line) and cli-
matology (blue line). Source: Jiménez-Gutiérrez et al. (2019).

calculated on a 7 year period (1985-1991) with the monthly evolution on a specific dry
(1995) and wet year (1996) (Figure 3.3b). The biggest NDVI differences between the
dry and wet year are observed in spring, when the maximum of vegetation productivity
occurs, prevailing these NDVI differences in a lesser way the rest of the year. The spatial
average NDVI difference between wet and dry years is about 5% reaching values up to
15% in some areas. This elucidates that taking into account the interannual variability
could be important when implementing these data in RCMs.

3.3.1 Analysis of FVC retrieval methods

FVC data were obtained for the 25 year of available NDVI data using the three methods.
Figure 3.4a shows the temporal evolution of the FVC data spatially averaged over the
IP and Figure 3.4b the temporal means of FVC values over the domain. Since the three
methods use the same NDVI, there is a very good agreement in the temporal variation
of FVC, however some important differences appear. The most remarkable difference
comparing the magnitude of FVC is that WETZEL method presents FVC values 10%
greater than the others. The ZENG and GUTMAN methods only differ around a 3% in
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Fig. 3.4: a) FVC spatial averaged time series (solid lines) and differences between them
(dashed lines) for the whole IP calculated by the WETZEL (blue line), GUTMAN (green
line) and ZENG (red line) methods. b) FVC temporal averaged over the whole pe-
riod (1982-2006) for the IP for the ZENG, WETZEL and GUTMAN methods. Source:
Jiménez-Gutiérrez et al. (2019).

magnitude. This large difference is due to the fact that when applying WETZEL method
the frequency distribution of NDVI was not taken into account. Regarding the spatial
variability, the ZENG and GUTMAN show very similar patterns although the ZENG
method achieves a larger range of FVC values, reaching values near 10% and over 80%
more frequently.
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Fig. 3.5: a) Area covered by land type. Relative frequency distributions of NDVI in the
IP by land types according to UMD global landcover. b) FVC time series in forest land
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The differences between the methods depend on the land type by construction. Fig-
ures 3.5b and 3.6b depict the time series of the FVC spatially averaged by land types cal-
culated with the GUTMAN (green solid line), WETZEL (blue solid line) and ZENG (red
solid line) methods as well as the differences between them (dashed lines). The GUT-
MAN and ZENG methods show very similar FVC values in forest land types (Fig.3.5),
while the WETZEL method shows significant differences of around 20 % respect to the
other methods. Land types with low values of FVC, such as shrubland, cropland and
grassland (Fig.3.6) present smaller differences. In the case of closed and open shrub-
land, the WETZEL method presents the closest values to the other methods. This can
be explained because NDVI values below the rupture point of the WETZEL method are
more frequent for this land types (3.6a).
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Fig. 3.6: As Figure 3 but for closed and open shrubland, grassland and croplands. Source:
Jiménez-Gutiérrez et al. (2019).
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Therefore, in general places with high FVC values exhibit a good agreement between
the methods that take into account the NDVI frequency distribution (GUTMAN and
ZENG), showing larger differences with the WETZEL method. While in places with
medium and low values of FVC, the spread among the methods is lower.

Another interesting feature is to evaluate is the differences in phenology. Figures 3.5
and 3.6 show the relative frequency distribution if NDVI (a), temporal evolution (b) and
FVC annual cycle (c) for each biome and the differences between them. In the biomes
where the maximum of FVC occurs in summer, forest vegetation with low hydric stress,
the GUTMAN and ZENG methods have a quite similar behavior (maximum value of
60-80% in summer) while the WETZEL method gives greater values. In the rest of the
biomes, the maximum of FVC occurs in spring (irrigated lands or places with summer
hydric stress) and the differences between the methods are smaller than for forest land
types, although there are differences that could be remarkable in cropland, grasslands
and woodland areas.

3.3.2 Sensitivity to the FVC estimation method

Here we asses the sensitivity of climate simulations to the use of different FVC data
presented above. For the sake of clarity, we only present the comparisons between the
ZENG and WETZEL experiments, because they show the largest FVC differences. Fig-
ure 3.7a depicts the FVC monthly means of ZENG for some months representative of
each season (January, April, July and October) and 3.7b the FVC differences between
the ZENG and WETZEL methods. There is a clear negative difference in the FVC es-
timated (ZENG-WETZEL) with higher FVC values for the WETZEL data, especially
in areas with the highest FVC. The biggest difference is in April, when the vegetation
productivity presents the maximum rate of generation of biomass.
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ZENG and WETZEL methods(y-axis). Source: Jiménez-Gutiérrez et al. (2019).

The effect of such differences between the ZENG and WETZEL data on the regional
climate simulations for monthly mean T2m is depicted in Figures 3.7c and 3.7d. In
general, lower FVC values lead to higher temperatures, but this relationship depends on
the time of the year (Figure 3.7d). This result is directly related to the sensible and latent
heat partitioning (not shown). An increase/decrease of vegetation leads to a larger/lower
evapotranspiration and therefore, a higher/smaller latent heat production. This leads to
a reduced/intensified sensible heat manifested in a decrease/increase in T2m. Besides,
there is an additional effect due to the modification of soil thermal conductivity by the
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presence of a vegetation canopy. Heat flux from soil is reduced when FVC increases
because of heat conductivity is diminished (Peters-Lidard et al., 1997; Ek et al., 2003).
This effect is of importance mostly during night when these fluxes have a dominant role
and can cause higher night temperatures with reduced FVC.

It is worth noting that T2m differences are higher in April and July than in January
and October with similar FVC differences (Figure 3.7). In January differences of 30%
in FVC lead to changes smaller than 0.5 ◦ C, while in July or April can reach 1 ◦ C in
some places. This is mainly due to the greater availability of energy at these months. In
addition, the greater dispersion in the quasi-linear relationship between changes in FVC
and T2m (Figure 3.7d) for higher ∆FVC values may be relevant. Therefore, it is clear
that changing the FVC database modifies the climatology reproduced by a RCM, both
the spatial patterns and the amplitude of the annual cycle.

3.3.3 Sensitivity to FVC interannual variations

As mentioned above, in RCM experiments, FVC values are usually prescribed using cli-
matologies, so they do not vary from year to year. But vegetation depends on the climate
conditions as well as other factors, and it has a non negligible interannual variability. In
this section we analyze the effect of varying the FVC according to the observations (real
FVC) versus fixed monthly climatological/prescribed values.
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Figure 3.8 shows the differences between the FVC 5-year climatology simulation
(CLIM) and the reconstructed (YEAR) for January, April, July and October for two
years, the dry 1995 and wet 1996, These years were selected because of their quite dif-
ferent climate conditions. Dry conditions prevailed during 1995, while 1996 was char-
acterized for abundant precipitation that favored higher biomass production.
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During the dry year, the prescribed FVC is much higher that the estimated for this
year, finding large areas with ∆FVC over 10%, especially in April and July that locally
reaches values around 30%. The T2m temperature patterns resembles the spatial struc-
ture of ∆FVC with a clear negative bias. The largest T2m differences appear again in
July and April, with values larger than 0.4 ◦ C in large areas that locally are over 0.8 ◦

C.
During the wet year the largest ∆FVC appears in April in the north-west part of the

IP, and October over the South and Western Iberia. In this case differences are negative,
i.e. the prescribed FVC underestimates the YEAR FVC. Interestingly, the absolute T2m
differences are smaller, with slightly lower absolute ∆FVC. This is due to the fact that in
July (highest sensitivity) ∆FVC is quite small, and that in April advection phenomena
prevailed in the area with the largest ∆FVC.

Adding both effects at the different times suggest that interannual variability can
change more that 1 ◦ C in some areas for a given month.

3.4 Discussion and conclusions

Three database of monthly FVC from 1982 to 2006 has been created for a domain cov-
ering the whole IP with a spatial resolution of 0.1 ◦ with the aim of being implemented
in RCMs to improve climate simulations by providing more realistic soil physical condi-
tions. Three different methodologies, WETZEL, GUTMAN and ZENG, were applied to
the same NDVI database. The GIMMS-NDVI data was selected because it has better in-
terannual behavior, longer record and is compatible with MODIS and SPOT-Vegetation
data, which facilitates its temporal extension.

The comparison between the FVC databases reveals important differences between
them that depend on the NDVI value and the biome, being especially relevant for forest
land types. Methods that use the frequency distribution of NVDI (ZENG and GUTMAN)
are more similar although some differences can be found between them depending of
the land type. In addition, the FVC series reveal an important interannual variability,
consequently prescribed FVC values can present important differences regarding the
"real" FVC. These facts can be important when FVC are used in RCMs coupled to
LSMs. The magnitude of the differences found causes a noteworthy impact on surface
fluxes and hence modifying the regional climate.

The RCM experiments performed exhibit a not negligible effect of FVC uncertainty
on the monthly climatological values. The results showed that differences of 30% of
FVC, that appear in the two sensitivity experiments, can produce bias of 1 ◦ in T2m
monthly values. Therefore, depending on the spatial structure of the FVC differences,
the climatological patters are modified. In addition, the magnitude of the model response
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depends on the time of the year. This implies that the annual cycle reproduced by the
model is also sensible to the FVC data used. Finally, the role of the interannual variability
of the FVC series can also change the interannual variability of climatological series
(T2m in our study). In the experiment showed here, the differences for some times of
the year, especially spring and summer could reach 1 ◦ C.

It is known that changes in vegetation also modifies the albedo. This was not taken
into account in our experiments. Therefore, it can be expected an impact on the regional
climate simulations. In fact, this impacts can be opposite to our findings since a decrease
of the vegetation leads to an increase of albedo and then, less radiation is trapped by the
surface and temperature could decrease. However, Crawford et al. (2001) show that the
impact of changing albedo on surface heat fluxes is much smaller, an order of magnitude,
than changing FVC.

In this Chapter we just analyze the sensitivity of RCM simulations to changes in
FVC. A question remaining is if the RCM simulations with these new FVC datasets can
better capture the climate over the IP. The sensitivity of the model to the FVC changes is
much smaller than the deviations of the model respect to the observations (not shown),
therefore it is difficult to find any improvement using only one or two years of data.
This is not a surprising result. For example, Gómez-Navarro et al. (2012a) shows that
the skill score of different RCMs depends on the data-base chosen for evaluating the
model. Other example can be found in Fernández et al. (2007) and Jerez et al. (2013)
where the authors did not find any combination of physical parameterizations that always
reproduce better the observed climate. However, changing FVC with time instead of
using climatological data should improve the simulation of inter-annual regional climate
variability. For instance, the mean temperature differences between the dry and the wet
year are better represented by the YEAR simulations (not shown).

In this work, just linear models have been tested for obtaining FVC from NDVI, be-
cause they have been more frequently used (for instance, in most of works cited along
the work). Some examples are the NOAH Land-Surface Model and the NAM Eta model.
However, some authors use quadratics models. Figure 3.1 shows the relationship be-
tween FVC and NDVI for the linear models analyzed and a quadratic model (GUT-
MAN Quadratic). The quadratic methodology drives to lower values of FVC. Anyway,
the FVC differences obtained with linear methods covers the range of the differences in
FVC that we found.



4
Temperature Response to Changes in Fraction
Vegetation Cover in a Regional Climate Model∗

This chapter is focused in understand the physical processes that matter in the final
response of near surface temperature through changes in fraction vegetation cover (FVC)
using the Noah Land Surface Model (LSM). One of the main processes that condition
the ratio between latent heat (LE) and sensible heat fluxes (H), is the bare-vegetation
soil fraction determined by FVC. FVC drives the distribution of total evapotranspiration
in transpiration through plants, evaporation canopy and bare soil evaporation. Plants
transpiration is conditioned mainly by canopy resistance (Rc ) and have an extensive
treatment in this chapter. In Noah LSM, FVC is involved in another important process
related with the reduction of thermal conductivity (Kt ) in presence of vegetation. In
this way, ground heat fluxes (G) are reduced with vegetation, inhibiting heat transport
to deeper soil layers during the day and reducing ground temperature (Tg) during the
night. In order of having a better understanding of this processes, a set of ideal simplified
simulations with constant values of FVC have been performed.

∗ The main contents of this chapter are included in:
- J. M. Jiménez-Gutiérrez, F. Valero, J. Ruiz-Martínez, and J. P. Montávez, 2021: Temperature Re-
sponse to Changes in Vegetation Fraction Cover in a Regional Climate Model. Atmosphere, 12(5), 599.
(Jiménez-Gutiérrez et al., 2021)
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4.1 Introduction

The role of FVC in numerical weather prediction and climate models is crucial, as it
determines how energy is partitioned between latent (LE) and sensible (H) heat flux at
surface. By means of LE, the water available in soil and vegetation is released to the
atmosphere. FVC defines how total evaporation (E) is splitted into soil evaporation and
plants transpiration (Jacquemin and Noilhan, 1990; Hong et al., 2009). Increasing FVC
in a certain surface area results in enhancing transpiration and decreasing soil evapora-
tion under the same soil moisture condition. In addition, FVC also has some implications
in the ground heat transport since soil thermal conductivity (Kt ) is moduled by FVC (Ek
et al., 2003) in some land surface models (LSMs).

Matsui et al. (2005) analyze several key issues regarding the spatial and temporal
variability of FVC. FVC calculation through NDVI was treated in Chapter 3 concluding
that the uncertainty in the estimation of FVC can influence climate simulations (Hong
et al., 2009; Refslund et al., 2014; Jiménez-Gutiérrez et al., 2019). On the other hand,
some differences are also found when comparing climatological FVC datasets (constant
monthly values, Gutman and Ignatov (1998)) with those that account for temporal evolu-
tion. In the latter, the wet-dry year variability provides a substantial temporal and spatial
FVC heterogeneity. This issue has been treated profusely on regional climate modeling
(Hong et al., 2009; James et al., 2009; Meng et al., 2014; Refslund et al., 2014; Crawford
et al., 2001). Therefore, there are several key points related to the FVC data employed
in regional climate modeling that introduce some uncertainties in climate simulations.

Thus, it is relevant to quantify how the variations of the FVC affect the prediction
of the regional climate models (RCMs) as well as to identify the main physical factors
involved. This quantification must be carried out under ideal conditions for a simpler
explanation of physical processes and trying to cover both different times of the year
and soil moisture conditions that allow addressing a wide range of cases. Therefore,
it is desirable that the study situation and area include a high range of soil moisture
conditions. For this reason the Iberian Peninsula (IP), as was treated in Section 1.4, is a
suitable framework in which accomplish this regional climate simulations.

The main goal of this study is to analyze the impact of changing FVC in a RCM.
The work focuses on the sensitivity of temperature to changes in FVC, by means of two
one-year long simulations with different values of constant FVC in time and space.
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4.2 Methods and Data

4.2.1 Land Surface Model

LSMs provide the boundary conditions at the land-atmosphere interface (see Section
1.1 for more details of land surface atmosphere interactions). Their role is partitioning
available energy at the surface into sensible and latent heat flux components and rainfall
into runoff and evaporation. In addition they update state variables which affect surface
fluxes (e.g., snow cover, soil moisture, soil temperature). They are key component of
climate models. Section 1.1.3 gives more insight about LSMs.

As commented in Section 2.2 Noah LSM is the chosen one in the MM5 simulations
and a detailed explanation of the physics of the model is given in Sections 2.2.2 and
2.2.3.

4.2.2 Experiments Description

The description of the model configuration and the simulated domains is given in Sec-
tion 2.3. The physics model parameterizations chosen are detailed in Section 2.3.3. The
experimental design consist of two one-year long runs (plus spin-up) where FVC has
a constant value in time and space of 90% (FVC90) and 30% (FVC30). For the sake
of simplicity, land use has been set to constant (Cropland-Woodland mosaic) in both
experiments. In this manner, the physical parameters such as albedo, roughness length,
emissivity and thermal inertia, remains the same in both experiments, making easier the
attribution of changes to FVC.

The runs have been performed for the year 1995 (considered as a dry year) with
4 additional months of spin-up period as has been described in the regional climate
simulation strategy in Section 2.3.2.

4.3 Results

The analysis of differences (FCV90 - FVC30) of the averaged minimum, mean and max-
imum temperature over the whole year (see Figure 4.1) shows that the temperature in
the simulation with the highest FVC is always colder. The differences range from 0.2 to
2.2 ◦C. The pattern of differences reveals that the greatest changes occurs in the valleys
of the great rivers and inland flat areas. In the case of maximum temperatures, the dif-
ferences present a spatial pattern characterized by a positive change in the south-east
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Fig. 4.1: Differences between FVC90-FVC30 experiment for (a) minimum, (b) mean,
and (c) maximum daily temperature (◦C) averaged over the whole period. Black contours
denote the topography. Source: Jiménez-Gutiérrez et al. (2021).

half of the domain and a negative change in the North of the domain, with differences
ranging between −0.5 and 0.5 ◦C.
For minimum temperatures, the spatial pattern of the differences is very similar to that of
mean temperatures but much more intense, with differences reaching 4 ◦C. The spatial
pattern of minimum temperature differences is related with the places where the denser
cold air accumulates by gravity drainage. Meanwhile, the pattern of maximum tempera-
ture differences fits wet and dry areas. However, there is a large spatial variability along
the year of such patterns. In summer, coastal Mediterranean areas show negative differ-
ences instead of the expected positive differences. This can be due to the enhancement
of sea-breeze circulation related to the higher maximum temperatures inland. It is worth
mentioning that the model has an idealized homogeneous land cover (cropland), which
also explains the reasonably homogeneous patterns of the differences.

Below, we analyze the sensitivity to FVC for different times of the year and hours
of the day. Figure 4.2 shows the air temperature at 2 m (T2m) at noon (12 UTC) (Fig-
ure 4.2a) and midnight (00 UTC) (Figure 4.2b) for each experiment and their differences
for the central month of each season.

At night the difference patterns are almost the same along the year. They are co-
incident with the minimum temperature pattern shown above. However, the intensity
depends on the time of the year, being much larger in summer (up to 5 ◦C) that in winter
(up to 1 ◦C ). On the other hand, the temperature difference patterns at midday strongly
change along the year. In winter, temperature differences are small, in Spring are neg-
ative in all areas, while in Summer and Autumn some important differences appear be-
tween the north (negative) and south (positive) of the domain. Therefore, the effect of
changing FVC on temperature is quite variable and depends on the time of day and
season as well as on the surface properties.
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Fig. 4.2: T2m (◦C) for experiments FVC90 and FVC30 and their differences at 12 UTC
(a) and at 00 UTC (b) for January, April, July and October. Source: Jiménez-Gutiérrez
et al. (2021).

4.3.1 Analysis of Surface Energy Fluxes

During the day, the temperature variations depend on the partitioning between H and
LE. Figure 4.3a shows the differences between FVC90 and FVC30 for LE, H and EF
at midday. During January and specially in April, LE is higher in FVC90, leading to
lower values of H in most parts of the domain. However, this behaviour reverses in July
and October in all areas of the domain but in the North. The obtained patterns correlate
well with the changes obtained for maximum temperature (Figure 4.2a) and temperature
at mid-day (Figure 4.2b). The spatial correlations with the differences of the sensible
heat fluxes are 0.0 for January, 0.89 for April 0.89, 0.87 for July and 0.65 for October.

During the night, temperature changes depend on the availability of the soil for pro-
viding energy through G . Figure 4.3b depicts the surface fields of G at midnight. At first
glance, it is clearly noticeable that upwards fluxes of this variable are always greater in
the FVC30 experiment, primarily in July, with differences around 30–40 W/m2. As men-
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tioned before, this difference in the ground heat fluxes comes from the lower Kt values
in vegetated surfaces. During the day, the ground catches more energy (higher soil tem-
perature) and during the night there is more heat available, besides heat can be released
more easily to the atmosphere.
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Fig. 4.3: (a) Differences of LE (W/m2), H (W/m2) and EF between experiments FVC90
and FVC30 at 12 UTC. (b) G (W/m2) for experiments FVC90 and FVC30 and its differ-
ences at 00 UTC. Monthly means of January, April, July and October. Source: Jiménez-
Gutiérrez et al. (2021).

4.3.2 Canopy Resistance and Soil Moisture

As commented before, the main differences in maximum temperatures are related to
the evaporative fraction. Let’s analyse them the canopy resistance as well as the soil
moisture.
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Figure 4.4 show the Rc (expressed as logarithmic values) and the factors implied in
its calculation for FVC30 experiment. The main contribution clearly comes from SM
deficit (F4) with values very close to 0, showing a great difference respect the other
factors. The FVC90 experiment presents a similar behaviour, being F4 lower, and there-
fore larger values of Rc (not shown). The analysis of the Rc (logarithmic) for FVC30,
FVC90 and their differences (Figure 4.5a) displays that Rc evolves along the year with a
minimum in Spring and a maximum in October. Rc is always higher in FVC90 and the
differences are greater in summer, being the spatial pattern quite similar to the tempera-
ture differences at noon.

Regarding the SM, Figure 4.5b displays the monthly means for experiments FVFC30
and FVC90, and their differences for January, April, July and October for the second
layer (from 0.1 to 0.4 m depth). In this year, the soil moisture is decreasing along the
year in both experiments reaching the wilting point in a large portion of the domain
(see Figure 4.6). However, the drying of soil is faster in FVC90 condictions. Negative
differences of SM appears everywhere along the whole year. Greater FVC (FVC90)
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Fig. 4.5: (a) Rc for experiments FVC90 and FVC30 and its differences. (b) SM (%) (0.1-
0.4 m depth) for experiments FVC90 and FVC30 and its differences. Monthly means of
January, April, July and October. Source: Jiménez-Gutiérrez et al. (2021).

leads to a higher extraction of SM for Et in the root zone layers. These differences reach
its maximum in Summer (till 10%). Therefore the wilting point (WP), starting point
when transpiration stops (Figure 4.6), is reached earlier and in wider areas in FVC90
experiment. In addition, there is a reduction of the SM differences in October. This can
be attributed to the fact that FVC90 experiment reaches before the WP and FVC30 can
continue extracting water from soil.

Therefore, the changes in temperature related to FVC mainly depend on the time
of day and the availability of soil water. Figure 4.7 shows a clear example of this. We
analyze the daily cycles of temperature and heat fluxes for the two simulations at two
points (N1 and S1, see Figure 4.7) with very different water regimes. N1 is located in one
area where there is not SM deficit along the year and there is just a slightly difference
in Rc between FVC90 and FVC30. The location of S1 presents a SM deficit and Rc is
much greater in FVC90 experiment.

Concerning nightime temperature, T2m is consistently minor in FVC90 for both loca-
tions, as a result of G being lower throughout the night in this experiment. This is linked
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Fig. 4.6: Wilting point and Reference Point for SM (%). Source: Jiménez-Gutiérrez
et al. (2021).

with the reduction of Kt in presence of vegetation, inhibiting the release of energy from
soil layers to surface.

In N1, FVC30 T2m is always higher, but in winter, when temperature in both exper-
iments is almost equal during the day. In this case, although LE flux is higher, H flux is
also higher, due to the greater availability of energy due to the lower absorption by the
soil. The differences in the heat transferred to the soil are quite similar along the year,
while the amount of available energy is quite different depending on the season. This
causes that H to be larger in FVC30 in the rest of seasons, leading to higher tempera-
tures. It is also interesting that temperature differences between the experiments occur
late in the afternoon and early at night. This is coincident with the maximum differences
of upward ground heat flux.

In S1, the behaviour is similar while Rc difference is small (Winter and Spring). How-
ever, in Summer, LE is smaller in FVC90, leading to larger H and therefore to higher
temperature. This LE depletion is associated to the SM deficit and Rc in FVC90 exper-
iment. The effect of the higher vegetation coverage in FVC90 is a greater transpiration
(LE fluxes) when SM is not a limiting factor. This greater evaporation entails a greater
SM extraction from soil layers. Thereby, the WP is reached before in FVC90 that in
FVC30 and this leads to a reversion of the cooling effect of vegetation (see Figure 4.8).
Therefore, FVC90 shows higher temperature during the day, and lower temperatures
during the night when soil moisture is scarce and transpiration is inhibited, leading to a
bigger temperature daily range.

The different behaviour of both locations along the year at midday is presented in
Figure 4.8. N1 is characterized by almost saturated soil in winter that evolves along the
year with a minimum around September. The values for FVC90 are always lower but
SM is always far from the WP. Temperature differences are negative, i.e., FVC90 shows
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Fig. 4.7: Hourly means averaged for January, April, July and October. T2m (black line),
H (red line), LE (blue line) and G (green line) for experiments FVC90 (dashed line)
and FVC30 (solid line). Representative locations without SM deficit (N1) and with SM
deficit (S1). Source: Jiménez-Gutiérrez et al. (2021).

lower temperatures, specially in summer, when differences reach 1.5 ◦C. The colder
temperature is due to the higher LE in FVC90 because the larger capacity for extracting
water from soil. The behaviour in S1 is similar to N1 during the first months (from
January to May). However, after May SM of FVC90 experiment reaches the WP. At this
point, LE strongly decays leading to higher H that carries out higher temperatures. Note
that in both locations, G flux is always larger in FVC30 leading to (G–H) differences
perfectly fits to LE.
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Fig. 4.8: Monthly mean differences at midday between FVC90 and FVC30 experiments
for temperature (◦C × 102) and latent, sensible and ground heat fluxes (W/m2, left y-axis)
. Shaded green area represents the differences of the soil moisture at the third layer of the
soil model (%, right y-axis). FVC90 has always the lower value. The constant dashed
green-light line represents the wilting point. Left (right) panel shows the results for N1
(S1). Source: Jiménez-Gutiérrez et al. (2021).
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4.4 Discussion

In this work the sensitivity of temperature to changes of the FVC has been studied in
a RCM coupled to the Noah LSM. The analysis was performed by carrying out two
identical simulations of one full year with constant FVC (90% and 30%) for all land
points of the domain and times of the year. Our results, show how temperature is modi-
fied by changes in FVC depending on the time of the year, the time of the day and soil
moisture availability.

Increasing the FVC leads to decrease the thermal soil conductivity (Ek et al., 2003).
This implies a reduction of ground heat fluxes. During the day the soil absorbs less
heat and therefore more sensible heat is available to warm the air. The final effect on
temperature will depend on the portion of such sensible and latent heat fluxes ratio and
will be discussed later. During the night the upward ground heat flux is diminished
having as consequence a faster cooling of the air. Therefore, during the night a larger
FVC always causes cooling.

When soil moisture is available, an increased FVC causes higher latent heat release
through evapotranspiration. Therefore, during the day a larger FVC cools the air. The fi-
nal effects on temperature will depend on the excess of sensible heat related to the soil
thermal conductivity. On the other hand, changes in FVC leads to changes of a stress
term in the canopy resistance parameterization Jacquemin and Noilhan (1990) mainly
trough the soil moisture availability. Under high moisture stress, soil moisture near the
WP, the latent heat released by evapotranspiration is strongly diminished, therefore such
cooling effect almost disappears. This originates that an increase of FVC does not mod-
ify latent heat flux in such conditions.

As mentioned before, larger FVC leads to a faster drying of soil which implies larger
effects on canopy resistance. High canopy resistance values inhibits water flux transpi-
ration. In a situation of scarce precipitation, a soil with higher FVC reaches the Wilting
Point before a less vegetated soil. This leads to have less latent heat, occasioning higher
diurnal temperatures.

This response was also analyzed by Matsui et al. (2005) while comparing simulations
with fixed and dynamic FVC studying North American monsoons. They also indicate
the relevance of soil moisture factor in their simulations and the fact that higher FVC
not always enhances EF and Et . Other authors also highlight the importance of canopy
resistance physics in controlling evaporation (Kurkowski et al., 2003; Marshall et al.,
2003).
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4.5 Conclusions

Summarizing, increasing FVC always entails lower temperatures at night. The maxi-
mum cooling occurs in places where cold air is accumulated (valleys, plane areas, etc).
If soil moisture is available, increasing FVC leads to a drop in temperature when the
excess of latent heat by evapotranspiration is larger that the excess of sensible heat due
to the lesser thermal soil conductivity. In winter months both almost compensate and
diurnal temperatures do not suffer great changes. However, in the rest of the year latent
heat flux is larger and air temperature decreases. In case of dry soils, latent heat becomes
small and temperature increases. In addition, more vegetation leads to faster drying of
the soils, reaching the WP before and provoking higher temperatures.

Note that this behavior is related with an increase of the daily temperature range.
In the case of our experiments, the mean annual differences over land are larger than
2 ◦C, reaching some specific places at some months values above 5 ◦C when chang-
ing FVC from 30 to 90%. It is worth mentioning that results can be model dependent,
therefore it would be desirable to perform more experiments using other LSMs based on
varied physical approaches.

Thus, we find a remarkable sensitivity of temperature to FVC. The FVC variations
imposed in our experiments could serve as an upper limit to the common differences
that can be found due to different factors such as inter-annual variability, reconstruction
method of FVC, NDVI databases, etc. Therefore, a correct estimation of FVC values is
crucial in order to improve temperature representation in RCMs. Moreover, the canopy
resistance parameterization is critical in understanding the final effect of FVC (Matsui
et al., 2005), then a correct representation of canopy resistance parameters like Rcmin

(Kumar et al., 2014) or parameters dependent of soil type could have a non-negligible
impact on RCM experiments.

Another important aspect may be the impact that the imposition of future vegetation
values may have on climate change scenarios. An excess of vegetation in areas where
future projections tend to give drier climates may amplify the estimates of increase in
maximum temperatures, with the consequent effect on heat waves. One interesting ques-
tion may be related to a better understanding of compound events such as droughts and
fires. Areas with large vegetation in situations of water stress can cause temperatures to
rise more and in turn make droughts more extreme increasing the probability of fires.
On the other hand, a future reduction of vegetation might lead to an increase of temper-
ature, specially the minimum ones, favoring extreme events such as raising the number
of tropical nights.





5
Spatial and temporal variability of FVC and
their effects on regional climate experiments

In the previous chapters, have been analyzed the effect that variations of fraction veg-
etation cover (FVC) can have in the simulation of near surface temperature in regional
climate simulations. Values that FVC can take in a regional model are subject to varia-
tions that may have different sources. As shown in Chapter 3, the FVC calculated value
depends on satellite database, as well as of the calculation method of FVC from satellite
values (NDVI). On the other hand, most of the regional climate simulations with regional
climate models (RCMs) consider FVC climatological values, that is to say, include an
intra-annual variability but not and interannual variability.

This chapter deals with the role that intra-annual and interannual variations of FVC
can have in near surface temperature simulated by RCMs. In this way, a set of re-
gional climate simulations have been performed using near-real time (COP-YEAR) and
monthly averaged values (COP-CLIM) from Copernicus FVC data, and another consid-
ering the default climatological values of FVC in the Noah LSM (GUT-CLIM).

5.1 Introduction

The Land surface (LSM) component of a numerical weather prediction model needs
to have information about the vegetation covering the ground. This information is es-
sential in order to correctly simulate the exchange of heat, moisture and momentum
fluxes between the ground and the atmosphere. Vegetation is usually approximated by
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three parameters; the green vegetation fraction (FVC), the leaf area index (LAI), and the
vegetation type or class Stensrud (2007). Depending on the soil-vegetation-atmosphere
parameterization used, FVC can be used once LAI is set. This occurs in the Noah LSM.
On the other hand, FVC values are often prescribed to a climatology, with values varying
from month to month. Depending on the database (NDVI) and the methodology used,
FVC can have different values for the same area Jiménez-Gutiérrez et al. (2019).

Some previous works Jiménez-Gutiérrez et al. (2019, 2021) (for the thesis, previous
chapters), have shown that there is a relevant sensitivity of temperature to FVC vari-
ations. Temperature changes are different for maximum and minimum temperatures.
While for minimum temperature there is a clear linear relationship between temperature
changes and FVC, for maximum temperatures it is not so clear. Furthermore, the slope
of the relationship depends on the season of the year, mainly due to the amount of energy
put into play.

Climate variability, specially precipitation, implies temporal and spatial FVC hetero-
geneity that can lead to a non negligible effect in numerical simulations (Matsui et al.,
2005). For this reason, extensive research has been carried out across different spatial and
temporal scales to study the sensitivity of LSMs to the implementation of FVC datasets
obtained from NDVI data with high temporal and spatial resolution, particularly with the
Noah LSM. In the field of mesoscale modelling with high-resolution domains and with
several days of evaluation, several examples of real-time FVC data incorporation can
be found (Kurkowski et al., 2003; James et al., 2009; Hong et al., 2009; Kumar et al.,
2013; Li et al., 2014; Vahmani and Ban-Weiss, 2016). These works clearly show the
impact of using satellite-derived land cover parameters compared to model simulations
that use prescribed climatological values to describe land cover characteristics. In the
field of regional climate simulations, several examples can be found with the Noah LSM
using realistic FVC data instead of default data. With simulated periods of 1-3 months
some works are also available in the literature; cases of heat waves in Europe (Refs-
lund et al., 2014) and oasis-desert systems in China (Zhang et al., 2017) with improved
model performance, and with inconclusive results studying the effect on droughts in
southern South America (Müller et al., 2014b), with inconclusive results. Other exam-
ples of relatively long, full-year, simulations with improved FVC data (He et al., 2017;
Yan et al., 2020a) in China show a more realistic behavior of the simulated T2m and
humidity fields but less clear improvements in precipitation. Finally, other works with
multi-year simulations (15-30 years) (Ge et al., 2014; Yan et al., 2019) find relationships
between vegetation changes and temperature trends, improving the representation of ex-
treme events such as heat waves, although it seems they may introduce new biases in
simulations.

In this context, it is interesting to study the sensitivity of climate simulations both to
the use of different databases and to the introduction of realistic spatio-temporal vari-
ability of vegetation. The Iberian Peninsula (IP) is an ideal domain for such tests. The
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IP is characterized by a strong spatial climate variability, with Mediterranean, conti-
nental, high mountain, oceanic and near-desert climates and a strong intra-annual and
inter-annual variability (Tullot, 2000) that is reflected in its high vegetation variability.

The main objective of this work is to analyze the sensitivity of climate simulations
to spatial and temporal variability of vegetation in long term periods. For this purpose,
a series of long simulations will be carried out using different FVC databases, and the
effects on statistical moments of the maximum and minimum temperature will be ana-
lyzed as well as the possible connection between changes in vegetation and temperature
trends.

5.2 Data and Experiments

In order to accomplish the objectives of this chapter three long term simulations have
been performed, using different FVC data. First, a simulation was carried out using the
default FVC data in MM5, based on the Gutman method Gutman and Ignatov (1998).
Secondly a simulation using the high resolution data provided by Copernicus, including
the temporal variability of the observed data. And finally a simulation using the climato-
logical values of the previous case. Following, these data and experiments are detailed.

5.2.1 Vegetation data

As mentioned in previous chapters the Land Surface Model used in this work is the
NOAH model Niu et al. (2011). NOAH needs FVC as information of vegetation, while
LAI is kept constant.

Noah LSM in MM5 and WRF model uses a default FVC monthly climatological
data (GUT). This commonly used database is described in Gutman and Ignatov (1998) .
More details can be found in Sections 2.3.4.4 and 3.2.2.

On the other hand, Version 2 of global FVC from Copernicus Global Land Service
at 1 km resolution (∗) is used (COP). This database ranges from 1999 until june of
2020. The input data are the daily Top of the Atmosphere reflectances measured with
the sensors of SPOT-VGT and PROBA-V satellites. The calibrated reflectances in vis-
ible, near-infrared and shortwave infrared are used to calculate instantaneous estimates
of the products using a neural network trained with MODIS and CYCLOPES products.
Moreover, a temporal smoothing and gap filling is made using climatology information
from version 1 to ensure continuity and consistency. In a second stage, these instanta-

∗ http://www.land.copernicus.eu/global

http://www.land.copernicus.eu/global
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neous first guess of products are composited for obtaining values every 10 days (Verger
et al., 2014).

For assimilating Copernicus FVC data into the Noah LSM, it was necessary to
perform a preprocesing of the original data. This previous work consisted of creating
monthly values and interpolate them from the original spatial resolution (1 km) to the 10
km resolution of our experiments. For this task some modification of MM5 preprocesing
routines were carried out.

In addition, the climatological values (yearly values of each month) of Copernicus
FVC data was constructed. Note that all FVC data are interpolated by the pre-processing
tools to the 10km domain.

5.2.2 Experiments description

All regional climate simulations have been performed using the climate version of the
MM5 described in Section 2.3.2, and widely used in climate experiments (Gómez-
Navarro et al., 2012b; Jerez et al., 2012; Lorente-Plazas et al., 2015, among many others
). The experiments performed in this work span the period from 2000 to 2017 following
the strategy explained in Section 2.3.2. The spatial configuration and model physics are
detailed in Sections 2.3.1 and 2.3.3. All experiments are driven by era Interim reanal-
ysis (Dee et al., 2011) using boundary conditions every 6 hours. The spin-up time is
four months, time enough to forget the effects of initial conditions (Jerez et al., 2020).
Therefore, all experiments performed only differ in the FVC data used.

As mentioned above, one objective of this chapter is to analyze the role of using
two different FVC databases with different resolution and methodology. For this pur-
pose, two simulations (CLIM) have been carried out in which the temporal variability
of FVC is the same (CLIM) but the climatological values are different (Gutman method
and Copernicus). On the other hand, we are interested in the role of including the role
of temporal (interannual) variability of FVC. For this purpose, we will perform experi-
ments using the FVC Copernicus values reconstructed for every month of the particular
period of our simulation (YEAR). Therefore, three long climate simulations using two
different data sets; GUT-CLIM and COP-CLIM that use FVC monthly climatological
data, and COP-YEAR that uses montly FVC data. Table 5.1 presents a summary of the
experiments performed.
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Case FVC dataset Resolution Temporal average
GUT-CLIM NDVI from AVHRR 0.15 ◦ Climatology 1985-1991
COP-CLIM Copernicus 0.1 ◦ Climatology 2000-2017
COP-YEAR Copernicus 0.1◦ Yearly values 2000-2017

Table 5.1: Summary of the simulations performed using default FVC of model MM5
and Copernicus FVC.

5.3 Results

5.3.1 Analysis of FVC data

As a first step, we analyzed the differences between the climatological values of FVC in
GUT and COP experiments. Evidently, the mean climatological data of COP-YEAR are
identical to COP-CLIM by construction. Figure 5.1 presents the mean monthly values
of GUT-CLIM and COP-CLIM for the months of January, April, July and October as
well as their differences. These months have been chosen as representative months for
each season and will be used throughout the chapter.

We note that the two databases realistically present the spatiotemporal variability of
FVC. In the southern areas of the IP, the vegetation peaks occur in April, while in the
north they occur in summer. On the other hand, the databases capture in an acceptable
way the vegetation gradients that appear between the north of the IP with values close to
100% and the south with values below 20% in large areas. The spatial correlation of the
two data-bases for each month is always over 0.93. This means that the spatial pattern is
almost identical, although, as can be seen in the figure, the structure obtained by COP is
much finer as expected.

However, we obtain that there is a significant difference in the value of FVC in them.
GUT-CLIM always presents much higher values, which on average are around 18% and
vary in the range of 5 to 25%. The analysis of the differences shows that they are sig-
nificantly correlated with the mean values. The largest differences appear in places with
high, but not maximum, vegetation. For example, in the case of summer and autumn,
the northern faces of the main mountain ranges show the greatest differences.

These differences may be due to several factors. On the one hand, the periods with
which the climatologies have been calculated are different, and on the other hand, both
the satellite data and the methodologies used for the calculation of FVC are very differ-
ent.

Therefore, we observe that there is some structure in the spatial differences and that
these are dependent on the time of year. An interesting question is is whether these
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Fig. 5.1: Monthly average of FVC in January, April, July and October for the period
2000-2017 in GUT-CLIM (first row) and COP-CLIM (second row) experiments and
their spatial and box-plot differences (third row and fourth).

patterns of differences can be related to the land use. Figure 5.2 shows the average annual
cycles for the different land uses.

In general, the differences are greater in winter and smaller in late summer and early
autumn. This behavior is quite similar in all types except for agriculture, where these
differences are more constant throughout the year. Differences are minimal in summer
in closed forest areas. Another interesting feature is the delay between peaks, i.e. in
the period of highest productivity. This seems to occur later in most of the types in the
COP-CLIM.

One of the main motivations of this work is to study the role of interannual variability
of vegetation on climate reproduction by a RCM. Let us analyze the variability of the
FVC in our simulations. Figure 5.3 plots the mean, standard deviation, and range, calcu-
lated as the maximum and minimum of FVC in the COP-YEAR experiment. As before,
we present only the values for four representative months of the year.
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Fig. 5.2: Annual cycle of FVC for the period 2000-2017 by land use type in GUT-CLIM
and COP-CLIM simulations.

Fig. 5.3: Mean, standard deviation and range (between maximum and minimum values)
of Copernicus FVC for the period 2000-2017 in the months of January, April, July and
October.
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The results show that the greatest variability of FVC occurs in winter in the west of
the IP. In spring the pattern is similar but extends to the south, and the Ebro valley and
it is stronger that in winter. However, this pattern is different in summer where the vari-
ability, although lower, is more evident in the north. In the other hand, it is similar to
the winter pattern but extends to the east of the Peninsula. The differences (range) reach
values of more than 40% in large areas in the south and center of the IP. Note, however,
that areas in the north, where vegetation values are maximum, show little inter-annual
variability. The variability pattern is well correlated with the mean field, the spatial cor-
relation ranges from 0.71 in May to 0.90 in September.

This variability must be closely related to the precipitation regimes in the IP. The
western area is strongly influenced by the NAO, while the eastern area is more related
to autumn precipitation. However, in the north, precipitation variability does not seem
to affect vegetation variability in a notable way, possibly because there is always enough
moisture available for the development of the vegetation cover.
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Fig. 5.4: Yearly values of FVC in spring for the period 2000-2017 by land use type.
GUT-CLIM, COP-CLIM and COP-YEAR experiments.

Analyzing again the series grouped by land use in spring, where the plant productivity
is larger in most of places (Figure 5.4) we observe several interesting aspects. In general,
the variability of the series never reaches the GUT-CLIM values. This could imply that
the years chosen for the climatology are not determinant, but that the methodology is the
most important factor to explain the differences between both databases. On the other
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hand, the lower temporal variability correspond to the closed forest land use, that is the
one with the largest FVC mean value. This correspond to the northern areas. The rest of
land types present similar behavior. In addition, all series show a positive trend, i.e. the
vegetation is growing along the time. At this point, and taking into account the results of
previous chapters, we can anticipate that this will cause a change in the variability of the
temperature series in both the short and long term. This feature will be addressed later.
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Fig. 5.5: Boxplot of yearly mean anomalies of COP-YEAR FVC simulations in January,
April, July and October for the period 2000-2017. All points of the simulation domain
are considered.

Figure 5.5 represents the boxplot of the FVC differences between the COP-YEAR
and COP-CLIM simulations, or just the COP-YEAR anomalies, in January, April, July
and October for the period 2000-2017 considering all the points of the simulation do-
main. The years in which the median is above 0 are marked with red color (more vege-
tated years) and those with vegetation below median (less vegetated years) are marked
with blue.

Although in some years differences of FVC show a great spatial variability, in others
differences are more unifom leading to a mean pattern of more/less vegetation covered
years. Regarding the behaviour between months, there are years in which the pattern can
be reversed or remains the same during the same year. This will depend of the spatial
variability and distribution of precipitation along the year.
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The positive trend of all series except for October is again striking. We also observe
how the FVC anomaly has a differente pattern in different years. In some cases the veg-
etation anomaly affects all places in all months, for example the years 2013 (excess) and
2005 (defect). While in others, both the excess and the defect of vegetation is unevenly
distributed in the points of the domain, for example the year 2003 or 2016. Figure 5.6 and
5.7 show the spatial patterns of these anomalies for years with vegetation defect, 2005
and 2012 (Figure 5.6) and for cases with excess vegetation; 2013 and 2016, (Figure 5.7).

Fig. 5.6: FVC Copernicus anomalies in sample years with FVC values below the median
for the period 2000-2017.

Fig. 5.7: Same as Figure 5.6 but with FVC values over median.
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Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Precipitation
anomaly (mm) 52 9 60 107 -43 -187 8 -76 75 16 209 -76 -85 110 59 -121 47 -166

Table 5.2: Precipitation anomalies for the period 2000-2017 calculated from AEMET
5km precipitation dataset. Spatial average in the 10 km simulated domain

Considering spatial precipitation anomalies from AEMET 5km precipitation dataset
for the whole simulated domain ( Table 5.2), it should be noted that in the selected
years with generally lower FVC values ( Figure 5.6 ), there seems to be a relationship
with drier years from the hydric point of view, with a more pronounced effect in 2005
throughout all the months. For the years with a higher FVC (Figure 5.7 ), 2016 has a
less clear relationship with precipitation than 2013, observing an opposite pattern (lower
FVC) in the southwest of the Iberian Peninsula (IP) more appreciable in April. Hence,
the relation with precipitation needs to be deeper analyzed, specially at local scale.

5.3.2 Temperature response to constant changes in FVC

Firstly, the effect of changes in FVC on 2 meter temperature (T2m) fields has been an-
alyzed by comparing regional climate simulations GUT-CLIM and COP-CLIM. Figure
5.8 shows monthly means differences between GUT-CLIM and COP-CLIM experiments
averaged over the period 2000-2017 for mean, maximum and minimum T2m.

As expected from the results of previous chapters, there are always negative temper-
ature differences, i.e. the GUT-CLIM simulation is colder, since it is the one in which
the vegetation fraction was higher.

The differences are greater for minimum temperatures and practically null for max-
imum temperatures. The mean temperature shows an intermediate behavior. Although
the patterns of temperature differences roughly follow those of vegetation, there are no-
table deviations depending on the area. For example, the northern areas of the peninsula
show smaller differences. We also note that such pattern seems to be modulated by the
orography and by the base vegetation itself, especially for the minimum temperature.

On the other hand, it can be seen that the greatest differences appear in summer and
the smallest in winter. In addition, the effect on spring is much greater than in autumn.
In summer, these differences reach 2 ◦C while in the winter they barely reach 0.8 ◦C.
This is remarkable, since the maximum departures of the vegetation occur in the winter
months. This behavior must be related to the greater amount of energy to be partitioned
into sensible and latent heat fluxes.
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Fig. 5.8: Monthly means differences between GUT-CLIM and COP-CLIM simulations
averaged over the period 2000-2017 for mean, maximum and minimum T2m for the
months of January, April, July and October.

However, the role of the modification of the climatological FVC on the variance of
the series, i.e. the inter annual variability of temperature, is very different. Figure 5.9
shows the differences in the standard deviation between COP-CLIM and GUT-CLIM.

In this case, the greatest differences appear for the maximum temperature, and their
sign depends on the place and time of the year. Similarly, we highlight the different
behavior of minimum and maximum temperatures throughout the year. For the winter
months, the maximum temperature decreases its variability for practically all the IP.
However, the minimum temperature increases its variance for the two Plateaus (Tagus
and Douro valleys) and the Ebro valley. In the case of spring, a strong decrease in vari-
ance is observed for the maximum temperature while there is no clear pattern for the
minimum. In summer the opposite happens to winter; the variance of the maximum
temperature decreases in the north, while it increases very significantly in the south with
values higher than 0.2 ◦C. Autumn presents a behavior similar to winter in minimum
temperatures but more attenuated.

Attending to soil moisture differences (soil level between 0.1 and 0.4 m) of GUT-
CLIM and COP-CLIM simulations, lower soil moisture levels are achieved in GUT-
CLIM simulation motivated mainly for the highest values of FVC considered in this
simulation. These differences as much stronger in summer and Autumn. This results
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Fig. 5.9: Monthly standard deviations differences between GUT-CLIM and COP-CLIM
simulations averaged over the period 2000-2017 for mean, maximum and minimum
T2m for the months of January, April, July and October.

agree with those founded in Section 4.3.2, where the drying of soil was faster in the
experiment with 90 % of FVC.

In summary, we found that the effects of increasing vegetation is to decrease tem-
perature, especially the minima. However, the variability is affected in a very differently
way, with maximum temperature specially affected. In situations with sufficient water
availability the variance decreases, whereas situations of dry soils the variance rises.

Fig. 5.10: Monthly differences of soil moisture between GUT-CLIM and COP-CLIM
simulations averaged over the period 2000-2017 for the months of January, April, July
and October.
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5.3.3 Temperature response to temporal changes of FVC

Fig. 5.11: Monthly standard deviations differences between COP-YEAR and COP-
CLIM simulations averaged over the period 2000-2017 for mean, maximum and mini-
mum T2m for the months of January, April, July and October.

First, we analyzed the differences in mean temperatures between COP-CLIM and
COP-YEAR. As the vegetation has been constructed in COP-CLIM (monthly average
of COP-YEAR) the differences in mean temperature of the whole period are null (not
shown). As seen in previous chapters, the response of temperature to vegetation change
is practically linear. Therefore, the differences that may appear in the interannual vari-
ability cancel out when integrating the whole period.

Having said this, we move directly to the analysis of the standard deviation of the
series. Figure 5.11 presents the differences in standard deviation of maximum, mean
and minimum temperature for the representative months of the year. The changes are
greater in spring, and for the minimum temperature. The general behavior indicates that
the higher the variance in the vegetation fraction, the lower the variance in temperature.
However, there is a differential behavior in some areas where there is an increase in the
variance.

The relationships between vegetation changes and temperature deviations are practi-
cally linear. Figure 5.13 shows the scatter plots of the relationships for maximum and
minimum temperature and its linear fit. For the maximum temperatures, a significant
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Fig. 5.12: X-Y plots of differences in FVC and T2m between COP-YEAR and COP-
CLIM simulations for the period 2000-2017. Maximum and minimum temperatures for
all the months of the year.
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Fig. 5.13: Monthly temporal correlations of the differences of T2m against the dif-
ferences of FVC between COP-YEAR and COP-CLIM simulations averaged over the
period 2000-2017 for mean, maximum and minimum T2m for the months of January,
April, July and October.

linear relationship only appears from April to July. These relationships are not very ro-
bust, reaching a maximum R2 of 0.4. However, for the minimum temperature there is a
significant relationship throughout the year, which is more robust in the spring and sum-
mer months. The relationships are always inverse, i.e., an increase in FVC produces a
decrease in temperature and viceversa. The slope of the fitted line is greater in the spring
and summer months.

This same relationship can be represented point to point ( Figure 5.13). As we can
observe the correlations at the local level are especially high in spring and summer for
the minimum temperature. Practically significant relationships appear throughout the
Iberian Peninsula except for some northern areas in summer and high mountain areas in
spring. In winter and autumn, the relationships prevail in the west of the PI becoming
weaker or even disappearing in the east and southeast of the peninsula.

From the sample of years with FVC below and above the median ( see Figures 5.6
and 5.7), in Figures 5.14 and 5.15 are showed the differences in T2m between the COP-
YEAR and COP-CLIM simulations following the same calculation criteria that in Figure
5.12. In general, the tendency observed for the maximum and minimum T2m in both
figures and in Figure 5.12 is that with higher (lower) FVC, lower (higher) simulated
air temperatures occur. In the case of the minimum T2m, this effect is more defined
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and is related to the fact commented in Section 2.2.2 about the shadowing effect of
FVC modifying soil conductivity ( Eq: 2.10). With higher FVC values, there is a greater
insulation of the soil and therefore a lower contribution of G from the soil to the surface,
causing less heating of the air in contact with such surface (lower T2m). In the map of
differences of minimum T2m ( Figure 5.14), it can be seen how the effect on T2m is
quite remarkable, reaching differences in the monthly means around 1.5 ◦ C with FVC
differences around 20 % (see Figures 5.6 and 5.7). The differences in the monthly T2m
between the sample of dry and wet years seem more extreme in the dry years starting
from similar differences in FVC between both cases.

Fig. 5.14: Differences in minimum T2m between COP-YEAR and COP-CLIM simu-
lations in sample years with FVC values below (2005;2012) and over (2013;2016) the
median for the period 2000-2017 for the months of January, April, July and October.

For maximum T2m, the response to FVC changes is less intense as outlined in Figure
5.12. In this case, the effect of FVC in modulating the E of the model is the main driver
( equations 2.16, 2.17, 2.19 and 2.20). In this way, a higher FVC will favor higher LE



98 5 Spatial and temporal variability of FVC and their effects on regional climate experiments

and lower H , and therefore a lower heating of the surface air (lower T2m) since the
energy is mainly invested in evaporating the available moisture from the soil. This effect
can be modulated by the canopy resistance in conditions of hydric stress, with less soil
moisture available, especially in the summer months, which can lead to situations of
higher H with higher FVC (see Section 4.3.2 for more details ). In fact, in Figure 5.15
in the southwestern part of the IP for July 2005 an opposite pattern is observed than
expected, with lower temperatures in the COP-YEAR simulation despite having lower
values of FVC than COP-CLIM.

Fig. 5.15: Differences in maximum T2m between COP-YEAR and COP-CLIM simu-
lations in sample years with FVC values below (2005;2012) and over (2013;2016) the
median for the period 2000-2017 for the months of January, April, July and October.

If vegetation were independent of temperature, the linearity relationship discussed
above would have to make the changes in variance between the two simulations inte-
grated over the years zero. The effects would be counteracted. Therefore, if differences
in the variance of the series appear, it is because there must be a relationship between
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temperature and vegetation. For example, if vegetation is increased with temperature,
a warmer period would suffer a temperature attenuation due to more vegetation. Thus,
in areas with this type of response, the variance of the series would decrease, since the
minimums (colder periods) of the series would be higher with less vegetation and the
maximums (warmer periods) would be lower with more vegetation. On the other hand,
if vegetation decreases with temperature a warmer period would be more extreme due
to the lack of vegetation.

This relationship between temperature and vegetation can be direct or indirect. In
places with sufficient precipitation and hence low hydric stress, temperature can be a
determining factor in plant productivity. In this conditions, warmer temperatures are ex-
pected to stimulate primary productivity and example of this are the studies that indicate
that plant growth has already increased across northern latitude (Myneni et al., 1997;
Zhou et al., 2001; Hudson and Henry, 2009). In other areas, where precipitation is the
determining factor in the growing of vegetation due to the prevalence of long periods of
hydric stress, precipitation (cold events) is associated with more vegetation production.

Fig. 5.16: Monthly temporal correlation of the minimum temperature anomaly and FVC
change in COP-YEAR, for January, April, July and October.

In order to verify this hypothesis we calculated the correlation between the minimum
temperature anomaly and the vegetation fraction anomaly (see Figure 5.16). It is clearly
observed that the obtained patterns are very similar to the standard deviation differences
presented in Figure 5.11. In fact, the correlation between the spatial patterns is always
higher than 0.6 reaching 0.75 in May. Therefore, the relationship between temperature
and FVC explains the behavior of changes in the temporal variability of the temperature
series.

Let’s analyze the case of the changes in the standard deviation in April. It is striking
that while in the west of the IP, basically in all the Atlantic watershed and in the southern
slope of the Pyrenees, there is a decrease in variability, in the Mediterranean watershed,
the Ebro valley and the east of the peninsula there is an increase in variance. In situations
of zonal or south-west flow, positive temperature anomalies appear in practically all the
Iberian Peninsula, however precipitation remains in the areas with a decrease in variabil-
ity. This leads to a different vegetation development between these areas. And therefore
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the inclusion of realistic vegetation leads to very different results on the variability of
the series.

5.3.4 Trends in vegetation and their effects on long-term temperature

As we have seen above, there is a linear response of temperature, especially minimum
temperature, to changes in vegetation. The question is what happens to the long-term
variability of temperature when trends in the vegetation fraction appear.

We first analyze the FVC trends for the period 2000-2017 (see Figure 5.17). In gen-
eral, a positive trend is evident in different areas of the IP, which at some points can
reach 2 % annually (34 % for the entire period). These trends are greater for April and
are striking in the Ebro valley. In scattered areas such as the northwest (Galicia) and the
southwest, very localized areas of negative FVC trend are observed.

Fig. 5.17: FVC trends calculated for the period 2000-2017 (trend by year). January,
April, July and October.

In order to see the signal that the evolution of the FVC implies throughout the sim-
ulated years, temperature trends simulated by the COP-CLIM and COP-YEAR are an-
alyzed (Figure 5.18). These trends have been calculated assuming a linear adjustment
and are expressed as the trend for all the simulated period. First of all, the asymmetry
between winter and the rest of the seasons is noteworthly. In winter, the trends are lower,
and affect mainly the northeastern quadrant, while in the rest of the seasons the warming
is greater in the areas of the Atlantic basin and the Pyrenees. While the trends are greater
in October for maximum temperatures, it is in summer when the trends are greater for
minimum temperatures.

The simulated trend patterns are very similar between both simulations and are much
more pronounced in October reaching 4 ◦ C. Attending the minimum temperatures, there
are slight differences between both simulations above all in April and July. These differ-
ences occur mainly in the Ebro valley area, where the positive trends diminish in July
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Fig. 5.18: Trends for the period 2000-2017 for COP-CLIM and COP-YEAR
(◦C/18years) for maximum and minimum temperature in the months of January, April,
July and October.

and become negative in April, that is, the effect of vegetation may even cause trends
to reverse in some areas for some months. This can be more easily observed in Figure
5.19 where the trends of the differences COP-YEAR minus COP-CLIM are shown. The
Ebro valley area is an area with a marked positive trend for FVC and the COP-YEAR
model translates this signal into a negative temperature trend. As expected, there is a di-
rect relationship between FVC trends and trend differences in the simulations. Table 5.3
shows the spatial correlation between de trend patterns of FVC and trend differences.
In the case of minimum temperature correlation reachs 0.9 in April being correlation
always over 0.7. For maximum temperature correlations are only significant in spring
and summer.
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Fig. 5.19: T2m trends attributed to changes in FVC in the period 2000-2017 (trend in
18 years) for maximum and minimum T2m in the months of January, April, July and
October.
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Correlation Jan Apr Jul Oct
Min T2m -0.78 -0.90 -0.86 -0.70
Max T2m 0.18 -0.65 -0.54 0.06

Table 5.3: Correlation between trends differences (COP-YEAR minus COP-CLIM) of
maximum and minimum temperature and FVC during the simulated period 2000-2017.

5.4 Discussion and conclusions

In this chapter we have analyzed the effects that differences in FVC that can be intro-
duced in regional climate simulations, due to the use of different databases and incor-
porating their interannual variability, can have on the simulated climate, focusing on
temperature.

The comparison of two climatological databases of FVC; the Gutman (Gutman and
Ignatov, 1998) climatology (GUT-CLIM) used in many works and the modern Coperni-
cus database (COP-CLIM), shows differences of 15-20% in our study area. Obviously,
these deviations can be very different depending on the database used, as already studied
in previous chapters.

On the other hand, differences in FVC due to interannual variability (comparison
of COP-YEAR and COP-CLIM) can reach values of 5-10%, due to long-term trends
(growth of new forests, abandonment of farmland, forest fires, etc.) or higher plant pro-
ductivity related to climatic factors such as precipitation and temperature.

In both cases the differences are important and can have a non-negligible effect on
the climatology described by a numerical model.

It has been shown, both in this chapter and in previous chapters, that the response
of temperature is practically linear to changes in vegetation, with cooler temperatures
occurring in situations of greater vegetation. This response is very extensive, although
there are some places where this relationship does not hold true, with temperature being
almost independent of vegetation variations. These effects are greater in the spring and
summer months where the energy available to distribute into sensible and latent heat
fluxes is greater. This occurs in a univocal way for the minimum temperature. However,
for the maximum temperature there are notable exceptions, and the response is much
weaker. The changes are negligible in winter and at other times of the year, especially in
summer, they depend on the available humidity in the soil, even producing the opposite
effect (warming).

The comparison of GUT-CLIM and COP-CLIM shows that such changes in vegeta-
tion can lead to changes in temperature averaged over the entire period of more than one
degree for minimum temperature to 0.5 for maximum temperature. Although the differ-
ences are constant over the years, they introduce a change in interannual variability, the
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variance of the series. This effect is now more noticeable for maximum temperatures.
Variability decreases drastically in spring when more vegetation is included, especially
throughout the Atlantic basin. However, in the summer a north-south dipole appears, in
which the variance decreases in the north and increases in the south. This is intimately
related to the humidity contained in the soil. Places with more vegetation and low pre-
cipitation lose moisture quickly, so that the cooling due to sensible heat fluxes decreases
more.

The analysis of the role of introducing the interannual variability of vegetation has
shown us that there is no a priori modification of the mean properties, no doubt due to
the linearity of the relationship between temperature and vegetation. However, there is
an interesting sign of change in the variance of the series. This is due to the fact that
there is a relationship between temperature and vegetation productivity. The places and
times when higher temperatures cause higher plant productivity the variance decreases,
and increases otherwise. This relationship could be direct or indirect and a deeper study
of this issue would be interesting.

Finally, we observed that trends in FVC cause trends of opposite sign in temperature,
especially in minimum temperatures. We obtain that in some places this underlying trend
can even reverse the trend due to other causes. Note that although the period studied here
is not sufficient to speak of trends at the climatological level, it does give us an idea of
how long-term changes in vegetation cover can significantly modify temperature trends.



6
Evaluation of regional climate simulations using
different vegetation cover databases

The previous chapters have analyzed the role of changes of frcation vegetation cover
(FVC) on temperature in experiments with regional climate models. Temperature ba-
sically responds linearly to changes in FVC, affecting not only the mean of the series
but also its variance. The question that arises now is, does using more realistic FVC
databases lead to a better reproduction of the observed climate. In this chapter we try to
answer this question.

6.1 Introduction

Vegetation has a large impact in weather and climate directly by means of biophysi-
cal processes, interacting in the exchange of moisture, energy and momentum fluxes
with the atmosphere (Charney, 1975; Shukla and Mintz, 1982; Dickinson, 1984; Sellers
et al., 1986; Bonan et al., 1992; Dickinson, 1993; Pielke et al., 1998; Heck et al., 2001;
McPherson, 2007; Notaro et al., 2017). Moreover, there is a crucial and indirect effect of
vegetation in climate due to biogeochemical processes related with CO2 and carbon stor-
age (McGuire et al., 2001). There is strong evidence that this impact influences weather
and climate at a range of time scales, from seconds to thousand of years (Pielke et al.,
1998; Pitman, 2003). Furthermore, the effect of vegetative properties on land surface-
atmosphere interactions can result on atmospheric circulation changes (Pielke and Avis-
sar, 1990; Copeland et al., 1996) that can range from local scales (Ookouchi et al., 1984;
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Anthes, 1984; Mahfouf et al., 1987; Yan and Anthes, 1988; Segal et al., 1988). to re-
gional and global scales (Reale and Dirmeyer, 2000; Chase et al., 2000; Gedney and
Valdes, 2000; Cotton and Pielke Sr, 2007)

The evidence to support that changing vegetation influence climate from regional to
global scales, comes from sensitivity studies that explore the impact of modifying the
land surface characteristics (Pitman, 2003). The representation of vegetation in regional
climate models (RCMs) is given by different physical parameters such as albedo, frac-
tion vegetation cover (FVC), leaf area index (LAI), stomata1 resistance, soil conduc-
tivity, root depth, roughness length or vegetation types. Sensitivity studies of regional
and global climate with surface albedo and its feedbacks via vegetation were prevail-
ing initially, and key works with global circulation models (GCMs) were performed by
Charney (1975), Charney et al. (1977), Lofgren (1995) and Reale and Dirmeyer (2000).
Works related with the relevance of surface roughness length through vegetation can be
found in Sud and Smith (1985) and Chen et al. (2012). Another examples of research
can be found in the case of LAI (Chase et al., 1996; Kang et al., 2007) or root depth
(Rosnay and Polcher, 1998; Feddes et al., 2001).

It would be expected, that an improved partitioning of surface sensible and latent heat
fluxes can occur when incorporating near-real-time vegetation fractions into RCMs and
in this manner to enhance the prediction of near surface variables (James et al., 2009).
Hong et al. (2009) noted that it was difficult to conclude if more realistic FVC data
resulted in better simulations and the model behaviour is not reliable with improved
vegetation parameters. What is clear, is that despite decades of improvement, RCMs
still suffer from large systematic biases, and one of the most promising way forward for
reducing these biases is to tackle deficiencies in modelled land-atmosphere processes
(Davin et al., 2016).

This chapter evaluates the ability of a set of regional climate simulations to reproduce
the observed climate of the Iberian Peninsula. The simulations differ in the FVC database
used; GUT-CLIM, COP-CLIM and COP-YEAR (see Chapter 5 for more details of this
simulations). The first objective of this study is to analyze the possible added value of a
high spatial resolution FVC dataset (COP-CLIM) as well as to add temporal variability
(YEAR-CLIM) synchronously over a sufficiently long period that includes a multitude
of climate conditions. The analysis of the simulations skill focuses on the ability to
reproduce the 2-meter air temperature (T2m). The second objective tries to evaluate the
effect of using a variable FVC data set on the low frequency variability (trends). The third
objective is to study the sensitivity of the model’s skill in reproducing the temperature
field in relation with the thermal conductivity of the soil.
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6.2 Data and methods

6.2.1 RCM experiments

The experiments used are the same as those described in Section 5.2.2. Two experiments
using a prescribed climatology but with different original spatial resolution, different
period, satellite data and FVC construction methodology; GUT-CLIM and COP-CLIM.
And a third experiment in which the interannual variability of the FVC is included;
COP-YEAR. Recall that COP-CLIM is obtained from COP-YEAR.

The description of the LSM was presented in Chapter 2. As mentioned in this chapter,
the Noah LSM for the calculation of heat fluxes in soils covered by vegetation, uses a
thermal conductivity that depends on the vegetation itself (Section 2.2.3, equation 2.10).
The relationship between the conductivity in bare soil and soils covered by vegetation
depends exponentially on the FVC. In this relationship, the parameter β appears, which
indicates the magnitude of the relationship. β is preset to a value of 2. Some authors
(Rosero et al., 2010; Zheng et al., 2015) point out the importance of this value and
that it is usually overestimated. Note that the modification of this value would lead to
a modification of soil heat fluxes, and therefore of temperatures, especially minimum
temperature (see Chapter 4 for more details).

To test the sensitivity to this parameter, a series of experiments have been carried
out in which the parameter β has been modified using values 2 (default), 1, and 0.5.
The FVC values taken are those of the COP-YEAR experiment. The rest of the param-
eters are identical to the previous simulations. For simplicity, only the extreme years
2005,2012,2013 and 2016 have been simulated. In other words, a total of 12 new one-
year simulations have been performed.

6.2.2 Observational data

Two databases of maximum and minimum temperature have been used. One consists
on an observational grid (AEMET5K) and the other is composed of direct data from
different observatories of the AEMET network (AEMET-OBS).

AEMET5K database has been generated using a total of 1800 thermometric stations
from the National Climatological Data Bank of AEMET for the period 1951-2019. In
its construction, a climatology based on the historical analysis of the numerical predic-
tion model HIRLAM operating in AEMET has been used as first estimation, which is
corrected by the observations (Peral-García et al., 2017; Amblar-Francés et al., 2020).
AEMET5K has a spatial resolution of 5km, with daily data of minimum and maximum
temperature, and covers the Spanish part of the Iberian Peninsula as well as Balearic Is-
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lands. In order to compare the AEMET5K data and our simulations, all data were inter-
polated to a common mesh, the AEMET5K grid, using a bilinear interpolation method.

AEMET-OBS is a set of 60 automatic stations of the Spanish State Meteorological
Agency (AEMET). Maximum and minimum temperature are available for the period
2000-2017. Figure 6.1 shows the geographical distribution of the meteorological sta-
tions. Model data are interpolated using a bilinear to the spatial location of the meteoro-
logical stations using a bilinear interpolation for comparison purposes.
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Fig. 6.1: Geographical distribution of the 60 automatic meteorological stations from
AEMET.

6.3 Results

6.3.1 Skill of experiments in reproducing the mean fields

We first analyzed the bias climatological errors considering monthly averages for the ref-
erence months of January, April, July and October considering the entire study period
(2000-2017) for both minimum and maximum temperature (Figure 6.2). Only the results
for GUT-CLIM and COP-CLIM are shown, since the COP-CLIM and COP-YEAR sim-
ulations are indistinguishable for mean values.On the other hand, figure 6.3 shows the
boxplot for all months of the year stratified by FVC values. The stratification has been
done according to the values of the COP-CLIM simulation.
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Fig. 6.2: Bias of simulations GUT-CLIM (rows 1,3) and COP-CLIM (rows 2,4) respect
AEMET5K for January, April, July and October (columns 1,2,3,4) and minimum (rows
1,2) and maximum (rows 3,4) temperature.

The maximum temperature is underestimated by all experiments, all months of the
year and most points. Errors ranges from 1 to almost 3 degrees. Bias errors are larger in
summer and smaller in winter for both simulations. Only in some areas such as the Ebro
valley in winter and the Guadalquivir valley in summer do they show good results. The
COP-CLIM simulation presents smaller bias errors in some areas and times of the year,
generally in the months from March to July. In the rest of the year the error statistics
are very similar. The spatial patterns of error are very similar (correlation above 0.97).
This could mean that actually the error pattern cannot be attributed to the change of FVC
database. On the other hand, there does not seem to be a site-specific FVC-dependent
differentiation of errors. The annual distribution of errors is similar across all FVC strata.
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Fig. 6.3: Boxplot of monthly bias respect AEMET5K for all points and stratified by
FVC for minimum (top panel) and maximum temperature (bottom panel).
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Minimum temperature has a differential behaviour across regions and seasons of the
year. In winter, GUT-CLIM overestimates the temperature in the north and center-east
of the IP, reaching values of more than two degrees, and underestimates it in some areas
of the south-east, especially in Extremadura. COP-CLIM reproduces higher tempera-
tures, due to its lower average vegetation, as seen in the previous chapter. This makes
that in the places where GUT-CLIM overestimates, the errors are higher, and where it
underestimates the errors decrease. In general, during these months the biases are higher
in COP-CLIM. However, from March to October the results are better for COP-CLIM.
In general, in both experiments there is a bias error that depends on the time of the
year. This annual dependence explains the variation in skill of the simulations (which is
better) explained above. The boxplot analysis indicates that, although not very notice-
able, the dispersion of GUT-CLIM is higher in several strata and months. This could
be indicative of the role played by the spatial resolution of the FVC in reproducing cli-
matology. The errors appear to be larger. Thus, in this case one can generally say that
COP-CLIM introduces noticeable improvements in mean errors. These improvements
are more noticeable in places with a low level of vegetation.

Secondly, we analyze the skill of the simulations to reproduce the intra-annual vari-
ability of monthly averaged temperatures. For this, we calculate the percentage error in
the variance (Figure 6.4) showing the magnitude of the temperature variability. It will
be shown later that the temporal correlation is very high. The error patterns are prac-
tically indistinguishable between experiments. This means that the modifications that
the FVC introduces in the variance of the series, which we saw in the previous chap-
ter, is of a smaller magnitude than the errors in the variance estimation. In the case of
winter, the patterns for both maximum and minimum temperature have a very marked
orographic character. The variance in high mountain areas is underestimated for maxi-
mum temperature and overestimated for maximum temperature. And there seems to be
an overestimation for the area of the Strait of Gibraltar. In spring, a more complex pat-
tern of overestimation of variance appears for minimum temperatures in western areas
and slopes exposed to the westerly flow. For maxima, the variance of the simulated se-
ries is in most places underestimated. In summer, the variability of the temperature is
overestimated in all places except in the peninsular center. As for the maximums, the
differences present an irregular pattern. In autumn the behavior is very similar to that of
spring.

As a summary we plot the Taylor diagrams of the simulations. They represent the
ability of the experiments to reproduce the spatial patterns of mean averaged monthly
temperature and its standard deviation (Figure 6.5.) All simulations represent very well
the spatial field of temperature, both maximum and minimum. The same is not true
for the spatial pattern of variance. The experiments reproduce the minimum temperature
acceptably but the same is not true for the maximum. The minimum temperature patterns
are not captured for the winter months. For the rest of months results do show some
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Fig. 6.4: Standard deviation percentage error. Simulations GUT-CLIM (rows 1,4), COP-
CLIM (rows 2,5) and COP-YEAR (rows 3,6) respect AEMET5K for January, April, July
and October (columns 1,2,3,4) considering minimum (rows 1,2,3) and maximum (rows
4,5,6) temperature.



6.3 Results 113

S
ta

nd
ar

d 
de

vi
at

io
n

Standard deviation

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

0.5

1

1.5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

1
2
3
4
5
6

7
8
9
10
11
12

GUT−CLI
COP−CLI
COP−VAR

(a) Tn. Mean

S
ta

nd
ar

d 
de

vi
at

io
n

Standard deviation

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

0.5

1

1.5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

1
2
3
4
5
6

7
8
9
10
11
12

GUT−CLI
COP−CLI
COP−VAR

(b) Tx. Mean

S
ta

nd
ar

d 
de

vi
at

io
n

Standard deviation

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

0.5

1

1.5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

1
2
3
4
5
6

7
8
9
10
11
12

GUT−CLI
COP−CLI
COP−VAR

(c) Tn. Variance

S
ta

nd
ar

d 
de

vi
at

io
n

Standard deviation

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

0.5

1

1.5

0.1 0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

Correlation

1
2
3
4
5
6

7
8
9
10
11
12

GUT−CLI
COP−CLI
COP−VAR

(d) Tx. Variance

Fig. 6.5: Taylor Diagrams of minimum (Tn) and maximum (Tx) temperature field rep-
resentation, mean and variance by experiments.

ability to reproduce these fields, but they are not very good. In any case, no experiment
is found to have a higher skill in reproducing the monthly mean fields.
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Fig. 6.6: Temporal correlation of monthly series of minimum and maximum tempera-
ture. Simulations GUT-CLIM (rows 1,4) , COP-CLIM (rows 2,5) and COP-YEAR (rows
3,6) respect AEMET5K for January, April, July and October (columns 1,2,3,4) consid-
ering minimum (rows 1,2,3) and maximum (rows 4,5,6) temperature.
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6.3.2 Interannual variability

In the previous section we analyzed the skill of the simulations to reproduce the observed
fields, based on the AEMET5k grid. Next, we present the ability of the experiments
to reproduce the interannual variability. Figure 6.6 shows the temporal correlation of
the monthly series. The correlation coefficient is always above 0.75 with the average
being above 0.93 in all experiments, variable and time of year. The least good results
are given for the minimum temperatures in winter, as expected, due to the poor variance
reproduction seen in the previous section. Again, the differences between experiments
are practically indistinguishable. However, we do observe some improvement, although
not statistically significant, for COP-CLIM and COP-YEAR experiments with respect
to GUT-CLIM.

In order to study in more detail the possible effect of introducing temporal variability
of the FVC on the skill of the experiments we focused on the study of extreme years and
temporal variability on a daily scale. We compare COP-CLIM and COP-YEAR simu-
lations focusing on specific years where vegetation covers were abnormally low (2005
and 2012) and high (2013 and 2016). In this way, we have calculated the MAE (Mean
Absolute Error) for the COP-YEAR and COP-CLIM simulations and analyzed their per-
centage differences. In Figure 6.7 we plot in percent change of MAE (YEAR-CLIM) for
maximum and minimum temperature as well as differences in FVC and FVC climato-
logical fields. We focus on the month of April. For the year 2005 (dry year) there is
a lower FVC, with respect to the climatology, in practically all the IP reaching differ-
ences of the order of 20%. The largest changes, up to 20%, appear in the south of the
IP, and in this case the differences are negative, which means an improvement of COP-
YEAR with respect to COP-CLIM in most of the IP for both maximum and minimum
temperatures. For the year 2012, something similar happens but in this case we have a
slight worsening in some different areas. For wet years the opposite happens, introduc-
ing more vegetation leads to a worse reproducibility of the observations. With this we
cannot say that introducing the variability of the FVC always leads to an improvement.
The results considering data from AEMET-OBS are depicted in Figure 6.8 and show a
similar behaviour than using AEMET5K.

From the above results, the distribution of temperature errors as a function of FVC
values was further investigated. In Figure 6.9, the MAE differences between the COP-
YEAR and COP-CLIM simulations are plotted stratifying by FVC values from the COP-
YEAR experiment for dry and wet years. The pattern of smaller errors is observed in
the COP-YEAR simulation with smaller FVC values for dry years where most of the
FVC values are less than 40%. For wet years, the opposite behavior is observed, with
a considerable jump from the 40-60% to the 60-100% level, where the errors in the
COP-YEAR simulation are considerably higher. For maximum temperatures, where the
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Fig. 6.7: Percentage difference of MAE in April for minimum (a) and maximum (b)
temperatures between COP-YEAR and COP-CLIM simulations with AEMET5K. Dif-
ference of FVC between COP-YEAR and COP-CLIM (c). FVC of experiment COP-
YEAR (d).

impact of changes in the FVC on the errors is lower, the effect of the magnitude of the
FVC on the error differences is also observed.

Another interesting question is whether changes in the intranannual spatial distribu-
tion of vegetation can lead to an improvement of the reproduced spatial temperature
field. In Figure 6.10 the differences between the year-to-year spatial correlation coef-
ficient for April and minimum temperature are presented. The results are presented by
levels of the FVC in COP-YEAR. The spatial correlations have always very high values
as presented above, higher than 0.93 in all cases. The differences in the simulations point
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out that for low values of FVC, COP-YEAR always enhance the spatial representation
of the temperature fields. However, for large values of FVC the effect may be the oppo-
site. In any case, the differences are small, which does not allow us to clearly confirm
this result.

Thus, although the signal of possible improvement is weak, we have observed that
there is some signal in the errors related to the baseline FVC values. We discuss this in
more detail below. For minimum temperatures, the role of FVC comes into play primar-
ily in the parameterization of soil conductivity as already commented in Section 6.2.1.
The question we can ask ourselves and will address in the next section is whether the
insulation effect of the FVC may be overestimated. Let us now discuss in detail the
effect of the FVC on these temperatures to try to better understand the differential be-
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Fig. 6.9: Boxplot of differences of MAE between COP-YEAR and COP-CLIM exper-
iments, for minimum temperature (Top panel) and maximum (Bottom panel). Differ-
ences of FVC between experiments in extreme dry years (2005-2012) and wet years
(2013-2016). Results binned by FVC COP-YEAR experiment.
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Fig. 6.10: Differences of spatial correlations between COP-YEAR and COP-CLIM ex-
periments binned by FVC values. Calculation made for minimum temperature of April.

havior in the errors as a function of the presence of vegetation that has already been
seen throughout the previous sections. Figure 6.11 represents for the month of April and
stratifying by FVC values from the COP-YEAR simulation, the differences in tempera-
ture and FVC between COP-YEAR and COP-CLIM. When there is a higher FVC in the
COP-YEAR experiment (green dots), lower temperatures are produced. The opposite is
observed, i.e. higher temperatures when vegetation is less dense (brown dots). The slope
of the relationship between temperature differences and FVC changes is greater in April,
due to the fact that in general in this month the maximum plant productivity occurs as
already seen in figures 5.1 and 5.2.

One aspect to note, is the asymmetric distribution observed between temperature and
FVC differences depending on the sign of the FVC changes. For example, in the month
of April, temperature differences close to 1.5 ◦ C are reached when the FVC is more
dispersed, while they do not reach 1 ◦ C when it is denser. It can be seen that for high
FVC values (60-100 %), the response in temperature differences is limited by a certain
threshold, which as we have seen before reaches up to 1 ◦ C for FVC differences of the
order of 20 %. The degree of this limitation is imposed by the empirical coefficient of
thermal conductivity reduction in the presence of vegetation, which reaches almost 90%
for FVC values of 100%.
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Fig. 6.11: Scatter plots of the absolute differences of minimum temperature and FVC
changes for COP-YEAR and COP-CLIM for the period 2000-2017.

6.3.3 Effects of thermal conductivity on climate simulations

As we have seen in the previous section, the errors have a certain dependence on both
the time of year and the base amount of vegetation. As we have seen in previous chap-
ters, the thermal conductivity of the soil can play a very important role in temperature
reproduction, especially of minimum temperatures. The thermal conductivity of the soil
depends on the vegetation. Increasing the FVC leads to a decrease in the thermal soil
conductivity. This implies a reduction of ground heat fluxes. During the day the soil ab-
sorbs less heat and therefore more sensible heat is available to warm the air. At night the
upward ground heat flux is diminished having as consequence a faster cooling of the air.
Therefore, during the night a larger FVC always causes cooling.

The relationship between the conductivity in bare soil and soils covered by vegetation
depends on the inverse of the exponential on the FVC. That is, the more vegetation the
soil contains, the more isolated it is. In this relationship, the parameter β appears, which
indicates the magnitude of the relationship. β is preset to a value of 2. The question that
arises in this section is whether this factor may be exaggerating the reduction in thermal
conductivity and therefore introducing an error factor that depends critically on the base
FVC.

First, the sensitivity of temperature, both maximum and minimum, to this parame-
ter is tested. For this purpose, we use the annual simulations for the chosen years, two
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Fig. 6.12: Difference of minimum temperature in monthly means for the years 2005,
2012, 2013 and 2016 comparing simulations COP-YEAR (β = 2 ) and COP-YEAR-0.5
(β = 0.5) (COP-YEAR - COP-YEAR-0.5).

with positive vegetation anomaly (2005 and 2012) and two with negative anomaly (2013
and 2016) using COP-YEAR simulations as a basis. Figure 6.12 presents the differences
between the simulations COP-YEAR with β = 2 and β = 0.5. We note how decreas-
ing β increases the minimum temperature, the effect being more noticeable in months
with higher available energy and in areas with more vegetation. The differences in the
simulations can locally reach 3 ◦ C in the summer months. Note that this effect is not
constant over the years, the years with more vegetation are logically affected to a greater
extent. This can be seen for example in the large differences that can appear between
April 2013 or 2016 and the same month of 2005 and 2012. The behavior for β = 1
is intermediate (not shown). This expected behavior can be observed by studying the
stratified differences in the simulations (figure 6.13). The changes for soils with little
vegetation are practically null, while in soils with higher FVC they reach an average of
more than one degree in the months of April and July. In the winter months these differ-
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ences barely exceed half a degree in areas with dense vegetation. Thus, the modification
of the thermal conductivity will depend on the vegetation and the season. Therefore, this
parameter will affect the reproduction of the annual cycle, the intraannual variation of
the vegetation and will be a function of the base vegetation of each zone.

Fig. 6.13: Boxplot of minimum T2m differences in monthly means for the years 2005,
2012, 2013 and 2016 comparing COP-YEAR (β = 2) simulations with COP-YEAR-1.0
(β = 1) and COP-YEAR-0.5 (β = 0.5)). Stratified by FVC values.

After the sensitivity analysis, the next question that arises is whether this can really
lead to an improvement in the reproduction of the temperature fields. Let us first analyze
the impact on the minimum temperature fields in April for the years studied. Figure 6.14
presents the bias errors of the simulations taking AEMET5K as reference. The impact of
modifying β is quite significant considering the temperature differences seen above. The
effect of β = 0.5, seems to be very aggressive with respect to COP-YEAR since while
in some areas the BIAS are reduced, in other areas they become more significant than in
the COP-YEAR simulation. For β = 1, the effect on bias erros seems to be more moder-
ate, and apparently a slight improvement over COP-YEAR can be suggested, although
there are areas where there is some worsening. In figure 6.15 in which the BIAS for the
three simulations are stratified, it can be seen how the differences in BIAS are progres-
sively greater with higher values of FVC between the COP-YEAR and COP-YEAR-0.5
simulations. The simulation using β = 1 has an intermediate behavior reducing rather
the bias error.
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Fig. 6.14: Bias error for dry years (2005 and 2012) and wet years (2013 and 2016) for
the simulations COP-YEAR (β = 2) , COP-YEAR-1.0 (β = 1) and COP-YEAR-0.5
(β = 0.5).
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Fig. 6.15: Boxplot of BIAS of minimum T2m differences in monthly means for the
years 2005, 2012, 2013 and 2016 comparing COP-YEAR (β = 2) simulations with
COP-YEAR-1.0 (β = 1)) and COP-YEAR-0.5 (β = 0.5)). Stratified by FVC values.

6.3.4 Observed and simulated trends

In the previous chapter, the trends in the various simulations were presented. One strik-
ing factor was the lower trends observed in COP-YEAR associated with the trends ob-
served in the vegetation databases. In this section we compare the trends observed in
the observations and compare them with those modeled. Figure 6.16 shows the trends
calculated with AEMET5K for both maximum and minimum temperature. In general,
the reproduced trends are in agreement with the simulated ones. The highest trends are
obtained for the maximum temperature in the summer and autumn months, with a dif-
ferentiating pattern between the eastern and western peninsular zones. However, the dis-
tributions are not equal. This means that we cannot conclude anything about the added
value of the incorporation of the variable FVC.

6.4 Discussion and conclusions

In this chapter we have tried to find the added value for the reproduction of climatology
that can have the inclusion of FVC databases, a priori better, with higher resolution, and
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Fig. 6.16: Temperature trends (◦ C/18years) for maximum (right panel) and minimum
(left panel) temperatures for January, Abril, July and October.
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in addition to including its interannual variability. Due to the structure of some errors,
it was decided to study the role of the modification of thermal conductivity linked to
vegetation. The main conclusions that can be drawn from the study are presented and
discussed below.

The effect of the modification of the FVC databases on the skill of the simulations
is small. Errors probably associated with other factors mask the possible enhancement
that could be introduced by these databases. Only slight improvements associated with
the reproduction of the minimum temperature field are achieved. On the other hand, this
opens an interesting debate about the databases used in the evaluation of the experi-
ments. As mentioned in Gómez-Navarro et al. (2012a) this type of data has its problems
since the intercomparison of different grid of observations can have a magnitude of er-
rors similar to those recorded when comparing with simulations. In fact, although we
have not included the results, a comparison has been made with data from the Spain02
database (Herrera et al., 2012) and the differences between the two databases are larger
than the sensitivity of the model to changes in the FVC databases. On the other hand,
the error patterns that present some structure related to orography may be related to the
interpolation methodology used in the construction of the gridded databases, or even
to the interpolation processes for grid comparison. The evaluation study presented here
has also been carried out using station data (AEMET-OBS) and despite of the facts com-
mented previously the results are similar than using AEMET5K. Probably, it would be
desirable to use another type of comparison methodologies for local data that would al-
low to find the point or area in the model that be more significant when carrying out the
evaluation as other works do.

There is an annual signal in the errors, as well as some dependence of the density of
vegetation, especially in the minimum temperatures that indicate that the FVC adjust-
ments throughout the year should be reconsidered. In a second part of the work, a series
of experiments have been carried out in which the β parameter of the thermal conduc-
tivity equation that regulates the insulating effect of the FVC has been modified. The
results show us that the adopted parameter β = 2 may be exaggerating the insulating
effect of vegetation on surface heat transport. A somewhat lower parameter seems to
give better results. Another question that can raise is whether the relationships between
FVC and NDVI established in different works should be a function of the time of the
year, or alternatively the parameter β.
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Conclusions

This thesis focuses on understanding the role of the variable fraction vegetation cover
(FVC) in the Noah Land Surface Model (LSM) coupled to a climate version of the MM5
model. Firstly, have been evaluated different sources of variability that can be found in
FVC datasets due to the original NDVI dataset employed, the methodology of calcula-
tion and the time aggregation of the data (climatologies or near-real time values). Then,
the sensitivity of the Noah LSM to changes in FVC have been studied considering the
different sources of variability afforementioned and more broadly with ideal simulations,
attempting to understand the main physical processes involved with FVC changes. At
last, the high temporal and spatial resolution Copernicus FVC dataset have been ingested
in regional climate simulations from 2000 to 2017 with the aim of elucidate the added
value that a dataset of this kind can brings comparing with observations.

The interest and motivation of this study is justified by the relevance that land surface
processes have in weather and climate. In the context of climate change, the knowledge
of a variable that represents vegetation cover is considered of paramount importance
due to its variability can act as a climate forcing in local, regional and global scales.
Furthermore, this kind of studies are scarce in the Iberian Peninsula (IP) where veg-
etation variability can be remarkable due to its precipitation regime, deforestation or
afforestation processes. Due to the fact that IP has been identified as an area, within the
Mediterranean region, with large sensitivity to climate change, this kind of studies are
needed for improving regional climate and future climate scenarios simulations.

The thesis is structured in four main parts. The first part studies the different sources
of variability that can affect the calculation of FVC and how these can be tranlated in
simulated fields of 2 meter air temperature (T2m) in a RCM ( Chapter 3 ). Chapter
4 is devoted to understand the physical processes that matter in the final response of

127
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near surface temperature through changes in FVC. In Chapter 5 has been carried out
an analysis of regional climate simulations ingesting the Copernicus FVC dataset and
the default climatological values of FVC in the Noah LSM. Finally, in Chapter 6 the
previous simulations have been compared with observations.

Each chapter of this thesis has a specific section devoted to the conclusions of the
most relevant results obtained therein. However, the main conclusions of this thesis are
summarized in Section 7.1 of this chapter, providing a broader prespective of the work.
Additionally, Section 7.2 presents possible future research topics.

7.1 Main conclusions

In Chapter 3, firstly the comparison of two different NDVI databases (EFAI and GIMMS)
is accomplished, from which FVC can be calculated. Then, three calculation method-
ologies, WETZEL, GUTMAN and ZENG using the GIMMS database of NDVI (Tucker
et al., 2005), have been applied to generate three different databases of FVC for the pe-
riod 1982-2006. The differences between these databases and their subsequent effect on
heat fluxes and temperatures were evaluated when incorporated to an annual simulation.
Finally, the effect of using synchronous values of FVC for a dry and a wet year where
compared with climatological values in an additional simulation. The main conclusions
of this chapter are the next:

• EFAI and GIMMS NDVI presents a quite different interannual variability in a ana-
lyzed period of 17 years showing that some uncertainties can be found using NDVI
datasets that can affect to the final calculation of FVC.

• The comparison between the FVC databases, WETZEL, GUTMAN and ZENG re-
veals important differences between them that depend on the NDVI value and the
biome.

• FVC series reveal a important interannual variability, consequently climatological
FVC values can present relevant differences compared with synchronous FVC values.

• The RCM experiments performed exhibit a not negligible effect of FVC uncertainty
on the monthly climatological values. The results showed that differences of 30% of
FVC, that appear in the two sensitivity experiments, can produce bias of 1 ◦ in T2m
monthly values. In addition, the magnitude of the model response depends on the
time of the year, being greater in April and July.

In Chapter 4, a set of ideal simplified simulations with constant values of FVC of 90
% and 30 % have been performed in order of having a better understanding of the phys-
ical processes behind FVC parameterization. FVC drives the distribution of total evapo-
transpiration in transpiration through plants, evaporation canopy and bare soil evapora-
tion, and determines the ratio between latent heat (LE) and sensible heat fluxes (H). In



7.1 Main conclusions 129

Noah LSM, FVC is involved in another important process related with the reduction of
thermal conductivity (Kt ) in presence of vegetation. In this way, ground heat fluxes (G)
are reduced with vegetation, inhibiting heat transport to deeper soil layers during the day
and reducing ground temperature (Tg) during the night. The main conclusions reached
are the next:

• There is a remarkable sensitivity of temperature to FVC in Noah LSM. This effect is
more noticeable at nighttime, and in spring and summer when there is more radiative
energy available in the study area.

• During nighttime, a larger FVC always causes cooling because the upward ground
heat flux is diminished in presence of vegetation via thermal conductivity reduction.

• When soil moisture is available, a FVC increase causes higher LE release through
evapotranspiration during the daytime. Therefore, with larger FVC less energy is
available for sensible heat release and this provokes cooler T2m.

• With high moisture stress, soil moisture can reach the wilting point, and stomatal
canopy resistance acts diminishing latent heat released by evapotranspiration. Under
these conditions, the cooling effect of FVC almost disappears and higher values of
FVC does not implies higher latent heat fluxes.

• In the experiments performed with constant FVC, larger FVC leads to a faster drying
of soil which implies larger effects on canopy resistance. In a situation of scarce
precipitation, a soil with higher FVC reaches the wilting point before a less vegetated
soil. This leads to have less latent heat, occasioning higher diurnal temperatures.

• Canopy resistance parameterization is a relevant parameter controlling evapotran-
spiration. In its formulation in Noah LSM soil moisture deficit factor have a great
importance in study areas like IP where there is a season with remarkable soil hydric
stress.

In Chapter 5 a set of regional climate simulations during the period 2000-2017 have
been carried out with the Copernicus dataset using synchronous monthly values (COP-
YEAR) and climatological monthly values averaged over the time of simulation (COP-
CLIM). Another simulation with the Noah LSM MM5 default FVC dataset have been
performed with lesser horizontal resolution and calculated with climatological values
from 1985 to 1991 (GUT-CLIM). The main conclusions reached are:

• The use of a high resolution and real time FVC is a useful tool for assessing and
understanding the final role that the variable FVC has in a LSM.

• MM5 default FVC climatology (GUT-CLIM) compared with Copernicus FVC presents
higher values, with differences in magnitude between 15-20 % comparing seasonili-
ties averaged over the simulation period. On the other hand, differences in FVC due
to interannual variability (comparison of COP-YEAR and COP-CLIM) can reach
values of 5-10%.
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• Comparison of GUT-CLIM and COP-CLIM shows that differences in vegetation be-
tween these databases can lead to changes in temperature averaged over the entire
period of more than one degree for minimum temperature to 0.5 for maximum tem-
perature. These changes are observed in the variance of the series, being more notice-
able for maximum temperatures.

• Introducing the interannual variability of vegetation with COP-YEAR simulation
(compared with COP-CLIM), shows a sign of change in the variance of the tem-
perature series compared with variance of FVC.

• Trends in FVC cause trends of opposite sign in temperature especially in minimum
temperatures.

Finally, in Chapter 6 the regional climate simulations of Chapter 5 have been com-
pared with meteorological stations and a gridded dataset from AEMET centering the
analysis in minimum and maximum T2m. The effect of the parameterization of soil
thermal conductivity have been evaluated with several sensitivity experiments. These
are the final conclusions of this chapter:

• Copernicus simulations perform better than GUT-CLIM reducing T2m BIAS and
MAE, above all in minimum T2 and in the months of April and July.

• There is a difference in the response of FVC during day and night depending on
its net effect in the radiative balance. For this reason, is needed to assess its role in
T2m considering separetely minimum and maximum daily values. Evaluation of T2m
considering daily mean values in regional climate simulations with FVC near real
time data, can induce to misinterpretations of the final added value of this datasets.

• There are slightly differences in skill between COP-YEAR and COP-CLIM simu-
lations, except in the years where there are maximum differences in FVC between
COP-CLIM and COP-YEAR. In years with FVC below (above) normal values, COP-
YEAR performs better (worst) than COP-CLIM simulation. These differences are
attributed to the role of vegetation in the decrease of thermal conductivity.

• The role of FVC in reducing soil thermal conductivity has a noticeable impact in min-
imum T2m. With the results obtained, it is hypothesized that this reduction is slightly
agressive in Noah LSM and therefore minimum T2m are negatively biased. Addi-
tional work assessing ground heat fluxes with observational data would be needed to
assert this hyphotesis.

• It is necessary to be cautious with long term simulations including synchronus FVC
data. In the trend analysis carried out in this work, uncertainties in the formulation
of the Noah LSM related with FVC can lead to an exaggerated effect of climatic
attribution to vegetation changes.
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7.2 Future work

As a future work the following issues can be addressed:

• Analyze errors of surface fluxes is needed for a better understanding of the results
of maximum T2m. Given the scarcity of surface stations of this kind in the IP, it
would be interesting to use the EUMETSAT LSA-SAF evapotranspiration, H and LE
satellite data products.

• Deepen in the role of FVC in thermal conductivity reduction with the help of ground
flux measurements.

• Perform simulations with more complex LSMs like Noah-MP with a more realistic
approach of biophysical processes related with vegetation.

• Address the study of droughts in detail and how regional climate simulations can be
influenced by more realistic vegetation data.

• Assess the impact of a better spatial and temporal variability of FVC in local circula-
tions and its effect in wind fields.

• Analyze the effect of long term simulations with realistic FVC in precipitation pat-
terns, above all in convective precipitation.

• Considering albedo and FVC datasets together in regional climate simulations as-
sessing its individual contribution.

• The use of satellite datasets of land surface temperature for evaluating real time FVC
datasets in regional climate simulations can be interesting. Surface stations can be
non representative in many cases of the vegetation cover collected by satellite data
due to its location in urban areas or non natural placements. The use of land surface
temperature can allow to assess model performance in forested or agricultural areas
in a more proper way.
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