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Abstract The SPERT problem was defined, in a game theory framework, as the fair
allocation of the slack or float among the activities in a PERT network previous to
the execution of the project. Previous approaches tackle with this problem imposing
that the durations of the activities are deterministic. In this paper, we extend the
SPERT problem into a stochastic framework defining a new solution that tries also
to maintain the good performance of some other approaches that have been defined
for the deterministic case. Afterward, we present a polynomial algorithm for this new
solution that also could be used for the calculation of other approaches founded in the
deterministic SPERT literature.

Keywords Game theory · Project scheduling · PERT network · Slack allocation ·
Polynomial algorithms

1 Introduction

Given a PERT network, or a precedence relations among a set of activities, there exist
too many real situations in which it is necessary to elaborate (previous to the execution
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38 J. Castro et al.

of the project and with some time) a tight schedule or a timetable in order to determine
when each activity must start. For example, if there exist difficulties to find, in a short
period of time, a firm to execute an activity, is convenient to contract the execution
of this activity with some time. This lack of firms availability is very common when
there exist few firms that are capable of doing the activity satisfying the preferences
of the Decision Maker relatives to quality and cost or when, even if there exist many,
the demand is quite bigger than the offer in the market.

It is important to note that in these situations (in which there exist availability
problems) don’t allocate the slack of each activity (to determine when the activity
should start) will produce a significant increase in the total cost and/or in the probability
of delay the project. On the contrary, when there is not availability problems, a common
approach is to use a JIT (Just in time) methodology (see Monden 1983). Let us observe
that with this JIT politic, we only fix with the firms, previous of the execution of the
project, the activities that can be done in the first place (i.e those activities that do not
have predecessors). In the moment in which the decision maker needs someone who
make a particular activity, he tries to find an enterprize or firm (see also Dodin 1985;
Lida 2000 or Monhor 2010 for more details).

In the literature, the problems of elaborating a tight schedule or a calendar (previous
to execution of the project) are often modeled as optimization problems with limited
resources (see for example Rogalska et al. 2008; Talbot and Patterson 1978 or Azaron
et al. 2005). However, this approach is not appropriate in some real situations for
different reasons as: Decision maker has lack of information about costs and resources
because the only available information that he has is the PERT network; There exit
fixed costs and a fixed number of resources enough to the execution of the project;
There exits a necessity to agree with all enterprizes involved in the project and thus a
optimization model is not appropriate.

Taking into account that for the two first situations the optimization problem is
not too relevant and for the third situation is necessary to agree with all enterprizes,
some authors (see Bergantiños and Sánchez 2002a or Castro et al. 2008b) have been
focused its attention to find compromise solutions (also referred as rules), based on
game theory instead of optimization theory, that permits us to agree with all enterprizes
involved in the project.

From mathematical point of view, and without any additional information that the
PERT network, the previous problem is equivalent to the problem of assigning in an
efficient way the total slack among activities without delay the project (see Castro et
al. 2008b). In resource management, the most common approach to assign additional
time to each non critical activity (without increasing the completion time of the whole
project) is to calculate the possible slack for each activity at the beginning of the project,
and then assign slack to the paths which have experienced delays during the execution
of the project. This procedure presents some problems that were analyzed and exposed
in Castro et al. (2008b), Bergantiños and Lorenzo (2008) or Bergantiños and Sánchez
(2002b). Taking into account this problematic and with the aim of present rules that
allow us to assign a priori extra time, Bergantiños and Sánchez (2002a) defined the
SPERT problem from a game theory point of view.

The SPERT problem consists of the a priori assignment of additional time to each
non critical activity without increasing the completion time of the whole project,
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which is represented in the corresponding PERT network. For the case in which this
assignment is efficient and the slack of the SPERT problem coincides with the path
slack of the PERT network (see for more details Castro et al. 2008b), the allocation of
the slack among the activities (SPERT problem) coincides with the elaboration of a
tight schedule. In order to allocate the slack, in Bergantiños and Sánchez (2002a), it is
proposed two solutions for a Non-Transferable Utility game (or NTU game) based on
the compromise value (one of these solutions, the Γ rule, is efficient and so produces
a tight schedule). The second reference in the literature referred to rules for SPERT
problems is also due to Bergantiños and Sánchez (2002b). In this work they extended
the problem to a more general one, the problem with constraints and claims (PCC), and
they defined another efficient rule, the Qc rule. Shragowitz et al. (2003) considered
the problem of slack allocation from a computational point of view and proposed a
non-efficient algorithm. Recently, Castro et al. (2008b) defined an efficient rule (Qd

rule) to the SPERT problem. In that paper, the Qd rule was compared with the previous
rules showing some clear advantages. The Qd rule was also characterized in terms of
some desirable properties.

It is important to note that all previous rules have been defined only for deterministic
PERT networks (i.e., networks in which the only information available is the expected
duration of the activities). In this paper we define a rule (the Qw rule) for stochastic
SPERT problems that extends the rule defined in Castro et al. (2008b) maintaining
its good performance. Finally, we present a polynomial algorithm that permits us to
calculate the Qw rule.

This paper has been organized as follows. Firstly, the SPERT model and the notation
are introduced in Sect. 2. Secondly, a general proportional rule is defined in Sect. 3.
Thirdly, a proportional rule in a stochastic context is introduced and discussed in
Sect. 4. Fourthly, a polynomial algorithm for proportional rule are defined in Sect. 5.
Finally, some conclusions are drawn in Sect. 6.

2 Preliminaries

2.1 PERT networks

A directed graph is a pair G = (X, N ) where X = {x1, . . . , xu} is a finite set of nodes
and N = {1, . . . , n} is the collection of arcs. An arc i ∈ N is given by (xi,1, xi,2),
where xi,1, xi,2 ∈ X .

A source is a node xb ∈ X such that there is no arc (xi,1, xi,2) ∈ N with xi,2 = xb.
A sink is a node xe ∈ X such that there is no arc (xi,1, xi,2) ∈ N with xi,1 = xe.

Given a node x ∈ X , we define the sets of immediate predecessors activities of x
as Pred I m(x) = {i ∈ N/xi,2 = x} and the immediate successors activities of x as
SucI m(x) = {i ∈ N/xi,1 = x}. Let us observe that the activities in a PERT network
are represented by arcs, and thus the sets of immediate successors and predecessors of
a node are refereed to a set of arcs instead of nodes as is usually done in graph theory.

A stochastic PERT Network P E can be defined as a pair (G, D) where G = (X, N )

is a directed graph without cycles, a unique source and a unique sink, N is the set of
arcs representing the set of activities in the project, and D = (Di )i∈N is a random
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vector, being Di the random variable that describes the duration of activity i . A path
π between x and x∗ is a collection of arcs {i1, . . . , i p} such that xi1,1 = x , xi p,2 = x∗
and ∀k ∈ {1, . . . , p − 1} xik ,2 = xik+1,1. A cycle is a path between x and itself. We
denoted by P(x, x∗) the set of all paths between x and x∗. A complete path, is a path
between xb and xe. We denote by P the set of all complete paths.

An alternative definition of stochastic PERT network is given by a 3-tuple
(N , P, D), where N = {1, . . . , n} is the set of activities or arcs of the graph,
P = {π1, . . . , πp} is the set of complete paths in the graph and D = (D1, . . . , Dn),
is a random vector.

In the literature, it is usual to assume that the Di is defined in terms of three
parameters: the optimistic completion time (ai ), the pessimistic completion time (bi ),
and the modal completion time (mi ). Obviously, we assume that bi > Di > ai ≥ 0.

The most common random distribution for these {Di }i=1,...,n variables are:

– Uniform distribution U (a, b):

f (t) =
{ 1

b−a if a < t < b
0 otherwise

– Triangular distribution T (a, m, b):

f (t) =
⎧⎨
⎩

2
(m−a)(b−a)

(t − a) if a < t ≤ m
2

(m−b)(b−a)
(t − b) if m < t < b

0 otherwise

– Beta distribution β(a, α, ϕ, b):

f (t) =

⎧⎪⎨
⎪⎩

0 if t ≤ a
(t−a)α(b−t)ϕ∫ b

a (t−a)α(b−t)ϕdt
if a < t < b

0 if t ≥ b

– Normal distribution N (μ, σ ):

f (t) = 1

σ
√

2π
e
− 1

2

(
t−μ
σ

)2

− ∞ < t < ∞

We will denote by di the expected duration of the activity i and d = (d1, . . . , dn) the
expected duration vector. If di = 0, then i is a fictitious activity which only indicates
a precedence relation among activities. We denote the set of fictitious activities by N̂ .
The duration of a path π , denoted by dπ , is the sum of the durations of the activities
in π , i.e.

∑
i∈π di .

A deterministic PERT Network is a stochastic PERT Network in which the only
information available is the expected duration of the activities. We denote a determin-
istic PERT Network by (G, d) or (N , P, d).

The PERT time, T , is defined as the minimum time that the project needs to be
finished, i.e. T = maxπ∈P dπ . Given a node x ∈ X , we define the earliest time of
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this node, T E
x , as the minimum time required to finish all predecessor activities of the

node x , i.e. T E
x = maxπ∈P(xb,x) dπ = max{i∈Pred I m(x)} (T E

xi,1
+ di ). Given a node

x ∈ X , we define the latest time of this node, T L
x , as the maximum time required

to finish all predecessor activities of the node x without delaying the project, i.e.
T L

x = T − maxπ∈P(x,xe) dπ = min{i∈SucI m(x)} (T L
xi,2

− di ). Obviously, ∀ x ∈ X ,

T E
x ≤ T L

x .
Given a complete path π ∈ P , we define the slack of π , psπ , as the maximum

time, in addition to dπ , that all the activities in π can use without delaying the project,
i.e. psπ = T − dπ . If psπ = 0 then π is a critical path. We denote by P S =
(ps1, . . . , psp), the path slack vector. Given an activity i ∈ N , we define the activity
slack as the maximum time, in addition to di that activity i can use without delaying
the project, i.e. asi = minπ∈P/ i∈π psπ = T L

xi,2
− T E

xi,1
− di . If asi = 0 then i is a

critical activity. We denote by AS = (as1, . . . , asn), the maximum slack vector.

2.2 SPERT problem

A SPERT is given by a 2-tuple (P E, S), where:

– P E = (N , P, D) is a stochastic PERT network.
– S = (S1, . . . , Sp), is the path slack vector.

By default, S = P S. Given M ⊂ N , we will denote by N |M = M , P|M =
{π ∩ M/π ∈ P and π ∩ M �= ∅} , D|M = {Di/ i ∈ M} and S|M = {Sπ/π ∈
P and π ∩ M �= ∅}.

A feasible allocation for the SPERT problem is a vector (xi )i∈N ∈ n such that
xi ≥ 0, ∀i ∈ N and

∑
i∈π xi ≤ Sπ , ∀π ∈ P , and the set of feasible allocations

is F(P E, S). A rule is a function f that assigns to any problem (P E, S) a feasible
allocation, i.e., f (P E, S) ∈ F(P E, S).

Given a SPERT problem (P E, S), we define the maximum slack activity
vector AS(P E, S) = (as1(P E, S), . . . , asn(P E, S)) as follows: asi (P E, S) =
min{π∈P/ i∈π} Sπ . Let us observe that if S = P S then AS(P E, S) = AS.

In order to show what is the relation between the SPERT problem and the tight
schedule for PERT networks we introduce the following remark.

Remark 1 A tight schedule could be defined from a solution of the SPERT problem
if its solution belongs to the Pareto boundary of F(P E, P S) (the Pareto boundary
of a set Y ⊂ n is defined as P B(Y ) = {y ∈ Y / ∀x ∈ n, xi ≥ yi and x �= y,

then x �∈ Y }) and S = P S. In this schedule, a time window is assigned to each
activity in such a way that if the activities durations are substituted by the length of
the time window, all of them become critical. The tight schedule for the project could
be defined according to the following steps:

1. Model the project as a SPERT problem with S = P S.
2. Find a solution x of the SPERT problem using a rule that guarantees that x belongs

to the Pareto boundary.
3. Calculate the new duration for each activity i , d∗

i = di + xi .
4. With these new durations, calculate the earliest start and earliest finish times for

each activity.
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The schedule can be formulated at the beginning of the project or at any moment
in time during its execution. This flexibility is possible because the activities yet to
be performed can always be represented in a PERT network. Consequently, a sched-
ule based on this reduced PERT network can be prepared. Thus, a tool which is
capable of producing project schedules is created for any point in time during its
execution.

3 The proportional to the weights rule

In Castro et al. (2008b) it was defined and analyzed the Qd(P E, S) rule for S P E RT
problems in deterministic P E RT networks. In that paper, the deterministic durations
of the activities, (di )i=1,...,n , was used to measure the a priori importance of each of
the activities. In a stochastic framework, it is necessary to consider more information
to measure the importance of each activity. To this reason, in this section, we will
extend the Qd(P E, S) rule considering a positive weight for non-fictitious activities,
W (P E, S) = (w1(P E, S), . . . , wn(P E, S)), that depends on the stochastic S P E RT
problem, (P E, S).

From now on, and where there is non ambiguity with respect to W (P E, S) =
(w1(P E, S), . . . , wn(P E, S)) we will denote this parameter as W = (w1, . . . , wn).

Following the ideas of proportionality defined in Castro et al. (2008b), the
Qw(P E, S) rule for slack allocation that we introduce in this section are propor-
tional to a weight W . That is, if only one path π with slack exists, this slack must be
distributed according to the following equation:

Rw
i = wi∑

j∈π∩(N\N̂ ) w j
Sπ , ∀i ∈ π ∩ (N\N̂ ). where wi > 0 ∀i ∈ N\N̂ .

In a more general case, given a SPERT problem we have to consider the reduced
SPERT problem (P E1, S1) where: N 1 = {i ∈ N\N̂ / asi (P E, S) > 0}, P1 =
P|N 1 , D1 = D|N 1 and S1 = S|N 1 .

This reduced problem only contains activities that are not critical and not fictitious,
that is, those activities that can receive extra time for their execution. For this reduced
problem, a feasible solution that allocates the slack proportional to the weight is given
by: Rw(P E1, S1) = (

Rw
i (P E1, S1)

)
i∈N 1 where Rw

i (P E1, S1) = λwi , ∀i ∈ N 1 and

λ = max {r ∈ /r W 1 ∈ F(P E1, S1)}. The value of λ is λ = minπ∈P1
Sπ∑

i∈π wi
as

was proved in Castro et al. (2008b).
As happened with the Rd(P E, S) rule for deterministic PERT networks, is neces-

sary to provide an iterative algorithm to define the Qw(P E, S) rule in order to have a
tight schedule.

The Qw(PE, S) rule

Step 1: Given a SPERT problem (P E, S), we define (P E1, S1) as N 1 = {i ∈
N\N̂/asi (P E, S) > 0}, P1 = P|N 1 , D1 = D|N 1 and S1 = S|N 1 and W =
(w1, . . . , wn). For each i ∈ N 1, we calculate: Rw

i (P E1, S1) = λ1wi , where
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Fig. 1 Network of Example 1 A

B

C

D

E

F

λ1 = min
π∈P1

S1
π∑

i∈π wi

Assuming that (P Et , St ) are known ∀t ≤ k: We define (P Ek+1, Sk+1) as:

Step k+1:

N k+1 = {i ∈ N k / asi (P Ek, Sk) > 0}
Pk+1 = Pk |N k+1

Dk+1 = Dk |N k+1

Sk+1
πk+1 = Sk

πk − ∑
i∈π∩N k Rw

i (P Ek, Sk), ∀ πk+1 ∈ Pk+1

For each i ∈ N k+1, we calculate Rw
i (P Ek+1, Sk+1) = λk+1wi

Final step: Computing the solution.
Stop in step T ≥ 1 in which N T �= ∅ and N T +1 = ∅.
Compute the solution Qw(P E, S) as:

Qw
i (P E, S) =

{
0 if i ∈ (N\N 1)∑Ti

k=1 Rw
i (P Ek, Sk) if i ∈ N 1

where, for each i ∈ N 1, Ti (1 ≤ Ti ≤ T ) verifies i ∈ N Ti and i �∈ N Ti +1.

Example 1 Let us consider the PERT network in Fig. 1, where N = {A, B, C, D,

E, F}, P = {π1, π2, π3, π4, π5} where π1 = {A, C, D}, π2 = {A, C, E}, π3 =
{B, C, D}, π4 = {B, C, E} and π5 = {F}, D = (DA, DB, DC , DD, DE , DF ) =
(U (1, 3), β(0, 1, 1, 2), U (2, 4), β(0, 2, 2, 6), U (3, 5), U (9, 11)) and S = (Sπ1 , Sπ2 ,

Sπ3 , Sπ4 , Sπ5) = (2, 1, 3, 2, 0) and W = (wA, wB, wC , wD, wE , wF ) = (2, 2, 2,

6, 2, 2).
In the first step, (N 1, P1, D1, S1) is given by: N 1 = {A, B, C, D, E},

P1 ={{A, C, D}, {A, C, E}, {B, C, D}, {B, C, E}}, D1 =(DA, DB, DC , DD, DE ),

S1 = (2, 1, 3, 2) and λ1 = min { 2
10 , 1

6 , 3
10 , 2

6 } = 1
6 , therefore Ri (N 1, P1, D1, S1) =

1
6wi , ∀i ∈ N 1.

In the second step, (N 2, P2, D2, S2) is given by: N 2 = {B, D}, P2 =
{{D}, {B, D}, {B}}, D2 = (DB, DD), S2 = (2 − 5

3 , 3 − 5
3 , 2 − 1) and

λ2 = min { 1/3
6 ,

4/3
8 , 1

2 } = 1
18 therefore Ri (N 2, P2, D2, S2) = 1

18wi , ∀i ∈ N 2.
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In the third and final step, (N 3, P3, D3, S3) is given by: N 3 = {B}, P3 =
{{B}, {B}}, D3 = (DB), S3 = (3 − 5

3 − 8
18 , 2 − 1 − 2

18 ) and λ3 = 4
9 therefore

RB(N 3, P3, D3, S3) = 8
9 .The solution is Qw = (Qw

A, . . . , Qw
F ) = ( 1

3 , 4
3 , 1

3 , 4
3 , 1

3 , 0).

4 On the election of the weight

In this section, we will find possible weights for Qw(P E, S) that permit us to guarantee
some desirable properties of the proposed rule.

First at all, it is important to note that a necessary condition for the weight is the
additivity (see below) in order to guarantee that the Qw(P E, S) rule satisfies the
properties for slack allocation rules defined in Castro et al. (2008b). So, we will only
consider additive weights. In order to define the additivity property for weights we
introduce the following notation:

Let us observe that an activity can be split into several subactivities (or the oppo-
site, several subactivities can be merged in one) in such a way the original random
variable coincides with the sum of the random variables associated with its subactiv-
ities. Formally, we consider the SPERT problems (P E, S) and (P E∗, S∗) where: 1)
P E∗ = (M, P|M , D∗), S∗ = S|M , M ⊂ N , 2) there exists only one activity k ∈ M
such that D∗

k = Dk + ∑
j∈(N\M) D j , 3) D∗

i = Di ∀i ∈ M\{k} and 4) ∀π ∈ P ,
({k} ∪ (N\M)) ⊂ π or ({k} ∪ (N\M)) ∩ π = ∅.

Additivity (AD): Given the SPERT problems (P E, S) and (P E∗, S∗) as have been
defined previously, we will say that the W (P E, S) weight satisfies the additivity
property if:

wk(P E∗, S∗) = wk(P E, S) +
∑

j∈N\M

w j (P E, S) and

wi (P E∗, S∗) = wi (P E, S) ∀i ∈ M\{k}.

It is easy to prove that the following weights verify the additivity property: the
minimum and maximum values of Di (ai and bi ), the expected mean of Di (di ),
the range of Di (bi − ai ) and, assuming independence among random variables, the
variance of Di (V ar(Di )).

In order to discriminate between the possible weights that are additive we introduce
the Symmetric Risk property for the SPERT allocation rules. This property requires
that when two activities are symmetric in the PERT network (two activities i, j ∈ N
are symmetric in the PERT network if ∀π ∈ P i ∈ π if and only if j ∈ π ), the risk of
delay is the same.

Symmetric Risk (SR): We will say that the f (P E, S) rule satisfies the Symmetric
Risk property if for all (P E, S) and ∀i, j ∈ N , symmetric activities in the PERT
network, the following holds:

P(Di ≥ di + fi (P E, S)) = P(D j ≥ d j + f j (P E, S)).

It is important to emphasize that when a rule does not satisfy this S R property
it is possible that some activities receive more slack that they need and there are
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Table 1 Solution of Example 2

wi = ai wi = bi wi = di wi = V ar(Di ) wi = bi − ai

f A 0 85.714 75 112.5 100

fB 150 64.286 75 37.5 50

fC 0 0 0 0 0

Fig. 2 Network of Example 2 A B

C

other activities that receive less. We can see this pathology in the following exam-
ple:

Example 2 Let (P E, S) be the S P E RT problem define as the PERT network in
Fig. 2, N = {A, B, C}; P = {{A, B}, {C}}; D = (β(0, 100, 200), β(50, 100, 150),
β(300, 350, 400)) and S = (150, 0).

In Table 1, we show the final allocation given by the Qw(P E, S) rule using the
additive weights minimum, maximum, expected mean, variance and range.

Let us observe that all weights except the range give more slack that bi − di (maxi-
mum slack that the activity i could need) for one of the two activities. In this example
the range is the only weight that satisfies the SR property.

It is possible to extend this good behavior of the rule when we chose the range to
a more general class of SPERT problems as we show in the following proposition.

Proposition 1 Let (P E, S) be a SPERT problem. If, all random variables {Di }i=1,...,n

have uniform distribution or all have triangular distribution with mi = ai +k(bi −ai )

and k ∈ [0, 1], then, the Qw rule satisfies the Symmetric Risk property if and only if
the weight vector is proportional to the range, i.e. wi = α(bi − ai ) with α > 0, ∀i =
1, . . . , n.

Proof It is important to note, that if two activities i, j ∈ N are symmetric in the
PERT network, then Qw

j wi = Qw
i w j and thus Qw

i = λwi and Qw
j = λw j . Following

previous equality and SR definition we have:

P(Di ≥ di + Qw
i (P E, S)) = P(D j ≥ d j + Qw

j (P E, S))

⇐⇒ P(Di ≥ di + λwi ) = P(D j ≥ d j + λw j ).

Now, this last equality are equivalent to

FDi (di + λwi ) = FD j (d j + λw j ) (1)

FDi (t) being the distribution function of the random variable Di . The rest of the
proof are divided in two cases (uniform and triangular distribution):
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1. If all random variables {Di }i=1,...,n have uniform distribution and taking into
account that the uniform distribution function is

FU (a,b)(t) =
⎧⎨
⎩

0 t ≤ a
t−a
b−a a < t < b
1 t ≥ b

,

and FU (a,b)(t) = FU (0,1)(
t−a
b−a ), then (1) holds if and only if:

FU (0,1)

(
di + λwi − ai

bi − ai

)
= FU (0,1)

(
d j + λw j − a j

b j − a j

)
⇐⇒ di + λwi − ai

bi − ai

= d j + λw j − a j

b j − a j
⇐⇒ ai + bi −ai

2 + λwi − ai

bi − ai

= a j + b j −a j
2 + λw j − a j

b j − a j
⇐⇒ wi

bi − ai
= w j

b j − a j

Let us observe that this last equality only holds if the weight wi = α(bi −
ai ) wi th α > 0 ∀i = 1, . . . , n.

2. If all random variables {Di }i=1,...,n have triangular distribution with mi = ai +
k(bi − ai ) and taking into account that this triangular distribution function is

FT (a,a+k(b−a),b)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 t ≤ a
(t−a)2

k(b−a)2 a < t ≤ a + k(b − a)

1 − (b−t)2

(1−k)(b−a)2 a + k(b − a) < t < b

1 t ≥ b

and FT (a,a+k(b−a),b)(t) = FT (0,k,1)(
t−a
b−a ), then (1) holds if and only if:

FT (0,k,1)

(
di + λwi − ai

bi − ai

)
= FT (0,k,1)

(
d j + λw j − a j

b j − a j

)
⇐⇒ di + λwi − ai

bi − ai

= d j + λw j −a j

b j − a j
⇐⇒ ai + (1+k)(bi −ai )

3 + λwi − ai

bi − ai

= a j + (1+k)(b j −a j )

3 + λw j − a j

b j − a j
⇐⇒ wi

bi − ai

= w j

b j − a j
.

Let us observe that this last equality only holds if the weight wi = α(bi −
ai ) wi th α > 0 ∀i = 1, . . . , n.

From now on we have taken the range for the Qw rule taking into account its good
behavior.

Remark 2 In Castro et al. (2008b), it is defined some desirable properties and two
characterizations for the Qd rule in deterministic SPERT problems. We can extend in

123



Allocating slacks in stochastic PERT network 47

a trivial way these properties and characterizations to the case in which the SPERT
problem is stochastic and it easy to see that the Qw rule with wi = bi − ai verifies
these properties.

Remark 3 Although it is unreal to suppose that bi = ai (taking into account that
random variables model the time duration of an activity and they are continuous), from
mathematical point of view we could solve this problematic with desirable properties
redefining the weight wi as wε

i = (bi − ai ) + εdi with ε > 0. Obviously, wε
i > 0

for all activity non-fictitious. Finally, we can calculate Qw as limε−→0 Qwε
. Let us

observe that in deterministic PERT networks (in which we don’t know the bi − ai

value) this calculation coincides with Qd if we eliminate the non informative bi − ai

from the weight (i.e. wε
i = εdi ).

5 A polynomial algorithm

In this section, we define and analyze an algorithm for the Qw rule (the Qw rule
algorithm) when the SPERT problem represents the tight schedule problematic (i.e.
S = P S).

Qw rule algorithm; input: P E = (G, D) and W (P E, P S).
Begin

k:=0; EndA:=0; N 0 = {i ∈ N\N̂ }; d0
i = di ∀i ∈ N

Calculate the PERT time (T ) of the P E RT (G,d0)
While EndA=0
Begin

k:=k+1
Calculate the activity slack (ask−1

i ) of the P E RT (G,dk−1)
N k = {i ∈ N k−1 / ask−1

i > 0}
Calculate dauxk

i :=
{

wi

ask−1
i

if i ∈ N k

0 otherwise
If dauxk

i = 0, ∀i ∈ N then
EndA:=1

Else
Begin

t:=1; EndStep:=0
Find a critical path ( πk,t ) in the P E RT (G,dauxk)
While EndStep=0
Begin

Calculate λk,t := T − ∑
i∈πk,t dk−1

i∑
{i∈πk,t ∩N k } wi

Calculate dk,t
i :=

{
dk−1

i + λk,twi if i ∈ N k

dk−1
i otherwise

Calculate the PERT time (T k,t ) of the P E RT (G,dk,t )
If T k,t = T then
Begin
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Calculate dk
i := dk,t

i , ∀i ∈ N
EndStep:=1

End
Else
Begin

t:=t+1
Find a critical path (πk,t ) in the P E RT (G,dk,t−1)

End
End

End
End
Qw

i := dk
i − di , ∀i ∈ N

End

The following example shows how to apply the Qw rule algorithm for the
Example 1.

Example 3 First at all, let us observe that we have two loops in the previous algorithm.
For the first one we have used the k letter and for the second one the t letter.

With k = 0, N 0 = {A, . . . , F}, d0 = (d0
A, . . . , d0

F ) = (2, 1, 3, 3, 4, 10); W =
(wA, . . . , wF ) = (2, 2, 2, 6, 2, 2) and the PERT time is T = 10.

With k = 1, AS0 = (as0
A, . . . , as0

F ) = (1, 2, 1, 2, 1, 0), N 1 = {A, . . . , E} and
daux1 = (daux1

A, . . . , daux1
F ) = (2, 1, 2, 3, 2, 0). In this iteration, for t = 1, π1,1 =

{A, C, D}, λ1,1 = 10−(2+3+3)
2+2+6 = 1

5 , d1,1 = (d1,1
A , . . . , d1,1

F ) = (2+ 2
5 , 1+ 2

5 , 3+ 2
5 , 3+

6
5 , 4 + 2

5 , 10) = ( 12
5 , 7

5 , 17
5 , 21

5 , 22
5 , 10). As the PERT time in the network (G, d1,1)

is T 1,1 = 51
5 > 10 we have other iteration, t = 2, in which π1,2 = {A, C, E},

λ1,2 = 10−(2+3+4)
2+2+2 = 1

6 , d1,2 = (d1,2
A , . . . , d1,2

F ) = (2 + 2
6 , 1 + 2

6 , 3 + 2
6 , 3 + 6

6 , 4 +
2
6 , 10) = ( 7

3 , 4
3 , 10

3 , 4, 13
3 , 10). Now, as the PERT time of the network (G, d1,2) is

T 1,2 = 10, we finish the iteration k = 1 with d1 = ( 7
3 , 4

3 , 10
3 , 4, 13

3 , 10).
With k = 2, AS1 = (as1

A, . . . , as1
F ) = (0, 1, 0, 1

3 , 0, 0), N 2 = {B, D} and
daux2 = (daux2

A, . . . , daux2
F ) = (0, 2, 0, 18, 0, 0). In this iteration, with t = 1,

π2,1 = {B, C, D}, λ1,1 = 10−( 4
3 + 10

3 +4)

8 = 1
4 , d2,1 = (d2,1

A , . . . , d2,1
F ) = ( 7

3 , 4
3 +

2
4 , 10

3 , 4 + 6
4 , 13

3 , 10) = ( 7
3 , 11

6 , 10
3 , 11

2 , 13
3 , 10). As the PERT time of the network

(G, d2,1) is T 2,1 = 67
6 > 10, we have other iteration, t = 2, in which π2,2 =

{A, C, D}, λ2,2 = 10−( 7
3 + 10

3 +4)

6 = 1
18 , d2,2 = (d2,2

A , . . . , d2,2
F ) = ( 7

3 , 4
3 + 2

18 , 10
3 , 4 +

6
18 , 13

3 , 10) = ( 7
3 , 13

9 , 10
3 , 13

3 , 13
3 , 10). Now, as the PERT time of the network (G, d2,2)

is T 2,2 = 10, we finish the iteration k = 2 with d2 = ( 7
3 , 13

9 , 10
3 , 13

3 , 13
3 , 10).

With k = 3, AS2 = (as2
A, . . . , as2

F ) = (0, 8
9 , 0, 0, 0, 0), N 3 = {B} and

daux3 = (daux3
A, . . . , daux3

F ) = (0, 4
9 , 0, 0, 0, 0). In this iteration, for t = 1,

π3,1 = {B, C, D} or π3,1 = {B, C, E}, anyway it holds that λ3,1 = 10−( 13
9 + 10

3 + 13
3 )

2

= 4
9 , d3,1 = (d3,1

A , . . . , d3,1
F ) = ( 7

3 , 13
9 + 8

9 , 10
3 , 13

3 , 13
3 , 10) = ( 7

3 , 13
9 , 10

3 , 13
3 , 13

3 , 10).
As the PERT time in the network (G, d3,1) is T 3,1 = 10 the k = 3 iteration finish
with d3 = ( 7

3 , 13
9 , 10

3 , 13
3 , 13

3 , 10).
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With k = 4, AS3 = (as3
A, . . . , as3

F ) = (0, 0, 0, 0, 0, 0), N 4 = {∅}, daux4 =
(daux4

A, . . . , daux4
F ) = (0, 0, 0, 0, 0, 0) and thus the algorithm finishes. The final

solution is Qw = (Qw
A, . . . , Qw

F ) = ( 1
3 , 4

3 , 1
3 , 4

3 , 1
3 , 0).

Lemma 1 For each k iteration, the computational complexity of the Qw rule algo-
rithm is bounded by mn2 where m is the number of paths in the P E RT network.

Proof Taking into account that the elemental operations of the algorithm (without
including the number of steps in the second loop) is bounded by n2, we only have to
prove that the number of iterations (for each k) in the second loop (denoted by t) is
bounded by m. Effectively, this is true because when the algorithm pass from t to t +1
at least one path π ∈ P is excluded (in the rest of iterations) for the calculation of the
λk,r with r ≥ t + 1.

Let us observe that the algorithm pass from t to t +1 when T k,t �= T . If this happen,
then T k,t > T because T k,t is the PERT time in (G, dk,t ) and at least πk,t has duration
T . And so, it can be seen from the calculation of λ that λk,t+1 < λk,t holds, which
implies that at least πk,t is excluded for the calculation of the λk,r with r ≥ t + 1.

Proposition 2 The solutions obtained by the Qw rule algorithm and the Qw rule coin-
cide for SPERT problems with S = P S.

Proof Taking into account that the Qw rule algorithm and the Qw rule are iterative
process with the same stop-criteria (both processes finished when there is not slack to
allocate in non-fictitious activities), is enough to prove that in each iteration (k) and
for each activity (i), the slack allocation of the Qw rule, denote by Rw

i (P Ek, Sk) and
the slack allocation of the Qw rule algorithm (dk

i − dk−1
i ) coincides. To prove that

Rw
i (P Ek, Sk) = dk

i − dk−1
i for all k, we will use completed induction.

For k = 1, Rw
i (P E1, S1) = λ1wi if i ∈ { j ∈ N\N̂/as j (P E1, S1) > 0}, 0

otherwise, and d1
i − d0

i = λ1,twi if i ∈ { j ∈ N\N̂/as0
j > 0}, 0 otherwise, t being the

iteration in which T 1,t = T . As as j (P E1, S1) = as0
j for all j ∈ N when S = P S,

is enough to prove that λ1 = λ1,t , t being the iteration of the Qw rule algorithm
in which T 1,t = T . From the definition λ1,t and the fact that T 1,t = T it can be
concluded that λ1,t W ∈ F(P E1, S1) and for all ε > 0, (λ1,t + ε)W /∈ F(P E1, S1).
As λ1 = max {r ∈ /r W 1 ∈ F(P E1, S1)}, both values coincide.

Now, let us suppose that for r ≤ k, Rw
i (P Er , Sr ) = dr

i − dr−1
i , we have to prove

that Rw
i (P Ek+1, Sk+1) = dk+1

i − dk
i . This part of the proof mimics the case k = 1,

taking into account that as j (P Ek+1, Sk+1) = ask
j for all j ∈ N when S = P S.

From the Lemma 1, it can be followed that the computational complexity of the
Qw rule algorithm is bounded by n3m, m being the number of paths. The following
proposition reduces this complexity under the soft assumption that the weights belong
to the natural numbers set.1

Proposition 3 Let (P E, P S) be a SPERT problem, if wi ∈ N+, then the com-
putational complexity of the Qw rule algorithm is bounded by n3n(w), where
n(w) = Min

{
Maxπ∈P1

{∑
i∈π wi

}
, m

}

1 Let us observe that for the case in which the weight is the range, this assumption is not too restrictive
since the maximum and the minimum expected duration are usually calculated in terms of workdays.
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Proof Taking into account the Lemma 1, we only have to prove that the num-
ber of iterations (for each k) in the second loop (denoted by t) is bounded by
Maxπ∈P1

{∑
i∈π wi

}
. As Maxπ∈P1

{∑
i∈π wi

} ≥ ∑
i∈πk,1∩N k wi and wi ∈ N+,

it is enough to prove that
∑

i∈πk,1∩N k wi >
∑

i∈πk,2∩N k wi >
∑

i∈πk,3∩N k wi > . . .,
since in each iteration at lest we reduce in one unit

∑
i∈πk,1∩N k wi and this sum obvi-

ously is a positive integer.
Let t and t + 1 be two consecutive sub-iterations. On one hand, πk,t is the critical

path of the network (G, dk,t−1) and thus

T k,t−1 =
∑

j∈πk,t

dk−1
j +λk,t−1

∑
j∈πk,t ∩N k

w j ≥
∑

j∈πk,t+1

dk−1
j + λk,t−1

∑
j∈πk,t+1∩N k

w j .

(2)

On the other hand, as πk,t+1 is the critical path of the network (G, dk,t ), T k,t > T
holds and thus

T k,t =
∑

j∈πk,t+1

dk−1
j + λk,t

∑
j∈πk,t+1∩N k

w j >
∑

j∈πk,t

dk−1
j + λk,t

∑
j∈πk,t ∩N k

w j = T .

(3)

In Lemma 1 we proved that λk,t−1 > λk,t . So is possible to rewrite λk,t−1 = λk,t +ε,

with ε > 0. Now, replacing this expression in the inequality (2) the following holds:

∑
j∈πk,t

dk−1
j +(λk,t + ε)

∑
j∈πk,t ∩N k

w j ≥
∑

j∈πk,t+1

dk−1
j +(λk,t + ε)

∑
j∈πk,t+1∩N k

w j

(4)

Now, let us suppose that
∑

j∈πk,t+1∩N k w j ≥ ∑
j∈πk,t ∩N k w j . If we used this

inequality to the previous one, we have that:

⇔
∑

j∈πk,t

dk−1
j + λk,t

∑
j∈πk,t ∩N k

w j ≥
∑

j∈πk,t+1

dk−1
j + λk,t

∑
j∈πk,t+1∩N k

w j .

Obviously, this last inequality is a contradiction with the inequality (3), so we can
conclude that

∑
j∈πk,t+1∩N k w j <

∑
j∈πk,t ∩N k w j for all t ≥ 1. ��

Remark 4 Although one can think that the previous proposition does not reduce con-
siderably the bound of the computational complexity, it is important to emphasize that
in real projects, even assuming that the maximum expected duration is 10 times the
expected duration (i.e. bi ≤ 10di ) and the minimum expected duration is 0, the n(w)

value with wi = bi − ai ∀ i = 1, . . . , n, is lower than 10T . Let us observe that this
amount is usually considerably lower than the number of paths.
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6 Conclusions and final remarks

Taking into account that there exist too many real situations in which it is necessary
to elaborate a tight schedule or a calendar from a PERT network previous to the
execution of the project, the SPERT problem was defined from a game theory point
of view. Nevertheless, few efforts have been dedicated to find efficient algorithms
from computational point of view that permits us to tackle with real size SPERT
problems. In this paper we have defined an efficient algorithm that permit us to solve
real size stochastic SPERT problems. Let us observe that following the Remark 4 and
the Footnote 1 we can guarantee that the Qw rule algorithm is polynomial for real
stochastic SPERT problems.

In addition with the definition of this new algorithm, we have extended the Qd rule
to the case in which the PERT network is stochastic. This extension (the Qw rule)
with wi = bi − ai , presents the same desirable properties that presented the Qd rule
defined in Castro et al. (2008b).

Let us also to remember that the algorithm presented in this paper is only available
for SPERT problems that represent the tight schedule problematic (i.e. S = P S). For
SPERT problems this situation is the more interesting since when S �= P S the slack
allocation problems can produce a non real schedule.

Obviously, this work leaves also some open questions. For example, in this paper
we have been focused on uniform, triangular or beta random distributions. In Propo-
sition 1 we present a desirable result for uniform and triangular random distributions.
Taking into account that triangular random distributions can be viewed as convolu-
tions of uniforms and the fact that, recently, in Monhor (2005), it is given a gen-
eral formula that permits to explain more complex random distributions based on
convolutions of uniform distributions, it could extend the Proposition 1 to a more
general framework. How to do that is a question that merits to be studied in a
future.

To conclude this paper, let us give the following three remarks.
Firstly, let us observe that another important situation in which is necessary the use

of tight schedules is in the problem of allocating the cost that is produced for a delay
in a project. In the problem of how to allocate the cost when a delay is produced we
should determine the slot that each activity had, so is necessary to have an schedule
as the starting point to decide for each activity its guilty or its associated payment of
the total cost produced by the delay (see Brânzei et al. 2002, 2010; Castro et al. 2008a
for example).

Secondly, we will like to emphasize that the Qw rule proposed in this work can
be understood also as a generalization of the Γ and Qc rules, since these three rules
are based on an iterative process in which the slack is allocated in a proportional
way.

Finally, let us observe that given a specific calendar C , it is possible to find a weight
wc such that the Qwc rule proposed in this paper provide this calendar. Taking into
account this important property of the rule, the algorithm of this paper could be used
(changing adequately the weights) to tackle with the problem of finding calendars
from an optimization point of view.
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