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Abbreviation Concept 

E Extract 

F Film 

FS Film-forming solution 

C Concentrate/d 

S Solubilized 

M Mastocarpus 

L Laminaria 

A Ascophyllum 

H Hydrolysate 

p phenolic content 

c sodium carbonate extraction 

h sodium hydroxide extraction 

 

 

 

Extracts/Films  

Dosidicus gigas 
Description 

water-S Muscle protein solubilized in water 

salt-S Muscle protein solubilized in salt  

alkaline-S Muscle protein solubilized at pH10 

acidic-S Muscle protein solubilized at pH3 

alkaline-C Muscle protein solubilized at pH10 and concentrated by isoelectric precipitation 

acidic-C Muscle protein solubilized at pH3 and concentrated by isoelectric precipitation 

alkaline-C4 Films stored for 4 months 

acidic-C4 Films stored for 4 months 
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Extracts/Films Seaweeds Description 

M1 Mastocarpus First aqueous antioxidant extraction (4 ºC)  

M2 Mastocarpus Second aqueous antioxidant extraction (45 ºC)  

M3 Mastocarpus First carrageenan rich extraction (91 ºC) 

M4 Mastocarpus Second carrageenan rich extraction (91 ºC)  

H Mastocarpus Phenolic-partially removed hydrolysate (50 ºC) 

Hp Mastocarpus Phenolic-containing hydrolysate (50 ºC)  

Lc Laminaria Sodium carbonate alginate rich extraction (75 ºC) 

Lh  Laminaria Sodium hydroxide alginate rich extraction (75 ºC) 

Ac Ascophyllum Sodium carbonate alginate rich extraction (21 ºC)  

Ah Ascophyllum Sodium hydroxide alginate rich extraction (75 ºC) 

C Microcapsules filled by demineralized water 

Cp Microcapsules filled by 1% peptide solution 

 

Concept Unification 

Abbreviation 1 experimental work Abbreviation 2 general discussion 

water-E water-S extract 

salt-E salt-S extract 

alkaline-E alkaline-S extract 

acidic-E acidic-S extract 

water-F water-S film 

salt-F salt-S film 

alkaline-F chapter 6 alkaline-S film 

acidic-F chapter 6 acidic-S film 

alkaline concentrate/extract chapter 7 alkaline-C extract 

acidic concentrate/extract chapter 8 acidic-C extract 

alkaline-F chapter 7 alkaline-C film 

acidic-F chapter 7 acidic-C film 

alkaline-F 4 alkaline-C4 film 

acidic-F 4 acidic-C4 film 

FM3 M3 film 

FM4 M4 film 

FM3+M4 M3+M4 film 

FM3-M4+M1 M3+M4+M1 film 

F-Hp0 chapter 9 M3+M4-10 film 

F-Hp15 chapter 9 M3+M4-10-Hp15 film 

F-Hp30 chapter 9 M3+M4-10-Hp30 film 

F chapter 11 Lc-3 film 

F-C chapter 11 Lc-3-C film 

F-Cp chapter 11 Lc-3-Cp film 



 

[1] Este breve resumen es parte del cuerpo de la Tesis. El resumen ampliado se presenta al final del 
manuscrito, en cumplimiento de las directrices de la normativa de desarrollo del Real Decreto 99/2011, 
de 28 de enero, que regula los estudios de doctorado en la Universidad Complutense de Madrid (UCM) 
(BOUC nº 14, de 21 de diciembre de 2012) y de acuerdo con las especificaciones establecidas por la 
Comisión de Doctorado de la UCM. 

This short abstract is part of the main Thesis report. The extended abstract is included, at the end of the 
manuscript, in fulfilment of the directives of the regulation of development of the Real Decreto 99/2011, 
de 28 de enero, which regulates the studies of doctorate at the Universidad Complutense de Madrid 
(UCM) (BOUC nº14, de 21 de diciembre de 2012) and in agreement with the specifications established 
by the Commission of Doctorate of the UCM. 
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Resumen 

En el presente trabajo se desarrollaron películas activas y comestibles de proteínas y 

polisacáridos, a partir de recursos de origen marino, como son los desechos del procesado industrial de 

cefalópodos (Dosidicus gigas) y algas infrautilizadas (Mastocarpus stellatus, Laminaria digitata y 

Ascophyllum nodosum). 

Con este fin, se extrajeron las proteínas musculares de desechos de la retirada de pieles de 

Dosidicus gigas, y extractos no refinados de carragenato y alginato a partir de algas rojas (Mastocarpus 

stellatus) y pardas (Laminaria digitata y Ascophyllum nodosum). A partir de los biopolímeros extraídos de 

productos marinos, se desarrollaron películas y se caracterizaron físico-químicamente para explorar sus 

distintas aplicaciones alimentarias potenciales. 

Las proteínas de D. gigas se recuperaron mediante dos métodos: i) solubilizando en medio 

acuoso, salino, alcalino y ácido y ii) concentrando mediante la precipitación isoeléctrica de las proteínas 

solubilizadas en medio alcalino y ácido. Mientras que solubilizando se consigue un uso integral de la 

materia prima, concentrando se restringe a las proteínas susceptibles de precipitar, lo cual garantizaría la 

eliminación de la mayoría de compuestos nitrogenados no deseados. En los medios alcalino y ácido se 

obtuvieron los más altos rendimientos; y al concentrarlos se recuperaron proteínas estructuralmente 

mejor preservadas, y por lo tanto más funcionales. 

Los extractos solubilizados y concentrados de músculo de D. gigas fueron buenas materias 

primas para el desarrollo de películas comestibles, con total manejabilidad, transparentes y con total 

absorción de luz ultravioleta. Las películas de extracto solubilizado en agua presentaron alta barrera al 

agua; si bien estas películas junto con las obtenidas solubilizando con sal, no fueron 

microbiológicamente estables ni presentaron tan buenas propiedades mecánicas como las elaboradas 

con extractos obtenidos a pH alcalino o ácido. Los extractos solubilizados en pH alcalino dieron lugar a 

proteínas parcialmente desnaturalizadas que originaron películas más resistentes al agua, a la tracción y 

perforación mecánica. Estas propiedades mejoraron mucho con el concentrado alcalino, probablemente 

debido a un aumento de interacciones proteína-proteína. Los extractos solubilizados en pH ácido 

sufrieron hidrólisis proteica y formaron películas más plastificadas y deformables. El concentrado ácido 

ayudó a la estabilidad proteica, mejorando discretamente sus propiedades de barrera al agua. Tras 4 

meses de conservación, las películas de concentrado alcalino y ácido sufrieron una agregación proteica 

que se tradujo en una pérdida de interacciones proteína-proteína y de propiedades en las películas 

alcalinas y una ligera mejora de las ácidas. 

Con el objetivo de aprovechar al máximo todos los componentes de M. stellatus y facilitar la 

obtención y caracterización extractos acuosos e hidrolizados con propiedades activas (antioxidante y 

antihipertensora); este alga se sometió a dos tipos de extracciones: i) Extracción acuosa escalonada con 

carragenato solubilizado y ii) Hidrólisis con precipitación de carragenato. 

En la extracción acuosa escalonada de M. stellatus se obtuvieron dos extractos poliméricos ricos 

en el híbrido κ/ι-carragenato y en proteínas, con buena capacidad filmogénica: M3 y M4; y dos extractos 

antioxidantes: M1 y M2. M3 presentó características químicas más parecidas al carragenato comercial, 
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mientras que M4 presentó un alto contenido en otros compuestos presentes en el alga tales como 

proteínas. M1 presentó mayores rendimientos de extracción y actividad antioxidante que M2. 

En la hidrólisis de M. stellatus se obtuvieron dos hidrolizados con actividad antioxidante y 

antihipertensora: H (con el contenido fenólico parcialmente desechado) y Hp (con contenido fenólico 

completo). Mientras que H presentó la mayor capacidad inhibidora de la enzima convertidora de 

angiotensina (ECA), Hp fue el hidrolizado con mayor capacidad antioxidante y mayor rendimiento de 

extracción. 

A partir de los dos extractos ricos en polisacáridos (M3 y M4), se desarrollaron distintas 

películas. Mientras que M3 fue adecuado para elaborar películas transparentes y flexibles, M4 originó 

una matriz más resistente al agua y a la fuerza mecánica debido a la mayor proporción de uniones 

proteína-carragenato. La mezcla de M3 y M4 dio lugar a películas con propiedades intermedias que 

aumentaron considerablemente su resistencia al agua y mecánica al disminuir la proporción de 

plastificante en su formulación. 

Dado su mayor rendimiento de extracción y su mayor actividad antioxidante, M1 y Hp se 

seleccionaron como compuestos activos para su incorporación en el desarrollo de películas 

antioxidantes. M1 y Hp presentaron un alto contenido en compuestos azufrados, lo que podría ser debido 

a una pequeña fracción de carragenato extraído de manera colateral y/o la presencia de ficobiliproteínas 

con actividad antioxidante. A pesar de que la actividad antioxidante de M1 fue menor que la de Hp, su 

incorporación en las películas dio lugar a la mayor actividad antioxidante, probablemente debido a una 

interacción más eficiente de Hp con las hélices de carragenato y el plastificante que disminuyó su 

capacidad de interaccionar con agentes oxidantes. La incorporación de M1 mejoró la resistencia al agua 

y mecánica de las películas y la de Hp tuvo un efecto plastificante que mejoró la elongación por tracción 

de estas, aunque dependiendo de la proporción de Hp añadida las propiedades filmogénicas se vieron 

afectadas de forma diferente. 

En las algas pardas L. digitata y A. nodosum, se diseñó una nueva extracción con hidróxido 

sódico y se comparó con la tradicionalmente llevada a cabo con carbonato sódico en cada especie. Se 

analizaron diversos métodos de extracción, con el objetivo de suavizar al máximo las condiciones ácidas 

del pre-tratamiento y optimizar tanto la temperatura como el tipo de tratamiento alcalino. Estos extractos, 

además de contener alginato en mayor o menor medida degradado, contendrían la mayor parte del resto 

de compuestos de cada alga. De cada tipo de extracción, se eligieron aquellos extractos que presentaron 

mejores rendimientos y capacidad filmogénica. 

El tratamiento con NaOH recuperó mayor proporción de alginato no degradado con un alto 

contenido en unidades de gulurónico, lo cual facilitó la formación de interacciones poliméricas en la 

película. Sin embargo, la extracción con Na2CO3 recuperó un alto porcentaje de alginato degradado y 

unidades de ácidos urónicos dispersos, lo cual facilitó sus interacciones con el plastificante. El tipo de 

tratamiento alcalino condicionó las diferencias entre películas como barrera al agua, mientras que la 

especie de alga influyó en sus propiedades mecánicas. El extracto obtenido con Na2CO3 de Ascophyllum 

dio lugar a películas transparentes y flexibles, mientras que el extracto obtenido con NaOH de Laminaria 

formó la película más fuerte y menos permeable al vapor de agua. 
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La presencia de pigmentos como la fucoxantina, y de polisacáridos sulfatados como el fucoidan, 

confirió actividad antioxidante a las películas. La película obtenida con el extracto de NaOH en 

Ascophyllum tuvo mayor capacidad antioxidante que el resto de películas desarrolladas a partir de algas 

pardas, probablemente debido a la presencia de una mayor proporción de compuestos sulfatados. Esta 

actividad destacó por ser parecida a la obtenida en Mastocarpus al añadir hidrolizado antioxidante en su 

fórmula. 

Dado que la adición directa de hidrolizados en películas comestibles puede ir en detrimento de 

sus propiedades filmogénicas, se planteó un nuevo método de incorporación de péptidos activos 

extraídos de las túnicas de D. gigas usando la técnica de microencapsulación por inyección, mediante 

impresión en una solución de ácido esteárico y cera de carnauba, siguiendo el modelo core-shell. Se 

obtuvo una eficiencia de encapsulación del 84.7 ± 3.4% y con una ratio de material de 

encapsulación:péptido de 13,3:1. Las cápsulas fueron homogéneas, con un diámetro de 110-140 µm, y 

más estables a bajas temperaturas y pH 7. Se desarrolló un método de inclusión durante la elaboración 

de películas de extracto en Na2CO3 de Laminaria evitando la aglomeración y rotura de las microcápsulas, 

obteniendo películas más resistentes y deformables a la tracción mecánica y más impermeables al vapor 

del agua. 

Todas las películas desarrolladas en el presente trabajo, podrían ser susceptibles de formar 

parte de la presentación final de productos alimenticios, ya sea como parte del envase o como 

ingrediente propio del diseño del alimento. 
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Abstract 

The present work has studied the development of edible and active protein and polysaccharide 

films from resources of marine origin, such as waste from the cephalopod processing industry (Dosidicus 

gigas) and underutilized seaweeds (Mastocarpus stellatus, Laminaria digitata and Ascophyllum 

nodosum). 

With this aim, muscle proteins recovered from the waste resulting from the D. gigas skinning 

process, and carrageenan and alginate unrefined extracts from red (Mastocarpus stellatus) and brown (L. 

digitata and A. nodosum) seaweeds were obtained. Films were developed from the biopolymers extracted 

from marine products, and they were physicochemically characterized to explore for different potential 

applications in the food industry.  

D. gigas proteins were recovered by two methods consisting in: i) solubilization under aqueous, 

salt, alkaline and acidic conditions, and ii) concentration by isoelectric precipitation of the proteins 

solubilized under alkaline and acidic conditions. Whereas an integral use of the raw material is achieved 

with the solubilization method, the concentration method is restricted only to those proteins susceptible to 

precipitation, which would guarantee the removal of most of the undesirable nitrogenated compounds. 

Alkaline and acidic conditions maximized the extraction yields; and when extracts were concentrated, 

more structurally preserved proteins, and thereby more functional, were recovered. 

Both solubilized and concentrated extracts obtained from D. gigas muscle were good raw 

materials for edible film development, absolutely easy to handle, transparent, and with total ultraviolet 

light absorption. The water solubilized extract films showed a high water barrier, although these films, 

together with those obtained by salt solubilization, failed to be microbiologically stable and did not result in 

as good mechanical properties as those made of extracts obtained under alkaline or acidic pH.  

Alkaline solubilized extracts elicited partially denatured proteins which resulted in films with more 

water resistance, tensile and puncture strength. These properties were considerably improved in alkaline 

concentrated films, probably due to an increased number of protein-protein interactions. Acidic solubilized 

extracts underwent protein hydrolysis and resulted in more plasticized and malleable films. The acidic 

concentrated extraction contributed to protein stability and slightly improved the film water barrier 

properties. After 4 months of storage, alkaline and acidic concentrated films suffered protein aggregation, 

which entailed a loss of protein-protein interactions to the detriment of the properties in alkaline films, and 

a slight improvement of the acidic films properties. 

With the aim of exploiting to the maximum all the M. stellatus components and helping to obtain 

and characterize aqueous extracts and hydrolysates with active properties (antioxidant and 

antihypertensive), two different types of extractions were performed: i) Stepped aqueous extraction with 

solubilized carrageenan, and ii) Hydrolysis with carrageenan precipitation. 

M. stellatus stepped aqueous extraction resulted in two polymer extracts, rich in κ/ι-carrageenan 

hybrid and proteins, with a good filmogenic capacity: M3 and M4; and two antioxidant extracts: M1 and 

M2. M3 showed chemical characteristics resembling commercial carrageenan, while M4 presented a high 
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content of other seaweed compounds such as proteins. M1 showed higher extraction yields and 

antioxidant activity than M2. 

Two antioxidant and antihypertensive hydrolysates were obtained in the M. stellatus hydrolysis: H 

(with partially removed phenolic contents) and Hp (with full phenolic contents). Whereas H showed the 

highest angiotensin-converting enzyme (ACE) inhibitory capacity, Hp presented the highest antioxidant 

capacity and extraction yield. 

Based on the two extracts rich in polysaccharides (M3 and M4), different films were developed. 

While M3 was suitable to develop transparent and flexible films, M4 produced a matrix with more water 

resistance and mechanical strength due to a higher proportion of protein-carrageenan bonds. The M3 and 

M4 mixture resulted in intermediate film properties that considerably increased its mechanical strength 

and water resistance when lowering the plasticizer ratio in the formula.  

Given their higher extraction yield and antioxidant activity, M1 and Hp were selected as active 

ingredients for antioxidant film development. M1 and Hp presented a high sulfated compounds content, 

which might be due to a small carrageenan fraction extracted collaterally, and/or the presence of 

phycobiliproteins with antioxidant activity. Even though M1 antioxidant activity was lower than Hp’s, its 

inclusion in the films resulted in the highest antioxidant activity, which was probably due to a more 

efficient interaction between Hp peptides and the film’s carrageenan helices and plasticizer, lowering its 

capacity to react with oxidant agents. The inclusion of M1 in the films improved their mechanical strength 

and water resistance; and Hp addition had a plasticizing effect that improved their tensile elongation, but 

depending on the Hp ratio included the filmogenic properties were affected in a different way. 

A new alkaline extraction, using sodium hydroxide, was designed in L. digitata and A. nodosum 

brown seaweeds, and it was compared in each species with the traditional sodium carbonate extraction 

procedure. With the purpose of softening as much as possible the pretreatment acidic conditions and 

optimizing both the temperature and the type of alkaline treatment, various extraction procedures were 

analysed. Apart from an alginate content degraded to a greater or lesser extent, these extracts would also 

contain most of the rest of each seaweed compounds. From each extraction method, those extracts 

presenting the best yields and filmogenic capacity, were selected. 

A higher proportion of non-degraded alginate with a high content in guluronic units was recovered 

with the NaOH treatment, which contributed to form polymer interactions in the film. However, a high 

percentage of degraded alginate and dispersed uronic acid units was recovered with Na2CO3 extraction, 

which contributed to their interaction with the plasticizer. The type of alkaline treatment determined the 

water barrier differences among films, while the seaweed species affected the mechanical properties of 

the films. The Ascophyllum Na2CO3 extract resulted in transparent and flexible films, while the Laminaria 

NaOH extract produced the strongest and least water vapour permeable film. 

The film antioxidant activity was conferred by the presence of pigments like fucoxanthin and 

sulfated polysaccharides such as fucoidans. The film obtained with the Ascophyllum NaOH extract had 

the highest antioxidant capacity among all the brown seaweed films developed, probably due to the 

presence of a higher proportion of sulfated compounds. This activity was emphasized for its resemblance 

to that previously reported in Mastocarpus films when adding antioxidant hydrolysate to the formula. 
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Since the direct addition of hydrolysates in edible films could be detrimental to their filmogenic 

properties, a new method of incorporation of bioactive peptides extracted from D. gigas tunics was 

applied by using the microencapsulation inkjet technology, through printing in a stearic acid and carnauba 

wax solution, following the core-shell model. An encapsulation efficiency of 84.7 ± 3.4% and a ratio of 

13.3:1 microencapsulation material:peptide were obtained. The microcapsules were homogeneous, with 

a 110-140 µm diameter, and more stable at low temperatures and pH 7. In order to avoid microcapsule 

agglomeration and breakage during the development of films from Laminaria Na2CO3 extract, a new and 

specific film inclusion procedure was developed, obtaining higher water vapour impermeability, a better 

tensile strength, and more malleable films. 

All films developed in the present work might be susceptible of use in the final food serving 

presentation, whether as part of the packaging material or as an ingredient by itself in the food design. 
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1.1. Exploitation of marine resources  

1.1.1. Introduction 

The development of different strategies for a sustainable use of live marine resources has been 

one of the world’s latest concerns, not only focussing on the importance of the natural resources 

exploitation to satisfy human necessities, but also in the maintenance of their potentiality for future 

generations (Caddy & Griffiths, 1995). 

Spain is a fishery country, with the highest European fishery production (14% of the total), mainly 

dedicated to human consumption (40 kg/person/year in Spain, while in Europe the average is 20 

kg/person/year), but typical resources have been decreasing for years. 80% of the capture is sold in the 

market as fresh fish, but the processing industry has gained weight in the latest years (FAO 2010), which 

has entailed different consequences. 

Moreover, in the Spanish Atlantic coast, many different seaweed species are currently harvested 

for industrial purposes; however they are underutilized due to the fact that the direct consumption is 

limited. On the other hand, seaweed phycocolloid extraction does not consider the extraction of other 

nutrients in parallel, since it is not focussed on making direct use of both the phycocolloids and the 

nutrients of the algae (Gómez-Ordóñez, Jiménez-Escrig, & Rupérez, 2010; Hilliou, Larotonda, Abreu, 

Ramos, Sereno, & Gonçalves, 2006; Pereira, Critchley, Amado, & Ribeiro-Claro, 2009; Rupérez & 

Toledano, 2003). 

1.1.2. Fishing Industry Impact 

1.1.2.1. Processing Industry 

The fishery sector has different problems such as an over-exploited aquifer, restrictions and 

dependence on foreign fishing grounds, and contamination. Nowadays, a lot of waste is produced in the 

processing industry of sea products, mostly protein that is normally recovered to produce animal feed and 

fertilizers, or directly dismissed as waste. This material is a source of environmental pollution and due to 

its ecological, economic and social-cultural impact, there is a need to increase its exploitation (Cuclas, 

1997). 

Environmental regulations are progressively getting stricter, and so it is going to result impossible 

to maintain the current waste level generated in the future. The fish processing industry needs to be 

capable of producing high quality byproducts under controlled environmental-friendly methods, taking 

advantage of the waste recovery no matter what destination, either for human consumption or not. 

Solid residues can reach 50-75% of the catch (Shahidi, 1994) and the use of the same for food 

applications would result in a greater efficiency and less dependency on capture fishery products and 

byproducts. In order to obtain value-added products and to eliminate the pollution generated from 

discarded material, the waste from the fishing industry has been studied to obtain different edible raw 

materials, such as collagen, gelatine, surimi, hydrolysates and lipids (Rustad, Storrø, & Slizyte, 2011), to 

ensure an added value and to minimize discards during processing. 
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Figure 1. Dorsal 
view of Dosidicus 

gigas. Species 
Catalogue FAO 

1984. # 125, VOL. 3. 

1.1.2.2. Dosidicus gigas  

Cephalopod catches have considerably increased from 2002 to 2008, being Spain, Italy and Japan 

the largest consumers and importers of these species. The jumbo squid (Dosidicus gigas) (Fig. 1) is the 

largest and most abundant squid species found in the pelagic zone of the eastern Pacific, from the coast of 

Chile to Oregon (Nigmatullin, Nesis, & Arkhipkin, 2001), and it is usually imported to Spain due to its high 

percentage of edible portion (60-80%) and its suitability for industrial processing either fresh, sliced in fillets 

or separated by parts (tentacles, mantle…), canned, frozen (the cephalopod as a whole or in parts), 

yielding byproducts such as strips and rings from surimi or mince.  

However, the byproducts obtained from squid processing, including 

viscera, mantles and tentacles among others, represent up to 60% of the total 

weight. Fortunately, a number of studies have reported this waste as an excellent 

raw material to obtain important co-products with high commercial value such as 

gel-based products (Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-

Ruiz, & García-Sánchez, 2008; De la Fuente-Betancourt, García-Carreno, Del 

Toro, Cordova-Murueta, & Lugo-Sánchez, 2009), gel-emulsions (Felix-Armenta, 

Ramírez-Suarez, Pacheco-Aguilar, Diaz-Cinco, Cumplido-Barbeitia, & Carvallo-

Ruiz, 2009), surimi (Campo-Deaño, Tovar, Jesús Pombo, Teresa Solas, & Javier 

Borderías, 2009), and also other collagen-based products from skins and tunics 

(Denavi, Pérez-Mateos, Anon, Montero, Mauri, & Gómez-Guillén, 2009; 

Giménez, Alemán, Montero, & Gómez-Guillén, 2009; Gómez-Guillén, Giménez, 

López-Caballero, & Montero, 2011). 

 

D. gigas muscle differs in its structure from fish and mammals muscles in that it is surrounded by 

several sheets of connective tissue (tunics) and composed of 75-84% of water, 13-22% of crude protein, 

0.1-2.7% of lipids, and 0.9-1.9% of minerals (Sikorski & Kolodziejska, 1986). During the mantle skinning, 

a great amount of muscle (~30-40%) is discarded, being necessary to develop methods for protein 

recovery and to promote its use. 

Muscle proteins from D. gigas mantle contain three main fractions: sarcoplasmic (about 15% of 

the total), collagen (about 3%) and myofibrillar (about 80%) (Sikorski & Kolodziejska, 1986). These 

muscle proteins can be solubilized by different procedures, such as a simple water homogenization due 

to its high protein solubility (~85%) (De la Fuente-Betancourt, García-Carreno, Del Toro, Cordova-

Murueta, & Lugo-Sánchez, 2009), under low ionic strength (Sánchez-Alonso, Careche, & Borderías, 

2007), and under acidic (1-3) or alkaline (9-11) pH conditions (Cortes-Ruiz, Pacheco-Aguilar, Lugo-

Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008; Palafox, Cordova-Murueta, del Toro, & García-

Carreno, 2009). 

D. gigas contains about 37% of non-proteinaceous compounds included in its estimated 

nitrogenous components, which are mainly physiological trimethylamine oxide, metabolism products 
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(NH4Cl), and other amines (Marquez-Rios, Moran-Palacio, Lugo-Sánchez, Ocano-Higuera, & Pacheco-

Aguilar, 2007; Sikorski & Kolodziejska, 1986). 

Myosin is the most important protein in the giant squid myofibrillar fraction, followed by actin and 

paramyosin. Dosidicus gigas myosin has a low stability due to its high enzymatic activity, especially under 

acidic pH, and paramyosin can represent 25% of the myofibrillar portion (Sikorski & Kolodziejska, 1986). 

Obviously, the yield of the myofibrillar recovery could be affected by other factors, for example the 

raw material conditions (proteolysis degree, ammonia compounds), the protein extraction methods, and 

so on. The high metalloprotease content (Campo-Deaño, Tovar, Jesús Pombo, Teresa Solas, & Javier 

Borderías, 2009; Gómez-Guillén, Hurtado, & Montero, 2002; Moral, Morales, Ruíz-Capillas, & Montero, 

2002) might be useful for promoting protein autohydrolysis, and the resulting water soluble compounds 

susceptible to be recovered could be used as food ingredients (Lian, Lee, & Park, 2005). It is well known 

that the presence of hydrolyzed proteins in D. gigas muscle results in a quality devaluation, thereby 

constituting an abundant resource susceptible to be used in the development of co-products. 

The ability to solubilise fish myofibrillar proteins under extreme acidic (pH 2-3) (Hultin & Keelleher 

1998a) or alkaline (pH 10.5-11.5) (Hultin & Keelleher 1998b) conditions, in combination with a 

subsequent isoelectric protein precipitation (pH 4.8-5.5) leads to the highest recovery of highly functional 

myofibrillar proteins, discarding most of the sarcoplasmic and non-proteinaceous content. There are not 

many studies regarding cephalopod protein recovery (Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, 

Carvallo-Ruiz, & García-Sánchez, 2008; Palafox, Cordova-Murueta, del Toro, & García-Carreno, 2009), 

and it is important to take into account the different protein behaviours depending on the species, given 

that muscle protein solubilities are also different. For example, D. gigas muscle is totally soluble under 

low ionic strength (Borderías, Careche, & Sánchez Alonso, 2005) while Todadores needs a really high 

ionic strength (Moral, Morales, Ruíz-Capillas, & Montero, 2002). 

It would be interesting to study the myofibrillar protein recovery from D. gigas muscle adhered to 

the mantles as a waste in the processing industry; and to carry out the analysis of its filmogenic capacity, 

due to its potential as raw material for coating applications. So far, muscle and/or myofibrillar protein films 

from D. gigas have never been developed before despite they would represent an interesting alternative 

use; and no information regarding its film forming capability, or the adequate extraction methods to obtain 

the film properties of interest, is currently available. 

1.1.3. Seaweeds  

1.1.3.1. Seaweeds: An underused resource 

Seaweeds have been traditionally incorporated into Pacific and Asian foods for hundreds of 

years, but they were not included in western diets until a few years ago (Rinaudo, 2008). In recent 

decades, and due to the algae richness in polysaccharides (high fibre content), proteins (Fleurence, 

1999), minerals and vitamins (Mabeau & Fleurence, 1993), their low lipid content (Gómez-Ordóñez, 

Jiménez-Escrig, & Rupérez, 2010), and their ability to generate a wide range of secondary metabolites 

with biological activity(Plaza, Cifuentes, & Ibáñez, 2008), there has been an increase in the direct 
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consumption of seaweeds as food products and in their use to obtain functional compounds (Plaza, 

Cifuentes, & Ibáñez, 2008; Shahidi, 1994). Moreover, seaweeds are an excellent source of bioactive 

substances like sulfated-polysaccharides, peptides, polyphenols and pigments with biological activities, 

such as antioxidant (Cardozo, Guaratini, Barros, Falcão, Tonon, Lopes, et al., 2007; Jiménez-Escrig, 

Gómez-Ordoñez, & Rupérez, 2012). 

Regarding their colour, macroalgae are classified in three types: red (Rhodophyceae), brown 

(Phaeophyceae) and green (Chlorophyceae) seaweeds. Both red and brown seaweeds are the most 

commonly used for human consumption, being considered novel foods in Spain, and, in general, lacking 

specific European regulations (Gómez Ordóñez, 2013). 

The Spanish coasts are full of different red and brown underutilized algae species, which are 

easy to cultivate and present rapid growth and a production susceptible to be controlled by manipulating 

the cultivation conditions. Mastocarpus stellatus (Rhodophyceae), Laminaria digitata and Ascophyllum 

nodosum (Phaeophyceae) are some of the most abundant species existing in the north-western Spanish 

coast, and unlike other countries where they are a source of wealth for many companies, their 

exploitation is still far away from its real potential. In Europe, algae are traditionally used for the 

production of additives (phycocolloids) or in animal nutrition, but rarely promoted for integral consumption 

due to their strong sea-flavour. Apart from their high mineral and protein contents or the functional 

properties of their polysaccharides, these organisms have shown the potential to be natural sources of 

ingredients with different biological activities, making it necessary to study new ways of production at an 

industrial scale and, if possible, of developing an integral extraction procedure (Plaza, Cifuentes, & 

Ibáñez, 2008). 

The development of a more appropriate, fast, cost-effective and environmental-friendly extraction 

process to isolate different compounds, together with a more attractive food presentation format, would 

be desirable in order to promote seaweed consumption and novel applications of the different 

compounds. 

On the other hand, human life styles and eating habits have led to increasing cases of chronic 

diseases, and to a growing interest in developing health products. Seaweeds could constitute an 

excellent raw material for this purpose due to their previously described useful properties (Ferraces-

Casais, Lage-Yusty, de Quirós, & López-Hernández, 2012; Gupta & Abu-Ghannam, 2011; Holdt & Kraan, 

2011). Moreover, the therapeutic properties of the seaweeds would make them a suitable source for the 

development of new functional food products (Mohamed, Hashim, & Rahman, 2012). 

 

Figure 2. Mastocarpus stellatus (A) Laminaria digitata (B) and Ascophyllum nodosum (C) seaweeds. 

A B C
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Among the most common and consumed Spanish algae species (Fig. 2), red seaweeds as 

Mastocarpus stellatus and brown seaweeds as Laminaria digitata and Ascophyllum nodosum (though the 

latest is consumed in a lesser extent) are the most representative for their abundance in the Atlantic coast 

and their low heavy metal content, well within the human consumption limits (Holdt & Kraan, 2011). 

1.1.3.2. Seaweeds: Chemical composition 

1.1.3.2.1. Phycocolloids 

The most important characteristic of algae is their high fibre content, in which the soluble fraction 

is mainly composed of phycocolloids. Phycocolloids are special high molecular weight polysaccharides 

produced by several seaweed species, stored in the cell walls, which are normally extracted to be used 

as thickeners or gelling polymers. Each seaweed type differs from the others in their specific cell wall 

structural and storage polysaccharides composition. Rhodophytas contain neutral sugars such as agar, 

carrageenan and a few other sulfated polysaccharides, while Phaeophytas produce laminaran, fucoidan 

and alginate (Rinaudo, 2008). Soluble fibres are known for having a beneficial effect on the health of the 

stomach, the faecal bulking capacity and the digestive transit, which indirectly would help to prevent 

gastrointestinal chronic ailments (Mohamed, Hashim, & Rahman, 2012). A high dietary fibre intake can 

help to reduce the incidence of diabetes, heart disease, and the risk of cancer, while phycocolloids have 

shown hypocholesterolaemic activity (Jiménez-Escrig & Sánchez-Muñiz, 2000). 

1.1.3.2.1.1. Carrageenan 

Carrageenans are high molecular weight sulfated D-galactans composed of repeating 

disaccharide units alternating 3-linked β-D-galactopyranose and 4-linked α-D-galactopyranose or 4-linked 

3,6-anhydrogalactose, depending on the source and extraction conditions. Carrageenans are classified 

according to their sulfation patterns and the presence of α-D-galactopyranose or 4-linked 3,6-

anhydrogalactose units (Jiao, Yu, Zhang, & Ewart, 2011). 

There are 15 different carrageenan structures, being kappa (ĸ), iota (ι) and lambda (λ) forms the 

most relevant. The κ-carrageenan is produced by alkaline elimination from its precursor μ-carrageenan (-

(1 3)-β-D-galactopyranose-4-sulfate-(1 4)-3,6-anhydro-α-D-galactopyranose-(1 3)-). The ι-

carrageenan has an additional sulfate group on C2 (O), resulting in two sulfates per disaccharide 

repeating unit, and it is produced by alkaline elimination from its precursor ν-carrageenan (-(1 3)-β-D-

galactopyranose-4-sulfate-(1 4)-3,6-anhydro-α-D-galactopyranose-2-sulfate-(1 3)-). The λ-

carrageenan is converted into the alternative form θ-carrageenan (theta-carrageenan) by alkaline 

elimination, but at a much slower rate than that causing the production of ι-carrageenan and κ-

carrageenan, and has three sulfate groups per disaccharide unit with the third one at the C6 position of 

the 4-linked residue (-(1 3)-β-D-galactopyranose-2-sulfate-(1 4)-α-D-galactopyranose-2,6-disulfate-

(1 3)).  

Natural carrageenan is typically present as mixtures of different hybrid types, such as ĸ/ι-hybrids, 

k/µ-hybrids or ν/ι-hybrids (Fig. 3) (Jiao, Yu, Zhang, & Ewart, 2011). 
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Figure 3. Structural formula of µ, ĸ, v, ι, λ and θ-carrageenan. 

Carrageenans are highly flexible molecules which wind around each other to form double-helical 

structures. These double-helical structures confer good functional properties, being the gelling capacity 

the most highlighted among others (Hilliou, Larotonda, Sereno, & Gonçalves, 2006; Ridout, Garza, 

Brownsey, & Morris, 1996). Gel formation, in κ- and ι-carrageenans, involves a first stage of helix 

formation over the cooling of a hot solution (Fig. 4), followed by a second stage of gel-induction and gel-

strengthening aided by K+ or Ca2+ cations respectively, which do not only contribute to helix formation, but 

also support the subsequent formation of aggregating linkages between the helices, originating the 

junction zones (Fig. 5). 

 

Stage A   Stage B       Stage C 

Random coil    Double Helix    Aggregated Double Helices 

Figure 4. Models of conformational transition of κ-carrageenan and ι-carrageenan (Wu & Imai, 2012). 
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Figure 5. The gelation mechanism of κ-Carrageenan cross-linked by K+ ions (Wu & Imai, 2012). 

Depending on their composition and configuration, carrageenans present different rheological 

properties as thickeners, gelling agents and stabilizers widely applied in the food, pharmaceutical and 

cosmetic industries. ĸ and ι-carrageenan are gelling agents, while λ-carrageenan is a thickener. The κ-

type forms gels that are hard, strong and brittle, whereas ι-carrageenan forms soft and weak gels (Van 

De Velde, Peppelman, Rollema, & Tromp, 2001). The lack of linkage in the anhydrogalactose residue of µ 

and v-carrageenan gives rise to different conformations, which difficult gel formation (Pereira & Van De 

Velde, 2011). 

Carrageenans have also shown good filmogenic properties (Han & Kim, 2008; Karbowiak, Ferret, 

Debeaufort, Voilley, & Cayot, 2011), which will be more extensively mentioned in the following sections. 

1.1.3.2.1.2. Alginate 

Commercial alginate is normally found in two forms, alginate salt from the sodium salt extraction 

(more stable and soluble at pH 5.5-10), or transformed into alginic acid (less stable) by treatment with 

diluted acidic solutions (Rinaudo, 2008). 

Alginates are linear block copolymers formed by 1,4-linked β-D-mannuronic acid and α-L-

guluronic acid (G). These two uronic acid units form three types of blocks. G blocks contain L-guluronic 

units, M blocks contain D-mannuronic units and MG blocks are formed by alternation of both units (Leal, 

Matsuhiro, Rossi, & Caruso, 2008). 

Due to their linear structure and their high molecular weight, alginates can form strong films and 

good fibres when solidifying, being their gel formation capacity their main characteristic (Draget, Skjåk-

Bræk, & Stokke, 2006; Pereira, Carvalho, Vaz, Gil, Mendes, & Bártolo, 2013). M blocks form linear 

chains, while G blocks form loop structures. Thereby, two G block chains aligned side-by-side would 

result in a diamond structure with a gap suitable to accommodate Ca2+ and form a dimeric gel structure 

(Fig. 6) ("egg box model" proposed by Grant, 1973). 

According to the G and M blocks proportion, alginate gel properties will be different, being M/G 

ratio a common parameter used for characterization. The calcium complex formation not only depends on 

the composition (M/G ratio) and distribution of M and G units in the chains, but also on the stiffness of the 

alginate chains (Rinaudo, 2008). Generally, low M/G ratios lead to stronger and more rigid gels, while a 

high M/G ratio results in more elastic and soft structures (Draget, Skjåk-Bræk, & Stokke, 2006). This is 
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the reason why alginates have the ability to retain water and are used as stabilizers, thickeners and 

gelling agents in the food industry. 

 

Figure 6. Alginate composition: (a) β-D-mannuronic acid. (b) α-L-guluronic acid. (c) Structural formula of 

sodium alginate molecule, (d) gelation of α-L-guluronic acid junction with calcium ions and (e) binding of 

divalent cations to alginate: the “Egg-box” model (Kashima & Imai, 2012). 

Regarding alginate film forming properties, there are many studies about alginate film 

development with and without cation complexation (Ca+2) (Nakamura, Nishimura, Hatakeyama, & 

Hatakeyama, 1995; Russo, Malinconico, & Santagata, 2007), and also as an ingredient in composite films 

(Paşcalau, Popescu, Popescu, Dudescu, Borodi, Dinescu, et al., 2012; Salmieri & Lacroix, 2006). 

1.1.3.2.2. Fucoidans and laminarans 

Fucoidans are sulfated polysaccharides (fucans) from brown algae that can reach 40% of their 

weight (Holdt & Kraan, 2011). Despite there are several studies about fucoidans composition (Li, Lu, Wei, 

& Zhao, 2008), some particularities remain unknown. Fucoidans consist in a fucose backbone according 

to which they are classified into two groups. One group includes the fucoidans from Laminaria digitata 

and have (1-3)-linked α-L-fucopyranose residues as their central chain, while the second group, where 

Ascophyllum nodosum is included, have repeating (1-3)- and (1-4)-linked α-L-fucopyranose residues 

(Jiao, Yu, Zhang, & Ewart, 2011). 

Laminarans are the main storage polysaccharide in brown seaweeds, being abundant in L. 

digitata and A. nodosum species (36%) (Devillé, Gharbi, Dandrifosse, & Peulen, 2007; Holdt & Kraan, 

2011). Formed by (1-3)-β-D-glucose units with different (1-6)-β-ramifications (Rioux, Turgeon, & Beaulieu, 

2007a), they are mainly used as food fibre (Devillé, Gharbi, Dandrifosse, & Peulen, 2007). 

Nevertheless, no bibliographic references have been found regarding the potential technological 

applications of fucoidans and laminarans. 

1.1.3.2.3. Other compounds 

Algae also contain a multitude of bioactive compounds that might have antioxidant and 

antihypertensive properties (Plaza, Cifuentes, & Ibáñez, 2008). These active compounds are mainly 

d)

e)
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pigments (e.g. phycobilins and fucoxanthin), minerals and peptides that have shown benefits against 

degenerative diseases (Mohamed, Hashim, & Rahman, 2012). 

Regarding the protein content, the higher amount has been found in green and red seaweeds 

(10-47%), compared to brown seaweeds (3-15%), representing aspartic and glutamic acids the largest 

part of the amino acid fraction. Rhodophytas specifically contain a high amount (1-10%) of 

phycobiliproteins (bonded to phycoerythrin and phycocyanin pigments) (Heo, Park, Lee, & Jeon, 2005; 

Lordan, Ross, & Stanton, 2011) as part of the phycobilins, which have shown bioactivity as antioxidants 

(Fleurence, 1999; Mohamed, Hashim, & Rahman, 2012). 

Seaweeds are also an important source of different minerals (8–40% content) such as sodium, 

potassium, calcium, magnesium and phosphorous and other micronutrients, which might contribute to 

their food applications; and carotenoids, especially fucoxanthin and β-carotene in brown seaweeds and α-

tocopherol in red seaweeds, which would improve their antioxidant character (Holdt & Kraan, 2011). 

Seaweeds are considered low fat raw materials (<4%) and polyphenols have shown very low 

concentrations in green and red seaweeds (<1%) (Mabeau & Fleurence, 1993) compared to brown 

seaweeds (<14%) (Holdt & Kraan, 2011). 

1.1.3.3. Seaweeds: Extraction procedures 

The traditional commercial carrageenan extraction is normally carried out under strong alkaline 

conditions, at near boiling point temperature, for several hours (Rinaudo, 2008); but it has been observed 

that using only high temperatures (85 ºC) during 3 h the lower molecular weight “native” phycocolloid was 

extracted at pH 7 (Pereira, Critchley, Amado, & Ribeiro-Claro, 2009). 

Commercial alginate extraction is traditionally carried out by using sodium carbonate to obtain 

sodium alginate, or by acidic dilution to obtain alginic acid (Rinaudo, 2008), and at temperatures that can 

vary from 21 ºC (Vauchel, Kaas, Arhaliass, Baron, & Legrand, 2008) to 70 ºC (Rioux, Turgeon, & 

Beaulieu, 2007b). 

Seaweeds have proven to be a good peptide and polyphenol source (Patel, Pawar, Mishra, 

Sonawane, & Ghosh, 2004; Plaza, Cifuentes, & Ibáñez, 2008; Rupérez, 2002), and it would be very 

interesting to develop an extraction procedure in which not only phycocolloids were extracted, but also 

other compounds that in previous studies have shown antioxidant activity, such as lipophilic compounds 

like chlorophylls and carotenoids or hydrophilic compounds like polyphenols (Jiménez-Escrig, Jiménez-

Jiménez, Pulido, & Saura-Calixto, 2001). So far, most of the studies have been performed at a laboratory 

level, and there is no known industrial scale extraction procedure. 

Sulfated-polysaccharides, peptides and polyphenols have shown biological activities in previous 

studies, such as antioxidant and antihypertensive (Cian, López-Posadas, Drago, Sánchez De Medina, & 

Martínez-Augustin, 2012; Fitzgerald, Gallagher, Tasdemir, & Hayes, 2011; Jiménez-Escrig, Gómez-

Ordoñez, & Rupérez, 2012; Ngo, Wijesekara, Vo, Van Ta, & Kim, 2011). In general, sulfated 

polysaccharide (carrageenan and fucoidan) bioactivity is related to the still not well established interaction 

between different factors such as sulfation degree, sulfate groups distribution and molecular weight (Jiao, 
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Yu, Zhang, & Ewart, 2011; Li, Lu, Wei, & Zhao, 2008). However, carrageenan antioxidant properties 

appeared to be positively correlated to the sulfate content (Rocha De Souza, Marques, Guerra Dore, 

Ferreira Da Silva, Oliveira Rocha, & Leite, 2007). 

The cell wall rigidity and structural complexity of the seaweeds represent a major obstacle for the 

efficient extraction of the intracellular bioactive constituents. Food processing could transform seaweeds 

into food products having a specified nutritional and sensorial quality, making them more available to 

consumers. pH and temperature variations usually lead to structure modifications that may sometimes not 

be reversible, but that can favour other characteristics. 

Rhodophytas have a high protein content, mainly composed of bioactive phycobiliproteins (Heo, 

Park, Lee, & Jeon, 2005) and other wall proteins that might be more efficiently extracted by an enzymatic 

treatment (Joubert & Fleurence, 2008; Martínez, Sánchez, Ruíz-Henestrosa, Rodríguez Patino, & Pilosof, 

2007). Hydrolysis has also previously resulted in both antihypertensive and antioxidant extracts (Cian, 

Martínez-Augustin, & Drago, 2012; Wang, Jónsdóttir, Kristinsson, Hreggvidsson, Jónsson, Thorkelsson, 

et al., 2010).  

It has also been reported that the extraction of bioactive compounds from several brown algae 

may be improved by enzymatic extraction (Heo, Park, Lee, & Jeon, 2005), and that byproducts obtained 

from alginate extraction, such as fucoidan and laminaran, have also shown antioxidant activity (Rocha De 

Souza, Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 2007). 

Depending on the extraction procedure, the percentage of compounds extracted, their integrity 

and composition can be modified. In some cases, specific extraction conditions can favour the extraction 

of one element, but damage other compounds integrity, affecting their activity or functionality; however, in 

other cases, more extreme conditions are needed to obtain all the compounds of interest. For example, 

the customary carrageenan extraction is usually performed at 85 ºC during 3 h (Pereira, Critchley, 

Amado, & Ribeiro-Claro, 2009), which would damage the possible bioactivity of other compounds; hence 

carrageenan extraction should be modified in order to allow the subsequent extraction of bioactive 

compounds. 

It would be interesting and necessary to combine a series of extraction methods to progressively 

extract one by one all the compounds of interest, and thereby achieve a total seaweed extraction for 

different food technological applications, increasing the commercial phycocolloid extraction yields (20-

30%) (Istini, Ohno, & Kusunose, 1994), and offering alternative seaweed food presentations and 

applications that might boost their consumption. 

Conventional water and solvent extractions usually have low selectivity, low extraction efficiency, 

and pose the problem of the solvent residue (Herrero, Cifuentes, & Ibáñez, 2006). A good technological 

alternative would be the hydrolytic enzyme-assisted seaweed extraction. The application of enzymatic 

digestions to proteins and/or polysaccharides can improve the extraction yield and the release of 

secondary plant metabolites and, depending on the component to be extracted, different enzymes would 

be utilized (Wang, et al., 2010). Hydrolytic extraction would disrupt the cell wall structure, increasing the 

extraction of complex storage materials inside the same, and also the cell wall protein release, which is 
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commonly difficult to accomplish due to the presence of the cell wall anionic polysaccharides (Joubert & 

Fleurence, 2008; Martínez, Sánchez, Ruíz-Henestrosa, Rodríguez Patino, & Pilosof, 2007). Therefore, 

the benefits of hydrolysis would be the protein digestibility improvement, the enhancement of the 

bioactive activity with the breakdown of high-molecular-weight polysaccharides and proteins 

(Siriwardhana, Kim, Lee, Kim, Ha, Song, et al., 2008), the total yield extraction increase, and the 

contribution to the extraction of substances with antioxidant properties or functional biopeptides 

(Fleurence, 1999). 

1.1.3.4. Seaweeds as functional food ingredients and technological applications 

Apart from their antioxidant activity, seaweed hydrolysates have aroused great interest due to the 

fact that they have shown ACE (angiotensin-1-converting enzyme) inhibitory activity (Mohamed, Hashim, 

& Rahman, 2012). The ACE is involved in the blood pressure regulation and its inhibition helps to reduce 

hypertension, cardiovascular disease risk and other related conditions. 

There are currently many applications of these viable compounds isolated from algae, and focus 

is being given to controlled cultivation to produce valuable new products at a large scale. The main 

polysaccharide applications are as a source of dietary fibre (Jiménez-Escrig & Sánchez-Muñiz, 2000), 

and hydrocolloid cosmetic, pharmaceutical and food industrial applications (Lordan, Ross, & Stanton, 

2011). Bioactive carotenoids, polyphenols, minerals, vitamins and fatty acids play an invaluable role in the 

drug discovery process, demonstrating the promising pharmaceutical application of their ability to produce 

metabolites (Cardozo, et al., 2007) due to their reported bioactivity (Lordan, Ross, & Stanton, 2011). 

The food addition of edible seaweed-derived ingredients might be a good strategy to introduce 

new food products in the functional food market. The functional food concept lies in the improvement of 

the general body condition and the reduction of illness and disease risk, providing health benefits beyond 

the basic nutritional value (Shahidi, 2004). 

The expression “Seaweed is more than the wrap that keeps rice together in sushi” (Holdt & 

Kraan, 2011) perfectly describes the actual algae situation. Either as an haute cuisine ingredient, in a 

nutraceutical format or as coating material, seaweeds extracts might constitute a suitable raw material for 

the design of new food products such as edible films, and for getting consumers to approach seaweeds 

consumption. At the moment, both alginate and carrageenan films have been widely studied (Campos, 

Gerschenson, & Flores, 2011), but there are no previous studies describing a total seaweed use for film 

development, or presenting edible films as a possible way of algae consumption. 

1.2. Edible and Biodegradable films 

1.2.1. Films and coating materials 

Packaging plays an important role in the food industry, since it is responsible for, not only 

containing food products, but also their preservation and quality maintenance, their appearance and 

convenience, and for protecting the food and providing the product information to the consumer 

(European Parliament and Council Directive 94/62/EC). 
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The most common food packaging materials are glass, wood, metal, plastics, paper and other 

flexible packages such as coatings and adhesives. Synthetic plastic packaging materials are not 

biodegradable and, consequently, they represent an environmental issue, not only because of their 

manufacturing work and incineration, but also due to their rapid production and waste accumulation 

(Raheem, 2013). Altogether, and in combination with the possible migration of non-desirable or even toxic 

compounds, such as additives or monomers (Nerín de la Puerta, 2009), from the plastic to the food 

product, this has led to the emergence of a great social-political interest in the development of novel 

materials alternative to the traditional plastics, wherein biopolymers extracted from natural sources 

constitute a good option to obtain less contaminant and biodegradable food packaging. 

The bibliography widely discloses two edible and/or biodegradable packaging types: films and 

coatings (Petersen, Væggemose Nielsen, Bertelsen, Lawther, Olsen, Nilsson, et al., 1999). The main 

difference between films and coatings is that films are stand-alone, formed separately from anything and 

not dependent on their intended use. Films can be used as solid covers, wraps or separation layers. On 

the contrary, coatings refer to the formation of a film directly over the surface of the final product, so that it 

becomes part of it, and it may improve or protect said final product (Gennadios, 2002). This work memory 

will focus on film development; therefore, further information will be specifically about films. 

Lately, there has been an increasing research interest in the development of edible and/or 

biodegradable film components from different materials such as proteins, polysaccharides, lipids, and 

resins, and for different applications in the food processing, pharmaceutical and agricultural industries 

(Kester & Fennema, 1986). Among these materials, some of them have been extensively studied 

because of their relative abundance, film forming abilities, and nutritional qualities. 

It is currently difficult to think about edible films as substitutes of non-edible packaging materials, 

but they might have complementary applications. 

On the other hand, the combination of science and gastronomy in the last few years has opened 

the possibility of making high quality and healthy food for consumers, while optimizing the creativity to 

produce an innovative food design. Scientific packaging solutions could be used to solve practical 

problems, from an industrial point of view, but also to create food opportunities for edible films in the 

nouvelle cuisine (Arboleya, Olabarrieta, Luis-Aduriz, Lasa, Vergara, Sanmartín, et al., 2008) or as a 

substrate to entrap nutraceutical compounds (Cuq, Aymard, Cuq, & Guilbert, 1995; Gupta & Abu-

Ghannam, 2011; Ngo, Wijesekara, Vo, Van Ta, & Kim, 2011; Rustad, Storrø, & Slizyte, 2011). 

1.2.2. Edible and/or biodegradable film components 

1.2.2.1. Edible and/or biodegradable film structural matrix 

For film development, it is at least necessary a structural matrix component, which can be 

obtained from any animal or vegetable origin, such as the cephalopod industry waste or the underused 

seaweeds previously referred to. 

The varied nature of the compounds that may be used as structural matrix, which are mainly of 

protein, polysaccharide and lipid origin, is responsible for the final film characteristics. 



Introduction 
 

~ 27 ~ 
 

Therefore, films can be classified based on their formulation as: 

Hydrocolloids 

o Proteins 

o Polysaccharides 

Lipids 

1.2.2.1.1. Hydrocolloids 

Hydrocolloids have good aptitude to form a cohesive and continuous matrix with adequate 

mechanical properties due to their polymer chains association by hydrogen bonds, favoured by their 

chemical structure (Campos, Gerschenson, & Flores, 2011). The most common hydrocolloids used as 

biopolymers are proteins and polysaccharides. Mixtures of both are frequently used for film formulation. 

The formation of a hydrocolloid structural matrix requires a total or partial solubilization that enables the 

breakage of low energy intermolecular native bonds to provide a new polymer chain orientation and 

interactions with the rest of the film-solution components (Cuq, Gontard, Cuq, & Guilbert, 1998). 

1.2.2.1.1.1. Protein films 

Proteins can be of animal (albumin, whey proteins, gelatine, collagen, sarcoplasmic and 

myofibrillar proteins, etc.) or vegetable (wheat gluten, zein, soy protein, etc.) origin. Due to their high 

intermolecular binding potential, protein-based films can have good gas barrier, optical and mechanical 

properties compared to those made with polysaccharides and fat-based, but poor water vapour 

resistance (Campos, Gerschenson, & Flores, 2011; Krochta & DeMulderJohnston, 1997). 

Proteins are formed by polar and non-polar amino acids that are able to form intermolecular 

linkages resulting in three-dimensional macromolecules matrixes stabilized by different interactions 

(electrostatic bonds, hydrogen bonds, covalent bonds, disulfide bonds, and Van der Walls forces) that are 

usually highly moisture sensitive (Krochta & DeMulderJohnston, 1997; Vroman & Tighzert, 2009). 

Protein type defines matrix development. High molecular weight and fibrillar proteins (myofibrillar, 

collagen) normally result in wide nets with good mechanical properties, while low molecular weight and 

globular proteins (sarcoplasmic, soy) lead to more compact and less elastic and resistant nets 

(Gennadios, 2002). 

In order to enhance matrix interactions, different strategies can be followed. For example, 

proteins with different characteristics can be mixed, like gelatine fibrillar protein and soy extracted 

globular protein, adding up their best features (Denavi, Pérez-Mateos, Anon, Montero, Mauri, & Gómez-

Guillén, 2009). Another example would be the higher or lower sarcoplasmic protein presence in muscle 

protein films, which would modify the resulted film rheological and barrier properties; however results 

would be more dependent on the species than on the muscle composition itself (Artharn, Benjakul, & 

Prodpran, 2008; Sobral, dos Santos, & García, 2005). 

Protein secondary, tertiary and quaternary structures can also be modified by physical and 

chemical agents (temperature, pH), changing their properties and sometimes optimizing protein 

configuration and interactions. These changes will condition protein film development (Gennadios, 2002). 
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Despite muscle proteins are likely to be used to develop novel restructured food products, edible 

films with muscle proteins have also been studied as a new possible use over the last few years. 

1.2.2.1.1.1.1. Muscle protein films 

Muscle proteins have been recovered lately from the fishing industry waste, and studied due to 

their film-forming ability and nutritional value (Hamaguchi, Weng, & Tanaka, 2007). At the moment 

muscle protein films have been developed from different marine species such as the Indo-Pacific blue 

marlin (Makaira mazara) (Hamaguchi, Weng & Tanaka, 2007), the round scad (Decapterus punctatus) 

(Artharn, Benjakul & Prodpran, 2008) or the squid (Todadores pacificus) (Leerahawong, Arii, Tanaka, & 

Osako, 2011). Remarkable differences would depend on the species and the protein 

myofibrillar/sarcoplasmic proportion (Artharn, Benjakul, & Prodpran, 2008).  

1.2.2.1.1.2. Polysaccharide films 

Hydrosoluble polysaccharides are normally used as stabilizers and gelling agents in the food 

industry, and have several origins such as, cellulose, starch, pectins, arabinoxylan and alginate and 

carrageenan gums (Guilbert & Gontard, 2005). 

The properties of polysaccharide films depend on the polysaccharide structure, such as the 

hydrogen bonding level, molecular weight and polarity. They range in structure from linear to highly 

branched, repeating different monosaccharide building blocks, neutral (agar), negatively (carrageenan, 

alginate) or positively (chitosan) charged. The structural characteristics will define their solubility, gel 

capacity, other compounds compatibility (polysaccharides, proteins, minerals, lipids…) and filmogenic 

capacity. 

As proteins, polysaccharide films normally have a good gas barrier capacity and moderate 

mechanical properties, but due to their hydrophilicity (high solubility and poor water vapour permeability) 

they do not present good water barrier properties (Kester & Fennema, 1986), being even less water 

resistant than protein films. 

Biomacromolecules extracted from seaweeds, such as alginates, form strong and quite brittle 

edible films with poor water resistance; while carrageenan edible films have been less studied, forming 

fragile structures that are more commonly used as food coating materials (Campos, Gerschenson, & 

Flores, 2011). 

1.2.2.1.1.2.1. Seaweed extracts films 

Alginates and carrageenans, as biological polymers, and due to their gel formation capacity, have 

been widely exploited and studied regarding their good film forming ability (Hambleton, Perpiñan-Saiz, 

Fabra, Voilley, & Debeaufort, 2012; Han & Kim, 2008; Karbowiak, Hervet, Léger, Champion, Debeaufort, 

& Voilley, 2006; Nakamura, Nishimura, Hatakeyama, & Hatakeyama, 1995; Siddaramaiah, Swamy, 

Ramaraj, & Lee, 2008), but they are not the only compounds susceptible to be extracted and used in both 

red and brown algae.  
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It would be interesting to find new seaweed food applications through the development of 

improved seaweed extraction procedures resulting in a higher diversity of extracted compounds, and the 

production of novel effective filmogenic materials. 

1.2.2.1.2. Lipid films 

Waxes and fats were the first biopolymers used to cover food and extend preservation times 

(Gontard, Thibault, Cuq, & Guilbert, 1996). Currently, lipids are widely used either alone or in combination 

with other polymers as edible packaging, forming hydrophobic films used as barriers. 

Lipid films display a different barrier efficiency depending on their chemical composition, polar 

groups presence, carbohydrated chain length and insaturation or acetylation degree, being ordered by 

decreasing effectiveness as waxes, shellacs, fatty acids and alcohols, acetyl glycerides, cocoa 

compounds and derivatives (Debeaufort & Voilley, 2009). 

Despite lipid films are good water barriers because of their low polarity, they are also brittle and 

thick, not easy to stick onto hydrophilic surfaces, and sometimes showing a low gas permeability 

(Bourtoom, 2008). 

Although lipids, such as waxes and fatty acids, have been mainly used as edible coating 

constituents, they do not have a good stand-alone filmmaking capacity; hence they are normally 

supported on a polysaccharide matrix. Lipids are added to hydrocolloid-based films to improve their 

characteristics such as the visual appearance or, most importantly, their water barrier characteristics 

(Campos, Gerschenson, & Flores, 2011). 

1.2.2.1.2.1. Wax films 

Natural food grade wax coatings are commonly found on cheese, vegetables and fruits surfaces 

to prevent moisture loss during the dry season, being insect waxes like bee wax, and plant waxes like 

candelilla and carnauba wax (which are permitted food additives in the European Union (E901-903)) 

examples of the most used for industrial applications (Milanovic, Manojlovic, Levic, Rajic, Nedovic, & 

Bugarski, 2010). 

Waxes are interesting due to their good water barrier, their easiness to handle and 

biocompatibility properties; but they are also brittle and provide a candle-like flavour, thereby presenting 

difficulties in their food applications (Bhoyar, Morani, Biyani, Umekar, Mahure, & Amgaonkar, 2011). One 

of their possible uses might be as micro-encapsulation agents for spicy flavourings or active substances 

(Tharanathan, 2003). Concretely, carnauba wax is a very versatile material in the preparation of capsules 

(Fini, Cavallari, Rabasco Álvarez, & Rodríguez, 2011; Stojaković, Bugarski, & Rajić, 2012) and it would 

be interesting to carry out further studies about its food applications. 

Biodegradable biopolymer mixtures can improve their intrinsic properties, such as their 

mechanical or water barrier characteristics. At the moment, many different copolymer blends of protein-

polysaccharide, protein-lipid and polysaccharide-lipid nature have been described (Krochta & 

DeMulderJohnston, 1997). These combinations can be made by direct incorporation using an emulsion, 
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suspension or dispersion depending on the material, applying different layers or using different solvents 

to make them miscible (Bourtoom, 2008). 

For example, lipid addition to hydrocolloid films can improve their oxygen and water barrier 

properties (Greener Donhowe & Fennema, 1992; Phan The, Debeaufort, Voilley, & Luu, 2009), or 

different hydrocolloid combinations could improve the mechanical properties of the films (Wang, Liu, 

Holmes, Kerry, & Kerry, 2007), providing many other different potential applications and film development 

possibilities. 

1.2.2.2. Edible and/or biodegradable film additives 

Edible films allow the addition of ingredients that sometimes improve their functionality, nutritional 

quality, or even their flavour and texture among others. Specifically, in film development, plasticizers are 

considered to play an important role, but there are many other additives that can determine the final 

application of edible films. 

1.2.2.2.1. Plasticizers 

Hydrocolloid films are normally brittle and barely flexible, therefore bringing up the need of 

addition of a plasticizer to improve their properties (Gennadios, 2002). Plasticizers reduce intermolecular 

forces and favour polymer chains mobility, therefore improving mechanical properties such as flexibility 

and extension capacity (Banker, Gore, & Swarbric.J, 1966). The plasticizer must be compatible with the 

main matrix component, being the most used ones low molecular weight compounds like polyols (sorbitol, 

glycerol, polyethylene glycol, and other glycerol derivatives), mono-, di- or polysaccharides and, 

sometimes, lipids. 

As many authors have stated, the plasticizing effect is more evident when the plasticizer molecule 

is smaller and more hydrophilic (Gontard, Guilbert, & Cuq, 1993; Sobral, dos Santos, & García, 2005), 

being necessary to restrict its use, since an excessive addition can negatively affect the film barrier and 

mechanical properties. 

Glycerol is the most common plasticizer utilized in film-forming solutions to prevent film brittleness 

(Karbowiak, Hervet, Léger, Champion, Debeaufort, & Voilley, 2006) and, due to its humidity absorption, it 

is normally used in combination with sorbitol to improve the resulting film mechanical and barrier 

properties at the expense of a loss of flexibility (Gennadios, 2002). 

1.2.2.2.2. Other additives 

Apart from plasticizers, other additives may be also added to the film forming solution in order to 

improve its technological properties, such as anti-sticking agents, wetting agents and surfactants (Huber, 

2009). Surfactants are normally added to stabilize emulsions or different nature biopolymer mixes, and 

also as anti-foaming agents during the film making process (Huber, 2009; Kulkarni, Tomšič, & Glatter, 

2011). 

Likewise, there are also additives that are used to improve the flavour and nutritional properties of 

the films, like flavourings, colourants, nutrients and even nutraceuticals. Some additives are bioactive and 
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can confer said bioactivity to the film. The addition of these bioactive compounds can result in functional 

films, with antioxidative and antihypertensive properties that might improve their own preservation time, 

and even be transmitted to the food products. 

1.2.3. Film applications and functionality 

Films can play different roles useful within food products, that is act like a barrier, improve their 

quality and/or properties, protect specific parts, or work as food adhesives or additive carriers, among 

others (Debeaufort, Quezada-Gallo, & Voilley, 1998; Kester & Fennema, 1986). 

As barriers, films have been studied for the prevention of the inside-outside transfer of different 

compounds such as moister regulators, gas scavengers (O2, CO2), the release or absorption of flavours 

and odours, solids (fats, carbohydrates and minerals) and radiations (UV, visible light) (Debeaufort, 

Quezada-Gallo, & Voilley, 1998; Vermeiren, Devlieghere, van Beest, de Kruijf, & Debevere, 1999). 

Films can be part of the final products and used to improve their aspect, protect them from 

mechanical damages and also work as carriers of different active additives (Debeaufort, Quezada-Gallo, 

& Voilley, 1998). 

Consumers are currently looking for minimally processed foods with natural substances that will 

provide health benefits and maintain good nutritional and sensory characteristics, being the addition of 

bioactive substances in edible film coatings a possible industrial application (Falguera, Quintero, Jiménez, 

Muñoz, & Ibarz, 2011).  

The transport and release of different active compounds (antioxidants, antihypertensive, etc.) are 

important aspects to be studied in the development of edible films. Nowadays, microencapsulation is 

considered a possible solution for the transport and controlled release of functional and bioactive 

compounds in different conditions (Falguera, Quintero, Jiménez, Muñoz, & Ibarz, 2011). 

1.2.3.1. Incorporation of bioactive compounds in films 

Natural biodegradable polymers are much less stable than most synthetic materials, due to their 

sensitivity to microbial attacks under specific conditions. The possibility of including bioactive compounds 

could improve their preservation time and quality by addition of their activities. 

Lately, there has been an increasing interest in finding naturally occurring compounds with 

activities as antioxidants, for example, as alternatives to synthetic products. Some of the natural 

antioxidant sources that have been studied are the aquatic plants (Wang, et al., 2010). 

In the last decade, the new marine bioprocess technologies have allowed the isolation of 

substances with antioxidative properties or functional biopeptides by enzymatic hydrolysis (Fleurence, 

1999). Concretely, seaweeds have proven to be a good peptide and polyphenol source (Patel, Pawar, 

Mishra, Sonawane, & Ghosh, 2004; Plaza, Cifuentes, & Ibáñez, 2008; Rupérez, 2002). 

Antioxidants have been widely used as food additives both to improve lipid oxidation stability and 

to extend the product shelf life. But antioxidants can also be incorporated into edible films for polymer 

stabilization and protection from degradation.  
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The production of peptides through protein hydrolytic reactions seems to be one of the most 

promising techniques to obtain proteinaceous antioxidants, since peptides normally show higher 

antioxidant activity than proteins (Elias, Kellerby, & Decker, 2008). Recently, these hydrolysates have 

been incorporated in the development of biodegradable films to improve their functionality and physical 

properties (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009; Gómez-Ordóñez, 

Jiménez-Escrig, & Rupérez, 2010; Ikawa, Schaper, Dollard, & Sasner, 2003; Mokrejs, Janacova, 

Svoboda, & Vasek, 2010), and the potential use of films as antioxidant releasing packages, capable of 

improving food preservation, would be a rather interesting application. 

Marine organisms represent a valuable source of new active substances in the field of the 

development of bioactive products. The molecular diversity of different marine peptides has been 

described, and information about their biological properties and mechanisms of action has also been 

provided (Aneiros & Garateix, 2004). Bioactive hydrolysates have been isolated from a variety of species 

of macroalgae, among other marine species, and they have been used to develop nutraceutical products 

with antihypertensive activity (Fitzgerald, Gallagher, Tasdemir, & Hayes, 2011; Lordan, Ross, & Stanton, 

2011). 

Due to the increase observed in the prevalence of chronic diseases during the last decade, 

mainly caused by oxidative stress and hypertension, a number of investigations have aimed at the 

identification of bioactive compounds from natural sources that have shown to be effective in preventing 

such ailments. These compounds would have a potential use as bioactive ingredients that could be 

incorporated into functional foods (Tierney, Croft, & Hayes, 2010). Functional foods, nutraceuticals and 

other natural health products are connected with health promotion and normally entail some difficulties to 

be developed. For example, the direct inclusion of bioactive compounds in the films carries different 

disadvantages such as the non-controlled release, the lack of control of the dosage and local effects, and 

the bioactive agent interactions with other film matrix components (Martín-Belloso, Rojas-Graü, & Soliva-

Fortuny, 2009). Moreover, the stability of the functional compounds can be affected both by the 

processing conditions and the storage time (Vermeiren, Devlieghere, van Beest, de Kruijf, & Debevere, 

1999), being the bioactive compound encapsulation a good alternative to preserve their activity during the 

film processing and storage. 

On the other hand, from the technological point of view, the addition of some bioactive 

compounds to the filmogenic solution has shown detrimental to the filmogenic properties, therefore 

having some limitations (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009). Capsules 

might be a good carrier for the incorporation of a variety of compounds (bioactive compounds, minerals, 

flavours, etc.) in the films, without affecting so negatively the resulting filmogenic properties. 

1.2.3.2. Microencapsulation of bioactive compounds 

For many years, encapsulation has been used in the pharmaceutical industry, but its application 

in the food industry would be useful too. Encapsulation would consist in the incorporation of food 

ingredients in small capsules. Bioactive food components are subject to rapid inactivation or degradation. 

Encapsulation can be employed to improve the stability of the bioactive compounds under adverse 

environmental conditions (moisture, heat and other extreme conditions), and also the viability of the 

bioactive compounds by favouring their retention in the food product during the processing or storage, 
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and/or providing a controlled release of the encapsulated material under pre-established conditions 

(Fitzgerald, Gallagher, Tasdemir, & Hayes, 2011; Gibbs, Kermasha, Alli, & Mulligan, 1999; Milanovic, 

Manojlovic, Levic, Rajic, Nedovic, & Bugarski, 2010). 

The bioactive components can be lipids, vitamins, peptides, fatty acids, antioxidants, minerals 

and also living cells like probiotics (de Vos, Faas, Spasojevic, & Sikkema, 2010). Peptide issues such as 

allergenicity or bitter off-flavours, as well as the capacity to alter the final food product texture and colour 

still need to be addressed (Elias, Kellerby, & Decker, 2008), but anyway, microencapsulation might be a 

good alternative. Microencapsulation would solve many limitations to the use of bioactive additives like 

peptides in different food products as it might mask undesirable flavours and reduce undesirable 

properties such as high volatility, hygroscopicity or reactivity with other food compounds (Fitzgerald, 

Gallagher, Tasdemir, & Hayes, 2011). The encapsulation procedure will depend on the type of peptide, its 

envisioned effect and the product that will serve as microcapsule vehicle (de Vos, Faas, Spasojevic, & 

Sikkema, 2010). 

The most common encapsulation technologies are coacervation, spray drying, spray cooling, fluid 

bed coating and extrusion, and other more expensive technologies like liposome and cyclodextrin 

encapsulation. None of them can be considered suitable for application to any bioactive compound, 

because each bioactive compound has its own molecular structure which will define its polarity, solubility, 

etc. (de Vos, Faas, Spasojevic, & Sikkema, 2010). 

The encapsulation procedure will be chosen depending on its compatibility with the bioactive 

component, the protection from degradation it offers to keep the bioactive compound functionality, and 

the packaging load efficiency. Unlike the pharmaceutical industry, food manufacturing costs will also 

affect the methodology elections since they need to be reduced as much as possible (de Vos, Faas, 

Spasojevic, & Sikkema, 2010; Gibbs, Kermasha, Alli, & Mulligan, 1999). 

For example, coacervation requires lower levels of food ingredients, which reduces the cost. 

Coacervation is an efficient method that consists on emulsifying a material such as flavour oil into a 

dissolved gelling protein of an opposite charge, so a complex is formed (Bakan, 1969). Spray drying is a 

core dissolved in a dispersion of matrix material that is subsequently atomized in heated air, being an 

economical and effective method, where specialized equipment is not required. Spray drying is widely 

employed for flavours and dehydration such as powdered milk production (Gharsallaoui, Roudaut, 

Chambin, Voilley, & Saurel, 2007; Shahidi & Han, 1993). Spray cooling/chilling is a technology in which 

the spray drying opposite principle is applied, and usually has as outer material vegetable oils having 

different applications like dry soup mixes, high fat content foods and bakery products. Spray 

cooling/chilling has the disadvantage of special handling and storage conditions requirements (Gibbs, 

Kermasha, Alli, & Mulligan, 1999). The extrusion has the advantage of the total isolation by the wall 

material and is normally used for dry food applications such as drinks, cakes, cocktail and gelatine 

dessert mixes; and also to encapsulate flavours (Risch, 1988). Fluidized bed encapsulation is applicable 

to hot-melt coatings (oils, stearines, fatty acids, emulsifiers and waxes) or solvent-based coatings 

(starches, gums, maltodrextrins) to produce fortified foods, nutritional mixes and dry mixes (Gibbs, 

Kermasha, Alli, & Mulligan, 1999). Liposomes are dispersions of polar lipids in aqueous solutions that 

have more versatile properties and a lower fragility than capsules made of fat with other techniques. 
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Liposome encapsulation has also a high efficiency, it is easy to scale up and uses mild conditions (Mayer, 

Bally, Hope, & Cullis, 1986). And the encapsulation in cyclodextrin is used to envelop molecular 

structures by forming molecular inclusion complexes with a hydrophobic centre and an outer hydrophilic 

part (de Vos, Faas, Spasojevic, & Sikkema, 2010). 

Microcapsules can be made of different encapsulating materials such as fats, starches, dextrins, 

alginates, proteins and lipids. There are also different encapsulation forms like for example a simple 

membrane coating (a wall), a multiwall structure (with the same or varying compositions) or numerous 

cores within the same walled structure; and microcapsules can be spherical or irregular shaped (Fig. 7) 

(Gibbs, Kermasha, Alli, & Mulligan, 1999).  

 

 

Figure 7. Different forms of capsules (Gibbs, Kermasha, Alli, & Mulligan, 1999). 

Microencapsulation applications have shown a slow increase since the method could be too 

expensive and highly specific. Nevertheless, due to the fact that production volumes have increased in 

the last years, more cost-effective techniques have been developed, significantly increasing the number 

of encapsulated food products. New markets are being developed as new advances in encapsulation are 

reached. The high cost of production and the lack of food grade available materials are the main 

limitations of the current encapsulation methods, making necessary the development of new procedures 

(Gibbs, Kermasha, Alli, & Mulligan, 1999) to minimize these restrictions. 

New inkjet and printing technologies have been developed in the last few years with the 

objective to lead to new and improved products (Houben, 2012). Inkjet heads have been used to print all 

kinds of materials, like monomers or metals. But inkjet technology can also be applied to the food industry 

as an alternative to conventional spray-drying and for the encapsulation of flavours and nutrients. This 

encapsulation printing technology (Houben, Rijfers, Brouwers, Eversdijk, & Van Bommel, 2009) would 

allow manufacturers to reduce their energy consumption and might be quite suitable for optimising the 

processing of sensitive ingredients. Encapsulation printing gives the possibility to convert liquids into 

powders and separate core and shell flows (Fig. 8). Compared to the rest of microencapsulation methods, 

this technique presents advantages such as the continuity and the mildness of the process, the wide 

range of materials that can be processed (aqueous, oils/waxes, polymers, solutions, dispersions) and the 

quality of the final products that are usually mono-dispersed core-shell microcapsules. 

 



Introduction 
 

~ 35 ~ 
 

  

 

 

 

 

 

 

Figure 8. Encapsulation printer (picture provided by TNO, photography by Verse Beeldwaren, 
Eindhoven). Encapsulation of micron sized droplets 3D scheme setup (RBJ Koldeweij, University at 
Twente 2010). 

Other types of microcapsules might also be processed, such as multilayer shells and different 

complexes obtained by gelation, demixing of emulsions or precipitation (Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Encapsulation printing possibilities (Graphics by Twisted, Eindhoven, and TNO and drawing 

extracted from (Houben, Rijfers, Brouwers, Eversdijk, & Van Bommel, 2009)). 

1.3. Legislation 

Edible films could be considered food co-products, food ingredients, food packaging and food 

additives (Debeaufort, Quezada-Gallo, & Voilley, 1998), being regulated for each functionality: 
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In the European Union, edible films are considered a special active part of the food, and legally, 

they have to be regarded as foodstuff, along with the food packed in the film, thus having to fulfil the 

general requirements for food. As food or food ingredient, edible films have to be secure, food grade and 

non-toxic. The Regulation (EC) No. CE 853/2004 of the European Union (European Commission, 2004) 

lays down the specific rules for the hygiene of food stuffs of animal origin, taking into account the 

manufacture details and authorized raw materials, including live marine gastropods intended for human 

consumption and processed fishery products. These rules should be applied to the animal protein 

material used in film development. 

Regarding seaweeds, France was the first European country to regulate the use of seaweeds for human 

consumption as vegetables and condiments (Mabeau & Fleurence, 1993; Rupérez & Saura-Calixto, 

2001). Apart from the list of seaweed species authorised for human consumption, maximum allowed 

levels of toxic minerals have been also defined for all edible algae (Holdt & Kraan, 2011). Seaweeds do 

not have specific regulations in other European countries, but are considered food and food ingredients. 

According to the Regulation (EC) No. 258/97 of the European Parliament and of the Council of 27 

January 1997 about novel foods and novel food ingredients, seaweeds were considered novel foods in 

Europe (European Commission, 1997). The specific country legislations might limit their introduction in 

the market. There is a lack of European specific regulations about seaweed human consumption, they 

are just ruled by the general food regulations or, in some cases, they are not even considered food 

(Rupérez & Saura-Calixto, 2001). In Spain there is still no legislation about seaweed consumption, their 

derivatives or contaminant level limitations, being currently in progress a first Real Decreto draft about 

seaweed commercialisation (Circular A/079/13). 

As food packaging, edible films need to fit in the Regulation 1935/2004/EC on materials and 

articles intended to come into contact with food (EU Commission), ensuring that no material in contact 

with food can elicit any chemical reaction that might change their composition or organoleptic properties. 

With respect to the compounds that can be incorporated into edible films, additives are 

considered under the Commission Regulation (EU) No. 231/2012 of 9 March 2012 laying down 

specifications for the food additives listed (Falguera, Quintero, Jiménez, Muñoz, & Ibarz, 2011), and 

including sorbitol (E-420), glycerol (glycine, E-422) and polysorbate 80 among others. 

These ingredients can be active, being necessary to follow the Regulation CE 450/2009 

Commission Regulation (EC) No. 450/2009 of 29 May 2009 on active and intelligent materials and 

articles intended to come into contact with food (Campos, Gerschenson, & Flores, 2011). This regulation 

describes the active compounds that can be released in both the film and the food product; however this 

regulation does not include edible packaging materials. 

Besides, there is no specific European legislation for efficacy and health claims of new functional 

foods in the EU Novel Foods legislation (258/97/EC). 

Regarding food safety, it is expected that legislation will become even more complicated, and will 

keep constantly changing and lacking in clarity. In addition, other licences might be required to market 

new bioactive edible films derived from cephalopod proteins and seaweeds. 
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In recent years, consumers have become more demanding with respect to food products, 

requesting new organoleptic characteristics and serving presentations aside from the mere eating need. 

In this regard, the present work has focused on studying new edible resources in order to obtain new raw 

materials and novel food presentations. In this research area, two possible new edible material sources 

have been chosen in order to increase its exploitation: i) food industry waste ii) underused edible sources. 

Both of them present certain limitations such as cultural restrictions and the lack of specific uses, being 

necessary to undertake good exploitation practices. 

Among all food industrial waste, the remains originated in the fishing industry have been a matter 

of concern worldwide, due to the environmental contaminant effect, which at the same time represents 

extraordinary losses of potential nutrients. The waste from Dosidicus gigas industrial process is rich in 

muscle and connective tissues, and both are good sources for the extraction of food ingredients and/or 

additives. 

From all the underutilized edible sources, seaweeds are quite underexploited in Western 

countries basically due to cultural diet habits. Among all seaweeds, some red and brown species have 

been chosen to be studied, due to their nutritional value and low contaminant content. Mastocarpus 

stellatus, Laminaria digitata and Ascophyllum nodosum are abundant in the Atlantic coast, and are 

already commercialized by the industry, which ensures their safety. 

Marine proteins and polysaccharides with characteristics similar to that of the extracts obtained in 

this study have been widely studied, especially for their functional properties, although the sources and 

extraction methods are not always the same. Furthermore, on occasion, they have also been applied to 

the development of filmogenic matrixes.  

Edible films have been studied lately as an alternative to the synthetic packaging materials under 

certain circumstances, representing an emerging research area due to the need to reduce plastic 

residues. However, there are only a few studies available regarding the application of edible films as part 

of the final food products instead of part of the packaging materials designed to extend the shelf-life of 

said food products. Moreover, those edible films could improve the final product quality. 

Therefore, Dosidicus gigas waste and the selected seaweeds could be used to develop novel 

food products. Not only was the extraction of macromolecules interesting, but also the derived active 

compounds obtained. These compounds could be used as additives in the development of edible films. 

Nevertheless, the extraction of active compounds is normally performed following long and tedious 

procedures that are rarely susceptible to being scaled up to an industrial level. The main limitation of 

bioactive compounds is their reactivity with the environment, thereby decreasing their activity. Due to this 

limitation, some studies have explored different systems of encapsulation for bioactive compound 

protection. 
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Based on the possibility of obtaining edible biopolymers and active compounds from the 

previously described undervalued sources, the present work raised the possibility of optimizing the 

extraction of food grade edible biopolymers and active compounds, having both of them the potential to 

be incorporated in the development of edible films as ingredients and/or additives. Extracts would be 

susceptible of constituting edible films as a food product itself, being part of the coating materials or 

developing active films or coatings, depending on the composition. Due to the strong flavour of some 

marine products, as seaweeds, edible films may offer a new way of consumption through a novel serving 

presentation. In this search for new food sources, the latest studies have paid special attention to 

functional food development. In this regard, the extracted active compounds could be used in film 

formulation in order to improve the functionality, either by direct addition to the film forming solutions or 

carried into microcapsules. 
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The aim of this thesis was to develop edible and active protein and polysaccharide films, 

from resources of marine origin, such as waste from the cephalopod processing industry and 

underutilized seaweeds. 

 To this end, the following partial objectives were considered: 

1. Valorization of polymer materials recovered from different marine resources to produce 

muscle protein extracts from the waste from Dosidicus gigas industrial processing, and 

carrageenan and alginate unrefined extracts from red (Mastocarpus stellatus) and brown 

(Laminaria digitata and Ascophyllum nodosum) seaweeds. 

2. Development of films based on biopolymers extracted from marine products, and their 

further physicochemical characterization to explore for different applications in the food 

industry.  

3. Production and characterization of aqueous extracts and hydrolysates with active 

properties (antioxidant and antihypertensive) from the waste from D. gigas industrial 

processing and M. stellatus, to be utilized as functional ingredients. 

4. Development of antioxidant films by the incorporation of active compounds into the 

biopolymer matrixes. 

5. Microencapsulation of bioactive peptides extracted from D. gigas tunics by the core-shell 

method using the inkjet printing technology, characterization of the microcapsules and its 

addition to edible films. 
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Figure 1. Experimental design. 



 

 



 

 
 

V. Work plan 
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1. EFFECT OF DIFFERENT PROTEIN EXTRACTS FROM DOSIDICUS GIGAS MUSCLE ON EDIBLE 

FILM DEVELOPMENT 

This chapter partially deals with objectives 1 and 2. 

Objective 1. Valorization of polymer materials recovered from Dosidicus gigas industrial waste to 

produce muscle protein extracts. 

Objective 2. Development of films based on muscle proteins extracted from Dosidicus gigas 

mantles, and their further physicochemical characterization to explore for different applications in the food 

industry. 

2. JUMBO SQUID (DOSIDICUS GIGAS) MYOFIBRILLAR PROTEIN CONCENTRATE FOR EDIBLE 

PACKAGING FILMS AND STORAGE STABILITY 

This chapter partially deals with objectives 1 and 2. 

Objective 1. Valorization of polymer materials recovered from Dosidicus gigas industrial waste to 

produce muscle protein concentrates. 

Objective 2. Development of films based on myofibrillar protein concentrates extracted from 

Dosidicus gigas mantles, and their further physicochemical characterization to explore for different 

applications in the food industry.  

3. INTEGRAL MASTOCARPUS STELLATUS USE FOR ANTIOXIDANT EDIBLE FILM 

DEVELOPMENT 

This chapter shows a novel use of red seaweeds and their application as edible active film 

products. 

Objective 1. Valorization of polymer materials recovered from Mastocarpus stellatus to produce 

carrageenan unrefined extracts from red seaweeds. 

Objective 2. Development of films based on biopolymers extracted from Mastocarpus stellatus, 

and their further physicochemical characterization to explore for different applications in the food industry.  

Objective 3. Production and characterization of aqueous extracts with antioxidant properties from 

M. stellatus, to be utilized as functional ingredients. 

Objective 4. Development of antioxidant films by the incorporation of active compounds into the 

biopolymer matrixes. 
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4. ENZYME-ASSISTED EXTRACTION OF Κ/Ι-HYBRID CARRAGEENAN FROM MASTOCARPUS 

STELLATUS FOR OBTAINING BIOACTIVE INGREDIENTS AND THEIR APPLICATION FOR EDIBLE 

ACTIVE FILMS DEVELOPMENT 

The integral use of red seaweeds is achieved in this chapter, exploiting the bioactive potential of 

their components and obtaining ingredients for food applications, such as antihypertensive hydrolysates 

or edible films. 

Objective 1. Valorization of polymer materials recovered from Mastocarpus stellatus to produce 

carrageenan unrefined extracts from red seaweeds. 

Objective 2. Development of films based on biopolymers extracted from Mastocarpus stellatus, 

and their further physicochemical characterization to explore for different applications in the food industry.  

Objective 3. Production and characterization of hydrolysates with active properties (antioxidant 

and antihypertensive) from M. stellatus, to be utilized as functional ingredients. 

Objective 4. Development of antioxidant films by the incorporation of active compounds into the 

biopolymer matrixes. 

5. ANTIOXIDANT FILM DEVELOPMENT FROM UNREFINED EXTRACTS OF BROWN SEAWEEDS 

LAMINARIA DIGITATA AND ASCOPHYLLUM NODOSUM 

This chapter studies the use of brown seaweeds for the development of active edible films. 

Conventional and novel extractions are compared in order to obtain the most functional filmogenic 

material. 

Objective 1. Valorization of polymer materials recovered from Laminaria digitata and Ascophyllum 

nodosum to produce alginate unrefined extracts from brown seaweeds. 

Objective 2. Development of films based on biopolymers extracted from Laminaria digitata and 

Ascophyllum nodosum, and their further physicochemical characterization to explore for different 

applications in the food industry.  

6. PEPTIDE MICROENCAPSULATION BY CORE-SHELL PRINTING TECHNOLOGY FOR EDIBLE 

FILM APPLICATION 

This chapter deals with the microencapsulation of bioactive compounds (peptides) to be included 

into edible films, in order to provide a functional carrier system and to protect them from different 

environmental pH conditions.  

Objective 2. Development of films based on biopolymers extracted from Laminaria digitata, and 

their further physicochemical characterization to explore for different applications in the food industry. 

Objective 5. Microencapsulation of bioactive peptides extracted from D. gigas tunics by the core-

shell method using the inkjet printing technology, characterization of the microcapsules and its addition to 

edible films. 
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6.1. Abstract 

The waste produced in the processing industry of Dosidicus gigas muscle, is a good source of 

polymer material for film developing. The objective of this work was to compare different ways of protein 

recovery to find the best conditions of material for edible film developing. The proteins were recovered by 

water, salt, alkaline and acidic solubilization. The highest protein solubilization was obtained at alkaline 

conditions (≥70%) and DSC confirmed a partial denaturalization in saline and alkaline solution and total at 

acidic conditions, while SDS-PAGE confirmed a hydrolysis effect at pH3. According to FTIR, the loss of 

secondary structure at pH10 led to a stronger bonding film network and the hydrolysis at pH3 resulted in 

more protein-plasticizer and protein-water interactions. Both alkaline and acidic conditions led to 

transparent and microbiologically stable films, the alkaline-film being more water resistant and with less 

protein release in water contact. Both alkaline- and acidic-films resulted in the more flexible and more 

resistant, especially at alkaline conditions. While salt-extract did not improve any mechanical property of 

the corresponding film compared with water-film, both films presented the lower solubility and the more 

water resistance but were not microbiologically stable and had poorer mechanical properties. 

6.2. Introduction 

Nowadays, in the processing industry of fishery products a lot of waste are produced, mostly 

protein, that is a source of environmental pollution. In order to get value-added products and eliminate 

pollution from discarded material, numerous strategies to create new alternatives are studied (Cortes-

Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008; De la Fuente-Betancourt, 

García-Carreno, Del Toro, Cordova-Murueta, & Lugo-Sánchez, 2009). 

This is the case of Jumbo squid (Dosidicus gigas) which is the largest and most abundant squid 

species found in the pelagic zone of eastern Pacific, from Chile up to Oregon coasts (Nigmatullin, Nesis, 

& Arkhipkin, 2001). The percentage of the edible portion of cephalopods is exceptionally high, between 

60 and 80% of their total weight. 

In the last decades many products have been developed from Dosidicus gigas muscle, such as 

gel-based products (Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & García-Sánchez, 

2008; De la Fuente-Betancourt, García-Carreno, Del Toro, Cordova-Murueta, & Lugo-Sánchez, 2009) 

and gel-emulsion products (Felix-Armenta, Ramírez-Suarez, Pacheco-Aguilar, Diaz-Cinco, Cumplido-

Barbeitia, & Carvallo-Ruiz, 2009; M. C. GómezGuillén, Borderías, & Montero, 1997), surimi and mince 

(Campo-Deaño, Tovar, Jesús Pombo, Teresa Solas, & Javier Borderías, 2009; C. GómezGuillén, Solas, 

Borderías, & Montero, 1996; M. C. GómezGuillén, Borderías, & Montero, 1997) and also other products 

have been made from skins and tunics (collagen, gelatine) (Denavi, Pérez-Mateos, Anon, Montero, 

Mauri, & Gómez-Guillén, 2009; Giménez, Alemán, Montero, & Gómez-Guillén, 2009; Gómez-Guillén, 

Giménez, López-Caballero, & Montero, 2011). The use of the Dosidicus mantle muscle as a polymer 

material to film developing is a good asset, ensuring an added value and minimizing the discards during 

their process. 

Edible and biodegradable films can be developed from different materials such as proteins, 

polysaccharides, lipids, and resins (Krochta, 2002). Among these materials, some proteins have been 
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extensively studied because of their relative abundance, film-forming abilities, and nutritional qualities 

(Hamaguchi, Weng, & Tanaka, 2007). 

At the moment muscle protein films have been developed from different marine species such as 

the bigeye (Priacanthus tayenus) (Chinabhark, Benjakul & Prodpran, 2007), the Indo-Pacific blue marlin 

(Makaira mazara) (Hamaguchi, Weng & Tanaka, 2007), the round scad (Decapterus punctatus) (Artharn, 

Benjakul & Prodpran, 2008) or the squid (Todadores pacificus) (Artharn, Benjakul, & Prodpran, 2008; 

Chinabhark, Benjakul, & Prodpran, 2007; Hamaguchi, Weng, & Tanaka, 2007; Leerahawong, Arii, 

Tanaka, & Osako, 2011; Paschoalick, García, Sobral, & Habitante, 2003); finding differences depending 

on the species and the protein myofibrillar/sarcoplasmic proportion (strong protein-protein interaction), 

such as a decreasing of films solubility when the sarcoplasmic content increased or a higher elongation at 

break when sarcoplasmic proportions under 20% (Artharn, Benjakul, & Prodpran, 2008). Obviously other 

factors could be affected, for example the raw material conditions (proteolysis degree, ammonia 

compounds), protein extraction methods and so on. Other authors observed that film-forming by 

myofibrillar proteins produce a continuous matrix while the sarcoplasmic fraction tend to develop an 

added superimposed network (P. J. D. Sobral, dos Santos, & García, 2005) or could be placed in the 

space left in the myofibrillar protein matrix due to their globular structure and small size. Denavi, Pérez-

Mateos, Anon, Montero, Mauri, and Gómez-Guillén (2009) found the same behaviour with soy protein in a 

gelatine matrix. 

So far, muscle protein films from giant squid have never been developed before despite it would 

be an interesting alternative use. Several methods have been used to solubilized muscle proteins of 

Dosidicus gigas, it can be performed by a simple homogenization changing the water proportion used 

because its myofibrillar protein is highly water-soluble, or by solubilizing myofibrillar proteins at low ionic 

strength (Sánchez-Alonso, Careche, & Borderías, 2007), and at low (1-3) or high (9-11) pH values 

(Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008; De la Fuente-

Betancourt, García-Carreno, Del Toro, Cordova-Murueta, & Lugo-Sánchez, 2009; Palafox, Cordova-

Murueta, del Toro, & García-Carreno, 2009). However, no information regarding the film ability of 

Dosidicus gigas muscle neither the adequate extraction methods to obtain film properties of interest have 

been described before. 

The ability to solubilize myofibrillar proteins at extreme acidic (pH 2-3) (Hultin & Keelleher 1998a) 

or alkaline (pH 10.5-11.5) (Hultin & Keelleher 1998b) conditions and a subsequent isoelectric protein 

precipitation (pH 4.8-5.5) leads to the highest recovery of highly functional myofibrillar proteins. 

The objective of this study was to evaluate the film forming ability of the Dosidicus gigas muscle 

proteins. For this purpose both different methods of protein extraction and properties of the resulting 

protein edible films were tested. 

6.3. Materials and Methods 

6.3.1. Materials 

Muscle proteins were recovered from the frozen mantle of giant squid (Dosidicus gigas), which 

was caught in the coast of Peru in January 2009. Following capture, the specimens were gutted and 
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mantles separated from tentacles and frozen on board to -20 ºC. The frozen mantles were shipped to the 

industrial plant PSK Océanos S.A. (Pozuelo de Alarcón, Madrid, Spain) and, after processing fishing 

byproducts, the pieces of discarded mantles were frozen to -20 ºC and then sent to our Institute, where 

were kept frozen as raw material until analysis. 

Analytical grade HCl, NaOH, NaBr, glycerol and sorbitol, and food-standard NaCl were from 

Panreac Química S.A. (Montplet and Estaben S.A., Montcada i Reixac, Barcelona, Spain). DOW 1510 

silicon antifoaming agent was from DOW Corning Europe (Brussels, Belgium). 

6.3.2. Methods 

6.3.2.1. Proximate analysis 

Moisture, fat and ash content of the raw material were determined according to official methods 

(A.O.A.C., 1995). Total nitrogen content was determined by Dumas´ method (A.O.A.C., 2000) using a 

combustion oven apparatus (Model FP-2000, Leco Corporation, St Joseph, MI, USA). Nitrogen-to-protein 

conversion factor of 6.25 was employed quantify total protein content. Analysis was performed at least in 

triplicate, and results expressed as percentages. 

6.3.2.2. Microbiological assays 

Raw material (10 g) or each film (1 g) were aseptically weighed and placed in a sterile plastic bag 

(Sterilin, Stone, Staffordshire, UK) with 9 ml of buffered 0.1% peptone water (Oxoid, Basingtoke, UK), and 

four decimal dilutions were made. The total number of mesophilic microorganisms was determined with 

plate count agar (PCA, Merck) following the pour plate method, incubating at 30 ºC for 72 h. The number 

of enterobacteriaceae microorganisms was also determined in the films, using double-layered plates of 

Violet Red Bile Glucose agar (VRBG, Oxoid) incubated at 30 ºC for 48 h. All microbiological counts were 

determined at least in triplicate and expressed as the log of the colony-forming units per gram of sample 

(log CFU/g). 

6.3.3. Muscle protein extraction 

Squid mantles were kneaded in a vacuum homogenizer (Stephan UM5, Stephan u Söhne GmbH 

& Co., Hameln, Germany) at temperatures lower than 10 ºC. Distilled water was added in the 1:1 (v:w) 

proportion, and also DOW 1510 at 1 drop/100 mL to reduce the foam appearance. Extractions were 

carried out by using four different media: H2O, 0.1M NaCl, pH 10, and pH 3. Water extraction (water-E) 

was performed at pH 6.50 ± 0.05. For saline extraction (salt-E), 0.1M NaCl was added in 1% proportion 

with a final pH of 6.58 ± 0.05. For alkaline and acidic extractions, NaOH and HCl dilutions were 

respectively added until reaching pH 10.0 ± 0.2 (alkaline-E) and pH 3.0 ± 0.2 (acidic-E). Two 

homogenization cycles (30 s at 1500 rpm and 90 s at 3000 rpm each one) were necessary to completely 

homogenize the muscle. The tunic rests were removed manually and the muscle extract was kept under 

5 ºC during less than 2 hours until film preparation. A portable pH-meter series 3 Star Orion with an 

electrode pH ROSS (Thermo Fisher Scientific Inc., Landsmeer, Netherlands) was used for pH 

measurements. 
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6.3.4. Film preparation 

Protein film-forming solutions (2% w/v) were prepared by the same method as in muscle 

extraction. A plasticizer mixture (glycerol and sorbitol at the same proportion) was added at 50% (w/w) of 

the total protein. 

The pH of the film-forming solutions (FS) were 6.59 ± 0.05 for water-FS, 6.54 ± 0.05 for salt-FS, 

9.63 ± 0.05 for alkaline-FS, and 3.39 ± 0.05 for acidic-FS. Finally, film-forming solutions were filtered to 

remove air bubbles, and 50 mL aliquots were then cast into methacrylate plates (120x120 mm) 

(Plexiglas® GS Röhm GmbH & Co. KG, Darmstadt, Germany) through a gauze for exhaustive bubbles 

removing. Plates were left for 21-23 h at 4.0 ± 0.5 ºC and 85 ± 5% RH prior to further drying in a 

ventilated oven (FD 240 Binder, Tuttlingen, Germany) at 45.0 ± 0.8 ºC and 12 ± 3% of relative humidity 

(RH) for 21-23 h. All films were conditioned at 58.0 ± 0.2% RH and 22 ± 1 ºC for 4 days prior to analysis. 

6.3.5. Protein solubility 

Protein concentration in extracts and film-forming solutions was determined with the BCA kit 

(Meridian RD., Rockford, IL, 61101 USA) (Smith, Krohn, Hermanson, Mallia, Gartner, Provenzano et al., 

1985). Corresponding water-soluble protein fractions were expressed at least in triplicate as the 

percentage of solubilized protein with respect to total muscle protein, which was determined according to 

A.O.A.C. (Association of Official Analytical Chemists, 2000) and expressed as percentages in wet basis. 

6.3.6. Electrophoretic analysis (SDS-PAGE under reducing conditions)  

Extracts and film-forming solutions were mixed with a 2-fold concentrated loading buffer (2% 

SDS, 7% mercaptoethanol and 0.002% bromophenol blue) adjusting with distilled water to reach a final 

concentration of 2 mg/mL protein. Samples were heat-denatured 5 min at 95 ºC and analysed by PAGE-

SDS under reducing conditions using 10% Mini-PROTEAN TGXTM gels in a Mini Protean II unit (Bio-Rad 

Laboratories SA, Alcobendas, Madrid, Spain) at 25 mA/gel. Protein bands were stained with Coomassie 

brilliant Blue R250. Precision Plus Protein Dual Xtra standards from 2 kD to 250 kD were used as 

markers (Bio-Rad Laboratories SA, Alcobendas, Madrid, Spain). 

For electrophoretic profile of water-soluble film proteins, approximately 0.4 g of the films were 

placed in falcon tubes with 10 mL distilled water and shaken at 100 rpm in an orbital shaker at 22 ºC for 

24 h. The solution was then filtered through Whatman # 1 filter paper to discard the remaining un-

dissolved material and the recovered water solution analysed like in the extracts and film-forming 

solutions. 

Protein solubility was determined at least in triplicate by BCA and expressed in mg/mL. 

6.3.7. Thermal properties 

Calorimetric analysis of extracts and films were performed using a differential scanning 

calorimeter (DSC) model TA-Q1000 (TA Instruments, New Castle, DE, USA) previously calibrated by 

running high purity indium (melting point, 156.4 ºC; melting enthalpy, 28.44 J/g). Samples of around 10-

15 mg of extracts and protein films were weighed within ± 0.002 mg by an electronic balance (Model 
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ME235S Sartorius, Goettingen, Germany) and then tightly encapsulated in aluminium hermetic pans. An 

empty pan was used as reference. They were scanned under dry nitrogen purge (50 mL/min) between 5 

and 90 ºC at a heating rate of 10 ºC/min. Peak temperatures (Tpeak, ºC) and denaturation enthalpies (∆H) 

were measured at least in triplicate, the last data being normalized to dry matter content (J/gdm) after 

desiccation of each particular capsule. 

6.3.8. Film determinations 

6.3.8.1. Total volatile basic nitrogen (TVB-N)  

TVB-N determinations were carried out at least in triplicate by using the method of (Ojagh, 

Nunez-Flores, López-Caballero, Montero, & Gómez-Guillén, 2011). Results were expressed in dry basis 

as mg TVB-N/100 g film. 

6.3.8.2. Moisture content 

It was determined at least in triplicate by drying samples of around 0.5 g at 105°C for 24 h, 

according to A.O.A.C. (Association of Official Analytical Chemists, 1995). Water content was expressed 

as a percentage of the total weight. 

6.3.8.3. Water activity 
It was measured at least in triplicate placing circles cut at exactly the same shape of the 

equipment containers on each film stuck to the bottom, with a Lab MASTER-aw equipment (Novasina 

AG, Lachen, Switzerland) at constant temperature of 25 ºC. 

6.3.8.4. Thickness 

It was measured using a micrometer (MDC-25M, Mitutoyo, Kanagawa, Japan), averaging the 

values of 4-6 random locations in 15 films for each treatment as described by Pérez-Mateos, Montero, 

and Gómez-Guillén (2009). 

6.3.8.5. ATR-FTIR spectroscopy 

Film infrared spectra between 4000 and 650 cm-1 using a Perkin Elmer Spectrum 400 Infrared 

Spectrometer (Perkin–Elmer Inc., Waltham, MA, USA) as was described by Ojagh, Nunez-Flores, López-

Caballero, Montero, and Gómez-Guillén (2011). Data were recorded at least in triplicate and were 

processed using the Spectrum software calculating the second derivative. 

6.3.8.6. Light absorption and transparency 

The light barrier properties and transparency of the films were calculated at least in triplicate 

using a UV-1601 spectrophotometer (Model CPS-240, Shimadzu, Kyoto, Japan) at selected wavelengths 

from 200 to 700 nm following the method described by Pérez-Mateos, Montero, and Gómez-Guillén 

(2009). Transparency was calculated by the equation. 

 Transparency = − log(T600/x) 

where T600 is the light transmission (T) at 600 nm, and x is the film thickness (mm). 
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6.3.8.7. Colour 

The colour parameters L* (lightness), a* (redness/greenness) and b* (yellowness/blueness) were 

measured using a Konica Minolta CM-3500d colourimeter (Konica Minolta, Madrid, Spain). D65 illuminant 

(Daylight) and D10º standard observer were used. Measurements were taken at a number of 5 locations 

in different film portions and each reported value was the mean of at least 11 measurements. 

6.3.8.8. Water vapour permeability 

It was determined at least in triplicate following the method described by Sobral et al. (2001) at 

room temperature and in a dissecator with distiller water (100% RH). RH increment was calculated every 

hour during 7 hours using the following equation: w·x·t-1·A-1·P-1 where w is the gained mass (g), x is the 

film thickness (mm), t is the time (h), A is the film area exposed (cm2) and P is water vapour partial 

pressure difference between the atmosphere and silica gel (2642 Pa at 22 ºC). Results were expressed in 

g·mm·h-1·cm-2·Pa-1. 

6.3.8.9. Water solubility 

Film circumferences of 40 mm in diameter were placed in plastic containers with 50 mL distilled 

water and placed at 22 ºC for 24 h. The solution was then filtered through Whatman # 1 filter paper to 

recover the remaining undissolved film, which was desiccated at 105 ºC for 24 h. Film solubility FS (%) 

was calculated using the expression [(Wo − Wf)/Wo] × 100, where Wo was the initial weight of the film 

expressed as dry matter and Wf was the weight of the undissolved desiccated film residue. All tests were 

carried out at least in triplicate. 

6.3.8.10. Water resistance 

Films were fixed onto the opening of calibrated cells (area 15.90 cm2) and the cells placed in 

desiccators and exposed over distilled water. Distilled water (5 mL) was poured over the film surface. The 

film deformation due to the water effect, the time when the water started to leak and the time when the 

film broke were annotated. All tests were carried out at least in triplicate. 

6.3.8.11. Mechanical properties 

Tensile and puncture tests were run using a texture analyzer TA.XT plus TA-XT2 (Texture 

Technologies Corp., Scarsdale, NY, USA) (58% RH and room temperature) controlled by the Texture 

Exponent Software (Texture Technologies and by Stable Micro Systems, Ltd., Scarsdale, NY, USA), 

using a 5 kg load cell. Tensile test: At least three probes were cut rectangular (100 mm x 20 mm), leaving 

initial grips separation (l0) of 60mm and using cross-head speed of 100 mm/min. The tensile strength (TS, 

MPa) (break force/initial cross-sectional area) and elongation at break [(Ibreak − I0)/I0] × 100, (EAB, %), 

were determined from the stress vs strain curves at the breaking point, and the elastic modulus or 

Young’s modulus (Y, MPa) calculated as the slope of the linear initial portion (elastic response zone) of 

the curve (lbreak – l0)/l0. Puncture test: Films of 100X100 mm were fixed in a 35 mm diameter cell and 

punctured to breaking point with a round-ended stainless steel plunger (5 mm) at a cross-head speed of 

100 mm/min, for breaking force (F, N), and breaking deformation (D, %) data according to  Sobral, 

Menegalli, Hubinger, and Roques (2001), which were carried out at least in triplicate at room temperature 

and keeping the samples at 58% RH until the text performance. 
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6.3.8.12. Microstructure 

Low temperature scanning electron microscopy (LowT-SEM) (Oxford CT1500 Cryosample 

Preparation Unit, Oxford Instruments, Oxford, England) was used to examine representative film cross 

sections. Samples were mounted with an optical coherence tomography (OCT compound Gurr ®) and 

mechanically fixed onto the specimen holder and cryo-fractured after mounted as described by Gómez-

Guillén, Ihl, Bifani, Silva, and Montero (2007). 

6.3.9. Statistical analysis  

Statistical tests were performed using the SPSS computer programme (SPSS Statistical Software 

Inc., Chicago, Illinois, USA) for one-way analysis of variance. The variance homogeneity was made using 

the Levene test or, the Brown-Forsythe when variance conditions were not fulfilled. Paired comparisons 

were made using the Bonferroni test or the Tamhane test (depending on variance homogeneity), with the 

significance of the difference set at P ≤ 0.05. 

6.4. Results and discussion 

The muscle used as raw material showed 83.46 ± 1.21% moisture, 0.80 ± 0.01% fat, 0.87 ± 

0.05% ash, and 14.87 ± 0.31% protein, of which 37.10 ± 1.35% was water-soluble protein. Total viable 

bacteria count was 4.4·log CFU/g. This load was lower than the allowed limits for fresh and frozen fishery 

products (m = 5.7·log CFU/g) (International Commission on Microbiological Specifications for Foods, 

1986), which indicated a relatively good quality for waste from the processing of squid. 

6.4.1. Protein extracts (E) and film-forming solutions (FS) 

6.4.1.1. Protein solubility 

Table 1 shows protein solubility data for each extraction. The highest solubility was obtained at 

pH10 (alkaline-E) while water extraction (water-E) caused the lowest solubility. Extractions at pH3 (acidic-

E) and 0.1M NaCl (salt-E) produced similar (P>0.05) protein solubility, being slightly lower than at alkaline 

conditions. Palafox, Cordova-Murueta, del Toro, and García-Carreno (2009) reported similar protein 

solubility in giant squid muscle at basic (11) and acidic (3) pHs. 

However, Sánchez-Alonso, Careche, and Borderías (2007) reported considerably lower protein 

solubility (~55%) in giant squid muscle extracted with 0.1M NaCl. De la Fuente-Betancourt, García-

Carreno, Del Toro, and Cordova-Murueta (2009) have also observed a high functionally, evaluated as 

foaming and emulsifying properties, of giant squid muscle protein at alkaline pH (10-11), reaching the 

highest stability; however water extraction was not as good. 

Regarding film-forming solutions, protein solubility at 0.1M NaCl (salt-FS) was lower than before 

but similar to water extraction (water-FS), which may be due to the dilution effect from 0.1M to 0.04M 

whereas pH remained similar in the extracts (P≤0.05). This dilution also caused a total solubilization 

(100%) at pH10 (alkaline-FS), while pH3 (acidic-FS) obtained a limited but rather high protein solubility 

(~83%). Hamaguchi, Weng, and Tanaka (2007) also observed higher solubility (percentages not given) at 

pH values of 1-4 and 10-12 in films forming solutions of 2% of blue marlin (Makaira mazara) muscle 

protein and 1% glycerol than pH values between 4 and 10 . 
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SP (%) 

Sample Extract (E) Film-forming solution (FS) 

water- 60.39 ± 2.00 a/x 56.70 ± 2.12 a/x 

salt- 65.41 ± 0.79 b/x 54.60 ± 0.62 a/y 

alkaline- 70.11 ± 0.50 c/x 100.82 ± 1.20 b/y 

acidic- 66.07 ± 2.57 b/x 83.03 ± 4.07 c/y 

Table 1. Water-soluble protein (SP, %) in water (water-E), salt (salt-E), alkali (alkaline-E) and acid (acidic-

E) extracts, and corresponding film-forming solutions water-FS, salt-FS, alkaline-FS and acidic-FS. 

Results are the mean ± standard deviation. Two-ways ANOVA: Different letters (a, b, c) in the same 

column indicate significant differences among the different treatments (P≤0.05). Different letters (x, y) in 

the same row indicate significant differences among extracts and film-forming solutions (P≤0.05). 

Solubility differences between protein extracts and film-forming solutions were detected (P≤0.05) 

in all cases except in water extraction. 

6.4.1.2. Electrophoretic patterns 

Molecular weight protein distribution of extracts and film-forming solutions are shown in Figure 1. 

Similar behaviour was observed in all extracts, mainly in those in water and salt. A different degradation 

pattern was appreciated depending on the pH; in alkaline pH a higher band density at high molecular 

weight (including myosin and paramyosin) was observed. In acid-aided processes a high proportion of 

myosin heavy chains (MHC) (205 kDa) disappeared, and paramyosin (P) (108 kDa) and actin (A) (45 

kDa) band intensities decreased; meanwhile higher band intensities between 50-75 kDa of light 

meromyosin (LMM) and below 45 kDa were observed possibly due to protein degradation by endogenous 

enzymes and the low pH. The fact that the solubility capacity behaved in different ways along the pH 

scale (De la Fuente-Betancourt, García-Carreno, Del Toro, & Cordova-Murueta, 2009) suggests that the 

degradation level might affect the functional properties. Others authors observed a reduction of MHC and 

a consequently increase of LMM and HMM (heavy meromyosin) which may indicate a stronger 

metalloprotease activity at pH3 (Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & García-

Sánchez, 2008). This would tend to support the idea that pH induces conformational changes in protein 

structures making them more liable to enzyme hydrolysis (Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, 

Carvallo-Ruiz, & García-Sánchez, 2008). Additionally, more intense bands were detected below the 50 

kDa region, which is the expected location for derivatives from such hydrolysis. Degraded myofibrillar 

fragments due to acid treatment were also found in acid-aided protein recovery from enzyme-rich pacific 

whiting (Choi & Park, 2002), where numerous new and low-molecular-weight bands appeared and even 

actin band was degraded into two bands. On the other hand, Ramírez-Suarez, Ibarra-León, Pacheco-

Aguilar, Lugo-Sánchez, García-Sánchez, and Carvallo-Ruiz (2008) found a disappearance of the 50-58 

and 85 kDa bands, which they attributed to a cross-linking caused by endogenous transglutaminase 

(TGase) enzyme action (although the pH was not optimum), forming dimmers and trimers with an 

approximate molecular weight of 153 kDa. 
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Figure 1. SDS-PAGE patterns under reducing conditions of extracts (E) and film-forming solutions (FS). 

Left: water-E, salt-E, alkaline-E and acidic-E extracts. Right: water-FS, salt-FS, alkaline-FS and acidic-FS 

film-forming solutions. ST: Standard; MHC: Myosin heavy chain; HMM-MHC: Heavy meromyosin-myosin 

heavy chain; LMM: Light meromyosin; P: Paramyosin; A: Actin; T: Tropomyosin. 

However, it was not clear whether the reduction of myosin heavy chain resulted from the 

degradation of myosin by acidic proteases or acid hydrolysis. Extracts (E) and corresponding film forming 

solutions (FS) presented highly similar electrophoretic behaviours (Fig. 1). 

6.4.1.3. DSC 

DSC thermograms of extracts (E) had the typical profiles shown in Figure 2: water-E, salt-E and 

alkaline-E depicted two main (rounded shaped) endothermic transitions at the ranges of 45 − 50 ºC 

(mainly myosin) and 70-80 ºC (mostly actin), with an overlapping zone in between (paramyosin, collagen 

(nearly inexistent) and sarcoplasmic proteins), that resembled the general pattern of actomyosin systems. 

Acidic-E had however a flat trace with no sign of transitions. 

Respective Tpeak (ºC) values were: 51.08 ± 0.77 and 77.52 ± 0.33 in water-E; 46.63 ± 0.46 and 

74.64 ± 0.39 in salt-E; 45.54 ± 1.92 and 69.86 ± 1.79 ºC in alkaline-E. Transition temperatures were 

significantly different except for the low transition data in salt-E and alkaline-E which were not significantly 

different. Corresponding ∆H (J/gdm) values were 5.05 ± 0.48, 4.70 ± 0.68, and 4.21 ± 0.71 respectively for 

water-E, salt-E, and alkaline-E extracts. Denaturation enthalpies were not significantly different among 

the extracts. 
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Figure 2. DSC of extracts (E) and Films (F). Top: Dosidicus gigas muscle (M), water-E, salt-E, alkaline-E 

and acidic-E extracts. Bottom: water-F, salt-F, alkaline-F and acidic-F films. 

DSC traces of water-E, salt-E and alkaline-E closely resembled typical profiles of frozen muscle 

proteins from dissected mantles of giant squid (D. gigas) of likely the same source and processing than 

current material (Fernández-Martín, 1998) (Fig. 2, line M). Corresponding thermal denaturation data 

were: 47.28 ± 0.52 ºC and 77.60 ± 0.43 ºC for the main transitions Tpeak endotherms, with around 60/40 

enthalpy ratio and total ∆H of 8.16 ± 0.12 J/gdm. These data recorded usual grinding/freezing and frozen-

storage effects on myofibrillar proteins and differed to previous reports by others on different cephalopod 

species and experimental conditions (Hastings, Rodger, Park, Matthews, & Anderson, 1985; Paredi, 

Tomas, Crupkin, & Anon, 1996; Ramírez Olivas, Rouzaud Sández, Haard, Pacheco Aguilar, & Ezquerra 

Brauer, 2004). From the calorimetric point of view, water-E extracts seemed to consist of considerably 

structure-preserved proteins (~62%) relative to those of frozen mantle muscle of giant squid (Fernández-

Martín, 1998). It is well known that squid proteins differ from fish and mammals proteins of being more 

water-soluble, and more prone to thermal denaturation. Despite the general fact that proteins are more 

soluble in salt (depending on ionic strength) at normal pH, salt-E yield (~58%) was not significantly 

different than that of water-E concerning enthalpy data, but transition temperatures underwent a 

significant down-shifting, in agreement to generally described salt effects on myofibrillar proteins. 

Regarding extracts at high pH (alkaline-E), the yield (~52%) was not significantly lower (~10%) than the 

above case and consisted of mainly preserved myosin and paramyosin, and considerably degraded high-

thermostable proteins (sarcoplasmic proteins and actin) which underwent, as expected, a great reduction 

in the transition temperatures. These findings seemed to be accordant to the high functionality ascribed to 

this protein fraction by De la Fuente-Betancourt, García-Carreno, Del Toro, and Cordova-Murueta (2009). 

It is worth nothing that the intermediate endothermic DSC zone appeared reduced with respect to water-E 
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in salt-E and, even more, in alkaline-E (Fig. 2), which could likely be due to a significant suppression of 

sarcoplasmic proteins solubility in the presence of high salt concentration (Kim, Yongsawatdigul, Park, & 

Thawornchinsombut, 2005), and their partial unfolding during alkaline extraction since some sarcoplasmic 

proteins are alkali stable according to Tadpitchayangkoon, Park and Yongsawatdigul (2010). It is also 

well known that low pH treatments may produce a high protein recovery but with great structural 

degradations, as in acidic-E (Totosaus, Montejano, Salazar, & Guerrero, 2002) depending on the pH 

level. Additionally, sarcoplasmic proteins are also significantly suppressed in solubility at an acidic pH 

(Kim, Yongsawatdigul, Park, & Thawornchinsombut, 2005). Effects of processing by pH-shifting (3 and 

11) in giant squid have been recently reported by Palafox, Cordova-Murueta, del Toro, and García-

Carreno (2009). References on thermal data of giant squid subjected to acid treatment are very scarce 

however since the only precedent was found in Campo-Deaño, Tovar, Borderías, and Fernández-Martín 

(2011): two cases were reported on frozen giant squid mantle processed at ~pH 5 under different 

conditions, with the result of different protein yields and denaturation effects; considerably higher acidic 

conditions may likely cause entire protein denaturation, as in current acidic-E. 

These thermal results on extracts confirmed the respective solubility data but could not 

necessarily match with the corresponding electrophoretic patterns due to the different protein nature 

(native and denatured respectively).  

6.4.2. Film (F) properties 

6.4.2.1. Light barrier properties 

Light transmission in UV and visible ranges at selected wavelength of 200-700 nm as well as 

transparency are shown in Table 2. Generally, films exhibited the lower transmission in the UV range 

(200-280 nm), irrespective of pH or NaCl presence, which could decrease lipid oxidation in food system. 

These results are consistent with earlier works (Artharn, Benjakul, & Prodpran, 2008; Benjakul, 

Artharn, & Prodpran, 2008; Hamaguchi, Weng, & Tanaka, 2007; Shiku, Hamaguchi, Benjakul, 

Visessanguan, & Tanaka, 2004) reporting that fish muscle protein films had very good UV barrier 

properties, owing to their high content of aromatic amino acids that absorb UV light. This is interesting 

because most of synthetic polymer films do not prevent the passage of UV light above 280 nm (Shiku, 

Hamaguchi, Benjakul, Visessanguan, & Tanaka, 2004; Shiku, Hamaguchi, & Tanaka, 2003). 

Although every film showed high transparency, they became more transparent at pH3 (acidic-F) and 

pH10 (alkaline-F) (0.73 and 1.14 respectively) than in water (water-F) and salt (salt-F), as shown in Table 

2. The lack of pigments in the muscle might favour the transparency of the films. Artharn, Benjakul, and 

Prodpran (2008) observed that higher proportion of solubilized myofibrillar protein gave place to higher 

transparency, which is in agreement with the present study. Shiku, Hamaguchi, and Tanaka (2003) 

claimed that blue marlin muscle protein films prepared at acid (2-3) or alkaline (11-12) pH led to more 

stable protein networks, with superior transparency close to synthetic films. 
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L* (lightness), a* (reddish/greenish) and b* (yellowish/bluish) values are shown in Table 3, where 

it is revealed that all films had low lightnesses (~35). In general, films had a lack of reddish tendency 

(+a*). Acidic-F specimens had the higher a* value while alkaline-F had the lowest a* value (P≤0.05). 

Alkaline-F specimens had the most yellowish tendency (+b*) and acidic-F type the least (P≤0.05). No 

significant differences (P>0.05) were found between water-F and salt-F films. A possible reason which 

could explain the yellowish tendency at pH10 might be a higher solubilized myofibrillar protein proportion 

in the corresponding film-forming solution (Artharn, Benjakul, & Prodpran, 2008). 

Data obtained in this study seemed to indicate that giant squid protein films are highly 

transparent, UV barrier and have the adequate colour for their use as see-through packaging or coating 

materials. 

Film L* a* b* 

water-F 34.44 ± 0.24 a -1.00 ± 0.05 a 0.06 ± 0.01 a 

salt-F 35.98 ± 0.64 b -1.15 ± 0.13 ab 0.10 ± 0.1 a 

alkaline-F 34.23 ± 0.12 a -1.24 ± 0.03 b 1.26 ± 0.07 b 

acidic-F 35.93 ± 0.87 b -0.69 ± 0.03 c -0.56 ± 0.09 c 

Table 3. L*, a* and b* of water-F, salt-F, alkaline-F and acidic-F films. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters in the same column 

indicate significant differences among the different films (P≤0.05). 

6.4.2.2. ATR-FTIR 

Figure 3A shows ATR-FTIR spectroscopic patterns (4000-800 cm-1) of water-F, salt-F, alkaline-F 

and acidic-F films. Factors as pH and NaCl led to important changes in the spectra. The Amide A band 

(~3300 cm-1) and amide B (~3079 cm-1), attributed fundamentally to N-H stretching of protein vibrations, 

with contribution from O-H stretching of intermolecular hydrogen bonding, are related to free water. Salt-

F, acidic-F and alkaline-F showed a slight shift to the lower wavenumbers of amide A (~3280-3273 cm-1), 

specially the last one. This was possibly caused by the higher formation of hydrogen bonding interaction 

between polymer molecules in the film, causing higher hydration at alkaline conditions. In this study, films 

contained glycerol as one of the plasticizers; as a consequence, some water might be bound to the film 

protein network as Hoque, Benjakul, and Prodpran (2010) stated. 

The amide I band, located in the region ~1650 cm-1, arises predominantly from C=O stretching 

vibrations, being weakly coupled with in-plane N-H bending and C-N stretching vibrations. Spectral 

changes in the amide I region have been associated with myofibrillar protein conformational changes and 

widely used for the spectroscopic analysis of the secondary structure of proteins (Bertram, Kohler, 

Bocker, Ofstad, & Andersen, 2006; Bocker, Ofstad, Bertram, Egelandsdal, & Kohler, 2006; Ojagh, Nunez-

Flores, López-Caballero, Montero, & Gómez-Guillén, 2011; Palaniappan & Vijayasundaram, 2008). 

To enhance the spectral resolution, a second derivative spectrum (Fig. 3B.) was used to 

investigate the amide I region (1700-1600 cm-1). Alkaline-F showed the highest wavenumber at ~1655 

cm-1, which indicates a higher denaturation due to the loss of α-helical structure (secondary structure). In 

this case no difference was found among water-F, salt-F, and acidic-F (~1651 cm-1). Alkaline-F also 
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showed intra-molecular aggregation of β-sheet structures (~1683 cm-1 at pH10 and 1682 cm-1 the rest), 

but less pronounced than in the α-helix band, which may indicate a more organized structure. 

Figure 3. A. ATR-FTIR spectra of water-F, salt-F, alkaline-F and acidic-F films. B. Second derivative of 

Amide I band (1700-1600 cm-1) from FTIR spectra of water-F, salt-F, alkaline-F and acidic-F films. 
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However, salt-F had the tendency to exhibit higher intermolecular β-sheet aggregation (~1618 

cm-1), which might have relation to nonhydrogenated C=O groups (Bocker, Kohler, Aursand, & Ofstad, 

2008). 

The amide II bands (~1545 cm-1) (Fig. 3A) represent N-H bending vibrations coupled to C-N 

stretching vibrations. Generally, the lower wavenumber showed the existence of hydrogen bonds, with 

stronger hydrogen bonded peptide groups and collagen absorbing. Amide II band is less susceptible to 

secondary structure changes, but more affected by hydration. Regarding the extraction procedure, 

changes in these bands might be affected by the collagen rests. It is known that acidic pH condition helps 

collagen solution and protein hydrolysis, as there has been shown in the SDS-PAGE, producing short 

protein fragments more suitable for hydrogen bonding. While amide II band remained at ~1548 cm-1 in 

alkaline-F, it decreased to ~1539 cm-1 in acidic-F which may be due to the reduction of the number of 

non-bonded peptide groups caused by more extensive hydrogen bonding between the protein and 

glycerol (Chunli, Stading, Wellner, Parker, Noel, Mills et al., 2006), causing a higher hydration. 

The peak situated around ~1000-1100 cm-1 might be related to possible interactions arising 

between plasticizer (OH groups of glycerol and sorbitol) and film structure (Bergo & Sobral, 2007). Acidic-

F presented the lowest wavenumber (~1040 cm-1), which were related to the possible extra interactions 

between short protein fragments and the plasticizers. On the other hand, alkaline-F presented the highest 

wavenumber (~1043 cm-1) could be associate to less interaction with plasticizers. 

Fourier-transform infrared study indicated that pH had some differences in functional groups and 

inter- and intra-molecular interaction, resulting in more protein-plasticizer and protein-water interactions at 

pH3 and more protein-protein interactions at pH10, which is due to the higher secondary structure lost 

reported at alkaline conditions, and the protein hydrolysis found at pH3. 

6.4.2.3. Microbiological index 

Total viable bacteria count was 6.52 log CFU/g in conditioned water-F and 6.57 log CFU/g in 

conditioned salt-F, which were higher than the limits in similarly conditioned edible gelatine films (3.7 log 

CFU/g). This is due to environmental conditions: time, temperature during processing and, particularly, 

the nature of extracts that are very suitable for the microbial growth. On the contrary, counts in 

conditioned alkaline-F and acidic-F (2.5 log CFU/g and 2.86 log CFU/g respectively) were lower than the 

recommended limits in the fishery products (5 log CFU/g). Regarding enterobacteriaceae counts, it was 

4.13 log CFU/g in water-F, while only 0.4 log CFU/g grew in salt-F, and the growth was totally inhibited at 

pH10 (alkaline-F) and pH3 (acidic-F). 

The nitrogen of total volatile bases (TVB-N) quantified in marine products had also been utilized 

as indicator of bacterial spoilage for some fish species, where amounts over 30 mg/100 g of muscle are 

considered the maximum allowed. In this study, the values observed were from 1135 to 274.5 mg N/100 

g both raw material and film. Marquez-Rios, Moran-Palacio, Lugo-Sánchez, Ocano-Higuera, and 

Pacheco-Aguilar (2007) related the high level found (243.7 to 278.8 mg N/100 g Dosidicus gigas muscle) 

to the intrinsic high level of NH4Cl, which acts as a physiological tool to regulate squid buoyancy. 

Therefore, the high TVB-N value detected in this species cannot be utilized as a quality/spoilage index for 

squid muscle material since it is not an exclusive consequence of bacterial activity. 
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Concerning their use as food packaging, only alkaline-F and acidic-F preparations would be 

considered harmless adequate to avoid microbial growth; however addition of an antimicrobial edible 

agent should be needed in the case of water-F and salt-F preparations. 

6.4.2.4. Physical properties  

The water activity evolution of the different films along the conditioning process at 58% RH and 

20 °C for 3 days followed the typical profiles asymptotically. Acidic-F was the only film practically getting 

the RH equilibration (0.56 ± 0.01) and it seemed clear that the rest needed considerably longer 

conditioning times (salt-F 0.53 ± 0.03 and alkaline-F 0.54 ± 0.01), water-F in particular (0.50 ± 0.03). 

Moisture contents were however not significantly different among the films (Table 4, first column) except 

for alkaline-F which showed higher value, which confirms the elevated hydrogen bonding stated in the 

Amide A FTIR results. Since the plasticizer amount and the plasticizer/protein ratio were the same in all 

the films, it seemed that any different behaviour exhibited by the films may be likely due to different 

conformational states of corresponding proteins derived from the different extraction method used and the 

amount of hydrogen and protein bonds developed during the drying step. The highest film moisture 

(Table 4) was found at pH10 (P≤0.05) which might have been influenced by the higher formation of 

hydrogen bonding interaction between polymer molecules as it has been seen by FTIR (Amide A). 

Film thicknesses examined in this study ranged between 108.8-126.8 µm (Table. 4). Salt-F and 

acidic-F were thicker (P≤0.05) and no significant difference was found between water-F and alkaline-F. 

This difference might be caused by the protein-protein, protein-water and protein-plasticizer interactions 

and the different protein size resulting in different compaction. Alkaline pH led to a better film aspect and 

compact thickness (Bourtoom, 2009), which might justify the higher density reached at pH10; and 

probably films made at pH3 were thicker due to the presence of more interactions with plasticizers. 

Protein films have been associated with high water vapour permeability (WVP), which is caused 

by the high number of hydrophilic groups (Hamaguchi, Weng, & Tanaka, 2007). Despite the thickness 

was higher in salt- and acidic-F, the salt crystallization (Leerahawong, Arii, Tanaka, & Osako, 2011) and 

the hydrolysis caused by pH 3 increased their water vapour permeability (P≤0.05) (Table 4). A higher 

solubilized sarcoplasmic (globular and lighter) and the loss of secondary structure protein fraction at pH10 

might improve the network matrix by filling the little holes left in the myofibrillar aggregation structure. 

Depending on the raw material, protein film water vapour permeability was different (Paschoalick, 

García, Sobral, & Habitante, 2003), other author did not find significant difference between alkaline and 

acidic treatments; such as in 2% Indo-Pacific blue marlin (Makaira mazara) muscle protein and 1% 

glycerol film (Hamaguchi, Weng, & Tanaka, 2007; Iwata, Ishizaki, Handa, & Tanaka, 2000; Shiku, 

Hamaguchi, & Tanaka, 2003). Alkaline and acidic treatment did not lead to low water vapour permeability, 

contrary to Bourtoom (2009) findings. Adding different concentration of organic salts (0-10%) in films with 

4% squid (Todadores pacificus) muscle protein and 2% glycerol, Leerahawong, Arii, Tanaka, and Osako 

(2011) did not observe a permeability reduction. 

Film solubility increased with pH treatment and more drastically with NaCl (P≤0.05). Despite the 

significant differences, film solubility resulted in the same range and the differences were not higher than 

7%. Current films were dried at 45 ºC for 21-23 h which might boost hydrophobic and covalent bonds. 



Effect of different protein extracts from Dosidicus gigas muscle on edible film development 
 

~ 73 ~ 
 

Covalent bonds are mainly formed at higher temperatures but longer exposure times may also provide 

suitable conditions at lower temperatures (Gómez-Guillén, Montero, Solas, & Borderías, 1998). Moreover, 

sarcoplasmic proteins presence entails remained enzymes, one of those muscle endogenous 

transglutaminase (TGase) which catalyses the formation of a covalent bond between a free amine group 

and the gamma-carboxyamide group of protein- or peptide-bound glutamine at low and moderate 

temperatures (25-40 ºC), depending on the breed (Montero, López-Caballero, Pérez-Mateos, Solas, & 

Gómez-Guillén, 2005) which might also cause a reduction in water vapour permeability. From the total 

release material, only 2-4% was protein in water-, salt-, and alkaline-F, and 12% in acidic-F (Table 4), 

which indicated that the rest should mainly be plasticizer. The acidic treatment led to a higher protein 

release due to the increase of the network free volume (Cuq, Gontard, Cuq, & Guilbert, 1997). 

Nevertheless the results showed more interactions with plasticizers only in acidic-F. Shiku, Hamaguchi, 

and Tanaka (2003) observed in alkaline and acidic films with 1% Indo-Pacific blue marlin (Makaira 

mazara) myofibrillar proteins and 0,5% glycerol dried at 25 ºC for 24 h, that pH affected secondary, 

hydrophobic and hydrogen bonds, which might also lead to a weaker network compared to water-F. 

Film 
Moisture content 

(%) 

Thickness 

(µm) 

Film solubility 

(%) 

Protein release 

(%) 

WVP 

(×10-7 g m-1 s-1 Pa-1) 

water-F 21.35 ± 1.19 a 109.0 ± 9.0 a 40.75 ± 0.51 a 4.41 ± 0.91 a 1.35 ± 0.05 a 

salt-F 22.63 ± 0.97 a 126.8 ± 7.4 b 47.67 ± 0.38 b 2.37 ± 0.26 b 1.77 ± 0.03 b 

alkaline-F 27.42 ± 0.56 b 108.8 ± 8.7 a 45.48 ± 0.78 c 3.11 ± 0.01 c 1.55 ± 0.02 c 

acidic-F 20.99 ± 1.36 a 125.6 ± 6.5 b 42.95 ± 0.56 d 12.98 ± 0.28 d 1.71 ± 0.04 b 

Table 4. Thickness, moisture content, film solubility, protein release and water vapour permeability (WVP) 

of water-F, salt-F, alkaline-F and acidic-F films. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters in the same column 

indicate significant differences among the different films (P≤0.05). 

Figure 4 illustrates the electrophoretic patterns of the proteins released in water, where water-F 

presented the lowest band intensities. This might mean a higher loss of sarcoplasmic proteins and 

plasticizers proportion instead of myofibrillar proteins, which seems to be strongly aggregated and was 

not released from the matrix. 

Both water- and salt-F showed bands below 50 kDa, which could be due to a sarcoplasmic 

protein release. While salt-F showed Tropomyosin (30-35 kDa) and actin (45 kDa) soft bands, they were 

not visible in water-F, which indicated changes and/or interactions in proteins as a consequence of salting 

(Llorca, Hernando, Pérez-Munuera, Quiles, Larrea, & Lluch, 2007) making water-F more insoluble. 17 

kDa band corresponds to light chains of myosin (Llorca, Hernando, Pérez-Munuera, Quiles, Larrea, & 

Lluch, 2007), and was hardly visible in water-F but quite intense in salt- and alkaline-F, which indicated 

myosin degradation to little fragments. Alkaline-F also showed the light chain of myosin, which might have 

come from LMM which, in turn, showed lower band intensity in respective alkaline-FS, leading to a 

different cross-linking pattern and forming weaker bonds facilitating their release in water contact. The 

acidic-FS protein hydrolysis previously observed both in the extract and DSC results, led to the weakest 

network in acidic-F, releasing more protein material, including a large amount of tropomyosin and even 

actin and paramyosin. Acidic-F retained more plasticizers and water, which may explain the unique 



Effect of different protein extracts from Dosidicus gigas muscle on edible film development 
 

~ 74 ~ 
 

swelling effect caused when they came in contact with water, partially losing its network integrity but not 

getting fully dissolved. Kristinsson and Hultin (2003) also found that, as a result of the HMM dissociation, 

the relative viscosity and hydrodynamic volume were higher at acidic than at alkaline pH. According to the 

protein solubility determined by BCA, the maximum release of water-soluble proteins was observed in 

acidic-F, indicating a higher release of proteins than plasticizers; while alkaline-F and salt-F showed the 

lower values, possibly due to a higher proportion of plasticizers lost, being slightly higher in alkaline-F due 

to the denaturalization effect of alkaline conditions. 

 

Figure 4. SDS-PAGE patterns under reducing conditions of proteins released in water from water-F, salt-

F, alkaline-F and acidic-F films. ST: Standard; MHC: Myosin heavy chain; HMM-MHC: Heavy 

meromyosin-myosin heavy chain; LMM: Light meromyosin; P: Paramyosin; A: Actin; T: Tropomyosin. 

Table 5 describes film water resistance. Water-F samples did not break and resisted more time 

before water soaked through. Water-F, salt-F and alkaline-F presented short and similar elongation while 

acidic-F rapidly stretched until breakage. Experimental results could not be compared to others because 

the inexistence of previous data. This can be explained by the fact that protein interactions were modified 
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Alkaline-F showed significantly highest (P≤0.05) tensile strength (TS) (Table 6), followed by 

water-F and salt with an intermediate TS value, although salt- values were not always significantly 

different from acidic-F. Nevertheless, tensile values were lower than the results obtained in other studies 

on different muscle protein and plasticizer percentages from various raw materials, such as 1% glycerol 

and 2% Purple-spotted bigeye (Priacanthus tayenus) myofibrillar protein films at acidic and alkaline pH 

(TS ~3.5 MPa) (Chinabhark, Benjakul, & Prodpran, 2007), 0.5% glycerol and 1% Indo-Pacific blue marlin 

(Makaira mazara) myofibrillar protein films (8-16.7 MPa) (Shiku, Hamaguchi, & Tanaka, 2003) or ~1% 

glycerol and 2% Nile Tilapia (Oreochromis niloticus) myofibrillar protein films at acidic pH (2-10 MPa) 

(Sobral, dos Santos, & García, 2005). Both species had a very superior muscle texture compared to 

Dosidicus gigas’, which is extremely tender, meaning that intrinsic characteristics might influence their 

mechanical resistance. 

Film TS (MPa) EAB (%) Y (MPa) F (N) D (%) 

water-F 1.36 ± 0.32 a 1.82 ± 0.28 a 83.8 ± 16.9 a 6.59 ± 0.44 a 8.88 ± 0.59 a 

salt-F 0.97 ± 0.33 ac 1.90 ± 0.89 a 51.0 ± 16.7 b 4.80 ± 0.66 a 8.52 ± 2.50 a 

alkaline-F 3.10 ± 0.53 b 12.09 ± 3.25 b 55.0 ± 11.9 ab 15.78 ± 0.46 b 24.06 ± 2.36 b 

acidic-F 0.85 ± 0.60 c 13.28 ± 1.68 b 34.0 ± 4.9 b 6.78 ± 1.02 a 12.69 ± 2.96 a 

Table 6. Tensile strength (TS), elongation at break (EAB), Young’s modulus (Y), puncture force (F) and 

puncture deformation (D) of water-F, salt-F, alkaline-F and acidic-F films. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters in the same column 

indicate significant differences among the different films (P≤0.05). 

The elongation at break values (Table 6) showed notable differences between those with pH 

shifting and the others without it, being much higher in alkaline-F and acidic-F. These results seem to 

refute the common belief that tensile strength and elongation at break are inversely related in edible 

protein films (Kester & Fennema, 1986; Krochta & DeMulderJohnston, 1997). Experimental results could 

not be compared to others because the inexistence of previous data, but showed lower elongation than 

previous studies in fish muscle protein films, such as 1% glycerol and 2% Indo-Pacific blue marlin 

(Makaira mazara) muscle protein films (74.6 ± 7.4%) (Hamaguchi, Weng, & Tanaka, 2007), and 0.3-1.3% 

glycerol and 2% Nile Tilapia (Oreochromis niloticus) muscle protein films (30-90%) (Sobral, dos Santos, & 

García, 2005); but neither of those who compared acidic and alkaline pH found differences between their 

elongation at break. 

As far as Young’s modulus is concerned (Table 6), the highest elasticity corresponded to water-F 

(P≤0.05) while acidic-F obtained the lowest one (P≤0.05). Despite the alkaline-F and acidic-F flexibility, 

their stretchiness was not high, and water-F had less plasticity than alkaline- and acidic-F but more 

elasticity. These results might suggest that water-F might have stronger protein interactions and weaker 

interactions with the plasticizer and water than acidic-F, as it has been seen in FTIR results. These 

results were much higher than those in 1% glycerol and 2% Nile Tilapia (Oreochromis niloticus) muscle 

proteins at acidic pH (5-10 MPa) (Sobral, dos Santos, & García, 2005). 

Regarding puncture deformation (D) no significant differences were observed between water-F, 

salt-F, acidic-F films (Table 6), even higher than the tensile elongation at break: while in acidic-F the 
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percentage was similar to the EAB. Respect to the puncture force (F) (Table 6), a similar behaviour to 

tensile test was detected, with the only significant difference in alkaline-F which showed the highest 

resistance to the puncture (P≤0.05). In general, deformation capacity was greater (2-9%) than the 

observed by other authors in 1% glycerol and 2% Nile Tilapia (Oreochromis niloticus) muscle protein films 

elaborated at acidic pH (Sobral, dos Santos, & García, 2005; Sobral, García, Habitante, & Monterrey-

Quintero, 2004), or 0.3-1.3% glycerol and 1% Nile Tilapia (Oreochromis niloticus) myofibrillar protein films 

at pH 2.7 (Paschoalick, García, Sobral, & Habitante, 2003; Sobral, 2000). Puncture force values at acidic 

conditions were however similar. 

Artharn, Benjakul, and Prodpran (2008) found that higher sarcoplasmic protein solubilized 

proportion in film-forming solution reduced tensile strength while higher myofibrillar protein solubilized 

proportion increased strength due to its fibrillar structure and cross-linking capacity. Sarcoplasmic protein 

with low molecular weight would make possible their dispersion and insertion between myofibrillar 

proteins during drying, weakening myofibrillar protein-protein interactions and favouring network 

migrations (Orliac, Rouilly, Silvestre, & Rigal, 2002; Shiku, Hamaguchi, & Tanaka, 2003; Sobral, dos 

Santos, & García, 2005); which might be the reason for the highest elasticity in water-F. The low tensile 

strength obtained at pH3 (acidic-F) is related to less protein-protein interactions and more protein-

plasticizer and protein-water interactions due to the hydrolysis caused by acidic conditions. Leerahawong, 

Arii, Tanaka, and Osako (2011) found that films with 2% glycerol and 4% squid (Todadores pacificus) 

myofibrillar protein showed salt crystallization from 0.5% NaCl addition, which affected film physical 

properties. This may justify the mechanical behaviour obtained with 0.4% NaCl films, not being 

remarkable in any test. 

These findings were consistent with the low-temperature scanning electron microscopy (LowT-

SEM) images (Fig. 5) of the current series of edible films. Water-F and salt-F films presented a similar 

cross section and occasionally showed some bacterial growth as mentioned before. 

However, salt-F showed a more laminar structure while water-F seemed denser compact and 

disorganized. This water-F structure might favour the water resistance, film low solubility and low water 

vapour permeability. Salt-F surface had phosphate crystals, by its tendency to catch cations in detriment 

to NaCl. 

Dosidicus mantle is usually treated with phosphates during the process, and it is present in all 

muscles, although the crystals only are formed in presence of NaCl. This irregular salt-F surface aspect 

was congruent with the findings of Leerahawong et al. (2011) who hypothesized that it should be due to 

the salt crystallization produced from 0.5% NaCl concentration in 4% muscle protein squid (Todadores 

pacificus) and 2% glycerol films. 

Despite the similar cross section appearance at 500X, alkaline-F tended to be more compact, 

evidencing tubular structures and little globules where the cut was irregular, indicating a strong and 

resistant structure. Higher protein network density might cause the reduction of thickness showed in 

water-F and alkaline-F films. Interestingly, acidic-F showed more resistance to the cut due to its high 

plastic behaviour causing a rough cross section probably affected by that difficulty. Despite their irregular 

cross section, acidic-F was homogeneous and less compact than water-F and alkaline-F films. This 
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plastic behaviour and appearance might be due to the high proportion of protein-water and protein-

plasticizer interactions. 

 

Figure 5. Low Temperature-Scanning Electron Microscopy cross section images of water-F, salt-F, 

alkaline-F and acidic-F films. 
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6.4.2.5. DSC  

Typical DSC traces of the films (F) are also shown in Figure 2: a clear endothermic transition was 

evident with maximum temperatures at around 70 − 80 ºC in the cases of water-F, salt-F and alkaline-F, 

while acidic-F obviously presented no transitions. It was consistent with the thermal behaviour of 

corresponding mother extracts (E) but with some additional effects: First, the presence of plasticizers may 

induce some crystalline inhibiting effects; secondly, higher denaturation was expected in low-

thermostable proteins such as myosin, since the long drying time period at 45 ºC. 

Thermal denaturation data were: 74.57 ± 0.18 ºC and 1.19 ± 0.06 J/gdm in water-F; 76.47 ± 0.42 

ºC and 0.40 ± 0.03 J/gdm in salt-F; 69.32 ± 0.16 ºC and 2.88 ± 0.06 J/gdm in alkaline-F. Transition 

temperatures Tpeak and corresponding transition enthalpies ∆H were, on each side, significantly different 

among the films. Interesting to note is that salt-F was the most affected by processing in that film drying 

caused NaCl precipitation (LowT-SEM), suggesting that a reduced salt effect in decreasing transition 

temperatures may likely be derived as well as an increased plasticization (free-water) and subsequent 

vitrification effects in the system. These results match with the mechanical film behaviour previously 

discussed: higher interaction with plasticizer in acidic conditions led to plastic behaviour (a better 

elongation but less resistant); whereas in alkaline-F less denaturized proteins resulted in better 

mechanical behaviour. 

Similarly to extracts E, thermal results on films F generally conformed to respective solubility data 

but did not necessarily match corresponding electrophoretic patterns. 

6.5. Conclusion 

The present study emphasizes on alkaline- and acidic-films. Water-F presented high water-

resistance, lower solubility and water vapour permeability, which might be interesting for some particular 

applications, but both water-F and salt-films were not microbiologically stables and did not show as good 

mechanical properties as alkaline and acidic-F. Alkaline pH led to a higher unfolded myosin inducing 

changes in the structure and also showed intramolecular aggregation, hence there were more functional 

groups available. This effect led to the highest water-soluble protein fraction in the film-forming solution, 

therefore an easier molecular orientation and hence a more mechanically resistant film.  

On the other hand, pH3 induced protein hydrolysis also enhancing its solubility in film-forming 

solution but leading to a weaker network due to more plasticizer-protein interactions, additionally 

increasing its hygroscopicity. Besides acidic-film had not as good behaviour in contact with water as 

alkaline film, both of them were transparent, a good UV barrier and had good mechanical properties. 
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7.1. Abstract 

Properties and storage stability of two different jumbo squid myofibrillar protein-based films were 

investigated. Myofibrillar proteins were extracted by isoelectric precipitation after acidic and alkaline 

solubilization, obtaining the same extraction yield. During these extractions, not only was the edible 

fraction, discarded during the mantle skinning, recovered but also was the fishy flavour produced by the 

nitrogen and other undesirable compounds removed; although some sarcoplasmic proteins were 

simultaneously lost. In alkaline-Concentrate (C), myosin unfolding led to water resistant films, less water 

vapour permeable and more mechanical resistant than acidic–Films (F); whereas acidic-C protein 

hydrolysis resulted in more transparent and soluble films, with higher protein release (~80 g/L). During 4 

months of storage, some structure reorganization occurred, and both films incremented their yellowish 

tendency, especially the acidic-F, which was attributed to a Maillard reaction with the plasticizers. After 

storage time, water solubility increased in C-films. While acidic-F aggregation led to a protein release 

reduction and tensile strength improvement; alkali-F became weak and brittle, loosing transparency. C-

films offered different filmogenic properties, being promising biodegradable packaging materials. 

7.2. Introduction 

During the last decade, there has been an increasing research interest in edible and 

biodegradable packaging films, and some proteins have been extensively studied due to their filmogenic 

capacity (Gennadios, 2002). Myofibrillar proteins play a functional role in foods, as they produce 

viscoelastic gel matrixes ,entrap water and form strong flexible films (Krochta & DeMulderJohnston, 

1997). 

Jumbo squid (Dosidicus gigas) is the largest and most abundant squid species found in the 

pelagic zone of the eastern Pacific, from Chile up to Oregon coasts (Nigmatullin, Nesis, & Arkhipkin, 

2001), and it is normally imported to numerous countries, mainly Europe and Asia, due to its high 

percentage of edible portion (600-800 g/kg) and its suitability for industrial processing. Jumbo squid 

processing waste represents up to 200-400 g/kg of the total weight, which includes viscera, rests of 

muscle, tunics and tentacles among others. A number of studies have reported jumbo squid muscle as an 

excellent raw material to obtain co-products with high commercial value such as gel-based products 

(Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008), gel-emulsion 

products (Felix-Armenta, Ramírez-Suarez, Pacheco-Aguilar, Diaz-Cinco, Cumplido-Barbeitia, & Carvallo-

Ruiz, 2009), surimi (Campo-Deaño, Tovar, Jesús Pombo, Teresa Solas, & Javier Borderías, 2009) and 

also other collagen-based products from tunics (Denavi, Pérez-Mateos, Añón, Montero, Mauri, & Gómez-

Guillén, 2009). 

During the skinning of the mantle, a great amount of muscle (~300-400 g/kg) is discarded, which 

could be reutilized by different protein recovery methods. The ability to solubilize myofibrillar proteins at 

extreme acidic (pH 2-3) (Hultin & Keelleher, 1998a) or alkaline (pH 10.5-11.5) (Hultin & Keelleher, 1998b) 

conditions and a subsequent isoelectric protein precipitation (pH 4.8-5.5) leads to the highest recovery of 

highly functional myofibrillar proteins. 
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Muscle proteins have been lately recovered from the waste of the fishing industry to study their 

film-forming ability and nutritional value (A. Artharn, Benjakul, & Prodpran, 2008; Hamaguchi, Weng, & 

Tanaka, 2007). Due to their high intermolecular binding potential, protein-based films can have good 

optical and mechanical properties but poor water vapour resistance (Krochta & DeMulderJohnston, 

1997). 

Myofibrillar isoelectric precipitated protein films from jumbo squid and from other cephalopods 

have never been developed before, although Leerahawong, Arii, Tanaka, and Osako (2011), 

Leerahawong, Tanaka, Okazaki, and Osako (2011) and Blanco-Pascual, Fernández-Martín, and Montero 

(2013) studied the properties of Todadores pacificus and Dosidicus gigas muscle films respectively. 

However, some compounds should be removed in order to improve the product versatility and mantain 

good properties for its comsuption; for instance, the reduction of its NH4Cl content (Palafox, Cordova-

Murueta, del Toro, & García-Carreno, 2009). 

Due to the film components nature, molecular changes and reorganization can be expected to 

take place over time. Stability is scarcely known in edible films and it can be significantly different 

depending on matrixes composition. There are only a few studies regarding myofibrillar/muscle films 

stability (Artharn, Prodpran, & Benjakul, 2009) and none regarding jumbo squid.  

The aim of the study was to study the jumbo squid myofibrillar protein concentrate as a potential 

material for film development and to evaluate film stability at short term (four months). For those 

purposes, two different types of high quality protein concentrates (acidic and alkaline) were obtained. 

7.3. Materials and methods 

7.3.1. Materials 

Frozen muscle proteins were recovered from mechanical mantle skinned waste of jumbo squid 

surimi process industry (PSK Océanos S.A. Pozuelo de Alarcón, Madrid, Spain). 

Analytical grade HCl, NaOH, NaBr, glycerol and sorbitol were from Panreac Química S.A. 

(Montplet and Estaben S.A., Montcada i Reixac, Barcelona, Spain). DOW 1510 silicon antifoaming agent 

was from DOW Corning Europe (Brussels, Belgium). 

7.3.2. Methods 

7.3.2.1. Myofibrillar protein concentrate 

The mantles were kneaded in a vacuum homogenizer (Stephan UM5, Stephan u Söhne GmbH & 

Co., Hameln, Germany) with the blades mixer tool, at temperatures lower than 10 ºC, with distilled water 

at 1:1 (v:w) proportion and DOW 1510 at 1 drop/100 mL(≤ 10 ºC). For alkaline and acidic extractions, pH 

was adjusted to 10.0 ± 0.2 and 3.0 ± 0.2 with NaOH and HCl respectively (pH-meter series 3 Star Orion 

and electrode pH ROSS, Thermo Fisher Scientific Inc., Landsmeer, Netherlands). Two homogenization 

cycles (30 s at 1500 rpm and 90 s at 3000 rpm) were carried out. Tunics were manually discarded and 

myofibrillar proteins were precipitated at isoelectric pH (4.8) and centrifuged at 5000 rpm for 5 min (4 ºC) 
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using a Sorvall Evolution RC Centrifuge (Thermo Fisher Scientific Inc., Landsmeer, Netherlands). Alkaline 

and acidic concentrate (C) yields were calculated by percentage of wet material weight. 

7.3.2.2. Film preparation 

Film-forming solutions (FS) of protein concentrates (25 g/L) were mixed with glycerol and sorbitol 

at the same proportion at 400 g/kg of total protein at pH10 ± 0.05 (alkaline-FS) or pH3 ± 0.05 (acidic-FS) 

adjusted with NaOH and HCl respectively. Film-forming solutions were filtered and cast into methacrylate 

plates (Plexiglas® GS Röhm GmbH & Co. KG, Darmstadt, Germany) to obtain films around 100-110 µm 

of thickness. Plates were left for 21-23 h at 4 ± 0.5 ºC and 85 ± 5% relative humidity (RH) prior to further 

drying in an oven at 45 ± 0.8 ºC and 12 ± 3% RH for 21-23 h (FD 240 Binder, Tuttlingen, Germany). All 

films were conditioned at 58 ± 0.2% RH and 22 ± 1 ºC for 4 days prior to analysis, reaching almost the 

same moisture in alkaline (190.3 ± 9.9 g/kg) and acidic-F (206.1 ± 5.4 g/kg). 

7.3.2.3. Protein concentrates solubility and film forming solutions 

Soluble protein, in concentrated extracts and film-forming solutions, was determined by BCA 

(Meridian RD., Rockford, IL, 61101 USA) (Smith, Krohn, Hermanson, Mallia, Gartner, Provenzano, et al., 

1985). The corresponding water-soluble protein fractions were expressed at least in triplicate as grams of 

protein solubilized with respect to kg of total muscle protein (A.O.A.C. 2000) in wet basis. 

7.3.2.4. Electrophoretic analysis (SDS-PAGE) 

Alkaline and acidic extracts before isoelectric precipitation and FSs SDS-PAGE electrophoretic 

analysis and the electrophoretic profile of water-soluble film proteins were performed at least in triplicate 

following the method described by Blanco-Pascual, Fernández-Martín, and Montero (2013). 

7.3.2.5. Thermal properties 

Calorimetric analysis of concentrates and films were performed using a differential scanning 

calorimeter (DSC) model TA-Q1000 (TA Instruments, New Castle, DE, USA) as described in Blanco-

Pascual, Fernández-Martín, and Montero ( 2013). Additionally, glass transition temperatures, Tg (ºC), 

were determined in triplicate by the midpoint method. 

7.3.2.6. Film determinations 

7.3.2.6.1. Thickness 

It was measured using a micrometer (MDC-25M, Mitutoyo, Kanagawa, Japan) averaging the 

values of 6-8 random locations in 15 films per treatment as described by Pérez-Mateos, Montero, and 

Gómez-Guillén (2009) confirming values of 107.63 ± 11.48 and 106.09 ± 6.62 µm for alkaline-Film (F) 

and acidic-F respectively. 

7.3.2.6.2. ATR-FTIR spectroscopy 

Infrared spectra between 4000 and 650 cm-1 were recorded at least in triplicate using a Perkin 

Elmer Spectrum 400 Infrared Spectrometer (Perkin–Elmer Inc., Waltham, MA, USA) as was described by 

Ojagh, Nunez-Flores, López-Caballero, Montero, and Gómez-Guillén (2011). 
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7.3.2.6.3. Light absorption and film transparency 

Light barrier properties and transparency were calculated at least in triplicate using a UV-1601 

spectrophotometer (Model CPS-240, Shimadzu, Kyoto, Japan) at selected wavelengths (200-700 nm) 

following the method described by Pérez-Mateos, Montero, and Gómez-Guillén (2009). 

7.3.2.6.4. Colour measurements 

Lightness (L*), redness (a*), and yellowness (b*) were measured following the method described 

by Blanco-Pascual, Fernández-Martín, and Montero (2013). 

7.3.2.6.5. Water resistance 

Film water resistance elongation (cm) in time (h), water filtration time (h) and Breakage time (h) 

were measured at least in triplicate following the method described by Blanco-Pascual, Fernández-

Martín, and Montero (2013) 

7.3.2.6.6. Water vapour permeability (WVP) 

WVP was determined at least in triplicate following the method described by Sobral (2000). 

7.3.2.6.7. Water solubility 

Film solubility was measured at least in triplicate following the method described by Blanco-

Pascual, Fernández-Martín, and Montero (2013). 

7.3.2.6.8. Mechanical properties 

Tensile and puncture tests were run at least in triplicate using a texture analyzer TA.XT plus TA-

XT2 (Texture Technologies Corp., Scarsdale, NY, USA) as was described by Blanco-Pascual, 

Fernández-Martín, and Montero (2013). 

7.3.2.6.9. Microstructure 

Low temperature scanning electron microscopy (LowT-SEM) (Oxford CT1500 Cryosample 

Preparation Unit, Oxford Instruments, Oxford, England) was used to examine representative film surfaces 

and cross sections as described by Gómez-Guillén, Ihl, Bifani, Silva and Montero (2007). 

7.3.2.7. Film stability during for four months of storage 

The remaining films were stored in the desiccators at 58% relative humidity and 22 ± 2 ºC for 4 

months. ATR-FTIR, DSC, thickness, light transmission, transparency, colour, solubility, tensile strength, 

elongation at break and Young’s elastic modulus test were performed at least in triplicate. 

7.3.3. Statistical analysis 

Statistical tests were performed using IBM SPSS statistics (SPSS Statistical Software Inc., 

Chicago, Illinois, USA) for one-way analysis of variance. The variance homogeneity was made using the 

Levene test or the Brown-Forsythe test when variance conditions were not fulfilled. Paired comparisons 
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were made using the Bonferroni test or the Tamhane test (depending on variance homogeneity), with the 

significance of the difference set at P ≤ 0.05. 

7.4. Results and discussion 

7.4.1. Protein concentrates (C) and film-forming solutions (FS) characterization 

Soluble protein for each C and the corresponding FS are shown in table 1. High protein solubility 

and no significant differences were found between concentrates. This high jumbo squid muscle protein 

solubility has being attributed to the partial unfolding of myosin caused by extreme pH conditions (Cortes-

Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008; Palafox, Cordova-

Murueta, del Toro, & García-Carreno, 2009). 

SP (g/kg) 

Sample Concentrate (C) Film-forming solution (FS) 

Alkaline- 920.1 ± 31.0 a/x 804.4 ± 18.3 a/y 

Acidic- 890.7 ± 35.1a/x 796.3 ± 32.0 a/y 

Table 1. Water-soluble protein (SP, g/kg) in alkaline-C and acidic-C concentrates (C), and corresponding 

film-forming solutions (FS) alkaline-FS and acidic-FS. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters, a and b in the same 

column indicate significant differences among the different pH. Different letters, x and y in the same row 

indicate significant differences among concentrates and film-forming solutions (P≤0.05).  

Alkaline and acidic FS protein solubility was not significantly different either (~800 g/kg) (P≤0.05), 

being significantly lower than the respective concentrates. This loss of protein solubility might have been 

caused by a higher protein degradation after precipitate solubilization (De la Fuente-Betancourt, García-

Carreno, Del Toro, & Cordova-Murueta, 2009), and/or could favour more protein-plasticizer interactions. 

Molecular weight protein distribution of solubilized extracts, before concentration, and FS are 

shown in Figure 1. Alkaline myosin heavy chain (MHC), paramyosin (P) or actin (A) intensity bands did 

not show signs of degradation. Acidic MHC (205 kDa) almost disappeared, whereas the band intensities 

of heavy meromyosin-myosin heavy chain (HMM-MHC) (150 KDa), P (108 kDa), light meromyosin (LMM) 

(75 kDa) and A (45 kDa) were reduced. Besides, acidic samples depicted more intense bands below the 

50 kDa region, which is the expected location of new bands after hydrolysis. Cortes-Ruiz, Pacheco-

Aguilar, Lugo-Sánchez, Carvallo-Ruiz, and García-Sánchez (2008) observed that acidic pH induces 

conformational changes in protein structure, making them more liable to acidic proteases, therefore 

causing a reduction of MHC band. Blanco-Pascual, Fernández-Martín, and Montero (2013) found similar 

electrophoretic patterns for alkaline and acidic muscle protein solubilization. 
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Figure 1. SDS-PAGE patterns of alkaline (a) and acidic (b) extracts before isoelectric precipitation and 

alkaline (c) and acidic (d) film-forming solutions. ST: Standard; MHC: Myosin heavy chain; HMM-MHC: 

Heavy meromyosin-myosin heavy chain; LMM: Light meromyosin; P: Paramyosin; A: Actin; T: 

Tropomyosin. 

Figure 2 shows typical DSC traces of concentrates: alkaline-C and acidic-C depicted a single 

(rounded shaped) endothermic transition at practically the same range of 40 − 75 ºC, with acceptable 

preservation of some myosin and less preserved actin proteins (Wright, Leach & Wilding, 1977). 

Respective Tpeak (ºC) were 56.7 ± 1.4 and 53.9 ± 1.6, not significantly different. Corresponding 

denaturation enthalpies ∆H (J/gdm) were 1.59 ± 0.23 and 3.41 ± 0.24, being significantly smaller for 

alkaline-C. These traces were essentially different to alkaline-E and acidic-E extracts (prior to isoelectric 

precipitation) (Blanco-Pascual, Fernández-Martín, & Montero, 2013) resembling typical actomyosinic 

profiles of frozen giant squid (D. gigas) muscle proteins (Fernández-Martín, 1998). Isoelectric 

precipitation induced some equalization in the concentrates, showing similar profiles, but acidic-C 

exhibited significantly higher ∆H. This contrasted with respective acidic-E showing great protein 

degradation as usual in myofibrillar acidic-shift processing (Totosaus, Montejano, Salazar, Guerrero, 

2002). 
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Figure 2. Typical normalized DSC traces of concentrates C, fresh films F and aged films F4. Lines from 

top to bottom: alkaline-C, acidic-C, alkaline-F, acidic-F, alkaline-F4, acidic-F4. Bar indicates ordinate 

scale (0.02 W/gdm). Arrows roughly indicate Tg zones. 

7.4.2. Film properties 

7.4.2.1. Light barrier properties 

Light transmission in UV and visible ranges as well as Transparency are shown in Table 2. Films 

scarcely exhibited transmission to light in the UV range; which could be taken into consideration in order 

to prevent food oxidation. These results are consistent with earlier works (Leerahawong, Arii, Tanaka, & 

Osako, 2011; Leerahawong, Tanaka, Okazaki, & Osako, 2011) where cephalopod protein film were very 

good UV barriers, becoming gradually poor above the wavelength of 300 nm. 

Acidic-F was more transparent than alkaline (Table 2). Both concentrated-F transmitted more 

visible light than films previously formulated with jumbo squid alkaline and acidic solubilized muscle 

proteins (Blanco-Pascual, Fernández-Martín, & Montero, 2013), attributable to the lack of certain 

sarcoplasmic proteins. High film transparency might have been favoured by the high protein solubility and 

the protein denaturation caused by acidic and alkaline conditions; concretely at pH3, transparency could 

have been promoted by the presence of protein fragments. (Leerahawong, Tanaka, Okazaki, & Osako, 

2011), Todadores pacificus muscle protein films became more transparent when protein solubility was 

improved by higher amount of organic salts. 
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L* (lightness), a* (reddish/greenish) and b* (yellowish/bluish) values are shown in Table. 3. This table 

reveals that films had low lightness (~34) and lack of both reddish (+a*) and yellowish (+b*) tendencies, 

being suitable to be used as see-through film coating packaging materials. 

Film L* a* b* 

Alkaline-F 34.73 ± 0.27 a/x -0.93 ± 0.05 a/x -0.51 ± 0.01 a/x 

Acidic-F 33.66 ± 0.15 b/x -0.93 ± 0.04 a/x 0.07 ± 0.11 b/x 

Alkaline-F 4 34.96 ± 0.41 a/x -0.85 ± 0.15 a/x 0.84 ± 0.23 a/y 
Acidic-F 4 33.35 ± 0.06 b/y -1.33 ± 0.02 b/y 4.07 ± 0.18 b/y 

Table 3. L*, a*, and b* of alkaline-F and acidic-F films at day four and after four months of storage (4). 

Results are the mean ± standard deviation. One-way ANOVA: Different letters, a and b indicate 

significant differences among the different pH. Different letters, x and y indicate significant differences in 

each treatment among the fourth day and the fourth month (P≤0.05). 

7.4.2.2. Infrared spectroscopy 

Infrared spectroscopic patterns (4000-800 cm-1) of alkaline and acidic-F are shown in figure 3a. 

The Amide A band (~3300 cm-1) and amide B (~3079 cm-1) are related to free water. Acidic-F Amide A 

wavenumber was slightly higher 3276.82 cm-1 than alkaline-F (3275.4 cm-1), probably due to more 

hydrogen interactions between water, plasticizers and acidic proteins. 

Spectral changes in the amide I (1700-1600 cm-1) region have been associated with myofibrillar 

protein conformational changes and widely used for the spectroscopic analysis of the protein secondary 

structure (Bertram, Kohler, Bocker, Ofstad, & Andersen, 2006; Bocker, Ofstad, Bertram, Egelandsdal, & 

Kohler, 2006; Ojagh, Nunez-Flores, López-Caballero, Montero, & Gómez-Guillén, 2011; Palaniappan & 

Vijayasundaram, 2008). To enhance the spectral resolution, Amide I second derivative spectrum was 

performed (Fig. 3b). Little differences between protein secondary structures were found. Acidic-F showed 

a bigger loss of α-helical structure (1652.11 cm-1) and more intramolecular aggregation (1683.33 cm-1) 

than alkaline-F (1652.11 cm-1 and 1682.16 cm-1 respectively), probably tending to a more aggregated 

protein structure. Acidic-F aggregation might present higher difficulty in forming intermolecular 

aggregations (1617.16 cm-1), while the unfolding of alkaline-F protein possibly favoured intermolecular 

protein interactions (1618.20 cm-1) (Blanco-Pascual, Fernández-Martín, & Montero, 2013). 

The peak located around 1000-1100 cm-1 might be related to the possible plasticizer hydrogen 

bonding (OH groups of glycerol and sorbitol) (Bergo & Sobral, 2007). This peak presented the lowest 

wavenumber (1039.65 cm-1) at pH3 (pH10 1043.11 cm-1), which was related to the possible extra linkage 

between short protein fragments caused by hydrolysis and the plasticizers. 
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Figure 3. a. ATR-FTIR spectra of alkaline-F( ) and acidic-F( ) after conditioning time, and 

of alkaline-F 4 ( ) and acidic-F 4 ( ) after four months of storage. b. Second 

derivative of Amide I band (1700-1600 cm-1) from FTIR spectra of alkaline-F and acidic-F after 

conditioning time and after four months (4). 

7.4.2.3. Physical properties 

Water vapour permeability (WVP) was significantly lower (P≤0.05) in alkaline-F (1.13 ± 0.07 x10-7 

g m-1 s-1 Pa-1) than in acidic-F (1.82± 0.05 x10-7 g m-1 s-1 Pa-1). Protein films are often associated with high 

WVP, probably caused by the high number of hydrophilic groups (Hamaguchi, Weng, & Tanaka, 2007). 

Acidic-F might have more plasticizer interactions, increasing the matrix free volume and becoming less 
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dense, hence more permeable (Cuq, Gontard, Cuq, & Guilbert, 1997; Sobral, 2000). WVP results were in 

the same range as jumbo squid muscle films (Blanco-Pascual, Fernández-Martín, & Montero, 2013). 

Table 4 shows that film solubility was not different between alkaline and acidic-F (P≤0.05). Low 

protein losses indicate that plasticizers were the first fractions to be released from the films. pH3 released 

around 70 g/kg more protein than pH10, suggesting alkaline-F stronger protein interactions. As films were 

dried at 45 ºC for 21-23 h, it might boost hydrophobic and covalent bonds, which are mainly formed at 

higher temperatures, but longer exposure times may also provide suitable conditions (Gómez-Guillén, 

Montero, Solas & Borderías 1998). 

Film Film solubility (g/kg) Protein release (g/kg) TS (x106 Pa) EAB (%) Y (x106 Pa) 

Alkaline-F 266.5 ± 6.3 a/x 13.3 ± 00.3 a/x 1.54 ± 0.23 a/x 10.14 ± 4.82 a/x 184.53 ± 53.45 a/x

Acidic-F 305.2 ± 23.4 a/x 88.6 ± 04.2 b/x 0.96 ± 0.10 b/x 8.08 ± 2.47 a/x 155.88 ± 10.57 b/x

Alkaline-F 4 440.9 ± 21.7 a/y 23.1 ± 0.5 a/y 1.61 ± 0.24 a/x 1.53 ± 1.08 a/y 206.56 ± 66.41 a/x

Acidic-F 4 382.1 ± 18.2 b/y 68.4 ± 3.1 b/y 1.46 ± 0.27 a/y 11.75 ± 5.46 b/x 182.32 ± 2.92 a/y 

Table 4. Film solubility, protein release, tensile strength (TS), elongation at break (EAB) and Young’s 

modulus (Y), of alkaline-F and acidic-F films at day four and after four months of storage (4). 

Results are the mean ± standard deviation. One-way ANOVA: Different letters, a and b indicate 

significant differences among the different pH. Different letters, x and y indicate significant differences in 

each treatment among the fourth day and the fourth month (P≤0.05).  

Figure 4 illustrates the electrophoregram of the film protein release in water. Alkaline-F presented 

the lowest band intensity, confirming the plasticizer release. Acidic-F depicted more proteinic material, 

mainly T (30-35 kDa) and also A (45 kDa), P (108 KDa) and some bands of higher molecular weight. 

Acidic short protein fragments led to lower cross-linking pattern and allowed their release in water 

contact. Bands below tropomyosin were probably originated in MHC dissociation (Kristinsson & Hultin, 

2003), finding another light chain of myosin intense band (20 kDa), which might have come LMM. 

Alkaline-F was the most resistant, resulting in the highest tensile strength (TS) (P≤0.05) (Table 4), 

while elongation at break (EAB) was not significantly different. As far as Young’s modulus is concerned 

(Table 4), the highest value corresponded to alkaline-F (P≤0.05), being in line with TS results and 

needing more strength to breakage due to its high stiffness. Regarding puncture deformation, films were 

more deformable by perforation and, as EAB results, no significant differences were observed between 

alkaline (17.42 ± 5.13%) and acidic-F (12.68 ± 2.12%). Films also showed more strength to the drilling, 

maintaining the same pattern as TS, with higher force in alkaline-F (20.88 ± 1.94 N) than acidic-F (13.76 

± 1.92 N) (P≤0.05). Isoelectric concentration of both alkaline and acidic solubilized extracts notably 

improved film elastic modulus values and puncture force (Blanco-Pascual, Fernández-Martín, & Montero, 

2013). 
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Figure 4. SDS-PAGE patterns of proteins released in water from alkaline-F (a) and acidic-F (b) at day 

four and after four months of storage (c and d respectively). ST: Standard; MHC: Myosin heavy chain; 

HMM-MHC: Heavy meromyosin-myosin heavy chain; LMM: Light meromyosin; P: Paramyosin; A: Actin; 

T: Tropomyosin. 

Table 5 describes film water resistance. Both films avoided water filtration.  

 

Alkaline-F 

Elongation time (h) 0.03  0.16 1 5 24 

Elongation (cm) 0.3 ± 0.01 0.45 ± 0.02 0.73 ± 0.02 0.9 ± 0.1 1 ± 0.1 

Water filtration time (h) No filtration 

Breakage time (h) Unbreakable 

Acidic-F 

Elongation time (h) 0.01 0.03 0.06 0.08 0.15 

Elongation (cm) 0.5 ± 0.1 1 ± 0.1 1.5 ± 0.1 2 ± 0.1 2.5 ± 0.2 

Water filtration time (h) No filtration 

Breakage time (h) 40 

Table 5. Water resistance parameters: Elongation time (h), Elongation (cm), Water filtration time (h) and 
Breakage time (h), for alkaline-F and acidic-F films. 
Results are the mean ± standard deviation. 
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Whereas alkaline-F hardly changed its shape and was unbreakable during 15 days, acidic-F 

rapidly elongated and stayed steady until breakage at 40 hours. Acidic protein hydrolysis affected protein 

distribution and resulted in a weaker film, with more interactions with plasticizers. Previous studies 

already showed that protein interactions were modified at alkaline and acidic treatment due to the 

proteinic chain extension and degradation (Bourtoom, 2009; Cortes-Ruiz, Pacheco-Aguilar, Lugo-

Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008; De la Fuente-Betancourt, García-Carreno, Del Toro, & 

Cordova-Murueta, 2009), possibly favouring more protein-protein disulphide (S-S) covalent bonds at 

alkaline conditions. 

The cross-sectional images of both films (Figure 5) showed a homogeneous and organized 

myofibrillar protein structure (a and b), more structured at pH10 (c, d, e, f, g and h), which is in 

accordance with its higher mechanical and water resistance. Surface images (g and h) showed some 

vesicles or droplets homogeneously distributed in acidic-F, which might be attributed to its high water and 

plasticizer linkage. 

7.4.2.4. DSC 

Figure 2 shows typical DSC traces of Films (F): very small endothermic transitions in the 

temperature range of 60 − 85 ºC for alkaline-F and 40 − 75 ºC for acidic-F. Thermal denaturation data 

were 74.9 ± 1.4 ºC and 0.45 ± 0.06 J/gdm in alkaline-F; 59.9 ± 1.4 ºC and 0.25 ± 0.06 J/gdm in acidic-F, 

implying big denaturing processes, particularly in acidic-F as usual. Additionally to the plasticizers 

crystalline-inhibiting effects, current systems should have undergone major denaturation levels on myosin 

and low-thermostable components because of films drying at 45 ºC. Coexisting respective Tg (ºC) data 

were 66.9 ± 2.1 and 47.1 ± 3.4, overlapped with residual denaturation effects. Acidic-F may have 

undergone a bigger protein-matrix plasticization, consistently with FTIR results. 

7.4.3. Stability study 

Both films were a stable barrier to UV light (Table 2), becoming slightly more effective to superior 

wavelengths after four months, especially in acidic-F. Acidic-F showed stable values of transparency after 

four months, whereas alkaline-F suffered a loss of clarity (Table 2). The improvement of light transmission 

was in accordance with the colour results (Table 3), where films increased their yellowish tendency (+a*), 

which was considerably more accused in acidic-F. This effect might be triggered by a Maillard reaction, 

comprising a condensation between free amino groups of amino acids, peptides and proteins, and 

carbonyl groups of glycerol and sorbitol, favouring glycation process, hence forming brown pigments. At 

acidic or alkaline pH, the endogenous proteases would be activated, hydrolyzing the proteins (especially 

acidic) and providing free amino group for the reaction. Nevertheless, these films presented better optical 

properties than previous results in 20 g/kg Todadores pacificus muscle films with 200 g/kg protein of 

glycerol or sorbitol after 1 month of storage (Leerahawong, Tanaka, Okazaki, & Osako, 2012). 
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Figure 5.Low Temperature-Scanning Electron Microscopy images of alkaline-F (a, c and e) and acidic-F 

(b, d and f) cross sections and alkaline-F (g) and acidic-F (h) surfaces. 
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In figure 3a and b, FT-IR spectroscopic patterns of alkaline and acidic-F after four months are 

shown. The Amide A and Amide B band resulted in an increase of the wavenumbers (Amide A: 3275.91 

cm-1 alkaline-F-4 and 3277.03 cm-1acidic-F-4, Amide B: 3073.81 cm-1 alkaline-F-4 and 3074.39 cm-1acidic-

F-4) that might indicate a hydrogen bonding reduction leading to a water release and, consequently, a 

possible developing of protein-protein cross-linking. In the second derivative (Fig 3b), a band intensity 

decrease was evident, suggesting less free α and β structures, hence more aggregation after four 

months, being more accused in acidic-F-4. 

With regard to film solubility, table 4 shows how alkaline and acidic-F-4 increased their values 

after four months (180 g/kg at pH10 and 80 g/kg at pH3) (P≤0.05), becoming less water resistant at 

alkaline conditions. This increment could be the result of a certain degree of film matrix disruption after 

storage. Acidic-F released higher amount of proteins than alkaline-F; while at pH 3 film protein losses 

were 20 g/kg lower than four months ago, pH10 film released 10 g/kg more protein after four months of 

storage (Table 4). Figure 5 illustrates the electrophoregram of the protein release in water. Alkaline-F 

presented the lowest band intensity, but compared to four months ago, the protein loss was slightly 

higher, observing some intensity in the actin band and below. Acidic-F almost did not show band intensity 

above LMM and released proteinic material such as actin and those of lower molecular weight. During 

film storage time, a more rigid polymer structure was formed and partially hydrolyzed proteins, in the 

acidic case, underwent more aggregation, forming strong interactions of myofibrillar proteins, as Artharn, 

Prodpran, and Benjakul (2009) suggested. Leerahawong, Tanaka, Okazaki, and Osako (2012) observed 

that, after 30 days of storage, the decrease in electrophoretic upper bands, such as MHC, may be caused 

by the protein polymerization and aggregation via Maillard reaction with plasticizers. The cross-linked 

proteins were insoluble, whereas almost all the glycerol was released (Orliac, Rouilly, Silvestre, & Rigal, 

2002); which might suggest an increment of strong protein interactions and plasticizer migration in acidic-

F. 

As Table 4 shows, alkaline and acidic-F 4 presented no significant differences in TS and Y 

(P≤0.05). Compared to four months ago, alkaline-F preserved their resistance and elastic modulus, 

whereas acidic-F significantly improved both tensile strength and Young’s modulus, reaching similar 

values to alkaline-F. The EAB was stable in acidic-F after four months. During the storage time, alkaline-F 

almost lost its elongation capacity, which might be due to an excessive protein aggregation. 

Regarding DSC, aging produced different effects (Fig. 2) on films protein: 72.6 ± 1.4 ºC and 0.38 

± 0.02 J/gdm in alkaline-F4, with not significantly reduced temperature and enthalpy of denaturation, and 

consistent not significantly different Tg of 67.4 ± 1.1 ºC; major changes were observed by a nearly 

complete vitrified acidic-F4 with a glass transition Tg ~69.4 ± 1.6 ºC. This may be attributed to a bigger 

protein-protein aggregation, consistently with FTIR results. 

7.5. Conclusion 

The present study emphasizes on concentrate acidic and alkaline solubilized myofibrillar proteins 

by iso-electric precipitation, due to their higher protein quality and stability. Acidic-C exhibited a 

significantly bigger protein-protection against degradation. 
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The unfolded proteins, after alkaline-C solubilization, led to more water and mechanical resistant 

films; although after 4 months of storage they lost their flexibility and water resistance, suggesting an 

excessive protein aggregation. Myofibrillar protein hydrolysis, in solubilized acidic-C, led to more 

plasticized film with poor properties, but protein aggregation suffered after four months resulted in a more 

resistant protein matrix partially improving its properties.  
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8.1. Abstract 

Four sequential aqueous extracts (M1 to M4) were obtained from Mastocarpus stellatus at 

different temperatures. M1, extracted at 3 ºC overnight, showed higher extraction yield and antioxidant 

activity than M2, which was extracted at 45 ºC for 45 min. Extracts M3 and M4, obtained both at 91 ºC, 

were composed predominantly of a κ/ι-hybrid carrageenan, M4 containing higher protein proportion. 

Based on compositional and structural properties, four films were developed: FM3, FM4, FM3+M4 and 

FM3+M4+M1. FM4 was green coloured, more opaque, and water resistant, stronger and slightly less 

stretchable than FM3. The mixture of M3 and M4 for film development resulted in a film with intermediate 

characteristics. Addition of M1 to FM3+M4 provided mainly proteins and sulfated compounds (from 

carrageenan), resulting in a thicker and more water resistant film, with suitable mechanical properties in 

both tensile and puncture test, and much higher antioxidant activity. 

8.2. Introduction 

Seaweeds have been traditionally incorporated into Pacific and Asian foods for hundreds of years 

but they were not included in Western diets (Rinaudo, 2008). In recent decades there has been an 

increase in direct consumption of marine algae as food and also as components of functional products 

due to the fact that they are an excellent source of bioactive substances like sulfated-polysaccharides, 

peptides and polyphenols with biological activities, such as antioxidant (Jiménez-Escrig, Gómez-Ordoñez, 

& Rupérez, 2012). 

Phycocolloids (e.g. carrageenan, agar and alginates) are special polysaccharides produced by 

several seaweed species, being carrageenan extracted from red seaweeds (Rhodophyceae) (Van De 

Velde, Peppelman, Rollema, & Tromp, 2001). Seaweeds also develop big diversity of antioxidant 

compounds such as carotenoids, phenols, minerals, sulfur compounds and vitamins (Tierney, Croft, & 

Hayes, 2010). Extraction of carrageenan is normally performed in water at temperatures near the boiling 

point for several hours and isolated by ethanolic precipitation (Pereira, Critchley, Amado, & Ribeiro-Claro, 

2009), being optional to introduce a previous extraction of possible active compounds. 

Carrageenans are constituted by repeating water-soluble linear sulfated galactans, alternating 3-

linked β-D-galactopyranose and 4-linked α-D-galactopyranose or 4-linked 3,6-anhydrogalactose that form 

the disaccharide repeating unit. Carrageenan are classified according to the presence of the 3,6-

anhydrogalactose on the 4-linked residue and the position and number of sulfate groups (Pereira, 

Critchley, Amado, & Ribeiro-Claro, 2009; Van de Velde, 2008). By sulfate content ascending order, 

natural carrageenan are composed of κ-carrageenan, ι-carrageenan, µ-carrageenan (biological precursor 

of κ-carrageenan), ν-carrageenan (biological precursor of ι-carrageenan) and λ-carrageenan (Gómez-

Ordóñez & Rupérez, 2011; Van De Velde, Peppelman, Rollema, & Tromp, 2001). The rheological 

properties of the gelling carrageenans (κ and ι) are quite distinct: the κ-type forms gels that are hard, 

strong and brittle, whereas ι-carrageenan forms soft and weak gels (Van de Velde, 2008; Van De Velde, 

Peppelman, Rollema, & Tromp, 2001) glimpsing the same effect on carrageenan films (Hambleton, 

Perpiñan-Saiz, Fabra, Voilley, & Debeaufort, 2012; Han & Kim, 2008; Martins, Cerqueira, Bourbon, 

Pinheiro, Souza, & Vicente, 2012). 
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Carrageenan extraction conditions highly affect the final extract composition. For example, more 

than 2h of extraction at 95 ºC and pH 8 leads to a minimum amount of µ-precursor and maximum of κ-

monomers (Hilliou, Larotonda, Abreu, Ramos, Sereno, & Gonçalves, 2006), and the lack of alkaline 

pretreatment might cause a lower ι-carrageenan extraction yield (Pereira & Mesquita, 2003). 

Mastocarpus stellatus is one of the only carrageenophytes species currently harvested for 

industrial aims in the Atlantic coast but underutilized (Pereira, Critchley, Amado, & Ribeiro-Claro, 2009), 

and κ-carrageenan’s family is its main constituent (Gómez-Ordóñez & Rupérez, 2011), although previous 

studies have reported that, in fact, κ/ι-hybrid carrageenan is the principal structure extracted (Hilliou, 

Larotonda, Sereno, & Gonçalves, 2006). An integral Mastocarpus exploitation would be interesting in 

order to produce a more environmentally friendly material used as a renewable and biodegradable 

biopolymer for packaging applications. At the moment, films have been developed from different 

commercial carrageenan types (Han & Kim, 2008; Karbowiak, Hervet, Léger, Champion, Debeaufort, & 

Voilley, 2006), however, they do not stand out for having good antioxidant activity (Shojaee-Aliabadi, 

Hosseini, Mohammadifar, Mohammadi, Ghasemlou, Ojagh et al., 2013). So far, Mastocarpus stellatus 

edible films have never been developed, despite they would represent an interesting alternative 

application, due to the predominantly carrageenan composition and other active compounds whose 

concentration might be increased by exogenous addition.  

The aim of this study is to develop edible active films from different Mastocarpus stellatus crude 

aqueous extracts, and to characterize their physical, structural and antioxidant properties. 

8.3. Materials and methods 

8.3.1. Seaweed sampling 

Samples of Mastocarpus stellatus (M) were supplied by Porto-Muiños (Cerceda, A Coruña, 

Spain) and were collected in Galicia bay (A Coruña, Spain), washed several times with tap running water 

and air-dried at 50 ºC for 24-48 h in a ventilated oven. Seaweed samples were stored in sealed plastic 

bags at 2-4 ºC until analysis. 

8.3.2. Seaweed extraction 

Dried seaweeds were homogenized using an Osterizer blender (Oster, Aravaca, Madrid, Spain) 

with water in 1:15 (w:v) proportion and kept overnight at 3 ± 2 ºC. Seaweeds were then filtered to obtain 

extract M1. Water was added to the retentate in 1:20 (w:v) proportion, warmed up until 45 ºC for 45 min, 

and filtered to obtain extract M2. The second retentate was diluted in water 1:36 (w:v), warmed up at 91 

ºC for 2 h and filtered to obtain extract M3. Third retentate was diluted in water 1:30 (w:v), warmed up at 

91 ºC for 1.5 h and homogenized to obtain extract M4. 

Extracts M1 and M2 were vacuum filtered (Whatman # 1) and freeze-dried. Extracts M3 and M4 

were centrifuged at 3000 rpm for 5 min (Sorvall Evolution RC Centrifuge, Thermo Fisher Scientific Inc., 

Landsmeer, Netherlands). Supernatants were dried in an oven (FD 240 Binder, Tuttlingen, Germany) at 

65.0 ± 0.8 ºC and stored at room temperature. 
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8.3.3. Proximate analysis 

Moisture and ash content of the raw material, M3 and M4 were determined according to official 

methods (A.O.A.C., 1995). Nitrogen content was determined using a combustion oven apparatus (Model 

FP-2000, Leco Corporation, St Joseph, MI, USA), according to Dumas (A.O.A.C., 2000), with a 

conversion factor of 6.25. Analysis was performed at least in triplicate, and results expressed as 

percentages. Carbohydrates content were estimated by difference, assuming a fat percentage content 

lower than 0.5% (Gómez-Ordóñez, Jiménez-Escrig, & Rupérez, 2010). 

8.3.4. Film preparation 

Four film forming solutions were prepared: FM3, FM4, FM3+M4, FM3+M4+M1. Film-forming 

solutions were prepared by suspending 2% w/v dried extracts in distilled water (90 ºC) and homogenizing 

with ultra-turrax T25 basic (Ika-Werke GMBH &CO KG D-79219 Stanfer, Germany) at 17500-21500 rpm 

during 5 min. Glycerol (Panreac Química S.A. Montplet and Esteban S.A., Montcada i Reixac, Barcelona, 

Spain) was added at 30% (w/w) of the total dry matter content. The pH of the film-forming solutions (FS) 

were 6.5 ± 0.2 (portable pH-meter series 3 Star Orion with an electrode pH ROSS, Thermo Fisher 

Scientific Inc., Landsmeer, The Netherlands). M1 was added at 25% (w/w) of the dried seaweed extract 

content and was magnetically stirred during 5 min. 

Film forming solutions were cast into petri dishes and dried in an oven (FD 240 Binder, Tuttlingen, 

Germany) at 35.0 ± 0.8 ºC for 21-23 h. All films were conditioned at 58.0 ± 0.2% RH and 22 ± 1 ºC for 4 

days prior to analysis. 

8.3.5. Viscoelastic properties of film forming solutions (FS) 

Dynamic viscoelastic study of the film-forming solutions was carried out on a Bohlin CVO-100 

rheometer (Bohlin Instruments Ltd., Gloucestershire, UK) using a cone-plate geometry (cone angle 4º, 

gap 0.15 mm). A dynamic frequency sweep from 0.1 to 10 Hz took place at auto stress, at temperature of 

5 ºC, and a target strain of 0.005%. The elastic modulus (G´; Pa) and viscous modulus (G´´; Pa) were 

plotted as functions of the frequency ramp. To characterize the frequency dependence of G´ over the 

limited frequency range, the following power law was used: 

G´ = G0´ω
n 

Where G0´ is the energy stored and recovered per cycle of sinusoidal shear deformation at an 

angular frequency of 1 Hz, ω is the angular frequency and n is the power law exponent; which should 

exhibit an ideal elastic behaviour near-zero in gels. At least two determinations were performed for each 

sample. The experimental error was lower than 6% in all cases. 

8.3.6. Thermal properties 

Calorimetric analysis of extracts and films were performed using a differential scanning 

calorimeter (DSC) model TA-Q1000 (TA Instruments, New Castle, DE, USA) previously calibrated by 

running high purity indium (melting point, 156.4 ºC; melting enthalpy, 28.44 J/g). Samples of around 10-

15 mg were weighed within ± 0.002 mg by an electronic balance (Model ME235S Sartorius, Goettingen, 
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Germany) and then tightly encapsulated in aluminium hermetic pans. An empty pan was used as 

reference. They were scanned under dry nitrogen purge (50 mL/min) between 5 and 110 ºC at a heating 

rate of 10 ºC/min. Peak temperatures (Tpeak, ºC) and enthalpies of conformational changes (∆H) were 

measured at least in triplicate, the last data being normalized to dry matter content (J/gdm) after 

desiccation of each particular capsule.  

8.3.7. ATR-FTIR spectroscopy 

Extract and film infrared spectra between 4000 and 650 cm-1 were recorded at least in triplicate 

using a Perkin Elmer Spectrum 400 Infrared Spectrometer (Perkin–Elmer Inc., Waltham, MA, USA) as 

was described by Ojagh, Nunez-Flores, López-Caballero, Montero, and Gómez-Guillén (2011). 

8.3.8. Antioxidant activities of freeze-dried extracts and films 

The ferric reducing ability (FRAP) and the ABTS (2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic 

acid)) radical scavenging assays were used to measure the antioxidant activity of both extracts (M1 and 

M2) and films (FM3, FM4, F-M3+M4 and F-M3+M4+M1), which were dissolved in distilled water. Extracts 

were homogenized in distilled water after heating up in thermostatic bath at their respective extraction 

temperature for 10 min. Films were shaken until being totally homogeneous and filtered (Whatman # 1) 

before the determination. The method used for the FRAP and ABTS assays were previously described by 

Gómez-Estaca, Montero, Fernández-Martín, and Gómez-Guillén (2009). Results were expressed as mg 

Fe2+ equivalents/mg of sample for FRAP and mg of Vitamin C Equivalent Antioxidant Capacity 

(VCEAC)/g of sample for ABTS, based on standard curves of FeSO47H2O and vitamin C, respectively. All 

determinations were performed at least in triplicate and expressed in function of the wet sample weight. 

8.3.9. Folin-reactive substances determination 

Folin-reactive substances content was determined spectrophotometrically, in triplicate, using 

gallic acid as a standard according to a modified method of Slinkard and Singleton (1977) with the Folin 

Ciocalteu reagent. The absorbance of the resulting blue colour was measured at 765 nm (UV-1601, 

model CPS-240, Shimadzu, Kyoto, Japan). Folin-reactive substances content was expressed as mg gallic 

acid (GA) equivalent/g of sample. 

8.3.10. Film determinations 

8.3.10.1. Thickness 

It was measured using a micrometer (MDC-25M, Mitutoyo, Kanagawa, Japan), averaging the 

values of 6-8 random locations in 15 films for each treatment as described by Pérez-Mateos, Montero, 

and Gómez-Guillén (2009). 

8.3.10.2. Moisture content 

It was determined at least in triplicate by drying samples of around 0.5 g at 105°C for 24 h, 

according to A.O.A.C. (1995). Water content was expressed as a percent of total weight.  
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8.3.10.3. Light absorption and transparency 

The light barrier properties and transparency of the films were calculated at least in triplicate 

using a UV-1601 spectrophotometer (Model CPS-240, Shimadzu, Kyoto, Japan) at selected wavelengths 

from 200 to 700 nm following the method described by Pérez-Mateos, Montero, and Gómez-Guillén 

(2009). 

8.3.10.4. Colour 

The colour parameters lightness (L*), redness (a*), and yellowness (b*) were measured following 

the method described by Blanco-Pascual, Fernández-Martín, and Montero 2013).  

8.3.10.5. Water vapour permeability (WVP) 

It was determined at least in triplicate following the method described by Sobral, Menegalli, 

Hubinger, and Roques (2001) at room temperature and in a dissecator with distiller water. 

8.3.10.6. Water solubility 

Film solubility was measured at least in triplicate following the method described by Blanco-

Pascual, Fernández-Martín, and Montero (2013). 

8.3.10.7. Water resistance 

Film water resistance was measured at least in triplicate following the method described by 

Blanco-Pascual, Fernández-Martín, and Montero (2013). 

8.3.10.8. Mechanical properties 

Tensile and puncture tests were run at least in triplicate using a texture analyzer TA.XT plus TA-

XT2 (Texture Technologies Corp., Scarsdale, NY, USA) as was described by Blanco-Pascual, 

Fernández-Martín, and Montero (2013). 

8.3.11. Statistical analysis 

Statistical tests were performed using the SPSS computer programme (SPSS Statistical Software 

Inc., Chicago, Illinois, U.S.A.) for one-way analysis of variance. The variance homogeneity was made 

using the Levene test or, the Brown-Forsythe when variance conditions were not fulfilled. Paired 

comparisons were made using the Bonferroni test or the Tamhane test (depending on variance 

homogeneity), with the significance of the difference set at P ≤ 0.05.  

8.4. Results and discussion 

8.4.1. Yield and proximate composition of seaweed extracts 

The four aqueous extracts M1, M2, M3 and M4 represented a yield of 7.98 ± 0.86, 4.48 ± 2.37, 

23.18 ± 5.96 and 33.08 ± 8.3, respectively. Total extraction yield was 69.08 ± 2.85% (in dry basis), which 

was higher than in most studies, where only carrageenan in a yield range of 20-38% was isolated by 

ethanol-precipitation (Pereira, Critchley, Amado, & Ribeiro-Claro, 2009; Pereira & Van De Velde, 2011). 

While M1 and M2, extracted at 3 ºC and 45 ºC, respectively, where considered mainly for their antioxidant 
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potential, M3 and M4 were concentrated biopolymer extracts in view of the high extraction temperature 

(91 ºC) used. M1 and M2 yields were much lower than the one previously reported by Jiménez-Escrig, 

Gómez-Ordoñez, and Rupérez (2012) for an aqueous extract obtained by using HCl 0.1M at room 

temperature (around 44%), probably due to the fact that our aqueous extraction did not involve any other 

enhancer reactive apart from water. 

Proximate composition of M3 was 20.02 ± 0.96% moisture, 19.34 ± 0.11% ash, 4.95 ± 0.05% 

protein, and 55.13 ± 0.61% carbohydrate; while M4 presented 11.40 ±0 .54% moisture, 15.64 ± 0.27% 

ash, 12.1 ± 0.07% protein, and 60.40 ± 0.05% carbohydrate, which means more than two-fold protein 

content in M4 than in M3, and quite similar carbohydrate proportion. The relatively high ash content in 

both M3 and M4 might be associated to a concentration of Na, K, Ca and Mg, main macrominerals 

reported to be abundant in red algae (Rupérez, 2002; Uenishi, Fujita, Ishida, Fujii, Ohue, Kaji et al., 

2010). Comparing these results with dried Mastocarpus stellatus proximate composition (17.71 ± 0.66% 

moisture, 16.65 ± 0.54% ash, 15.02 ± 0.53% protein, and 50.62 ± 0.59% carbohydrates), M3 presented 

slightly increased ash proportion, while most protein was recovered in M4. Both M3 and M4 extracts 

presented high carbohydrate proportion, attributed to the sequential 2-step carrageenan thermal 

extraction. 

8.4.2. FTIR-ATR of carrageenan seaweed extracts 

M3 and M4 IR-spectra are shown in Figure 1A. Both spectra presented a main absorption band at 

1031 cm-1 in M3, slightly shifted to 1034 cm-1 in M4, and another band coinciding at 1155 cm-1 in both M3 

and M4. These bands, attributed to the C-O stretching vibrations of pyranose compounds, are common to 

all polysaccharides, and revealed the predominant carbohydrate nature of both polymer extracts. Another 

characteristic broad band appearing at 1220 cm-1 in M3 and 1218 cm-1 in M4 corresponded to the 

abundance of esther sulfated groups, strongly suggesting carrageenan predominance. A number of 

bands in the frequency range between 930 and 800 cm-1 were also observed in both extracts, being 

characteristic of the type of carrageenan and the degree of sulfation. Thus, a strong band at 926 cm-1 in 

M3 and 928 cm-1 in M4, indicated the presence of 3,6-anhydro-D-galactose, typical in κ-carrageenan; 

another band at 844 cm-1 in M3 and 845 cm-1 in M4 (C-O-S vibration) was assigned to D-galactose-4-

sulfate and attributed to both κ and ι-carrageenan, whereas a little feature appearing at 803 cm-1 indicated 

the presence of two sulfate ester groups on the anhydro-D-galactose residues, a characteristic of ι-

carrageenan (sulfation on C2) (Gómez-Ordóñez & Rupérez, 2011; Pereira & Mesquita, 2003; Pereira, 

Sousa, Coelho, Amado, & Ribeiro-Claro, 2003; Prado-Fernández, Rodrı́guez-Vázquez, Tojo, & Andrade, 

2003). The concomitant presence of κ and ι-carrageenan features strongly suggested a major extraction 

of κ/ι-hybrid carrageenan in both sequential extractions (Gómez-Ordóñez & Rupérez, 2011; Hilliou, 

Larotonda, Abreu, Ramos, Sereno, & Gonçalves, 2006; Van de Velde, 2008). All these IR-bands 

presented considerably higher intensities in M3 than in M4, which could be related to higher carrageenan 

concentration in M3, as well as other polysaccharides, such as neutral sugars and uronic acids, which 

might have been simultaneously extracted (Gómez-Ordóñez, Jiménez-Escrig, & Rupérez, 2010). 

Moreover, most IR peaks in M3 were slightly shifted to lower wavenumbers as compared to M4 IR-peaks. 

This finding, together with a appreciable stronger absorbance at 1150-1100 cm-1 in M3, suggested an 

increased extraction of shorter polysaccharide chains with reduced ability to form intramolecular hydrogen 

bonds in the first carrageenan extract (M3) (Sun, Tao, Xie, Zhang, & Xu, 2010). 
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Figure 1. A. ATR-FTIR spectra of M3 and M4 (Black M3, Blue M4). B. ATR-FTIR spectra of FM3, FM4, 

FM3+M4 and FM3+M4+M1 (Black FM3, Blue FM4, Red FM3+M4, Green FM3+M4+M1). 

No evidence of a broad band between 820 and 830 cm-1 was observed, indicating the absence of 

the highly sulfated λ-carrageenan (Pereira, Sousa, Coelho, Amado, & Ribeiro-Claro, 2003). To enhance 

the spectral resolution, a second derivative spectrum was performed (data not shown). A little evidence at 

871 cm-1 in both spectra suggested a vestigial presence of biological precursor monomers, i.e., µ-

carrageenan (κ-carrageenan precursor) and ν-carrageenan (ι-carrageenan precursor) (Gómez-Ordóñez & 

Rupérez, 2011). Despite direct biopolymer extraction from Mastocarpus stellatus has previously been 

found to come at the expense of a rather high content (16-19% mole) of biological precursors (Souza, 
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Hilliou, Bastos, & Gonalves, 2011), Hilliou, Larotonda, Abreu, Ramos, Sereno, and Gonçalves (2006) 

showed minimum amount of µ-precursor after 2h of extraction at 95 ºC and pH 8, corresponding with a 

maximum in the κ-monomers relative content. 

To obtain additional information in relation to the presence of each type of carrageenan and 

sulfated compounds, 805/845, 845/930 and 1240/930 cm-1 ratios were calculated (Fig. 1A). The 805/845 

cm-1 ratio in M3 (0.23) was quite similar than in M4 (0.21), indicating that ι-carrageenan monomers 

proportion with respect to κ-carrageenan monomers did not differ to a great extent in both extracts 

(Pereira & Mesquita, 2003). The ratio 1240/930 cm-1 was considerably lower in M3 (0.89) than in M4 

(1.07), which meant higher κ-carrageenan content compared to the µ-monomer precursor in M3. Thus it 

could be concluded that the κ-/ι-hybrid carrageenan, apparently extracted to a more extent in M3, 

presented similar ι-carrageenan proportion than in M4, but much less proportion of the µ-carrageenan 

precursor. In this connection, Hilliou, Larotonda, Abreu, Ramos, Sereno, and Gonçalves (2006) found 

that, unlike the ratio between κ-carrageenan and µ-carrageenan, the extraction time did not affect the 

ratio between κ-carrageenan and ι-carrageenan. 

Two distinctive additional bands, located in the region ~1640 cm-1 and ~1545 cm-1 were assigned, 

respectively, to amide I and amide II bands (Fig. 1A), revealing the presence of proteins (Jebsen, Norici, 

Wagner, Palmucci, Giordano, & Wilhelm, 2012). Both bands showed higher intensity in M4 than in M3, in 

accordance with the higher protein content in the last sequential extraction M4. This protein material 

might correspond to residual phycobiliproteins, which are tetrapirrolinic linear proteins covalent bonded to 

cysteine residues (Theiss, Schmitt, Pieper, Nganou, Grehn, Vitali et al., 2011), mainly contributing to the 

amide I absorption band (Sühnel, Hermann, Dornberger, & Fritzsche, 1997). 

8.4.3. DSC of seaweed extracts 

DSC thermograms of dried Mastocarpus stellatus (M) and corresponding extracts M3 and M4 had 

the profiles shown in Figure 2A. Both M3 and M4 powder extracts depicted a main endothermic transition 

(rounded shaped) at similar ranges of 40 − 60 ºC, in line to the general pattern of κ-carrageenan gel 

systems (Nishinari & Watase, 1992), but with reduced signal due to the powder condition. Respective 

Tpeak (ºC) were 53.53 ± 1.24 for M3 and 56.34 ± 0.79 for M4; while the corresponding ∆H (J/gdm) were 

0.78 ± 0.15 and 1.11 ± 0.07, respectively.  

These mild endothermic events might represent disruption of helix aggregates and helix-coil 

transition (Hilliou, Larotonda, Sereno, & Gonçalves, 2006; Ridout, Garza, Brownsey, & Morris, 1996; Van 

De Velde, Antipova, Rollema, Burova, Grinberg, Pereira et al., 2005) resulting from the thermal induced 

breakage of weak physical cross-links and hydrogen-bonded interactions (Ramakrishnan & Prud'Homme, 

2000). 

The presumptive higher amount of shorter polysaccharide chains in M3, with reduced 

intramolecular cross-links, together with the lower proportion of highly sulfated biological precursor, might 

explain the decreased thermal transition temperature and total enthalpy in M3 as compared to M4 (Van 

De Velde, Rollema, Grinberg, Burova, Grinberg, & Hans Tromp, 2002). Moreover, the higher protein 
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presence in M4 might also result in an increase of both Tpeak and ∆H, probably as a result of protein-

carrageenan interactions (Baeza, Carp, Pérez, & Pilosof, 2002).  

 

Figure 2. A. DSC of dried Mastocarpus stellatus (M) and extracts (M3 and M4) and B. DSC Films (FM3, 

FM4, FM3+M4 and FM3+M4+M1). 
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8.4.4. Rheology of film forming solutions 

Film forming solutions were prepared from M3 (FSM3) and M4 (FSM4) biopolymer extracts, alone 

or in combination (FSM3+M4), to evaluate the effect of the integrated use of both extracts on film 

properties. In line with this approach, the first aqueous extract (M1) was incorporated to the blend 

(FSM3+M4+M1), in order to provide films with increased antioxidant capacity. 

Figure 3 represents the mechanical spectra at 5 ºC of the different film forming solutions, in terms 

of elastic modulus (G’) and viscous modulus (G’’) as a function of angular frequency. All samples showed 

a gel-like behaviour along the whole frequency range, as denoted by G>G’’ values, as previously reported 

for κ-carrageenan solutions at 0.5-1% concentration (Lafargue, Lourdin, & Doublier, 2007). The low 

setting temperature might have contributed to promote helices formation and aggregation in the film 

forming solution (Hossain, Miyanaga, Maeda, & Nemoto, 2001). The G’ values were successfully 

modelled according to the power law (r2=0.973-0.999), rendering power law exponents (n’) of 0.335 

(FSM3), 0.360 (FSM4) and 0.344 (FSM3+M4). Moderate frequency dependence was observed in all 

cases, being highest in FSM4, coinciding with slightly lower G’ values. The presumptive higher κ-

carrageenan concentration in M3 and its lower relative content in the µ-monomer precursor could explain 

its slightly better gelling properties (Hilliou, Larotonda, Sereno, & Gonçalves, 2006). In addition, the higher 

protein content in M4 might also hinder the gel capacity, making the helical carrageenan aggregate more 

difficult to create (Andrade, Azevedo, Musampa, & Maia, 2010). Addition of M1 to the blended solution 

(FSM3+M4+M1) produced a sharp increase in G’, reducing considerably its frequency dependency 

(n’=0.1351). Different compounds in M1, which according to Jiménez-Escrig, Gómez-Ordoñez, and 

Rupérez (2012) would correspond greatly to polyphenols and sulfated polysaccharides, might promote 

interactions with the extracted κ-/ι-hybrid carrageenan, leading to a more stable and elastic gel network. 

 

Figure 3. Elastic modulus (G’, Pa) and viscous modulus (G’’, Pa) as a function of the angular frequency 

of film forming solution (FS) at 5 ºC. (Black FSM3, Blue FSM4, Red FSM3+M4, Green FSM3+M4+M1). 
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8.4.5. Film (F) properties 

8.4.5.1. FTIR-ATR 

The IR-spectra of the different films are shown in Figure 1B. All spectra resembled the profiles 

described above for both M3 and M4 extracts, with predominance of bands associated to the presence of 

polysaccharides (more specifically carrageenan), sulfate esters and proteins. The intensity of the band at 

~1030 cm-1 was considerably increased in films as compared to the respective extracts, attributed to the 

glycerol linkage. In general, FM3+M4 film showed intermediate peak intensities and wavenumbers in 

most bands with respect to its FM3 and FM4 counterparts, in accordance to the presence of both extracts 

in the blended film. 

Addition of M1 decreased peak intensities at ~1215 cm-1, ~1030 cm-1, ~923 cm-1, ~845 cm-1 and 

~800 cm-1, in the FM3+M4+M1 film, as compared to the FM3+M4 film. The reduced intensity was not 

associated to a dilution effect, since M1 was not included at the expense of the M3+M4 proportion. In 

addition, an appreciable frequency up-shift was also observable at the sulfate ester band (from 1215 cm-1 

to 1218 cm-1) and slightly at the C-O stretching vibration of the pyranose ring (from 1031 cm-1 to 1032 cm-

1). All these IR-events strongly suggested that M1 compounds might interact with the κ-/ι-hybrid 

carrageenan, preferably at the sulfate ester groups. Interestingly, the ratio 1240/930 cm-1, associated to 

the sulfation degree of the 3,6-anhydro-galactose, was highest in FM3+M4+M1 (0.91), denoting an 

appreciable carrageenan content in M1. 

The addition of M1 induced an evident broadening of the amide I band in the FM3+M4+M1 film 

with respect to its FM3+M4 counterpart, revealing also the presence of proteins in M1. Red algae 

chloroplasts are known for containing chromophores termed phycobilins (O'Carra, Murphy, & Killilea, 

1980), which are photosynthetic pigments thioether bonded to certain water soluble proteins named 

phycobiliproteins with sulfur-containing amino acids (Carra, Ó Heocha, & Carroll, 1964). Phycobiliproteins 

might have been firstly extracted in water (Cian, Martínez-Augustin, & Drago, 2012), as in the M1 extract, 

and lately collected in the last fraction (M4). The presence of these proteins in M1 might have also 

contributed to an overall increase of the sulfate ester groups in the most complex FM3+M4+M1 film. 

The amide I band amplitude was lowest in FM3, in accordance to the low protein content in the 

M3 extract. FM3+M4+M1 amide I wavenumber exhibited an appreciable down-shift (1635 cm-1) compared 

to FM3+M4 (1646 cm-1), which might be related with increased hydrogen-bonding in FM3+M4+M1 

structure, as a result of M1 addition. 

FTIR results revealed that the M3+M4 mixture led to films with intermediate structural properties 

between FM3 and FM4 films, while the M1 addition resulted in a more sulfated film with higher protein 

content interacting with the κ-/ι-hybrid carrageenan via hydrogen bonds and sulfate ester linkages. 

8.4.5.2. DSC 

Typical DSC traces of the films (F) are shown in Figure 2B. A slight endothermic transition was 

evident with Tpeak (ºC) temperatures of 51.84 ± 0.36 in FM3 and 51.74 ± 6.40 in FM4, and corresponding 

∆H (J/gdm) values were 0.25 ± 0.01 and 0.42 ± 0.04 respectively; which was consistent with the thermal 

behaviour of corresponding extracts (M3 and M4). Comparing FM3 and FM4, more energy was 
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necessary to melt FM4, suggesting a more resistant network, probably helped by protein-carrageenan 

interactions (Baeza, Carp, Pérez, & Pilosof, 2002). The lowering in the endothermic transitions in films 

with respect to the powder extracts might be due to the plasticizer effect of glycerol, lowering its 

crystallinity due to the newly created hydrogen bonds between carrageenan hydroxyl groups and glycerol 

(Ramakrishnan & Prud'Homme, 2000). Transition temperature Tpeak in FM3+M4+M1 film increased 

considerably up to 80.07 ± 0.37 ºC, which might confirm further protein-carrageenan interactions 

reinforcing the film network. 

8.4.5.3. Light barrier properties 

Films exhibited in general low light transmission in the UV range (200-280 nm) (Figure 4), 

although in FM3 it increased slightly at 280 nm (5.26 ± 0.69%) resulting the less efficient UV barrier. In 

the visible range, as long as M4 relative content was higher, less transparent was the resulting film. The 

presence of M1 in the FM3+M4+M1 film rendered a light transmission profile quite similar as in the FM4 

film, strongly suggesting the presence of pigments, likely bonded to proteins, in both M4 and M1 extracts. 

In FM4, FM3+M4 and FM3+M4+M1 two absorption plateaus were clearly defined in the ranges 400-450 

nm and 600-750 nm, which might be associated with the presence of pigments, such as carotenoids and 

chlorophyll, absorbing at 400-450 nm (violet-blue-green colours), and phycoerythrin and phycocyanin at 

~600 nm (red colour) (Sühnel, Hermann, Dornberger, & Fritzsche, 1997). As shown in table 1, FM3 was 

significantly (P≤0.05) the most transparent film, being evident that the transparency decreased when M4 

proportion was higher in the film (FM4>FM4+M3) and also when M1 extra compounds were added 

(FM3+M4+M1) (P≤0.05). 

 

Figure 4. Light transmission (T, %) at several wavelengths (nm) of FM3, FM4, FM3+M4 and 

FM3+M4+M1. Results are the mean ± standard deviation. 
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L* (lightness), a* (reddish/greenish) and b* (yellowish/bluish) values are also shown in Table 1, 

where it is revealed that all films had low lightness (28-30) and slightly greenish tendency (-a*). The 

presence of strongly red coloration in the M1 extract, seemed not greatly modify film greenish tendency in 

FM3+M4+M1 but conferred the highest yellowish coloration (+b*). 

Comparing these results with previous developed commercial κ-carrageenan films, neither films 

of this study transmitted as much light as those (around 30% in UV region and 80% in the visible region) 

nor were as transparent as them; having considerably lower lightness (88-95) and more red tendency (-

0.26) (Rhim, 2012; Sánchez-García, Hilliou, & Lagaron, 2010; Shojaee-Aliabadi et al., 2013). 

All these results were consistent with M1, M3 and M4 composition. FM3 was mainly composed of 

the most soluble components (predominantly carrageenan), showing film optical properties closer to the 

commercial carrageenan films (almost colourless and transparent). FM4 contained most of the seaweed 

compounds that remained after three extractions, including pigments and proteins, rendering more 

opaque films with greenish coloration. The high temperature used during the extraction procedure might 

have promoted a transition of the typical red coloration into a more greenish/yellowish one (Paull & Chen, 

2008). On the other hand, addition of M1 to the M3+M4 mixture rendered films with increased coloration 

and opaqueness, comparable to those of FM4, as a result of the appreciable extraction of water-soluble 

light capturing molecules (phycobilins, chlorophylls and carotenoids) (Lin & Stekoll, 2011). 

Film L* a* b* Transparency 

M3 30.70 ± 0.58 a -0.8 ± 0.07 a 1.72 ± 0.19 a 2.71 ± 0.06 a 

M4 28.90 ± 0.62 bc -0.88 ± 0.10 a 4.35 ± 0.17 b 11 ± 0.13 b 

M3+M4 29.45 ± 0.23 b -1.05 ± 0.06 b 3.85 ± 0.34 c 6.68 ± 0.28 c 

M3+M4+M1 28.43 ± 0.37 c -0.60 ± 0.16 c 5.26 ± 0.21 d 11.74 ± 1.39 b 

Table 1. L*, a*, b* and Transparency (− log(T600/x)) of FM3, FM4, FM3+M4, and FM3+M4+M1. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different films (P≤0.05). 

8.4.5.4. Physical properties 

The physical properties of films are shown in Table 2. Thickness values increased with M4 

presence in the film formulation (FM3<FM3+4<FM4) (p≤0.05). 

The addition of M1 to the FM3+M4 formula resulted in an extraordinary increase of the film 

thickness (88 µm) compared to the rest of the films (44-48 µm), coinciding with considerable higher 

(p≤0.05) moisture content (~20%). The greater protein content in M4 might cause a reorganization of the 

fibrous structure producing an increase in thickness. The incorporation of M1 extract extended the 

network, probably favouring matrix gelation and expanding its volume almost the double, which might be 

promoted by water entrapment due to certain M1-induced plasticizing effect. 

8.4.5.4.1. Water barrier properties 

The highest film water solubility (Table 2) was found in FM3 (P≤0.05), considerably decreasing in 

FM3+M4 and even more in FM4. FM3+M4+M1 solubility resulted in a similar range to FM3+M4 and FM4. 
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Both M4 high protein content and increased sulfated groups might promote protein-carrageenan 

interactions during the drying process, resulting in more aggregated networks. Charged polysaccharides 

such as carrageenan, with a strong electrolyte character due to their sulfated groups, can interact with 

other components such as proteins, minerals and plasticizers, affecting negatively their water barrier 

properties (Karbowiak, Debeaufort, Champion, & Voilley, 2006). Extra protein addition with M1, however, 

did not confer any significant improvement in water solubility, with respect to the FM3+M4 film. 

  FM3 FM4 FM3+M4 FM3+M4+M1 

Thickness (µm) 43.98 ± 6.11 a 48.15 ± 5.51 b 47.05 ± 5.25 ab 88.45 ± 13.80 c 

Moisture (%) 14.21 ± 1.05 a 12.10 ± 0.91 b 13.53 ± 0.95 ab 20.08 ± 0.43 c 

Film solubility (%) 59.24 ± 3.29 a 30.36 ± 2.59 b 37.26 ± 3.61 c 34.53 ± 1.52 bc 

WVP  

(x10-8 g m-1 s-1 Pa-1) 
3.57 ± 0.05 a 3.62 ± 0.01 a 3.64 ± 0.08 a 7.25 ± 0.06 b 

TS (MPa) 13.88 ± 0.39 a 16.16 ± 0.76 b 14.13 ± 0.18 a 15.24 ± 3.74 ab 

EAB (%) 2.40 ± 0.1 a 1.28 ± 0.08 b 1.38 ± 0.31 b 4.11 ± 1 c 

Y (MPa) 459.12 ± 35.77 a 552.63 ± 36.61 b 516.77 ± 23.58 ab 316.56 ± 3.44 c 

F (N) 23.24 ± 3.17 a 13.65 ± 1.37 b 17.35 ± 1.35 c 28.6 ± 2.14 a 

D (%) 16.07 ± 2.62 a 8.01 ± 0.55 b 10.47 ± 1.10 c 16.53 ± 0.45 a 

Table 2. Thickness, moisture, film solubility, water vapour permeability (WVP), Tensile strength (TS), 

elongation at break (EAB), Young’s modulus (Y), puncture force (F) and puncture deformation (D) of 

FM3, FM4, FM3+M4, and FM3+M4+M1. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different films (P≤0.05). 

No significant differences were found between FM3, FM3+M4 and FM4 water vapour permeability 

(WVP) (P≤0.05) (Table 2). Despite its thickness was higher, WVP significantly increased in FM3+M4+M1, 

probably related to its increased moisture-induced plasticization, which favoured the moisture transfer 

(Hambleton, Perpiñan-Saiz, Fabra, Voilley, & Debeaufort, 2012). Solubility and WVP of all studied films 

were higher than previous results obtained with commercial carrageenan films, where solubility values of 

~26% (Shojaee-Aliabadi et al., 2013) and WVP between 0.55 and 20 x 10-10 g m-1 s-1 Pa-1 were reported 

(Karbowiak, Debeaufort, & Voilley, 2007; Martins, Cerqueira, Bourbon, Pinheiro, Souza, & Vicente, 2012; 

Rhim, 2012; Sánchez-García, Hilliou, & Lagaron, 2010; Shojaee-Aliabadi et al., 2013). 

Water resistance test results are shown in figure 5. In the initial time, immediately after adding 

water, no apparent modification of the film surfaces occurred, whereas appreciable changes were 

observable at longer times (>2 min) as a result of film swelling and partial transfer of colored constituents 

to the water. FM3 was the less water resistant film, as denoted its highest elongation before breakage, 

which took place after ~8 min; in addition, it was also the only film that showed water filtration before 

breakage. The higher proteinaceous residual material in the film formulation, leading to a more 

aggregated network, contributed noticeably to higher water resistance of both FM4 and FM3+M4 films, 

avoiding the water filtration. The FM3+M4+M1 film was the most water resistant film, presenting breakage 

at around 32 min, with the lowest elongation (1.5 cm). Besides being considerably thicker, the more 
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aggregated conformation already seen in FSM3+M4+M1 rheological analysis of the corresponding film 

forming solution, might promote a reinforced film network. 

 

Figure 5. Water resistance: Elongation (cm) in time (min) until Breakage for FM3, FM4, FM3+M4 and 

FM3+M4+M1. 

Water vapour permeability and water filtration could be an interesting way to assess subjacent 

phenomena of transport and diffusion through packaging and edible packaging films. Karbowiak, Hervet, 

Léger, Champion, Debeaufort, and Voilley (2006) already observed a huge increase of the diffusion of the 

small molecules in ι-carrageenan films containing more than 30% glycerol (w/w carrageenan) also 

showing an hydration and swelling effect.  

8.4.5.4.2. Mechanical properties 

FM4 showed significantly (p≤0.05) higher tensile strength (TS) and lower elongation at break 

(EAB) than its FM3 counterpart (Table 2), with FM3+M4 registering intermediate values, in good 

accordance to its blended nature providing intermediate compositional and structural properties. M1 

addition did not induce any significant (p>0.05) change in the tensile strength as compared to the 

FM3+M4 film, however, EAB was considerably increased, exhibiting the greatest values of all studied 

films. Such increase of the EAB in the more complex film could be strongly connected to its higher 

thickness and water content. TS and EAB values of all films were much lower than the results obtained in 

other studies made with commercial κ-carrageenan films (20-35 MPa, 15-37%, respectively) (Martins, 

Cerqueira, Bourbon, Pinheiro, Souza, & Vicente, 2012; Rhim, 2012; Shojaee-Aliabadi et al., 2013); and 

higher than results with commercial ι-carrageenan films (9 Mpa; 1.2%) (Hambleton, Perpiñan-Saiz, Fabra, 

Voilley, & Debeaufort, 2012). These differences could be largely attributed to the κ-/ι-hybrid nature of the 

extracted carrageenan used for film production, together with the presence of proteins and pigments, 

especially in FM4 and FM3+M4+M1 films (Han & Kim, 2008; Van de Velde, 2008).  
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As far as Young’s modulus (Y) is concerned (Table 2), the highest (p≤0.05) stiffness also 

corresponded to FM4 film, decreasing with the M4 absence (FM3+M4>FM3). It is interesting to note that 

M1 addition led to an accused Y‘s decrease. The higher sulfation degree in FM3+M4+M1, together with 

the presence of proteins, other small molecules and increased water content might promote an excessive 

number of cross-linking points in this film resulting in a reduced film stiffness. 

Regarding puncture deformation (D) and force (F) no significant (p≤0.05) differences were 

observed between FM3 and FM3+M4+M1 (Table 2), which presented the highest values. On the 

contrary, FM4 showed the lowest (p≤0.05) values for both D and F, revealing a poorer puncture 

resistance, probably due to stronger junction zones caused by proteins covalently linked to the hybrid 

carrageenan, which might act as force concentrators in specific points making the material more prompt 

to breakage under delimited force fields.  

Thus, it could be concluded that FM4 presented high TS whereas FM3 had higher perforation 

response. The most complex FM3+M4+M1 film resulted in as high puncture test values as FM3, but also 

increased more than 1.5 times the EAB values compared to FM3. The degree of sulfation, water-induced 

plasticization and protein-carrageenan interactions took an important role in determining the mechanical 

properties, which might differ depending on the type of test. 

8.4.6. Antioxidant Activity and Folin-reactive substances  

The antioxidant activity and Folin reactive substances of extracts (M1 and M2), as well as films 

(FM3, FM4, FM3+M4 and FM3+M4+M1) are shown in Table 3.  

Sample ABTS (mg vit C eq/g) FRAP (mg Fe2+/g) Folin reactive substances (mg/g) 

M1 45.30 ± 0.05 a 1.30 ± 0.01 a 28.53 ± 0.73 a 

M2 44.54 ± 0.12 b 0.99 ± 0.002 b 22.10 ± 1.02 b 

FM3 2.19 ± 0.11 a 1 ± 0.11 ab 6.64 ± 0.37 a 

FM4 2.5 ± 0.06 b 0.90 ± 0.02 b 6.08 ± 0.4 a 

FM3+M4 2.19 ± 0.11 a 1.07 ± 0.07 ac 7.75 ± 0.34 b 

FM3+M4+M1 70.60 ± 0.47 c 1.16 ± 0.04 c 41.32 ± 3.19 c 

Table 3. Antioxidant activity: ABTS, FRAP and Folin reactive substances of M3 and M4, FM3, FM4, 

FM3+M4 and FM3+M4+M1. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different Extract (E) or different film (F) (P≤0.05). 

Both M1 and M2 aqueous extracts exhibited noticeable radical scavenging capacity in contrast to 

the FM3, FM4, FM3+M4 films, were values were considerably much lower. Regarding the ferric ion 

reducing capacity, it was almost negligible in both extracts and films, in accordance to previous work with 

another Rhodophyta species (Chondrus crispus) (Jiménez-Escrig, Gómez-Ordoñez, & Rupérez, 2012). It 

is noteworthy that the addition of M1 to the film significantly improved the ABTS activity, beyond the 

values of the M1 extract itself. M1 and M2 extracts contained an appreciable amount of Folin-reactive 

substances, which was slightly higher (p≤0.05) in the former, despite the lower extracting temperature. 

Although this technique is widely used to assess total phenol content, it should be taken into 
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consideration that other compounds present in the extract may react with the Folin reactive, including 

certain aromatic amino acids and sugars, which could also contribute as radical scavengers (Ikawa, 

Schaper, Dollard, & Sasner, 2003; Singleton, Orthofer, & Lamuela-Raventós, 1998; Smith, Krohn, 

Hermanson, Mallia, Gartner, Provenzano et al., 1985). FM3+M4+M1 film considerably increased both its 

Folin-reactive substances content (5 times) and its free-radical scavenging capacity (30 times), mostly 

attributed to the presence of water soluble phycobilins and phycobiliproteins (Hirata, Tanaka, Ooike, 

Tsunomura, & Sakaguchi, 2000; Lin & Stekoll, 2011), given that phenolic content in red seaweeds is 

rather low (Holdt & Kraan, 2011). On the other hand, the higher sulfated content in M1 coming from the κ-

carrageenan derivatives might also contribute to the FM3+M4+M1 higher antioxidant activity (Rocha De 

Souza, Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 2007; Yuan, Song, Zhang, Li, 

Li, & Gao, 2006).  

8.5. Conclusion 

Mastocarpus stellatus extracts could be a complementary source to take advantage of the main 

part of its ingredients for film development. M3 was adequate to develop transparent and flexible edible 

films (more similar to carrageenan films) while a subsequent extraction led to a higher protein content 

extract forming stronger junction zones during drying. The addition of M1 resulted in a more efficient 

plasticization and more mechanical and water resistant edible film, thanks to phycobilin attributes, which 

conferred antioxidant properties. This more complex film could be used to improve food preservation and 

as a possible component for functional food development. 
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9.1. Abstract 

Two hydrolysates were obtained from dried Mastocarpus stellatus using alcalase. Phenolic 

content was partially removed from one of them. The phenolic-partially-removed hydrolysate (H) was 

found to be a potent ACE inhibitor. However, the phenolic-containing hydrolysate (Hp), showed a higher 

Folin-reactive substance content and antioxidant capacity (reducing power and radical scavenging 

capacity). Hp was therefore selected for the development of antioxidant Mastocarpus carrageenan-based 

films. F-Hp0 (without hydrolysate), F-Hp15 (with 15% hydrolysate) and F-Hp30 (with 30% hydrolysate) 

films were developed. κ/ι-hybrid carrageenan was the main film constituent and hydrolysate addition 

resulted in an increased sulfated proportion, higher protein content and higher number of hydrogen 

bonds. Therefore interactions between carrageenan helices, plasticizer and peptides in the film-forming 

solution were enhanced, especially in F-Hp15, and consequently the water vapour permeability (WVP) of 

the resulting film decreased. Nevertheless, F-Hp30 considerably improved transparency, UV/Vis light 

barrier, water resistance and elongation at break (EAB). Hp presence increased both puncture force (F) 

and puncture elongation (E), but not tensile strength (TS) or Young’s modulus (Y). The addition of an 

increased concentration of hydrolysate to the films led to a considerable increase in the Folin-reactive 

substance content and the antioxidant activity, especially the radical scavenging capacity. 

9.2. Introduction 

Seaweeds have recently been included in Western diets as food and also as components of 

functional products because of their richness in polysaccharides, proteins (Fleurence, 1999), minerals 

and vitamins. Moreover, seaweeds are an excellent source of bioactive substances such as sulfated 

polysaccharides, peptides and polyphenols with biological activities, including antioxidant and 

antihypertensive properties (Jiménez-Escrig, Gómez-Ordoñez, & Rupérez, 2012; Plaza, Cifuentes, & 

Ibáñez, 2008; Sarmadi & Ismail, 2010; Tierney, Croft, & Hayes, 2010). 

In the last decade, new marine bioprocess technologies have allowed the isolation of substances 

with antioxidant properties or bioactive peptides by enzymatic hydrolysis (Ngo, Wijesekara, Vo, Van Ta, & 

Kim, 2011). Seaweeds have proved to be a good source of peptides and polyphenols (Cian, Alaiz, 

Vioque, & Drago, 2013; Heo, Park, Lee, & Jeon, 2005; Senevirathne, Ahn, & Je, 2010). Red algae 

(Rhodophyta) are known to have a high protein content, mainly composed of bioactive phycobiliproteins 

(Fitzgerald, Gallagher, Tasdemir, & Hayes, 2011) and other wall proteins that might be more efficiently 

extracted by an enzyme-assisted treatment (Denis, Morancais, Gaudin, & Fleurence, 2009; Joubert & 

Fleurence, 2008). 

Mastocarpus stellatus is one of the few carrageenophyte species on the Atlantic coast currently 

harvested for phycocolloid industry purposes, but it is still underutilized (Pereira, Critchley, Amado, & 

Ribeiro-Claro, 2009). 

Commercial carrageenan is commonly extracted at alkaline conditions (pH 7–9) at temperatures 

near boiling point (80–110 °C) for 3–4 h, providing yields of 20–40% (Hilliou, Larotonda, Abreu, Ramos, 

Sereno, & Gonçalves, 2006; Pereira, Critchley, Amado, & Ribeiro-Claro, 2009). However, high molecular 

weight carrageenan can also be extracted at mild temperatures (50 °C) for 1–5 h (Montolalu, Tashiro, 

Matsukawa, & Ogawa, 2008). 
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κ/ι-hybrid carrageenan has been reported to be the main biopolymer structure extracted from M. 

stellatus (Hilliou, Larotonda, Sereno, & Gonçalves, 2006), although other components, such as proteins, 

minerals and polyphenols, are also present in significant amounts (Sekar & Chandramohan, 2008). 

Mastocarpus enzymatic hydrolysis could produce both antihypertensive and antioxidant extracts, as 

previously reported with another species of the Rhodophyta phylum (Cian, Martínez-Augustin, & Drago, 

2012; Wang, Jónsdóttir, Kristinsson, Hreggvidsson, Jónsson, Thorkelsson et al., 2010). Protein 

hydrolysates from different origins have been incorporated in the formulation of protein-based films to 

improve or confer bioactivity (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009; 

Salgado, Fernández, Drago, & Mauri, 2011). 

Mastocarpus extraction could be maximized by first performing an enzymatic hydrolysis at mild 

temperatures and alkaline conditions followed by carrageenan precipitation and bioactive compound 

isolation. 

The aim of the present study was to obtain two different potentially bioactive hydrolysates 

(antioxidant and antihypertensive) from dried Mastocarpus stellatus and to develop active Mastocarpus 

carrageenan-based films by adding the more antioxidant hydrolysate. 

9.3. Materials and Methods 

9.3.1. Seaweed sampling 

Samples of Mastocarpus stellatus (M), kindly supplied by Porto-Muiños (Cerceda, A Coruña, 

Spain), were washed several times with running tap water and air-dried at 50 °C for 24–48 h in a 

ventilated oven. Seaweed samples were stored in sealed plastic bags at 2–4 °C for 1 week until use. 

9.3.2. Unrefined biopolymer extraction 

Dried seaweed was homogenized using an Osterizer blender (Oster, Aravaca, Madrid, Spain) 

with water in a 1:15 (w:v) proportion and kept for 12 h at 3 ± 2 °C. The seaweed was then filtered and 

subjected to two consecutive extractions in water at a 1:30 (w:v) proportion, at 91 °C for 2 h during the 

first step and 1.5 h during the second one. Each extract was centrifuged at 3000 rpm for 5 min (Sorvall 

Evolution RC Centrifuge, Thermo Fisher Scientific Inc., Landsmeer, The Netherlands) and blended. The 

supernatant was dried in an oven (FD 240 Binder, Tuttlingen, Germany) at 65.0 ± 0.8 °C and this 

constituted the Mastocarpus biopolymer extract, which was stored at room temperature. 

9.3.3. Seaweed hydrolysis 

Dried seaweed was mixed with 4% distilled water (w/v) and subjected to enzymatic hydrolysis for 

3 h, using alcalase 2.4L (EC 3.4.21.14, 2.64 AU/g, Sigma-Aldrich Inc., St. Louis, MO, USA) in optimal 

conditions for enzymatic activity (pH 8, 50 °C). The enzyme-substrate (seaweed) ratio was 1:20 (w:w) and 

the pH of the reaction was kept constant by addition of 1 N NaOH solution to the reaction medium using a 

pH-stat (TIM 856, Radiometer Analytical, Villeurbanne Cedex, France). The enzyme was inactivated by 

heating at 90 °C for 10 min. The hydrolysate was centrifuged at 7000 g for 15 min. The supernatant was 

subjected to two consecutive carrageenan extractions by precipitation with ethanol 1:3 (v/v) at 4 °C for 2 
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h. The precipitated carrageenan was dried at 65 ± 0.8 °C and weighed in order to evaluate extraction 

yields. The carrageenan-free liquid phase was centrifuged at 13000 g for 5 min. The supernatant was 

concentrated by rotary evaporation and was subsequently subjected to five organic extractions with ethyl 

acetate 1:5 (v/v), to remove most of the polyphenols and other compounds such as pigments. After 

decanting, the successive aqueous phases were concentrated by rotary evaporation. The concentrate 

was lyophilized, and this constituted the phenolic-partially-removed hydrolysate (H). The phenolic-

containing hydrolysate (Hp) was obtained under the same conditions as described above, with the 

exception of the removal of polyphenol compounds with ethyl acetate. The Hp hydrolysate was selected 

for active film development. 

9.3.4. Amino acid analysis of hydrolysates 

The amino acid composition of the hydrolysates (H, Hp) was determined using a Biochrom 20 

amino acid analyzer (Pharmacia, Barcelona, Spain) according to the method described by Alemán, 

Pérez-Santín, Bordenave-Juchereau, Arnaudin, Gómez-Guillén, and Montero (2011). The results were 

expressed as number of amino acid residues per 1000 residues. 

9.3.5. Angiotensin-converting enzyme (ACE) inhibition of hydrolysates 

Reversed-phase high performance liquid chromatography (RP-HPLC) was used to determine 

ACE-inhibitory capacity of the hydrolysates (H, Hp), according to the method described by Alemán, 

Pérez-Santín, Bordenave-Juchereau, Arnaudin, Gómez-Guillén, and Montero (2011). The IC50 value was 

defined as the concentration of hydrolysate (µg/mL) required to inhibit 50% of ACE activity. 

9.3.6. Film preparation 

Three film-forming solutions were prepared to obtain the following films: F-Hp0 (without the 

addition of hydrolysate), F-Hp15 (with 15% hydrolysate) and F-Hp30 (with 30% hydrolysate). Film-forming 

solutions (FS) (2% w/v) were prepared from Mastocarpus biopolymer extract by adding hot distilled water 

(90 °C) and homogenizing with a T25 basic Ultra-Turrax (IKA-Werke GmbH & Co. KG, D-79219 Staufen, 

Germany) at 17500–21500 rpm for 5 min. Glycerol (Panreac Química S.A., Barcelona, Spain) was added 

at 10% (w/w) in relation to the seaweed extract content. The film-forming solutions were centrifuged at 

3000 rpm for 3 min to remove air bubbles. Hp was then added at 15 and 30% (w/w) in relation to the 

seaweed extract content, and was magnetically stirred for 5 minutes. The film-forming solutions were cast 

into petri dishes and dried in an oven (FD 240 Binder, Tuttlingen, Germany) at 35.0 ± 0.8 °C for 21 h. All 

the films were conditioned at 58.0 ± 0.2% RH and 22 ± 1 °C for 4 days prior to analysis. 

9.3.7. Viscoelastic properties of film-forming solutions (FS) 

A dynamic viscoelastic study of the film-forming solutions was carried out on a Bohlin CVO-100 

rheometer (Bohlin Instruments Ltd., Gloucestershire, UK) using a cone-plate geometry (cone angle 4°, 

gap 0.15 mm). A dynamic frequency sweep from 0.1 to 10 Hz took place at auto stress, at a temperature 

of 10 °C and a target strain of 0.005%. The elastic modulus (G′; Pa) and viscous modulus (G″; Pa) were 

plotted as functions of the frequency ramp. To characterize the frequency dependence of G′ over the 

limited frequency range, the following power law was used: 
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G′ = G0′ω
n 

where G0′ is the energy stored and recovered per cycle of sinusoidal shear deformation at an angular 

frequency of 1 Hz, ω is the angular frequency and n is the power law exponent, which should exhibit an 

ideal elastic behaviour near zero in gels. At least two determinations were performed for each sample. 

The experimental error was less than 6% in all cases. 

9.3.8. Viscosity 

A viscosity test for film-forming solutions was performed at 25 °C in the cone-plate cell (cone 

angle 4°, gap = 150 mm) of the Bohlin rheometer at a constant shear rate of 0.5 s–1. The results are 

averages of eight determinations and are expressed as Pa·s. 

9.3.9. Thermal properties 

Calorimetric analysis of extracts and films were performed using a differential scanning 

calorimeter (DSC) model TA-Q1000 (TA Instruments, New Castle, DE, USA) previously calibrated by 

running high-purity indium (melting point, 156.4 °C; melting enthalpy, 28.44 J/g). Samples of around 10–

15 mg were tightly encapsulated in aluminium hermetic pans. They were scanned under dry nitrogen 

purge (50 mL/min) between 5 and 180 °C at a heating rate of 10 °C/min. Peak temperatures (Tpeak, °C) 

and enthalpies of conformational changes (∆H) were measured at least in triplicate, the latter data being 

normalized to dry matter content (J/gdm) after desiccation of each particular capsule. 

9.3.10. ATR-FTIR spectroscopy 

Extract and film infrared spectra between 4000 and 650 cm–1 were recorded at least in triplicate 

using a Perkin Elmer Spectrum 400 Infrared Spectrometer (Perkin–Elmer Inc., Waltham, MA, USA), as 

described by Ojagh, Nunez-Flores, López-Caballero, Montero, and Gómez-Guillén (2011). 

9.3.11. Antioxidant activities of hydrolysates and films 

ABTS radical [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging capacity and 

FRAP (ferric reducing ability of plasma) were used to measure the antioxidant activity of the hydrolysates 

(H, Hp) and films (F-Hp0, F-Hp15, F-Hp30). Both hydrolysates and films were dissolved in distilled water 

and shaken until they were totally homogeneous. The film solutions were filtered through Whatman No. 1 

paper. The method used for the FRAP and ABTS assays was previously described by Alemán, Pérez-

Santín, Bordenave-Juchereau, Arnaudin, Gómez-Guillén, and Montero (2011). Results were expressed 

as µmoles Fe2+ equivalents/g for FRAP and mg Vitamin C Equivalent Antioxidant Capacity (VCEAC)/g) 

for ABTS, based on standard curves of FeSO47H2O and vitamin C, respectively. All determinations were 

performed at least in triplicate. 

9.3.12. Folin-reactive substances content of hydrolysates and films 

Total Folin-reactive substances content was determined according to a modified method by 

Slinkard and Singleton (1977) with the Folin–Ciocalteu reagent. An aliquot of 10 µL of sample was mixed 

with 750 µL of distilled water and oxidized with 50 µL of Folin–Ciocalteu reagent. The reaction was 
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neutralized with 150 µL of sodium carbonate solution and incubated for 2 h at room temperature. The 

absorbance of the resulting blue colour was measured at 765 nm (UV-1601, model CPS-240, Shimadzu, 

Kyoto, Japan). Results were expressed as mg gallic acid (GA) equivalent/g of sample. All determinations 

were performed at least in triplicate. 

9.3.13. Film determinations 

9.3.13.1. Thickness 

The thickness was measured using a micrometer (MDC-25M, Mitutoyo, Kanagawa, Japan), 

averaging the values of 6–8 random locations in 15 films for each treatment as described by Pérez-

Mateos, Montero, and Gómez-Guillén (2009). 

9.3.13.2. Moisture content 

The moisture content was determined according to A.O.A.C. (1995). 

9.3.13.3. Protein content 

The protein content was determined by a LECO FP-2000 nitrogen/protein analyzer (Leco Corp., 

St. Joseph, MI, USA), according to Dumas (A.O.A.C., 2005) and using a nitrogen-to-protein conversion 

factor of 6.25. 

9.3.13.4. Light absorption and transparency 

The light barrier properties and transparency of the films were calculated at least in triplicate 

using a UV-1601 spectrophotometer (model CPS-240, Shimadzu, Kyoto, Japan) at selected wavelengths 

from 250 to 800 nm following the method described by Pérez-Mateos, Montero, and Gómez-Guillén 

(2009). 

9.3.13.5. Colour 

The colour parameters lightness (L*), redness (a*), and yellowness (b*) were measured following 

the method described by Blanco-Pascual, Fernández-Martín, and Montero (2013). 

9.3.13.6. Water vapour permeability (WVP) 

The water vapour permeability (WVP) was determined at least in triplicate following the method 

described by Sobral, Menegalli, Hubinger, and Roques (2001) at room temperature and in a dissecator 

with distilled water. 

9.3.13.7. Water solubility 

Film solubility was measured at least in triplicate following the method described by Blanco-

Pascual, Fernández-Martín, and Montero (2013). 
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9.3.13.8. Water resistance  

Film water resistance was measured at least in triplicate following the method described by 

Blanco-Pascual, Fernández-Martín, and Montero (2013). 

9.3.13.9. Mechanical properties 

Tensile and puncture tests were run at least in triplicate using a TA.XT plus TA-XT2 texture 

analyzer (Texture Technologies Corp., Scarsdale, NY, USA) as described by Blanco-Pascual, 

Fernández-Martín, and Montero (2013). 

9.3.14. Statistical analysis 

Statistical tests were performed using the SPSS computer programme (SPSS Statistical Software 

Inc., Chicago, Illinois, USA) for one-way analysis of variance. The variance homogeneity was evaluated 

using the Levene test, or the Brown-Forsythe when variance conditions were not fulfilled. Paired 

comparisons were made using the Bonferroni test or the Tamhane test (depending on variance 

homogeneity), with the significance of the difference set at P ≤ 0.05. 

9.4. Results and Discussion 

9.4.1. Extraction yield of seaweed hydrolysis 

Carrageenan extraction yield was 28.65% (dry weight basis) and hydrolysate yields were 19.04% 

for H and 39.17% for Hp (dry weight basis); therefore total seaweed extraction yield by H and Hp 

hydrolysis was 47.69 and 67.82%, respectively. While H extraction resulted in a similar yield to another 

previously reported alcalase red seaweed hydrolysis, Hp was much higher than almost all the protease 

extracts tested (Wang et al., 2010). 

Although carrageenan extraction was performed at a milder temperature (50 °C) than the 

conventional one (80 °C) (Hilliou, Larotonda, Abreu, Ramos, Sereno, & Gonçalves, 2006), these 

conditions could be suitable for its extraction, since the yields obtained were quite good. (Montolalu, 

Tashiro, Matsukawa, & Ogawa, 2008) indicated that the carrageenan obtained in extractions at 50 °C for 

long times (5 h) showed good gelling properties, being better than those obtained with shorter times. 

Therefore, enzymatic hydrolysis would allow concomitant extraction of bioactive compounds (hydrolysate) 

and carrageenan, improving the total yield and adding value to the seaweed extraction. 

9.4.2. Mastocarpus protein hydrolysates 

9.4.2.1. Protein content and amino acid composition 

The protein content of marine algae varies greatly within species. Reports have shown that, in 

general, red seaweeds contain high levels of proteins (Harnedy & FitzGerald, 2011). The dried 

Mastocarpus stellatus contained 15.02 ± 0.53% of protein. Protein content was concentrated in the 

hydrolysates up to 37.86 ± 1.07% for H and 31.32 ± 0.96% for Hp. 
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The amino acid composition of H and Hp, expressed as residues per 1000 total amino acid 

residues, is shown in Table 1. 

As expected, a similar amino acid profile was observed in both hydrolysates. Both H and Hp 

showed high contents of Ser, Gly, Ala, Asp and Glu, and relatively high contents of Leu, Thr, Val, Pro and 

Phe. The sum of the aspartic and glutamic acid contents was 192 residues/1000 residues and 198 

residues/1000 residues for H and Hp, respectively. The high acidic amino acid content is typical of red 

seaweeds (Cian, Martínez-Augustin, & Drago, 2012). Nevertheless, some differences between the 

hydrolysates were noteworthy. Some amino acids (Ser, Thr, Arg, His) were concentrated in the more 

purified hydrolysate (H), owing to the removal of other amino acids, mainly hydrophobic residues (Ala, 

Val, Ile, Leu, Pro, Met). These hydrophobic amino acids might have been extracted during the ethyl 

acetate extraction, suggesting that some of them could be linked to the polyphenols extracted. 

Amino acid 

Number of 

residues / 

1000 residues 

 H Hp 

Asp  102 105 

Thr 73 66 

Ser 153 92 

Glu 90 93 

Gly 112 116 

Ala  104 120 

Cys 5 7 

Val 47 65 

Met 16 19 

Ile  34 40 

Leu 72 88 

Tyr 28 28 

Phe  43 43 

His 12 6 

Lys 29 26 

Arg 27 23 

Pro 48 57 

Hyp 0 0 

Hyl 5 5  

Table 1. Amino acid composition of Mastocarpus hydrolysates (H, Hp) 

9.4.2.2. ACE-inhibitory capacity 

Angiotensin-I converting enzyme (ACE) plays an important role in the regulation of blood 

pressure and hypertension, because it catalyses the conversion of inactive angiotensin-I into angiotensin-

II, a potent vasoconstrictor, and inactivates bradykinin, a potent vasodilator (Murray & FitzGerald, 2007). 
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The amount of Mastocarpus hydrolysate required to inhibit 50% of the ACE activity (IC50) is shown in 

Table 2. 

Both H and Hp showed a high ACE-inhibitory capacity. The phenolic-partially-removed 

hydrolysate (H) showed considerably higher ACE-inhibitory capacity (IC50 of 91 µg/mL) than the phenolic-

containing hydrolysate (Hp), probably owing to H’s higher peptide concentration (7%). Furthermore, some 

peptides of Hp might be interacting with polyphenols, therefore being less available for ACE binding. 

However, Jeon (2005) reported that, among seven flavourzyme enzymatic digestions of brown seaweed, 

the hydrolysate with the highest polyphenol content showed the highest ACE-inhibitory capacity. 

Moreover, some polyphenolic compounds have been shown to exert ACE-inhibitory activity (Pozo-Bayón, 

Alcaíde, Polo, & Pueyo, 2007). ACE-inhibitory capacity might also be influenced by small differences in 

the amino acid compositions of the hydrolysates. Peptide ACE-inhibitory activity could be strongly 

influenced by the presence of hydrophobic (aromatic or branched side chains) amino acid residues at the 

C-terminal positions (Murray & FitzGerald, 2007; Sato, Hosokawa, Yamaguchi, Nakano, Muramoto, 

Kahara et al., 2002). The hydrophilic–hydrophobic partitioning in the sequence is also a critical factor in 

the inhibitory activity (Sheih, Fang, & Wu, 2009). ACE inhibition is also highly dependent on the molecular 

weight of peptides, those that are very short and have low molecular weight being more active (Alemán 

and Martínez, 2013). 

 

Table 2. ACE-inhibitory capacity of Mastocarpus hydrolysates. Different letters (a, b) indicate significant 

differences (p≤0.05). * IC50: concentration (µg/mL) required to inhibit 50% of ACE activity. 

The IC50 of the ACE-inhibitory capacity of the H hydrolysate was 17.5 times lower than the IC50 

value of the alcalase hydrolysate derived from red algae Porphyra yezoensis (Qu, Ma, Pan, Luo, Wang, & 

He, 2010). The ACE-inhibitory capacity of algae hydrolysates has been reported in other works (He, 

Chen, Wu, Sun, Zhang, & Zhou, 2007; Sato et al., 2002; Suetsuna, 1998). Although, the use of a different 

method and its associated modifications to test ACE-inhibitory capacity makes direct comparison of IC50 

values difficult (Alemán, Pérez-Santín, Bordenave-Juchereau, Arnaudin, Gómez-Guillén, & Montero, 

2011)., H could be considered as a potent ACE-inhibitory hydrolysate. 

9.4.2.3. Folin-reactive substances and antioxidant activity 

Folin-reactive substances, ferric reducing power and ABTS radical scavenging ability of the 

hydrolysates are shown in Table 3. Both hydrolysates presented a noticeable amount of Folin-reactive 

substances. As was expected, considering the method of hydrolysate preparation, the Folin-reactive 

substances content was higher in Hp (phenolic-containing hydrolysate) than in H (phenolic-partially-

removed hydrolysate). Some polyphenols, however, might not have been fully separated with ethyl 

acetate in the H hydrolysate. Moreover, although the Folin–Ciocalteu assay is a widely used method to 

 IC50* (µg/mL) 

H 91.62  ± 2.44 a 

Hp 148.32 ± 3.16 b 



Enzyme-assisted extraction of κ/ι-hybrid carrageenan from Mastocarpus stellatus for obtaining 
bioactive ingredients and their application for edible active films development 

 

~ 145 ~ 
 

determine total phenolic content, additional substances can react with the Folin reagent, including sugars 

and proteins, and should be taken into account (Prior, Wu, & Schaich, 2005). 

The hydrolysis process would allow an improved extraction of phenolic compounds as well as the 

release of low molecular weight peptides (Wang et al., 2010), which contribute to enhance the antioxidant 

properties. Hp showed higher antioxidant activity than H (1.4 times higher for reducing power and 2.7 

times higher for ABTS radical scavenging), probably owing to a greater presence of phenolic compounds 

in Hp. The positive correlation between the polyphenolic content of algae and their antioxidant activity has 

been well documented (Athukorala, Kim, & Jeon, 2006; Karawita, Siriwardhana, Lee, Heo, Yeo, Lee et 

al., 2005; Kim, Shin, Lee, Park, Park, Yoon et al., 2009; Siriwardhana, Lee, Jeon, Kim, & Haw, 2003; 

Wang, Jonsdottir, & Ólafsdóttir, 2009). 

Sample 
ABTS 

(mg vit C eq/g)

FRAP 

(µmol Fe/g) 

Folin reactive 

substances (mg/g) 

H 35.95 ± 1.59 a 84.52 ± 1.38 a 36.02 ± 3.26 a 

Hp 93.26 ± 2.55 b 106.19 ± 1.05 b 75.61 ± 0.56 b 

F-Hp0 3.07 ± 0.18 a 4.54 ± 0.08 a 7.33 ± 0.34 a 

F-Hp15 17.56 ± 0.90 b 11.77 ± 0.38 b 15.97 ± 1.46 b 

F-Hp30 27.51 ± 0.83 c 13.75 ± 0.06 c 22.17 ± 0.36 c 

Table 3. Antioxidant activity and Folin reactive substances of hydrolysates and films. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different hydrolysates (H) or different films (F) (P≤0.05). 

On the other hand, the hydrolysate peptide fraction can also contribute to antioxidant activity. It is 

well known that biological activities of protein hydrolysates are related to the amino acid composition, 

sequence, molecular weight and peptide configuration. For example, phosphorylated serine and 

threonine are known to bind metals (Elias, Kellerby, & Decker, 2008), being more hydrophilic and reactive 

because of their hydroxyl group. Amino acids with non-polar aliphatic groups, such as alanine, leucine or 

proline, have high reactivity to hydrophobic PUFA radicals, while hydrogen donors such as aspartic and 

glutamic acids are able to quench unpaired electrons or radicals by supporting protons (Qian, Jung, & 

Kim, 2008). The abundance of these amino acids in the peptide sequences of hydrolysates could also be 

responsible for their antioxidant activity. As previously mentioned, the hydrophobic amino acid content 

was higher in Hp than in H, which might also have contributed to the higher antioxidant capacity (ABTS 

and FRAP) of Hp compared with H. 

Various studies have been carried out to evaluate the antioxidant potential of marine algae 

hydrolysates (Ahn, Jeon, Kang, Shin, & Jung, 2004; Cian, Alaiz, Vioque, & Drago, 2013; Heo, Park, Lee, 

& Jeon, 2005; Je, Park, Kim, Park, Yoon, Kim et al., 2009; Park, Shahidi, & Jeon, 2004; Wang et al., 

2010). However, to our knowledge, no reference has been made in previous studies to the antioxidant or 

ACE-inhibitory activity of Mastocarpus hydrolysates. 
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Given the Folin-reactive substances content and antioxidant activity results of the hydrolysates, both 

hydrolysates could be considered potential antioxidants. However, because of its greater potential, Hp 

was selected to develop active Mastocarpus films with antioxidant activity. 

9.4.3. Development of active films 

Increasing concentrations of hydrolysate (Hp) were added to Mastocarpus biopolymer film-

forming solutions. Concentrations above 30% produced sticky, unmanageable films. For this reason, 30% 

was chosen as the maximum hydrolysate concentration that could be used for film development. A 

concentration of 15% hydrolysate was also chosen in order to maintain a balance between the film’s 

physicochemical properties and the active properties that could be provided by the hydrolysates. 

9.4.3.1. FTIR-ATR 

Infrared spectra of F-Hp0, F-Hp15 and F-Hp30 films and Hp freeze-dried Mastocarpus stellatus 

hydrolysate were measured (Figure 1). Hp was analysed to assess its possible contribution to film 

structure. All film spectra showed a band at approximately 845 cm–1 (C-O-S vibration), assigned to D-

galactose-4-sulfate (present in both κ- and ι-carrageenan), and a strong band at 924 cm–1, which 

indicated the presence of 3,6-anhydro-D-galactose, a typical feature of κ-carrageenan (Gómez-Ordóñez 

& Rupérez, 2011; Pereira, Sousa, Coelho, Amado, & Ribeiro-Claro, 2003). 

The concomitant presence of κ- and ι-carrageenan features strongly suggested a greater 

extraction of κ/ι-hybrid carrageenan, as previously reported with M. stellatus (Hilliou, Larotonda, Abreu, 

Ramos, Sereno, & Gonçalves, 2006; Van de Velde, 2008). F-Hp0 and F-Hp15 spectra had similar band 

intensities, while F-Hp30 had the above-mentioned bands considerably reduced, attributed to the reduced 

carrageenan amount in this film formulation in comparison with Hp, which had a much lower IR intensity 

at these wavenumbers. Although high temperature (80–90 °C) is adequate for suitable carrageenan 

extraction, a certain amount of biopolymer might have been extracted during the hydrolysis carried out at 

50 °C. In this regard, (Montolalu, Tashiro, Matsukawa, & Ogawa, 2008) reported an appreciable 

extraction yield of high molecular weight carrageenan at 50 °C in Kappaphycus alvarezii. The strong band 

at 1037 cm–1 in Hp confirmed the predominantly polysaccharide nature of the hydrolysate. Moreover, the 

greater absorption in the Hp IR-spectrum at wavenumbers between 1100 and 1150 cm–1 as compared to 

the films also suggested an increased proportion of shorter polysaccharide chains (Sun, Tao, Xie, Zhang, 

& Xu, 2010). 

A small band at approximately 803 cm–1 in the film spectra indicated the presence of two sulfate 

ester groups on the anhydro-D-galactose residues (sulfation on C2), characteristic and distinctive of ι-

carrageenan (Pereira, Sousa, Coelho, Amado, & Ribeiro-Claro, 2003; Prado-Fernández, Rodríguez-

Vázquez, Tojo, & Andrade, 2003). This feature, which was not found in the hydrolysate, was most 

prominent in F-Hp0, and became smaller with an increasing Hp amount in the film formulation (F-Hp0>F-

Hp15>F-Hp30). Despite the presence of ι-carrageenan, the M. stellatus film spectra were quite similar to 

κ-carrageenan standards, as previously shown by Gómez-Ordóñez and Rupérez (2011). 
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Figure 1. A. ATR-FTIR spectrum of Hp hydrolysate. B. ATR-FTIR spectra of F-Hp0 (continuous blue 

line), F-Hp15 (discontinuous red line) and F-Hp30 (dotted green line) films. 

-0.03

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.383

4000 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 650.
-0.03
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

Wavenumber (cm-1)

A
b

so
rb

a
n

ce

B

A

Amide I

Amide II

Amide I

Amide II

κ/ι

κ/ι

ι

ι

κ

κ

C-O-C

C-O-C

S=O

S=O



Enzyme-assisted extraction of κ/ι-hybrid carrageenan from Mastocarpus stellatus for obtaining 
bioactive ingredients and their application for edible active films development 
 

~ 148 ~ 
 

No evidence of a broad band between 820 and 830 cm–1 was found, indicating the absence of highly 

sulfated λ-carrageenan. The second derivative spectra of the films revealed trace evidence at 871 cm–1 of 

µ-carrageenan (κ-carrageenan precursor) and ν-carrageenan (ι-carrageenan precursor), which was not 

observable in Hp (data not shown). 

The strong absorption bands at ~1216–1217 cm–1 (S = O), assigned to the presence of ester 

sulfate groups, were noticeably lower in F-Hp30, coinciding with the highest proportion of added 

hydrolysate. The 1217/924 cm–1 ratio, as a measure of relative total sulfate groups with respect to κ-

carrageenan content, was much higher in Hp (2.6) than in any of the films studied (0.88 in F-Hp0, 0.91in 

F-Hp15 and 0.94 in F-Hp30), suggesting an additional source of sulfated compounds in Hp, probably 

phycobiliproteins with sulfur-containing amino acids (Carra, Ó Heocha, & Carroll, 1964). In this respect, 

Dumay, Clément, Morançais, and Fleurence (2013) observed that enzymatic digestion was an effective 

treatment for phycoerythrin extraction. Accordingly, the 1217/924 cm–1 ratio became higher as a result of 

the increase in the hydrolysate amount in the film formulation. 

The IR-spectrum of Hp also revealed strong bands at 3277 cm–1, 2929 cm–1 and 1600 cm–1 and a 

small shoulder at 1518 cm–1, which could be assigned, respectively, to amide A, amide B, amide I and 

amide II of constituent proteins, most likely phycoerythrin and phycocyanin (Smith & Alberte, 1994). 

Comparison of the films showed that as the added hydrolysate percentage increased the amide I 

amplitude became more evident, and it exhibited a wavenumber down-shift to 1631 cm–1 in F-Hp30 as 

compared to 1639 cm–1 in F-Hp0 and F-Hp15, which denoted more hydrogen bonding in F-Hp30, 

attributed to the higher proportion of shorter peptides. In addition, the reduced band intensity of the ester 

sulfate group in F-Hp30 and the slight frequency up-shift from 1216.1 cm–1 in F-Hp0 and F-Hp15 to 

1217.5 in F-Hp30 could be indicative of appreciable carrageenan-peptide interactions in the film with the 

highest amount of added hydrolysate. 

9.4.3.2. DSC 

DSC thermograms of the freeze-dried Mastocarpus stellatus hydrolysate, Hp, and the F-Hp0, F-

Hp15 and F-Hp30 films are shown in Figure 2. The hydrolysate showed two main endothermic peak 

temperatures, Tpeak (°C), at 86.62 ± 6.22 and 130.16 ± 0.63, and corresponding ∆H (J/gdm) values of 3.51 

± 0.72 and 0.48 ± 0.05, respectively, which might correspond to phycoerythrin and phycocyanin 

fragments (Mishra, Shrivastav, & Mishra, 2008). Temperatures were higher than those where protein 

normally features, probably because hydrolysis might shift maximal peak temperature towards higher 

temperatures (Briones-Martínez, Juárez-Juárez, Oliver-Salvador, & Cortés-Vázquez, 1997; Chronakis, 

2001; Nishinari & Watase, 1992). Low enthalpies also suggested the presence of hydrolysis products 

stabilized by different amounts of hydrogen bonds and hydrophobic interactions. Another endothermic 

transition in Hp with Tpeak (°C) at 50.75 ± 0.66 and ∆H (J/gdm) 0.39 ± 0.05 was evidence of the κ-

carrageenan constituent (Nishinari & Watase, 1992). 
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Figure 2. A. DSC of Hp hydrolysate and B. DSC of F-Hp0, F-Hp15 and F-Hp30. 
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transitions, however, were not as sharp as those in a pure carrageenan curve (Iijima, Hatakeyama, 

Takahashi, & Hatakeyama, 2007; Matsuo, Tanaka, & Ma, 2002). The increased protein content in films 

with added hydrolysate might promote carrageenan-peptide interactions (Baeza, Carp, Pérez, & Pilosof, 

2002), which could explain the increase in Tpeak temperatures. However, the enthalpy reduction 

suggested a hydrolysate-induced plasticizing effect in the films as a result of increasing the free water 

and chain mobility. 

9.4.3.3. Rheology 

Figure 3 shows the mechanical spectra of the film-forming solutions at 10 °C, in terms of elastic 

modulus (G′) and viscous modulus (G″) as a function of angular frequency. The F-Hp0 solution, which 

had the lowest G′ values, was the only one with a crossover point where G′ = G″. At frequencies below 2 

Hz, the F-Hp0 solution was characterized by a dominant viscous behaviour (G′<G″), which turned into a 

gel-like behaviour at higher frequencies; thus it could be classified as a concentrated solution constituting 

an entanglement network. In the absence of KCl, solutions of κ-carrageenan cooled down to 9 °C have 

been shown to adopt helical structures, which did not aggregate to form self-supporting gels (Núñez-

Santiago, Tecante, Garnier, & Doublier, 2011). 

 

Figure 3. Elastic modulus (G′, Pa) and viscous modulus (G″, Pa) as a function of the angular frequency of 

F-Hp0, F-Hp15 and F-Hp30 film-forming solutions at 10 °C. 

In contrast, the F-Hp15 and F-Hp30 solutions showed a typical gel-like behaviour denoted by 

G′>G″ values within the whole frequency range, as previously reported in other studies on carrageenan 

(Lafargue, Lourdin, & Doublier, 2007). The G′ values were successfully modelled according to the power 

law (r2~0.99) in all three cases. The hydrolysate addition to the film-forming solution at 15% concentration 

caused a remarkable increase in G′, much higher than with 30%. The rheological behaviour of the F-Hp15 
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solution showed lower frequency dependence of G′ than the F-Hp30 and F-Hp0 solutions, as deduced 

from the lowest power law exponent value (n′) (0.63 in F-Hp0, 0.40 in F-Hp15, 0.52 in F-Hp30). Hp 

concentrations higher than 30% conferred sticky, unmanageable properties to the films. All these findings 

suggest that the hydrolysate added at the appropriate concentration led to stronger gels with increased 

structural stability, probably due to hydrolysate components (mainly peptides and phenolic compounds) 

favouring aggregation of carrageenan helices to form a three-dimensional network. Interactions between 

carrageenan and proteins have previously been shown to produce much stronger gels than single 

carrageenan gels (Baeza, Carp, Pérez, & Pilosof, 2002). Similarly, the ability of polyphenols to interact 

with polysaccharides forming complexes has been well documented (Le Bourvellec & Renard, 2012). 

Nevertheless, the higher hydrolysate amount in the F-Hp30 solution considerably reduced the gel-forming 

capacity with respect to the F-Hp15 solution, with the helical aggregates probably having more difficulty in 

being created as a result of a carrageenan-dilution effect (Andrade, Azevedo, Musampa, & Maia, 2010). 

The apparent viscosity of the film-forming solutions, measured at 25 °C and shear rate of 0.5 s–1, 

was considerably higher in the F-Hp15 solution (14.89 ± 0.53 Pa·s) than in the F-Hp0 and F-Hp30 

solutions (3.47 ± 0.01 Pa·s and 4.72 ± 0.15 Pa·s, respectively), strongly suggesting effective interactions 

at the right concentration between carrageenan and other compounds naturally present in the 

hydrolysate, presumably peptides and phenolic compounds. 

9.4.3.4. Light barrier properties 

Colour parameters, L* (lightness), a* (reddish/greenish) and b* (yellowish/bluish), are shown in 

Table 4. All the films were quite similar, having low lightness (28–29) and slightly greenish and yellowish 

tendencies. The F-Hp30 film exhibited the highest (P≤0.05) lightness and greenish colouration, and 

lowest (P≤0.05) yellowish tendency. Changes in L*a*b* values, however, did not correlate with increasing 

amounts of added hydrolysate in the film, which could be due to a different degree of interactions 

between protein pigments and carrageenan. Comparing these results with previously developed 

commercial κ-carrageenan films, the present M. stellatus films presented considerably lower lightness 

and more red tendency, owing to the concomitant extraction of non-carrageenan compounds (Rhim, 

2012; Sánchez-García, Hilliou, & Lagaron, 2010; Shojaee-Aliabadi, Hosseini, Mohammadifar, 

Mohammadi, Ghasemlou, Ojagh et al., 2013). 

Film L* a* b* Transparency 

F-Hp0 28.65 ± 0. 29 a -0.57 ± 0.03 a 4.57 ± 0. 11 a 7.14 ± 0.24 a 

F-Hp15 27.99 ± 0.08 b -0.30 ± 0.05 b 4.72 ± 0. 04 b 6.61 ± 0.30 ab 

F-Hp30 29.25 ± 0.05 c -0.70 ± 0.03 c 4.36 ± 0.04 c 6.12 ± 0.12 b 

Table 4. L*, a*, b* and Transparency (− log(T600/x)) of F-Hp0, F-Hp15 and F-Hp30.  

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different films (P≤0.05). 

In general, the films exhibited low light transmission in the UV range (250–300 nm) (0–1.12%) 

(Figure 4), as compared to commercial κ-carrageenan films (Sánchez-García, Hilliou, & Lagarón, 2010), 

with F-Hp0 providing the least efficient UV barrier. Two absorption peaks were defined in all the films in 
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the ranges 400–450 nm and 600–700 nm, which might be associated with the presence of pigments, 

such as carotenoids and chlorophyll, which absorb at 400–450 (violet-blue-green colours), and 

phycoerythrin and phycocyanin at 600 nm (red colour) (Sühnel, Hermann, Dornberger, & Fritzsche, 

1997). In the visible range, the light transmission was significantly (P≤0.05) lower in F-Hp30, especially in 

the wavelength range between 350 and 700 nm, which might be largely due to the increase in thickness 

associated with the hydrolysate addition, as Table 5 shows. The hydrolysate contained small molecules 

(mainly peptides and oligosaccharides) that might have interfered in carrageenan helix aggregation 

during the film drying process. This interference might have caused a plasticizing effect with an increase 

in free volume that would have resulted in thicker films. 

 

Figure 4. Light transmission (T, %) at various wavelengths (250–800 nm) of F-Hp0, F-Hp15 and F-Hp30. 

9.4.3.5. Physicochemical properties 

Slight variations in moisture content were observed among the three film formulations (Table 5), 

with F-Hp30 showing slightly higher values, which could be related to its increased thickness. The protein 

content in the films increased significantly (P≤0.05) with the addition of increasing amounts of hydrolysate 

(Table 5). 

9.4.3.5.1. Water barrier 

No significant differences in film water solubility were found in M. stellatus films with either 15 or 

30% added hydrolysate (Table 5). A similar finding was reported earlier in gelatine films incorporating 

different percentages of gelatine hydrolysate (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & 
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Montero, 2009). Although the solubility values were not high, the films totally lost their original structure, 

becoming a very viscous solution with gelling tendency at low temperatures. Solubility was similar to 

previous results obtained in commercial carrageenan films (Shojaee-Aliabadi et al., 2013). 

  F-Hp0 F-Hp15 F-Hp30 

Thickness (µm) 51.82 ± 3.34 a 56.05 ± 3.65 a 68.36 ± 4.04 b 

Moisture (%) 13.46 ± 0.28 a 12. 13 ± 0. 14 b 14.59 ± 2.75 ab 

Protein content (%) 8.90 ± 0.06 a 10.98 ± 0.21 b 13.05 ± 0.24 c 

Film solubility (%) 20.97 ± 4.5 a 25.77 ± 3.64 a 22.16 ± 2.95 a 

WVP (x10-8 g m-1 s-1 Pa-1) 3. 78 ± 0. 17 a 3. 20 ± 0. 12 b 4.04 ± 0. 30 a 

TS (MPa) 59.94 ± 2.27 a 51.37 ± 3.75 b 41.63 ± 2.95 c 

EAB (%) 0.95 ± 0.11 a 1.59 ± 0.09 b 2.47 ± 0.24 c 

Y (MPa) 1797 ± 61 a 1347 ± 74 b 1054 ± 45 c 

F (N) 23.47 ± 1.08 a 26.36 ± 2.14 b 30.38 ± 2.27 b 

D (%) 7.73 ± 0.47 a 8.61 ± 0.53 a 12.24 ± 1 b 

Table 5. Thickness, moisture, protein content, film solubility, water vapour permeability (WVP), tensile 

strength (TS), elongation at break (EAB), Young’s modulus (Y), puncture force (F) and puncture 

deformation (D) of F-Hp0, F-Hp15 and F-Hp30 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different films (P≤0.05). 

No significant (P≤0.05) differences were found between F-Hp0 and F-Hp30 water vapour 

permeability (WVP) (Table 5). In contrast, F-Hp15 had the lowest permeability, probably owing to 

effective carrageenan-protein interactions, as previously commented. Despite the greater thickness of F-

Hp30, WVP was not reduced by adding 30% hydrolysate. The extra protein and plasticizer effect caused 

by Hp addition may have resulted in a less dense network (Gontard, Guilbert, & Cuq, 1993). The present 

films were more water vapour permeable than previously reported commercial carrageenan films 

(Karbowiak, Debeaufort, & Voilley, 2007; Martins, Cerqueira, Bourbon, Pinheiro, Souza, & Vicente, 2012; 

Rhim, 2012; Sánchez-García, Hilliou, & Lagaron, 2010; Shojaee-Aliabadi et al., 2013). 

Water resistance test results are shown in Figure 5. Noticeable differences among samples were 

observed after 10 minutes. Although every film elongated up to 2 cm, F-Hp0 showed a faster elongation 

speed (3.2 cm/h) than F-Hp15 and F-Hp30 (~2.9 cm/h). The hydrolysate addition led to a significantly 

higher breakage resistance in F-Hp30 in comparison with F-Hp0 and F-Hp15, probably related to the 

higher carrageenan peptide interactions. The films did not show any water filtration before breakage time. 
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Figure 5. Water resistance: Elongation (cm) in time (min) until breakage for F-Hp0, F-Hp15, and F-Hp30. 

9.4.3.5.2. Mechanical properties 

F-Hp0 had the significantly highest (P≤0.05) tensile strength (TS) (Table 5), which was lowest in 

F-Hp30. The opposite behaviour was found regarding the elongation at break (EAB) values, confirming 

the hydrolysate-induced plasticizing effect in the film. The TS and EAB values in the three M. stellatus 

films studied were, respectively, higher and lower than the results reported with commercial κ-

carrageenan or ι-carrageenan films (Martins, Cerqueira, Bourbon, Pinheiro, Souza, & Vicente, 2012;12; 

Shojaee-Aliabadi et al., 2013), suggesting a reinforcement effect caused by the presence of other non-

carrageenan components. As far as Young’s modulus (Y) is concerned (Table 5), the highest stiffness 

also corresponded to F-Hp0 (P≤0.05), decreasing with increasing amount of Hp. The small molecules 

(mainly peptides and oligosaccharides) that form part of the hydrolysate have been proved to act as film 

plasticizers by preventing carrageenan helix associations and increasing the molecular mobility of 

polymer chains, which in the case of F-Hp30 was favoured by the increased water plasticizing effect. 

Salgado, Fernández, Drago, and Mauri (2011) also observed a reduction in TS and Y and an increase in 

EAB in protein films with added hydrolysate, which, in view of the lack of film moisture increase, was 

attributed to interferences in protein cross-linking caused by peptides interacting with the polymer matrix. 

There were no significant differences in puncture force (F) between F-Hp0 and F-Hp15 (P≤0.05) 

(Table 5), whereas F-Hp30 had higher values. Puncture deformation (D) was significantly higher (P≤0.05) 

in F-Hp30, with no differences between F-Hp0 and F-Hp15. It is worth noting that the films with the 

highest hydrolysate amount had better resistance to the puncture test, contrary to what happened with 

the tensile test, although similar behaviour was found regarding puncture deformation and elongation at 

break. The slight increase in puncture force could be related to the above-mentioned carrageenan-

hydrolysate compound interactions in F-Hp30, but the considerable plasticizing effect exerted by the 

hydrolysate and the high water content was the main factor determining the film’s tensile properties. 
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9.4.4. Antioxidant activity and Folin-reactive substances of the films 

Folin reactive substances, ferric reducing power and ABTS radical scavenging capacity of the 

films are shown in Table 3. Films without algae hydrolysates (F-Hp0) contained Folin reactive substances 

and exhibited some antioxidant activity measured by both FRAP and ABTS assays. The incorporation of 

increasing concentrations of Hp significantly increased the Folin-reactive substances content (3-fold 

increase in F-Hp30), as well as FRAP and ABTS values (3- and 9-fold increase, respectively, in F-Hp30). 

The antioxidant properties of squid gelatine films (Giménez, Gómez-Estaca, Alemán, Gómez-

Guillén, & Montero, 2009) and sunflower films (Salgado, Fernández, Drago, & Mauri, 2011) were also 

improved by the addition of hydrolysates from squid gelatine and bovine plasma, respectively, but the 

antioxidant activity increase reported was much lower than in the present work. 

9.5. Conclusion 

Mastocarpus stellatus hydrolysis could be a complementary way to extract bioactive components 

in addition to carrageenan. From the two hydrolysates obtained, the more purified peptide hydrolysate 

(phenolic content partially removed) showed the highest ACE-inhibitory capacity, while keeping peptides 

and polyphenols together resulted in a more antioxidant hydrolysate. 

Mastocarpus stellatus hydrolysate can be used as an active ingredient for film development. The 

addition of Hp led to more efficient plasticization, a higher proportion of sulfated compounds content and 

increased film antioxidant activity. 

Depending on the hydrolysate proportion, film properties were affected differently: 15% Hp 

addition decreased film water vapour permeability, while 30% Hp improved film optical properties, 

breakage water resistance and film puncture test response. 

In view of the results obtained, these films might be used as a possible ingredient for functional 

packaging development for food susceptible to oxidation. 
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10.1. Abstract 

Film-forming alginate-rich extracts from brown seaweeds Laminaria digitata (L) and Ascophyllum 

nodosum (A) were obtained using Na2CO3 (Lc, Ac) or NaOH (Lh, Ah) at different temperatures (21, 50 

and 75 °C) and after different acid pretreatments (H2SO4 and HCl). L extractions were more protein 

efficient than A extractions. NaOH extractions were more carbohydrate efficient, while Na2CO3 extractions 

presented almost two-fold ash content. The higher proportion of preserved guluronic units extracted with 

NaOH led to more efficiently cross-linked films; whereas the higher amount of degraded and dispersed 

uronic acids obtained in Na2CO3 extractions favoured film compound interactions with glycerol. Lh film 

was the most compact film, the least water vapour permeable and the most mechanical and water 

resistant film, while Ac resulted in the most transparent, water soluble and plasticized film. A-films 

presented higher antioxidant activity than L-films, as measured by ABTS, FRAP and Folin reactive 

substances, especially when the extraction was carried out using NaOH (Ah). 

10.2. Introduction 

Many types of brown seaweeds (Phaeophyceae) are available on the Spanish coasts, such as 

Laminaria digitata and Ascophyllum nodosum, both of which contain polysaccharides such as laminaran, 

fucoidan and alginate. Alginates are normally present in algae cell walls as insoluble calcium or 

magnesium salts, being responsible for their strong, flexible tissue. Industrial alginate extraction is 

basically divided into a first acid pretreatment to convert insoluble alginate salts into alginic acid, followed 

by an alkaline extraction to convert insoluble alginic acid into soluble sodium alginate, which passes into 

the aqueous phase; further alginate isolation requires solid/liquid separation, precipitation and drying. 

Depending on the species, the extraction can take several hours and repetitions (Vauchel, Leroux, Kaas, 

Arhaliass, Baron, & Legrand, 2009), and it has been demonstrated that after 2 h alginates start 

depolymerizing (Vauchel, Arhaliass, Legrand, Kaas, & Baron, 2008). 

A small number of works have focused their study on optimizing alginate extraction (Arvizu-

Higuera, Hernández-Carmona, & Rodríguez-Montesinos, 2002; Hernández-Carmona, McHugh, & López-

Gutiérrez, 1999; Vauchel, Leroux, Kaas, Arhaliass, Baron, & Legrand, 2009), most of them dealing with 

pre-extraction steps or drying conditions (Arvizu-Higuera, Hernández-Carmona, & Rodríguez-Montesinos, 

1997; Hernández-Carmona, McHugh, Arvizu-Higuera, & Rodríguez-Montesinos, 1998); however, the 

effect of using different sodium sources for the sodium alginate salt formation has not been studied. 

Sodium alginate is commonly used as a thickening and gelling food ingredient (Mabeau & Fleurence, 

1993; Rioux, Turgeon, & Beaulieu, 2007a), while other polysaccharides, such as laminaran, fucoidan and 

alginic acid, are more interesting for their potential biological activities (Jiménez-Escrig, Gómez-Ordóñez, 

& Rupérez, 2011). 

Alginate is a complex mixture of oligo-polymers mainly consisting of polymannuronic acid and 

polyguluronic acid (Avella, Pace, Immirzi, Impallomeni, Malinconico, & Santagata, 2007). While 

mannuronic acid presents a β (1-4) linkage with a flexible linear conformation, guluronic acid forms an α 

(1-4) linkage, introducing a steric hindrance around the carboxyl group and resulting in rigid, folded 

structural conformations which provide molecular chain stiffness. An efficient integral brown seaweed 

extraction would be interesting to produce an environmentally friendly unrefined biopolymer-rich extract 
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for various industrial applications, such as food packaging improvement material. Due to their linear 

structure and high molecular weight, alginates can form strong films and adequate fibrous structures in 

solid state (Rinaudo, 2008), being considered a good filmogenic material (Hambleton, Perpiñan-Saiz, 

Fabra, Voilley, & Debeaufort, 2012; Nakamura, Nishimura, Hatakeyama, & Hatakeyama, 1995; 

Siddaramaiah, Swamy, Ramaraj, & Lee, 2008); however, they do not stand out for having good 

antioxidant activity (Norajit, Kim, & Ryu, 2010; Salmieri & Lacroix, 2006). 

Seaweed extracts are normally rich in polyphenolic compounds and carotenoids (Cardozo, 

Guaratini, Barros, Falcão, Tonon, Lopes et al., 2007), which have been reported to have antioxidant 

properties (Gupta & Abu-Ghannam, 2011), but there is hardly any study of their current use in food 

products. 

The aim of this study is to prepare optimal crude extracts that enable edible active film 

development from brown seaweeds Laminaria digitata and Ascophyllum nodosum, and to characterize 

their physicochemical, structural and antioxidant properties. 

10.3. Materials and methods 

10.3.1. Seaweed sampling 

Samples of Laminaria digitata (L) and Ascophyllum nodosum (A), kindly supplied by Porto-

Muiños (Cerceda, A Coruña, Spain), were collected in Galicia bay (A Coruña, Spain), washed several 

times with running tap water and air-dried at 50 °C for 24–48 h in a ventilated oven. The seaweed 

samples were stored in sealed plastic bags at 2–4 °C until use. 

10.3.2. Seaweed extraction 

Twelve different Laminaria and Ascophyllum extractions were carried out following different acid 

pretreatments (0.1–0.5 M H2SO4 and 0.1–0.2 M HCl), followed by different alkaline treatments (3–4% 

Na2CO3 and 4% NaOH) at different temperatures (21, 50 and 75 °C), as shown in Table 1. Dried 

seaweeds were homogenized in an Osterizer blender (Oster, Aravaca, Madrid, Spain) with the respective 

acid solution in a 1:10 (w/v) proportion and kept overnight at 3 ± 2 °C, then washed several times with 

running tap water until stable pH was reached (portable pH-meter series 3 Star Orion with a ROSS pH 

electrode, Thermo Fisher Scientific Inc., Landsmeer, The Netherlands). Sodium carbonate (C) extractions 

were carried out with magnetic stirring in Na2CO3 solutions (3% in Ascophyllum and 4% in Laminaria) in a 

1:60 proportion (w/v) for 3 h, then homogenized in an Osterizer blender and centrifuged at 6000 rpm for 5 

min (Sorvall Evolution RC Centrifuge, Thermo Fisher Scientific Inc., Landsmeer, The Netherlands). The 

supernatant was dialyzed overnight in 32/32 dialysis tubing (Visking membrane, MWCO 12–14000, 

regenerated cellulose, Medicell International Ltd, London, UK) at 3 ± 2 °C. Sodium hydroxide extractions 

were carried out with distilled water in a 1:60 proportion (w/v), stirring magnetically for 3 h in a pH-stat 

(TIM 856, Radiometer Analytical, Villeurbanne, France) which maintained constant pH 10 by the addition 

of 4% NaOH, and then homogenized and centrifuged at 6000 rpm for 5 min. 

The supernatants were dried in an oven for 3 days (FD 240 Binder, Tuttlingen, Germany) at 65.0 

± 0.8 °C to constitute the different algal extracts, which were stored at 21 °C until use (within one week). 
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The suitability of the different extractions was evaluated in terms of yield, film-forming capacity 

and preliminary film water response. Film-forming capacity was evaluated by the ease with which the 

films could be peeled off the Petri dish and their consistency when handled. For film water response, 

three 9 cm2 pieces of each film were placed in distilled water for 30 min at 22 °C, to evaluate their 

subsequent consistency manually. Four Laminaria (L) and Ascophyllum (A) extracts with the highest 

yields and filmogenic capacity were selected for further film characterization, two prepared with Na2CO3 

(Lc, Ac) and the other two with NaOH (Lh, Ah). 

10.3.3. Proximate analysis 

Moisture and ash content of the selected dried seaweed crude extracts were determined 

according to official methods (A.O.A.C., 1995). Nitrogen content was determined using a combustion 

oven apparatus (Model FP-2000, Leco Corporation, St Joseph, MI, USA), according to Dumas (A.O.A.C., 

2000), with a conversion factor of 6.25. Each analysis was performed at least in triplicate, and results 

expressed as percentages. Carbohydrate content was estimated by difference, assuming a fat content 

lower than 2% (Dawczynski, Schubert, & Jahreis, 2007; Rioux, Turgeon, & Beaulieu, 2007a). 

10.3.4. Film preparation 

Film-forming solutions were prepared by suspending 1.5% w/v dried extracts in distilled water at 

the corresponding extraction temperature and homogenizing with a T25 basic Ultra-Turrax (IKA-Werke 

GmbH & Co. KG, D-79219 Staufen, Germany) at 17500–21500 rpm for 5 min. Glycerol was added at 

30% (w/w) of the total dry matter content. The pH of the film-forming solutions was 10 ± 0.8. Film-forming 

solutions were cast into Petri dishes and dried in an oven (FD 240 Binder, Tuttlingen, Germany) at 35.0 ± 

0.8 °C for 21–23 h. All films were conditioned at 58.0 ± 0.2% RH and 22 ± 1 °C 4 days prior to analysis. 

10.3.5. ATR-FTIR spectroscopy 

Dried extract and film infrared spectra between 4000 and 650 cm–1 were recorded at least in 

triplicate using a Perkin-Elmer Spectrum 400 Infrared Spectrometer (Perkin-Elmer Inc., Waltham, MA, 

USA), as described by Ojagh, Nunez-Flores, López-Caballero, Montero, and Gómez-Guillén (2011). 

10.3.6. Thermal properties 

Calorimetric analysis of dried seaweeds, crude extracts and films was performed using a 

previously calibrated differential scanning calorimeter (DSC) model TA-Q1000 (TA Instruments, New 

Castle, DE, USA). Samples of around 10–15 mg were weighed and encapsulated in aluminium hermetic 

pans. They were scanned under dry nitrogen purge (50 mL/min) between 5 and 115 °C at a heating rate 

of 10 °C/min. Peak temperatures (Tpeak, °C) and denaturation enthalpies (∆H, by linear baseline 

integration) were measured at least in triplicate and normalized to dry matter content (J/gdm). Glass 

transition temperatures, Tg (°C), were determined by the midpoint method, usually within ±1 °C. 
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10.3.7. Film determinations 

10.3.7.1. Thickness 

It was measured using a micrometer (MDC-25M, Mitutoyo, Kanagawa, Japan), averaging the 

values of 6–8 random locations in 15 films for each treatment, as described by Pérez-Mateos, Montero, 

and Gómez-Guillén (2009). 

10.3.7.2. Moisture content 

It was determined at least in triplicate by drying samples of around 0.5 g at 105 °C for 24 h, 

according to A.O.A.C. (1995). Water content was expressed as a percentage of total weight. 

10.3.7.3. Light absorption and transparency 

The light barrier properties and transparency of the films were calculated at least in triplicate 

using a UV-1601 spectrophotometer (Model CPS-240, Shimadzu, Kyoto, Japan) at selected wavelengths 

from 200 to 800 nm, following the method described by Pérez-Mateos, Montero, and Gómez-Guillén 

(2009). 

10.3.7.4. Colour 

The colour parameters of lightness (L*), redness (a*) and yellowness (b*) were measured 

following the method described by Blanco-Pascual, Fernández-Martín, and Montero (2013). 

10.3.7.5. Water vapour permeability (WVP) 

It was determined at least in triplicate following the method described by Sobral, Menegalli, 

Hubinger, and Roques (2001), at room temperature in a dissecator with distiller water. 

10.3.7.6. Water solubility 

Film water solubility was measured at least in triplicate following the method described by Blanco-

Pascual, Fernández-Martín, and Montero (2013). 

10.3.7.7. Water resistance 

Film water resistance was measured at least in triplicate following the method described by 

Blanco-Pascual, Fernández-Martín, and Montero (2013). 

10.3.7.8. Mechanical properties 

Tensile and puncture tests were run at least in triplicate using a TA.XT plus TA-XT2 texture 

analyzer (Texture Technologies Corp., Scarsdale, NY, USA), as described by Blanco-Pascual, 

Fernández-Martín, and Montero (2013). 

10.3.8. Antioxidant activities of films 

The ferric reducing ability (FRAP) and the ABTS (2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic 

acid)) radical scavenging assays were used to measure the antioxidant activity of the films, which were 
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dissolved in distilled water, shaken until totally homogeneous and filtered (Whatman No. 1). The water 

soluble fraction was used for the antioxidant activity determination. The methods used for the FRAP and 

ABTS assays were previously described by Gómez-Estaca, Montero, Fernández-Martín, and Gómez-

Guillén (2009). Results were expressed as mg Fe2+ equivalents/mg of sample for FRAP and mg of 

Vitamin C Equivalent Antioxidant Capacity (VCEAC)/g of sample for ABTS, based on standard curves of 

FeSO47H2O and vitamin C, respectively. All determinations were performed at least in triplicate and 

expressed in function of the wet sample weight. 

10.3.9. Folin-reactive substances determination 

Folin-reactive substances content was determined spectrophotometrically, in triplicate, using 

gallic acid as a standard, according to a modified method of Slinkard and Singleton (1977) with the Folin–

Ciocalteu reagent. The absorbance of the resulting blue colour was measured at 765 nm (UV-1601, 

model CPS-240, Shimadzu, Kyoto, Japan). Folin-reactive substances content was expressed as mg gallic 

acid (GA) equivalent/g of sample. 

10.3.10. Statistical analysis 

Statistical tests were performed using the SPSS computer program (SPSS Statistical Software 

Inc., Chicago, Illinois, USA) for one-way analysis of variance. The variance homogeneity was evaluated 

using the Levene test, or the Brown-Forsythe when variance conditions were not fulfilled. Paired 

comparisons were made using the Bonferroni test or the Tamhane test (depending on variance 

homogeneity), with the significance of the difference set at P ≤ 0.05. 

10.4. Results and discussion 

10.4.1. Yield and film capacity of seaweed extracts 

Yield, film-forming capacity and film water response results of the differently processed crude 

extracts are shown in Table 1. Based on the highest yield and best film-forming properties, four extracts 

were selected, two extracted with sodium carbonate, Lc (0.1 M H2SO4 at 75 °C) and Ac (0.1 M HCl at 21 

°C), and two with sodium hydroxide, Lh (0.2 M HCl at 75 °C) and Ah (0.2 M HCl at 75 °C) (see Table 1). 

Alginate extraction is normally carried out with alkaline Na2CO3 solutions (Istini, Ohno, & 

Kusunose, 1994) of varying concentrations, such as 3% concentration for Ascophyllum (Rioux, Turgeon, 

& Beaulieu, 2007a) and 4% for Laminaria (Vauchel, Leroux, Kaas, Arhaliass, Baron, & Legrand, 2009). 

Preliminary results showed that carbonate salts formed in the aqueous phase crystallized during film 

drying, acting in detriment to visual appearance and mechanical properties. Consequently, a dialysis step 

to eliminate excess salt should be included in sodium carbonate extractions. To avoid this inconvenience, 

NaOH allowed an alginate alkaline extraction at a similar pH to the carbonate extraction but with a 

different sodium source, giving a good alternative to simplify the process and to make the film 

development easier. 

Alkaline extractions in Laminaria have been carried out at mild temperatures (21 °C), to avoid 

alginate degradation (Vauchel, Kaas, Arhaliass, Baron, & Legrand, 2008), but Ascophyllum extractions 
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are normally carried out at 70 °C (Rioux, Turgeon, & Beaulieu, 2007b) and different temperatures have 

been tested in other brown seaweeds such as Macrocystis pyrifera (70, 80, 90 °C) (Hernández-Carmona, 

McHugh, & López-Gutiérrez, 1999). On the other hand, for film development, partial alginate degradation 

might be useful to favour matrix inter-connections; therefore temperatures of 21, 50 and 75 °C were 

tested in this study. 

Sea 
weed 

Acid pretreatment Alkaline treatment 

Yield (%) 

Filmogenic Capacity 
Extraction
selected Acid 

Concen 
tration  

(M) 
Alkali 

Concentration  
(%) 

Temperature 
(ºC) 

Film  
forming  
ability 

Film  
water  

response* 

L H2SO4 0.1 Na2CO3 4 21 69.04 ± 11.75 + +  

L H2SO4 0.1 Na2CO3 4 50 66.9 ± 13.44 ++ 
+  

L H2SO4 0.1 Na2CO3 4 75 78.02 ± 16.81 ++ 
+ Lc

L H2SO4 0.5 Na2CO3 4 21 62 ± 2.55 + 
+  

L H2SO4 0.5 Na2CO3 4 50 67.6 ± 7.64 ++ 
+  

L H2SO4 0.5 Na2CO3 4 75 74.5 ± 9.76 ++ 
+  

L HCl 0.1 NaOH 4 21 28.65 ± 0.92 
+ +  

L HCl 0.1 NaOH 4 50 32.65 ± 2.76 
+ +  

L HCl 0.1 NaOH 4 75 34.4 ± 1.55 
+ +  

L HCl 0.2 NaOH 4 21 38.87 ± 1.6 
+ +  

L HCl 0.2 NaOH 4 50 40.38 ± 1.41 
+ +  

L HCl 0.2 NaOH 4 75 43.75 ± 0.74 
+ + Lh

A HCl 0.1 Na2CO3 3 21 42.77 ± 6.62 
+ 

++ Ac 

A HCl 0.1 Na2CO3 3 50 35.64 ± 0.06 - 
-  

A HCl 0.1 Na2CO3 3 75 32.42 ± 3.08 - 
-  

A HCl 0.2 Na2CO3 3 21 39.26 ± 5.53 + +  

A HCl 0.2 Na2CO3 3 50 38.66 ± 2.06 
- -  

A HCl 0.2 Na2CO3 3 75 51.93 ± 7.81 
- -  

A HCl 0.1 NaOH 4 21 16.54 ± 1.95 + 
+  

A HCl 0.1 NaOH 4 50 31.88 ± 0.96 ++ 
+  

A HCl 0.1 NaOH 4 75 41.23 ± 0.81 ++ ++  

A HCl 0.2 NaOH 4 21 29.82 ± 0.25 + 
+  

A HCl 0.2 NaOH 4 50 39.75 ± 0.21 ++ 
+  

A HCl 0.2 NaOH 4 75 47.43 ± 0.95 
++ ++ Ah

Table 1. Yield and Filmogenic capacity of Laminaria and Ascophyllum extractions. 

Yield results are the mean ± standard deviation. Film formig ability was measured by -: no capacity, +: 

moderate capacity and ++: good capacity. Film water response was measured by -: no film, +: medium 

solubility and ++: lower solubility.  

* Lower solubility was considered better result. 
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As shown in Table 1, increasing temperatures improved Na2CO3 extractions in Laminaria; 

however, Ascophyllum extracts totally lost their film-forming capacity at temperatures higher than 21 °C. 

The use of NaOH did not improve L extraction yield compared with those made with Na2CO3, but NaOH 

Ascophyllum extracts provided similar yields to those obtained with carbonate and provided much better 

film-forming properties. 

Acid pretreatment has been carried out with 0.5 M H2SO4 in Laminaria (Vauchel, Arhaliass, 

Legrand, Kaas, & Baron, 2008), and with 0.1 M HCl in other brown seaweed species such as Macrocystis 

pyrifera (Hernández-Carmona, McHugh, Arvizu-Higuera, & Rodríguez-Montesinos, 1998). In an attempt 

to find milder acid conditions for L extraction, 0.1 M instead of 0.5 M H2SO4 pretreatment was found to 

give extractions with similar yields and filmogenic capacity. Furthermore, two HCl pretreatments were 

evaluated in both L and A extractions at different concentrations (0.1 and 0.2 M). 

No HCl pretreatment showed yields as high as those obtained with sulfuric acid. While the 

carbonate Ascophyllum extraction yield was not affected by pretreatment HCl concentration, 0.2 M HCl 

resulted in the highest yields in sodium hydroxide extractions. 

Yields of the extractions selected in the present work were much higher than yields of isolated 

alginate extracts obtained by 0.5 N sulfuric acid pretreatment and 4% sodium carbonate at 21 °C (~38%) 

(Vauchel, Leroux, Kaas, Arhaliass, Baron, & Legrand, 2009), or by 0.2 N sulfuric acid and 1–2% sodium 

carbonate at 21 °C (20–34%) (Istini, Ohno & Kusunose, 1994). The higher extraction yields were 

attributed to unrefined extractions containing other components apart from alginates, such as laminaran, 

fucoidan, proteins and carotenoids (Cardozo et al., 2007). 

10.4.2. Proximate composition of dried seaweeds and extracts 

Proximate composition of the dried seaweeds and crude extracts is shown in Table 2.  

Sample Moisture (%) Protein (%) Ashes (%) Carbohydrates (%)* 

L 10.03 ± 0.15 a 9.2 ± 0.12 a 24.14 ± 0.45 a 56.63 

A 17.55 ± 0.05 b 8.45 ± 0.91 a 15.44 ± 0.18 b 58.56 

Lc 17.44 ± 0.4 a 5.47 ± 0.25 a 46.68 ± 0.99 a 30.41 

Ac 16.46 ± 0.05 b 3.57 ± 0.05 b 42.05±0.9 b 37.92 

Lh 16.78 ± 0.09b 9.20 ± 0.12 c 27.90 ± 0.8 c 46.12 

Ah 16.96 ± 0.5 b 4.65 ±0. 01d 20.53 ± 0.06 d 57.86 

Table 2. Moisture, protein, ashes and carbohydrate content (% dry weight) in Laminaria (L) and 

Ascophyllum (A) dried seaweeds and selected Lc, Ac, Lh and Ah extracts.  

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different dried seaweeds and seaweed extracts (P≤0.05). 

*Determined by difference. 

Both Laminaria and Ascophyllum presented similar carbohydrate (≈ 57%) and protein (≈ 8.5%) 

contents. Considering negligible the possible contribution of fat, the relatively lower ash proportion in A 
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could largely be accounted for by the higher moisture content, probably due to a different hygroscopic 

nature. Sodium hydroxide extractions were noticeably more carbohydrate efficient than sodium carbonate 

extractions, with Ah extraction showing significantly higher carbohydrate content than Lh. In contrast, 

Laminaria extractions were more protein efficient than Ascophyllum extractions, and sodium hydroxide 

treatment also extracted a higher protein amount than sodium carbonate. Interestingly, the sodium 

hydroxide extracts had considerably lower ash content than the sodium carbonate extracts, even though 

the latter were subjected to dialysis for excess salt removal. Thus the effect of alkaline treatment seems 

to predominate over the effect of algal species. 

10.4.3. FTIR-ATR of brown seaweed extracts and respective films 

Infrared spectra of Lc, Ac, Lh and Ah extracts and films are shown in Figures 1A and 1B, 

respectively. All spectra presented medium to strong IR absorption bands at 1200–970 cm–1, which are 

mainly due to C-C and C-O pyranoid ring stretching and C-O-C glycosidic bond stretching common to all 

seaweed polysaccharide standards (Gómez-Ordóñez & Rupérez, 2011). 

In general terms, the spectra presented peak resemblances by type of alkaline extraction. While 

the sodium hydroxide extractions showed high similarity between the two seaweed species, the 

carbonate sodium extractions differed more, probably owing to differences in the acid pretreatment. The 

strength of the sulfuric acid pretreatment might have caused partial degradation of the target 

polysaccharides (Hahn, Lang, Ulber, & Muffler, 2012). 

The crude extract spectra had two strong bands, at ~1600 cm–1 and ~1400 cm–1, attributed to the 

asymmetric and symmetric carboxylate group stretching vibrations (–COO–) on the polymer backbone, 

which would confirm the presence of soluble alginate; in particular, the carbonyl group shifted as 

carboxylate anion at 1600 cm–1 (Gómez-Ordóñez & Rupérez, 2011; Paşcalau, Popescu, Popescu, 

Dudescu, Borodi, Dinescu et al., 2012). In general, NaOH extract peaks were more intense than sodium 

carbonate extract peaks, confirming the higher carbohydrate content reported earlier in the proximate 

composition section. 

A small shoulder around 1730 cm–1 corresponded to the carbonyl group shifted as carboxylic acid 

ester (C=O) and might indicate a minimal presence of free alginic acid remaining from the extraction 

procedure or even possible crude fucoidans (García-Ríos, Ríos-Leal, Robledo, & Freile-Pelegrin, 2012; 

Gómez-Ordóñez & Rupérez, 2011). 

Another characteristic broad band appearing at 1220–1260 cm–1 corresponded to the presence of 

sulfate ester groups (S=O), indicating the presence of fucoidan and sulfated polysaccharides as 

previously reported in brown seaweeds (Jiao, Yu, Zhang, & Ewart, 2011). Sodium hydroxide Ascophyllum 

extraction (Ah) presented the highest sulfated groups content. Apparently, there were no sulfated groups 

present in the Na2CO3 extractions, which might indicate that sulfated polysaccharides were less efficiently 

extracted. Fucoidans are normally extracted in acidic solution (0.01 M HCl) (Rioux, Turgeon, & Beaulieu, 

2007a) at temperatures ranging from 70 to 100 °C for several hours (Hahn, Lang, Ulber, & Muffler, 2012). 
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Differences in the presence of sulfate groups could be due to a less efficient extraction or to 

partial fucoidan degradation (Hahn, Lang, Ulber, & Muffler, 2012; Pomin, Valente, Pereira, & Mourão, 

2005). 

 

Figure 1. A. ATR-FTIR spectra of Lc, Ac, Lh and Ah extracts. B. ATR-FTIR spectra of Lc, Ac, Lh and Ah 

films. 
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A number of bands in the frequency range between 1130 and 800 cm–1 were also observed in the 

extracts. Some of those bands might correspond to guluronic and mannuronic units. The weak band at 

1124–1128 cm–1 and the larger band at 1025 cm–1 may be assigned to C-O and C-C stretching vibrations 

of the pyranose ring, which might indicate the presence of mannuronic units and guluronic units 

respectively (Pereira, Sousa, Coelho, Amado, & Ribeiro-Claro, 2003). IR spectroscopy is useful for 

quantitative estimation of the mannuronic to guluronic acid (M/G) ratio in brown seaweeds (Gómez-

Ordóñez & Rupérez, 2011). The physical properties of the alginate chains in aqueous medium depend 

not only on the M/G (1125/1024 cm–1) ratio (Pereira, Sousa, Coelho, Amado, & Ribeiro-Claro, 2003) but 

also on the distribution of M and G units in the chain (Rinaudo, 2008). M/G ratios <1, as in Ac (0.54), Lh 

(0.25) and Ah (0.24), indicate a large proportion of guluronic acid, which has the ability to form strong 

junctions; however, ratios >1, as in Lc (2.07), are indicative of a lower guluronic proportion, which might 

result in softer, more elastic structures (Gómez-Ordóñez & Rupérez, 2011). NaOH treatment led to a 

predominance of guluronic unit extraction, while the Na2CO3-Laminaria extraction (Lc) had the lowest 

guluronic units proportion and highest mannuronic units’ proportion. 

The band at ~950 cm–1 is assigned to the C-O stretching vibration of uronic residues (mannuronic 

and guluronic acid residues) and the ~815 cm–1 band is specific to mannuronic acid residues that do not 

form part of the units (Pereira, Sousa, Coelho, Amado, & Ribeiro-Claro, 2003). The sodium carbonate 

extracts had evident peaks, while the sodium hydroxide extracts showed almost no presence of uronic 

acid residues. 

It could be concluded that the sodium hydroxide extractions recovered a higher proportion of 

preserved alginate units, while the sodium carbonate extractions recovered a higher amount of dispersed 

uronic acids, especially in the case of the Lc extraction, which would indicate a more degraded 

polysaccharide recovery. 

With regard to the films, the corresponding spectra differ mainly depending on the extraction type 

rather than on the seaweed species. Unlike the extracts, the M/G ratio was <1 in all films, with almost the 

same values presented by the Na2CO3 films (Lc = 0.33 and Ac = 0.34) and the NaOH films (Lh and Ah = 

0.36), which would indicate that film development resulted in an improved structure reorganization. The 

1124–1128 cm–1 band (proportion of mannuronic units) was more acute in both Laminaria films (Lc and 

Lh), which might positively affect the film elasticity. 

Shifts of the ~1400 cm–1 band to lower wavenumbers together with shifts of ~1600 cm–1 to higher 

wavenumbers are normally associated with a reduction of –COO– group involvement in film cross-linking 

(Paşcalau et al., 2012). Wavenumber shifts in the Na2CO3 films (Lc: 1403.78 cm–1 and 1607.87 cm–1, Ac: 

1398.98 cm–1 and 1605.94 cm–1) compared with the NaOH films (Lh 1408.37 and 1601.54 cm–1, Ah 

1406.7 and 1603.11 cm–1) indicated that the Na2CO3 extracts resulted in less cross-linked films than the 

NaOH extracts. On the other hand, hydrogen bonding has a strong influence on –OH stretching, probably 

being influenced by plasticizer interactions. The peak due to OH-guluronate bending (1025 cm–1) can shift 

to higher wavenumbers, indicating a possible weakening of hydrogen bonds (Siddaramaiah, Swamy, 

Ramaraj, & Lee, 2008), as occurred in the Na2CO3 films (Lc 1030 cm–1 and Ac 1028.78 cm–1). Weaker 
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interactions shown in the Na2CO3 films might also be attributed to the lower carbohydrate proportion and 

the higher ash content in the corresponding parent extracts. 

10.4.4. DSC of dried seaweeds, extracts and films 

DSC thermograms of dried Laminaria digitata (L) and Ascophyllum nodosum (A) and 

corresponding extracts Lc, Ac, Lh and Ah are shown in Figures 2A and 2B, respectively. 

Both L and A had two main endothermic transitions, corresponding to the melting of different 

amounts of free and bound water. The first L and A melting peaks appeared at respective Tpeak values 

(°C) of 67.66 ± 1.8 and 52.11 ± 3.36 and corresponding ∆H (J/gdm) of 1.24 ± 0.13 and 0.11 ± 0.04. A 

second melting transition was observed at Tpeak values (°C) of 95.93 ± 0.98 and 82.24 ± 2.93 and 

corresponding ∆H (J/gdm) of 14.05 ± 1.33 and 8.46 ± 2.08 for L and A, respectively. 

Because brown seaweed is rich in alginate, two different kinds of endothermic transition were 

expected: one corresponding to weakly bound water, which starts to be released at around 40 °C, and a 

second one related to the water trapped in hydrogen bonding with the algae components at around 90–

120 °C (bound to –OH, dipole-dipole interactions) (Avella, Pace, Immirzi, Impallomeni, Malinconico, & 

Santagata, 2007). 

Higher melting temperatures and energies in dried Laminaria than in Ascophyllum denoted 

different physical hindrances for bound water, which might be due to higher molecular weight structures 

responsible for stiffness and strength or a larger amount of well-organized guluronic units (Avella, Pace, 

Immirzi, Impallomeni, Malinconico, & Santagata, 2007; Russo, Malinconico, & Santagata, 2007). 

Regarding the extracts, the respective similar weakly bound water melting temperature Tpeak 

values (°C) were 46.13 ± 2.21 for Lc, 47.26 ± 1.47 for Ac and 50.86 ± 1 for Lh with a corresponding ∆H 

(J/gdm) of 0.31 ± 0.17, 0.59 ± 0.03 and 0.41 ± 0.17. The Ah extract showed hardly any endothermic 

transition related to the weakly bound water, coinciding with the lowest ash proportion and highest 

carbohydrate content. The lower Tpeak in the Na2CO3 extracts might be related to a shorter average chain 

length and higher fraction of mannuronic acid, as reported earlier in the FTIR results, retaining water less 

strongly (Avella, Pace, Immirzi, Impallomeni, Malinconico, & Santagata, 2007). 

The extracts had a glass transition temperature around 75–85 °C. The Tg (°C) of each sample 

was 76.0 ± 7.1 in Lc, 76.9 ± 13.29 in Ac, 84.07 ± 4.13 in Lh and 85.04 ± 0.21 in Ah. Sodium alginate is an 

amorphous polymer with an irregular structure that does not crystallize and it is known to have a Tg 

around 80 °C (Siddaramaiah, Swamy, Ramaraj, & Lee, 2008). Glass transitions might be caused by inter- 

and intramolecular hydrogen bonding formed by the sodium alginate hydroxyl and carboxylate groups 

(Siddaramaiah, Swamy, Ramaraj, & Lee, 2008), being stronger in the sodium hydroxide extracts. The 

proportion and structural properties of the polymer segments contained by each extract determine their 

thermal behaviour. A higher concentration of carboxylate segments would result in higher Tg 

temperatures, while a higher concentration of hydroxyl segments would lead to lower Tg values 

(Siddaramaiah, Swamy, Ramaraj, & Lee, 2008). As reported earlier in the FTIR results, the strength of 

the NaOH extract structures might be caused by the higher guluronic proportion, while the higher 
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proportion of dispersed uronic acids recovered in the Na2CO3 extracts might have resulted in a weaker 

structure. 

 

Figure 2. A. DSC of dried Laminaria digitata (L) and Ascophyllum nodosum (A); B. DSC of Lc, Ac, Lh and 

Ah extracts and C. DSC of Lc, Ac, Lh and Ah films. 
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DSC traces of Lc, Ac, Lh and Ah films are shown in Figure 2C. The sodium carbonate films did 

not show any thermal transition between 0 and 100 °C. In contrast, the sodium hydroxide films had a Tpeak 

(°C) at 54.76 ± 0.86 and 63.29 ± 0.82 for Lh and Ah, respectively, with a ∆H (J/gdm) of 0.22 ± 0.01 and 

0.35 ± 0.03, which would correspond to weakly bound water, probably owing to water-glycerol 

interactions. The apparent lack of weakly bound water in the Na2CO3 films, as deduced by the absence of 

melting temperature (Tpeak), might be caused by a preferential interaction between glycerol and alginate, 

expelling water from the structure (Avella, Pace, Immirzi, Impallomeni, Malinconico, & Santagata, 2007). 

Like the Na2CO3 films, the NaOH films did not show any glass transition within the temperature range 

studied, which might be caused by the presence of glycerol. Films made of neat alginates have been 

reported to be essentially amorphous, and the addition of plasticizer seems to increase that behaviour, 

probably dropping the glass transition temperatures to a lower range (Avella, Pace, Immirzi, Impallomeni, 

Malinconico, & Santagata, 2007). 

10.4.5. Film properties 

10.4.5.1. Light barrier properties 

In general, the films exhibited low light transmission in the UV range (200–280 nm) (Figure 3), 

providing an efficient UV barrier. In the visible range, there was almost no light transmission until 400 nm. 

Film Ac was significantly (P≤0.05) the most transparent (Table 3). Film Ah had the lowest light 

transmission, increasing markedly in the 700–800 nm range, while Lc transmitted around 15% of light in 

the 400–800 nm range. 

All the films had a light absorption peak at around 650–700 nm, strongly suggesting the presence 

of red-brown pigments (Bricaud, Babin, Morel, & Claustre, 1995; Gildenhoff, Herz, Gundermann, Büchel, 

& Wachtveitl, 2010), probably bonded to proteins (Gildenhoff, Amarie, Gundermann, Beer, Büchel, & 

Wachtveitl, 2010). Wavelengths proximate to 600 nm would be more reddish and close to 700 nm would 

be more brownish (Bricaud, Babin, Morel, & Claustre, 1995). 

While the Laminaria films had one peak at around 675 nm, the Ascophyllum films showed two 

peaks, one at 675 and another one at around 650 nm. The principal absorption bands of chlorophyll a 

and b are found at 675 nm and 646 nm, and 437 nm and 470 nm, respectively. The spectral contributions 

of carotenoids are found at 486 and 525 nm (Goss, Wilhelm, & Garab, 2000). Fucoxanthin is the reddish 

most characteristic pigment (carotenoid) extracted from the chloroplast of brown seaweeds and typically 

absorbs at 675 nm, but there could be other pigments, such as β-carotene, chlorophyll a and pheophytin 

(de Quirós, Frecha-Ferreiro, Vidal-Pérez, & López-Hernández, 2010). Both fucoxanthin and chlorophyll 

are bound to some proteins, forming complexes in thylakoids and acting as a light harvesting system 

(Gildenhoff, Amarie, Gundermann, Beer, Büchel, & Wachtveitl, 2010; Wang, Wang, Zhang, & Tseng, 

2005). In particular, the Lh film had a strong, sharp absorption peak at 675 nm, suggesting a higher 

fucoxanthin proportion which might be bonded to proteins. Proximate analysis confirmed a higher 

proportion of proteins extracted in Lh, compared with the other extracts. 

The films from all the unrefined extractions contained most of the residual seaweed compounds, 

including pigments and proteins, producing more opaque films with a more red-brown colouring 
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compared with films developed with commercial alginates (Pereira, Carvalho, Vaz, Gil, Mendes, & 

Bártolo, 2013; Wang, Liu, Holmes, Kerry, & Kerry, 2007; Yoo & Krochta, 2011). 

 

Figure 3. Light transmission (T, %) at 200–800 wavelength range (nm) of Lc, Ac, Lh and Ah films. 

L* (lightness), a* (reddish/greenish) and b* (yellowish/bluish) values are given in Table 3, which 

shows that all the films had low lightness (24–28). The Laminaria films had a slightly higher yellowness 

tendency (+ b*), while a reddish (+a*) tendency was more marked in the Ascophyllum films. The L film 

yellowish-brown tendency might be caused by a higher presence of fucoxanthin (Ferraces-Casais, Lage-

Yusty, de Quirós, & López-Hernández, 2012). 

Film L* a* b* Transparency 

Lc 28.07 ± 0.3 a -0.03 ± 0.07 a 5.99 ± 0.29 a 17.12 ± 0.71 a 

Ac 24.04 ± 0.33 b 1.78 ± 0.06 b 2.52 ± 0.16 b 8.39 ± 0.76 b 

Lh 28.47 ± 0.21 a 0.24 ± 0.05 c 4.34 ± 0.14 c 11.96 ± 0.44 c 

Ah 25.15 ± 0.43 c 0.82 ± 0.36 d -0.47 ± 0.63 d 16.36 ± 0.76 a 

Table 3. L*, a*, b* and Transparency (− log(T600/x)) of Lc, Ac, Lh and Ah films. Results are the mean ± 

standard deviation. One-way ANOVA: Different letters indicate significant differences among the different 

films (P≤0.05). 

10.4.5.2. Physical properties 

The physical properties of the films are shown in Table 4. Thickness values were similar in Lc, Ac 

and Ah (52–50 µm), being lower (P≤0.05) in Lh. The lower thickness in Lh would be indicative of a 

denser, compact film network. This higher compacting might be the result of better cross-linking between 

alginate and proteins. Moisture content was considerably higher (P≤0.05) in the Na2CO3 films than in the 
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NaOH films, probably as a result of the greater ash content in the parent extracts. No significant (P≤0.05) 

differences in moisture content were found depending on seaweed species. 

Film Lc Ac Lh Ah 

Thickness (µm) 52.42 ± 3.6 a 55.09 ± 3.74 a 44.74 ± 3.46 b 59.75 ± 6.04 a 

Moisture (%) 43.93 ± 0.89 a 40.83 ± 0.54 a 15.64 ± 0.14 b 16.39 ± 0.90 b 

Film solubility (%) 79.23 ± 0.91 a 85.27 ± 2.49 b 74.42 ± 0.76 c 70.33 ± 2.37 c 

WVP  

(x10-8 g m-1 s-1 Pa-1)
4.90 ± 0.07 a 4.64 ± 0.08 a 1.66 ± 0.32 b 2.62 ± 0.16 c 

TS (MPa) 6.01 ± 1.58 a 1.50 ± 0.19 b 40.72 ± 4.05 c 9.13 ± 1.98 a 

EAB (%) 1.20 ± 0.35 a 3.49 ± 0.32 b 0.91 ± 0.37 a 2.16 ± 0.81 b 

Y (MPa) 102.65 ± 3.16 a 5.99 ± 0.51 b 1081.93 ± 67.37 c 159.56 ± 42.84 a

F (N) 4.92 ± 0.85 a 10.22 ± 0.87 b 23.46 ± 1.11 c 11.24 ± 3.09 b 

D (%) 7.28 ± 0.63 a 62.58 ± 1.63 b 7.61 ± 0.67 a 13.90 ± 1.96 c 

Table 4. Thickness, moisture, film solubility, water vapour permeability (WVP), tensile strength (TS), 

elongation at break (EAB), Young’s modulus (Y), puncture force (F) and puncture deformation (D) of Lc, 

Ac, Lh and Ah films. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the different films (P≤0.05). 

10.4.5.2.1. Water barrier properties 

Film water solubility was lower (P≤0.05) in the NaOH films, regardless of the seaweed species 

(Table 4). Of the Na2CO3 films, Ac was the more soluble. Glycerol more efficiently linked to uronic units in 

the Na2CO3 films, together with their higher mineral content, probably led to weaker films; in contrast, the 

enhanced polymer cross-linking in the NaOH films led to a reduction of solubility. Water solubility values 

were slightly higher than results obtained with commercial alginate films with cation complexation 

(Pereira, Carvalho, Vaz, Gil, Mendes, & Bártolo, 2013), but the presence of other seaweed compounds 

such as proteins, pigments and minerals might result in a less soluble film compared with those 

previously developed with sodium alginate without cation complexation (Abdollahi, Alboofetileh, Rezaei, & 

Behrooz, 2013; Zactiti & Kieckbusch, 2006). 

The sodium hydroxide films were also more impermeable to water vapour (WVP) (P≤0.05) than 

the films made with sodium carbonate extracts (Table 4). As in the case of the solubility test, film structure 

determined the WVP results. Film Lh showed the highest barrier to water vapour, probably owing to the 

more compact cross-linked film, while the weaker matrix in the Na2CO3 films made water vapour transfer 

easier. The WVP values of all the films studied were higher than previous results obtained with 

commercial alginate films (0.2–5 x 10–9 g m–1 s–1 Pa–1) (Benavides, Villalobos-Carvajal, & Reyes, 2012; 

Tapia, Rojas-Graü, Rodríguez, Ramírez, Carmona, & Martin-Belloso, 2007), which might be caused by 

the residual presence of hydrophilic seaweed compounds and uncross-linked fractions. 

The water resistance test results are shown in Figure 4. Film Lh stood out from the rest for being 

by far the most water resistant, with breakage at 106.83 ± 30.05 min, no water filtration and the highest 
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film elongation (2 cm) through time. Although Lc film breakage (at 7.12 ± 0.71 min) and elongation (0.6 ± 

0.02 cm) were much lower than the values for Lh, it was considerably more water resistant than both 

Ascophyllum films (up to 0.28 ± 0.05 min). The higher proportion of mannuronic units found in Laminaria 

films together with the higher extract protein proportion may have positively affected the wet-induced film 

elongation. 

 

Figure 4. Water resistance: Elongation (cm) in time (min) until breakage of Lc, Ac, Lh and Ah films. 

10.4.5.2.2. Mechanical properties 

Tensile and puncture test results are shown in Table 4. Tensile strength (TS), elastic modulus (Y) 

and puncture force (F) values were significantly (P≤0.05) higher in the NaOH films than in the Na2CO3 

films, especially in the case of Lh, which showed noticeably higher TS, Y and F values. The increased 

mechanical resistance of Lh film was in accordance with the more compact matrix and high degree of 

cross-linking, probably associated with the higher protein content promoting polymer-polymer 

interactions. TS values for Lh were even higher than results obtained for films made with cation 

complexation (Pereira, Carvalho, Vaz, Gil, Menses, & Bártolo, 2013) or with higher sodium alginate 

concentrations (Su Cha, Choi, Chinman, & Park, 2002; Yoo & Krochta, 2011). The Y in both Laminaria 

and Ascophyllum films was in the same range as values previously reported for 1–4% commercial 

alginate films (Abdollahi, Alboofetile, Razaei, & Behrooz, 2013; Yoo & Krochta, 2011), but much lower 

than those reported by other authors (Avella, Pace, Inmirzi, Impallomeni, Malinconico, & Santagata, 2007; 

Paşcalau et al., 2012). 
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Elongation at break (EAB) and puncture deformation (D) values were slightly (P≤0.05) higher in 

A-films than in L-films, which could be connected with more efficient plasticization. EAB values of all the 

films studied were in the same range as results obtained with 1–1.5% commercial sodium alginate films 

(Avella, Pace, Immirzi, Impallomeni, Malinconico, & Santagata, 2007; Paşcalau et al., 2012), lower than 

others developed with higher alginate concentrations (Su Cha, Choi, Chinnan, & Park, 2002; Yoo & 

Krochta, 2011) and much lower than films made by adding CaCl2 for cation complexation (Pereira, 

Carvalho, Vaz, Gil, Mendes, & Bártolo, 2013). 

10.4.5.3. Antioxidant activity and Folin-reactive substances 

The antioxidant activity and Folin reactive substances of the films are shown in Table 5. The 

Ascophyllum films exhibited noticeable radical scavenging capacity in contrast to the Laminaria films, for 

which values were much lower (P≤0.05). In this connection, Laminaria has previously been reported to 

present antioxidant capacity, but this might be greatly affected by processing and storage conditions 

(Jiménez‐Escrig, Jiménez‐Jiménez, Pulido, & Saura‐Calixto, 2001). The ferric ion reducing capacity was 

almost negligible in L-films, in accordance with (Norajit, Kim, & Ryu, 2010), who did not find any ferric ion 

reducing activity in commercial alginate films. The presence of carotenoids, in particular fucoxanthin, with 

reported antioxidant capacity (Le Tutour, Benslimane, Gouleau, Gouygou, Saadan, & Quemeneur, 1998), 

might also have contributed to the radical scavenging capacity of the films. 

Film ABTS (mg vit C eq/g) FRAP (mg Fe2+/g) Folin reactive substances (mg/g) 

Lc 9.72 ± 0.19 a 0.7 ± 0.09 a 3.37 ± 0.24 a 

Ac 14.02 ± 0.20 b 2.56 ± 0.06 b 10.23 ± 0.98 b 

Lh 4.20 ± 0.51 c 1.74 ± 0.21 c 35.76 ± 0.67 c 

Ah 20.36 ± 0.90 d 4.11 ± 0.51 d 44.02 ± 1.26 d 

Table 5. Antioxidant activity: ABTS, FRAP and Folin reactive substances of Lc, Ac, Lh and Ah films. 

Results are the mean ± standard deviation. One-way ANOVA: Different letters indicate significant 

differences among the film (F) (P≤0.05). 

The sodium hydroxide films contained a higher (P≤0.05) amount of Folin-reactive substances 

than the Na2CO3 films, especially the Ah film, which exhibited the highest ABTS and FRAP values. 

Although this technique is widely used to assess total phenol content, it should be taken into 

consideration that other compounds present in the extract may react with the Folin reactive, including 

certain aromatic amino acids and sugars, which could also contribute as radical scavengers (Ikawa, 

Schaper, Dollard, & Sasner, 2003; Singleton, Orthofer, & Lamuela-Raventós, 1998; Smith, Krohn, 

Hermanson, Mallia, Gartner, Provenzano et al., 1985). Antioxidant activity of seaweed polysaccharide 

components may depend on various factors, such as sulfation level, molecular weight and sugar residue 

composition (Jiménez-Escrig, Gómez-Ordóñez, & Rupérez, 2011). Film Ah showed the highest sulfation 

level by FTIR, which might be caused by a higher proportion of sulfated polysaccharides in the original 

extract, mainly fucoidan, which are also known to have remarkable antioxidant activity (Rocha De Souza, 

Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 2007). 
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10.5. Conclusion 

Laminaria digitata and Ascophyllum nodosum unrefined extracts would be complementary 

sources from which to take advantage of their main ingredients for film development, producing films with 

suitable mechanical properties without any cation complexation. The type of alkaline treatment 

determined the main differences with respect to the film water barrier properties, while seaweed species 

had some importance regarding the mechanical properties. Sodium carbonate treatment resulted in 

extracts with good plasticizing capacity while sodium hydroxide extraction led to polymer chains with 

improved cross-linking capacity. 

Although Lc gave the highest extraction yield, film developed with this extract did not stand out in 

any physicochemical test. Ac was adequate to develop transparent, flexible edible films, while the higher 

protein content in the Lh extract led to films with increased cross-linking, lower water vapour permeability 

and much higher mechanical strength. Thanks to pigments and the higher presence of sulfated 

polysaccharides, the Ah extract resulted in films with the highest antioxidant properties, which could be 

used to improve food preservation or to design functional foods. 
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11.1. Abstract 

This paper presents a new microencapsulation methodology for incorporation of functional 

ingredients in edible films. Core-shell microcapsules filled with demineralized water (C) or 1% peptide 

solution (Cp) were prepared using the microencapsulation printer technology. Shell material, composed of 

a stearic acid:carnauba wax mixture (75:25) represented around 10% of the capsule weight, 

corresponding to a shell material:peptide ratio of 13.3:1 on dry basis. C capsules were more spherical 

and homogeneous than Cp ones. Cp’s more irregular morphology would explain the slightly higher size of 

d90 (126 µm) compared to C (122.50 µm). Microcapsules were more stable at pH 5 and 7 (<30% peptide 

released in 3 hours) than at pH 2 and 9.2 (40-50% in 3 hours). A procedure for homogeneous 

microcapsule inclusion in hydrophilic Laminaria digitata edible films was developed, without losing 

microcapsule integrity either in the filmogenic solution or during the drying process. Films with added 

microcapsules were stronger and more deformable, more opaque, more water soluble but less permeable 

to water vapour and less resistant to perforation. 

11.2. Introduction 

Microcapsules have been widely developed in food industry and used as carriers of different 

substances for a range of applications, such as core material protection or controlled delivery systems 

(Gibbs, Kermasha, Alli, & Mulligan, 1999). The most commonly used encapsulation techniques are 

emulsification, coacervation, spray drying, spray cooling, freeze drying, fluid bed coating and extrusion 

technologies, liposome and cyclodextrin encapsulation (de Vos, Faas, Spasojevic, & Sikkema, 2010; 

Gibbs, Kermasha, Alli, & Mulligan, 1999). A relatively new approach for the preparation of well-defined 

core-shell microcapsules is the TNO encapsulation printer (Houben, 2012), which has never before been 

reported to be used in food applications.  

Core-shell microcapsules have the advantage that they allow high payloads and well-defined 

release characteristics, in contrast to matrix-type microcapsules as, for instance, prepared by spray-

drying. However, core-shell capsules are often more difficult to produce. Encapsulation printing is a 

suitable technique to prepare high quality monodisperse core-shell microcapsules. Compared to, for 

instance, coacervation methods, this technique presents advantages such as the continuity and the 

mildness of the process, and the wide range of materials that can be processed (aqueous, oils/waxes, 

polymers, solutions, dispersions). 

There are many natural and synthetic polymers used for microcapsule preparation, and there are 

a number of advantages related to lipid materials for their use as matrix agents, like their biocompatibility, 

biodegradability, ability to entrap a wide range of water soluble and insoluble compounds and the fact that 

they are also fairly economic (Bhoyar, Morani, Biyani, Umekar, Mahure, & Amgaonkar, 2011). Carnauba 

wax is a thermoplastic solid obtained from the carnauba plant tree, consisting of a complex mixture of 

high molecular weight esters of acids and hydroxyacids that combined with stearic fatty acid forms water 

resistant structures at room temperature which melt at elevated temperatures (over 69.6 ºC for stearic 

acid and 82-86 ºC for carnauba wax). Carnauba wax/stearic acid combination has shown good results in 

previous different types of encapsulation studies (Balducci, Colombo, Corace, Cavallari, Rodríguez, 
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Buttini, et al., 2011; Fini, Cavallari, Rabasco Álvarez, & Rodríguez, 2011) being potentially suitable for the 

microencapsulation printer process due to its matrix characteristics. 

Protein encapsulation by organic matter has been previously stated to preserve the activity of 

protein material both in dry and wet basis (Gibbs, Kermasha, Alli, & Mulligan, 1999; Tomaszewski, 

Schwarzenbach, & Sander, 2011). The development of a lipid-based microencapsulation method is an 

interesting approach to preserve potentially active ingredients, such as peptides or polyphenols, or even 

enhance their efficacy (Goodwin, Simerska, & Toth, 2012) for different food applications, while masking 

undesired properties such as the typically bitter peptide flavour (Sun-Waterhouse & Wadhwa, 2013) and 

excessive plasticizer effect (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009). 

Renewable and biodegradable biopolymers have been widely investigated as edible film 

materials (Krochta & DeMulderJohnston, 1997). Polymers derived from underused natural resources, 

such as seaweeds, offer the greatest opportunities since their environmental compatibility is assured. Full 

extraction of Laminaria digitata seaweed may advantageously use the distinct functional characteristics of 

each film-forming ingredient like alginates, proteins and minerals. Proteins and polysaccharides normally 

form films with good mechanical properties but poor water barriers, because of their hydrophilicity, and 

lipid-nature microcapsule incorporation might improve their qualities. Although polysaccharides have 

been previously used for encapsulating lipid phases or emulsions and related applications (Balducci, et 

al., 2011), no information exists in the literature on the film-forming consequences of microcapsule 

addition with alginate-based Laminaria digitata extract as film principal matrix component. 

The aim of this paper was (i) to develop a new methodology for microencapsulation of bioactive 

peptides, (ii) to characterize the physical properties and stability of the microcapsules, (iii) to investigate 

the inclusion of microcapsules in edible films and (iv) to characterize the structural and physicochemical 

properties of the resulting films. 

11.3. Materials and methods  

11.3.1. Materials  

Analytical grade stearic acid and carnauba wax were obtained from Sigma-Aldrich Chemie B.V. 

(Zwijndrecht, Netherlands) and glycerol and polysorbate 80 (Tween 80) were obtained from Panreac 

Química S.A. (Montplet and Esteban S.A., Montcada i Reixac, Barcelona, Spain). Peptides were the 

hydrolyzed fraction 1 kDa extracted from Dosidicus gigas tunics. 

11.3.2. Viscosity  

The viscosity of the materials used for the encapsulation process was measured using an Anton 

Paar MCR 301 rheometer with concentric cylinder geometry. Samples were placed in the rheometer, 

equilibrated at each temperature (35 ºC for demineralized water and 1% peptide solution, 105 ºC for shell 

material) for 2 min. 
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11.3.3. Surface tension and contact angle measurements 

The surface tension of the materials used for the encapsulating process was measured using a 

Krüss contact angle measuring system G10 (Etten-Leur, The Netherlands). Surface energy of liquid 

droplets was calculated using the static sessile drop method. 

Surface hydrophobicity and wettability of the shell material in the filmogenic solution were 

evaluated from contact angle measurements (static sessile drop method) using a Krüss contact angle 

measuring system DSA100. A droplet (6.04 ± 0.02 µl) of Laminaria digitata filmogenic solution at 21 ± 1 

ºC (1.04 ± 0.03 g/mL) was deposited on a thin smooth layer of shell material with a precision syringe. The 

method is based on the image processing and curve fitting for contact angle measurement from a 

theoretical meridian drop profile, measuring contact angle between the baseline of the drop and the 

tangent at the drop boundary. The contact angle was measured on both sides of the drop and averaged 

(θ). 

11.3.4. Encapsulation printing technology 

A custom-built set-up was used for microencapsulation printing experiments, consisting of: a 

heated reservoir for the core fluid connected to a high pressure pump; a heated piezo-driven print-head 

with a 30 µm diameter nozzle; a heated reservoir for liquid shell material, connected to a pump system 

and a splash-plate type nozzle, in which a jet of fluid shell material impinges on a splash plate, resulting in 

a thin, fluid curtain of shell material (Fig. 1). 

 

Figure 1. Schematic of the core material droplet generated by the inkjet technology before and after 

being printed through the screen made of shell material (Encapsulation of micron sized droplets, RBJ 

Koldeweij, MSc thesis, University of Twente 2010). 
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Demineralized water and 1% peptide solution were used as core fluids to prepare C and Cp 

microcapsules, respectively. A stearic acid and carnauba wax mixture (75:25) was used as shell material. 

Core fluids were printed at 35 °C, at a flow rate of 0.75 mL/min and a frequency of 20 kHz, producing core 

droplets of 106 µm. The shell material was processed at 105 °C and a flow rate of 29.6 mL/min to 

produce a thin liquid film over a splash plate at 85 ºC. Densities of materials were 0.81 ± 0.03 g/mL for 

shell material at 105 ºC, 0.97 ± 0.02 g/mL for demineralized water at 35 ºC and 1.04 ± 0.02 g/mL for 1% 

peptide solution at 35 ºC. 

11.3.5. Seaweed unrefined extraction 

Dried Laminaria digitata seaweed (Porto-Muiños, Cerceda, A Coruña, Spain) was homogenized 

using an Osterizer blender (Oster, Aravaca, Madrid, Spain) with 0.1 M H2SO4 solution in 1:10 (w:v) 

proportion and kept for 12 h at 3 ± 2 ºC and washed several times with running tap water until stabilizing 

pH (portable pH-meter series 3 Star Orion with an electrode pH ROSS, thermo Fisher Scientific Inc., 

Landsmeer, The Netherlands). Seaweed extraction was carried out with magnetic stirring in 4% 

Na2CO3 solution at 1:60 (w:v) proportion during 3 h, then homogenized in an Osterizer blender and 

centrifuged at 6000 rpm for 5 min (Sorvall Evolution RC Centrifuge, Thermo Fisher Scientific Inc., 

Landsmeer, The Netherlands). In order to remove excess of carbonate salts, the supernatant was 

dialyzed overnight in 32/32 dialysis tubing (Visking membrane MWCO-12-14000 regenerated cellulose, 

Medicell International Ltd, London, U.K.) at 3 ± 2 ºC. The dialysed supernatant was dried in an oven for 2 

days (FD 240 Binder, Tuttlingen, Germany) at 65.0 ± 0.8 ºC and stored at 21 ºC until use. 

11.3.6. Film preparation 

Film-forming solutions were prepared by suspending 3% w/v dry Laminaria digitata unrefined 

extract in distilled water and homogenizing with magnetic stirring during 15 min at 75 ºC. Glycerol was 

added at 0.9% proportion (w/v) as plasticizer. Surfactant polysorbate 80 was added at 0.1% (w/v) to help 

in microcapsules dispersion and entrapment during drying process. The pH of the film-forming solutions 

(FS) was 10 ± 0.4. Film forming solutions were cast into Petri dishes and microcapsules were added at 

1% (w/v). TMTP09030 Isopore polycarbonate membranes (Millipore, Billerica, U.S.A.) were placed over 

the filmogenic solution and dishes were dried in an oven (FD 240 Binder, Tuttlingen, Germany) at 35.0 ± 

0.8 ºC for 7 h. The polycarbonate membranes were removed from the dried films before conditioning at 

58.0 ± 0.2% RH and 22 ± 1 ºC for 4 days, prior to analysis. Three types of films were obtained: films with 

water-filled capsules (F-C), with peptide-filled capsules (F-Cp) and control films without capsules (F). 

11.3.7. Differential Scanning Calorimetry (DSC) 

Shell material percentage of freshly prepared microcapsules was calculated measuring each 

enthalpy proportion (∆H, by linear baseline integration) with respect to the shell material melting enthalpy 

reference, using a Discovery Series differential scanning calorimeter (DSC) (TA Instruments, New Castle, 

DE, USA) previously calibrated. 

Calorimetric analysis of F, F-C and F-Cp films were performed using a DSC model TA-Q1000 (TA 

Instruments, New Castle, DE, USA) previously calibrated. 
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For all DSC experiments, samples of around 10-15 mg were weighed and sealed in aluminium 

hermetic pans. They were scanned under dry nitrogen purge (50 mL/min) between 5 and 115 ºC at a 

heating rate of 10 ºC/min. Peak temperatures (Tpeak, ºC) and melting enthalpies were measured at least in 

triplicate and normalized to dry matter content (J/gdm) for film structure analysis. 

11.3.8. Laser scattering method 

Particle diameter of the microcapsules was measured using laser scattering analysis 

(Mastersizer, Malvern Instruments Ltd, Malvern, UK) with a small volume of isopropyl alcohol 

microcapsule dispersion homogenized in a dispersion unit controller. All the measurements were 

performed at room temperature with a refractive index of 1.45 and expressed as volume % of 

microcapsules. 

11.3.9. Peptide encapsulation efficiency and stability 

The peptide entrapment in the microcapsules was determined after total release of the capsule 

content in distilled water at 95 ºC during 20 min, in order to melt the lipid shell material. Then, the solution 

was cooled down to room temperature to precipitate out the lipids and filtered through 0.45 µm pore size 

filters. 

Peptide concentration was determined at 280 nm with the Synergy HT Multi-Mode Microplate 

Reader and the UV-spectrophotometer Gen5™ BioTek’s microplate data collection and analysis software 

(BioTek Instruments, Inc., Winooski, Vermont, USA). Demineralized water microcapsules results were 

taken into account as reference due to their small interference in the results caused by a slight release of 

matrix material (half-order release rate) (Shahidi & Han, 1993). Determinations were carried out in 

triplicate and the mean value of peptide released was calculated using a standard calibration curve made 

with increasing concentrations of peptide solution. 

Peptide encapsulation efficiency was calculated by using the following formula: 

Encapsulation efficiency = Peptide entrapped/Theoretical peptide content X 100. 

For pH stability studies, microcapsules were placed into different buffer solutions, at pH 2.6, 5 

and 7 (citrate-phosphate buffer) and pH 9.2 (carbonate-bicarbonate buffer) and were filtered through 0.45 

µm pore size filters after 10 min, 1 hour and 3 hours respectively. All samples were evaluated in triplicate. 

For film process stability studies, microcapsules were placed either into distilled water (pH 7) or 

into pH10 aqueous solution (0.012% Na2CO3) at 35 ºC for 30 min, 1, 3, 5, 7, 9, 11 and 24 hours, and 

were filtered through 0.45 µm pore size filters prior to peptide concentration analysis. All determinations 

were evaluated in triplicate. 

11.3.10. Microcapsule and Film morphology 

Optical microscopy using a Zeiss AxioImager M1m microscope with Epiplan objectives, 100W 

Halogen illumination source and AxioCam MRc 5 camera (Zeiss, Sliedrecht, The Netherlands) was used 

to measure microcapsule diameter and morphology. 
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Low temperature scanning electron microscopy (LowT-SEM) (Oxford CT1500 Cryosample 

Preparation Unit, Oxford Instruments, Oxford, England) was used to examine microcapsules and 

representative film surface and cross sections. Samples were mounted with an optical coherence 

tomography (OCT compound Gurr ®) and mechanically fixed onto the specimen holder and cryo-

fractured after mounted as described by Gómez-Guillén, Ihl, Bifani, Silva, and Montero (2007). 

Panoramic films pictures were taken with a Canon EOS 550d, MP-E 65mm optical lens at 5:1 

amplification (Canon España, Alcobendas, Madrid, Spain). 

11.3.11. Film characterization 

11.3.11.1. Thickness 

Film thickness of F, F-C and F-Cp was measured using a micrometer (MDC-25M, Mitutoyo, 

Kanagawa, Japan), averaging the values of 6-8 random locations in 15 films for each treatment as 

described by Pérez-Mateos, Montero, and Gómez-Guillén (2009). 

11.3.11.2. Moisture content 

Moisture content of films F, F-C and F-Cp was determined at least in triplicate by drying samples 

of around 0.5 g at 105 °C for 24 h, according to A.O.A.C. (1995). Water content was expressed as a 

percentage of total weight. 

11.3.11.3. Optical properties 

The light absorption and transparency of films F, F-C and F-Cp were calculated at least in 

triplicate using a UV-1601 spectrophotometer (Model CPS-240, Shimadzu, Kyoto, Japan) at selected 

wavelengths from 200 to 800 nm following the method described by Pérez-Mateos, Montero, and Gómez-

Guillén (2009). 

The colour parameters of lightness (L*), redness (a*), and yellowness (b*) were measured 

following the method described by Blanco-Pascual, Fernández-Martín, and Montero (2013). 

11.3.11.4. Water barrier properties 

Water vapour permeability (WVP) of films F, F-C and F-Cp was determined at least in triplicate 

following the method described by Sobral, Menegalli, Hubinger, and Roques (2001) at room temperature 

and in a dessicator with distilled water. 

Film solubility was measured at least in triplicate following the method described by Blanco-

Pascual, Fernández-Martín, and Montero (2013). 

11.3.11.5. Mechanical properties  

Tensile and puncture tests of films F, F-C and F-Cp were run at least in triplicate using a texture 

analyzer TA.XT plus TA-XT2 (Texture Technologies Corp., Scarsdale, NY, USA) as was described by 

Blanco-Pascual, Fernández-Martín, and Montero (2013) but with tensile test samples of 70 x 20 mm. 
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11.3.12. Statistical analysis  

One-way analysis of variance was performed using the SPSS computer programme (SPSS 

Statistical Software Inc., Chicago, Illinois, U.S.A.). The variance homogeneity was made using the 

Levene test or, the Brown-Forsythe when variance conditions were not fulfilled. Paired comparisons were 

made using the Bonferroni test or the Tamhane test (depending on variance homogeneity), with the 

significance of the difference set at P ≤ 0.05. 

11.4. Results and discussion 

11.4.1. Encapsulation printing  

Both the viscosity and the surface tension of the starting materials are important parameters in 

the encapsulation printing process. For the selected nozzle size of 30 µm and flow rate of 0.75 mL/min, 

the viscosity limit for the core liquids was around 40 mPa·s in order to be processable through the inkjet 

nozzle at reasonable pressure. Shear-rate dependent viscosities of the core fluids were measured at the 

intended printing temperature (35 °C). 1% peptide solution and demineralized water remained fluid with 

low, shear-independent viscosity values of 0.75 – 0.82 mPa·s up to shear rates of 100 s-1 for 1% peptide 

solution and 1000 s-1 for demineralized water. Maximum viscosity values at 4000 s-1 were 1.7 mPa·s for 

demineralized water and 7 mPa·s for 1% peptide solution. Shell material viscosity was also low (7 – 7.6 

mPa·s) and almost shear-independent at the intended used temperature, which allows formation of a thin 

liquid curtain to be used for encapsulation. Since in general viscosity values did not increase too much at 

high shear rates, both shell and core materials were ideal for the encapsulation printing process. 

Surface tension values were 32.70 ± 0.13 mN/m for 1% peptide solution (35 ºC), 70.20 ± 0.15 

mN/m for demineralised water (35 ºC) and 35.63 ± 0.18 mN/m for the shell material (105 ºC). Even at this 

low peptide concentration, surface tension of demineralized water and peptide solution were significantly 

different, indicating that the peptides act as surfactants, which could affect the process and result in 

different encapsulation efficiency. 

Using the microencapsulation printer, core-shell microcapsules C and Cp were prepared, 

containing demineralized water or 1% peptide solution, respectively, inside a lipid shell. 
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Figure 2. Optical microscopy (A) images and Low Temperature-Scanning Electron Microscopy (B) of C 

and Cp microcapsules. 
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11.4.2. Microcapsule characterization 

Regarding the microcapsules morphology, at the optical microscope (Fig. 2A), microcapsule size 

was covered between 110 and 140 µm of diameter. The smallest microcapsules in this range were the 

expected result, in agreement with the targeted core droplet size of 106 µm, whereas bigger 

microcapsules might be caused by the collision and coalescence of two core droplets before or during 

encapsulation. C capsules were somewhat more uniform and spherical than Cp capsules. Overall, the 

observed capsules did not have cracking or porosity, which suggested high encapsulated materials 

integrity. There was no microcapsule aggregation, which is one of the main problems in encapsulation 

techniques, probably due to the carnauba wax presence (Joseph & Venkataram, 1995). 

At the Low Temperature-Scanning Electron Microscopy (Fig. 2B), Cp microcapsule shapes were 

sometimes more oval-shaped and with a single protrusion, peptide nets were visible in the surface of 

some of them, revealing that the microcapsules were not as smooth as C. A little percentage of both C 

and Cp presented a little circular hole in one of the apices, which probably corresponded to an inefficient 

closure of the shell material during the encapsulation process, explaining the peptide material presence 

outside of Cp capsules. Cp irregularities might be caused by a slight interaction between peptides and 

stearic acid from the shell material. Stearic acid has shown to attract peptides and proteins from aqueous 

phases (Zadmard & Schrader, 2004). A previous LT-SEM study showed smooth and regular carnauba 

wax microcapsules of similar size and stearic acid microcapsules with fracture lines and irregularities on 

the surface (Fini, Cavallari, Rabasco Álvarez, & Rodríguez, 2011), which might suggest that a possible 

crystallization of the stearic acid domains, promoted by peptide interactions, could be the main 

responsible of microcapsule irregularities. 

Differential Scanning Calorimetry was used to evaluate the percentage of shell material in the 

obtained capsules, based on differences in melting enthalpies (Fig. 3A). Shell material, C and Cp 

capsules depicted a main sharp endothermic transition at Tpeak (ºC) of 74.21 ± 0.2, 65.65 ± 0.14 and 

64.80 ± 0.04 respectively. Results showed that the corresponding ∆H (J/g) was 226.7 ± 0.71 for the shell 

material (75% stearic acid + 25% carnauba wax), 19.9 ± 6.3 for the capsules containing demineralised 

water (C) and 22.4 ± 4.7 for capsules with 1% peptide solution (Cp). Shell material represented 8.8 ± 

3.0% and 9.9 ± 2.1% of the total microcapsule weight in C and Cp microcapsules, respectively. 

Peptide encapsulation efficiency was 84.7 ± 3.4%. Encapsulation efficiency in microcapsules is 

very important in order to study the effectiveness of the process. The obtained peptide content was 

slightly lower than the targeted concentration, which might be caused by different reasons such as, a 

lower final peptide concentration in the printed droplet due to minor losses during sample process into the 

encapsulation printer; a minor loss of the core material’s boundary layer suffered from the impact point 

between the droplet and the screen shell material; or the partial peptide-lipid shell material bonding, which 

would have not allowed total peptide release. The use of carnauba wax for lipid-based encapsulation 

materials development has also previously shown more than 80% of encapsulation efficiency (Bhoyar, 

Morani, Biyani, Umekar, Mahure, & Amgaonkar, 2011). Taking into account both the percentage of shell 

material and the efficiency of encapsulated peptide on dry basis, it could be concluded that the ratio of 

shell material to peptide was 13.3:1. 
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Figure 3. A. DSC of demineralized water microcapsules (C) and 1% peptide microcapsules (Cp). B. DSC 

films (F, F-C and F-Cp). 

Laser scattering analysis (Fig. 4) revealed, with an error lower than 5%, that C had a diameter of 

d90 = 122.50 µm, d50 = 76.82 µm and d10 = 28.06 µm, while Cp had a diameter of d90 = 125.83 µm, 

d50 = 77.63 µm and d10 = 30.11 µm. The amount of particles with size lower than 30 µm, not observed in 

microscopic analysis, might be particles of shell material collected from the collision of the encapsulated 

material with the shell material and/or fragments derived from the sample handling. 
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Figure 4. Microcapsule diameter of C and Cp as determined by laser scattering. 

11.4.3. Microcapsule stability at different pH 

Microcapsules are largely meant for incorporation of active ingredients in food products (Mellema, 

Van Benthum, Boer, Von Harras, & Visser, 2006). Stability of microcapsules in food systems can be very 

different depending on a number of environmental factors, including temperature, pH, moisture content, 

etc. This study, performed at room temperature (21 ± 1 ºC), was focussed on the stability of 

microcapsules subjected to pH variations in aqueous solutions, as a model system mimicking a film 

forming solution or even high-moisture food products. A high stability would increase the versatility for use 

of microcapsules in different food systems and processes, including edible films development. 

Microcapsule stability profile (Fig. 5) showed that there was an early peptide amount (<10%) 

released, which according to Shahidi and Han (1993) could probably be due to residual process 

inefficiency or some microcapsule breakage. Microcapsules were significantly affected by the 

environmental pH. Peptide release at pH 2.6 and pH 9.2 was considerably higher than at milder pHs, 

representing around 40% of the total peptide content within the first hour. Further release up to 50% after 

3 hours was observed at pH 9.2. Microcapsules at pH 5 showed more delayed and progressive release in 

water, up to around 20% after 3 hours, which might lead to a controlled release model. In this case, no 

peptides were released during the first hour. At pH 7, peptide release after 3 hours was in the same range 

as at pH 5, but most of the peptide content was released within the first hour. 

Carnauba wax coated microcapsules were already reported to be insoluble in water, with release 

data lower than 30% during 7 hours (Raghuvanshi, Tripathi, Jayaswal, & Singh, 1992). Thus, the 

presence of carnauba wax contributes to slowing down the diffusion of active ingredients through the 

encapsulation material (Shahidi & Han, 1993), although in combination with the stearic acid it normally 

results in a more porous matrix (Fini, Cavallari, Rabasco Álvarez, & Rodríguez, 2011). 
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Figure 5. Microcapsule peptide stability at different pH during the first 3 hours at 21 ºC. 

11.4.4. Microcapsule stability in film forming conditions 

One possible food application of microcapsules is their addition to edible films. Free peptides can 

be added in the formulation of edible films, but they normally produce a negative rheological effect due to 

their plasticizing effect (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009). Excessive 

peptide interactions with matrix components during film preparation can be avoided by peptide 

microencapsulation, prior to the addition to the filmogenic solution. In the present study, the unrefined 

seaweed extract was obtained under relatively strong alkaline conditions, therefore, the resulting alginate-

based film forming solution showed optimal performance at pH 10. 

To check microcapsule stability in water and in the film forming alkaline solution, kinetics of 

peptide release were measured both in water at pH 7 and pH 10 at 35 ºC for 9 hours, which is the 

temperature and maximum time needed for film drying (Fig. 6). No significant differences were observed, 

showing an early ~30% release in the first 30 min and being stable thereafter, which was enough to cover 

the complete drying process. After around 6 hours the film dehydration process was completed, ensuring 

around 70% of peptides immobilized in the microcapsules in the resulting film. Compared to the pH 

stability results, temperatures higher than 21 ºC increased the release rate through the encapsulation 

matrix, probably due to weakening of the shell material at elevated temperatures and the resulting 

increased peptide diffusion (Shahidi & Han, 1993; Stojaković, Bugarski, & Rajić, 2012). Comparing 

microcapsule stability at pH 7 after 3 h (Figs. 5 and 6), the peptide release was significantly lower at 21 

ºC (~20%) than at 35 ºC (~35%). 
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Figure 6. Microcapsule peptide stability in distilled water pH 7 and pH 10 at 35 ºC during 9 h. 

11.4.5. Film preparation 

In order to know the relative cohesive and adhesive molecular forces within the filmogenic 

solution and the added microcapsules, the contact angle (θ) of a droplet of the biopolymeric solution over 

the shell material was measured, and found to be 100.3 ± 0.9º at 21 ºC. 

The contact angle indicates how hydrophobic the shell material is, where 180º represents 

absolutely no wetting and smaller contact angles imply increasing hydrophilic surface and higher 

tendency to wetting. According to Karbowiak, Debeaufort, Champion, and Voilley (2006), contact angle 

values θ>65º suggest a predominant hydrophobic system indicating very low surface affinity between the 

filmogenic solution and the lipid microcapsule surface, which resulted in poor wetting and aggregation of 

microcapsules, negatively affecting the film forming process. 

More homogeneous distribution of microcapsules in the filmogenic solution was helped by the 

addition of polysorbate 80 as surfactant; however, strong microcapsule aggregation still occurred during 

the film drying process at 35 ºC. Considering that microcapsules tended to float or migrate to the surface 

of the biopolymer solution, a porous polycarbonate membrane was placed over the solution to immobilize 

the well dispersed microcapsules in the presence of the surfactant, avoiding aggregation during film 

drying. 

Three different sets of films were prepared: F-C, containing water-filled microcapsules C; F-Cp, 

containing peptide-filled microcapsules Cp, and F, reference films without microcapsules. 

Although the behaviour of C and Cp microcapsules when included into the filmogenic solution 

was essentially the same, slight differences in microcapsules distribution were perceptible in F-C and F-

Cp films, as shown in Figure 7. Panoramic pictures showed that microcapsules in F-C were more visible 

at the film surface, while F-Cp microcapsules were more integrated inside the matrix, indicating possible 

differences in microcapsule density or in the degree of interaction with the film matrix components. 
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Interestingly, addition of both types of microcapsules did not significantly modify the film thickness (~141 

µm) with respect to the film without microcapsules (139 µm). Moisture content was significantly higher 

(P≤0.05) in F (37.1 ± 0.9%), while no significant differences were found between F-C (31.0 ± 2.1%) and 

F-Cp (31.8 ± 2.1%), attributed to the hydrophobicity of the microcapsule lipid shell material. 

 

Figure 7. Panoramic photographic surface images of F, F-C and F-Cp films 
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11.4.6. Film properties 

11.4.6.1. Thermal properties 

DSC thermograms of F, F-C and F-Cp films are shown in Figure 3B. Microcapsule endothermic 

transitions were observed in F-C and F-Cp films as an endothermic peak at 82.88 ± 0.47 and 86.87 ± 

0.28 respectively, with the corresponding ∆H (J/gdm) of 0.88 ± 0.08 and 1.23 ± 0.26. Higher melting 

temperatures were needed to melt the shell material suggesting that microcapsules were efficiently 

entrapped into the film matrix. Alginates from F-C and F-Cp films might have interacted with the 

microcapsule components, probably the stearic acid with more capacity to form interactions. Apparently, 

Laminaria film matrix protected more efficiently Cp than C capsules, which was registered by higher 

enthalpy values. The 30% of peptides released during F-Cp film process might have increased film 

interactions between filmogenic compounds and peptides resulting in a stronger matrix than F-C. Films 

did not show any glass transition within the temperature range studied, which might be caused by the 

presence of glycerol. Films made of neat alginates have been reported to be essentially amorphous, with 

an irregular structure that does not crystallize (Siddaramaiah, Swamy, Ramaraj, & Lee, 2008), and the 

addition of plasticizer seems to increase that behaviour, probably dropping the glass transition 

temperatures to a lower range (Avella, Pace, Immirzi, Impallomeni, Malinconico, & Santagata, 2007) 

11.4.6.2. Low-temperature scanning electron microscopy of F-Cp film 

Low-temperature scanning electron microscopy (LT-SEM) cross-sections images of the film 

containing the Cp microcapsules are shown in Figure 8.  

 

Figure 8. Low Temperature-Scanning Electron Microscopy images of F-Cp cross section. 

Microcapsules were clearly distinguishable throughout the whole biopolymeric matrix, which 

exhibited a greatly dense and compact appearance. Capsules mostly retained their structural integrity, 

but not their spherical morphology. The cross sectional image shows an empty cavity within the 

microcapsule, suggesting that the peptide content tends to be disposed inside the wall of the capsule. 

The inclusion of microcapsules in the films caused a noticeable matrix disruption, in some cases leaving 
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large gaps between the biopolymer and the microcapsules, probably favoured by the strong hydrophobic 

nature of the shell material. Despite the fact that microcapsules led to strong discontinuities in the film 

microstructure, the compact nature of the alginate-based matrix was strong enough to support them 

without being fractured. 

11.4.6.3. Water barrier properties 

The film water solubility slightly increased (P≤0.05) with microcapsule incorporation in both F-C 

and F-Cp (Table 1). The lipid nature of the microcapsule would be expected to reduce film solubility; 

however microcapsules caused noticeable disruption in the film structure, leading to increased solubility. 

These effect was contrary to other studies, where lipid content was homogeneously mixed with the 

principal matrix component during the film forming solution process (Arcan & Yemenicioğlu, 2013). 

Solubility values were much higher than results obtained with commercial alginate films with cation 

complexation (~5%) (Pereira, Carvalho, Vaz, Gil, Mendes, & Bártolo, 2013), but similar to those 

developed with sodium alginate without cation complexation (~100%) (Abdollahi, Alboofetileh, Rezaei, & 

Behrooz, 2013; Zactiti & Kieckbusch, 2006). In contrast, F-C and F-Cp showed a significant reduction 

(P≤0.05) in the water vapour permeability (WVP); as compared to the F film (Table 1), which was largely 

attributed to the hydrophobic nature of the capsule lipid shell material. More specifically, the wax 

constituent has been previously reported to be effective at reducing the WVP of casein films added with 

paraffin wax (Sohail, Wang, Biswas, & Oh, 2006) or sodium caseinate-alginate films with beeswax 

(Fabra, Talens, & Chiralt, 2008). WVP of all studied films were considerably higher than previous results 

obtained with commercial alginate films (Benavides, Villalobos-Carvajal, & Reyes, 2012; Tapia, Rojas-

Graü, Rodríguez, Ramírez, Carmona, & Martin-Belloso, 2007), which might be caused by the presence of 

hydrophilic compounds in the unrefined alginate seaweed extract. 

Film F F-C F-Cp 

Solubility (%) 86.0 ± 1.7 a 94.8 ± 2.9 b 92.9 ± 1.9 b 

WVP (x10-7 g m-1 s-1 Pa-1) 1.80 ± 0.02 a 0.80 ± 0.0 b 0.89 ± 0.3 b 

TS (MPa) 6.6 ± 2.1 a 10.8 ± 0.9 b 10.1 ± 0.8 b 

EAB (%) 1.31 ± 0.74 a 2.87 ± 0.4 b 3.23 ± 0.2 b 

Y (MPa) 88 ± 25 a 183 ± 10 b 185 ± 14 b 

F (N) 13.2 ± 2.3 a 8.61 ± 1.5 b 7.44 ± 1.4 b 

D (%) 23.1 ± 4.0 a 10.9 ± 1.2 b 9.33 ± 1.5 b 

L* 25.1 ± 0.5 a 25.1 ± 1.1 ab 26.6 ± 0.8 b 

a* 3.52 ± 0.2 a  3.27 ± 0.5 a 3.75 ± 0.6 a 

b* 4.54 ± 0.5 a 4.57 ± 0.8 a 5.92 ± 1.0 a 

Transparency 6.99 ± 0.27 a 8.42 ± 0.34 b 7.97 ± 0.28 b 

Table 1. Solubility, water vapour permeability (WVP), tensile strength (TS), elongation at break (EAB), 

Young’s modulus (Y), puncture force (F), puncture deformation (D), lightness (L*), colour values a*, b* and 

transparency (− log (T600/x)) of F, F-C and F-Cp films. 

Results are the mean ± standard deviation. Different letters (a, b, c) in the same row indicate significant 

differences among the different films (P≤0.05). 
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11.4.6.4. Mechanical properties 

F significantly showed the lowest tensile strength (TS), elongation at break (EAB) and elastic 

Young’s modulus (Y) (p≤0.05) (Table 1), in good accordance to its poorer cross-linked structure. 

Microcapsule addition considerably increased tensile strength, elongation at break and Young’s modulus. 

Fabra, Talens, and Chiralt (2008) showed that beeswax addition to sodium caseinate-alginate films 

improved both elastic modulus and tensile strength but, contrary to our results, reduced elongation at 

break. EAB and TS values of all studied films were lower than previous films developed with 2-4% 

commercial alginate (EAB of 17-30%) (TS of 12-27 MPa) (Su Cha, Choi, Chinnan, & Park, 2002) and also 

after adding CaCl2 for cation complexation (~15% and ~45 MPa) (Pereira, Carvalho, Vaz, Gil, Mendes, & 

Bártolo, 2013). 

Regarding puncture deformation (D) and force (F), microcapsule inclusion in both F-C and F-Cp 

led to a significant decrease in both D and F values (p≤0.05) (Table 1), probably as a result of film matrix 

disruptions caused by the microcapsules. As in tensile test, no significant differences were found between 

F-C and F-Cp. Previous results obtained with 1-1.5% commercial alginate films were in the same F range 

(13-22 N) and D range (25-60 ± 3.04%) as F film (Wang, Jia, Ruan, & Qin, 2007). 

Thus, it could be concluded that microcapsules incorporation improved film mechanical tensile 

response due to the lipid microcapsule strength effect, while negatively affected to the puncture test film 

behaviour. The microcapsule matrix disruption that negatively affected film solubility might have also been 

responsible of the puncture breakage. While tensile strength test gives us more general mechanical film 

information, puncture test concentrates the force in one specific little area, being more affected by the 

discontinuous structure and poor cohesion between the film matrix and the microcapsules. 

11.4.6.5. Colour properties 

As shown in Table 1, film transparency is significantly (P≤0.05) higher in F, while no significant 

differences were found between F-C and F-Cp (P≤0.05). L* (lightness), a* (reddish/greenish) and b* 

(yellowish/bluish) values are also shown in Table 1, where it is revealed that all films had low lightness 

(25-27). a* and b* did not show significant differences with or without entrapped microcapsules (P≤0.05). 

Fucoxanthin presence might be responsible for the yellowish-brown film tendency (Ferraces-Casais, 

Lage-Yusty, de Quirós, & López-Hernández, 2012). 

In general, films were less transparent than those previously obtained with isolated commercial 

alginate, due to their intense colouration and the presence of the microcapsules; but constituted a better 

light absorption barrier (Pereira, Carvalho, Vaz, Gil, Mendes, & Bártolo, 2013; Yoo & Krochta, 2011). 

Films contained most of the seaweed compounds that remained in Laminaria extract, rendering more 

opaque films with more red-brown colouration; resulting in low lightness and low yellowness tendency 

compared to films developed with commercial alginates (Wang, Liu, Holmes, Kerry, & Kerry, 2007). 

11.5. Conclusion 

Printing of hydrophobic stearic acid/carnauba core-shell microcapsules resulted in an efficient 

process for active peptide protection. Microcapsule stability and peptide release rate depended on the 

environmental pH and temperature, giving the possibility of different applications depending on the final 
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food system. Microcapsule inclusion in hydrophilic Laminaria digitata edible film matrix resulted in a 

discontinuous film with improved tensile properties and water vapour permeability but higher film solubility 

and opacity and poorer puncture response. Laminaria digitata network, with microcapsules embedded in 

it, could be used for active and edible film applications, as a carrier for a wide range of molecules apart 

from peptides. 
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12.1. Introduction 

In the present work, two different raw materials were utilized for polymeric extraction: Dosidicus 

gigas muscle waste and seaweeds. Among all the seaweed species, one Rhodophyta (Mastocarpus 

stellatus) and two Phaeophytas (Laminaria digitata and Ascophyllum nodosum) were selected. 

Integral extractions were carried out from the different raw materials. Proteins were recovered 

from the muscle of Dosidicus discarded during the skinning process, while unrefined extraction 

procedures were tested in seaweeds to extract more components. Whereas Dosidicus gigas extracts 

were mainly of protein nature, seaweed extracts had high polysaccharide content together with some 

proteins, pigments and minerals. All extracts were used for the development of edible films, and said films 

were compared in terms of their physicochemical and structural properties. 

Mild aqueous extractions and enzymatic hydrolysis were performed in order to recover different 

active compounds. Antioxidant aqueous extracts rich in proteins, pigments and polyphenols were 

obtained from Mastocarpus stellatus, and antioxidant and antihypertensive hydrolysates rich in peptides 

were obtained from Dosidicus gigas tunics and from Mastocarpus stellatus. 

Seaweed aqueous extracts and hydrolysates were directly added to Mastocarpus film-forming 

solutions and the resulting film activity and physicochemical properties were evaluated. However, active 

compounds encapsulation is often performed to protect them during processing. In this regard, a new 

encapsulation procedure was chosen to evaluate their integrity after the processing and their potential 

applications in food products, and so, Dosidicus hydrolysate was microencapsulated within lipid material 

(stearic acid + carnauba wax). Microcapsules were included in Laminaria film forming solutions to study 

their possible use as microcapsule carriers. 

The general discussion will be divided in four sections in order to provide a clearer approach: 

1. Development of protein films from muscle waste adhered to Dosidicus gigas tunics.  

2. Development of polysaccharide films from seaweed extracts. 

3. Study of the main characteristics of different films. 

4. Potential film applications in the food industry. 

12.2. Development of protein films from muscle waste adhered to Dosidicus gigas mantle 

Total muscle proteins recovered by different solubilization methods (S-extracts), and myofibrillar 

proteins concentrated by a further isoelectric precipitation (C-extracts), have shown a good filmogenic 

capacity, providing the industry with six different viable possibilities of protein recovery that could be 

extrapolated to other seafood species (Fig. 1). 
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Extracts/Films Description 

water-S Muscle protein solubilized in water 

salt-S Muscle protein solubilized in salt                                                         total muscle 

alkaline-S Muscle protein solubilized at pH10 

acidic-S Muscle protein solubilized at pH3 

alkaline-C Muscle protein solubilized at pH10 and concentrated by  

isoelectric precipitation 

acidic-C Muscle protein solubilized at pH3 and concentrated by                      concentrate 

isoelectric precipitation  

alkaline-C4 Films stored for 4 months 

acidic-C4 Films stored for 4 months 

 

Figure 1. Muscle protein extraction for film development. 

12.2.1. Solubilized extracts for film development 

12.2.1.1. Solubilized extracts (S-extracts) 

Regarding the water, salt, alkaline and acidic muscle protein solubilization (S-samples), unlike 

traditional protein recovery methods (Palafox, Cordova-Murueta, del Toro, & García-Carreno, 2009; 

Sánchez-Alonso, Careche, & Borderías, 2007), 100% of the recovered material was used for the 

development of films (including both the myofibrillar and the sarcoplasmic fraction, and non-protein 

nitrogen compounds). Both alkaline-S and acidic-S extracts resulted in a higher proportion of soluble 

protein. 

Among the different types of sarcoplasmic proteins, it has been claimed that some proteins such 

as endogenous transglutaminase (TGase) play a more important role than others in bond formation, by 

catalyzing the cross-linking of myosin heavy chain molecules and probably other compounds under low-

temperature settings, therefore resulting in more elastic systems. The cephalopod intrinsic calcium 
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content might activate TGase, especially during the film preparation phase at 4 ± 0.5 ºC for 21-23 h 

(Jodral-Segado, Navarro-Alarcón, López-Ga de la Serrana, & López-Martı́nez, 2003; Martín-Sánchez, 

Navarro, Pérez-Álvarez, & Kuri, 2009). Extreme pH values like those used in the present study, pH 3 

(acidic) and pH 10 (alkaline), induce major protein conformational changes, probably having an adverse 

effect on the TGase activity (Jafarpour & Gorczyca, 2012). Indeed, DSC thermograms showed higher 

myofibrillar protein preservation in water and salt solubilized extracts, while alkaline conditions led to a 

higher denaturation and acidic conditions resulted in protein hydrolysis. 

12.2.1.2. Films from solubilized extracts (S-films) 

Water S-films were stiff and showed a good water barrier, but both water and salt solubilization 

led to less transparent films with no microbiological stability (exceeding the recommended limits of total 

viable bacterial count in fishery products >5 log CFU/g). All these films are edible and, as any food 

product, are subjected to microbial contamination. Due to this fact, the addition of conservative additives 

would be necessary to make them suitable for food or packaging applications. Most of the previous 

studies about edible films do not make shelf-life determinations, but it might probably be as short as for 

water or salt S-films. For this reason, alkaline and acidic S-films resistance to contamination is of great 

interest regarding edible/packaging applications. 

Both alkaline-S and acidic-S films showed food grade microbiological results and their 

physicochemical properties are described in the following sections. Moreover, avoiding the use of salts for 

protein recovery prevented the formation of crystal deposits during film development and their negative 

consequences on the film properties. 

Apart from myofibrillar and sarcoplasmic proteins, Dosidicus protein solubilization comprised all 

the intrinsic physiological ammonium chloride (NH4Cl), endogenous NH3, octopine, low molecular weight 

polypeptides and organic acids (Marquez-Rios, Moran-Palacio, Lugo-Sánchez, Ocano-Higuera, & 

Pacheco-Aguilar, 2007), which were responsible for the film off-flavour that could make them unsuitable 

for consumption. Nevertheless, both alkaline and acidic films might be used for packaging purposes even 

though they should be subjected to migration studies in the future. 

12.2.2. Concentrated extracts for film development 

12.2.2.1. Concentrated extracts (C-extracts) 

In order to minimize the content of undesirable compounds, such as NH3, Dosidicus muscle 

protein solubilized under acidic and alkaline conditions was concentrated by isoelectric precipitation (4.8) 

(C-extracts). Despite the protein recovery method had been refined, not only myofibrillar proteins were 

recovered but also a sarcoplasmic fraction, as shown by electrophoretic patterns (Fig. 2). Other authors 

have also reported some remaining sarcoplasmic fraction in protein concentrates (Jafarpour & Gorczyca, 

2012). 
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12.2.2.2. Concentrated C-extracts vs. Solubilized S-extracts 

Alkaline and acidic pH solubilization treatments resulted in different protein structure and 

conformation (Jafarpour & Gorczyca, 2012). Isoelectric precipitation did not modify the protein 

degradation pattern obtained by pH solubilization. While with the alkaline treatment, myosin (MHC), 

paramyosin (P) or actin (A) did not show signs of degradation, the acidic extraction showed a significant 

hydrolysis with a band density reduction at high molecular weights and the appearance of new bands 

below the 50 kDa regions. These low molecular weight bands might correspond to peptide fractions 

formed during protein degradation by endogenous acidic proteases (Cortes-Ruiz, Pacheco-Aguilar, Lugo-

Sánchez, Carvallo-Ruiz, & García-Sánchez, 2008; Choi & Park, 2002), or by the acidic treatment itself. 

 

Figure 2. SDS-PAGE patterns under reducing conditions of the corresponding solubilized (S) and 

concentrated (C) extracts and film forming solutions, under alkaline and acidic conditions, respectively. 

Comparing DSC thermograms of both S and C extracts, it was observed that isoelectric 

precipitation performed immediately after alkaline and acidic solubilization contributed to protein 

preservation, exhibiting under acid-pH-shift processing a higher protection against degradation, as has 

been reported by other authors (Totosaus, Montejano, Salazar, & Guerrero, 2002) (Fig. 3). 
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Figure 3. DSC of alkaline and acidic solubilized (S) and concentrated (C) extracts. 

Moreover, concentration included a higher proportion of soluble protein than S-extracts and 

levelled alkaline and acidic values (Fig. 4), showing extraction yields similar to those obtained in previous 

studies (Palafox, Cordova-Murueta, del Toro, & García-Carreno, 2009). This higher proportion was 

probably caused by the lack of other insoluble compounds in C-extracts. 

 

Figure 4. Water soluble protein in solubilized (S) and concentrated (C) extracts under alkaline and acidic 

conditions. 
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12.2.2.3. C-films and S-films comparison 

FTIR Amide I region of the films spectra (1600-1700 cm-1) confirmed that pH affected the 

secondary protein structure, and consequently, hydrophobic and hydrogen bonds would be formed 

differently in the films. Alkaline films were formed by proteins with a more preserved structure than acidic 

films, independently of whether the extracts were concentrated or not. Alkaline conditions led to a loss of 

the secondary structure that was reflected in the disappearance of the α-helical structure, which favoured 

a more organized film structure as was shown by the β-structures intramolecular aggregation. Acidic 

hydrolysis resulted in a higher hydrated and plasticized film with a reduction of the non-bonded peptide 

groups caused by a more extensive hydrogen bonding between protein fragments and glycerol (Chunli, 

Stading, Wellner, Parker, Noel, Mills, et al., 2006).  

Films developed with alkaline extracts (S and C) presented more intramolecular aggregation, with 

more protein functional groups available to form covalent bonds (protein-protein cross-linking), which 

resulted in matrixes with a higher mechanical strength and water resistance (Figs. 5 and 6). 

Acidic films showed a higher number of hydrogen bonds, with possible extra interactions between 

short protein fragments and plasticizers, which resulted in a higher matrix hydration (Chunli, et al., 2006), 

hence poor water and mechanical properties. 

 

Figure 5. Water resistance to breakage of alkaline and acidic solubilized (S) and concentrated (C) films. 

*Alkaline-C film was unbreakable. 

As shown in figures 4, 5 and 6, protein concentrates resulted in films of a higher quality. This high 

quality was clearly evident in terms of water resistance and mechanical strength. SDS-PAGE protein 



  General discussion 
 

~ 219 ~ 
 

patterns under alkaline and acidic conditions were quite similar for solubilized and concentrated proteins. 

Concentrates contained mainly myofibrillar proteins, and therefore an improvement in their resulting film 

characteristics was expected; for example, water resistance was extremely better in films from 

concentrates. The isoelectric precipitation resulted in concentrates with a high myofibrillar protein 

proportion, which might explain the improvement of the corresponding film mechanical strength and water 

resistance (Artharn, Benjakul, & Prodpran, 2008). By pH isoelectric precipitation, endogenous TGase was 

recovered in the concentrates, being more stable than in alkaline and acidic S-extracts (Jafarpour & 

Gorczyca, 2012). The alkaline method resulted in more accessible proteins, susceptible to be good 

substrates for the TGase enzyme and available to form other protein-protein interactions (Pérez-Mateos, 

Amato, & Lanier, 2004). These interactions might have determined an improved matrix conformation 

during film preparation. 

 

Figure 6. Water vapour permeability (WVP), puncture force (F) and puncture deformation (D) of alkaline 

and acidic solubilized and concentrated films. 
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12.2.3. Film storage stability  

By myofibrillar protein isoelectric precipitation, the films were expected not only to improve their 

physical properties, but also their stability over time. Alkaline and acidic C-films were tested after four 

months (4) to evaluate the changes suffered by maturing under controlled conditions of humidity (~58%) 

and temperature (21 ºC). 

One of the most remarkable improvements observed by using myofibrillar concentrates (C), 

instead of total protein solubilized extracts (S), was the reduction of the solubility of the film. After four 

months of storage, C-film matrixes suffered protein aggregation, which resulted in an increase in 

solubility, being more significant in alkaline-C films. Protein release was also lower in C-films than in S-

films, but the acidic treatment still resulted in a higher protein release than the alkaline one. This might be 

caused by the weaker matrix formed by bonded hydrolyzed proteins, plasticizers and water, with an 

increased free volume (Fig. 7) (Cuq, Gontard, Cuq, & Guilbert, 1997). 

 

Figure 7. Film solubility and protein release of alkaline and acidic solubilized, concentrated and 

concentrated after 4 months of storage films. 

The electrophoretic pattern of the proteins released, by both S and C films, is shown in figure 8. 

Water-S and alkaline-S films released a lower protein content than both acidic S and C films. Alkaline-S 

film presented faint bands in the actin (45 kDa), tropomyosin (30-35 kDa) and light chains of myosin 

(LMM) (17 kDa) regions. Those bands were hardly visible in the alkaline-C film, being only noticeable a 

very faint band at 17 kDa. Acidic films released more protein material, including a large amount of 

tropomyosin and even actin and paramyosin. This protein release was more intense in the acidic-S than 
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in the acidic-C film. After four months of storage (4), although alkaline-C film protein release was still low, 

it increased together with film solubility. On the contrary, the acidic-C film reduced the amount of proteins 

released in water. 

 

Figure 8. SDS-PAGE patterns under reducing conditions of the corresponding soluble fraction of alkaline-

S, acidic-S, alkaline-C, acidic-C, alkaline-C4 and acidic-C4 films.  

Regarding the mechanical properties (Figure 9), the formulation with C-extracts did not result in 

films with an increased tensile strength (TS) or elongation at break (EAB), properties that were shown to 

be even slightly lower than those obtained for films made with S-extracts. Nevertheless, Young’s elastic 

modulus (Y) values were considerably higher in alkaline-C and acidic-C films. Apparently, a higher 

myofibrillar protein concentration mainly affected the film stiffness. After the storage time, the alkaline-C4 

film maintained stable both the TS and Y, but had lost almost all its flexibility (EAB). On the contrary, the 

acidic-C4 film acquired more tensile strength and stiffness after four months, and its EAB was stable.  

The acidic-C film probably suffered a protein polymerization and aggregation via Maillard reaction 

with the plasticizers, which might suggest an increase in protein-protein cross-linking (probably through 

covalent bonds) (Artharn, Prodpran, & Benjakul, 2009; Leerahawong, Tanaka, Okazaki, & Osako, 2012), 

together with a hydrogen bonding reduction accompanied by migration of the plasticizer to the surface, 

and therefore a higher plasticizer release in water (Orliac, Rouilly, Silvestre, & Rigal, 2002). Despite the 

plasticizer migration, the film flexibility was not damaged, probably because the improvement in the film 

structure compensated for the plasticizer loss, making the film stronger and more malleable. 
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Figure 9. Tensile strength, elongation at break and Young’s elastic modulus of alkaline and acidic 

solubilized, concentrated and concentrated after 4 months of storage films. 

On the other hand, the increase in solubility of the alkaline-C film might result from a partial matrix 

disruption over the storage time. It is known that part of the sarcoplasmic content remained in the protein 

concentrates, allowing the retention of Dosidicus endogenous proteases. It has been observed that 

cephalopod mantle contains proteases that can be active both under acidic and alkaline conditions 

(Ayensa, An, Gómez-Guillén, Montero, & Borderías, 1999). While acidic proteases might have been 

boosted during the acidic-C film drying phase, the alkaline conditions might have induced a slow and 

progressive alkaline protease activity throughout the storage time, resulting in a partial film hydrolysis and 

consequently, in a loss of flexibility (Gómez Guillén, Hernández-Andrés, Montero García, & Pérez 

Mateos, 2006). 
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12.2.4. Conclusion  

Since the traditional method to make surimi cannot be applied to Dosidicus gigas muscle, 

alternative manufacture methods have been developed with salt addition (Sánchez-Alonso, Careche, & 

Borderías, 2007) and acidic conditions (Cortes-Ruiz, Pacheco-Aguilar, Lugo-Sánchez, Carvallo-Ruiz, & 

García-Sánchez, 2008), but never obtaining a high gel forming ability due to the low protein functionality 

(De la Fuente-Betancourt, García-Carreno, Del Toro, Cordova-Murueta, & Lugo-Sánchez, 2009). The 

alkaline protein extraction carried out in the present study has proved to confer high solubility to the 

proteins, and has been scarcely studied in cephalopods (Palafox, Cordova-Murueta, del Toro, & García-

Carreno, 2009) although it would provide the industry with novel possibilities. Total solubilized and 

concentrated extracts showed a good functionality for film development. 

Total solubilized extracts (water, salt, alkaline and acidic) were very suitable raw materials for the 

development of films. Both alkaline and acidic films were good edible alternatives for different food 

applications, such as packaging. Isoelectric precipitation improved, in general terms, the physical 

characteristics of the films. Alkaline conditions resulted in transparent films showing mechanical strength 

and water resistance, with partial protein denaturation, which might be suitable for short-term 

applications; while acidic conditions exhibited a remarkably higher structure protection over time, being a 

good option for long-term applications despite their significant hydrolysis. 

Another option to improve film stability would be the incorporation of active compounds, and 

therefore it was studied as will be shown in the following results. 

12.3. Development of polysaccharide films from seaweed extracts 

Different red and brown seaweed unrefined extractions were tested to obtain suitable polymeric 

materials for novel food applications, such as the development of film-coatings. 

On the one hand, sequential crude aqueous extractions were designed in Mastocarpus stellatus 

to obtain both active extracts by mild conditions, and polymeric extracts by traditional high temperature 

procedures. On the other hand, new alkaline treatments, for both Laminaria digitata and Ascophyllum 

stellatus extractions, were compared with the traditional ways of alginate isolation commonly used to 

obtain commercial colloids (Figs. 10 and 11). 

In order to preserve the bioactivity of certain seaweed compounds, and to try to obtain an integral 

extraction, Mastocarpus stellatus enzymatic hydrolysis was also performed. The active extracts that 

emerged during the hydrolysis might be used to improve the quality of different food products. Specifically 

in this study, the consequences of direct addition of both hydrolysates and aqueous extracts to 

Mastocarpus stellatus film forming solutions were tested and compared with the intrinsic film activity. 
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Figure 10. Mastocarpus stellatus extractions for film development. 

In view of the possible mechanical damage derived from the direct addition of active compounds 

to edible films (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009), a new 

microencapsulation procedure was tested. Films with embedded microcapsules were developed as a new 

bioactive compound carrier system. 

 

Figure 11. Laminaria digitata and Ascophyllum nodosum extractions for film development. 
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12.3.1. Seaweed extracts 

There are not many studies about integral seaweed extraction (Sousa, Martins, Larotonda, 

Hilliou, Goncalves, & Sereno, 2008) for film development. Most studies are specifically focussed on 

phycocolloid isolation, carrageenan in red species (Hilliou, Larotonda, Abreu, Ramos, Sereno, & 

Gonçalves, 2006) and alginates in brown algae (Vauchel, Leroux, Kaas, Arhaliass, Baron, & Legrand, 

2009). Moreover, many studies about improving the phycocolloid extraction efficiency have been carried 

out (Hernández-Carmona, McHugh, Arvizu-Higuera, & Rodríguez-Montesinos, 1998; Montolalu, Tashiro, 

Matsukawa, & Ogawa, 2008). The extraction of bioactive compounds from seaweeds has also been 

studied (Holdt & Kraan, 2011; Jiménez-Escrig, Gómez-Ordoñez, & Rupérez, 2012; Tierney, Croft, & 

Hayes, 2010). The present work provides the industry with the possibility of extracting both active and 

polymeric materials in a continuous sequential process (Table 1). 

It is interesting to note that the crude polymeric material, apart from being useful for its 

phycocolloid functionality, contained other interesting seaweed compounds such as proteins, pigments 

and minerals, which in traditional isolation procedures are usually discarded. 

Extracts/Films Description 

M1 First antioxidant aqueous extraction (4 ºC)  

M2 Second antioxidant aqueous extraction (45 ºC)  

M3 First carrageenan-rich extraction (91 ºC)                   Mastocarpus stellatus 

M4 Second carrageenan-rich extraction (91 ºC)  

H Phenolic-partially removed hydrolysate (50 ºC)         Hydrolysate 

Hp Phenolic-containing hydrolysate (50 ºC)                   Mastocarpus stellatus 

Lc Alginate-rich sodium carbonate extraction (75 ºC) 

Lh  Alginate-rich sodium hydroxide extraction (75 ºC)      Laminaria digitata  

Ac Alginate-rich sodium carbonate extraction (21 ºC)  

Ah Alginate-rich sodium hydroxide extraction (75 ºC)      Ascophyllum nodosum 

Table 1. Seaweed extracts. 

12.3.1.1. Red seaweed extracts: Mastocarpus stellatus 

Due to the fact that carrageenan extraction requires temperatures near to the boiling point to be 

boosted (Pereira, Critchley, Amado, & Ribeiro-Claro, 2009), it might adversely affect the activity of other 

seaweed compounds (Kauffman, Kneivel, & Watschke, 2007), thus it is that two different continuous 

extraction procedures were developed: 

1. Sequential aqueous extractions, where active compounds were firstly obtained under aqueous 

mild conditions and the rest of the compounds were extracted straightaway together with the 

carrageenan.  

2. Extraction of carrageenan and active compounds assisted by hydrolysis: Enzymatic hydrolysis 

under alkaline conditions and moderate temperatures to favour the extraction, where 
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hydrolysates rich in active compounds were extracted simultaneously with carrageenan and 

subsequently separated by phycocolloid precipitation. 

12.3.1.1.1. Mastocarpus stellatus biopolymeric extracts 

FTIR results showed that native phycocolloids extracted by the aqueous process mainly 

contained κ/ι-hybrid carrageenan. A previous study about the nature of the carrageenan extracted from 

Mastocarpus stellatus, showed the predominant presence of the same hybrid (Pereira, Critchley, Amado, 

& Ribeiro-Claro, 2009). Two different biopolymeric extracts were obtained in order to have two different 

raw materials susceptible to be used for different applications, that is, to develop different edible films.  

M3 (3rd aqueous extract at 91 ºC for 1.5 h) presented characteristics quite similar to a pure 

carrageenan extract, since it contained the first soluble fraction remaining after mild aqueous extractions 

(mainly minerals), together with the highest proportion of soluble carrageenan and other polysaccharides.  

M4 (4th aqueous extract at 91 ºC for 2 h) contained carrageenan in combination with the rest of 

the homogenized seaweed compounds that were not discarded by precipitation. Proteins, which are 

known to be abundant in red seaweeds (Fleurence, 1999), were mainly recovered in this extract, together 

with carrageenan and other polysaccharides. 

M3 soluble fraction resulted in a less sulfated extract, with a lower amount of carrageenan 

precursors and also with a higher proportion of shorter soluble polysaccharide chains that resulted in a 

weaker cross-linked material (Van De Velde, Rollema, Grinberg, Burova, Grinberg, & Hans Tromp, 2002); 

while M4 protein content strengthened the extract through interaction with the carrageenan (Baeza, Carp, 

Pérez, & Pilosof, 2002). 

12.3.1.1.2. Mastocarpus stellatus active extracts 

Aqueous extraction did not involve any other chemical reactive to promote the extraction 

procedure apart from water, providing an easier and cheaper industrial application. M1 (1st aqueous 

extract) extraction at low temperatures (3 ºC) resulted in higher extraction yields and antioxidant activity 

than M2 (2nd aqueous extract) extraction under moderate temperatures (45 ºC) for short periods of time 

(45 min). 

Although M1 and M2 active extracts will never reach the extraction yield values obtained in M3 

and M4 biopolymer extractions, they represent an efficient antioxidant compound recovery phase during 

the integral seaweed extraction process (Fig. 12). 

The extraction assisted by hydrolysis exhibited very different yields depending on whether there 

was a partial extraction of polyphenols (phenolic-partially removed hydrolysate H) or not (phenolic-

containing hydrolysate Hp) (Figure 13). Other compounds apart from polyphenols (such as fat, pigments 

or even hydrophobic amino acids) were partially lost during the ethyl acetate extraction performed with H 

sample. 
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Figure 12. Extraction yield values of the different aqueous extracts consecutively obtained from dried 

Mastocarpus stellatus. 

 

Figure 13. Extraction yield values of the integral Mastocarpus stellatus extraction (carrageenan fraction + 

hydrolysate) for the two different hydrolysis: phenolic-partially removed hydrolysate (H) and phenolic-

containing hydrolysate (Hp). 

The carrageenan fraction extracted from the enzymatic hydrolysis was considered to have 

characteristics similar to commercial carrageenan (Montolalu, Tashiro, Matsukawa, & Ogawa, 2008), 

presenting even the same extraction yield as the typical industrial process (28.65%) (Hilliou, Larotonda, 

Abreu, Ramos, Sereno, & Gonçalves, 2006; Pereira, Critchley, Amado, & Ribeiro-Claro, 2009). The 

present study was focussed on analysing whether the hydrolysis was useful or not for bioactive 

compounds extraction; hence no more studies regarding the carrageenan were performed. Nevertheless, 

in future works, it would be interesting to evaluate its physicochemical characteristics. According to 

Montolalu, Tashiro, Matsukawa, and Ogawa (2008), carrageenan with good functional gelling properties 

can be extracted at temperatures similar to those required for the hydrolysis (~50 ºC).  

Antihypertensive and antioxidant activities were dependent on whether polyphenols were partially 

removed or not during the extraction procedure, obtaining the phenolic-partially removed (H) and 

phenolic-containing (Hp) Mastocarpus stellatus hydrolysates. Once polyphenols were removed, H 
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contained a higher hydrolyzed protein concentration, and therefore showed a higher antihypertensive 

capacity than Hp.  

The antihypertensive activity of Mastocarpus hydrolysate had never been reported before, and its 

ACE inhibitory capacity resulted to be much higher than that reported for other red algae alcalase 

hydrolysates (He, Chen, Wu, Sun, Zhang, & Zhou, 2007; Qu, Ma, Pan, Luo, Wang, & He, 2010; Sato, 

Hosokawa, Yamaguchi, Nakano, Muramoto, Kahara, et al., 2002).  

The polyphenol content in Hp resulted evident when looking at its antioxidant activity and amount 

of Folin reactive substances (Figure 14), which were much higher than in H. H radical scavenging ability 

was slightly lower than that of M1 and M2 aqueous extracts. The aqueous extracts were rich in 

polyphenols and soluble pigments bonded to proteins, while H mainly contained peptides and polyphenol 

residues. The polyphenol fraction extracted by alcalase hydrolysis (Hp) had an extremely higher 

antioxidant activity than the fraction obtained in the aqueous extracts (M1 and M2). 

The results obtained from the Mastocarpus stellatus hydrolysis confirmed the previous 

assumptions about the possibility to enhance the extraction of bioactive compounds by enzymatic 

treatments (Cian, Alaiz, Vioque, & Drago, 2012; Heo, Park, Lee, & Jeon, 2005; Wang, Jónsdóttir, 

Kristinsson, Hreggvidsson, Jónsson, Thorkelsson, et al., 2010) and thus obtain both antihypertensive and 

antioxidant extracts. The use of Mastocarpus hydrolysate as an ingredient for the development of 

functional food products might be interesting.  

 

Figure 14. ABTS radical scavenging activity and Folin reactive substances content (mg/g) of M1 and M2 

aqueous extracts, and H and Hp hydrolysates.  

*mg vit C Eq/g film 

Moderate temperatures (~50 ºC) have shown to be suitable conditions for the extraction of high 

molecular weight carrageenan from other red seaweed species (Montolalu, Tashiro, Matsukawa, & 

Ogawa, 2008), suggesting that during M2 aqueous extraction at 45 ºC and, specifically during Hp 

hydrolysis at 50 ºC, a certain amount of biopolymer was extracted (Nishinari & Watase, 1992). However, 

even at 4 ºC (M1) a little fraction of carrageenan content was also noticeable in its FTIR spectrum. 
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The water soluble sulfur-containing amino acids of the phycobiliproteins (Carra, Ó Heocha, & 

Carroll, 1964; O'Carra, Murphy, & Killilea, 1980), bonded to the phycobilin pigments (phycoerythrin and 

phycocyanin) (Lin & Stekoll, 2011), might have been first extracted in M1 (Cian, Martínez-Augustin, & 

Drago, 2012), and more effectively extracted by enzymatic digestion in Hp (Dumay, Clément, Morançais, 

& Fleurence, 2013). DSC results suggested a protein content in both M1 and Hp extracts (Mishra, 

Shrivastav, & Mishra, 2008), and FTIR spectra showed an increase in their sulfate content; this probably 

had an effect on the increase of the amount of Folin reactive substances, the radical scavenging activity 

and the reduction power. 

The IR strong absorbance at 1600 and 1528 cm-1 for Hp indicated the more than likely presence 

of phycoerythrin and phycocyanin proteins (Smith & Alberte, 1994). The high 1217/924 cm-1 ratio 

assigned to an additional source of sulfate compounds also suggested the presence of phycobiliproteins 

and other sulfur-containing amino acids in Hp (Carra, Ó Heocha, & Carroll, 1964). The FTIR spectrum for 

Hp also showed a great absorption between 1100 and 1150 cm-1, suggesting an increased proportion of 

shorter polysaccharide chains (Sun, Tao, Xie, Zhang, & Xu, 2010). Linear sulfated galactans can be 

cleaved by mild acid hydrolysis. A low temperature and acidic treatment could lead to oligosaccharide 

size and sulfation pattern modifications, whereas a strong acidic treatment might change the sulfation 

pattern and even destroy polysaccharide chains, resulting in lower molecular weight oligosaccharides that 

might have an improved bioactivity (Jiao, Yu, Zhang, & Ewart, 2011). 

12.3.1.2. Brown seaweed extracts: Laminaria digitata and Ascophyllum nodosum 

Brown seaweeds not only contain alginates, but also other polysaccharides such as laminaran 

and fucoidan, proteins, pigments and minerals; which might be interesting to extract as well. Unlike other 

authors, this study was focussed on optimizing both the acidic pretreatment (less strong acidic conditions) 

and a new alkaline treatment (NaOH at pH 10) in order to obtain unrefined extracts with high yields, 

complex compositions and a good filmogenic capacity (Arvizu-Higuera, Hernández-Carmona, & 

Rodríguez-Montesinos, 1997; Cardozo, Guaratini, Barros, Falcão, Tonon, Lopes, et al., 2007; 

Hernández-Carmona, McHugh, & López-Gutiérrez, 1999). 

12.3.1.2.1. Laminaria digitata and Ascophyllum nodosum biopolymeric extracts 

The new NaOH alkaline treatment approach allowed for an alginate extraction at a pH similar to 

that of the traditional sodium carbonate treatment (as shown in the FTIR spectra). In order to obtain a 

high yield (between 40-50%) together with a good filmogenic capacity, sodium hydroxide extractions 

required a strong acidic pretreatment and high treatment temperature (75 ºC). 

In sodium hydroxide extractions, as shown in the proximate analysis, a higher proportion of 

carbohydrates were extracted and a considerable reduction of the salt content was achieved, as became 

clear from the observation of their ash content. Moreover, FTIR spectra confirmed that sulfated 

polysaccharides such as fucoidans were efficiently extracted with sodium hydroxide, whereas their 

presence was not registered when using sodium carbonate. Therefore, sodium hydroxide extraction 

would provide the industry with a good alternative to simplify the alginate extraction process and to obtain 

a good quality biopolymeric material for edible technological applications, such as film coating 

development. 
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Extraction procedures were also selected based in the purpose of softening as much as possible 

the acidic pretreatments. Despite hydrochloric acid pretreatments resulted in lower extraction yields than 

sulfuric acid, the latest caused a noticeable degradation of the targeted polysaccharides (Hahn, Lang, 

Ulber, & Muffler, 2012). 

It was also seen that the partial alginate degradation, possibly caused by the high temperatures 

used during the alkaline treatment (Vauchel, Kaas, Arhaliass, Baron, & Legrand, 2008), might favour 

matrix interconnections. 

FTIR results showed that sodium hydroxide extraction recovered a higher proportion of preserved 

alginate units, whereas sodium carbonate extractions recovered a higher amount of dispersed uronic 

acids. Sodium hydroxide alginates formed strong bonds with water molecules, while sodium carbonate 

shorter alginate chains resulted in weak interactions, as was evident from their respective DSC thermal 

transitions. 

12.3.1.3. Seaweed extracts comparative 

As observed in Figure 15, the integral Mastocarpus crude aqueous extraction yield was not 

significantly different from the extraction yield obtained with the phenolic-containing hydrolysate. Hence, 

both methods were good as an alternative option to the conventional red seaweed extractions (Hilliou, 

Larotonda, Abreu, Ramos, Sereno, & Gonçalves, 2006).  

 

Figure 15. Extraction yields for Mastocarpus aqueous extraction (M = M1+M2+M3+M4), Mastocarpus 

phenolic-containing hydrolysate (Hp) extraction, sodium carbonate (c) and sodium hydroxide (h) 

extractions of Laminaria (L) and Ascophyllum (A). 

Alkaline enzymatic hydrolysis under moderate temperatures might have provided conditions 

suitable for both bioactive compounds and carrageenan extractions, and resulted in good yields 

(Montolalu, Tashiro, Matsukawa, & Ogawa, 2008; Wang, et al., 2010), despite the temperatures were not 

as high as the ones used in traditional carrageenan extractions (Hilliou, Larotonda, Abreu, Ramos, 

Sereno, & Gonçalves, 2006). 

The different composition observed in the proximate analysis for the original dried seaweeds 

partially determined the composition of the extracts (Figure 16), such as the highest protein content 
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observed in red seaweeds or, in the case of brown algae, a higher protein content in Laminaria than in 

Ascophyllum extracts. 

 

Figure 16. Proximate analysis of M3 and M4 Mastocarpus extracts, and of sodium carbonate (c) and 

sodium hydroxide (h) extracts of Laminaria (L) and Ascophyllum (A). 

It is interesting to note that M4 and Lh were the most efficient protein extractions. Mastocarpus 

(M) sequential extraction and (Lh and Ah) sodium hydroxide extractions presented ash content similar to 

that of the original dried seaweeds, while sodium carbonate extraction provided an excessive amount of 

salt, probably derived from the alkaline treatment. 

Mastocarpus extraction yields were much higher than those reported in previous studies about 

carrageenan (Pereira, Critchley, Amado, & Ribeiro-Claro, 2009) and alginate traditional extractions (Istini, 

Ohno, & Kusunose, 1994; Vauchel, Leroux, Kaas, Arhaliass, Baron, & Legrand, 2009). However, brown 

seaweed sodium carbonate extraction achieved the same range of carbohydrate extraction as the 

traditional methods (20-38%), which are commonly used in the industry. 

Red seaweed crude aqueous extractions and brown seaweed sodium hydroxide extractions were 

the most efficient procedures, showing the corresponding typical well preserved carrageenan and 

alginate FTIR spectra profiles (Fig. 17).  
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Figure 17. ATR-FTIR spectra of the typical κ/ι-hybrid carrageenan in Mastocarpus extract (M3) and the 

typical alginate profile in Laminaria sodium hydroxide extract (Lh). 

12.3.2. Seaweed films 

In order to obtain different edible films for various food applications, the filmogenic capacity of 

each seaweed extract was evaluated. In this regard, carrageenan or alginate cation complexation was not 

performed. The aim of this study was to produce a variety of edible films as novel food byproducts or food 

coatings, more than to produce extremely resistant films as plastic bags. Protein-polysaccharide mixtures 

are widely used in the nouvelle cousin due to the fact that they play an essential role in the microstructure 

of the final product. The film-coating materials proposed in the present study would offer the market a 

practical option to optimize the rational approaches to food design (Arboleya, Olabarrieta, Luis-Aduriz, 

Lasa, Vergara, Sanmartín, et al., 2008). 

Furthermore, the combination of these extracts would open up some interesting possibilities for 

the production of a diversity of high quality and healthy edible films. 

12.3.2.1. Mastocarpus stellatus films 

12.3.2.1.1. Physicochemical properties of Mastocarpus stellatus films 

Mastocarpus biopolymeric extracts were combined in different ways for the development of edible 

films. Three different films were obtained: M3, M4 and M3+M4 films. Since M3 extract was the sample 

with more similarities to commercial carrageenan, the same applied to the resulting films, being more 

transparent and flexible. Due to the M4 high protein content, the resulting films were stronger. M4 protein 

content also promoted a more opaque polysaccharide-protein matrix showing a higher mechanical 

strength and water resistance. Therefore, the mixture of M3 and M4 for film development led to M3+M4 

films with intermediate physicochemical characteristics. 
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In order to improve the mechanical strength and water resistance of M3+M4 film, the glycerol 

content was reduced from 0.6% to 0.2% w/v, resulting in M3+M4-10 film (Cerqueira, Souza, Teixeira, & 

Vicente, 2012; Karbowiak, Hervet, Léger, Champion, Debeaufort, & Voilley, 2006). Although there are 

many studies about how glycerol content affects protein film properties, there are not so many regarding 

carrageenan films (Huber, 2009; Karbowiak, Hervet, Léger, Champion, Debeaufort, & Voilley, 2006; 

Moreira, Chenlo, Torres, Silva, Prieto, Sousa, et al., 2011). 

Carrageenan films, developed without cation complexation, are known for having a low water 

resistance (Shojaee-Aliabadi, Hosseini, Mohammadifar, Mohammadi, Ghasemlou, Ojagh, et al., 2013). In 

this study, once water contacted Mastocarpus films, a matter-transferring flux was noticeable from the film 

to the water. During the water resistance test, M3 films even sustained some water filtration prior to film 

breakage. 

 

Figure 18. Film solubility of M3, M4, M3+M4 and M3+M4-10 films. 

 

Figure 19. Water resistance of M3, M4, M3+M4 and M3+M4-10 films. 

As expected, the low glycerol content in M3+M4-10 significantly improved the water barrier 

properties of the film. Both the film solubility and the breakage time were considerably reduced when 

water was poured over these films (Figs. 18 and 19), probably due to the hygroscopicity reduction caused 
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by the low glycerol proportion (Vieira, da Silva, dos Santos, & Beppu, 2011). However, the water vapour 

permeability was not significantly modified in any of the different Mastocarpus film combinations. 

It is important to note that carrageenan films totally lost their integrity when they came into contact 

with water, forming a viscous swelling gel at room temperature, especially M3 films. Previous studies 

showed that ι-carrageenan films experienced a drastic increase in the diffusion of small molecules, 

hydration and swelling effect with glycerol proportions higher than 0.9% (Karbowiak, Hervet, Léger, 

Champion, Debeaufort, & Voilley, 2006). 

 

 

Figure 20. Tensile strength, Young’s elastic modulus and elongation at break of M3, M4, M3+M4 and 

M3+M4-10 films. 
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The M3+M4-10 film also showed a significant improvement of both the tensile strength and the 

elastic modulus (Figure 20), resulting in a great film stiffness increase, which was even higher than the 

results obtained in studies with commercial carrageenan films (Rhim, 2012). The low plasticizer content 

probably promoted protein-carrageenan bonds instead of protein-glycerol and carrageenan-glycerol 

interactions. 

M3 film showed the highest flexible response to water pressure and tensile strength (Figs. 19 and 

20), exhibiting the highest elongation capacity in both water resistance and tensile tests. The reduction of 

the amount of plasticizer in M3+M4-10 film led to a reduction of the elongation at break. A reduction in 

film flexibility was also observed when the plasticizer content was reduced in protein films (Sobral, 

García, Habitante, & Monterrey-Quintero, 2004).  

FTIR spectra revealed a higher proportion of more sulfated carrageenan in M4 extract, which 

might have boosted the formation of covalent bonds during the drying process and, together with the 

protein content, might have formed a strong protein-carrageenan matrix (Baeza, Carp, Pérez, & Pilosof, 

2002). On the contrary, M3 shorter polysaccharide chains linked more efficiently to glycerol, and the lower 

sulfate content resulted in a physically weak cross-linked matrix (Van De Velde, Rollema, Grinberg, 

Burova, Grinberg, & Hans Tromp, 2002). 

On the one hand, DSC thermograms showed that M3+M4-10 film resulted in the strongest 

structure due to the reduction in the plasticizer content, producing a film matrix with almost the same 

thermal behaviour as M4. On the other hand, M3 polysaccharide nature probably led to a more 

plasticized matrix, with a more gel-like structure, less resistant to water but malleable. 

12.3.2.1.2. Antioxidant activity of Mastocarpus stellatus films 

Commercial carrageenan films are not distinguished for having an outstanding antioxidant activity 

(Shojaee-Aliabadi, et al., 2013).  

 

Figure 21. ABTS radical scavenging capacity and Folin reactive substances of M3, M4, M3+M4, and 

M3+M4-10 films. 

*mg vit C Eq/g film 
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The sulfated content in ĸ-carrageenan derivatives might have contributed to the little ABTS 

radical scavenging capacity and the Folin reactive substances content in Mastocarpus films (Fig. 21) 

(Rocha De Souza, Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 2007). Free amino 

acids, other sugars such as neutral compounds and uronic acids could also react with the Folin reactive 

substances (Gómez-Ordóñez, Jiménez-Escrig, & Rupérez, 2010; Singleton, Orthofer, & Lamuela-

Raventós, 1998; Smith, Krohn, Hermanson, Mallia, Gartner, Provenzano, et al., 1985). 

12.3.2.2. Laminaria digitata and Ascophyllum nodosum films 

12.3.2.2.1. Physicochemical properties of Laminaria digitata and Ascophyllum nodosum films 

Respective brown seaweed sodium carbonate and sodium hydroxide extracts from Laminaria and 

Ascophyllum were used to develop edible films, in order to compare how the extraction procedure and the 

species affect the filmogenic properties. 

Alginate was the main component of the brown seaweed extracts, and since no cation 

complexation was carried out during the film development, films were mainly formed by a hydrogen-

bonded porous matrix (Fig. 22). The pore size affected the film properties, leading to tolerable mechanical 

properties and a low water resistance. 

The alkaline treatment determined the film water barrier properties, while the seaweed species 

affected the film mechanical properties. While water barrier properties seemed to be more influenced by 

the polymer chain status after the alkaline treatment, the mechanical properties were determined by the 

protein content. 

 

Figure 22. Low Temperature-Scanning Electron Microscopy surface image of a Laminaria sodium 

carbonate film (Lh). 
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Although the Laminaria sodium carbonate (Lc) extract resulted in the highest extraction yield, the 

films developed did not exhibit any outstanding physicochemical characteristic. Therefore, the Lc film 

thickness was tripled by increasing three times the solid content (Lc-3) in an attempt to improve its 

quality. Polysorbate 80 surfactant was also added to the Lc-3 composition, in a 0.1% (w/v) proportion, 

with the purpose of improving the interfacial tension between the film forming solution and the solids that 

might be added to change the physical characteristics of the film. Therefore, the way the surfactant might 

affect the film properties could also be analysed. 

Sodium hydroxide films presented the lowest solubility and water vapour permeability values (Fig. 

23), probably due to the higher presence of carbohydrates and to a higher proportion of guluronic units, 

as it was observed in the FTIR spectra. Guluronic units tended to form stronger bonds (Gómez-Ordóñez 

& Rupérez, 2011) and probably resulted in a more alginate-alginate and alginate-protein cross-linked 

matrix (Siddaramaiah, Swamy, Ramaraj, & Lee, 2008), as confirmed by the DSC results.  

 

Figure 23. Film solubility and water vapour permeability (WVP) of Laminaria (L) and Ascophyllum (A) 

sodium carbonate (c) and sodium hydroxide (h) films and Laminaria sodium carbonate x3 (Lc-3) film. 

On the contrary, sodium carbonate treatment led to a higher amount of uronic acid residues that 

might have linked more efficiently to glycerol and resulted in less alginate-alginate cross-linked films, as 

FTIR and DSC results revealed. This fact in combination with the high mineral content led to weaker 

interactions. 

The high solids concentration in Lc-3 film, together with the presence of surfactant, adversely 

affected its water barrier properties, being more soluble than most of the films and much more permeable 
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to water vapour, probably due to the higher glycerol presence in combination with the surfactant. 

Polysorbate 80 is a non-ionic detergent derived from sorbitol and might increase the plasticizer effect. 

Despite the higher protein content in Laminaria did not determine its solubility or WVP, it might be 

responsible for the water resistance of the film (Fig. 24). Laminaria films, compared to Ascophyllum ones, 

resisted minutes prior to breakage, especially Lh that resisted more than 1 hour. Comparing Laminaria 

films, the sodium hydroxide treatment provided the more compact conformation, resulting in a reinforced 

film network that improved both the water vapour permeability and the water resistance (Figs. 23 and 24). 

The Lh extract contained the highest proportion of protein and amount of well preserved alginate units. 

Glycerol and polysorbate 80 increased the film elongation at break but, despite its higher 

thickness, Lc-3 resulted in a less water resistant film than Lc. This behaviour confirmed the increase in 

plasticity gained by the high plasticizer proportion and the surfactant addition. 

Figure 24. Water resistance of Lc, Ac, Lh, Ah and Lc-3 films. 

Mechanical tests were differently affected by the extraction treatment carried out according to the 

species. The tensile strength and elastic modulus values for the sodium hydroxide treatment were higher 

when comparing the corresponding species with the values obtained for the sodium carbonate treatment. 

Tensile strength and puncture force were higher with the sodium hydroxide treatment, reaching 

significantly higher values in the Lh film. Meanwhile, sodium carbonate extractions obtained higher 

elongation at break values, reaching in the Ac film significantly higher elongation values in both tensile 

and puncture tests (Figs. 25 and 26). The surfactant plasticizing effect increased the puncture 

deformation in Lc-3 film, but not the elongation at break in a tensile test. 
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The higher proportion of longer guluronate segments in Lh, together with the high protein content, 

led to the best organized association of molecular chains in the film matrix, resulting in the strongest film 

in both tensile and puncture tests. Sodium carbonate treatment led to a higher dispersed uronic acid 

proportion, which conferred a more efficient plasticizing effect to the Ac film, as shown by its elongation at 

break and puncture deformation values. 

 

Figure 25. Tensile strength, Young’s elastic modulus and elongation at break of Lc, Ac, Lh, Ah and Lc-3 

films. 

Nevertheless, the sodium carbonate extract richness in dispersed uronic acids, together with the 

higher alginate degradation experienced by the H2SO4 pretreatment, resulted in a poor mechanical 

strength. Lc-3 did not show an improvement in its tensile strength, but its puncture strength results were 

positively affected, showing a significant improvement in both the puncture force and deformation values 

as a result of the increase in film thickness. 
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Figure 26. Puncture force and puncture deformation of Lc, Ac, Lh, Ah and Lc-3 films. 

12.3.2.2.2. Antioxidant activity of Laminaria digitata and Ascophyllum nodosum films 

The ABTS radical scavenging capacity of the films was more influenced by the seaweed species, 

while the Folin reactive substances content was determined by the alkaline treatment (Figure 27). 

Ascophyllum showed a higher antioxidant activity, although the effect was magnified by the sodium 

hydroxide treatment.  

 

Figure 27. ABTS radical scavenging capacity and Folin reactive substances of Lc, Ac, Lh, Ah and Lc-3 

films. 

*mg vit C Eq/g film 
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Seaweed antioxidant activity is normally affected by the interaction of different factors such as 

sulfation level, molecular weight and sugar residue composition (Jiménez-Escrig, Gómez-Ordóñez, & 

Rupérez, 2011). However, alginates are not distinguished for having an outstanding antioxidant activity 

(Norajit, Kim, & Ryu, 2010), which might explain their low ABTS values. 

Polyphenols have been reported to be one of the brown algae minor components (Rupérez & 

Saura-Calixto, 2001), suggesting that Folin reactive substances might largely correspond to other 

compounds. Another factor to take into account is that the antioxidant activity of the film might have also 

been adversely affected by the processing and storage conditions (Jiménez‐Escrig, Jiménez‐Jiménez, 

Pulido, & Saura‐Calixto, 2001). Since carotenoids are known to act as antioxidants, the presence of 

fucoxanthin might have greatly contributed to the antioxidant activity detected (Le Tutour, Benslimane, 

Gouleau, Gouygou, Saadan, & Quemeneur, 1998). The high content in Folin reactive substances found in 

sodium hydroxide films could also correspond to other compounds such as aromatic amino acids and 

short-chain carbohydrates (Ikawa, Schaper, Dollard, & Sasner, 2003; Singleton, Orthofer, & Lamuela-

Raventós, 1998; Smith, et al., 1985). 

Moreover, the highest sulfation level of Ah films observed in their FTIR spectra might correspond 

to their highest fucoidan proportion, which is known for its antioxidant activity; therefore resulting in the 

highest ABTS radical scavenging capacity and Folin reactive substances content (Rocha De Souza, 

Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 2007). 

Lc-3 films showed the same ABTS radical scavenging capacity as Lc, but polysorbate 80 might 

have interacted with the Folin reactive substances resulting in the detection of a slightly higher amount of 

Folin reactive substances. 

12.3.2.3. Seaweed films comparative study 

Red and brown seaweed biopolymeric extracts resulted in films of different polysaccharide 

nature. According to the origin of each extract, Mastocarpus films mainly contained carrageenan, while 

Laminaria and Ascophyllum films essentially contained alginates. All the films were developed without 

cation complexation. 

Mastocarpus films were less water soluble than brown seaweed films; especially M3+M4-10, due 

to the low plasticizer content (Table 2). Brown seaweed sodium carbonate films were the most soluble, 

probably due to the more efficient plasticization boosted by the high content of dispersed uronic acids in 

both Lc and Ac films, the higher proportion of degraded alginates in the Lc film and the addition of 

surfactant to the Lc-3 film. 

Regarding the water vapour permeability (WVP), brown seaweed sodium hydroxide extracts 

resulted in the most impermeable films, while sodium carbonate extracts led to the most permeable films, 

character that was especially increased when adding a surfactant to Lc-3 film (Table 2). The higher 

proportion of preserved alginate units recovered with the sodium hydroxide treatment resulted in a 

stronger and more efficiently cross-linked matrix than anyone obtained from any Mastocarpus 

carrageenan combination. 
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The solubility and WVP of red seaweed (Mastocarpus) films, developed with 30% glycerol, were 

higher in comparison with the results reported for commercial carrageenan films developed without cation 

complexation (Karbowiak, Debeaufort, & Voilley, 2007; Rhim, 2012; Shojaee-Aliabadi, et al., 2013). 

M3+M4-10 film, with 10% glycerol, presented the lowest solubility values among all the red and brown 

seaweed films assayed. 

Despite brown seaweed films solubility was lower than that of films developed with commercial 

sodium alginate without cation complexation (Abdollahi, Alboofetileh, Rezaei, & Behrooz, 2013; Zactiti & 

Kieckbusch, 2006), the WVP was higher (Benavides, Villalobos-Carvajal, & Reyes, 2012; Tapia, Rojas-

Graü, Rodríguez, Ramírez, Carmona, & Martin-Belloso, 2007). 

Film 
Film solubility 

(%) 

WVP  

(x10-8 g m-1 s-1 Pa-1) 

Water 

resistance 

to breakage 

time (min) 

Film elongation 

at breakage time 

(cm) 

M3 59.24 ± 3.29 3.57 ± 0.05 9.33 ± 0.58 2.7 ± 0.02 

M4 30.36 ± 2.59 3.62 ± 0.01 18 ± 6.08  2 ± 0.02 

M3+M4 37.26 ± 3.61 3.64 ± 0.08 8 ± 3.46 1.7 ± 0.01 

M3-M4-10 20.97 ± 4.5 3. 78 ± 0. 17 37.29 ± 10.48 2 ± 0.01 

Lc 79.23 ± 0.91 4.90 ± 0.07  7.2 ± 0.71 0.6 ± 0.01 

Ac 85.27 ± 2.49 4.64 ± 0.08  0.16 ± 0.08 0.3 ± 0.01 

Lh 74.42 ± 0.76 1.66 ± 0.32  106.8 ± 30 2 ± 0.02 

Ah 70.33 ± 2.37 2.62 ± 0.16  0.28 ± 0.05 0.2 ± 0.01 

Lc-3 86.04 ± 1.66 18.0 ± 0.2  3.17 ± 0.76 1.5 ± 0.01 

Table 2. Film solubility and water vapour permeability (WVP) of M3, M4, M3+M4, M3+M4-10, Lc, Ac, Lh, 

Ah and Lc-3 films. 

In summary, the compounds extracted in combination with the phycocolloids during the seaweed 

unrefined extractions did not improve the water barrier properties in red seaweed films, or the WVP in 

brown seaweeds, but reduced the solubility of sodium alginate films. 

The water resistance results (Table 2) were influenced by the protein content in both red and 

brown seaweeds, being more resistant those films developed with extracts rich in proteins (M4 and 

Laminaria). As observed for film solubility, the plasticizer content and the alginate units integrity highly 

affected the water resistance of the films, which was increased when the glycerol content was low 

(M3+M4-10 film) and preserved alginates formed more compact matrixes (Lh film). Except for Lh film, 

Mastocarpus films resisted more efficiently the water pressure, with a higher elongation response than 

brown seaweed films, and Ascophyllum films lost their integrity as soon as water contacted the matrix. 

Broadly speaking, tensile test results (Table 3) confirmed that red seaweed films presented a 

higher mechanical strength than brown seaweeds, resulting in higher TS and Y values. As previous 

results have shown, the low plasticizer content in M3+M4-10 film and the highly cross-linked Lh film 

matrix made them the strongest films. Regarding EAB results, they depended on the polymer-glycerol 
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bonding capacity, being Ascophyllum and M3 films the most efficiently plasticized matrixes. The more 

carrageenan-like M3 film matrix and the uronic units structure in Ascophyllum films, linked more easily to 

glycerol, resulting in the most flexible films; while the rest of the films presented a poor plastic behaviour. 

Film TS (MPa) EAB (%) Y (MPa) 

M3 13.88 ± 0.39 2.40 ± 0.1 459.12 ± 35.77 

M4 16.16 ± 0.76 1.28 ± 0.08 552.63 ± 36.61 

M3+M4 14.13 ± 0.18 1.38 ± 0.31 516.77 ± 23.58 

M3-M4-10 59.94 ± 2.27 0.95 ± 0.11 1797.49 ± 61.28 

Lc 6.01 ± 1.58 1.20 ± 0.35 102.65 ± 3.16 

Ac 1.50 ± 0.19 3.49 ± 0.32 5.99 ± 0.51 

Lh 40.72 ± 4.05 0.91 ± 0.37 1081.93 ± 67.37 

Ah 9.13 ± 1.98 2.16 ± 0.81 159.56 ± 42.84 

Lc-3 6.63 ± 2.12 1.31 ± 0.74 88.02 ± 24.77 

Table 3. Tensile strength (TS), elongation at break (EAB) and Young’s elastic modulus (Y) for M3, M4, 

M3+M4, M3+M4-10, Lc, Ac, Lh, Ah and Lc-3 films. 

Red seaweeds tensile strength was lower than previous results obtained for films developed with 

commercial κ-carrageenan (Rhim, 2012; Shojaee-Aliabadi, et al., 2013), but higher than the results for 

commercial ι-carrageenan films (Hambleton, Perpiñan-Saiz, Fabra, Voilley, & Debeaufort, 2012), 

confirming a higher κ-units proportion in the κ/ι-hybrid carrageenan extracted. Apart from the strength of 

Lh films, the rest of the brown seaweed films presented lower TS values than commercial alginate films 

(Benavides, Villalobos-Carvajal, & Reyes, 2012). EAB and Y values were in general on the same range 

as previous results obtained for films developed with commercial alginates (Avella, Pace, Immirzi, 

Impallomeni, Malinconico, & Santagata, 2007; Yoo & Krochta, 2011). 

In conclusion, the complex composition of the seaweed extracts resulted in red seaweed films 

with intermediate mechanical properties compared to the commercial carrageenan ones, while it did not 

significantly affect the mechanical properties of brown seaweed films compared to the commercial 

alginate ones. 

Concerning the ABTS radical scavenging capacity and the Folin reactive substances content 

(Table 4), red seaweed films showed a lower radical scavenging ability than brown seaweeds, and 

Ascophyllum films presented the highest antioxidant activity. The Folin reactive substances content and 

the antioxidant activity vary with the species, but in general, brown seaweeds have higher free-radical 

scavenging properties than red seaweeds (Mohamed, Hashim, & Rahman, 2012). 

Brown seaweed extraction procedures might have boosted Ascophyllum sulfated polysaccharides 

extraction, being decisive for their rheological and antioxidant properties (Rocha De Souza, Marques, 

Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 2007). Moreover, Ascophyllum alginate gels 

have been previously reported to show properties different from those typical of other brown seaweed 

alginates (Rioux, Turgeon, & Beaulieu, 2007; Rocha De Souza, Marques, Guerra Dore, Ferreira Da Silva, 
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Oliveira Rocha, & Leite, 2007), which might explain why their corresponding films resulted so 

mechanically different from Laminaria films. 

Sample ABTS (mg/g) Folin reactive substances (mg/g) 

M3 2.19 ± 0.11 6.64 ± 0.37 

M4 2.5 ± 0.06 6.08 ± 0.4 

M3+M4 2.19 ± 0.11 7.75 ± 0.34 

M3+M4-10 3.07 ± 0.18 7.33 ± 0.34 

Lc 9.72 ± 0.19 3.37 ± 0.24 

Ac 14.02 ± 0.20 10.23 ± 0.98 

Lh 4.20 ± 0.51 35.76 ± 0.67 

Ah 20.36 ± 0.90 44.02 ± 1.26 

Lc-3 9.22 ± 0.40 5.62 ± 0.3 

Table 4. ABTS radical scavenging capacity and Folin reactive substances of M3, M4, M3+M4, M3+M4-

10, Lc, Ac, Lh, Ah and Lc-3 films. 

Brown seaweed sodium hydroxide extraction resulted in the highest amount of Folin reactive 

substances, which might be related to a more efficient extraction of different proteins, pigments and 

sugars (Ikawa, Schaper, Dollard, & Sasner, 2003; Singleton, Orthofer, & Lamuela-Raventós, 1998), and 

which, in turn, would have also improved film water vapour permeability. 

In conclusion, Mastocarpus films did not show a significant improve in the antioxidant activity 

compared to commercial carrageenan films (Shojaee-Aliabadi, et al., 2013), while brown seaweed films, 

especially Ascophyllum, resulted in a significant improvement of the poor antioxidant activity showed by 

commercial alginate films (Norajit, Kim, & Ryu, 2010). 

12.3.3. Seaweed active films 

The direct addition of two Mastocarpus seaweed active extracts (aqueous extract and 

hydrolysate) to the film forming solution was tested for the development of Mastocarpus antioxidant films. 

On the other hand, Laminaria films were tested as carriers of lipid microcapsules filled with an active 

collagen hydrolysate extracted from Dosidicus gigas tunics. 

In the case of Mastocarpus stellatus active film, the antioxidant activity of the film was measured 

in the first place, and secondly, the modification of the physicomechanical properties of the film was 

evaluated. 

For the inclusion of microcapsules in Laminaria digitata films, the microencapsulation procedure 

was tested in the first place, and followed by the evaluation of both the microcapsules and the 

modification of the physicomechanical properties of the film due to their presence. 
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12.3.3.1. Mastocarpus stellatus active films 

Two different types of bioactive extracts were selected to develop Mastocarpus antioxidant films, 

thus broadening the potential of Mastocarpus films for food applications. 

12.3.3.1.1. Aqueous extract addition 

Regarding M1 and M2 Mastocarpus aqueous extracts (see figure 14), M1 was selected for the 

development of antioxidant films, due to its high extraction yield, high ABTS radical scavenging capacity 

and Folin reactive substances content. 

M1 was added at 25% (w/w) of the M3+M4 dried seaweed extract. M3+M4+M1 film improved 30 

times the radical scavenging ability of M3+M4 film and 5 times the amount of Folin reactive substances 

detected (Fig. 28). Given the fact that red seaweeds phenolic content is rather low (Holdt & Kraan, 2011), 

the increase in ABTS and Folin values was mostly attributed to the presence of water soluble phycobilins 

(Lin & Stekoll, 2011). M1 extraction probably also included other compounds such as proteins and sugars 

that might have also contributed as radical scavengers (Ikawa, Schaper, Dollard, & Sasner, 2003; 

Singleton, Orthofer, & Lamuela-Raventos, 1999). 

M3+M4+M1 film FTIR spectrum showed how M1 addition induced a clear broadening of the 

amide I band, which revealed M1 protein content. M1 addition also contributed to an overall increase in 

the interactions of the sulfate ester groups with the ĸ/ι-hybrid carrageenan matrix. Other authors have 

observed that extracts containing different compounds, like those possibly extracted in M1, could promote 

interactions between polyphenols and sulfated polysaccharides (Jiménez-Escrig, Gómez-Ordoñez, & 

Rupérez, 2012). These interactions might lead to a more stable and elastic film network. Rheology results 

confirmed this theory showing a sharp increase in M3+M4+M1 G’. FTIR spectra also showed a higher 

M3+M4+M1 sulfate content, probably related to the presence of phycobiliproteins in M1 , which 

contributed to its antioxidant activity (Rocha De Souza, Marques, Guerra Dore, Ferreira Da Silva, Oliveira 

Rocha, & Leite, 2007). 

Comparing M3+M4 with M3+M4+M1 (Figs. 28 and 29), the addition of M1 resulted in a film 

almost twice as thick, considerably less transparent, with the same water solubility, but two times more 

permeable to water vapour. Mechanical characteristics depended on the type of test performed: whereas 

tensile strength was not affected, M1 addition increased four times the elongation at break capacity and 

reduced the Young’s elastic modulus. On the contrary, both the puncture force and the puncture 

deformation reached values closer to those of M3, which resulted to be the most commercial 

carrageenan-like film. 

12.3.3.1.2. Hydrolysate addition 

Since Mastocarpus Hp (phenolic-containing) hydrolysate showed a higher antioxidant activity 

than H (phenolic-partially removed) (see figure 14), and the purpose of the hydrolysate addition was to 

improve M3+M4 film antioxidant activity, Hp was selected to be added at 15 and 30% (w/w) in relation to 

the M3+M4 extracts content. In order to avoid an excessive plasticizing effect, the film with a reduced 
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glycerol content (M3+M4-10) was selected for the hydrolysate addition, resulting in M3+M4-10-Hp15 and 

M3+M4-10-Hp30 films respectively. 

The incorporation of increasing concentrations of Hp significantly increased both the ABTS 

radical scavenging capacity and the Folin reactive substances content. Compared to the previous 

Mastocarpus film without active compounds, ABTS results showed a 5 times increase in the activity of 

M3+M4-10-Hp15 film and a 9 times increase for M3+M4-10-Hp30 film; whereas the Folin reactive 

substances were 2 times higher in the M3+M4-10-Hp15 film and 3 times higher in the M3+M4-10-Hp30 

film. 

FTIR spectra showed the reduction of the carrageenan proportion at the expense of Hp 

incorporation in the film, increasing the short peptide content and the hydrogen bonding and 

carrageenan-peptide interactions with increasing concentrations of Hp, and being especially noticeable in 

M3+M4-10-Hp30 films. DSC thermograms also suggested carrageenan-peptide interactions (Baeza, 

Carp, Pérez, & Pilosof, 2002) and a plasticizing effect induced by the increase in the hydrolysate addition, 

evidenced by a progressive melting temperature increase and enthalpy reduction. 

As observed in the rheological analysis of the film forming solution, the hydrolysate addition in 

appropriate concentrations led to stronger gel properties, resulting in a more stable film structure by 

increasing the interactions between carrageenan helices, plasticizer and peptides. Therefore, M3+M4-10-

Hp15 film increased the water vapour impermeability compared to M3+M4-10 and M3+M4-10-Hp30. The 

increase in the Hp concentration in the film did not affect the water solubility of the film, but it conferred 

more flexibility to the film and also improved its mechanical puncture strength (Figs. 28 and 29). 

12.3.3.1.3. Comparative study of the addition of different extracts 

The addition of different bioactive extracts to Mastocarpus film forming solutions resulted in a 

diverse film antioxidant activity response (Fig. 28). While M3+M4+M1 Folin reactive substances had a 

significantly higher free radical scavenging capacity than M3+M4 film, the M3+M4-10-Hp film activity 

depended on the amount of Hp added (30%>15%). It could be concluded that a significant amount of 

Mastocarpus active compounds were extracted in M1, and remained available in the Mastocarpus 

biopolymeric matrix, resulting in a remarkable increase in the film activity.  

The hydrolysis-induced peptide release led to a pronounced increase in ABTS values and Folin 

reactive substances, however, the resulting films were not as active as with the M1 aqueous extract, 

probably due to an excessive interaction with the biopolymeric components. 

When bioactive extracts were added to the film forming solutions, the resulting films experienced 

an increase in their thickness, which was higher with increasing amounts of hydrolysate and extremely 

high in M3+M4+M1, suggesting a better inclusion of the hydrolysate than of the M1 extract in the matrix. 

This less efficient matrix entrapment of M1 did not affect the film moisture values but resulted in the 

highest film water vapour permeability. 
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Figure 28. ABTS radical scavenging capacity and Folin reactive substances of M1 and Hp extracts, and 

M3+M4, M3+M4-10, M3+M4+M1, M3+M4-10-Hp15, and M3+M4-10-Hp30 films. 

 

Figure 29. Water resistance for M3+M4, M3+M4-10, M3+M4+M1, M3+M4-10-Hp15, and M3+M4-10-

Hp30 films. 

M3+M4+M1 film extended the M3+M4 water resistance to film breakage time (Fig. 29), but both 

M3+M4 and M3+M4+M1 films lasted considerably less time and were elongated less centimetres than 

M3+M4-10, M3+M4-10-Hp15 and M3+M4-10-Hp30 films. This difference was probably caused by the low 

plasticizer content, but also proved that, although the hydrolysate addition can cause an adverse 

plasticizing effect (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009), the peptide 
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biopolymer matrix bonding (Baeza, Carp, Pérez, & Pilosof, 2002) resulted in an overall more water 

resistant film, being the M3+M4-10-Hp30 film highlighted due to its higher hydrolysate content. 

Regarding the mechanical properties, in general, the addition of bioactive compounds weakened 

the film strength and the tensile stiffness, but considerably increased the film capacity to elongate prior to 

breakage, as it was also shown during the water resistance test. The tensile elongation response was two 

times higher in the M3+M4+M1 film than in any hydrolysate-incorporating film. Despite the detriment to 

the tensile strength and Young’s modulus, the addition of bioactives to the films increased both the film 

puncture force and deformation (Fig. 30). M3+M4+M1 was also the most flexible film, and 30% was the 

optimal hydrolysate addition for obtaining the best puncture strength. 

 

Figure 30. Puncture test results for M3+M4, M3+M4-10, M3+M4+M1, M3+M4-10-Hp15 and M3+M4-10-

Hp30 films. 

12.3.3.2. Microencapsulation of bioactive peptides 

Dosidicus gigas tunic hydrolysis has been carried out in order to obtain bioactive peptides from its 

collagenous material. These hydrolysates have shown different activities such as antioxidant and 

antihypertensive. Direct hydrolysate addition to different food products, and specifically to film forming 

solutions, has reported to confer a bitter flavour (Sun-Waterhouse & Wadhwa, 2013) and excessive 

plasticization (Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009), being the organic 

microencapsulation a good alternative to preserve the hydrolysate activity (Gibbs, Kermasha, Alli, & 

Mulligan, 1999) while avoiding the possible adverse consequences of the direct addition on both the 

sensory and physical properties.  

In the present study, a <1kDa peptide fraction from Dosidicus gigas tunics hydrolysate, was used 

for microencapsulation. 

12.3.3.2.1. Microencapsulation preliminary studies 

Based on previous results, three different encapsulation coating materials were tested: i) an 

alginate rich extract (Lc), ii) a carrageenan rich extract (M3+M4 (50:50)), and iii) a lipid mixture composed 
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of stearic acid + carnauba wax (75:25). Due to their good filmogenic capacity, alginate and carrageenan 

have been widely used as encapsulation materials (Rinaudo, 2008), while lipid materials, as the carnauba 

wax/stearic acid combination, have shown good results in different drug encapsulation studies (Fini, 

Cavallari, Rabasco Álvarez, & Rodríguez, 2011), making them potentially suitable for food applications. 

The inkjet printing microencapsulation technology (Houben, Rijfers, Brouwers, Eversdijk, & Van 

Bommel, 2009) provides the possibility to convert liquids into powders and separate core and shell flows, 

allowing a continuous mild process to obtain final products that are normally mono-dispersed core-shell 

microcapsules, but that can also be formed by matrix complexation. 

Depending on the encapsulation coating material used, two different microencapsulation models 

were tested: i) gelation by cation complexation was performed to entrap the active hydrolysate inside the 

seaweed extract matrix capsule (Figure 31A), and ii) core peptide solution droplets were generated by the 

inkjet technology and encapsulated by a thin liquid film of shell material made of stearic acid + carnauba 

wax (Figure 31B).  

 

Figure 31. A. Gelation by cation complexation. B. Core-shell microencapsulation. 

12.3.3.2.2. Gelation by cation complexation 

Gelation was performed with 10% KCl and CaCl2 solutions for the corresponding cation 

complexation with 1.5% Mastocarpus and Laminaria solutions, respectively. In order to accelerate cation 

complexation, peptide seaweed extract droplets were passed through a thin film and collected in a 

container with the same cation solution. 

All raw materials were adjusted to the appropriate concentrations and temperatures that would 

result in suitable density values for being printed by the inkjet encapsulation technology (Table 5). 
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Sample Density (g/mL) 

1.5% Mastocarpus stellatus solution (21 ºC) 1.1 ± 0.03 

1.5% Laminaria digitata solution (21 ºC) 1.02 ± 0.04 

shell material: stearic acid/carnauba wax (105 ºC) 0.81 ± 0.03 

core material: demineralized water (35 ºC) 0.97 ± 0.02 

core material: 1% hydrolysate solution (35 ºC) 1.04 ± 0.02 

Table 5. Density of potential raw materials to be used in the inkjet printing encapsulation technology. 

One of the main limitations of the printing encapsulation technology is the sample viscosity. The 

viscosity of all potential raw materials was measured at increasing shear rates (Fig. 32). 

Core and shell material processings are performed separately. While the shell material system 

tolerates much higher temperatures (<200 ºC) and suits better to high viscosities, the core inkjet process 

has more limitations (<80 ºC and viscosity dependent on the nozzle size). The viscosity of the lipid nature 

shell material was important in order to estimate the temperature to be used during its processing as shell 

material. 

Since peptides (hydrolysate) would be present in the core material, high temperatures were 

undesirable during its processing (Kauffman, Kneivel, & Watschke, 2007). For comparison purposes, 

demineralized water was also microencapsulated. Demineralized water and 1% peptide solution core 

materials had low but stable viscosity values (<1mPa·s), being almost shear rate independent. However, 

seaweed materials showed much higher viscosity values. While 1.5% Laminaria digitata solution 

remained stable at increasing shear rates, with ~15 mPa·s values, 1.5% Mastocarpus stellatus solution 

had values of ~250 mPa·s at low shear rates that were brought down to ~125 mPa·s at around 100 s-1.  

 

Figure 32. Shear rate dependent viscosities of the potential core and shell fluids for the encapsulation 

process. 
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Due to the high viscosity values of the seaweed solutions, printing encapsulation tests were 

performed with a lower dry matter content (1%) in an attempt to test their viability as encapsulation 

materials for gelation by cation complexation. 

 

Figure 33. Microscopic pictures (Zeiss AxioImager M1m + AxioCam MRc 5) of A. 1% Mastocarpus 

stellatus microcapsules, and B. 1% Laminaria digitata microcapsules, obtained through gelation by cation 

complexation. 
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Despite having lowered the dry matter content in the Mastocarpus solution, it was still too viscous 

to be printed, even after an additional lowering of the solution concentration and an increase of its 

temperature (Fig. 33A). Moreover, carrageenan cation complexation was slower than it was expected to 

be, making the processing even more difficult. The high protein content in the Mastocarpus extract might 

have adversely affected the gelation process (Andrade, Azevedo, Musampa, & Maia, 2010), delaying the 

double helixes complexation (Wu & Imai, 2012). 

On the other hand, the 1% Laminaria solution gelled forming spherical microcapsules of ~110 µm 

in diameter (Fig. 33B), but did not retain the peptides inside the matrix in an aqueous medium, releasing 

them during the first 3-4 hours (Fig. 34).  

 

Figure 34. Peptide release over time of 1% Laminaria digitata microcapsules suspended in the 10% 

CaCl2 collecting solution. 

The alginate “egg-box” gel structure, as described by Grant (1973), resulted in a porous matrix 

that did not retain inside peptides smaller than 1kDa. It has been reported that alginate gels only retain 

molecules larger than 5000 kDa (Gibbs, Kermasha, Alli, & Mulligan, 1999) 

12.3.3.2.3. Core-shell microencapsulation model 

Due to the impossibility of both inkjet printing any Mastocarpus solution and retaining peptides 

inside a Laminaria matrix, seaweed extracts did not result in suitable raw materials for the 

microencapsulation of <1 kDa peptides. In this respect, the use of the core-shell model with lipid nature 

shell materials was proposed. Both core and shell materials had densities and viscosities suitable for the 

printing encapsulation technology, resulting in spherical microcapsules of 110-140 µm in diameter (Fig. 

35A). Peptide solutions with concentrations higher than 1% (2, 5, and 20%) posed some difficulties during 

the process, resulting in sticky and non-homogeneous microcapsules (Fig. 35B). 

Two different microcapsules were obtained, distilled water microcapsules (C) and 1% peptide 

solution microcapsules (Cp). Low Temperature-Scanning Electron Microscopy showed that 1% peptide 

microcapsules were more oval-shaped than capsules developed with distilled water, some of them 
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presented a single protrusion and a small percentage were not entirely closed during the encapsulation 

process (Fig. 36). Images suggested that microcapsule irregularities might have been caused by 

interactions between peptides and the stearic acid from the shell material. Stearic acid has shown to 

attract peptides and proteins from aqueous subphases (Zadmard & Schrader, 2004) and hydrophobic 

peptides can interact with stearic acid (Joseph & Nagaraj, 1988). However, both the hydrophobicity and 

the peptide charge can influence the affinity of the peptide-lipid interactions, showing the neutral peptides 

a deeper interaction than the charged ones (De Kroon, Soekarjo, De Gier, & De Kruijff, 1990). 

 

Figure 35. Microscopic pictures (Zeiss AxioImager M1m + AxioCam MRc 5) of A. 1% peptide core-shell 

microcapsules B. 2, 5 and 20% peptide core-shell microcapsules. 

Despite the microcapsule slight irregularities, as shown by optical and low temperature electron 

microscopy, the peptide entrapment efficiency was 84.7 ± 3.4% and its stability varied depending on the 

environmental conditions. At pH 7, microcapsules presented only a first peptide release of ~20%, 

reaching the stability after 1 hour, and at pH 5 they exhibited a linear slow peptide release that might lead 

to a controlled release model. At pH 2.6 and 9.2 they released ~40% of the peptides after 1 hour, but 

while at pH 2.6 they reached the stability at said time point, at pH 9.2 they continued with a slow release 

over time. Depending on the purpose of the encapsulated peptides, pH modifications in the microcapsule 

carrier could be used to obtain the release model required (Fig. 37). 
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Figure 36. Low Temperature-Scanning Electron Microscopy picture (Oxford CT 1500 Cryo Sample 

Preparation Unit) of a 1% peptide microcapsule not entirely closed.  

 

Figure 37. Amplified pictures (Stereomicroscope Stereo Zoom L2S8 APO. Leica Microsystems, 

Switzerland) of 1% peptide microcapsule release after 3 hours at pH 2.6, 5, 7 and 9.2. 
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12.3.3.3. Microcapsule incorporation in Laminaria digitata film 

The diameter size of the microcapsules forced an increase in film thickness to promote their 

inclusion in the matrix. In order to obtain a microcapsule homogeneous dispersion in the film matrix, the 

addition of polysorbate 80 surfactant was carried out. Ultimately, the use of TMTP09030 Isopore 

polycarbonate membranes further improved the microcapsule dispersion during the film drying process.  

The addition of microcapsules resulted in a discontinuous Lc-3 film with a lipid content that, in 

comparison with films without capsules, was stronger, with a higher stretching capacity, less permeable to 

water vapour but more water soluble, opaque and with a lower puncture strength. 

Laminaria digitata hydrophilic films might be used as microcapsule carriers, contributing to the 

design of a peptide controlled-release system and to their preservation from the environmental conditions.  

12.4. Study of the main characteristics of different films 

Many different films have been developed in the present work. All of them were made of marine 

edible resources, and most of them turned out to be edible. 

The appearance of edible films, including transparency and colour, is an important criterion in the 

selection of edible films, since the consumer prefers colourless transparent packaging materials. 

However, on occasion, consumers may also like translucent and coloured films. 

Colour results (Table 6) revealed that both protein and polysaccharide films had a low lightness 

(L*), being protein rich films slightly lighter. Protein rich films were more transparent than polysaccharide 

rich films; however, M3, having properties closer to commercial carrageenan films, resulted in the highest 

transparency among all the polysaccharide films obtained. The addition of hydrolysates to M3+M4-10 

films, and the high glycerol content together with the presence of polysorbate 80 in Lc-3, contributed to 

increase film transparency. Among all the films, both solubilized (S) and concentrated (C) acidic protein 

films were the most transparent films. 

Protein rich films were mainly colourless, which might have contributed to their higher 

transparency, while the yellowish tendency (+ b*) of alkaline-S and acidic-C4 films was highlighted. The 

different protein state of alkaline-S and acidic-C films might have favoured Maillard reaction in both films 

but at a different rate. Alkaline conditions together with the drying temperature (45 ºC) might have 

boosted a fast protein glycation with sorbitol and glycerol during the development of muscle alkaline-S 

films, while the protein preservation in acidic-C films, together with the storage time in a suitable water 

activity environment (0.68), might have favoured the same Maillard reaction but at a slower rate during 4 

months, resulting in an even higher increase in the yellowish tendency (Leerahawong, Tanaka, Okazaki, 

& Osako, 2012; Sanmartín, Arboleya, Villamiel, & Moreno, 2009). 

Seaweed pigments were extracted together with polysaccharides, proteins and minerals, 

reducing film transparency and contributing to a specific colour in each case (Fig. 38). 

All films constituted good UV barriers except for alkaline-C4 and M3 films (Fig. 39). As shown in 

previous results, the protein aggregation experienced during the storage time affected C-films in a 
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different way. Alkaline-C film suffered a matrix disruption (Anuchit Artharn, Prodpran, & Benjakul, 2009), 

such that it increased its opacity and failed to absorb the UV radiation. M3 extract resulted in films with 

properties closer to commercial carrageenan films (almost colourless and transparent) (Rhim, 2012) but 

that were not as good UV barrier as the rest of the polysaccharide rich films developed in this work.  

Film L* a* b* Transparency 

Protein rich films   

water-S 34.44 ± 0.24 -1.00 ± 0.05 0.06 ± 0.01 3.48 ± 0.42 

salt-S 35.98 ± 0.64 -1.15 ± 0.13 0.10 ± 0.1 3.40 ± 0.44 

alkaline-S 34.23 ± 0.12 -1.24 ± 0.03 1.26 ± 0.07 1.14 ± 0.26 

acidic-S 35.93 ± 0.87 -0.69 ± 0.03 -0.56 ± 0.09 0.73 ± 0.05 

alkaline-C 34.73±0.27 -0.93±0.05 -0.51±0.01 0.95 ± 0.03 

acidic-C 33.66±0.15 -0.93±0.04 0.07±0.11 0.6 ± 0.01 

alkaline-C4 34.96±0.41 -0.85±0.15 0.84±0.23 1.16 ± 0.03 

acidic-C4 33.35±0.06 -1.33±0.02 4.07±0.18 0.56 ± 0.08 

Polysaccharide rich films 

M3 30.70 ± 0.58 -0.8 ± 0.07 1.72 ± 0.19 2.71 ± 0.06 

M4 28.90 ± 0.62 -0.88 ± 0.10 4.35 ± 0.17 11 ± 0.13 

M3+M4 29.45 ± 0.23 -1.05 ± 0.06 3.85 ± 0.34 6.68 ± 0.28 

M3+M4+M1 28.43 ± 0.37 -0.60 ± 0.16 5.26 ± 0.21 11.74 ± 1.39 

M3+M4-10 28.65 ± 0. 29 -0.57 ± 0.03 4.57 ± 0. 11 7.14 ± 0.24 

M3+M4-10-Hp15 27.99 ± 0.08 -0.30 ± 0.05 4.72 ± 0. 04 6.61 ± 0.30 

M3+M4-10-Hp30 29.25 ± 0.05 -0.70 ± 0.03 4.36 ± 0.04 6.12 ± 0.12 

Lc 28.07 ± 0.3 -0.03 ± 0.07 5.99 ± 0.29 17.12 ± 0.71 

Ac 24.04 ± 0.33 1.78 ± 0.06 2.52 ± 0.16 8.39 ± 0.76 

Lh 28.47 ± 0.21 0.24 ± 0.05 4.34 ± 0.14 11.96 ± 0.44 

Ah 25.15 ± 0.43 0.82 ± 0.36 -0.47 ± 0.63 16.36 ± 0.76 

Lc-3 25.1 ± 0.5 3.52 ± 0.2 4.54 ± 0.5 6.99 ± 0.27 

Microcapsule addition to polysaccharide rich films 

Lc-3-C 25.1 ± 1.1 3.27 ± 0.5 4.57 ± 0.8 8.42 ± 0.34 

Lc-3-Cp 26.6 ± 0.8 3.75 ± 0.6 5.92 ± 1.0 7.97 ± 0.28 

Table 6. L*, a*, b* and Transparency (− log (T600/x)) of protein and polysaccharide rich films. 

Red algae chloroplasts are known for containing chromophores called phycobilins (O'Carra, 

Murphy, & Killilea, 1980), which are photosynthetic pigments thioether-bonded to certain water soluble 

proteins named phycobiliproteins (Carra, Ó Heocha, & Carroll, 1964) that might have contributed to 

Mastocarpus films light barrier, depicting an absorption area at ~600 nm (red colour). Red seaweeds also 

contain other carotenoids and chlorophyll, responsible for the absorption at 400-450 nm (violet-blue-green 

colours) (Sühnel, Hermann, Dornberger, & Fritzsche, 1997). Nevertheless, M3 films did not present this 

light transmission profile and M1 addition resulted in the most opaque Mastocarpus film. 
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Figure 38. Pictures of protein and polysaccharide rich films. 
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Figure 39. Light transmission at 200-800 wavelengths range of protein and polysaccharide rich films. 

Brown seaweed films transmitted less light than the rest of the films, probably due to their strong 

red-brown pigments, which was quite evident from the absorption peak around 650-700 nm (Gildenhoff, 

Herz, Gundermann, Büchel, & Wachtveitl, 2010). Ascophyllum films presented a higher reddish tendency, 

closer to 600 nm, typical for chlorophyll and other carotenoids (Goss, Wilhelm, & Garab, 2000). Laminaria 

films depicted a main peak closer to the brown colour at 700 nm (Bricaud, Babin, Morel, & Claustre, 

1995), specifically at 675 nm, corresponding to the carotenoid fucoxanthin that, in combination with 
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chlorophyll, binds to some proteins forming complexes in the thylakoid and acting as a light harvesting 

system (Gildenhoff, Amarie, Gundermann, Beer, Büchel, & Wachtveitl, 2010). 

Film Film solubility (%) TS (MPa) EAB (%) Y (MPa) 

Protein rich films     

water-S 40.7 ± 0.51 1.36 ± 0.32 1.82 ± 0.28 83.8 ± 17 

salt-S 47.7 ± 0.38 0.97 ± 0.33 1.90 ± 0.89 51.0 ± 17 

alkaline-S 45.5 ± 0.78 3.10 ± 0.53 12.1 ± 3.25 55.0 ± 12 

acidic-S 42.9 ± 0.56 0.85 ± 0.60 13.3 ± 1.68 34.0 ± 4.9 

alkaline-C 26.6 ± 0.63 1.54 ± 0.23 10.1 ± 4.82 184 ± 53 

acidic-C 30.5 ± 2.34 0.96 ± 0.10 8.08 ± 2.47 156 ± 11 

alkaline-C4 44.1 ± 2.17 1.61 ± 0.24 1.53 ± 1.08 207 ± 66 

acidic-C4 38.2 ± 1.82 1.46 ± 0.27 11.7 ± 5.46 182 ± 2.9 

Polysaccharide rich films     

M3 59.2 ± 3.29 13.9 ± 0.39 2.40 ± 0.1 459 ± 36 

M4 30.4 ± 2.59 16.2 ± 0.76 1.28 ± 0.08 553 ± 37 

M3+M4 37.3 ± 3.61 14.1 ± 0.18 1.38 ± 0.31 517 ± 24 

M3+M4+M1 34.5 ± 1.52 15.2 ± 3.74 4.11 ± 1.0 317 ± 3.4 

M3+M4-10 21.0 ± 4.5 60.0 ± 2.27 0.95 ± 0.11 1797 ± 61 

M3+M4-10-Hp15 25.8 ± 3.64 51.4 ± 3.75 1.59 ± 0.09 1347 ± 74 

M3+M4-10-Hp30 22.2 ± 2.95 41.6 ± 2.95 2.47 ± 0.24 1054 ± 45 

Lc 79.2 ± 0.91 6.01 ± 1.58 1.20 ± 0.35 103 ± 3.2 

Ac 85.3 ± 2.49 1.50 ± 0.19 3.49 ± 0.32 5.99 ± 0.5 

Lh 74.4 ± 0.76 40.7 ± 4.05 0.91 ± 0.37 1082 ± 67 

Ah 70.3 ± 2.37 9.13 ± 1.98 2.16 ± 0.81 160 ± 43 

Lc-3 86.0 ± 1.7 6.6 ± 2.1 1.31 ± 0.74 88 ± 25 

Microcapsule addition to polysaccharide rich films   

Lc-3-C 94.8 ± 2.9 10.8 ± 0.9 2.87 ± 0.4 183 ± 10 

Lc-3-Cp 92.9 ± 1.9 10.1 ± 0.8 3.23 ± 0.2 185 ± 14 

Table 7. Film solubility, tensile strength (TS), elongation at break (EAB) and Young’s elastic modulus (Y) 

of protein and polysaccharide rich films. 

Although Ascophyllum films presented a higher reddish tendency (+ a*) than Laminaria, the 3 

times increase in Lc thickness resulted in Lc-3 films with the highest reddish tendency, probably due to 

the dry matter increase. The inclusion of microcapsules did not interfere with film transparency but 

considerably reduced the full range of visible light transmitted, contributing favourably to food 

preservation from light. 

In general, protein films were more transparent and colourless, while seaweed films presented 

the colour corresponding to the species of origin. Protein aggregation during film storage time was 

detrimental to the optical properties in Dosidicus gigas films. The direct inclusion of seaweed active 

compounds in the films, and the addition of microcapsules to the films improved the UV-visible light 

barrier properties of the films. 
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In general, edible protein and polysaccharide films show poor water barrier properties, but this 

study evidenced that the higher the protein content, the less water soluble and more water resistant were 

the films (Tables 7 and 8). Protein rich films were the least soluble and the most water resistant, 

specifically those elaborated under alkaline conditions and with the most purified protein concentrate, 

being alkaline-C film unbreakable and resistant to water filtration. On the other hand, polysaccharide films 

generally showed a higher tensile strength. 

Among all polysaccharide rich films, red seaweed films presented better water barrier properties 

than brown seaweed samples. The high protein content in red algae evidenced the importance of the 

protein role in the formation of the film matrix.  

Among all Mastocarpus films, those with bioactive extract addition presented better water barrier 

properties. Nevertheless, the films developed with the lowest glycerol content and with hydrolysate 

addition were the least soluble and the most water resistant. It is well known that glycerol adversely 

affects the water barrier properties of the films (Gontard, Guilbert, & Cuq, 1993), and that a higher protein 

content results in stronger matrixes (Gennadios, 2002). 

Regarding the low water barrier of brown seaweed films, it is important to note two facts: i) 

despite Lh high solubility values, its water resistance to breakage time was as good as that of M3+M4-10-

Hp30, and ii) the lipid nature of the microcapsules considerably improved the water vapour barrier of the 

films, but made them more susceptible to water solubility and less water resistant. 

Nevertheless, protein rich films showed lower tensile strength (TS) and Young’s elastic modulus 

(Y) (Table 7) than polysaccharide rich films. Mastocarpus films, developed with a low glycerol content and 

with hydrolysate addition, and Lh films, were the most outstanding for their strength and stiffness. 

In general, protein rich films showed a higher elongation at break (EAB) capacity than 

polysaccharide rich films, being C-films the most flexible among all of them. Protein aggregation, caused 

by aging, adversely affected C-film flexibility, yet maintaining higher values in comparison with 

polysaccharide films. 

Results showed that both the strength and stiffness were inversely related to the elongation of the 

films at the breakage point. Films with higher elongation values usually require a lower load to cause film 

breakage (Gennadios, Weller, & Testin, 1993). 

In conclusion, protein rich films generally presented better water barrier and flexibility properties 

than polysaccharide rich films, while polysaccharide rich films were more resistant to mechanical stress. 

12.5. Potential film industrial applications 

The main techniques used to form edible coatings are spray systems and immersion procedures, 

such as dip coating; while solvent casting and extrusion processes are applied to form edible films. The 

main disadvantage of these techniques is the loss of quality, since there is no control over the shape, size 

and size distribution of the dispersed elements (additives, ingredients). 
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The leading technologies utilized for the production of edible films are similar to those used for 

thermoplastic structures, under different conditions for the solvent casting and the extrusion, but sharing 

the same principles.  

Film Film Elongation (cm)  Breakage time (min) Filtration time (min) 

Protein rich films 

water-S 1.3 ± 0.5 Unbreakable 300 ± 30 

salt-S 1 ± 0.1  3000 ± 120 120 ± 18 

alkaline-S 1.3 ± 0.1 2880 ± 60 10.2 ± 1.8 

acidic-S 2 ± 0.2 5.4 ± 0.6 * 

alkaline-C 1 ± 0.1 Unbreakable * 

acidic-C 2.5 ± 0.2 2400 ± 90 * 

Polysaccharide rich films 

M3 2.7 ± 0.02 9.33 ± 0.58 8.33 ± 0.58 

M4 2 ±0.02 18 ± 6.08 * 

M3+M4 1.7 ±0.01 8 ± 3.46 * 

M3+M4+M1 1.50 ± 0.01 32.33 ± 16.26 * 

M3+M4-10 2 ± 0.01 37.29 ± 10.48 * 

M3+M4-10-Hp15 2 ± 0.01 50.08 ± 14.18 * 

M3+M4-10-Hp30 2 ± 0.01 99.5 ± 10.61 * 

Lc 0.6 ± 0.02 7.12±0.71 * 

Ac 0.3±0.01 0.16 ± 0.08 * 

Lh 2 ± 0.2 106.83 ± 30.05 * 

Ah 0.2±0.01 0.28±0.05 * 

Lc-3 1.5 ± 0.01 3.17 ± 0.76 * 

Microcapsule addition to polysaccharide rich films 

Lc-3-C 1 ± 0.01 3.5 ± 0.71 * 

Lc-3-Cp 1.5 ± 0.01 1.88 ± 0.34 * 

Table 8. Water resistance parameters: maximum film elongation, breakage time and filtration time of 

protein and polysaccharide rich films.  

* No filtration 

Solvent casting is the most used technique to form hydrocolloid edible films, but edible films are 

usually produced by continuous film casting, mold casting or draw-down bar methods. The mold casting 

and the draw-down bar techniques are simple and inexpensive methods that can be used for the 

production of edible films at a laboratory scale, while the continuous film casting method (known as 

spread coating) can be accomplished by applying a wet film layer onto a belt conveyor and then passing 

it through a drying chamber (Fig. 40).  

All the edible biopolymeric materials utilized in the experiments were easy to produce and handle 

since they required low temperatures and non-toxic solvents. Some formula adjustments were required in 

order to make them suitable for the “spread coating” procedure. Red seaweed film forming solutions 

needed temperatures lower than those commonly used during the film forming solution processing, and it 
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was also necessary to increase the viscosity of brown seaweed film forming solutions by increasing the 

dry content (Fig. 41). 

 

Figure 40. Continuous film casting scheme (spread coating). 

All films developed in this study contained edible nutrients extracted from marine products and 

were susceptible of use in the final food products, either forming part of a packaging improvement as 

wrapping materials, or in the final serving presentation as stand-alone films. Moreover, they could be 

directly coated onto a food as thin layers, or formed into films without changing the original ingredients or 

the processing method. 

Dosidicus gigas muscle solubilized protein films might be used as part of seafood products 

packaging. However, in water-S and salt-S films, the addition of a food preservative (for example 

potassium sorbate E 202) is recommended.  

Alkaline and acidic concentrated proteins resulted in better quality films. Apart from the possibility 

of being part of an edible packaging, they could be used in the final presentation of different foods, like 

seafood products and vegetables, as edible film coatings protecting the contents. Due to the fact that 

nitrogenous compounds were removed during the concentration, films showed a less intense or even 

non-existent flavour, which would increase the number of possible applications. 

Seaweed films would represent a different way of human algae consumption, reducing the strong 

algae flavour of the traditional commercial presentations, and making possible their commercialization in 

two different presentations: i) the powder form, for different cooking applications as a coating material; or 

ii) the film form, to apply over food products of different origin such as, vegetables, confectionery or 

seafood, forming part of the final serving presentation.  

Apart from the wide range of culinary applications for seaweed films, the seaweed extraction 

procedures have allowed the possibility of conferring (technological and nutritional) functionality to these 
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products, so that they could be included in the growing health food products market. Moreover, 

procedures like hydrolysis have shown to improve seaweed compounds digestibility, increasing its 

nutritional value (Fleurence, 1999; Gupta & Abu-Ghannam, 2011). 

 

Figure 41. Film developed by “spread coating”. 

All the studied edible films were susceptible to heat-sealing. Water resistant films, such as 

alkaline-C and acidic-C, could be used in combination with food products with high moisture content; 

while less water resistant films could be combined with more fatty ingredients and dried food 

presentations. A broad spectrum of foods from different origins can be applied in the development of new 

food serving presentations with edible films, where the traditional Asian small bags or spring roll-like 

products represent possible uses (Fig. 40), but also films as salad containers, edible fish greased paper 

or as condiment cube coating material. 

Using the seaweed extract powder as starting ingredient, many different ingredients and additives 

can be added to the formula to change its properties. Moreover, by changing the drying process different 

textures can be obtained, crispy as M4 films or gummy as M3 films. 

In view of the results obtained, we should examine the possibility of developing new products by 

mixing concentrated protein and seaweed extracts in such a way that the weaknesses could be 

strengthened and new filmogenic textures could be developed. 

Edible film coatings would play an important role in food preservation by: i) protecting the food 

from reacting with environmental factors, ii) reducing the transfer rate of the food constituents to the 

environment, iii) promoting in some cases an easier handling, and iv) exploring new flavour combinations 

or masking undesirable or strong tastes. 
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As for microcapsules, apart from the mentioned benefits attributed to edible film coatings, they 

specifically present more advantages, such as: i) the controlled release of the core material, ii) the core 

material dilution when it has to be used in small amounts, and iii) the possibility to be used in different 

food products apart from edible films (Shahidi & Han, 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Different film applications in food products. A: Mastocarpus film with chocolate. B & C: 

Mastocarpus antioxidant film with smocked cod. D: Laminaria film with cheese. E: Different film crude 

coating presentations. F: Fried film coating presentations G: Serving presentation example. 

Further organoleptic analysis and industrial scale studies are still ongoing in order to extend the 

applications of the developed film coatings and find consumer attractive combinations. This kind of food 

products offer new consumption trends for these materials, which are either considered industrial waste 

or underutilized species. 
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1. Dosidicus gigas muscle proteins, either as solubilized or concentrated extracts, present filmogenic 

properties, although each type shows different characteristics. The concentrated films highlights 

are their greater mechanical strength and water resistance. The acidic concentrated films are 

elastic and malleable, while the alkaline concentrated films are stronger and very water resistant. 

2. The stability of the Dosidicus gigas acidic concentrated films is much higher than that obtained 

with alkaline concentrated films. 

3. Extractions performed in several steps, from both red and brown seaweeds, result in a complex 

polymeric material with a filmogenic capacity similar to and, in some cases, improved in relation to 

that of the commercial carrageenan and alginate. 

4. The aqueous active extracts and the hydrolysates obtained, with antioxidant and antihypertensive 

properties, can constitute in themselves food ingredients. 

5. The integral Mastocarpus extraction allows the recovery of hybrid ĸ/ι-carrageenan and proteins, 

which results in stiffer and more water resistant films, due to the carrageenan-protein interactions; 

while films developed with more purified carrageenan extracts are more malleable and 

transparent. These differences in their properties allow more diverse applications. 

6. The sodium hydroxide treatment of brown seaweeds represents a novel and alternative alginate 

extraction method, wherein the structure of the uronic acid units is more preserved. This favours 

inter-polymeric interactions, and consequently, a higher mechanical strength in the films, 

especially in Laminaria digitata. On the contrary, with the classic sodium carbonate extraction, 

smaller polymeric fractions are obtained, which produce a higher plasticizing effect, resulting in 

more malleable films, especially in Ascophyllum nodosum. 

7. Dosidicus gigas protein films are more transparent, colourless, with a higher water barrier and 

more malleable; while seaweed polysaccharide films present the characteristic colour of the 

source species and show more tensile strength. 

8. The development of films with active extracts (aqueous or hydrolysates) of Mastocarpus stellatus 

confers antioxidant properties, increases the light (UV/V) barrier properties, water resistance, and 

puncture strength, being these last physical properties mainly attributed to protein-carrageenan 

interactions. 

9. The inkjet printing technology by the core-shell model, using stearic acid/carnauba wax as 

encapsulation materials, resulted in a very efficient process for the homogeneous 

microencapsulation of active peptides. 

10. A procedure for the homogeneous inclusion of microcapsules in the films while preserving their 

integrity, either in the filmogenic solution or during the drying process, has been developed. The 

inclusion of microcapsules improves the tensile strength, the water vapour impermeability and the 

opacity of these films. 
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General conclusion 

It is possible to develop films with highly varied properties and susceptible of many applications, 

at an industrial scale, using proteins recovered from Dosidicus gigas waste and red and brown seaweed 

extracts. 
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15.1 Resumen ampliado 

15.1.1. Introducción 

En la actualidad, se está concediendo un creciente interés al desarrollo de diferentes estrategias 

para el uso sostenible de los recursos marinos (Caddy & Griffiths, 1995). 

La industria procesadora del pescado, concretamente la de cefalópodos, genera grandes 

cantidades de residuos (hasta 50-75% de la captura) con alto contenido proteico, que podrían 

recuperarse para usos alternativos al desarrollo de fertilizantes y piensos animales (Shahidi, 1994; 

Cuclas, 1997), y así asegurar su valor añadido y minimizar la cantidad de desechos (Rustad, Storrø, & 

Slizyte, 2011). Durante la retirada de pieles del manto de Dosidicus gigas, entre un 30-40% del músculo 

se descarta, siendo posible la recuperación de estas proteínas para el desarrollo de nuevos co-productos 

(Campo-Deaño, Tovar, Jesús Pombo, Teresa Solas, & Javier Borderías, 2009). 

Por otro lado, las costas atlánticas son ricas en especies de algas comestibles infrautilizadas, 

como por ejemplo Mastocarpus stellatus (alga roja), Laminaria digitata y Ascophyllum nodosum (algas 

pardas). Estas algas se han estudiado debido a su riqueza en carragenato y alginato, de alto interés 

industrial, y compuestos potencialmente bioactivos; pero sería interesante buscar métodos alternativos 

de procesamiento para el desarrollo de formas de consumo alternativas que potencien su uso en 

Occidente (Plaza, Cifuentes, & Ibáñez, 2008; Rinaudo, 2008). 

El desarrollo de métodos de extracción más eficientes e integrales podría dar lugar a distintas 

materias primas con propiedades tecnológicas. En D. gigas se ha estudiado ampliamente la 

solubilización proteica en medios acuosos, salinos, ácidos y básicos, y su concentración mediante 

precipitación isoeléctrica (Palafox, Cordova-Murueta, del Toro, & García-Carreno, 2009; Sánchez-Alonso, 

Careche, & Borderías, 2007); mientras que en el caso de las algas, casi todos los estudios se han 

focalizado en la optimización de la extracción de carragenato y alginato en algas rojas y pardas, 

respectivamente (Hilliou, Larotonda, Abreu, Ramos, Sereno, & Gonçalves, 2006; Vauchel, Leroux, Kaas, 

Arhaliass, Baron, & Legrand, 2009). 

Además, en los últimos años, se han estudiado materias primas de diversos orígenes orgánicos, 

como alternativa a los materiales sintéticos, para el desarrollo de recubrimientos comestibles y/o 

biodegradables (Petersen, Væggemose Nielsen, Bertelsen, Lawther, Olsen, Nilsson, et al., 1999). Por un 

lado, se ha estudiado la capacidad filmogénica de algunas proteínas musculares como las recuperadas 

de los desechos de la industria procesadora de diferentes especies de pescado (Artharn, Benjakul, & 

Prodpran, 2008) y del cefalópodo Todadores pacificus (Leerahawong, Arii, Tanaka, & Osako, 2011); y 

por otro, la del carragenato y alginato extraídos tradicionalmente (Han & Kim, 2008; Nakamura, 

Nishimura, Hatakeyama, & Hatakeyama, 1995). Nunca antes se ha planteado maximizar la extracción de 

las proteínas musculares de Dosidicus gigas y todos los compuestos con potencial tecnológico que las 

algas contienen (proteínas, otros polisacáridos…), aparte de los ficocoloides, para el desarrollo de 

recubrimientos comestibles. 

Por otro lado, se ha demostrado que, tanto los polisacáridos azufrados (carragenato en alga roja 

y fucano en alga parda), como los péptidos y polifenoles que contienen las algas, entre otros, pueden 
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mostrar actividad biológica, como por ejemplo antioxidante y antihipertensora (Fitzgerald, Gallagher, 

Tasdemir, & Hayes, 2011; Ngo, Wijesekara, Vo, Van Ta, & Kim, 2011). Debido a que esta actividad es, 

en ocasiones, susceptible a los cambios bruscos de pH y temperatura, sería interesante desarrollar 

métodos de extracción adecuados para su preservación, que a la vez fueran compatibles con ser 

combinados con las extracciones en condiciones más extremas de los materiales poliméricos. Por 

ejemplo, la combinación de extracciones acuosas y/o hidrólisis enzimática seguidas de una extracción de 

carragenato a altas temperaturas y cortos períodos de tiempo, sería una buena alternativa de tratamiento 

en M. stellatus (Herrero, Cifuentes, & Ibáñez, 2006; Wang, Jónsdóttir, Kristinsson, Hreggvidsson, 

Jónsson, Thorkelsson, et al., 2010). 

Dado que las coberturas comestibles son menos estables que las sintéticas, la posibilidad de 

añadir compuestos activos en su formulación mejoraría la calidad y propiedades funcionales de las 

películas (Falguera, Quintero, Jiménez, Muñoz, & Ibarz, 2011). Sin embargo, la adición directa de 

hidrolizados en recubrimientos comestibles puede ir en detrimento de sus propiedades filmogénicas 

(Giménez, Gómez-Estaca, Alemán, Gómez-Guillén, & Montero, 2009), y conferir además sabor amargo 

en algunas ocasiones (Sun-Waterhouse & Wadhwa, 2013), planteándose nuevos métodos de 

incorporación de péptidos activos, tales como la microencapsulación. 

La microencapsulación es una tecnología que se ha comenzado a utilizar en la industria 

alimentaria como vehículo de compuestos, para protegerlos por diversos motivos, y en el caso de los 

ingredientes activos para resguardarlos de los elementos externos, ya sea durante el procesamiento del 

alimento o en el producto final (Gibbs, Kermasha, Alli, & Mulligan, 1999). Existen muchos tipos de 

encapsulación (coacervación, atomización, liposomas…), pero recientemente se ha aplicado la 

tecnología de inyección para la generación mediante impresión de un nuevo método de encapsulación 

(Houben, 2012), que produce de manera controlada y constante microcápsulas homogéneas según el 

modelo core-shell, que hasta ahora no se ha aplicado en alimentos. La microencapsulación por 

impresión podría ser una buena metodología de encapsulación de hidrolizados. 

Teniendo todo esto en consideración, la obtención de distintos extractos poliméricos y activos de 

D. gigas, M. stellatus, L. digitata y A. nodosum y la microencapsulación, se plantean como nuevas 

oportunidades para desarrollar recubrimientos comestibles, con o sin actividad. 

15.1.2. Objetivos 

El objetivo de esta tesis fue el desarrollo de películas activas y comestibles de proteínas y 

polisacáridos, a partir de recursos de origen marino, tales como los desechos del procesado industrial de 

cefalópodos y las algas infrautilizadas. 

Para este fin, se consideraron los siguientes objetivos parciales: 

1. Valorización de materiales poliméricos recuperados de distintos recursos marinos, para la producción 

de proteínas musculares de desechos del procesado industrial de Dosidicus gigas, y extractos no 

refinados de carragenato y alginato a partir de algas rojas (Mastocarpus stellatus) y pardas 

(Laminaria digitata y Ascophyllum nodosum). 
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2. Desarrollo de películas a partir de los biopolímeros extraídos de productos marinos, y su 

caracterización físico-química para explorar distintas aplicaciones alimentarias. 

3. Obtención y caracterización de extractos acuosos e hidrolizados con propiedades activas 

(antioxidante y antihipertensora), a partir de los desechos del procesamiento industrial de D. gigas y 

de M. stellatus, para su utilización como ingredientes funcionales. 

4. Desarrollo de películas antioxidantes mediante la incorporación de compuestos activos en las 

matrices biopoliméricas. 

5. Microencapsulación de péptidos activos extraídos de las túnicas de D. gigas, mediante el método 

core-shell utilizando la tecnología de impresión por inyección, caracterización de las microcápsulas y 

su incorporación en películas comestibles. 

15.1.3. Resultados 

Obtención de materias primas y desarrollo de películas a partir de músculo de Dosidicus 

gigas 

Las proteínas de D. gigas se recuperaron mediante dos métodos: i) solubilizando en medio 

acuoso, salino, alcalino y ácido y ii) concentrando mediante precipitación isoeléctrica de las proteínas 

solubilizadas en medio alcalino y ácido. Mientras que solubilizando se consigue un uso integral de la 

materia prima, concentrando se restringe a las proteínas susceptibles de precipitar, lo cual garantizaría la 

eliminación de la mayoría de los compuestos nitrogenados responsables del sabor y olor característicos 

de esta especie. En los medios alcalino y ácido se obtuvieron los más altos rendimientos, y al 

concentrarlos se recuperaron proteínas estructuralmente mejor preservadas, y por lo tanto más 

funcionales. 

Mientras que solubilizando en medio alcalino se recuperaron proteínas parcialmente 

desnaturalizadas, con la miosina desdoblada y signos de agregación intramolecular; solubilizando a pH 

ácido las proteínas se hidrolizaron, obteniendo un material polimérico de menor peso molecular. 

Concentrando mediante precipitación isoeléctrica se obtuvo una mayor estabilidad proteica de estos 

extractos, especialmente notable en proteínas solubilizadas en medio ácido. 

Los extractos solubilizados y concentrados de músculo de D. gigas fueron buenas materias 

primas para el desarrollo de películas comestibles, con total manejabilidad, transparentes y con total 

absorción de luz ultravioleta. Las películas de extracto solubilizado en agua presentaron alta barrera al 

agua; si bien estas películas junto con las obtenidas solubilizando con sal, no fueron 

microbiológicamente estables ni presentaron tan buenas propiedades mecánicas como las elaboradas 

con extractos obtenidos a pH alcalino o ácido. 

Los extractos solubilizados en pH alcalino dieron lugar a películas más resistentes al agua, a la 

tracción y perforación mecánica. Estas propiedades mejoraron mucho más con el concentrado alcalino, 

probablemente debido a un aumento de interacciones proteína-proteína. Los extractos solubilizados en 

pH ácido formaron películas con más interacciones proteína-plastificante y deformables. El concentrado 
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ácido disminuyó moderadamente esta afinidad por el agua, mejorando discretamente sus propiedades 

de barrera al agua. 

Tras 4 meses de conservación en condiciones de temperatura y humedad controladas, las 

películas de concentrado alcalino y ácido sufrieron una agregación proteica que se tradujo en un 

aumento de solubilidad. Mientras que las películas alcalinas sufrieron una pérdida de interacciones 

proteína-proteína que se reflejó en una pérdida total de propiedades mecánicas y de barrera al agua, en 

condiciones ácidas las películas sufrieron una reorganización de la matriz que resultó en una ligera 

mejora de sus propiedades mecánicas y de retención de proteínas en la red polimérica al entrar en 

contacto con el agua. En general, las películas de concentrado ácido fueron más estables. 

Obtención de materias primas y desarrollo de películas a partir de Mastocarpus stellatus 

Con el objetivo de aprovechar al máximo todos sus componentes, M. stellatus se sometió a dos 

tipos de extracciones: i) Extracción acuosa escalonada y ii) Hidrólisis con precipitación de carragenato.  

En la extracción acuosa escalonada se obtuvieron dos extractos poliméricos, ricos en el híbrido 

κ/ι-carragenato y en proteínas, con buena capacidad filmogénica: M3 y M4. M3 presentó características 

químicas más parecidas al carragenato comercial, mientras que M4 presentó un alto contenido en otros 

compuestos presentes en el alga tales como proteínas. En esta misma extracción, también se obtuvieron 

dos extractos antioxidantes: M1 y M2. M1 presentó mayores rendimientos de extracción y actividad 

antioxidante, por lo que se eligió como ingrediente en el desarrollo de películas antioxidantes. 

En la hidrólisis se obtuvieron dos hidrolizados con actividad antioxidante y antihipertensora: H 

(con el contenido fenólico parcialmente descartado) y Hp (con contenido fenólico completo). Mientras 

que H presentó la mayor capacidad inhibidora de la enzima convertidora de angiotensina (ECA), Hp fue 

el hidrolizado con mayor capacidad antioxidante y mayor rendimiento de extracción. Hp se seleccionó 

para el desarrollo de películas antioxidantes, aunque obviamente cualquiera de los dos podrían constituir 

en sí mismos ingredientes alimentarios. 

A partir de las dos extracciones ricas en polisacáridos, se desarrollaron dos películas con un 

comportamiento diferente. Mientras que M3 fue adecuada para elaborar películas transparentes y 

flexibles, M4 originó una matriz más resistente al agua y a la fuerza mecánica debido a la mayor 

proporción de uniones proteína-carragenato. La mezcla de M3 y M4 dio lugar a películas con 

propiedades intermedias; y la disminución de la proporción de plastificante aumentó considerablemente 

la resistencia al agua y mecánica de la película M3+M4. 

M1 y Hp presentaron un alto contenido en compuestos azufrados, lo que podría ser debido a dos 

cosas: i) una pequeña fracción de carragenato extraído de manera colateral ii) la presencia de 

ficobiliproteínas ricas en aminoácidos azufrados (Carra, Ó Heocha, & Carroll, 1964) con actividad 

antioxidante (Hirata, Tanaka, Ooike, Tsunomura, & Sakaguchi, 2000; Lin & Stekoll, 2011). A pesar de 

que la actividad antioxidante de M1 fue menor que la de Hp, su incorporación en las películas dio lugar a 

la mayor actividad antioxidante. Este efecto probablemente se debió a una menor interacción entre los 

compuestos de M1 y los de la matriz polimérica. Los péptidos de Hp interaccionaron más eficientemente 
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con las hélices de carragenato y el plastificante de la película, disminuyendo su disponibilidad para 

reaccionar con agentes oxidantes.  

La incorporación de M1 mejoró la resistencia al agua y mecánica de las películas. La adición de 

Hp tuvo un efecto plastificante en las películas que mejoraron su elongación por tracción; aunque 

dependiendo de la proporción de Hp añadida las propiedades filmogénicas se vieron afectadas de forma 

diferente. Así por ejemplo, la adición de un 15% de Hp, con respecto al contenido seco de la película, 

disminuyó su permeabilidad al vapor del agua, mientras que al añadir un 30% sus propiedades ópticas, 

resistencia al agua y respuesta a la perforación aumentaron. 

Obtención de materias primas y desarrollo de películas a partir de Laminaria digitata y 

Ascophyllum nodosum 

En las algas pardas L. digitata y A. nodosum, se analizaron diversos métodos de extracción, con 

el objetivo de suavizar al máximo las condiciones ácidas del pre-tratamiento y optimizar tanto la 

temperatura como el tipo de tratamiento alcalino. Estos extractos, además de contener alginato en mayor 

o menor medida degradado, contendrían la mayor parte del resto de compuestos de cada alga. Se 

diseñó una nueva extracción alcalina con hidróxido sódico y se comparó la tradicionalmente llevada a 

cabo con carbonato sódico para cada especie. De cada tipo de extracción, se eligieron aquellos 

extractos que presentaron mejores rendimientos y capacidad filmogénica.  

Mientras que con NaOH se extrajeron más eficientemente los carbohidratos, con Na2CO3 los 

extractos presentaron el doble de contenido en cenizas. El tratamiento con NaOH recuperó mayor 

proporción de alginato no degradado con un alto contenido en unidades de gulurónico, lo cual facilitó la 

formación de interacciones poliméricas en la película. Sin embargo, la extracción con Na2CO3 recuperó 

un alto porcentaje de alginato degradado y unidades de ácidos urónicos dispersos, lo cual facilitó sus 

interacciones con el plastificante. 

El tipo de tratamiento alcalino condicionó las diferencias entre películas como barrera al agua, 

mientras que la especie de alga influyó en sus propiedades mecánicas. El extracto obtenido con Na2CO3 

de Ascophyllum dio lugar a películas transparentes y flexibles, mientras que el extracto obtenido con 

NaOH de Laminaria formó la película más fuerte y menos permeable al vapor de agua. 

La presencia de pigmentos como la fucoxantina, y de polisacáridos sulfatados como los fucanos, 

confirió actividad antioxidante a las películas (Le Tutour, Benslimane, Gouleau, Gouygou, Saadan, & 

Quemeneur, 1998; Rocha De Souza, Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 

2007). 

La película obtenida con el extracto de NaOH en Ascophyllum tuvo mayor capacidad 

antioxidante que el resto de películas desarrolladas a partir de algas pardas, probablemente debido a la 

presencia de una mayor proporción de compuestos sulfatados. Esta actividad destacó por ser parecida a 

la obtenida en Mastocarpus al añadir hidrolizado antioxidante en su fórmula.  

Como técnica de microencapsulación de péptidos bioactivos, se estudió un nuevo método por 

inyección, mediante impresión en una solución de ácido esteárico y cera de carnauba, siguiendo el 
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modelo core-shell. Se obtuvo una eficiencia de encapsulación del 84.7 ± 3.4% con una ratio de material 

de encapsulación:péptido de 13,3:1, y las cápsulas fueron homogéneas con un diámetro de 110-140 µm.  

Las microcápsulas mostraron diferente estabilidad dependiendo del pH y la temperatura del 

medio, siendo más estables a bajas temperaturas y pH 7. Para evitar la aglomeración y rotura de las 

cápsulas, durante el proceso de elaboración de películas de extracto en Na2CO3 de Laminaria, fue 

necesario desarrollar un método específico de inclusión, obteniendo películas más resistentes y 

deformables a la tracción mecánica. 

Todas las películas desarrolladas en el presente trabajo podrían ser susceptibles de formar parte 

de la presentación final de productos alimenticios, ya sea como parte del envase o como ingrediente 

propio del diseño del alimento. 

Los extractos solubilizados de D. gigas, dado su alto contenido en compuestos nitrogenados, 

mostraron un aroma a pescado característico, por lo que su aplicación quedaría restringida. El resto de 

extractos poliméricos podrían usarse de manera más versátil directamente en diversos tipos de comida, 

siendo posible la modificación de su fórmula para adecuarlo a las necesidades culinarias y abriendo la 

posibilidad de mezclar extractos ricos en proteínas con extractos ricos en polisacáridos para obtener 

propiedades intermedias, o quizá las mejores de ambos.  

Las películas antioxidantes podrían emplearse en la elaboración de alimentos funcionales, como 

parte de la presentación final de un producto alimenticio, mejorando su conservación en el tiempo y sus 

propiedades nutritivas. Pero también se podrían aplicar desde el punto de vista tecnológico para prevenir 

de la oxidación durante el proceso culinario o durante la conservación en tiempos cortos, por ejemplo en 

productos destinados a servicios de catering, o incluso una conservación propiamente dicha en tiempos 

más prolongados. Además, el carácter hidrofílico de las películas desarrolladas las convierte en un buen 

medio para vehiculizar microcápsulas hidrofóbicas, ofreciendo al mercado de alimentos funcionales una 

nueva forma de incorporar compuestos activos a los alimentos. 

15.1.4. Conclusiones 

1. Las proteínas musculares de Dosidicus gigas, tanto en forma de extractos solubles como de 

concentrados, presentan propiedades filmogénicas, aunque muestran características diferentes. Las 

películas de concentrados destacan por su mayor resistencia mecánica y al agua. Las de concentrados 

ácidos son elásticas y deformables, mientras que las de concentrados alcalinos son más fuertes y muy 

resistentes al agua. 

2. La estabilidad de las películas de Dosidicus gigas realizadas con concentrados ácidos es muy 

superior a la de las obtenidas con concentrados alcalinos. 

3. Las extracciones en diversas etapas, tanto de algas rojas como pardas, dan lugar a un material 

polimérico complejo, con una capacidad filmogénica comparable, y en algún caso mejorada, con 

respecto al carragenato y alginato comerciales. 

4. Los extractos activos acuosos y los hidrolizados obtenidos, con propiedades antioxidantes y 

antihipertensoras, pueden constituir en sí mismos ingredientes alimentarios. 
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5. La extracción integral en Mastocarpus permite obtener el híbrido ĸ/ι-carragenato y proteínas, lo 

que da lugar a películas más rígidas y más resistentes al agua debido a las interacciones carragenato-

proteína; mientras que las películas formuladas con extractos más purificados de carragenato son más 

deformables y transparentes. Esta diferencia en sus propiedades permite diversificar sus aplicaciones. 

6. El tratamiento con hidróxido sódico de algas pardas constituye un método alternativo y novedoso 

de extracción de alginato, donde las unidades de ácidos urónicos están estructuralmente más 

preservadas. Esto favorece una mayor interacción interpolimérica y, en consecuencia, mayor resistencia 

mecánica en las películas, en especial en Laminaria digitata. Por el contrario, en la extracción clásica con 

carbonato sódico, se obtienen fracciones poliméricas más pequeñas, que producen mayor efecto 

plastificante, lo cual se traduce en películas más deformables, en especial en Ascophyllum nodosum. 

7. Las películas proteicas de Dosidicus gigas son más transparentes, incoloras, con mayor barrera 

al agua y más deformables; mientras que las películas de polisacáridos de algas son del color 

característico de la especie de origen y más resistentes a la tracción. 

8. La formulación de películas con extractos activos (acuosos o hidrolizados) de Mastocarpus 

stellatus confiere propiedades antioxidantes y aumenta las propiedades de barrera a la luz (UV/V), 

resistencia al agua, fuerza y deformación a la perforación, atribuyéndose estas propiedades físicas 

principalmente a las interacciones proteína-carragenato. 

9. El modelo core-shell mediante la técnica de impresión por inyección, utilizando como materiales 

de encapsulación el ácido esteárico/cera de carnauba, es un proceso muy eficiente para la 

microencapsulación homogénea de péptidos activos. 

10. Se ha desarrollado un método para incorporar las microcápsulas de manera uniforme en las 

películas sin que pierdan su integridad, tanto en la solución filmogénica, como durante el secado. La 

inclusión de microcápsulas aumenta las propiedades de resistencia a la tracción, la impermeabilidad al 

vapor del agua y la opacidad de estas películas. 

Conclusión general 

Es posible desarrollar películas a nivel industrial con propiedades muy diversas, susceptibles de 

numerosas aplicaciones, a partir de proteínas procedentes de residuos de Dosidicus gigas y de extractos 

de algas rojas y pardas. 

15.1.5. Aportaciones fundamentales de la tesis doctoral 

Esta memoria propone métodos de valorización de residuos industriales y de recursos 

infrautilizados, con materiales ricos en proteínas y en polisacáridos. Algunos de estos métodos 

contemplan como alternativa la utilización integral de los recursos aumentado los rendimientos, la 

versatilidad de su uso y en ocasiones incluso su funcionalidad. Además, se han escogido procesos 

suaves y ecológicos. Por todo esto se estima que los extractos obtenidos en este trabajo son altamente 

competitivos a nivel industrial. 
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Los extractos poliméricos sirven de base como material filmogénico, dando lugar a películas con 

propiedades muy variadas, lo cual nos permite diversificar el diseño de productos y su aplicación. 

Por primera vez, se estudia el desarrollo de películas como posible aplicación industrial de 

concentrados de músculo de D. gigas, abriendo nuevas posibilidades de mercado a un desecho tan 

abundante como los restos de músculo adheridos a las túnicas y pieles del manto, y encontrando una 

nueva aplicación a las proteínas concentradas tras su solubilización en medio alcalino. 

Las extracciones desarrolladas para M. stellatus son fácilmente aplicables a escala industrial, 

abriendo la posibilidad de su uso en otras especies de algas rojas. Además, el presente trabajo propone 

un nuevo método de extracción con hidróxido sódico de algas pardas, igualmente fácil de aplicar a nivel 

industrial, con altos rendimientos y buenas propiedades tecnológicas. 

Los extractos activos acuosos y los hidrolizados obtenidos, con propiedades antioxidantes y 

antihipertensoras, pueden constituir en sí mismos ingredientes alimentarios. Concretamente, los 

hidrolizados de algas obtenidos en este estudio mostraron una actividad antihipertensora mucho mayor 

que la de las obtenidas hasta el momento con otros extractos de alga referidos en la bibliografía. 

Por primera vez, se ha estudiado y conseguido la aplicación alimentaria del modelo core-shell de 

encapsulación, encapsulando péptidos bioactivos mediante la técnica de impresión por inyección y 

utilizando como material de encapsulación ácido esteárico y cera de carnauba. 

La incorporación de microcápsulas en las películas ha requerido el desarrollo de un método de 

inclusión uniforme que evite la pérdida de su integridad, tanto en la solución filmogénica, como durante el 

secado. Las películas protegen las cápsulas y ofrecen la posibilidad de utilizarse como ingrediente 

principal en el desarrollo de productos alimenticios funcionales, siendo posible el diseño de distintos 

modelos de liberación del contenido encapsulado. 

Todos estos extractos y microcápsulas ofrecen la posibilidad de combinarse para el desarrollo de 

diferentes materiales de recubrimiento, según el tipo de producto final que se busque y su aplicación 

futura. En cuanto a estas nuevas posibilidades, varios estudios están actualmente en proceso, con la 

intención de que en un futuro cercano se pueda hablar de estas películas como una opción culinaria real. 
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15.2. Extended abstract 

15.2.1. Introduction 

Nowadays, a growing concern is being raised around the development of different strategies for 

the sustainable use of marine resources (Caddy & Griffiths, 1995). 

The fish processing industry, and, more specifically the cephalopod industry, generates a great 

amount of waste (up to 50-75% of the catch) with high protein contents, which could be reused for 

purposes other than the development of fertilizers and animal feeds (Shahidi, 1994; Cuclas, 1997), thus 

assuring its added value and minimizing the amount of residues (Rustad, Storrø, & Slizyte, 2011). During 

the skinning of Dosidicus gigas mantle, between 30-40% of the muscle is discarded, being the recovery 

of these proteins possible for the development of new byproducts (Campo-Deaño, Tovar, Jesús Pombo, 

Teresa Solas, & Javier Borderías, 2009). 

On the other hand, Atlantic coasts are very rich in underutilized edible seaweed species, like for 

example, Mastocarpus stellatus (red algae), Laminaria digitata and Ascophyllum nodosum (brown algae). 

These seaweeds have been studied due to their high content in carrageenan and alginates, of high 

industrial interest, and potentially bioactive compounds; nevertheless, it would be interesting to find new 

processing methods for the development of alternative consumption forms which could expand their use 

in Western countries (Plaza, Cifuentes, & Ibáñez, 2008; Rinaudo, 2008). 

The development of more efficient and complete extraction methods could result in different raw 

materials with technological properties. In D. Gigas, protein solubilization in aqueous, salt, alkaline and 

acidic conditions and its further concentration by isoelectric precipitation has been extensively studied 

(Palafox, Cordova-Murueta, del Toro, & García-Carreno, 2009; Sánchez-Alonso, Careche, & Borderías, 

2007); whereas in seaweeds, almost every study has focused in the optimization of the carrageenan and 

alginate extraction in red and brown algae respectively (Hilliou, Larotonda, Abreu, Ramos, Sereno, & 

Gonçalves, 2006; Vauchel, Leroux, Kaas, Arhaliass, Baron, & Legrand, 2009). 

Moreover, in the past few years, raw materials of various origins have been studied as an 

alternative to synthetic materials for the development of edible and/or biodegradable film coatings 

(Petersen, Væggemose Nielsen, Bertelsen, Lawther, Olsen, Nilsson, et al., 1999). It has been studied, on 

the one hand, the filmogenic capacity of certain muscle proteins, such as those recovered from the waste 

of the fish processing industry (Artharn, Benjakul, & Prodpran, 2008) and of the cephalopod Todadores 

pacificus (Leerahawong, Arii, Tanaka, & Osako, 2011); and on the other hand, that of the traditionally 

extracted carrageenan and alginate (Han & Kim, 2008; Nakamura, Nishimura, Hatakeyama, & 

Hatakeyama, 1995). It has never been previously considered to maximize the extraction of D. gigas 

muscle proteins and all the seaweed compounds, aside from the phycocolloids, with technological 

potential (proteins, other polysaccharides…), for the development of edible film coatings. 

In addition, it has been proven that both sulfated polysaccharides (carrageenan in red seaweeds, 

and fucoidan in brown species) and polyphenols and peptides contained in algae, among others, can 

show biological activity, such as, for example, antioxidant and antihypertensive activity (Fitzgerald, 

Gallagher, Tasdemir, & Hayes, 2011; Ngo, Wijesekara, Vo, Van Ta, & Kim, 2011). Since this activity is 

sometimes susceptible to sudden changes in temperature and pH, it would be interesting to develop 
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extraction methods suitable for its preservation that, at the same time, would allow being combined with 

the more extreme conditions of the extractions of polymeric materials. For example, the combination of 

aqueous extractions and/or enzymatic hydrolysis followed by an extraction of carrageenan at high 

temperatures and short times, would be a good alternative treatment for M. stellatus (Herrero, Cifuentes, 

& Ibáñez, 2006; Wang, Jónsdóttir, Kristinsson, Hreggvidsson, Jónsson, Thorkelsson et al., 2010). 

Given that edible film coatings are less stable than synthetic ones, the possibility of adding active 

compounds in their formula would improve the quality and functional properties of the films (Falguera, 

Quintero, Jiménez, Muñoz, & Ibarz, 2011). Nevertheless, the direct addition of hydrolysates to edible film 

coatings could be detrimental to their filmogenic properties (Giménez, Gómez-Estaca, Alemán, Gómez-

Guillén, & Montero, 2009), and besides, it could sometimes confer a bitter taste (Sun-Waterhouse & 

Wadhwa, 2013); thus it is that new methods of active peptide addition, such as microencapsulation, have 

to be considered. 

Microencapsulation is a technology which started being used in the food industry as a vehicle for 

certain compounds in order to protect them for different reasons and, in the case of active ingredients, to 

give them shelter from external elements, either during the food processing or in the final product (Gibbs, 

Kermasha, Alli, & Mulligan, 1999). There are many types of encapsulation procedures (coacervation, 

spray-drying, liposomes…), but recently the inkjet printing technology has been applied in the generation 

of a new method of microencapsulation (Houben, 2012), which produces homogenous microcapsules 

according to the core-shell model in a controlled and constant process, though it has not been applied to 

food product development until now. Inkjet printing microencapsulation might be a good method for 

hydrolysates encapsulation. 

Taking everything into account, the production of different polymeric and active extracts of D. 

gigas, M. stellatus, L. digitata and A. nodosum and their further microencapsulation, are considered novel 

opportunities to develop edible film coatings, with or without activity. 

15.2.2. Objectives 

The aim of this thesis was to develop edible and active protein and polysaccharide films, 

from resources of marine origin, such as waste from the cephalopod processing industry and 

underutilized seaweeds. 

 To this end, the following partial objectives were considered: 

6. Valorization of polymer materials recovered from different marine resources to produce 

muscle protein extracts from the waste from Dosidicus gigas industrial processing, and 

carrageenan and alginate unrefined extracts from red (Mastocarpus stellatus) and brown 

(Laminaria digitata and Ascophyllum nodosum) seaweeds. 

7. Development of films based on biopolymers extracted from marine products, and their 

further physicochemical characterization to explore for different applications in the food 

industry.  
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8. Production and characterization of aqueous extracts and hydrolysates with active 

properties (antioxidant and antihypertensive) from the waste from D. gigas industrial 

processing and M. stellatus, to be utilized as functional ingredients. 

9. Development of antioxidant films by the incorporation of active compounds into the 

biopolymer matrixes. 

10. Microencapsulation of bioactive peptides extracted from D. gigas tunics by the core-shell 

method using the inkjet printing technology, characterization of the microcapsules and its 

addition to edible films. 

15.2.3. Results 

Extraction of raw materials and development of films from Dosidicus gigas muscle 

D. gigas proteins were recovered by two methods consisting in: i) solubilization under aqueous, 

salt, alkaline and acidic conditions, and ii) concentration by isoelectric precipitation of the proteins 

solubilized under alkaline and acidic conditions. While an integral use of the raw material is achieved with 

the solubilization method, the concentration method is restricted only to those proteins susceptible to 

precipitation, which would guarantee the removal of most of the nitrogenated compounds responsible for 

this species’ characteristic flavour. Alkaline and acidic conditions maximized the extraction yields; and 

when extracts were concentrated, more structurally preserved proteins, and thereby more functional, 

were recovered. 

While proteins recovered in the alkaline solubilized extract were partially denatured, with unfolded 

myosin and signs of intermolecular aggregation; acidic solubilized proteins suffered hydrolysis, obtaining 

a lower molecular weight polymer material. Concentration by isoelectric precipitation led to extracts with 

more protein stability, especially significant in acidic solubilized proteins. 

Both solubilized and concentrated extracts obtained from D. gigas muscle, were good raw 

materials for edible film development, absolutely easy to handle, transparent and with total ultraviolet light 

absorption. The water solubilized extract films showed a high water barrier, although these films, together 

with those obtained by salt solubilization, failed to be microbiologically stable and did not result in as good 

mechanical properties as those made of extracts obtained under alkaline or acidic pH. 

Alkaline solubilized extracts resulted in films with more water resistance, tensile and puncture 

strength. These properties were considerably improved in alkaline concentrated films, probably due to an 

increased number of protein-protein interactions. Acidic solubilized extracts resulted in malleable films 

with more protein-plasticizer interactions. The acidic concentrated extraction lowered this water affinity, 

slightly improving the film water barrier properties. 

After 4 months of storage under controlled temperature and humidity conditions, alkaline and 

acidic concentrated films suffered protein aggregation, which entailed an increase in solubility. While 

alkaline concentrated films underwent a loss of protein-protein interactions producing a total loss of 

mechanical and water barrier properties; acidic concentrated films experienced a matrix reorganization 
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that resulted in a slight improvement of the mechanical properties and of the protein retention in the 

polymer matrix when contacting water. In general, acidic concentrated films were more stable. 

Extraction of raw materials and development of films from Mastocarpus stellatus 

With the aim of exploiting to the maximum all its components, M. stellatus was subjected to two 

different types of extractions: i) Stepped aqueous extraction and ii) Hydrolysis with carrageenan 

precipitation. 

The stepped aqueous extraction resulted in two polymer extracts, rich in κ/ι-carrageenan hybrid 

and proteins, with a good filmogenic capacity: M3 and M4. While M3 showed chemical characteristics 

resembling commercial carrageenan, M4 presented a high content of other seaweed compounds such as 

proteins. In this same extraction, two antioxidant extracts were also obtained: M1 and M2. M1 showed 

higher extraction yields and antioxidant activity, and therefore was selected as an ingredient for the 

development of antioxidant films. 

Two antioxidant and antihypertensive hydrolysates were obtained in the hydrolysis: H (with a 

partially discarded phenolic contents) and Hp (with full phenolic contents). Whereas H showed the highest 

angiotensin-converting enzyme (ACE) inhibitory capacity, Hp presented the highest antioxidant capacity 

and extraction yield. Hp was selected for the development of antioxidant films, although it is obvious that 

any of them could constitute food ingredients by themselves. 

Based on the two polymer rich extracts, two films with a different behaviour were developed. 

While M3 was suitable to develop transparent and flexible films, M4 produced a matrix with more water 

resistance and mechanical strength due to a higher proportion of protein-carrageenan bonds. The M3 and 

M4 mixture in the film formulation, resulted in intermediate film properties; and lowering the plasticizer 

ratio considerably increased the water resistance and mechanical strength of the M3+M4 film. 

M1 and Hp presented a high sulfated compounds content, which might be due to two reasons: i) 

a small carrageenan fraction extracted collaterally; ii) the presence of phycobiliproteins rich in sulfated 

amino acids (Carra, Ó Heocha, & Carroll, 1964) with antioxidant activity (Hirata, Tanaka, Ooike, 

Tsunomura, & Sakaguchi, 2000; Lin & Stekoll, 2011). Even though M1 antioxidant activity was lower than 

Hp’s, its inclusion in the films resulted in the highest antioxidant activity. This effect was probably due to a 

lower interaction between M1 compounds and the polymer matrix. Hp peptides interacted more efficiently 

with the carrageenan helices and plasticizer in the films, lowering its capacity to react with oxidant agents. 

The inclusion of M1 in the films improved their mechanical strength and water resistance. Hp 

addition had a plasticizing effect on the films that improved their tensile elongation; but depending on the 

Hp ratio included the filmogenic properties were affected in a different way. For example, a 15% Hp 

addition, with respect to the dry film content, lowered their water vapour permeability; while a 30% 

addition improved the optical properties, the water resistance and the puncture strength of the films. 
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Extraction of raw materials and development of films from Laminaria digitata and 

Ascophyllum nodosum 

Various extraction procedures were analysed in L. digitata and A. nodosum brown seaweeds, 

with the purpose of softening as much as possible the pretreatment acidic conditions and optimizing both 

the temperature and the type of alkaline treatment. Apart from an alginate content degraded to a greater 

or lesser extent, these extracts would also contain most of the rest of each seaweed compounds. A new 

alkaline extraction, using sodium hydroxide, was designed and compared in each seaweed species with 

the traditional sodium carbonate extraction procedure. From each extraction method, those extracts 

presenting the best yields and filmogenic capacity, were selected. 

While carbohydrates were more efficiently extracted with NaOH, double ash content was 

obtained with Na2CO3 extraction. A higher proportion of non-degraded alginate with a high content in 

guluronic units was recovered with the NaOH treatment, which contributed to form polymer interactions in 

the film. However, a high percentage of degraded alginate and dispersed uronic acid units was recovered 

with Na2CO3 extraction, which contributed to their interaction with the plasticizer. 

The type of alkaline treatment determined the water barrier differences among films, while the 

seaweed species affected the mechanical properties of the films. The Ascophyllum Na2CO3 extract 

resulted in transparent and flexible films, while the Laminaria NaOH extract produced the strongest and 

least water vapour permeable film. 

The film antioxidant activity was conferred by the presence of pigments like fucoxanthin and 

sulfated polysaccharides such as fucoidans (Le Tutour, Benslimane, Gouleau, Gouygou, Saadan, & 

Quemeneur, 1998; Rocha De Souza, Marques, Guerra Dore, Ferreira Da Silva, Oliveira Rocha, & Leite, 

2007). 

The film obtained with the Ascophyllum NaOH extract had the highest antioxidant capacity among 

all the brown seaweed films developed, probably due to the presence of a higher proportion of sulfated 

compounds. This activity was highlighted for its resemblance to that previously reported in Mastocarpus 

films when adding antioxidant hydrolysate to the formula. 

A bioactive peptides microencapsulation procedure by inkjet printing technology in a stearic acid 

and carnauba wax mixture, following the core-shell model, was studied. An encapsulation efficiency of 

84.7 ± 3.4% and a ratio of 13.3:1 microencapsulation material:peptide (on dry basis) were obtained. The 

microcapsules were homogeneous and with a 110-140 µm diameter. 

Depending on the environmental pH and temperature, the microcapsules showed different 

stability, being more stable at low temperatures and pH 7. In order to avoid microcapsule agglomeration 

and breakage during the development of films from Laminaria Na2CO3 extract, the development of a new 

and specific film inclusion procedure was required, obtaining films with better tensile strength and more 

malleable. 

All films developed in the present work might be susceptible of use in the final food serving 

presentation, whether as part of the packaging material or as ingredients by themselves in food design. 
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Due to their high content in nitrogenated compounds, D. gigas solubilized extracts showed a 

characteristic fish flavour that would limit their applications. The rest of the polymer extracts might have 

more versatile uses, directly in various types of food, being possible to modify their formula to suit the 

culinary needs; and therefore extending the possibilities of mixing protein rich and polysaccharide rich 

extracts to obtain intermediate properties, or even the best of each. 

Antioxidant films might be used in functional food development, as part of the final food 

presentation, improving the final product shelf-life and nutritional value. But they could also be applied 

technologically to prevent oxidation during the culinary process or for short shelf-life terms, such as in 

catering food products, or even as preservatives themselves for longer terms. Besides, the hydrophilic 

character of the developed films renders them good hydrophobic microcapsule carriers, offering the 

functional food market a new alternative for active compound inclusion in food products. 

15.2.4. Conclusions 

11. Dosidicus gigas muscle proteins, either as solubilized or concentrated extracts, present filmogenic 

properties, although each type shows different characteristics. The concentrated films highlights 

are their greater mechanical strength and water resistance. The acidic concentrated films are 

elastic and malleable, while the alkaline concentrated films are stronger and very water resistant. 

12. The stability of the Dosidicus gigas acidic concentrated films is much higher than that obtained 

with alkaline concentrated films. 

13. Extractions performed in several steps, from both red and brown seaweeds, result in a complex 

polymeric material with a filmogenic capacity similar to and, in some cases, improved in relation to 

that of the commercial carrageenan and alginate. 

14. The aqueous active extracts and the hydrolysates obtained, with antioxidant and antihypertensive 

properties, can constitute in themselves food ingredients. 

15. The integral Mastocarpus extraction allows the recovery of hybrid ĸ/ι-carrageenan and proteins, 

which results in stiffer and more water resistant films, due to the carrageenan-protein interactions; 

while films developed with more purified carrageenan extracts are more malleable and 

transparent. These differences in their properties allow more diverse applications. 

16. The sodium hydroxide treatment of brown seaweeds represents a novel and alternative alginate 

extraction method, wherein the structure of the uronic acid units is more preserved. This favours 

inter-polymeric interactions, and consequently, a higher mechanical strength in the films, 

especially in Laminaria digitata. On the contrary, with the classic sodium carbonate extraction, 

smaller polymeric fractions are obtained, which produce a higher plasticizing effect, resulting in 

more malleable films, especially in Ascophyllum nodosum. 

17. Dosidicus gigas protein films are more transparent, colourless, with a higher water barrier and 

more malleable; while seaweed polysaccharide films present the characteristic colour of the 

source species and show more tensile strength. 
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18. The development of films with active extracts (aqueous or hydrolysates) of Mastocarpus stellatus 

confers antioxidant properties, increases the light (UV/V) barrier properties, water resistance, and 

puncture strength, being these last physical properties mainly attributed to protein-carrageenan 

interactions. 

19. The inkjet printing technology by the core-shell model, using stearic acid/carnauba wax as 

encapsulation materials, resulted in a very efficient process for the homogeneous 

microencapsulation of active peptides. 

20. A procedure for the homogeneous inclusion of microcapsules in the films while preserving their 

integrity, either in the filmogenic solution or during the drying process, has been developed. The 

inclusion of microcapsules improves the tensile strength, the water vapour impermeability and the 

opacity of these films. 

General conclusion 

It is possible to develop films with highly varied properties and susceptible of many applications, 

at an industrial scale, using proteins recovered from Dosidicus gigas waste and red and brown seaweed 

extracts. 

15.2.5. Fundamental contributions of the doctoral thesis 

The present work proposes valorization methods for industrial waste and underutilized resources 

with protein and polysaccharide rich materials. Some of these procedures consider as an alternative the 

integral use of the resources, increasing their yields, their versatility, and sometimes even their 

functionality. Besides, mild and environmental friendly processes have been selected. Given all these 

reasons, it is believed that the extracts obtained in this research are highly competitive at an industrial 

scale. 

Polymeric extracts serve as the building blocks of the filmogenic material, resulting in films with 

highly varied properties, thus allowing the diversification of the products design and their applications. 

For the first time, it has been studied the development of films from D. gigas muscle 

concentrates, as a possible industrial application, opening new market possibilities for such an abundant 

waste as it is the muscle adhered to tunics and mantles, and finding a novel application for proteins 

concentrated after alkaline solubilization. 

The extractions developed for M. stellatus, can be easily scaled up to an industrial level, opening 

the possibility of their application in other red seaweed species. In addition, the present work proposes a 

novel brown seaweed extraction procedure with sodium hydroxide, which is equally easy to scale up to 

an industrial level, and renders high yields and good technological properties. 

The active aqueous extracts and the hydrolysates obtained, with antioxidant and antihypertensive 

properties, can constitute food ingredients by themselves. Specifically, the algae hydrolysates obtained in 

this study showed a much higher antihypertensive activity than that previously obtained with other algae 

extracts referred to in the literature. 
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For the first time, the food application of the core-shell encapsulation model has been studied and 

achieved by encapsulating bioactive peptides with the inkjet printing technology, and using as 

encapsulation material stearic acid and carnauba wax. 

The inclusion of microcapsules in the films has required the development of a homogeneous 

inclusion method preventing the loss of capsule integrity both in the filmogenic solution and during the 

drying process. The films protect the capsules and offer the possibility of being used as main ingredient in 

the development of functional food products, being also possible the design of different release models 

for the encapsulated contents. 

All these extracts and microcapsules may be used alone or in combination with each other for the 

development of different film coating materials, depending on the type of desirable final product and its 

future applications. Regarding these novel possibilities, several studies are currently ongoing, with the 

intention of turning these films into a real culinary choice in the near future. 
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