
Un modelo de análisis estilométrico de correos

electrónicos para la redacción personalizada basada en el

destinatario

A model for stylometric analysis of e-mails for

recipient-based personalised writing

Trabajo de Fin de Grado
Curso 2019�2020

Autor
Carlos Moreno Morera

Directores
Raquel Hervás Ballesteros

Gonzalo Méndez Pozo

Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Informática

Universidad Complutense de Madrid

Un modelo de análisis estilométrico de

correos electrónicos para la redacción

personalizada basada en el destinatario

A model for stylometric analysis of e-mails

for recipient-based personalised writing

Trabajo de Fin de Grado en Ingeniería Informática

Departamento de Ingeniería del Software e Inteligencia Arti�cial

Autor
Carlos Moreno Morera

Directores
Raquel Hervás Ballesteros

Gonzalo Méndez Pozo

Convocatoria: Junio 2020

Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Informática

Universidad Complutense de Madrid

26 de junio de 2020

A mi hermano Luis, por enseñarme los valores
(personales) que toda fórmula debe tener siempre

v

Agradecimientos

Sin lugar a dudas, este trabajo no habría salido adelante sin la excepcional dirección
de Raquel Hervás y Gonzalo Méndez. Aunque no he tenido el placer de disfrutar de su
labor como profesores, he tenido la oportunidad de ser dirigido por ellos en este Trabajo
de Fin de Grado lleno de anécdotas (incluso culinarias sobre croquetas) en un año de todo
menos corriente. No solo es de elogiar su gigantesca dedicación, esfuerzo y sus incansables
espíritus de dar lo mejor de ellos mismos tanto a nivel profesional como personal, sino
también su gran cercanía, empatía y predisposición para ayudar siempre que lo necesité.
Nunca olvidaré la gran cantidad de reuniones (que hacían el esfuerzo de programar en sus
apretadísimas agendas y dedicarme todo el tiempo necesario) que tuvimos en sus despachos
(o cada uno en sus casas con simpáticos invitados sorpresa) en las que, además de salir
con más ilusión que la que tenía al entrar, conseguía evadirme de los problemas y de la
jerarquía entre profesor y estudiante gracias al buen ambiente que creaban (si no era lunes).
Son dos personas brillantes en lo académico, profesional y personal que fueron capaces de
sacar lo mejor de mí y hacerme más llevadero académica y anímicamente este último curso.
Quizás no consigamos �desbancar a Gmail� como bromeábamos (aunque toda broma tiene
su parte de verdad), pero logramos un trabajo del que me siento orgulloso y contento de
haberlo compartido con ellos.

Otra persona que me ha ayudado durante el desarrollo de este Trabajo de Fin de Grado
es Antonio, a quien le agradezco mucho el haberme echado una mano con la comunicación
con el servidor y el haber dedicado tanto tiempo y esfuerzo a montar el contenedor donde
he podido alojar el desarrollo realizado.

Mis compañeros y amigos de carrera, de la Delegación de estudiantes y de la universidad
en general también comparten conmigo este trabajo, pues juntos, ya sea por empatía o de
facto, hemos disfrutado y sufrido (bueno, me han sufrido) en las alegrías y desventuras no
solo de este curso y del Trabajo de Fin de Grado, sino de todo mi recorrido académico en
esta universidad, que a veces parecía que duraba 27 años y, otras veces, 27 segundos.

También debo agradecerle el poder presentar este trabajo a todas esas personas que
diariamente han empatizado con mis quejas y sonrisas durante todos mis estudios, como mi
hermano Luis (la pata cientí�ca de este estudio), Irene (la pata literaria de este trabajo), mis
tíos Luis y Montse (quienes siempre han estado con sus geniales consejos y buenos ánimos) y
mi padre. Todas las personas que se han preocupado y me han apoyado incondicionalmente
durante toda esta etapa de mi vida se merecen un agradecimiento tan grande que nunca
serán su�cientes �gracias� que dar.

Por último, no puedo acabar sin hacer una especial mención a la persona que se ha
agobiado y preocupado mucho más que yo en todos y cada uno de mis exámenes, trabajos
y pruebas de evaluación. Una persona a la que no solo le debo la vida, sino el haberme

vii

dado la oportunidad de recibir la mejor educación posible y de formarme para poder salir
adelante el día de mañana: mi madre. A ella no le dedico y agradezco mi Trabajo de Fin
de Grado, sino toda mi carrera.

Resumen

Un modelo de análisis estilométrico de correos electrónicos

para la redacción personalizada basada en el destinatario

Hoy en día se envían más de 306 mil millones de correos electrónicos diarios tanto
en el ámbito profesional como el personal. Sin embargo, a pesar de que el canal sea el
mismo, nuestro estilo varía en función del destinatario del mensaje. La estilometría en
correos electrónicos es un campo de estudio reciente que trata de parametrizar el estilo de
escritura a través de métricas. La mayoría de las investigaciones en este campo se centran
en la detección de spam o identi�cación y autenticación de la autoría de los mensajes. En
este trabajo se plantea un nuevo enfoque: estudiar el estilo dependiendo del destinatario
del correo electrónico. El avance en esta dirección permitiría personalizar los sistemas
de redacción de correos electrónicos de manera que fueran capaces de generar mensajes
distintos en función del destinatario.

En este trabajo se desarrolla una herramienta de análisis estilométrico de correos elec-
trónicos, para el servicio de Gmail, que permite extraer y calcular distintas métricas de los
mensajes de un usuario. Dicho analizador de estilo cuenta con cuatro módulos (extracción,
preprocesamiento, corrección tipográ�ca y medición de estilo) que abordan las distintas
fases necesarias para obtener los descriptores de estilo de cada uno de los mensajes.

Una vez se cuenta con los resultados al evaluar las distintas métricas sobre cada men-
saje, se analizan. Para ello se hace uso de populares técnicas de aprendizaje automático
como K-Medias, Análisis de Componentes Principales y Árboles de Decisión. El objetivo es
extraer conclusiones que permitan proponer un modelo de análisis estilométrico de correos
electrónicos para la redacción personalizada basada en el destinatario. En este análisis de
datos se encuentran ocho métricas que distinguen mejor el estilo en función del receptor
de la información.

Por último, se presenta el diseño de un sistema que utiliza estas ocho métricas para
redactar correos electrónicos distintos según el destinatario. Este modelo puede ser de
utilidad para personalizar aquellos sistemas de generación de lenguaje natural en función
del destinatario, o de la audiencia a la que va dirigida el texto.

Palabras clave

Estilometría, correo electrónico, métrica, estilo, destinatario, Gmail, analizador de estilo,
aprendizaje automático, redacción personalizada, Latent Semantic Indexing.

ix

Abstract

A model for stylometric analysis of e-mails for recipient-based

personalised writing

Nowadays, more than 306 billion e-mails are sent daily, both in the professional and
personal scopes. However, despite the fact that the channel is the same, our style varies
depending on the recipient of the message. Stylometry in e-mails is a recent �eld of
study that tries to obtain the de�nition of writing style through metrics. Nevertheless,
most research in this �eld focuses on spam detection or message author identi�cation and
authentication. In this work a new approach is proposed: to study the style depending on
the recipient of the e-mail. Moving in this direction would allow us to personalise e-mail
writing systems so that they are capable of generating di�erent messages depending on the
recipient.

In this work we develop a tool for the stylometric analysis of e-mails, for the Gmail
service, which allows us to extract and calculate di�erent metrics from the messages of a
user. This style analyser has four modules (extraction, preprocessing, typographic correc-
tion and style measuring) that deal with the di�erent phases needed to obtain the style
descriptors of each of the messages.

Once we have the results of evaluating the di�erent metrics on each message, we analyse
them. To this end, we use popular machine learning techniques such as K-Means, Principal
Component Analysis and Decision Trees. The objective is to draw conclusions that allow
us to propose a model of stylometric analysis of e-mails for personalized writing based
on the recipient. In this data analysis we �nd eight metrics that better distinguish style
according to the receiver of the information.

Finally, we present the design of a system that uses these eight metrics to write di�erent
e-mails according to the recipient. This model can be useful to personalise those natural
language generation systems depending on the recipient, or on the audience to which the
text is addressed.

Keywords

Stylometry, e-mail, metric, style, recipient, Gmail, style analyser, machine learning, per-
sonalised writing, Latent Semantic Indexing.

xi

Contents

v

1. Introduction 1

1.1. Motivation . 1
1.2. Objectives . 2
1.3. Report structure . 2

2. State of the Art 5

2.1. Electronic Mail . 5
2.1.1. MIME . 6
2.1.2. Simple Mail Transfer Protocol . 11
2.1.3. Post O�ce Protocol . 11
2.1.4. Internet Message Access Protocol . 12
2.1.5. Gmail API . 12
2.1.6. Advantages and disadvantages of e-mail protocols versus the use of

Gmail API . 17
2.2. Computational stylometry . 18

2.2.1. Introduction to Computational Stylometry 18
2.2.2. Applications and techniques . 19
2.2.3. Style in e-mails . 20
2.2.4. Style metrics . 21

2.3. Latent Semantic Indexing . 24
2.3.1. Terms Frequency-Inverse Document Frequency 24
2.3.2. Singular Value Decomposition . 25
2.3.3. LSI Querying . 26

2.4. Conclusions . 26

3. Used technologies 29

3.1. How to work with Gmail API . 29
3.1.1. How to obtain OAuth 2.0 credentials 30
3.1.2. Building a Gmail Resource . 32
3.1.3. Users resource . 32
3.1.4. Labels resource . 33
3.1.5. Messages resource . 33

xiii

3.1.6. Threads resource . 35
3.2. spaCy . 35

3.2.1. spaCy versus others syntactic parsers 36
3.2.2. spaCy's utilities . 37

3.3. Flask . 38
3.4. MongoDB . 38
3.5. Conclusions . 38

4. Style Analyser 41

4.1. Architecture . 41
4.2. Extraction module . 45
4.3. Preprocessing module . 48
4.4. Typographic correction module . 51
4.5. Measuring module . 54

4.5.1. Part of Speech metrics . 56
4.5.2. Punctuation metrics . 56
4.5.3. Vocabulary metrics . 57
4.5.4. Structural metrics . 59
4.5.5. Relationship between metrics and their implementation 59

4.6. Analyser class . 61
4.7. Execution behaviour . 63
4.8. Conclusions . 63

5. Style feature analysis 65

5.1. Data preparation: e-mail classi�cation, metrics choice and correlation analysis 66
5.2. Preliminary analysis of the metrics considered using clustering techniques . 69
5.3. Dimension reduction using Principal Component Analysis 73
5.4. Dimension reduction using Decision Trees 76
5.5. Analysis of the chosen metrics using clustering techniques 80
5.6. Conclusions . 82

6. Proposal for a personalised writing model based on the recipient 83

6.1. Phases of the model . 83
6.2. Searching for the e-mail with the most similarity 85
6.3. Transforming e-mail according to metrics 86
6.4. Conclusions . 88

7. Conclusions and Future Work 89

7.1. Conclusions . 89
7.2. Future Work . 90

Bibliography 93

List of �gures

2.1. MIME types tree structure of an e-mail example 8

2.2. MIME message of Figure 2.1 . 9

2.3. OAuth 2.0 for Web Server Applications and Installed Applications. 13

2.4. Critical security alert sent to the user. 18

3.1. Benchmarks of di�erent syntactic parsers . 36

3.2. Per-document processing time of various NLP libraries 36

3.3. Benchmark accuracies for the Spanish pretrained model pipelines 37

4.1. Pipeline architecture of the style analyser 42

4.2. UML class diagram of the style analyser . 44

4.3. UML class diagram of the extraction module 46

4.4. UML class diagram of the preprocessing module 49

4.5. UML class diagram of the typographic correction module 52

4.6. UML class diagram of the measuring module 55

4.7. UML class diagram of the Analyser . 62

5.1. Distribution of relationship categories . 67

5.2. Pearson correlation coe�cient between each pair of features 68

5.3. Silhouette Score with K-Means . 71

5.4. ARI with K-Means . 71

5.5. Results of DBSCAN execution with euclidean metric 72

5.6. Adjusted Rand Index of DBSCAN with euclidean metric 72

5.7. Evolution of cumulative explained variance ratio 73

5.8. Distribution of explained variance ratio . 74

5.9. Linear combination that de�nes the �rst component 75

5.10. Learning curve with the 28 chosen features 76

5.11. Distribution of normalised feature importance with 28 features 77

5.12. Evolution of importance ratio . 78

5.13. Distribution of normalised feature importance with 8 features 79

5.14. Silhouette Score with K-Means . 80

5.15. ARI with K-Means . 80

5.16. Results of DBSCAN execution with manhattan metric 81

5.17. Adjusted Rand Index of DBSCAN with manhattan metric 82

xv

6.1. Model Architecture Diagram . 84

List of tables

2.1. Worldwide daily e-mail tra�c (2020-2024) 6
2.2. Main methods' quota units . 17

3.1. Tokenizer 's interesting attributes . 37

4.1. Classi�cation of the style metrics . 60

xvii

List of Algorithms

1. K-Means with missing values . 70

xix

Chapter 1
Introduction

�Have you ever retired a human by mistake?�
� Rachael - Blade Runner (1982)

In this chapter we explain the incentives which motivate us to develop this work (see
Section 1.1) and the objectives which we try to ful�l (see Section 1.2) in this work. Finally,
the structure of this report is explained in Section 1.3.

1.1. Motivation

Throughout history, many writers have dedicated their works to other people, such as
the author of the Spanish Golden Age Francisco de Quevedo, who dedicated the sonnet
�A una nariz� to Luis de Góngora and the poem �A una dama bizca y hermosa� to an
unknown woman; or the poet of the Spanish Generation of 27 Federico García Lorca, who
dedicated the elegy �Llanto por Ignacio Sánchez Mejías� to his friend and �Vals en las
ramas� to Vicente Aleixandre. As expected, the style of their works varies according to the
addressee of the text (Quevedo does not refer to Góngora in the same way as to his lady).
These dedicated texts have travelled from their writers to their recipients in a variety of
forms such as letters and newspaper columns. Regardless of the fact that the channel was
the same, the sender modi�ed his or her way of speaking to the addressee depending on
the relationship established between them. Something similar happens with the e-mail,
nowadays established as part of our routine, which turns its users into constant authors
who dedicate their sentences to the recipients.

Electronic mail has greatly grown since its appearance in 1971. Indeed it goes on
growing and reaches the number of 306 billions of e-mails sent per day. The e-mail has
gone beyond the professional scope and has encroached the personal sphere, which means
that we send e-mail messages to our contacts which with we keep both a professional and
a personal relation. However, there are signi�cant di�erences in the written text which
depend on the receiver of the information even though the channel is the same. Despite
having a concise and summarised nature, we do not spend the same amount of time to
write every e-mail. Perhaps we are more rigorous with the composition of some messages,
we change our writing style or we choose a formal language. This modi�cation of our way
of writing a message depending on the recipient is what we study in this work.

The research of the de�nition of the writing style based on the recipient of the message
through mathematical metrics allows us to know how it is necessary to change a text in
order to make it appropriate for the audience. Furthermore, the progress in this �eld of

1

2 Chapter 1. Introduction

study improves our knowledge about the natural language generation of e-mails, speci�cally
based on the recipient. The automatic personalised writing is able to meet the clear needs
of quick responses of a society which is in constant connection with all the information
generated every second. For this reason, the progress in this �eld of study can be useful
for the more than four billion e-mail users.

With this motivation, we focus our work on the study of the metrics which describe the
writing style of e-mail based on the recipient and how it is possible to take advantage of
these mathematical objects in order to build a recipient-based personalised writing system.

1.2. Objectives

The main objective of our work is the proposal of a model for stylometric analysis of e-
mails for recipient-based personalised writing. This model must measure the writing style
of the user and use this information in order to carry out the composition of an e-mail.

To achieve it, we study the �eld of stylometry and implement a software which is able
to measure the di�erent e-mails from the user's account. Once a system which can extract
the messages and calculate a set of style metrics of each one is developed, we have to
evaluate the obtained results and study which style markers distinguish better between
the di�erent recipients. To obtain this conclusions allow us to suggest a system that can
take them into account and generate e-mails with di�erent styles depending on the receiver
of the information.

Furthermore, we look for developing reusable tools that can be used in other similar
projects. With this in mind, we develop some web services which carry out the di�erent task
of extracting and measuring the e-mails. In this way, these tools can be easily incorporated
to other implementations.

1.3. Report structure

This work is structured in seven chapters. The �rst one, as we have seen, is the
introduction of the work, where we give an idea of what we explain in the rest of the report.
Chapter 2 (State of the Art) presents the knowledge that we use in the following chapters
and which is required for the correct understanding of the work. In it, we explain the
communication service which is the centre of our work: the electronic mail, and every aspect
of it which is useful for our work, such as the protocols that de�nes it. In addition to the
electronic mail, we study the �eld of computational stylometry in Chapter 2. Speci�cally,
we delve into the particular characteristics of e-mails as a text document and the most
common metrics used for analysed them. This chapter �nish with the explanation of the
Latent Semantic Indexing, which is an algorithm whose understanding is required for our
�nal model.

The next Chapter (Used Technologies) presents the technologies used for our software
development: Gmail API, spaCy, Flask and MongoDB. The �rst of them is necessary due
to the fact that the e-mail account that we analyse belongs to the Gmail service. As for
spaCy, it is a syntactic analyser which is useful when we measure the text of the e-mail. In
respect of Flask and MongoDB, they are popular software tools used for the development
of web services and the management of a NoSQL database, respectively. We use them in
our software implementation.

As regards Chapter 4 (Style Analyser), in it we explain in detail the developed im-
plementation of the software which is in charge of all the process from the extraction to

1.3. Report structure 3

the measuring of the e-mails of the user. Each of the phases that are part of this task
(extraction, preprocessing, typographic correction and measuring), are explained as well
as the style metrics used.

After obtaining the metrics' value of each message, we study the set of data in Chap-
ter 5 (Style feature analysis), making use of popular machine learning techniques such
as K-Means, Principal Component Analysis and Decision Trees. Besides, the previous
preparation of the data is explained.

The penultimate chapter (Proposal for a personalised writing model based on the re-
cipient), takes advantage of all the previous knowledge in order to suggest a model for
stylometric analysis of e-mails for recipient-based personalised writing and study its via-
bility.

Finally, in Chapter 7 (Conclusions and Future Work), we expose the conclusions of the
developed work and the possible improvements and extensions which can be carried out
with the purpose of going on working in the �eld of study.

Chapter 2
State of the Art

�Who controls the past controls the future.
Who controls the present controls the past.�

� 1984 - George Orwell (1949)

In order to be able to develop a model for stylometric analysis of e-mails for recipient-
based personalised writing, the �rst thing we need to understand is the fundamentals of this
communication method. For this reason, in Section 2.1, we delve into both the protocols
that de�ne it and the speci�c structure of the Gmail service, since the e-mail account that
we analyse and that is used to design the model around the data extracted from it belongs
to that service.

Once we have laid the foundations of communication through e-mail and, speci�cally,
the Gmail service, we study how to analyse the wording of the di�erent messages, that
is to say, we learn the concepts of the �eld of study known as stylometry (see Section
2.2). Speci�cally, we also present the research related to e-mails and the most common
techniques and metrics used for various purposes.

Finally, for the modelling of a recipient-based custom writing system, we need to un-
derstand the functioning of a very popular technique in information retrieval called Latent
Semantic Indexing. For this reason, in Section 2.3, we explain this method in detail, which
is used in later chapters.

2.1. Electronic Mail

Electronic Mail (Guide, 2005, Chapter 11) is a communication service which has been
used since 1971 (Ibrahim et al., 2018) when the �rst network e-mail with the text �QW-
ERTYUIOP� was sent through ARPAnet (Advanced Research Projects Agency Network,
the �rst network which implements the TCP/IP protocol) with the experimental protocol
CYPNET. Nowadays, the messages are delivered by using a client/server architecture. In
this way, an e-mail is created by using a client-side mail program. Then, this software
sends the message to a server, which will redirect it to the recipient's mail server. From
there, the e-mail is delivered to the addressee.

According to Radicati and Levenstein (2020), e-mail is �still the most pervasive form
of electronic communication for both business and consumer users� and both the number
of e-mail accounts and the amount of messages sent continue to grow. The evolution of
worldwide daily e-mail tra�c can be seen in Table 2.1, where we can observe the huge
amount of messages which are sent every day and its evolution over the next four years.

5

6 Chapter 2. State of the Art

Year 2020 2021 2022 2023 2024
Billions of worldwide e-mails
sent/receive per day

306.4 319.6 333.2 347.3 361.6

Percentage of growth 4.4 4.3 4.3 4.2 4.1

Table 2.1: Worldwide daily e-mail tra�c (2020-2024)
Table extracted from Radicati and Levenstein (2020).

In order to make the sending of all these messages possible, an Internet standard that
extends the format of e-mail messages, and a wide range of network protocols exist for
allowing di�erent machines (which often execute distinct operative systems and make use
of di�erent mail programs) to share e-mails. In this section, we study this standard, these
protocols and the API which is used for reading, sending messages and accessing to the
user's e-mail data. First of all, we explain the MIME standard (see Section 2.1.1) which
speci�es the format of e-mail messages. Then we expose the main e-mail management
protocols, both electronic mail transmission protocol (such as Simple Mail Transfer Proto-
col, which is explained in Section 2.1.2) and message access protocol (such as Post O�ce
Protocol and Internet Message Access Protocol, which are studied in Sections 2.1.3 and
2.1.4, respectively).

Although the use of the di�erent protocols is a mail server-independent solution, as
we will see we �nd security issues which hinder our user's e-mail data access. These trials
come from the automatic server access. For this reason, Gmail API is introduced (see
Section 2.1.5) and, �nally, the assessment of the advantages and disadvantages of making
use of the e-mail protocols or the Gmail API is discussed (see Section 2.1.6).

2.1.1. MIME

To be able to automatically obtain the body of the electronic mails, it is essential to
understand what the MIME standard consists in. Hence, in this section we give a general
idea about this.

MIME, whose acronym stands for Multipurpose Internet Mail Extensions, is an Internet
standard for the exchange of several �le types (text, audio and video among others) which
provides support to text with characters other than ASCII, non-text attachments, body
messages with numerous parts (known as multi-part messages) and headers information
with characters other than ASCII. It is de�ned in a series of Request For Comments (RFC):
RFC 2045 (Freed and Borenstein, 1996b), RFC 2046 (Freed and Borenstein, 1996c), RFC
2047 (Moore, 1996), RFC 2049 (Freed and Borenstein, 1996a), RFC 2077 (Nelson and
Parks, 1997), RFC 4288 (Freed and Klensin, 2005a) and RFC 4289 (Freed and Klensin,
2005b).

Virtually all e-mails written by people on the Internet and a considerable proportion of
these automatically generated messages are transmitted in MIME format via SMTP (see
Section 2.1.2). Internet e-mail messages are so closely associated with SMTP and MIME
that they are usually called SMTP/MIME messages.

The content types de�ned by the MIME standard are of great importance also outside
the context of e-mails. Examples of this are some network protocols such as HTTP from the
Web. HTTP requires data to be transmitted in an e-mail-type message context although
the data may not be an e-mail itself.

Nowadays, no e-mail program or Internet browser can be considered complete if it does
not accept MIME in its various facets (text and �le formats).

2.1. Electronic Mail 7

In this section we learn about the MIME type nomenclature (see Section 2.1.1.1),
which is necessary for being able to exchange several �le types. Then, we illustrate the
MIME structure of an e-mail, consisting of MIME headers (see Section 2.1.1.2) and, �nally,
two common MIME message encoding (base64 and quoted-printable) are explained (see
Sections 2.1.1.3 and 2.1.1.4, respectively). Understanding of these encodings is important
in order to be able to decode the di�erent user's messages.

2.1.1.1. Type Nomenclature

Each data type has a di�erent name in MIME. These names must follow the format:
type/subtype (both type and subtype are strings), in such a way that the �rst denotes the
general data category and the second the speci�c type of that information. The values the
type can take are:

text : means that the content is simple text. Subtypes like html, xml and plain can
follow this type.

multipart : indicates that the message has numerous parts with independent data.
Subtypes like form-data and digest can follow this type.

message: it is used to encapsulate an existing message, for example when we want to
reply a e-mail and add the previous message. Subtypes like partial and rfc822 can
follow this type.

image: means that the content is an image. Subtypes like png, jpeg and gif can
follow this type.

audio: indicates that the content is an audio. Subtypes like mp3 and 32kadpcm can
follow this type.

video: denotes that the content is a video. Subtypes like mpeg and avi can follow
this type.

application: it is used for application data that could be binary. Subtypes like json
and pdf can follow this type.

font : means that the content is a �le which de�nes a font format. Subtypes like wo�
and ttf can follow this type.

2.1.1.2. MIME headers

MIME has several headers which appear in all e-mails sent with this standard. The
most important of them are the following:

Content-Type: the value of this header is the type and subtype of the message with
the same format that we have explained before. For example, if we have the header
Content-Type: text/plain, it means that the message is a plain text. The use of the
type multipart makes the creation of messages with parts and subparts organized in
a tree structure (in which leaf nodes can belong to any type and the rest of them
can belong to any multipart subtype variety) possible (Freed and Borenstein, 1992,
Section 7.2). A feasible composition of a message with a part with plain text and
other non-text parts could be constructed by using multipart/mixed as the root node
like in Figure 2.1. Indeed, in the example of Figure 2.1 we can observe the use of

8 Chapter 2. State of the Art

Figure 2.1: MIME types tree structure of an e-mail example

multipart/alternative for a message which contains the body both in plain text and
in html text. Other di�erent e-mails constructions are possible (like forwarding with
the original message attached by using multipart/mixed with a text/plain part and a
message/rfc822 part) thanks to the tree structure of the Content-type header.

Another important detail, that we can observe in the example by comparing Figure
2.1 and Figure 2.2, is the fact that each node of the tree structure of the e-mail
(shown in Figure 2.1) is visited and showed in Figure 2.2 following the pre-order
traversal.

Content-Disposition: this header is used to indicate the presentation style of the
part of the message. There are two ways to show the part: inline content-disposition
(which means that the content must be displayed at the same time as the message)
and attachment content-disposition (the part is not displayed at the same time as the
message and it requires some form or action from the user to see it). Furthermore,
this header also provides several �elds for specifying other type of information about
the content, such as the name of the �le and the creation or modi�cation date. The
following example is taken from RFC 2183 (Troost et al., 1997) and, as we will
explain after the example, it does not match with the syntax of this same header in
the example that we can see in the last part of the example message of Figure 2.2:

Content=Di spo s i t i on : attachment ; f i l ename=genome . jpeg ;
mod i f i ca t i on=date="Wed, 12 Feb 1997 16 : 29 : 51 =0500";

As we have said, this syntax is di�erent from the one used in the e-mail example
of Figure 2.2. This results from the fact that, in HTTP, the header we �nd in that

2.1. Electronic Mail 9

Figure 2.2: MIME message of Figure 2.1

�gure (Content-Disposition: attachment) is usually used for instructing the client to
show the response body as a downloadable �le. As we can observe, it has a �lename
�eld which is used for establishing the default �le name when the user is going to
download it.

Content-Transfer-Encoding : when we want to send some �les in a message, sometimes
they are represented as 8-bit character or binary data, which are not allowed in
some protocols. On this account, it is necessary to have a standard that indicates
how we should re-encode such data into a 7-bit short-line format. The Content-
Transfer-Encoding header (Freed and Borenstein, 1992, Section 5) tells the client
which transformation has been used for being able to transport that data. Therefore,
and for lack of a previous standard which states a single Content-Transfer-Encoding
mechanism, the possible values which specify the type of encoding are: 'base64' (see
Section 2.1.1.3), 'quoted-printable' (see Section 2.1.1.4), '8bit', '7bit', 'binary' and
'x-token'. All these values are not case sensitive. If this header does not exist, we
can assume that the value of this header is '7bit', which means that the body of the
message is already in a seven-bit mail-ready representation, in other words, all the
body of the message is represented as short lines of US-ASCII data. Despite '8bit',
'7bit' and 'binary' indicate that the content has not been transformed, they are

10 Chapter 2. State of the Art

useful for knowing the kind of encoding that the data has. This header is generally
omitted when the Content-Type has the multipart or message type (as it happens in
the message example of Figure 2.2), because it also admits the last three types we
have mentioned.

It is common to add another header (as we can see in Figure 2.2) called charset, the
value of which represents the original encoding of data so the client is able to decode
it.

2.1.1.3. Base64 encoding

As we have studied when we learnt how the MIME headers (see Section 2.1.1.2) are,
we can �nd e-mail whose content encoding is base64. Base64 (Josefsson, 2006) is a group
of reversible binary-to-text encoding schemes which represent binary data as a sequence
of ASCII printable characters. It makes use of a radix-64 to translate each character,
because 64 is the highest power of two than can be represented using only printable ASCII
characters. Indeed all the Base64 variants (like base64url) utilise the characters range
A-Z, a-z and 0-9 in that order for the �rst 62 digits, but the chosen symbol for the last
two digits are very di�erent between them. In particular, the MIME (see Section 2.1.1)
speci�cation, established in RFC 2045 (Freed and Borenstein, 1996b), describes base64
based on Privacy-enhanced Electronic Mail (PEM) protocol (de�ned by Linn (1993), Kent
(1993), Balenson (1993) and Kaliski (1993)), which means that the last two characters
are '+' and '/', and the symbol '=' is used for output padding su�x. In the same way,
MIME does not stablish a �xed size for the base64 encoded lines, by contrast it speci�es a
maximum size of 76 characters.

If we try to apply standard base64 in a URL encoder, it will translate the characters '+'
and '/' to its hexadecimal representation ('+' = '%2B' and '/' = '%2F'). This will cause
a con�ict in heterogeneous systems or if we use it in data base storage, because of the
character '%' produced by the encoder (it is a special symbol of ANSI SQL). This is why
modi�ed Base64 for URL variants exists (such as base64url de�ned by Josefsson (2006)),
where the '=' character has no usefulness and the '+' and '/' symbols are replaced by '-'
and '_' respectively. Besides it has no impact on the size of encoded lines.

2.1.1.4. Quoted-printable enconding

Other reversible binary-to-text encoding that could be used in the content of a MIME
message is the quoted-printable encoding (Borenstein and Freed, 1993). Making use of
printable characters (such as alphanumeric and '=') proved capable of transmitting 8 bit
data over a 7 bit protocol. Unlike base64, if the original message is mostly composed of
ASCII characters, the encoded text is readable and compact.

Each byte can be represented via two hexadecimal characters. On this basis, the '='
symbol followed by two hexadecimal digits are enough to encode all the characters except
the printable ASCII ones and the end of line. For example, if we want to represent the
12th ASCII character we can encode it as '=0C' or if the equality symbol (whose decimal
value is 61) is in our original message, it could be encoded as '=3D' (note that despite
being a printable ASCII character it must be encoded as it is a special character in this
encoding). This is how quoted-printable encodes the di�erent characters.

In respect of the maximum line size, as it happens with the MIME speci�cation of the
base64 (see Section 2.1.1.3), it has a length of 76 characters each encoded line. To achieve
this goal and still be able to decode the text getting the original message, quoted-printable

2.1. Electronic Mail 11

adds soft line breaks at the end of the line consisting of the '=' symbol and it does not
modify the encoded text.

2.1.2. Simple Mail Transfer Protocol

Simple Mail Transfer Protocol (also known as SMTP) is a network connection-oriented
communication protocol used for the exchange of e-mail messages. It was originally de�ned
by Postel (1982) (for the transfer) and by Crocker (1982) (for the message). It is currently
de�ned by Klensin (2008) and Resnick (2008). However, this protocol has some limitations
when it comes to receiving messages on the destination server. For this reason, this task
is intended for other protocols such as the Internet Message Access Protocol (see Section
2.1.4) or the Post O�ce Protocol (refer to Section 2.1.3), and SMTP is used speci�cally
to send messages.

Making use of SMTP, an e-mail is �pushed� from one mail server to another (next-
hop mail server) until it reaches its destination. The message is routed based on the
destination mail server, instead of according to the individual message recipients speci�ed
during the client's connection to the SMTP server. Thanks to the fact that this protocol
has a feature to initiate mail queue processing, an intermittently connected mail server can
extract messages from another remote server when necessary.

2.1.3. Post O�ce Protocol

Post O�ce Protocol (also known as POP) is an application protocol (in OSI Model) for
obtaining e-mails stored in a remote Internet server called POP server. It was originally
de�ned by Reynolds (1984) (it was POP version 1, also known as POP1). Current POP
version (POP3, in general when we talk about POP we refer to this version) is detailed by
Myers et al. (1996). This protocol has many commands which make the manual connection
with the POP3 server possible. In addition to them, there are others, such as LIST, RETR
y DELE, which are intended for managing the user's messages, such as show, download
and delete them, respectively.

POP3 was designed for receiving e-mails. Using POP3, users with intermittent or very
slow Internet connections (such as modem connections) can download their e-mail while
online and check it later even when o�ine. The general operation is: a client using POP3
connects, gets all messages, stores them on the user's computer as new messages, deletes
them from the server, and �nally disconnects. However, some mail clients include the
option to leave messages on the server. They use the order UIDL (Unique IDenti�cation
Listing) which, unlike most POP3 commands, does not identify messages depending on
their mail server ordinal number. This results from the fact that the mail server ordinal
number creates problems when a client tries to leave messages on the server, since mes-
sages with numbers change from one connection to the server to another. Accordingly, a
server which makes use of UIDL, assigns a unique and permanent character string to each
message. Thus, when a POP3-compatible mail client connects to the server, it uses the
UIDL command to map the message identi�er. This way the client can use that mapping
to determine which messages to download and which to save at the time of downloading.

Like other old Internet protocols, POP3 used a signature mechanism without encryp-
tion. The transmission of POP3 passwords in plain text still occurs. Nowadays POP3 has
various authentication methods that o�er a diverse range of levels of protection against
illegal access to users' mailboxes.

The advantage over other protocols is that between server-client you do not have to
send so many commands for communication between them. The POP protocol also works

12 Chapter 2. State of the Art

properly if you do not use a constant connection to the Internet or to the network that
contains the mail server.

2.1.4. Internet Message Access Protocol

Internet Message Access Protocol (also known as IMAP) is an application protocol,
designed as an alternative to Post O�ce Protocol (see Section 2.1.3) in 1986, which allows
the access to stored messages in an Internet server. As with the Post O�ce Protocol, with
IMAP you can access your e-mail from any computer with an Internet connection. The
current version of IMAP (IMAP version 4 review 1, or IMAP4rev1) is de�ned by Crispin
(2003).

In contrast to Post O�ce Protocol, IMAP allows multiple clients to manage the same
mailbox. This fact results from the main di�erences between these two protocols: IMAP
does not remove e-mail from the server until the client speci�cally requests it (as POP
removes them by default, it is impossible to access them from another device which has not
downloaded the messages) and it does not download the messages to the user's computer
(clients may optionally store a local copy of them). This last property gives raise to several
advantages with regard to Post O�ce Protocol. One of them is the immediate noti�cation
of the arrival of an e-mail (due to it works in permanent connection mode), while POP
checks if there are new e-mails every few minutes (which causes an appreciable rise in
tra�c and in the time the user has to wait to send a request to the server, because it is
necessary to complete the download of all new messages �rst). Moreover, it is possible to
create shared folders with other users (it depends on the mail server) and the e-mails do
not take up memory in the user's local device, while POP downloads them regardless of
whether they are going to be read or not (e�ectively IMAP has to download a message
when it is going to be read, but they are temporary �les and only the e-mail headers are
downloaded to manage the mailbox). Furthermore, avoiding downloading allows the user
to manage folders, templates and drafts in server in addition to be able to search a mail
from keywords.

2.1.5. Gmail API

Gmail is a free e-mail service developed by the company Google. Users can access
Gmail on the web itself and through third-party programs that synchronize e-mail content
via POP or IMAP protocols. It also has a mobile application to manage the user's e-mail.
Gmail began as a limited beta version on April 1, 2004 and completed its testing phase on
July 7, 2009. As stated by BBC news (3rd July 2018): �Gmail is the world's most popular
e-mail service with 1.4 billion users�.

As we will see in Section 2.1.6, due to the automatic server access, directly using the
communication protocol for electronic mail transmission (SMTP) and for retrieving e-mail
messages from a mail server (POP or IMAP) cause us security problems when accessing
the user's e-mail data. For this reason, we make use of Gmail API, that we study in this
Section. Thus, in Section 2.1.5.1 we explain the necessary protocol for accessing the Gmail
API and, consequently, for being able to get into the user's e-mail data. Further on, we
require a resource (like a programming object) we can work with and represent all the
Gmail structure (see Section 2.1.5.2). Once we count on this general resource, we have the
necessary tools to be able to understand and handle the internal architecture of the Gmail
API and the di�erent means it provides in order to achieve our goal. Therefore, in Sections
2.1.5.3 to 2.1.5.6 we delve into the essential resources for our purpose: labels, messages,
threads and drafts.

2.1. Electronic Mail 13

Finally, as this API is not the only means of accessing the user's mail data (we have
studied other ways in previous sections), we end with a brief description about the API
usage limits (in Section 2.1.5.7) to assess its use with respect to other methods of e-mail
access.

2.1.5.1. OAuth 2.0 Protocol

Open Authorization or OAuth (Cook and Messina, 2019a) is an open standard which
allows simple authorization �ows for web services or applications. It is a protocol de�ned
by Hardt (2012) which allows the site's users to share their information with another site
without providing their full identity. This mechanism is used by companies like Google,
Facebook, Twitter and Microsoft to allow users to share information about their accounts
with third-party applications or websites.

Gmail API, as it also happens in the case of other Google APIs, uses OAuth 2.0 protocol
(Google, 2019f) to handle authentication and authorization. It will provide us a secure and
trusted login system to access the user's Gmail data.

Figure 2.3: OAuth 2.0 for Web Server Applications and Installed Applications.
Image extracted from Google (2019f)

The basic working process of OAuth 2.0 protocol can bee seen in Figure 2.3. As we
can observe, at �rst our application carries out a request in which it sends a token. This
token includes, among other things, a credential, which helps Google Servers to identify
the application, and a list of OAuth 2.0 Scopes (Google, 2019e), which are a �mechanism in
OAuth 2.0 to limit an application's access to a user's account. An application can request
one or more scopes. This information is then presented to the user in a consent screen,
and the access token issued to the application will be limited to the scopes granted� (Cook
and Messina, 2019c). We will use the Gmail API OAuth 2.0 Scope which allows us to read
the di�erent e-mails.

Once the user has logged in the Gmail account (authentication) and accepted all the
necessary permissions that our application needs (authorization), our process receives an
authorization code which is going to be exchanged for an access token (Cook and Messina,
2019b). Then, we will be in possession of the OAuth 2.0 credentials for the user (Google,

14 Chapter 2. State of the Art

2019d) which we are going to use for accessing the user's Gmail account.

2.1.5.2. Users resource

At this point, with the OAuth 2.0 credentials, we are able to call the Gmail API. For
this purpose, it is necessary to construct a resource (Google, 2019a, /v1/reference) for
interacting with the API. As we will see later, this resource will lead us to manage e-mails,
drafts, threads and everything we will like to do with the user's Gmail data.

By using the OAuth 2.0 credentials, we are able to get in contact with the Google
Servers and request what is known as users resource (Google, 2019a, /v1/reference/users),
which holds all the necessary resources for our task, such as labels (see Section 2.1.5.3),
messages (see Section 2.1.5.4), threads (see Section 2.1.5.5) and drafts (see Section 2.1.5.6).
In practice, the users resource has instance methods which get in contact with Google
Servers and return these other Gmail API resources that we are going to need (the methods'
names are labels(), messages(), threads() and drafts(), respectively). Now, in next sections,
we explain all the resources we can create with the user resource.

2.1.5.3. Labels resource

As we have seen in the explanation of the users resource (Section 2.1.5.2), we can
obtain the labels resource (Google, 2019a, /v1/reference/users/labels) by invoking labels()
instance method of our users resource. It manages the entire set of e-mail labels, which
categorize messages and threads within the user's mailbox.

Labels resource is an object which allows us to access to the di�erent e-mail labels
of the user, such as INBOX, UNREAD and SENT. With the labels resource methods,
we can obtain each of these �user's labels� which have a dictionary structure and their
representation is what we can observe hereunder:

{
' id ' : s t r i ng , # The immutable i d e n t i f i e r o f the l a b e l
'name ' : s t r i ng , # The d i sp l ay name
The v i s i b i l i t y o f messages in the Gmail web i n t e r f a c e
' me s s a g eL i s tV i s i b i l i t y ' : s t r i ng ,
' l a b e l L i s t V i s i b i l i t y ' : s t r i ng , # The v i s i b i l i t y o f l a b e l
The owner type o f the l a b e l (' system ' or ' user ')
' type ' : s t r i ng ,
Total number o f messages with the l a b e l
' messagesTotal ' : i n t ege r ,
Number o f unread messages with the l a b e l
' messagesUnread ' : i n t ege r ,
Total number o f threads with the l a b e l
' threadsTota l ' : i n t ege r ,
Number o f unread threads with the l a b e l
' threadsUnread ' : i n t ege r ,
' c o l o r ' : {

Text c o l o r o f the l abe l , r ep r e s en ted as hex s t r i n g
' t extCo lor ' : s t r i ng ,
Background co l o r r epr e s ented as hex s t r i n g #RRGGBB
' backgroundColor ' : s t r i n g

}
}

The important �elds we are going to need are the name, the type and the number of
total messages and threads with the label (which are messagesTotal and threadsTotal �elds,

2.1. Electronic Mail 15

respectively). Labels with system type, such as INBOX, SENT, DRAFTS and UNREAD,
are internally created and cannot be added, modi�ed or deleted.

2.1.5.4. Messages resource

In most of the e-mail operations we execute, the correct management of messages is
essential. Therefore, knowing how the e-mails are represented in Gmail API and how to
use them is imperative to understand how to work with this API. For this reason, in this
section we delve into the messages resource (Google, 2019a, /v1/reference/users/messages)
of the Gmail API. As we saw in Section 2.1.5.2, we can access to this resource by invoking
the messages() instance method when we have a users resource.

As with the labels resource, the messages resource manages the set of all messages of
the user's e-mail. With the messages resource methods, we can obtain each of these �user's
messages� which, regardless of which programming language is used, have a dictionary
structure and their representation is what we can see down below:

{
' id ' : s t r i ng ,
' threadId ' : s t r i ng ,
' l a b e l I d s ' : [s t r i n g] ,
' sn ippet ' : s t r i ng ,
' h i s t o r y Id ' : unsigned long ,
' i n t e rna lDate ' : long ,
' payload ' : {

' part Id ' : s t r i ng ,
'mimeType ' : s t r i ng ,
' f i l ename ' : s t r i ng ,
' headers ' : [
{

'name ' : s t r i ng ,
' va lue ' : s t r i n g

}
] ,
' body ' : {

' attachmentId ' : s t r i ng ,
' s i z e ' : i n t ege r ,
' data ' : bytes

} ,
' par t s ' : [(MessagePart)]

} ,
' s i z eEs t imate ' : i n t ege r ,
' raw ' : bytes

}

The most important keys of this data structure for this work are:

id : an immutable string which identi�es the message.

threadId : we will explain the thread resource in Section 2.1.5.5 and we will see that
a thread is composed of di�erent messages that share common characteristics. The
value of this �eld is a string which represent the identi�er of the thread the message
belongs to.

labelIds: a list of the identi�ers of labels (see Section 2.1.5.3) applied to the message.

16 Chapter 2. State of the Art

payload : as we can see in the resource representation above, it has a dictionary data
structure. The payload �eld is the parsed e-mail structure in the message parts. The
more important keys of the payload �eld are:

� mimeType: the MIME type (see the explanation of Content-Type header in
Section 2.1.1.2) of the message part.

� headers: a list of headers. It contains the standard RFC 2822 (Resnick, 2001)
e-mail headers such as To, From, Subject and Date. Each header has a name
�eld, which is the name of the header (for example From), and a value �eld,
which is the value of the header (following the same example as with the name
�eld, example@gmail.com could be the value).

� parts: a list which contains the di�erent MIME message child parts (we have
gone into it in depth in the Section 2.1.1).

� body : a dictionary structure which contains the body data of this part (see
Section 2.1.1) in case it does not contain MIME message parts (otherwise it will
be empty). This structure should not be confused with an attached �le. Each
MIME part contains a body property regardless of MIME type of the part.

raw : the entire e-mail message in an RFC 2822 (Resnick, 2001) formatted and
base64url (see Section 2.1.1.3) encoded string.

2.1.5.5. Threads resource

When we access to our inbox, we are actually seeing the inbox threads instead of the
messages resource. Every message, even if it is an only e-mail without a reply, is enclosed
in a thread resource (Google, 2019a, /v1/reference/users/threads), which is essentially a
list, perhaps unitary, of messages resources. In fact, as we can observe in the following
resource representation, each thread (which can be obtained thanks to the threads resource
due to it manages the entire set of threads of a user's e-mail), in its dictionary structure,
has a list of messages resources:

{
' id ' : s t r i ng , # The i d e n t i f i e r o f the thread
' sn ippet ' : s t r i ng , # A shor t part o f the text
' h i s t o r y Id ' : unsigned long ,
' messages ' : [u s e r s . messages r e s ou r c e]

}

2.1.5.6. Drafts resource

The last Gmail API resource we will study is the most easy to understand after knowing
all the structures related with e-mails that we have explained in the above sections: the
drafts resource (Google, 2019a, /v1/reference/users/drafts). Its representation is very
simple:

{
' id ' : s t r i n g # The immutable i d e n t i f i e r o f the d r a f t
' message ' : u s e r s . messages r e s ou r c e

}

As we can observe, a draft is virtually a messages resource with an identi�er. Indeed,
in order to create a new draft with the DRAFT label we must create a MIME message

2.1. Electronic Mail 17

(see Section 2.1.1) as we have to do when we want to send a new e-mail by using the send
messages resource method.

2.1.5.7. API Usage Limits

One factor to be taken into account is the limitations of the Gmail API (Google, 2019a,
/v1/reference/quota) which could become a drawback in the application development. It
has a limit on the daily usage and on the per-user rate. In order to measure the usage rate,
�quota units� are de�ned depending on the method invoked (main methods of each resource
are explained in Section 3.1). In Table 2.2 we can consult the value of some methods in
quota units (we have selected the most important methods for our purpose, for the quota
units of other methods it is recommended to refer to (Google, 2019a, /v1/reference/quota)).

Method Where the method is explained Quota units

getPro�le 3.1.3 1
labels.get 3.1.4 1
messages.get 3.1.5 5
messages.list 3.1.5 5
messages.send 3.1.5 100
threads.get 3.1.6 10
threads.list 3.1.6 10
drafts.create (Google, 2019a, /v1/reference/users/drafts) 10

Table 2.2: Main methods' quota units

However, both daily usage limit and per-user rate limit are acceptable for the type of
software we want to build: 1,000,000,000 quota units per day and 250 quota units per user
per second. Therefore there are no constraints (for our purpose) that avoid us to use this
API.

2.1.6. Advantages and disadvantages of e-mail protocols versus the use

of Gmail API

Without using the Gmail API, we may be able to access mail accounts by implementing
the di�erent e-mail protocols that we have studied. Indeed, this implementation would
allow us to access them regardless of the mail server. In other words, we would be able to
work with any e-mail account without the need of being a Gmail one. However, when we
try to develop an application which is going to access to a user's e-mail account, Google
Servers detect it as a non-authorised login and block the authentication process. Then they
send to the user a warning titled �A login attempt has been blocked� with the following
information: �Someone just used your password to try to sign in to your account from
a non-Google application. Although Google has blocked access, you should �nd out what
happened. Check your account activity and make sure that only you have access to your
account�, as we can see in Figure 2.4 (it is written in Spanish).

Against this background, it is possible to change the user's security settings for allowing
the automatic accessing to the account. However, it is not recommended (due to possible
security issues) and creates a sense of insecurity for the user of the application that requires
this con�guration.

On the other hand we have the Gmail API, which facilitates the access to e-mail's data.
Besides, its only disadvantage is to limit the daily usage of this technology by imposing

18 Chapter 2. State of the Art

Figure 2.4: Critical security alert sent to the user.

quota units. However, this quota units are enough for achieving our aim. For these reasons,
and because of the e-mail accounts that we will study belongs to Gmail, the Gmail API
has been chosen as the most suitable way for managing the user's e-mail account.

2.2. Computational stylometry

This �eld of Arti�cial Intelligence (related with Natural Language Processing and Nat-
ural Language Generation) is in charge of studying the writing style in natural language
written documents (although it is often used in applications like the detection of plagiarism
in programmes). In this section we are going to delve into it in order to know the state
of art of this �eld of study. To achieve this, �rst a brief introduction is presented (see
Section 2.2.1), and then the di�erent applications and techniques used in Computational
stylometry are explained (see Section 2.2.2). In addition, it will be necessary to explain
the presentation of computational stylometry in the speci�c �eld of e-mails (see Section
2.2.3) since, as we can deduce, they present singularities with respect to other types of
documents. Finally, various style writing metrics are explained (see Section 2.2.4) for the
purpose of calculating and studying them in a set of di�erent e-mails.

2.2.1. Introduction to Computational Stylometry

Stylometry (Hughes et al., 2012) is the application of the study of linguistic style to
written language, although it has also been successfully applied to music (both in compo-
sition such as in the researches of Manaris et al. (2005), Casey et al. (2008) and Huron
(1991); and performances, such as the study carried out by Sapp (2008)) and visual arts
(Taylor et al., 1999; Hughes et al., 2010). It could be de�ned as the linguistic discipline

2.2. Computational stylometry 19

that applies statistical analysis to literature in order to evaluate the author's style through
various quantitative criteria.

Stylometry is characterized by the assumption that there are implicit features in the
texts that the author introduces unconsciously, such as the use of a speci�c vocabulary that
makes up the writer's mental lexicon and the lexical-syntactic structure of the sentences
in the document, among others (Burrows, 1992).

According to Holmes (1998), stylometry was born in 1851 when Augustus de Morgan,
an English logician, hypothesized that the problem of authorship could be addressed by
determining whether one text �does not deal in longer words� (De Morgan and De Mor-
gan, 1882) than another. Following this idea, three decades later, the American physicist
Thomas Mendenhall carried out research in which he measured the length of several hun-
dred thousand words from the works of Bacon, Marlowe and Shakespeare (Mendenhall,
1887). However, its results showed that word length is not an e�ective writing style fea-
ture which allows us to discriminate between di�erent authors. Since then, numerous
researches have been carried out to analyse the parameters that de�ne writing style more
precisely.

Tweedie et al. (1996) de�ne the writing style as �a set of measurable patterns which
may be unique to an author�. For this reason, various machine learning and statistical
techniques have been used to discover the characteristics that determine it. One of the
�rst and most famous successes was the resolution of the controversial authorship of twelve
of the Federalist Papers. These documents, a total of eighty-�ve papers, were published
anonymously in 1787 to convince the citizens of New York State to ratify the constitution.
They are known to have been written by Alexander Hamilton, John Jay and James Madi-
son, who subsequently claimed their contributions from each of them. However, twelve
were claimed by both Madison and Hamilton. By using the frequency of occurrence of
function words, previously used by Ellegard (1962), and employing numerical probabilities
adjusted by Bayes' theorem, Mosteller and Wallace (1964) attribute the twelve papers dis-
puted to James Madison. Thereafter, Federalist Papers is a famous example in this area
for testing the di�erent solutions, for example Tweedie et al. (1996) make use of neural
networks to solve this problem.

2.2.2. Applications and techniques

In addition to the detection and veri�cation of authorship in historical, literary and even
forensic investigations, stylometry is used in other areas such as the detection of fraud and
plagiarism and the classi�cation of documents according to their genre or audience. Other
possible applications of this area are the prediction of the gender, age or personality of the
author as Schwartz et al. (2013) studied; inference of the date of composition of texts, which
is known as �stylochronometry� (Stamou, 2007; Juola, 2007); and even natural language
generation with style (Gatt and Krahmer, 2018, Section 5.1).

To address all these problems, statistical techniques are mostly used. Some of them
belong to the �eld of machine learning such as Neural Networks (Ng et al., 1997), Support
Vector Machines (Abbasi and Chen, 2005), Principal Components Analysis (Binongo and
Smith, 1999), Decision Trees (Apte et al., 1998), Adaboost (Cheng et al., 2011), K-Nearest
Neighbors (Kucukyilmaz et al., 2008) and Naive Bayes (Sahami et al., 1998). Others are
based on purely statistical approaches (such as cusum used by Summers (1999) or Thisted
and Efron (1987)) or merely syntactic-statistical concepts as in the well-known software
implementations such as stylo (Eder et al., 2016) and STYLENE (Daelemans et al., 2017).
To this last type also belong techniques based on dictionary word counting using Linguistic

20 Chapter 2. State of the Art

Inquiry and Word Count also known as LIWC (Pennebaker et al., 2015), while more recent
ones which use simple lexico-syntactic patterns, such as n-grams and part-of-speech (POS)
tags (Mihalcea and Strapparava, 2009; Ott et al., 2011), belong to the machine learning
approach. We can also �nd techniques outside this paradigm, such as the writing style
features driven from Context Free Grammar (CFG), as we can observe in the research
of Feng et al. (2012), genetic algorithms (Holmes and Forsyth, 1995) and Markov chains
(Tweedie and Baayen, 1998).

2.2.3. Style in e-mails

Electronic mails are a very speci�c type of document in stylometry. Their length, usu-
ally quite short, and the level of reliability, in most occasions between the informality of
spoken word and the relative formality of an o�cial letter, are two of their characteristic
that make them so peculiar. For this reason, a lot of researchers have focused their at-
tention on these type of texts, taking special interest the identi�cation pertaining to the
authorship of e-mail messages such as the published thesis by Corney (2003) or Thomson
and Murachver (2001), who have investigated the existence of gender-preferential language
styles in e-mail communications.

Despite being able to use most of the techniques mentioned above, both the machine
learning (such as K-Nearest Neighbors used by Calix et al. (2008) or Support Vector
Machines used by De Vel et al. (2001)) and the purely statistical approaches (such as
regression algorithms used by Iqbal et al. (2010) for analysing 292 di�erent features in
order to verify the e-mail authorship), it is possible to �nd big di�erences with other
documents such as structural features that pure text lacks. The usage of greeting text,
farewell text and the inclusion of a signature are three examples of these structural features
that we must take into account.

Due to that e-mail documents have several features which distinguish them from longer
formal text documents (such as literary works or published articles), they make any com-
putational stylometry problem challenging compared with others. First of all, as we have
previously said, the length of the e-mails is much shorter than other documents, which
results in certain language-based metrics not being appropriate (such as hapax legomena
or hapax dislegomena, that is to say, the number or ratio of words used once or twice,
respectively). This e-mail's feature also makes contents pro�ling based on traditional text
document analysis techniques, such as the �bag-of-words� representation (for example when
Naive Bayes approach is being used) more di�cult.

Other electronic mail's particularity is the composition style used in formulating them.
That is, an author pro�le derived from normal text documents (for example published
articles) can not be the same as that obtained from a common e-mail document (De Vel
et al., 2001). For example, the briefness of the e-mails causes a greater tendency to get
to the point without excessive detours on the subject, in other words, they have a concise
nature. We may also �nd that they contain a greater number of grammatical errors or even
a quick compositional style that is more similar to an oral interaction, as these can become
a dialogue between two or more interlocutors. In this way, the authoring composition style
and interactivity features attributed to electronic mails share some elements of both formal
writing and speech.

The main feature of e-mail, against other types of documents that we are interested in,
is the variation in the individual style of e-mail messages due to the fact that they, as an
informal and fast-paced medium, exhibit variations in an individual's writing styles due
to the adaptation to distinct contexts or correspondents (Argamon et al., 2003). Many

2.2. Computational stylometry 21

authors such as Allen (1974) and De Vel et al. (2001) support the hypothesis that each
writer has certain unconscious habits when writing an e-mail that depend on the target
audience. However, to the best of our knowledge, there is no research that uses stylometry
to set the parameters of writing style according to the recipient of the message.

2.2.4. Style metrics

According to Rudman (1997), at least a thousand stylistic features have been proposed
in stylometric research. However, there is no agreement among researchers regarding which
�style markers� yield the best results. Chen et al. (2011) (150 stylistic features were ex-
tracted from e-mail messages for authorship veri�cation), Gruner and Naven (2005) (sixty-
two stylometric measurements applied to pairs of text were calculated and then analysed
in order to detect plagiarism in text documents) and Canales et al. (2011) (82 stylistic fea-
tures extracted from sample exam documents were analysed using a K-Nearest Neighbours
classi�er for the purpose of authenticating online test takers) are only three examples of a
large list of researchers which look for appropriate writing style metrics to carry out their
work.

As Brocardo et al. (2013) indicate, analysing a huge number of features does not nec-
essarily provide the best results, as some features provide very little or no predictive infor-
mation. And, as Brocardo et al. (2013) do, our approach is to build on previous works by
identifying and keeping only the most discriminating features.

According to Abbasi and Chen (2008), existing stylistic features can be categorised
as lexical (word, or character-based statistical measures of lexical variation), syntactic
(including function words, punctuation and part-of-speech tag n-grams), structural (espe-
cially useful for online text, include attributes relating to text organization and layout),
content-speci�c (are comprised of important keywords and phrases on certain topics) and
idiosyncratic (include misspellings, grammatical mistakes, and other usage anomalies) style
markers. However, this is not the only existing classi�cation. There are many others like
the one proposed by Corney et al. (2001), in which we see how features are divided as
character-based, word-based, document-based, function word frequency distribution and
word length frequency distribution; or the one proposed by Feng et al. (2012) which uses a
more simple classi�cation of features in words, shallow syntax and deep syntax. However,
hereafter, we are going to use the classi�cation explained in Abbasi and Chen (2008) for
referring to the di�erent metrics.

In a vast majority of approaches, stylometrists rely on high-frequency items. Such
features are typically extracted in level of (groups of) words, characters or part of speech,
called n-grams (Kjell et al., 1994). Whereas token level features have longer tradition in
the �eld, character n-grams have been borrowed from the �eld of language identi�cation in
Computer Science (Stamatatos, 2009; Eder, 2011). However, the most reliably successful
features have been function words (short structure-determining words: common adverbs,
auxiliary verbs, conjunctions, determiners, numbers, prepositions and pronouns) and word
or part of speech n-grams.

A number of successful experiments with function words have been reported, such as
those conducted by Craig (1999), Koppel et al. (2006) and De Vel et al. (2001). N-grams
(word or part of speech ones) to some extent overlap with function words, since frequent
short words count higher, but their frequencies also take into account some punctuation and
other structural properties of the text. Besides, due to n-gram features are noise tolerant
and e�ective, and e-mails are non-structured documents, many researchers working with
this speci�c type of texts, as Brocardo et al. (2013) and Corney et al. (2001), have used

22 Chapter 2. State of the Art

them.
Most reports, such as the previously mentioned composed by Kjell et al. (1994) and

Corney et al. (2001), indicate that 2 or 3-grams gave good categorisation results for di�erent
text chunk sizes but these results were thought to be due to an inherent bias of some n-
grams towards content rather than style alone. The e�ectiveness of n-grams comes from
the fact that they are a successful summary marker, which can replace other markers. It
is able to capture characteristics about the author's favourite vocabulary, known as word
n-grams (Diederich et al., 2003) and are a content-speci�c feature, as well as sentence
structure, known as part of speech n-grams (Baayen et al., 1996; Argamon et al., 1998),
which are a syntactic feature. The problem can be found with a small corpus, since, as
Baayen et al. (2000) suggest, even successful style markers may not be representative for
di�erentiating gender, theme, author, etc. in these cases.

Another metric based on the frequency of the items is the Probabilistic Context Free
Grammar (PCFG) which is used by Feng et al. (2012) in order to detect deception.

All the techniques for setting the parameters of writing style presented so far in this
section have a higher level of complexity than others. This may be due to a high level of
memory required during calculations (as is the case with n-grams) or a higher algorithmic
complexity (as in the case of PCFG). We can also �nd other simple popular metrics used in
other research. A good example is the lexical feature of Burrow's Delta (Burrows, 2002),
which is an intuitive distance metric which has attracted a good share of attention in
the community, also from a theoretical point of view (Argamon, 2008; Hoover, 2004b,a).
Another example is the lexical feature of type-token ratio, which is given by the formula
R = V/N , where N is the number of units (word occurrences) which form the sample
text (tokens) and V is the number of lexical units which form the vocabulary in the
sample (types). The behaviour of this style marker was studied by Kjetsaa (1979) and
an approximation to Normal distribution of types per 500 tokens in all text analysed
was found. Certainly it would seem that the type-token ratio would only be useful in
comparative investigations where the value of N is �xed.

In order to study the sentence structure, as part of speech n-grams do, there are many
other style markers such as the syntactic feature given by calculating the percentage of
part of speech (POS) tags (which have been used by many researchers in stylometry, such
as Argamon-Engelson et al. (1998), Zhao and Zobel (2007), Ott et al. (2011) and Feng et
al. (2012)) and the proportion of stop words in a text proposed by Ril Gil et al. (2014).
One possible approach consists in the style features which take into account the part of
speech tags. The verb-adjective ratio and the article-pronoun ratio belong to this category.
The �rst was proposed by Antosch (1969) and signi�cant results were obtained by showing
that this measure is dependent on the theme of the work. For example, folk tales have
higher values and scienti�c works have lower values. The second was studied by Brainerd
(1974), where there is evidence of a connection between the number of articles and the
number of pronouns in a text.

It is also possible to extract conclusions about the sentence structure through the
punctuation features (which belong to the syntactic metrics category), as Baayen et al.
(2002) studied. One possibility of metrics is to calculate the amount of commas, periods,
semi-colons, ellipsis and brackets as Calix et al. (2008) did.

As we have studied in Section 2.1.1.2, some e-mails use HTML formatting. With this
information, De Vel et al. (2001) include the set of HTML tags as a structural metrics and
study the frequency distribution of them as one of their 21 structural attributes. These
also include the number of attachments, position of requoted text within e-mail body,
usage of greeting and/or farewell acknowledgement and the inclusion of a signature text.

2.2. Computational stylometry 23

Other structural attributes, including technical features such as the use of various �le
extensions, fonts, sizes, and colours, have been used in works such as that conducted by
Abbasi and Chen (2005). This is another possibility for studying the sentence structure
with an structural feature approach.

In addition to the structural features, De Vel et al. (2001) study other lexical-syntactic
metrics based on the amount of blank lines, the total number of lines, count of hapax
legomena, the total number of alphabetic, upper-case and digit characters in words and
the number of space, white-space and tab spaces in the text.

As for the lexical-syntactic characteristics, we can also mention those de�ned by Calix
et al. (2008), some of which are related to punctuation (such as based on the amount
of dollar signs, ampersands, number signs, percent signs, apostrophes, asterisks, dashes,
forward slashes, colons, pipe signs, mathematical signs, question and exclamation marks,
at signs, backward slashes, caret signs, underscores, vertical lines, etc.), to sentence and
paragraph (such as the number of sentences beginning with upper or lower case and the
average number of words per paragraph) and to words (such as number of times �well�
and �anyhow� appear). Other researchers, such as Corney et al. (2001) (184 stylometric
measurements were calculated and analysed by using a Support Vector Machine learning
method in order to identify the authorship of electronic mails), make use of letter frequen-
cies, distribution of syllables per word, hapax dislegomena, word collocations, preferred
word positions, prepositional phrase structure and phrasal composition grammar. As re-
gards frequency distributions of syllables per word, Fucks and Lauter (1965) discovered
that it discriminated di�erent languages more than speci�c authors. However, Brainerd
(1974) claims that a model based on a translated negative binomial distribution was a bet-
ter �t to such distributions than Fucks and Lauter (1965) translated Poisson distribution.
Lastly, Brainerd (1974) concludes that some authors styles are more homogeneous than
others with regard to syllable count and it would appear that the distribution of syllables
per word in a corpus, being an easily accessible index of its style, is one area that may
prove pro�table in stylometry studies.

The most famous and ancient (as we have seen in Section 2.2.1) lexical feature is
the word length (it is also applied to each part of speech as it is explained by Allen
(1974)). However, as Smith (1983) concludes: �Mendenhall's method now appears to be
so unreliable that any serious student of authorship should discard it�. Besides, it is too
strongly in�uenced by the language used or the subject matter dealt with and, furthermore,
can not always admit enough variance to be signi�cant. A better way to measure style
based on this criterion is to construct a graph to show what percentage of words in the text
have one letter, two letters, three, and so on up to the length of the longest word; but the
in�uence of the language itself on such measurements can not be denied (Williams, 1970).

A variation of the word length is the sentence length. It was proposed by Yule (1939)
and its major advantage is that there is a much wider range of words per sentence than
letters per word. However, the major disadvantage is that it can be easily controlled by
an author and it requires more text than is needed for measuring average word lengths.

Other very popular lexical features are those which measure the diversity of a text
(such as the Simpson's Index, presented by Simpson (1949), or entropy, used by Holmes
(1985)), the richness of its vocabulary (such as the Yule's Characteristic, de�ned by Yule
(2014), and the de�nition of richness proposed by Honoré (1979)) and the level of di�culty,
such as the proposed by Dale and Chall (1948), the Gunning Fog Index (Gunning, 1968)
or the Flesch-Kincaid index (DuBay, 2004).

As for the content-speci�c features, the most popular metric, apart from the word n-
gram, is known as the �bag of words�, which consists of storing how many times each word

24 Chapter 2. State of the Art

appears. Previous works, such as those conducted by Mihalcea and Strapparava (2009)
and Ott et al. (2011), have shown that �bag of words� are e�ective in detecting features in
di�erent documents. As Allen (1974) claims: �each writer tends to keep relatively constant
the distribution of high frequency determiners, such as articles and conjunctions, whose
information content is small compared to that of nouns and verbs. The other end of
a frequency list is also of use in that sometimes a distinguishing stylistic feature is the
avoidance of certain words�.

Finally, in respect of idiosyncratic features, they include misspellings, grammatical
mistakes, and other usage anomalies (Abbasi and Chen, 2008). Such features are extracted
using spelling and grammar checking tools and dictionaries (Chaski, 2001). Idiosyncrasies
may also re�ect deliberate author choices or cultural di�erences, such as use of the word
�center� versus �centre� (Koppel and Schler, 2003). Besides, we can add the study of
features which determine the level of formality of the text, as it happens in the study
carried out by Sheika and Inkpen (2012).

2.3. Latent Semantic Indexing

Latent Semantic Indexing (Deerwester et al., 1990; Dumais et al., 1995), as Hofmann
(1999) de�nes it, �is an approach to automatic indexing and information retrieval that at-
tempts to overcome these problems by mapping documents as well as terms to a represen-
tation in the so-called latent semantic space�. In order to construct this (high dimensional
vector) space, the Latent Semantic Indexing (LSI) makes use of two popular mathematical
tools: the Terms Frequency-Inverse Document Frequency (Chowdhury, 2010) and the Sin-
gular Value Decomposition (Golub and Reinsch, 1971). These are studied in Sections 2.3.1
and 2.3.2. Thus, Latent Semantic Indexing (LSI) has the required information for being
able to get the result of a query with keywords with the purpose of obtaining the most
similar document. The way of getting the suitable answer is explained in Section 2.3.3.

2.3.1. Terms Frequency-Inverse Document Frequency

The Terms Frequency-Inverse Document Frequency (TF-IDF), as Tang et al. (2014)
claim, is a popular weighting scheme which expresses how relevant a word is to a document
in a collection. The TF-IDF value increases proportionally to the number of times a word
appears in the document, but is compensated by the frequency of the word in the document
collection, which allows for handling the fact that some words are generally more common
than others.

Variations of the TF-IDF weighting scheme are frequently used by search engines as
a fundamental tool to measure the relevance of a given document to a user's query, thus
establishing an order or ranking of the document. TF-IDF can be successfully used for
�ltering so-called stop-words (words that are used in almost all documents), in di�erent
�elds such as spam detection (Sasaki and Shinnou, 2005).

TF-IDF is the product of two measurements, Term Frequency (TF) and Inverse Docu-
ment Frequency (IDF). There are several ways to determine the value of both. In the case
of Term Frequency (Jones, 1972), the easiest way of calculating tf(t, d) (that is to say the
TF value of the term t in document d) is counting the total number of times a term appears
in an document (an e-mail in our work). Denoting the absolute frequency of the term t in
document d by f(t, d), other possibilities are the boolean frequencies (which returns the
value of one if a term appears in the document and zero otherwise), logarithmically scaled
frequency (de�ned by the expression tf(t, d) = log(1 + f(t, d))), term frequency adjusted

2.3. Latent Semantic Indexing 25

for document length (de�ned by the formula tf(t, d) = f(t, d)/N where N is the number
of words in d) and augmented frequency (to prevent a bias towards longer documents),
which is de�ned by the following formula:

tf(t, d) =
f(t, d)

max{f(t, d) : t ∈ d}
The Term Frequency can be used without calculating the Inverse Document Frequency,

such as the researchers Cohen et al. (1996) and Segal and Kephart (1999) did.
Inverse Document Frequency is a measure of whether or not the term is common in

a document collection. It is obtained by dividing the total number of documents by the
number of documents containing the term, and the logarithm of that ratio is taken:

idf(t,D) = log

(
|D|

|{d ∈ D : t ∈ d}|

)
Where D is the collection of documents. Of course there are other ways to calculate

it, but this is the most common (Tang et al., 2014), used by researchers as Drucker et al.
(1999). The TF-IDF is calculated as tfidf(t, d,D) = tf(t, d) · idf(t,D). A high TF-IDF
weight is achieved with a high frequency of termination (in the given document) and a
small frequency of occurrence of the term in the entire collection of documents.

Once we have calculated the TF-IDF value of all the terms of all the documents in
the collection, we have the TF-IDF table, in which each row corresponds to a document
and each column to a word. This term-frequency matrix could be modi�ed using Singular
Value Decomposition.

2.3.2. Singular Value Decomposition

In linear algebra, the Singular Value Decomposition (SVD) of a real or complex matrix
is a factorization of the matrix with many applications in statistics and other disciplines
(Stewart, 1993). It is performed on the matrix to determine patterns in the relationships
between the terms and concepts contained in the text.

If we denoted with A the transpose term-frequency matrix generated using Term
Frequency-Inverse Document Frequency with m rows (which is the number of di�erent
words) and n columns (number of di�erent documents), the SVD approximates this ma-
trix into three other matrix: an m by r (where r is the rank of A) term-concept vector
matrix T , an r by r singular values matrix S, and a n by r concept-document vector matrix
D. They will satisfy the following conditions:

1. A ≈ TSDT

2. T TT = Idr (Idr is the identity matrix with r rows and columns)

3. DTD = Idr

4. S1,1 ≥ S2,2 ≥ S3,3 ≥ . . . ≥ Sr,r > 0 and S is a diagonal matrix.

Thanks to the Eckart-Young-Mirsky (Stewart, 1993) theorem, it is possible to truncate
the diagonal matrix S to another with a smaller rank, keeping the k � r larger singular
values, where k is typically on the order 100 to 300 dimensions. The truncation operation
preserves the most important semantic information in the text while reducing noise. Then
we can present the following expression:

A ≈ Ak = TkSkD
T
k

26 Chapter 2. State of the Art

2.3.3. LSI Querying

The main objective of LSI is to calculate the similarity between documents. A query
with di�erent keywords may be a document, that is to say, we are able to evaluate the
similarity between a query and each document of the TF-IDF table.

Firstly, it is required to calculate the TF vector of the given query (as we have explained
in Section 2.3.1). Once we have it, and making use of the initial TF-IDF table, it is possible
to obtain the TF-IDF vector of the given query without modifying the table.

As we know the linear combination with which from the set of words we can build the
k components that make up the truncated TF-IDF matrix, we are able to calculate the
value of each component from the TF-IDF vector of the query. Then we can de�ne the
similarity between two vectors (the query q and any document d) as the cosine of the angle
θ they form. This way if the vectors are the same, their angle is zero and its cosine one.
We can calculate the cosine thanks to the expression of the dot product of two vectors:
q · d = ‖q‖ · ‖d‖ cos θ. Taking into account that the dot product is the sum of the product
of each component of the vector, we can obtain the following expression:

cos(q, d) =
q · d
|q| · |d|

=

∑k
i=1 qidi√∑k

i=1 q
2
i

√∑k
i=1 d

2
i

Where vi is the i-th component of the vector v.
With this method, we can �nd the most similar document given a keywords query only

by calculating the cosine of all the documents with the query and taking the text that has
the highest value.

2.4. Conclusions

Electronic mail is a popular communication service whose message transmission and
reception is de�ned with the protocols SMTP, POP and IMAP. The format of the e-mails
is de�ned in MIME standard, which establishes a tree structure that contains the di�erent
information included in the message. Moreover, it describes the possible encodings used
for the transmission.

There are many free e-mail services. One of them is Gmail, which provides us an API in
order to manage a user's account without the need of resorting to the implementation of e-
mail protocols. It is a useful tool for our work, due to the fact that the e-mail account that
we analyse belongs to Gmail. Besides, Gmail API provides us di�erent resources to manage
the messages, labels, drafts and threads of the user. Despite having some limitations in the
number of operations we can daily do with this API (which, in practice, are not reachable
limits for our work), it is the best and most comfortable option for our development.

With Gmail API we can extract the e-mails from a user's account. With the purpose
of measuring the writing style of each message, we use stylometric metrics. Computational
stylometry is a �eld of study which tries to de�ne the writing style through computational
techniques. Many times it has been used in e-mails, which are a very particular texts
due to its concise and summarised nature. Furthermore, there are many metrics de�ned
by strylometrists, such as those which describes the richness of the vocabulary or the
distribution of part-of-speech, that we can use in our work.

If we extract all user's e-mails, we can look for one of them, given a keywords query,
thanks to Latent Semantic Indexing algorithm. It consists of calculating the TF-IDF table
and, then, applying a Singular Value Decomposition in order to truncate it. Next, we can

2.4. Conclusions 27

compare the query with each e-mail truncated TF-IDF vector to obtain its similarity and
get the most similar message.

In order to understand the Gmail API operations and know the di�erent tools that we
can use for calculating the style metrics (among others purposes), we explain some useful
technologies in the next chapter.

Chapter 3
Used technologies

�We've arranged a global civilization in which most crucial
elements profoundly depend on science and technology. We have
also arranged things so that almost no one understands science

and technology. This is a prescription for disaster. We might get
away with it for a while, but sooner or later this combustible

mixture of ignorance and power is going to blow up in our faces.�
� The Demon - Haunted World: Science as a Candle in the Dark

Carl Sagan (1995)

Once we have studied the state of the art, we explore the di�erent technological tools
that we need in the implementation of our work. As our study is focused on the texts of the
e-mails, it is necessary to explain in detail the Gmail API and the functions it provides us
to carry out the di�erent operations (see Section 3.1). Furthermore, a syntactic analyser is
required in order to measure the style of the documents, that is to say, to be able to apply
stylometric techniques. For this purpose, we have chosen spaCy (see Section 3.2). We also
need a framework to develop the di�erent web services we implement, a task for which we
make use of Flask (see Section 3.3). Finally, we explain the database system that we use
for the storage of the di�erent data (see Section 3.4).

3.1. How to work with Gmail API

In order to be able to read e-mails from a Gmail account, it is necessary to access to
the user's e-mail data. For this reason, the di�erent ways to obtain this information were
studied. One of them is the Gmail API, which allows developers to perform all the actions
we need in an easy way.

Gmail API can be used in several programming languages such as Python, PHP, Go,
Java, .NET, . . . Due to the greater number of examples in the starting guides of the Gmail
API (Google, 2019a) and the previous knowledge that was already had of it, Python
(version 3.7) was chosen for the �rst contact with this technology.

The following tries to be a step-by-step explanation of what is necessary to know to
access the user's Gmail account, create a message, send an e-mail previously created, create
and update a draft, reply a received message (for this it is necessary to know how to create
an e-mail) and read important information of message threads and individual e-mails (such
as who is the sender, who has received the message, the subject, the date, the e-mail's body,

29

30 Chapter 3. Used technologies

the attached �les, . . .). Di�erent methods of Gmail API resources (presented in Section
2.1.5) are studied to achieve this aim.

As we have seen in Section 2.1.5.1, in order to work with Gmail API, it is necessary to
obtain the required OAuth 2.0 credentials. For this reason, we developed an implementa-
tion which gets them (see Section 3.1.1). Then, with that credentials, we build a Gmail
resource (see section 3.1.2), which is necessary for obtaining the rest of the resources that
we have explained. Finally, in the rest of this section, delve into the methods of each
resource that we already know.

3.1.1. How to obtain OAuth 2.0 credentials

As we have seen before (see Figure 2.3), to be in possession of OAuth 2.0 client cre-
dentials from the Google API Console is required for having the appropriate permissions
to use the Gmail API (this credential is the �rst request token that is sent to the Google
Servers in the OAuth 2.0 exchange of information).

The Google API Console, also known as Google Console Developer1, built into Google
Cloud Platform, makes possible an authorized access to a user's Gmail data. In order to
achieve it, having a Google account is a prerequisite because accessing to this platform is
necessary. Once this web has been accessed, at �rst we have to create a new development
project by clicking in �New Project� in the control panel (which is the main tab of the
Google Console Developer and the one that opens by default when you access it). When
we have already created a project, we have to enable the API we are going to work with,
in this case the Gmail API. To do this we look for it in the search engine that we can �nd
in the library of APIs of this platform. Now we can apply for the credentials we need.
Accessing to the �Credentials� tab and clicking on �Create Credentials� will lead us to an
easy questionnaire, about what type of credentials we prefer, that we have to answer by
basing on what type of application we are building. Then we must download the .json �le
and save it in the folder we are going to work in.

Before starting the development of the implementation of the OAuth 2.0 protocol which
provides us a secure and trusted login system to access to the user's Gmail data, we must
install the Google Client Library2 of our choice of language (we will use Python, so we
have to install the libraries google-api-python-client, google-auth-httplib2 and google-auth-
oauthlib).

There are many ways to obtain the necessary permissions for accessing to the user's
e-mails data following the OAuth 2.0 protocol. As this is a �rst contact with the Gmail
API, only with the intention of knowing the possibilities it o�ers to us and its advantages
and disadvantages for our implementations, we develop a simple script which is using
a class very useful for local development and applications that are installed on a desk-
top operating system. The class InstalledAppFlow, in google_auth_oauthlib.�ow (Google,
2019b), is a Flow subclass (which belongs to the same library). Thanks to this last class
we have mentioned, InstalledAppFlow uses a requests_oauthlib.OAuth2Session instance at
oauth2session to perform all of the OAuth 2.0 logic. Besides it also inherits from Flow
the class method from_client_secrets_�le which creates a Flow instance from a Google
client secrets �le (this �le will be the .json �le that we obtained through the Google API
Console) and a list of OAuth 2.0 Scopes (Cook and Messina, 2019c).

After constructing an InstalledAppFlow by calling from_client_secrets_�le as we have
explained, we can invoke the class method run_local_server which instructs the user to

1https://console.developers.google.com/
2https://developers.google.com/gmail/api/downloads

https://console.developers.google.com/
https://developers.google.com/gmail/api/downloads

3.1. How to work with Gmail API 31

open the authorization URL in the browser and tries to automatically open it. This
function starts a local web server to listen for the authorization response. Once there is a
reply, the authorization server redirects the user's browser to the local web server. As we
can see in Figure 2.3, the web server gets the authorization code from the response and
shutdowns, that code is then exchanged for a token.

In summary, it is possible to obtain the necessary permissions from the user and to
follow the OAuth 2.0 protocol, by executing these instructions (written in Python):

from google_auth_oauthlib . f low import Instal ledAppFlow

Create a f low in s tance
f low = Instal ledAppFlow . f r om_c l i en t_sec r e t s_ f i l e (' c r e d e n t i a l s . j s on ' ,
[' https : // mail . goog l e . com/ '])
Obtain OAuth 2 .0 c r e d e n t i a l s f o r the user
c reds = f low . run_loca l_server (port = 0)

Now, we are able to call Gmail API by using the token (which is stored in the variable
creds). However, before starting to work on the e-mail data, we should save the OAuth
2.0 credentials since otherwise the user would need to go through the consent screen every
time the application is opened. To prevent this from happening, to di�erentiate access
from mail management and, consequently, to reuse as much code as possible, we have
implemented the following class auth, in auth.py, with a main method get_credentials:

1 import p i c k l e
import os . path
from google_auth_oauthlib . f low import Instal ledAppFlow
from goog l e . auth . t ranspo r t . r eque s t s import Request

5
class auth :
def __init__(s e l f , SCOPES, CLIENT_SECRET_FILE) :
s e l f .SCOPES = SCOPES
s e l f .CLIENT_SECRET_FILE = CLIENT_SECRET_FILE

10
def ge t_c r eden t i a l s (s e l f) :
"""
Obtains va l i d c r e d e n t i a l s f o r a c c e s s i n g Gmail API
"""

15 creds = None
The f i l e token . p i c k l e s t o r e s the user ' s a c c e s s and r e f r e s h tokens
i f os . path . e x i s t s (' token . p i c k l e ') :
with open (' token . p i c k l e ' , ' rb ') as token :
c r eds = p i c k l e . load (token)

20 # I f the re are no (va l i d) c r e d e n t i a l s ava i l ab l e , l e t the user l og in
i f not c reds or not c reds . v a l i d :
i f c reds and c reds . exp i red and c reds . re f resh_token :
c r eds . r e f r e s h (Request ())
else :

25 f low = Instal ledAppFlow . f r om_c l i en t_sec r e t s_ f i l e (
s e l f .CLIENT_SECRET_FILE, s e l f .SCOPES)
creds = f low . run_loca l_server (port=0)
Create token . p i c k l e and save the c r e d e n t i a l s f o r the next run
with open (' token . p i c k l e ' , 'wb ') as token :

30 p i c k l e . dump(creds , token)
return c reds

As we can observe in line 17 within get_credentials method, at �rst we check if the

32 Chapter 3. Used technologies

�le called token.pickle exists, and in that case, it is opened and its information is stored in
the variable creds. Thus, we avoid to force the user to open the authorization screen. By
contrast, as we have seen before, if it does not exists, we obtain the credentials by calling
the class methods from_client_secrets_�le and run_local_server (it is written between
lines 25 and 30).

There is another case that is also re�ected in the code above (in lines 23 and 24): the
credentials are expired (it is possible to check it by executing creds.expired) and they can
be refreshed (the OAuth 2.0 refresh token is creds.refresh_token) (Google, 2019d). In this
situation, we will refresh the access token by invoking the method known as refresh and
by giving it a Request object (Google, 2019c) from google.auth.transport.requests as the
function parameter which used to make HTTP requests.

3.1.2. Building a Gmail Resource

At this point, with the OAuth 2.0 credentials, we are able to call the Gmail API.
For this purpose, it is necessary to construct a resource (Google, 2019a, /v1/reference)
for interacting with the API. The build method, from googleapiclient.discovery library
(Gregorio, 2019), creates that object. As we will see later, this resource lead us to manage
e-mails, drafts, threads and everything we would like to do with the user's Gmail data.
This is why, using the auth.py �le explained in Section 3.1.1, we start every user session
with the instructions below (or their equivalents in the language we are using):

from g o o g l e a p i c l i e n t . d i s cove ry import bu i ld
import auth

SCOPES = [' https : // mail . goog l e . com/ ']
CLIENT_SECRET_FILE = ' c r e d e n t i a l s . j s on '

Creat ion o f an auth in s t anc e
authInst = auth . auth (SCOPES, CLIENT_SECRET_FILE)
Construct ing the r e sou r c e API ob j e c t
s e r v i c e = bu i ld (' gmail ' , ' v1 ' , c r e d e n t i a l s=authInst . g e t_c r eden t i a l s ())

Henceforth, we use the service variable to relate it with the resource object created by
the build method.

3.1.3. Users resource

The build method could be called for obtaining any resource of any Google API (by
giving it the suitable parameters). Our speci�c created service3 has an important instance
method that we are going to invoke for every execution: the users() method. It returns
what is known as users resource (Google, 2019a, /v1/reference/users) that we studied in
Section 2.1.5.2.

The users resource has also instance methods, which return other Gmail API resources
that we are going to need, such as drafts(), labels() (see Section 3.1.4), messages() (see
Section 3.1.5) and threads() (see Section 3.1.6) which return drafts, labels, messages and
threads resources, respectively. Moreover, it possesses the three methods that we explain
hereunder (we must remember that for being able to execute any method that we are going
to explain in this and next sections, it is necessary to have the appropriate authorization
with at least one of the required scopes that we can look up in its documentation):

3http://googleapis.github.io/google-api-python-client/docs/dyn/gmail_v1.html

http://googleapis.github.io/google-api-python-client/docs/dyn/gmail_v1.html

3.1. How to work with Gmail API 33

getPro�le(userId): it returns an object with a dictionary structure as it follows:

{
Total number o f threads in the mailbox
' threadsTota l ' : i n t ege r ,
User ' s e=mail address
' emai lAddress ' : s t r i ng ,
ID o f the mailbox ' s cur rent h i s t o r y record
' h i s t o r y Id ' : s t r i ng ,
Total number o f messages in the mailbox
' messagesTotal ' : i n t e g e r

}

The parameter is a string with the user's e-mail address. If we remember the au-
thentication process, at no time we ask the user about the e-mail address because
we decided to let the Google API functions to handle all that procedure. Therefore
we have no way to know this information. Nevertheless, the special string value 'me'
can be used to indicate the authenticated user. For knowing the required scopes for
invoking this function look up in (Google, 2019a, /v1/reference/users/getPro�le).

stop(userId): stop receiving push noti�cations for the given user mailbox. As it
happens with getPro�le, the parameter is a string with the user's e-mail address, but
it is possible to use the especial string value 'me'.

whatch(userId, body): set up or update a push noti�cation watch on the given user
mailbox.

As we only call the getPro�le method, we have described on detail this �rst function
and we have just given an idea about what the rest of them do. Now, in next sections, we
explain all the resources we can create with the user resource.

3.1.4. Labels resource

As we have studied, we can obtain the mentioned labels resource (Google, 2019a,
/v1/reference/users/labels) by invoking labels() instance method of our users resource,
that is to say, by using our service variable, the instruction service.users().labels() will
return the label resource (it is studied in Section 2.1.5.3).

In order to obtain a label object, we use the methods of this resource: create, delete,
get, list, patch and update. In this manner, for example, we can store a label object by
calling the next instructions:

l a b e l s = s e r v i c e . u s e r s () . l a b e l s ()
l a b e l L i s t = l a b e l s . l i s t (use r Id = 'me ') . execute ()
l a b e l = l a b e l s . get (id = l a b e l L i s t [0] [' id '] , u se r Id = 'me ')

It is necessary to use the get method because, as we can look up in (Google, 2019a,
/v1/reference/users/labels/list), the list method only contains an id, name, message-
ListVisibility, labelListVisibility and type of each label, whereas the get method returns
the label resource with all the information.

3.1.5. Messages resource

As any other resource, the messages resource (studied in Section 2.1.5.4) has di�erent
methods, many of whom we need in this work. Therefore, being aware of these methods

34 Chapter 3. Used technologies

and the operations that we are able to do with them is imperative for facing our goals.
For this reason, in this section we delve into the messages resource methods. As we saw in
Section 3.1.3, we can access to this resource by invoking the messages() method when we
have a users resource. We limit ourselves to describing the methods we may need to use:

attachments(): returns the attachments resource (for more information about this
resource refer to (Google, 2019a, /v1/reference/users/messages/attachments)).

get(userId, id, format = 'full', metadataHeaders = None): if successful, this method
returns the requested messages resource. Its parameters are:

� id : the identi�er string of the message we are looking for.

� userId : the user's e-mail address. As it happens with the getPro�le method of
the users resource (see Section 3.1.3), the special string value 'me' can be used
to indicate the authenticated user.

� format (optional parameter): the format in which we want the message re-
turned. This �eld can take the following punctual values: 'full' (returns the
entirely e-mail data with body content parsed in the payload messages resource
�eld and the raw �eld is empty), 'metadata' (returns only an e-mail message
with its identi�er, e-mail headers and labels), 'minimal' (returns only an e-mail
message with its identi�er and labels) and 'raw' (returns the entirely e-mail
message data with the body content in the raw messages resource �eld as a
base64url (see Section 2.1.1.3) encoded string and the payload �eld is empty).

� metadataHeaders (optional parameter): it is only used when the format param-
eter takes the punctual value of 'metadata'. It is a string list where we have to
insert the headers we want to be included.

For knowing the required scopes for invoking this function refer to (Google, 2019a,
/v1/reference/users/messages/get).

list(userId, includeSpamTrash = false, labelIds = None, maxResults = None, page-
Token = None, q = None): returns a resource with the following structure:

{
' messages ' : [u s e r s . messages r e s ou r c e] ,
' nextPageToken ' : s t r i ng ,
' r e su l t S i z eE s t ima t e ' : unsigned i n t e g e r

}

As it happens with the list method of the labels resource (see Section 3.1.4), 'mes-
sages' list does not contain all of a message information (for obtaining the full e-mail
data we can use get method). Each element of this list only contains the id and
threadId �eld.

The parameters of this method are:

� userId : user's e-mail address (we can use the special string value 'me').

� includeSpamTrash (optional parameter): boolean parameter which determines
if it includes messages with the labels SPAM and TRASH in the result of the
operation.

� labelIds (optional parameter): it is a list which let us �lter the messages by only
returning e-mails with labels that match all of the identi�ers that belong to this
list.

3.2. spaCy 35

� maxResults (optional parameter): an integer which determines the maximum
number of messages to return.

� pageToken (optional parameter): string which speci�es a page of results.

� q (optional parameter): string which let us do an speci�c query (with the same
query format as the Gmail search box) and �lter the messages by only returning
e-mails that match with it.

For knowing the required scopes for invoking this function refer to (Google, 2019a,
/v1/reference/users/messages/list).

send(userId, body = None, media_body = None, media_mime_type = None): it
sends the given message to the e-mail addresses speci�ed in the To, Cc and Bcc
headers. The �rst two parameters are the only ones we will use. The �rst (userId)
is the user's e-mail address (we can use the special string value 'me') and the
second is the message we want to send in an RFC 2822 (Resnick, 2001) format.
For knowing the required scopes for invoking this function refer to (Google, 2019a,
/v1/reference/users/messages/send).

3.1.6. Threads resource

In addition to messages, we also manage the threads of the user (this resource was stud-
ied in Section 2.1.5.5). Because of it, knowing the main operation with them is necessary.
The most important methods of this resource are:

get(userId, id, format = 'full', metadataHeaders = None): if successful, this method
returns the requested threads resource. In respect of the parameters, they are de�ned
in the same way as in get messages resource method (see Section 3.1.5) with the
exception of the parameter format, whose only di�erence is that it does not accept
the 'raw' value. For knowing the required scopes for invoking this function look up
in (Google, 2019a, /v1/reference/users/threads/get).

list(userId, includeSpamTrash = False, labelIds = None, maxResults = None, page-
Token = None, q = None): if successful, it returns a dictionary structure analogous
to the view in the list message resource method (see Section 3.1.5). Needless to say,
instead of returning a messages resource list it will give us a threads resource list,
which does not contain the complete information of each thread (for example each
element of the list has not a list of messages resource). Full thread data can be
fetched using the previous method. The parameters of this method are de�ned in
the same way as the list messages resource method. For knowing the required scopes
for invoking this function refer to (Google, 2019a, /v1/reference/users/threads/list).

3.2. spaCy

After extracting the user's e-mails, we should be able to analyse the body of the e-mails.
To do this we need a syntactic parser in order to separate the di�erent texts in tokens (in
other words, to segment text into words, punctuation marks, etc.) and obtain di�erent
characteristics from them (such as their part of speech) for the purpose of being able to
calculate some of the metrics explained in Section 2.2.4. To attain that objective, we are
going to use the library spaCy4.

4https://spacy.io/

https://spacy.io/

36 Chapter 3. Used technologies

In this section we explain the reasons why we chose spaCy (see Section 3.2.1) and its
usefulness in our work (see Section 3.2.2).

3.2.1. spaCy versus others syntactic parsers

We have chosen spaCy as our syntactic parser against others for several reasons, sup-
ported by published researches (such as the one carried out by Choi et al. (2015)), that we
explain below.

Figure 3.1: Benchmarks of di�erent syntactic parsers
Image extracted from https://spacy.io/usage/facts-figures#benchmarks

An evaluation published by Yahoo! Labs and Emory University, as a part of a survey of
current parsing technologies (Choi et al., 2015), observed that �spaCy is the fastest greedy
parser� and its accuracy is within 1% of the best available (as we can see in Figure 3.1).
The few systems that are more accurate are 20 times slower or more. Speed is an important
factor when we want to implement complex systems that are faced with long texts or a
large number of documents (as is our case, where we want to analyse all possible e-mails).

Figure 3.2: Per-document processing time of various NLP libraries
Image extracted from https://spacy.io/usage/facts-figures#benchmarks

Choi et al. (2015) results and subsequent discussions helped spaCy develop a novel
psychologically-motivated technique to improve spaCy's accuracy, which they published in
joint work with Macquarie University (Honnibal and Johnson, 2015). For this reason we
have chosen spaCy v2.2.1 which takes advantage of this technique.

https://spacy.io/usage/facts-figures#benchmarks
https://spacy.io/usage/facts-figures#benchmarks

3.2. spaCy 37

Furthermore, not only in general but in each particular task (tokenisation, tagging
and parsing), spaCy is the fastest if we compare it with other natural language processing
libraries. This is shown in Figure 3.2, where we can observe both absolute timings (in ms)
and relative performance (normalized to spaCy). The systems which have lower values are
faster in their tasks.

Finally, spaCy has three pretrained model pipelines for Spanish with a very high accu-
racy (see Figure 3.3). These will help us to tokenise, tag and parse our messages in order
to calculate the di�erent style markers de�ned.

Figure 3.3: Benchmark accuracies for the Spanish pretrained model pipelines
Image extracted from https://spacy.io/usage/facts-figures#benchmarks

3.2.2. spaCy's utilities

We can de�ne spaCy as a Python natural language processing library speci�cally de-
signed to be a useful library for implementing production-ready systems. For this reason, it
has a lot of di�erent utilities. However, we only need the ones carried out by the Tokenizer
and the Sentencizer.

The spaCy's Tokenizer class is in charge of dividing the given message into the di�erent
words that constitute it and obtaining several features about them. We are interested in
the attributes that we can observe in Table 3.1. In addition to its part of speech, it gives
us more information (that we are not interested in it) depending on its lexical category,
such as its gender, number, verb tense or, even, the type of adverb.

Attribute Type Explanation

is_punct bool It indicates whether the token is a punctuation mark.
is_right_punct bool It indicates whether the token is a right punctuation mark

(such as a right quote mark).
is_left_punct bool It indicates whether the token is a left punctuation mark.
is_bracket bool It indicates whether the token is a bracket.
like_url bool It indicates whether the token is an url.
like_email bool It indicates whether the token is an e-mail address.
lema_ string Base form of the token, with no in�ectional su�xes.
is_stop bool It indicates whether the token is a stop word.
pos_ string Part of speech of the token.
is_oov bool It indicates whether the token is recognised by our spaCy's

model and it has information about it
text string Verbatim text content.
idx integer The character o�set of the token within the parent document.

Table 3.1: Tokenizer 's interesting attributes

https://spacy.io/usage/facts-figures#benchmarks

38 Chapter 3. Used technologies

The spaCy's Sentencizer class is in charge of establishing the boundaries between each
sentence of the text. In this way, we are able to calculate metrics such as the average
length of the sentences of the document.

3.3. Flask

Some modules implemented in this work have been developed as a web service. For this
reason, it is necessary to use a framework that helps in the task of programming to easily
and e�ciently create this type of service. As we have also decided to work in the Python
programming language, it is convenient that the framework we choose is developed in that
language or is compatible with it. With these restrictions in mind, we chose the Flask5

tool, which allows us to develop free open source web applications written in Python.
Flask is a minimalist framework written in Python that allows us to create web ap-

plications quickly and with a minimum number of lines of code. It is designed to make
getting started quick and easy, with the ability to scale up to complex applications. Flask
is simple and easy to apply in our development, it allows a cleaner backend when handling
users, decreasing memory and speed to avoid server failures. It stands out for installing
extensions or complements according to the type of project to be developed, that is to say,
it is perfect for the rapid prototyping of projects. It includes a web server so we avoid
installing one like Apache or Nginx. Its speed is better compared to other similar tools
like Django. Generally, Flask's performance is superior due to its minimalist design in its
structure. For these reasons we have chosen Flask in order to develop the required web
services.

3.4. MongoDB

As we will see, we need to store di�erent types of data during the analysis of the e-
mails. For this task we have chosen MongoDB6 which is an open source, document-oriented,
NoSQL database system.

Instead of storing data in tables, as is done in relational databases, MongoDB stores
BSON data structures (a speci�cation similar to JSON) with a dynamic schema, making
data integration in certain applications easier and faster (Gy®rödi et al., 2015). This feature
is perfectly adapted to our needs since, as we will see, the data structures we handle are
variable. In addition, no powerful resources are required to work with it and, thanks to
the �exibility o�ered by being a NoSQL database, we can easily carry out modi�cations in
our conceptual model of the database without having to worry about problematic changes
between primary and foreign keys between tables. Moreover, it has o�cial drivers for the
Python programming language we work with.

3.5. Conclusions

In order to be able to extract messages from a user's Gmail account, it is important
to know how the user can give us the required permission for being able to accessing to
the account's information, and the di�erent operations that we can execute with each of
the Gmail API resource. The most important of them are the get and list methods that

5https://flask.palletsprojects.com/en/1.1.x/
6https://www.mongodb.com/

https://flask.palletsprojects.com/en/1.1.x/
https://www.mongodb.com/

3.5. Conclusions 39

labels, messages and threads resource have. The second returns a list of the resource in
the user's account and the �rst returns a speci�c resource, by giving its identi�er.

Once we have extracted the di�erent e-mails, we need a tool for analysing their body
(and helping us in the evaluation of the di�erent metrics). For this task, we use the
syntactic analyser spaCy. It is able to separate a text into tokens (words, punctuations
marks, etc.) and obtain several features of each token, such as its part of speech or its base
form.

With these two tools, together with a web service framework as Flask and a database
system as MongoDB, we are able to design and implement a system which can extract and
analyse the di�erent e-mails of a user account. In the next chapter, we explain how these
technologies are integrated in our implementation with the purpose of developing a style
analyser.

Chapter 4
Style Analyser

�- Marty McFly: Wait a minute, Doc. Ah... Are you telling me
you built a time machine... out of a DeLorean?

- Dr. Emmett Brown: The way I see it, if you're gonna build a
time machine into a car, why not do it with some style?�

� Back to the Future (1985)

When proposing a model for stylometric analysis of e-mails for recipient-based per-
sonalised writing, it is necessary to de�ne parameters which determine and describe the
writing style of a user. For this purpose, we have developed a style analyser that extracts
the messages written by the user and obtains the value of various metrics from them. Then
it will be useful for analysing di�erent user's e-mails and drawing conclusions about what
parameters describe the writing style of each person more accurately.

In this section we explain the architecture of this analyser (see Section 4.1) and each of
the modules that compose it (they are explained in Sections 4.2 to 4.6). Finally, we present
the behaviour of the execution with the Gmail account that is analysed (this discussion
can be looked up in Section 4.7).

4.1. Architecture

The �rst step when we are designing a system's architecture is to know its input and
output. In this case, we want to implement a natural language processing system that
analyses the writing style of e-mails. As we have previously mentioned, the stylometric
analysis is represented through chosen style markers. Therefore, our system's output is
made up of that chosen metrics (they are explained in section 4.5) of each message.

In respect of the system's input, because of the nature of the problem we face, it is
reasonable to think that it must be an e-mail. However, we do not have the corpus of
e-mails to analyse. For this reason, our �rst step is to extract the e-mails that have to be
analysed. Hence, our system's input is the information of the Gmail user for accessing to
the data that we are interested in. Therefore, we develop a system which receives some
information of a Gmail user as input and obtains di�erent metrics for each message sent
by the given user as output.

Once we clearly know the input and output of our system, we need to de�ne the di�erent
steps that a message have to take for being analysed. In this manner, we design a pipeline
architecture with four di�erent phases (extraction, preprocessing, typographic correction
and measuring) as Figure 4.1 shows. Thus, we divide the original job in four di�erent and

41

42 Chapter 4. Style Analyser

more simple tasks with distinct inputs and outputs required. This division into phases
addresses both the need to atomise each of the steps to obtain the desired output, and
to take advantage of bene�ts that a single indivisible system does not provide. One of
these advantages is the possibility of working in parallel with each of the di�erent phases.
Another advantage, without a doubt, is the greater facility for the correction of errors in
the pipeline. Thus, if an error of any kind was found in any phase, this would not a�ect the
implementation of subsequent phases and it would not be necessary to modify the entire
system. This, together with the fact that each phase stores its corresponding output using
di�erent MongoDB documents (see Section 3.4), allows us to change the behaviour of a
phase (either in case of improvement or error correction of the implementation) avoiding
to execute again the previous phases to the modi�ed one, it would only be necessary to
execute the changed phase and the ones that follow it. Finally, it is also important to
note the advantage of reusing each of the phases separately without having to rely on the
others.

Figure 4.1: Pipeline architecture of the style analyser

As it is easy to deduce, each of these phases is developed as a di�erent module. This
implementation have the advantage that each module is able to work independently from
the other modules, which allows them to work in parallel. That is to say, while a message is
being extracted, other e-mails could be being preprocessed, corrected or measured if they
have gone through the previous phases. This optimizes the time it takes for a message to
be extracted until the respective metrics are calculated (it does not have to wait for the
others to move to the next phase of the pipeline). In addition, the last three (preprocessing,
typographic correction and measuring) have been implemented as web services using Flask
(see Section 3.3), which facilitates their reuse even separately in other works and projects.
Let us now brie�y explain what each of the de�ned phases consists of.

The �rst step, extraction phase, consists of the extraction of each one of the sent
messages of the given user. In this task, we take advantage of all the studied concepts
about the Gmail API (see Section 2.1.5) and make use of every resource it provides us.

4.1. Architecture 43

Besides, we try to minimize the consumed quota units in each extraction, which means we
only make the requests to the Google Servers that are strictly necessary. This �rst step is
not just the task of extracting the resource that represents each sent message from the user's
account, but also the job of transforming it to the format that the preprocessing module
needs. Hence, the input of this module will be the same input as that of the complete
system (information about Gmail user) and its output will be an extracted message ready
for being preprocessed.

As for the second step, the preprocessing phase, consists of modifying the extracted
message so that it can be interpreted by the spaCy's natural language processing model
to be used. Some of the changes that a message could su�er in this phase are: the
removal of the signature, the disposal of the replied messages which appears under the
text, the elimination of soft break lines that quoted-printable codi�cation (see Section
2.1.1.4) introduce in some messages, etc. This module also addresses the need to remove
characters and structures that do not correspond to those used in a plain text such as bold
or italic type styles, font sizes and fonts, enumerations or bulleted lists, etc. Likewise, its
output is a message with its body as a plain text.

In the implemented metrics (as we will see in section 4.5) we do not take into account
typographical errors (such as a spelling mistake). So we need to �x them as much as
possible, and this is the typographic correction module's task. In the same way, it is
possible that some tokens do not belong to our spaCy model's vocabulary. Therefore, it is
necessary to know lexical-syntactic information about the token, such as its part of speech
and its lemma. These are the task of the typographic correction module.

Finally, the measuring module is in charge of calculating all the style features chosen
for this work. For that purpose, it receives a message (extracted by the extracting module)
with a plain text format (thanks to the preprocessing module) free from typographic error
(thanks to the typographic correction module) and obtains the result of measuring all the
style markers selected in the given message.

As we have explained, the input of the extracting module is information about a Gmail
user and the input of the rest of the modules is a single message. However, each module is
independent from each other, which means that it is necessary to have a way of assembling
all this modules. For this purpose, the Analyser class is developed (see Section 4.6). This
entity is in charge of sending to each module the required input in order to obtain its
output. Moreover, it presents the system to the user, communicates the information and
captures the user's information (it performs a previous �ltering to check that there are no
formatting errors), such as the typographic correction of the errors found. In this manner,
the architecture of our style analyser system is as shown in Figure 4.2 (in the following
sections we delve into each module of this system), which represents the UML (Uni�ed
Modelling Language) class diagram of it. In this �gure we have avoided including both
attributes and methods of each class, since with it we want to show the general structure of
the system. In the sections corresponding to each of the packages and the Analyser class,
their attributes and methods will be speci�ed and explained.

As we wanted, the Analyser manages the communication between each UML package
(which represent each of the mentioned modules). Thus, this UML class transport the
output of each module to the input of the subsequent phase so as to ful�l the pipeline
established in Figure 4.1.

If we look at the relationship shared by the Analyser class and the Extraction package
(speci�cally with the Extractor class of this module), we will notice that it is an uni-
directional binary association, what it means that the objects of the second are connected
with the objects of the �rst. Furthermore, we can observe a multiplicity index in the

44 Chapter 4. Style Analyser

Figure 4.2: UML class diagram of the style analyser

4.2. Extraction module 45

arrowhead (the Extraction's end), which means that the Analyser is related with an only
Extractor object (it is not necessary to have more than one Extraction package in order to
obtain all user's sent messages).

The rest of packages are �used� by the Analyser, through a POST HTTP request,
because all of them are implemented as web services. It contacts with the module's app
which is related with the module's main class (which is in charge of carrying out its
corresponding task).

An important observation to mention is the fact that all packages interact with their
corresponding classes, which act as DAO (Data Access Object), with the database used
(with MongoDB technology as it is explained in Section 3.4). Their interaction is based
on storing their results in it. The main advantage of this implementation is that it is
not required to have enough dynamic memory in order to process every message at the
same time. In addition to it, as we have explained, if an error is detected in an speci�c
phase, it is not necessary to execute the previous modules again. With this in mind, it is
reasonable to think that each module's main class, of the last three phases, makes use of
the corresponding class with the purpose of saving its result, obviously after �nishing its
execution with the given message.

Below we only have to enter in detail of each of the packages and of the Analyser, in
order to completely understand the style analyser.

4.2. Extraction module

The extraction module encapsulates all the necessary functionality in order to extract
the given user's sent messages. As it is shown in Figure 4.3, this UML package has �ve
di�erent UML classes: Extractor, MessageExtractor, ThreadExtractor, DataExtractor and
ExtractedMessage.

The main class of the above �ve is the Extractor class, which is an abstract class
implemented by MessageExtractor and ThreadExtractor classes. The reason for imple-
menting it as an abstract class with the abstract methods get_list, get_resource and ex-
tract_sent_msg, lies in the desire to minimise the number of quota units used during this
process. Let's explain this in detail.

As we have see in the Table 2.2, to carry out the messages resource's operation costs �ve
quota units and to perform the same operations for the thread's resource costs ten quota
units. However, when the operation messages.get is invoked we get a single message,
whereas when the operation threads.get is called we get as many messages as there are in
the thread. Therefore, minimising the amount of quota units used depends on the number
of messages and threads we have.

When we are in the extraction process, at �rst it is necessary to invoke a list method.
It returns a list of, at least, 100 identi�ers of the resource (message or thread). Then,
these identi�ers are used to obtain (by calling the corresponding get method) each of the
listed resources. If we want to obtain the identi�ers of the remaining resources, we will
have to invoke list again with the nextTokenPage obtained in the previous call. With
this in mind, we are going to invoke the corresponding list method as many times as the
result of applying the ceiling function to the division of the number of resources by 100;
and we are going to invoke the corresponding get method as many times as the amount of
resources the user has (this number is possible to know by calling the get method of the
labels resource and giving it the string value SENT as its parameter called id, which only
consumes one quota units each time). Hence, the number of quota units inverted in an

46 Chapter 4. Style Analyser

Figure 4.3: UML class diagram of the extraction module

4.2. Extraction module 47

extraction process will be determined by the following formula:

Q = L ·
⌈
N

100

⌉
+G ·N

Where L is the cost in quota units of invoking the corresponding list method once, N
is the number of resources that the user has and G is the cost in quota units of calling
the corresponding get method once. It is important to remember that the division is the
integer and not the real one.

Following the previous expression and the quota units cost of Table 2.2, we are able to
claim that the number of quota units inverted in a message extraction process will be:

QM = 5 ·
⌈
NM

100

⌉
+ 5 ·NM

Where NM is the amount of sent messages that the user has. However, the cost in
quota units of a thread extraction process will be determined by:

QT = 10 ·
⌈
NT

100

⌉
+ 10 ·NT

Where NT is the number of sent threads that the user has. Consequently, when we
obtain that QM < QT , we save more quota units by executing a message extraction process
and, when QT < QM , it happens by executing a thread extraction process.

Returning to the extraction module, even though the choice between the two types of
extraction is done by the Analyser (see Section 4.6), it is necessary to implement both
possibilities. For this reason, Extractor class was implemented as an abstract class with
the methods related to the list and get functions of the Gmail API: get_list (which calls
the corresponding list method) and get_resource (which invokes the corresponding get
method). In addition to them, we can �nd the extract_msgs_from_resource as an ab-
stract method. This function is in charge of extracting the necessary information from the
corresponding resource in order to obtain a list of messages (in the case of the message
resource the list has only one item) which are going to be stored in the database. In other
words, it transforms a message (or a thread of messages) with the structure explained in
Section 2.1.5.4 into the following structure (in the case of the thread resource each message
is transformed to the following structure):

{
' id ' : s t r i ng ,
' threadId ' : s t r i ng ,
' to ' : [s t r i n g] ,
' cc ' : [s t r i n g] ,
' bcc ' : [s t r i n g] ,
' sender ' : s t r i ng ,
' depth ' : int , # How many messages precede i t
' date ' : long , # Epoch ms
' sub j e c t ' : s t r i ng ,
Body as p l a i n text encoded us ing base64
' bodyBase64Plain ' : s t r i ng ,
Body as html text encoded us ing base64
' bodyBase64Html ' : s t r i ng ,
Or i g ina l encoding o f the body as a p l a i n text
' p la inEncoding ' : s t r i ng ,
' charLength ' : int

}

48 Chapter 4. Style Analyser

In order to carry out this structural transformation, it is necessary to go through the
MIME type tree structure (see Section 2.1.1.2) and look for the di�erent parts of the
original message.

Once the message has that structure, it is ready to be saved in the database, because of,
as we can observe in Figure 4.3, the dictionary keys are the same as the attributes of the
ExtractedMessage class (which inherits from the mongoengine.Document class, allowing
it to insert elements in the database). Indeed, the extract_msgs_from_resource method
returns a list of ExtractedMessage objects.

In addition to the explained abstract methods, in the Extractor class we can �nd the
extract_sent_msg, which is in charge of the extraction algorithm that we mentioned before
(invoke the corresponding list method, for each identi�er get the resource, call the function
extract_msgs_from_resource, etc.). During this process, the Extractor must check that it
does not exceed the set limit of quota units, both the daily limit and the secondly limit.
Once the daily limit is reached, the process must stop. In the case of the secondly limit,
the Extractor must stop and wait until it can continue using the Gmail API operations.
This is the task of update_attributes (which updates the time and quota attributes such
as quota, quota_sec, last_req_time and init_time) and wait_for_request methods.

In respect of the Extractor class, there is an only remaining detail that should be
mentioned. It has an attribute called html_converter. This attribute is an object of the
HTML2Text class from html2text Python's library1. As we need the e-mail in plain text,
in case the extracted message does not have it in this format, we can use this attribute to
transform the HTML text into plain text.

If we observe the Extraction package, we will also �nd the DataExtractor class, which is
related with the Extractor class by an uni-directional binary association with a multiplicity
index in the arrowhead (the DataExtractor 's end). It performs the task of extracting
the information of a given e-mail. To this end, it goes through the headers list (where
information as the recipient can be found) and the MIME message parts tree studied in
Section 2.1.1.2, in order to get the message body. Likewise, once an e-mail is extracted from
Gmail API, the DataExtractor class receives it and acquires all the required information
from it.

4.3. Preprocessing module

The preprocessing module receives the message with the structure given by the extrac-
tion module and modi�es the e-mail so that it can be interpreted by the spaCy's pretrained
model. As it is shown in Figure 4.4, this UML package has three di�erent UML classes:
PreprocessorApp, Preprocessor and PreprocessedMessage.

First of all, we can observe the PreprocessorApp class. It inherits from Flask class
(see Section 3.3), which implements a simple web service. Consequently, if we want to
preprocess a message, it will be necessary to execute a POST HTTP request with the e-
mail as a json in it. Having done so, the preprocess_message method is invoked and sends
the given message structure to the Preprocessor class by calling its only public method:
preprocess_message. There is also the possibility of transmitting the user's e-mail signature
to the Preprocessor (so that it can be removed from the di�erent messages) by including
it as an string in the sent json.

The main class of this UML package is the Preprocessor class. It is in charge of
modifying the given message. For this reason, it has di�erent methods which implements

1https://pypi.org/project/html2text/

https://pypi.org/project/html2text/

4.3. Preprocessing module 49

Figure 4.4: UML class diagram of the preprocessing module

50 Chapter 4. Style Analyser

the distinct tasks that it has to carry out.
The �rst task this module performs is to �lter those e-mails whose message body as

plain text is empty, which means that they lack the bodyBase64Plain �eld. As our purpose
is analyse the writing style of the user, we are not interested in e-mails without text. Thus,
these messages are discarded.

Then, the images inserted in the message body (not as an attachment) are removed
by calling the __removed_pasted_images method. This function make use of the simple
Python's regular expression r ' \[image:[^\]]+\]', detects the position of the di�erent images
with it and takes them away.

Once pasted images are removed, the __extract_body_msg method removes the text
of replied e-mail (if it exists) and the soft break lines inserted in the body, as a consequence
of the established format in Gellens (1999). When someone replies an e-mail from a Gmail
account, the replied message is automatically included under the response (indeed it is
possible to intersperse the answer and the responded text). As it is not a written composed
by our user, this copied text must be taken away. To this end, the Preprocessor class creates
an object of the EmailReplyParser class of the email_reply_parser2 Python's library.
With its parse_reply method, only the response is obtained with the replied message's
header automatically included (EmailReplyParser class does not remove it). However,
such header is easy to detect by using regular expressions, due to it has an speci�c format
as the following line (written in Spanish):

El mié., 27 may. 2020 a las 11:11, Name (<example@mailserver.com>) escribió:

The designed regular expression detects this type of sentences with the moment (date
and time) and the sender. Once Preprocessor knows its position, it is possible to take it
away.

A similar problem appears with forwarded messages. Nevertheless, unlike replied e-
mails, it is not possible to detect if the user has interspersed new text in the forwarded
written. For this reason, Preprocessor detects the forwarded header, which indicates the
beginning of the resent message, and deletes all the text from it.

In addition to the replied or forwarded text, we �nd the problem of the inserted soft
break lines in order to follow the standard format for sending e-mails. We have imple-
mented two solutions for this issue in __clean_decoded_text and __remove_soft_breaks
methods. The �rst function deletes all soft break lines in messages encoded with quoted-
printable (see Section 2.1.1.4). The second, compares the message body as HTML text
and as plain text and removes all soft break lines that do not appear as an HTML tag.
Moreover, during this process we detects characters that should not appear in the plain
text. For instance, Gmail delimits the text in bold with the symbol �*� (there are more
examples as the beginning of a bulleted list, an enumeration or the change of font or font
size). As in the HTML text it will appear between two tags, we recognise this fact and
take the delimiter character away. In this way we are able to obtain a real plain text.

The last modi�cation made by the preprocessor is the removal of the signature. This
only happens if the user has provided it to the system, since the recognition of the signature
is a complex problem that is not the objective of this work. The __remove_signature
method is responsible for carrying out that task.

Once an extracted e-mail is preprocessed, it is ready to be saved in the database. As it
happened with the ExtractedMessage class, the PreprocessedMessage class inherits from the
mongoengine.Document class, allowing it to insert elements in the database. If we compare
the ExtractedMessage and PreprocessedMessage class, we will realise that they have the

2https://pypi.org/project/email_reply_parser/0.1.0/

https://pypi.org/project/email_reply_parser/0.1.0/

4.4. Typographic correction module 51

same attributes, so a preprocessed message has the same structure as an extracted one.

4.4. Typographic correction module

The typographic correction module receives the message with the structure given by
the preprocessing module and detects the typographic errors present in the given e-mail.
As it is shown in Figure 4.5, this UML package has four di�erent UML classes: TypoCor-
rectorApp, TypoCorrector, CorrectedMessage and Correction.

As it happened with PreprocessorApp, TypoCorrectorApp inherits from Flask class and,
thanks to it, this class implements a simple web service. However, unlike PreprocessorApp,
TypoCorrectorApp has two di�erent methods which carry out di�erent tasks. These two
functions correspond to the two TypoCorrector 's public methods with the same name.
Thus, if we want to invoke one of these public methods, it will be necessary to execute a
POST HTTP request with an e-mail, in order to be corrected (in the case of the method
correct_msg), or with the unrecognised token (which has been wrongly classi�ed as �out
of vocabulary� by our spaCy's model) that is going to be saved (we explain both tasks in
detail later). Each one of them is going to have a di�erent url address.

The main class of this UML package, as it happens with the rest of packages, is the
TypoCorrector class. It is in charge of detecting the typographic errors and correcting them
if it is possible. For this purpose it makes use (as an attribute) of an spaCy's pretrained
model, speci�cally the one called es_core_news_md3.

The �rst public method that we explain is correct_msg, which receives as parameters
a message and an index. The method's parameters are originally a preprocessed message
with its structure and the index as 0, which indicates that the e-mail must be corrected
from the beginning, because it points the word from which the typographic correction
should be made. When the function �nishes its operations, it returns a dictionary with
the following structure:

{
' typoCode ' : <enum 'TypoCode '>,
' index ' : int ,
' typoError ' : str ,
' token_idx ' : int ,
' message ' : {

' id ' : s t r i ng ,
' threadId ' : s t r i ng ,
' to ' : [s t r i n g] ,
' cc ' : [s t r i n g] ,
' bcc ' : [s t r i n g] ,
' sender ' : s t r i ng ,
' depth ' : int , # How many messages precede i t
' date ' : long , # Epoch ms
' sub j e c t ' : s t r i ng ,
' bodyPlain ' : s t r i ng ,
' bodyBase64Plain ' : s t r i ng ,
' p la inEncoding ' : s t r i ng ,
' charLength ' : int ,
' c o r r e c t i o n s ' : [
{

' t ex t ' : str ,
' is_punct ' : bool ,

3https://spacy.io/models/es

https://spacy.io/models/es

52 Chapter 4. Style Analyser

Figure 4.5: UML class diagram of the typographic correction module

4.4. Typographic correction module 53

' i s_right_punct ' : bool ,
' i s_le f t_punct ' : bool ,
' l i k e_ur l ' : bool ,
' l i ke_emai l ' : bool ,
' lemma_ ' : str ,
' i s_stop ' : bool ,
' pos_ ' : str ,
' i s_bracket ' : bool ,
' p o s i t i o n ' : int

}
]

}
}

If no typographic errors are detected in the text or the user's help is not needed, the
message �eld is previously saved in the database, by using the CorrectedMessage class (its
attributes perfectly match with the �elds of the message �eld dictionary), the typoCode
�eld will take the value successful and the typoError and token_idx �elds will take the
value None. However, in other case, the execution of the system changes.

The �rst task the correct_msg method performs is to �lter those e-mails whose message
body as plain text is empty, due to the preprocess could produce this result, such as in
forwarded messages without new text. In this case, the typoCode will take the value
notAnalysed.

Then, it checks from the given index onwards if one token is recognised by our spaCy's
model as �out of vocabulary�. If this happens, the word is searched in the database of cor-
rections (which is easy to manage thanks to the Correction class) in case it was previously
stored in it as a non-out-of-vocabulary token (in this database we have all words that are
not really a typographic error, but they are not recognised by our natural language pro-
cessing model). If the word appears in it, the information of this �correction� is appended
to the �corrections� list (each of its elements has the same �eld as the Correction class'
attributes) and the execution continues as usual, as if no error has been detected.

On the other hand, if the detected �out of vocabulary� token is not in our Correction
database, which means that it could be a real typographic error or a existent word which
is not recognised by our spaCy's model and has not been previously stored, the Analyser
class (out of this module), with the help of the user, will be in charge of determining if it
is a real typographic error and correcting it in that case. For this reason, the TypoCorrect
will return the mentioned structured with the typoCode �eld taking the value typoFound,
the word one with the text of the detected token and the token_idx with the character
position of the beginning of the found word. The index �eld will always take the value of
the position of the last analysed word, if there are no errors detected it will be the number
of words in the message.

Once the Analyser has determined if the given word is a real typographic error, and
corrected it in that case, it invokes again the correct_msg method, through a POST HTTP
request, and it sends as a parameter the returned message �eld (probably with the message
body changed or with a new element in corrections list) and with the corresponding index.
For example, if the detected token was not a real typographic error, the index will be the
position after the word (due to the previous words has been analysed yet). This is the
advantage of this function, it allows us to start a new typographic correction or continue
a previously started one, because it admits as the prep_msg parameter a preprocessed
message or a partially corrected message.

In this section, we have explained when the Correction queries are carried out, but

54 Chapter 4. Style Analyser

we have not said anything about when its elements are inserted. For this purpose, the
save_oov method was implemented. If the Analyser determines that the returned word
is not a typographic error, it can carry out a POST HTTP request in order to save the
information of this word in the database for future cases.

4.5. Measuring module

The measuring module is in charge of calculating all the selected writing style metrics.
In order to measure these features, it receives from the Analyser class a corrected message
with the following structure (which matches with the corrected messages' structure):

{
' id ' : s t r i ng ,
' threadId ' : s t r i ng ,
' to ' : [s t r i n g] ,
' cc ' : [s t r i n g] ,
' bcc ' : [s t r i n g] ,
' sender ' : s t r i ng ,
' depth ' : int , # How many messages precede i t
' date ' : long , # Epoch ms
' sub j e c t ' : s t r i ng ,
' bodyBase64Plain ' : s t r i ng ,
' p la inEncoding ' : s t r i ng ,
' charLength ' : int ,
' c o r r e c t i o n s ' : [
{

' t ex t ' : str ,
' is_punct ' : bool ,
' i s_right_punct ' : bool ,
' i s_le f t_punct ' : bool ,
' l i k e_ur l ' : bool ,
' l i ke_emai l ' : bool ,
' lemma_ ' : str ,
' i s_stop ' : bool ,
' pos_ ' : str ,
' i s_bracket ' : bool ,
' p o s i t i o n ' : int

}
]

}

As we can see in Figure 4.6, the style measuring package has three di�erent classes
with a class diagram similar to that of the preprocess package. These three classes are:
StyleMeterApp, StyleMeter and Metrics.

As with the two previous modules, this package implements a Flask web service which
can be used through a POST HTTP request with the message as a json in it. Having done
so, the measure_style method of the StyleMeterApp class is invoked and sends the given
message structure to the StyleMeter class by calling its only public method: measure_style.

The main class of this UML package is the StyleMeter class. It is in charge of calculating
the style features. For this reason, it has di�erent methods which implement the distinct
style markers that it has to evaluate.

As the reader is able to deduce after presenting the previous sections, the Metrics class
stores in the database the results of measuring each message. The StyleMeter class uses it

4.5. Measuring module 55

Figure 4.6: UML class diagram of the measuring module

56 Chapter 4. Style Analyser

once it has calculated all the style characteristics.
We have used 31 lexical-syntactic features (due to previous studies, such as that con-

ducted by Homem and Carvalho (2011), yield encouraging results with lexical-syntactic
features), following the classi�cation of Abbasi and Chen (2008) (which categorised stylistic
features as lexical, syntactic, structural, content-speci�c and idiosyncratic style markers),
and we will now divide them into four categories in which we have grouped them according
to their usefulness in terms of what type of conclusions we can infer from each of them.
These categories are: part of speech features (see Section 4.5.1), punctuation features (see
Section 4.5.2), vocabulary features (see Section 4.5.3) and structural features (see Section
4.5.4). We must not confuse this latter category (which belongs to the lexical features of
the classi�cation given by Abbasi and Chen (2008)) with the structural metrics explained
by Abbasi and Chen (2008). Some of the popular metrics which are not used in this work,
belong to the structural, content-speci�c and idiosyncratic style markers of Abbasi and
Chen (2008), but there are others which belong to the same categories as the explained
metrics (lexical and syntactic).

The choice of the metrics presented below, some essentially simple, has been directed
by the objective of �nding easily explainable characteristics that set the parameters of the
style of writing according to the recipient of the e-mail. In addition to it, we are interested
in being able to draw conclusions from the results obtained with the metrics and use them
to develop, in future projects, systems of natural language generation of e-mails that take
into account this factor. Indeed, the last part of this work is a personalised writing model
based on the recipient which takes in advantage the conclusions that we present in this
work. For this reason, some excessively complex metrics, although popular in stylometry
(such as n-grams), have been avoided and an attempt has been made to prioritize the
explainability of the chosen features.

Finally, we relate the explained style markers with their implementation (see Section
4.5.5) in the Metrics class.

4.5.1. Part of Speech metrics

We will call our part of speech metrics as the syntactic features which have to do
with the part of speech of each word of the e-mails. Following the suggestion of Holmes
(1985), we count the number of nouns, verbs, adjectives, adverbs, pronouns, determinants,
conjunctions and prepositions of each text. By calculating this, signi�cant stylistic traits
may be found, because as Somers (1966) claims: �A more cultivated intellectual habit of
thinking can increase the number of substantives used, while a more dynamic empathy and
attitude can be habitually expressed by means of an increased number of verbs. It is also
possible to detect a number of idiosyncrasies in the use of prepositions, subordinations,
conjunctions and articles�.

In addition to this metrics, we calculate the verb-adjective ratio and the determinant-
pronouns ratio, proposed by Antosch (1969) and Brainerd (1974), respectively.

4.5.2. Punctuation metrics

In order to extract conclusions from this syntactic metrics, and following the example
of Calix et al. (2008), we calculate the amount of commas, periods, semi-colons, ellipsis
and pair of brackets. With these features we can reach conclusions such as the structural
complexity of a message (since, for example, juxtaposition structures appear in the pres-
ence of some of these scores), the division into sentences of the message or the need for
clari�cation of the text transmitted (for example, by analysing the amount of brackets).

4.5. Measuring module 57

4.5.3. Vocabulary metrics

In terms of the used vocabulary, we work with the �bag of words� metrics, in other
words, we note how many times each di�erent word is used in a message. Of course this is
not the only metric that we can categorise as a vocabulary feature and from which we can
extract conclusions about the vocabulary used. There are many others which try to set
the parameters of, for instance, the di�cult of the vocabulary or its richness. Furthermore,
from the computing of the bag of words, we are able to easily obtain other style marker
chosen which also belongs to this category of vocabulary features: the amount of di�erent
words in each text, proposed by Ril Gil et al. (2014) and by Corney et al. (2001).

As for the di�culty level, it determines the level of education that someone needs to
have if they are to understand the text. There are several indices available to calculate this
level, such as the proposed by Dale and Chall (1948), the Gunning Fog Index (Gunning,
1968) or the Flesch-Kincaid index (DuBay, 2004), although the latter is the most commonly
documented and cited. The expression which determines the Flesch-Kincaid index is the
following:

IFK = 1.599λ− 1.015β − 31.517

Where λ is the mean of one-syllable words per 100 words, and β is the mean sentence
length measured by the number of words. However, as our spaCy's pretrained Spanish
model (see Section 3.2) is not able to divide words by syllables, we determine λ as the
mean of words with two or less characters per 100 words.

In respect of the richness of the vocabulary, we have chosen two di�erent metrics. The
�rst that we are going to explain is the one proposed by Honoré (1979), which determines
the richness of the vocabulary based on the total unrepeated words used in the text. The
following formula de�nes it:

RH =
100 log(M)

M2

Where M is the number of di�erent words in the text. However, as Ril Gil et al.
(2014) claims, depending on the type of document being analysed, the calculation of RH

has more or less validity (for instance, certain specialist articles, as their nature, requires
constant repetition of words). As a consequence of this, another de�nition of richness of
vocabulary is proposed by Yule (2014). This richness marker, that we use as our second
richness of vocabulary style marker, is called Yule's characteristic and de�ned with the
following expression:

K =
104

(∑∞
i=1 i

2Vi −M
)

M2

Where M is the number of di�erent words in the text and Vi is the number of words
that appear i times in the document.

From Yule's Characteristic we are able to calculate the Simpson's Index (denoted as
D), de�ned by Simpson (1949). This famous metric is understood as the measurement of
diversity based on the change that the two members of an arbitrary chosen pair of word
tokens will belong to the same type. To calculate D it is necessary to divide the total
number of identical pairs in the sample by the number of all possible pairs, that is to say,
what the following expression de�nes:

D =

∑∞
i=1 i(i− 1)Vi
M(M − 1)

58 Chapter 4. Style Analyser

Where we are maintaining the Yule's Characteristic notation. However, as we have
transmitted in advance, it is possible to calculate the Simpson's Index if we know the value
of Yule's Characteristic. This relationship is de�ned by the following expression (and we
use it in the implementation in order to speed the computing):

10−4K = D

(
1− 1

M

)
Vocabulary distribution can also be measured by using a concept linguists have bor-

rowed from thermodynamics and applied to communication theory: entropy (used by
Holmes (1985)). In literary text it is true that with an increase in internal structure,
entropy decreases, and with an increase in disorder or randomness, the measure of entropy
increases. The expression for the entropy of a system (vocabulary in this case) is:

H = −
∞∑
i=1

pi log(pi)

Where pi is the probability of appearance of the i-th lemma (found by dividing the
number of occurrences of that lemma by the total number of words in the text). Due to
the value will change according to how much text is analysed, the formula may be re�ned
in order that works of di�erent length may be compared. In this way, as it is proposed by
Holmes (1985), the following expression determines absolute diversity for any length text
as 100, while absolute uniformity remains zero:

H = −100
∞∑
i=1

pi
log(pi)

log(M)

In addition to the words distribution features (which are the bag of words and the
amount of di�erent words), the level of di�culty, the richness of vocabulary (which is
measured by the formula proposed by Honoré (1979) and the Yule's Characteristic), the
diversity (represented by the Simpson's Index) and the internal structure of the vocabu-
lary (which is measured by the entropy), we have de�ned other four style markers which
also allow us to extract conclusions about some feature of the vocabulary of the message.
The �rst of these is the most popular and old style marker: the mean word length. Re-
searchers as Ril Gil et al. (2014) claim that it is �directly connected with the richness of
the author's vocabulary and measures his or her ability to use complex words�, due to it is
considered that complex words are formed by three or more syllables that do not represent
proper nouns, pre�xes, su�xes or compound words. Thus, Ril Gil et al. (2014) propose an
expression similar to the following one in order to calculate it:

LW =

∑∞
i=1 i ∗ Ci

N
· 100

Where Ci is the number of words with i characters and N is the number of words
used. This formula is analogous to the expression proposed by Ril Gil et al. (2014), except
that with the one that we have presented the punctuation marks are removed from the
numerator.

The second of these writing style metrics is the measurement of words length frequency
distribution, that is to say, how many words with one character appear in the document,
with two characters and so on up to the length of the longest word. Despite of being
strongly in�uenced by the language, it is used by researchers as Corney et al. (2001) and
Kemp (1976), as Allen (1974) claims: �Each writer, however, will have his own curve, so

4.5. Measuring module 59

that although English (and German) texts in general peak at three letters, the writings of
John Stuart Mill peak at two and those of Shakespeare peak at four�. Our interest will
then focus on checking whether, in addition to depending on the author, this metric varies
according to the recipient of the e-mail.

The rest of vocabulary features are related to the stop words present in the text. The
simplest of those metrics is the style marker which consists of calculating the total number
of stop words (denoted as TS). On the other hand, as it is proposed by Ril Gil et al. (2014),
we will calculate the stop words ratio, which is de�ned with the following expression:

SW =
TS
N
· 100

4.5.4. Structural metrics

We will denote by structural metrics those features that we obtain directly from the
construction of the analysed text. Some of these style markers are as simple as the total
number of characters in the body of the e-mail or the absolute number of words in the
e-mail, both used by researchers such as Corney et al. (2001) and Ril Gil et al. (2014).

Most of these features are sentence length dependent. Both Tallentire (1972) and
Kjetsaa (1979) agree that summary measures such as average sentence-lengths are of little
use in stylometry studies but distributions of sentence-lengths can be useful, even on their
own. Taking into account the above, we will �nd both the distribution of the length of
the sentences (calculated in number of characters and number of words) and the average
length of the sentences in a message found by the number of words, as it is proposed by
Corney et al. (2001). For the �rst one, we are going to store the number of sentence with
length one, two, three and so on up to the length of the longest one, by measuring it using
both the number of characters and the number of words.

4.5.5. Relationship between metrics and their implementation

Every explained style metrics are stored as an attribute of the Metrics class. The
relationship between them, the presented style features and the categorisation of these
style markers is exposed in Table 4.1.

There is only one attribute that we have not mentioned and does not appear in Table
4.1: metricsSentences. This attribute is a list of as many items as there are sentences in
the document and each of them has the following dictionary structure:

{
'numStopWords ' : int ,
'ADV' : int ,
'VERB' : int ,
'ADJ ' : int ,
'ADP' : int ,
'NOUN' : int ,
'PRON' : int ,
'DET' : int ,
'CONJ ' : int ,
'numCommas ' : int ,
' numDots ' : int ,
' numSemiColon ' : int ,
' num3Dots ' : int ,
' numBrackets ' : int ,

60 Chapter 4. Style Analyser

Feature Category Field name Explanation

Part of speech

ADV Number of adverbs
VERB Number of verbs
ADJ Number of adjectives
ADP Number of prepositions
NOUN Number of nouns
PRON Number of pronous
DET Number of determinants
CONJ Number of conjunctions
verbAdjectiveRatio Verb-adjective ratio
detPronRatio Determinant-pronouns ratio

Punctuation

numCommas Number of commas
numDots Number of periods
numSemiColon Number of semi-colons
num3Dots Number of ellipsis
numBrackets Number of pair of brackets

Vocabulary

wordsAppearance Bag of words
numDifWords Number of di�erent words
di�cultyLevel Modi�ed Flesch-Kincaid index (IFK)
richnessVocab Honoré (1979) vocabulary richness (RH)
richnessYule Yule's characteristic (K)
SimpsonIndex Simpson's index (D)
entropy Entropy (H)
meanWordLen Mean word length (LW)
wordLength Word length distribution
numStopWords Number of stop words
stopRatio Percentage of stop words (SW)

Structural

charLength Number of characters
numWords Number of words
sentLength Sentence length distribution (number of char-

acters)
sentNumWords Sentence length distribution (number of

words)
meanSentLen Average word count per sentence

Table 4.1: Classi�cation of the style metrics

4.6. Analyser class 61

' wordLength ' :
{

' 1 ' : int ,
' 2 ' : int ,
. . .

}
' charLength ' : int ,
'numWords ' : int ,
' s topRat io ' : f loat ,
'meanWordLen ' : f loat

}

With this dictionary, we calculate these metrics for each sentence, instead of evaluating
them on the entire message.

4.6. Analyser class

The Analyser class in charge of managing all phases in the pipeline, in other words,
it sends to each module the required input in order to obtain its output. Besides, as it
has been explained in Section 4.4, where the typographic correction module was presented,
it asks the user the necessary information for the purpose of detecting and correcting, if
it is required, the found typographic errors. In addition to it, as we can see in Figure
4.7, this class is able to store information in the database and extract it through the
SessionTypoError class.

The Analyser 's class constructor has an special interest in this system, due to it chooses
the type of extraction that is going to be executed: a message extraction or a thread
extraction. With the purpose of making this choice, the get method of the labels resource
is invoked in order to obtain the value of the �elds messagesTotal and threadsTotal of
the SENT label structure (see Section 2.1.5.3). With this values tha Analyser is able to
calculate the quota units cost (as we see in Section 4.2) of each type of extraction (this
task is carried out by the __get_res_cost method) and choose the one which minimises
it. After deciding it, it gives e�ect to the choice by creating the corresponding object with
the type of extraction (MessageExtractor or ThreadExtractor).

Once an Analyser object is created, the entire system can start its execution by calling
the analyse function (the web services of the modules which represent the last three phases
in the pipeline have to be running). During the execution of this method, the only module
that could require the attention of the Analyser is the typographic correction module. The
rest of the packages only need this class to provide the input messages and collect their
output structures.

If the TypoCorrector detects a typographic error, the �rst action that the Analyser
carries out is searching in the database if that word was previously found and corrected.
For this purpose, the SessionTypoError stores the common typographic errors that a user
made (this collection is dropped at the beginning of each execution) and how to solve it (the
solution �eld has the same structure as the items of the list corrections of the structure
given by the TypoCorrector). If it is a real typographic error, the typo_error �eld will
take the value True and in the solution dictionary the text that should replace the word
is stored. If it is not, the solution dictionary will be appended to the corrections list and
the message will go on being corrected.

In the case that this typographic error is not stored, the Analyser will ask the user
whether the message has to be discarded (this option allows the user to remove from the

62 Chapter 4. Style Analyser

Figure 4.7: UML class diagram of the Analyser

pipeline, for instance, e-mail written in other languages). If it is discarded, the Analyser
sends then next message ready to be corrected to the typographic correction module. If
it is not discarded, the __req_token_correction method is invoked. This function asks
the user whether the word is a real typographic error. If it is, there are two solutions:
to remove the token from the text or to rewrite it. Either way, at the end the user is
going to answer the question: �Do you want to save this information for this session?� In
this way the user will decide whether the solution is inserted in the collection managed by
SessionTypoError in case the same error is detected again.

If it is not a real typographic error, the user will answer some questions about the
token: such as whether it is an url, an e-mail, a punctuation mark, a stop word, what
its part of speech is and what its lemma is. Then, this information is appended to the
corrections list and ask the user whether this information is stored in Correction collection
for the future or in SessionTypeError collection for this session.

Once the detected word is managed, the Analyser resends the message to the typo-
graphic correction module in order to go on correcting it.

4.7. Execution behaviour 63

4.7. Execution behaviour

After executing it with the Gmail account that is analysed (the author's Gmail ac-
count), of the 1084 e-mails extracted, 921 were measured, which represents approximately
the 84.96% of the total. In this execution, all the 1084 messages were correctly prepro-
cessed, but 163 were discarded in the typographic correction phase. Some of them were
discarded because, after the preprocessing, they were missing text, whereas the rest of
them did not pass this phase due to its language (there were e-mails written in English) or,
a minority because they had a not interested message body for the analysis of the writing
style (for example we found some e-mails whose only text was an url).

4.8. Conclusions

In order to measure all the e-mails of a user, we have developed a style analyser which
has four di�erent phases: extraction (which makes use of Gmail API with the purpose
of extracting all the sent messages), preprocessing (which is in charge of transforming the
body of the e-mail so the spaCy model can analyse it, for instance by removing the signature
or soft break lines introduced due to the message encoding), typographic correction (which
detects and corrects the typographic mistakes) and style measuring (which calculates the
value of di�erent metrics for each e-mail). The modules which correspond to the last
three phases are implemented as web services so they are easily reusable in other projects.
Besides, each module is independent to the rest of them. For this reason, it is necessary
to have an Analyser class in charge of assembling all these di�erent packages.

After executing the style analyser with a Gmail account, we obtain the metrics of 921
messages. With these results, we can study the e�ectiveness of each metric to distinguish
the di�erent recipients of the messages. In the next chapter, we try to draw conclusions
about the obtained metrics.

Chapter 5
Style feature analysis

��Data! data! data!� he cried impatiently. �I can't make bricks
without clay.��

� The adventure of the Copper Beeches
Arthur Conan Doyle (1892)

Once we have calculated the values of 31 metrics of all the messages of a user, our goal
is to determine which ones vary and di�er depending on the recipient of the message, that
is to say, which one distinguish better the di�erent receivers of the information. With this
in mind, in this chapter we analyse the resulting values of measuring each message with
the style analyser.

The �rst step in our analysis is to prepare the data. For this purpose, we have to
categorise the di�erent contacts depending on their relationship with the sender, choose
the style metrics that we want to study, and modify their values in order to have the data
ready for being analysed (with techniques such as standardisation and normalisation). This
data preparation process is presented in Section 5.1.

With a de�ned classi�cation of each contact, we can carry out a preliminary analysis
of the style descriptors considered using clustering techniques (see Section 5.2). With this
analysis we want to evaluate how well metrics �t to our categorisation. Thus, we can value
the e�ectiveness of our chosen style metrics in order to distinguish the writing style based
on the recipient of the message.

As we will see, due to the big amount of style metrics, to describe the features and the
di�erent categories of contacts is too di�cult. For this reason, a dimension reduction is
required. In this way, we can focus on the most signi�cant dimensions which distinguish
between the e-mails sent to di�erent recipients. There is a wide variety of dimension reduc-
tion techniques, but we will start with the most popular of them: Principal Component
Analysis (see Section 5.3). With this method, due to its nature, we can obtain results
with as many features as we want, but with the disadvantage that PCA does not take
into account our categories. In addition to it, each category is not well balanced. For
these reasons, it is also necessary to use a less common dimension reduction technique:
Gini Importance of Decision Trees (see Section 5.4). With the application of this machine
learning method, wa can take into account our classi�cation and reduce the system to only
eight dimensions.

Finally, we repeat the analysis with clustering techniques, but this time with the ob-
tained eight dimensions (see Section 5.5). The purpose of this is to value the e�ectiveness
of these metrics in the task of distinguishing between messages with di�erent recipients.

65

66 Chapter 5. Style feature analysis

5.1. Data preparation: e-mail classi�cation, metrics choice

and correlation analysis

First of all it is necessary to classify the di�erent recipients of the analysed messages.
For this purpose, all the contacts (a total of 337 di�erent e-mail addresses) have been
divided into twelve categories depending on their relationship with the analysed user.
These categories are: friend, acquaintance, company (in this category are grouped all the
company contacts with which the user has had a relationship to contract their service),
university, boss, colleague, professor, relative, stranger, university position, casting (the
people with which the user was in touch in order to manage a theatre casting belong to
this relationship type) and company recruiting (where are classi�ed the e-mail addresses
that the user contacted to be a candidate in a recruiting process).

Our style markers were applied to each message, so it is necessary to categorise the
di�erent e-mails. With this in mind, we determine the category of the message depending
on its recipient(s). Classifying e-mails destined for a single e-mail account is a trivial
problem (its category will be the one assigned to the message's recipient). We can also
directly classify those messages whose recipients all belong to the same category. E-mails
that have several receivers from di�erent categories are automatically classi�ed when they
have only one addressee in the recipients �eld To (they are grouped in that contact's
category), which represents the main recipient(s) of the message, while the Cc (Carbon
Copy) and Bcc (Blind Carbon Copy) �elds have the purpose of keeping the addressees in
there informed. Otherwise, we classify it one by one (there were only 14 messages out of
921 that we had to review) depending on the type of relationship we think indicates the
wording of the message.

After this classi�cation process, we obtained the distribution of relationship categories
that we can see in Figure 5.1. As we can observe, we have not equally distributed classes
and this represent a problem in our data analysis. Indeed, the biggest class (the profes-
sor class) represents approximately 39.41% of the total, while the second one (university
position) in size is the 13.25%. And, of course, both categories are far from the smallest
class (acquaintance) which only represents approximately 0.33%. Despite this unbalanced
distribution between the di�erent categories, we will analyse this data set and obtain con-
clusions in order to detect the most signi�cant features for di�erentiating the writing style
based on the recipient of the e-mail. We have to take into account that the conclusions
will be closely linked to the data obtained given the small sample size.

Once all e-mails are classi�ed in our twelve categories, we have to choose which style
features we are going to analyse. At �rst glance, there are features of each message (the
attributes of the Metrics class, which can be looked up in Section 4.5) from which we
are not be able to extract signi�cant numerical information, such as the sender of the
e-mails (which is the same for all of them), the subject and the identi�er of the thread
they belong to (called threadId). Besides, as the distribution of the di�erent categories is
too unbalanced, we risk losing underrepresented classes if a time-related weight is applied
over the several metrics. For this reason, we decide not to take the date into account for
our analysis.

In addition to the mentioned features, we have removed from our data set the follow-
ing writing style markers: metricsSentences, wordLength, sentLength, sentNumWords and
wordsAppearance. All of them describe a distribution of a style feature (or several as the
metricsSentence attribute) through a dictionary or list structure, which are excessively
complex to manipulate with the rest of the style features using common machine learning
techniques. Furthermore, they would produce a big amount of NaN (Not a Number) values

5.1. Data preparation: e-mail classi�cation, metrics choice and correlation analysis 67

Figure 5.1: Distribution of relationship categories

in our data set, because of the diversity in the number of sentences and words used in each
e-mail (for instance if a message has an only sentence, all the style metrics related to the
subsequent sentences will have a NaN value).

Therefore, we are going to work with 27 writing style markers, the depth of the message
(perhaps we can �nd signi�cant conclusions with this parameter) and the identi�er of each
message as index of each of the rows of our data set.

E-mail messages, by nature, do not contain a constant number of words from message to
message. To overcome this variable and now that we have decided the style characteristics
that we are going to study, the features are normalized, because techniques that require it
(such as the K-Means algorithm) are used. Besides, we are going to �nd some NaN values,
for example in verbAdjectiveRatio and detPronRatio in the messages where there are not
adjectives or pronouns, respectively. The solution to overcome this problem, due to some
algorithms do not admit data set with this type of values, is to assign the value of the
arithmetic mean in the sample of individuals in the category to which the message belongs
of the style marker in question, when it will be necessary. In other words, if an e-mail of
the category C has a NaN value in the style metric M , it will be replaced by the value of
the arithmetic mean of the feature M of the rest of the messages of class C.

It would be desirable to be able to visualize the main descriptive statistics to get an
idea of each of the metrics. Nevertheless, given the big amount of style markers, the
visualization becomes very complicated. For this reason, in the following sections, we
try to reduce the dimensionality of the system in order to be able to explain the main
characteristics and describe the writing style.

Before starting with the data analysis, we are going to study the relationship between
each selected feature. To carry it out, the Pearson correlation coe�cient (Benesty et
al., 2009) is going to be calculated between each pair of style markers. It is a measure of
linear dependence between two quantitative random variables. Unlike covariance, Pearson's

68 Chapter 5. Style feature analysis

Figure 5.2: Pearson correlation coe�cient between each pair of features

5.2. Preliminary analysis of the metrics considered using clustering techniques 69

correlation is independent of the scale of measurement of the variables. Less formally, we
can de�ne Pearson's correlation coe�cient as an index that can be used to measure the
degree of relationship of two variables as long as both are quantitative and continuous. It
has a value between −1 and +1, where 1 is total positive linear correlation, 0 is no linear
correlation, and −1 is total negative linear correlation.

As a result of the calculation of the Pearson correlation coe�cient, we obtain the
heat map of the Figure 5.2. Logically, there is a positive linear correlation between those
metrics that are strongly in�uenced by the length of the message. These pairs of style
markers represent almost all results obtained close to the value 1. Moreover, there is a
total positive linear correlation between Yule's Characteristic and Simpson's Index, which
was predictable given the de�nition of one style feature with respect to the other (see
Section 4.5.3). These relationship will be taken into account during the analysis of the
data.

5.2. Preliminary analysis of the metrics considered using clus-

tering techniques

In an initial approach, we are interested in knowing how well metrics �t our twelve
category classi�cation. To achieve this, we have executed two popular clustering algorithms
which are going to group our set of elements (composed of the di�erent style features) in
such a way that members of the same group (called a cluster) are more similar in one way
or another. These algorithms are K-Means (Hartigan, 1975) and DBSCAN (Ester et al.,
1996).

Both algorithms require a parameter (in the case of K-Means the parameter is the
number of clusters and in the case of DBSCAN the threshold distance that determines a
neighbourhood of elements) which has to be de�ned before their execution. To make the
decision of the initial value of the parameter there are methods based on the internal and
cluster dispersion obtained. For this purpose, measures are taken to help the decision,
such as the Silhouette Coe�cient (Rousseeuw, 1987). It is a method of interpretation
and validation of consistency within clusters of data. The technique provides a succinct
graphical representation of how well each object has been classi�ed. The best value is 1
and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the wrong cluster, as a di�erent
cluster is more similar. Likewise, we can obtain a general idea of the behaviour of the
clustering by calculating the mean Silhouette Coe�cient for all samples.

Furthermore, we need to assess how much our classi�cation resembles the clusters
obtained after the execution of each of the algorithms. For this evaluation, we can use
the Adjusted Rand Index (ARI), which is a form of the Rand index (Rand, 1971) that
conforms to the random grouping of elements. The Adjusted Rand index is thus ensured
to have a value close to 0.0 for random labelling independently of the number of clusters
and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

Due to the presence of NaN values, we are not able to use the K-Means algorithm
directly on the data. Instead of replacing the NaN values as we have explained in Section
5.1, we are going to use a slight variation from the K-POD algorithm (Chi et al., 2016),
which runs K-Means iteratively while it modi�es the cells where the value is missing by
assigning the value of the centroids. The algorithm that we are going to use, similar to the
K-POD, is the one shown in Algorithm 1, where we have two invoked functions. The �rst
one is mean, which returns the mean of the given array without taking into account the

70 Chapter 5. Style feature analysis

Algorithm 1 K-Means with missing values
INPUT: Data set X (represented as a matrix whose columns are the features and whose

rows are the di�erent samples) with missing values, number of clusters k and the
maximum number of iterations to perform maxiter.

OUTPUT: A vector labels that indicates to which cluster each element belongs and a
data set X ′ which is a copy of X with the missing values �lled in.

1: X ′ = X
2: missing = list of positions (pair of rows and columns) of the missing values of X
3: for (row, column) in missing do
4: X ′[row, column] = mean(X[, column])
5: end for
6: i = 1
7: converge = false
8: prevlabels, prevcentroids = KMeans(init = random, k,X ′)
9: for (row, column) in missing do

10: X ′[row, column] = prevcentroids[prevlabels[row]][column]
11: end for
12: while i < maxiter ∧ ¬converge do
13: labels, centroids = KMeans(init = prevlabels, k,X ′)
14: for (row, column) in missing do
15: X ′[row, column] = centroids[labels[row]][column]
16: end for
17: converge = (prevlabels == labels)
18: if ¬converge then
19: prevlabels = labels
20: prevcentroids = centroids
21: i = i+ 1
22: end if
23: end while
24: return labels,X ′

5.2. Preliminary analysis of the metrics considered using clustering techniques 71

Figure 5.3: Silhouette Score with K-Means Figure 5.4: ARI with K-Means

missing values. The second one, KMeans, is a function that applies the K-Means algorithm
given a set of initial centroids (or it will generate them randomly), the number of clusters
and the dataset. It returns an array as long as the number of rows of the given dataset
which indicates the cluster index (through an integer) that each element belongs to and
the coordinates (features values) of the centroid of each cluster (it will be a matrix with
as many rows as the number of cluster and as many columns as the numbers of features).

Now that we have chosen the algorithm, we execute it with di�erent k parameter (the
number of clusters). The rest of the input will be the normalised data with the NaN values
and with a maximum of 100 iteration. With each k-dependent execution, we will calculate
the Silhouette Score (which is the mean of the Silhouette Coe�cient of all samples) and
the Adjusted Rand Index given the real classi�cation. As a result of this we obtain Figures
5.3 and 5.4.

In respect of the Silhouette Score analysis (which is shown in Figure 5.3), with the
given values, we are able to claim that, in general, as the number of groups increases the
Silhouette Score decreases. This fact indicates us that the best number of clusters in order
to achieve a good di�erentiation between each group of elements is two, which is not in line
with our classi�cation model. Not surprisingly, these results, which do not �t well in the
established categories, are accompanied by poor values of the Adjusted Rand Index. As we
can observe in Figure 5.4, all the obtained values with any number of cluster is very close
to zero, which means, as we have previously explained, that the obtained classi�cation
does not match with ours.

In the case of DBSCAN algorithm, we are going to replace the missing values as we
have explained in Section 5.1. This clustering technique needs two di�erent parameters:
the threshold distance that determines a neighbourhood of elements (denoted by ε) and
the minimum number of elements that forms a cluster. We will assign the value of three
to this last parameter. This choice is motivated by the distribution between the di�erent
categories that we have previously de�ned. As we can observe in Figure 5.1, the smallest
class has three elements in it, so it would not be consistent with our classi�cation if a
minimum number bigger than three is established. Moreover, the value of one does not
make sense, since all the points of your data set will be a cluster (we would lose the
possibility of detecting noise which is one of the advantages of DBSCAN over K-Means),
and with 2 the result will be the same as the hierarchical cluster (Nielsen, 2016) with the
single-link metric, with the cut at the height of the dendrogram ε.

As we have done with K-Means, we are going to execute the DBSCAN algorithm with

72 Chapter 5. Style feature analysis

Figure 5.5: Results of DBSCAN execution with euclidean metric

di�erent ε parameters. Besides, both the euclidean and manhattan metric are going to be
used for this analysis. However, we will get similar results in both cases, so we are going
to present the values obtained with the euclidean metric (see Figure 5.5).

As in the case of the K-Means algorithm, we can �nd the maximum Silhouette Score
with two clusters, which is not in line with our classi�cation model. Furthermore, as we
can see in Figure 5.6, we �nd again values very close to zero in the Adjusted Rand Index
analysis.

In conclusion, using the clustering techniques to classify the messages according to the
selected metrics, as expected, we do not obtain signi�cant results that �t our model or allow
us to group the di�erent e-mails in another way. One of the problems found to achieve this
is the great amount of states that each element has, that is, the high number of dimensions
of the system. We also �nd this inconvenience when we try to get the main statistics of
the di�erent features that describe the messages. Therefore, it is an issue that must be
addressed (the reduction of dimensionality), especially trying that this reduction serves to
adapt to the categorization carried out or to obtain a smaller number of parameters that
de�ne the writing style.

Figure 5.6: Adjusted Rand Index of DBSCAN with euclidean metric

5.3. Dimension reduction using Principal Component Analysis 73

5.3. Dimension reduction using Principal Component Anal-

ysis

In statistics, principal component analysis (PCA) is a technique used to describe a
data set in terms of new, uncorrelated variables (components). Components are ordered
by the amount of original variance they describe, so the technique is useful for reducing the
dimensionality of a data set. Each of them is a linear combination of the set of features of
the system. Therefore, if we know the weight assigned to each characteristic of the system,
we are able to deduce the �importance� of each feature weighted by an speci�c explained
variance.

For the PCA, the normalized data will not be enough. Of course, it will be necessary to
replace the missing values as we explained in Section 5.1, but also we are going to require
a set of data with its features centred in zero, that is to say, that their mean must be zero.
This transformation is called standardisation and we will apply it to our dataset.

If the PCA is executed with as many components as features, the sum of the explained
cumulative variance ratio of all components is always 1. In other words, if all the main
components of a dataset are calculated, then, although transformed, all the information
present in the original data is being stored. With this method, we are able to know
the various components that we can obtain and their explained variance. Likewise, the
behaviour of the cumulative variance ratio is de�ned by the curve shown in Figure 5.7.

Figure 5.7: Evolution of cumulative explained variance ratio

Looking at Figure 5.7, we can a�rm that around the 10 components, the increase
of the explained accumulated variance stops being substantial and we reach a reasonable
value of it. Hence, with the observed curve we are able to determine the suitable number
of components. However, before delving into each of the components, let's study in more
detail the distribution of the variance explained. For this purpose, we are going to represent
the distribution of explained variance in a pie chart with which it will be easier for us to
compare the di�erent values of it. This graph is shown in Figure 5.8.

Taking advantage of the information provided by the last graphic (Figure 5.8) we can
observe that the only component that has an explained variance ratio bigger than 10%
is the �rst one. Besides, from the fourth one all of them has a value smaller than 5%
and from the thirteenth one the components have a poorly signi�cant value. Nevertheless,

74 Chapter 5. Style feature analysis

Figure 5.8: Distribution of explained variance ratio

we have to take into account that, given the distribution of our classi�cation (see Figure
5.1), the losing of a small percentage of explained variance may mean missing information
related to categories with few elements. This results from the fact that the PCA does not
consider the appropriate classi�cation during its execution.

In spite of the explained results in terms of components distribution, we could expect
to obtain more clarifying values in the weights that de�ne the components with higher
explained variance ratio. Therefore, we will now know the linear combination of the �rst
component with respect to the characteristics explained.

The best way to visualise the di�erent linear combination weights is through a pie
chart. This is because, with this graph, it is easy to compare the importance given to
each dimension. In our Figure 5.9, we have striped each linear combination which has a
a negative weight and represented the absolute values of all coe�cient. Since we are not
so interested in the sense of each dimension in the de�nition of the �rst component, we
will calculate the direction ratio that is assigned to each characteristic, for example if our
system had two features (which is the same as saying that the system has two dimensions)
and the direction ratio was greater in the �rst one, which we can represent on the abscissa
axis, we would obtain a vectorial component whose representation in the common Cartesian
plane will be �more horizontal than vertical�, since the weight assigned to that dimension
is greater. To �nd this direction ratio, we will divide the absolute value of the coe�cient
by the sum of the absolute value of each of the weights, that is to say, if a component is
de�ned as follows:

ci,k =
N∑
j=0

λi,jxk,j

Where ci,k is the value of the i-th component of the k-th e-mail, N is the number
of dimensions (28 in our case), λi,j ∈ R is the linear combination coe�cient (also called

5.3. Dimension reduction using Principal Component Analysis 75

Figure 5.9: Linear combination that de�nes the �rst component

weight) of the i-th component for the j-th dimension and xk,j represents the j-th feature of
the k-th message. Then, the direction ratio of the j-th characteristic of the i-th component
is as follows:

dj =
|λi,j |∑N
j=0|λi,j |

The result of this operation will be the percentages that we can �nd next to each
characteristic in the Figure 5.9.

In addition to the problems of the choice about the number of components given our
distribution in categories, we have a balanced assignment of weights of almost all the
features in the �rst component, which has the highest explained variance with a ratio of
53.35%. These information does not allow us to determine which style markers di�erentiate
the categories of the messages. Furthermore, by not taking into account our classi�cation,
we can only state that the assignment of coe�cients of the linear combination that de�nes
the �rst component distinguishes the elements of the set equally, regardless of the class to
which they belong.

As the rest of the components have an explained variance ratio smaller that 0.1, their
direction ratios will not be su�ciently representative to overcome such a balanced distri-
bution. For this reason, we can conclude that it is necessary to look for other method of
dimension reduction which provides us information taking into account our classi�cation
and allows us to know which style metrics describe the di�erent categories in the best
possible way.

76 Chapter 5. Style feature analysis

5.4. Dimension reduction using Decision Trees

One method of machine learning, although not mainly used for dimensional reduction,
that takes into account a given classi�cation are Decision Trees (there are some researchers
that have studied the feature selection using them as Sugumaran et al. (2007) and Cho
and Kurup (2011)). A Decision Tree (Rokach and Maimon, 2008) is a prediction model
which, given a set of data, makes logical construction diagrams, very similar to rule-based
prediction systems. These diagrams serve to represent and categorize a series of conditions
that occur successively for the resolution of a problem. There are many algorithms to im-
plement them. We are going to use an optimised version of the CART algorithm (Breiman
et al., 1984) with entropy as its criterion.

The advantages of Decision Trees are that they take into account the de�ned categori-
sation, as it is a supervised machine learning classi�cation method, and that they are very
explainable. However, our purpose is to know the features that best describe the writing
style based on the recipient, instead of classifying new messages. For this reason, we are
going to make use of the structure of the constructed Decision Tree in order to measure
the importance that each style metric has in it.

Figure 5.10: Learning curve with the 28 chosen features

A good intuition is to think that, in order to study the importance of a node, it is
important to bear its depth in the tree in mind, because the lower it is, the more elements
it di�erentiates. However, it will not be so useful if it just separates elements of the same
class. Likewise, the number of samples that reach the node and its category is an important
factor to keep in mind. Nevertheless, it will not be helpful if it maintains the proportion of
each category in its child nodes. We are able to think of many parameters that can have
relevance in the de�nition of the importance of a node in the Decision Tree. In this case we
are going to use the Gini Importance (Breiman, 2001), which is de�ned by the following
expression:

nij = wjHj − wleft(j)Hleft(j) − wright(j)Hright(j)

Where nij is the importance of node j, wj is the weighted number of samples reaching

5.4. Dimension reduction using Decision Trees 77

Figure 5.11: Distribution of normalised feature importance with 28 features

node j, Hj is the entropy of node j, left(j) is the child node from left split on node j and
right(j) is the child node from right split on node j. Consequently, the importance of each
feature is de�ned by the following formula:

fii =

∑
j∈Nod(i) nij∑
j∈Nod nij

Where fii is the importance of feature i, Nod(i) is the set of nodes which split on
feature i and Nod is the set of all nodes. In our study we are going to use the normalised
feature importance, which is de�ned by the following expression:

nfii =
fii∑
j∈F fij

Where nfii is the normalised feature importance and F is the set of features. Once
we have the expression required for the analysis of the importance of each feature, we are
able to calculate the distribution of the importance of each style metric with our 28 chosen
style markers. To build the Decision Tree, we have to decide the depth of it. To take this
decision, we calculate the learning curve both in training set and test set, and obtain the
curves that we can observe in Figure 5.10 (the normalised data was used for the calculation
of learning curve, as well as in the construction of the Decision Tree). Thus, we will choose
a depth that avoids the overlearning (which could be produced in values of depth with
which the training accuracy score is 1) and the missing of information (depth with which
the training accuracy score is less than 0.9). Our choice will be the depth whose training
accuracy score is the interval (0.9, 1) and its test accuracy score is maximum (in this case
it is eleven, but later, when we had less features, it will follow this criteria).

78 Chapter 5. Style feature analysis

Figure 5.12: Evolution of importance ratio

Making use of the explained expressions for the calculation of the normalised feature
importance, we can go through the created tree with the chosen depth in order to obtain
the distribution of this value. The result is shown in Figure 5.11.

As we can observe, the numSemiColon characteristic does not appear in Figure 5.11,
which means it has no importance in our constructed tree. Besides, verbAdjectiveRatio,
detPronRatio and stopRatio have the highest importance ratio and their related metrics
(ADJ and VERB, DET and PRON, and numStopWords, respectively) have a very small
value. For this reason, we are able to claim that we can dispense with the related style
features and numSemiColon in order to describe the writing style. Therefore, we can
construct another Decision Tree (by automatically taking a depth, as we have explained
before) to calculate the importance ratio of each of the non-removed style markers. When
we have the distribution of Gini Importance, we can remove again the non-important style
metrics and those that have an extremely low importance ratio. By repeating this process,
we are able to choose a small number of features which have a big importance ratio in the
classi�cation of the messages based on their recipients.

The learning curves of these iteration are all very similar to the one shown in Figure
5.10. However, the evolution of the importance ratio of the style metrics is not uniform
during all this iterative process. This behaviour could be seen in Figure 5.12.

Figure 5.12 represents the importance ratio of each feature until it was removed from
the set of style markers. The features that does not appear in the legend are those that
were non-important in the �rst or second iteration, or were removed (such as the previously
mentioned ADJ and VERB) before the second step.

Before detailing the di�erent importance curves of each feature, there are some inter-
esting general observations. Until the elimination of twenty features, which means having
eight style metrics, it is always decided to dispense with some style marker whose impor-
tance is around 5% compared to others that are above 10%. From this point on, we see
that characteristics with a more relevant importance start to be lost. From this fact we

5.4. Dimension reduction using Decision Trees 79

Figure 5.13: Distribution of normalised feature importance with 8 features

can deduce that keeping eight style metrics is a good principle to describe the style based
on the recipient.

In general, the behaviour of most of the features is constant. As we can observe, most
of the last eight style markers were the most important features at the beginning of the
process. Of course, little by little, some of the metrics experience an increase due to, as
the sum of all the non-removed metrics importance is always the same, the ratio has to
be distributed between a lower number of characteristics. However, this increase becomes
remarkable as soon as a big amount of style markers has been deleted (approximately from
20 removed features).

Thanks to the constant evolution of the importance of each metric, we can claim that
most of the selected features (those which had not been removed until the number twenty),
were those which had the highest values at the beginning; as well as, almost all of the
deleted style markers when they have insigni�cant values of the ratio, were unimportant at
the beginning. This fact allows us to assert that, given our dataset, our classi�cation and
our selected features, to add unimportant style markers does not excessively contribute to
hide the really signi�cant style descriptors.

Another possible assessment of the evolution of importance described by the Figure
5.12 is that most of the features that are eliminated below 5% of importance, before being
so experience a slight decrease.

Going into more detail, the last eight selected features are: verbAdjectiveRatio, detPron-
Ratio, meanSentLen, meanWordLen, richnessYule, di�cultyLevel, stopRatio and entropy.
All of them have an importance bigger than 8% as we can see in the importance distribu-
tion of the Figure 5.13. Moreover, as we can check with Figure 5.2, none of these metrics
are directly correlated with each other.

In respect of the removed descriptors, some of them were deleted because they are
related with another metric with has a bigger normalised feature importance. This is the
case of ADJ, VERB (both related with verbAdjectiveRatio), DET, PRON (this last two
are related with detPronRatio), numStopWords (related with stopRatio) and SimpsonIndex

80 Chapter 5. Style feature analysis

Figure 5.14: Silhouette Score with K-Means Figure 5.15: ARI with K-Means

(which is directly correlated with richnessYule, due to their de�nitions). The unimportant
style markers were also removed. In this case we have only two examples: numSemiColon
and num3Dots.

On the other hand, we have deleted some style metrics due to their very low importance
ratio and the existence of another style marker with a bigger value which is correlated with
them. ADV, ADP, NOUN, CONJ, numCommas, numDots, numWords and numDifWords
belong to this circumstances. The numBrackets feature was removed only because of its
extremely poor normalised feature importance (when it was deleted it had a value of 0.7%).

We still have to explain the reasons why three style descriptors were eliminated. The
depth feature was removed because our purpose in this work is to develop a model which
is based on the recipient of the message and not on its depth. Perhaps, it is possible to
obtain characteristics of a message related to this style marker, for instance the length
of the message, but this is not the goal of this work. The case of the elimination of
richnessVocab is due to its similarity to the richnessYule, but less complexity and a very low
normalised feature importance. Finally, we can also �nd similarities between charLenght
and meanSentLen and meanWordLen, which caused the �rst one to be eliminated.

In conclusion, thanks to the Gini Importance, we were able to measure how signi�cant
a metric is in conforming to the initially de�ned categorisation. This results from the
nature of Decision Trees which are an easily explainable classi�cation method. Hence we
have selected eight di�erent style markers which describes the writing style based on the
recipient of the e-mail.

5.5. Analysis of the chosen metrics using clustering tech-

niques

As in Section 5.2 we studied the coincidences of our classi�cation with that generated
by clustering algorithms, we will carry out the same analysis but only with the eight metrics
chosen in Section 5.4.

Starting with the algorithm K-Means with missing values (see Algorithm 1), we will
execute it with di�erent number of clusters, which is the parameter needed by the algo-
rithm. Then, we are going to calculate both the Silhouette Score of each execution and
the Adjusted Rand Index. Likewise, we are able to evaluate the classi�cation done with
regard to our categorisation. The result of all this process can be see in Figures 5.14 and

5.5. Analysis of the chosen metrics using clustering techniques 81

Figure 5.16: Results of DBSCAN execution with manhattan metric

5.15.
Analysing Figure 5.14, which show us the Silhouette Score for di�erent numbers of

clusters, we can observe that its result is very similar to the one represented by Figure 5.3.
As in that case, the best Silhouette Score is obtained when the parameter has the value
two. However, this result is far from our classi�cation which has twelve di�erent categories
(these were de�ned Section 5.1). This Silhouette Score means that more than two clusters
do not di�erentiate well enough.

To check how the resulting classi�cation �ts with our categorisation, we use the Ad-
justed Rand Index (as it is described in Figure 5.15). However, the best result that we
are able to obtain is with �ve cluster and its Adjusted Rand Index is around 0.015. As we
know, it is a value very close to zero, what means that there are not enough coincidences
in the resulting classi�cation and our categorisation. The rest of the values with other
numbers of cluster are worst than this.

After this unfortunate results, we are going to carry out the analysis with DBSCAN
algorithm. As we have explained, DBSCAN requires a threshold distance and a minimum
number of elements that can create a cluster as parameters. As in Section 5.2, we are going
to assign the value of three to this last parameter and to execute with di�erent ε values
(the threshold distance) for the analysis. Furthermore, as it is possible to execute it with
di�erent metrics we are going to try with both euclidean and manhattan distance. Then,
the Silhouette Score and Adjusted Rand Index of each execution are calculated.

The results of the Silhouette Score calculation with both metrics is very similar. For
this reason, we will only show the one with the manhattan distance (see Figure 5.16). In
the graph which represent the di�erent Silhouette Score values depending on the taken
ε, we are able to see that the maximum value is obtained with a threshold distance that
creates two di�erent clusters. As with the K-Means algorithm, this indicates that the best
di�erentiating classi�cation is very far from our categorisation. Once we have observed the
same result with these two algorithms, we can claim that our di�erent categories are not
di�erent enough for the clustering algorithms with the eight selected dimensions.

As expected, the results of the Adjusted Rand Index are very close to zero again. It can
be observed in Figure 5.17. The higher Adjusted Rand Index does not achieve the value
of 0.03 and the rest of the values are smaller than it. This means that our categorisation
does not �t with the returned classi�cation.

In conclusion, the two clustering techniques that we have used for analysing the data
with the selected eight dimension do not return a classi�cation similar to that de�ned by
us. However, the results with all features were not initially promising. It could mean that
the implemented style markers are not good enough in order to describe the style based

82 Chapter 5. Style feature analysis

Figure 5.17: Adjusted Rand Index of DBSCAN with manhattan metric

on the recipient. Nevertheless, it would be necessary a research with a bigger amount of
messages to say that and, perhaps, with a more balanced distribution of each category.

5.6. Conclusions

After establishing twelve categories, which classify all the recipients, and analysing the
correlation between each possible pair of metrics (which generally are not correlated), we
apply clustering techniques and use Adjusted Rand Index to evaluate how well metrics �t
to our categorisation. Nevertheless, the results show us that our classi�cation does not
match with the obtained by K-Means and DBSCAN algorithms. In addition to it, as the
number of metrics is too big, we can not easily describe them. For these reasons we make
use of the dimension reduction techniques.

Despite being the most popular dimension reduction technique, Principal Component
Analysis has the problem that it does not take into account our classi�cation, which is an
important fact because as the twelve categories are very unbalanced, the lack of a little
percentage of explained variance ratio may mean that we are not taking into account an
entire class. Therefore, we must use a less popular method: Gini Importance of Decision
Trees. With this technique we are able to reduce the system to eight metrics safely guaran-
teeing that the removed style markers are much less important than the chosen features. In
spite of obtaining again bad results in comparison with the classi�cation given by K-Means
and DBSCAN, these reduction in the number of metrics allow us to design a model which
takes advantage of them in order to generate e-mails based on their recipients.

Chapter 6
Proposal for a personalised writing model

based on the recipient

�Science may never come up with a better o�ce communication
system than the co�ee break�

� Earl Wilson

After analysing the metrics that de�ne the style of the e-mails based on its recipient, we
are able to design a system that takes advantage of this knowledge and generates messages
according to what we learnt. In this chapter we will explain a proposal for this system
with which the user can obtain a text just by providing some keywords related with the
topic of the desired e-mail and its recipient. With this in mind, we are going to detail the
di�erent phases of our model and its general architecture (see Section 6.1). Then, each one
of its tasks is going to be explained: searching phase (see Section 6.2) and rewriting phase
(see Section 6.3).

6.1. Phases of the model

Based on the work done, we will propose a model for generating personalised messages
based on the recipient. However, before detailing the model proposal, we must make some
observations.

Firstly, it is necessary to underline that the obtained results (that is to say the eight
selected metrics) are highly dependent on the initial data (the values obtained after mea-
suring each message). This is due to the technique used for selecting a subset of metrics,
is strongly in�uenced by the speci�c classi�cation and the distribution of the set of values
of the style markers. In our case, the aggregate of the initial data is not su�ciently large
for the conclusions to be representative. Moreover, the categorisation is too unbalanced.
All this must be taken into account, since our model will be based on these results.

Besides, we will suggest to reuse the implementation developed (see Chapter 4) for our
model, as well as extend its functionality to areas other than research such as software
application development. This is because the model can be used for automatic e-mail
generation among other purposes, and its design will depend on the purpose for which it
is developed.

As we can see in Figure 6.1, one of the required inputs of our system is the set of
evaluated e-mail style metrics. Therefore it will be necessary to make use of the Analyser
developed. As we have underlined, the modi�cation of the given implementation depends

83

84 Chapter 6. Proposal for a personalised writing model based on the recipient

Figure 6.1: Model Architecture Diagram

on the purpose. It would be possible to remove the typographic correction phase if we want
to develop a software aimed to be used by users (they will not have a good user experience
if they have to correct their own e-mails before they can use the application) or if we want
to take into account the typographic errors of the user with a new style marker. However,
and thanks to the way the Style Analyser was implemented (with di�erent modules as web
services), any little or big modi�cation in a module will not a�ect the rest of the phases.
This will facilitate the reuse of the implementation developed. In this Section, we will not
delve into it, instead we will just propose the model once the calculation of the di�erent
metrics is done.

Instead of trying to generate a complete e-mail, the basic idea of our model will be to
rewrite one already written by the user. To achieve this, we design a model based on two
phases: searching (its details are explained in Section 6.2) and rewriting (see Section 6.3).

The searching phase is in charge of looking for a previously written message given a
set of keywords. With this in mind, we can take advantage of the typographic corrected
stored e-mails (or the preprocessed messages if this module is not used) to carry out the
search. The only input that this module needs is the mentioned set of keywords, and its
output is the text of the message written by the user.

The rewriting phase receives the output of the searching module. However, it requires
more information in order to modify the text. For this reason, it is necessary to know who
is going to be the recipient of the message and the results of the calculation of the style
metrics given after a style analyser execution. Once we know it, we can query the database
where the classi�cation of the di�erent contacts is stored and, with this information, we
are able to categorise the given contact. As we will see in Section 6.3, its category will
allow us to know the values of the style metrics of it and, with this information, we can
choose the di�erent methods to modify the e-mail. The output of the rewriting phase will

6.2. Searching for the e-mail with the most similarity 85

be the new text of the message.
After having this brief introduction to the two di�erent phases of our model, we can

clearly know its inputs and outputs. At least it will be necessary to receive as input a set of
keywords that describe the content of the message to be generated and its recipient. Thus,
we have in our system a communicative goal (which describes the topic of the text to be
generated) and a user model (which consists of the categorisation of the recipient of the
message), which are the set of keywords and the e-mail address, respectively. In addition
we must have the style metrics previously calculated (which are part of our information
about the user, that is to say, belong to our user model) and the databases that store the
texts of the messages (which is our knowledge source, that is to say, information about the
domain) and the established classi�cation. Therefore, following the scheme proposed by
Reiter and Dale (2000), our natural language generation system has a knowledge source,
communicative goal and a user model, but it has not a discourse system (a model of what
has been said in the text produced so far). In reality, we have it in the previous messages
exchanged between the user and the recipient, but we are not taking into account for this
model.

In respect of the output, it will be the generated text which is going to be the body of
the e-mail sent to the given contact. Below we will detail each of the two phases that form
our system.

6.2. Searching for the e-mail with the most similarity

The searching phase is in charge of �nding the message in which the given set of key-
words has the most weight. As we have studied in Section 2.3, a good method used for
this type of purposes is Latent Semantic Indexing. With it, we not only take into account
the most signi�cant words (eliminating stop words) but also, thanks to the Singular Value
Decomposition (see Section 2.3.2), we achieve a relationship between the term and the
concept it represents, that is, we are able to face semantic problems in the consultation of
documents such as synonymy that produce irrelevant results in methods such as boolean
keyword queries. In fact, several researchers, such as Landauer et al. (1998), have shown
that there is a signi�cant correlation between the way humans and LSI process di�er-
ent documents. Other researchers, such as Bartell et al. (1992) and Ding (1999), have
demonstrated that LSI is a useful solution for conceptual matching problems.

However, LSI is a technique that requires a lot of memory and processing power. Both
the generation of the TF-IDF table (see Section 2.3.1) and the truncation of the singular
value matrix have an expensive algorithmic complexity. To alleviate this problem it is
possible to pre-calculate both TF-IDF table and the truncation of the singular values
matrix. This way, when the user performs a query it is only necessary to read from a �le
the result of these operations.

In order to calculate the TF-IDF table, in our implementation, we access the database
where we store the last version of the messages from which the di�erent metrics have been
extracted (in our case the CorrectedMessage, which is the mongoengine.Document related
with the typographic correction module). It is necessary to analyse each of the di�erent
e-mails stored. To obtain the di�erent TF-IDF vectors we make use of the most frequent
expression (as Tang et al. (2014) claim) to �nd this value given a t term in a d document
of the D document collection:

tfidf(t, d,D) =
f(t, d)

max{f(t, d) : t ∈ d}
· log

(
|D|

|{d ∈ D : t ∈ d}|+ 1

)

86 Chapter 6. Proposal for a personalised writing model based on the recipient

Once we have the table, we calculate its Singular Value Decomposition and truncate
the singular value matrix to reduce its size and achieve the semantic relationships between
the terms we are looking for (as it is explained in Section 2.3.2).

Finally, we take the input given by the user as keywords to generate the text message
and make a query comparing the similarity between each message and the words provided
by the user (as we have explained in Section 2.3.3). The output of the system is the e-mail
with the most similarity with all its information as the recipient and body of the message.

6.3. Transforming e-mail according to metrics

The rewriting phase is responsible for modifying the message obtained by the search
phase, as necessary so that it has the style corresponding to the �nal recipient of the e-mail.
To achieve this, we need to know the category to which the person who will receive the
message belongs. For this purpose, we consult their e-mail address in the database where
we can �nd the classi�cation of the di�erent contacts. In case no information is found about
the consulted address, it will be necessary for the user to provide the category to which he
or she belongs. As we will explain, this system requires to have previously data (written
e-mails from which their style metrics have been extracted) of the category to which the
recipient belongs, which can be a problem in case we consider writing a message destined
to a new category. Unlike the searching phase, the rewriting phase is not implemented due
to the big amount of di�culties that we have found (as we will see later), derive from the
issues of natural language generation, and because of the scope of this work.

As we have explained (see Chapter 5), there are eight style metrics of the initial twenty-
eight that best describe the writing style depending on the recipient of the message. These
style markers are: verbAdjectiveRatio (it is obtained by dividing the number of verbs by the
number of adjectives), detPronRatio (it is obtained by dividing the number of determinants
by the number of pronouns), meanSentLen (it is the average sentence length in word count),
meanWordLen (it is the average word length in number of characters), richnessYule (it
depends on the diversity of words, i.e. the number of di�erent words and the number of
words we do not repeat or appear twice, three, etc.), di�cultyLevel (it depends on both
the percentage of words with one or two characters and the meanSentLen), stopRatio (it
is the percentage of stop words) and entropy (it depends on the number of times the same
word appears). The modi�cation of the e-mail will be based on trying to vary the value
of these features according to the category to which the recipient belongs. In this way, we
will obtain a message with values close to the averages of the style metrics of the category
under consideration. There are several methods (with which we must assume that the
message generated may not be correct due to issues such as polysemy and concordance in
gender and number, among others) to modify them:

To Change the number of adjectives: removing adjectives is a simple task to perform
and, except in cases where the adjective di�erentiates one entity from another, it
does not cause problems when modifying the text. However, adding them is slightly
more complicated. For this purpose, we could use a corpus of n-grams (like the
Google n-grams1) to write the adjective that most commonly accompanies the noun
at hand. Another way to address this problem is to add the adjectives according to
the frequency with which the user uses them (using techniques such as probabilistic
grammars used by Halliday (2014)) making use of the stored messages. The disad-
vantage of the latter method is that it requires a large number of e-mails and with

1http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

6.3. Transforming e-mail according to metrics 87

one as small as ours, it is likely that good results would not be obtained. On the
other hand, this solution guarantees the use of the user's lexicon (set of words used).
The modi�cation of the number of adjectives, will allow us to vary the following style
metrics: verAdjectiveRatio (although changing the number of verbs can be a com-
plex task and we can �nd many problems, as we have seen, changing the number of
adjectives is feasible), menaSentLen, di�cultyLevel (as it a�ects the average length
of sentences), richnessYule (as it depends on the number of di�erent words and the
amount of times each word appears), stopRatio (as it adds or removes adjectives,
the percentage of stop words will be modi�ed) and entropy (changing the number of
words in the text also changes the probability of each word appearing).

To Substitute words for synonyms: Although we may make mistakes in cases such
as polysemic words, replacing words with their synonyms would allow us to increase
or decrease the value of some style metrics. To obtain the corresponding synonyms
there are many web services2 or corpus from which we can extract them. Besides, we
can use our bag of words (wordsAppearance style marker) in order to use synonyms
which belong to the user's lexicon. The style metrics that would change their value
with this method would be: meanWordLen (it is possible to replace some words
with longer or shorter synonyms to modify this feature), di�cultyLevel (as it also
depends on the number of words in a syllable, although in our implementation it
is the number of words with one or two characters, the replacement by synonyms
of greater or lesser length can vary this descriptor), richnessYule and entropy (if a
word is replaced by a synonym, its probability of occurrence decreases and that of
the synonym used increases).

To Change the number of adverbs: the elimination of adverbs may not be as easy
as in the case of adjectives, as these express circumstances, such as mode, place,
time, quantity, a�rmation, doubt, etc. Nevertheless, it is possible to add or remove
adverbs of quantity or similar (such as very, little or quite). To carry out this task we
can use the same methods we used with adjectives: corpus of n-grams or reusing the
ones written by the user in the analysed e-mails. This modi�cation of the text would
a�ect the following metrics: meanSentLen, di�cultyLevel, richnessYule, stopRatio
and entropy.

To Change the number of pronouns: When trying to remove or add pronouns we will
be faced with the problem of co-reference, which consists of knowing to which entity
each of the pronouns in the text refer. Nowadays we �nd some models to solve this
challenge with quite promising results. The solutions use all kinds of techniques,
such as the neural net scoring model that spaCy has3 (which is an implementation
of the study of Clark and Manning (2016)). Replacing an entity with a pronoun
(i.e. reducing the number of pronouns) is not a complicated task, it just requires
taking into account parameters, such as gender or number, that are o�ered by syn-
tactic analysers such as spaCy. On the other hand, the opposite task involves the
co-reference problem mentioned. One possible solution is to use existing complex
systems such as the one we have presented. Another possibility is to take advantage
of the characteristics of e-mails to obtain co-reference results to text pronouns. As
e-mails are not very complex texts and do not usually involve many entities, it is
possible to obtain a large percentage of successes by looking for nouns that have

2
Such as some services in this API https://holstein.fdi.ucm.es/nil-ws-api/

3https://spacy.io/universe/project/neuralcoref

https://holstein.fdi.ucm.es/nil-ws-api/
https://spacy.io/universe/project/neuralcoref

88 Chapter 6. Proposal for a personalised writing model based on the recipient

the same number and gender and staying with the most numerous or the closest
to the pronoun. In any case, the modi�cation of the number of pronouns in the
text would a�ect the following style metrics: detPronRatio, meanSentLen, stopRatio,
di�cultyLevel, richnessYule and entropy.

With these modi�cations of the original message, it will be possible to bring its style
metrics closer to the desired value. However, it is necessary to underline that each one of
these a�ects more than one style marker, which means that we are signi�cantly varying
the value of more than one metric. In the presentation of this model, we are assuming, as
the logic indicates, that all these descriptors are slightly correlated, either in directly or
inversely proportional way. Nevertheless, we run the risk of making use of one of the four
previous changes and approaching the desired value of a feature while we are moving away
from the mean of other style metric.

If we are able to change the values of the eight chosen style markers to its corresponding
mean according to the category of the contact, we will have a text of the personalised
message based on the recipient as we wanted to obtain.

6.4. Conclusions

Taking advantage of the selected eight metrics obtained thanks to the execution of the
style analyser, we have proposed a model which generates e-mails based on their recipients.
It has two phases: searching phase and rewriting phase. The �rst one consists of looking
for the most similar message to a given set of keywords by using Latent Semantic Indexing.
The second is in charge of modifying the body of that e-mail, with the purpose of changing
its style according to the eight selected metrics. There are some feasible solutions which
can modify the values of those style markers. We suggest four possibilities: to change the
number of adjectives, to substitute words for synonyms, to vary the amount of adverbs
and to change the number of pronouns. In spite of the possible issues that we can �nd in
this second phase, this designed model is supported by the obtained results and it is a �rst
approaching to a real stylometric e-mail analyser for recipient-based personalised writing.

Chapter 7
Conclusions and Future Work

�Di�cult to see. Always in motion is the future.�
� Yoda - Star Wars: Episode III � Revenge of the Sith (2005)

After the development of this work, in this chapter we present the conclusions that we
can extract from our study. These are explained in Section 7.1. Then, possible options
for the continuation of this work are presented in Section 7.2 in order to follow with the
research of the metrics that de�ne the style based on the recipient of the message and
take bene�t of this �eld of study to build natural language generation systems that create
personalised e-mails.

7.1. Conclusions

Nowadays, electronic mail is a popular communication system both in the professional
scene and the personal one. Through it we establish conversations about work, studies and
close relationships, among others. However, we do not express an idea to di�erent people
in the same way. Depending on our relationship we can vary our vocabulary, expressions,
syntactic constructions or formality in our messages with the purpose of transmitting the
same idea. In this work we were interested in this modi�cation of the writing style of the
same author when the recipient of the e-mail changes. In other words, we were curious to
know the stylometric parameters which vary according to the addressee. If we could �gure
style metrics out, we would be able to personalise the automatic composition of messages
of a natural language generation system.

In order to �nd out the metrics that de�ne the writing style according to the recipient
of the message, it was necessary to obtain a su�cient amount of e-mails. Nevertheless,
we have to not only extract them but measure them with a big set of style descriptors.
For this reason, we developed a Style Analyser which carries out all the related tasks with
the extraction and measurement of the messages of a given user. In particular, we have
implemented the process of extracting the di�erent e-mails of the user, preprocessing of
the body of each message, correcting the possible typographic mistakes that can appear in
the text and measuring the message written by the user.

For the extraction of the e-mails we had to learn about both the protocols and format
of electronic mails. Moreover, as the messages that were going to be extracted speci�cally
belonged to a Gmail account, we developed a module able to make use of the Gmail API
for the accessing to the user's account information.

Preprocessing a message consists of modifying the e-mail body text with the purpose of

89

90 Chapter 7. Conclusions and Future Work

having the original message, without the headers and characters introduced by the e-mail
service in order to follow the transmission protocol. With this in mind, a preprocessing
module was developed as a web service, which allows it to work independently from the
rest of the system and be easily reusable in other projects. This type of implementation is
repeated in the typographic correction and style measuring modules, which needed to use
a syntactic analyser for the success of their tasks. Moreover, for the development of style
measuring modules, it was necessary to learn about the di�erent metrics used in the �eld
of computational stylometry and implement them.

Once we had a functional style analyser, we measures the sent message of a user in
order to obtain conclusions about the relationship between the implemented metrics and
the style used for each recipient. In our data analysis, we concluded that, even though
the chosen set of metrics do not di�erentiate the type of recipients well enough, there
are features that describes the writing style better than others and we could select eight
of them. We also observed that the obtained results were very dependent on the data,
which means that we were limited by the not-so-large number of analysed messages and
the unbalanced distribution of types of recipients that the e-mails had.

Many style metrics with more relevance (four out of eight) were related to the variety
of di�erent words used in the message. In other words, we are able to claim that the dis-
tribution of the vocabulary used plays an important role in the description of writing style
based on the recipient. The rest of them took into account features like the relationship
between lexical categories (such as verbs and adjectives or determinants and pronouns)
and the length of the sentences or words.

Finally, with this information we designed a model of message generation based on the
recipient. The system's input is a set of keywords and the e-mail address which is going to
receive the message. It makes use of the chosen metrics in order to modify the text until
it presents the appropriate values for the recipient under consideration.

It is important to underline that we have not found any research about the writing
style based on the recipient or audience of the message whether it is an e-mail or any
written text. Likewise, we are able to claim that this work is a �rst step in this research
area and it lays the foundations for natural language generation with style based on the
person who is going to receive the information. In particular, it establishes the bases of
the recipient-based personalised writing of e-mails.

7.2. Future Work

During the analysis of the data obtained after measuring the extracted e-mails, we found
some obstacles against the attainment of signi�cant results. One of the most relevant issues
that we found is the amount of extracted messages. Since we have implemented most of the
modules of the style analyser as web services, it could be easily adapted as a web service
with the purpose of being accessible for a bigger amount of people and consequently being
able to extract and measure a bigger number of e-mails. Perhaps, this adjustment could
require to remove from the analysis process the typographic correction step, otherwise the
users would have to correct their messages one by one.

Following with the possible improvements of the style analyser, we could consider (and
implement) more style metrics in order to measure the di�erent messages. As we have
explained in Section 2.2.4, we can choose between at least a thousand stylistic features.
From most simple descriptors, such as Burrow's Delta (Burrows, 2002), to the complex
style markers, such as n-grams (Brocardo et al., 2013), and e-mail-speci�c features, such
as the set of HTML tags (De Vel et al., 2001), we can enlarge our set of metrics. This

7.2. Future Work 91

would allow us to test the variance of each new style descriptor between the di�erent type
of recipients.

Once we had measured a big amount of e-mails, we would be ready to carry out a
data analysis with more relevant results. It would be appropriate to obtain a balance
distribution of the di�erent type of relationship with the recipients, thereby we would have
di�erent clusters with a similar number of samples which would allow us to use di�erent
machine learning techniques.

Taking advantage of conclusions obtained from this work, its natural extension is the
implementation of the proposed model for generating personalised messages based on its
recipient (see Chapter 6). As we can remember, it had two phases: searching phase and
rewriting phase. The �rst of it is implemented in the Github repository1 (together with
the rest of the implemented tools of this work), so it will only be necessary to develop
the second module. In its implementation we will have to take into account the most
representative metrics that describe the style depending on the recipient of the e-mail.
This module could be used for any natural language generation system with the purpose
of modifying the style of the generated text.

1https://github.com/NILGroup/TFG-1920-CarlosMoreno

https://github.com/NILGroup/TFG-1920-CarlosMoreno

Bibliography

And thus I clothe my naked villany

With old odd ends stolen out of holy writ;

And seem a saint, when most I play the devil.

Richard III, Act I Scene 3
William Shakespeare

Abbasi, A. and Chen, H. Applying authorship analysis to extremist-group web forum
messages. IEEE Intelligent Systems, Vol. 20(5), 67�75, 2005.

Abbasi, A. and Chen, H. Writeprints: A stylometric approach to identity-level identi�ca-
tion and similarity detection in cyberspace. ACM Transactions on Information Systems
(TOIS), Vol. 26(2), 1�29, 2008.

Allen, J. R. Methods of author identi�cation through stylistic analysis. The French
Review , Vol. 47(5), 904�916, 1974.

Antosch, F. The diagnosis of literary style with the verb-adjective ratio. Statistics and
style, Vol. 1, 1969.

Apte, C., Damerau, F., Weiss, S. et al. Text mining with decision rules and decision
trees. Citeseer, 1998.

Argamon, S. Interpreting burrows's delta: Geometric and probabilistic foundations.
Literary and Linguistic Computing , Vol. 23(2), 131�147, 2008.

Argamon, S., Koppel, M. and Avneri, G. Routing documents according to style. In
First International workshop on innovative information systems, 85�92. 1998.

Argamon, S., �ari¢, M. and Stein, S. S. Style mining of electronic messages for mul-
tiple authorship discrimination: �rst results. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining , 475�480. 2003.

Argamon-Engelson, S., Koppel, M. and Avneri, G. Style-based text categorization:
What newspaper am i reading. In Proc. of the AAAI Workshop on Text Categorization,
1�4. 1998.

Baayen, H., van Halteren, H., Neijt, A. and Tweedie, F. An experiment in au-
thorship attribution. In 6th JADT , Vol. 1, 69�75. 2002.

93

94 BIBLIOGRAPHY

Baayen, H., Van Halteren, H. and Tweedie, F. Outside the cave of shadows: Using
syntactic annotation to enhance authorship attribution. Literary and Linguistic Com-
puting , Vol. 11(3), 121�132, 1996.

Baayen, R., Tweedie, F., Neijt, A., Halteren, H. v. and Krebbers, L. Back to
the cave of shadows: Stylistic �ngerprints in authorship attribution. 2000.

Balenson, D. Privacy enhancement for internet electronic mail: Part iii: Algorithms,
modes, and identi�ers. Tech. Rep. RFC 1423, Internet Engineering Task Force (IETF),
1993.

Bartell, B. T., Cottrell, G. W. and Belew, R. K. Latent semantic indexing is an
optimal special case of multidimensional scaling. In Proceedings of the 15th annual inter-
national ACM SIGIR conference on Research and development in information retrieval ,
161�167. 1992.

BBC news (3rd July 2018). Gmail messages 'read by human third parties'. Technology ,
2018. https://www.bbc.com/news/technology-44699263.

Benesty, J., Chen, J., Huang, Y. and Cohen, I. Pearson correlation coe�cient. In
Noise reduction in speech processing , 1�4. Springer, 2009.

Binongo, J. N. G. and Smith, M. W. A. The application of principal component
analysis to stylometry. Literary and Linguistic Computing , Vol. 14(4), 445�466, 1999.

Borenstein, N. and Freed, N. Mime (multipurpose internet mail extensions) part one:
Mechanisms for specifying and describing the format of internet message bodies. Tech.
Rep. RFC 1521, Internet Engineering Task Force (IETF), 1993.

Brainerd, B. Weighting Evidence in Language and Literature: A Statistical Approach.
University of Toronto Press, 1974.

Breiman, L. Random forests. Machine learning , Vol. 45(1), 5�32, 2001.

Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A. Classi�cation and
regression trees. CRC press, 1984.

Brocardo, M. L., Traore, I., Saad, S. and Woungang, I. Authorship veri�cation
for short messages using stylometry. In 2013 International Conference on Computer,
Information and Telecommunication Systems (CITS), 1�6. IEEE, 2013.

Burrows, J. `delta': a measure of stylistic di�erence and a guide to likely authorship.
Literary and linguistic computing , Vol. 17(3), 267�287, 2002.

Burrows, J. F. Computers and the study of literature. Computers and written texts,
167�204, 1992.

Calix, K., Connors, M., Levy, D., Manzar, H., MCabe, G. and Westcott, S.
Stylometry for e-mail author identi�cation and authentication. Proceedings of CSIS
research day, Pace University , 1048�1054, 2008.

Canales, O., Monaco, V., Murphy, T., Zych, E., Stewart, J., Castro, C. T. A.,
Sotoye, O., Torres, L. and Truley, G. A stylometry system for authenticating
students taking online tests. P. of Student-Faculty Research Day, Ed., CSIS. Pace
University , 2011.

https://www.bbc.com/news/technology-44699263

BIBLIOGRAPHY 95

Casey, M., Rhodes, C. and Slaney, M. Analysis of minimum distances in high-
dimensional musical spaces. IEEE Transactions on Audio, Speech, and Language Pro-
cessing , Vol. 16(5), 1015�1028, 2008.

Chaski, C. E. Empirical evaluations of language-based author identi�cation techniques.
Forensic Linguistics, Vol. 8, 1�65, 2001.

Chen, X., Hao, P., Chandramouli, R. and Subbalakshmi, K. Authorship similarity
detection from email messages. In International Workshop on Machine Learning and
Data Mining in Pattern Recognition, 375�386. Springer, 2011.

Cheng, N., Chandramouli, R. and Subbalakshmi, K. Author gender identi�cation
from text. Digital Investigation, Vol. 8(1), 78�88, 2011.

Chi, J. T., Chi, E. C. and Baraniuk, R. G. k-pod: A method for k-means clustering
of missing data. The American Statistician, Vol. 70(1), 91�99, 2016.

Cho, J. H. and Kurup, P. U. Decision tree approach for classi�cation and dimensionality
reduction of electronic nose data. Sensors and Actuators B: Chemical , Vol. 160(1), 542�
548, 2011.

Choi, J. D., Tetreault, J. and Stent, A. It depends: Dependency parser comparison
using a web-based evaluation tool. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), 387�396. 2015.

Chowdhury, G. G. Introduction to modern information retrieval . Facet publishing,
2010.

Clark, K. and Manning, C. D. Deep reinforcement learning for mention-ranking coref-
erence models. arXiv preprint arXiv:1609.08667 , 2016.

Cohen, W. W. et al. Learning rules that classify e-mail. In AAAI spring symposium
on machine learning in information access, Vol. 18, 25. Stanford, CA, 1996.

Cook, B. andMessina, C. OAuth 2.0. https://oauth.net/2/, 2019a. [Online; accessed
27-September-2019].

Cook, B. and Messina, C. OAuth 2.0 Authorization Code Exchange. https://www.

oauth.com/oauth2-servers/pkce/authorization-code-exchange/, 2019b. [Online;
accessed 27-September-2019].

Cook, B. and Messina, C. OAuth 2.0 Scope. https://oauth.net/2/scope/, 2019c.
[Online; accessed 27-September-2019].

Corney, M. W. Analysing e-mail text authorship for forensic purposes. PhD thesis,
Queensland University of Technology, 2003.

Corney, M. W., Anderson, A. M., Mohay, G. M. and de Vel, O. Identifying the
authors of suspect email. 2001.

Craig, H. Authorial attribution and computational stylistics: If you can tell authors
apart, have you learned anything about them? Literary and Linguistic Computing , Vol.
14(1), 103�113, 1999.

https://oauth.net/2/
https://www.oauth.com/oauth2-servers/pkce/authorization-code-exchange/
https://www.oauth.com/oauth2-servers/pkce/authorization-code-exchange/
https://oauth.net/2/scope/

96 BIBLIOGRAPHY

Crispin, M. Internet message access protocol - version 4rev1. Tech. Rep. RFC 3501,
University of Washington, 2003.

Crocker, D. H. Standard for the format of arpa internet text messages. Tech. Rep. RFC
822, Dept. of Electrical Engineering, University of Delaware, 1982.

Daelemans, W., De Clercq, O. and Hoste, V. STYLENE: an environment for
stylometry and readability research for Dutch. In CLARIN in the Low Countries, 195�
210. Ubiquity Press, 2017.

Dale, E. and Chall, J. S. A formula for predicting readability: Instructions. Educational
research bulletin, 37�54, 1948.

De Morgan, S. E. and De Morgan, A. Memoir of Augustus De Morgan. Longmans,
Green, and Company, 1882.

De Vel, O., Anderson, A., Corney, M. and Mohay, G. Mining e-mail content for
author identi�cation forensics. ACM Sigmod Record , Vol. 30(4), 55�64, 2001.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman,
R. Indexing by latent semantic analysis. Journal of the American society for information
science, Vol. 41(6), 391�407, 1990.

Diederich, J., Kindermann, J., Leopold, E. and Paass, G. Authorship attribution
with support vector machines. Applied intelligence, Vol. 19(1-2), 109�123, 2003.

Ding, C. H. A similarity-based probability model for latent semantic indexing. In Pro-
ceedings of the 22nd annual international ACM SIGIR conference on Research and de-
velopment in information retrieval , 58�65. 1999.

Drucker, H., Wu, D. and Vapnik, V. N. Support vector machines for spam catego-
rization. IEEE Transactions on Neural networks, Vol. 10(5), 1048�1054, 1999.

DuBay, W. H. The principles of readability. Online Submission, 2004.

Dumais, S. T. et al. Latent semantic indexing (lsi): Trec-3 report. Nist Special Publi-
cation SP , 219�219, 1995.

Eder, M. Style-markers in authorship attribution: a cross-language study of the authorial
�ngerprint. Studies in Polish Linguistics, Vol. 6(1), 2011.

Eder, M., Rybicki, J. and Kestemont, M. Stylometry with r: a package for compu-
tational text analysis. R journal , Vol. 8(1), 2016.

Ellegard, A. A statistical method for determining authorship: the junius letter. Gothen-
burg studies in Engilsh, Vol. 13, 1769�1772, 1962.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd , Vol. 96, 226�231.
1996.

Feng, S., Banerjee, R. and Choi, Y. Syntactic stylometry for deception detection. In
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2 , 171�175. Association for Computational Linguistics, 2012.

BIBLIOGRAPHY 97

Freed, N. and Borenstein, N. Mime (multipurpose internet mail extensions). Tech.
Rep. RFC 1341, Internet Engineering Task Force (IETF), 1992.

Freed, N. and Borenstein, N. Multipurpose internet mail extensions (mime) part �ve:
Conformance criteria and examples. Tech. Rep. RFC 2049, Internet Engineering Task
Force (IETF), 1996a.

Freed, N. and Borenstein, N. Multipurpose internet mail extensions (mime) part one:
Format of internet message bodies. Tech. Rep. RFC 2045, Internet Engineering Task
Force (IETF), 1996b.

Freed, N. and Borenstein, N. Multipurpose internet mail extensions (mime) part two:
Media types. Tech. Rep. RFC 2046, Internet Engineering Task Force (IETF), 1996c.

Freed, N. and Klensin, J. Media type speci�cations and registration procedures. Tech.
Rep. RFC 4288, Internet Engineering Task Force (IETF), 2005a.

Freed, N. and Klensin, J. Multipurpose internet mail extensions (mime) part four:
Registration procedures. Tech. Rep. RFC 4289, Internet Engineering Task Force (IETF),
2005b.

Fucks, W. and Lauter, J. Mathematische analyse des literarischen stils.�mathematik
und dichtung. versuche zur frage einer exakten literaturwissenschaft. 1965.

Gatt, A. and Krahmer, E. Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. Journal of Arti�cial Intelligence Research, Vol.
61, 65�170, 2018.

Gellens, R. The text/plain format parameter. Tech. Rep. RFC 2646, Internet Engineer-
ing Task Force (IETF), 1999.

Golub, G. H. and Reinsch, C. Singular value decomposition and least squares solutions.
In Linear Algebra, 134�151. Springer, 1971.

Google. Gmail api | google developers. https://developers.google.com/gmail/api,
2019a. [Online; accessed 17-October-2019].

Google. google_auth_oauthlib.�ow module. https://google-auth-oauthlib.

readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html, 2019b.
[Online; accessed 27-September-2019].

Google. google.auth.transport package. https://google-auth.readthedocs.io/

en/stable/reference/google.auth.transport.html#google.auth.transport.

Request, 2019c. [Online; accessed 27-September-2019].

Google. google.oauth2.credentials module. https://google-auth.readthedocs.

io/en/stable/reference/google.oauth2.credentials.html#google.oauth2.

credentials.Credentials, 2019d. [Online; accessed 27-September-2019].

Google. OAuth 2.0 Scopes for Google APIs. https://developers.google.com/

identity/protocols/googlescopes, 2019e. [Online; accessed 27-September-2019].

Google. Using OAuth 2.0 to Access Google APIs. https://developers.google.com/

identity/protocols/OAuth, 2019f. [Online; accessed 27-September-2019].

https://developers.google.com/gmail/api
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html
https://google-auth.readthedocs.io/en/stable/reference/google.auth.transport.html#google.auth.transport.Request
https://google-auth.readthedocs.io/en/stable/reference/google.auth.transport.html#google.auth.transport.Request
https://google-auth.readthedocs.io/en/stable/reference/google.auth.transport.html#google.auth.transport.Request
https://google-auth.readthedocs.io/en/stable/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://google-auth.readthedocs.io/en/stable/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://google-auth.readthedocs.io/en/stable/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/OAuth
https://developers.google.com/identity/protocols/OAuth

98 BIBLIOGRAPHY

Gregorio, J. googleapiclient.discovery. https://googleapis.github.io/

google-api-python-client/docs/epy/googleapiclient.discovery-module.html#

build, 2019. [Online; accessed 23-September-2019].

Gruner, S. and Naven, S. Tool support for plagiarism detection in text documents. In
Proceedings of the 2005 ACM symposium on Applied computing , 776�781. 2005.

Guide, S. Red Hat Enterprise Linux 4: Reference Guide. Red Hat Inc., 2005. http:

//web.mit.edu/rhel-doc/OldFiles/4/RH-DOCS/rhel-rg-en-4/index.html.

Gunning, R. The technique of clear writing. Revised Edition. New York: McGraw Hill ,
1968.

Gy®rödi, C., Gy®rödi, R., Pecherle, G. and Olah, A. A comparative study: Mon-
godb vs. mysql. In 2015 13th International Conference on Engineering of Modern Electric
Systems (EMES), 1�6. IEEE, 2015.

Halliday, M. A. Corpus studies and probabilistic grammar. In English corpus linguistics,
42�55. Routledge, 2014.

Hardt, D. The oauth 2.0 authorization framework. Tech. Rep. RFC 6749, Internet
Engineering Task Force (IETF), 2012.

Hartigan, J. A. Clustering algorithms. John Wiley & Sons, Inc., 1975.

Hofmann, T. Probabilistic latent semantic indexing. In Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development in information
retrieval , 50�57. 1999.

Holmes, D. I. The analysis of literary style�a review. Journal of the Royal Statistical
Society: Series A (General), Vol. 148(4), 328�341, 1985.

Holmes, D. I. The evolution of stylometry in humanities scholarship. Literary and
linguistic computing , Vol. 13(3), 111�117, 1998.

Holmes, D. I. and Forsyth, R. S. The federalist revisited: New directions in authorship
attribution. Literary and Linguistic computing , Vol. 10(2), 111�127, 1995.

Homem, N. and Carvalho, J. P. Authorship identi�cation and author fuzzy ��nger-
prints�. In 2011 Annual Meeting of the North American Fuzzy Information Processing
Society , 1�6. IEEE, 2011.

Honnibal, M. and Johnson, M. An improved non-monotonic transition system for
dependency parsing. In Proceedings of the 2015 conference on empirical methods in
natural language processing , 1373�1378. 2015.

Honoré, A. Some simple measures of richness of vocabulary. Association for literary and
linguistic computing bulletin, Vol. 7(2), 172�177, 1979.

Hoover, D. L. Delta prime? Literary and Linguistic Computing , Vol. 19(4), 477�495,
2004a.

Hoover, D. L. Testing burrows's delta. Literary and linguistic computing , Vol. 19(4),
453�475, 2004b.

https://googleapis.github.io/google-api-python-client/docs/epy/googleapiclient.discovery-module.html#build
https://googleapis.github.io/google-api-python-client/docs/epy/googleapiclient.discovery-module.html#build
https://googleapis.github.io/google-api-python-client/docs/epy/googleapiclient.discovery-module.html#build
http://web.mit.edu/rhel-doc/OldFiles/4/RH-DOCS/rhel-rg-en-4/index.html
http://web.mit.edu/rhel-doc/OldFiles/4/RH-DOCS/rhel-rg-en-4/index.html

BIBLIOGRAPHY 99

Hughes, J. M., Foti, N. J., Krakauer, D. C. and Rockmore, D. N. Quantitative
patterns of stylistic in�uence in the evolution of literature. Proceedings of the National
Academy of Sciences, Vol. 109(20), 7682�7686, 2012.

Hughes, J. M., Graham, D. J. and Rockmore, D. N. Quanti�cation of artistic style
through sparse coding analysis in the drawings of pieter bruegel the elder. Proceedings
of the National Academy of Sciences, Vol. 107(4), 1279�1283, 2010.

Huron, D. The ramp archetype: A score-based study of musical dynamics in 14 piano
composers. Psychology of Music, Vol. 19(1), 33�45, 1991.

Ibrahim, M. S., Kasim, S., Hassan, R., Mahdin, H., Ramli, A. A., Fudzee, M.
F. M., Salamat, M. A. et al. Information technology club management system.
Acta Electronica Malaysia, Vol. 2(2), 01�05, 2018.

Iqbal, F., Binsalleeh, H., Fung, B. C. and Debbabi, M. Mining writeprints from
anonymous e-mails for forensic investigation. digital investigation, Vol. 7(1-2), 56�64,
2010.

Jones, K. S. A statistical interpretation of term speci�city and its application in retrieval.
Journal of documentation, 1972.

Josefsson, S. The base16, base32, and base64 data encodings. Tech. Rep. RFC 4648,
Internet Engineering Task Force (IETF), 2006.

Juola, P. Becoming jack london. Journal of Quantitative Linguistics, Vol. 14(2-3), 145�
147, 2007.

Kaliski, B. Privacy enhancement for internet electronic mail: Part iv: Key certi�cation
and related services. Tech. Rep. RFC 1424, Internet Engineering Task Force (IETF),
1993.

Kemp, K. W. Personal observations on the use of statistical methods in quantitative
linguistics. In The Computer in Literary and Linguistic Studies (Proceeding, Third In-
ternational Symposium), 59�77. 1976.

Kent, S. Privacy enhancement for internet electronic mail: Part ii: Certi�cate-based key
management. Tech. Rep. RFC 1422, Internet Engineering Task Force (IETF), 1993.

Kjell, B., Woods, W. A. and Frieder, O. Discrimination of authorship using visual-
ization. Information processing & management , Vol. 30(1), 141�150, 1994.

Kjetsaa, G. And quiet �ows the don through the computer. Association for Literary
and linguistic computing Bulletin, Vol. 7, 248�256, 1979.

Klensin, J. Simple mail transfer protocol. Tech. Rep. RFC 5321, Internet Engineering
Task Force (IETF), 2008.

Koppel, M., Akiva, N. and Dagan, I. Feature instability as a criterion for selecting
potential style markers. Journal of the American Society for Information Science and
Technology , Vol. 57(11), 1519�1525, 2006.

Koppel, M. and Schler, J. Exploiting stylistic idiosyncrasies for authorship attribution.
In Proceedings of IJCAI'03 Workshop on Computational Approaches to Style Analysis
and Synthesis, Vol. 69, 72�80. 2003.

100 BIBLIOGRAPHY

Kucukyilmaz, T., Cambazoglu, B. B., Aykanat, C. and Can, F. Chat mining: Pre-
dicting user and message attributes in computer-mediated communication. Information
Processing & Management , Vol. 44(4), 1448�1466, 2008.

Landauer, T. K., Laham, D. and Foltz, P. W. Learning human-like knowledge by
singular value decomposition: A progress report. In Advances in neural information
processing systems, 45�51. 1998.

Linn, J. Privacy enhancement for internet electronic mail: Part i: Message encryption
and authentication procedures. Tech. Rep. RFC 1421, Internet Engineering Task Force
(IETF), 1993.

Manaris, B., Romero, J.,Machado, P., Krehbiel, D., Hirzel, T., Pharr, W. and
Davis, R. B. Zipf's law, music classi�cation, and aesthetics. Computer Music Journal ,
Vol. 29(1), 55�69, 2005.

Mendenhall, T. C. The characteristic curves of composition. Science, Vol. 9(214),
237�249, 1887.

Mihalcea, R. and Strapparava, C. The lie detector: Explorations in the automatic
recognition of deceptive language. In Proceedings of the ACL-IJCNLP 2009 Conference
Short Papers, 309�312. Association for Computational Linguistics, 2009.

Moore, K. Multipurpose internet mail extensions (mime) part three: Message header
extensions for non-ascii text. Tech. Rep. RFC 2047, Internet Engineering Task Force
(IETF), 1996.

Mosteller, F. and Wallace, D. L. Applied Bayesian and classical inference: the case
of the Federalist papers. Springer Science & Business Media, 1964.

Myers, J., Mellon, C. and Rose, M. Post o�ce protocol - version 3. Tech. Rep. RFC
1939, Dover Beach Consulting, Inc., 1996.

Nelson, S. and Parks, C. The model primary content type for multipurpose internet
mail extensions. Tech. Rep. RFC 2077, Internet Engineering Task Force (IETF), 1997.

Ng, H. T., Goh, W. B. and Low, K. L. Feature selection, perceptron learning, and a
usability case study for text categorization. In Proceedings of the 20th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval ,
67�73. 1997.

Nielsen, F. Hierarchical clustering. In Introduction to HPC with MPI for Data Science,
195�211. Springer, 2016.

Ott, M., Choi, Y., Cardie, C. and Hancock, J. T. Finding deceptive opinion spam
by any stretch of the imagination. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies-volume 1 , 309�
319. Association for Computational Linguistics, 2011.

Pennebaker, J. W., Boyd, R. L., Jordan, K. and Blackburn, K. The development
and psychometric properties of liwc2015. Tech. rep., University of Texas at Austin, 2015.

Postel, J. B. Simple mail transfer protocol. Tech. Rep. RFC 821, Information Sciences
Institute, University of Southern California, 1982.

BIBLIOGRAPHY 101

Radicati, S. and Levenstein, J. Email statistics report, 2020-2024. The Radicati Group,
INC., A Technology Market Research Firm, Palo Alto, CA, USA, Tech. Rep, February ,
2020.

Rand, W. M. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, Vol. 66(336), 846�850, 1971.

Reiter, E. and Dale, R. Building natural language generation systems. Cambridge
university press, 2000.

Resnick, P. Internet message format. Tech. Rep. RFC 2822, Internet Engineering Task
Force (IETF), 2001.

Resnick, P. Internet message format. Tech. Rep. RFC 5322, Qualcomm Incorporated,
2008.

Reynolds, J. K. Post o�ce protocol. Tech. Rep. RFC 918, Information Sciences Institute,
1984.

Ril Gil, Y., Toll Palma, Y. d. C. and Lahens, E. F. Determination of writing styles
to detect similarities in digital documents. RUSC: Revista de Universidad y Sociedad
del Conocimiento, Vol. 11(1), 2014.

Rokach, L. andMaimon, O. Z. Data mining with decision trees: theory and applications,
Vol. 69. World scienti�c, 2008.

Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, Vol. 20, 53�65,
1987.

Rudman, J. The state of authorship attribution studies: Some problems and solutions.
Computers and the Humanities, Vol. 31(4), 351�365, 1997.

Sahami, M., Dumais, S., Heckerman, D. and Horvitz, E. A bayesian approach
to �ltering junk e-mail. In Learning for Text Categorization: Papers from the 1998
workshop, Vol. 62, 98�105. Madison, Wisconsin, 1998.

Sapp, C. Hybrid numeric/rank similarity metrics for musical performance analysis. In
ISMIR, 501�506. Citeseer, 2008.

Sasaki, M. and Shinnou, H. Spam detection using text clustering. In 2005 International
Conference on Cyberworlds (CW'05), 4�pp. IEEE, 2005.

Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones,
S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M. E. et
al. Personality, gender, and age in the language of social media: The open-vocabulary
approach. PloS one, Vol. 8(9), e73791, 2013.

Segal, R. B. and Kephart, J. O. Mailcat: An intelligent assistant for organizing e-mail.
In Proceedings of the third annual conference on Autonomous Agents, 276�282. 1999.

Sheika, F. A. and Inkpen, D. Learning to classify documents according to formal and
informal style. Linguistic Issues in Language Technology , Vol. 8(1), 1�29, 2012.

Simpson, E. H. Measurement of diversity. nature, Vol. 163(4148), 688�688, 1949.

102 BIBLIOGRAPHY

Smith, M. W. Recent experience and new developments of methods for the determination
of authorship. ALLC BULL., Vol. 11(3), 73�82, 1983.

Somers, H. Statistical methods in literary analysis. The computer and literary style,
128�140, 1966.

Stamatatos, E. A survey of modern authorship attribution methods. Journal of the
American Society for information Science and Technology , Vol. 60(3), 538�556, 2009.

Stamou, C. Stylochronometry: Stylistic development, sequence of composition, and rel-
ative dating. Literary and Linguistic Computing , Vol. 23(2), 181�199, 2007.

Stewart, G. W. On the early history of the singular value decomposition. SIAM review ,
Vol. 35(4), 551�566, 1993.

Sugumaran, V.,Muralidharan, V. and Ramachandran, K. Feature selection using
decision tree and classi�cation through proximal support vector machine for fault diag-
nostics of roller bearing. Mechanical systems and signal processing , Vol. 21(2), 930�942,
2007.

Summers, K. Analysing for authorship: A guide to the cusum technique. 1999.

Tallentire, D. An appraisal of methods and models in computational stylistics, with
particular reference to author attribution.. PhD thesis, University of Cambridge, 1972.

Tang, G., Pei, J. and Luk, W.-S. Email mining: tasks, common techniques, and tools.
Knowledge and Information Systems, Vol. 41(1), 1�31, 2014.

Taylor, R. P., Micolich, A. P. and Jonas, D. Fractal analysis of pollock's drip
paintings. Nature, Vol. 399(6735), 422�422, 1999.

Thisted, R. and Efron, B. Did shakespeare write a newly-discovered poem?
Biometrika, Vol. 74(3), 445�455, 1987.

Thomson, R. and Murachver, T. Predicting gender from electronic discourse. British
Journal of Social Psychology , Vol. 40(2), 193�208, 2001.

Troost, R., Dorner, S. and Moore, K. Communicating presentation information in
internet messages: The content-disposition header �eld. Tech. Rep. RFC 2183, Internet
Engineering Task Force (IETF), 1997.

Tweedie, F. J. and Baayen, R. H. How variable may a constant be? measures of lexical
richness in perspective. Computers and the Humanities, Vol. 32(5), 323�352, 1998.

Tweedie, F. J., Singh, S. andHolmes, D. I. Neural network applications in stylometry:
The federalist papers. Computers and the Humanities, Vol. 30(1), 1�10, 1996.

Williams, C. B. Style and vocabulary: numerical studies. Gri�n, 1970.

Yule, C. U. The statistical study of literary vocabulary . Cambridge University Press,
2014.

Yule, G. U. On sentence-length as a statistical characteristic of style in prose: With
application to two cases of disputed authorship. Biometrika, Vol. 30(3/4), 363�390,
1939.

BIBLIOGRAPHY 103

Zhao, Y. and Zobel, J. Searching with style: Authorship attribution in classic literature.
In Proceedings of the thirtieth Australasian conference on Computer science-Volume 62 ,
59�68. Australian Computer Society, Inc., 2007.

	Página de Título
	
	Índices
	Tabla de Contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	Motivation
	Objectives
	Report structure

	State of the Art
	Electronic Mail
	MIME
	Simple Mail Transfer Protocol
	Post Office Protocol
	Internet Message Access Protocol
	Gmail API
	Advantages and disadvantages of e-mail protocols versus the use of Gmail API

	Computational stylometry
	Introduction to Computational Stylometry
	Applications and techniques
	Style in e-mails
	Style metrics

	Latent Semantic Indexing
	Terms Frequency-Inverse Document Frequency
	Singular Value Decomposition
	LSI Querying

	Conclusions

	Used technologies
	How to work with Gmail API
	How to obtain OAuth 2.0 credentials
	Building a Gmail Resource
	Users resource
	Labels resource
	Messages resource
	Threads resource

	spaCy
	spaCy versus others syntactic parsers
	spaCy's utilities

	Flask
	MongoDB
	Conclusions

	Style Analyser
	Architecture
	Extraction module
	Preprocessing module
	Typographic correction module
	Measuring module
	Part of Speech metrics
	Punctuation metrics
	Vocabulary metrics
	Structural metrics
	Relationship between metrics and their implementation

	Analyser class
	Execution behaviour
	Conclusions

	Style feature analysis
	Data preparation: e-mail classification, metrics choice and correlation analysis
	Preliminary analysis of the metrics considered using clustering techniques
	Dimension reduction using Principal Component Analysis
	Dimension reduction using Decision Trees
	Analysis of the chosen metrics using clustering techniques
	Conclusions

	Proposal for a personalised writing model based on the recipient
	Phases of the model
	Searching for the e-mail with the most similarity
	Transforming e-mail according to metrics
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

