UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE CIENCIAS MATEMATICAS

TESIS DOCTORAL
Contribuciones a la Seguridad del Aprendizaje Automatico

(Contributions to the Security of Machine Learning)

MEMORIA PARA OPTAR AL GRADO DE DOCTOR
PRESENTADA POR
Roi Naveiro Flores

Directores
David Rios Insua

David Gomez-Ullate

Madrid

© Roi Naveiro Flores, 2020

Programa de doctorado en Ingenieria Matematica,
Estadistica e Investigacién Operativa por la
Universidad Complutense de Madrid y la
Universidad Politécnica de Madrid

FACULTAD DE CIENCIAS MATEMATICAS (UCM)

Contribuciones a la
Seguridad del Aprendizaje Automatico

(Contributions to the Security of Machine Learning)

Tesis Doctoral

Roi Naveiro Flores

DIRECTORES

David Rios Insua
David Goémez-Ullate
Ano 2020

Agradecimientos

El apoyo de mi director David Rios Insua ha sido condicién necesaria (y dirfa que
suficiente) para la realizacién de esta tesis doctoral. Gracias. Hago extensivo mi
agradecimiento a todos los investigadores con los que he tenido el placer —y muchas
veces el honor— de trabajar, con mencién especial a mi co-director David Gémez-
Ullate, y al profesor David Banks, que me brindé la oportunidad de realizar dos
estancias en Duke University, donde tanto he aprendido.

Eskerrak bihotzez nire ama Lourdesi, jakintzaz beterik zaudelako eta hutsegiteen
aurrean arduraz jokatzen irakatsi didazulako, zuregan eredu izan ditudan irmotasun
eta ausardiaz. Grazas ao meu pai, por contaxiarme a sta sensibilidade, a sta ad-
miracién pola natureza, o seu gusto pola literatura (se é en galego, mellor), e por
facerme unha persoa loitadora e combativa. Gracias a mi hermana Amaia, a quien
secretamente admiro, has sido siempre un apoyo indispensable, particularmente en
tiempos de pandemia; a mi hermana Marina, un referente inalcanzable; y a mis
sobrinas Helena, Inés y Alicia, por tantos momentos.

Para concluir, quiero agradecer al Ministerio de Educacién la financiacion de
mi investigacién a través de la beca FPU15-03636. Ademas, quiero reconocer el
apoyo brindado por el Ministerio de Ciencia mediante el proyecto MTM2017-86875-
C3-1-R AEI/ FEDER EU, la catedra AXA-ICMAT, el proyecto EU’s Horizon 2020
nimero 740920 CYBECO (Supporting Cyberinsurance from a Behavioural Choice
Perspective) y el Statistical and Applied Mathematical Sciences Institute (SAMSI).

il

v

Contents

Acknowledgements

Contents

List of Tables

List of Figures

List of Algorithms

Notation

Abstract

Resumen

1 Introduction

1.1
1.2

1.3

1.4

1.5

1.6

Motivation
Adversarial Machine Learning: a review
1.2.1 Adversarial classification
1.2.2 Adversarial prediction
1.2.3 Adversarial unsupervised learning
1.2.4 Adversarial reinforcement learning
1.2.5 Adversarial examples L.
1.2.6 Comments
Reactive Defences in Time Series Security

Problems.
Proactive Defences in Classification Problems
1.4.1 ARA templates for AML
1.4.2 A decision theoretic pipeline for AML
1.4.3 AML from an ARA perspective
Algorithmic Approaches in AML
1.5.1 Gradient Methods for Stackelberg Games in AML
1.5.2 APS Methods for Non-cooperative Games
Research objectives and dissertation structure

iii

iv

ix

xii

xiii

XV

xVii

xxi

vi

2

Contents
Reactive Defences in Time Series Security Problems 25
2.1 Motivation 25
2.2 Problem formulation and model description 26
2.2.1 Continuous valued time series 27
2.2.2 Discrete valued time series 32
2.2.3 General scheme L0 34
2.3 Implementation 34
2.4 Empirical test for accuracy 39
2.5 Discussion 43
Proactive Defences in Classification Problems 45
3.1 Introduction 45
3.2 Adversarial Classification based on Adversarial Risk Analysis 46
3.2.1 The classifier problem 47
3.2.2 The attacker problem o0 50
3.2.3 Algorithmic implementation 52
3.3 A case study in spam detection 52
3.3.1 Classifier elements 53
3.3.2 Adversary elements 53
3.3.3 Exampleo 54
3.34 Robustness o7
3.4 Computational issues L L 60
3.4.1 Computational assessment 60
3.4.2 Computational enhancements 60
3.4.3 Application 63
3.5 Dealing with discriminative classifiers 65
3.5.1 An Approximate Bayesian Computation sampling approach . 66
3.5.2 A case study in multiclass malware detection 69
3.6 Discussion 71
Algorithmic approaches: Gradient Methods for Stackelberg Games

in AML 73
4.1 Introduction 73
4.2 Stackelberg gameso L L 74
4.3 Solution Method 75
4.3.1 Backward solution 76
4.3.2 Forward solution 79
4.4 An extension to Bayesian Stackelberg games 80
4.5 Experiments 81
4.5.1 Conceptual Example 82
4.5.2 An application to adversarial regression 83

4.5.3 An application to adversarial regression with limited knowledge 85
4.6 Discussion 87

Contents vii

5 Algorithmic approaches: APS Methods for Non-cooperative Games 89

5.1 Introduction 89
5.2 Sequential non-cooperative games with complete information 90
5.2.1 Monte Carlo simulation for games 91
5.2.2 Augmented probability simulation for games 92
5.2.3 Sampling from a power transformation of the marginal aug-
mented distributiono 94
5.2.4 Sensitivity analysis for games 98
5.3 Sequential non-cooperative games with incomplete information: ARA 100
5.3.1 MC based approach for ARA 101
532 APSfor ARA 102
5.3.3 Sensitivity analysis of the ARA solution 107
5.4 Computational assessment 107
5.4.1 Computational complexity 107
5.4.2 A computational comparison 107
5.5 A cybersecurity application L. 109
5.6 Discussion 114
6 Conclusions 117
6.1 Introduction 117
6.2 Reactive Defences in Time Series Problems 117
6.3 Proactive Defences in Classification Problems 118
6.4 Algorithmic approaches: Gradient Methods for Stackelgerg Games in
AML . . . 119
6.5 Algorithmic approaches: APS Method for
Non-cooperative Games 120
6.6 Future research lines 120
6.6.1 Robustifying ML algorithms through Bayesian ideas 120
6.6.2 Modeling and computational enhancements 121
6.6.3 Applicationso 122
Appendices 123
A Proofs of Monte Carlo based approaches for solving sequential
games 125
A.1 Algorithm 10. Subgame perfect equilibria 125
A.2 Algorithm 13. ARA solutions 126
B Gibbs sampling based APS methods 127
B.1 Subgame perfect equilibriao 127
B.2 ARA for incomplete information games 127

Bibliography 127

viii Contents

List of Tables

1.1

2.1

3.1
3.2
3.3

0.1

5.2

2.3

Performance of utility sensitive NB in clean and attacked data. 2

Mean, median, min and max times in seconds of update, short term

and long term prediction for different models. 38
Comparison between MC ACRA, raw ACRA and NB.. 63
Mean and median speed-ups.o 64

Comparison between size 0.5 MC ACRA and NB under 2-GWI attacks. 64

(a) Defender’s net costs; (b) Successful attack probabilities; (c¢) At-

tacker’s net benefits; (d) Beta distribution parameters 96
Required sample sizes by MC and APS algorithms for games with
complete and incomplete information 107

Computational time, minimum number of required MC and APS
samples and augmentation parameters at optimality for different
Precisions 109

X

List of Tables

List of Figures

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8

2.1
2.2

2.3
24

2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6

An original input and its attacked version. 2
Basic two player sequential defend-attack game 12
Influence Diagrams for defender and attacker problems. 14
Basic two player simultaneous defend-attack game. 14
Basic template for sequential defend-attack game with private infor-

mation. 16
Influence diagram for a supervised learning problem 19
Influence diagram for a generic adversarial supervised learning problem 20
Supervised learning from the defender’s perspective 21
Continuous time series with linear and outburst terms. 27

Sample autocorrelation function of a network monitoring series with
seasonal component. The period is 48, corresponding to measuring

the series twice every hour for a fullday. 29
General scheme.o L 34
Structure of the python package for time series monitoring and

anomaly detection.o oL 35
Short term forecasting using 95% one-step ahead predictive intervals. 36
Long term forecast for continuous time series 37
Long term forecast for discrete time series 38
Time series used for the comparisons. 40

Point forecast performance comparison for the continuous time series. 41
Point forecast performance comparison for sample 3 using hand-crafted
features for ARIMA and ES models versus the automatic fitting of our
approach (forcing seasonality and giving the period of this seasonal
COMPONENt). . . . v v ot 42
Point forecast performance comparison for the discrete time series. . 42
Empirical coverage for 1, 5 and 10 steps ahead predictive distributions. 43

(Classification as an Influence Diagram. 46
Adversarial classification as a Bi-agent Influence Diagram 47
Influences Diagrams for the Classifier and the Adversary problems. . 48
Average accuracy versus k for different utility models. 56
Average attained utility versus k for different utility models. 57
Average false positive rate versus k for different utility models. 58

xi

xii

List of Figures
3.7 Average false negative rate versus k for different utility models. 59
3.8 ACRA accuracy gain with respect to the game theoretic solution. . . 60
3.9 Speed-up histograms. 63
3.10 Accuracy comparison LR vs AB-ACRA., 71
4.1 The two-player sequential decision game with certain outcome. 74
4.2 Empirical comparison of time and space scalability. 82
4.3 Performance comparison. 85
4.4 Convergence for several initial points. 85
4.5 Performance comparison for different means and variances of the wine
specific costs. 86
5.1 Attacker problem solutions for each defense 97
5.2 Solutions of Defender problem 98
5.3 Defender optimal solutions for the game with complete information
using power augmented distributions.o 0oL L 98
5.4 Sensitivity analysis of the solution of the game with complete information100
5.5 Estimation of pp(a | d) through ARA 104
5.6 ARA solutions for the Defender 105
5.7 Defender optimal solutions for ARA using power augmented distribu-
PIOIS. « . . . 105
5.8 Estimation of pp(a | d) through ARA 106
5.9 ARA solutions for the Defender 106
5.10 Defender’s expected utility surface. 108
5.11 Bi-agent influence diagram of the cybersecurity application. 110
5.12 Costs of DDoS protection given protection hired 110
5.13 ARA solution computed using APS 113

5.14 APS solutions for different augmentation parameter values 114

List of Algorithms

N O Ot W \V]

oo

10

11
12
13
14

15
16

Predictive interval calculation for discrete time series.. 33
Long term forecast linear + seasonal trend. 37
GENERATE U§(a). - .« « o o oo e 52
ESTIMATE po(Quoyar [T, Yi) - o o o o o o 52
ACRA scheme. 53
General ARA procedure for Adversarial Classification 66
ABC scheme to sample from po(x|z’)o 69
Approximate total derivative of defender utility function with respect

to her decision using backward solution 78
Approximate total derivative of defender utility function with respect

to her decision using forward solution. 80

MC approach for non-cooperative sequential games with complete

information 91
MH APS for non-cooperative sequential games with complete information. 93
Robustness assessment of solutions for games with complete information 99

MC based approach to solve the ARA problem 101
MH APS to approximate ARA solution in the sequential game. 104
Gibbs based APS to solve a game with complete information. 128
Gibbs based APS approach to solve the ARA problem 128

xiil

Xiv

List of Algorithms

Notation

General comments

Most part of this PhD thesis is devoted to model confrontations between two agents:
a Defender (she) and an Attacker (he). The Defender is usually denoted as D. Her
actions belong to the set D. Individual actions are generally denoted as d. Similarly,
the Attacker is denoted as A, his decision set is A, and his actions are denoted as a.

Unless noted, the gradient will be denoted as d,; the partial derivative as 0,.
Similarly, second partial derivatives will be denoted as 92 and 9,0,. We shall use this
notation indistinctly for the unidimensional and multidimensional cases. For instance,
if f(z,y) is a scalar function, = is a p-dimensional vector and y is a g-dimensional
vector, then 92 f(z,y), the Hessian matrix, is the p X p matrix whose (4, j) entry is
02,0y, f (x,y), where z; is the i-th component of the vector x. Similarly, 9.9, f(z,y)

is a p x ¢ matrix whose i, j entry is 9,,0,, f(x,y).

Abbreviations

ABC: Approximate Bayesian
computation

AC: Adversarial classification
ACRA: AC based on adversarial risk
analysis

AD: Automatic Differentiation

ADS: Autonomous driving system
ATI: Artificial intelligence

AML: Adversarial machine learning
APP: Adversarial prediction problem
APS: Augmented probability simulation
AR: Autoregressive

ARA: Adversarial risk analysis
ARIMA: Autoregressive integrated
moving average

AT: Adversarial training

BAID: Bi-agent influence diagram
BGR: Brooks-Gelman-Rubin

BNE: Bayes-Nash equilibrium

CART: Classification and regression
trees

CK: Common knowledge

CNN: Convolutional neural network
DDoS: Distributed denial-of-service
DLM: Dynamic linear model

DM: Decision maker

DNN: Deep neural network

ES: Exponential smoothing

FNR: False negative rate

FPR.: False positive rate

GWI: Good Word Insertion

GESD: Generalized extreme Student
deviation

ICD: Internet connected device
ICT: Information and communication
technologies

ID: Influence diagram

IoT: Internet of things

XV

Xvi

KKT: Karush-Kuhn-Tucker
LSTM: Long-short term memory
MAE: Mean absolute error

MAPE: Mean absolute percentage error
ML: Machine learning

MC: Monte Carlo

MCMC: Markov chain Monte Carlo
MH: Metropolis-Hastings

MR: Multinomial regression

MSE: Mean squared error

NB: Naive Bayes

NE: Nash equilibrium

Notation

NN: Neural network

PDE: Partial Differential Equation
PGD: Projected gradient descent
RL: Reinforcement learning
RSME: Root mean squared error
SG-MCMC: Stochastic gradient
Markov chain Monte Carlo

SLLN: Strong law of large numbers
TMDP: Threatened Markov decision
process

VAE: Variational autoencoder

Abstract

Machine learning (ML) applications have experienced an unprecedented growth over
the last two decades. However, the ever increasing adoption of ML methodologies
has revealed important security issues. Among these, vulnerabilities to adversarial
examples, data instances targeted at fooling ML algorithms, are especially important.
Examples abound. For instance, it is relatively easy to fool a spam detector simply
misspelling spam words. Obfuscation of malware code can make it seem legitimate.
Simply adding stickers to a stop sign could make an autonomous vehicle classify it
as a merge sign. Consequences could be catastrophic.

Indeed, ML is designed to work in stationary and benign environments. However,
in certain scenarios, the presence of adversaries that actively manipulate input data
to fool ML systems to attain benefits break such stationarity requirements. Training
and operation conditions are not identical anymore. This creates a whole new class
of security vulnerabilities that ML systems may face and a new desirable property:
adversarial robustness. If we are to trust operations based on ML outputs, it becomes
essential that learning systems are robust to such adversarial manipulations.

This thesis explores the topic of secure ML focusing on security against intentional
adversarial threats. Since first observations by Dalvi et al. 2004, who noted that
it was relatively easy to fool linear classifiers in spam detection systems simply by
adding “good” words to emails to make them be classified as legitimate, research in
security issues of ML has grown exponentially. This research is not only targeted at
exploring new vulnerabilities of learning systems, but also aims at providing efficient
defenses. Two types of defense methods have been proposed: reactive ones aimed at
mitigating or eliminating the effects of an eventual attack, whereas proactive ones
aimed at preventing the attack execution.

In this thesis we propose novel defense mechanisms to adversarial attacks and
study their relevant algorithmic aspects. The first objective of the thesis (O1),
accomplished in Chapter 2, is that of developing a novel reactive defense for time
series security problems. We have worked on advanced detection of threats in the
domain of predictive network monitoring, so as to mitigate the effect of potential
attacks. In this domain it is common to deal with a huge number of high frequency
time series. Thus, our predictive system, apart from being accurate, needs to be
scalable, automatic and versatile. We have provided a framework to identify safety
and security issues within a large number of internet connected devices that fulfills
these conditions.

The second objective (02), attained in Chapter 3, is that of providing a proactive

xvii

xviii Abstract

defense in classification problems. Among proposed proactive defenses in secure
ML, security-by-design approaches constitute an important subclass. These entail
modeling adversarial actions explicitly when designing the learning system. Stem-
ming from the pioneering work by Dalvi et al. 2004, most approaches model the
confrontation between adversary and ML system within the framework of game
theory with underlying common knowledge hypothesis, unrealistic in most security
settings. In Chapter 3, we provide a general, Bayesian probabilistic framework based
on adversarial risk analysis (ARA) for modeling such confrontation. Our approach
mitigates standard common knowledge assumptions by modeling explicitly, not only
the presence of an adversary, but also our uncertainty about his elements.

Finding equilibria, or seeking ARA solutions, of typical games used in secure
ML is very challenging from a computational perspective, as we need to face a new
paradigm: while in classical game theory intervening agents were humans whose
decisions are generally discrete and low dimensional, in secure ML decisions are
made by algorithms and are usually continuous and high dimensional, e.g. choosing
the weights of a neural network. As a result, scalable numerical algorithms to solve
these type of games are required. Chapters 4 and 5 provide gradient based and
simulation based solution approaches, respectively, and study their scalability with
the dimension of decision sets, thus accomplishing the two last objectives of this
thesis (O3 and O4).

For the sake of reproducibility, the code used in the experiment of this thesis is
open-sourced and available at https://github.com/roinaveiro. In addition,
the following papers, with the most significant results of this PhD thesis, have already
been published:

NaAvVEIRO, R.; RODRIGUEZ, S. & Rios INsua, D. (2019). Large scale
automated forecasting for network safety and security monitoring. Applied
Stochastic Models in Business and Industry, 35(3), 431-447, https://doi.
org/10.1002/asmb.2436.

NAVEIRO, R.; REDONDO, A.; Rios INsua, D. & RUGGERI, F. (2019).
Adversarial classification: An adversarial risk analysis approach. International
Journal of Approximate Reasoning, 113, 133-148, https://doi.org/10.
1016/5.19ar.2019.07.003.

NAVEIRO, R. & Rios INsua, D. (2019). Gradient Methods for Solving
Stackelberg Games. Algorithmic Decision Theory. ADT 2019. Lecture Notes in
Computer Science, 11834, Springer, Cham, https://doi.org/10.1007/
978-3-030-31489-7_09.

BANKsS, D.; GALLEGO, V.; NAVEIRO, R. & Rios INsua, D. (2020). Adversar-
ial Risk Analysis (Overview). Wiley Interdisciplinary Reviews: Computational
Statistics, Wiley Online Library.

While the next still await to be published:

Abstract xix

EKIN, T.; NAVEIRO, R.; TORRES BARRAN, A. & Rfos INsua, D. (2019).
Augmented Probability Simulation Methods for Non-cooperative Games. arXiv
preprint arXiw:1910.04574.

Rios Insua, D.; NAVEIRO, R.; GALLEGO, V. & Pouros, J. (2020). Adver-
sarial Machine Learning: Perspectives from Adversarial Risk Analysis. arXiv
preprint arXiv:2003.03546.

GALLEGO, V.; NAVEIRO, R.; REDONDO, A.; RUGGERI, F. & Rfos INsuA,
D. (2020). Protecting Classifiers From Attacks. A Bayesian Approach. arXiv
preprint arXiv:2004.08705.

GALLEGO, V.; NAVEIRO, R.; & Rios INsua, D. (2020). Perspectives on
Adversarial Classification.

Additional related work to that of this PhD thesis has been conducted in

GALLEGO, V.; NAVEIRO, R. & Rios INsua, D. (2019). Reinforcement
Learning under Threats. AAAI Conference on Artificial Intelligence, Vol. 33,
pp- 9939-9940, https://doi.org/10.1609/aaai.v33101.33019939.

Besides, a number of talks have also been derived from its contents:

NAVEIRO, R. (June, 2017). Monitoring for anomalous behaviour in massive
traffic time series. Oral presentation at the Bayesian Inference in Stochastic
Processes Workshop (BISP10), Bocconi University, Milano, Italy.

NAVEIRO, R. (November, 2017). Adversarial Classification: An Adversarial
Risk Analysis approach. Oral presentation at the 1st Spanish Young Statisti-
cians and Operational Researchers Meeting (SYSORM), University of Granada,
Granada, Spain.

NAVEIRO, R. (May, 2018). Adversarial Classification: An Adversarial Risk
Analysis approach. Oral presentation at the XXXVII National Congress of
Statistics and Operational Research, Oviedo, Spain.

NAVEIRO, R. (July, 2019). Augmented Probability Simulation Methods for
Non-cooperative Games. Poster presentation at the Second Conference on Risk
Analysis in the Digital Era, University at Buffalo, Buffalo, USA.

NAVEIRO, R. (August, 2019). Augmented Probability Simulation Methods for
Non-cooperative Games. Poster presentation at the Games, Decisions, Risk
and Reliability Opening Workshop, NC State University, Raleigh, USA.

NAVEIRO, R. (August, 2019). Gradient Methods for Solving Stackelberg
Games. Poster presentation at the Deep Learning Opening Workshop, Duke
University, Durham, USA.

XX

Abstract

NAVEIRO, R. (October, 2019). Gradient Methods for Solving Stackelberg
Games. Oral presentation at the Algorithmic Decision Theory Conference,
Duke University, Durham, USA.

NavEIRO, R. (November, 2019). Security Games in the New Paradigm:
Solution Techniques. Invited speaker at the George Washington University,
Washington D.C., USA.

Resumen

Las aplicaciones del aprendizaje automatico o machine learning (ML) han experi-
mentado un crecimiento sin precedentes en las tltimas dos décadas. Sin embargo, la
adopcion cada vez mayor de metodologias de ML ha revelado importantes problemas
de seguridad. Entre estos, destacan las vulnerabilidades a ejemplos adversarios,
es decir; instancias de datos destinadas a enganar a los algoritmos de ML. Los
ejemplos abundan: es relativamente facil enganar a un detector de spam simplemente
escribiendo mal algunas palabras caracteristicas de los correos basura. La ofuscacion
de c6digo malicioso (malware) puede hacer que parezca legitimo. Agregando unos
parches a una senal de stop, se podria provocar que un vehiculo auténomo la recono-
ciese como una senal de direcciéon obligatoria. Céomo puede imaginar el lector, las
consecuencias de estas vulnerabilidades pueden llegar a ser catastroficas.

Y es que el machine learning esté disenado para trabajar en entornos estacionarios
y benignos. Sin embargo, en ciertos escenarios, la presencia de adversarios que
manipulan activamente los datos de entrada para enganar a los sistemas de ML
(logrando asi beneficios), rompen tales requisitos de estacionariedad. Las condiciones
de entrenamiento y operacién de los algoritmos ya no son idénticas, quebrandose una
de las hipotesis fundamentales del ML. Esto crea una clase completamente nueva
de vulnerabilidades que los sistemas basados en el aprendizaje automéatico deben
enfrentar y una nueva propiedad deseable: la robustez adversaria. Si debemos confiar
en las operaciones basadas en resultados del ML, es esencial que los sistemas de
aprendizaje sean robustos a tales manipulaciones adversarias.

Esta tesis explora como garantizar un aprendizaje automatico seguro, enfocandose
en la seguridad contra amenazas adversarias intencionales. Desde las primeras
observaciones por parte de Dalvi et al. 2004, quiénes probaron que era relativamente
sencillo enganar a los clasificadores lineales de los sistemas de deteccion de spam,
simplemente agregando palabras “buenas” a los correos basura para que fuesen
clasificados como legitimos; la investigaciéon en la seguridad del ML ha crecido
exponencialmente. Esta no solo se centran en explorar nuevas vulnerabilidades
de los sistemas de aprendizaje automatico, sino que también tiene como objetivo
proporcionar defensas eficientes ante dichas vulnerabilidades. En la literatura, se
han propuesto dos clases de métodos de defensa: los reactivos, que pretenden mitigar
o eliminar los efectos de un posible ataque, y los proactivos, cuyo objetivo es evitar
la ejecucion del ataque.

En esta tesis proponemos nuevos mecanismos de defensa ante ataques adversarios
y estudiamos aspectos algoritmicos relevantes de los mismos. Nuestro primer objetivo

xxi

xxii Resumen

(O1), abordado en el Capitulo 2, es el de desarrollar una nueva defensa reactiva
aplicable a problemas de seguridad que utilicen el andlisis de series temporales. En
concreto, hemos trabajado en la deteccién avanzada de amenazas en el dominio de
la monitorizacién predictiva de grandes redes de dispositivos, para asi mitigar el
efecto de posibles ataques. En este dominio, es comin tener que tratar con una
gran cantidad de series temporales de alta frecuencia. Por lo tanto, nuestro sistema
predictivo, ademas de ser preciso, necesita ser escalable, automatico y versatil. Hemos
proporcionado un marco para garantizar la seguridad en grandes redes de dispositivos
conectados a Internet que cumple con las caracteristicas mencionadas.

El segundo objetivo (02), abordado en el Capitulo 3, es el de proporcionar una
nueva defensa proactiva en problemas de clasificacion estadistica. Entre las defensas
propuestas en la literatura, las consistentes en la sequridad por diseno constituyen
una subclase importante. Estas requieren la modelizacion explicita de las acciones de
posibles adversarios en el diseno del sistema de aprendizaje. Partiendo del trabajo
pionero de Dalvi et al. 2004, la mayoria de los enfoques sucesivos modelizan esta
confrontacion entre el adversario y el sistema de ML dentro del marco de la teoria
de juegos con la consiguiente hipétesis de conocimiento comun, poco realista en
la mayoria de las aplicaciones en seguridad. En el Capitulo 3, proporcionamos un
marco probabilistico bayesiano basado en el anélisis de riesgos adversarios (ARA)
para estudiar tal confrontacion. Nuestro enfoque mitiga los efectos de la hipétesis de
conocimiento comtun al modelizar explicitamente, no solo la presencia de adversarios,
sino también nuestra incertidumbre acerca de sus elementos.

Encontrar equilibrios, o buscar soluciones de ARA, de los juegos tipicamente
utilizados en el campo de la seguridad del ML es muy costoso desde una perspectiva
computacional, ya que necesitamos enfrentarnos a un nuevo paradigma: mientras
que en la teoria de juegos clasica, los jugadores eran humanos cuyas decisiones son
generalmente discretas y de baja dimensionalidad, en el campo del ML seguro, las
decisiones las toman algoritmos y generalmente son continuas y de alta dimension,
por ejemplo, elegir los pesos de una red neuronal. En consecuencia, se requieren
algoritmos numéricos escalables para resolver este tipo de juegos. Los capitulos 4 y 5
proporcionan soluciones basadas en el gradiente y en simulacion, respectivamente, y
estudian su escalabilidad con la dimensiéon de los conjuntos de decisiones, cumpliendo
asi con los dos tltimos objetivos de esta tesis doctoral (O3 y O4).

En aras de la reproducibilidad, el cdédigo utilizado en los experimentos de la pre-
sente tesis doctoral es de libre acceso y esta disponible en https://github.com/
roinaveiro. Ademas, los siguientes articulos, con los resultados mas significativos
de esta tesis, ya han sido publicados:

NAVEIRO, R.; RODRIGUEZ, S. & Rios INsua, D. (2019). Large scale
automated forecasting for network safety and security monitoring. Applied
Stochastic Models in Business and Industry, 35(3), 431-447, https://doi.
org/10.1002/asmb.2436.

NAVEIRO, R.; REDONDO, A.; Rfos INsua, D. & RuUGGERI, F. (2019).
Adversarial classification: An adversarial risk analysis approach. International

Resumen xxiii

Journal of Approximate Reasoning, 113, 133-148, https://doi.org/10.
1016/9.1i9ar.2019.07.003.

NAVEIRO, R. & Rios INsua, D. (2019). Gradient Methods for Solving
Stackelberg Games. Algorithmic Decision Theory. ADT 2019. Lecture Notes in
Computer Science, 11834, Springer, Cham, https://doi.org/10.1007/
978-3-030-31489-7_09.

BANKsS, D.; GALLEGO, V.; NAVEIRO, R. & Rios INsua, D. (2020). Adversar-
ial Risk Analysis (Overview). Wiley Interdisciplinary Reviews: Computational
Statistics, Wiley Online Library.

Mientras que los proximos aun esperan a ser publicados:

EKIN, T.; NAVEIRO, R.; TORRES BARRAN, A. & Rios INsua, D. (2019).
Augmented Probability Simulation Methods for Non-cooperative Games. arXiv
preprint arXiw:1910.04574.

Rios Insua, D.; NAVEIRO, R.; GALLEGO, V. & Pouros, J. (2020). Adver-
sarial Machine Learning: Perspectives from Adversarial Risk Analysis. arXiv
preprint arXiv:2003.03546.

GALLEGO, V.; NAVEIRO, R.; REDONDO, A.; RUGGERI, F. & Rios INSUA,
D. (2020). Protecting Classifiers From Attacks. A Bayesian Approach. arXiv
preprint arXiv:2004.08705.

GALLEGO, V.; NAVEIRO, R.; & Rfos INsua, D. (2020). Perspectives on
Adversarial Classification.

Trabajo relacionado con el de esta tesis doctoral ha sido realizado en:

GALLEGO, V.; NAVEIRO, R. & Rios INsua, D. (2019). Reinforcement
Learning under Threats.AAAI Conference on Artificial Intelligence, Vol. 33,
pp- 9939-9940, https://doi.org/10.1609/aaai.v33101.33019939.

Ademas, una serie de presentaciones en conferencias internacionales también se
han derivado de su contenido:

NAVEIRO, R. (June, 2017). Monitoring for anomalous behaviour in massive
traffic time series. Oral presentation at the Bayesian Inference in Stochastic
Processes Workshop (BISP10), Bocconi University, Milano, Italy.

NAVEIRO, R. (November, 2017). Adversarial Classification: An Adversarial
Risk Analysis approach. Oral presentation at the 1st Spanish Young Statisti-
cians and Operational Researchers Meeting (SYSORM), University of Granada,
Granada, Spain.

XXiv

Resumen

NAVEIRO, R. (May, 2018). Adversarial Classification: An Adversarial Risk
Analysis approach. Oral presentation at the XXXVII National Congress of
Statistics and Operational Research, Oviedo, Spain.

NAVEIRO, R. (July, 2019). Augmented Probability Simulation Methods for
Non-cooperative Games. Poster presentation at the Second Conference on Risk
Analysis in the Digital Era, University at Buffalo, Buffalo, USA.

NAVEIRO, R. (August, 2019). Augmented Probability Simulation Methods for
Non-cooperative Games. Poster presentation at the Games, Decisions, Risk
and Reliability Opening Workshop, NC State University, Raleigh, USA.

NAVEIRO, R. (August, 2019). Gradient Methods for Solving Stackelberg
Games. Poster presentation at the Deep Learning Opening Workshop, Duke
University, Durham, USA.

NAVEIRO, R. (October, 2019). Gradient Methods for Solving Stackelberg
Games. Oral presentation at the Algorithmic Decision Theory Conference,
Duke University, Durham, USA.

NAVEIRO, R. (November, 2019). Security Games in the New Paradigm:

Solution Techniques. Invited speaker at the George Washington University,
Washington D.C., USA.

Chapter 1

Introduction

1.1 Motivation

Over the last decade, an increasing number of processes are being automated through
machine learning (ML) algorithms (Breiman 2001). Applications abound in areas
such as bioinformatics, Ghosh and Parai (2008); spam detection, Goodman and
Heckerman (2004); credit scoring, Hand and Henley (1997); computer vision, Chen
(2015); and genomics, Mallick et al. (2005); to mention but a few. As a consequence,
it becomes essential that ML algorithms are robust and reliable if we are to trust
operations based on their output.

State-of-the-art ML algorithms perform extraordinarily well on standard data,
but have recently been shown to be vulnerable to adversarial examples, data instances
targeted at fooling those algorithms (Goodfellow et al. 2015a). The presence of
adaptive adversaries has been pointed out in areas such as spam detection (Zeager
et al. 2017); fraud detection (Kotcz and Teo 2009); and computer vision (Goodfellow
et al. 2015a). In those contexts, algorithms should acknowledge the presence of
possible adversaries to defend against their data manipulations. Comiter (2019)
provides a review from the policy perspective showing how many artificial intelligence
(AI) societal systems, including content filters, military systems, law enforcement
systems and autonomous driving systems (ADS), are susceptible and vulnerable to
attacks. As motivating examples, we next consider attacks to computer vision and
spam detection systems.

Attacking computer vision algorithms Vision algorithms are at the core of
many Al systems such as ADS (Bojarski et al. 2016) and (McAllister et al. 2017).
The simplest and most notorious attack examples to such algorithms consist of
modifications of images in such a way that the alteration becomes imperceptible to
the human eye, yet drives a model trained on millions of images to misclassify the
modified ones, with potentially relevant security consequences.

With a relatively simple convolutional neural network (CNN) model, we are able
to accurately predict 99% of the handwritten digits in the MNIST data set (LeCun
et al. 1998). However, if we attack those data with the fast gradient sign method in

1

2 Chapter 1. Introduction

Szegedy et al. (2014), its accuracy is reduced to 62%. Figure 1.1 provides an example
of an original MNIST image and a perturbed one. Although to our eyes both images
look like a 2, our CNN classifier rightly identifies a 2 in the first case (Fig. 1.1a),
whereas it suggests a 7 after the perturbation (Fig. 1.1b).

o
5
1 : !
15
)
>
6 5 1w 1 2

R

(a) Original image (b) Perturbed image

Figure 1.1: An original input and its attacked version.

This type of attacks are easily built through low cost computational methods.
However, they require the attacker to have precise knowledge about the architecture
and weights of the corresponding predictive model. This is debatable in security
settings, a main driver of this thesis. A

Attacking spam detection algorithms Consider spam detection problems, an
example of content filter systems. We employ the utility sensitive naive Bayes
(NB) classifier, a standard spam detection approach (Song et al. 2009), studying its
degraded performance under the 1 Good Word Insertion attacks in Naveiro et al.
(2019a). In this case, the adversary just attacks spam emails adding to them a good
word, that is, a word which is common in legit emails but not in spam ones.

We use the Spambase Data Set from the UCI ML repository (Lichman 2013).
Accuracy and false positive and negative rates (FPR and FNR respectively) are
reported in Table 1.1, estimated via repeated hold-out validation over 100 repetitions
(Kim 2009). We provide as well the standard deviation of each metric, also estimated
through repeated hold-out validation.

Accuracy FPR FNR
NB-Plain 0.886 +0.009 0.680 = 0.100 0.19 £ 0.02
NB-Tainted 0.761 +0.101 0.680 £ 0.100 0.500 % 0.250

Table 1.1: Performance of utility sensitive NB in clean and attacked data.

NB-Plain and NB-Tainted refer to results of NB on clean and attacked data, re-
spectively. Observe how the presence of an adversary degrades NB accuracy: FPR
coincides for NB-Plain and NB-Tainted as the adversary is not modifying innocent
instances. However, false negatives undermine NB-Tainted performance, as the
classifier is not able to identify a large proportion of attacked spam emails.
A
Both examples show how the performance of ML based systems may degrade
under attacks. This suggests the need for a framework that guarantees robustness

1.1. Motivation 3

of ML against adversarial manipulations in a principled way, as pointed out in Fan
et al. (2020). During the last decade, research towards the achievement of such
framework for secure machine learning has gained a lot of interest, constituting a
new research area called adversarial machine learning (AML). Within this field, the
pipeline typically followed to improve security of ML systems, proposed in Biggio
and Roli (2018), consists of three key steps: modeling threats, taking into account
the adversary’s goals, knowledge and capabilities; simulating them to better prepare
against attacks; and, finally, defending ML systems from such attacks. We describe
each of them in more detail.

Modelling threats. This activity is critical to ensure ML security in adversarial
environments. It is obvious that any algorithm could be fooled if adversarial data
modifications are not somehow restricted. Consider for instance an extreme case
in which an instance in a binary classification problem is modified so that it is
indistinguishable from an instance of the other class. Clearly, the algorithm would
misclassify such instance. However, the adversary is probably not interested in
making such data modifications. Thus, appropriate adversary modeling is key in
AML. This is a problem specific task.

In general, we should assess three attacker features. First, we should consider
his goals, which vary depending on the setting, ranging from money to causing
fatalities, going through damaging reputation (Couce-Vieira et al. 2019). Prior to
deploying an ML system, it is crucial to guarantee its robustness against attackers
with the most common goals. For instance, in fraud detection the attacker usually
obfuscates fraudulent transactions to make the system classify them as legitimate
ones in search of an economic benefit: a fraud detection system should be robust
against such attacks. In general, these are classified following two criteria regarding
their goals: wviolation type and attack specificity. For the first criterion, we distinguish
between integrity violations, aimed at moving the prediction of particular instances
towards the attacker’s target, e.g. have malicious samples misclassified as legitimate;
availability violations, aimed at increasing the predictive error to make the system
unusable; and privacy violations (a.k.a, exploratory attacks) to gain information
about the ML system. In relation with the second one, we distinguish between
targeted, which address just a few, even one, defenders, and indiscriminate attacks,
affecting many defenders in a random manner.

Next, we consider that at the time of attacking, the adversary could have knowledge
about different aspects of the ML system such as the training data used, or the
features. Thus, we classify adversarial threats depending on which aspects is the
attacker assumed to have knowledge about. At one end of the spectrum, we find white
box or perfect knowledge attacks: the adversary knows every aspect of the ML system.
This is almost never the case in actual scenarios, except perhaps for insiders. Yet they
could be useful in sequential settings where the ML system moves first, training an
algorithm to find its specific parameters. The adversary, who moves afterwards, has
some time to observe the behaviour of the system and learn about it.! At the other

'However, although the adversary may have some knowledge, assuming that this is perfect is

4 Chapter 1. Introduction

end, black box or zero knowledge attacks assume that the adversary has capabilities
to query the system but does not have any information about the data, the feature
space or the particular algorithms used. This is the most reasonable assumption
in which attacking and defending decisions are eventually made simultaneously. In
between attacks are called gray boz or limited knowledge. This is the most common
type of attacks in security settings, especially when attacking and defending decisions
are made sequentially but there is private information that the intervening agents
are not willing to share.

Finally, we classify the attacks depending on the capabilities of the adversary
to influence on data. In some cases, he may obfuscate training data to induce
errors during operation, called poisoning attacks. On the other hand, evasion attacks
have no influence on training data, but perform modifications during operation, for
instance when trying to evade a detection system. These data alteration or crafting
activities are the typical in AML and we designate them as coming from a data-fiddler.
But there could be attackers capable of changing the underlying structure of the
problem, affecting process parameters, called structural attackers. Moreover, some
adversaries could be making decisions in parallel to those of the defender with the
agents’ losses depending on both decisions, which we term parallel attackers.

Simulating attacks. The standard approach, Biggio and Roli (2018), formalizes
poisoning and evasion attacks in terms of constrained optimization problems with
different assumptions about the adversary’s knowledge, goals and capabilities. In
general, the objective function in such problems assesses attack effectiveness, taking
into account the attacker’s goals and knowledge. The constraints frame assumptions
such as the adversary wanting to avoid detection or having a maximum attacking
budget.?

Protecting learning algorithms. Two types of defence methods have been pro-
posed. Reactive defences aim to mitigate or eliminate the effects of an eventual
attack. They include timely detection of attacks, e.g. Naveiro et al. (2019b); frequent
retraining of learning algorithms; or verification of algorithmic decisions by experts.
Proactive defences aim to prevent attack execution. They can entail security-by-
design approaches such as explicitly accounting for adversarial manipulations, e.g.,
Naveiro et al. (2019a), or developing provably secure algorithms against specific
perturbations, e.g., Gowal et al. (2018); or security-by-obscurity techniques such as
randomization of the algorithm response, or gradient obfuscation to make attacks
less likely to succeed (Athalye et al. 2018).

not realistic and has been criticized, even in the pioneering Dalvi et al. (2004).
2Some attackers could combine the three capabilities in certain scenarios. For example, in a
cybersecurity problem an attacker might add spam modifying its proportion (structural); alter some
spam messages (data-fiddler); and, in addition, undertake his own business decisions (parallel).
3A more natural and general formulation of the attacker’s problem is through a statistical
decision theoretic perspective (French and Rios Insua 2000), see Section 1.4.3.

1.2. Adversarial Machine Learning: a review)

In this PhD dissertation, we provide contributions to the security of Machine
Learning by proposing novel reactive and proactive defences. Before specifying the
particular research objectives, we provide a generic literature review of Adversarial
Machine Learning, Section 1.2, that is relevant for framing most of the work conducted
in this PhD. This revision suggests the specific topics covered in this thesis, which
are introduced in Sections 1.3, 1.4 and 1.5.

1.2 Adversarial Machine Learning: a review

In this section we present, following a historical perspective, key results and concepts
in AML. Further perspectives may be found in recent reviews by Vorobeychik and
Kantarcioglu (2018), Joseph et al. (2019), Biggio and Roli (2018), Dasgupta and
Collins (2019) and Zhou et al. (2019).

1.2.1 Adversarial classification

Classification is one of the most widely used instances of supervised learning (Bishop
2006). In recent years, the field has experienced an enormous growth becoming a
major research area in statistics and machine learning (Efron and Hastie 2016). Most
efforts in classification have focused on obtaining more accurate algorithms which,
however, largely ignore a relevant issue in many application areas: the presence of
adversaries who can actively manipulate data to fool the classifier so as to attain a
benefit. As a motivating example consider the case of fraud detection. As machine
learning algorithms are incorporated to such detection task, fraudsters begin to
learn how to evade them. For instance, they could find out that making a huge
transaction increases the probability of being detected and start issuing smaller
transactions more frequently rather than a single big one. Thus, in contexts such as
fraud detection, algorithms should take into account possible modifications on the
behavior of adversaries so as to be robust against adversarial data manipulations.

Dalvi et al. (2004) introduced adversarial classification (AC), a pioneering ap-
proach to enhance classification algorithms when an adversary is present. They view
AC as a game between a classifier, also referred to as defender (D, she), and an
adversary, (A, he). The classifier aims at finding an optimal classification strategy
against A’s optimal attacks. Computing Nash equilibria (NE) in such general games
quickly becomes very complex. Thus, they propose a forward myopic version in which
D first assumes that the data is untainted, computing her optimal classifier; then, A
deploys his optimal attack against it; subsequently, D implements the best response
classifier against such attack, and so on. This approach assumes common knowledge
(CK), i.e. all parameters of both players are known to each other. Although standard
in game theory, this assumption is actually unrealistic in the security settings typical
of AML.

Stemming from this work, there has been an important literature in AC, reviewed
in Biggio et al. (2014) or Li and Vorobeychik (2014). Subsequent approaches
have focused on analyzing attacks over classification algorithms and assessing their

6 Chapter 1. Introduction

robustness against such attacks. To that end, some assumptions about the adversary
are made. For instance, Lowd and Meek (2005) consider that the adversary is able
to send membership queries to the classifier, the entire feature space being known to
issue optimal attacks; then, they prove the vulnerability of linear classifiers against
adversaries. Similarly, Zhou et al. (2012) consider that the adversary seeks to push
his malicious instances into innocuous ones, assuming that the adversary can estimate
such instances.

A few methods have been proposed to robustify classification algorithms in
adversarial environments. Most of them have focused on application-specific domains,
as Kolcz and Teo (2009) on spam detection. Vorobeychik and Li (2014) study the
impact of randomization schemes over different classifiers against adversarial attacks
proposing an optimal randomization scheme as best defense. Other approaches
have focused on improving the game theoretic model in Dalvi et al. (2004) but, to
our knowledge, none has been able to overcome the unrealistic common knowledge
assumptions, as may be seen in recent reviews by Biggio and Roli (2018) and Zhou
et al. (2019), who have also pointed out the importance of this issue. As an example,
Kantarcioglu et al. (2011) use a Stackelberg game in which both players know
each other payoff functions. Only Grofhans et al. (2013) have attempted to relax
common knowledge assumptions in adversarial regression settings, reformulating the
corresponding problem as a Bayesian game.

1.2.2 Adversarial prediction

An important source of AML cases are adversarial prediction problems (APPs),
Briickner and Scheffer (2011).They focus on building predictive models where an
adversary exercises some control over the data generation process, jeopardising
standard prediction techniques. APPs model the interaction between the predictor
and the adversary as a two agent game, a defender that aims at learning a parametric
predictive model and an adversary trying to transform the distribution governing
data at training time. The agents’ costs depend on both the predictive model
and the adversarial data transformation. Both agents aim at optimizing their
operational costs, which is a function of their expected losses under the perturbed
data distribution. As this distribution is unknown, the agents actually optimize their
regularized empirical costs, based on the training data. The specific optimization
problem depends on the case considered.

First, in Stackelberg prediction games, Briickner and Scheffer (2011) assume full
information of the attacker about the predictive model used by the defender who,
in addition, is assumed to have perfect information about the adversary’s costs
and action space. D acts first choosing her parameter; then, A, after observing
this decision, chooses the optimal data transformation. Finding NE in these games
requires solving a bi-level optimization problem, optimizing the defender’s cost
function subject to the adversary optimizing his, after observing the defender’s
choice. As nested optimization problems are intrinsically hard, the authors restrict to
simple classes where analytical solutions can be found. On the other hand, in Nash

1.2. Adversarial Machine Learning: a review 7

prediction games (Briickner et al. 2012) both agents act simultaneously. The main
concern is then seeking for NE. The authors provide conditions for their existence
and uniqueness in specific classes of games.

1.2.3 Adversarial unsupervised learning

Much less AML work is available in relation with unsupervised learning. A relevant
proposal is Kos et al. (2018) who describe adversarial attacks to generative models
such as variational autoencoders (VAEs) or generative adversarial networks used in
density estimation. Their focus is on slightly perturbing the input to the models so
that the reconstructed output is completely different from the original input.

To the best of our knowledge, Biggio et al. (2013) first studied clustering under
adversarial disturbances. They suggest a framework to create attacks during training
that significantly alter cluster assignments, as well as an obfuscation attack that
slightly perturbs an input to be clustered in a predefined assignment, showing that
single-link hierarchical clustering is sensitive to these attacks.

Lastly, adversarial attacks on autoregressive (AR) models have started to attract
interest. Alfeld et al. (2016) describe an attacker manipulating the inputs to drive
the latent space of a linear AR model towards a region of interest. Papernot et al.
(2016) propose adversarial perturbations over recurrent neural networks.

1.2.4 Adversarial reinforcement learning

The prevailing solution approach in reinforcement learning (RL) is)-learning (Sutton
and Barto 2018). Deep RL has faced an incredible growth (Silver et al. 2017); however,
the corresponding systems may be targets of attacks and robust methods are needed
(Huang et al. 2017).

An AML related field of interest is multi-agent RL (Bugoniu et al. 2010). Single-
agent RL methods fail in multi-agent settings, as they do not take into account the
non-stationarity due to the other agents” actions: ()-learning may lead to suboptimal
results. Thus, we must reason about and forecast the adversaries’ behaviour. Several
methods have been proposed in the Al literature (Albrecht and Stone 2018). A
dominant approach draws on fictitious play (Brown 1951) and consists of assessing
the other agents computing their frequencies of choosing various actions. Using
explicit representations of the other agents’ beliefs about their opponents could lead
to an infinite hierarchy of decision making problems, as explained in Gallego et al.
(2019b).

The application of these tools to (Q-learning in multi-agent settings remains
largely unexplored. Relevant extensions have rather focused on Markov games.
Three well-known solutions are minimax-@) learning (Littman 1994), which solves at
each iteration a minimax problem; Nash-@Q learning (Hu and Wellman 2003), which
generalizes to the non-zero sum case; or friend-or-foe-@) learning (Littman 2001),
in which the agent knows in advance whether her opponent is an adversary or a
collaborator.

8 Chapter 1. Introduction

1.2.5 Adversarial examples

One of the most influential concepts triggering the recent interest in AML are
adversarial examples. They were introduced by Szegedy et al. (2014) within neural
network (NN) models, as perturbed data instances obtained through solving certain
optimization problem. NNs are highly sensitive to such examples (Goodfellow et al.
2015a).

The usual framework for robustifying models against these examples is adversarial
training (AT) (Madry et al. 2018), based on solving a bi-level optimization problem
whose objective function is the empirical risk of a model under worst case data
perturbations. AT approximates the inner optimization through a projected gradient
descent (PGD) algorithm, ensuring that the perturbed input falls within a tolerable
boundary.* The complexity of this attack depends on the chosen norm. However,
recent pointers urge modellers to depart from using norm based approaches (Carlini
et al. 2019) and develop more realistic attack models, as in Brown et al. (2017)
adversarial patches.

1.2.6 Comments

As a result of the previous revision there are three topics of interest that will be
covered in this thesis.

1. While a lot of research has been undertaken in security aspects of supervised
learning, security of time series based systems has been largely ignored. Thus,
the first topic of interest will be to deal with reactive defences in time series
security problems.

2. Most of the research in adversarial supervised learning has been framed within
a standard game theory approach. However, this entails strong common
knowledge assumptions which are hard to maintain in the security contexts
typical of AML. In this PhD thesis, we propose a formal Bayesian decision
theoretic approach to solve AML problems, adopting an adversarial risk analysis
(ARA) perspective, Banks et al. (2015); to model the confrontation between
attackers and defenders mitigating questionable CK assumptions.

3. Given the importance of game theoretic approaches in AML, we devote the last

part of the thesis to develop efficient algorithmic approaches to solve typical
games appearing in AML.

These topics are introduced in the following sections.

41t is possible to frame the inner optimization problem as a mized integer linear program and use
general purpose optimizers to search for adversarial examples (Kolter and Madry 2018). Note though
that for moderate to large networks in mainstream tasks, exact optimization is still computationally
intractable.

1.3. Reactive Defences in Time Series Security Problems 9

1.3 Reactive Defences in Time Series Security
Problems

As outlined in Mortenson et al. (2015), leveraging big data and real time analytics
constitute two main current research venues. Information and communication
technologies (ICT) have experienced an exponential growth in the last few decades
and most human activities, businesses and devices strongly depend on them, Dimelis
and Papaioannou (2011). With the advent of the Internet of things (IoT), this
interrelation will become even more evident and change dramatically the way in
which different components of business and service systems interact. In parallel, risks
concerning the security of ICT systems are also growing, as pointed out e.g. by The
Geneva Association (2016). Such cyber risks can be of natural origin or man-made,
the latter potentially originating from human failure or intentional threats, as in cyber
crime. These actually constitute a current major global trend, as reflected e.g. in the
Global Risks Map, World Economic Forum (2020). As an example, MacAfee (2014)
catalogs around 70 new potential cyber threats per minute, and estimates the annual
cost to the global economy from cyber crime to be above 400 billion USD. This impact
highlights the need for developing solid cybersecurity risk management frameworks
and the central role that these will play in business and industrial security in the
near future. In addition, the increasing significance and availability of data in every
business-related activity emphasizes data-driven approaches to improve cybersecurity
decision making. As an example, Sedgewick (2014) provides a set of standards
and guidelines supporting such frameworks, covering key cybersecurity activities.
Two of them refer to continuous safety monitoring of Internet connected devices
(ICDs) and anomaly detection, key reactive defences in cybersecurity. This has led
to the development of tools that periodically collect high frequency information
from the ICDs of an organisation to support their monitoring. Given the increasing
relevance of ICT, we may need to face organisations with several hundred thousands
of such devices from which we obtain tens of variables every few minutes. This poses
tremendous challenges in processing such enormous amounts of data and making
the relevant forecasts and decisions in real time to mitigate, sufficiently in advance,
potential or actual safety and security issues in a network. In particular, it is virtually
impossible to analyze the time series of each individual device by human intervention,
creating the need for an automated framework and system. Moreover, within this
context, many standard time series analysis models become useless, either because
they cannot tackle a huge amount of high frequency data, or because they cannot
be used in an automated fashion due to the versatility of the series that need to be
faced.

In Chapter 2 of this thesis, we develop a novel reactive defense for network
safety and security, proposing a framework for time series monitoring and anomaly
detection. This framework serves as basis for a system for large scale safety and
security network monitoring. Functionally, we require the system to be:

o Automatic. Given the huge amount of series to be monitored, intervention of

10 Chapter 1. Introduction

humans in the process should be kept to a minimum.

o Versatile. Time series may be of different nature and have different character-
istics such as linear growth, seasonality or outbursts. The approach should be
able to deal with all these issues in an automated fashion. In addition, the
time series features may change over time and, thus, the framework should be
able to adapt fast and automatically.

o Scalable. The approach should scale both in time and memory space. It should
be fast enough to be able to cope with many very high frequency time series.
In addition, due to the huge amount of time series to be monitored, it should
be able to summarize each series with just a few parameters, avoiding storage
of the whole series.

o Accurate. Besides, we would also like the system to fulfill the required good
statistical properties in relation with the predictive accuracy of the provided
forecasts.

Earlier work in network monitoring does not fully cover the above requirements.
In the classic Brutlag (2000), the author proposed a simple approach based on
Holt-Winters forecasting; however, model parameters need to be set and tuned for
each model to work well, complicating automation. In addition, his technique is not
capable of tracking several seasonal periods, reducing its versatility. In Taylor and
Letham (2018), the authors recently proposed an analyst-in-the-loop algorithm which
makes use of human and automated tasks, precluding full automation. Moreover, they
essentially frame the monitoring problem as a curve-fitting exercise using Generalized
Additive Models, not fully taking into account the temporal dependence structure
in the data. This way, the dynamic nature of the algorithm and its adaptability
to sudden changes are essentially lost. In Vallis et al. (2014) a tool is presented
for anomaly detection based on a seasonal trend loess decomposition together with
the generalized extreme Student deviation (GESD) test to detect anomalies. This
algorithm handles anomaly detection issues, but does not accomplish other important
monitoring tasks in relation with forecasting potentially dangerous future events.
The main shortcoming is its rigidity in adapting to situations in which the signal
features change considerably. Classification and regression trees (CART), Breiman
et al. (1984), are also popular methods for anomaly detection. They may be used
to provide point and interval forecasts as well as detect anomalies through GESD
or Grubbs’ tests; their main disadvantage is that a growing number of features can
impact computational performance, quickly jeopardizing scalability. ARIMA models
have also been widely used in this area (Bianco et al. 2001). These models assume that
the signal under study is stationary, possibly after differencing, which is not always the
case in many time series network monitoring. In addition, numerous parameters such
as the number of differences should be selected in advance, complicating automation.
Finally, long short-term memory (LSTM) neural networks, if properly built, may
perform successfully in anomaly detection tasks (Malhotra et al. 2015). However,

1.4. Proactive Defences in Classification Problems 11

their main drawback stems from the complex work required to adjust them to reach
a proper performance level, rendering automation virtually infeasible.

1.4 Proactive Defences in Classification Problems

As highlighted in Section 1.2, most of AML research has been framed within a
standard game theory approach pervaded by NE and refinements. However, these
entail CK assumptions which are hard to maintain in the security contexts typical of
AML applications. We could argue that CK is too commonly assumed.

In this PhD thesis, we propose a formal Bayesian decision theoretic approach
to solve AML problems, adopting an ARA perspective to model the confrontation
between attackers and defenders mitigating questionable CK assumptions, Rios Insua
et al. (2009) and Banks et al. (2015).

ARA makes operational the Bayesian approach to games, Kadane and Larkey
(1982) and Raiffa (1982), facilitating a procedure to predict adversarial decisions.
Compared with standard game theoretic approaches, it does not assume their
CK hypothesis according to which agents share information about utilities and
probabilities. ARA provides one-sided prescriptive support to a decision maker
maximizing her subjective expected utility by treating the adversaries’ decisions
as random variables. To forecast them, we model the adversaries’ problems; our
uncertainty about their probabilities and utilities is propagated and leads to the
corresponding random optimal adversarial decisions which provide the required
prediction.

In Section 1.4.1, we provide a comparison of game-theoretic and ARA through
three template AML models associated, respectively, to white, black and gray box
attacks. This suggests a decision theoretic pipeline for AML, illustrated in Section
1.4.2. Finally, in Section 1.4.3 we particularize this methodology to adversarial
supervised learning.

1.4.1 ARA templates for AML

We provide a comparison of game-theoretic and ARA concepts over three template
AML models associated, respectively, to white, black and gray box attacks. They
constitute basic structures which may be simplified or made more complex through
removing or adding nodes, and combined to accommodate specific AML problems.
In all models there is a defender who chooses her decision d € D and an attacker who
chooses his attack a € A. In the AML jargon, the defender would be the learning
system (or the organization deploying it) and the decisions she makes could refer to
the various choices required, including the data set used, the models chosen, or the
algorithms employed to estimate the parameters. In turn, the attacker would be the
attacking organization (or their corresponding attacking system); his decisions refer
to the data sets chosen to attack or the period at which he decides to make it, but
could also refer to structural or parallel decisions. The involved agents are assumed

12 Chapter 1. Introduction

to maximize expected utility (or minimize expected loss) (French and Rios Insua
2000).

We use bi-agent influence diagrams (BAIDS) (Banks et al. 2015) to describe
the problems: they include circular nodes representing uncertainties; double nodes
representing deterministic aspects; hexagonal utility nodes, modeling preferences over
consequences; and, square nodes portraying decisions. The arrows point to decision
nodes (meaning that such decisions are made knowing the values of predecessors) or
chance and value nodes (the corresponding events or consequences are influenced by
predecessors). Arcs pointing to decision nodes are dashed. Different colors suggest
issues relevant to just one of the agents (white, defender; gray, attacker); striped
ones are relevant to both agents.

Sequential defend-attack games

We start with sequential games. D chooses her decision d and, then, A chooses
his attack a, after having observed d. This exemplifies white-box attacks, as the
attacker has full information of D’s action at the time of making his decision. As an
example, a classifier chooses and estimates a parametric classification algorithm and
an attacker, who has access to the specific algorithm, sends examples to try to fool
the classifier. These games have received various names like sequential Defend-Attack
(Brown et al. 2006) or Stackelberg (Gibbons 1992). Their BAID is in Figure 1.2.
Arc D-A reflects that D’s choice is observed by A. The consequences for both
systems depend on an attack outcome # € ©. Each agent has its assessment on
the probability of 6, which depends on d and a, respectively called pp(f|d,a) and
pa(0|d, a). Similarly, their utility functions are up(d,#) and ua(a,).

Figure 1.2: Basic two player sequential defend-attack game

The basic game theoretic solution does not require A to know D’s judgements,
as he observes her decisions. However, D must know those of A, the CK condition
in this case. For its solution, we compute both agents’ expected utilities at node
©: Ya(a,d) = [ua(a,0)pa(f|d,a) df, and ¥p(a,d) = [up(d,8)pp(0|d,a) df. Next,
we find a*(d) = argmax,. 4 ¥a(d, a), A’s best response to D’s action d. Then, D’s
optimal action is d¢ = argmax,.p ¥p(d, a*(d)). The pair (&, a*(déy)) is a NE
and, indeed, a sub-game perfect equilibrium.

1.4. Proactive Defences in Classification Problems 13

Example. The Stackelberg game in Briickner and Scheffer (2011), Section 1.2.2,
modeling the confrontation in an APP is a particular instance in which costs are
minimized with no uncertainty about the outcome 6. D chooses the parameters d of
a predictive model. A observes d and chooses the transformation, converting data
T into a(T). Let ¢;(d,a(T)) be the (regularized) empirical cost of the i-th agent,
i € {A, D}. Then, they propose a pair [d*,a*(7T (d*))] solving

argdmin cp(d,a*(T(d)))

s.t. a*(T(d)) € argminca(d, a(T)),
a(T)

which provides a NE. A

Example. Adversarial ezamples can be cast as well through sequential games. A
finds the best attack which leads to perturbed data instances obtained from solving
the problem

min Caho(a(z)), y),

with a(z) = x + J, a suitable perturbation of the original data instance x; hg(z), the
output of a predictive model with parameters 8; and ¢4(hg(x),y) = —¢p(hg(x),y),
the cost of classifying = as of being of class hy(x) when the actual label is y.

In turn, robustifying models against those perturbations through AT aims at solv-
ing the problem ming E(, ,)p [maXH(ngSE ¢p(he(a(z)), y)} : we minimize the empirical
risk of a model under worst case perturbations of the data D. The inner maximization
problem is solved through PGD, with iterations ;11 =) (2 — aVaCa(he(2:), y)),
where II is a projection operator ensuring that the perturbed input falls within a toler-
able boundary B(z). After T iterations, we make a(x) = xy and optimize with respect
to 0. Madry et al. (2018) argue that the PGD attack is the strongest one using only
gradient information from the target model. However, there has been evidence that it
is not sufficient for full defence of neural models (Gowal et al. 2018). The complexity
of the above attack depends on the chosen norm; for instance, if we resort to small
perturbations under ¢, norm, the update simplifies to x := x — esignV,¢a(ho(x), y),
making it attractive because of its low computational burden. The ¢, norm can also

vacaA(hG (CC),?J) A

b idered, leading t dat = — = .
e considered, leading to updates z := z — € == " 00 -

The above CK condition is weakened if we assume only partial information, lead-
ing to games under incomplete information (Harsanyi 1967), but we defer their
discussion until we discuss simultaneous games. These CK conditions, and those
used under incomplete information, are doubtful as the attacker’s judgments are not
available. Moreover, the CK hypothesis could lack robustness to perturbations in
such judgments, as we shall see in Chapter 5.

Alternatively, we perform a Bayesian decision theoretic approach based on ARA.
We weaken the CK assumption: the defender does not know (pa,u,) and faces
the problem in Figure 1.3a. To solve it, she needs pp(ald), her assessment of

14 Chapter 1. Introduction

the probability that A will implement attack a after having observed d. Then,
her expected utility would be ¢p(d) = [¥p(a,d) pp(ald) da with optimal decision
diga = arg maxgep ¥p(d). This solution does not necessarily correspond to a NE
(both solutions are based on different information and assumptions).’?

N |
b |-(@)-() O-@

v

(a) Decision problem seen by defender. (b) Defender analysis of attacker problem.

Figure 1.3: Influence Diagrams for defender and attacker problems.

To elicit pp(ald), D benefits from modeling A’s problem, with his ID in Figure 1.3b.
For this, she would use all information available about p4 and u4; her uncertainty
about (pa,ua) is modeled through a distribution F' = (Uy, P4) over the space of
utilities and probabilities. This induces a distribution over A’s expected utility, where
his random expected utility would be W4 (a,d) = [Ua(a,0)Pa(0|a,d) dd. Then, D
would find pp(a|d) = Pr [a = argmax, 4 ¥ a(x, d)], in the discrete case and, similarly,
in the continuous one. In general, we would use Monte Carlo (MC) simulation to
approximate pp(al|d), as we illustrate in Chapter 5.

Simultaneous defend-attack games

Consider next simultaneous games: the agents decide their actions without knowing
the one chosen by each other. Black-box attacks are assimilated to them. As
an example, a defender fits a classification algorithm; an attacker, who has no
information about it, sends tainted examples to try to outguess the classifier. Their
basic template is in Fig. 1.4.

b L)
v v

Figure 1.4: Basic two player simultaneous defend-attack game.

Suppose the judgements from both agents, (up,pp) and (ua,pa) respectively, are
disclosed. Then, both A and D know the expected utility that a pair (d,a) would
provide them, ¥ 4(d, a) and ¢¥p(d,a). A NE (d*, a*) in this game satisfies ¢p(d*, a*) >
Yp(d,a*) Vd € D and Ya(d*,a*) > Ya(d*,a) Ya € A.

5See a cybersecurity example in Chapter 5.

1.4. Proactive Defences in Classification Problems 15

Example. Nash prediction games are particular instances of simultaneous defend-
attack games with sure outcomes. As in an APP, agents minimize regularized
empirical costs, ép(d,a(T)) and ¢4(d,a(T)), with a(T) being the attacked dataset.
Under CK of both players’ cost functions, a NE [d*, a*(T)] satisfies

d* € arg min Cp(d,a*(T)) a*(T) € arg rr(nTr)l Culd*, a(T)).

A
If utilities and probabilities are not CK, we may proceed modelling the game as
one with incomplete information using the notion of types: each player will have a
type known to him but not to the opponent, representing private information. Such
type 7; € T; determines the agent’s utility w;(d, 6, 7;) and probability p;(0|d, a,T;),
i € {A, D}. Harsanyi proposes Bayes-Nash equilibria (BNE) as their solutions, still
under a strong CK assumption: the adversaries’ beliefs about types are CK through
a common prior m(7p,74) (moreover, the players’ beliefs about other uncertainties in
the problem are also CK). Define strategy functions by associating a decision with
each type, d : 7p — d(7p) € D, a: 74 — a(74) € A. D’s expected utility associated
with a pair of strategies (d, a), given her type 7p € Tp, is

Yp(d(tp),a,p) = //uD(d(TD),G,TD)pD(9|d(TD),a(TA),TD)W(TAhD) dr4dé.

Similarly, we compute the attacker’s expected utility 1 4(d, a(74),74). Then, a BNE
is a pair (d*,a*) of strategy functions satisfying

Yp(d*(tp),a*,7p) > Yp(d(Tp),a*,7p), V7D
Ya(d*,a™(Ta), Ta) > a(d*,a(1a),7a), YV7a

for every d and every a, respectively.

The common prior assumptions are still unrealistic in AML security contexts.
We thus weaken them in supporting D. She should maximize her expected utility
through

d* = arg max //uD(d, Npp(0 | d,a)mp(a)dida. (1.4.1)
deD

where mp(a) models her beliefs about the attacker’s decision a, which we need to
assess. Suppose D thinks that A maximizes expected utility,

a* = argmax/ /uA(a,Q)] pa(0]d,a) dOma(d) dd.

acA
In general, she will be uncertain about A’s (ua,pa,ma) required inputs. If we
model all information available to her about it through a probability distribution
F ~ (Uy, P4,114), mimicking (1.4.1), we propagate such uncertainty to compute
the distribution of A’s (random) action 7, conditioned on D’s (random) action &

o | 9~ argmax [[/ Un(a,0) Pa(0 | d,a)d0| T14(2 = d) dd. (1.4.2)
acA

16 Chapter 1. Introduction

(Ua, Pa) could be directly elicited from D. However, eliciting 114 may require further
analysis leading to an upper level of recursive thinking: she would need to think about
how A analyzes her problem (this is why we condition in (1.4.2) by the distribution
of 2).

In the above, in order for D to assess (1.4.2), she would elicit (Ua, P4) from
her viewpoint, and assess [14(Z) through the analysis of her decision problem, as
thought by A. This reduces the assessment of I14(Z) to computing 2 | &' ~
argmaxyep [[Up(d,0) Pp(0 | d,a)dd IIp(«/' = a)da, assuming she is able to
assess IIp(/1), where @ represents A’s random decision within D’s second level
of recursive thinking. For this, D needs to elicit (Up, Pp) ~ G, representing her
knowledge about how A estimates up(d, a) and pp(#|d, a), when she analyzes how
the attacker thinks about her decision problem. Again, eliciting IIp (/') might
require further thinking from D, leading to a recursion of nested models, connected
with the level-k thinking concept in Stahl and Wilson (1994), which would stop
at a level in which D lacks the information necessary to assess the corresponding
distributions. At such point, she could assign a non-informative distribution (French
and Rios Insua 2000).

Sequential defend-attack games with private information

Our final template is the sequential Defend-Attack model with defender private
information. Gray-box attacks are assimilated to them. As an example, a defender
estimates the parameters of a classification algorithm and an attacker, with no access
to the algorithm but knowing the data used to train it, sends examples to try to fool
the classifier. Fig. 1.5 depicts the template, with private information represented by
V. Arc V — D reflects that v is known by D when she makes her decision; the lack
of arc V' — A, that v is not known by A when making his decision. The uncertainty
about the outcome 6 depends on the actions by A and D, as well as on V. The
utility functions are up(d, 6, v) and us(a, 8,v).

Figure 1.5: Basic template for sequential defend-attack game with private informa-
tion.

Standard game theory solves this model as a signaling game (Aliprantis and

1.4. Proactive Defences in Classification Problems 17

Chakrabarti 2002). For a more realistic approach, we weaken the required CK
assumptions. Assume for now that D has assessed pp(0|d,a,v), up(d,d,v) and
pp(ald). Then, she obtains her optimal defence through

At node ©, compute for each (d,a,v),
Yp(d,a,v) = [up(d,0,v) pp(0 | d,a,v) df.

At node A, compute (d,v) — ¢¥p(d,v) = [¢¥p(d,a,v)pp(a]d)da

At node D, solve v — d*(v) =argmaxycp ¢¥p(d,v).

To assess pp(ald), D could solve A’s problem from her perspective. As A does not
know v, his uncertainty is represented through p4(v), describing his (prior) beliefs
about v. Arrow V' — D can be inverted to obtain p4(v|d). Note that we would still
need to assess pa(d|v) for this. Should D know A’s utility function uy(a,d,v) and
probabilities p4(0|d, a,v) and pa(v|d), she would anticipate his attack a*(d) for any
d €D by

At node ©, compute for each (d,a,v),
Ya(d,a,v) = [ua(d,0,v) p;(0 | d,a,v)db.

At node V, compute for each (d,a), ¥a(d,a) = [¢Ya(d,a,v) pa(v|d)dv.

At node A, solve d— a*(d) =argmax,cy Ya(d, a).

However, D does not know (pa,u4). She has beliefs about them, say F' ~ (P4, Ua),
which induce distributions on A’s expected utilities (which now are random) through

\I!A(d,a,v):/UA(a,H,v) PA(0 | d,a,v) 48, Wa(d,a) :/\I/A(d,a,v) Pa(v | d) dv.

Then, D’s predictive distribution about A’s response to her defense choice d would
be defined through

pplald) = Ppla = argmax W 4(d, x)}, Va € A.
zeA

To sum up, the elicitation of (Pa(6|d, a,v), P4(v|d),Ua(a,0,v)) allows the de-
fender to solve her problem of assessing pp(a|d). The defender may have enough
information to directly assess Pa(0|d,a,v) and Uy(a,8,v). Yet the assessment of

P, (v|d) requires a deeper analysis, since it has a strategic component, and would
lead to a recursion similar to that in the simultaneous game case.

1.4.2 A decision theoretic pipeline for AML

Based on the above three templates, we revisit now the AML pipeline introduced
before, proposing an ARA based decision theoretic approach with the same steps.

18 Chapter 1. Introduction

1. Model system threats. This entails modelling the attacker problem from
the defender perspective through an influence diagram (ID). The attacker key fea-
tures are his goals, knowledge and capabilities. Assessing these require determining
which are the actions that he may undertake and the utility that he perceives when
performing a specific action, given a defender’s strategy. The output is the set of
attacker’s decision nodes, together with the value node and arcs indicating how his
utility depends on his decisions and those of the defender. Assessing the attacker
knowledge entails looking for relevant information that he may have when performing
the attack, and his degree of knowledge about this information, as we do not assume
CK. This entails not only a modelling activity, but also a security assessment of the
ML system to determine which of its elements are accessible to the attacker. The
outputs are the uncertainty nodes of the attacker ID, the arcs connecting them and
those ending in the decision nodes, indicating the information available to A when
attacking. Finally, identifying his capabilities requires determining which part of the
defender problem the attacker has influence on. This provides the way the attacker
ID connects with that of the defender.

2. Simulating attacks. Based on step 1, a mechanism is required to simulate
reasonable attacks. The state of the art solution assumes that the attacker will
be acting NE, given strong CK hypothesis. The ARA methodology relaxes such
assumptions, through a procedure to simulate adversarial decisions. Starting with
the adversary model (step 1), our uncertainty about his probabilities and utilities is
propagated to his problem and leads to the corresponding random optimal adversarial
decisions which provide the required simulation.

3. Adopting defences. In this final step, we augment the defender problem
incorporating the attacker one produced in step 1. As output, we generate a BAID
reflecting the confrontation big picture. Finally, we solve the defender problem
maximizing her subjective expected utility, integrating out all attacker decisions,
which are random from the defender perspective given the lack of CK. In general, the
corresponding integrals are approximated through MC, simulating attacks consistent
with our knowledge level about the attacker using the mechanism of step 2.

1.4.3 AML from an ARA perspective

We illustrate now how the previous templates can be combined and adapted through
the proposed pipeline to provide support to AML supervised learning models.

Almost every supervised ML problem entails the tasks reflected in Figure 1.6: an
inference (learning) stage, in which relevant information is extracted from training
data T, and a decision (operational) stage, in which a decision yp is made based on
the gathered information.

In a general supervised learning problem under a Bayesian perspective, the first
stage requires computing the posterior p(8|T) o p(8)p(T|3), where p(53) is the prior
on the model parameters; 7, the data; and p(7T|5) the likelihood. Based on it, the

1.4. Proactive Defences in Classification Problems 19

YD

Figure 1.6: Influence diagram for a supervised learning problem

predictive distribution is p(y|z, T) = [p(y|x, 8)p(5|T) dS. At the second stage, given
an input z, the response yp has to be decided. If the actual value is y, the attained
utility is up(y, yp) and, globally, the expected utility is

vl T) = [un(y.yp)p(ule T)dy = [un(y.u0) | [syl A1p(317) 4] dy.

We aim at finding argmax, ¥ (ypl|z, T).

An attacker might be interested in modifying the inference stage, through poison-
ing attacks, and/or the decision stage, through evasion attacks. Figure 1.7 represents
both possibilities (step 3). In it, 7' denotes the poisoned data and ar the poisoning
attack; ap denotes the evasion attack decision and z’ the attacked feature vector ac-
tually observed by the defender. Finally, u4 designates the attacker’s utility function.
If we just consider evasion attacks, ar is the identity, 7’ = T, and inference will be
as in Figure 1.6; when considering only poisoning attacks, ap would be the identity,
the observed instance 2’ will coincide with z, and the decision stage is that in Figure
1.6. Assume that attacks are deterministic transformations of data: applying an
attack to a given input will always lead to the same output.

Suppose the defender is not aware of the presence of the adversary. Then, she
would receive the training data 7”; use the posterior p(/5|7"), compute the predictive
p(ylz, T"); receive the data 2’ at operation time; and solve argmax, ¢p(ypla', T").
This will typically differ from argmax, ¥ p(yp|x,T), leading to an undesired perfor-
mance degradation, as shown in Section 1.1. Should the defender know how she has
been attacked, and assuming that attacks are invertible, she would know a,'(z') and
az' (T") and maximise ¥ p(yplag' (z'), a7 (T")). However, she will not typically know
neither the attacks, nor the original data. Thus, upon becoming adversary aware,
she would deal with the problem in Figure 1.8, where now A’s decisions appear as
random. In such case, if her uncertainty is modelled through p(ar|7T") and p(ap|z’),
the defender would optimise

/U?/)D(mec_)l(f),G:Fl(T'))p(aTlT')daT plao|r’)dao. (1.4.3)

20 Chapter 1. Introduction

Figure 1.7: Influence diagram for a generic adversarial supervised learning problem

We describe a procedure to assess the required distributions following the methodology
in Section 1.4.2: (step 1) considers the problem that the attacker would be solving;
(step 2) assesses our uncertainty about his problem to simulate from it; then, (step
3) the optimal defense (1.4.3) is proposed.

The attacker aims at modifying data to maximize his utility ua(yp,y, ar, ao),
that depends on yp, y, and the attacks a7 and ap, as these may have implementation
costs. The form of his utility function depends on his goals. Given that the adversary
observes (T, x,y), if we assume that he aims at maximizing expected utility when
trying to confuse the defender, he would find his best attacks through
maX/UA(yDJ%aT,ao)pA(yD\ao(ﬂf),aT(T))d,% (1.4.4)

ar,ao
where pa(yplao(x),ar(T)) describes the probability that the defender says yp if she
observes the training data ar(7) and features ap(x), from the adversary’s perspective.
At this point, D must model her uncertainty about A’s utilities and probabilities. She
will use random utilities U4 and probabilities P4 and look for the random optimal
adversarial transformations

(AT7 AO)*<T) xz, y) = arg grq}%}é / UA(yD7 y,ar, aO)PA(yD|aO(x)J aT(T)) dy (145>

Finally, she computes the probability of the attacker choosing attacks ar and ap
when observing T, x,y as

plaz; aol T, x,y) = P[(Ar, Ao)"(T, x,y) = (ar,a0)] - (1.4.6)

Using this, she would compute the required quantities p(ar|7T”) and p(ao|z’).
This last step is problem dependent. In Chapter 3 we illustrate some specificities
through an application to AC under evasion attacks.

1.5. Algorithmic Approaches in AML 21

By @

<’ILD>

Figure 1.8: Supervised learning from the defender’s perspective

1.5 Algorithmic Approaches in AML

As a byproduct of the raise of importance of game theoretic approaches to AML,
algorithmic game theory is also gaining relevance in the last years. In this thesis, we
make two important contributions to this field: a gradient-based and a sampling-based
solution techniques. We will introduce both of them in the following Sections.

1.5.1 Gradient Methods for Stackelberg Games in AML

As reviewed in Section 1.2, the standard approach to guarantee the security of
machine learning algorithms against adversarial perturbations, consists of modeling
the interaction between the learning algorithm and the adversary as a game in which
one agent controls the predictive model parameters while the other manipulates
input data. Different game theoretic models of this problem have been proposed. In
particular, as introduced in the first example of Section 1.4.1, Briickner and Scheffer
(2011) view adversarial learning as a Stackelberg game. Finding Nash equilibria of
games in the context if AML is really challenging from a computational perspective
as the decision spaces involved are continuous and high dimensional (e.g. choosing
parameters of a model, or choosing a data transformation). Surprinsingly, little
attention has been paid to algorithmic issues for solving the type of games appearing
in AML.

Nash equilibria in general cannot be calculated analytically and numerical ap-
proaches are required. However, standard techniques are not able to deal with
continuous and high dimensional decision spaces, as those appearing in AML appli-
cations. In particular, finding equilibira of Stackelberg games as the ones proposed
in Briickner and Scheffer (2011), requires solving a bilevel optimization problem.
State of the art numerical solution methods for this kind of problems, Sinha et al.
(2018), do not scale well with the dimension of the decision spaces of the intervening
agents. In Chapter 4, we propose two gradient-based procedures to solve Stackelberg
games in the new paradigm of AML and study their time and space scalability. In

22 Chapter 1. Introduction

particular, one of the proposed solutions scales efficiently in time with the dimension
of the decision space, at the cost of more memory requirements. The other scales
well in space, but requires more time.

However, Stackelberg games require strong common knowledge assumptions
which are unrealistic in AML as we discuss in Chapter 3. In Chapter 4, we extend
the previously proposed algorithmic techniques to deal with Bayesian Stackelberg
Games, thus partially mitigating the common knowledge assumption and enhancing
robustness.

1.5.2 APS Methods for Non-cooperative Games

The gradient-based solution methods to be proposed in Chapter 4, are restricted to
games with certain outcomes and continuous decision spaces. In addition, they can
just be used to approximate Nash equilibria in Stackelberg games, but they cannot
compute ARA solutions, which are more suitable when we lack common knowledge.

In Chapter 5, we propose a simulation-based approach to solve general Stackelberg
games paying special attention to games in which the number of decision alternatives
is huge or decision spaces are continuous. In particular we analyse how Augmented
Probability Simulation, Bielza et al. (1999), may be expanded to efficiently compute
game theoretic solutions in both the standard and ARA settings. On the whole, we
present a comprehensive robust decision support framework with novel computational
algorithms for decision makers in a non-cooperative sequential setup. We cover
approaches to approximate subgame perfect equilibria under common knowledge
conditions, assess the robustness of such solutions and, finally, approximate ARA
solutions when lacking common knowledge.

1.6 Research objectives and dissertation structure

Given the ideas introduced in Sections 1.3, 1.4 and 1.5, the main contributions in
this thesis are thus summarized in the following objectives.

O1. Provide scalable, automatic, versatile and accurate reactive defenses for time
series security problems.

02. Develop robust proactive defenses for Adversarial Classification that mitigate
the common knowledge assumption.

03. Present scalable gradient based methods for solving Stackelberg games and
Bayesian Stackelberg games in Adversarial Machine Learning.

O4. Develop Augmented Probability Simulation methods for solving general non-
cooperative games.

The above objectives are covered as follows. In Chapter 2, we propose a reactive
defense for safety and security monitoring of high frequency time series measuring

1.6. Research objectives and dissertation structure 23

performance metrics of hundreds of thousands of Internet Connected Devices, thus
fulfilling objective O1. In Chapter 3 we provide a proactive defense for adversarial
classification problems, that does not assume common knowledge assumptions, thus
fulfilling O2. Finally, in light of the computational challenges arising in AML, we
provide two novel algorithmic contributions to approximate solutions of typical
problems in AML: a gradient-based approach for solving Adversarial Prediction
Problems, Chapter 4 fulfilling objective O3 and a sampling-based approach for
solving general non-cooperative games, 5, fulfilling O4.

24

Chapter 1. Introduction

Chapter 2

Reactive Defences in Time Series
Security Problems

2.1 Motivation

Following objective O1, in this chapter we develop a novel reactive defense for
network safety and security by proposing a completely automated, scalable and
versatile system framework for time series monitoring and anomaly detection. In the
domain of network safety and security, aberrant behavior identification is often based
on heuristics developed by analysts and usually lacks predictive capabilities. The
framework we propose aims at providing such predictive power to the monitoring
system in an automated way. For that purpose, we use a Bayesian approach
differentiating between continuous-valued and discrete-valued series. For continuous-
valued ones, we use a modified version of dynamic linear models (DLM) (West
and Harrison 1997), that incorporates the eventual existence of regular outbursts
originated by physical processes such as backups or compressions, specially relevant in
our application domain. A main advantage of DLMs is that they can be constructed
using different blocks capturing each of the specific features of the time series typical
of our domain. We provide an effective way to automatically identify the involved
models. In addition, these summarize the relevant aspects of the series in a few
parameters, facilitating space scalability. Moreover, computation of the predictive
distributions is relatively fast, thus making the approach scalable in time after
appropriate tuning. For discrete-valued series, we use discrete time Markov chains
(Rios Insua et al. 2012), which fulfill also our above desiderata. We emphasize that
the aim of our approach is not develop new, more accurate models for time series,
but rather to mix existing solutions in this automated fashion to create a framework
that meets the above mentioned requirements.

The structure of the chapter is as follows. A description of the models and their
goals are given in Section 2.2, together with how they are identified and how forecasts
are made. This allows us to address the versatility and automaticity requirements. We
then discuss implementation details in Section 2.3, covering scalability requirements,
while in Section 2.4 we analyze the predictive accuracy performance through empirical

25

26 Chapter 2. Reactive Defences in Time Series Security Problems

tests in different series. We end up with some remarks.

We would like to highlight that the framework exposed in this chapter, was
motivated by an industrial application. In particular, it is the solution given to a
cybersecurity company based in Madrid, that reached our research group at ICMAT
asking for a way to monitor massive traffic time series for safety and security, with
strong time and space scalability requirements.

2.2 Problem formulation and model description

Consider, for the moment, the case of monitoring a single time series which, in our
domain, will refer to some performance measure of an Internet connected device
(ICD), say the number of users connected to a device or the percentage of disk storage
occupied. Associated with the series, there are two reference values, designated W
(warning) and C' (critical), linked with observation levels such that, if exceeded,
should lead to issuing warning and critical signals, respectively. For example, for a
storage disk we could be monitoring its usage and set C' = 0.95, meaning that when
we reach a saturation of 95%, disk performance might degrade and even collapse,
inducing a loss. Such thresholds will depend on the device and its overall relevance.
Observe that we have established a two-level alarm system to try to provide richer
information about potential failures of the monitored device. In the above example,
setting W = 0.9 would allow us to raise awareness before it is too late.

As pointed out, several key network monitoring cybersecurity activities are related
with safety monitoring and anomaly detection within time series, which, in turn, we
shall base on:

i. Making short term forecasts. These allow us to:

— Identify anomalous behavior of the series when observed values do not
lie within predictive intervals. This is related with security and could be
useful in pointing critical issues in advance or detecting intruders in a
system.

— Identify unsafe behavior when the predictive intervals actually cover the
W and/or C' thresholds.

ii. Making long term forecasts. These allow us to foresee critical issues sufficiently
in advance when the W and/or C' thresholds appear in long-term predictive
intervals: critical values that lie within them point to potentially problematic
behavior in the distant future.

To accomplish such tasks, we need procedures to make point and interval predictions
of the involved time series. The width of the intervals should be adaptable to control
for false positives, as well as to take into account the value of the corresponding
asset. Whenever the predictions reach either level W or level C, an alarm should be
issued, being stronger in the latter case. In addition, we should emphasize alarms
whenever several of them occur at consecutive time periods.

2.2. Problem formulation and model description 27

9 ---- Critical
Warning

20

15

T T T T
nov 25 nov 27 nov 29 dic 01

Figure 2.1: Continuous time series with linear and outburst terms.

Depending on the specific nature of the series considered, a suitable model will
be proposed. We first describe the models used for continuous time series and,
then, those for discrete series. Their specific structure is based on extensive analysis
performed with actual series in our domain, as illustrated in Section 2.4.

2.2.1 Continuous valued time series

Typical continuous time series examples in our domain include device load and
disk storage. For a given organization, let Z, be the n-th observation of a relevant
continuous variable monitored. If h is the monitoring period, as configured by the
user, Z, represents the observation at time n - h. D,, represents the values observed
until such time and is recursively defined through D, = D,, 1 U {z,}.

Model Definition

We have identified the following relevant types of continuous time series in high
frequency network traffic monitoring:

o Series with a level or linear trend, possibly varying in time.

« Series with a level or linear trend together with one (or more) seasonal terms,
typically describing daily and/or weekly patterns.

o Series with a level or linear trend, together with several outburst terms, typically
associated with compression or backup processes.

o Series with a level or linear trend together with one (or more) seasonal blocks
as well as several outburst terms.

28 Chapter 2. Reactive Defences in Time Series Security Problems

As an example, Figure 2.1 shows the average load of a device that goes through a
backup process every night around 02:00am producing instantaneous load outbursts.
This series would lie within the third type above.
As a consequence, the general expression that we shall adopt for our models will
be
Zp=Y,+S,+ B, + €,

where Y,, designates a linear trend block; S, designates the seasonal block(s); B,
designates the outburst block(s); and, finally, €, designates a noise term. Note that
not all three blocks will need to be included in all cases. We describe a procedure to
automatically identify the required blocks below. We sketch first their definition.
The trend and seasonal terms are specifications of DLMs, West and Harrison
(1997). We consider for them the general, normal DLM with univariate observation
Xy, where X, corresponds either to the linear trend (Y,,) or the seasonal term (.S,,).
They are characterized by the quadruple {F,,, G, V,,, W, }: for each n, F,, is a known
vector of dimension m x 1, GG,, is a known m x m matrix, V,, is a known variance,
and W,, is a known m x m variance matrix. The model is then succinctly written as

Observation: Xn|0n ~ N(F!0,,V,,),
State: 9n|9n—1 ~ N(Gnen—ly Wn)7
Prior: 00| Do ~ N(myg, Cy),

where 6, represents the state variable at time n. We specify now the general model
for the required blocks, which we may combine using the superposition principle
(West and Harrison 1997, p. 186-188). The trend model is a specification of the
DLM with constant F,, and G,, through
11
e=[11]

In turn, the basic seasonal model with period s is a specification of the DLM with
constant F,, and G,

F=[10],

[-1 -1 -1 -1
1 0 0 0
F=|1o0 - 0}, G=|0 1 0 0
s—1
0 0 1 0 |
s—1

Typical periods that we incorporate are s = 288 for 5 minute data and s = 144
for 10 minute data. For larger periods, we might use a Fourier decomposition and
work with a few of the Fourier components (Petris et al. 2009, p. 102-109). For
both models we use V,, = 1; however, this parameter could be assessed using e.g.
maximum likelihood estimation. The variance matrix W,, is defined through the
discount principle with discount factor of 0.95 (West and Harrison 1997, p. 193-200).

2.2. Problem formulation and model description 29

In case some outburst processes are detected, then at the corresponding times,
the DLM model is turned off and the analysis of these points is made separately. To
this end we use a normal model for each particular outburst process

By, ~ N (u, %),

with mean p and variance 0. Here, n, would represent the index of the p-th outburst
of a given type.

Model Identification

By default, we use as baseline a linear trend block on top of which we add seasonal
and outburst blocks when such effects seem relevant. These are identified as follows:

o Seasonal component: We store the lags t; at which sign changes in the sample
autocorrelation function of the series take place. We then calculate the difference
between the closest non-consecutive lags, (t;1o — t;) for i = {1,---,j — 2},
assuming that there are j changes, and compute the sample mean (m) and
variance (s?) of differences. If s/m < r, where r is an adjustable threshold,
we include a seasonal component with nearest integer to m as the estimated
seasonality. Figure 2.2 represents the autocorrelation of a series of period 48 in
a specific example.

05
L

ACF

0.0
L

-0.5
L

6 5‘0 160 1‘50 260 2';30 360
Lag
Figure 2.2: Sample autocorrelation function of a network monitoring series with
seasonal component. The period is 48, corresponding to measuring the series twice
every hour for a full day.

o Outbursts: We first search through the dataset looking for times in which
the data lie outside v standard deviations from the estimated mean of the
series, with v an adjustable threshold. For these times we record how many
instances b; of the same type of outburst occur. For example, when analyzing
daily-regular outbursts we take a certain number of days and count in how

30 Chapter 2. Reactive Defences in Time Series Security Problems

many of them does a peak appear at the same hour. After a sufficiently long
time, we declare that this is an identified regular outburst process if

= > q, (2.2.1)
b

where b is the number of periodical time intervals in the data used for model
identification purposes, e.g. the total number of days in our previous example.
In addition, q is a repetition threshold that can be tuned to make peak selection
stricter. Condition (2.2.1) suggests that peaks need to appear, at least, ¢ x b
times throughout the data timespan to be considered part of a regular outburst
process.

For this identification process, we use a large enough amount of data, able to
capture the main features of the time series under study. In our application domain,
where daily and weekly effects are the most relevant, 5 weeks have been usually
sufficient.

Priors

It could be the case that we have available prior information for specific monitored
series. This will typically entail improved performance in terms of faster fitting.
However, to automate the approach we need to be generic and have adopted default
diffused priors as follows:

Linear term. The adopted prior is N'(mg, Cy), where

10" 0
moz[O O} s CO:[O 107]
Seasonal term. We use again a N (mg, Cy) prior. We adopt as mg a vector of
0’s of dimension s — 1, s being the period. The covariance matrix, of dimension
(s —1) x (s — 1), takes the form

CO: b - :)
: . B

where A is a large positive value and B is a negative value defined so that the sum
A

of every row and column is zero. Thus, we set B = — .

Outburst term. We use a noninformative prior

1

2
H(ILL,U) XX ;

2.2. Problem formulation and model description 31

Model Forecasting

We describe how we make forecasts with the above models. Petris et al. (2009, p. 53—
55) provides closed forms of the one-step ahead predictive distribution N (f,,, Q,)
of X,|D,_1, affecting both the trend and seasonal terms, and their superposition
thereof. As a consequence:

« The pointwise forecast at the next period n is E[X,|D,_1] = fn.

o If u, and [, represent, respectively, the upper and lower bounds of the expected
predictive interval with probability content «, they are defined through

Up = fn + Z1—a/2 Q:Z/Qa
ln = fn — Xl1-a/2 lel/Qv (222)

where z1_n/2 is the 1 — /2 quantile of the standard normal distribution, being «
the desired probability level of the predictive interval, which may be chosen by
design, e.g. depending on the asset value of the corresponding device. By default,
we use o = 0.95.

k-step ahead forecasts are also relevant in our context. If we use a,(k) = E[0,1x|D,],
fo(k) = E(Yoik|Dy), and Qn(k) = Var(Y,ix|Dy), (Petris et al. 2009, p. 70-71)
provide closed forms for such means and variances. As a consequence:

o The k-step ahead point forecast for the trend term at time n is

fu(k) = a,(0) + a,(1)k. (2.2.3)

o The k-step point forecast for the seasonal term at time n is
fn(k) = an(o)k mod s- (224)

Prediction intervals take a form similar to (2.2.2).
For the outbursts, for simplicity, we index the peaks of a particular type with p,
the number of observed outbursts of such type until the corresponding time. Then

1
Bp+1‘Dp ~ p + tp,1 <1 + p) O'g,

where 1, is the sample mean after observing p outbursts of the corresponding type,
and af, is the sample variance. We update recursively the parameters through

oy = Pt Xy op(p = 1)+ kpy + X7 — (p+ Dy
P p‘l’ 1) p+1 P)

where X, is the value of the series at the time corresponding to the p-th outburst of
the given type. Then,

32 Chapter 2. Reactive Defences in Time Series Security Problems

o The point forecast is E[Byi1|D,] = pp-

e The interval forecast is

1
Upt1 = flp +T1-g pt1 (1 + p) op
(2.2.5)

.,
Lpv1 = tp —ti—g pr1q| [1+ E Op)

where t1_(a/2) pt1 is the 1 — /2 quantile of the ¢-distribution with p — 1 degrees
of freedom, with « as above.

Finally, for general forecasts, we first distinguish between regular points and
outbursts. For regular points, the prediction is based on the superposition of the
involved DLM components. However, if the prediction refers to an outburst, the
DLM model is switched off and the outburst forecast is used.

2.2.2 Discrete valued time series

We briefly sketch the approach with this type of series. For further details see
Rios Insua et al. (2012). We use finite, time homogeneous Markov chains {X,,}, with
states {1,..., K}, where K = C + ¢, is the stated critical level plus a small integer c.
We write the transition matrix as P = (p;;) where p;; = P(X,, = j|X,—1 = 1), for
i,7 €{1,..., K}. Should it exist, the stationary distribution 7 is the unique solution
of m=7P, m; >0,>m=1.

We assimilate the monitored data D, to observing n successive transitions
of the Markov chain, say X; = z,...,X,, = x,, given the known initial state
Xo = xo. A natural prior for P is defined by letting p, = (pi1,...,pix) have a
Dirichlet distribution p; ~ Dir (e;) where a; = (u1,..., ;1) fori =1,... K are
independent vectors. Then, the posterior is p;|D,, ~ Dir () where af; = ay; + ny;
for 4,7 = 1,..., K; being n;; > 0 the number of observed transitions from state
1 to state j. Specifically, the prior adopted is given by the coefficients a; of the
corresponding Dirichlet distributions presented in the following K x K matrix

A
Baﬁ ceery
v B :
P i
A EEE B al

In our case, due to the high frequency of the time series involved, the most-likely
behavior for a certain state is to remain in its position, followed by one-state
transitions. The rest of transitions are less likely. We model this behavior by setting
a > [> ~. In particular, our default values are a = 10, § = 8 and v = 2. As before,

2.2. Problem formulation and model description 33

the proposed prior is general, flexible and useful to deal with the cases we have found
in network monitoring, facilitating a generic automated approach.

We predict the next value of the Markov chain, at time n + 1, using our estimates
of the transition probabilities

+nxnj o~

. Ay, j
P(Xoi1 = §1D0) = [pays f(PID,) dP = Sl iond =

Oy ot Mo
where oo — Z]K:1 a;; and n;e = ZJK:l n;;j. The pointwise prediction will then be
Zle J - Px,,j- Once the prediction of the next value is performed, we can also
calculate the prediction interval around such estimation. If 7 is the last visited state

Algorithm 1: Predictive interval calculation for discrete time series.
Data: Last visited state: i. Transition probabilities: p; ; for j =1,2,... K.
Initialization: sum = p;;, up11 =19, lhp1 =17
while sum < (do

if wu,,; = K then
‘ continue, interval stops growing upwards;

else
Upt1 = Upt1 + 1

sum = Sum + Pj y, 41

end

if [,,.1 =1 then
‘ continue, interval stops growing downwards;

else

ln+1 - ln+1 - 17
sum = sum + Py,
end

end
Result: w1, [,11

and (is the probability of the one step ahead predictive interval, we get its upper
and lower bounds w, 1 and [,,1, using Algorithm 1. Note that discrete time series
have both mazimum and minimum states, here K and 1 respectively.

k > 1 steps ahead predictions are more complex. For small k, we can use

P(Xox = jIDa) = [(P*), f(PID,)dP,

giving a sum of Dirichlet expectation terms. However, as k increases, the evaluation
of this expression becomes computationally infeasible in our domain. Thus, we
perform approximately by calculating the k' power P* of the matrix of expected
values of the probabilities and using

P(Xpik = j|Dn) = (P¥) .

nj

34 Chapter 2. Reactive Defences in Time Series Security Problems

Our interest also lies in the stationary distribution of the chain. For high
dimensional chains as the ones we need to deal with, we use the approximation

P,
L, (2.2.6)

>

>
Il

T =
T
i

T =

e

Once this equation is solved, we can use 7; > 0, the approximate stationary distribu-
tion, to produce long-term forecasts.

2.2.3 General scheme

The general strategy followed for each time series is described in Figure 2.3 (this
whole procedure is applied in an automated fashion to each new time series inputted
to the system). Once the series is in, a first distinction is made between whether
it is continuous or discrete. In this last case, the system uses the Markov model in
Section 2.2.2. Otherwise, the model identification process presented is applied. Once
the blocks have been identified, the appropriate dynamic model in Section 2.2.1 is
used. After fitting the corresponding models based on a sufficient amount of data,
forecasts may be made and alarms raised in case an anomalous behavior is detected
or reaching critical values is predicted, both in the short or medium terms.

0D _ pO-€
SS2
o)

Figure 2.3: General scheme.

2.3 Implementation

We now describe the implementation and use of our approach. We present here issues
in relation with having to deal with several hundred thousands of monitored series
sampled over periods ranging from 1 to 10 minutes, depending on the criticality of

2.3. Implementation 35

the corresponding device. We thus cover the speed and space scalability requirements
mentioned above.

The implementation has been carried out through the creation of an object-
oriented python package linked with the core monitoring system. Each monitored
time series will be associated with an object that includes all methods required to
accomplish predictive monitoring tasks. The package is structured as in Figure 2.4.

data, tlme

cla551ﬁer

,time,classifier

Figure 2.4: Structure of the python package for time series monitoring and anomaly
detection.

The main code blocks are the classes gen and classifier. The main code receives
the data and timestamps of the training period of each series and generates a
classifier object. Its attributes contain the characteristics needed to identify the class
of models to be used in the analysis of that particular time series. Once this object is
constructed, using it together with the data and timestamps, a gen object is created.
This is the general class whose methods depend on the model relevant for the given
time series, which will ultimately be used to undertake the forecasting and anomaly
and critical value detection tasks. Among these, we highlight the update method,
which incorporates new data to the current model and updates the parameters in a
Bayesian manner, and the predict method, which performs k-step ahead predictions,
returning point and interval forecasts, providing the basis to construct the specific
critical and anomaly detection functions that raise the alarms.

Short term forecasts are needed for safety and security purposes. Given D,
we produce forecasts using the predict method for future observations x, 1, T2,
Tpis, -+ up to a certain time (n + k) - h, with k defined by the user. k = 3 is
the default value. Forecasts are delivered as predictive intervals [l,, 1, u,.;] with
probability level configurable by the user. These could be used to detect aberrant
behavior within the time series: when the next observation z,,; does not lie in the
predictive interval [, 11, u,+1], a warning concerning unexpected behavior is displayed
pointing to a potential security issue. Our implementation modulates the warning
depending on the number of consecutive intervals in which it needs to be launched.
In order to control for false positives, alarms could be issued just when the number
of violations exceeds certain threshold within a moving window with fixed number
of time steps, as suggested in Brutlag (2000). Short term predictions also serve for

36 Chapter 2. Reactive Defences in Time Series Security Problems

safety monitoring tasks. Specifically, when W or C' lie within a predictive interval
[ln+tj, Untj] for one j € {1,2,...,k}, an alarm pointing to potentially high values of =
should be issued. The higher the number of intervals covering the particular level,
the more intense the alarm would be. We illustrate both functionalities through a

01:00 03:00 05:00 07:00 09:00 11:00 13:00

(a) Continuous time series. (b) Discrete time series.

Figure 2.5: Short term forecasting using 95% one-step ahead predictive intervals.

practical example in Figure 2.5(a). In this case, an intense unexpected behavior
alarm would be issued around 2 PM as there are four measurements outside the
corresponding predictive intervals. In addition, an alarm concerning a potentially
high value of the series would be issued at 1:40 PM, as the predictive intervals exceed
the warning and critical levels at 1:50 PM and 2:00 PM, respectively. A similar
example using discrete time series is displayed in Figure 2.5(b).

Long term forecasts are used to accomplish safety monitoring tasks: we try to
ascertain whether critical levels will be reached with sufficiently high probability in
the long term. In principle, it could be done using predictive intervals as we do with
short term predictions and illustrated in Section 2.2.1. However, since the system
must monitor so many high frequency time series in real time and, consequently,
must perform under a very narrow time window, we need to make a compromise:
although the calculation of predictive intervals is feasible, here we will just focus on
point forecasts. This allows for a drastic improvement in the computational costs
of running the involved algorithms, as we can use explicit expressions to make the
forecasts, obviating the costly computation of predictive variances. We use as point
forecasts z,4;, the midpoint of intervals [l,;, u,+;], and try to find out the first j;
such that z,,; > W and the first j, such that z,,;, > C. This allows us to identify,
well in advance, time instants in which critical values might be reached, as we may
provide explicit expressions of such inequalities. Indeed, in the linear case, from
(2.2.3), we try to find the first j;,i = 1,2, such that

. W —an(0) . C—an(0)
T 127 T o

assuming that a,(1) > 0. Similarly, with a seasonal block, from (2.2.4), we try to
find the first j;,7 = 1,2 such that

an(o)jl mod s > Wv an(o)jz mod s > Ca

2.3. Implementation 37

if any. Finally, when the model contains linear and seasonal blocks, we compute
j1 (and similarly js) through Algorithm 2, where a/ (0) are the parameters of the
pointwise k-step ahead forecasts for the seasonal term, and a,(0) and a,(1) are those
of the linear trend.
Algorithm 2: Long term forecast linear 4 seasonal trend.
while a,,(0) 4+ a,(1)k 4+ a,(0)k moa s < W do
k=k+1;
J1=k;
end

K-steps ahead prediction

0

B - Original data =
Critical
""" Warning

10
0

T T T T
16:00 21:00 02:00 21:.00

Figure 2.6: Long term forecast for continuous time series

A practical example of this type of forecast is illustrated in Figure 2.6. There, the
time series is not expected to cross neither warning nor critical levels in the next five
hours. However, if the linear growth in the main trend continues, both levels could
possibly be reached in the future. In order to control for false positives, we could
define a relevance time window, only raising an alarm when anomalous behavior
occurs repeatedly inside it and neglecting them otherwise.

For long term forecasting with discrete time series, we use the stationary distri-
bution in (2.2.6). If the sum of probabilities assigned to the states that lie above
the warning (critical) level is higher than a certain prestablished threshold, an alarm
would be raised. This is illustrated in Figure 2.7. In this case, an alarm should be
raised if the warning (critical) threshold is at 0.07 or lower.

We assessed the time performance of our approach with stress tests. For different
models, we have sequentially added 15000 new data points through the update
method, performing a short term prediction (30 minutes) and a long term prediction
(5 hours) at each iteration. In particular, we tested four models: one with a linear
trend; one with a linear trend and a seasonal block with period 144; a model with
a linear trend and an outburst block; and, finally, a Markov chain model with 50
states. In Table 2.1, we show the mean, median, min and max times of the whole
operation (update + short term prediction + long term prediction), for each of the

38 Chapter 2. Reactive Defences in Time Series Security Problems

42% Normal states

Warning
©® Critical

0.4
|

0.3
|

0.2
|

18%

Lingering time proportion

12%

0.1
|

9%
6%

| @
9 10

State

Figure 2.7: Long term forecast for discrete time series

models used. Time calculations have been performed in an Intel Core i7-3630UM,
2.40GH z x 8 machine.

Mean Median Min Max
Linear 4.03-107* 3.97-107* 3.76-107* 9.12.10~*
Linear + Seasonal 2.50-1072 2.49-1072 243-1072 4.60-102
Linear + Outburst 4.42-107* 4.35-107* 2.73-10~* 8.38-107*
Markov Chain 8.81-107* 8.06-107* 7.70-107* 1.96-1073

Table 2.1: Mean, median, min and max times in seconds of update, short term and
long term prediction for different models.

The algorithm is fast enough, and consequently, able to cope with the typical high
frequency data in the network monitoring domain. However, note that the model
including the seasonal trend is remarkably slower than the other ones. This is to be
expected since it includes a seasonal term with long period, which involves performing
several operations with high dimensional matrices. Should better performance be
required, we could use a Fourier decomposition of the seasonal trend, and work
with a few of the most relevant Fourier components (Petris et al. 2009, p. 102-109),
although this would require a method to automate identification of such components.

In terms of memory, the whole approach is constructed so that a fixed number
of parameters are stored at any step of the calculations to further improve its
performance. In the case of continuous time series, the linear part of the DLM stores
two 2-component vectors, the vector ' and the mean of the state distribution m;
three 2 x 2 matrices, the matrix G, the covariance matrix C' of the state distribution
and the system covariance; and a parameter corresponding to the observation
variance. Similarly, the seasonal part stores two (s — 1)-component vectors, three
(s = 1) x (s — 1) matrices and one parameter. The outburst term holds only two
parameters corresponding to the mean and variance of the corresponding distribution,

2.4. Empirical test for accuracy 39

for each recurrent peak detected. Finally, the Markov model for discrete time series
employs a k X k matrix that is updated at each step, where k corresponds to the
number of states considered in the chain. This means that in the worst case scenario,
the model needs to store in memory O(s?) parameters for the continuous case and
O(k?) for the discrete case, which is feasible within the architecture developed.
These remarks, together with the time performance measures previously presented,
suggest that the algorithm fulfills the time and space scalability requirements.

2.4 Empirical test for accuracy

This section provides empirical support for the accuracy of the proposed framework
for network monitoring, fulfilling our fourth requirement. It also illustrates how the
approach adopted was designed based on modeling numerous series in our domain to
obtain the relevant features.

To that end, we use as benchmark the four time series plotted in Figure 2.8,
which are representative of the above mentioned characteristics in network traffic
monitoring (linear trends, seasonal behaviors, outbursts and discrete processes).
In this way, we show that our automated framework meets the aforementioned
properties of scalability and versatility, being able to deal with time series of very
different nature.

To assess the overall accuracy of our approach, we use some of the traditional
performance metrics for point forecasts. In particular, we use the mean absolute
error (MAE), the mean square error (MSE) and the mean absolute percentage
error (MAPE). We compare our modeling framework with some of the traditional
methodologies mentioned in the introduction, specifically ARIMA and exponential
smoothing (ES), as there are open source automated implementations available.
Specifically, we use the forecast R package, Hyndman and Khandakar (2008) and
Hyndman et al. (2018). In our case, for the comparison, it is important to use
monitoring methods that are able to deal in a completely automated fashion with
large amounts of different time series.

Note first that our forecast, in contrast to those provided by the other methods,
is a full predictive distribution rather than a single point forecast. Then, if we want
to compute the above mentioned performance metrics, we need to summarize our
predictive distribution with a single point. To that end, we shall choose the point
that minimizes the corresponding expected loss under the predictive distribution!.

Figure 2.9 plots the different performance metrics versus the forecast horizon from
one to ten steps ahead for the first three time series in Figure 2.8. Notice that the
accuracy of our method is deemed competitive. In particular, our approach notably
outperforms ARIMA and exponential smoothing in cases 1 and 3. In the first case,
this is due to the fact that we are capable of accounting for the outburst process in

Tt is well known that the predictive median is optimal under absolute loss; the mean, under
squared loss, and the (—1)-median under the absolute percentage loss, that is the median of the
p.d.f. g(y) < p(y)/y where p(y) is the forecast distribution.

40 Chapter 2. Reactive Defences in Time Series Security Problems

52

51

50

bbbl

27 28 29 30 ' Y 25 26 27 28 29 30
Nov Nov
2016 2016

Case 1: Continuous series with outbursts. Case 2: Continuous series.
98 4
181 97
174 96
95 4
16 1 04
15 93 4
92
14 A0 A Ak A0 A% 29
k v y> y> v y> y>
Nz:v 25 26 27 28 29 30 ,LQ\J’Q ,LQO’Q 100’0 ,LQ\J’Q ,LQO’Q 10\1(0
2016 time
Case 3: Seasonal series. Case 4: Discrete series.

Figure 2.8: Time series used for the comparisons.

such sample. Modeling these regular outbursts separately makes all the difference
here. For sample 2, all methods have a similar performance in all three metrics, due
to its simpler nature. However, for sample 3, the automated approach implemented
in the forecast R package for ARIMA and ES was not capable of recognizing the
seasonal component in such data. Therefore, the difference in performance is due to
the fact that our approach is correctly identifying the seasonal component and the
error remains more stable through the number of steps ahead of the predictions.

To further study sample 3 results we also computed these performance metrics for
ARIMA and ES, tuning them manually to explicitly account for the corresponding
seasonal behavior. Results are presented in Figure 2.10. Here we see that once
ARIMA and ES are given this information, their performance in the long term
predictions improves sharply. However, even in this case our approach, still being
completely automatic, remains competitive. Moreover, if we also consider the
scalability requirement, both ES and ARIMA have much higher running times, being
specially high in the case of ARIMA. Therefore, even though we had to intervene
the ARIMA and ES models to correct them and gave them much more running time
to produce the forecasts, our method still performs well enough while fulfilling the
requirements of automaticity and scalability.

2.4. Empirical test for accuracy

Sample 1

5-
30-
4-
w
o
<
= 5.
3- e e
o
2-
20~ —obemboaky
1 e abesboole ol
‘ -
25 50 75 10.0 2’5 50 75 10.0 2’5 50 75 10.0
Horizon Horizon Horizon
Sample 2
L} ,'
\
144- 0N 072- 2\
SN
‘ \ N \
\ I, \- 1
3 ,"—l’, .)
0.675- [ie
70-
W 143 070
w o w -
g < 2 BTGRP T k|
= T ...
Cnokyon . .
J e
. .
0.670- -+ 0,66
S 1.42- - .
. O | s . :
: .. 1
X B .)
3 . . ‘
25 50 75 10.0 25 50 75 10.0 25 50 75 10.0
Horizon Horizon Horizon
Sample 3
. 1.25-
0.6~
1.00-
W 05- W 0.75-
<]
= =
04 0.50-
0.25-

03 w—@-m--B-_ g g -m-u- " -u

L |

25 50 75 10.0 25 50 75 10.0 2’5 50 75 10.0
Horizon Horizon Horizon

Model - - ARIMA forced =4~ ES forced -=~ Our model

Figure 2.9: Point forecast performance comparison for the continuous time series.

41

42 Chapter 2. Reactive Defences in Time Series Security Problems

Alternative analysis on Sample 3

olosa [GL T

B L TR e gl Loroodoo I P

0.35-

w
< 0.33-
=

- a L} -
T Py i 0.16- w - u - == %

2’5 50 75 10.0 2’5 50 75 10.0 2’5 50 75 10.0
Horizon Horizon Horizon

Model - # - ARIMA forced =&~ ES forced -~ Our model

Figure 2.10: Point forecast performance comparison for sample 3 using hand-crafted
features for ARIMA and ES models versus the automatic fitting of our approach
(forcing seasonality and giving the period of this seasonal component).

Finally, we also computed the performance metrics for the fourth sample in Figure
2.11. However, neither ARIMA nor ES are prepared to deal with discrete time series.
Therefore, here we only present the results for our method. As expected, our method

Sample 4

0.8- 1.00-

MSE

0.2- 0.2- 0.25-
25 5.0 75 10.0 25 5.0 75 10.0 25 5.0 75 10.0
Horizon Horizon Horizon

Model e Our model

Figure 2.11: Point forecast performance comparison for the discrete time series.

performs better in short term predictions than in the long term ones. As mentioned,
when dealing with long term forecasts in the discrete case, it may be more sensible
to work with the stationary distribution described in (2.2.6).

A key aspect that differentiates our methodology from the rest is that it produces
full predictive distributions, with reasonable uncertainty quantification, rather than
point forecasts. Such distributions play an important role in anomaly detection as
pointed out in Section 2.2. In order to perform probabilistic forecast evaluations,
we plot in Figure 2.12 the empirical coverage against the width of the predictive
distributions, for 1, 5 and 10 steps ahead predictions in each of the cases studied. As
can be seen, our approach is working properly in the continuous case as the coverage
curve is very close to the 45 degree line (ideal coverage).

In the discrete time series case, we observe over-coverage, specially for 5 and
10 steps ahead forecasts. This is a consequence of how the credible intervals are

2.5. Discussion 43

Sample 1 Sample 2

0.900 0925 0.950 0.975
Interval Interval

Sample 3 Sample 4

0.900 0925 0.950 0975 1
Interval

Figure 2.12: Empirical coverage for 1, 5 and 10 steps ahead predictive distributions.

constructed in such case (Algorithm 1). If we want to obtain an « probability
predictive interval, we will keep on adding states to the interval until the probability
of the system staying in any of those states is at least . However, we have point
probability masses due to the discrete nature of the series and, therefore, the addition
of a discrete number of these will make the real probability of the predictive interval
bigger than « since we only stop adding states once « is surpassed to make sure that
we cover at least such level.

2.5 Discussion

In this Chapter a reactive defense for time series security problems has been proposed.
In particular, based on the features typical of network monitoring time series, we
have provided a framework to identify safety and security issues within a large
number of internet connected devices. The framework has been implemented and
operates as part of a system controlling a network with more than three hundred
thousand devices, even taking into account that each of them provides several very
high-frequency time series.

The framework presented is very flexible when it comes to identify and model
different behaviors that can be described in terms of basic components, as it hap-
pens in our application domain. This would allow for wide use through different
environments beyond it, as we may use the same approach to monitor very distinct
time series with intrinsic varying nature. Moreover, since the procedure just needs
to store a few parameters for each time series, we can say that it is scalable, both in
terms of memory and runtime. The framework is amenable to parallel processing,
allowing to monitor different batches of series in different cores, thus reinforcing

44 Chapter 2. Reactive Defences in Time Series Security Problems

the scalability request. In addition, thanks to our model identification procedure,
our approach is able to work automatically without human supervision. Another
interesting advantage refers to updating series with missing data, which happens
relatively frequently in our domain. In presence of such missing values, the state
carries no information and, therefore, the filtering distribution at such time is just
the one-step-ahead predictive distribution of the previous step.

Chapter 3

Proactive Defences in
Classification Problems

3.1 Introduction

Following objective O2, in this chapter we present novel proactive defenses for
adversarial classification based on adversarial risk analysis (ARA) (Rios Insua et al.
2009). ARA is an emergent paradigm supporting decision makers who confront
adversaries in problems with random consequences that depend on the actions of
all participants. It provides one-sided prescriptive support to a decision maker
maximizing her subjective expected utility by treating the adversaries’ decisions as
random variables. To forecast them, we model the adversaries’ problems. However,
our uncertainty about their probabilities and utilities is propagated leading to the
corresponding random optimal adversarial decisions which provide the required
forecasts. ARA operationalizes the Bayesian approach to games, Kadane and Larkey
(1982) and Raiffa (1982), facilitating a procedure to predict adversarial decisions.
Compared with standard game theoretic approaches, ARA does not assume the
standard common knowledge hypothesis, according to which agents share information
about utilities and probabilities.

As reviewed in Section 1.4 of Chapter 1, most proactive defenses for adversarial
classification have been framed within a standard game theory approach, with strong
common knowledge assumptions. In this chapter, we apply the decision theoretic
pipeline proposed in Section 1.4.2 and 1.4.3 to adversarial classification (AC). Thus,
we propose ACRA, an approach to robustify classification in adversarial settings
based on ARA, which stems from the pioneering work by Dalvi et al. (2004), but
avoids common knowledge assumptions prevalent in the literature.

The chapter is organized as follows: ACRA is presented in Section 2, followed by a
simple numerical example in Section 3 aimed at showcasing concepts and illustrating
robustness issues with adversarial examples. Section 4 presents computational
enhancements illustrated with larger examples in Section 5. We end up with a
discussion.

45

46 Chapter 3. Proactive Defences in Classification Problems

3.2 Adversarial Classification based on Adversar-
ial Risk Analysis

In classification settings, an agent that we call classifier (C', she) may receive objects
belonging to k different types designated with a label y = y;, ¢ = 1, ..., k. Objects
have features x whose distribution depends on their type y. Classification problems
can be broken down into two separate stages (Bishop 2006): an inference stage for
learning pc(y|x), the classifier beliefs about the instance type given the features;
and a decision stage in which the agent, based on these posterior probabilities,
makes a class assignment decision y¢ perceiving some utility uc(yc,y). The agent
decides by maximizing expected utility, French and Rios Insua (2000). This problem
may be formulated through an influence diagram, Jensen and Gatti (2012), as in
Figure 3.1. As in BAIDs, Section 1.4.1, square nodes describe decisions; circle nodes,
uncertainties; double nodes represent deterministic aspects; and finally, hexagonal
nodes refer to the associated utilities. Arcs have the same interpretation as in
Shachter (1986); those arcs pointing to decision nodes are dashed and represent
information available when the corresponding decisions are made.

O

1
/
1

r

Yo

O

Figure 3.1: Classification as an Influence Diagram.

In adversarial settings, another agent called adversary (A, he) is present. Thus,
the classification problem must be reformulated, leading to the BAID in Figure
1.7. In this chapter we focus on evasion attacks, defined to have influence just over
operational data but not over training data. Thus, they only affect the decision stage
of the classification problem. Within this stage, the adversary chooses an attack
a which, applied to the features x, leads to the perturbed data ' = a(z) actually
observed by C. A general transformation from x to x’ will be designated a,_,,. The
ID describing the classification problem must be augmented to incorporate adversarial
decisions, leading to the bi-agent influence diagram in Figure 3.2. Notice that this
coincides with the right part of the BAID in Figure 1.7. The adversary and classifier
decisions are represented through nodes a (chosen attack) and yo (classification
choice), respectively. The impact of the data transformation over x implemented by
A is described through node z’. The utilities of A and C' are represented with nodes
uy and uc, respectively. Upon observing a particular 2/, C' needs to determine the
object class y. Her guess yc, which we shall also denote ¢(z’), provides her with
utility uc(ye,y). As before, she aims at maximizing expected utility. However, A

3.2. Adversarial Classification based on Adversarial Risk Analysis 47

also aims at maximizing his expected utility trying to confuse the classifier. His
utility has the form u4(yc, y, a), when C' says yc, the actual label is y and the attack
is a, which has an implementation cost.

Figure 3.2: Adversarial classification as a Bi-agent Influence Diagram

In this chapter, we develop a framework to support C' in choosing her classification
decision taking into account possible adversarial modifications of the data she observes.
As in Dalvi et al. (2004), we study cases in which the attacker considers interesting
for him instances belonging to the first [classes (call them malicious), the other
ones being irrelevant for him (innocent): the attacker is interested in modifying data
associated with instances belonging to the first [classes to make C' believe that they
belong to the remaining ones. Thus, A will not modify good instances. These types
of attacks are denominated integrity-violation attacks, and are the most common
ones in security scenarios. Finally, we restrict our attention to deterministic attacks,
in the sense that their output is not random. Huang et al. (2011) and Barreno et al.
(2006) provide taxonomies of attacks against classifiers.

We shall need to forecast the attacker’s actions to support C' in her decision
making process. For that we consider his problem. As we lack common knowledge,
we shall model our uncertainty about A’s beliefs and preferences and compute A’s
random optimal attack, which provides the required forecasting distribution.

3.2.1 The classifier problem

We present first the classification problem faced by C' as a Bayesian game in Figure
3.3a, deduced from Figure 3.2. We formulate a decision problem for C' in which
A’s decision appears as random to the classifier, since she does not know how the
adversary will attack the data. Section 3.2.2 provides a procedure to estimate the
corresponding probabilities making this approach operational.

Suppose for now that we are capable of assessing from the classifier:

1. pe(y), which describes her beliefs about the class distribution, with %, pe(y;) =
1, and pe(y;) > 0 Vi.

48

Chapter 3. Proactive Defences in Classification Problems

(a) Classifier problem (b) Adversary problem

Figure 3.3: Influences Diagrams for the Classifier and the Adversary problems.

2. pc(z|y), modeling her beliefs about the feature distribution given the class,

when A is not present. Thus, we need pc(z|Y;) Vi. Since we focus on
exploratory attacks, we can estimate po(z]y) and po(y) training a generative
classifier, Bishop and Lasserre (2007), on data which is clean by assumption.

. pe(2']a, x), which models her beliefs about the transformation results. Since

we consider only deterministic transformations, it will actually be the case that
po(2’|a,z) = I(x' = a(zx)), where I is the indicator function.

. uc(ye,y), describing C’s utility when she classifies as yo an instance whose

actual label is y.

. pc(alz,y), portraying C’s beliefs about A’s action, given that he receives and

instance of class y with features x.

In addition, we assume that C' is able to compute the set A(x) of possible attacks
over a given instance x. When she observes 2/, she could compute the set X’ =
{z : a(x) = 2’ for some a € A(x)} of instances potentially leading to z’. She should
then aim at choosing the class yo with maximum predictive expected utility. In our
context, this means that she must find the class ¢(2’) such that

k
c(a') = argymaXZuC(yc,yi)pc(yi\x’) =
C =1
k
= argmax > uc(ye, vi)pe(vi)pe(2'|y;) =
C =1
k
= argmax » uc(yc,yi)pc(y:) Y. Y. po(’,z,aly).
yo i=1 €X' ac A(x)

For the second equation, we apply Bayes formula to compute p(y;|2’), but ignore
the denominator, which is irrelevant for optimization purposes. Then, we expand

3.2. Adversarial Classification based on Adversarial Risk Analysis 49

the term p(2'|y;) taking into account the possible attacks. The presence of A thus
modifies pc(2'|y), preventing us from directly using the training set estimates of
these elements. Therefore, we need to take into account A’s modifications through
the probabilities po(2’, x, aly). Furthermore, expanding the last expression and using
the conditional independence assumptions implied by Figure 3.3a, we have

c(z') ZargmaXZ[uc(yc,yi)pc(yz-) > > pc(fv’lx,a,yi)pc(:c,a\yi)] =

ve i=1 €X' ac A(z)

= argmaXZ[uO(yc,yz’)pc(yi) > > pc(x’!flf',a)po(a\x,yi)pc(m\yi)]-

yo i=1 €X' ac A(x)

Recalling now that we consider only integrity-violation attacks, we have pc(alz, y;)
= I(a =1d) for i =1+ 1,...,k, where id stands for the identity attack leaving =
unchanged and [is the indicator function. Then, taking also into account assumption
3, the problem to be solved by C' is

c(a’) = argmaXlZuC(yc,yi)pc(yi) > > 1@ = a(@)pclalr, yipe(=ly:)

ve i=1 zeX! ac A(x)
k
+ > uc(ye,y)pe(y:) Y. Y. 1@ =a(x)I(a = id)pc(z|y:)| =
i=l+1 €X'’ acA(x)

l
= argmax [ZUC(yCayi)pC(yi) > vt |z, yi)pe(zly:)

vo =1 zCX!
k
+ Z uc(ye, yi)pe(@'|yi)pe (i) | (3.2.1)
i=l+1

where po(ag—.|x,y;) designates the probability that A will execute an attack that
transforms x into 2/, when he receives (x,y = y;), according to C.

Note that if the above mentioned game-theoretic common knowledge assumptions
held, C' would be able to compute the set of instances that, with probability 1, A
would change to z’: we would know A’s beliefs and preferences and, therefore, would
be able to compute the attacks he is actually implementing. Thus, we find out that
for those potential attacks, pc(az .|z, y;) would be 1, and 0 for every other. Then,
the model would just take into account instances with probability 1, ignoring the
others. But common knowledge is not available, so we actually lack A’s beliefs and
preferences. ACRA models our uncertainty around them. As we shall see, in doing
so we enhance model robustness. Notice that in (3.2.1), we are summing pe(x|y;)
over all possible originating instances, weighing each element by po(ag .|, y;), thus
taking into account the uncertainty about A’s decision problem.

The ingredients 1-4 required in the analysis are standard in the decision analytic
practice, Clemen and Reilly (2013). However, the fifth element po(a,—.|z,y),
demands strategic thinking from C. To facilitate the corresponding forecast and
make the approach operational, we consider A’s decision making process.

50 Chapter 3. Proactive Defences in Classification Problems

3.2.2 The attacker problem

We assume that A aims at modifying = to maximize his expected utility by making
C classify malicious instances as innocent. The decision problem faced by A is
presented in Figure 3.3b, deduced from Figure 3.2. In it, C’s decision appears as an
uncertainty to A. Suppose for now that we have available from him:

1. pa(z'|a, x), describing his beliefs about the transformation results. As with C,
we make pa(z'la,z) = I(z' = a(x)).

2. uS(a) == ua(ye, yi, a), which describes the utility that A attains when C' says
Y., the actual label is y; and the attack is a. Note that this reflects certain
attack implementation costs.

3’ pa(ye|z’ = a(z)), which is the probability that A concedes to C' saying that
the instance belongs to class ., given that she observes the attacked data
' = a(z). Let us call p. this probability. As the Attacker will typically be
uncertain about it, we model this uncertainty with a density fa (p.|a(x)), with

mean pGla(z)].

In addition, we are assuming that A just modifies malicious instances. Thus,
when receiving an instance with features x and label y; with ¢ = 1,...,[, among all
attacks, A would choose that maximizing his expected utility

@ (@) argmaxz [[ui@pd 2 rla(e)) dn. =

= Z:l ui(a)phla(e)] (3.2.2)

However, the classifier does not know the involved utilities u%(a) and expected
probabilities p§[a(x)] from the adversary. Suppose we may model her uncertainty
through random utility functions U§ (a) and a random expectations P§[a(x)]. Then,
we could solve for the random optimal attack, optimizing the random expected utility

A*(w,y;) = argmax Y, Ui (a) Pila(x)];

c=1

and make po(a, .|z, y;) = Pr(A*(x,y;) = ay_.), assuming that the set of attacks
is discrete.

We have therefore provided a way to approximate the remaining fifth ingredient
in the classifier problem in Section 3.2.1, which is now operational. In general,
to approximate it we use simulation drawing K samples (Uﬁi’k(a)Pj’k[a(x)]), k=
1,..., K from the random utilities and probabilities, finding

Az, y;) = argmaxz e)Pg’k[a(x)],

a c=1

3.2. Adversarial Classification based on Adversarial Risk Analysis 51

and estimating it through

_ #{ A (2, +) = az%w/}_

I (3.2.3)

ﬁa'(ax—)x’ ’ xZ, +)
It is easy to prove that (3.2.3) converges almost surely to po(az—q|z, +).

Of the required random elements, it is relatively easy to model the random
utility U§ (a). One option would be to scale these utilities between 0 and 1 and use
U.; ~ Beta(agi, Be;). If information about the likely values of the utilities is available,
we may assess them through appropriate a.; and [, values; if information about
possible perceived rankings of the utilities is available, we may introduce them as
constraints and sample by rejection. Another option, that allows us to explicitly
model attacking costs, would typically include two components. The first one refers
to A’s gain from C’s decision. If we adopt the notation Y, ,. to represent the gain
when C' decides y. and the actual label is y; we use: —Y,_,. ~ Ga(ae, Be) when
c=1,...,l, reflecting that, the gain obtained by A when when C' classifies a truly
malicious instance as malicious is negative. Similarly, Y, ,. ~ Ga(ae;, B.) when
c=1+1,...,k. The second component refers to the random cost B of implementing
an attack. Then, the gain of the attacker would be Y,,_,, — B. Finally, assuming that
A is risk prone, French and Rios Insua (2000), the random utility could be computed
as U5 (a) = exp(p (Yy.,, — B)) with, say, p ~ Ulay, as], a; > 0, reflecting C’s believes
about A’s risk proneness coefficient.

On the other hand, modeling P§[a(x)], A’s (random) expected probability that
C' declares an instance as belonging to class y. when she observes ' = a(x), is
more delicate. It entails strategic thinking as C' needs to understand his opponent’s
beliefs about what classification she will make when she observes x’. This could be
the beginning of a hierarchy of decision making problems, as described in Rios and
Rios Insua (2012) in a much simpler context. We illustrate here the initial stage of
such hierarchy in our problem area. First, A does not know the terms in the decision
making problem (3.2.1) faced by the classifier. By assuming uncertainty over them
through the random distributions PZ(v;), P& (x|y:), P& (as—a|z, ;) and utilities
U&(yc, vi), he would get the corresponding random optimal decision replacing the
incumbent elements in (3.2.1) to obtain P4la(z)]. However, observe that this requires
the assessment of PA(a, .|z, y;) (what C believes that A thinks about her beliefs
concerning the action he would implement given the observed data) for which there
is a strategic component, leading to the next stage in the announced hierarchy.
One would typically stop at a level in which no more information is available. At
that stage, we could use a non-informative prior over the involved probabilities and
utilities.

For the first stage of this hierarchy, a relevant heuristic to assess P§la(z)] may be
based on the probability Pre(c(a(x)) = y.|a(z)) that C assigns to the object received
being malicious assuming that she observed z’, with some uncertainty around it.
Thus, we can model P§[a(z)] using a Beta distribution with parameters chosen in
such a way that the mean is Preo(c(a(x)) = y.|a(x)) for a given variance. Specifics
on how to compute Prgo(c(a(x)) = y.|a(x)) would depend on the case at hand.

52 Chapter 3. Proactive Defences in Classification Problems

3.2.3 Algorithmic implementation

Once we have a Monte Carlo routine to estimate pc(a, .|z, y;) as in Algorithm
4, which entails the availability of a routine to generate from the random utility
function (Algorithm 3), we implement the scheme described above as in Algorithm
5, where Z indicates estimate of x.

Algorithm 3: GENERATE U{(a).

Generate B* ~ B, p* ~ Ulay, ay).
Generate Yk’ . from the corresponding Gamma distribution.

Usi(a) = exp(p" (Y, , — BY)).s

. ycy
return UY(a)

Algorithm 4: ESTIMATE pc(az—.|T, y;).
Compute A(z).
for k=1,2,..., K do
for a € A(z) do
Generate U (a).
Generate P$*(a(z)) from the corresponding Beta distribution.
Compute ¢*(a) = X1, Ui (a) Pi* (a(x)).
end
Compute aj, = argmax,¢ 4., ¥*(a).
end
Compute

#{CLZ, = ax—):c’}
K .

ﬁC’(ax—m’ | X, +) -

return po(az . |z, y;)

3.3 A case study in spam detection

We illustrate the ACRA approach with a spam detection problem. We have data
referring to m emails characterized through the bag-of-words representation, Zhang
et al. (2010): binary features indicate the presence (1) or not (0) of n relevant words
in a dictionary. Additionally, a label indicates whether the message is spam y = +
or not y = —. Thus, an email is assimilated with an n-dimensional vector = of 0’s or
1’s, together with a label y. In this example, we consider only good word insertion
(GWI) attacks, Dalvi et al. (2004). For simplicity, we illustrate the method in detail
only when adding at most one word (1-GWI), but our method can be applied, with
precautions discussed later, to the case of k added words (k-GWI). An example
asseses how the method works in the case 2-GWI in Section 3.4.3. 1-GWI entails
converting at most one of the 0’s of the originally received message into a 1.

3.3. A case study in spam detection 53

Algorithm 5: ACRA scheme.
Preprocessing
Train a generative classifier to estimate pc(y) and pe(x|y), assuming that the
training set has not been tainted.
Operation
Read 2’ and estimate A”.
ESTIMATE pe(ay—q|z,y;) for i =1,... 1 and for all z € &”.
Solve

!
c(a’) = argmax | > uc(ye,vi)pe(yi) Y. Dol@omse |z, yi)Do(|y;:)

ye i=1 rEX!
k
+ > uc(ye, y)pe(@ly)be(ys) |-
=11

return c(z’)

Given a message * = (z1, T, ..,Z,), with z; € {0, 1}, let us designate by I(z)
the set of indices such that x; = 0. Then, the set of possible attacks in this case
is A(x) = {ap = id, a;; Vi € I(x)}, where a; transforms the i-th 0 into a 1. In turn,
given a message x’ received by C, we designate by J(z’) the indices of features with
value 1 in 2. If we designate by x; a message potentially leading to 2/, derived by
changing the j-th 1 in 2’ with a 0, the set of possibly originating messages would be
X' ={a 2l V5 e J(2')}.

»

3.3.1 Classifier elements

The elements required to solve the classifier problem, Section 3.2.1, include the utility
function ue(ye, y), which is standard, and the distributions pe(y) and pe(z]y), also
standard if we just consider, as we do here, exploratory attacks. As we mentioned, we
could use our favorite generative classifier to estimate them. Finally, pc(as—. |, y)
has a strategic component and we use ARA to approximate it.

3.3.2 Adversary elements

The adversary’s random utilities follow the general arguments in Section 3.2.2. We
also need to assess PJ (a(x)) (having this Py =1 — P (a(z))). We use the heuristic
there proposed, with the following caveat. If the original label is —, the mail is
innocent and the adversary does not change it, thus coinciding with the received one;
we denote by gy = pc(2’'|—)pc(—) the probability of this event happening, according
to C'. If the original label is +, the mail is malicious, and A might change it in an
attempt to fool the classifier; according to C', the original message x’; happens with
probability ¢; = po(2}|+)pc(+),Vj € J(2'). However, the adversary might decide
not to attack even if the email is spam; according to C', this happens with probability

54 Chapter 3. Proactive Defences in Classification Problems

Gnt1 = po(2'|4+)pe(+). Then

_ Yicdla@) & + Gt
Qo + Xictla@) &+ G+

(3.3.1)

Ta

is the probability of C' believing that the observation a(x) has label +, when she
is aware of the presence of A. For such attack a, we could make §7/(6 + 05) = r,
and (0969)/[(6% + 09)%(6¢ + 6% + 1)] = var and solve for §¢ and 65 in order to get the
parameters of the Beta distribution modeling Pj (a(z)).

3.3.3 Example

The above ingredients allow us to implement Algorithms 3 and 4, to generate from
the random utility function and estimate pco(az—.|x, +), respectively. With this,
we follow the scheme in Algorithm 5. We illustrate it in a simplified spam filtering
problem!, and compare it against the utility sensitive naive Bayes (NB) classifier, a
standard non adversarial generative approach in this application area, Song et al.
(2009). We use the Spambase Data Set from the UCI Machine Learning repository,
Lichman (2013). It consists of 4601 emails, out of which 1813 are spam. For each
email, the database contains information about 54 relevant words. The bag-of-words
representation with binary features assimilates each email with a 54 dimensional
vector x of 0’s and 1’s. The dataset will be divided into training and hold-out test
sets, respectively comprising 75% and 25% of the data.

We first train a utility sensitive NB classifier using the training data, unaltered
by assumption. For comparison purposes, and in order to check utility robustness,
we use four utility functions. One of them is the 0/1 utility, i.e. the utility is 1 if the
instance is correctly classified and 0 otherwise. For the rest, we chose utility 1 for
correctly classified instances and -1 for spam classified as legitimate. The penalty
for classifying non-spam mail as spam was set, respectively, to -2, -5 and -10 in the
other three cases. The corresponding NB classifier will serve for comparison as well
as basis for the ACRA approach providing the required pe(y) and pe(x|y).

To compare ACRA with NB on tampered data, we simulate attacks over the
instances in the test set. For this purpose, we solved the adversary problem (3.2.2)
for each test email. Uncertainty in the adversary’s utility function is not present from
his point of view, thus, we fixed —u(+,+,a) =5, ua(—,+,a) =5, ua(—, —,a) =
ua(+,—,a) = 0. The cost for implementing an attack was set to b = 0.5 - d(a),
where d(a) is the number of word changes (0 or 1) associated with attack a. The
risk proneness coefficient was set to p = 0.5. Finally, the adversary would have
uncertainty about pf(x), as this quantity depends on the classifier decision. We test
ACRA against a worst case adversary, who knows the true value of pf(x). With this,
we attacked each test email to generate the attacked test set.

IFor the sake of reproducibility, we provide the open source version of the code used for the
examples at https://github.com/roinaveiro/ACRA_spam_experiment.git. The data
is publicly available at https://archive.ics.uci.edu/ml/datasets/spambase.

3.3. A case study in spam detection 55

From the classifier’s point of view, the adversary’s parameters were fixed at:
—Ua(+,+,a) ~ Ga(oy, pr) with E[=Ua(+,+,a)] = 5 and Var[—Ua(+, +, a)] = 0.01,
entailing oy = 2500, 51 = 0.002; Ua(—,+,a) ~ Ga(as, 52), again with ay = 2500,
fo = 0.002; Ua(—, —,a) = Ua(+,—,a) = d. The random cost of implementing a
particular attack a was set to B = d(a) - o, where d(a) is the number of word changes
(0 or 1) associated with attack a, and o ~ U[0.4,0.6]. The random risk proneness
coefficient was set to p ~ U[0.4,0.6]. Observe that the attacker values are set as
the means of the classifier distributions used to model them. We study later on
how departures from the assumed adversary behaviour affects both ACRA and the
corresponding game theoretic solution performance.

In order to obtain PF(a(z)) for a given attack a, we need to generate from a
beta distribution with mean r = Prco(c(a(z)) = +|a(z)), requiring its density to
be concave in its support. Otherwise, we would be believing that the probability
that A concedes to C' deciding the instance a(z) is malicious is peaked around 0
and 1 and low in between, which makes no sense in our context. Then, its variance
must be bounded from above by A = min {[7"2(1 —)]/ +7),[r(1—7)?/(2 - r)}
We fix the adjustable variance var at kA with & € [0,1]: the bigger k is, the
bigger C’s uncertainty will be about A’s behavior. We ran experiments for each
k € {0.01,0.1,0.2,--- ,0.9}. Finally, we fixed K = 1000, the Monte Carlo sample
size in (3.2.3).

As performance metrics, we used the accuracy, utility, false positive (FPR) and
false negative (FNR) rates, estimated via repeated hold-out validation over 100
repetitions, Kim (2009). We represent the results of the ACRA algorithm over the
tampered test set with a solid line. The dashed line corresponds to the results of the
utility sensitive NB on the attacked test, referred to as NB-Tainted. The error bars
represent the standard deviation of each metric, also estimated through repeated
hold-out validation. In addition, as a benchmark, we show the results of the utility
sensitive NB over the original, untampered test set with a dotted line. We refer to
these as NB-Plain. Obviously, NB-Plain and NB-Tainted metrics do not depend on
k.

Figures 3.4 and 3.5 respectively present the average accuracies and utilities for
various values of k and the four utility models. Observe first that the presence of
an adversary considerably degrades NB performance both in accuracy and average
utility, as NB-Plain is consistently above NB-Tainted. This one is still correctly
classifying the same proportion of non spam as NB-Plain, as such emails have not
been attacked. However, NB-Tainted is not able to identify a large proportion
of attacked spam emails. Consequently, as we increase the cost of misclassifying
non-spam, reducing the relative importance of misclassifying spam, the performance
of NB clearly degrades. This lack of robustness to attacks confirms the need to take
into account the presence of adversaries.

In contrast, ACRA is robust to attacks and identifies most of the spam. Its overall
accuracy is above 0.9, thus identifying most non-spam emails. Observe though that
ACRA degrades as k grows: the bigger k is, the less precise the knowledge that C
has about A and the classifier performance will degrade. One of our contributions is

56 Chapter 3. Proactive Defences in Classification Problems

0-1 Utility U(+,-)=-2
NB-Plain —3$— ACRA «+++ NB-Plain —3— ACRA

Accuracy
s o
5 @
8 &
—
—
o
b
o
—_—
1 —
i
Accuracy
s o
2 @
3 &
——
—i
b
-
——

NB-Plain ~ —4— ACRA ==++ NB-Plain —$— ACRA

fffff NB-Tainted --e-- NB-Tainted

Accuracy
s o
2 @
-
—
—
o
—
o
—i
S
Accuracy
s o
g &
——
—
—
——
i

o® o ok o® o? o® o ok o® o?

Figure 3.4: Average accuracy versus k for different utility models.

providing parameters that may be tuned to adapt to the knowledge that the classifier
could have about her opponent.

Very interestingly, note that in Figures 3.4 and 3.5 ACRA beats NB-Plain in
both accuracy and utility. This effect has been observed by Dalvi et al. (2004) and
Goodfellow et al. (2015b) for different algorithms and different application areas.
The latter argues that taking into account the presence of an adversary has an effect
similar to that of a regularizer, being able to improve the original accuracy of the
base algorithm and making it more robust.

To better understand these results, we plotted FPR and FNR in Figures 3.6 and
3.7, respectively. FPR coincides for NB-Plain and NB-Tainted as the adversary is
not modifying innocent instances. Both FPR and FNR grow with k& for ACRA: the
more the classifier knows about the adversary strategy, the better she protects, and
lower FPR and FNR are attained. In addition, an increase of uc(+, —) raises the
cost of false positives, reducing FPR at the expense of increasing FNR.

Regarding the conceptual comparison of different algorithms, observe that false
negatives undermine the performance of NB on tampered data. In contrast, ACRA
seems more robust, presenting smaller FNR than NB-Tainted. ACRA has also
significantly lower FPR than NB, causing the overall performance to raise up. The
reason for this is that the adversary is very unlikely to apply the identity attack

3.3. A case study in spam detection 57

0-1 Utility U(+,-)=-2
++ NB-Plain —§— ACRA «+++ NB-Plain —3$— ACRA

Average Utility
s o
8 &
—
—
o
b
o
—
i
Average Utility
o o
g 3
—
—
—
—
b
1
o
——

o® ot ok o® o® o® ot o

=+ NB-Plain —#— ACRA =+++ NB-Plain —$— ACRA

Average Utility
s o
5 8
—
i
—
b
i
—1
1
i
i
i
Average Utility
s o
P
8 3
i
i
o
b
o
b
i
— 1
——
i

Figure 3.5: Average attained utility versus k for different utility models.

to a spam, as the cost difference between such attack and 1-GWI attacks is small
in terms of utility gain. Then, for a legitimate email that NB classifies as positive,
i.e. has high po(z|+), ACRA will give a very low weight to pc(x|+), thus reducing
the probability of classifying such email as spam. Reducing FPR is crucial in spam
detection, as filtering out a non-spam is typically more undesirable than letting spam
reach the user. Interestingly enough, ACRA also has lower FNR than NB-Plain,
specially for low values of k, although this improvement is not as remarkable as
that for FPR. Both effects together produce ACRA to outperform utility sensitive
NB both in tainted and untainted data: we enhance the classifier performance by
taking advantage of the information we may have about the adversary, a core idea

underlying ACRA.

3.3.4 Robustness

We have tested the ACRA algorithm against an adversary whose parameters were
fixed to the expected values of the distributions assumed by the classifier. It is natural
to ask how departures from such assumptions about the adversary’s behaviour would
affect performance. In this section, we compare the robustness of ACRA and the
corresponding game theoretic solution, to departures from the assumed value of

58

0.08

or |]

Chapter 3. Proactive Defences in Classification Problems

0-1 Utility

+++ NB-Plain —$— ACRA -3- NB-Tainted

w |][]

0.05

FPR

0.04

0.03 —1
//
0.02 L

0.01

g

U(+,) = -2

==+ NB-Plain

—3— ACRA

-3~ NB-Tainted

11T

0.05

& 0.04

0.01

0.03 _—
| —+—1
0.02

o® ot Na o o® o® o N o® o®
k(%) k(%)
U(+-)=-5 U(+-) =-10
++t NB-Plain —§— ACRA -$- NB-Tainted ++t NB-Plain —§— ACRA -$- NB-Tainted
0.06
0.05
0.05 J J
L 0.04 |
o 004 o
o o
[0,03
0.03
[I E—
0.02 '/4,,/’4——“"’""/‘ 0.02 1
. —1 r/«f—*"/‘
0.01 0.01
o o ok o® o o® o ok o o?

k%)
Figure 3.6: Average false positive rate versus k for different utility models.

ph(a(z)), the expected value of the probability that A concedes to C' saying that the
instance a(x) is malicious. As we discussed above, this is clearly the most challenging
assessment.

The game theoretic solution assumes common knowledge. For the case of p’(a(z))
this means that this quantity is fixed at a certain value, shared by both A and C.
Thus C, when modelling A, assumes that he is using a certain value of p}(a(x))
that coincides with the one that he is actually using. For robustness purposes, we
attacked the test set solving the attacker problem (3.2.2) for each test instance x,
but using this time perturbed values of p}(a(z)) around the one assumed by C. To
do so, we sample p’(a(z)) from a beta distribution centered at the assumed value,
with variance k4A, where k4 is the proportion of the maximum allowed variance A
(again, we require the density to be concave in its support). We compare performance
against this attacker of both the ACRA solution, which models uncertainty on
ph(a(z)) by placing a beta distribution centered at the assumed value of p(a(x))
and variance kA, and the game theoretic solution for which p}(a(z)) is fixed at its
assumed value. We performed experiments for different values of k and k4. Results
for the percentage accuracy gain of ACRA, i.e. ACRA percentage accuracy minus
game theory percentage accuracy, are presented in Figure 3.8a. As can be seen, if
the attacker behaves closely to the common knowledge assumptions (i.e. low k),

3.3. A case study in spam detection 59

0-1 Utility U(+,-)=-2

--§-- NB-Tainted --$-- NB-Tainted
0.70 0.70
0.60 0.60
0.50 0.50
0.40 0.40
0.30 0.30
- B - — — - T -
== NB-Plain —4— ACRA ===+ NB-Plain —4— ACRA
— — - L
% 0.20 DZ: T
= 0.19 = s S e) A P A
0.18 -9 ,_’—0———‘
. —
047 018 4———t+—T1T]
0.16
0.16
015
k(%) k(%)
U(+,-)=-5 U(+,-) =-10
--$-- NB-Tainted --§-- NB-Tainted
0.80 = =
070 070
060 0.60
0.50 050
0.40 0.40
0.30
g 4 1 030 L 4 -
«+ NB-Plain —— ACRA eeer NB-Plain —4— ACRA
© — — . — . —
& oz E " T e Lo e,
0.22
020 L+ ——¢+— 11 | 1
| 1 | 1
0.20
0.18
B 0.18
k(%) k(%)

Figure 3.7: Average false negative rate versus k for different utility models.

then the game theoretic solution and ACRA with low variance behave similarly.
If in this case, we increase the variance assumed by ACRA, then its performance
degrades, as it is overestimating the uncertainty. If the variance of the distribution
that the adversary puts in p(a(x)) is high (i.e. high k), then big deviations from the
common knowledge value of p} (a(x)) are more likely, thus degrading the performance
of the game theoretic solution. Nevertheless, in this case ACRA remains robust to
these perturbations, thanks to accounting for uncertainty on the adversary’s value
of p}(a(z)). In addition, although not shown in the Figure, ACRA’s accuracy was
above 0.89 for every pair (k, k4), beating always the NB algorithm. One could argue
that this comparison is not sufficiently fair, as we are sampling the adversary’s values
of ph(a(z)) from a beta distribution, that is the one assumed by ACRA. Figure 3.8b
shows the results of an alternative experiment. In this case, to perturb the values of
ph(a(z)) of each test instance, we add a number, uniformly distributed in the interval
[—ka, k4], to the common knowledge value. As can be seen, in this case ACRA is
again more robust to this imprecision in the attacker’s model, thus providing better
generalization. In addition, ACRA’s accuracy was not excessively damaged despite
using perturbed values of p}(a(z)), being above 0.87 for every pair (k, k).

60 Chapter 3. Proactive Defences in Classification Problems

125
1.00 0.01 - AT 0.21
. “ .

e
in

g
o

w
ujes faeunaoy abeaciagd yuov

0.1 - 0.81 118

k
o
b
'
Y
&
=
o~
=]
-
w0
~
[
=)

-0.25

o
b
w

wesy Aeunaoy abejuacuad vHIv

-0.75
0.0

.4
(=]
o
3
1
(=]
w
(=]
1
e
w
!

: b
IQH
iy

1

w

N

@

o
(-1
w

Figure 3.8: ACRA accuracy gain with respect to the game theoretic solution.

3.4 Computational issues

The raw version of ACRA presented above may turn out to be extremely heavy
computationally in some application domains in which little assumptions about the
adversary behaviour are made. In this section we asses ACRA computationally and
then propose several solutions. For the sake of illustration, we just discuss the binary
case with possible classes y = + (malicious) and y = — (innocent).

3.4.1 Computational assessment

Note first that if no assumptions about the attacks are made, the sets A(x), and
consequently X, could grow rapidly. The size of these sets strongly depends on
the application domain. For instance, in spam detection the number of possible
adversarial manipulations is 2", where n is the number of words considered by C' to
undertake the classification.

In fact, the size of X' affects critically the number of computations. Notice
that in order to classify a given instance z’, we need to estimate po(a, .|z, +) for
cach x € X’ to compute the summation in (3.2.1). In addition, estimating each
po(ay—e|T, +) requires a MC simulation with size K, see Algorithm 4. Thus, if G
represents the computational cost of each MC sample, the overall cost to classify
one instance would be K - |X'| - G. Moreover, G could depend on the size of A(z).

We study now how to reduce the computational burden of ACRA by means of
reducing the size of X’ and the MC size K without affecting performance too much.

3.4.2 Computational enhancements

One possibility to reduce |X’| could be to use application-specific information to
restrict the class of possible attacks. For instance, if we consider only k-GWTI attacks
in spam detection, the size of X’ is reduced to O(n*). In addition, case-specific
constraints about the adversary behaviour could be used to achieve a greater decrease.

3.4. Computational issues 61

For example, in GWI we may reduce n assuming that some words cannot be modified
by the adversary, or limit the number of words inserted, either explicitly, or implicitly
through penalising the insertion of additional words.

Apart from using application-specific information, we present now several general
suggestions which can be used to alleviate the computational burden. Note first that
the optimisation problem (3.2.1) may be reformulated as setting ¢(z’) = + if and
Only if e 0 (s |, +H)po(a]+) > 1, where

[uc<—,) el —>]pc<x'\—>pc<—>

- [u(;<+,)~ el +>]pc<+>

Rather than going through the whole X’, we can approximate the left hand side
summation through Monte Carlo. Should {z,} be a sample of size N from po(z|+),
with N lower than the cardinality of X', the condition would be approximated
through

| N
I= v > po(a,—ar | Tn,) (z, € X') > 1. (3.4.1)
n=1

A potential problem with this approach is that po(z|4) for z € X7 is generally
small and a standard MC sample might contain few points in X’. We could use
importance sampling, Owen and Zhou (2000), to mitigate this issue for example
using the restriction of p(z|4) to X’ as importance distribution. Let p(x|+) be the
probability distribution defined by

plat+) = 205 1o e)
with @ = > ,cx p(x|+) . Then
r—x’ 7+ +) .
x;{/pc<axﬁx/|$’+)pc(x|+> _ I;{/ pC’(a ﬁ‘(a;|+>>p0(x|)p(mH—)
= QY polaue |z, +)p(z]+).
zeX’

Now, if {x,} is a sample of size N from p(z|+), we could approximate our target
quantity I by

- QY

I = N ch(axn_)x/\xn, +). (3.4.2)
n=1

We should take into account, though, the inherent uncertainty in the above MC
approximations when checking inequality (3.4.1). An estimate A of its standard
deviation would be

A | S Q2 (sl +) = NI
N—1 :

62 Chapter 3. Proactive Defences in Classification Problems

We would then declare ¢(2') = + if I —2A > t. Observe that we could test
this condition sequentially, before reaching the maximum size N allowed by our
computational budget. By making I,, and A,, depend on the sample size m, we
would check sequentially whether

I, —2A,, > t, (3.4.3)

and stop if verified, with I,, and A,, defined sequentially, since

P (m- D ln1 + peaey o [Tm, +)

m m 3
— 2)A2 2,2 —DI2 . —mi2

(m AL 1 + Q°PE (s, [Tm, +) + (M My —mly,

m—1

AQ

Note that with the proposed enhancement, the number of computations is K - N
rather than K - |X’| , where N is the chosen sample size. Thus, we manage to
eliminate the dependence on |X’|. N should be fixed to trade off between accuracy
and speed.

A complementary possibility to speed up computations is to use a relatively small
MC size K for estimating pc(a,—. |, +). To mitigate getting null probabilities, we
could adopt a Dirichlet-multinomial model with non-informative prior Dir(1,1,...;1)
over the probabilities of the attacks in A(z) and approximate such probability
through

#{CLZ = ax—m”} +1
K + |A(2)]

p\C(am—m’ ’.T, +) =

Moreover, we could use a regression metamodel, Kleijnen (1992), based on approxi-
mating in detail po(a,—. |2, +) at some pairs (x, 2’), as allowed by our computational
budget, fit a regression model ¢ (x,z’) to (z,2’, po(a,—a|x,+)) and use it to replace
pc(az—q |z, +) in the above expressions.

Last, but not least, ACRA is amenable to parallelization in at least two respects.
Observe first that the terms in summations (3.4.1) or (3.4.2) may be evaluated
independently. To improve performance, we may compute batches of those terms
in parallel by running different processes at different nodes of a multi-core cluster.
Whenever we use the sequential approach in (3.4.3), this parallelization strategy
would require a master node that checks such condition periodically when the
computation of any batch of terms finishes in the corresponding worker node. Finally,
recall that computing terms in summations (6) or (3.4.2) entails a simulation. We
could accelerate the computation of each simulation by running in parallel different
processes for different batches of MC samples. Both parallelization strategies could
be combined by sending different simulations to different nodes in the cluster, and
parallelizing each simulation within the cores of each node.

The combination of the above approaches alleviates tremendously the compu-
tational burden and largely makes ACRA computationally feasible as we show
next.

3.4. Computational issues 63

3.4.3 Application

We illustrate several of the proposed enhancements with the example in Section 3.3.3.
We start by testing the ACRA framework using MC simulation (MC ACRA) with
importance sampling and the sequential strategy (3.4.3) against the raw algorithm
(ACRA). We tried different MC sample sizes N, measuring them as proportions of the
cardinal of X': e.g. an MC sample size of 0.5 corresponds to considering N = |X”|/2
values. We fixed K = 1000, the MC size in the ESTIMATE pc(a,—. |2, +) function,
the adjustable var parameter k to 0.1, and used the 0/1 utility. Table 3.1 shows

Size Accuracy FPR FNR
ACRA 1.00 0.9194+0.010 0.019 +0.008 0.177 4+ 0.022
MC ACRA 0.75 0.912+0.012 0.032+£0.009 0.174 £+ 0.023
MC ACRA 0.50 0.90540.016 0.027 £0.009 0.199 4+ 0.032
MC ACRA 0.25 0.88540.029 0.021 +0.007 0.260 4 0.067
MC ACRA 0.10 0.841 +0.047 0.016 £ 0.005 0.370 4+ 0.120
NB-Tainted - 0.761 +0.101 0.680 4+ 0.100 0.500 4 0.250

Table 3.1: Comparison between MC ACRA, raw ACRA and NB.

the average performance metrics, with standard deviations, of the algorithms over
100 experiments. Note that as the sample size N increases, accuracy also increases.
Nevertheless, we get fairly good results for relatively small sample sizes. For example,
with just a 0.1 sample size we manage to beat NB in accuracy as well as in FPR
and FNR. Considering a 0.5 sample size, we almost recover the original performance
levels.

To compare execution times, we computed the speed-up (quotient between
execution times of ACRA and MC ACRA over all 100 experiments). Figure 3.9a
presents the speed-up histogram, Table 3.2 shows mean and median speed-ups for
the MC sizes (0.25, 0.5, 0.75). As expected, the median is close to the inverse of

400004 | : ;

: ; 6000
20000 - ! :

ol = : T
aw0000{ & o 40001
20000 - : ¢ :

0- : 1 : Median

i 20001

40000 - : :
20000 - :

04,] T 04 ™ e

S20

* Mean

S0
S0

: Median

S0

0 10 20 30 0 5 10 15 20
Speed Up Speed Up
(a) (b)

Figure 3.9: Speed-up histograms.

the MC size, e.g. when size is 0.5, MC ACRA performs approximately twice faster

64 Chapter 3. Proactive Defences in Classification Problems

than ACRA. Nevertheless, the speed-up distributions (Figure 3.9a) are skewed to
the right suggesting that MC ACRA performs much faster on average. This is due
to the sequential rule (3.4.3): for some instances, such condition is reached in a few
iterations and, consequently, over those instances MC ACRA performs much faster

than ACRA.

Size Mean Median
0.25 6.20 3.69
0.50 5.30 2.00
0.75 4.86 1.31

Table 3.2: Mean and median speed-ups.

We have also tested the first parallelization approach in Section 3.4, computing
in parallel the terms in the MC approximation (3.4.2). We used a 16 core processor
for this purpose. We performed 100 experiments fixing the variance parameter
k = 0.1, MC size to 0.5 and 0/1 utility. The histogram of speed-ups is in Figure
3.9b. In this case, both the mean (4.856) and median (4.530) are close. We do not
use the sequential approach (3.4.3) and consequently, extreme values do not occur.
Nevertheless, we obtain a huge improvement in time performance, almost 5 times
faster both in mean and median.

The combination of the above approaches induces considerable improvements
rendering ACRA largely feasible, as we illustrate with the results of an experiment
under 2-GWI attacks with different databases? in Table 3.3. As in previous examples,
we report averages over 100 experiments performed under different train-test splits.
Observe that MC ACRA with size 0.5 consistently beats utility sensitive NB.

Dataset Accuracy FPR FNR
MC 0.5 ACRA UCI 0.904 £0.012 0.037 +£0.007 0.187 £ 0.023
NB-Tainted UCI 0.724 £0.088 0.066 = 0.008 0.601 £ 0.022
MC 0.5 ACRA Enron-Spam 0.824+0.017 0.1324+0.012 0.305+ 0.073
NB-Tainted Enron-Spam 0.534 +0.011 0.283 +0.013 1.000 4+ 0.000
MC 0.5 ACRA Ling-Spam 0.958 +0.008 0.039 + 0.001 0.057 4+ 0.030
NB-Tainted Ling-Spam 0.800 £ 0.016 0.040 £ 0.001 1.000 % 0.000

Table 3.3: Comparison between size 0.5 MC ACRA and NB under 2-GWI attacks.

2Besides the UCI Spam Data Set, we used the Enron-Spam Data Set at https://www.
cs.cmu.edu/~enron and the Ling-Spam Data Set at http://csmining.org/index.php/
ling-spam-datasets.html

3.5. Dealing with discriminative classifiers 65

3.5 Dealing with discriminative classifiers

In Section 3.2 we have provided an ARA based framework for Adversarial Classifica-
tion. Note though, that such framework could deal just with generative classifiers,
that is, classifiers that model explicitly the feature distribution given the class
po(z|y). In this section, we present a general framework that may be used with both
discriminative and generative classifiers.

Assume for a moment that the classifier knows the attack that she has suffered
and that it is invertible, in the sense that we may recover, when convenient, the
original x, designated a, ",/ (2'), being 2’ the observed instance. Then, rather than
classifying based on argmax, 31" uc(yc, yi)pc(yil2’), as an adversary unaware
classifier would do, she should classify based on

k

al"g maXZUC yC7 yl>p0(yl|x = axi):c (I/))
=1

However, we do not know the attack a, neither, more generally, the originating x.

Suppose we model our uncertainty about the origin x of the attack through a
distribution pe(x|z’) with support over the set X’ of reasonable originating features x.
Then, the expected utility that the classifier would get for her classification decision
yo would be

k

stoe) = [, (S uctiempeluls = a2 (0)) (el

=1

S el) | [pelie = azl o (pe(ele)ds].

i=1

then having to solve
argn;axw(yc). (3.5.1)
C

Here, evaluating pc(z|z’) is delicate, as it demands strategic thinking. In Section 3.2
we provided a mechanism to evaluate po(a,_ .|, y;), the strategic element in that
case. In this Section we provide an alternative strategy that requires sampling from
po(z]z’) instead of directly evaluating this probability. Thus, if we could sample
from this distribution we could approximate the expected utilities by Monte Carlo
(MC) using a sample {x, })_; from pc(z|z’) so that

1 & N
NZU yCayz [Z yz‘xn ‘| . (352)
=1 =1

Algorithm 6 summarizes the general procedure that we later specify.

For this approach to be operational, we need to be able to estimate X’ and
po(x|z’) or, at least, sample from this distribution. Assuming that we can define
a metric A in the feature space, a first heuristic would be to define the set X’ of
reasonable originating features as those x such that \(x, ") < p for a certain threshold

66 Chapter 3. Proactive Defences in Classification Problems

Algorithm 6: General ARA procedure for Adversarial Classification
Input: N, training data.
Output: A classification decision ¢(z').
Training
Based on the training data compute pe(y;|z) for all 7.
End Training
Operation
Read instance 2’
Draw sample {z,,}_, from pc(x|2’).

Find c¢(z') = argmax, % Zle (uc(yo, Yi) [Zé\[zl pc(yi]xn)D

End Operation
Return c¢(z')

p. We could then take po(z|z’) as a uniform distribution over X”. Alternatively, we
could make po(z|z') = %, where 1 =3 ,c m, ignoring " as possible origin.
These heuristics formalize the fact that changing instances entails some cost for the
adversary that probably increases with the number of features changed. However,
as shown in Rios Insua et al. (2020), better forecasts are typically attained if we
explicitly model the attacker’s behavior using the information available about him,

as we do next.

3.5.1 An Approximate Bayesian Computation sampling ap-
proach

An approach to sample from po(x|z’) that leverages information available about
the attacker is now discussed. We call it AB-ACRA, being based on approximate
Bayesian computation (ABC), Csilléry et al. (2010). As basic ingredients, it requires
us to be able to generate samples from = ~ po(x) and 2’ ~ po(2'|z).

Basic ingredients

Estimating pc(z) is possible using training data, which is untainted by assumption.
For this, we can use an implicit generative model, such as a generative adversarial
network (Goodfellow et al. 2014) or an energy-based model (Grathwohl et al. 2019).
On the other hand, sampling from pc(2’|z) entails strategic thinking, which we
shall treat with the ARA methodology.
Recall that the attacker only attacks malicious instances, those with labels y;
with ¢ = 1,...,[. Thus, we base our analysis on the decomposition

k l k

pe(2'|z) = ;pc(w’lw,yi)pc(yilx) = ;pc(fc’lw,yi)pc(yilx)f_z I(z" = z)pc(yi|x),

3.5. Dealing with discriminative classifiers 67

where [is the indicator function. We can easily generate samples from pc(y;|x), as
we can estimate those probabilities based on training data. Then, we can obtain
samples from pe(2'|z) by sampling y; ~ pe(yi|x) first and, then, if ¢ > [return « or
sample =’ ~ po(2'|z,y;) otherwise.

To sample from pe(z'|z,y;), the ARA methodology helps us to model the At-
tacker’s decision problem when he has available an instance x with label y;. As
we are not assuming common knowledge, we need to model our uncertainty about
the Attacker’s elements. As in Section 3.2.2, assume that agent A also aims at
maximizing his expected utility when trying to confuse C. His utility function has
the form wa(ye,y;), when C' says y. and the actual label is y;. For simplicity, we
assume that the attacks have no cost, this is the reason why the utility now does
not depend on a. With this, the Attacker would choose feature modification that
maximizes his expected utility by making C' classify instances as most beneficial as
possible to him. We scale utilities to lie in the interval [0, 1]. As we are focusing
in integrity violation attacks, the utility that A derives from C’s decision has the
following structure:

O,” ifi <land j <l
= walyer i) = {1 #£0, ifi < landj > 1
0, ifi>1

This reflects that the Attacker just obtains benefit when he makes the defender
classify a bad instance as if it was a good one.

By transforming instance x with label y; for ¢ = 1,...,[into instance 2/, the
attacker would get an expected utility

k
D ua(We, yi)palyelz’) = Z us payc = cl2’), (3.5.3)
c=1 c=l+1

where pa(y.|z’) describes the probability that C' says type y. if she observes 2/, from
A’s perspective. As in Section 3.2.2, the Attacker will typically be uncertain about
such probability. Suppose we model it with a density fa(p.|z’), with mean p4 (z').

Taking expectations in (3.5.3), the expected utility he would get is S5, ug p¢ (2/).
Thus, the attacker would choose his action through

o (z,y;) = arg max Z upS(2), (3.5.4)
c=l+1

and craft object (x,y;) into (2'(x, y;), ;).

However, we do not know u4 neither p% with certitude. If we model our un-
certainty about these elements with, respectively, random utilities U4 and random
expected probabilities P4, defined over an appropriate probability space. We would
look for the random optimal transformation defined by

X' (z,y) = arg max Z P5(2), (3.5.5)
zeX’ =11

68 Chapter 3. Proactive Defences in Classification Problems

and make po(z|2’,y;) = Pr(X (z,y;) = 2'). Then, by construction, if we sample
uyg ~ Uy and pG ~ P§ and solve

k
¢’ =argmax Y uSip5(2),
zeX’ =141

x’ would be distributed according to pe(2'|x, ;).

We can model random utilities and probabilities as in Section 3.2.2. As we
announced, modeling P§(z’) is more delicate as it entails strategic thinking. Here,
we provide another relevant heuristic that consists of modelling P§(2’) using a
distribution based on p(y.|z") with some uncertainty around it. For this, given 2/,
consider the set X’ of reasonable origins. Imagine we assess a distribution p*(z|z’) over
it, for example using the metric based approach. Let mean. = >, p(y.|x)p*(z|z’) and,
for a given variance var,, choose P§(z") ~ Beta(a, #) having the above mean, and
(1—:}7;ch - m;mc) meang and ¢ = a° (meimc — 1).
In the above expression for mean., p(y.|x) would come from the estimates based
on untainted data; to reduce the computational cost, we could approximate mean,
through - 3", p(yc|z,), for a sample {z, }2L, from p*(z|z’).

var,, for which we just make a¢ =

AB-ACRA

Once we are able to sample from po(z) and pe(2’|z), we need a procedure to sample
from pc(z|z’). In the discrete case®, we can use rejection sampling (Casella et al.
2004). This entails generating x ~ po(X), &’ ~ po(X'|X = x), and accepting z only
if 7’ coincides with the actually observed instance x’. It is straightforward to prove
that z ~ po(X|X’ = 2’). We can think of this procedure as generating instances
x and indicators I, where I = 0(= 1) if we reject (accept) the sample. Accepted
instances are distributed according to

po(X =zl =1) xpc(I =1|X = 2)pc(X =2) < po(X' = 2'|X = 2)pc(X = 2)

which, using Bayes rule, coincides with the desired distribution.

When 2z’ is continuous and/or high dimensional, the acceptance rate would
typically be very low, making the above approach inefficient. In such cases, we can
leverage ABC techniques. This entails accepting the sample z if ¢(Z’,2") < TOL, for
a given distance ¢ and tolerance TOL. The x generated in this manner is distributed
approximately according to pc(x|z’). However, the probability of generating samples
for which ¢(Z’, 2") < TOL decreases as the dimensionality of 2 increases. A common
solution replaces the acceptance criterion by ¢(s(z’), s(z')) < TOL, where s(x) is a
set of summary statistics that capture the relevant information in x. The particular
choice of summary statistics is problem specific. We summarize the whole procedure
in Algorithm 7, which would be integrated within Algorithm 1.

3Here, for convenience, we distinguish between random variables and realizations using upper
and lower cases, respectively. Thus, X’ refers to the actually observed instance and X to the
originating one.

3.5. Dealing with discriminative classifiers 69

Algorithm 7: ABC scheme to sample from pe(x|2”)

Input: Observed instance ', data model po(z), Ua, P§, family of statistics s,
TOL. Output: A sample approximately distributed according to pc(x|z’).
while ¢(s(z'), s(z')) > TOL do
Sample x ~ po(z) Sample y; ~ po(y;|z) if ¢ > [then

7' =z else

S

end

ample uy ~ Uy and p§ ~ P§;

Compute ' = argmax_c y/ Z]cgzlﬂ uip (2)
end
Compute ¢(s(z'), s(Z'))
end
return z

3.5.2 A case study in multiclass malware detection

We illustrate the proposed approach with a malware detection problem*. Malware of
different types is increasingly being delivered by attackers to obtain a benefit, being
a current major global cyber threat (ENISA 2019). Malware types include, among
others: trojans, aimed at misleading the victim of its real intention of accessing per-
sonal information such as passwords; adware, which releases advertisements through
the victim interface; or virus, that can replicate itself modifying other programs
causing system failures, wasting host resources or corrupting data. It is crucial to
detect the appropriate type of malware to decide the relevant countermeasures and
mitigate its consequences. Recently, obfuscation attacks on malware binaries (You
and Yim 2010) have gained relevance as they affect critically the performance of
detection algorithms as shown in Example 2. We test the performance of AB-ACRA
as a defence mechanism against obfuscation attacks, based on a 0-1 utility for the
Defender.

For these experiments, we use a dataset containing malware and benign binaries.
Malware was provided by Virus Total (Chronicle 2018) and contains trojans, adware
and virus. Benign binaries were obtained from clean copies of the Program Files
folder of MS Windows 7 and 8. The proportion of malware binaries in the data
is 50%. Features were extracted from binaries through: the Assembly Language
Source, from which we extract registers, operation codes, API calls and keywords;
and, the Portable Fxecutable Header, providing the symbols and imports. In total,
we use 76 binary features coded with 1 (0) indicating the presence (absence) of the
corresponding characteristic. Additionally, a label indicates whether the binary is
trojan (y; = 1), adware (y; = 2), virus (y; = 3) or benign (y; = 4). We randomly
split the dataset into train and test subsets: 80%, 20%; respectively.

4All code to reproduce these experiments is available at https://github.com/roinaveiro/
ACRA_2.

70 Chapter 3. Proactive Defences in Classification Problems

As underlying classification algorithm we deploy multinomial regression (MR)
with L1 regularization. This is equivalent to performing maximum a posteriori
estimation in an MR model with a Laplace prior, Park and Casella (2008). The
regularization parameter was chosen using cross validation. Mean and standard
deviations of accuracies in all experiments are estimated via repeated hold-out
validation over ten repetitions (Kim 2009). The accuracy of this approach on clean
test data is 0.68 £ 0.01.

To compare AB-ACRA with raw MR on tampered data, we simulate attacks
over the instances in the test set. For this purpose, we solved problem (3.5.5) for
each test malware binary, removing the uncertainty that is not present from the
adversary’s point of view. We restrict to attacks that involve changing at most
the value of one of the features. The utility that the attacker perceives when he
makes the defender misclassify a malware binary is 0.7 for all malware types. Finally,
the adversary would have uncertainty about pS(z'), as this quantity depends on
the defender’s decision. We test AB-ACRA against a worst case adversary who
knows the true value of p(yc|z,) and estimates p(z’) through = >2 | p(yc|z,) for
a sample {z,}M | from p*(z|2’). We set M = 40. For p*(z|z’) we use a uniform
distribution on the set of all instances at distance 1 from the observed z’, using as
distance \(z,2') = 27, |z — o).

To model the uncertainty about p4(z’) and the attacker’s utility function from
the defender’s perspective, we use beta distributions centered at the attacker’s values
of probabilities and utilities, respectively, with variances chosen to guarantee that
the distribution is concave in its support: they must be bounded from above by
min {[,uz(l — W]/ +), (1 — p)?) /(2 — ,u)}, were p is the corresponding mean.
We set the variance to be 10% of this upper bound.

For the AB-ACRA algorithm, we used the 12 most relevant features (in terms of
their coefficients having the highest posterior mode in absolute value) as summary
statistics s. Figure 3.10a compares the accuracy of ACRA and MR for different
sample sizes NV in Algorithm 6, and tolerance TOL = 2. As we can see, ACRA
beats MR in tainted data with just 5 samples. The accuracy saturates quickly as we
increase the number of samples. Thus, we get good performance with a relatively
small sample size. Figure 3.10b plots the accuracy of ACRA against MR for different
values of TOL. As expected, as this parameter decreases, accuracy increases, albeit
at a higher computational cost.

Finally, we compare AB-ACRA with tolerance 1 (this value was found to give
reasonable results for a moderate computational time), with MR and a heuristic
approach that assumes that p(z|z’) is a uniform distribution over all possible instances
at distance one from the observed x’. MR and the heuristic approach both obtained
accuracy 0.52+0.01, while AB-ACRA obtained 0.66 + 0.01. As anticipated, defences
that do not model explicitly the attacker’s behavior have worse performance. However,
AB-ACRA outperforms the heuristic approach and the raw MR as it explicitly models
the attacker’s behaviour.

3.6. Discussion 71

—&— Raw Clean Data —4— Raw Clean Data

#- Raw Attacked Data -%- Raw Attacked Data

of Samples vs ACCUracy 3. acra ttacked Data Tolerance vs ACCUraCy 3. acpa attacked Data

0.650 0.65 E

. H{ { { { S — { 4

0.600

Accuracy
Accuracy
°
>
3
——t
i

o
&
&

0.575

P SR S %i ,,,,,,,,,,, ;

0.50

05525 }{7{ 777777 % 777777777777777777777 E 77777777777777 E 7777777777777777777777 E T {

N B 2 >

° 29 0 & & RS

Number of Samples

(a) Experiment for different number of sam{b) Experiment for different values of toler-
ples. ance.

Figure 3.10: Accuracy comparison LR vs AB-ACRA.

3.6 Discussion

Adversarial classification is an important example of provision of proactive defense
that aims at enhancing classification algorithms to achieve robustness in presence
of adversarial examples, as usually encountered in many security applications. The
pioneering work of Dalvi et al. (2004) framed most of later approaches to adversarial
classification within the standard game theoretic paradigm, in spite of the unrealistic
common knowledge assumptions required, actually even questioned by the authors.
This motivated us to focus on an ARA perspective to the problem.

In this chapter, we have presented ACRA, a general, Bayesian probabilistic
framework for adversarial classification that models explicitly the presence of an
adversary and our uncertainty about his elements. Our framework is general in
the sense that application-specific assumptions are kept to a minimum. ACRA can
naturally deal with generative classifiers. We have provided an extension based
on approximate Bayesian computation, able to deal with both, generative and
discriminative classifiers.

Also, we have provided extensive empirical evidence of the performance of our
framework through case studies in spam and malware detection. In particular we
have shown the robustness of ACRA to imprecisions in the assumptions made about
the adversary. ACRA has been shown to be more robust than its common knowl-
edge, purely game theoretic counterpart. Finally, we have presented computational
enhancements that have significantly improved ACRA performance, allowing us to
solve large problems and use it in operational settings.

72

Chapter 3. Proactive Defences in Classification Problems

Chapter 4

Algorithmic approaches: Gradient
Methods for Stackelberg (Games in
AML

4.1 Introduction

As emphasized in Section 1.4.1, Stackelberg Games have been gaining importance in
recent years due to their application in modeling confrontations within Adversarial
Machine Learning problems. In this context, a new paradigm must be faced: while in
classical game theory, intervening agents were humans whose decisions are generally
discrete and low dimensional; in AML, decisions are made by algorithms and are
usually continuous and high dimensional, e.g. choosing the weights of a neural
network. As a result, scalable numerical algorithms to solve Stackelberg games are
needed.

Following objective O3, in this chapter, we propose two procedures to solve
Stackelberg games within the new paradigm of AML and study their time and space
scalability. In particular, one of the proposed solutions scales efficiently in time with
the dimension of the decision space (at the cost of more memory requirements). The
other scales well in space, but requires more time. As Stackelberg games rely on
strong common knowledge assumptions, unrealistic in AML, we extend the proposed
methodologies to Bayesian Stackelberg games, in which that assumption is weakened.

The chapter is organized as follows: in Section 4.2 we define Stackelberg games.
Section 4.3 presents the proposed solution methods as well as a discussion of their
scalability. Section 4.4 extends the previous methodologies to the case of Bayesian
Stackelberg games. The proposed solutions are illustrated with an AML experiment
in Section 4.5. Finally, we conclude with a discussion.

73

74 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

4.2 Stackelberg games

As in Section 1.4.1, in this chapter we focus in sequential defend-attacks (Stackelberg)
games. In particular, we restrict ourselves to sequential games with certain outcomes
played between two agents: the first one makes her decision and then, after having
observed the decision, the second one implements his response. As an example,
consider the adversarial prediction problems introduced in Section 1.2.2. In them,
the first agent chooses the parameters of a certain predictive model; the second agent,
after having observed such choice, selects an optimal data transformation to fool the
first agent, so as to gain some benefit.

As we focus on applications of Stackelberg games to AML, we restrict ourselves
to the case in which the Defender (D) chooses her defense av € R™ and, then, the
Attacker (A) chooses his attack 5 € R™, after having observed a. The corresponding
bi-agent influence diagram is shown in Fig. 4.1. The dashed arc between nodes D and
A reflects the fact that the Defender choice is observed by the Attacker. The utility
function of the Defender, up(c,), depends on both, her decision and the Attacker’s
decision. Similarly, the Attacker’s utility function has the form u4(a, 3). In these
games, the common knowledge hypothesis is that the Defender knows ua(c, ().

N v
D A

Figure 4.1: The two-player sequential decision game with certain outcome.

Mathematically, finding Nash equilibrium in Stackelberg games requires solving
a bilevel optimization problem (Bard 1991). The defender’s utility is called upper
level or outer objective function while the attacker’s one is referred to as the lower
level or inner objective function. Similarly, the upper and lower level optimization
problems, correspond to the defender’s and the attacker’s problem, respectively.
These problems are also referred to as outer and inner problems.

As in Section 1.4.1, we assume that the attacker will act rationally in the sense
that he will choose an action that maximizes his utility (French and Rios Insua 2000),
given the disclosed defender’s decision . Assuming that there is a unique global
maximum of the attacker’s utility for each «, and calling it 8*(«), a Stackelberg
equilibrium is identified using backward induction: the defender has to choose a* that
maximizes her utility subject to the attacker’s best response f*(«). Mathematically,
the problem to be solved by the defender is

argmax upla, *(a)]

s.t. B (o) = argmax ua(a,). (42.1)
B

4.3. Solution Method 75

The pair (a*, 8*(a*)) is a Nash equilibrium and, indeed, a sub-game perfect equilib-
rium (Hargreaves-Heap and Varoufakis 2004).

When the attacker problem has more than one global maximum, several types of
equilibria have been proposed. The two more important ones are the optimistic and
the pessimistic solutions (Sinha et al. 2018). In an optimistic position, the defender
expects the attacker to choose the optimal solution which gives the higher upper
level utility. On the other hand, the pessimistic approach suggests that the defender
should optimize for the worst case attacker solution. In this thesis, we just deal with
the case in which the inner utility has a unique global maximum.

4.3 Solution Method

Bilevel optimization problems can rarely be solved analytically. Indeed, even ex-
tremely simple instances of bilevel problems have been shown to be NP-hard (Jeroslow
1985). Thus, numerical techniques are required. Several classical and evolutionary
approaches have been proposed to solve (4.2.1), as reviewed by Sinha et al. (2018).
When the inner problem satisfies certain regularity conditions, it is possible to reduce
the bilevel optimization problem to a single level one replacing the inner problem with
its Karush-Kuhn-Tucker (KKT) conditions (Gordon and Tibshirani 2012). Then,
evolutionary techniques could be used to solve this single-level problem, thus making
it possible to relax the upper level requirements. As, in general, this single-level
reduction is not feasible, several other approaches have been proposed, such as nested
evolutionary algorithms or metamodeling-based methods. However, most of these
approaches lack scalability: increasing the number of upper level variables produces
an exponential increase on the number of lower level tasks required to be solved
being thus impossible to apply these techniques to solve large scale problems as the
ones appearing in the context of AML.

In Briickner and Scheffer (2011) the authors face the problem of solving Stackel-
berg games in the AML context. However, they focus on a very particular type of
game which can be reformulated as a quadratic program. In this chapter, we provide
more general procedures to solve Stackelberg games that are useful in the AML
paradigm in which decision spaces are continuous and high dimensional. To this end,
we focus on gradient ascent techniques to solve bilevel maximization problems.

As we are assuming that for any a the solution of the inner problem is unique,
we can define an implicit function f*(«) that maps « into the corresponding solution.
Thus, problem (4.2.1) may be viewed solely in terms of the defender’s decisions
a. The underlying idea behind gradient ascent techniques is the following: given
a defender decision oo € R™ a direction along which the defender’s utility increases
while maintaining feasibility must be found, and then, we move « in that direction.
Thus, the major issue of ascent methods is to find the gradient of up(c, 5*(a)). In
Kolstad and Lasdon (1990), the authors provide a method to approximate such
gradient that works for relatively large classical optimization problems but is clearly
insufficient to deal with the typical bilevel problems appearing in AML.

76 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

Recently, Franceschi et al. (2017) proposed forward and reverse-based methods
for computing the gradient of the validation error in certain hyperparamenter op-
timization problems that appear in Deep Learning. Structurally, hyperparameter
optimization problems are similar to Stackelberg games. We adapt their methodology
to this domain. In particular we propose two alternative approaches to compute the
gradient of up[a, f*(«r)] with different memory and running time requirements. We
refer to these approaches as backward and forward solutions, respectively.

4.3.1 Backward solution

We propose here a new gradient ascent approach to solve the bilevel problem
(4.2.1) whose running time scales well with the defender’s decision space dimension.
In particular, we propose to approximate problem (4.2.1) by the following PDE-
constrained optimization problem (Hinze et al. 2008)

argmax up [a, B, T)]
s.t. O:f(a,t) = Jguala, B(a, t)] (4.3.1)
B(a,0) = 0.

The idea is formalized in the next proposition, that can be proved using results in
Bottou (1998).

Proposition 4.1. Suppose that the following assumptions hold

1’ The attacker problem, the inner problem in (4.2.1), has a unique solution B*(c)
for each defender decision c.

2% For all e > 0 and all o,

||ﬁ*<ai>11fﬂ||§>e (8 = B"(c), Ogualev, B]) > 0.

If B(a, t) satisfies the differential equation
Of(a,t) = dguala, B(a, t)] (4.3.2)
then B(a,t) — 5*(a) as t — oo, with rate O (%)

The idea in (4.3.1) is thus to constrain the trajectories f(a,t) to satisfy (4.3.2) and
approximate the defender’s problem using (o, T') with T >> 1, instead of 5*(«).

We propose solving problem (4.3.1) using gradient ascent and the adjoint method
(Pontryagin 2018) to compute the total derivative of the defender utility function
with respect to her decision. The adjoint method defines an adjoint function \(t)
satisfying the adjoint equation

dA(t) = =A(t) Pualo, B(a, 1)), (4.3.3)

Then, we can compute the derivative of the defender utility function with respect to
her decision using Theorem 4.1.

4.3. Solution Method 77

Theorem 4.1. If \(t) satisfies the adjoint equation (4.3.3), the derivative of the
defender utility with respect to her decision may be written as

daupla, (e, T)] = Oquple, B, T)] — /OT A(t)0nOpuale, Bla, t)] dt. (4.3.4)

Proof. The Lagrangian of problem (4.3.1) is

L= B(a, T)] +/ t) {d:B(a, t) — Ogualey, B(a,)]} dt + pb(e, 0).
As the constraints hold, by construction we have that d,£ = d,up and

doL = Onupla, B(a,T)] + dsupla, Bla, T)] da S, T) + pda (e, 0)

—%/) {4 duBa, 1) — Dadsuala, Bla,)] — Bualar, Bla)] daBle 1)} dt.
(4.3.5)

Integrating by parts, we have

tATAU)dﬂhxﬁaJ)dt—[A@)daﬁgntﬂg—ié A1) dafla, t) dt

Inserting this in (4.3.5), and grouping the terms conveniently, we have

Al = uuplor B, T)) + {sufa, B0, T)] + MT) | dula,T)
+ {1 = A0)} dafB(a,0) + /0 ' {= dAt) = M) PFualer, Ba,)]} dafBlo t) dt
- [}@@%Mmﬁm@mt
Since the constraints hold, we may choose the Lagrange multipliers freely. In
particular, we may choose them so that we can avoid calculating the derivatives of

B(a, t) with respect to a (as this is computationally expensive). Thus, we have that
A satisfies the adjoint equation

AA() = ~A(0)0Buala Ba 1)

with \(T') = —0guple, B(a, T)], and p = A(0). Using this, the derivative is computed
as

%c::a@[ﬁmTﬂ(fK@%@mmﬁmﬁmt

78 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

Algorithm 8: Approximate total derivative of defender utility function with
respect to her decision using backward solution

Set T' to be the number of iterations;
« is the point where we compute the derivative;

Bolar) = 0;
fort=1,2,...,T do

Bi(e) = Bi-1(a) + ndsua(e, B)
end
)\T = —85uD(a, 5)
Br(a)

doup = Oqup|a, Br(a)];
fort=T-1,T—-2,...,0do

dauD - dauD - 7]/\t+laaaBuA<aa 6)

Bi_1(a)

I

Be+1 ()

Y

At = A1 [I +ndiuala, B)

end
return d,up;

5t+1(a)]

Algorithmically, we can proceed by discretizing (4.3.3) via Euler method, and
approximate the derivative (4.3.4) discretizing the integral on the left hand side.
This leads to Algorithm 8. Once we are able to compute this derivative, we can solve
the defender’s problem using gradient ascent.

Regarding its complexity, note that by basic facts of Automatic Differentiation
(AD) (Griewank and Walther 2008), if 7(n,m) is the time required to evaluate
up (e, B) and ua(a, B), then computing derivatives of these functions requires time
O(1(n,m)). Thus the first for loop in Algorithm 8 requires time O(7'7(n,m)).
In the second loop, we need to compute second derivatives which appear always
multiplying the vector \;. By basic results of AD, Hessian vector products have the
same time complexity as function evaluations. Thus in our case, we can compute
second derivatives in time O(7(n,m)), being the time complexity of the second for
loop O(T'7(n,m)). Thus, overall, Algorithm 8 runs in time O(T'7(n,m)). Regarding
space complexity, as it is necessary to store the values of 3;(«) produced in the first
loop for later usage in the second one, if o(n,m) is the space requirement for storing
each f;(a), then O(To(n,m)) is the space complexity of the backward algorithm.

In certain applications where space complexity is critical, the backward solution
could be infeasible as it requires storing the whole trace 8;(a)) within each iteration.
In this case, the forward solution proposed in the next section solves this issue at a
cost of loosing time scalability.

4.3. Solution Method 79

4.3.2 Forward solution

In this case, we approximate (4.2.1) through the problem
argmax up |o, Or(a)]
5.t Bi(a) = Bi-1(a) + mOpua(a,) t=1,...,T (4.3.6)

Bt—1
ﬁo(O&) = O

The idea here is that, for each defense a;, we condition on a dynamical system that,
under certain conditions, converges to *(«), the optimal solution for the attacker
when the defender implements «. Thus, we can approximate the defender’s utility
by up [a, Br()], with T'>> 1. This idea is formalized in the next proposition that
can be proved using the results of Bottou (1998).

Proposition 4.2. Suppose that the following assumptions hold

1’ The attacker problem (inner problem in (4.2.1)) has a unique solution *(a)
for each defender decision c.

2% For all e > 0 and «

(B — B*(a), Oguale, B]) > 0.

inf
18—B*(a)l|5>e
3’ For some C; D > 0 and all o
195ualer, B]13 < C + DI|B — B*()|5.

If for all t, By(a) satisfies

pila) = Bia(@) + ndsuale, 5)

: (4.3.7)

Be—1
then, fi(a) converges to *(«), with rate O (%)

We propose solving problem (4.3.6) using gradient ascent. To that end, we need
to compute daup(e, fr(a)). Using the chain rule we have

daup(a, Br(a)] = Oaupla, Br(a)] + Os,upla, Br(a)] dafr(a).

To obtain d,f7(«), we sequentially compute d,f;(«) taking derivatives in (4.3.7)

+ aEUA<Oé, 6)

Bt—1

daﬁt(a) = daﬁt—1(06) + N1 laaaBUA(Oé, 5)

daﬁt_l(oz)] .

Bt—1

This induces a dynamical system in d,f;(a) that can be iterated in parallel to the
dynamical system in (). The whole procedure is described in Algorithm 9. Once

80 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

Algorithm 9: Approximate total derivative of defender utility function with
respect to her decision using forward solution.

Set T' to be the number of iterations;

« is the point where we compute the derivative;
Bo(a) = 0;

daﬂO(CO = O,

fort=1,2,...,7T do

Bila) = Bia(a) + ndsuala, B)

Y
t—1

daﬁt (Oé) = daﬁtfl(a)—i_ntfl [aaaBuA(aa ﬁ) + 8§UA<057 6)

/Bt—l

dufiea(a)

/Bt—l

end
doup = Oupla, fr(a)] + 0gruple, Br(a)] dafr(a);

return d,up;

we are able to compute this derivative, we solve the defender’s problem using gradient
ascent.

Regarding time complexity, the bottleneck in Algorithm 9 is that we need to
compute the second derivatives of u4(c, 5). In particular, computing agu ala, B)
requires time O(m7(m,n)) as it requires computing m Hessian vector products, one
with each of the m unitary vectors. On the other hand, computing 0,0su4(c,)
requires computing n Hessian vector products and, thus, time O(nr(m,n)). If we
compute the derivative in the other way, first we derive with respect to § and
then with respect to «a, the time complexity is O(m7(m,n)). Thus, we derive first
with respect to the variable with the largest dimension. Then, the time complexity
of computing dadsus(e, §) is O(min(n,m)7(m,n)). Finally, as djua(a,3) and
Oa0pua(a, B) could be computed in parallel, then the overall time complexity of
the forward solution is O(max[min(n, m), m|TT(m,n)) = O(mT7(m,n)). Regarding
space, as in this case the values f;(a) are overwritten at each iteration, we do not
need to store all of them and the overall space complexity is O(a(m,n)).

4.4 An extension to Bayesian Stackelberg games

The Stackelberg games presented in Section 4.2 rely on an important common
knowledge assumption: the defender must know the attacker’s utility to solve her
problem. This common knowledge condition is doubtful, specially in security settings
as in AML in which the adversary has incentives to hide information to the defender.
Moreover, the Nash equilibrium computed solving (4.2.1) could lack robustness to
perturbations in A’s judgments (Ekin et al. 2019).

We can relax this assumption modeling the Defender’s uncertainty about the
attacker’s utility function. Let us assume that the defender lacks precise knowledge

4.5. Experiments 81

about a set of parameters of the attacker’s utility function referred to as 7. The
Defender models her uncertainty through a prior 7(7) on the parameters. This is a
particular instance of a Bayesian Stackelberg Game, (Jain et al. 2008).

A rational adversary with parameters 7 would choose 3*(a, 7) = argmax ua(a, 3, 7)
as the best response to the observed defender’s decision «. Similarly, a rational
defender, knowing how the attacker with parameters 7 could react to her decision,
should choose o* maximising her expected utility

/uD[a, B (e, T)|mw(7) dr

The pair (a*, 8*(a*, 7)) constitutes a Bayes-Nash equilibrium (Harsanyi 1967). Thus,
finding Bayes-Nash equilibria requires solving the following problem

argglax / upla, B (a, 7)) () d7

s.t. B (e, 7) = argmaxua(a, 5,7) VT
B

(4.4.1)

This problem can rarely be solved analytically, so numerical techniques are
required. The methodologies presented in Sections 4.3.1 and 4.3.2, can be easily
extended to deal with Bayesian Stackelberg games as the one presented above. To
that end, we approximate problem (4.4.1) by

1 N
argmax — ZUD[C% B (e, 7)]
o N & (4.4.2)

s.t. (e, ;) = argmax ua(e, B,73) i=1,...,N
B

where 7y, ..., 7y are samples from 7(7). That is, we approximate the defender’s
utility using a Monte Carlo estimate (Hammersley 2013). By the strong law of large
numbers, when N — oo, the quantity YN upla, B*(a, 7;)] converges almost surely
to the expected utility of the defender.

We propose using gradient ascent to solve (4.4.2). The total derivative of the
MC estimator of the defender’s utility function could be computed easily not-
ing that do+ YN, upla, B*(a,)] = + SN, daupla, 8*(a, 73)], and approximat-
ing each term of the sum using either Algorithm 8 or 9. The computation of
+ 3N dauple, B*(a, 7;)] can be parallelized easily, thus maintaining the scalability
advantages of the backward and forward solution methods mentioned above.

4.5 Experiments

We illustrate the proposed approaches. We start with a conceptual example in
which we empirically test the scalability properties of the forward and backward
solution methods. Then, we apply these algorithms to solve a problem in the context
of adversarial regression. Finally, we apply the methodology in Section 4.4 to an

82 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

adversarial regression problem where the defender has limited knowledge of the
attacker.

All the code used for these examples has been written in python using the
pytorch library for Automatic Differentiation (Paszke et al. 2017) and is available at
https://github.com/roinaveiro/GM_SG.

4.5.1 Conceptual Example

We use a simple example to illustrate the scalability of the proposed approaches.
Consider that the attacker’s and defender’s decisions are both vectors in R". The
attacker’s utility takes the form ua(a, 8) = — Y11 3(8; — «;)? and the defender’s
one is up(a,) = = 37, (7a; + 7). In this case, the equilibrium can be computed
analytically using backward induction: for a given defense @ € R", we see that
f*(a) = «; substituting in the outer problem, the equilibrium is reached at aj =
—=3.5,8;(a*) = =35 with j =1,...,m.

We apply the proposed methods to this problem to test their scalability empirically.
The parameters were chosen as follows: the learning rate n of Algorithms 8 and
9 was set to 0.1; similarly, the learning rate of gradient ascent used to solve the
outer problem was also set to 0.1. Finally, all gradient ascents were run for 7" = 40,
sufficient to reach convergence.

Time comparison Memory comparison

250 Type Type °
—8— Backward 8000 { —®— Backward

Forward Forward
200 - 7000 -

100 £ 4000

50 A

Time(s)
Memor
N w
(=3 o
o o
o o
P

6 160 260 360 460 560 6 2‘0 4‘0 6‘0 8‘0 160
Dimension Decision Spaces T
(a) Backward and Forward running times (b) Backward and Forward running memory
versus the dimension of decision spaces. usage versus length of trace 5;(«).

Figure 4.2: Empirical comparison of time and space scalability.

Figure 4.2a shows running times for increasing number of dimensions of the
decision spaces (in this problem both the attacker’s and the defender’s decision space
have the same dimension). As discussed, the forward running time increases linearly
with the number of dimensions while the backward solution remains approximately
constant. This obviously comes at the cost of having more memory requirements as in
Algorithm 8 we need to store the whole trace f;(«). Figure 4.2b shows how memory
consumption increases linearly with the length T of that trace for the backward
method, while it remains constant for the forward one.

4.5. Experiments 83

4.5.2 An application to adversarial regression

We illustrate an application of the proposed methodology to adversarial regression
problems (Grofhans et al. 2013). They are a specific class of prediction games,
Briickner and Scheffer (2011), played between a learner of a regression model and a
data generator who tries to fool the learner modifying input data at operation time,
inducing a change between the data distribution at training and test time with the
aim of confusing the data generator and attain a benefit.

Given a feature vector x € RP and its corresponding target value y € R, the
learner’s decision is to choose the weight vector w € RP of a linear model f,,(z) = =" w,

that minimizes the theoretical costs at application time, given by

bi(w.p.c) = [ale,y)(fule) = y)* dplr,y)

where ¢;(z,y) € RT reflects instance-specific costs and p(z, y) is the data distribution
at test time which is different from the one a training time, that we shall call p(z,y).
To do so, the learner has a training matrix X € R"*? and a vector of target values
y € R™, that is a sample from distribution p(z,y).

The data generator aims at changing features of test instances to induce a
transformation in the data distribution from p(z,y) to p(z,y). Let z(x,y) be the
data generator’s target value for an instance x with real value y, i.e. he aims at
transforming z to make the learner predict z(z,y) instead of y. The data generator
aims at choosing the transformation that minimizes the theoretical costs given by

Oa(w, 5,ca) = [calw,y)(ful@) = 2(2,9)) dble,y) + Qulp. D)

where Q4(p, p) is the incurred cost when transforming p to p and ¢4(x,y) are instance
specific costs.

As the theoretical costs defined above depend on the unknown distributions p
and p, we focus on their regularized empirical counterparts, given by

A, Xoc) = 3 el Ful®) —)+ (fa),
Gd(w,X, Cd) = icd,i(fw(fi) — Zi)Q -+ Qd(X,X),

where ;(f,,) is a regularizer that accounts for the fact that X is not the future test
data but a training sample transformed to reflect the test distribution and used to
learn the model parameters.

In addition, we assume that the learner acts first, choosing a weight vector w.
Then the data generator, after observing w, chooses his optimal data transformation.
Thus, the problem to be solved by the learner is

argmin él(w,T(X,w,cd),cl)

o (4.5.1)
s.t. T(X,w,cq) = argmin 04(w, X', ¢g),
X/

84 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

where T'(X, w, ¢g) is the attacker’s optimal transformation for a given choice w of
weight vector. (4.5.1) has the same form as (4.2.1), except that it is formulated in
terms of costs rather than utilities. In addition, it is easy to see that if Q4(X, X) is
equal to the squared Frobenius norm of the difference matrix || X — X||2, then the
attacker’s problem has a unique solution. Thus, we can use the proposed solution
techniques to look for Nash equilibria in this type of game, taking care of performing
gradient descent instead of gradient ascent, as we are minimizing costs here.

We apply the results to the UCI white wine dataset (Lichman 2013). This
contains information about 4898 wines consisting of 11 quality indicators plus a wine
quality score. R; and Rp are two competing wine brands. Rp has implemented a
system to automatically measure wine quality using a regression over the available
quality indicators: each wine is described by a vector of 11 entries, one per quality
indicator. Wine quality is a discrete variable that ranges between 0 and 10. Rj,
aware of the actual superiority of its competitor’s wines, decides to hack Rp’s system
by manipulating the value of several quality indicators to artificially decrease Rp’s
quality rates. However, Rp is aware of the possibility of being hacked, and decides to
use adversarial methods to train its system. In particular, Rp models the situation
as a Stackelberg game. It is obvious that the target value of his enemy is z(x,y) = 0
for every possible wine. In addition, Rp was able to filter some information about
R;’s wine-specific costs cq;.

As basic underlying model, a regular ridge regression (Friedman et al. 2001),
was trained using 11 principal components as features. The regularization strength
was chosen using repeated hold-out validation (Kim 2009), with ten repetitions. As
performance metric we used the root mean squared error (RMSE), estimated via
repeated hold-out.

We compare the performance of two different learners against an adversary whose
wine specific costs ¢g4; are fixed. The first one, referred to as Nash, assumes that
the wine specific costs are common knowledge and plays Nash equilibria in the
Stackelberg game defined in (4.5.1). The second learner, referred to as raw, is a non
adversarial one and uses a ridge regression model. To this end, we split the data in
two parts, 2/3 for training purposes and the remaining 1/3 for test. The training
set is used to compute the weights w of the regression problem. Those weights are
observed by the adversary, and used to attack the test set. Then, the RMSE is
computed using this attacked test set and the previously computed weights.

In order to solve (4.5.1), we use the backward solution solution method of Section
4.3.1 due to its time scalability. The hyperparameters were chosen as follows: number
of epochs T to compute the gradient in Algorithm 8, 100; the learning rate 7 in this
same Algorithm, was set to 0.01. Within the gradient descent optimization used
to optimize the defender’s cost function, the number of epochs was set to 350 and
the learning rate to 107%. Finally, we assumed that the wine specific costs were the
same for all instances and called the common value ¢;. We studied how ¢, affects
the RMSE for different solutions.

Notice that, in this case, the dimension of the attacker’s decision space is huge.
He has to modify the training data to minimize his costs. If there are k instances

4.5. Experiments 85

Convergence for several starting points

-2 Nash
. e -#- Raw
RMSE vs Wine Specific Cost
, P
L 16405
12
N a
w 8
]
= & 3
x,
L 50404
0.9 E
°° ﬁ_i};i‘if——i—,—i
o8 o » © o® Y 0e+00

o o] | I] ; ;
Wine Specific Cost 0 100 200 300 400 500

Figure 4.4: Convergence for several initial

Figure 4.3: Performance comparison. points.

in the training set, each of dimension n, the dimension of the attacker’s decision
space is n X k. In this case k = 3263 (2/3 of 4898) and n = 11. Thus the forward
solution is impractical, and we did not compute it. We show in Figure 4.3, the RMSE
for different values of the wine specific cost. We observe that Nash outperforms
systematically the adversary unaware regression method. When ¢; — 0, we see that
gd(w, X, cq) = Qq(X, X). Thus, in this situation, the adversary will not manipulate
the data. Consequently the Nash and ridge regression solutions will coincide, as
shown in Figure 4.3. However, as ¢4 increases, data manipulation is bigger, and the
RMSE of the adversary unaware method also increases. On the other hand, the
Nash solution RMSE remains almost constant.

We have also computed the average and standard deviation of training times. In
an Intel Core i7-3630UM, 2.40GHz x 8 computer, the average training time was 131.6
seconds with 2.7 seconds as standard deviation. This corresponds approximately to
2.66 seconds per outer epoch. Each outer epoch involves running Algorithm 8 with
100 inner epochs.

Finally, to illustrate the convergence of the proposed approach, we solve (4.5.1)
using gradient descent with the backward method for 20 different random initializa-
tions of the defender’s decisions w. Results are depicted in Figure 4.4. As can be
seen, all paths converge with less than 150 epochs.

4.5.3 An application to adversarial regression with limited
knowledge

As in GroBlhans et al. (2013), we can relax the common knowledge assumption in
the adversarial regression problem of Section 4.5.2; introducing uncertainty in the
learner’s knowledge about the data generator instance specific costs ¢4 If 7(cq) is
the prior reflecting this uncertainty, the problem to be solved by the defender is

argmin /@(w,T(X,w,cd),cl)

w A (4.5.2)

s.t. T(X,w,cq) = argmin g(w, X', ¢y),
X/

86 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

Note that this problem has the same form as (4.4.1), except that it is formulated in
terms of costs rather than utilities. Thus, we can use the technique in Section 4.4 to
compute the Bayes-Nash equilibrium of this game.

In Section 4.5.2, we assumed that Rp was able to filter information about R;’s
wine-specific costs cq;. However, in realistic settings, it is not reasonable to assume
that this information will be precise, as the competitors have incentives to conceal
information to each other.

In this section we study the performance of a more realistic learner, referred
to as Bayes, that decides to put a gamma prior 7(cs;) on cq; reflecting the lack
of precise knowledge about the wine specific costs. This learner plays Bayes-Nash
equilibrium in the Bayesian Stackelberg game defined in (4.5.2), computed using the
methodology in Section 4.4 coupled with the backward solution method.

The experimental setting is the same as that of Section 4.5.2. We compare the
Bayes learner with two other players: one, referred to as Nash, that assumes that
R;’s wine-specific costs are the mean value of the previous gamma distribution and
plays Nash equilibrium of (4.5.1), and another non adversarial learner, referred to as
raw, that uses a ridge regression model. We compare the performance of the three
different learners against an adversary whose wine specific costs are sampled from
the conjectured gamma distribution.

s
RMSE vs Mean of Wine Specific Cost. Variance: D.S’%’

w

ye:
14 E
13 /’E 11

Nas|
Rai
Ba:

0.8

o o o of o® \“
Variance of Wine Specific Cost

(a) (b)

Figure 4.5: Performance comparison for different means and variances of the wine
specific costs.

In Figure 4.5a, we represent the RMSE of the different solutions against the mean
of the wine specific costs, with fixed variance 0.5. In Figure 4.5b we represent RMSE
versus the variance of the wine specific costs for a fixed mean value of 0.5. We see
that Bayes consistently outperforms the other players, specially for high values of
variance, where the uncertainty is bigger and consequently, the Bayesian approach is
clearly better.

4.6. Discussion 87

4.6 Discussion

The demand for scalable solutions of Stackelberg Games has increased in the last
years due to the use of such games to model confrontations within Adversarial
Machine Learning problems. In this chapter, we have focused on gradient methods
for solving Stackelberg Games, providing two different approaches to compute the
gradient of the defender’s utility function: the forward and backward solutions. In
particular, we have shown that the backward solution scales well in time with the
defender’s decision space dimension, at a cost of more memory requirements. On the
other hand, the forward solution scales poorly in time with this dimension, but has
better space scalability. In addition, we have extended these approaches to the case
of Bayesian Stackelberg games.

We have provided empirical support of the scalability properties of both ap-
proaches using a simple example. In addition, we have solved an AML problem
using the backward solution in a reasonable amount of time. In this problem, the
defender’s decision space is continuous with dimension 11. The attacker’s decision
space is also continuous with dimension O(10%), as we showed in Section 4.5.2. To the
best of our knowledge, none of previous numerical techniques for solving Stackelberg
games could deal, in reasonable time, with such high dimensional continuous decision
spaces.

Apart from scalability properties, a major advantage of the proposed framework
is that it could be directly implemented in any Automatic Differentiation library
such as PyTorch (the one used in this example) or TensorFlow, and thus benefit
from the computational advantages of such implementations. Finally, we highlight
that one of the most important contributions of this chapter is the derivation of the
backward solution formulating the Stackelberg game (4.2.1) as a PDE-constrained
optimization problem and using the adjoint method. This provides a general and
scalable framework that could be used to seek for Nash equilibria in other types of
sequential games. Exploring this, is another possible line of future work.

88 Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML

Chapter 5

Algorithmic approaches: APS
Methods for Non-cooperative
Games

5.1 Introduction

As discussed in Chapter 5, efficient and scalable algorithmic methods for solving game
theoretic problems are gaining importance due to the rise of adversarial machine
learning (AML). Our realm in this one is precisely within algorithmic decision (Rossi
and Tsoukias 2009) and game (Nisan et al. 2007) theories, in that we propose
efficient algorithms to approximate solutions for game theoretic problems. Chapter
4 dealt with gradient-based solution methods. This chapter focuses on simulation
based approaches. Among these, Monte Carlo (MC) methods are straightforward
to use and widely implemented. However, they can be inefficient under certain
conditions such as in presence of a high number of decision alternatives for the
agents. For instance, counter-terrorism, adversarial machine learning and (cyber)
security problems may involve thousands of possible decisions, and there could be
large uncertainties associated with the goals and resources of the attackers (Zhuang
and Bier 2007). This can result in computational challenges especially in cases
where model uncertainty dominates (Rios Insua et al. 2009). Sampling procedures
that focus on high-probability events, would have the potential to handle such
computational challenges. Augmented probability simulation (APS), (Bielza et al.
1999) is a powerful simulation based methodology used to approximate optimal
solutions in decision analytic problems. In particular, following objective O4, we
analyze how APS may be used to efficiently compute game theoretic solutions in
both the standard and ARA settings.

On the whole, we present a comprehensive robust decision support framework with
novel computational algorithms for decision makers in a non-cooperative sequential
setup. The proposed approach can be especially beneficial in application domains
such as cybersecurity, AML and counter-terrorism. In particular, Sections 5.2 and
5.3 provide approaches to approximate subgame perfect equilibria under complete

89

90 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

information, assessing their robustness and, finally, approximate ARA solutions
under incomplete information. A computational assessment and the solution of a
cybersecurity case study are presented in Sections 5.4 and 5.5. The chapter concludes
with a discussion in Section 5.6. Code to reproduce the results in this chapter is
available in the GitHub repository https://github.com/roinaveiro/aps,
including parameter choices. In the Appendix we present additional results and
algorithms relevant in particular settings.

5.2 Sequential non-cooperative games with com-
plete information

This section focuses on computational methods for finding equilibria in sequential
non-cooperative games with complete information. These games have received
various names including sequential defend-attack (Brown et al. 2006) and Stackelberg
games (Gibbons 1992). As an example, consider a company that must determine the
cybersecurity controls to deploy given that a hacker could observe them and launch
a distributed denial-of-service (DDoS) attack.

Sequential non-cooperative games were introduced in Section 1.4.1 of Chapter 1.
Recall that we considered a Defender (D, she) who chooses her defense d € D. Then,
an Attacker (A, he) chooses his attack a € A, after having observed d. Both D and
A are assumed finite, unless noted. Figure 1.2 shows the corresponding bi-agent
influence diagram. The consequences for both agents depend on the outcome 6 € ©
of the attack. The agents have their own assessment on the outcome probability,
respectively pp(60|d,a) and pa(6|d, a), dependent on d and a. The Defender’s utility
function up(d, #) depends on her chosen defense and the attack result. Similarly, the
Attacker’s utility function is ua(a,8).

As noted in Section 1.4.1, if the game is under complete information, the ba-
sic game-theoretic solution does not require the Attacker to know the Defender’s
probabilities and utilities, as he observes her actions. However, the Defender must
know (u4,pa), the common knowledge assumption in this case. Then both agents’
expected utilities are computed at node ©, ¥(d,a) = [ua(a,d)pa(0|d,a) df and
Yp(d,a) = [up(d,8)pp(0]d,a)dd. Next, the Attacker’s best response to D’s action
d, is a*(d) = argmax,. 4 ¥a(d, a). This is used to find the Defender’s optimal action

& = argmax g p ¢¥p(d,a*(d)). The pair (dgy, a*(dgr)) is a Nash equilibrium and,
indeed, a sub-game perfect equilibrium (Hargreaves-Heap and Varoufakis 2004).

As mentioned in Chapter 4, the solution of such games requires solving a bilevel
optimization problem (Bard 1991), which can rarely be solved analytically. Existing
numerical techniques lack scalability: increasing the number of upper level variables
produces an exponential increase on the number of lower level tasks required. However,
problems in emerging areas such as cybersecurity and adversarial machine learning
(Rios Insua et al. 2019) may require dealing with high dimensional and/or continuous
decision spaces, and, consequently, can hardly be solved using standard methods.
Some scalable gradient based solution approaches have been introduced in 4. However,

5.2. Sequential non-cooperative games with complete information 91

they are restricted to games in which expected utilities can be computed analytically.
When this is not the case, MC simulation methods, see e.g. Ponsen et al. (2011) and
Johanson et al. (2012) for pointers, could be used as briefly described next.

5.2.1 Monte Carlo simulation for games

Simulation based methods for sequential games typically approximate expected
utilities using MC and, then, optimize with respect to decision alternatives, first to
approximate Attacker’s best responses, then to approximate the optimal defense.
Algorithm 10 reflects a generic MC based approach to solve non-cooperative games
where () and P are the sample sizes required to respectively approximate the expected
utilities 14 (d, a) and ¥ p(d, a) to the desired precision, as discussed in Appendix A.1.

Convergence of Algorithm 10, detailed in A.1, follows under mild conditions and is

Algorithm 10: MC approach for non-cooperative sequential games with com-
plete information

input: P, @)

for d € D do
for a € A do

Generate samples 61, ...,0g ~ pa(8|d,a);
Compute ¢4(d, a) = o Xiuala, 0;);
end
Find a*(d) = argmax, 1 4(d, a);
Generate samples 6y,...,0p ~ pp(0 | d,a*(d));
Compute ¢'p(d) = % ¥ up(d, 6;);
end

Compute dy = argmax, ¢p(d);

based on two applications (for the inner and outer loops within Algorithm 10) of
a uniform version of the strong law of large numbers (SLLN) (Jennrich 1969). It
shows uniform convergence to the expected utilities as well as to the attacker’s best
responses and defender’s optimal decision.

From a computational perspective, the algorithm requires generating |D| x (|.A| x
Q) + P) samples, where | - | designates the cardinality of the corresponding set, in
addition to the cost of the final optimization and |D| inner loop optimizations. When
the decision sets are continuous, they need to be discretized to solve the problem to
the desired precision, as exemplified in Section 5.4.2. In the end, MC approaches
could turn out to be computationally expensive when dealing with decision dependent
uncertainties, as is the case in the games in this study: they require sampling from
pp(0 | d,a) and pa(0 | d,a) for each possible pair of d and a, entailing loops over the
decision spaces D and A. When these are high dimensional, considering the whole
decision space as in MC will typically be inefficient. APS mitigates this issue.

92 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

5.2.2 Augmented probability simulation for games

APS solves for maximization of expected utility by converting the tasks of sequential
estimation and optimization into simulation from an augmented distribution in
the joint space of decisions and outcomes, not requiring a separate optimization
step. Bielza et al. (1999) introduced it to solve decision analysis problems and Ekin
et al. (2014) extended it to solve constrained stochastic optimization models. It can
be advantageous in problems with expected utility surfaces that are expensive to
estimate rendering the optimization step inefficient. In this chapter, we first use
APS to solve sequential games dealing with the Attacker’s and Defender’s decision
problems sequentially.

For the Attacker, we introduce an augmented distribution m4(a,0 | d) over
(a, 8) for a given defender action d, defined as proportional to the product of
the utility function and the original distribution, ua(a,0)pa(6 | d,a). If ua(a,0)
is positive and ua(a,0)pa(f | d,a) is integrable, then m4(a,d | d) is a well-defined
distribution. Simulating from it solves simultaneously for the expectation of the
objective function and its optimization since its marginal over actions a, given
by ma(a | d) = [7a(a,0 | d)df, is proportional to the Attacker’s expected util-
ity va(d,a) = [ua(a,0)pa(f | d,a)dd. Consequently, the Attacker’s best re-
sponse given d can be computed as a*(d) = mode[ra(a | d)]. Using backward
induction, and assuming that up(d,0) is positive and up(d,0)pp(0 | d,a) is in-
tegrable, the Defender’s problem is solved sampling from the augmented distri-
bution 7p(d, 0 | a*(d)) < up(d,d)pp(0 | d,a*(d)): its marginal 7p(d | a*(d)) in d
is proportional to the Defender’s expected utility ¢p(d, a*(d)) and, consequently,
df,r = mode [rp(d | a*(d))]. This leads to a solution approach for non-cooperative
games that includes the steps of sampling from the augmented distributions, marginal-
ising to the corresponding decision variables and estimating the mode of the marginal
sample.

It is generally impossible to sample directly from the augmented distributions.
However, Markov chain Monte Carlo (MCMC) methods, e.g. Gamerman and Lopes
(2006), serve for such purpose. They construct a Markov chain in the space of the
target distribution, the augmented distributions in our case, guaranteed to converge
in distribution to the target under mild conditions. After convergence is detected,
samples from the chain can be used as approximate samples from the target. Various
approaches are available to construct the chains. For instance, Appendix B.1 discusses
Gibbs based algorithms. Here we adopt more versatile Metropolis-Hastings (MH)
variants (Chib and Greenberg 1995) as in Algorithm 11. This facilitates sampling
approximately from 7p(d, 0 | a*(d)) (outer APS) to solve the Defender’s problem.
Within that, the Attacker’s best response a*(d) is estimated for any given d using
another APS (inner APS) on m4(a, | d). Details of the acceptance/rejection step
follow. Let d and 6 be the current samples in the MH scheme of the outer APS.
Within each iteration, a candidate d for the Defender’s decision is sampled from a
proposal generating distribution gD(cZ |d). We choose this to be symmetric in the sense
that it satisfies gp(d | d) = gp(d | d). Then, the Attacker’s problem is solved using

5.2. Sequential non-cooperative games with complete information 93

an inner APS to estimate a*(d). The state @ is next sampled using pp (0 | d,a*(d)).
The candidate samples are accepted with probability 7p(d, 0 [a*(d))/7p(d, 0 | a*(d)),

which, after simplification, adopts the form Zg gj’z;. Algorithm 11 thus defines a

Algorithm 11: MH APS for non-cooperative sequential games with complete
information.
function solve_attacker (M, d, ga):
initialize : (¥
Draw 0 ~ pa(0 | d,a®);
for i =1to M do ' > Inner APS
Propose new attack @ ~ ga(a|a®);
Draw 0 ~ pa(0 | d,a);)
Evaluate acceptance probability o = min {1, %};

With probability a set) = @, 8@ = . Otherwise, set a) = (=1,
and 6 = (-1 .

end

Discard the first K samples and estimate mode of rest of draws {a®}.
Record it as a*(d).;

return a*(d);

input: d, M, K, N, R, gp and g4 symmetric proposal distributions

initialize : d, a*(d?)) = solve_attacker (M, d%, g,)

Draw 00 ~ pp(6 | d©,a*(d));

fori=1to N do 3 B > Outer APS

Propose new defense d ~ gp(d | d~Y);

a*(d) = solve_attacker (M, d, g4) if not previously computed;

Draw 0 ~ pp (0 | d,a*(d));

Evaluate acceptance probability o = min {1, #ﬁ%};

With probability a set d® = d, a*(d®) = a*(d) and 8@ = §. Otherwise,
set d® = d0-1 and g0 = G- ;

end
Discard first R samples and estimate mode of rest of draws {d®)}. Record it as
dér-;

Markov chain in (d,) such that (d™), M) —%, 7p(d,0|a*(d)) where —% represents
convergence in distribution. Proposition 1 provides necessary conditions for the
convergence of its output to the decision dgr.

Proposition 1. If the Attacker’s and Defender’s utility functions are positive;
pa(l|d,a), pp(0]d, a) >0 Va,0; ua(a,0)pa(0|d,a) and up(d,d)pp(0|d, a) are inte-
grable; A, D, © are either discrete sets or intervals in R™; and the proposal generating
distributions g4 and gp are symmetric, Algorithm 11 defines a Markov Chain with
stationary distribution wp(d, 0 | a*(d)), and a consistent mode estimator based on its
marginal samples in d converges to di almost surely.

Proof. Under the hypothesis, for each d, m4(a,0 | d) is a well-defined distribution
and the samples generated within the inner APS loop in Algorithm 11 define a

94 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

Markov chain with 7m4(a,0 | d) as stationary distribution (Gamerman and Lopes
2006). Once convergence is detected (at iteration K'), the remaining M — K marginal
samples a” of the Markov chain are approximate samples from 74(a | d). For large
enough M — K, a consistent sample mode estimator (in the sense of Romano (1988))
converges almost surely to a*(d). Similarly, under the hypothesis, 7p(d, 0 | a*(d))
is a well-defined distribution and the samples generated in the outer APS loop in
Algorithm 11 define a Markov chain with stationary distribution 7p(d, 0 | a*(d)).
Once MCMC convergence is detected (at iteration R), the remaining N — R marginal
samples d¥) of the Markov chain are approximate samples from mp(d | a*(d)). Hence,
their sample mode estimator converges to d¢ almost surely (Romano 1988).

]

In practice, as continuous candidate proposal generation gp and g4 distributions,
we use heavy tailed t distributions, centered at the current solutions (Gamerman
and Lopes 2006). When facing discrete or ordinal decisions, we display those in a
circular list and generate from neighbouring states with equal probability. Practical
convergence (for discarding the first K or R samples) may be assessed with various
statistics like Brooks-Gelman-Rubin’s (BGR) (Brooks and Roberts 1998). Once the
chain is judged to have converged, the initial samples are discarded as burn-in and the
remaining simulated values are used as an approximate sample from the distribution
of interest. In particular, the marginal draws d#tV, ... d™) would correspond to
an approximate sample from the marginal 7p(d | a*(d)). The sample mode must be
estimated with a consistent estimator in the sense of Romano (1988), see also the
classical work in Parzen (1962) and Grenander (1965).

Computationally, Algorithm 11 removes the loops over both D and A. Thus, its
complexity does not depend on the dimensions of those decision spaces providing an
intrinsic advantage over MC approaches in problems with large or continuous spaces.
In particular, Algorithm 11 requires N x (2 x M + 3) 4+ 2M + 2 samples plus the
cost of convergence checks and (at most) N + 1 mode approximations.

5.2.3 Sampling from a power transformation of the marginal
augmented distribution

In cases in which either the Attacker’s or the Defender’s expected utility surfaces
are very flat, identifying the mode of their corresponding marginal augmented
distributions could be very challenging. Very flat expected utilities result in flat
marginal augmented distribution, that requires many samples (APS iterations) to
resolve the mode. In these cases, one possibility to increase efficiency of APS in
finding the mode is to sample from a power transformation of the marginal augmented
distribution (more peaked round the mode) rather than sampling from the original
distribution. Next, we provide a demonstration of such sampling and its convergence
guarantees. For the sake of illustration, we just deal with the Attacker’s problem
(inner APS in Algorithm 11) for a given defense d. The application of this new
sampling approach to the Defender’s problem is straightforward.

5.2. Sequential non-cooperative games with complete information 95

Assume we are interested in maximizing the Attacker’s expected utility for a given
defense d, ¥ 4(a,0) = [ua(a,0)pa(0|d,a)dd. We define an augmented distribution
7y (a,-) such that its marginal distribution in a is proportional to ¥ (a,#), with
H > 1 defined as the augmentation parameter. Now, ¥ (a,) is more peaked around
the optimal attack and, consequently the marginal on a of my(a,-) will be more
peaked around such mode, thus facilitating its identification. Let us define this
augmented distribution creating H identical copies of the state # and using

H
7TH(G“7 Qla R 70H|d) X H UA((I, ez)pA(ez|d7 a)‘

=1

(Note that when H = 1 we recover the original formulation of APS). Its marginal in
a is

mia(ald) o | [wala,0)pa(61d,a) der — " (a, 0)

as requested. Samples from this marginal will cluster tightly around the mode as H
increases, since this distribution will be more peaked. To get those samples, for a
given value of H, we sample from 7y (a,0y,...,0y|d) and just keep the samples of
a, using the following MH scheme: suppose the current state of the Markov chain
is (a,0,...,0n); generate a candidate a from a symmetric proposal g4(-|a), and
propose 6; ~ pa(A|d,a) for i = 1,..., H; accept @, 6, . ..,0y with probability

mm{l H“AEZ;} (5.2.1)

zluA

otherwise, maintain the current (a, 6y, ...,0y). This defines a Markov chain with sta-
tionary distribution 7y (a,0y,...,0y|d) (Tierney 1994). Indeed, the acceptance prob-
ability of a Metropolis-Hastings scheme for a target distribution 7y (a, 6y, ...,0g|d)
with proposal distribution ¢(a, 8y, ...,0x|a, 6y, ...,05) = ga(dla) [T, pa(6i|d, a) is

. { 7TH(C~L,‘§1,...,9~H)|CZ q(a,@l,...,9H|&,9~1,.. s H)}
min {1, e —
7TH(CL ‘91,.. GH‘d) q(a 91,.. (QH‘CL 91,...,9[{)
_ mm{l [, a3 0)pa(0ild, @) | ga(ala) TIL, pa(6ild, a)}
Ly uala,0)pa(6ild,a) ga(ala) 1L, pa(fild.)
i)
i)

- mm{l H“AE Z }

1 uala

Thus, samples from 7y(a,6q,...,0|d) can be generated running this MH scheme
for a certain number of iterations, and discarding the initial ones as burn-in samples.
The rest of a samples are approximately distributed as 7y (a|d). As a consequence,
the sample mode estimator computed using these samples converges almost surely to
the optimal attack a*(d), the mode of 7y (ald). A similar procedure could be defined
for the Defender’s problem to increase efficiency in finding df,,. The inner and outer
APS of Algorithm 11, could thus be substituted by sampling mechanisms as the

96 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

one explained to facilitate mode identifications. Convergence of this new approach
occurs under the same conditions of Proposition 1 and follows from the fact that the
defined Markov chains have the desired stationary distributions.

When the decision sets are high dimensional, direct application of the previous
approach might not be feasible as mode identification becomes even more challenging.
Miiller et al. (2004) offer a solution for this issue that consists of embedding the
previous MH scheme within an annealing schedule. Thus, within each APS iteration
we increase H using an appropriate cooling schedule. This produces an inhomogeneous
Markov chain that converges to the mode of 7y (a|d) (the optimal attack). A proof
can be found in Miiller et al. (2004). The same strategy could be used for the
Defender’s APS.

Example.

We demonstrate the framework with a simple cybersecurity problem. An organization
(Defender) has to choose among ten security protocols: d = 0 (no extra defensive
action); d = i (level i protection protocol with increasing protection), i = 1,...,8;
d =9 (a safe but cumbersome protocol). The Attacker has two alternatives: attack
(a = 1) or not (a = 0). Successful (unsuccessful) attacks are denoted with 6 = 1
(0 =0). Clearly, when there is no attack, 8 = 0.

0 a
d 0 1 d 0 1 d Qg ﬁd
0 0.05 7.05 0 0.0 050 0 50.0 50.0
1 010 7.10 1 0.0 040 1 400 60.0
2 015 7.15 2 0.0 035 2 350 65.0
3020 7.20 3 0.0 0.30 3 30.0 70.0
4 025 7.2 4 00 025 4 250 75.0
5 0.30 7.30 5 0.0 0.20 P 5 20.0 80.0
6 035 7.35 6 0.0 0.15 ————— 6 150 85.0
7 040 7.40 7 0.0 0.10 e 0 1 7 100 90.0
8 045 745 8 0.0 0.05 0 000 0.00 8 50 950
9 0.50 7.50 9 0.0 0.01 1 -053 1.97 9 1.0 99.0

(a) (b) () (d)

Table 5.1: (a) Defender’s net costs; (b) Successful attack probabilities; (c¢) Attacker’s
net benefits; (d) Beta distribution parameters

Defender non strategic judgments. Table 5.1a presents net costs cp associated
with each decision and outcome, covering a TM€ business valuation, and 0.05M€
base security cost plus 0.05M€ per each security level increase. When the attack is
successful, the defender loses the whole business value. The probability pp(6 = 1|d, a)

5.2. Sequential non-cooperative games with complete information 97

of successful attack given d and a is in Table 5.1b (with complementary probabilities
for unsuccessful attacks). The Defender is constant risk averse in costs, with utility
strategically equivalent to up(cp) = —exp (¢ X ¢p) with ¢ = 0.4.

Attacker judgments. The average attack cost is estimated at 0.03M<€. The
average benefit (due to market share captured, ransom, etc.) is 2M€. An unsuccessful
attack has an extra cost of 0.5M €. Table 5.1c¢ presents the Attacker’s net benefit
c4 associated with each attack and outcome. D thinks that A is constant risk prone
over benefits. His utility is strategically equivalent to us(ca) = exp (e X c4), with
e > 0.

Start with the complete information case. To fix ideas, assume that pa(f =
1|d,a) =pp(0 =1]|d,a) (Table 5.1b) and e = 1. MC and APS approximate optimal

= 08—

3] 06 -
>
§ a g a
2 0.4
B g B
& £
5 4
1(| ﬂmmﬂj 02([[
0 0.0 e
o i 2 3 4 5 6 7 & 9 6 1 2 3 4 5 6 1 & 9
d d
(a) MC solutions (b) APS solutions

Figure 5.1: Attacker problem solutions for each defense

decisions using Algorithms 10 and 11, respectively. First, Figure 5.1a represents MC
estimates of A’s expected utility for each d and a. The optimal response a*(d) for
each d is the alternative with maximum expected utility. For example, for d = 5,
A’s optimal decision is to attack; for d = 8, he should not attack. Next, Figure 5.1b
represents the frequencies of marginal samples of a from the augmented distribution
ma(a,0 | d) for each d. Its mode coincides with the optimal attack decision. From
d =0 (no defense) until 7, the Attacker should attack. With stronger defenses d = 8
and d = 9, the mode is a = 0 and hence an attack is not advised. The Attacker’s
best responses a*(d) for each defense d are thus identical with both approaches.

Armed with a*(d), the optimal defense is computed again using MC and APS.
Figure 5.2a presents the MC estimation of ¢p(d,a*(d)) for each d. Figure 5.2b
shows sample frequencies from the marginal augmented distribution 7p(d | a*(d)).
Both methods agree that di,; is acquiring level 8 protection, with level 9 a close
competitor.

It could be argued that finding the exact optimal decision is not that crucial
since the expected utilities for protection levels 8 and 9 are very close. Moreover,
as the expected utilities of d = 8 and d = 9 are very close, it is challenging to find
the exact optimal decision. APS is useful in checking that, indeed, d& = 8. We
repeat the experiment using APS but replacing the defender’s marginal augmented

98 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

L 10000 [[

.
@

7500

o
o

5000

Expected Utility
Frequency

@

2500

L 0 L
0 i 2 3 4 5 6 7 8 9 o i 2 3 4 5 6 7 8 9
Optimal Decision Optimal Decision

(a) MC solution (b) APS solution

Figure 5.2: Solutions of Defender problem

distribution 7p by its power transformation 7%, which is more peaked around the
mode, as explained in Section 5.2.3. In addition, as in simulated annealing, within
each APS iteration we increase H using an appropriate cooling schedule (Miiller
et al. 2004). Figure 5.3 displays the results of the simulation when H = 450, showing
that, indeed, the game-theoretic solution under complete information is dg = 8.

H =450

0.6-

Frequency
°
i

o
N

0.0- I
o i s 3 4 5 & 1 8 9

Defender's Decision

Figure 5.3: Defender optimal solutions for the game with complete information

using power augmented distributions.

This also emphasizes another advantage of APS: despite eventual flatness of
expected utility, APS provides a method to find the optimal solution with little extra
computational cost. A

5.2.4 Sensitivity analysis for games

The Defender’s judgments, expressed through (up,pp), could be argued to be well
assessed, as she is the supported agent in the game. However, as cogently argued in
Keeney (2007), our knowledge about (u4,pa) may not be that precise as it would
require A to reveal his beliefs and preferences. This is doubtful in domains such as
cybersecurity and counter terrorism where information is concealed and hidden to
adversaries.

5.2. Sequential non-cooperative games with complete information 99

One could conduct a sensitivity analysis to mitigate this issue, considering that
A’s preferences and beliefs are modeled through classes of utilities u € Uy and
probabilities p € P4, summarizing the information available to D possibly obtained
from leakage, earlier interactions or informants. The stability of the proposed solution
dgp could be assessed by comparing Nash defenses dy , computed for each pair (u, p).
Several criteria have been proposed to assess the stability of solutions in the areas
of decision making under uncertainty and sensitivity analysis (Insua 1990) and
robust Bayesian analysis (Insua and Ruggeri 2012). Of them, we shall use the regret
Tup(dGr) = ¥p(dgr, a*(déy)) — ¥p(d; ,, a*(d;,), as it reflects the loss in expected
utility for the choice of the proposed d¢p 1nstead of d, , that should have been
chosen for the actual judgements; (u,p) € Uy X Pa. Small Values of ryp(dé&r) would
indicate robustness with respect to the Attacker’s utility and probability: any pair
(u,p) € Us X P4 could be chosen with no significant changes in the attained expected
utilities and d{, is thus robust. Otherwise, the relevance of the proposed Nash
defense di. should be criticized and further investigated. Operationally, a threshold
on the maximum acceptable regret would be specified, as sketched in Algorithm 12.

Algorithm 12: Robustness assessment of solutions for games with complete
information
input: di,p, Ua, Pa, R, threshold
for i =1to R do
Randomly sample u from U, and p from Py;
Compute dy, , using Algorithm 11;
Compute Tup(d&r);
if 7, ,(d%) > threshold then
Robustness requirements not satisfied;
Stop
end
end
Robustness requirements satisfied.

Example (cont.)

We next check the robustness of d¢, with respect to the utility and probability assump-
tions. The optimal defense is computed for 10,000 perturbations of u4(c4) (sampling
e/ ~U(0,2) and using u/s(ca) = exp (¢ X c4)) and the probability pa(0 | d,a = 1) of
successful attack in case A attacks for each d (sampling from a Beta distribution with
mean equal to the original value and variance 0.1% of the corresponding mean for
each d). Figure 5.4 reflects the frequency with which each d is found optimal. The
proposed d&, = 8 emerges 25% of the times as optimal. However, it is unstable as
inducing small perturbations in the utilities and probabilities leads to other solutions:
d =9 appears 42% of the times as optimal and d = 7, 16%. More importantly, large
variations in optimal expected utilities are observed 33% of the time, with maximum
regret 42.5% of the total optimal expected utility: d&p = 8 seems too sensitive to
changes in us and pa. A

100 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

0.4-

e
w

o
N

Frequency

o
o

0.0-
4 5 6 7 8 9
Optimal Decision

Figure 5.4: Sensitivity analysis of the solution of the game with complete information

This will be addressed next by relaxing the complete information assumption.

5.3 Sequential non-cooperative games with incom-
plete information: ARA

When the game theoretic solution lacks robustness or the complete information
assumption does not hold, the problem may be handled as a game with incomplete
information. The most common approach in such games is based on the BNE
concept. Alternatively, as in Section 1.4.1, we use a decision analytic approach based
on ARA. Rios and Rios Insua (2012) discuss the differences between both concepts in
simultaneous games showing that they may lead to different solutions. An interesting
feature of ARA is that it mitigates the common prior assumption (Antos and Pfeffer
2010). We describe the relation between both solution concepts in sequential games
below.

As highlighted in Section 1.4.1, ARA considers that the Defender actually has
uncertainty about (ua,p4). Her problem was depicted in Figure 1.3a as an influence
diagram, where A’s action appears as an uncertainty. Her expected utility is ¢p(d) =
[¥p(d,a)pp(al|d)da which requires pp(a | d), her assessment of the probability that
the Attacker will choose a after having observed d. Then, her optimal decision is
diga = argmax,.p ¥p(d). Our example will show a solution that does not coincide
with a Nash equilibrium.

Eliciting pp(a | d), which has a strategic component, is facilitated by analyzing
A’s problem from D’s perspective, depicted in Figure 1.3b. For that, she would use
all information and judgment available about A’s utilities and probabilities. However,
instead of using point estimates for u4 and pa to find A’s best response a*(d) given d
as in Section 5.2, her uncertainty about the attacks would derive from her uncertainty
about (ua,pa) modeled through a distribution F' = (Uy, P4) on the space of utilities
and probabilities. Without loss of generality, assume that both U, and P4 are defined
over a common probability space (2, .4, P) with atomic elements w € Q (Chung 2001).
This induces a distribution over the Attacker’s expected utility 14 (d, a), where the ran-

5.3. Sequential non-cooperative games with incomplete information: ARA 101

dom expected utility for A would be ¥4(d,a) = [US(a,8)P5(0|d,a)dd. In turn, this
induces a random optimal alternative defined through A*(d)* = argmax,. 4 ¥4 (d, x).
Then, the Defender would find pp(a | d) = Pp [A*(d) = a] = P(w : A*(d)* = a) in
the discrete case (and, similarly in the continuous one). Observe that w and P
could be re-interpreted, respectively, as the type and the common prior in Harsanyi’s
doctrine. Then, P4 and U respectively correspond to A’s probability and utility
given his type, and (d*, {A*(d*)“}) would constitute a BNE. Thus, in the sequential
Defend-Attack game, we can operationally reinterpret the ARA approach in terms of
Harsanyi’s, although the underlying principles are different. Computationally, ARA
models entail integration and optimization procedures that can be challenging in
many cases. Therefore, we explore simulation based methods for ARA.

5.3.1 MC based approach for ARA

MC simulation approximates pp(a | d) for each d, drawing J samples {(u’y, ')},
from F' and setting pp(a|d) = FAD= where A*(d) = argmax, [u'y(a, §)pl(0]d, a) 6.
This is then used as an input to the Defender’s expected utility maximization, as
reflected in Algorithm 13.

Algorithm 13: MC based approach to solve the ARA problem
input: J, P, ()
for d € D do
for i =1 to J do
Sample uy(a, 0) ~ Uf(a,0), p4(0 | d,a) ~ P{(0|d, a);
for a € A do
Generate samples 01, ...,0g ~ p4(0] d, a);

Approsimate s (d,) = & X (0,60

end
Find a;(d) = argmax, ¢ (d, a);
end
polald) =5 S, Iai(d) = al
end
for d € D do

Generate samples (61,a1),...,(0p,ap) ~pp(0|d,a)pp(a|d);
Approximate ¢ (d) = + > up(d, 6;);

end

Compute dig, = argmax, ¥p(d);

From a computational perspective, it requires generating |D| x [J x (| A| x @ + 2)
+2P] samples where () and P are the number of samples required to respectively
approximate [u%(a,0)p(0|d,a)dl and [[up(d,0)pp(0]|d,a)pp(ald)dfda to the
desired precision. Convergence follows from two applications of a uniform version
of the SLLN as reflected in Appendix A.2. In high dimensional cases, and when
model uncertainty dominates, methods that automatically focus on high-probability-
high impact events could be faster and more robust. Hence, APS to solve ARA is

102 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

investigated as a scalable alternative to MC.

5.3.2 APS for ARA

APS solves the ARA model by constructing augmented distributions for the At-
tacker’s and Defender’s problems. To solve the Attacker’s decision problem, this
study constructs an APS in the state space of the Attacker’s random utilities and
probabilities. For a given d, this study builds the random augmented distribution
I14(a,0 | d) o< U4(a,0)P{(0 | d,a), whose marginal I14(a | d) = [114(a,0 | d)dO is
proportional to the random expected utility V¢ (d, a). Then, the random optimal
attack A*(d)” coincides almost surely with the mode of the marginal I14(a | d) of
this random augmented distribution. Consequently, by sampling ua(a,) ~ Ua(a,)
and pa(0 | d,a) ~ Pa(0 | d,a), one can build m4(a,0 | d) oc ua(a,d)pa(0 | d,a), which
is a sample from I14(a,0 | d). Then, mode(ma(a | d)) is a sample of A*(d), whose
distribution is Pp [A*(d) = a] = pp(a | d). Thus, this study provides a mechanism to
sample from pp(a | d).

Next, using backward induction, an augmented distribution for the Defender’s
problem is introduced as mp(d, a,0) < up(d,0) pp(0 | d,a) pp(a|d). Its marginal
mp(d) = [[7mp(d,a,0)dadd is proportional to the expected utility ¥p(d) and,
consequently, dir, = mode (mp(d)). Thus, one just needs to sample (d,a,0) ~
7p(d,a,d) and estimate its mode in d.

Algorithm 14 summarizes a nested MH based procedure for APS. Let d, a and 0
be the current state of the Markov Chain. This study samples a candidate defense d
from a proposal generating distribution gp(d | d), a candidate @ from pa(a | d) using
the Attacker’s APS as explained before, and 6 ~ pp(# | d,d). These samples are

, Zg Egzg; } The stationary distribution of this

Markov Chain converges to mp(d, a,8) as reflected in Proposition 2, which provides
conditions for the convergence of the output of Algorithm 14 to the optimal decision

accepted with probability a = min {1

*
dARA :

Proposition 2. If up and almost all the utilities in the support of Uy are positive;
pp(0|d,a) and almost all distributions in the support of P4(0|d,a) are also positive;
the products of utilities and probabilities are integrable; A, D and © are either
discrete or intervals in R™; and the proposal generating distributions g4 and gp
are symmetric, Algorithm 14 defines a Markov Chain with stationary distribution
7p(d,0,a). Moreover, the mode of the marginal samples of d from this Markov chain
approzimates the solution dip,.

Proof. Given our hypothesis about U4 (a,f) and P4 (0| d,a) for each d, the dis-
tributions m4(a, 0 | d) ~ I14(a,0 | d) given by ma(a,0 | d) o ua(a,®)pa(d | a,d)
with ugy ~ U4 and pa ~ P, are well defined a.s. Moreover, the samples a gen-
erated through sample_attack in Algorithm 14 are distributed according to
Pr [A*(d) = a] = pp(a|d). Indeed, as we are sampling ua(a,0) ~ UY(a,0) and
pa(0 | d,a) ~ P{(0|d,a); ma(a,0|d) < ua(a,0)pa(d | d,a), is a sample from
I14(a,0 | d). Then, mode(ms(a | d)) is a sample from A*(d)¥, whose distribution

5.3. Sequential non-cooperative games with incomplete information: ARA 103

is Pr [A*(d) = a]. To compute this mode, we sample a,0 ~ w4(a,0 | d) using MH,
defining a Markov chain {a®,0®;i =1,..., M} (loop in function sample_attack)
whose stationary distribution is m4(a, 0| d), (Roberts and Smith 1994). Once MCMC
convergence is assessed, the first K samples of a are discarded as burn-in samples
and the remaining M — K marginal samples are approximate samples from 74(a | d).
For large enough M — K, the mode of such marginal samples approximates the mode
of ma(a,0 | d), based on a consistent mode estimator (Romano 1988).

Next, as up is positive and up(d, 8)pp(0|d, a)pp(ald) integrable, mp(d,a,d) is
well-defined and is the stationary distribution of the Markov chain defined by
the outer APS in Algorithm 14. Once MCMC convergence is detected, the first
R samples of d are discarded as burn-in and the remaining N — R samples are
approximately distributed as mp(d). Hence, a consistent mode estimation of these
samples approximates djp,- O

Computationally, Algorithm 14 requires generating N x (2M +5) + 2M + 4
samples from multivariate distributions in addition to the cost of the convergence
checks and mode computations. Again, this algorithm removes the need for loops
over A and D. This would be an excellent choice when facing a problem where the
cardinality of these spaces is large or the decisions are continuous. Note though
that, in the discrete case, an alternative could be to combine MC and APS. If the
cardinality of the D is low, it could be more convenient to estimate the value of
pp(a | d) for each d, drawing J samples a ~ pp(a | d) and counting frequencies as
in Section 5.3.1. Then, in the Defender’s APS, instead of invoking the attacker’s
one each time we need a sample a ~ pp(a | d), we would directly sample from the
estimate pp(a | d). Finally, Appendix B.2 provides a Gibbs based algorithm.

Example (cont.)

We continue with the example of Section 5.2 studying the case in which complete
information is no longer available. D’s beliefs over A’s judgements are described
through P, and Uy. Assume A’s random probability of success is modeled as
Ps(0 =1|d,a =1) ~ Beta(ag, f4) with parameters ay and 5y in Table 5.1d (their
expected values are equal to pp(0 = 1|d, a) from Table 5.1b). In addition, A’s risk
coefficient e is uncertain, with e ~ 2(0, 2), inducing the random utility U4(c4).

In this case, for APS, as the cardinality of D is small, one can estimate the value
of pp(a | d) for each d. Figure 5.5 presents the estimates pp(a | d), obtained using
MC and APS. They coincide up to numerical errors. Next, the ARA solution for
the Defender is computed. Figure 5.6a shows the MC estimation of the Defender’s
expected utility; Figure 5.6b presents the frequency of samples from the marginal
7p(d). Its mode coincides with the optimal defense, diz, = 9, in agreement with
the MC solution. The ARA decision does not correspond to the Nash equilibrium
d¢p since its informational assumptions are different. In this case, it appears to be
more conservative, as it suggests a safer but more expensive defense.

As in Section 5.2.2; decisions 8 and 9 have similar expected utilities. To check
that, indeed, dir, = 9, we repeated the experiment replacing the defender’s marginal

104 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

Algorithm 14: MH APS to approximate ARA solution in the sequential game.

function sample_attack (d, M, K, ga, Ua, Pa):

initialize: ¢

Draw ua(a,) ~ U4(a,0);

Draw pa(0 | a,d) ~ P5(0|d,a);

Draw 0© ~ ps(0 | al?, d);

for : =1 to M do > Inner APS

Propose new attack @ ~ ga(a|a® ") ;

Draw 0 ~ pa(6 | d, a);

Evaluate acceptance probablhty o= mm{ o ;A 1?2 5 }

With probablhty a set V) =@, O . Otherwise, set a(¥ = ¢~V
and A = 9= ;

end
If convergence, discard first K samples and compute mode a*(d) of rest of
draws {a};
return a*(d);
input: d, Uy, Py, M, K, N, R, gp and g4 symmetric distributions
initialize: d© =d
Draw a® ~ pa(a|d®) using sample_attack (d?, M, K, ga, Ua, Pa);
Draw 0 ~ pp (0| d®, a®);
fori=1to N do . 3 > Outer APS
Propose new defense d ~ gp(d | d~1);
Draw @ ~ pa(a|d) using sample_attack (d, M, K, ga, Ua, Pa);
Draw 0 ~ pp(0 | d, a);
Evaluate acceptance probability o = min {1, M};
With probability a set d? = d, ') = g and 8®) = 6. Otherwise, set
d® =i ¢ = =D and) = e~V .

end

If convergence, discard first R samples and compute mode dp, of rest of
draws {d®}

po(ald)
(|
po(ald)
(|

(a) MC estimation of pp(a | d) (b) APS estimation of pp(a | d)

Figure 5.5: Estimation of pp(a | d) through ARA

5.3. Sequential non-cooperative games with incomplete information: ARA 105

i
@

=)
o
®

Expected Utility
s
Frequency

@
o
1)
I

0- T 0.00 e L

0.0 25 5.0 75 0 i 2 3 4 5 6 17 8 9
Optimal Decision Optimal Decision

(a) MC solution (b) APS solution

Figure 5.6: ARA solutions for the Defender

augmented distribution 7p by its power transformation 7, more peaked around the

mode. Results in Figure 5.7 confirm that d = 9 is the optimal ARA decision.

H =450
1.00-

o °
(41 ~
o u

Frequency

o
)
al

0.00- — —
o i 5 3 4 5 6 1 & b
Defender's Decision
Figure 5.7: Defender optimal solutions for ARA using power augmented distribu-
tions.

Finally, we repeat the experiment to test the robustness of the ARA solution
with respect to our uncertainty level about the attacker. The random probability
of success for the Attacker is modeled again as Pa(f = 1|d,a = 1) ~ Beta(ag, Ba)
but, instead of using parameter values of ay and Gy from Table 5.1d, we divide both
by 100. That way, the variances of the resulting beta distributions are more than
50 times larger, thus inducing more uncertainty about the attacker’s probabilities.
The resulting pp(a | d), obtained with MC and APS, is shown in Figures 5.8a and
5.8b, respectively. As expected, these pp(a | d) distributions are more spread than
those in Section 5.3.2, reflecting the fact that the Defender is more uncertain about
the Attacker’s behaviour. However, the optimal ARA solution (d%z, = 9) remains
stable, as can be seen in Figures 5.9a and 5.9b.

JAN

106 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

1.00

0.75

(a) MC estimation of pp(a | d)

= =
1) @

Expected Utility

o

— — 0.75 —
a = a
Oo T 050 Oo
01 & O:
= 0.25
—“\ 0‘00’7 —“\
0 2 3 4 5 6 7 & 9 o i 2 38 4 5 6 7 & 9

0.0

(b) APS estimation of pp(a | d)

Figure 5.8: Estimation of pp(a | d) through ARA

— 0.09 ==]
>
2
g 0.06
g
w
0.03
— — — 0.00 — — —
25 5.0 75 0 i 2 3 4 5 6 7 8 9
Optimal Decision Optimal Decision
(a) MC solution (b) APS solution

Figure 5.9: ARA solutions for the Defender

5.4. Computational assessment 107

5.3.3 Sensitivity analysis of the ARA solution

The ARA approach leads to a decision analysis problem with the peculiarity of
including a sampling procedure to forecast A’s actions. A sensitivity analysis
should be conducted with respect to its inputs (up(d, @), pp(0 | d,a), pp(a | d)).
However, focus should be on pp(a | d), the most contentious element as it comes
from adversarial calculations based on the random utility U4(a, §) and probability
distribution P4 (6 | d,a). We would proceed similarly to Section 5.2.4 evaluating the
impact of the imprecision on U and P over the attained expected utility ¥ (di%)
using classes %4, &4 of random utilities and probabilities, and for each pair (U, P)
from such classes, p%(a | d) would be obtained to compute d3%4, estimating then

the maximum regret.

5.4 Computational assessment

This section discusses computational complexity results of the proposed algorithms.

5.4.1 Computational complexity

Table 5.2 summarizes the computational complexity of MC and APS for solving
games with complete and incomplete information compiled from earlier sections.
Recall that parameters P, (), N and M would typically depend on the desired
precision, as outlined in EC.1.1.

MC APS

Complete D| x (JA| x Q + P) N x (2M +3)+2M + 2
Incomplete |D| x [J x (JA] X Q@+ 2) + 2P] N x (2M +5)+2M +4

Table 5.2: Required sample sizes by MC and APS algorithms for games with
complete and incomplete information

With continuous decision variables, the decision space is discretized to approx-
imate the MC solution, as will be done in Section 5.4.2. This discretization step
impacts the precision of the solution and the cardinalities of D and A which, in turn,
affect complexity. The main lesson from Table 5.2 is that the number of MC samples
depends on the cardinality of the Defender’s and Attacker’s decision spaces, whereas
this dependence is not present in APS. Thus, this approach would be expected to be
more efficient than MC for problems with large decision spaces as is illustrated next.

5.4.2 A computational comparison

A simple game with continuous decision spaces is used to compare the scalability
of both methods. Each agent makes a decision d,a € [0, 1] about the proportion
of resources respectively invested to defend and attack a server with value s. Let

108 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

0 designate the proportion of losses for the defender under a successful attack. It
is modeled with a Beta distribution with parameters «(d,a) and 5(d,a), with «
(B) increasing in a (d) and decreasing in d (a). D’s payoff function is f(d,) =
(1 —6) x s —c x d, where ¢ denotes her unit resource cost. She is constant risk averse
with utility strategically equivalent to 1 —exp (—h x f(d,0)), h > 0. A’s payoff is
g(a,0) =6 x s — e x a, where e denotes A’s unit resource cost. He is constant risk
prone with utility strategically equivalent to exp (—k X g(a,0)), k > 0.

Figure 5.10 provides the MC estimates of D’s expected utility, which is arguably
flat. To increase efficiency of the APS algorithm in finding the mode we apply the
trick introduced in Section 5.2.3: instead of sampling from the marginal augmented
distribution 7p(d | a*(d)), we sample from its power transformation 7 (d | a*(d)),
where H is defined as the augmentation parameter. This distribution is more peaked
around the mode (Miiller 2005). As we shall see, this provides another advantage of
APS over MC, by improving the efficiency of direct MC sampling from flat regions.
A’s problem includes a similar augmentation. The augmentation parameters for A
and D are referred to as inner and outer powers, respectively.

0.25

0.50 0.75 1.00
Defender's Decision

14 o
@ =
=} a

Defender's Expected Utility
°
N
&

0 |

0.00

0.

=)

Figure 5.10: Defender’s expected utility surface

We therefore investigate the trade-off between precision and required sample size
finding a limit precision such that MC (APS) is faster for smaller (bigger) precision.
The minimum number of required MC and APS samples for optimality and the time
to achieve an optimal decision with a given precision are computed for both A and
D problems, respectively designated as inner and outer samples. APS also includes
choosing the minimum inner and outer powers for which chains are judged to have
converged. For a fair comparison, this study conducts several parallel replications
of MC and APS with an increasing number of samples until 90% of the solutions
coincide with the optimal decision (computed with MC for a large number of samples)
and the algorithm is declared to have reached the desired precision for such number
of iterations.

Table 5.3 presents MC and APS performance, in terms of computational times,
for precisions 0.1 and 0.01, computed using a server node with 16 cores Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz. For instance, with precision 0.1, we discretise
D through d = {0,0.1,0.2,...,1} € D, and the cardinality of the decision spaces
is small, |D| = |A| = 11. Computational runs show the need for only 1,000 and
100 MC samples to reach optimality with the required precision to solve D and A

5.5. A cybersecurity application 109

Samples Power

Precision Algorithm Outer Inner Outer Inner Time (s)

0.1 MC 1000 100 - - 0.007
APS 60 100 900 20 0.240
0.01 MC 717000 100 - - 13.479
APS 300 100 6000 100 2.461

Table 5.3: Computational time, minimum number of required MC and APS samples
and augmentation parameters at optimality for different precisions

problems, respectively: MC outperforms APS. However, the performance of MC
diminishes for higher precision. For instance, for 0.01, |D| = | 4] = 101 and MC
becomes more demanding: APS outperforms MC, as we get rid of the dependence
on |D| and | A|. Indeed, for MC, there is a factor of 200 between the time needed
to obtain the solutions with precision 0.01 and 0.1. For APS, this factor is just 10,
suggesting that it scales much better with precision. For smaller precision, such as
0.001, we could not even get a stable solution using MC even with a large number
of samples (P = 10M, @ = 100k). Finally, observe that as the expected utility is
flat around the optimal decision, see Figure 5.10, MC requires a higher number of
samples to converge to the optimal solution than the peaked version of APS. To
sum up, in problems with large or continuous decision spaces and/or flat expected
utilities, APS would be preferred over MC for its scalability.

5.5 A cybersecurity application

We illustrate the proposed framework by solving a real cybersecurity problem. Figure
5.11 presents the influence diagram, which simplifies the case study in Rios Insua et al.
(2019) by retaining only the adversarial cyber threat. An organisation (Defender)
faces a competitor (Attacker) that may attempt a DDoS to undermine the Defender
site’s availability and compromise her customer services.

The Defender has to determine which security controls to implement: she has to
decide about the level of subscription to a monthly cloud-based DDoS protection
system, with choices including 0 (not subscribing), 5,10, 15,...,190, and 195 gbps.
The Attacker must decide on the intensity of his DDoS attack, viewed as the number
of days (from 0 to 30) that he will attempt to launch it. The duration of the DDoS
may impact the Defender’s market share, due to reputational loss. The Attacker
gains all market share lost by D, which determines his earnings. However, he runs
the risk of being detected with significant costs. Both agents aim at maximizing
expected utility. Specific details on the required models at various nodes are the
following.

110 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

. Competitor
Securitycontrols - i
& als
Security Duration DDoS Detection of
controls cost (l|(1 9) attacker
csls Pl p(t]a)

Impact on

market share Costs when
p(m|l) detected
ct|t
Total costs p (t|)
Cd
Attacker
earnings Result of
elm the attack
Ca

Attacker
utility w4 (¢q)

Defender
utility u(cg)

Figure 5.11: Bi-agent influence diagram of the cybersecurity application.

Security controls cost:

The Defender has to determine the security controls, the protection level of a
cloud-based DDoS protection system, with choices including 0 (not subscribing),
5,10,15,...,190, and 195 gbps. Subscription costs ¢, are presented in Figure 5.12.

7500-

5000-

Cost in Euros

2500-

0 50 100 150 200
Amount of protection in gbps

Figure 5.12: Costs of DDoS protection given protection hired

5.5. A cybersecurity application 111

Duration DDoS:

The duration [in hours of all DDoS attacks depends on both d, the cloud-based
protection hired by the organization, and the number of attacking attempts, a. We
model the length [; of the j-th individual attack as a I'(4, 1) distribution (its average
duration is 4 hours). This duration is conditional on whether the attack actually
saturates the target, which depends on the capacity of the attacker’s DDoS platform
minus the absorption of the cloud-based system. We assume that the Attacker uses
a professional platform capable of producing attacks of 5 gbps, modelled through
a I'(5,1) distribution. We then subtract the traffic d absorbed by the protection
system to determine whether the attack was successful which happens when its
traffic overflows the protection system. Thus, the total duration is [= >°9_, l;, with
lj ~T'(4,1) when I'(5,1) —d > 0 and [; = 0, otherwise.

To model the Attacker random beliefs about the duration of the attack, we base
our estimate on that of the Defender. We model the length of the j-th individual
DDoS attack as a random gamma distribution Diengen (v, v/p) with v ~ U4(3.6,4.8)
and v/p ~ U(0.8,1.2) so that we add uncertainty about the average duration
(between 3 and 6 hours) and the dispersion. Similarly, we model the attack gbps,
refer to as Qgbps, through a random gamma distribution Qgbps ~ I'gbps(w, w/n) with
w~ U4.8,5.6) and w/n ~ U(0.8,1.2). Next, we subtract the protection d from
Qgbps to determine whether the DDoS is successful. We then use [= 377 [;, with
lj ~ Tiengtn (v, v/ 1) if Qgpps —d > 0, and [; = 0 otherwise.

Impact on market share:

The DDoS duration might cause a reputational loss that would affect the organisation
market share. The current market share is 50% valued at 1,500,000 €. We assume that
all market share is fully lost at a linear rate until lost in, say, 5—8 days of unavailability
(120 — 192 hours of DDoS duration): in the fastest case the loss rate would be 0.5/120
= 0.00417 per hour, whereas in the slowest one it would be 0.0026. We model this
with a uniform distribution ¢/(0.0026,0.00417). Thus, the monetary loss m due to a
reduced market share is m ~ min[1500000, 3000000 x [x ¢£(0.0026, 0.00417)].

For the Attacker, we base our estimate on that of the Defender, adding some
uncertainty. The market share value and percentage are not affected by uncertainty,
as this information is available to both agents. However, we model the uncertainty
in the market loss rate so that the fastest one (5 days in the Defender problem) is
between 4 and 6 days in the Attacker problem and the slowest one (8 for Defender)
is between 7 and 9. Therefore, the random distribution describing the market loss

m is m ~ min [1500000,3000000 x| x U, B)| with o ~ U(0.0021,0.0031) and
B ~ U(0.00367,0.00467).

Total costs:

The costs ¢4 suffered by the Defender include the security control (subscription) costs
¢s, and the market share lost: ¢g = m + cs.

112 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

Defender utility:

The organisation is constant risk averse over costs. Its utility function is strategically
equivalent to u(cq) = a — bexp(k(cq)). We rescale the costs to the (0,1) range and

calibrate the utility function to u(cy) = 5 | exp |1 — m()codooo) —1/.

Attacker earnings:

Being the sole competitor, the Attacker gains e in terms of market share is e = m,
all the market share lost by the Defender.

Attacker detection:

The Attacker runs the risk of being detected with significant costs. Detection
probability is estimated via expert judgment at 0.2%, should the Attacker attempt a
DDoS attack. Should there be a attacks, the detection has a binomial distribution
B(a,0.002). To add some uncertainty, we model the detection probability for each
attack through a fe(2,998) (Its mean is 0.002.). Thus, we model attacker’s detection
t through a random binomial distribution that outputs detected if B(a, ¢) > 0 with
¢ ~ [e(2,998), and not detected, otherwise.

Costs when detected:

If the attack is detected, there is a further cost for the Attacker deriving from legal
issues, discredit, etc. We assume that ¢, |t = 1 ~ A(2430000,400000) for the
detection costs, where t = 1 indicates that attack is detected. If ¢ = 0, there are no
further costs.

Result of the attack:

Regarding costs, using a botnet to launch the DDoS attack would cost on average
792 € per day. Overall, the Attacker gains are ¢, = e — ¢; — 792a.

Attacker utility:

The Attacker utility function is strategically equivalent to u(c,) = (c,)*, where ¢,

are the ¢, costs normalised to [0, 1], and k, is the risk proneness parameter. We add
uncertainty on k, assuming it follows a ¢(8, 10) distribution.

This is a problem with incomplete information and large decision spaces. We
compute the ARA solution using APS. First, we estimate the probabilities pp(a|d) for
each defense d. As in Section 5.4.2, we replace A’s marginal augmented distribution
74 by its power transformation 74 to increase APS efficiency in finding the mode. In
addition, as in simulated annealing, within each APS iteration we increase H using
an appropriate cooling schedule (Miiller et al. 2004). Figure 5.13a displays pp(a | d)

5.5. A cybersecurity application 113

for four possible defenses (0,5, 10,15). When no defensive action is adopted (d = 0),
D is convinced that A will launch the worst DDoS attack (30 days). Subscribing
to a low protection plan (d = 5) makes little practical difference. However, when
increasing the protection to 10 gbps, the attack forecast (from D’s perspective)
becomes a mixture of high and low intensity values. The reason for this is that,
when d = 10, small perturbations in the Defender’s assumptions about the Attacker’s
elements, induce big changes in the optimal attack. Finally, a 15 gbps protection
convinces D that she will avoid the attack, attaining a deterrence effect. The optimal
solution remains the same for d > 15, and therefore results are not displayed.

o
Y
a
o
9
N

10 15

0.50
0.25 H 0.00
0.00 _J 0 50 100 150 200

0 3 6 9 12151821 2427300 3 6 9 12 15 18 21 24 27 30 Defender's Decision

Attacker's Decision
(b) APS solution of the Defender
problem

Frequency

p(ald)
o
2

(a) Attack intensity for each decision

Figure 5.13: ARA solution computed using APS

Figure 5.13b shows a histogram of the APS samples for D’s decision. As expected,
the frequency of samples with value 15 is similar to the ones with higher values.
As the histogram, and consequently the expected utility surface, is very flat, we
cannot resolve the mode. Thus, as we did in A’s problem, we sample from increasing
H powers of D’s marginal augmented distribution. As illustrated in Figure 5.14,
increasing H makes the distribution more peaked around the optimal decision
d* p4 = 15, the cheapest plan that avoids the attack from D’s perspective.

One can argue that finding the exact optimal decision may not be that crucial
since the expected utilities for different protections are close. That is a valid point.
However, the flat expected optimal utility region might be too big. By sampling
from a power transformation of the marginal augmented distribution, APS permits
finding the optimal solution even when facing such flat expected utilities at little
extra computational cost. Moreover, we can emphasize another advantage of APS: it
provides the distribution 7p(d | a*(d)) as part of the solution, providing sensitivity
analysis at no extra cost. The decision maker may want to take such sensitivity
of the optimal decision into account, and could consider a defense which could be
practically more robust.

114 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

H =1500 H = 8500

o
N
s}

o

o

o
e
@

=)
IS

Frequency
o
5
Frequency

o

o

@
o
N

.

0 50 100 150 200 0 50 100 150 200
Defender's Decision Defender's Decision

(a) (b)

Figure 5.14: APS solutions for different augmentation parameter values

o
=)
S

5.6 Discussion

We have considered the problem of supporting a decision maker against adver-
saries in an environment with random consequences depending on the actions of all
participants. The proposed procedure is summarized as follows. Under complete
information, we compute the game-theoretic solution and conduct a sensitivity anal-
ysis. If stable, such solution may be used with confidence and no further analysis
is required. Otherwise, or if complete information is lacking, we relax the above
assumption and use ARA as an alternative decision analytic approach. If the ARA
solution is stable, one may use it with confidence and stop the analysis. Otherwise,
one must gather more data and refine relevant probability and utility classes, even-
tually declaring the robustness of the ARA solution. If not sufficient, one could
undertake a minimum regret (or other robust) analysis.

We have provided MC and APS methods to solve for these games. With large
decision spaces, APS would be more efficient as its complexity does not depend on
decision sets’ cardinality. It should be also noted that MC errors associated with
approximating the expected utility could overwhelm the calculation of the optimal
decision. Samples from p(f | d, a) will typically need to be recomputed for each pair
(d,a). In contrast, APS performs the expectation and optimization simultaneously,
sampling d from regions with high utility with draws of 6 from the utility-tilted
augmented distribution. This reduces MC error as optimization effort in parts of the
parameter space with low utility values is limited, resulting in reduced sample sizes
for the same precision. In problems with continuous decision sets, an extension of the
proposed approaches could use MC to limit the area of the decision space where the
optimum is located, and then switching to APS to search within that area in more
detail. Exploiting gradient information of the utility functions as in Chapter 4 could
also be useful. Apart from computational issues, when the expected utility surface is
flat, MC simulation may need many draws or results in poor estimates, being also
inefficient for random variables with skewed distributions. APS could handle those
cases better as it is based on sampling from the optimizing portions of the decision
space. Moreover, APS could sample from a power transformation of the marginal
augmented distribution, which is less flat and more peaked around the mode.

5.6. Discussion 115

Finally, we would like to note that to the best of our knowledge, the APS approach
for solving Stackelberg games presented in this chapter is the first implementation of
APS in sequential decision problems.

116 Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games

Chapter 6

Conclusions

6.1 Introduction

Security of ML is essential to protect systems increasingly based on such technology,
Comiter (2019). Throughout this PhD thesis we have provided an extensive review
of the main topics in ML security. In addition, we have contributed both to the
theoretical part, by proposing novel reactive and proactive defences to time series
analysis and classification algorithms respectively, and to the algorithmic side, by
providing new scalable techniques to solve typical game theoretic problems appearing
in ML security. This Chapter recaps the PhD thesis developments in Chapters 2, 3, 4
and 5 and proposes future research lines to extend this work, respectively in Sections
6.2, 6.3, 6.4 and 6.5. Besides, 6.6 provides a general overview of future research lines
within the area of secure ML.

6.2 Reactive Defences in Time Series Problems

In Chapter 2 a reactive defense for time series security problems has been proposed,
from a predictive perspective. In particular, we have worked on advanced detection of
threats in the domain of predictive network monitoring, where it is common to deal
with a huge number of high frequency time series. Thus, any timely detection system,
apart from being accurate, needs to scalable, automatic and versatile. We have
provided a framework to identify safety and security issues within a large number of
internet connected devices that fulfills those conditions. Our solution uses a Bayesian
approach that models continuous time series using a wide range of dynamic linear
models, and deals with discrete ones using discrete time Markov chains. This way
we fulfill the versatility requirement. Moreover, our procedure just needs to store
a few parameters for each time series, we can say that it is scalable, both in terms
of memory and runtime. In addition, we have developed a model identification
procedure, to guarantee that our approach is able to work automatically without
human supervision.

Improvements in the algorithm can still be performed, specially if we take

117

118 Chapter 6. Conclusions

into account specifics of the cases monitored. To this extent, using the eventual
hierarchy between monitored devices, model identification could be optimized, for
example allowing for a faster regular outburst detection. Moreover, should there
exist correlated time series in the database, such correlations could be used similarly
to our advantage. For this we would need coupling-decoupling strategies of the type
described in e.g. Berry and West (2018). It is also possible to carry out an automatic
performance evaluation of the algorithm. This could be done by computing the
autocorrelation function of the residuals within a certain time-window. If, for instance,
a strong correlation in the first few lags is encountered, an autoregressive term could
be added to the model. In other cases, when model performance deteriorates too
much, an alarm could be issued, finally demanding the intervention of a human
analyst. It may be also interesting to adjust in real time the width of the predictive
probability intervals taking into account the particular potential economical losses of
false positives and negatives of the system. From this point of view, we may also find
it interesting to re-build the structure of the algorithm to try to produce long-term
forecasts including the probability intervals as well, moving beyond the point-wise
predictions here proposed for practical implementation.

Finally, we have just focused on reactive defenses for time series security problems.
An interesting future research line would be to explore proactive defenses that model
explicitly the presence of an adversary. These could be interesting for cases in which
an attacker might be interested in intruding a defender network without alerting a
monitoring system or when adversaries deliberately manipulate the value of time
series to drive the predictions towards a particular objective. Thus, an adversarial
framework extending that of Chapter 2 would be of great interest.

6.3 Proactive Defences in Classification Problems

Chapter 3 presented ACRA, a general, Bayesian probabilistic framework for adver-
sarial classification that does not assume standard common knowledge assumptions
by modeling explicitly, not only the presence of an adversary, but also our uncer-
tainty about his elements. We have provided extensive empirical evidence of the
performance of our framework, through case studies in spam and malware detection,
showcasing, among other things, the robustness of ACRA to imprecisions in the
assumptions made about the adversary. In particular, ACRA has been shown to be
more robust than its common knowledge, purely game theoretic counterparts.

Our framework may be extended in several ways. First of all, we could extend
the ACRA approach to situations in which there is repeated play of the adversarial
classification game, thus introducing the possibility of learning the adversarial utilities
and probabilities in a Bayesian way. Also, we have only considered exploratory attacks,
but we could extend the approach to take into account attacks over the training data,
called poisoning attacks, Biggio et al. (2012). In addition, we have just considered
the case in which the attacker performs intentional attacks. In some problems, there
could be, in addition, random attacks. The proposed framework could be adapted to

6.4. Algorithmic approaches: Gradient Methods for Stackelgerg Games in AML 119

take those into account as well as to the case in which there are several attackers.
Also, the Approximate Bayesian Computation framework in Section 3.5.1, is based
on a vanilla version of ABC. An interesting line of future research is the adaptation of
more sophisticated versions of ABC as MCMC based ABC, Marjoram et al. (2003).

Finally, our work could be extended to the case of attacks to innocent instances
(not just integrity violation ones). In this case, when computing pe(2'|y;) in (3.2.1),
with ¢ > [we must proceed similarly as we did when computing pc(2'|y;), i < I: we
consider all possible originating instances x leading to z’, and sum them weighting
each of them with their pc(a, .|z, y;), the probability of the attacker choosing the
attack linking each of them with 2/, given that they are innocent. This would just in-
volve replacing 1y pe (' [yi)pe(yi) by i1 Swerr Po(Gomsa |2, i) pe (2 |yi)pC (v3)
in (3.2.1). Finally, as computing pc(a,—. |z, y;) demands strategic thinking, we need
to consider the attacker’s problem as we did in Section 3.2.2, but this time allowing
the attacker to modify also innocent instances.

Regarding computational aspects, note that in ACRA we go through a simulation
stage to forecast attacks and an optimization stage to determine optimal classification.
The whole process might be performed in a single stage, possibly based on augmented
probability simulation, extending the results in Chapter 5.

6.4 Algorithmic approaches: Gradient Methods
for Stackelgerg Games in AML

Stackelberg Games have been gaining importance in recent years due to the use of
such games to model confrontations within Adversarial Machine Learning problems.
Within this context, a new paradigm must be faced: in classical game theory,
intervening agents were humans whose decisions are generally discrete and low
dimensional. In AML, decisions are made by algorithms and are usually continuous
and high dimensional, e.g. choosing the weights of a neural network. As closed
form solutions for Stackelberg games generally do not exist, it is mandatory to have
efficient algorithms to search for numerical solutions. In Chapter 4, we have focused
on gradient solution methods, providing two different approaches to compute the
gradient of the defender’s utility function in a Stackelberg game: the forward and
backward solutions. The backward solution scales well in time with the defender’s
decision space dimension, at a cost of more memory requirements. On the other hand,
the forward solution scales poorly in time with this dimension, but has better space
scalability. Backward and forward methods could be use to solve both, Stackelberg
Games and Bayesian Stackelberg Games.

We could extend the framework in several ways. First, as we discussed, the
backward solution has poor space scalability. This is generally not an issue in most
applications. Nevertheless, if space complexity is critical it is possible to reduce it at
a cost of introducing a numerical error, as proposed in Maclaurin et al. (2015) in
hyperparameter optimization problems. Instead of storing the whole trace ;(«) in
the first for loop of Algorithm 8 to use it in the second loop, we could sequentially

120 Chapter 6. Conclusions

undo its gradient update at each step of the second for loop. Obviously, this would
introduce some numerical errors. Another possible line of work would be to extend
the methodology proposed in Section 4.4 to solve adversarial risk analyisis problems
in AML, Chapter 3. The ARA framework fully removes the common knowledge
assumptions present in game theoretic approaches.

We have focused on exact gradient methods. However, it would be interesting
to extend the proposed algorithms to work with stochastic gradient methods. In
addition, in Mokhtari et al. (2019) the authors propose several variants of Gradient
Ascent to solve saddle point problems. It could be worth investigating how to extend
such techniques to general Stackelberg Games.

6.5 Algorithmic approaches: APS Method for
Non-cooperative Games

Chapter 5 considered the problem of supporting a decision maker against adversaries
in an environment with random consequences that depend on the actions of all
participating agents. We proposed a general procedure in which the game-theoretic
solution is computed and subjected to a sensitivity analysis. If stable, such solution
may be used with confidence and no further analysis is required. Otherwise, we relax
the common knowledge assumption and use ARA as an alternative decision analytic
approach. We have provided MC and APS methods to solve the proposed problems.
With large decision spaces, APS would be more efficient as its complexity does not
depend on their cardinality.

The proposed algorithmic approaches could be extended in several ways. First,
in problems with continuous decision sets, an extension could consist of using MC to
limit the area of the decision space where the optimum is located, and then switching
to APS to search within a local neighborhood of such solution in more detail. Also,
exploiting information of the gradient of utility functions could be useful as illustrated
in Chapter 4. Finally, in addition to the sequential two stage games, these ideas
could be extended to other game types such as simultaneous defend-attack games
(Rios and Rios Insua 2012) and general bi-agent influence diagrams (Gonzalez-Ortega
et al. 2019).

6.6 Future research lines

In this section, we provide a general overview of additional future research lines that
we find specially interesting within the area of secure ML.

6.6.1 Robustifying ML algorithms through Bayesian ideas

Bayesian methods have been shown to provide enhanced robustness in AML. Chapter
5 shows how game theory solutions based on point estimates of preferences and

6.6. Future research lines 121

beliefs, potentially lead to unstable solutions, while ARA solutions tend to be more
robust acknowledging uncertainties in such judgments. Here are some additional
ideas.

Bayesian methods and AML. It has been empirically shown that model en-
sembling is an effective mechanism for designing powerful attack models (Tramer
et al. 2018). The Bayesian treatment of ML models offers a way of combining the
predictions of different models via the predictive distribution. Gal and Smith (2018)
show how certain idealized Bayesian NNs properly trained lack adversarial examples.
Thus, a promising research line consists of developing efficient algorithms for approx-
imate Bayesian inference with robustness guarantees. Indeed, there are several ways
in which the Bayesian approach may increase security of ML systems. Regarding
opponent modelling, in sequential decision making, an agent has uncertainty over her
opponent type initially; as information is gathered, she might be less uncertain about
her model via Bayesian updating (Gallego et al. 2019a). Uncertainty over attacks in
supervised models can also be considered to obtain a more robust version of AT, as in
Ye and Zhu (2018) who sample attacks using a SG-MCMC method. Combining their
approach with ARA opponent modeling may further increase robustness. Lastly,
there are alternative approaches to achieve robustness in presence of outliers and
perturbed observations, as through the robust divergences for variational inference
(Futami et al. 2018).

Robust Bayesian methods. The robust Bayesian literature burgeoned in the
period 1980-2000 (Berger 1982; Rios Insua and Ruggeri 2000). In particular, there
has been relevant work in Bayesian likelihood robustness (Shyamalkumar 2000)
referring to likelihood imprecision, reminiscent of the impact of attacks over the data
received. Note that Bayesian likelihood robustness focuses around random or impre-
cise perturbations and contaminations in contrast to the purposeful perturbations in
AML. Not taking into account the presence of an adversary affecting data generation
is an example of model misspecification; robustness of Bayesian inference to such
issue has been revisited recently in Miller and Dunson (2019). Their ideas could be
used to robustify ML algorithms in adversarial contexts.

6.6.2 Modeling and computational enhancements

We discuss modeling and computational enhancements aimed at improving opera-
tional aspects of the proposed framework.

Characterizing attacks. A core element in the AML pipeline is the choice of the
attacker perturbation domain. This is highly dependent on the nature of the data
attacked. In computer vision, a common choice is an ¢, ball of radius ¢ centered at
the original input. For instance, an /., norm implies that an attacker may modify
any pixel by at most §. These perturbations, imperceptible to the human eye, may
not be representative of threats actually deployed. As an example, Brown et al.

122 Chapter 6. Conclusions

(2017) designed a circular sticker that may be printed and deployed to fool state of
the art classifiers. Thus, it is important to develop threat models that go beyond
¢, norm assumptions. Moreover, we discussed only problems with two agents. It is
relevant to deal with multiple agents in several variants (one defender vs. several
attackers, several defenders vs. several attackers) including cases in which agents on
one of the sides somehow cooperate.

New algorithmic approaches. Exploring gradient-based techniques for bi-level
optimization problems arising in AML is a fruitful line of research (Naveiro and Insua
2019). However the focus has been on white box attacks. It would be interesting to
extend those results to the framework here proposed. On the other hand, Bayesian
methods are also hard to scale to high dimensional problems or large datasets. Recent
advances in accelerating SG-MCMC samplers, e.g., Gallego and Insua (2019) and
Gallego and Insua (2018), are crucial to leverage the benefits of a Bayesian treatment.

6.6.3 Applications

As presented in Comiter (2019), applications abound. We mention three of interest
to us.

Fake news. The rise in computer power used in deep learning is leading to quasi-
realistic automatic text generation (Radford et al. 2019), which can be used for
malicious purposes such as fake reviews generation (Juuti et al. 2018). At present,
state of the art defences consist mostly of statistical analyses of token distributions
(Gehrmann et al. 2019). These are attacker-agnostic. An ARA treatment may be
beneficial to inform the model of which are the most likely attack patterns.

Autonomous driving systems. ADS directly benefit from developments in com-
puter vision and RL. However, accidents still occur because of lack of guarantees
in verifying the correctness of deep NNs. Alternative solutions include the use of
Bayesian NNs, as there is evidence that uncertainty measures can predict crashes
up to five seconds in advance (Michelmore et al. 2018). McAllister et al. (2017)
propose propagating the uncertainty over the network to achieve a safer driving style.
As mentioned, adversaries may interact with the visual system through adversarial
examples. Thus, developing stronger defences are of major importance.

Malware detection. Its methods are traditionally classified in three categories
(Nath and Mehtre 2014): static, dynamic and hybrid approaches. Shabtai et al.
(2009) describe how ML algorithms may accomplish accurate classification to detect
new malware. Note though that, besides the illustrative case study in Chapter 3, no
ARA based AML methods have been used yet in this domain.

Appendices

123

Appendix A

Proofs of Monte Carlo based
approaches for solving sequential
games

We briefly present convergence of MC approximations in Algorithms 10 and 13 of
Chapter 5.

A.1 Algorithm 10. Subgame perfect equilibria

Suppose that A is a compact set in an Euclidean space; © is an Euclidean space;
ua(a,) is continuous in a for each # and measurable in 0 for each a; there exists
a function h(#), integrable with respect to pa(6|d,a), such that |us(a,d)| < h(6).
Then, for almost all sequences {6;} forming a sample from pa(0 | d,a), ¥a(d,a) =
52?:1 ua(a,0;) = ¥a(d,a) when @) — oo uniformly in a, as in Thm.2 in Jennrich
(1969). Then, assuming that the best response a*(d) is unique, we can prove that
argmax, 0 4(d, a) converges almost surely to a*(d) as () — oo, with arguments similar
to Thm.1 in Shao (1989).

Next, under similar conditions for up(d,0), pp(0|d, a) and D, we have the almost
sure uniform convergence of the Monte Carlo averages ¢ (d) = L3l up(d, 6;) to
the expected utilities ¥p(d) as P — oo and, therefore, the almost sure convergence
of argmax, Up(d) to diyp.

Several relevant comments are:

e When A and D are finite, the same argument applies.

o When a*(d) is not unique, corresponding to a case of alternative optima,
convergence to the optima may not hold (although it would hold for the maximal
expected utilities), but we may disentangle several convergent subsequences to
alternative best responses in case the set of alternative optima is finite. Then,
the argument would hold for the inner loop. And similarly, for the outer loop.
Note that with an infinite set of alternative optima we could have extreme
cases, although we would estimate correctly the optimal expected utilities.

125

126 Appendix A. Proofs of Monte Carlo based approaches for solving sequential games

e The uniform convergence condition facilitates the use of regression metamodels
(Chen et al. 2013) allowing to replace expected utilities in just a few values
of a or d and then optimizing the metamodel as an alternative computational
approach.

o Recall that P and @) are essentially dictated by the required precision. Based
on the Central Limit Theorem (Chung 2001), MC sums approximate integrals
with probabilistic bounds of the order \/% where N is the MC sum size. To
obtain a variance estimate, we run a few iterations and estimate the variance,
then choosing the required size based on such bounds. In our case, in which
there are multiple integrals to approximate associated to the various a and/or
d, we would run a few MC iterations at several a or d values and use the
maximum variance to estimate the required MC simulation sizes) and P.

A.2 Algorithm 13. ARA solutions

Convergence follows a similar path to A.1. Suppose that, almost surely, U4 (a, 6)
is continuous in a for each # and measurable in 6; there is h(f) integrable such
that for each a and |UY(a,0)| < h(#); and A is compact. Then, with the same
argument argmax, U4 (a, d) converges almost surely to A*(d)*. Next, by construction
pp(a|d) = P(A*(d) = a). Using the SLLN pp(a | d) converges almost surely to
pp(a|d). The rest of the approximation follows by another application of a uniform
version of the SLLN.

Appendix B

Gibbs sampling based APS
methods

In Chapter 5, the core APS based algorithms 11 and 14 are of the MH type. This
section covers Gibbs sampler based APS versions. Gibbs sampling (GS) (Roberts and
Smith 1994) can be utilized in cases where samples from full conditional distributions
are available. This typically requires a more substantial preliminary analysis than
MH, but tends to converge faster (when full conditionals are available). They
iteratively sample from the conditional distributions resulting in samples from the
joint distribution in the limit under mild conditions (Casella and George 1992).

B.1 Subgame perfect equilibria

Based on the analysis in Section 5.2.2, Algorithm 15 summarizes a GS procedure. For
each d, the Attacker’s APS samples iteratively from 74 (a|6, d) and w4 (0|d, a), whereas
the Defender’s APS samples iteratively from 7p(d | 6,a*(d)) and 7p(0 | d, a*(d)).
Convergence of Algorithm 15 follows from arguments similar to Proposition 1. It
requires 2 X (|D| x M + N) samples plus the cost of convergence checks and |D| + 1
mode approximations. The computational complexity of Algorithm 15 does not
depend on the dimension of A, which could be crucial when |A| is very large or A is
continuous.

B.2 ARA for incomplete information games

Similarly, we consider a Gibbs sampler based APS approach for the ARA model in
incomplete information games as an alternative to Algorithm 14. The convergence
of the Algorithm 16 follows similarly as from Proposition 2.

Overall, MCMC sampling can result in fast convergence such as geometric
convergence in many cases and polynomial time in some cases in contrast to standard

central limit theorem type convergence of MC estimation, as also detailed in Jacquier
et al. (2007).

127

128 Appendix B. Gibbs sampling based APS methods

Algorithm 15: Gibbs based APS to solve a game with complete information.

input: N, M, K
initialize : (9, 6
for d € D do

for j =1 to M do

Draw fo) from 74(0 | d, a(j—l));
Draw a9 from m4(a | 6%, d);
end

Compute mode of M draws {a'?)} and record it as a*(d);
end

initialize : d,

fori=1to N do

Draw 6(from 7p(6 | A0V, a*(dY));

Draw d from 7p(d | HD ,a*(d))

end

Discard first K samples, compute mode of rest of draws {d”} and propose it
as dgr;

0)

Algorithm 16: Gibbs based APS approach to solve the ARA problem

input: N, M, J
for d € D do
for j=1to J do

Sample U, P} and define IT;;
Initialize 6°;
for:=1 to M do
Sample a¥ from I, (a | 9(2 D d);
Sample) from 11, (0 | o, d);
end
Estimate a} as mode of {a®};
end
Estimate pp(a | d) from {aj}};
end
Initialize (d©,6®);
for:=1to N do
Draw d® from 7p(d | ai 1),955 1)),
Draw 6\ from 7p(6 | a1, d®);
Draw a® from mp(a|d®,6%):;
end
Estimate d* as mode of {d™}, record it as djg,-

Bibliography

Albrecht, S. V. and Stone, P. (2018). “Autonomous agents modelling other agents: A
comprehensive survey and open problems”. In: Artif. Intell. 258, pp. 66-95.

Alfeld, S., Zhu, X., and Barford, P. (2016). “Data poisoning attacks against autore-
gressive models”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 1452-1458.

Aliprantis, C. D. and Chakrabarti, S. K. (2002). Games and Decision Making. Oxford
University Press.

Antos, D. and Pfeffer, A. (2010). “Representing Bayesian Games without a Common
Prior”. In: Proc. AAMAS 2010. Ed. by L. van der Hoek Kaninka and Sen.
IFAMAS.

Athalye, A., Carlini, N., and Wagner, D. (2018). “Obfuscated Gradients Give a
False Sense of Security: Circumventing Defenses to Adversarial Examples”. In:
International Conference on Machine Learning, pp. 274-283.

Banks, D. L., Aliaga, J. M. R., and Insua, D. R. (2015). Adversarial risk analysis.
Chapman and Hall/CRC.

Bard, J. F. (1991). “Some properties of the bilevel programming problem”. In: Journal
of optimization theory and applications 68.2, pp. 371-378.

Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar, J. D. (2006). “Can
machine learning be secure?” In: Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security. ACM, pp. 16-25.

Berger, J. (1982). “The robust Bayesian point of view”. In: Robustness. Springer
Verlag.

Berry, L. and West, M. (2018). “Bayesian forecasting of many count-valued time
series”. In: arXiv preprint arXiv:1805.05232.

Bianco, A. M., Garcia Ben, M, Martinez, E., and Yohai, V. J. (2001). “Outlier
detection in regression models with arima errors using robust estimates”. In:
Journal of Forecasting 20.8, pp. 565-579.

Bielza, C., Miller, P., and Rios Insua, D. (1999). “Decision analysis by augmented
probability simulation”. In: Management Science 45, pp. 995-1007.

129

130 Bibliography

Biggio, B. and Roli, F. (2018). “Wild patterns: Ten years after the rise of adversarial
machine learning”. In: Pattern Recognition 84, pp. 317-331.

Biggio, B., Nelson, B., and Laskov, P. (2012). “Poisoning attacks against support
vector machines”. In: arXiv preprint arXiv:1206.6389.

Biggio, B., Pillai, 1., Rota Bulo, S., Ariu, D., Pelillo, M., and Roli, F. (2013). “Is
data clustering in adversarial settings secure?” In: Proceedings of the 2013 ACM
workshop on Artificial intelligence and security. ACM, pp. 87-98.

Biggio, B., Fumera, G., and Roli, F. (2014). “Security evaluation of pattern classifiers
under attack”. In: IEEE Transactions on Knowledge and Data Engineering 26,
pp- 984-996.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag. 1SBN: 0387310738.

Bishop, C. M. and Lasserre, J. (2007). “Generative or discriminative? Getting the
best of both worlds”. In: Bayesian Statistics 8.3, pp. 3—24.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.; Jackel,
L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). “End to end learning for
self-driving cars”. In: arXiv preprint arXiv:1604.07316.

Bottou, L. (1998). “Online learning and stochastic approximations”. In: On-line
learning in neural networks 17.9, p. 142.

Breiman, L. (2001). “Statistical modeling, the two cultures”. In: Statistical Science
16, pp. 199-231.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
Regression Trees. CRC Press.

Brooks, S. P. and Roberts, G. O. (1998). “Assessing convergence of Markov chain
Monte Carlo algorithms”. In: Statistics and Computing 8.4, pp. 319-335.

Brown, G. W. (1951). “Iterative Solution of Games by Fictitious Play”. In: Activity
Analysis of Production and Allocation, pp. 374-376.

Brown, G., Carlyle, M., Salmerén, J., and Wood, K. (2006). “Defending critical
infrastructure”. In: Interfaces 36.6, pp. 530-544.

Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J. (2017). “Adversarial
patch”. In: arXiv preprint arXiv:1712.09665.

Briickner, M. and Scheffer, T. (2011). “Stackelberg games for adversarial prediction
problems”. In: Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, pp. 547-555.

Bibliography 131

Briickner, M., Kanzow, C., and Scheffer, T. (2012). “Static prediction games for
adversarial learning problems”. In: Journal of Machine Learning Research 13.Sep,
pp. 2617-2654.

Brutlag, J. D. (2000). “Aberrant Behavior Detection in Time Series for Network
Monitoring.” In: Large Installation System Administration. Pp. 139-146.

Bugoniu, L., Babuska, R., and De Schutter, B. (2010). “Multi-agent reinforcement
learning: An overview”. In: Innovations in multi-agent systems and applications-1.
Springer, pp. 183-221.

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfel-
low, L., and Madry, A. (2019). “On evaluating adversarial robustness”. In: arXiv
preprint arXiv:1902.06705.

Casella, G. and George, E. 1. (1992). “Explaining the Gibbs sampler”. In: The
American Statistician 46.3, pp. 167-174.

Casella, G., Robert, C. P.; and Wells, M. T. (2004). “Generalized Accept-Reject
sampling schemes”. In: A Festschrift for Herman Rubin. Ed. by A. DasGupta.
Vol. Volume 45. Lecture Notes—Monograph Series. Beachwood, Ohio, USA: In-
stitute of Mathematical Statistics, pp. 342-347. URL: https://doi.org/10.
1214/1nms/1196285403.

Chen, C.-H. (2015). Handbook of Pattern Recognition and Computer Vision. World
Scientific.

Chen, X., Ankenman, B. E., and Nelson, B. L. (2013). “Enhancing stochastic kriging
metamodels with gradient estimators”. In: Operations Research 61.2, pp. 512-528.

Chib, S. and Greenberg, E. (1995). “Understanding the Metropolis-Hastings algo-
rithm”. In: The American Statistician 49.4, pp. 327-335.

Chronicle (2018). Virus Total. https://www.virustotal.com/.
Chung, K. L. (2001). A Course in Probability Theory. Ac Press.

Clemen, R. T. and Reilly, T. (2013). Making hard decisions with DecisionTools.
Cengage Learning.

Comiter, M. (2019). Attacking Artificial Intelligence. Belfer Center Paper.

Couce-Vieira, A., Rios Insua, D., and Kosgodagan, A. (2019). “Assessing and fore-
casting cybersecurity impacts”. In: Technical Report.

Csilléry, K., Blum, M. G., Gaggiotti, O. E., and Francois, O. (2010). “Approximate
Bayesian Computation (ABC) in practice”. In: Trends in Ecology € FEvolution
25.7, pp. 410-418.

132 Bibliography

Dalvi, N., Domingos, P., Mausam, Sumit, S., and Verma, D (2004). “Adversarial clas-
sification”. In: Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD 04, 99-108. 1SBN: 1-58113-888-1.

Dasgupta, P. and Collins, J. B. (2019). “A Survey of Game Theoretic Approaches
for Adversarial Machine Learning in Cybersecurity Tasks.” In: AI Magazine 40.2.

Dimelis, S. P. and Papaioannou, S. K. (2011). “ICT growth effects at the industry
level: A comparison between the US and the EU”. In: Information Economics
and Policy 23.1, pp. 37-50.

ENISA (2019). Threat Landscape Report 2018 15 Top Cyberthreats and Trends. Tech.
rep. European Union Agency For Network and Information Security. URL: http:
//www3.weforum.org/docs/WEF_Global_Risks_Report_2019.pdf.

Efron, B. and Hastie, T. (2016). Computer Age Statistical Inference. Vol. 5. Cambridge
University Press.

Ekin, T., Polson, N. G., and Soyer, R. (2014). “Augmented Markov chain Monte
Carlo simulation for two-stage stochastic programs with recourse”. In: Decision
Analysis 11.4, pp. 250-264.

Ekin, T., Naveiro, R., Torres-Barran, A., and Rios-Insua, D. (2019). “Augmented
Probability Simulation Methods for Non-cooperative Games”. In: arXiv preprint
arXiv:1910.04574.

Fan, J., Ma, C., and Zhong, Y. (2020). “A selective overview of deep learning”. In:
Statistical Science (to appear).

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M. (2017). “Forward and re-
verse gradient-based hyperparameter optimization”. In: Proceedings of the 3/th
International Conference on Machine Learning-Volume 70. JMLR. org, pp. 1165
1173.

French, S. and Rios Insua, D. (2000). Statistical Decision Theory. Wiley.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical
Learning. Vol. 1. Springer Series in Statistics New York.

Futami, F., Sato, I., and Sugiyama, M. (2018). “Variational Inference based on
Robust Divergences”. In: International Conference on Artificial Intelligence and
Statistics, pp. 813-822.

Gal, Y. and Smith, L. (2018). “Sufficient conditions for idealised models to have
no adversarial examples: a theoretical and empirical study with Bayesian neural
networks”. In: arXiv preprint arXiv:1806.00667.

Gallego, V. and Insua, D. R. (2018). “Stochastic Gradient MCMC with Repul-
sive Forces”. In: Bayesian Deep Learning Workshop, Neural Information and
Processing Systems (NIPS).

Bibliography 133

Gallego, V. and Insua, D. R. (2019). “Variationally Inferred Sampling Through a
Refined Bound”. In: Advances in Approzimate Bayesian Inference (AABI).

Gallego, V., Naveiro, R., Insua, D. R., and Oteiza, D. G.-U. (2019a). “Opponent
Aware Reinforcement Learning”. In: arXiv preprint arXiv:1908.08773.

Gallego, V., Naveiro, R., and Insua, D. R. (2019b). “Reinforcement Learning under
Threats”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33, pp. 9939-9940.

Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic
simulation for Bayesian inference. Chapman and Hall/CRC.

Gehrmann, S., Strobelt, H., and Rush, A. (2019). “GLTR: Statistical Detection and
Visualization of Generated Text”. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations. Florence,
Italy: Association for Computational Linguistics, pp. 111-116.

Ghosh, A. and Parai, B. (2008). “Protein secondary structure prediction using
distance based classifiers”. In: International Journal of Approximate Reasoning
47.1, pp. 37-44.

Gibbons, R. (1992). A Primer in Game Theory. Harvester Wheatsheaf.

Gonzalez-Ortega, J., Insua, D. R., and Cano, J. (2019). “Adversarial risk analysis for
bi-agent influence diagrams: An algorithmic approach”. In: European Journal of
Operational Research 273.3, pp. 1085 —1096. 1SSN: 0377-2217. URL: http://www.
sciencedirect.com/science/article/pii/S0377221718307756.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). “Generative Adversarial Nets”. In: Ad-
vances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran Asso-
ciates, Inc., pp. 2672-2680. URL: http://papers.nips.cc/paper/5423-
generative—adversarial—-nets.pdf.

Goodfellow, 1., Shlens, J., and Szegedy, C. (2015a). “Explaining and Harnessing
Adversarial Examples”. In: International Conference on Learning Representations.
URL: http://arxiv.org/abs/1412.6572.

Goodfellow, 1., Shlens, J., and Szegedy, C. (2015b). “Explaining and Harnessing
Adversarial Examples”. In: International Conference on Learning Representations.
URL: http://arxiv.org/abs/1412.6572.

Goodman, J. and Heckerman, D. (2004). “Fighting spam with statistics”. In: Signifi-
cance 1.2, pp. 69-72.

Gordon, G. and Tibshirani, R. (2012). “Karush-kuhn-tucker conditions”. In: Opti-
mization 10.725/36, p. 725.

134 Bibliography

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arandjelovic,
R., Mann, T. A., and Kohli, P. (2018). “On the Effectiveness of Interval Bound
Propagation for Training Verifiably Robust Models”. In: CoRR abs/1810.12715.
arXiv: 1810.12715. URL: http://arxiv.org/abs/1810.12715.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Norouzi, M., and
Swersky, K. (2019). “Your classifier is secretly an energy based model and you
should treat it like one”. In: International Conference on Learning Representations.

Grenander, U. (1965). “Direct estimates of the mode”. In: The Annals of Mathematical
Statistics 36.1, pp. 131-138.

Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. Vol. 105.

GroBhans, M., Sawade, C., Briickner, M., and Scheffer, T. (2013). “Bayesian games
for adversarial regression problems”. In: International Conference on Machine
Learning, pp. 55-63.

Hammersley, J. (2013). Monte carlo methods. Springer Science & Business Media.

Hand, D. J. and Henley, W. E. (1997). “Statistical classification methods in consumer
credit scoring: a review”. In: Journal of the Royal Statistical Society: Series A
(Statistics in Society) 160.3, pp. 523-541.

Hargreaves-Heap, S. and Varoufakis, Y. (2004). Game Theory: A Critical Introduction.
Routledge.

Y

Harsanyi, J. C. (1967). “Games with incomplete information played by “Bayesian’
players, I-1II Part I. The basic model”. In: Management science 14.3, pp. 159-182.

Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S. (2008). Optimization with PDE
constraints. Vol. 23. Springer Science & Business Media.

Hu, J. and Wellman, M. P. (2003). “Nash Q-learning for general-sum stochastic
games”. In: Journal of Machine Learning Research 4.Nov, pp. 1039-1069.

Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar, J. D. (2011).
“Adversarial machine learning”. In: Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence. AlSec "11. Chicago, Illinois, USA, pp. 43-58.
ISBN: 978-1-4503-1003-1.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and Abbeel, P. (2017). “Adversarial
attacks on neural network policies”. In: arXiv preprint arXiv:1702.0228/.

Hyndman, R. J. and Khandakar, Y. (2008). “Automatic time series forecasting: the
forecast package for R”. In: Journal of Statistical Software 26.3, pp. 1-22. URL:
http://www. jstatsoft.org/article/view/v027i03.

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-
Wild, M., Petropoulos, F., Razbash, S., Wang, E., and Yasmeen, F. (2018).

Bibliography 135

forecast: Forecasting functions for time series and linear models. R package
version 8.4. URL: http://pkg.robjhyndman.com/forecast.

Insua, D. R. (1990). Sensitivity Analysis in Multiobjective Decision Making. Springer
Verlag.

Insua, D. R. and Ruggeri, F. (2012). Robust Bayesian Analysis. Vol. 152. Springer
Science & Business Media.

Jacquier, E., Johannes, M., and Polson, N. (2007). “MCMC maximum likelihood for
latent state models”. In: Journal of Econometrics 137.2, pp. 615-640.

Jain, M., Pita, J., Tambe, M., Ordénez, F., Paruchuri, P., and Kraus, S. (2008).
“Bayesian Stackelberg games and their application for security at Los Angeles
International Airport”. In: ACM SIGecom FExchanges 7.2, pp. 1-3.

Jennrich, R. (1969). “Properties on non-linear least squares estimators”. In: Annals
of Mathematical Statistics 40.2, pp. 633-643.

Jensen, F. V. and Gatti, E. (2012). “Information enhancement—A tool for ap-
proximate representation of optimal strategies from influence diagrams”. In:
International Journal of Approzimate Reasoning 53.9, pp. 1388-1396.

Jeroslow, R. G. (1985). “The polynomial hierarchy and a simple model for competitive
analysis”. In: Mathematical programming 32.2, pp. 146-164.

Johanson, M., Bard, N., Lanctot, M., Gibson, R. G., and Bowling, M. (2012).
“Efficient Nash equilibrium approximation through Monte Carlo counterfactual
regret minimization”. In: AAMAS, pp. 837-846.

Joseph, A., Nelson, B., Rubinstein, B., and Tygar, J. (2019). Adversarial Machine
Learning. Cambridge University Press. 1SBN: 9781107043466. URL: https://
books.google.com/books?id=XkSntAEACAAJ.

Juuti, M., Sun, B., Mori, T., and Asokan, N (2018). “Stay on-topic: Generating
context-specific fake restaurant reviews”. In: Furopean Symposium on Research
in Computer Security. Springer, pp. 132-151.

Kadane, J. B. and Larkey, P. D. (1982). “Subjective probability and the theory of
games”. In: Management Science 28, pp. 113-120.

Kantarcioglu, M., Xi, B., and Clifton, C. (2011). “Classifier evaluation and attribute
selection against active adversaries”. In: Data Mining and Knowledge Discovery
22, pp. 291-335.

Keeney, R. (2007). “Modeling values for anti-terrorism analysis”. In: Risk Analysis
27.3, pp. 585-596.

Kim, J.-H. (2009). “Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap”. In: Computational Statistics and Data Analysis
53.11, pp. 3735-3745.

136 Bibliography

Kleijnen, J. P. (1992). “Regression metamodels for simulation with common random
numbers: comparison of validation tests and confidence intervals”. In: Management
Science 38, pp. 1164-1185.

Kotcz, A. and Teo, C. H. (2009). “Feature Weighting for Improved Classifier Robust-
ness”. In: CEAS’09: Sixth Conference on Email and Anti-Spam.

Kolstad, C. D. and Lasdon, L. S. (1990). “Derivative evaluation and computational
experience with large bilevel mathematical programs”. In: Journal of optimization
theory and applications 65.3, pp. 485—499.

Kolter, Z. and Madry, A. (2018). Adversarial Robustness - Theory and Practice.
https://adversarial-ml-tutorial.org/adversarial_examples/.

Kos, J., Fischer, 1., and Song, D. (2018). “Adversarial examples for generative models”.
In: 2018 IEEE Security and Privacy Workshops (SPW). IEEE, pp. 36—42.

LeCun, Y., Cortes, C., and Burges, C. (1998). THE MNIST DATABASE of hand-
written digits. http://yann.lecun.com/exdb/mnist/.

Li, B. and Vorobeychik, Y. (2014). “Feature cross-substitution in adversarial clas-
sification”. In: Advances in Neural Information Processing Systems, pp. 2087—
2095.

Lichman, M. (2013). UCI Machine Learning Repository. http://archive.ics.
uci.edu/ml.

Littman, M. L. (1994). “Markov games as a framework for multi-agent reinforcement
learning”. In: Machine Learning Proceedings 1994. Elsevier, pp. 157-163.

Littman, M. L. (2001). “Friend-or-Foe Q-learning in General-Sum Games”. In:
Proceedings of the Eighteenth International Conference on Machine Learning.
Morgan Kaufmann Publishers Inc., pp. 322-328.

Lowd, D. and Meek, C. (2005). “Adversarial learning”. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.
KDD ’05. Chicago, llinois, USA, pp. 641-647. 1SBN: 1-59593-135-X.

MacAfee (2014). Net Losses: Estimating the Global Cost of Cybercrime. Tech. rep.
Intel Security.

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). “Gradient-based hyperparame-
ter optimization through reversible learning”. In: International Conference on
Machine Learning, pp. 2113-2122.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). “Towards
Deep Learning Models Resistant to Adversarial Attacks”. In: International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?
id=rJzIBfZAb.

Bibliography 137

Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. (2015). “Long short term memory
networks for anomaly detection in time series”. In: 23rd Furopean Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning.
P. 89.

Mallick, B. K., Ghosh, D., and Ghosh, M. (2005). “Bayesian classification of tumours
by using gene expression data”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 67.2, pp. 219-234.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). “Markov chain Monte
Carlo without likelihoods”. In: Proceedings of the National Academy of Sciences
100.26, pp. 15324-15328.

McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla, R.,
and Weller, A. V. (2017). “Concrete problems for autonomous vehicle safety:
Advantages of Bayesian deep learning”. In: International Joint Conferences on
Artificial Intelligence, Inc.

Michelmore, R., Kwiatkowska, M., and Gal, Y. (2018). “Evaluating uncertainty
quantification in end-to-end autonomous driving control”. In: arXiv preprint
arXiw:1811.06817.

Miller, J. W. and Dunson, D. B. (2019). “Robust Bayesian inference via coarsening”.
In: Journal of the American Statistical Association 114.527, pp. 1113-1125.

Mokhtari, A., Ozdaglar, A., and Pattathil, S. (2019). “A Unified Analysis of Extra-
gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal
Point Approach”. In: arXiv preprint arXiv:1901.08511.

Mortenson, M. J., Doherty, N. F., and Robinson, S. (2015). “Operational research from
Taylorism to Terabytes: A research agenda for the analytics age”. In: Furopean
Journal of Operational Research 241.3, pp. 583-595.

Miiller, P. (2005). “Simulation based optimal design”. In: Handbook of Statistics 25,
pp. 509-518.

Miiller, P., Sansé, B., and De Iorio, M. (2004). “Optimal Bayesian design by inho-
mogeneous Markov chain simulation”. In: Journal of the American Statistical
Association 99.467, pp. 788-798.

Nath, H. V. and Mehtre, B. M. (2014). “Static malware analysis using machine learn-
ing methods”. In: International Conference on Security in Computer Networks
and Distributed Systems. Springer, pp. 440-450.

Naveiro, R. and Insua, D. R. (2019). “Gradient Methods for Solving Stackelberg
Games”. In: International Conference on Algorithmic DecisionTheory. Springer,
pp- 126-140.

138 Bibliography

Naveiro, R., Redondo, A., Insua, D. R., and Ruggeri, F. (2019a). “Adversarial
classification: An adversarial risk analysis approach”. In: International Journal
of Approximate Reasoning 113, pp. 133—-148.

Naveiro, R., Rodriguez, S., and Rios Insua, D. (2019b). “Large-scale automated
forecasting for network safety and security monitoring”. In: Applied Stochastic
Models in Business and Industry.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic
Game Theory. Vol. 1. Cambridge University Press Cambridge.

Owen, A. and Zhou, Y. (2000). “Safe and effective importance sampling”. In: Journal
of the American Statistical Association 95, pp. 135-143.

Papernot, N., McDaniel, P., Swami, A., and Harang, R. (2016). “Crafting adversarial
input sequences for recurrent neural networks”. In: MILCOM 2016-2016 IEEE
Military Communications Conference. IEEE, pp. 49-54.

Park, T. and Casella, G. (2008). “The Bayesian lasso”. In: Journal of the American
Statistical Association 103.482, pp. 681-686.

Parzen, E. (1962). “On Estimation of a probability density function and mode”. In:
The Annals of Mathematical Statistics 33.3, pp. 1065-1076.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., and Lerer, A. (2017). “Automatic differentiation in
PyTorch”. In:

Petris, G., Petrone, S., and Campagnoli, P. (2009). Dynamic Linear Models with R.
useR! Springer-Verlag, New York.

Ponsen, M, Jong, S de, and Lanctot, M (2011). “Computing approximate Nash
equilibria and robust best responses using sampling”. In: Journal of AI Research
42, pp. 575-605.

Pontryagin, L. S. (2018). Mathematical theory of optimal processes. Routledge.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, 1. (2019).
“Language models are unsupervised multitask learners”. In: OpenAlI Blog 1.8.

Raiffa, H. (1982). The Art and Science of Negotiation. Harvard University Press.

Rios Insua, D. and Ruggeri, F. (2000). “Robust Bayesian Analysis”. In: Lecture Notes
in Statistics 152.

Rios Insua, D., Rios, J., and Banks, D. (2009). “Adversarial risk analysis”. In: Journal
of the American Statistical Association 104.486, pp. 841-854.

Rios Insua, D., Ruggeri, F., and Wiper, M. (2012). Bayesian Analysis of Stochastic
Process Models. Wiley.

Bibliography 139

Rios Insua, D., Naveiro, R., Gallego, V., and Poulos, J. (2019). “Adversarial Ma-
chine Learning: Perspectives from adversarial risk analysis”. In: arXiv e-prints,
arXiv:1908.06901, arXiv:1908.06901. arXiv: 1908.06901 [cs.GT].

Rios Insua, D., Couce-Vieira, A., Rubio, J. A., Pieters, W., Labunets, K., and G.
Rasines, D. (2019). “An adversarial risk analysis framework for cybersecurity”.
In: Risk Analysis.

Rios Insua, D., Banks, D., Rios, J., and Gonzalez-Ortega, J. (2020). “Adversarial
Risk Analysis to support expert judgement elicitation”. In: Expert Judgement in
Decision and Risk Analysis. Ed. by H. B. French Nane. Springer.

Rios, J. and Rios Insua, D. (2012). “Adversarial Risk Analysis for Counterterrorism
Modeling”. In: Risk Analysis 32, pp. 894-915.

Roberts, G. O. and Smith, A. F. (1994). “Simple conditions for the convergence of
the Gibbs sampler and Metropolis-Hastings algorithms”. In: Stochastic processes
and their applications 49.2, pp. 207-216.

Romano, J. P. (1988). “On weak convergence and optimality of kernel density
estimates of the mode”. In: The Annals of Statistics, pp. 629-647.

Rossi, F. and Tsoukias, A. (2009). Algorithmic Decision Theory: First International
Conference, ADT 2009, Venice, Italy, October 2009, Proceedings. Vol. 5783.
Springer.

Sedgewick, A. (2014). Framework for Improving Critical Infrastructure Cybersecurity.
Tech. rep. NIST.

Shabtai, A., Moskovitch, R., Elovici, Y., and Glezer, C. (2009). “Detection of malicious
code by applying machine learning classifiers on static features: A state-of-the-art
survey”. In: information security technical report 14.1, pp. 16-29.

Shachter, R. D. (1986). “Evaluating Influence Diagrams”. In: Operations Research
34, pp. 871-882.

Shao, J. (1989). “Monte Carlo approximations in Bayesian decision theory”. In:
Journal of the American Statistical Association 84.407, pp. 727-732.

Shyamalkumar, N. (2000). “Likelihood robustness”. In: Robust Bayesian Analysis.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). “Mastering the game of
go without human knowledge”. In: Nature 550.7676, p. 354.

Sinha, A., Malo, P., and Deb, K. (2018). “A review on bilevel optimization: from
classical to evolutionary approaches and applications”. In: IEEFE Transactions on
FEvolutionary Computation 22.2, pp. 276-295.

140 Bibliography

Song, Y., Kolcz, A., and Giles, C. L. (2009). “Better Naive Bayes classification
for high-precision spam detection”. In: Software: Practice and Fxperience 39,
pp. 1003-1024.

Stahl, D. O. and Wilson, P. W. (1994). “Experimental evidence on players’ models of
other players”. In: Journal of Economic Behavior ¢ Organization 25.3, pp. 309—
327.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2014). “Intriguing properties of neural networks”. In: International
Conference on Learning Representations. URL: http://arxiv.org/abs/
1312.6199.

Taylor, S. J. and Letham, B. (2018). “Forecasting at scale”. In: The American
Statistician 72.1, pp. 37-45.

The Geneva Association (2016). Ten Key Questions on Cyber Risk and Cyber Risk
Insurance. Tech. rep. The Geneva Association.

Tierney, L. (1994). “Markov chains for exploring posterior distributions”. In: The
Annals of Statistics, pp. 1701-1728.

Tramer, F., Kurakin, A., Papernot, N., Goodfellow, 1., Boneh, D., and McDaniel, P.
(2018). “Ensemble Adversarial Training: Attacks and Defenses”. In: International
Conference on Learning Representations. URL: https://openreview.net/
forum?id=rkZvSe—-RZ.

Vallis, O., Hochenbaum, J., and Kejariwal, A. (2014). “A Novel Technique for
Long-Term Anomaly Detection in the Cloud.” In: HotCloud.

Vorobeychik, Y. and Kantarcioglu, M. (2018). “Adversarial machine learning”. In:
Synthesis Lectures on Artificial Intelligence and Machine Learning 12.3, pp. 1—
169.

Vorobeychik, Y. and Li, B. (2014). “Optimal randomized classification in adversarial
settings”. In: Proceedings of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems. AAMAS ’14. Paris, France, pp. 485-492. 1SBN:
978-1-4503-2738-1.

West, M. and Harrison, J. (1997). Bayesian Forecasting & Dynamic Models. Springer.

World Economic Forum (2020). The Global Risks Report. Tech. rep. World Economic
Forum.

Ye, N. and Zhu, Z. (2018). “Bayesian adversarial learning”. In: Proceedings of the
32nd International Conference on Neural Information Processing Systems. Curran
Associates Inc., pp. 6892-6901.

Bibliography 141

You, I. and Yim, K. (2010). “Malware obfuscation techniques: A brief survey”. In:
Broadband, Wireless Computing, Communication and Applications (BWCCA),
2010 International Conference on. IEEE, pp. 297-300.

Zeager, M. F., Sridhar, A., Fogal, N., Adams, S., Brown, D. E., and Beling, P. A.
(2017). “Adversarial learning in credit card fraud detection”. In: Systems and
Information Engineering Design Symposium (SIEDS), 2017. IEEE, pp. 112-116.

Zhang, Y., Jin, R., and Zhou, Z.-H. (2010). “Understanding bag-of-words model:
a statistical framework”. In: International Journal of Machine Learning and
Cybernetics 1.1-4, pp. 43-52.

Zhou, Y., Kantarcioglu, M., Thuraisingham, B., and Xi, B. (2012). “Adversarial
support vector machine learning”. In: Proceedings of the 18th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining. ACM, pp. 1059
1067.

Zhou, Y., Kantarcioglu, M., and Xi, B. (2019). “A survey of game theoretic approach
for adversarial machine learning”. In: Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 9.3, e1259.

Zhuang, J. and Bier, V. M. (2007). “Balancing terrorism and natural disasters—Defensive
strategy with endogenous attacker effort”. In: Operations Research 55.5, pp. 976
991.

	Tesis Roi Naveiro Flores
	Portada
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Notation
	Abstract
	Resumen
	Chapter 1. Introduction
	Motivation
	Adversarial Machine Learning: a review
	Adversarial classification
	Adversarial prediction
	Adversarial unsupervised learning
	Adversarial reinforcement learning
	Adversarial examples
	Comments

	Reactive Defences in Time Series Security Problems
	Proactive Defences in Classification Problems
	ARA templates for AML
	A decision theoretic pipeline for AML
	AML from an ARA perspective

	Algorithmic Approaches in AML
	Gradient Methods for Stackelberg Games in AML
	APS Methods for Non-cooperative Games

	Research objectives and dissertation structure

	Chapter 2. Reactive Defences in Time Series Security Problems
	Motivation
	Problem formulation and model description
	Continuous valued time series
	Discrete valued time series
	General scheme

	Implementation
	Empirical test for accuracy
	Discussion

	Chapter 3. Proactive Defences in Classification Problems
	Introduction
	Adversarial Classification based on Adversarial Risk Analysis
	The classifier problem
	The attacker problem
	Algorithmic implementation

	A case study in spam detection
	Classifier elements
	Adversary elements
	Example
	Robustness

	Computational issues
	Computational assessment
	Computational enhancements
	Application

	Dealing with discriminative classifiers
	An Approximate Bayesian Computation sampling approach
	A case study in multiclass malware detection

	Discussion

	Chapter 4. Algorithmic approaches: Gradient Methods for Stackelberg Games in AML
	Introduction
	Stackelberg games
	Solution Method
	Backward solution
	Forward solution

	An extension to Bayesian Stackelberg games
	Experiments
	Conceptual Example
	An application to adversarial regression
	An application to adversarial regression with limited knowledge

	Discussion

	Chapter 5. Algorithmic approaches: APS Methods for Non-cooperative Games
	Introduction
	Sequential non-cooperative games with complete information
	Monte Carlo simulation for games
	Augmented probability simulation for games
	Sampling from a power transformation of the marginal augmented distribution
	Sensitivity analysis for games

	Sequential non-cooperative games with incomplete information: ARA
	MC based approach for ARA
	APS for ARA
	Sensitivity analysis of the ARA solution

	Computational assessment
	Computational complexity
	A computational comparison

	A cybersecurity application
	Discussion

	Chapter 6. Conclusions
	Introduction
	Reactive Defences in Time Series Problems
	Proactive Defences in Classification Problems
	Algorithmic approaches: Gradient Methods for Stackelgerg Games in AML
	Algorithmic approaches: APS Method for Non-cooperative Games
	Future research lines
	Robustifying ML algorithms through Bayesian ideas
	Modeling and computational enhancements
	Applications

	Appendices
	Appendix A. Proofs of Monte Carlo based approaches for solving sequential games
	Algorithm 10. Subgame perfect equilibria
	Algorithm 13. ARA solutions

	Appendix B. Gibbs sampling based APS methods
	Subgame perfect equilibria
	ARA for incomplete information games

	Bibliography

