
UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE CIENCIAS FÍSICAS

TESIS DOCTORAL

Algoritmos cuánticos tolerantes a fallos

Fault tolerant quantum algorithms

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Pablo Antonio Moreno Casares

Director

Miguel Ángel Martín-Delgado Alcántara

Madrid

© Pablo Antonio Moreno Casares, 2023

UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE CIENCIAS FÍSICAS

TESIS DOCTORAL

Algoritmos cuánticos tolerantes a fallos

Fault tolerant quantum algorithms

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Pablo Antonio Moreno Casares

DIRECTOR

Miguel Ángel Martín-Delgado Alcántara

Fault tolerant quantum algorithms
Algoritmos cuánticos tolerantes a fallos

Pablo Antonio Moreno Casares

Director: Miguel Ángel Martín-Delgado Alcántara

Departamento de Física Teórica
Facultad de Ciencias Físicas

Universidad Complutense de Madrid

Memoria para optar al título de
Doctor en Física

October 2022

Me gustaría dedicar esta tesis a mis abuelos que siempre han sido una fuente de
inspiración, y mis padres y Pili, por su apoyo constante.

Acknowledgements

En primer lugar me gustaría agradecer al director de tesis, Miguel Ángel, por su
dirección a lo largo de esta tesis, y muy en particular por la confianza depositada a
la hora de elegir proyectos de investigación. Creo que esta tesis representa un éxito
de supervisión por su parte. Así mismo, me gustaría agradecer a los miembros de
nuestro grupo de investigación, como Roberto Campos o Santiago Varona, y con otros
estudiantes del departamento de física, como Roberto Ruiz, que en ocasiones me han
sugerido ideas sobre cómo abordar problemas técnicos. Además, quiero agradecer
especialmente a Santiago Varona su disponibilidad para leer esta tesis con antelación y
sugerir correcciones y cambios, lo que se ha reflejado en una mejora de la redacción y
coherencia del texto.

También quiero dar las gracias a las personas con las que he colaborado en diversos
artículos. Por un lado, el grupo de Juan Miguel (Alain, Modji, Roberto...) en xanadu.ai
por su confianza y tratarme como parte del equipo. Además, agradezco mucho a Juan
Miguel, Sam Pallister y Peter Jonhson la valoración positiva de mi trabajo. Por otro
lado, estoy muy agradecido con el grupo de Jose Orallo, de Valencia, por una estancia
espectacular. Jose es una de las personas más trabajadoras que conozco y es estupendo
poder investigar con él. Espero que en el futuro podamos seguir trabajando juntos.
Además, le agradezco su interés por el área de AI Safety, y creo que su experiencia en
evaluación de modelos de inteligencia artificial puede ser muy útil.

En la misma línea, doy las gracias a muchas de las personas relacionadas con
Altruismo Eficaz que me han apoyado durante estos años, y en especial a Ryan Carey
y Jaime Sevilla por su apoyo continuado, y a Victor Veitch por su predisposición a
acogerme como postdoc. Me enorgullece formar parte de una comunidad a la que le
preocupa mejorar el mundo cuanto sea posible. También me alegra poder contar con
personas como Juan García, Pablo Melchor y Pablo Villalobos como amigos.

Finalmente, me gustaría agradecer a mi familia y a mis padres su apoyo incondicional
a lo largo de estos años, así como a Pili porque es una persona maravillosa de la que
estoy muy orgulloso. Sabes lo mucho que esta tesis se debe a tu ayuda constante.

https://xanadu.ai/
https://www.effectivealtruism.org/

Contents

Abstract . x
Resumen . xii
List of publications . xiv
Conference contributions and internship . xv

1. Introduction 1

2. Quantum Search 5
2.1. Objectives . 5
2.2. A tale of two rotations: Grover’s algorithm 6

2.2.1. Amplitude Amplification . 9
2.2.2. Fixed point Amplitude Amplification and the first glimpse of

Quantum Signal Processing . 10
2.3. Quantum walks . 13

2.3.1. Hitting time and search algorithms 14
2.3.2. Mixing time and Monte Carlo algorithms 23

2.4. QFold . 29
2.4.1. The QFold algorithm . 31
2.4.2. Results . 34

2.5. Results . 38

3. Quantum Linear Algebra 39
3.1. Objectives . 39
3.2. The Fourier transform & phase estimation algorithms 40

3.2.1. The hidden subgroup problem 44
3.3. Linear Algebra . 48

3.3.1. Solving linear systems of equations 48
3.3.2. Improving the QLSA performance 50
3.3.3. Qubitization . 55

Contents viii

3.4. Interior point methods . 57
3.5. Support Vector Machines . 60
3.6. Dequantization . 62

3.6.1. Examples . 66
3.7. Results . 67

4. Quantum Chemistry 69
4.1. Objectives . 69
4.2. Introduction . 69
4.3. Classical quantum chemistry . 70

4.3.1. Hartree-Fock . 70
4.3.2. Density Functional Theory . 74
4.3.3. Coupled-Cluster . 79

4.4. Hamiltonian simulation . 83
4.4.1. Quantization and fermion to qubit mapping 84
4.4.2. Basis choice . 87
4.4.3. Hamiltonian simulation techniques 91

4.5. Quantum state preparation . 98
4.5.1. Unitary coupled-cluster & variational quantum eigensolver . . . 99
4.5.2. Projection methods . 101

4.6. TFermion . 104
4.7. Lithium batteries . 105
4.8. Results . 109

5. Quantum error correction 111
5.1. Objectives . 111
5.2. Introduction to error codes . 111

5.2.1. CSS codes . 114
5.2.2. Stabilizer codes . 115

5.3. Topological error correction . 117
5.3.1. Homology . 117
5.3.2. Surface code . 118
5.3.3. Color code . 123

5.4. Towards fault-tolerant quantum computing 128
5.4.1. Gauge color codes . 130

5.5. Concluding thoughts . 136
5.6. Results . 137

Contents ix

Bibliography 138

Contents x

Abstract

The framework of this thesis is fault-tolerant quantum algorithms, which can roughly
be divided into the following non-disjoint families: a) Grover’s algorithm and quantum
walks, b) Shor’s algorithm and hidden subgroup problems, c) quantum simulation
algorithms, d) quantum linear algebra, and e) variational quantum algorithms. All of
them are covered, to some extent, in this thesis.

Grover’s algorithm and quantum walks are described in Chapter 2. We start by
highlighting the central role that rotations play in quantum algorithms, explaining
Grover’s, why it is optimal, and how it may be extended. Key subroutines explained in
this area are amplitude amplification and quantum walks, which will constitute useful
parts of other algorithms. In this chapter, we present our Ref. [62], where we explore
the heuristic use of quantum Metropolis and quantum walk algorithms for solving an
NP-hard problem. This method has been suggested as an avenue to digitally simulate
quantum annealing and preparing ground states of many-body Hamiltonians.

In the third chapter, in contrast, we turn to the exponential advantages promised
by the Fourier transform in the context of the hidden subgroup problem. However,
since this application is restricted to cryptography, we later explore its use in quantum
linear algebra problems. Here we explain the development of the original quantum
linear solver algorithm, its improvements, and finally the dequantization techniques
that would often restrict the quantum advantage to polynomial. In this chapter, we
present two publications, Refs. [65, 64], the former aimed at solving linear programming
problems, and the latter at machine learning problems. As we shall see, both of them
are restricted but in a different way: the first requires reading out the entire solution
quantum state, while the second can be effectively dequantized.

Chapter 4 is concerned with quantum simulation. We will review classical quantum
chemistry techniques, and then focus on Hamiltonian simulation and ground state
preparation as the key problems to be solved. Hamiltonian simulation, in particular, will
enable the use of quantum phase estimation which computes the eigenvalues or energies
of a given quantum state. Our contribution [63] constitutes a detailed analysis of the
cost of many Hamiltonian simulation techniques present in the literature. Variational
algorithms, while many times used as a Noisy Intermediate-Scale Quantum (NISQ)
alternative to quantum phase estimation, will be presented here as a viable approach to
ground state preparation, the other main problem. In contrast, in Ref. [84], we detail
how to prepare the Hartree-Fock state in first quantization and plane waves, ideally
suited for materials, and which does not require using those techniques. Combined
with a state-of-the-art Hamiltonian simulation technique called qubitization, we can

Contents xi

estimate the non-Clifford gate cost of running such an algorithm for realistic battery
material properties.

Given the tradition of our group with error correction, we could not end this thesis
without dedicating a final chapter to this topic. Here we explain the most important
quantum error correction codes, the surface and color codes, and one extension of the
latter, gauge color codes. They will show the complexity of implementing non-Clifford
quantum gates, therefore validating their consideration as the bottleneck metric.

Contents xii

Resumen

El marco conceptual de esta tesis son los algoritmos cuánticos tolerantes a fallos, que
pueden dividirse aproximadamente en las siguientes clases no mutuamente excluyentes:
a) algoritmo de Grover y paseos cuánticos, b) algoritmo de Shor y problemas de
subgrupos ocultos, c) algoritmos de simulación cuántica, d) álgebra lineal cuántica, y
e) algoritmos cuánticos variacionales. Todos ellos se tratan, en cierta medida, en esta
tesis.

El algoritmo de Grover y los paseos cuánticos se explican en el capítulo 2. Comenza-
mos destacando el papel central que juegan las rotaciones en los algoritmos cuánticos,
explicando el de Grover, por qué es óptimo, y cómo puede ser extendido. Las subrutinas
clave explicadas en esta área son la amplificación de la amplitud y los paseos cuánticos,
que serán partes importantes de otros algoritmos. En este capítulo presentamos nuestra
Ref. [62], donde exploramos el uso heurístico de los algoritmos de Metrópolis y paseos
cuánticos para resolver problemas NP-difíciles. De hecho, este método ha sido sugerido
como una vía para simular digitalmente el método conocido como ‘quantum annealing’,
y la preparación de estados fundamentales de Hamiltonianos ‘many-body’.

En el tercer capítulo, en cambio, nos centramos en las ventajas exponenciales que
promete la transformada de Fourier en el contexto del problema de los subgrupos ocultos.
Sin embargo, dado que esta aplicación está restringida a la criptografía, más adelante
exploramos su uso en problemas de álgebra lineal cuántica. Aquí explicamos el desarrollo
del algoritmo cuántico original para la resolución de sistemas lineales de ecuaciones,
sus mejoras, y finalmente las técnicas de ‘descuantización’ que a menudo restringen
la ventaja cuántica a polinómica. En este capítulo se presentan dos publicaciones,
Refs. [65, 64], la primera orientada a la resolución de problemas de programación
lineal, mientras que la segunda al aprendizaje automático. Como veremos, ambas están
restringidas, pero de forma diferente: la primera requiere la lectura de estados cuánticos,
mientras que la segunda puede ser efectivamente descuantizada.

El capítulo 4 se ocupa de la simulación cuántica. Revisaremos las técnicas clásicas
de la química cuántica, y luego nos centraremos en la simulación Hamiltoniana y en la
preparación del estado fundamental como problemas clave a resolver. La simulación
Hamiltoniana, en particular, permitirá el uso de la estimación de fase cuántica, que
calcula los valores propios o las energías de un estado cuántico dado. De hecho, nuestra
contribución [63] constituye una comparativa detallada del coste de muchas técnicas
de simulación Hamiltoniana presentes en la literatura. Los algoritmos variacionales,
aunque muchas veces utilizados como alternativa a la estimación cuántica de fase en
sistemas ruidosos (NISQ), se presentarán aquí como un enfoque viable a la preparación

Contents xiii

del estado fundamental, el segundo problema principal. Por el contrario, en la Ref. [84]
detallamos cómo preparar el estado Hartree-Fock en primera cuantización y ondas
planas, adecuado para materiales, que no requiere de dichas técnicas. Combinado con
una técnica de simulación Hamiltoniana de última generación llamada qubitización,
somos capaces de estimar el coste en puertas lógicas no-Clifford de ejecutar dicho
algoritmo. Dicho algoritmo puede ser usado para predecir propiedades realistas de
materiales de baterías eléctricas.

Dada la tradición de nuestro grupo en la corrección de errores, no podíamos terminar
esta tesis sin dedicar un capítulo final a este tema. Aquí explicamos los códigos de
corrección de errores cuánticos más importantes, los códigos de superficie y de color,
y una extensión de estos últimos, los códigos de gauge de color. Así mostraremos la
complejidad de implementar puertas cuánticas no-Clifford, validando su consideración
como métrica de referencia.

Contents xiv

List of publications

Casares, Pablo A. M., Roberto Campos, and Miguel Angel Martin-Delgado.
“QFold: quantum walks and deep learning to solve protein folding.” Quantum
Science and Technology, 7.2 (2022): 025013.

Casares, Pablo A. M., and M. A. Martin-Delgado. “A quantum active learning
algorithm for sampling against adversarial attacks.” New Journal of Physics, 22.7
(2022). 073026.

Casares, Pablo A. M., and Miguel Angel Martin-Delgado. “A quantum interior-
point predictor-corrector algorithm for linear programming.” Journal of Physics
A: Mathematical and Theoretical 53.44 (2020): 445305.

Casares, Pablo A. M., Roberto Campos, and Miguel Angel Martin-Delgado.
“TFermion: A non-Clifford gate cost assessment library of quantum phase estima-
tion algorithms for quantum chemistry.” Quantum (2022), 6:768.

Delgado, Alain, et al. “Simulating key properties of lithium-ion batteries with
a fault-tolerant quantum computer.” Physical Reviews A (2022), 106:032428 –
main co-author.

Campos, R., Casares, Pablo A. M., and Martin-Delgado, M. A. “Quantum
Metropolis solver: A quantum walks approach to optimization problems.” (2022)
arXiv preprint arXiv:2207.06462.

Escrig, G., Campos, R., Casares, Pablo A. M., and Martin-Delgado, M. A. “Pa-
rameter estimation of gravitational waves with a quantum metropolis algorithm.”
(2022) arXiv preprint arXiv:2208.05506.

Additional articles not covered in this thesis, carried out during the internship, on the
topic of classical Machine Learning:

Casares, Pablo A. M., et al. “How General-Purpose Is a Language Model?
Usefulness and Safety with Human Prompters in the Wild” (2022), Proceedings
of the 36th AAAI Conference on Artificial Intelligence (AAAI-22).

Contents xv

Conference contributions and internship

During this thesis, the author carried out a 3-month internship in the research group
of José Hernández Orallo in the field of classical Machine Learning, as a result of
which Ref. [66] was published and presented as a poster at the prestigious AAAI-22
conference.
Additionally, the author has carried out the following activities during his PhD:

Oral presentation of Ref. [63] at the APS March meeting 2022.

Oral presentation of Ref. [62] at the Quantum conference in Bilbao in 2022.

Tutorial on the works of Ref. [62, 60] during the IEEE 2021 Quantum week.

Poster presentation of the work in Ref. [62] at the ICE-6 Quantum Information
in Spain conference in 2021.

Poster presentation of the work in Ref. [62] during the Munich conference on
Quantum Science and Technology 2021.

Poster presentation of the work in Ref. [62] in the Quantum Techniques in
Machine Learning 2021 conference.

Poster presentation of the work in Ref. [64] at the conference QTech 2020.

Poster presentation of the work in Ref. [65] during the Munich conference on
Quantum Science and Technology 2020.

Poster presentation of the work in Ref. [64] in the Quantum Techniques in
Machine Learning 2020 conference.

Workshop presentation in the Human-aligned AI Summer School in 2022 on the
topic of ‘How to produce high-quality research’.

Attendance and organization of the AI Safety Research Program in 2020.

Attendance to the Human-aligned AI Summer School in 2019.

Attendance to the AI Safety Camp in 2019.

Attendance to the ELLIS Quantum Machine Learning workshop in San Sebastian
in 2019.

https://aaai.org/Conferences/AAAI-22/
https://meetings.aps.org/Meeting/MAR22/Content/4178
https://www.quantumconf.eu/2022/
https://qce.quantum.ieee.org/2021/
https://ice-6.hbar.es/index.html
https://ice-6.hbar.es/index.html
https://www.mcqst.de/news-and-events/events/conference-2021.html
https://www.mcqst.de/news-and-events/events/conference-2021.html
https://www.quantummachinelearning.org/qtml2021.html
https://www.quantummachinelearning.org/qtml2021.html
https://premc.org/conferences/qtech-quantum-technology/
https://www.mcqst.de/mcqst2020/home/
https://www.mcqst.de/mcqst2020/home/
https://humanaligned.ai/
https://aisrp.org/
https://humanaligned.ai/
https://aisafety.camp/
http://dalimeeting.org/dali2019b/workshop-05-04.html
http://dalimeeting.org/dali2019b/workshop-05-04.html

Chapter 1

Introduction

We are living an extraordinary time for quantum computing. Not even a year
after the start of this thesis, in 2019, a team at Google released an article highlighting
that they had been able to execute a quantum supremacy experiment, one experiment
that is not feasible for classical computers [13]. This first experiment used random
quantum circuits, but during these years other supremacy experiments based on boson
sampling have also been carried out [267, 172]. On the other hand, this last year we
have started witnessing the first experiments that aim to fault-tolerantly implement
a set of quantum gates [149, 212, 202, 266], which open the door to fault-tolerant
quantum algorithms, the main topic of this thesis, and the kind of algorithms that are
likely to be most useful in the long term.

However, they are not the only kind of algorithms. Noisy intermediate-scale
quantum algorithms (NISQ) have been proposed as a useful alternative while we are
not able to achieve fault tolerance [39]. The two most famous quantum algorithms
in this category are the Variational Quantum Eigensolver [200] and the Quantum
Approximate Optimization Algorithm [93]. The most important limitation of these
algorithms, when used in a non-fault-tolerant setup, is that it is difficult to surpass the
capabilities of classical computers able to handily implement billions of logical gates
with just a thousand quantum logical gates [78]. This intuition is the reason I have
focussed on fault-tolerant quantum algorithms in this thesis.

The first and most famous quantum algorithms are Grover’s [111] and Shor’s [220],
which will be the basis for the second and third chapters of this thesis. The second
chapter will deal with quantum search, starting from the Grover algorithm and exploring
quantum walks and amplitude amplification as important tools not only for searching
itself but in other quantum algorithms. In this chapter, we present QFold [62], an
article and simulation experiment where we use a heuristic quantum walk to find the

2

folded configuration of proteins. Unfortunately, the quantum advantage we measure is
fairly small and unlikely to be directly useful, given the overhead of quantum error
correction in the speed of quantum gates. On the other hand, heuristic quantum walks
can digitally simulate quantum annealing processes, which might be used to prepare
the ground state of fermionic Hamiltonians [161]. In general, the quantum speedups
one may find with quantum walks and amplitude amplification are polynomial, often
quadratic, in nature. Moreover, this advantage is often diluted when parallelism is
possible. In particular, to solve an unstructured search in some fixed amount of time,
one only needs linearly more classical than quantum processors [101].

The third chapter, in contrast, takes a look at the kind of problems where one
may hope to find exponential speedups, mostly relying on the quantum Fourier trans-
form. Shor’s algorithm represents the paradigmatic example of these techniques, later
generalized to the (Abelian) hidden subgroup problem and mostly used in cryptog-
raphy applications. The price to pay for this large quantum advantage is the need
for structure in the problem that is being addressed [1]. However, in 2008 there was
a breakthrough that promised an exponential speedup in the ubiquitous problem of
solving a linear system of equations in a very quantum way: with quantum input
and output, and under sparsity and well-conditioning assumptions [117]. This would
become a line of research called quantum linear algebra, and it is used in two more
articles during this thesis [64, 65]. The latter uses those techniques in combination with
classical methods in the literature, to propose one of the first quantum interior point
methods, aimed at solving linear programming problems. However, the limitations of
quantum methods and the necessity to prepare and read quantum states again reduce
the quantum advantage to polynomial. In the second paper, we found one machine
learning application (adversarial examples) where a readout of the quantum state is
not needed. However, in a second breakthrough, an undergraduate student called
Ewin Tang showed that many of these quantum linear algebra algorithms could be
‘dequantized’ [237]. Dequantization substitutes quantum computing for randomized
classical computing with ℓ2-sampling [238], showing again that many algorithms, and
in particular ours, will only ever achieve a polynomial speedup.

But if there is a research topic where one may expect quantum computing to
be particularly useful, that is in the area of simulation of other quantum systems.
Thus, Chapter 4 will discuss its applications to chemistry. It has three main parts.
In the first one, we review three of the most popular classical algorithms: Hartree-
Fock, Density Functional Theory, and Coupled-Cluster theory. Then, we move on to
Hamiltonian simulation, a core quantum technique that computes how a system evolves.

3

From this section, I would like to highlight one technique, called qubitization [169],
which allows performing in an optimal number of queries a large variety of functions
of the Hamiltonian. This fact will be reflected in previous chapters too [176], but its
usefulness to implement Hamiltonian simulation will be particularly reflected here.
Finally, in the third section, we discuss ground state preparation, perhaps the most
challenging problem in quantum chemistry. This is perhaps the area where variational
quantum algorithms, also known as quantum machine learning, will have the largest
impact [123, 181]. In the interest of length, however, we will only review the basics.

Two articles from my thesis belong to this chapter, Refs. [63, 84]. In the first one,
we present what is perhaps the first software library allowing us to compare a variety
of quantum phase estimation algorithms: TFermion. This library analyzes the cost of
several quantum phase estimation algorithms proposed in the literature and enables
comparisons between them that were previously not possible. TFermion also led to a
collaboration with quantum computing startup Xanadu, and ultimately to Ref. [84]. In
this reference, we provide a thorough review of how we may use one qubitization-based
first-quantization quantum algorithm to analyze the properties of battery materials.
Additionally, we perform two minor but important technical advances in the area
of Hartree Fock state preparation in plane waves and first quantization, and on the
extension of the original algorithm to non-cubic cells. Finally, we provide detailed
estimates on the number of non-Clifford gates and the time a quantum computer would
require to simulate a particular battery material.

The fifth and final chapter of the thesis will answer the question of why non-Clifford
gates are often the most expensive ones to be implemented in a quantum computer.
Its focus will be on quantum error correction, an area of research with a long tradition
in our research group. Unfortunately, the area is wide enough to only provide a review
of the main topics. We start by describing the basics of Calderbank–Shor–Steane
(CSS) and stabilizer codes. Then, we explain the two most popular families of error
correction codes: surface codes [141] and color codes [46, 47], the latter of which was a
key breakthrough by my thesis director. Unfortunately, a theorem by Eastin and Knill
proves that it is impossible to construct a stabilizer code that is capable of transversally
implementing a universal set of gates [89]. Therefore, while surface and color codes are
very attractive, we are forced to find a way to perform those gates fault-tolerantly. The
two leading approaches are distilling one kind of gates (often non-Clifford gates) in
another code, what is known as magic state distillation, or using subsystem codes. The
first one is popular due to its low cost at high error regimes [38], and also the reason
non-Clifford gates are expensive. In this thesis, we have instead chosen to describe

4

gauge color codes [42], as a beautiful subsystem code framework that generalize color
codes.

Chapter 2

Quantum Search

One thing that should be learned from the bitter lesson is the great power
of general-purpose methods, of methods that continue to scale with
increased computation even as the available computation becomes very
great. The two methods that seem to scale arbitrarily in this way are
search and learning.

Richard S. Sutton, The Bitter Lesson

2.1. Objectives

Understand the mathematical techniques behind quantum walks and their prop-
erties.

Understand the strengths and limitations of quantum walks as a search or
Markov-chain mixing technique.

Explore the kind of problems where quantum walks might be useful, with a
special focus on the quantum Metropolis algorithm as a privileged application to
combinatorial optimization.

Find out the quantum advantage associated with a heuristic quantum Metropolis
algorithm, the problems where it might be applied, and its usefulness.

2.2 A tale of two rotations: Grover’s algorithm 6

2.2. A tale of two rotations: Grover’s algorithm

Search is one of the few basic subroutines across many algorithms in computer
science. Optimal planning, simulated annealing, and reinforcement learning, widely
used in many and an increasing number of applications, can all be seen as ways of
searching under different conditions. Perhaps the simplest case is when one has to
look for a marked item in an unordered list. Lacking any structure to guide it, a
classical computer cannot but iterate over all elements of the set, perhaps allowing some
parallelization, in search for the target item. Consequently, if there are N elements in
the list, this implies computational complexity scaling as O(N).

Can we do better? Surprisingly, yes: one may leverage quantum mechanics to
improve how quickly one can search, which results in O(

√
N) steps. Let us assume

we have an oracle such that given item x ∈ {0, ..., N − 1}, checks whether it fulfills a
given condition f(x) = 1. The algorithm implementing this search is called after his
discoverer, Lov Grover, and implements two rotations iteratively [111], one of which
uses this oracle. In fact, for almost any quantum algorithm, it is often intuitive to
think in terms of rotations in the Hilbert space. The reason is that quantum operators,
except for measurements, are elements of a Special Unitary group SU(d), with d

representing the dimension of the Hilbert space. For the Grover algorithm, starting
from the uniform superposition H⊗n |0⟩⊗n = 1√

N

∑N−1
k=0 |k⟩, the two rotations are the

following:

A phase rotation implemented by any procedure (oracle) that identifies the
marked item:

O : |x⟩ 7→ (−1)f(x) |x⟩ . (2.1)

This can be done for example by outputting a bit |f(x)⟩ and implementing a Z
gate over it, before uncomputing the bit

|x⟩ |0⟩ 7→ |x⟩ |f(x)⟩ 7→ (−1)f(x) |x⟩ |f(x)⟩ 7→ (−1)f(x) |x⟩ |0⟩ . (2.2)

A second rotation called diffusion operator Us, that implements a rotation over
the initial state, taken to be a uniform superposition

Us = H⊗n(1− 2 |0⟩ ⟨0|)H⊗n. (2.3)

In Fig. 2.2, we define θ := arcsin
√

M
N

, where M ≪ N is the number of marked
items. In each rotation, the angle grows by 2θ, so after t time steps the angle will be

2.2 A tale of two rotations: Grover’s algorithm 7

|0⟩ H

O

H H

O

· · ·

O

H H

|0⟩ H H H · · · H H
...
|0⟩ H H H · · · H H

Figure 2.1 Grover’s algorithm. The dashed box represents the diffusion operator Us,
while the oracle operator O is explicitly indicated. After the initialization, operators O
and Us must be applied O(

√
N) times.

(2t+ 1)θ. Since the target angle is ≈ π
2 , the number of steps to take grows as t ≈ π

4

√
N
M

.
In conclusion, by alternating these two rotations we can achieve a quadratic speedup
over what is possible classically.

The next question one may ask is: can we do better? Unfortunately, the answer is
no, as Bennett, Bernstein, Brassard, and Vazirani proved even before Grover discovered
his algorithm [30]. For simplicity assume a single marked item |ω⟩. Their procedure
compares two circuits. The first one contains T calls to the oracle O = Uω = 1−2 |ω⟩ ⟨ω|,
and other arbitrary but fixed rotations U1, . . . , UT , [204]

|ψω(t)⟩ = UωUTUω · · ·UωU1 |ψ(0)⟩ . (2.4)

The second is the same circuit without any calls to the oracle

|φ(t)⟩ = UTUT−1 · · ·U1 |ψ(0)⟩ . (2.5)

To compare them, we can check how much the operator Uω changes the state at time
step t

||(Uω − 1) |φ(t)⟩ || = 2| ⟨ω|φ(t)⟩ |. (2.6)

This can be interpreted as an error vector between the two preparations. In fact,

|| |ψω(T)⟩ − |φ(T)⟩ || ≤ 2
T∑
t=1
| ⟨ω|φ(t)⟩ |. (2.7)

Since simple arithmetic shows that [204, Eq. 6.166]

(
T∑
t=1

ct

)2

≤ T
T∑
t=1

c2
t (2.8)

2.2 A tale of two rotations: Grover’s algorithm 8

Figure 2.2 Grover’s algorithm rotations. Top: initial state, a uniform superposition
of marked and not marked states. Medium: Oracle rotation, which changes the sign of
the marked states. Bottom: diffusion operator, that performs a rotation around the
average. The angle sin θ =

√
M/N , for M the number of marked items in a list of N

elements. Images from the Qiskit textbook under Apache 2.0 license.

https://github.com/qiskit-community/qiskit-textbook/blob/463cf2f13529c7ac7f6dc09d7808f2731edcb2ef/content/ch-algorithms/grover.ipynb

2.2 A tale of two rotations: Grover’s algorithm 9

we have

|| |ψω(T)⟩ − |φ(T)⟩ ||2 ≤ 4
(

T∑
t=1
| ⟨ω|φ(t)⟩ |

)2

≤ 4T
T∑
t=1
| ⟨ω|φ(t)⟩ |2 ≤ 4T 2. (2.9)

To distinguish between states with certainty, we need states to be orthogonal. Con-
sequently, we take |ω⟩ to be part of an orthonormal basis ω′, and summing over
it, ∑

ω′
|| |ψω′(T)⟩ − |φ(T)⟩ ||2 ≤ 4T

T∑
t=1

∑
ω′
| ⟨ω′|φ(t)⟩ |2︸ ︷︷ ︸

=⟨φ(T)|φ(T)⟩

= 4T 2. (2.10)

The left-hand side of this expression can be lower-bounded by 2N − 2
√
N [204, Eq.

6.174], so we have that 4T 2 ≥ 2N − 2
√
N , and finally T ≥

√
N−

√
N

2 . In other words,
if we aim to distinguish all N orthogonal possible values of |ω⟩, we need to call
T = O(

√
N) times the oracle Uω. Further, if we aim for a success probability of 1− δ,

then one can show that we need T ≥
√

N
2

√
1−
√
δ [204, Chapter 6].

2.2.1. Amplitude Amplification

Grover’s algorithm is, in its original form, just intended for unordered search. We
would now like to study some of its main use cases and extensions. The first of
such applications is known as amplitude amplification, and it is widely used in many
settings [51, 111]. Let us suppose we have a quantum algorithm A that probabilistically
prepares a state |ψ⟩:

A : |1⟩f |0⟩s 7→ α |0⟩f |ψ⟩s + β |1⟩f |ψ
⊥⟩s , (2.11)

where register f indicates failure in preparing the target state, and register s contains the
state. By identifying α = sin θ and β = cos θ, we can uncover a two-dimensional rotation
amenable to a Grover-like search algorithm. We define the Amplitude Amplification
operator [51]

Q = −ARsA
†Rt, (2.12)

where Rs := (2 |10⟩ ⟨10|fs − 1) and Rt := (2 |0⟩ ⟨0|f − 1f), as the rotation around the
start and target states. To recover Grover’s algorithm, A would have to be equal to

2.2 A tale of two rotations: Grover’s algorithm 10

the Hadamard gate. Overall, this operator acts as

Q |0⟩f |ψ⟩s = cos(2θ) |0⟩f |ψ⟩s − sin(2θ) |1⟩f |ψ
⊥⟩s ,

Q |1⟩f |ψ
⊥⟩s = sin(2θ) |0⟩f |ψ⟩s + cos(2θ) |1⟩f |ψ

⊥⟩s .
(2.13)

We can also diagonalize this operator, obtaining eigenvectors

|ψ±⟩ = 1√
2
(
|1⟩f |ψ

⊥⟩s ± i |0⟩f |ψ⟩s
)
, (2.14)

with eigenvalues e±2iθ respectively. In other words,

Q = e2iθ |ψ+⟩ ⟨ψ+|+ e−2iθ |ψ−⟩ ⟨ψ−| . (2.15)

As we shall see, Q is very helpful when we have to implement an operator A multiple
times, but do not want the success probability to vanish exponentially in the number
of steps.

2.2.2. Fixed point Amplitude Amplification and the first glimpse
of Quantum Signal Processing

A different modification we analyze in this section is the possibility of an algorithm
with a fixed point. Note that Grover’s algorithm has an inconvenient feature: if we do
not know how many marked items there are, it is unclear how to choose the number of
amplification steps. In fact, given the oscillatory nature of Grover’s algorithm, it is
possible to overshoot and amplify ‘too much’.

To remedy this, we present a second algorithm, also by Grover, which monotonically
increases the probability of measuring the target [112]. Let |s⟩ and |t⟩ be the starting
and target states, and U a rotation between the subspaces spanned by them, such that
| ⟨t|U |s⟩ |2 = 1− ε. By defining

Rs = 1−
(

1− exp
(
i
π

3

))
|s⟩ ⟨s| , Rt = 1−

(
1− exp

(
i
π

3

))
|t⟩ ⟨t| , (2.16)

the operator URsU
†RtU will fulfill | ⟨t|URsU

†RtU |s⟩ |2 = 1 − ε3 [112]. If instead of
π/3 we had used π, we would recover the original Grover algorithm.

2.2 A tale of two rotations: Grover’s algorithm 11

We can now use this idea to monotonically improve the success probability in an
Amplitude Amplification setting. We can use the recursion

Um+1 = UmRsU
†
mRtUm, U0 = A, (2.17)

where A is defined in (2.11). The success probability scales as | ⟨t|Um|s⟩ |2 = 1− ε3m.
Expressed in the number of calls to the oracle qm, | ⟨t|Um|s⟩ |2 = 1− ε2qm+1 [112]. In
contrast, the classical success probability is 1− εc+1, for c oracle calls.

This algorithm, while being optimal under the monotonic condition, loses the
original quadratic speedup [264]. To see it, imagine we want to find the marked item
with failure probability δ, such that the initial and target states have a small overlap
probability λ = 1− ε→ 0. We want to find qm such that

δ ≥ ε2qm+1 ≈ (1− λ)2qm+1 ≈ 1− (2qm + 1)λ, (2.18)

what implies that [113, Eq. 16]

qm ≳
1− δ

2λ = O
(1
λ

)
, (2.19)

similar to the classical case. In contrast, Grover’s original algorithm required O(λ−1/2)
calls to the oracle.

Can we find a way around it? We can, but it implies letting go of the monotonic
assumption. As before, we assume we have an initial state |s⟩ = A |0⟩, and want
to prepare a target state |t⟩ = e−iξ |t′⟩ such that ⟨t′|s⟩ = eiξ

√
λ. In other words,

|s⟩ =
√
λ |t⟩+

√
1− λ2 |t⊥⟩. We are also provided with an oracle O which marks the

target state |t′⟩. The objective is finding a quantum circuit Q such that the success
probability PL = | ⟨t′|Q|s⟩ |2 is 1− δ2, where δ ∈ [0, 1], after L calls to the oracle.

The key idea to tackle this problem [264], is to generate a sequence of generalized
Grover rotations G(α, β)

Q = G(αL, βL) · · ·G(α1, β1), G(α, β) = −Ss(α)St(β), (2.20)

where
Sx(α) := 1− (1− eiα) |x⟩ ⟨x| . (2.21)

2.2 A tale of two rotations: Grover’s algorithm 12

These reflection operators Ss(α) and St(β) can also be understood as rotations in a
2-dimensional Block sphere-like space:

Rφ(θ) = exp
(
− i2θ(Z cos(φ) +X sin(φ))

)
. (2.22)

Using this rotation and taking ϕ = 2 arcsin(
√
λ), we can rewrite [264]

St(β) = eiβ/2R0(β), Ss(α) = e−iα/2Rϕ(β). (2.23)

This formulation allows computing what angles αi, βi can be used to increase the
success probability PL to 1− δ2. For l = (L− 1)/2 and j ∈ [1, l] we should take [264]

αj = −βl−j+1 = 2 cot−1
(

tan(2πj/L)
√

1− γ2
)
, (2.24)

with γ−1 := T1/L(1/δ), and TL(cos θ) := cos(Lθ) the Lth first-order Chebyshev polyno-
mial. Using these angles, one obtains that

PL = | ⟨t|Q|s⟩ |2 = 1− δ2T 2
L(T1/L(1/δ)

√
1− λ). (2.25)

Chebyshev polynomials fulfill that if |x| ≤ 1, then |TL(x)| ≤ 1. From this it is clear
that if |T1/L(1/δ)|

√
1− λ ≤ 1, then we can write PL ≥ 1− δ2 as wanted. This happens

whenever λ ≥ 1 − T−2
1/L(1/δ) =: w. We will call w the width. For large L and small

δ > 0 [264, Eq. 2]

w ≈
(

log(2/δ)
L

)2

, (2.26)

what implies that we need to choose

L ≥ log(2/δ)√
λ

, (2.27)

recovering the quadratic speedup that characterizes Grover’s original algorithm.
Furthermore, we can concatenate this procedure to improve the target δ. Calling

QL(B) the rotation that uses BA in place of A for the definition of the initial state,
and χ1, χ2 some phases, then if

QL1 |s⟩ :=
√

1− PL1(λ) |t⊥⟩+
√
PL1(λ)e−iχ1 |t⟩ , (2.28)

2.3 Quantum walks 13

we also have that [264]

QL2(QL1)QL1 |s⟩ :=
√

1− PL2(PL1(λ)) |t⊥⟩+
√
PL2(PL1(λ))e−i(χ1+χ2) |t⟩ . (2.29)

Since QL1 acts as a prefix, we can implement QL1 and then decide whether to improve
the result further. Moreover, if we choose δ = 1, from (2.24) we obtain αj = βj = ±π,
thereby generalizing Grover’s original algorithm. And if instead we chose δ = 0, we
obtain −α1 = β1 = π/3 [264], and using recursion as explained before we recover the
π/3 monotonic algorithm, but as expected without the quadratic speedup from (2.27).

2.3. Quantum walks

While the extensions of Grover’s algorithm that we have discussed so far deal
with unordered databases or probabilistic algorithms, there are situations where we
have more information about the structure of the search space. In particular, let us
consider a graph G(X,E), where X denotes the vertices (states) and E the edges
(state transitions). We now define a Markov chain over this graph, that for each pair of
vertices x, y connected by an edge assigns a probability of transition, forming a matrix
P = (pxy)(x,y)∈E. We will analyze the particular case of discrete ergodic Markov chains.

Definition 1 (Discrete ergodic Markov chain) A Markov chain P = (pxy)(x,y)∈E

defined over a graph G(X,E) is called ergodic, if ∃t0 such that ∀x, y ∈ X, and starting
from x at time t = 0 and following probability transitions dictated by P, then ∀t > t0,
the probability of finding an item y at time t is greater than 0. In mathematical notation,

∃t0 | ∀x, y ∈ X, p(x, t = 0) = 1⇒ p(y, t > t0) > 0. (2.30)

Ergodic Markov chains have a unique stationary distribution π, that fulfills πTP =
πT , or in other words, the eigenvalue 1 has multiplicity 1 too [148, Theorem 5.9]. In
this case, we define an eigenvalue gap δ = 1− λ where λ is the second-largest absolute
value of an eigenvalue of P, the first being 1. This eigenvalue gap δ will determine
the time required for the Markov chain to mix, or in other words, to approximate π.
Finally, Markov chains are called reversible if they obey the detailed balance property

pyxπx = pxyπy, (2.31)

and are called symmetric if P = P T . Symmetric Markov chains display the uniform
superposition as the stationary state [173].

2.3 Quantum walks 14

2.3.1. Hitting time and search algorithms

There are two main tasks one can perform in a Markov chain when there is a set of
marked items M ,

Detect(=k): Check if M = ∅ under the promise that either M = ∅ or |M | = k.

Find(=k): Find m ∈M under the promise that |M | = k.

If instead of superscript (= k) we use (≥ k), the same promise applies with greater or
equal than. If no promise is given, then k ≥ 1 is assumed.

Classically, these two tasks are the same: one cannot detect the presence of a
marked node without finding it. A simple classical algorithm for finding a marked
state m ∈M ⊂ X is the following, [173]:

Algorithm 1 A basic classical search algorithm
1: Input: Ergodic Markov chain P , graph G(X,E), time t.
2: Output: Marked state m or signal that not marked item exists.
3: Initialize x sampled from the stationary distribution π.
4: for t steps do:
5: If state reached x is marked, output x.
6: Else, simulate 1 step of Markov chain P from x.
7: end for
8: Output ‘no marked element exists’.

Running Algorithm 1 has three cost sources: S for the set-up cost of initializing the
data structure and sampling the initial x, often from the stationary distribution π of
the corresponding Markov chain, U for updating the item according to P, and C for
checking if it is a marked item.

Definition 2 (Hitting time) We define the hitting time HT (P,M) of a Markov
chain P as the expected number of evaluations of U required to find a marked item
m ∈M with Algorithm 1 starting from the projection of the stationary distribution π

into the set of unmarked states |πU⟩ = ΠU |π⟩.

The Hitting time HT from Algorithm 1 in symmetric Markov chains is HT = t =
O(1/(δϵ)) [173, Proposition 1]. In such a case, its overall cost is O

(
S + 1

δϵ
(U + C)

)
.

Another slightly different algorithm is the following [173]:
Taking t2 steps of the Markov Chain aims to mix the state again so that it is close

to the stationary distribution π. In a symmetric Markov chain we can take t1 = O(1/ϵ)

2.3 Quantum walks 15

Algorithm 2 A more efficient classical search algorithm
1: Input: Ergodic Markov chain P , graph G(X,E), times t1, t2.
2: Output: Marked state m or signal that not marked item exists.
3: Initialize x sampled from the stationary distribution π.
4: for t1 steps do:
5: If state reached x is marked, output x.
6: Else, simulate t2 steps of Markov chain P from x.
7: end for
8: Output ‘no marked element exists’.

Figure 2.3 Szegedy quantum walk. Geometrical visualization of the action of a
Szegedy quantum walk operator W , defined in (2.36). W performs a series of rotations
that in the subspace A + B may be written as a block diagonal matrix, where each
block is a 2-dimensional rotation ωj = R(2φj) given by (2.42). This figure represents
the direct sum of Grover-like rotations in the subspace spanned by A+B, and therefore
W . Note that φ0 = 0 because it corresponds to eigenvalue λ0 = 1, but is represented
non-zero for clarity.

2.3 Quantum walks 16

and t2 = O(1/δ), resulting in Algorithm 2 having complexity O
(
S + 1

ϵ

(
1
δ
U + C

))
, [173,

Proposition 1].
Our objective is to find quantum equivalent algorithms to Detect and Find which

scale quadratically better in the hitting time. These algorithms will be called quantum
walks1, the first of which was introduced by Ambainis for Johnson graphs in Ref. [5].
Later on, Szegedy proposed a more general walk that extends to ergodic reversible
Markov chains [236]. To describe it, we start by defining a bipartite Hilbert space
H⊗H, where H represents the space of possible solutions X. The update operator U
will now map

U : |x⟩ |0⟩ 7→ |αx⟩ := |x⟩ ⊗
∑
y∈X

√
pxy |y⟩ , (2.32)

and similarly, we can define

V : |0⟩ |y⟩ 7→ |βy⟩ :=
∑
y∈X

√
pyx |x⟩ ⊗ |y⟩ . (2.33)

The relation between these operators is SU = V S, where S is the Swap operation
between both Hilbert subspaces. Using them, we can define subspaces

A := span{|x⟩ |0⟩ : x ∈ X}, B := U †V SA = U †SUA. (2.34)

The projector on these subspaces

ΠA := (1⊗ |0⟩ ⟨0|), ΠB := U †V S(1⊗ |0⟩ ⟨0|)SV †U = U †SU(1⊗ |0⟩ ⟨0|)U †SU

(2.35)
define rotations RA and RB, which we can use to introduce the quantum walk operator

W = RBRA = U †SURAU
†SURA. (2.36)

To analyze it, we can compare it with

M := U †V S = U †SU. (2.37)

Since we assumed that the Markov chain is reversible, using the detailed balance
equation, we can find its matrix element on the subspace A, ⟨x, 0|U †V S|y, 0⟩ =

1In this thesis, we will focus on discrete-time quantum walks. However, it is also possible to define
a continuous-time quantum walk by defining a Hamiltonian that dictates the evolution of the system.
Such Hamiltonian depends on the graph, for example by dictating the allowed transitions between
nodes. Continuous quantum walks are therefore implemented via Hamiltonian simulation techniques
that we will see in Chapter 4.

2.3 Quantum walks 17

√
pyx
√
pxy =

√
πx/πypxy [265, Pag. 756]. In matrix form, this is called the discriminant

matrix
D = D−1/2

π PD1/2
π (2.38)

where Dπ is the diagonal matrix containing the entries of π, the equilibrium distribution.
Since the matrix Dπ is positive definite, P , D and M have the same spectrum in the
subspace defined by projector ΠA, see Ref. [7, Pag. 413] and Ref. [11, Pag. 5]. These
eigenvalues 1 = λ0 > λ1 ≥ . . . ≥ λd−1 can be rewritten as phases λj = cosφj, and we
will denote the corresponding eigenstates as |ϕj⟩ |0⟩. Since [265, Eq. S21]

⟨ϕj, 0|ΠAU
†V SΠA|ϕj, 0⟩ = λj = λ†

j = ⟨ϕj, 0|ΠASV
†UΠA|ϕj, 0⟩ , (2.39)

we have,
ΠAU

†V SΠA = ΠASV
†UΠA. (2.40)

We can use this, and the definition of the spectrum of M, to compute [265, Eq. S19]

ΠAU
†V S |ϕj⟩ |0⟩ = cosφj |ϕj⟩ |0⟩ , (2.41a)

and
ΠB |ϕj⟩ |0⟩ = U †V S cosφj |ϕj⟩ |0⟩ . (2.41b)

Consequently, the subspace spanned by {|ϕj⟩ |0⟩ , U †V S |ϕj⟩ |0⟩} is preserved under RA

and RB. In such subspaces, the operation of W is a rotation

wj =
cos(2φj) − sin(2φj)

sin(2φj) cos(2φj)

 . (2.42)

In contrast to the classical walk, where the eigenvalue gap was δ = 1 − λ, the
quantum phase gap is defined as ∆ := 2φ = 2 arccosλ. The relation between both is
∆ ≥ 2

√
1− |λ|2 ≥ 2

√
δ [173, Theorem 7], which will ultimately originate the familiar

quadratic speedup that also characterizes Grover algorithm [236].
However, so far we have not explained how to implement either of the two tasks

using Szegedy’s quantum walks. Let us first consider a quantum version of Algorithm 1
for Detect, presented in Algorithm 3. What Szegedy did in his original article [236] is
a so-called swap test, between the stationary distribution and the same state evolved
under W ′ defined as in (2.36) for an absorbent Markov chain P ′. P ′ is defined as P
with the transitions from marked to unmarked states deleted.

2.3 Quantum walks 18

|0⟩ H • H

|ψ⟩ ×
|ϕ⟩ ×

Figure 2.4 Swap test. Originally described in Re. [57], the probability of measurement
of 0 of this algorithm is 1

2(1 + ∥ ⟨ϕ|ψ⟩ ∥2). This circuit might be consequently used to
estimate ∥ ⟨ϕ|ψ⟩ ∥2, to precision ϵ−1 with O(ϵ−2) measurements, or alternatively using
quantum amplitude estimation with complexity O(ϵ−1). The complexity in the failure
probability is logarithmic in both cases.

Algorithm 3 Szegedy quantum detection [236, Lemma 7]
1: Input: Ergodic symmetric Markov chain P , graph G(X,E), overlap ϵ, eigenvalue

gap δ, target failure probability pf .
2: Output: Whether a marked item exists.
3: Define P ′ as the absorbent Markov chain corresponding to P, and W ′ its corre-

sponding quantum walk.
4: for O(log p−1

f) steps do:
5: Pick t uniformly at random in

[
1, O

(
1√
δϵ

)]
.

6: Prepare the state 1√
2(|0⟩+ |1⟩) |π⟩, for |π⟩ the stationary distribution.

7: for t steps do:
8: Controlled on the first qubit, evolve the state using W ′.
9: end for

10: The resulting state is

1√
2
(
|0⟩ |π⟩+ |1⟩ (W ′)t |π⟩

)
. (2.43)

11: Perform a Hadamard on the first qubit, obtaining

1
2
(
|0⟩ (1 + (W ′)t) |π⟩) + |1⟩ (1− (W ′)t) |π⟩)

)
. (2.44)

12: Measure the first qubit.
13: If measurement is |1⟩, output ‘Marked item detected’.
14: end for
15: Output ‘No marked item exists’ and stop.

To see why Algorithm 3 works, remember that πTP = π, and therefore Wπ = π.
If no marked item exists, then W ′ = W , and consequently with probability 1 we will
measure |0⟩ after (2.44). t ∈ [1, O(1/

√
δϵ)] is chosen so that if there are ϵ|X| marked

item, then ∥(1−(W ′)t)π∥ does not cancel out. Overall, the complexity of this algorithm
is Õ

(
S + 1√

δϵ
(U + C)

)
.

2.3 Quantum walks 19

We now focus on the problem of Find. We can remove the requirement of symmetry
of the Markov chain, and only require that it is reversible (e.g., it fulfills (2.31)), while
at the same time obtaining a quantum equivalent of Algorithm 2 [173]. For that, we
will use a subroutine called phase estimation, which we will introduce in Chapter 3
and denoted here by P . Given a Hermitian operator H with eigenstates |ϕj⟩ and
eigenvalues λj := cosφj,

P (H) : |ϕj⟩ |0⟩ → |ϕj⟩ |φ̃j⟩ , (2.45)

where φ̃j is a binary approximation to φj.
The objective is to perform a Grover-like algorithm to amplify the marked states.

Grover’s algorithm would consist of rotations

G =
(

2
∑
m∈M

|m⟩ ⟨m| − 1
)

(2 |π⟩ ⟨π| − 1). (2.46)

The first rotation requires the use of C, while the second uses S that prepares the
stationary state |π⟩. However, this does not use the graph structure.

Our objective is to modify Grover’s algorithm and avoid the use of S: instead of
decomposing (2 |π⟩ ⟨π| − 1) = S(2 |0⟩ ⟨0| − 1)S†, we can use a combination of step
operator U and P (H) to perform a rotation over |π⟩. This relies on the fact that we
can use P (H) to detect and apply a phase to the state with eigenvalue 1. Thus, this
procedure will be more appropriate when phase estimation P (H) is cheaper than the
quantum state preparation subroutine S. The proposed algorithm is the following.

The reason we need to run P (W) with precision ∆−1 is that this is the precision
we need to distinguish between |π⟩ and any other eigenstate of W . As we will see in
Chapter 3, achieving precision ∆−1 means a number of logical gates scaling as O(∆−1).
Furthermore, the median is used to ensure that the probability of failure decreases
exponentially fast, using the Median Lemma [192, Lemma 1]. The implementation
of such Median protocol can be done with a reversible sorting protocol such as a
sorting network. Overall, the complexity is Õ

(
S + 1√

ϵ

(
C + 1

∆U
))

, where ∆ = O(
√
δ).

Moreover, instead of using Grover’s method, we can instead use the π/3 monotonically
increasing algorithm [112], or the quantum signal processing algorithm [264] that we
saw at the end of Section 2.2.2.

2.3 Quantum walks 20

Algorithm 4 Magniez quantum search [173, Theorem 3]
1: Input: Ergodic reversible Markov chain P , graph G(X,E), overlap ϵ, eigenvalue

gap δ, target failure probability pf , O(log(
√
ϵ∆pf)−1∆−1) auxiliary qubits |·⟩a.

2: Output: A marked item if it exists, or ‘no marked element exists’ message.
3: Choose t uniformly at random from [1, O(1/ϵ)].
4: Prepare |π⟩ |0⟩ |0⟩⊗ log p−1

f
log ∆−1

a .
5: for t steps do:
6: For any possible state |x⟩ |y⟩ |z⟩, use check operator C so that

|x⟩ |y⟩ |z⟩a 7→ (−1)x∈M |x⟩ |y⟩ |z⟩a . (2.47)

7: Apply P (W)O(log(
√
ϵpf)−1) times in new sets of auxiliary qubits, with precision

O(∆−1).
8: Compute the median of the estimated |λ̃j⟩s.
9: If Median({|λ̃j⟩}) = 1, apply a (−1) phase.

10: Uncompute the median.
11: Uncompute the P (W) operators.
12: end for
13: Measure the first register
14: if x ∈M then
15: Output x
16: else
17: Output ‘No element exists’.
18: end if

Quantum Fast Forwarding and an optimal algorithm

So far, however, we have not given a closed expression for the Hitting Time. The
Hitting Time can be expressed as [150, Proposition 9]

HT (P,M) =
d−|M |∑
k=1

| ⟨ϕ′
k|πU⟩ |2

1− λ′
k

, (2.48)

where d is the number of eigenvalues λ′
k ̸= 1 of the absorbent M′ defined similarly

as in (2.38), corresponding to eigenstates |ϕ′
k⟩ (see Ref. [150, Proposition 34]). The

sum is explicitly designed to avoid the |M | eigenstates with eigenvalue 1, the marked
states, where the fraction would not be well-defined. If there are no transitions between
marked states, it is easy to recognize the eigenvalue 1 states. In such a case, remember
that if |m⟩ ∈M , then P ′ |m⟩ = |m⟩ as the Markov chain P ′ is absorbent, so |m⟩ is an
eigenstate with eigenvalue 1.

2.3 Quantum walks 21

The Hitting Time can sometimes be O(1/
√
δϵ) as we saw was the case for symmetric

Markov Chains, but it may also be smaller [7]. For that reason, the algorithms we have
explained so far are not optimal. However, there exists one algorithm that approxi-
mately is, achieving a quadratic speedup in the Hitting Time up to polylogarithmic
complexity [7]. It is based on two main techniques.

First, it makes use of ‘extrapolated’ quantum walks, defined as the quantum walk
corresponding to

P(s) = (1− s)P + sP ′, s ∈ [0, 1), (2.49)

which is still a reversible Markov chain with a unique stationary distribution that we
will call π(s) [150].

The second technique, called Quantum Fast Forwarding, is more involved [11]. Its
objective is to simulate an approximation to Dt in O(

√
t) applications of the quantum

walk operator, even if that entails some failure probability. To do so, one first proves
that ΠAM = D [11, Lemma 1], as we already saw in (2.41a). Using this,

D |ϕj⟩ |0⟩ = cosφj |ϕj⟩ |0⟩ ⇒ Dt |ϕj⟩ |0⟩ = cost(φj) |ϕj⟩ |0⟩ . (2.50)

We will further modify the definition of the quantum walk such that in this algorithm
it will be

W = (2ΠA − 1)M, (2.51)

with M defined in (2.37). Since W can be understood as 2 rotations, we have [11,
Proposition 1] and [236]

ΠAW
t |ϕj⟩ |0⟩ = Tt(D) |ϕj⟩ |0⟩ = Tt(cosφj) |ϕj⟩ |0⟩ = cos(tφj) |ϕj⟩ |0⟩ , (2.52)

where Tt(cosφ) is a Chebyshev polynomial of the first kind. In fact, in Chapter 3 and
in particular, in equation (3.38), we will see that powers of quantum walk implement
Chebyshev polynomials in general. Now, we compare

cost(θ) = 1− tθ2

2 +O(t2θ4), and cos(t′θ) = 1− t′2θ2

2 +O(t′4θ4). (2.53)

From this we check that setting t′ =
√
t, both expressions coincide up to second order.

Notice the fact that W l implements Tl(cosφj) on the eigenstates |ϕj⟩ |0⟩, and we can
use that to approximate cost(φj), the action of Dt. In particular, we will implement a

2.3 Quantum walks 22

Chebyshev series such that [11, Lemma 3]
∣∣∣∣∣∣cost(θ)−

⌈
√
Ct⌉∑
l=0

pl cos(ltθ)

∣∣∣∣∣∣ ≤ ϵ, (2.54)

for some coefficients pl defined in their equation 6, and C = 2 ln(2/ϵ) the precision of
the approximation. More specifically, we implement [11, Equation 8]

τ∑
l=0

plΠAW
l |ϕj⟩ |0⟩ =

τ∑
l=0

plTl(D) |ϕj⟩ |0⟩ (2.55)

for τ = O(
√
t log ϵ−1) to approximate Dt, our objective.

We now have to explain how to implement the sum of Chebyshev terms. For that,
we resort to a very standard technique that will be used in later chapters too. It is
called Linear Combination of Unitaries (LCU) decomposition. The idea is that if we
want to implement (2.55), we use the following two operators:

Prep : |0⟩a |ϕ⟩ 7→
1√∑
j p

2
j

∑
l

√
pl |l⟩a |ϕ⟩ , (2.56a)

and
Sel : |l⟩a |ϕ⟩ 7→ |l⟩a Tl(D) |ϕ⟩ . (2.56b)

Note that Sel is a controlled application of (2.52). Combining them, we have

(|0⟩ ⟨0|a ⊗ 1)Prep† · Sel · Prep |0⟩a |ϕ⟩ = |0⟩a
∑
l

plTl(D) |ϕ⟩ . (2.57)

Using Q = Prep† · Sel ·Prep, we can implement the Chebyshev series with some failure
probability. Using these tools, Ref. [7] proposes Algorithm 5.

The Quantum Fast Forward subroutine has complexity O(
√
t log ϵ−1) times the

complexity of a single quantum walk step (2.51). The key result from Ref. [7] is that
we can lower bound the success amplitude as

||ΠMDt(s) |πU⟩ || ≥ Ω(log−1 T). (2.60)

in (2.59). Consequently, Algorithm 5 has complexity

O(S
√

log HT +
√

HT(U + C)
√

log HT log log HT), (2.61)

2.3 Quantum walks 23

Algorithm 5 Fast-forward-based quantum search [7, Theorem 3]
1: Input: Ergodic reversible Markov chain P , graph G(X,E), upper bound to Hitting

Time HT .
2: Output: A marked item if it exists, or ‘no marked element exists’ message.
3: Define T = O(HT) and S =

{
1− 1

r
: r ∈ 1, 2, 4, . . . , 2log T+O(1)

}
4: for O(log T) steps do Amplitude Amplification over
5: Use S to prepare

T∑
t=1

1√
T
|t⟩
∑
s∈S

1√
|S|
|s⟩ |π⟩ . (2.58)

6: Perform measurement {ΠM ,1− ΠM}. If the output is marked, output it.
7: Quantum Fast Forward the state

|s⟩ |t⟩ |πU⟩ 7→ |1⟩ |t⟩ |s⟩Dt(s) |πU⟩+ |0⟩ |. . .⟩ . (2.59)

with precision ϵ = O(log−1 T), where |0⟩ |. . .⟩ encodes a failure state.
8: end for
9: Measure the first register.

10: if x ∈M then
11: Output x,
12: else
13: Output ‘No element exists’.
14: end if

whenever an upper bound HT over the classical hitting time is known [7, Theorem 3].
If it is unknown, then one may repeat the search with an exponentially increasing
number of steps until an element is found, or we flag that no element exists [50].
This increases the complexity by O(log HT). Alternatively, we could use fixed-point
amplitude amplification [264]. In this case, we cannot use phase estimation to reflect
over the stationary state, needing instead to use S to prepare it from a computational
basis state.

2.3.2. Mixing time and Monte Carlo algorithms

In the previous subsection, we analyzed the capability of quantum walks to find
a marked item in a Markov chain. In this one, we would instead like to study the
convergence to the limiting distribution. For example, if π is the stationary distribution,
we might define the mixing time as follows.

2.3 Quantum walks 24

Definition 3 (Mixing time) The Mixing time MT is defined as

MT (ϵ) = min{t|∀t′ > t,∀s0, D(P t′s0, π) ≤ ϵ}, (2.62)

where D indicates the distance between the distributions

D(p, q) = 1
2

N∑
v=1
|pv − qv|, (2.63)

and v indicates the vertices of the Markov chain.

The validity of this definition rests on the fact that, for classical random walks,

lim
t→∞
P ts0 = π, (2.64)

independently of the initial state s0 [201].
If we try to do this equivalently for quantum walks, however, we fail: due to the

walk being unitary, there is no limiting distribution. One can see this by noticing that
[201, Chapter 7]

1
2∥ |ψ(t+ 1)⟩ − |ψ(t)⟩ ∥2 = 1

2∥W
t(W − 1) |ψ(0)⟩ ∥2 = 1−R(⟨ψ(0)|W |ψ(0)⟩), (2.65)

where R indicates the real part. Since the norm above does not need to approach 0
and is in fact independent of t, the quantum walk will not converge to a stationary
state. For this reason, we will have to look for alternative approaches to obtaining
some sense of limiting distribution.

One possible option to define a quantum equivalent is to take a time-averaged
sampling, e.g., given some possibly entangled auxiliary register |a⟩ and a vertex register
|v⟩

lim
T→∞

p̄v(T) = lim
T→∞

1
T

T−1∑
t=0

∑
a

| ⟨v, a|ψ(t)⟩ |2. (2.66)

Let us analyze whether p̄v(T) converges. Imagine that we start from a quantum state

|ψ(0)⟩ =
∑
k,a

ca,k |ϕk, a⟩ . (2.67)

Operator W can be similarly decomposed

W =
∑
k,a

e2iφk,a |ϕk, a⟩ ⟨ϕk, a| . (2.68)

2.3 Quantum walks 25

The eigenvalues cosφk,0 and the eigenvectors |ϕk, 0⟩ extend to the whole bipartite space
cosφk and |ϕk⟩ |0⟩ that we previously defined in A. Consequently, the evolved state is

|ψ(t)⟩ =
∑
k,a

ca,ke
2iφk,a |ϕk, a⟩ . (2.69)

Substituting into (2.66),

p̄v(T) = 1
T

T−1∑
t=0

∑
b

| ⟨v, b|ψ(t)⟩ |2

=
∑
a,a′,b

∑
k,k′

ca,kc
∗
a′,k′ ⟨ϕk, a|v, b⟩ ⟨v, b|ϕk′ , a′⟩ × 1

T

T−1∑
t=0

e2i(φk,a−φk′,a′)t.

(2.70)

On the other hand, [201, Chapter 7]

lim
T→∞

1
T

T−1∑
t=0

e2i(φk,a−φk′,a′)t =

1 φk,a = φk′,a′

0 φk,a ̸= φk′,a′

, (2.71)

because if the eigenvalues are different, we have an average over the approximate roots
of the unit that cancels out asymptotically. Consequently, since

lim
T→∞

p̄v(T) =
∑
a,b

∑
k

|ca,k|2| ⟨ϕk, a|v, b⟩ |2, (2.72)

we have proven the limiting distribution exits. However, this distribution depends on
the initial state coefficients ck,a, and not only on the first eigenstate but on all of them,
in contrast to the classical random walk [201].

Using this limiting distribution, we can study a possible definition of the quantum
convergence time. In contrast to the hitting time, the quantum advantage in the mixing
time will depend on the specific graph, and while in some systems the quantum mixing
time displays a quadratic advantage [201, Table 7.1], in others the quantum walks mix
more slowly than their classical counterparts [69].

Monte Carlo algorithms

The fact that the limiting probability distribution limt→∞ p̄v(t) ̸= π limits the
usefulness of the previous definition. Instead, one may wish to prepare a coherent
version of the stationary distribution, |π⟩. This task is precisely the definition of
operator S, which was not previously explained but was used in the search algorithms

2.3 Quantum walks 26

above. Indeed, one possible way to solve the mixing problem would be running the
finding problem in reverse: since all search algorithms start from the coherent stationary
state and end up in a marked item if we had a marked item we could reverse the
algorithm to find the stationary state. There are some problems, though, since a
constant overlap with such marked states is not sufficient to achieve similar running
time [68].

There are some special cases where it is possible to prepare coherent versions of
the stationary state using phase estimation and measurements: since we know that
the stationary state has eigenvalue 1, using phase estimation and measurements may
probabilistically project the system into the stationary state. This opens the door to
performing a digital simulation of an adiabatic algorithm.

In adiabatic quantum simulated annealing [222, 223, 259], we start with the station-
ary state |π0⟩ of a simple Markov chain P0. For example, any symmetric Markov chain
has a uniform superposition as stationary state, |π0⟩ = H⊗n |0⟩⊗n [173]. Then, we
look for a list of Markov chains P0, . . .Pr that interpolates between the initial simple
Markov chain P0 and the target P = Pr. At this point, one strategy is to use phase
estimation and projective measurements to make the system evolve from |πi⟩ to |πi+1⟩.

Algorithm 6 Quantum Zeno effect annealing
1: Input: List of ergodic Markov chains {Pi}i∈{1,...,r} with corresponding quantum

walks {Wi}i, such that their stationary states fulfill | ⟨πi−1|πi⟩ |2 ≥ p.
2: Output: Stationary state |π⟩ of the Markov chain P .
3: Initialize the stationary distribution |π0⟩, often a uniform distribution.
4: for i in 1, . . . , r do:
5: Implement phase estimation P (Wi) with precision O(1/∆).
6: Measure the eigenvalue.
7: if Eigenvalue is not 1 then
8: Restart algorithm.
9: end if

10: end for
11: Output |π⟩.

This algorithm has complexity O(1/∆), offering a quadratic speedup in the eigen-
value gap, as the mixing time of the classical algorithm scales as O(1/δ) [259]. Two
possible modifications of Algorithm 6 are the following. First, phase estimation might
be substituted by randomized evolution [223]. In other words, using a random num-
ber of applications of the quantum walk Wi at each step. Such a random number
should be taken at uniform from [0, O(1/∆)]. A second one is the so-called Zeno
effect with rewind [161]. In this variant, instead of discarding the state whenever we

2.3 Quantum walks 27

measure an eigenvalue different from 1, we can rewind the process. Using the projectors
Πj = |πj⟩ ⟨πj|, Π⊥

j = 1− Πj and pj = | ⟨πj|πj+1⟩ |2, we find that transitions between
Πj and Πj+1, or Π⊥

j and Π⊥
j+1 occur with probability pj. Similarly, the transitions

Π⊥
j ↔ Πj+1 and Πj ↔ Π⊥

j+1 occur with probabilities 1− pj . Consequently, even if at a
given step we measure Π⊥

j we can later on recover one of the |πi⟩ states.
A third alternative to the use of projective measurements is to amplify the overlap

between consecutive |πj⟩ [259]. Since we are only given a lower bound for the overlap
between two states, it is useful to use Grover’s π/3 algorithm instead of Grover’s
original one. We define

Ui;0 = 1; Ri = ei(π/3)Πi + Π⊥
i ; Ui;m+1 = Ui;m ·Ri · U †

i;m ·Ri+1 · Ui;m, (2.73)

where m controls the number of amplification steps and i the Markov chain. Using
these definitions, we can obtain

|π⟩ =
r∏
j=0

Uj;m |π0⟩ , (2.74)

with error probability ϵ, if we choose

m ≥ L = 12r log(2r/ϵ)
log(1/(1− p)) , (2.75)

and assume overlap pj ≥ p for all j [259]. As before, the rotations around |πj⟩ are
performed with the help of the phase estimation operator.

The quantum simulated annealing techniques explained above are particularly
useful for preparing ground states of Hamiltonians. To achieve this, we can aim to
prepare Gibbs states of the form

|πβ⟩ = Z−1/2∑
λ

e−βH/2 |λ⟩ = Z−1/2∑
λ

e−βλ/2 |λ⟩ , (2.76)

where |λ⟩ is an eigenstate of the Hamiltonian with eigenvalue λ = Eλ, and Z is the
partition function that normalizes the state. When β, the inverse temperature, goes to
infinity, only the eigenstate with the lowest energy survives.

These techniques can be especially helpful in the context of the Metropolis-Hastings
algorithm. The key idea of the Metropolis-Hastings approach is to engineer a series
of ‘rapidly’ mixing Markov chains [182, 120]. To do so, one starts from the detailed

2.3 Quantum walks 28

balanced equation of a reversible Markov chain, (2.31), pyxπx = pxyπy. Consequently,

pyx
pxy

= πy
πx
. (2.77)

The next step is to divide each transition into a proposal probability Ty,x and an
acceptance probability Ay,x, such that

pyx ∝ Ty,xAy,x. (2.78)

Consequently, we need to choose Ay,x such that

Ay,x
Ax,y

= πy
πx

Tx,y
Ty,x

. (2.79)

A common choice that fulfills the previous equation is to take

Ay,x = min
(

1, πy
πx

Tx,y
Ty,x

)
. (2.80)

In particular, we can take a parameterized family of Markov chains

Pβ(y, x) =

Ty,xAβ;y,x y ̸= x

1−∑z Tz,xAβ;z,x y = x,
(2.81)

where
Aβ;y,x = min{1, e−β(Ey−Ex)}, (2.82)

Ex indicates the ‘energy’ of a state x, and Ty,x = 1/ne = Tx,y for ne the number of
edges connected to x or y. This means that the Markov chain has stationary state
πx = Z−1e−βEx , and in the limit β →∞, π concentrates all its probability mass on the
state x with lowest energy Ex. Similarly, if β = 0, then π is the uniform distribution
over all states.

Classical simulated annealing has complexity [223]

O

(
∥H∥
γ

log(d/ϵ2)
δ

)
, (2.83)

where δ is the eigenvalue gap of the Markov chains Pβ, γ the energy gap of the target
Hamiltonian, and d = |Ω| the size of the search space. In contrast, Algorithm 6 has

2.4 QFold 29

complexity [223, Eq. 5]

O

(∥H∥
γ

)2 log2(d/ϵ) log d log(1/ϵ)
∆

 , (2.84)

and the one using Grover’s π/3 amplitude amplification [259, Eq. 3],

O

(
∥H∥
γ

log d
∆ log

(
∥H∥
γ

log d
))

. (2.85)

Finally, the Zeno algorithm has been generalized to quantum Hamiltonians, where
the stationary state Eq. (2.76) contains a superposition of eigenvalues that no longer
represent computational basis (classical) states. In this case, we can also obtain a
quadratic speedup in the eigenvalue gap ∆, see Eq. S50 in Ref. [265].

2.4. QFold

Proteins are one of the most fundamental molecules in biochemistry. In contrast to
many others, such as lipids, they exhibit very large variability in composition, which
makes them a good candidate for numerous biochemical tasks. Proteins are made of
chains of amino acids, which in turn are composed of a backbone chain of an amino
group -NH, a central carbon labeled α, a carboxyl group -COOH, and a side chain of
other atoms, also called radical, attached to the α Carbon. The different composition
possibilities of the side chain define 20 amino acids.

As proteins play a central role in biochemistry, understanding their specific functions
or even designing proteins with specific roles is a very important problem. However,
this function is not only determined by their amino acid decomposition or by the
order those amino acids appear in the protein chain, but also by how such a chain is
folded into its natural configuration, often much more complex to determine. This
folding is largely determined by two angles per amino acid, commonly called ψ and ϕ,
see Fig. 2.6.

A breakthrough in the understanding of how proteins fold happened in 1961 when
the scientist Christian Anfinsen showed that a denaturalized ribonuclease peptide
(small protein) would always recover its shape and function if put back into its usual
environment [10]. This and similar experiments led Anfinsen to postulate that proteins
tend to fold in their thermodynamic ground state as determined by the aminoacid
chain [9], and would ultimately win him the Chemistry Nobel Prize in 1972.

2.4 QFold 30

Figure 2.5 Structure of an aminoacid. The radical, indicated by the letter R, is a
chain between 20 different options that determine the specific amino acid. Taken from
Wikipedia, under CC-BY-SA 3.0 license.

While not universally true, as there are proteins with various stable configurations
or others that have none, his ‘thermodynamic hypothesis’ has guided the research in
this area since then. Unfortunately, it is known that the protein structure prediction
problem is NP-hard [118], even for the simplest toy models [31]. This seems to be at
odds with the fact that most proteins can fold in timescales of seconds or less. However,
while baffling, scientists have so far not been able to find a computationally fast and
inexpensive method to understand how proteins fold.

It is for this reason, and its NP-hardness, that this problem makes a good candidate
for simulated annealing approaches, and for their quantum equivalent algorithms too.
In fact, until very recently, simulated annealing has been the default approach for
one of the most popular protein structure prediction computer libraries, Rosetta, [80];
and in distributed computational efforts such as Rosetta@Home [242, 81]. With the
development of quantum walks over the last decade and a half, and the promise of
quadratic speedups in a computationally hard problem, some effort has been put into
developing tailored quantum algorithms [20, 208, 198, 95, 22, 199, 196, 261] for this
problem and related ones [190, 23]. Perhaps because the computational complexity of
the problem does not decrease for toy models, almost all of these manuscripts have
assumed simplified lattice models.

In contrast, in recent years powerful deep learning techniques have also been applied
to this problem [216, 127], producing extremely promising results in the Critical
Assessment of Techniques for Protein Structure Prediction (CASP) competition [189].
In our article, we propose implementing a quantum annealing search starting from
the state that the deep learning model has suggested [62]. The deep learning that we

https://commons.wikimedia.org/wiki/File:Amino_Acid_Structure.png

2.4 QFold 31

Figure 2.6 Example of the smallest dipeptide: the glycylglycine. Each amino
acid has the chain (Nitrogen-Cα-Carboxy). Different amino acids would have a different
side chain attached to the Cα instead of Hydrogen as is the case for Glycine. In each
figure, we depict either angle ϕ or ψ. Angle ψ is defined as the torsion angle between
two planes: the first one defined by the three atoms in the backbone of the amino acid
(N1, Cα,1, C1), and the second by the same atoms except substituting the Nitrogen
in that amino acid by the Nitrogen of the subsequent one: (Cα,1, C1, N2). For the ϕ
angle the first plane is made out of the three atoms in the amino acid (N2, Cα,2, C2)
whereas the second plane is defined by substituting the Carboxy atom in the amino
acid by the Carboxy from the preceding amino acid: (C1, N2, Cα,2).

use as an initial guess will be Minifold [3], a small AlphaFold-inspired deep learning
module with enough precision for our purposes.

2.4.1. The QFold algorithm

Relying on Anfinsen’s hypothesis, our work aims to use a quantum Metropolis
algorithm to find the thermodynamic ground state of the system. This is a search
problem, but since there is no oracle to mark the state, the objective is instead to find
the stationary state of a rapidly mixing Markov chain that favors the states with the
lowest energy. Consequently, our procedure will fit into the scheme of Monte Carlo
algorithms discussed in the previous subsection, and in particular, the Metropolis-
Hastings algorithm defined in (2.81) and (2.82).

As we reviewed in that section, there are a few quantum Metropolis proposals that
could work on this problem. However, most of them use the expensive quantum phase
estimation subroutine and come with theoretical guarantees of performance, which is
not the case in the commonly used classical Metropolis algorithm. As a result, Lemieux
et al. [162] proposed to use a heuristic algorithm more in the spirit of the classical

2.4 QFold 32

Protein

Simulation/
experiment?Experiment Simulation

Energy files? No

Energy files

Yes

Initialization Minifold

Original

Mi ni f ol d

Random Randomisation

Initialization

Quantum
metropolis

Classical
metropolis

Quantum TTS Classical TTS

Annealing
schedule

Number
of steps

Rotation bits

Probabilities

Initialization module

Simulation module

Experiment module

Figure 2.7 Flow chart of the QFold algorithm [62]. QFold has several functionalities
integrated, that could be summarized in an initialization module, a simulation module,
and an experiment module. We denote by diamonds each of the decisions one has
to make. The top part constitutes the initialization module, where Minifold, a deep
learning module, can be used to get a guess of the correct folding, and Psi4 and the
original geometry from PubChem are used to calculate the energies of rotations. The
bottom half represents the experiment or simulation algorithms, which output either
probabilities or quantum/classical TTS of the corresponding metropolis algorithms,
making use of Qiskit.

Metropolis algorithm. It simply applies quantum walk steps to make the state evolve
over time

|ψ(T)⟩ := W̃T ...W̃1 |π0⟩ . (2.86)

The quantum walk step W̃ is a modification of Sgedy’s original algorithm that instead
of duplicating H uses a coin. It uses 3 quantum registers: |·⟩S indicating the current

2.4 QFold 33

state of the system, |·⟩M that indexes the possible moves one may take according to Ty,x
in (2.81), and |·⟩C the Boltzmann coin register. We may also have auxiliary registers
|·⟩A. Then the quantum walk operator is defined as

W̃ = RV †B†FBV, (2.87)

where V prepares in register |·⟩M a superposition over all possible steps one may take;
B rotates the coin qubit |·⟩C to have amplitude of |1⟩C corresponding to the acceptance
probability indicated by (2.82); F changes the |·⟩S register to the new configuration
conditioned on the value of |·⟩M and |·⟩C = |1⟩C ; and R = 1− 2 |0⟩ ⟨0|MCA.

The metric chosen to compare the classical and quantum Metropolis algorithms
is called Total Time to Solution [162]. Its role is to measure the expected number
of quantum walk steps it would take to find a solution if we allow for restarts of the
algorithm. Specifically,

TTS(t) := t
log(1− δ)

log(1− p(t)) , (2.88)

where t is the number of steps we take in the algorithm, δ is some target probability
threshold, and p(t) is the success probability after t steps. For each problem, we are
interested in the minimum TTS, either classical or quantum, as this is the expected
TTS we would recover if we were to take the optimal number of walk steps before
measuring.

In our article, we explore different annealing schedules [243] including

Boltzmann or logarithmic implements the famous logarithmic schedule [98]

β(t) = β(1) log(te) = β(1) log(t) + β(1). (2.89a)

Notice that the multiplication of t times e is necessary to make a fair comparison
with the rest of the schedules so that they all start in β(1).

Cauchy or linear implements the simple schedule given by

β(t) = β(1)t. (2.89b)

geometric defines [140]
β(t) = β(1)α−t+1, (2.89c)

where α < 1 is a parameter heuristically set to 0.9.

2.4 QFold 34

100 101 102 103 104

Classical min(TTS)

100

101

102

103

104

Qu
an

tu
m

 m
in

(T
TS

)

qTTS = 5.1 × cTTS0.93

qTTS = 19.7 × cTTS0.7

quantum min(TTS) < classical min(TTS)

classical min(TTS) < quantum min(TTS)

minifold initialization
random initialization
dipeptides
tripeptides
tetrapeptides
rotation bits

Figure 2.8 Comparison of the classical and quantum minimum TTS achieved
for the simulation of the quantum Metropolis algorithm with β = 103, for
10 dipeptides (with b = 3, 4, 5 rotation bits of precision in the angles), 10 tripeptides
(b = 2) and 4 tetrapeptides (b = 1), also showing the different initialization options
(random or minifold), and the best fit lines [62]. The dashed grey line separates the
space where the quantum TTS is smaller than the classical TTS. The key aspect to
notice in this graph is that although for smaller instances the quantum algorithm does
not seem to match or beat the times achieved by the classical Metropolis, due to the
exponent being smaller than one (either 0.89 or 0.53 for minifold or random respectively)
for average size proteins we can expect the quantum advantage to dominate. In the
main text, we explain why the random initialization exponent seems more favorable
than the minifold exponent and discuss further details respectively.

And finally exponential uses

β(t) = β(1) exp(α(t− 1)1/N), (2.89d)

where α is again set to 0.9 and N is the space dimension, which in this case is
equal to the number of torsion angles.

2.4.2. Results

In our article, we analyze two kinds of experimental results: those coming from
simulations and others from actual experiments in quantum computers. As mentioned,
we test whether the quantum or classical Metropolis algorithms achieve a better

2.4 QFold 35

100 101 102 103 104
100

101

102

103

104

Qu
an

tu
m

 m
in

(T
TS

)

qTTS = 5.0 × cTTS0.88

qTTS = 81.0 × cTTS0.29

quantum min(TTS) < classical min(TTS)

classical min(TTS) < quantum min(TTS)

Logarithmic schedule

minifold initialization
random initialization
dipeptides
tripeptides
tetrapeptides
rotation bits b

100 101 102 103 104
100

101

102

103

104

qTTS = 7.0 × cTTS0.86

qTTS = 74.2 × cTTS0.34

quantum min(TTS) < classical min(TTS)

classical min(TTS) < quantum min(TTS)

Linear schedule

minifold initialization
random initialization
dipeptides
tripeptides
tetrapeptides
rotation bits b

100 101 102 103 104

Classical min(TTS)

100

101

102

103

104

Qu
an

tu
m

 m
in

(T
TS

)

qTTS = 6.5 × cTTS0.85

qTTS = 82.5 × cTTS0.29

quantum min(TTS) < classical min(TTS)

classical min(TTS) < quantum min(TTS)

Geometric schedule

minifold initialization
random initialization
dipeptides
tripeptides
tetrapeptides
rotation bits b

100 101 102 103 104

Classical min(TTS)

100

101

102

103

104

qTTS = 4.0 × cTTS1.0

qTTS = 69.7 × cTTS0.37

quantum min(TTS) < classical min(TTS)

classical min(TTS) < quantum min(TTS)

Exponential schedule

minifold initialization
random initialization
dipeptides
tripeptides
tetrapeptides
rotation bits b

Figure 2.9 Comparison of the classical and quantum minimum TTS achieved
for a number of small peptides with several annealing schedules [62]. This
figure shows the different initialization options (random or minifold) and annealing
schedules (Boltzmann/logarithmic, Cauchy/linear, geometric and exponential),
and the best fit lines. The dashed grey line depicts the diagonal. The corresponding
fit exponents are given in table 2.1, where we observe a small polynomial quantum
advantage. On the other hand, using an exponential schedule does not seem to give
any advantage when used with a minifold initialization.

Total Time to Solution. In the simulation results, we are particularly interested in
understanding how this metric evolves for larger system sizes, and we depict them
in Fig. 2.8 and Fig. 2.9. In this chapter, we have thoroughly explained that the
expected quantum advantage is polynomial, but since the algorithm is heuristic, we are
interested in finding the actual exponent that encapsulates it. A quantum advantage
will be revealed whenever the quantum minimum TTS grows as a power of the classical
minimum TTS with an exponent lower than 1. For instance, we would measure a
quadratic quantum advantage if the exponent were 0.5. We compute the exponent
using the standard technique of linear least square fitting in the logarithmic scale for
the classical and quantum minimum TTS achieved.

An important remark is in order. This figure seems to suggest that the quantum
advantage when we use minifold as an initialization module is smaller than whenever
we use a random initialization. While this may seem to indicate that our proposed

2.4 QFold 36

deep learning initialization is actively harmful to the predictive power of the quantum
Metropolis these results should be interpreted differently: for the smallest instances,
and in particular, when using a random initialization, the minimum quantum TTS
value is achieved for t = 2. This implies that in such cases the algorithm is avoiding
the use of the Metropolis algorithm, and instead repeatedly choosing and outputting
random points from the search space. The reason is that in the smallest instances, the
multiplicative prefactors of the quantum walk have a larger effect than the eigenvalue
gap that determines the quantum advantage. Consequently, the quantum advantage
found using the minifold initialization is likely to be more representative of the actual
large-size behavior.

The estimated quantum advantages indicated in Table 2.1, and shown in Fig. 2.8
and Fig. 2.9, largely match the value 0.7549 computed in the original reference by
Lemieux et al. [162] for a different problem, although are slightly worse. Unfortunately,
I believe the most important conclusion that can be extracted from these simulations
is rather a negative result: as argued in [19] and mentioned in our article, it is very
unlikely that the ≃ 0.9 polynomial quantum advantage that we observe might be of
any use if one takes into account the error correction overhead required to operate
a quantum computer. On the other hand, our results are exploratory, due to the
incapability to simulate large enough systems without an actual quantum computer,
so different modifications might achieve larger and more useful quantum advantages.
Additionally, we assumed that the optimal choice of parameters is the same for both
quantum and classical metropolis algorithms, but this choice is not necessarily true.

Fit exponents
Schedule Random initial. Minifold initial.
Fixed β 0.70± 0.08 0.93± 0.06

Logarithmic 0.29± 0.07 0.88± 0.09
Linear 0.34± 0.07 0.86± 0.11

Exponential 0.37± 0.07 1.00± 0.12
Geometric 0.29± 0.07 0.85± 0.18

Table 2.1 Table of scaling exponents for different annealing schedules and
initialization options [62]. The peptides are the same, except that for fixed β we
have also included dipeptides with 5 bits of precision, which is costly for the rest of the
schedules. For fixed β, the value heuristically chosen was β = 1000, while the initial
β value in each of the schedules, defined in (2.89), is β(1) = 50. The uncertainty is
expressed via the standard deviation in the expected exponent, calculated with the
bootstrapping method [90].

2.4 QFold 37

Figure 2.10 Results from hardware measurements corresponding to the exper-
imental realization of the quantum Metropolis [62]. For each dipeptide we perform
a student t-test to check whether the average success probabilities for β(t) = (0, 0)
and β(t) = (0.1, 1) are actually different [230]. The largest p-value measured in all 8
cases is 3.94 · 10−18, indicating that in all cases the difference is significant. For each
dipeptide, we run 163840 times the circuit, and for the baseline 204800 times.

In addition to simulation results, we also execute a small proof-of-concept experiment
in an actual IBM Quantum processor. Since NISQ devices such as this one are very
limited in the depth of the circuits they can execute, we are restricted to very small
search spaces, with only four positions. Consequently, our objective here is just to
understand whether we can overcome the error in the circuit and measure probability
differences between setting β = 0, and β ̸= 0. The results are depicted in Fig. 2.10
and indicate that in 7 out of the 8 dipeptides tested, the quantum algorithm correctly
increases the probability of measuring the correct state. Unfortunately, we do not have
a good model for why the remaining peptide achieves a statistically significant negative
result, although it is reasonable to assume this is due to the physical imperfections of
the superconducting chip.

Beyond our article, recent years have seen tremendous advances in the capabilities
of deep learning models to predict the structure of proteins. It is encouraging to see
that the latest AlphaFold model can often achieve precision similar to costly laboratory
methods [127]. Moreover, these models have been open-sourced, followed by the
processing of large databases of proteins that were previously unavailable [244]. On
the quantum walk side, the heuristic quantum Metropolis algorithm was later on used

2.5 Results 38

for quantum ground state preparation, see [161]. In our group, its application to other
problems in Machine Learning [60] and Bayesian inference [91] has been explored too.

2.5. Results

We have explained Grover’s algorithm, as well as several of their generalizations
such as amplitude amplification, and fixed-point amplitude amplification. The
latter has the advantage that probability does not decrease significantly if we
apply more amplification steps than necessary.

In Section 2.3 we have analyzed the quantum walk technique, which displays a
similar mathematical structure as Grover’s algorithm and may also be understood
as its generalization.

In particular, we have explained how quantum walks can often achieve a quadratic
speedup in search problems due to the quadratically larger quantum eigenvalue
gap, ∆ = O(

√
δ). We have indicated a series of techniques that extend the range

of search problems where quadratic advantages might be found, culminating in
the Quantum Fast Forwarding algorithm that applies to ergodic Markov chains.

Such quadratic advantage is however not always possible in mixing problems,
where the objective is to prepare the stationary state of the Markov chain.

One exception to the previous rule is the Metropolis algorithm: We have studied
how the Metropolis algorithm may benefit from the quantum walk technique,
providing a quadratic advantage to prepare stationary distributions of Markov
chains, with applicability to hard combinatorial optimization problems.

We have computationally analyzed a heuristic quantum Metropolis algorithm
which provides a modest quantum advantage in the exponent in protein fold-
ing [62], machine learning [60] and Bayesian inference problems [91]. This
advantage should be especially helpful in cases where the problem is NP-hard,
and therefore it is not possible to exploit the problem structure. A clear example
of this is precisely protein folding.

We have further analyzed several annealing schedules for the heuristic quantum
metropolis algorithm and found that most give a small improvement over constant-
β walks. These results confirm and strengthen similar results found in one previous
article by Lemieux et al., [162], for simpler Ising chain models.

Chapter 3

Quantum Linear Algebra

Not only do these new algorithms promise exponential speedups over
classical algorithms, but they do so for eminently-practical problems,
involving machine learning, clustering, classification, and finding patterns
in huge amounts of data. So, do these algorithms live up to the claims?
That’s a simple question with a complicated answer.

Scott J. Aaronson, Quantum Machine Learning Algorithms: Read the
Fine Print

3.1. Objectives

Understand the mathematical techniques used in quantum linear algebra.

Understand the limitations of quantum linear algebra techniques, in particular,
those related to data loading and readout.

Use quantum linear algebra techniques to improve state-of-the-art linear pro-
gramming methods.

Understand dequantization and how it limits many of the applications of quantum
linear algebra to Machine Learning.

3.2 The Fourier transform & phase estimation algorithms 40

3.2. The Fourier transform & phase estimation al-
gorithms

In the previous chapter, we explored applications related to quantum search, starting
with Grover’s algorithm. In this one, we want to understand how we can deal with
linear algebra problems, which are present in many other computer science applications.
To do so, we first have to explain the quantum Fourier transform, which will enable the
implementation of the quantum phase estimation algorithm mentioned in the previous
chapter. Additionally, phase estimation will be the key subroutine in Shor’s algorithm,
arguably the most famous quantum algorithm together with Grover’s.

As a motivation for the latter, let us introduce a related one. Let ⊕ denote bitwise
binary addition such that for example 011⊕ 101 = 110.

Problem 1 (Simon) Let f : 2n 7→ 2n such that f(i) = f(j) if and only if i⊕ s = j

for some secret s. Find s.

To solve this problem, Simon proposed the following quantum algorithm [221]:

Algorithm 7 Simon’s algorithm
1: Input: Oracle f : |i⟩ |0⟩ 7→ |i⟩ |f(i)⟩ fulfilling the promise of Problem 1.
2: Output: String s solving the corresponding Simon Problem 1.
3: Use Hadamard gates to create a uniform superposition,

1√
2n
∑
i

|i⟩ |0⟩ . (3.1)

4: Query the oracle f .
5: (Optionally) measure the second qubit register on the computational basis, obtain-

ing
1
2(|i⟩+ |i⊕ s⟩) |f(i)⟩ . (3.2)

6: Apply a second Hadamard to the first register, obtaining

1√
2n
∑
j

(
(−1)i·j |j⟩+ (−1)(i⊕s)·j |j⟩

)
= 1√

2n

∑
j

(−1)i·j(1 + (−1)s·j) |j⟩
 . (3.3)

7: Measure j. Each |j⟩ will have non-zero amplitude only if s · j = 0.
8: Repeat until one has obtained sufficient (linearly independent) samples from j,

and solve the associated linear system of equations.

Once we have obtained k linearly independent samples, the probability of subse-
quently measuring another independent sample is (2n−1 − 2k)/2n−1 ≥ 1/2. Since the

3.2 The Fourier transform & phase estimation algorithms 41

linear system of equations can be solved in time O(n3), the overall complexity is O(n3).
In contrast, Simon proved that any classical algorithm requires Ω(

√
2n) calls to the

oracle to find collisions with high probability [221].
Shor’s algorithm solves a similar periodicity-related problem.

Problem 2 (Period finding) Let f : N 7→ {0, ..., N − 1} such that f(i) = f(j) if
and only if i = j mod r. Find r.

There is an important difference, though. In Simon’s problem, the addition was bit-
wise, while in this case, the periodicity is a global property. It is for this reason that
Hadamard gates will not be enough. Instead, we will introduce the quantum Fourier
transform, which is related to the Hadamard transform by

H =
1 1

1 −1

 = F2 (3.4)

The Fourier transform is a unitary transformation defined by the matrix

FN = 1√
N

1 1 1 1 . . . 1
1 ωN ω2

N ω3
N . . . ωN−1

N

1 ω2
N ω4

N ω6
N . . . ω

2(N−1)
N

...
1 ωN−1

N ω
2(N−1)
N ω

3(N−1)
N . . . ω

(N−1)2

N

= 1√

N

(
e

2πi
N

(j·k)
)
jk
, (3.5)

where ωN = e2πi/N .
Applying one such matrix classically naively takes O(N2) time, but can be reduced

to O(N logN) by noting that vector coordinates are transformed as

v̄j =
∑
k

ωj·kN vk = 1√
N

(∑
even k

ωjkN vk + ωN
∑

odd k

ω
j(k−1)
N vk

)

= 1√
2

 1√
N/2

∑
even k

ω
jk/2
N/2 vk + ωjN

∑
odd k

ω
j(k−1)/2
N/2 vk

 , (3.6)

where the bar indicates the Fourier transform. The key takeaway is that we can
compute the n-Fourier transform with 2 (n− 1)-Fourier transforms. Moreover, we can
decompose the (n− 1)-Fourier transforms, initiating a recursion process, which spans a
tree of depth O(logN) and N/2 terms at the deepest level. This results in complexity
O(N logN), and is commonly known as the fast Fourier transform (FFT) [77].

3.2 The Fourier transform & phase estimation algorithms 42

F̂2 F̂2 F̂2

F̂2 F̂2 F̂2 ×

F̂2 F̂2 e0πi/4 F̂2

F̂2 F̂2 e2πi/4 F̂2 ×

F̂2 e0πi/8 F̂2 F̂2 ×

F̂2 e2πi/8 F̂2 F̂2

F̂2 e4πi/8 F̂2 e0πi/4 F̂2 ×

F̂2 e6πi/8 F̂2 e2πi/4 F̂2

Figure 3.1 Quantum Fermionic Fast Fourier Transform for 8 modes. The F̂2
gate is defined in (3.7), while the single-qubit gates are Z-like rotations. This circuit is
the same as depicted in Fig. 1 [94].

|k1⟩ H R2 . . . Rn |0⟩+ e2πi0.k1...kn |1⟩

|k2⟩ • . . . H . . . Rn |0⟩+ e2πi0.k2...kn |1⟩
...
|kn⟩ . . . • . . . • H |0⟩+ e2πi0.kn |1⟩

Figure 3.2 Quantum Fourier transform. Notice that the qubit representation of
the quantum Fourier transform comes out reversed, and can be reordered using swaps
if desired. Each Rl gate is defined by (3.9). The QFT circuit requires O(n2) gates, for
n qubits.

3.2 The Fourier transform & phase estimation algorithms 43

In fact, this technique has also been used in quantum computing, especially for
fermions [94], see Fig. 3.1. In this case, the fermionic operator F̂2 is implemented over
two qubits

F̂2 =

1 0 0 0
0 2−1/2 2−1/2 0
0 2−1/2 −2−1/2 0
0 0 0 −1

 , (3.7)

where the last −1 is due to the anticommutation relation of fermions [94]. This matrix
operator can be decomposed into two C-NOT gates sandwiching a controlled Hadamard
gate in the opposite direction, followed by a C-Z to implement the final phase.

However, since the Fourier transform is unitary, there is also a direct implementation
over n = logN qubits. To understand how to generate it, we rewrite [83]

FN |k⟩ = 1√
N

N−1∑
j=0

e
2πi
N
jk |j⟩ = 1√

N

N−1∑
j=0

e
2πi
N

(
∑

l
jl2−l)k |j1⟩ . . . |jn⟩

= 1√
N

N−1∑
j=0

(
n∏
l=1

e
2πi
N

(jl2−l)k
)
|j1⟩ . . . |jn⟩ =

n⊗
l=1

1√
2
(
|0⟩+ e2πik/2l |1⟩

)
.

(3.8)

We note that the exponent in e2πik/2l would have equivalent effect as the fractional
part of its binary expression, e2πi0.kn−l+1...kn [83]. This suggests the quantum Fourier
circuit depicted in Fig. 3.2, with rotation Rl defined by

Rl =
1 0

0 e2πi/2l

 . (3.9)

The (inverse) quantum Fourier transform is an important step in what might be
considered one of the most useful quantum subroutines: the quantum phase estimation
algorithm [141]. Imagine we have a unitary operator U with eigenstates |ψi⟩ and
eigenvalues λi = e2πiφi . Quantum phase estimation has two main steps. First, we
implement controlled versions of the phase kickback using operator U , for each eigenstate
|ψ⟩ and corresponding eigenvalue φ, synthesizing state

1
2t/2

(
|0⟩+ e2πi2t−1φ |1⟩

)
⊗
(
|0⟩+ e2πi2t−2φ |1⟩

)
⊗ . . .⊗

(
|0⟩+ e2πi20φ |1⟩

)
⊗ |ψ⟩ =

1
2t/2

(
|0⟩+ e2πi0.φt |1⟩

)
⊗
(
|0⟩+ e2πi0.φt−1φt |1⟩

)
⊗ . . .⊗

(
|0⟩+ e2πi0.φ1...φt |1⟩

)
⊗ |ψ⟩ .

(3.10)

3.2 The Fourier transform & phase estimation algorithms 44

|0⟩ H • · · ·

QFT †|0⟩ H • · · ·
...

|0⟩ H · · · •

|ψ⟩ / U U2 · · · U2m−1 |ψ⟩

Figure 3.3 Quantum phase estimation algorithm. The first part of the circuit
implements a phase-kickback, whose phase is then estimated using an inverse quantum
Fourier transform [193]. Note that obtaining t bits of accuracy with a probability of
failure smaller than pf requires 2m − 1 calls to U for m = t+

⌈
log2

(
1
2 + 1

2pf

)⌉
[75], so

the complexity of the algorithm grows as O(ϵ−1) = O(2t).

Then, we identify this state with the output of (3.8). As such, an inverse QFT can
recover the binary expression of the phase implemented by U . The corresponding
circuit can be seen in Fig. 3.3. Interestingly, the inverse quantum Fourier transform
is not necessary. We already know that a single-qubit Hadamard gate is the same as
a single-qubit QFT. We can use this fact to iteratively refine an estimate of a single
qubit quantum phase estimation [141, 256].

As a very simple use case, we can use phase estimation together with amplitude
amplification to obtain the amplitude estimation algorithm, by phase estimating the
eigenvalues from (2.15), [51]. Now let us turn to the Problem 2. The following
Algorithm 8 solves it [193, Sec. 5.4.1] using quantum phase estimation, and can be
employed for Shor’s original purpose of finding prime factors.

3.2.1. The hidden subgroup problem

This problem that we just explained is an instance of a more general one called the
hidden subgroup problem (HSP). To explain it, we need some basic notions of group
theory.

Definition 4 (Group) Let G be a set of elements with an operation × : G×G 7→ G

such that

g1 × (g2 × g3) = (g1 × g2)× g3 for any g1, g2, g3 ∈ G.

There is an identity term 1 ∈ G such that 1× g = g = g × 1 for any g ∈ G.

For any g ∈ G there exists g−1 ∈ G such that g × g−1 = 1 = g−1 × g.

3.2 The Fourier transform & phase estimation algorithms 45

Algorithm 8 Period finding algorithm
1: Input: Oracle f : |j⟩ |0⟩ 7→ |j⟩ |f(j)⟩ fulfilling the promise of Problem 2.
2: Output: Value r solving Problem 2.
3: Use Hadamard gates to create a uniform superposition

1√
2n

n∑
j=0
|j⟩ |0⟩ . (3.11)

4: Query the oracle f , obtaining

1√
2n
∑
j

|j⟩ |f(j)⟩ ≈ 1√
2n

1√
r

n∑
j=0

r∑
ℓ=0

e2πijℓ/r |j⟩ |f̂(ℓ)⟩ , (3.12)

where r is the period, because one defines

|f̂(ℓ)⟩ = 1√
r

r−1∑
j=0

e−2πiℓ/r |f(j)⟩ ⇒ |f(j)⟩ = 1√
r

r−1∑
j=0

e2πiℓ/r |f̂(ℓ)⟩ . (3.13)

The approximate equality is because 2n is not necessarily a multiple of r.
5: Apply an inverse quantum Fourier transform, obtaining a state close to

1√
r

r−1∑
ℓ=0
|ℓ̃/r⟩ |f̂(ℓ)⟩ . (3.14)

6: Measure the first register, obtaining with high probability an approximation to
ℓ1/r for a random ℓ1 ∈ {0, . . . , r − 1}.

7: Repeat the procedure above, and obtain another approximation of the phase, for a
randomly chosen ℓ2 ∈ {0, . . . , r − 1}.

8: Obtain fractions ℓ′
1/r1 and ℓ′

2/r2 that approximate the phases measured in the
previous steps, using the continued fraction algorithm (see [193, Box 5.3] and [83,
Section 5.4]).

9: If ℓ′
1 and ℓ′

2 contain no common factors (what happens with probability at least
1/4 [193, Eq. 5.58]), then r is the smallest common multiple of r1 and r2.

A group is called Abelian if g × h = h× g, and a set H ⊆ G is a subgroup if it is
itself a group. A set of elements T , denoted as ⟨T ⟩, is called generating set of G if
using elements in T and × we can generate any g ∈ G. Finally, given a subgroup H, a
(left) coset of H is a set gH := {gh|h ∈ H} for g ∈ G. Cosets of H are either identical
or disjoint [83]. Using these definitions, we can pose the following general problem.

Problem 3 (Hidden subgroup problem) Let G be a group and f : G 7→ S a
function, where S is a finite set. Let f have the property that there exists a hidden

3.2 The Fourier transform & phase estimation algorithms 46

subgroup H such that f is constant on its cosets, e.g., f(g) = f(g′)⇔ gH = g′H. The
goal is to find H or its generators.

Simon’s and period finding problems described above are particular instances
of the hidden subgroup problem. For Simon’s problem, the hidden subgroup is
{0, s} for s ∈ {0, 1}n. In the period finding problem, on the other hand, we have
H = {0, r, 2r, . . . , |Imf | − r} = ⟨0, r⟩, for the oracle function f .

The hidden subgroup problem (HSP) is very common in cryptography. For example,
the RSA cryptographic scheme can be attacked with Shor’s algorithm, which finds
the decomposition in primes of large composite numbers. More generally, there is a
quantum algorithm that allows to solve it whenever the group is Abelian. To explain
it, we first introduce some additional definitions.

Definition 5 (Representation) A representation ρ of a group G is a map ρ : G 7→
GLC(V) to the general linear group of complex invertible matrices (automorphisms),
such that ρ(g1) · ρ(g2) = ρ(g1 × g2) for any g1, g2 in G. Further, a representation
is called irreducible if it has no trivially invariant subspaces (cannot be decomposed
in the direct sum of lower-dimensional representations), where the dimension of the
representation is the dimension of the vector space V .

Every column of the Fourier transform is a map χ : ZN 7→ C defined as χk(j) =
e

2πi
N
jk = ωjkN . Since χk(j + j′) = χk(j)χk(j′), χk is a 1-dimensional representation (also

called character) of ZN . The characters also form a N -dimensional basis

|χk⟩ = 1√
N

N−1∑
j=0

χk(j) |j⟩ = 1√
N

N−1∑
j=0

ωjkN |j⟩ , (3.15)

and the Fourier transform maps between this and the computational basis: F : |k⟩ 7→
|χk⟩.

An important feature of Abelian groups is that they are isomorphic to a direct
product ZN1 × . . .×ZNl

. In this product of groups, the Fourier transform is defined as
the tensor product of Fourier transforms for each of the ZN .

Finally, to explain a general Abelian hidden subgroup problem we define the dual
subgroup Ĝ whose elements are the characters χk, together with pointwise multiplication.
Then, for any subgroup H ⊆ G, let

H⊥ = {χk|χk(h) = 1, ∀h ∈ H}, (3.16)

3.2 The Fourier transform & phase estimation algorithms 47

of dimension |G|/|H|. These definitions are sufficient to propose a general Abelian
hidden subgroup problem algorithm [141, 187], which we describe in Algorithm 9.

Algorithm 9 Abelian hidden subgroup problem algorithm
1: Input: Oracle f : G→ S for some set S fulfilling the promise of Problem 3, that

is, f is constant on cosets of hidden subgroup H.
2: Output: Generators of hidden subgroup H.
3: for O(log |G|) steps do
4: Initialize |0⟩⊗ log |G| |0⟩⊗ log |S|.
5: Create a superposition over G:

1√
|G|

∑
g∈G
|g⟩ |0⟩ . (3.17)

6: Compute f :
1√
|G|

∑
g∈G
|g⟩ |f(g)⟩ . (3.18)

7: Measure the second register obtaining f(s) for some unknown s ∈ G:

1√
|H|

∑
h∈H
|s+ h⟩ . (3.19)

8: Apply the quantum Fourier transform of G ≈ ZN1 × . . . × ZNl
to the state

obtaining

1√
|H|

∑
h∈H
|χs+h⟩ = 1√

|G||H|

∑
h∈H

∑
g∈G

χs+h(g) |g⟩

= 1√
|G||H|

∑
g∈G

χs(g)
∑
h∈H

χh(g) |g⟩ =

√√√√ |H|
|G|

∑
g:χg∈H⊥

χs(g) |g⟩ ,

(3.20)

where the last equal holds because

∑
h∈H

χh(g) =
∑
h∈H

χg(h) =

|H| if χg ∈ H⊥,

0 if χg /∈ H⊥.
(3.21)

9: Measure the first register. Since all |χg(s)|2 = 1, obtain one |g⟩ : χg ∈ H⊥

uniformly at random.
10: end for
11: Solve the constrain satisfaction problem χg(h) = 1 ∀h ∈ H to find generators of H.

3.3 Linear Algebra 48

On the other hand, we can also define a non-Abelian quantum Fourier transform [83]:

F : |g⟩ 7→
∑
ρ∈Ĝ

√
dimG

|G|
|ρ⟩

∑
i,j

ρ(g)i,j |i, j⟩ . (3.22)

This quantum Fourier transform may still sometimes be computed efficiently, for
example for the symmetric group. However, it does not necessarily lead to an efficient
quantum algorithm because there is not a single measurement basis that provides
enough information to reconstruct H [185]. Furthermore, while it is possible to solve
the non-Abelian problem with only logarithmically many positive operator-valued
measurements (POVMs) [83], constructing those measurements is not efficient in
general [92].

In specific cases, it is sometimes possible to solve the hidden subgroup problem
even if the group is not Abelian. Some examples are the normal [116], nil-2 [124],
and solvable [251] groups. In contrast, other problems such as the graph isomorphism
problem still lack an efficient solution, and the most efficient available algorithm is
Babai’s classical quasi-polynomial algorithm, which takes time O(exp(logO(1) |G|)) [15].

3.3. Linear Algebra

In the previous section, we introduced the quantum Fourier transform and phase
estimation algorithms, and we have shown that there are important problems that can
be solved exponentially faster if we use them. Perhaps the next question is whether
there are problems with less structure where we can also find this kind of exponential
advantage. As indicated in the previous chapter, exponential advantages are much more
useful than quadratic ones because they ensure that we can overcome the hardware
slowdown derived from the need to perform error correction [19].

3.3.1. Solving linear systems of equations

One important problem that can be solved using quantum phase estimation is the
following:

Problem 4 (Quantum linear system of equations) Let |b⟩ ∈ Cn be a quantum
state, and A ∈ Cn×n. Prepare the quantum state |x⟩ = A−1 |b⟩.

Since solving linear systems of equations are such a common subroutine in many algo-
rithms, certainly solving them quickly opens the door to large efficiency improvements

3.3 Linear Algebra 49

in many algorithms. As a result, the so-called HHL algorithm [117], named after their
discoverers, was met with a lot of excitement in the community. Algorithm 10 assumes
A is a Hermitian matrix, but it is easy to convert an arbitrary problem Ax = b to
Hermitian writing instead 0 A

A† 0

0
x

 =
b

0

 . (3.23)

If the eigenvalues of A are {λj}j , the new eigenvalues would be {±λj}j . This procedure
also works for non-square matrices A.

Algorithm 10 Quantum linear system of equations algorithm (HHL) [117].
1: Input: State |b⟩ ∈ Cn, sparse-access oracle access to the entries of the (Hermitian)

matrix A ∈ Cn×n.
2: Output: State |x⟩ = A−1 |b⟩ ∈ Cn.
3: Initialize state |b⟩ |0⟩ |0⟩ = ∑

j βj |uj⟩ |0⟩ |0⟩, the formal decomposition of |b⟩ as a
superposition of eigenvectors |uj⟩ of A.

4: Implement phase estimation on U = e−iAt = ∑
j e

−iλjt |uj⟩ ⟨uj|, obtaining state∑
j βj |uj⟩ |λ̃j⟩ |0⟩, where |λ̃j⟩ is an approximation to the binary expression of

eigenvalue |λj⟩.
5: Apply the rotation

∑
j

βj |uj⟩ |λ̃j⟩ |0⟩ 7→
∑
j

βj |uj⟩ |λ̃j⟩

√√√√1− C2

λ̃j
|0⟩+ C

λ̃j
|1⟩
 (3.24)

for some C ≥ λj. Thus C = O(1/κ), for κ the condition number.
6: Uncompute the phase estimation to erase the second register.
7: Amplitude-amplify the component of the state with the third register at |1⟩, and

obtain
|x⟩ ∝

∑
j

βj

λ̃j
|uj⟩ ≈ A−1 |b⟩ . (3.25)

The rotation (3.24) can be applied efficiently because we can perform a series of
rotations controlled by the binary expression of |λ̃j⟩. To analyze the complexity of
Algorithm 10, note that the cost comes from two main sources: the phase estimation
subroutine, and the required amplitude amplification. If we assume that A has no
more than s non-zero entries per row and column, then the Hamiltonian simulation
of e−iAt, which will be discussed later on in more detail, might be implemented at
cost Õ(ts2) [33]. Since we want to estimate each eigenvalue to precision ϵ and each
eigenvalue could be as small as 1/κ, the overall cost of the quantum phase estimation

3.3 Linear Algebra 50

step is Õ(ts2) = Õ(s2κϵ−1). Remember that the condition number κ is defined as

κ =
∣∣∣∣maxi σi
mini σi

∣∣∣∣ , (3.26)

where σi are the singular values which, for square matrices, match the absolute value
of eigenvalues |λi|.

Second, for amplitude amplification, the largest complexity happens when almost
all eigenvalues are large, so that coefficients become 1

κλi
≈ 1

κ
. Consequently, the overall

algorithm has complexity Õ(s2κ2ϵ−1). As we can see, if the size of the matrix is N ,
the algorithm depends only polylogarithmically on that factor.

We have seen how the basic quantum linear system algorithm can be implemented.
In contrast, if one wishes to solve this problem classically, the fastest algorithm
is the conjugate gradient method [219], which has complexity O(Ns

√
κ log ϵ−1) for

positive definite matrices A and O(Nsκ log ϵ−1) otherwise. The contrast between these
complexities is an exponential speedup in N . However, notice also that the classical
algorithm provides a classical readout of the entire solution, which is not possible from
a single copy of the quantum state |x⟩. Furthermore, the complexity of parameters
other than N is worse. Fortunately, there are situations where these limitations do not
represent a problem and a useful application of the quantum linear system algorithm
might be carried out, see for example Ref. [74].

3.3.2. Improving the QLSA performance

Condition number. Let us now see how to improve the complexity of those other pa-
rameters, starting with the dependence on κ. In the previous discussion, we highlighted
how one O(κ) contribution comes from small λi eigenvalues, which forces us to use a
high precision in the phase estimation protocol. The second O(κ) contribution, in con-
trast, happens when eigenvalues are large, decreasing the acceptance probability. This
suggests performing amplitude amplification more times over those states or branches
of the algorithm that display less expensive amplitude amplification. While perhaps
too technical to explain here, the variable time amplitude amplification algorithm of
Ambainis [6] does precisely this. It uses a version of Amplitude Estimation [51] and
the Median Lemma [192, Lemma 1] to estimate eigenvalues from less to more precision
in consecutive steps. At any step, if the eigenvalue is sufficiently large, the success part
of the step after the rotation is amplified. In such a way, the success part of larger
eigenvalues is amplified for more steps, but the initial amplifications are less costly
because phase estimation is implemented with smaller precision.

3.3 Linear Algebra 51

Note though, that reducing the complexity of the condition number κ to linear might
not be sufficient to justify using Algorithm 10 because we need κ to be polylogarithmic
in N if we want to maintain the exponential speedup. For example, most linear
systems that appear when trying to solve the finite element methods often display
κ = O(polyN) [55, 24]. For that reason, it is worth considering preconditioning as a
way to reduce κ. Preconditioning are methods whose objective is to find a matrix M
such that the system MAx = Mb has a better condition number than the original
system of equations, at a relatively low cost. The best possible preconditioner would
be M = A−1, but this is equivalent to solving the system.

Ref. [74] suggests a method to perform preconditioning on the fly on the quantum
computer. This requires two main features from matrices A and M : a) that only local
information of A is known, and b) that the resulting matrix MA is equally sparse as
A. To meet these two criteria, they use a quantum version of Sparse Preconditioners
with Approximate Inverses (SPAI) [110, 73]. These algorithms minimize [74, Eq. 10]

∥MA− 1∥2
F =

N∑
k=0
∥(MA− 1)ek∥2

F , (3.27)

where ek = (0, . . . , 0, 1, 0 . . . , 0)T , e.g., the kth column of the identity matrix; and
∥A∥F :=

√∑
i,j A

2
ij is the Frobenius norm. To carry out this task, we choose a sparsity

pattern of M , often taken to be the same as that of A. This results in N s× s small
systems of equations, each of which can be solved in superposition in time O(s3).
Similarly, one also has to multiply M |b⟩, but in the end one can successfully reduce κ
with only a multiplicative overhead polynomial in s = O(poly logN). Ref. [74] also
shows that this technique can be used to calculate the electromagnetic scattering cross-
section of an arbitrary target using the finite element methods [126] with exponential
speedup over known classical methods.

Sparsity. A second important generalization is to go beyond the sparse-access oracle
system and allow for dense matrices. To do so, we will assume that using quantum
random access memory (qRAM) [102] we can implement the following unitaries with
precision ϵ−1 in time O(poly log(N/ϵ)) for A ∈ RN×N [132]

UM : |i⟩ |0⟩ → 1
||Ai·||

∑
j

Aij |ij⟩ , UN : |0⟩ |j⟩ → 1
||A||F

∑
i

||Ai·|| |ij⟩ , (3.28)

3.3 Linear Algebra 52

where ||Ai·|| stands for the ℓ2-norm of the ith row of A. This data access is sometimes
called the quantum accessible data structure. Note that

⟨i, 0|U †
MUN |j, 0⟩ = ||Ai·||

||A||F
Ai,j
||Ai·||

= Ai,j
||A||F

. (3.29)

Using these operators implemented via qRAMs, we can efficiently perform one step of
the quantum walk [132, Theorem 5.1]

W = (2UMU †
M − 1)(2UNU

†
N − 1) = RMRN . (3.30)

We analyze this quantum walk as we did for Grover: the rotation implemented by
W will be twice the angle θi/2 between UM |ui⟩ and UN |vi⟩, for the singular value
decomposition A = ∑

i σi |ui⟩ ⟨vi|. Indeed, θi depends on σi as cos(θi/2) = σi

∥A∥F

[132, Lemma 5.3]. This matches the relation between the rotation angles φi and the
eigenvalues λi that occurred in quantum walks, except for a factor of 2 in the definition
of θi, to respect the original paper convention.

Algorithm 11 Quantum singular value estimation [132].
1: Input: Matrix A, operators UM and UN , initial state |x⟩ = ∑

i xi |vi⟩, precision ϵ.
2: Output: State ∑i xi |vi⟩ |σ̄i⟩, for σ̄i ≈ σi.
3: Initialize |x⟩ = ∑

i xi |vi⟩.
4: Apply UN to the state |x⟩, obtaining UN |x⟩ = ∑

i xiUN |vi⟩. UN |vi⟩ are eigenvectors
of W with eigenvalues eiθi , [132, Lemma 5.3].

5: Perform phase estimation of W with precision ϵ on state UN |x⟩, obtaining∑
i xi(UN |vi⟩) |θ̄i⟩ for |θ̄i − θi| ≤ ϵ.

6: Compute σ̄i = cos θ̄i in binary reversible arithmetic, so the state is∑
i xi(UN |vi⟩) |σ̄i⟩.

7: Uncompute UN on the first register, outputting ∑i xi |vi⟩ |σ̄i⟩.

Using Algorithm 11, we can estimate the singular values of A, which are related to
the eigenvalues through |λi| = σi. To ascertain the sign, we can implement the same
algorithm with A+ ϵ1 and compare the results. Finally, we can use this technique to
substitute the quantum phase estimation algorithm in Algorithm 10, to solve the linear
system of equations with a dense matrix A [262]. The complexity, instead of linear in
the sparsity parameter s, will now depend on the Frobenius norm of the matrix ∥A∥F .

Precision. Finally, the last parameter that can be improved is the precision complex-
ity, which in the original quantum linear system of equations was O(ϵ−1). Notice that
the complexity of O(ϵ−1) is due to the phase estimation, so to improve the complexity

3.3 Linear Algebra 53

of the overall algorithm we need to bypass its use. For this, we will use the Linear
Combination of Unitaries (LCU) approach that we have already mentioned previously,
with operators Prep and Sel defined as in (2.56). Imagine that we want to implement
operator U = ∑

i αiUi. Then, using

Prep |0⟩ 7→ 1√∑
i αi

∑
i

√
αi |i⟩ ; Sel =

∑
i

|i⟩ ⟨i| ⊗ Ui (3.31)

we can define W = Prep† · Sel · Prep, which maps

W |0⟩ |ψ⟩ = 1∑
i αi
|0⟩

∑
i

αiUi |ψ⟩+ |(0ψ)⊥⟩ (3.32)

Then, one can use (variable time) amplitude amplification to amplify the part of the
state that we are interested in.

Ref. [71] proposes two possible LCU compositions that can be implemented with
gate complexity O(log ϵ−1). The first is to approximate the application of matrix A−1

based on its corresponding Fourier series, where unitaries Uj = e−iAtj . This amounts
to implementing the Hamiltonian simulation of A, as done for phase estimation. Since
both A−1 and each of the e−iAtj operators will be diagonal on the same basis of
eigenvalues, one may propose a series decomposition for scalar eigenvalues, which
generalizes to the operator. The authors of Ref. [71] showed that

1
x

= i√
2π

∫ ∞

0
dy
∫ ∞

−∞
dzze−z2/2e−ixyz (3.33)

can be approximated by the series [71, Lemma 11]

h(x) = i√
2π

J−1∑
j=0

∆y

K∑
k=−K

∆zzke
−z2

k/2e−ixyjzk , (3.34)

for zk = k∆z, yj = j∆y, J = Θ(κ
ϵ

log(κ/ϵ)), K = Θ(κ log(κ/ϵ)), ∆y = Θ(ϵ/
√

log(κ/ϵ)),
∆z = Θ(1/κ

√
log(κ/ϵ)); to precision ϵ−1 in the domain Dκ = [−1,−1/κ] ∪ [1/κ, 1].

The key to avoid the O(ϵ) complexity from J is to use Hadamard gates to prepare a
uniform superposition over |j⟩. Then, the Sel operator will be defined as [71, Eq. 52]

Sel = i
J∑
j=0

K∑
k=−K

|j, k⟩ ⟨j, k| ⊗ sgn(k)e−iAyjzk , (3.35)

3.3 Linear Algebra 54

which can be efficiently implemented based on the binary representation of j and k,
avoiding the complexity on κ.

The second option is to implement a Chebyshev series based on quantum walks.
We already saw a hint of this in (2.52). We first decompose A−1 as a Chebyshev
series ∑i αiTi(A). Then, we explain how to perform the Ti(A) Chebyshev polynomial
operators of the first kind using Szegedy-like quantum walks. Defining T as

T : |j⟩ |0⟩ 7→ |j⟩ |ψj⟩ = |j⟩ ⊗ 1√
s

∑
k∈[N]:Ajk ̸=0

(√
A∗
jk |k⟩+

√
1− |A∗

jk| |k +N⟩
)

(3.36)

for s the sparsity and S a swap between the two registers, one can take the quantum walk
to be W = S(2TT †− 1). Similarly to Szegedy quantum walks, for each eigenvalue λ of
H = A/s, W has block-diagonal form in the invariant subspace span{T |λ⟩ , ST |λ⟩} [71,
Lemma 15]

W =
⊕
λ

 λ −
√

1− λ2
√

1− λ2 λ

λ

. (3.37)

Then, one can prove

W n =
⊕
λ

 Tn(λ) −
√

1− λ2Un−1(λ)√
1− λ2Un−1(λ) Tn(λ)

λ

(3.38)

by induction, where Un represent Chebyshev polynomials of the second kind. The case
n = 1 is clearly true because T1(λ) = λ and U0(λ) = 0. Then

W nW =
⊕
λ

 λTn(λ)− (1− λ2)Un−1(λ) −
√

1− λ2(Tn(λ) + λUn−1(λ))√
1− λ2(Tn(λ) + λUn−1(λ)) λTn(λ)− (1− λ2)Un−1(λ)

λ

=
⊕
λ

 Tn+1(λ) −
√

1− λ2Un(λ)√
1− λ2Un(λ) Tn+1(λ)

λ

(3.39)

because Tn+1(λ) = λTn(λ) − (1 − λ2)Un−1(λ) and Un(λ) = Tn(λ) + λUn−1(λ) [26].
Additionally, Lemma 14 in Ref. [71] shows that

g(λ) = 4
j0∑
j=0

(−1)j
∑b

i=j+1

(
2b
b+u

)
22b

 T2j+1(λ) (3.40)

approximates λ−1 in the domain Dκ. As a result, we can use the LCU decomposition
Prep† · Sel · Prep to synthesize this function with cost polylogarithmic in precision
ϵ−1. This Chebyshev approach is marginally more efficient than the Fourier approach,

3.3 Linear Algebra 55

even if in both cases the complexity is polylogarithmic. Both techniques also allow for
variable time-amplitude amplification to keep the complexity in the condition number
linear. To do so, they only require a low precision application of quantum phase
estimation. The discussion of variable time amplitude amplification applied to these
two methods can be found in Section 5 in Ref. [71].

3.3.3. Qubitization

The obvious next step is to generalize from the preparation of A−1 to an arbitrary
function f [H] = ∑

λ f(λ) |λ⟩ ⟨λ| for a Hamiltonian H. Since f [H] does not need to be
unitary, in practice this will mean finding a unitary operator U such that

U |G⟩a |ψ⟩s = |G⟩a f [H] |ψ⟩s +
√

1− ∥f [H] |ψ⟩ ∥2 |G⊥
ψ ⟩as , (3.41)

for some states |G⟩ and |G⊥
ψ ⟩ such that ⟨G⊥

ψ |as (|G⟩a ⊗ 1s) = 0. Usually |G⟩ is taken
to be just |G⟩ = |0⟩. Notice how U operates on the state register and an additional
auxiliary one. This can be visually expressed as

U =
f [H] ·
· ·

 , (3.42)

which, for this reason, is called block encoding. The main problem with U , an example
of which is a linear combination of units, is that it has some failure probability, as we
already saw, and therefore requires amplitude amplification.

Instead, Ref. [169] proposes to find a different operator W , also encoding H =
⟨G|W |G⟩, but performing a SU(2) rotation. In other words, we are looking for a
quantum walk operator that can be expressed as

W =
⊕
λ

 λ −
√

1− λ2
√

1− λ2 λ

λ

=
⊕
λ

e−Yλθλ (3.43)

for θλ = cos−1 λ. To build this operator, they propose the construction

W = ((2 |G⟩ ⟨G| − 1)a ⊗ 1s)SU, (3.44)

for an operator S to be determined. They also observe that if U2 = 1, as is the case for
U = Prep† ·Sel ·Prep, then one can take S = 1, and automatically fulfill the conditions

3.3 Linear Algebra 56

required for W to implement (3.43) [169, Lemma 8]:

⟨G|a SU |G⟩a = H; ⟨G|a SUSU |G⟩a = 1. (3.45)

Else, one builds U ′ = |0⟩ ⟨0| ⊗ U + |1⟩ ⟨1| ⊗ U † and S ′ = (|1⟩ ⟨0|+ |0⟩ ⟨1|)⊗ 1as, and
taking |G′⟩ = 1√

2(|0⟩+ |1⟩) |G⟩, one can verify

⟨G′|a S
′U ′ |G′⟩a = ⟨G′|a U

′ |G′⟩a = 1
2(H +H†) = H;

⟨G′|a S
′U ′S ′U ′ |G′⟩a = ⟨G′|a (U ′)†U ′ |G′⟩a = 1.

(3.46)

The procedure for generating and implementing this operator W from a block encoding
U is called qubitization. Quantum walks, as we have seen, have the advantage of
implementing Chebyshev polynomials given by (3.38). To implement arbitrary functions
f [H] we need to add additional degrees of freedom to rotation W . This can be done
with the 2-dimensional operator

Zϕ = ((1 + e−iϕ) |G⟩ ⟨G| − 1) =
⊕
λ

e−iϕ 0
0 1

λ

, (3.47)

and conjugating W by Zϕ,

Wϕ = Zϕ−π/2WZ−ϕ+π/2

=
⊕
λ

 λ −ie−iϕ
√

1− |λ|2

−ie+iϕ
√

1− |λ|2

λ

=
⊕
λ

e−iθλ(cos(ϕ)Xλ+sin(ϕ)Yλ).
(3.48)

The qubitization circuit will be composed ofN Wϕ operators, for different ϕ anglesWϕ⃗ =
WϕN

. . .Wϕ1 . Using Wϕ⃗, we can implement any function f [H] = A[H] + iC[H], where
A[H] and C[H] are real polynomials of degree N (or N/2, depending on the specific
technique used), of equal parity (respectively opposite parity). The determination of the
corresponding angles is called quantum signal processing (see [168] and Theorems 3 and
4 in [169]), and has been used specifically for the Hamiltonian simulation of e−iHt, which
in turn can be used for phase estimation in Chemistry applications that we will study
in Chapter 4. Crucially, the determination of these angles is computationally efficient
and has been studied to have complexity scaling as O(N3poly log(N/ϵ)) [70, 114].

3.4 Interior point methods 57

Figure 3.4 Linear Programming problem, and different algorithms: simplex
method (left) and interior point method (right). The polyhedron represents
the space of feasible solutions, e.g. those that fulfill the constraints. Such constraints
are represented by planes, the faces of the polyhedra. The difference between simplex
methods and interior point methods is how they transverse the space, from the border
or the interior of the polyhedra. Images taken from Wikipedia for the simplex method
and the interior point method, under CC-BY-SA 3.0 license.

3.4. Interior point methods

The first problem we addressed in this thesis was the study of Linear Programming
problems using the quantum linear algebra tools described above [65]. Linear pro-
gramming is a field where one has to optimize a linear function of multiple variables,
subject to multiple constraints. For example, given A ∈ Rm×n, c ∈ Rn and b ∈ Rm,
the problem is to find x ∈ Rn such that:

minimizes cTx (3.49a)

subject to Ax ≥ b, x ≥ 0. (3.49b)

This is called the primal problem (LP). The dual problem (DP) is closely related:
finding y ∈ Rm such that

maximizes bTy (3.50a)

subject to ATy ≤ c. (3.50b)

These two problems are connected by the primal-dual gap, which for linear program-
ming problems is 0 [177]:

bTy − cTx = 0. (3.51)

This kind of problem is abundant in operation research, yet simple enough to have
been studied in detail. To solve these problems, two families of methods stand out in
the literature. The first is the simplex method [79], proposed by George Dantzig in
1947, which is simple and very fast in practice and consequently widely used [191]. The

https://ca.m.wikipedia.org/wiki/Fitxer:Simplex-method-3-dimensions.png
https://commons.wikimedia.org/wiki/File:Interior-point-method-three-dimensions.png

3.4 Interior point methods 58

second important family of algorithms is the family of interior point methods, which
in contrast to the simplex method are (weakly) polynomial in the worst case. The
first algorithm of this kind was proposed in 1979 by Khachiyan, and had complexity
O(n6L) for L = ∑

i,j⌈log(Aij + 1)⌉ + 1 [134]. The idea was subsequently improved
by Karmarkar [128] making it easily implementable. A review of how this family of
techniques can be found in Ref. [203].

For our quantum algorithm, we take one important and efficient classical interior
point method by Ye et al., [263], and quantize some of the linear algebra that it uses.
The method can be classified as a homogeneous self-dual algorithm because it solves
both the dual and primal problems simultaneously by tackling a homogeneous problem
whose solution can be mapped to those of the original primal and dual problems. Such
a homogeneous problem (HLP) is

min θ (3.52)

such that (x ≥ 0, τ ≥ 0, τ ∈ R):

+Ax −b τ +b̄ θ = 0
−AT y +c τ −c̄ θ ≥ 0
+bT y −cT x +z̄ θ ≥ 0
−b̄T y +c̄T x −z̄ τ = −(x0)Ts0 − 1

(3.53)

with

b̄ := b− Ax0, c̄ := c− ATy0 − s0,

z̄ := cTx0 + 1− bTy0.
(3.54)

It is called homogeneous because it has a single non-zero constraint. Ye’s algorithm [263]
will then follow the so-called central path through the inner space of the polyhedra
corresponding to the self-dual (HLP) problem

C =

(y,x, τ, θ, s, k) ∈ F0
h :

Xs

τk

 = xTs + τk

n+ 1 1

 , (3.55)

until it reaches the solution. The volume around the central path is called its neigh-
borhood

N (β) =

(y,x, τ, θ, s, k) ∈ F0
h :

∣∣∣∣∣∣
∣∣∣∣∣∣
Xs

τk

− µ1

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ βµ where µ = xTs + τk

n+ 1

 .
(3.56)

3.4 Interior point methods 59

Equations (3.53) and (3.56) will give rise to a dense linear system of equations that
will ultimately need solving at each step of the algorithm,

m n 1 1 n 1

m 0 A −b b̄ 0 0
n −AT 0 c −c̄ −1 0
1 bT −cT 0 z̄ 0 −1
1 −b̄T c̄T −z̄ 0 0 0
n 0 St 0 0 X t 0
1 0 0 kt 0 0 τ t

dy

dx

dτ

dθ

ds

dk

=

0
0
0
0

γtµt1n×1 −X tst

γtµt − τ tkt

. (3.57)

Since the system of equations does not need to be sparse, we rely on the dense linear
system of equations algorithm of Ref. [262] via block encoding and assume access to
the quantum-accessible data structure.

Ye’s algorithm [263] is also a predictor-corrector method because it takes two kinds
of steps: a first one to predict which direction should we modify the current state, and
a corrector, which refines the solution.

1. Predictor step: Solve (3.57) with γt = 0 for dvt where vt = (yt,xt, τ t, θt, st, kt) ∈
N (1/4). Then find the biggest step length δ such that

vt+1 = vt + δdvt (3.58)

is in N (1/2), and update the values accordingly. Then t← t+ 1.

2. Corrector step: Solve (3.57) with γt = 1 and set

vt+1 = vt + dvt , (3.59)

which will be back in N (1/4). Update t← t+ 1.

The algorithm will continue until some stopping conditions are met, see section IIC in
Ref. [65]. When that happens, the solution of the primal and dual problem are given
x∗/τ ∗ and (y∗/τ ∗, s∗/τ ∗), respectively. Note that if the primal and dual solutions exist,
then τ ∗ > 0.

Most of the complexity of the algorithm is due to the necessity to read out the
resulting quantum state. Not only because tomography is expensive, but because it
is necessary to ensure that the result will not fall outside the neighborhood N (β) for
specific β values. There are also limitations to our paper. First, in our article, we make

3.5 Support Vector Machines 60

the explicit assumption of a target error for each component of the solution, rather
than the vector ℓ2-distance with the exact solution. While this is perhaps not usual,
it also makes sense as otherwise ϵ will have a hidden dependence on the number of
variables or constraints. Second, the system of equations will become increasingly bad
conditioned, making κ very large. This large condition number may also affect the
norm of the solution of each system of equations, and therefore the complexity of the
precision required. Since the quantum tomography algorithm has quadratic scaling
with precision, this would make our algorithm unsuitable for our purposes.

Overall, the κ dependence will likely make the performance of our algorithm worse
than that of the equivalent classical algorithms. Finally, it is also worth highlighting
that instead of using the exact-feasible approach of [263], and given the inexact nature
of the solution of the system of equations recovered by tomography, a more appropriate
approach might be to ‘quantize’ inexact interior point algorithms, as proposed in later
work [14, 183].

3.5. Support Vector Machines

A second linear algebra problem we tackled in this thesis is related to machine
learning [64]. We use quantum linear algebra techniques within an active learning
framework, to make machine learning systems robust to adversarial examples. Adver-
sarial examples are better understood in the context of classification systems. They
are slightly modified versions of correctly classified examples that are, however, miss-
identified by the classifier [235]. Often, these changes are imperceptible to humans, yet
they completely change the output of the machine learning model.

One of the reasons that have been argued for their existence is that modern machine
learning models operate in very high dimensional spaces, while the actual dimension
of the problem is much lower [135]. For example, an image classifier will encode each
image in a giant 3× n× n-dimensional tensor, where n is the number of pixels in each
direction, and 3 the colors needed to specify the red, green, and blue components of
the pixel. Meanwhile, the objects these images depict live in a much lower effective
dimension. The model has to partition the high-dimensional space with decision
boundaries, but since the space volume is exponential in the dimension of the system,
it becomes hard to make sure there is not a direction in which the decision changes
abruptly. Finding these adversarial examples is often as simple as perturbing the
system in the direction of the largest gradient of the decision function [104].

3.5 Support Vector Machines 61

Figure 3.5 Support Vector Machine. The margin of the support vector machine
is chosen so that one class lies in w⃗ · x⃗ − b ≥ 1 and the other w⃗ · x⃗ − b ≤ −1. This
is equivalent to saying that the margin is 2/|w⃗|. Image taken from Wikipedia under
license CC-BY-SA 4.0.

Adversarial examples are dangerous if machine learning models are intended to
make decisions in real life. For this reason, there have been efforts in preventing them.
In our article, we provide a way to use theorem 11 from Ref. [135], which ensures
that training the model on a δ-cover of the subclasses makes the model robust against
these examples for sufficiently small δ. Subclasses must be understood in this context
as manifolds of a lower dimension embedded in the high dimensional space. How
large δ is, will depend on the distance between classes in the high dimensional space.
Setting δ very low makes the coverage more fine-grained and more robust, but also
more expensive, so it is important to reliably find the distance between classes.

That being the objective, we use Support Vector Machines, which naturally define
the margin or distance of separation between classes. In particular, a linear Support
Vector Machine might be defined as the decision boundary provided by

w⃗ · x⃗− b = 0, (3.60)

where 2/|w⃗| is chosen to be the margin of the SVM, for example, the separation between
the two classes. Since we want to make sure we have found the minimum distance
between two classes, what we can do is find examples from both classes that minimize
the margin of the trained Support Vector Machine, see Fig. 3.5. This way we will find

https://commons.wikimedia.org/wiki/File:SVM_margin.png

3.6 Dequantization 62

an accurate approximation to the maximum allowed δ. We conceptualize this objective
in the ‘informativeness’, defined as Pc(x⃗n+1) · |w⃗n+1|, where x⃗n+1 is the candidate point
to be added to the training set, Pc(x⃗n+1) evaluates the probability that this new point
is in class c, and |w⃗n+1| is proportional to the inverse size of the margin of the SVM
if the point (or example) was added to such class. In conclusion, we want to find
examples that maximize the ‘informativeness’, so we can add them to the training set,
and find an accurate approximation of the maximum allowed δ.

The quantum algorithm we use in this case is a quantization of the Support Vector
Machine proposed in Ref. [205]. The basic idea is to solve the linear system of equations

F

b
α⃗

 =
0 1⃗T

1⃗ K + γ−11

b
α⃗

 =
0
y⃗

 . (3.61)

where Kij = x⃗i · x⃗j. Then, the solution vector (b, α⃗) encoded as a quantum state can
be used in a swap test (see Fig. 2.4) to calculate the class to which a given point x⃗n+1

could be added and with which probability.
Similarly, once we have prepared |b, α⃗⟩, we can compute w⃗n+1 using the definition

w⃗ = ∑n+1
i=1 αix⃗i. To do so, we use linear algebra to multiply

A |b, α⃗⟩ :=

0 x1,1 ... x1,m
... ...
0 xn+1,1 ... xn+1,m

b

α1
...

αn+1

 =

∑m
i=1 αjx1,j

...∑m
i=1 αjxn+1,j

 = w⃗. (3.62)

This requires a similar approach to the linear combination of units that we use to
implement A−1 as a Fourier or Chebyshev series, but for A defined as above. Once we
have done that, we can obtain the norm |w⃗n+1| as a function of the success probability in
the application of F−1 and A to the solution. Overall, we can see that provided qRAM
access to the data this procedure can be implemented in polylogarithmic complexity in
the number of points and the dimension of each element of the dataset.

3.6. Dequantization

In the previous two sections, we have exemplified how to apply quantum linear
algebra techniques to solve optimization and machine learning problems. However, it is
also the case that these algorithms rely on qRAM access to the data whose complexity
is not counted in the final algorithm, only its execution time. Is there a way to compare

3.6 Dequantization 63

them with classical algorithms in a fair setting? This is the question we aim to answer
in this section. The key to this comparison lies in the data access procedure. To
compare them, Ewin Tang introduced the following concept that mimics the qRAM
requirements in a classical setting [237].

Definition 6 (Sample and query access) We say we have O(T) sample and query
access to a vector x ∈ CN , if we can in time O(T), a) ℓ2-sample indices i according
to probabilities |xi|2

∥x∥2 ; and b) query an index i to obtain xi, and query for ∥x∥ too. For
a matrix A ∈ CN×M , we similarly say that we have sample and query access, if we
have sample and query access to the vector of norms of rows of A, (|A1,∗|, . . . , |AN,∗|),
and sample and query access to each row of A taken as a vector. We will denote
query access by Q(x), sample and query access by SQ(x), and if only an upper bound
(1 + ν)∥x∥ to the norm is known, SQν(x).

This data access is similar to the one provided by qRAMs, since the qRAM allows
one to query for any entry, and measuring the prepared state provides sample access.
Similarly happens for the sparse-access oracle input model assumed by Algorithm 10.

Using this definition, we can implement three key subroutines in a classical computer
that will help us mimic the quantum algorithms in a classical computer, as long as
those algorithms operate in a low rank (low dimensional) subspace [238]. The key is
to substitute the state preparation assumptions from the qRAM, with a ℓ2-sampling
assumption in classical computing. This is the reason it is called dequantization.
Specifically, we will say we can dequantize a quantum algorithm if the quantum
algorithm runs in time T and the classical algorithm in time O(poly(T)). The first
dequantization subroutine is a dequantized swap test, which allows computing the inner
product between two vectors. This ‘dequantized’ inner product algorithm achieves

Algorithm 12 Inner product estimation
1: Input: SQ(x) ∈ CN , Q(y) ∈ CN . Precision ϵ−1, failure probability δ.
2: Output: An ϵ-precise estimation of ⟨x|y⟩ with probability 1− δ.
3: Let s = O(1

ϵ2
log 1

δ
)

4: Measure i1, . . . , is from x.
5: Compute zj = x†

jyj
∥x∥2

|xj |2 for j ∈ {i1, . . . , is}.
6: Distribute the measurements in O(log 1

δ
) groups and compute the average within

each group.
7: Compute and output the median of the averages.

precision ϵ−1 with a probability of failure δ.

3.6 Dequantization 64

Lemma 1 (Inner product, proposition 4.2 in [237]) . Given SQν(x⃗) and Q(y⃗)
we can estimate ⟨x⃗|y⃗⟩ to precision ϵ and probability ≥ 1− δ in time O (Tϵ−2 log δ−1).

The quantum advantage in this subroutine stems from the use of amplitude estimation,
a quadratic advantage.

The second subroutine allows obtaining sample and query access from the result of
a shallow matrix-vector product. Shallow, because the length of the vector k will be
relatively small compared to the number N of rows in the matrix. The technique used
is based on rejection sampling: if we can sample from one distribution Q(s), and want
to sample from P (s) while being able to compute probabilities from both, we can:

1. Sample i from Q.

2. With probability P (i)
MQ(i) output i, else restart, where M = maxi P (i)

Q(i) .

In our case, the target distribution P will be Ww from which we can compute the
entries in complexity O(k), and the input probability Q, sampling from ∥W∗,j∥ with
probability ∥W∗,i∥2|wi|2.

Algorithm 13 Shallow matrix-vector product sample and query access
1: Input: SQ(V †) ∈ Ck×N , Q(w) ∈ Ck.
2: Output: SQν(V w).
3: Query: On input s, compute and output (V w)s.
4: Sample: Run RejectionSampling until success, or kC(V,w) log 1

δ
failures.

5: Norm: Run RejectionSampling k
ν2C(V,w) log 1

δ
times, and let p be the success

rate. Output pk∑i |wi|2∥V∗,i∥2.
6: function RejectionSampling(SQ(V †), Q(w))
7: Sample i ∈ [k] proportional to ∥V∗,i∥2|wi|2.
8: Sample s ∈ [N] from ∥V∗,i∥.
9: Compute ps = (V w)2

s

k
∑

j
(Vs,jwj)2 = (

∑
j
Vs,jwj)2

k
∑

j
(Vs,jwj)2 .

10: With probability ps, output s; else failure ∅.
11: end function

Using algorithm Algorithm 13, one can prove the following result.

Lemma 2 (Thin matrix-vector product, proposition 4.3 in [237]) . Given a
matrix V ∈ Cn×k, w ∈ Ck, and given SQ(V †) and Q(w), we can obtain SQν(V w) with
success probability ≥ 1− δ and complexities

1. query in time O(Tk),

2. sample in time O(Tk2C(V,w) log δ−1),

3.6 Dequantization 65

3. query the norm in time O(Tk2C(V,w)ν−2 log δ−1).

where C(V,w) = ∑
i ∥wiV∗,i∥2/|Ww|2, and V∗,i is the ith column of V .

Notice how the product of any row of V and w is computed directly, given that k ≪ N .
Quantum algorithms will obtain a quantum advantage in this case when k is large, but
this technique is often used in combination with a low-rank approximation of a matrix
S resulting from the third subroutine, which we explain next.

Algorithm 14 Low-rank singular vector matrix decomposition
1: Input: SQ(A) ∈ CM×N , singular value cutoff σ, error ϵ, failure probability δ.
2: Output: SQ(S) ∈ CN×q, Q(U) ∈ Cq×ℓ, Q(Σ) ∈ Cℓ×ℓ.
3: K = ∥A∥2

F

σ2 and q = Θ(K2

ϵ2
log(1

δ
).

4: ℓ2-sample q row indices, from distribution ∥Ai,∗∥2
F

∥A∥2
F

, rescaling Sir,∗ = ∥A∥F√
q∥Air,∗∥Air,∗.

5: Sample q column indices from distribution F , obtained from first uniformly sampling
r ∼ [q], and then ℓ2-sampling c from Sr,∗.

6: Let W be the resulting matrix from rescaling W∗,c = ∥A∥F√
q∥S∗,qc ∥S∗,qc .

7: Compute singular vectors u(1), . . . , u(ℓ) of W corresponding to singular values
σ(1), . . . , σ(ℓ) larger than σ.

8: Output SQ(S), the matrix U ∈ Rq×ℓ composed of u(i) taken as columns, and Σ
the diagonal matrix with entries σ(i).

This algorithm allows us to perform a low-rank approximation of A in the subspace
spanned by the sampled left singular vectors D = AV V † for V = S†UΣ−1.

Theorem 1 (Low-rank singular vector approximation, theorem 4.4 in [237])
Suppose O(T)-time SQ(A), A ∈ Cn×d; a singular value threshold σ and an error pa-
rameter ϵ ∈ (0,

√
σ/||A||F/4]. Let K = ||A||2F/σ2. Then, in time

O

(
K12

ϵ6 log3 δ−1 + T
K8

ϵ4 log2 δ

)
(3.63)

we output SQ(S), S ∈ Cq×n, U ∈ Cq×l, Σ ∈ Rl×l, with l = Θ(K4ϵ−2 log2 δ−1).
These matrices implicitly describe the low-rank approximation of A, D = AV V †, with
V = S†UΣ−1. Additionally, with probability ≥ 1− δ, ||A−D||2F ≤ ||A−Al||2F + ϵ||A||2F .

These three subroutines are very powerful and allow to dequantize several linear algebra
problems where the quantum algorithm operates in low dimensional subspaces.

3.6 Dequantization 66

3.6.1. Examples

Recommendation systems. The first example of a dequantization algorithm was ap-
plied to the quantum recommendation system algorithm by Kerenidis and Prakash [132].
In the recommendation problem, we are given a large matrix of A ∈ RM×N (users
and products) and one has to decide what product has a greater fit with a given user.
Mathematically, the objective is to project row Ai corresponding to the ith user, into
the space spanned by the singular vectors with the largest singular values, representing
the products he or she is more likely to enjoy. In other words, sample from AiV V

† = Di.
Kerenidis and Prakash used a simple strategy, shown in Algorithm 15.

Algorithm 15 Quantum recommendation system algorithm
1: Input: Quantum accessible data structure of preferences matrix A (see (3.28)),

threshold σ, error ϵ, user i.
2: Output: Sample access to any row of the low rank projection of A, Â.
3: Use the quantum accessible data structure to initialize state |Ai⟩ corresponding to

user i, formally represented as a sum over singular vectors |Ai⟩ = ∑
j αj |vj⟩.

4: Perform singular value estimation, ∑j αj |vj⟩ |σ̄j⟩, using Algorithm 11.
5: Flag those singular values that are above threshold σ, ∑j αj |vj⟩ |σ̄j⟩ |σ̄j ≥ σ⟩,
6: Uncompute the singular values, ∑j αj |vj⟩ |0⟩ |σ̄j ≥ σ⟩.
7: Measure the last register and postselect on |σ̄j ≥ σ⟩.
8: Measure and output the first register on the computational basis: the result is a

sample from the projection of |Ai⟩, into the space spanned by the singular vectors
with the largest singular values.

How can we dequantize this algorithm? Recall that we said that D = AV V †

represents a low-rank projection of the A matrix. In Ref. [237], showed how to obtain
sample and query access to the singular value decomposition of V , proving Theorem 1.
In this case, we are interested in the projection of a single row of A, so we want to
sample from Ai(S†UΣ)(S†UΣ)† = (AiS†)(UΣΣ†U †)S. The first parentheses can be
understood as a ‘small’ number of inner products (Algorithm 12), where small indicates
the target rank of the decomposition. The resulting vector can then be multiplied by
the second parentheses, which is a product of small matrices. Finally, we can also
perform a shallow matrix-vector product with S (Algorithm 13) to obtain sample and
query access to the resulting distribution.

Linear system of equations. Another subroutine we can ‘dequantize’ is the HHL
algorithm for low-rank matrices. This is a very important condition, as otherwise
Algorithm 14 fails. The quantum linear system Algorithm 10 aims to prepare |x⟩ =

3.7 Results 67

A−1 |b⟩. The dequantized algorithm will in contrast provide sample and query access to
A+b, where A+ is the Moore-Penrose pseudo inverse that fulfills that if A is invertible
then A−1 = A+ [186]. The objective is to sample from

A+b = (ATA)+AT b ≈
k∑
i=1

1
Σii

viv
T
i A

T b. (3.64)

For this decomposition, we will need the Singular Value Decomposition of Algorithm 14.
Then, notice that vTi AT b = Tr(ATvTi b) can be computed via a swap test between
two-order tensors AT and bvTi (see for example Ref. [238]). This provides query access
to Q(vTi Ab/Σii). Then, since we have SQ(V), we also have sample and query access to
an approximation of the objective, SQ(A+b), via the shallow matrix-vector product in
Algorithm 13.

Support Vector Machine and adversarial examples. Finally, we can also
dequantize our active learning algorithm to sample against adversarial examples. The
idea is simple: first, we use the method just explained above to gain sample and query
access to SQ(F+y⃗), see (3.61). Once we have that, we aim to find the norm

||A |b, α⃗⟩ ||2 = ⟨b, α⃗|A†A|b, α⃗⟩ , (3.65)

which can be computed as an inner product ⟨a|b⟩ with

a =
∑
i

∑
j

∑
k

Aji||Ak,∗|| |i⟩ |j⟩ |k⟩ , b =
∑
i

∑
j

∑
k

wjwkAki
||Ak,∗||

|i⟩ |j⟩ |k⟩ , (3.66)

similarly to the protocol used for Supervised Clustering dequantized in Ref. [238]. Key
to the success of this dequantization technique is the fact that the examples from both
classes live in a low-dimensional subspace, and therefore we can perform low-rank
operations, which we leverage in the quantum algorithm too. The resulting quantum
advantage of using quantum linear algebra instead of its dequantized counterpart will
consequently be polynomial.

3.7. Results

We have reviewed Shor’s algorithm and its generalization to the Hidden Subgroup
Problem over arbitrary Abelian groups.

3.7 Results 68

We have explained the basic quantum linear algorithm solver and described the
complexity improvements carried out over time to its dependence over most
parameters, culminating in qubitization as a flexible technique. Qubitization
is intimately related to quantum signal processing, which allows to synthesize
arbitrary polynomial functions of the encoded Hamiltonian.

In Ref. [65] we have described a quantum interior point method that improved
over previously available results, establishing at the time the state-of-the-art in
quantum algorithms for linear programming.

An important technical achievement in that paper was to ensure that the poly-
nomial complexity in the precision would not hamper the convergence of the
classical algorithm in which it is inspired.

However, due to the dependence on the preparation and readout of the data
often relying on qRAMs, the quantum advantage is limited. Another generic
limitation to this class of quantum and classical algorithms is the polynomial
dependence on the condition number, which in turn becomes increasingly larger
as we proceed along the algorithm, thus why interior point methods are called
weakly polynomial.

In Ref. [64] we also explored how to apply quantum linear algebra to Machine
Learning problems. In particular, we have tackled the problem of adversarial
examples using quantum Support Vector Machines. Finally, we have explained
that quantum active learning techniques might help provide guarantees on the
robustness of a classical training set.

The usefulness of the technique in this area relies heavily on the problem having
a low-rank nature, which can also be exploited by classical algorithms. Conse-
quently, we have also indicated how our algorithm may be dequantized, and thus
implemented in a classical computer, with a polynomial slowdown.

These points illustrate that the problems we aim to target with quantum linear
algebra techniques should be chosen carefully, as generic speedups are often
polynomial and not exponential. Consequently, their usefulness will depend more
strongly on the error correction overhead.

Chapter 4

Quantum Chemistry

The program that Fredkin is always pushing, about trying to find a
computer simulation of physics, seems to me to be an excellent program to
follow out... And I’m not happy with all the analyses that go with just the
classical theory, because nature isn’t classical, dammit, and if you want to
make a simulation of nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem, because it doesn’t look so easy.

Richard P. Feynman, Simulating Physics with Computers

4.1. Objectives

Understand the most common classical ab-initio chemistry techniques.

Building on the quantum walk and linear algebra techniques explained in previous
chapters describe the available Hamiltonian simulation techniques, as well as the
tradeoffs present in this and other algorithmic choices.

Benchmark the different Hamiltonian simulation techniques.

Describe a problem where quantum phase estimation might be applied, and
provide rigorous cost estimates.

4.2. Introduction

As indicated in the quote, one of the most promising problems to which one can
apply quantum computing is the study of quantum systems, interesting for basic

4.3 Classical quantum chemistry 70

science purposes but also for the chemical and material science industries. The reason
quantum computing is so well suited for chemical problems is that quantum states can
be represented exactly on a quantum computer, and the evolution of (closed) systems
is unitary and relatively efficient to implement.

In this chapter, we will explore algorithms tailored for this research area. Quantum
phase estimation will in particular stand a key role in these algorithms and will make
use of Hamiltonian simulation as a key subroutine. While quantum phase estimation
allows to efficiently compute the energy corresponding to an eigenstate, preparing the
corresponding ground state is often hard. Consequently, this chapter is divided into
three main sections: the first section reviews basic classical algorithms for quantum
algorithms; the second explains Hamiltonian simulation and its application to quantum
phase estimation; and finally, the third introduces different quantum state preparation
techniques.

4.3. Classical quantum chemistry

4.3.1. Hartree-Fock

The Hartree-Fock procedure is considered a basic step in the calculation of an
approximation to the ground state, and a stepping stone for more complex procedures
afterward. The quantum chemistry problems we are interested in assume access to
the molecular Hamiltonian. Let η and L represent the number of electrons and nuclei,
respectively, indexed by i and ℓ, and at positions ri and Rℓ. Let also Zℓ and mℓ be the
charge and mass of nuclei ℓ. Knowing that each particle has kinetic energy and that
there is a Coulomb potential between charged particles, we can write the molecular
Hamiltonian as

H = −
η∑
i=1

∇2
i

2me︸ ︷︷ ︸
T

−
η∑
i=1

L∑
ℓ=1

Zℓ
∥Rℓ − ri∥︸ ︷︷ ︸
U

+
η∑
i ̸=j
i,j=1

1
2

1
∥ri − rj∥︸ ︷︷ ︸
V

−
L∑
ℓ=1

∇2
ℓ

2mℓ︸ ︷︷ ︸
Tnuclei

+
L∑
ℓ̸=κ
ℓ,κ=1

1
2

ZℓZκ
∥Rℓ −Rκ∥︸ ︷︷ ︸
Vnuclei

.

(4.1)
We want to solve the Schrödinger equation, H |ψ⟩ = E |ψ⟩, and find both |ψ⟩ and E.
However, this problem is very complicated, so we will make a series of approximations.
The first such approximation is the so-called Born-Oppenheimer approximation: since
the mass of the nuclei is much larger than the mass of the electrons mℓ ≫ me, we can
decouple the degrees of freedom of the nuclei from the rest of the wave function, and

4.3 Classical quantum chemistry 71

analyze them classically [48]. With this approximation, the molecular Hamiltonian
(4.1) is reduced to the electronic Hamiltonian:

H = T + U + V, (4.2)

with T , V , and U defined above as the kinetic, potential, and external potential
operators. We also define the one-body term h = T + U , leaving V as the two-body
component. Additionally, the Hartree-Fock procedure approximates the wave function
of the electrons as a product of disentangled wave functions for each electron, with the
characteristic antisymmetrization of fermionic wavefunctions

|ψ⟩ = 1√
η!
∑
σ∈Sη

sgn(σ) |ϕσ(1)⟩ ⊗ . . .⊗ |ϕσ(η)⟩ = 1√
η!

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ1(x2) . . . ϕ1(xη)
ϕ2(x1) ϕ2(x2) . . . ϕ2(xη)

...
ϕη(x1) ϕη(x2) . . . ϕη(xη)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(4.3)
The latter form gives such wavefunction the name of Slater determinant, and since
there is no entanglement, the Hartree-Fock procedure is referred to as a mean-field
approach. To simplify the notation, we will use |i⟩ := |ϕi⟩, and will also variationally
enforce this basis functions to be orthogonal ⟨i|j⟩ = δi,j.

We want to compute the energy of this wavefunction,

E = ⟨ψ|H|ψ⟩ =
∫
ψ†(r)Hψ(r)dr. (4.4)

Since the wavefunctions of individual electrons are disentangled, we can compute the
one-electron one-body Hamiltonian matrix elements on individual orbitals,

⟨p|h(1)|q⟩ =
∫
dxϕ†

p(x)
(
∇2

2 +
L∑
ℓ=1

Zℓ
∥Rℓ − r∥

)
ϕq(x), (4.5)

where x = (r, σ) for σ the spin and ri the spatial coordinates. Similarly, the two-electron
two-body term matrix elements might be written as

⟨pq|V (2)|rs⟩ = 1
2

∫
dx1dx2ϕ

†
p(x1)ϕ†

q(x2)
(

1
∥r1 − r2∥

)
ϕr(x1)ϕs(x2). (4.6)

This last integral form is written by chemists in notation [pr|qs], in contrast to physicists’
notation of ⟨pq|rs⟩.

4.3 Classical quantum chemistry 72

Overall, the Hartree-Fock energy is obtained by minimizing ⟨ψ|H|ψ⟩ subject to
the orthogonality constraints we mentioned. From this procedure, we obtain [234, Eq.
2.110],

EHF =
η∑
p=1
⟨p|h|p⟩+

η∑
p>q

[pp|qq]−
η∑
p>q

[pq|qp]. (4.7)

Since ϕ†(x)ϕ(x)dr represents a probability density, the first term makes sense as the
weighted average of the one-body Hamiltonian term when the electron is in orbital ϕi.
Similarly, the term called Coulomb term

[pp|qq] = 1
2

∫
dx1dx2ϕ

†
p(x1)ϕp(x1)

(
1

∥r1 − r2∥

)
ϕ†
q(x2)ϕq(x2) (4.8)

can also be interpreted as a two-variable expected value, in integral form. Finally, the
‘exchange’ term

[pq|qp] = 1
2

∫
dx1dx2ϕ

†
p(x1)ϕq(x1)

(
1

∥r1 − r2∥

)
ϕ†
q(x2)ϕp(x2) (4.9)

arises from the antisymmetry of the Hartree-Fock wave function, but has no classical
meaning associated. Other terms are canceled out by orthonormality of the molecular
wavefunctions |ϕ⟩.

Next, we separate the spin from the spatial part of the wavefunction. For example,
ϕi(x)dx = φi(r)σ(ω)drdω. This will lead, for example, to decomposing

⟨p|h|q⟩ =
∫
dωσp(ω)σq(ω)

∫
drφ†

p(r)φq(r) =:
[∫

dωσ†
p(ω)σq(ω)

]
(p|h|q), (4.10)

where (i|h|j) denotes the spatial integral. Similarly,

[pr|qs] := 1
2

∫
dx1dx2ϕ

†
p(x1)ϕr(x1)

(
1

∥r1 − r2∥

)
ϕ†
q(x2)ϕs(x2) =:[∫

dω1σ
†
p(ω1)σr(ω1)

] [∫
dω2σ

†
q(ω2)σs(ω2)

]
(pr|qs),

(4.11)

where rounded brackets indicate the spatial component,

(pr|qs) := 1
2

∫
dr1dr2φ

†
p(r1)φr(r1)

(
1

∥r1 − r2∥

)
φ†
q(r2)φs(r2). (4.12)

4.3 Classical quantum chemistry 73

This can be further simplified by taking into account that∫
dωσp(ω)σq(ω) = δσp,σq . (4.13)

The terms ⟨p|h|p⟩ and [pp|qq] will consequently always survive, but the exchange term
may not, depending on the spin of |p⟩ and |q⟩ involved.

Overall, the Hartree-Fock Hamiltonian acting on a molecular orbital |i⟩ can be
written as

H |ϕi(x1)⟩ = h(x1)ϕi(x1) +
∑
j ̸=i

∫
dx2
|ϕj(x2)|2
|r2 − r1|︸ ︷︷ ︸

Jj(x1)

ϕi(x1)−
∑
j ̸=i

∫
dx2

ϕ†
j(x2)ϕi(x2)
|r2 − r1|︸ ︷︷ ︸

Kj(x1)

ϕj(x1).

(4.14)
This is called the Fock operator [234, Eq. 3.16]

f(x) = h(x) +
∑
j

(Jj(x)−Kj(x)), (4.15)

and leads to the eigenvalue equation that determines the Hartree Fock energy [234, Eq.
3.17]

f(x)ϕi(x) = ϵiϕi(x). (4.16)

If we solve this equation, then EHF = 1
2(∑i ϵi + ⟨i|h|i⟩) ̸= ∑

i ϵi. The reason is that,
defining Ji,j = ⟨i|Jj|i⟩ = [jj|ii] and Ki,j = ⟨i|Kj|i⟩ = [ji|ij],

∑
i

ϵi =
∑
i

⟨i|h|i⟩+
∑
i,j

(Ji,j −Ki,j) ̸=
∑
i

⟨i|h|i⟩+
∑
i>j

(Ji,j −Ki,j) = EHF , (4.17)

so by directly adding the individual orbital energies ϵi, we would be double-counting
the interaction between electrons in those molecular orbitals.

Without adding more structure to the orbitals, (4.16) is a complicated integro-
differential equation. For this reason, Roothaan proposed decomposing each molecular
orbital |ϕi⟩ as a linear combination of atomic orbitals [210]:

ϕi =
∑
µ

Cµ,iϕ̃µ, (4.18)

where {ϕ̃µ} are the basis of non-orthogonal atomic orbitals. Then, defining the Fock
matrix in this new basis as

Fµ,ν =
∫
dxf(x)ϕ̃†

µ(x)ϕ̃ν(x) (4.19)

4.3 Classical quantum chemistry 74

Algorithm 16 Hartree-Fock procedure
1: Input: Access to the electronic Hamiltonian (4.2).
2: Output: Molecular orbitals {ϕi} and their energies ϵi.
3: Initialize the overlap matrix of atomic orbitals Sµ,ν .
4: Guess initial Molecular Orbital coefficients Cµ,i.
5: while Cµ,i has not converged do:
6: Form the Fock matrix Fµ,ν . ▷ Requires computing f(x)
7: Solve the generalized eigenvalue equation (4.21) and find Cµ,i.
8: end while

and the orbital overlap matrix as

Sµ,ν =
∫
dxϕ̃†

µ(x)ϕ̃ν(x), (4.20)

we rewrite (4.16) as [234, Eq. 3.35]

∑
ν

Fµ,νCν,i = ϵi
∑
ν

Sµ,νCν,i ⇒ FC = SCϵ. (4.21)

A key aspect to note is that the Fock matrix will depend on the molecular orbitals
through f(x), but finding these coefficients requires solving (4.21). For this reason,
we resort to a self-consistent procedure to generate molecular orbitals and solve the
Hartree-Fock equation. From this algorithm, the costliest step is computing the
Fock operator f(x) which involves up to O(N4) molecular orbital integrals, due to
the 4 indices in (4.8) and (4.9). This can be reduced to O(N3) using density-fitting
approximations [253], or if the size of the system is large enough, neglecting coefficients
of far apart atomic orbital integrals leads to O(N2). Finally, a technique called ‘fast
multipole’ methods may bring that complexity down to O(N) in the latter case [107].

4.3.2. Density Functional Theory

In the previous section, we studied how a disentangled wave function allows us to
approximate the ground state and energy. The problem with wave functions, however,
is that since they have to model η fermions, their dimension will scale as C3η, making
it difficult to represent large systems accurately.

A possible alternative is to use the density functional

n(r) =
∫
dr1 . . . drηψ

†(r1, . . . , rη)(δ(r − r1) + . . . δ(r − rη))ψ(r1, . . . , rη)

= η
∫
dr2 . . . drη|ψ(r, r2, . . . , rη)|2

(4.22)

4.3 Classical quantum chemistry 75

as a basic function to model the system, since its dimension will only be R3. Note that
this density functional is different from the probability density ρ(r) = ψ†ψ. However, is
the density functional a good ‘basic variable’ to model chemical properties in which we
might be interested? In a breakthrough article in 1964, Hohenberg and Kohn proved
two theorems that answered positively this question [122].

Theorem 2 (Hohenberg and Kohn) In any many-body system interacting under
an electronic Hamiltonian, there is a one-to-one relation between the ground state
electronic density n0(r) and the external potential U up to a constant.

The proof is carried out by reductio ad absurdum. Let us suppose that we have two
external potentials U (1) and U (2), which necessarily lead to different ground states ψ(1)

and ψ(2) but the same ground-state electronic density n0(r). Since we have stated they
are the ground state, we have1

E(1) = ⟨ψ(1)|H(1)|ψ(1)⟩ < ⟨ψ(2)|H(1)|ψ(2)⟩ = ⟨ψ(2)|H(2)|ψ(2)⟩ − ⟨ψ(2)|H(1) −H(2)|ψ(2)⟩ =

= E(2) −
∫
dr(U (1) − U (2))n0(r).

(4.23)

Similarly, we can find that

E(2) < E(1) −
∫
dr(U (2) − U (1))n0(r), (4.24)

and adding them together we reach the conclusion that

E(2) + E(1) < E(2) + E(1), (4.25)

which is a contradiction. In summary, the definition of the density functional (4.16)
entails that the same wave function implies the same density functional, and in this
theorem, we have shown the opposite: if we have two ground states of different
Hamiltonians, then they will result in different density functionals. Consequently, there
is a one-to-one relationship between density functionals and external potentials.

The second theorem introduces the energy functional:

Theorem 3 (Hohenberg and Kohn) There exists a total energy functional EHK [n]
valid for any external potential U , which can be minimized with respect to the energy,
and find the ground state energy E[n]HK(r) and density n0(r).

1Following Richard Martin’s book [175] and original proof by Hohenberg and Kohn, we assume
that the Hamiltonians are not degenerate, but this condition can be relaxed, see [145].

4.3 Classical quantum chemistry 76

The form of this energy functional is

EHK [n] = T [n] + V [n] +
∫
drU(r)n(r) +

L∑
ℓ,κ=1

Eℓ,κ (4.26)

where ∑L
ℓ,κ=1 Eℓ,κ is the nuclei-nuclei interaction energy. Since this Hohenberg-Kohn

functional corresponds to the expectation value of the Hamiltonian, the energy of the
ground state and the energy density can be found by minimizing the expected energy
⟨ψ|H|ψ⟩ via the variational principle.

δ

δn(r)

[
EHK [n]− µ

∫
dr′n(r′)

]
= 0, (4.27)

with µ a Lagrange multiplier. The first two terms, additionally, are independent of
the external potential, and therefore the same for any system. As such, it is called
universal functional,

FHK [n] = T [n] + V [n]. (4.28)

However, while we know how to perform the calculation of the external potential
component of the energy functional, it is not clear how to describe the kinetic and
potential functionals.

To overcome this limitation, a year later Kohn and Sham proposed an ansatz
that assumes that the ground state density functional n0(r) is equal to that of a
non-interacting system, with effective (often local) potential VKS[n] [147]. For such a
non-interacting system, we can take the Hartree-Fock approximation

n(r) =
η∑
i=1
|ϕi(r)|2. (4.29)

The kinetic functional will be defined as

Ts[n] = −1
2

η∑
i=1
⟨ϕi|∇2|ϕi⟩ = 1

2

η∑
i=1

∫
dr|∇ϕi|2. (4.30)

Similarly, the Hartree-Fock electron-electron energy functional can now be written as

EHF [n] = 1
2

∫
drdr′n(r)n(r′)

|r − r′|
. (4.31)

4.3 Classical quantum chemistry 77

Using all of this, the energy of the Kohn-Sham model can be written as [175, Eq. 7.5]

EKS[n] = Ts[n] +
∫
drU(r)n(r) + EHF [n] +

L∑
ℓ,κ=1

Eℓ,κ + Exc[n], (4.32)

where Exc[n] is called the exchange-correlation functional because it captures the
remaining correlation and exchange interaction that the non-interacting kinetic and
potential functionals do not. Formally,

Exc[n] = FHK [n]− (Ts[n] + EHF [n]) = ⟨T ⟩ − Ts[n] + ⟨V ⟩ − EHF . (4.33)

In practice, we will use different parameterized functionals, depending on the computa-
tional budget, precision, and use case. To minimize the overall energy we can use the
variational principle

δEKS[n]
δϕ†

i (r)
= δTs

δϕ†
i (r)

+
[
δ ⟨U⟩
δn(r) + EHF [n]

δn(r) + δExc[n]
δn(r)

]
δn(r)
δϕ†

i (r)
= 0, (4.34)

subject to orthonormality of the molecular orbitals ⟨ϕi|ϕj⟩ = δi,j as in the Hartree-Fock
procedure. In the above equation, we also know that

δTs[n]
δϕ†

i (r)
= −1

2∇
2ϕi(r), δn(r)

δϕ†
i (r)

= ϕi(r), δ ⟨U⟩
δn(r) = U(r). (4.35)

Using the Lagrange multiplier method, we can obtain the Kohn-Sham Schrödinger-like
equations, similar to (4.16), [175, Eq. 7.11]

HKSϕi(r) = ϵiϕi, (4.36)

with the Kohn-Sham Hamiltonian

HKS = −1
2∇

2 + VKS(r) = −1
2∇

2 + U(r) + δEHF [n]
δn(r) + δExc[n]

δn(r)

= −1
2∇

2 + U(r) + VHF [n](r) + Vxc[n](r).
(4.37)

Equation (4.36) is solved by a self-consistent procedure similar to the Hartree-Fock
method Algorithm 16, and therefore has similar complexity, O(N3) if we use density

4.3 Classical quantum chemistry 78

fitting techniques [253]. In this equation, the electron-electron potential functional is

VHF [n](r) := δEHF [n]
δn(r) = 1

2

∫
dr′ n(r′)
|r − r′|

, (4.38)

and Vxc[n] is a parametrized functional, taken of the form

Vxc[n](r) = δExc[n](r)
δn(r) . (4.39)

The exchange-correlation functional Exc[n](r) can be written in a similar way as

Exc[n] =
∫
drn(r)ϵxc([n], r), (4.40)

with ϵxc an energy density per electron at point r, which depends only on the electronic
density. It is common to break up the correlation and exchange functionals:

Vxc[n](r) = ϵxc[n](r) + n(r)∂ϵxc[n](r)
∂n(r)

= ϵx[n](r) + n(r)∂ϵx[n](r)
∂n(r) + ϵc[n](r) + n(r)∂ϵc[n](r)

∂n(r) .

(4.41)

There are many exchange-correlation functionals according to complexity or accu-
racy. The simplest is called local (spin) density approximation (LSDA), which depends
uniquely on the (spin) density n(r). For example, based on the uniform electron gas,
Dirac proposed the Slater exchange functionals [88]

ϵLDA
x [n] = −cxn1/3(r); ϵLSDA

x [n] = −2−1/3cx(n1/3
↑ (r) + n

1/3
↓ (r)), (4.42)

for a constant cx. A further step in complexity is the Generalized Gradient Approxi-
mation (GGA) functionals that depend on ∇n(r) too, such as [27]

ϵB88
x = ϵLDA

x − βn1/3(r)
1 + 6βx sinh−1 x

, x = |∇n(r)|
n4/3(r) ; (4.43)

or even Meta-GGA, with dependence on ∇2n(r).
The most accurate functionals currently in use are hybrid functionals introduced

by Becke in 1993, [29]. Inspired by the adiabatic theorem, his idea was to assume one
can use annealing over the Hamiltonian

Hλ = T + U(λ) + λV, (4.44)

4.3 Classical quantum chemistry 79

where U(λ) is adjusted to ensure that n(r) is constant. At λ = 0 we get the non-
interacting Hartree-Fock limit, while at λ = 1 we recover the interacting Hamiltonian.
Annealing, we take

Exc[n] =
∫ 1

0
dλ ⟨ψ|Vxc(λ)|ψ⟩ . (4.45)

We now make two approximations: first, that Vxc(λ) is linear in λ, so

Exc[n] ≈ 1
2 (⟨ψ|Vxc(0)|ψ⟩+ ⟨ψ|Vxc(1)|ψ⟩) . (4.46)

As mentioned, Becke assumed that ⟨ψ|Vxc(0)|ψ⟩ = EHF
x [n] is the Hartree-Fock ex-

change functional, and in the non-interacting limit the correlation is 0. His second
approximation was to take ⟨ψ|Vxc(1)|ψ⟩ ≈ ELDA

xc [n]. Overall, the hybrid functional
mixes Hartree-Fock and LDA functionals

EBecke
xc [n] = 1

2(HHF
x [n] + ELDA

xc [n]). (4.47)

One may also choose GGA or meta-GGA functionals instead of LDA. This led to the
B3LYP, the most widely used functional nowadays [227]

ϵB3LYP
xc = (1− a)ϵLSDA

x + aEHF
x + b∆ϵB88

x + (1− c)ϵVWN
c + cϵLYP

c , (4.48)

where a, b and c are constants, ϵVWN
c is the correlation functional of [248] of type

LSDA, ϵLYP
c the correlation functional from [157] of type GGA, and ∆ϵB88

x the gradient
correction of the B88 GGA exchange functional [27, 28]. Finally, it is worth mention-
ing that ‘double hybrid’ functionals exist, which include an MP2 (Møller-Plesset to
second order [184]) term, or in other words, perturbation theory of the Hartree-Fock
solution. There have also been attempts to use machine learning to model the exchange-
correlation functional [139] in especially challenging situations. More information on
density functional theory can be found in chapters 6-8 of Martin’s book [175].

4.3.3. Coupled-Cluster

In the previous subsection, we have studied Density Functional Theory, which adds
a parametrized exchange-correlation functional ansatz that should be able to capture
energy corrections that the Hartree-Fock self-consistent procedure is not capable of
obtaining. However, being an ansatz, even if in practice they can be very precise, they
often come without much accuracy warranty. For this reason, we will come back to the
wave function as a basic variable, and explain a post-Hartree-Fock method that is very

4.3 Classical quantum chemistry 80

precise: the Coupled-Cluster method. As we will see, this method is also the basis for
the Unitary Coupled-Cluster ansatz used for the Variational Quantum Eigensolver.

The basic idea of the Coupled Cluster procedure is to expand the wave function as
excitations of the Hartree-Fock state |ϕ0⟩:

|ϕCC⟩ = eS |ϕ0⟩ , (4.49)

for a normal operator S. If S consists of a sum T of fermionic excitation operators
of occupied orbitals and annihilation of virtual orbitals, then this flavor of Coupled
Cluster is called Traditional Coupled-Cluster:

T =
∑
k

Tk, Tk = 1
(k!)2

occ∑
i1<...<ik

vir∑
a1<...<ak

ta1...ak
i1...ik

a†
a1 . . . a

†
ak
ai1 . . . aik , (4.50)

with the aij and a†
ij fermionic annihilation and creation operators, and ta1...ak

i1...ik
the

amplitudes we have to fix. We will also use the notation

τ̂a1...ak
i1...ik

= a†
a1 . . . a

†
ak
ai1 . . . aik . (4.51)

If we consider up to order η operators Tk, we will reconstruct the Full Configuration
Interaction wave function, which takes into account all possible excitations from the
Hartree-Fock Slater determinant. A clear advantage of Coupled-Cluster over other
methods is its preservation of size consistency, meaning that if we have two disentangled
subsystems, |ϕA⟩ and |ϕB⟩, the joint Coupled-Cluster exponential operator

eSA+SB |ϕA⟩ |ϕB⟩ = eSA |ϕA⟩ ⊗ eSB |ϕB⟩ , (4.52)

and the energy of the joint system will be the sum of the energy of the subsystems.
There are two main ways to use Coupled-Cluster in chemistry problems. The first

is the projective approach, based on

HeS |ϕ0⟩ = EeS |ϕ0⟩ . (4.53)

We can project the previous equation into

⟨ϕ0| τ̂a1...ak
i1...ik

= ⟨ϕa1...aj

i1...ij | , (4.54)

4.3 Classical quantum chemistry 81

as well as into the Slater determinant ⟨ϕ0|. From the projection, we get the following
set of equations, called ‘unlinked’ [8]

⟨ϕ0|HeT |ϕ0⟩ = E ⟨ϕ0|eT |ϕ0⟩ = E, (4.55)
⟨ϕa1...aj

i1...ij |He
T |ϕ0⟩ = E ⟨ϕa1...aj

i1...ij |e
T |ϕ0⟩ . (4.56)

We can expand the first expression

⟨ϕ0|H|ϕCC⟩ = ⟨ϕ0|H|ϕ0⟩︸ ︷︷ ︸
EHF

+ ⟨ϕ0|HT1|ϕ0⟩︸ ︷︷ ︸
0

+ ⟨ϕ0|H(T2 + 1
2T

2
1)|ϕ0⟩︸ ︷︷ ︸

̸=0

+ ⟨ϕ0|H(T3 + T2T1 + 1
6T

3
1)|ϕ0⟩+ . . .︸ ︷︷ ︸

0

(4.57)

The fact that ⟨ϕ0|HT1|ϕ0⟩ = 0 is due to the Brillouin theorem. By the definition of
the molecular orbitals in the Hartree-Fock procedure,

⟨ϕ0|HT1|ϕ0⟩ =
∑
i

∑
a

⟨ϕ0|H|ϕai ⟩ = ⟨a|h|i⟩+
∑
b

⟨a|Jj −Kj|i⟩ , (4.58)

which is an off-diagonal matrix element and, since the Hartree-Fock procedure precisely
aims to diagonalize the Fock matrix on the basis of molecular orbitals, it vanishes.
Operators with 3 or more also vanish due to Slater-Condon rules: the Hamiltonian
operator can only de-excite up to 2 orbitals, so the molecular orbitals being orthonormal,
this leads to a non-vanishing contribution from only the 0th and 2nd orders. While only
T1 and T2 contribute to the energy, these operators might in turn depend on other
excitation terms Ti for i > 2.2

An alternative set of equations is the set of ‘linked’ couple cluster equations:

⟨ϕ0|e−THeT |ϕ0⟩ = E, (4.59)
⟨ϕa1...aj

i1...ij |e
−THeT |ϕ0⟩ = 0. (4.60)

We can expand the similarity transformed Hamiltonian H̄ = e−THeT as

H̄ = e−THeT = H + [H,T] + 1
2! [[H,T], T] + 1

3! [[[H,T], T], T] + . . . (4.61)

2A related and very useful result is known as Thouless theorem [239], which states that eT1 maps
a single Slater determinant state into another (non-orthogonal) single determinant. Thus eT1 might
be understood as a basis change. A didactic explanation can be found in this nice post by Joshua
Goings, https://joshuagoings.com/2013/11/26/644/.

https://joshuagoings.com/2013/11/26/644/

4.3 Classical quantum chemistry 82

While for an arbitrary S the expansion may not converge, if we take it as T in equation
(4.50), the series for the expected value is truncated at the fourth level:

H̄ = eT
†
HeT = H + [H,T] + 1

2! [[H,T], T] + 1
3! [[[H,T], T], T] + 1

4! [[[[H,T], T], T], T].

(4.62)

The reason for this is the generalized Wick theorem (see [217, Section 3.7 and Chapter
10]), which states that for any two normal operators A and B

[A,B] = AB −BA = (: AB : +: AB :)− (: BA : +: BA :), (4.63)

where : AB : represents the sum of normal products where there is at least one
contraction, and : AB : the sum of normal ordered operators. In particular,

: a†
iaj : = a†

iaj, : aja†
i : = −a†

iaj, a†
iaj = δij, , aiaj = 0 = a†

ia
†
j. (4.64)

Since there is an even number of creation and annihilation operators in each τ opera-
tor [217], : AB : =: BA : . Then, (4.63) tells us that,

: AB : =: BA : ⇒ [A,B] =: AB : − : BA : . (4.65)

In other words, in our problem the commutator [A,B] only depends on sums of
products with at least one contraction. We also know that the different terms in any
operator Tk only contain creation operators of virtual orbitals and annihilation of
occupied ones. Consequently, all contractions of operators τ̂a1...ak

i1...ik
are 0, and thus they

commute with one another as expected. Finally, since each electronic Hamiltonian
term contains up to 4 annihilation/creation operators, from the fifth order in (4.61)
there will be no annihilation/creation operators in the Hamiltonian to contract, making
the corresponding : AB : = 0 and leading to (4.62).

Furthermore, given Tk defined as in (4.50),

⟨ϕ0|Ti = 0, (4.66)

because Ti would apply creation operators to occupied orbitals, and annihilation
operators to virtual ones. Taking into account that the Hamiltonian H can only
de-excite up to two orbitals, we use the same Slater-Condon rule and Brillouin theorem

4.4 Hamiltonian simulation 83

as above, to obtain

E = EHF + ⟨ϕ0|[H,T2]|ϕ0⟩+ 1
2 ⟨ϕ0|[[H,T1], T1]|ϕ0⟩ . (4.67)

Either the ‘linked’ or ‘unlinked’ set of equations can then be solved algebraically.
Finally, it is worth mentioning that projective methods are not the only flavor of

Coupled-Cluster, we also have variational methods which involve minimizing

E = ⟨ϕ0|eS
†
HeS|ϕ0⟩

⟨ϕ0|eS†eS|ϕ0⟩
. (4.68)

One advantage of this variational approach over the projective approach is that the
recovered energy is always necessarily an upper bound of the ground-state energy.
However, it is not possible to apply the same truncation that we used for the similarity
transformed Hamiltonian H̄, notice the different sign in the eS† exponential. Addition-
ally, if S is not anti-Hermitian (e.g. S = T), the denominator might also be nontrivial.
To ensure S is indeed Hermitian, we might instead choose S = T − T †, which leads to
Unitary Coupled-Cluster. We will see that this is a very natural ansatz to implement
in a quantum computer.

4.4. Hamiltonian simulation

In the previous section, we analyzed three classical algorithms to solve problems
in quantum chemistry. We now focus on quantum algorithms. As mentioned at
the beginning of the chapter, quantum computing offers two features that make it
very attractive for chemistry and material science applications. First, it is capable of
representing quantum systems exactly, without approximations. Second, the unitary
evolution of closed quantum systems can be naturally implemented in a quantum
computer. In this section, we review the problem of how to implement this evolution,
under the name of Hamiltonian simulation.

Hamiltonian simulation is a key technique to solve the two most important problems
in quantum chemistry: preparing the ground state of a Hamiltonian and computing
its energy. Other applications include preparing and analyzing thermal and excited
states. To see what we mean by Hamiltonian simulation, we start from the Schrödinger
equation,

Hψ = iℏ
d

dt
ψ. (4.69)

4.4 Hamiltonian simulation 84

|0⟩ / H • × • × |ϕi1⟩ /× • × •

|0⟩ / H • × • × • × |ϕi2⟩ /× • × • × •

|0⟩ / H • × |ϕi3⟩ / × •

|0⟩ C • Z • C

|0⟩ C • Z • C

|0⟩ C • Z • C

Figure 4.1 Antisymmetrization circuit. Example of an antisymmetrization circuit
for three electrons. The operation C represents a comparison test controlled on the
two registers that are being compared. The seed register (top left) is measured to
post-select on the collision-free subspace. The Z gates perform the phase flip when
swapping two registers. At the end of the circuit, the auxiliary record qubits (bottom
register) can be discarded as they are disentangled [36]. This circuit can be extended
to an arbitrary number of electrons η by increasing the size of the sorting network and
adding additional auxiliary qubits for each required comparison and swap.

As our electronic Hamiltonian (4.2) is time-independent, the evolution of a quantum
state ψ can be modeled as

ψ(x, 0) =
∑
n

anψEn(x)⇒ ψ(x, t) =
∑
n

ane
−iEnt/ℏψEn(x), (4.70)

where an are the amplitudes, ψEn the eigenstates of the Hamiltonian H with eigenvalues
En. From this equation, it is clear that if |a0| ≈ 1 and we know how to implement
the Hamiltonian simulation of e−iHt/ℏ, we can use the phase estimation algorithm
introduced in Chapter 3 to find E0, the ground state energy.

4.4.1. Quantization and fermion to qubit mapping

First quantization. Before getting into details of how to implement Hamiltonian
simulation, however, we need to decide how to represent the quantum state and
Hamiltonian. The first such choice is whether to represent the state in first or second
quantization, in other words, whether the logical qubits of our system will represent
the state of each electron, or the occupancy of each orbital, respectively. For example,
if we have η disentangled electrons in our system, occupying orbitals i1, . . . , iη, then

4.4 Hamiltonian simulation 85

the corresponding first quantized quantum state is

∑
σ∈Sη

(−1)π(σ)
√
η!
|ϕσ(i1)⟩ ⊗ . . .⊗ |ϕσ(iη))⟩ . (4.71)

For N orbitals, we need η log2 N qubits to represent the state. Note how this state
is antisymmetric, what can be achieved from |ϕi1⟩ |ϕi2⟩ . . . |ϕiη⟩ by a procedure first
described in [36], and depicted in Fig. 4.1. This protocol can be carried out with
minimal overhead, and fortunately only needs to be implemented once during the state
preparation, because the Hamiltonian simulation operators will preserve antisymmetry
throughout the algorithm.

In contrast, a second quantized state does not need to be explicitly antisymmetrized,
because the creation and annihilation operators account for Fermi statistics automati-
cally, but in contrast needs N qubits for N orbitals. If N ≫ η, this implies that the
second quantization requires more qubits to represent the state. Moreover, since we
have to replicate Fermi statistics, the mapping from fermions to qubits is non-trivial:
we have to keep track of occupation numbers as well as the parity.

Jordan-Wigner mapping. The Jordan-Wigner mapping represents [258]

a†
j → Z1 ⊗ . . .⊗ Zj−1 ⊗ (σ+)j ⊗ 1, (4.72)

for Xj, Yj, Zj the Pauli operators acting on qubit j, and σ+ = (X + iY)/2. This
means that operator a†

j acts non-trivially on j qubits: the first j − 1 qubit Pauli gates
record the phase, and the last Pauli operator creates a particle in qubit j. Using this
mapping, a Hermitian operator a†

paq + a†
qap is implemented as [18]

a†
paq + a†

qap 7→

1− Z p = q,

XpZ⃗Xq+YpZ⃗Yq

2 p ̸= q,
(4.73)

where XpZ⃗Xq = Xp ⊗ Zp+1 ⊗ . . . ⊗ Zq−1 ⊗ Xq with p < q, and similarly for YpZ⃗Yq.
In summary, the Jordan-Wigner mapping implies acting on up to O(N) qubits per
fermionic Hamiltonian operator. Extending this mapping to dimensions higher than
one has been discussed in Ref. [246].

4.4 Hamiltonian simulation 86

Parity mapping. The dual of the Jordan-Wigner mapping is the parity mapping,
where the parity is saved in a single qubit, but the occupation number in O(N) [61],

a†
j → 1⊗ Zj−1 ⊗ (σ+)j ⊗Xj+1 ⊗ . . .⊗XN . (4.74)

The mapping from Jordan-Wigner to parity mapping encoded states is

|i1⟩ ⊗ |i2⟩ ⊗ . . . |iN⟩ → |i1⟩ ⊗ |i1 ⊕ i2⟩ ⊗ . . .⊗ |
N⊕
j=1

ij⟩ , (4.75)

with ⊕ denoting binary sum.

Bravyi-Kitaev mapping. Is there a way to avoid the O(N) cost of the Jordan-
Wigner and parity mappings? The Bravyi-Kitaev encoding ensures that both parity
and occupation require no more than O(log2 N) qubit operators [52]. First proposed
for N = 2n a power of two, it uses qubits to encode sums of occupation numbers. The
mapping from the Jordan-Wigner mapping to the Bravyi-Kitaev matrix is carried out
by the basis change [61]

|i1⟩ ⊗ |i2⟩ ⊗ . . . |iN⟩ → |b1⟩ ⊗ |b2⟩ ⊗ . . . |bN⟩ , bk =
k∑
l=1

[βn]lkil, (4.76)

where β0 = (1) and [215]

βn =

← 1→
βn−1 0

0 βn−1

. (4.77)

4.4 Hamiltonian simulation 87

For example,

β3 =

1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

. (4.78)

We can check that each column of these matrices contains up to n = log2 N 1s, which
leads to O(log2 N) weight creation and annihilation operators [215]. In fact, when N

is a power of 2, operators a†
j have weight no larger than log2 N [121]. In exchange for

faster simulations, the detailed explanation of the form of creation and annihilation
operators becomes complicated and would require a large explanation, which the
interested reader may instead find in Ref. [215].

For the sake of completeness, we mention that a closely related technique, called the
Bravyi-Kitaev tree method, also achieves O(log2 N) weight for the operators. While in
practice this technique retrieves higher weight operators than the Bravyi-Kitaev method,
it also allows reducing the number of qubits if N is not a power of 2 [121].3 Other
encodings include Ref. [17] based on the configuration-interaction matrix, Steudtner’s
method for which the number of gates to implement a† and a is independent on
the number of basis functions [229, 228], and Ref. [138], whose complexity on both
the number of gates and qubits is polylogarithmic in the number of basis functions.
Refs. [87, 86] suggest a particularly compact mapping in the number of fermionic
modes (basis functions) per qubit, and finally the proposal of Ref. [254] proposes using
auxiliary qubits to restrict the mapping to local operators.

4.4.2. Basis choice

In addition to first or second quantization and the mapping to qubits, we have to
choose a set of basis functions to generate the wave function. The two most common
options are Gaussian functions and plane waves.

3An implementation of Jordan-Wigner and Bravyi-Kitaev operators can be found in one tutorial
on the topic in the Openfermion library.

https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms
https://quantumai.google/openfermion/tutorials/jordan_wigner_and_bravyi_kitaev_transforms

4.4 Hamiltonian simulation 88

Gaussian functions. Gaussian functions aim to generalize the well-known hydrogen
atom orbitals

ϕn,l,m(r, θ, ϕ) = Rnl(r)Yl,m(θ, ϕ), (4.79)

where Yl,m(θ, ϕ) are spherical harmonics, and the radial component is a product of
Laguerre polynomials and a negative exponential term in the radius [108]. The closest
choice of orbitals to emulate such behavior are Slater-type orbitals (STO),

RSTO
n (r) = Nrn−1e−ζr, (4.80)

for N a normalizing term and ζ a diffuseness parameter [61]. While Slater-type
orbitals can be used as a basis and have the advantage of correct asymptotic behavior,
computing the corresponding Hamiltonian integrals we saw in Section 4.3.1 must be
done numerically because no analytical solutions are known. Instead, for simplicity
Gaussian-type orbitals (GTO) are often used,

RGTO
n (r) = Nrn−1e−ζr2

, (4.81)

which exhibit Gaussian behavior and are easily analytically integrable as a result.
Gaussian-type orbitals can be written in spherical coordinates, with spherical harmonics
modeling the angular component, or in Cartesian coordinates, with a factor xiyjzk

instead of the spherical harmonics, r⃗ = (x, y, z) and i+ j + k the angular momentum.
Since Gaussian-type orbitals do not exhibit the correct asymptotic behavior in the

exponent, often a linear combination of Gaussian orbitals (primitives) is used to emulate
a single Slater-type orbital (contraction). Then, the Hartree-Fock or Density Functional
Theory procedures will compute a linear combination of the contracted atomic orbitals
to form molecular orbitals. A review of the different families of contractions of GTOs
can be found in Ref. [125]. On this basis, the Hamiltonian is usually written as

H =
∑

α,β∈{↑,↓}

N/2∑
p,q,r,s=1

hpqrsa
†
p,αa

†
q,βar,βas,α +

∑
σ∈{↑,↓}

N/2∑
p,r=1

hp,ra
†
σ,paσ,r, (4.82)

with one and two body coefficients,

hpr = ⟨p|T + U |r⟩ , hpqrs = ⟨p, q|V |r, s⟩ . (4.83)

Gaussian functions are well suited for isolated molecules, where the wave function
exponentially vanishes at infinity.

4.4 Hamiltonian simulation 89

Plane waves. The alternative to Gaussian basis functions are plane waves which,
due to their periodicity, are better suited for periodic materials. If we consider a cell of
volume Ω, these functions are4

φp(r) =
√

1
Ωe

iGp·r, (4.86)

where Gp is a reciprocal lattice vector indexed by p ∈ G =
[
−N1/3

2 + 1, N1/3

2 − 1
]3

.
On this basis, the Hamiltonian takes the form [21]

T =
η∑
i=1

∑
p∈G

∥Gp∥2

2 |p⟩ ⟨p|i , (4.87)

U = −4π
Ω

η∑
i=1

∑
q∈G

∑
ν∈G0

(q−ν)∈G

∑L
I=1 ZIe

iGν ·RI

∥Gν∥2 |q − ν⟩ ⟨q|i , (4.88)

V = 2π
Ω

η∑
i ̸=j

∑
p,q∈G

∑
ν∈G0

(p+ν)∈G
(q−ν)∈G

1
∥Gν∥2 |p + ν⟩ ⟨p|i ⊗ |q − ν⟩ ⟨q|j , (4.89)

where G0 := G\{(0, 0, 0)}. Note the approximation, called aliasing or dualling, of
making the momentum exchange be confined to lie within G0 [207, 179].

Similarly, on the plane-wave basis and second quantization, the Hamiltonian will
take the form [21, Appendix B]

H = 2π
Ω

∑
(p,σ)̸=(q,σ′)

ν ̸=0

c†
p,σc

†
q,σ′cq+ν,σ′cp−ν,σ

∥Gν∥2

︸ ︷︷ ︸
V

+1
2
∑
p,σ

∥Gp∥2c†
p,σcp,σ︸ ︷︷ ︸

T

−4π
Ω
∑
p̸=q;
I,σ

(
ZI
eiGq−p·RI

∥Gp−q∥2

)
c†
p,σcq,σ

︸ ︷︷ ︸
U

.

(4.90)
4More generally, the previous equation assumes a single k-point in the center of the Brillouin zone,

the dual of the primitive unit cell, with unit vectors bi. For any other k-point, the wave functions
take the form

φp,k(r) =
√

1
Ωe

i(Gp+k)·r, (4.84)

where

k =
3∑

i=1

ni

Ni
bi, (4.85)

Ni indicates the number of plane waves in each dimension, and ni is an integer. This is connected to
Bloch’s theorem [40], which states that ψ(r) = eik·ru(r), where the potential u(r) has the periodicity
of the lattice. Adding more k-points is used to take into account correlations between electrons and
nuclei of different unit cells, growing the system towards the thermodynamic limit.

4.4 Hamiltonian simulation 90

One useful feature of plane waves is that they diagonalize the kinetic operator. In
contrast, we can Fourier transform the Hamiltonian, to obtain the dual basis Hamilto-
nian [21, Appendix C]

H = 1
2N

∑
p,q,ν,σ

∥Gν∥2 cos[Gν · rq−p]a†
p,σaq,σ︸ ︷︷ ︸

T

−4π
Ω

∑
p,I,σ
ν ̸=0

(
ZI cos[Gν · (RI − rp)]

∥Gν∥2

)
np,σ

︸ ︷︷ ︸
U

+2π
Ω

∑
(p,σ)̸=(q,σ′)

ν ̸=0

cos[Gν · rp−q]
∥Gν∥2 np,σnq,σ′

︸ ︷︷ ︸
V

,

(4.91)

in which the external potential and potential operators will be diagonal. The number
of terms in the Hamiltonian in plane waves scales as O(N3) with the number of basis
functions N , while in dual wave basis they scale as O(N2). This is more favorable
than the O(N4) scaling in (4.82). However, this comparison is not fair since the basis
used is different, and therefore N is not the same either. To compare them, we should
analyze the error behavior of both basis sets, which in both cases will asymptotically
decrease as O(1/N) [155, 218]. This, and a thorough literature review, leads Ref. [21,
Appendix E] to state that one needs approximately 10 to 20 times more plane waves
than Gaussian basis functions to model a system to the same accuracy, as long as the
system is periodic. This comparison, however, must be taken with care.

Finally, it is also possible to simulate isolated molecules in plane waves, by taking
an 8Ω volume cell, and ensuring that at a distance larger than D = 3

√
Ω the Coulomb

interaction vanishes. This means that instead of a Fourier amplitude proportional to
4π

∥Gν∥2 , we get

4π1− cos[|Gν |D]
∥Gν∥2 (4.92)

in (4.87), (4.88) and (4.89) [21, Appendix E]. In the dual basis, the approximation is
even simpler, just dropping all terms npnq for which |rp − rq| > D.

Bloch and Wannier basis functions. Other basis functions have also been used
throughout the literature including Bloch wave basis (also known as band fermion
basis), whose defining feature is to diagonalize the one-body Hamiltonian in periodic

4.4 Hamiltonian simulation 91

materials [76]. Mathematically, if the one-body Hamiltonian is

T + U =
∑

k,p,q,σ

[
|ℏ(k + Gp)|2

2m δGp,Gq + UGp−Gq

]
︸ ︷︷ ︸

hk,Gp−Gq

c†
k+Gp,σ

ck+Gq ,σ. (4.93)

Choosing, as we did on the plane wave basis explanation, a single crystal cell k,
we find can find the unitary transformation Sn,G(k) that diagonalizes the one-body
Hamiltonian

hk,Gp−Gq =
∑
n

S†
Gp,n(k)ϵn(k)Sn,Gq(k). (4.94)

Index n will indicate an occupation band, and can take as many values as can reciprocal
vector lattices G. Then, the Bloch basis functions are defined as [76]

ϕk,n(r) =
√

1
Ωe

ik·r ∑
G

eiG·rSn,G(k). (4.95)

If we are interested in real-space basis functions, we can modify Bloch basis functions
into Wannier basis functions. In their simplest form, they can be written as [250]

WR(r) = W0(r −R) =
∑
k,n

e−ik·Rϕk,n(r) =
∑
k,n

ϕk,n(r −R). (4.96)

More complex options may include a gauge transformation of the Bloch basis.

4.4.3. Hamiltonian simulation techniques

In this subsection, we review the main techniques of Hamiltonian simulation, that
is, of implementing e−iHt. This will be important as a subroutine in quantum phase
estimation and state preparation, as we will see. Since we are interested in Hamiltonian
simulating the electronic Hamiltonian (4.2), we will assume the Hamiltonian is a Linear
Combination of Unitaries from now on, H = ∑L

l=1 alHl, with al > 0.

Trotter. The Trotter-Suzuki decomposition was the first method proposed to imple-
ment Hamiltonian simulation [195] and does not require the Hl above to be unitary
but only Hermitian. The key idea is to decompose e−it

∑
l
alHl as a product of terms of

the form e−itHl . Since this induces an error dependent on the time length of each time
segment, we divide the total time simulation into many small segments. For example,

4.4 Hamiltonian simulation 92

the first-order Trotter formula is

e−iHt =
(∏

l

e−ialHlt/r

)r
︸ ︷︷ ︸

S1(H;t/r)

+O
(∑
|[Hl1 , Hl2]|t2/r

)
. (4.97)

The error will also multiplicatively depend on the commutator of the different Hl

terms, such that if for example they all commute, the Hamiltonian simulation can be
fast-forwarded, e.g., implemented in a single time segment. In other words, in such a
case, we can take t as large as wished and r = 1 still get an accurate result.

Similarly, we can propose a second-order formula to decrease the simulation error,

e−iHt =
((

L∏
l=1

e−ialHlt/2r
)(1∏

l=L
e−ialHlt/2r

))r
︸ ︷︷ ︸

S2(H;t/r)

+O
(∑
|[[Hl1 , Hl2], Hl3]|t3/r2

)
, (4.98)

and inductively [233, 72, 232],

S2k(H; t/r) = S2
2k−2(H; pkt/r)S2k−2(H; (1− 4pk)t/r)S2

2k−2(H; pkt/r), (4.99)

with pk = 1/(4−41/(2k−1)). The Hamiltonian simulation error ϵHS will decrease as [178]

∣∣∣∣∣∣e−iHt/r − Sk(H; t/r)
∣∣∣∣∣∣

2
≤ Wk

(
t

r

)k+1
≤ ϵHS

r
, (4.100)

Wk = O
(

max
i

[[. . . [Hli1
, Hli2

], Hli3
], . . .], Hlik+1

]
)
. (4.101)

While the complexity of the method is in any case polynomial on the Hamiltonian
simulation error ϵHS, some techniques can help reduce it. The first is to introduce
randomness either in the ordering of the alHl terms [72], or treat the al/λ for λ = ∑

al

as probabilities of applying Hl for fixed amounts of time [58]. Other randomization
protocols have also been explored [249].

The second line of research aims to bound to the norm of the commutators [143,
59, 232, 178]. For N ≫ η, the so-called SHC-bound [232, 178] scales as O(N3), while
for N closer to η tighter bounds can be found in Ref. [178]. Some of these use the
fermionic semi-norm

∥X∥η := max
ϕ,ψ
| ⟨ϕ|X|ψ⟩ |η, (4.102)

4.4 Hamiltonian simulation 93

where |ϕ⟩ and |ψ⟩ contain η fermions. This semi-norm can be used to eliminate
nonphysical terms, which lead to higher error than possible in the commutators, due
to the particle-conserving nature of our system.

Taylor series. While Trotter series decomposition is popular and flexible, its error
scales only inverse polynomially. Post-Trotter methods aim to improve this situation
with a polylogarithmic error complexity. One possibility is Taylor series decomposition:

Ur = e−iHt/r ≈
K∑
k=0

1
k! (−iHt/r)

k =
K∑
k=0

L∑
l1,...,lk=1

(−it/r)k
k! al1 ...alk︸ ︷︷ ︸

bj

Hl1 ...Hlk︸ ︷︷ ︸
Uj

. (4.103)

To implement this LCU decomposition ∑j bjUj , we use the same Prep and Sel operators
that we have defined on other occasions:

Prep : |0⟩ 7→
∑
j

√
bj |j⟩ , Sel : |j⟩ |ψ⟩ 7→ |j⟩Uj |ψ⟩ , (4.104)

Then, we can perform UTay
LCU = (Prep† ⊗ 1)Sel(Prep⊗ 1), which exhibits some failure

probability, as the action of Prep† does not fully return the value of the auxiliary register
|j⟩ to |0⟩. Consequently, it is convenient to implement the algorithm in short time
segments of order τ = ln 2, so that (oblivious) amplitude amplification can eliminate
such error [34]. Overall, the value of K can be chosen to be

⌈
−1 + 2 log(ϵHS/r)

log log(ϵHS/r)+1

⌉
[169,

Lemma 5].

Qubitization. Since the Hamiltonian is already written as a linear combination of
unitaries, we can instead describe ULCU = (Prep† ⊗ 1)Sel(Prep ⊗ 1) with different
prepare and select operators

Prepare : |0⟩ 7→
∑
l

√
al |l⟩ , Select : |l⟩ |ψ⟩ 7→ |l⟩Hl |ψ⟩ . (4.105)

The matrix form of ULCU is

ULCU =
H/λ ·
· ·

 , (4.106)

a block encoding as we explained in Section 3.3.3. This operator can also be studied by
its action on state |0⟩ |ψ⟩,

ULCU |0⟩ |ψ⟩ = |0⟩ H
λ
|ψ⟩+

√
1− ∥H |ψ⟩ ∥

λ
|1⟩ |ψ⊥⟩ . (4.107)

4.4 Hamiltonian simulation 94

While this operator also has some probability of failure that requires amplitude
amplification, an alternative is to use Prep and Sel as part of a quantum walk operator
Q, acting in the same way as ULCU in the previous equation

Q |0⟩ |ψk⟩ = cos(θk) |0⟩ |ψk⟩ − sin(θk) |1⟩ |ψ⊥
k ⟩ ,

Q |1⟩ |ψ⊥
k ⟩ = cos(θk) |1⟩ |ψ⊥

k ⟩+ sin(θk) |0⟩ |ψk⟩ ,
(4.108)

for cos θk = Ek

λ
and (|ψk⟩ , Ek) eigenvector and eigenvalue tuples. Notice that θk here

plays the role of 2θ in (2.15) or 2φj in (2.42). In other words,

Q =
⊕
k

 Ek

λ
−
√

1− E2
k

λ2√
1− E2

k

λ2
Ek

λ

k

=
⊕
k

e−iYkθk . (4.109)

To build operator Q, Ref. [169, Corollary 9] suggests using

Q = Prep(2 |0⟩ ⟨0| ⊗ 1− 1)Prep†︸ ︷︷ ︸
Rotation 1

· Sel︸︷︷︸
Rotation 2

(4.110)

whenever U2
LCU = 1, as is the case here. Diagonalizing it, we get

Q =
⊕
k

(
eiθk |θk⟩ ⟨θk|+ e−iθk |−θk⟩ ⟨−θk|

)
. (4.111)

Provided eigenstate |ψ0⟩, performing quantum phase estimation directly over Q is
sufficient to recover ±θ0, which allows computing the energy as E0 = λ cos(±θ0) with
no Hamiltonian simulation error [36].

This protocol, called qubitization, is even more powerful when combined with a
technique called quantum signal processing [168], which we have mentioned previously.
Introducing

Zϕ := (1 + e−iϕ)Prep |0⟩ ⟨0|Prep† − 1 =
⊕
k

e−iϕ 0
0 1

k

, (4.112)

one can form operators

Wϕ = Zϕ−π/2QZ−ϕ+π/2 =
⊕
k

−ie−iϕ 0
0 1

k

 Ek

λ
−
√

1− E2
k

λ2√
1− E2

k

λ2
Ek

λ

k

ie−iϕ 0
0 1

k

.

(4.113)

4.4 Hamiltonian simulation 95

A string of these, Wϕ⃗ = WϕQ
. . .Wϕ1 , can be used to synthesize A[H] + iB[H], where

A and B are polynomials of degree Q (or Q/2) of cos(θk/2) and A and B have
equal [169, Theorem 3] (or respectively opposite, [169, Theorem 4]) parity. For
example, this quantum signal processing technique can be used to simulate e−iHt with
cost polylogarithmic in the precision parameter, by decomposing it into a Jacobi-Anger
series [169, Theorem 1]. Furthermore, quantum signal processing is Hamiltonian-query
optimal, and is not restricted to Linear Combination of Unitaries but can also be used
with other oracle access models such as sparse or density matrices.

Interaction picture. While using qubitization we can perform errorless Hamiltonian
simulation suitable for phase estimation, the algorithm still bears a linear dependence
on the one-norm of the Hamiltonian λ. Implementing the simulation in the interaction
picture aims to reduce such a complexity factor. In particular, if H = A+B, one can
form the interaction picture Hamiltonian

HI(t) = eiAtB(t)e−iAt, (4.114)

and if ∥A∥ ≫ ∥B∥, this will reduce the norm of the Hamiltonian from ∥A+B∥ to ∥B∥.
In this framework, the state will evolve as [171]

|ψ(t)⟩ = e−iAtT
[
e−i

∫ t

0 H(s)ds
]
|ψ(0)⟩ . (4.115)

In summary, we have to implement two parts, e−iAt and the time-ordered exponen-
tial [136, 171]. The former might be easy to implement if all operators in A commute,
so this is a practical requirement for the interaction picture algorithm. The latter
requires a Dyson series expansion

U(t) = T
[
e−i

∫ t

0 H(s)ds
]

=
∞∑
k=0

(−i)kDk, Dk = 1
k!

∫ t

0
...
∫ t

0
T [H(tk)...H(t1)]dkt,

(4.116)

which, similarly to the Taylor series, has logarithmic complexity in the Hamiltonian
simulation precision ϵ−1

HS. The required block encoding of operator B makes use of a
Linear Combination of Unitaries, and operators PrepB and SelB, allowing to perform

4.4 Hamiltonian simulation 96

a block encoding of a time segment of e−i(A+B)τ as [231]

e−i(A+B)τ = e−iAτ lim
K→∞
M→∞

K∑
k=0

(−iτ)k
Mkk!

M−1∑
m1=0

. . .
M−1∑
mk=0(

e−iτ(−1/2−m′
k)A/MBe−iτ(m′

k−m′
k−1)A/MB . . . Be−iτ(m′

2−m′
1)A/MBe−iτ(m′

1+1/2)A/M
)

≈
(
⟨0|Prep†

B

)⊗K K∑
k=0

(−iλBτ)k
Mkk!

M−1∑
m1,...,mk=0

(
e−iτ(M−1/2−m′

k)A/MSelB

e−iτ(m′
k−m′

k−1)A/MSelB . . . SelBe−iτ(m′
2−m′

1)A/MSelBe−iτ(m′
1+1/2)A/M

)(
PrepB |0⟩

)⊗K
,

(4.117)

with m′
1, . . . ,m

′
k the (time) ordered integers m1, . . . ,mk. Due to the use of block

encodings, this approach similarly requires splitting the total time evolution into
small time segments and using oblivious amplitude amplification. As a consequence,
the cost scales polylogarithmically with the inverse Hamiltonian simulation error ϵHS.
Importantly, this technique may also be naturally used for time-dependent Hamiltonians,
by taking A as the time-independent component and B as the time-dependent one.

Rank factorization. While not a Hamiltonian simulation technique of its own, rank
factorization approaches have been used in the literature to reduce the 1-norm of the
Hamiltonian in the context of second quantization and qubitization or to simplify the
implementation of Prep and Sel. Note that the Hamiltonian 1-norm is a multiplicative
factor in many of the state-of-the-art techniques above, and the reason why interaction
picture and other methods were used in the first place [167]. Further, rank factorization
methods have been found helpful when used in combination with QROM [18]. We
briefly describe the single and double-rank techniques, noting that the state of the
art is currently at the tensor hypercontraction techniques described in Ref. [158]. We
follow the explanations in the appendices of this last reference.

We already discussed that the second-quantized Hamiltonian can be written as a
one and two body term, see (4.82). Specifically,

T = 1
2

∑
σ∈{↑,↓}

N/2∑
p,q=1

Tpq(a†
p,σaq,σ + a†

q,σap,σ), (4.118)

4.4 Hamiltonian simulation 97

and

V = 1
8

∑
α,β∈{↑,↓}

N/2∑
p,q,r,s=1

Vpqrs(a†
p,αaq,α + a†

q,αap,α)(a†
r,βas,β + a†

s,βar,β). (4.119)

The next step is to Jordan-Wigner map these terms, using (4.73). If we define

Qpqσ =

Xp,σZ⃗Xq,σ p < q,

Yp,σZ⃗Yq,σ p > q,

−Zp,σ p = q,

(4.120)

we can rewrite

T = 1
2

∑
σ∈{↑,↓}

N/2∑
p,q=1

TpqQpqσ +
N/2∑
p=1

Tpp1, (4.121)

and

V = 1
8

∑
α,β∈{↑,↓}

 N/2∑
p,q,r,s=1

VpqrsQpqαQrsβ +
N/2∑

p,q,r=1
VpqrrQpqα +

N/2∑
p,r,s=1

VprrsQrsβ +
N/2∑
p,r=1

Vpprr1

 .
(4.122)

This suggests rearranging

T ′ = 1
2

∑
σ∈{↑,↓}

N/2∑
p,q=1

(Tpq +
N/2∑
r=1

Vpqrr)Qpqσ, (4.123)

and

V ′ = 1
8

∑
α,β∈{↑,↓}

N/2∑
p,q,r,s=1

VpqrsQpqαQrsβ, (4.124)

plus a term proportional to the identity which can be omitted in the Hamiltonian sim-
ulation. The single-rank factorization consists of performing a Cholesky decomposition
such that we can approximate

Vpqrs ≈
L∑
l=1

W (l)
pq W

(l)
rs . (4.125)

Consequently, the two-body term might be approximated by [35]

W = 1
8

L∑
l=1

 ∑
σ∈{↑,↓}

N/2∑
p,q

W (l)
pq Qpqσ

2

. (4.126)

4.5 Quantum state preparation 98

The double-rank factorization goes a step further and diagonalizes each W (l)
pq , approxi-

mating V with [247]

F = 1
2

L∑
l=1

Ul

 ∑
σ∈{↑,↓}

Ξ(l)∑
p=1

f (l)
p np,σ

2

U †
l . (4.127)

Discarding again the terms proportional to the identity, after the Jordan-Wigner
mapping this operator looks

F ′ = 1
8

L∑
l=1

Ul

 ∑
σ∈{↑,↓}

Ξ(l)∑
p=1

f (l)
p Zp,σ

2

U †
l . (4.128)

4.5. Quantum state preparation

Before diving into the different techniques to prepare ground states, let us briefly
discuss the complexity of this and previous tasks.

Definition 7 (Bounded-error Quantum Polynomial-time (BQP)) This complex-
ity class is composed of all problems solvable by a quantum Turing machine in polynomial
time and probability of error at most 1/3.

BQP is the class of problems that are ‘efficiently’ solvable by a universal quantum
computer. It is the quantum equivalent to the Bounded-error Probabilistic Polynomial-
time (BPP), where the quantum Turing machine is substituted by a classical Turing
machine. Running the algorithm multiple times, the 1/3 failure probability might be
exponentially reduced. A larger complexity class is the following.

Definition 8 (Quantum Merlin-Arthur (QMA)) Complexity class of binary de-
cision problems where positive instances can be efficiently verified by a BQP solver with
success probability 2/3, and negative instances rejected with similar probability.

In more poetical words, Merlin, a powerful agent with unbounded computational
resources, wants to convince Arthur (with access to a universal quantum computer) of
the character, positive or negative, of one instance of the problem. Is there a quantum
state and a polynomial-time single-interaction protocol by which Arthur can correctly
verify or reject such a quantum state? This definition is the quantum equivalent of the
NP complexity class, which would apply to a classical BPP verifier instead.

We know that Hamiltonian simulation [129], quantum phase estimation [260] and
the HHL algorithm [117] are BQP-complete problems, any other BQP problem can be

4.5 Quantum state preparation 99

reduced to them. Similarly, finding the non-interacting Kohn-Sham functional for a
time-dependent electronic density is also BQP [255]. In contrast, distinguishing the
ground state of a two-body Hamiltonian provided the promise of an energy gap [131],
and finding the universal functional in DFT [213], are both QMA problems. However,
while finding the ground state of general electronic Hamiltonians is computationally
difficult, this does not preclude the possibility of finding average-case efficient algorithms
for quantum systems found in nature. After all, those natural systems are often able
to find the ground state, so we might as well. The situation is similar to the one
we encountered in Section 2.4 with protein folding, and we hope to similarly find an
efficient algorithm in practice.

Similar to our approach with protein folding, one idea is to use digital quantum
simulation of quantum annealing. Indeed, the techniques developed by Ref. [162]
and that we use in [62] are well-tailored to finding the ground state of quantum
Hamiltonians [161, 265]. We already saw that the complexity of quantum Metropolis
algorithms for this purpose scales as O(∆−1), where ∆ is the eigenvalue gap. Overall,
it should be noted that this problem is so hard, that not even quantum computers are
expected to offer an exponential quantum advantage [159].

4.5.1. Unitary coupled-cluster & variational quantum eigen-
solver

One alternative to quantum phase estimation is called the variational quantum
eigensolver. It is based on the following idea: let the qubit-mapped Hamiltonian be

H =
∑
i,α

hi,ασ
i
α +

∑
i,j,α,β

hi,j,α,βσ
i
ασ

j
β + . . . , (4.129)

where σ are Pauli operators and α, β, . . . ∈ {x, y, z}, and i, j, . . . indicate the qubit
where such Pauli operator should be applied. Then, the energy of the system can be
computed as the weighted average of the expectation values of each of the qubit Pauli
string operators

E = ⟨H⟩ =
∑
i,α

hi,α ⟨σiα⟩+
∑
i,j,α,β

hi,j,α,β ⟨σiασ
j
β⟩+ . . . , (4.130)

The variational quantum eigensolver is based on the idea that we can prepare the
ground state by variationally finding the state |ψ⟩ that minimizes the ground state

4.5 Quantum state preparation 100

energy
E = min

ψ

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

. (4.131)

The question then is to find a good ansatz for the state |ψ⟩. The most popular choice
is to use the Unitary Coupled-Cluster applied to the Hartree-Fock state as a way to
parametrize the ground state:

|ψ⟩ = eT−T † |ϕ0⟩ . (4.132)

The operator in the exponent is anti-Hermitian, so the exponential is a unitary operator
that can be implemented in a quantum computer. To implement it, sometimes classical
Møller-Plesset 2 (perturbation theory over Hartree-Fock) coefficients might be used
as a possible educated guess for the initialization for the parameters [209], and we
will also need one of the Hamiltonian simulation techniques described in the previous
section Section 4.4.3. For experiments in NISQ devices, this often entails implementing
Trotter simulation of U(t) = e

1
2
∑J

j=1 tj(τj−τ†
j). Then, to optimize the parameters tj of

energy E in (4.130) it is customary to use any variation of gradient descend (Stochastic
Gradient Descend, ADAM, ...), where gradients are computed via the parameter shift
rule [32, 214, 257]:

∂E

∂tj
= 1

2 sinα
∑
k

hk
(
Tr[PkU †(t+)ρ0U(t+)]− Tr[PkU †(t−)ρ0U(t−)]

)
, (4.133)

for ρ0 = |ϕ0⟩ ⟨ϕ0|, Pk the Pauli string operators in (4.130), hk their weights, t± =
(t1, . . . , tj−1, tj ± α, tj+1, . . . , tJ), and finally α an arbitrary parameter that should be
chosen as π/4 for maximum accuracy.

The previous procedure, however, is very costly due to the sheer number of parame-
ters tj to optimize in any molecule. For that reason, other ansätze have been proposed.
For example, the Qubit Coupled-Cluster suggests using

U(t) =
∏
j

etjPj , (4.134)

where Pj are Pauli string operators (not necessarily fermionic operators) that conserve
the number of particles in the system [211].

Another possibility is using a small ansatz and progressively adding more terms
according to their importance. This is the central idea of the adaptive derivative
assembled pseudo-Trotter VQE (ADAPT-VQE) [109]. If we have a pool of {τj}
operators, at any given step i one chooses, with replacement, the operator τji with the

4.5 Quantum state preparation 101

largest gradient and adds it to the state preparation

|ψ⟩ = e
tji

(τji
−τ†

ji
)
. . . etj2 (τj2 −τ†

j2
)etj1 (τj1 −τ†

j1
) |ϕ0⟩ . (4.135)

After choosing the operator, one optimizes the value of the associated parameter tji and
freezes it. This ansatz has the advantage that it can be stopped at arbitrary lengths.

While the previous quantum methods are based on the variational approach of the
Unitary Coupled Cluster, we know from our discussion in Section 4.3.3 that there is
also a projective approach. This is the main idea of the projective quantum eigensolver
(PQE), where one aims to minimize the residuals [225]

rm = ⟨ϕm|U †(t)HU(t)|ϕ0⟩ → 0. (4.136)

This forms a system of non-linear equations that might be solved with classical
methods. The projective approach also allows for an adaptive version called selective,
that progressively grows

H → e
tji

(τ†
ji

−τji
)
. . . etj2 (τ†

j2
−τj2)etj1 (τ†

j1
−τj1)Hetj1 (τj1 −τ†

j1
)etj2 (τj2 −τ†

j2
) . . . e

tji
(τji

−τ†
ji

)
.

(4.137)
Note that in this case the operator is built in reverse order, and the ith operator is
chosen to zero out the largest residual at step i [225].

Finally, let us briefly mention that variational circuits such as these may find a
problem of vanishing gradients, known as barren plateaus [180]. The origin of this
phenomenon is often the set of gates of the ansatz resembling a random set of unitaries.
Fortunately, using the set of fermionic operators of the Unitary Coupled-Cluster as
ansatz may avoid this problem [67, 93, 115]. A detailed discussion of the quantum
variants of Unitary Coupled-Cluster can be found at Ref. [8], and of variational
algorithms and techniques in general in Ref. [67].

4.5.2. Projection methods

Imaginary time evolution and quantum Krylov subspace. Besides implement-
ing excitations of the Hartree-Fock as a way to prepare the ground state of the system,
an alternative idea is to filter out the excited states. For example, in the imaginary
time evolution, one seeks to implement an approximation to operator e−τH [188]. It is
then prescribed to use tomography to select unitary operators e−iτA that approximate
the action of e−τH .

4.5 Quantum state preparation 102

This imaginary time evolution technique might also be used to generate excited
states. In particular, we can generate a Krylov subspace by iteratively applying the
e−τH operator, |ψl⟩ = e−lτH |ψ0⟩, where |ψ0⟩ is often taken the Hartree-Fock state
|ϕ0⟩. The even-l states |ψ0⟩, |ψ2⟩, |ψ4⟩, ... form a basis to describe the ground
state [188]. The Hamiltonian matrix elements of these states are then computed as
⟨ψl|H|ψl′⟩ = ⟨ψ(l+l′)/2|H|ψ(l+l′)/2⟩, and diagonalizing it, one can get an approximation
to the ground state and excited states. This method is known as QLanczos [188],
and may even be used to prepare multi-reference states [226, Section 2.3]: if the
approximate ground state of the Hamiltonian contains similar amplitudes of various
Slater determinants, we can find them by repeatedly measuring it. The generation
of Krylov states and diagonalization may then be repeated with each of the Slater
determinant reference states [226, Figure 1]. A similar approach of diagonalizing the
Hamiltonian subspace spanned by the most relevant Slater determinants is also pursued
in Ref. [240] but in the Configuration Interaction framework.

Linear Combination of Unitaries. Instead of using tomography to find operators
that project out the higher energy states, we can also use Linear Combination of
Unitaries to synthesize a function that probabilistically projects into the ground state.
For example, taking inspiration from the linear system of equation solver, we can
implement linear combinations of unitaries that simulate H−1 as decomposed in (3.33).
More generally, we can find a similar linear combination of unitaries to implement
H−K for any H with a positive spectrum [156], or HK if the spectrum is negative [37],
either of which may require shifting the Hamiltonian by a constant. Other alternatives
include approximating cosK H [97] or e−t2H2 [130].

The key is that once a block encoding of these operators is applied, we have to
amplify the success probability, via standard amplitude amplification, or the fixed
point method from Section 2.2.2. The cost of this projection algorithm will depend
crucially on two main parameters: ∆, the eigenvalue gap, and γ, the overlap of the
initial state with the ground state. The former plays a role in the choice of parameter
K necessary to distinguish the ground state, while the latter will be determinant in
the number of rounds of amplitude amplification required to have a success probability
close to 1. Furthermore, ∆ will appear divided by the Hamiltonian one-norm λ due to
the block encoding. Consequently, during amplitude amplification, the number of calls
to the oracle implementing Hamiltonian simulation UH will scale as Õ(λ/(∆γ)), and
O(1/γ) calls to UI , the oracle preparing the initial state, will be required.

4.5 Quantum state preparation 103

Geometry
file?

yes

no

Parameters
json?

yes

Compute
parameters

no

qDRIFT

Rand.
Hamilt.

Taylor
naive

Taylor on
the fly

Config.
inter.

Low
depth
Trotter L. d.

Taylor
naiveL. d.

Taylor on
the fly

Linear T
complex.

Sparsity
& low
rank

Interact.
picture

Number of T
gates

Error optimization

Cost
calculator

Geometry

Input:
Molecule
Method

Configuration file (basis...)
AO Labels

Parameter calculation

SHC
Trotter

Figure 4.2 Flowchart of the architecture of TFermion [63], divided into two
parts: the first one centered on the computation of the parameters needed for the
cost estimate; and a second one on using such parameters to compute the number of
T-gates. Methods are colored according to the Hamiltonian simulation technique used:
yellow for Trotter, blue for Taylor series, green for qubitization, and red for interaction
picture.

Qubitization. Having discussed qubitization and signal processing as natural succes-
sors to the linear combination of unitaries approach, the reader might not be surprised
to find out that this technique can also be used to filter out unwanted eigenstates. The
objective, as in the previous cases, is to synthesize a Grover-like rotation that amplifies
the ground state. The natural choice for such rotation is a sign function affecting only
the lowest eigenstate,

R<µ =
∑

k:λk<µ

|ϕk⟩ ⟨ϕk| −
∑

k:λk>µ

|ϕk⟩ ⟨ϕk| , (4.138)

4.6 TFermion 104

and to implement one such block encoding we will need an approximation to the
ground state energy and the eigenvalue gap ∆, just as in the above case.5 Specifically,
Ref. [163, Lemma 3] shows that one needs a polynomial of degree O

(
λ
∆ log ϵ−1

)
to

approximate the sign function to error ϵ, except in the segment [µ−∆/2, µ+ ∆/2].
This polynomial can be prepared with a similar number of queries to the Hamiltonian
block encoding oracle UH [163, Theorem 1]. Furthermore, if desired, a block encoding
of a projector can be prepared as

P<µ = 1
2(R<µ + 1), (4.139)

that will succeed to prepare the ground state with a probability of at least γ2. Con-
sequently, this also requires (fixed point) amplitude amplification. Overall, the cost
is O(λ

∆γ log ϵ−1) calls to the Hamiltonian block encoding UH , and O(1/γ) calls to the
initial state preparation oracle UI . This procedure also needs an upper bound estimate
µ of the ground state energy, and if not available a binary search procedure based on
limited-precision amplitude estimation must be used [163, Lemma 7].

4.6. TFermion

Since quantum chemistry and material science seem such good applications of
quantum computing, there has been abundant research not only on developing new
algorithms but on estimating the actual cost of implementing those. Starting with the
seminal work of Ref. [206] on FeMoco, a molecule that is capable of fixing atmospheric
nitrogen, there have been numerous articles trying to estimate the cost of using quantum
phase estimation algorithms to compute chemical reaction rates [206, 247], and analyze
battery properties [137, 84] or biological enzymes [103].

The cost is often measured in the number of non-Clifford gates, for example, T or
Toffoli gates. T gates are π/8 single-qubit rotations, while Toffoli gates are the quantum
equivalent of classical AND gates. These are the most costly gates because they cannot
be implemented transversally in the surface [142, 96] or color codes [46, 47], and thus
require costly magic state distillation [99] or other more expensive alternatives [38].

On the other hand, choosing the appropriate algorithm to tackle a given problem
is not obvious and requires a deep understanding of each of the available algorithms.
In this context, TFermion is a library our group has developed to facilitate the T gate

5This procedure to implement reflections might also be used in Section 2.3.1 in general and in
Algorithm 4 in particular, to implement quantum search algorithms without the need for quantum
phase estimation, even if asymptotic complexity is similar.

4.7 Lithium batteries 105

qD
RI

FT

Ra
nd

. H
am

ilt
.

Ta
yl

or
 n

ai
ve

Ta
yl

or
 o

n-
th

e-
fly

Co
nf

ig
. i

nt
er

ac
tio

n

Lo
w

de
pt

h
Tr

ot
te

r

SH
C

Tr
ot

te
r

L.
 d

. T
ay

lo
r n

ai
ve

L.
 d

. T
ay

. o
n-

th
e-

fly

Lin
ea

r T

Sp
ar

sit
y

lo
w-

ra
nk

In
te

ra
ct

io
n

pi
ct

ur
e

1013

1018

1023

1028

1033

1038

1043

1048

T-
ga

te
 c

os
t

H2
HF
H2O
NH3
CH4
O2
CO2
NaCl

1024

1026

1028

1030

1032

1034

T-
ga

te
 c

os
t

Taylor on-the-fly algorithm
Gaussian
Plane waves (x100)
Plane waves (x160)

H2 HF H2O NH3 CH4 O2 CO2 NaCl

1014

1015

1016

1017

1018

1019

T-
ga

te
 c

os
t

Taylor naive algorithm
Gaussian
Plane waves (x100)
Plane waves (x160)

Figure 4.3 Examples of the results that can be obtained with TFermion [63].
Left: the choice of basis and Hamiltonian simulation used will have a profound impact
on the overall cost of the quantum phase estimation algorithm. Right: Our library
allows us to compare the cost of the same algorithm with a different basis (plane waves
vs Gaussians) provided a fair comparison between the number of functions on either
basis can be established.

cost estimation of performing phase estimation over a given molecule, with the different
methods proposed in the literature [63].

In our article, we explain how several quantum phase estimation implementations
can be compiled into a circuit, as well as give the first estimates of their T-gate cost.
This library may find use cases such as comparing the cost of different algorithms. As
an example, we analyzed the impact of the basis used for Taylor series-based quantum
phase estimation, see Fig. 4.3. Note however that this comparison should be taken
with care as we did not compute the amount of error induced in the algorithm due
to the use of a finite number of basis functions in each case. Future extensions to the
library should include newer algorithms, the number of qubits required, or the cost of
state preparation.

4.7. Lithium batteries

The second article on this topic presented in this thesis, Ref. [84], is a study on
the advantages and cost of analyzing lithium battery properties using quantum phase
estimation. In our objective toward decarbonization of energy generation, batteries still

4.7 Lithium batteries 106

102 103 104 105 106 107 108 109

Number of plane waves, N ′

108

1010

1012

1014

Ga
te

 c
os

t

(a)

T gates
Toffoli gates

102 103 104 105 106 107 108 109

Number of plane waves, N

1012

1013

1014

1015

1016

To
ffo

li
ga

te
 c

os
t

(b)

= 0.0027eV

= 0.01eV

= 0.043eV

= 0.1eV

Figure 4.4 Non-Clifford gate cost for the execution of Quantum Phase Es-
timation algorithm in a fault-tolerant quantum algorithm for Li2FeSiO4 cathode
material [84]. Left: Toffoli and T-gate cost of performing the Givens rotations ex-
plained below to perform the basis change from molecular orbital to plane wave basis,
for different basis sizes. Right: Toffoli cost of the quantum phase estimation as a
function of the number of basis functions, and target precision. Different error targets
are required for the estimation of different properties.

represent a notable technological limitation. Therefore, being able to better predict
their properties computationally has substantial value. The cathode is one of the key
components of the battery and will oftentimes determine some of its most important
properties. For our work, we opted for Li2FeSiO4, a common candidate material for
the cathode of batteries [174]. During discharge, it undergoes the following chemical
reaction,

LixFeSiO4 + (2− x)Li→ Li2FeSiO4. (4.140)

In other words, Li atoms are inserted in the structure of the material. The voltage can
then be computed as

V = − [ELi2FeSiO4 − ELixFeSiO4 − (2− x)ELi]
(2− x)e . (4.141)

Other properties such as the ionic mobility inside the cathode, and the thermal stability
of the material, can also be predicted from the ground state energy of the different
phases of the material.

In our article, we suggest using quantum phase estimation to compute these ground-
state energies, which is an efficient approach as described throughout this chapter.
The currently most promising implementation is based on a first quantization and
plane waves representation of the quantum state, and qubitization as the Hamiltonian

4.7 Lithium batteries 107

simulation [16, 231]. This choice of this combination stems from the use of plane
waves to simulate a periodic material, first-quantization to reduce the one-norm of the
Hamiltonian, and qubitization as a rapid Hamiltonian simulation technique.

102 103 104 105 106 107 108 109

Number of plane waves, N

101

102

103

104

105

106

107

108

Ho
ur

s

1 day

1 month

1 year

100MHz
1MHz
10kHz

Figure 4.5 Execution time estimates for the qubitization quantum phase
estimation algorithm [84]. Assuming chemical accuracy ε = 0.043 eV, this figure
represents the time cost of implementing the quantum phase estimation algorithm
for Li2FeSiO4 at varying clock rates for the synthesis of non-Clifford gates. The total
number of qubits is 2,375 for np = 4 and 6,652 for np = 9. We compute the distillation
time as the product of the number of Toffoli gates, the surface code distance d, and
the clock frequency, all divided by a small np factor originating from the techniques
in [170] that parallelize the CSWAPs and arithmetic computations. We compute d in
this figure as in the moderate error case of Ref. [137]. We emphasize that these are
rough estimates whose main purpose is to provide a method to interpret the gate cost.

The main contributions of our article are three-fold: first, we slightly extend the
applicability of the original algorithm from the orthonormal cubic computational cell
to orthogonal, a parallelepiped. This adaptation requires minor changes in the Prep
component of the algorithm, in particular of a state with amplitudes proportional to

1
∥Gν∥ , which slightly increases the cost of the algorithm.

More importantly, we explain how to perform the Givens rotations required to
map the Hartree Fock from molecular orbitals to the plane wave basis in first quan-
tization [144] and make sure that the procedure conserves antisymmetrization. The
Hartree-Fock state that we take as the initial state will only be a computational basis
state in the molecular orbital basis. However, to use our Hamiltonian simulation

4.7 Lithium batteries 108

X • • RY (θpq) • • X

X X

|∑ bi mod 2⟩a •

Figure 4.6 Circuit diagram of an example controlled rotation RY (θpq) [84]. The
rotation is performed on the subspace spanned by |p⟩ = |0101⟩ and |q⟩ = |0010⟩. The
following procedure is applied to the bits where they differ, namely the last three
qubits. First, we apply X gates such that |p⟩ → |0000⟩ and |q⟩ → |0111⟩. Then, CNOT
gates map these states to |0000⟩ and |0100⟩ respectively. This allows us to perform a
rotation on the second qubit controlled on the auxiliary qubit |∑ bi mod 2⟩a. Finally,
the CNOTs and X gates are uncomputed, yielding the desired controlled rotation on
the subspace span{|p⟩ , |q⟩}.

method, we require such a state to be mapped to the plane wave basis, a procedure
that has been previously explored in the literature [195, 224, 144]. Such basis change
can be written as the application of the operator

U(u) = e
∑

pq
[log u]pqa

†
paq , (4.142)

according to Thouless theorem [239], see Footnote 2. To implement it, the Kivlichan
method diagonalizes the corresponding operator matrix, decomposing it in two-orbital
Givens rotations

RY (θpq) =
cos(θpq) − sin(θpq)

sin(θpq) cos(θpq)

 , (4.143)

between the η occupied orbitals and the N − η unoccupied ones [144]. Givens rotations
are rather straightforward in second quantization, just a two-qubit rotation [12]. In
contrast, in first quantization, it becomes much more challenging as the information
about the occupation of an orbital is delocalized among all registers. In this repre-
sentation, registers track the orbital in which each electron is, not whether particular
orbitals are occupied or empty. Thus, our contribution is a method to perform such
rotations in first quantization.

To explain how the procedure works, the key aspect to understand is that given
the fermionic nature of the system, RY (θpq) will only behave non-trivially when the
occupation of |p⟩ and |q⟩ is different, else it acts as the identity operator. Consequently,
we can implement the Givens rotation on |p1, . . . , pη⟩ with the following procedure [84]:

4.8 Results 109

1. Initialize η auxiliary qubits |bj⟩j in the state |0⟩1 . . . |0⟩η.

2. For 1 ≤ j ≤ η: If pj ∈ {p, q}, flip the auxiliary qubit |0⟩j to |1⟩j.

3. For 1 ≤ j ≤ η − 1: Controlled on the auxiliary qubit |bj⟩j, swap the j-th and
η-th register.

4. The auxiliary qubits are now in some state |b1⟩1 . . . |bη⟩η, where each bj indicates
if pj ∈ {p, q}. Controlled on the parity of ∑η

i=1 bi, apply RY (θpq) on the subspace
span{|p⟩ , |q⟩} of the η-th register. This step is illustrated for an example in
Fig. 4.6 and can be easily generalized.

5. Undo the controlled swaps and uncompute the auxiliary qubits by applying the
same operators in steps 2 and 3.

In the article, we show in a principled way that this procedure preserves the antisym-
metry of the state, which can also be explicitly checked.

Finally, while most elements of the algorithm presented in our article could be
previously found in the literature, a third important contribution is understanding
which ones to use and how to combine them into a complex algorithm capable of
performing this computationally challenging task. The main conclusion of our work is
that the algorithm is almost efficient enough, that provided with a quantum computer
with high but achievable clock rates we could run quantum phase estimation in a
reasonable amount of time for useful battery materials. However, various limitations
should be addressed in future work, such as the extension to non-orthogonal cells, or
going beyond Hartree-Fock as a way to prepare ground states. The latter might be
especially important as the overlap between the Hartree Fock and ground states may
decrease exponentially with the system size [146]. Overall, this article and similar
previous ones indicate that chemistry and material science might be one of the most
promising applications of quantum computing.

4.8. Results

We have described Hartree-Fock, Density Functional Theory, and Coupled Cluster,
and established their connections with quantum algorithms or as state preparation
methods.

We have described all the algorithmic choices involved in chemistry calculations,
with special emphasis on Hamiltonian simulation.

4.8 Results 110

We have released TFermion, the library corresponding to Ref. [63], that enables
researchers to easily compare quantum algorithms present in the literature, for
which only complexity estimates were available. This enables, for example, the
comparison of different basis functions, or Hamiltonian simulation techniques.

In Ref. [84], we have described how state-of-the-art first-quantization algorithms
may be applied to analyze Li-ion battery properties, such as the thermal stability
or the energy capacity of the battery. First-quantization techniques are especially
useful to reduce the cost of the plane wave basis. Together with qubitization,
this makes for very efficient quantum algorithms.

Our results in Refs. [63, 84] indicate that the most promising Hamiltonian
simulation techniques are either:

1. Qubitization, making use of Gaussian basis functions with rank-factorization.

2. Qubitization or interaction picture Hamiltonian simulation techniques, in
plane wave basis and first quantization.

Depending on the system (isolated molecules or periodic materials) one or the
other might be preferable.

The estimated number of logical gates for this algorithm means this is a robust
quantum computing application candidate, and could be implemented in a
realistic amount of time in a fault-tolerant quantum computer.

In Ref. [84], we have made technical contributions to state preparations and
the applicability of the first-quantization algorithm. More specifically, we have
explained how to implement Givens rotations in first-quantization, without which
state preparation in plane waves is not completely defined.

The second technical contribution is the extension of this algorithm to orthogonal
unit cells.

We have understood that the main bottleneck in quantum chemistry is the state
preparation problem. We have described a few techniques for that purpose.

Chapter 5

Quantum error correction

With group and eigenstate, we’ve learned to fix
Your quantum errors with our quantum tricks.

Daniel Gottesman, Quantum Error Correction Sonnet.

5.1. Objectives

Understanding why quantum error correction plays a key enabling role in quantum
chemistry, and why non-Clifford gates are often the most expensive kind of logic
gate.

Understanding the topological error codes and their two most important repre-
sentatives: surface and color codes.

Describing a procedure of how quantum fault tolerance might be achieved with
error correction techniques.

Analyzing how a Machine Learning decoder can be flexibly used with various
topological codes.

5.2. Introduction to error codes

In the previous chapters, we have reviewed the different families of algorithms
that one may wish to implement, and how they relate to each other. In particular, in
Chapter 4 we have explored the use of these algorithms, and have explored the time
and resource cost of fault-tolerantly implementing them. There, we referred to the

https://www2.perimeterinstitute.ca/personal/dgottesman/sonnet.html

5.2 Introduction to error codes 112

necessity of distilling magic states to implement T gates. In this chapter, we explain
the most important topological quantum error correction codes, the leading approach
to ensure that quantum computing protocols can be implemented fault tolerantly. We
start describing in the next section some basic concepts of quantum error correction,
following the presentation in Ref. [204, Chapter 7].

The objective of error correction might appear challenging: not only do we have to
prevent decoherence of our data, but we have to ensure that we can fault tolerantly
implement a continuous set of gates. Unfortunately, being continuous, even minor
errors in such gates would accumulate, ultimately leading to computational failure [204].
However, even if such is the case, we can decompose the possible errors in a discrete
set. To see how, imagine we have an encoded qubit |ψ⟩ = a |0⟩ + b |1⟩. Further,
suppose that there is an arbitrary unitary operator U that acts upon our qubit, and
an environmental qubit is assumed to be initialized to 0 on some basis, |0⟩E, and to
which we have no access. In general, the action of U is

U : |0⟩ |0⟩E 7→ |0⟩ |e00⟩E + |1⟩ |e01⟩E
|1⟩ |0⟩E 7→ |0⟩ |e10⟩E + |1⟩ |e11⟩E ,

(5.1)

where |eij⟩ need not be normalized or orthogonal states. This means that U transforms
an arbitrary quantum state as

U : (a |0⟩+ b |1⟩) |0⟩E 7→a(|0⟩ |e00⟩E + |1⟩ |e01⟩E)
+b(|0⟩ |e10⟩E + |1⟩ |e11⟩E).

(5.2)

We can rewrite the resulting state as

= (a |0⟩+ b |1⟩)⊗ 1
2(|e00⟩E + |e11⟩E)

+ (a |0⟩ − b |1⟩)⊗ 1
2(|e00⟩E − |e11⟩E)

+ (a |1⟩+ b |0⟩)⊗ 1
2(|e01⟩E + |e10⟩E)

+ (a |1⟩ − b |0⟩)⊗ 1
2(|e01⟩E − |e10⟩E).

(5.3)

Taking a closer look, this is equivalent to

1 |ψ⟩ ⊗ |e1⟩+X |ψ⟩ ⊗ |eX⟩+ Y |ψ⟩ ⊗ |eY ⟩+ Z |ψ⟩ ⊗ |eZ⟩ , (5.4)

5.2 Introduction to error codes 113

where X, Y and Z represent the Pauli operators. We can always perform such an
expansion because the set of Pauli operators and the identity span the state of 2× 2
matrix. For n-qubit states |ψ⟩, we can similarly expand any error in the basis of tensor
products of Pauli operators, Ea ∈ {1, X, Y, Z}⊗n such that

|ψ⟩ ⊗ |0⟩E 7→
∑
a

Ea |ψ⟩ ⊗ |ea⟩E , (5.5)

where |ea⟩E need not be mutually orthogonal. If we are able to project into one of the
Ea possibilities and distinguish which one it was, we can implement E†

a to correct our
data qubits (not the environmental ones).

The errors we will aim to correct are a subset E ⊂ {Ea}. If Ea is composed of t
non-trivial Pauli operators, then we will say it has weight t. In a binary (qubit) code,
we encode 2k ‘code words’ |̄i⟩ in a n-qubit space. The code is further characterized by
the code distance d, the minimum weight of the operator changing the code word, e.g.,

d = min
Ea∈E

t(Ea) : ⟨̄i|Ea|j̄⟩ ≠ Caδij, (5.6)

with Ca a normalization coefficient. Overall, quantum error corrections codes will
be denoted by their properties [[n, k, d]], where the double bracket identifies them in
contrast to single-bracket classical codes. In general, if errors Ea and Eb have weight
smaller than d/2,

⟨̄i|E†
bEa|j̄⟩ = Cabδij (5.7)

with Cab an arbitrary Hermitian matrix, is a necessary and sufficient condition to be
able to recover the correct code word [204, Equation 7.19]. In other words, if the error
Ea has weight less than d/2, we will be able to correct the error using the correction
procedure E†

b , which can only recover the code word |̄i⟩ because E†
bEa has weight

smaller than d. In contrast, if one error had a weight equal to or larger than d/2, then
it could be misidentified and corrected as a different code word.

As an introduction to quantum error correction codes, let us review one important
family of classical codes, binary linear codes. In these codes, the code subspace is
spanned by a set of binary vectors {vi}, such that any message α1, . . . , αk is encoded as

α1, . . . , αk 7→
∑
i

αivi, (5.8)

5.2 Introduction to error codes 114

where summation is carried out modulo two. These generating vectors might be written
as a k × n generating matrix, G

G =

v1

v2
...
vk

 (5.9)

and encoded message as v(α) = αG. Alternatively, one can indicate n − k linear
constraints, which form a (n − k) × n parity check matrix H, such that Hv = 0 for
all the generating vectors. Consequently, we also have HGT = 0. The parity check
matrix can be used to detect errors e in the code, as in that case H(v + e) = He ̸= 0
will indicate an error syndrome.

The distance d in these codes is defined as the minimum Hamming weight of vectors
{vi}, defined as the number of non-zero elements of the vectors,

d = min
i
|vi|1. (5.10)

Similarly to our discussion above, the correctable errors are those of weight t < d/2 [204].
From this code C, we can generate its dual, by taking the transpose of HGT = 0,
GHT = 0. In the new n− k code C⊥, HT is the generating matrix and G is the parity
check matrix.

Can we say anything more about the relation between the primal and its dual code?
Since GHT = 0, ∀v ∈ C and ∀u ∈ C⊥, we know that v · u = 0, and consequently
(−1)v·u = 1. On the other hand, if u /∈ C⊥ but v = αG, it is clear that [204]

∑
v∈{0,1}k

(−1)v·w = 0, ∀w ̸= 0 ⇒
∑
v∈C

(−1)v·u =
∑

α∈{0,1}k

(−1)α·Gu = 0. (5.11)

In summary, ∑
v∈C

(−1)v·u =

2k u ∈ C⊥,

0 u /∈ C⊥.
(5.12)

As the eager reader might have noticed, this poses a relation between both codes via
the Hadamard transformation, which we explore next.

5.2.1. CSS codes

The concept of dual codes can be exploited to generate one family of quantum codes
called Calderbank–Shor–Steane (or CSS) codes [193]. The construction is as follows:

5.2 Introduction to error codes 115

let C1 be one code defined by (n− k1)× n parity check matrix H1, and similarly C2

with (n − k2) × n parity check matrix H2. We choose C2 to be a subcode of C1, by
imposing that all constraints of C1 are also obeyed by C2, so k2 < k1. This construction
allows defining equivalence classes in C1: two code words u, v ∈ C1 are equivalent, if
they are the same up to an element of C2 [204],

u ≡ v ⇐⇒ ∃w ∈ C2 : u+ w = v. (5.13)

A CSS code is a code encoding k1 − k2 logical bits, where each equivalence class is one
of the 2k1−k2 code word. The basis elements are

|w̄⟩F = 1√
2k2

∑
v∈C2

|v + w⟩ , (5.14)

where the subindex denotes that this basis will be able to protect against bit-flip errors.
As hinted on the discussion on the dual code, we can transform the code C on its dual
code C⊥ using the bitwise Hadamard over all qubits

|w̄⟩P =H⊗n
2 |w̄⟩F = 1√

2n
∑
u

1√
2k2

∑
v∈C2

(−1)u·v

 (−1)u·w |u⟩

(5.12)= 1√
2n−k2

∑
u∈C⊥

2

(−1)u·w |u⟩ .
(5.15)

Furthermore, if we shift w by an element c ∈ C2 (e.g., staying in the same equivalence
class), the resulting |w̄⟩P will not change because (−1)u·(w+c) = (−1)u·w(−1)u·c =
(−1)u·w because u · c = 0.

Given that the Hadamard is self-inverse, we can use it to move back and forth
between the primal and dual representations, and consequently correct the phase-flip
errors as bit-flip errors in the dual code. The distance for flip errors will be the minimum
weight of generating vectors of C1, while for phase errors it will be the minimum weight
of generating vectors of C⊥

2 [204]. The overall distance will consequently be the smallest
of either.

5.2.2. Stabilizer codes

Another particularly important class of quantum error correction codes are so-called
called stabilizer codes, which make use of the Pauli structure of errors in (5.5). Let
P = ±{1, X, Z,XZ = iY }⊗n be the group of the n-fold tensor product of Pauli

5.2 Introduction to error codes 116

operators, with iY in place of Y so that all matrix entries are real; and let S ⊂ P be an
Abelian subgroup. Then, since the elements commute and can be jointly diagonalized,
we define the stabilizer code as the +1 eigenspace of S, HS [204]:

ψ ∈ HS ⇐⇒ Mψ = ψ ∀M ∈ S. (5.16)

In particular, −1 /∈ S, because it has no +1 eigenvalue. S can be characterized by its
generators, {Mi}. These operators can be understood as the parity check operators of
the code.

Errors, on the other hand, will map the state outside the joint +1 eigenstate of all
generators. For each Ea there will be at least one generator Mi such that

MiEa |ψ⟩ = −Ea |ψ⟩ = −EaMi |ψ⟩ . (5.17)

In that case, we see that the error and generator anticommute, instead of commute.
This allows us to define an error syndrome sia

MiEa = (−1)siaEaMi, (5.18)

which will be sia = 0 if error Ea commutes with the stabilizer, and sia = 1 if it
anticommutes. Once identified thanks to the syndrome, we can apply a recovery
procedure Eb that will hopefully recover the encoded state by mapping us back to HS .

Finally, we have to explain how logical operators will act on the code. They will be
related to the normalizer of S.

Definition 9 (Normalizer and centralizer) The normalizer of S in group G, N (S)
is defined as

N (S) = {g ∈ G|gS = Sg} = {g ∈ G|gSg−1 = S}. (5.19)

In other words, the normalizer is the set of elements of the group G that take components
of S to possibly different ones of S under conjugation. The centralizer is similar, but
commutes element-wise with each element of S

Z(S) = {g ∈ G|∀s ∈ S, gs = sg} = {g ∈ G|∀s ∈ S, gsg−1 = s}. (5.20)

If G is not clear, then we will indicate it by explicitly writing ZG(S) and NG(S).

The group G will often be the Pauli group over the physical qubits, for instance in the
stabilizer surface and color codes. Since S is Abelian, S ⊂ N (S). Moreover, in the

5.3 Topological error correction 117

stabilizer codes we will explore next, Z(S) = N (S). Why is the normalizer important?
It will represent all elements of P that commute with but are not necessarily in S.
Since normalizer operators commute with components of the stabilizer, their syndrome
will always be +1. On the other hand, since they do not necessarily belong to S,
they can induce logical changes in the encoded information. Thus, logical operators in
stabilizer codes will be related to the N (S)/S quotient group.

5.3. Topological error correction

Topological codes are the most important family of both CSS and stabilizer
codes [41]. In these codes, the physical qubits are represented as some element
of a lattice embedded in a differentiable manifold. Such elements are often given the
name of d-cells, where d represents the dimension. For example, 0-cells are vertices,
and 1-cells are edges... Topological codes receive this name because they encode logical
information in topologically non-trivial objects in the manifold. Since topological
elements are robust to local deformations, these codes display great robustness and are
often considered a key aspect of almost any error correction scheme. The two most
important codes are the toric code (also known as surface code) [142] and the color
code [46]. In this section, we mostly follow the presentation by Ref. [41] of these codes.

5.3.1. Homology

Let us start defining some concepts that will, later on, be useful for understanding
these error correction schemes. The first concept we will introduce are d-chains, subsets
of d-cell elements edi that can be understood as a formal sum

cd =
∑
i

cie
d
i , ci ∈ {0, 1}. (5.21)

The set of d-chains will be called Cd, and has Abelian subgroup structure. In fact,
using the notation Z2 = Z mod 2, then C0 ≃ ZV2 for V the set of vertices. Similarly
happens for C1 chains, made of edges E, C2 made of faces F , or C3 made of cells C.
d-chains with different dimensions are connected by the boundary operators,

∂d : Cd 7→ Cd−1, (5.22)

5.3 Topological error correction 118

which are group homomorphisms, or in other words ∂d(edi +edj) = ∂d(edi)+∂d(edj). These
operators map each d-chain to its boundary, for example they map an edge to its two
boundary vertices.

There are also two very important classes of d-chains. First, we have d-cycles
zd ∈ Zd ⊂ Cd, defined by those d-chains that have no boundary: ∂dzd = 0. Second, we
have d-boundaries bd ∈ Bd ⊂ Cd, which are themselves the boundary of a d+ 1-chain.
In other words,

Zd = ker ∂d, Bd = Im ∂d+1. (5.23)

Since ∂d ◦ ∂d+1 = 0, boundaries are also cycles Bd ⊂ Zd. This relation allows defining
a homology group structure,

Hd := Zd
Bd

= ker ∂d
Im ∂d+1

. (5.24)

Interestingly, Hd will only depend on the topology of the system. For example, if the
manifold is an orientable surface, its Euler characteristic is

χ = V − E + F (5.25)

and the genus of the surface is1

g = 1− χ/2. (5.26)

The genus is related to H1 by H1 ≃ Z2g
2 [41].

5.3.2. Surface code

The surface code was the first topological code proposed [142], and arguably the
most promising near-future quantum error-correction code, due to its high threshold [96].
It is also sometimes called the toric code because in its simplest version it is embedded
in a torus. While it can be extended to higher dimensions, we will first explain how to
describe the 2d toric version. The first key component of the code is deciding where
to place the qubits, which in this code will correspond to edges. For every 1-chain of
qubits c, we can define X and Z Pauli operators

Xc =
⊗
i∈c

Xi, Zc =
⊗
i∈c

Zi, c ∈ C1. (5.27)

1The genus is a topologically invariant of a surface. It indicates the largest number of nonintersecting
topologically non-trivial closed curves that the surface can contain.

5.3 Topological error correction 119

Xf

Zv

Z̄

X̄

Figure 5.1 Surface code of d = 6 encoding a single logical qubit with primal (gray) and
dual (light gray) lattices. Each edge in the primal or dual lattice is a qubit. Depicted
also two stabilizers Xf , Zv ∈ S, and representatives of the two logical operator classes
X̄, Z̄ ∈ N (S)/S, which commute with the former because either they share an even
number of qubits (eg Z̄ and Xf), or because they are composed of the same Pauli
operators (Z̄ and Zv). Note how Z̄ (X̄) starts and finishes in soft (rough) boundaries.

From our discussion in the previous section, we define the code as states in the Homology
class H1. For example, if z ∈ Z1 a closed curve without boundary, we define a logical
qubit state as

|z̄⟩ =
∑
b∈B1

|z + b⟩ ⇒ |z̄⟩ ∈ H1. (5.28)

This is what gives the surface code its CSS character, identifying B1 with the C2 code,
and Z1 with the C1 code, in the definition of the CSS code. Since topological codes

5.3 Topological error correction 120

X̄1

X̄2

Z̄2

Z̄1

Ea syndrome

Eb correction

Figure 5.2 Toric code with distance d = 5. The opposite sides of the lattice are
identified. Two logical qubits can be encoded in this code, whose logical Pauli operators
are depicted in blue and red. If an error happens, it will leave behind two excited
stabilizers (in this case of type X). We can correct it by implementing Eb via one of
the shortest paths, such that the probability of a phase or bit flip is minimized. In the
depicted case, EbEa ∈ B∗

1 , so it does not change the logical information.

are also stabilizer codes, we define the stabilizer operators:

Xf =
∏
e∈∂2f

Xe, Zv =
∏

e|v∈∂1e

Ze, S = {Xf , Zv} (5.29)

for f indicating a face, and e an edge, and v a vertex, see Fig. 5.1. These stabilizer
generators commute with each other because they share an even number of edges, and
are subject to the constraints

∏
f

Xf = 1,
∏
v

Zv = 1. (5.30)

5.3 Topological error correction 121

The number of encoded qubits will be k = 2g because |H1| = 22g as we saw at the end
of Section 5.3.1, or we may alternatively compute it as the number of qubits minus the
number of independent stabilizers, k = E − (V + F − 2) = 2− χ = 2g.

We can use the transversal Hadamard gate, as described previously, to transform
the code into its dual, commonly denoted with an asterisk. Thus, we obtain dual
boundary operators

∂∗
d : C∗

d−1 7→ C∗
d (5.31)

and dual cycles Z∗
1 and boundaries B∗

1 . Conjugating by the transversal Hadamard also
maps Xf → Zf∗ and Zv → Xv∗ . In summary, this gate translates us to the dual code,
which in this case is again the surface code. Using both the primal and dual codes, we
can explore the form of the logical operators in this code. Our objective is to relate
Z1/B1 and N (S)/S. One Pauli operator in the code can be written as

A = iαXcZc∗ , (c, c∗) ∈ C1 × C∗
1 , α ∈ Z mod 4 (5.32)

This operator will be in N (S) if it commutes with all the operators in S. In particular

[Xc, Zv] = 0 ⇐⇒ v /∈ ∂1c, [Zc∗ , Xf∗] = 0 ⇐⇒ f ∗ /∈ ∂2c
∗. (5.33)

Or in other words, c and c∗ do not have boundaries

A ∈ N (S) ⇐⇒ (c, c∗) ∈ Z1 × Z∗
1 . (5.34)

Thus, the normalizer is composed of any closed string in the primal and dual lattices.
Now that we have characterized the normalizer, let us take a look at the stabilizer

group S. An element of the stabilizer group can be written as

B =
∏
i

Xfi

∏
j

Zvj
= X∂2c2Z∂∗

1 c
∗
0
. (5.35)

for some set of faces c2 = ∑
i fi and (dual) vertices c∗

0 = ∑
i v

∗
i . Therefore,

B ∈ S ⇐⇒ (c, c∗) ∈ B1 ×B∗
1 . (5.36)

Elements of the stabilizer (plaquette and vertex operators in Fig. 5.2) will deform
closed strings without modifying the encoded logical information. Knowing this allows

5.3 Topological error correction 122

us to understand that the logical Pauli operators are

N (S)
S
≃ Z1

B1
× Z∗

1
B∗

1
= H1 ×H∗

1 ≃ H2
1 . (5.37)

In a d× d torus, this means we have a [[2d, 2, d]] quantum code (vertical and horizontal
X̄ and Z̄ strings), see Fig. 5.2. An alternative way of introducing a non-trivial topology
is to create boundaries in the code. There are two types of boundaries, in the primal
(soft) and dual (rough) lattices. However, each side of the square can only contain one
kind of boundary. For this reason, the number of logical qubits is reduced to just one,
and the code will be [[2d(d− 1) + 1, 1, d]], see Fig. 5.1.

In conclusion, the surface code allows to transversally implement X̄ and Z̄ as the
product of X and Z operators over strings. Using two copies of the surface code, we
can also implement a transversal C-Z gate. However, we cannot transversally generate
the Clifford group.

Definition 10 (Clifford group and hierarchy [105]) The Clifford group is the set
of quantum gates C such that if P is a Pauli operator, then C†PC is also a Pauli
operator. In other words, it is the normalizer of the Pauli group, N (P). In general,
the d-level of the Clifford hierarchy Ld is defined as those gates C that map P ∈ Ld−1

to the same level under conjugation,

C ∈ Ld ⇐⇒ ∀P ∈ Ld−1, C
†PC ∈ Ld−1, Ld := N (Ld−1) (5.38)

where L1 = ⟨i1, Z,X⟩ is the Pauli group, and L2 = ⟨S,H,C-Z⟩ is the Clifford group
itself.

Two well-known families of gates in the Clifford hierarchy are the single-qubit eiπ/2d

rotations (S-family), and the d-qubit controlled Z gates (C-Z family).
What about higher dimensions? In three dimensions, for example, qubits will

be attached to faces, X-type stabilizers to cells, and Z-type stabilizers to edges. Its
dual-code will thus have qubits, X-type stabilizers, and Z-type stabilizers attached
to edges, vertices, and faces respectively. Furthermore, in this code, it is possible to
transversally implement CC-Z gates [245]. If we go up to four dimensions, we will be
able to prepare self-correcting quantum memories [4, 85, 119]. Finally, d copies of the
d-dimensional surface code will be able to transversally generate, via a mapping to color
codes [154], the d-qubit C-Z gate, which is in the Ld but not in Ld+1. This saturates

5.3 Topological error correction 123

Figure 5.3 Color codes. Qubits are placed on the vertices, and stabilizers on the
faces. (a) 4-8-8 color code, (b) 6-6-6 color code. Taken from Ref. [160] under CC-BY
4.0 license.

the Bravyi-König theorem2, which states that d-dimensional topological codes can only
generate gates up to the dth level of the Clifford hierarchy [54]. A good review on low
overhead implementation of the surface code might be found in the readable Ref. [164].

5.3.3. Color code

A second important family of error correction codes is color codes. As for the
surface code, we start the discussion in 2 dimensions. In such a case, their lattice
fulfills two key requirements:

1. Each vertex is trivalent.

2. Each face is assigned one of three labels (red, green, and blue), so that neighbor
faces have different colors.

In the color code, each qubit is attached to the vertices, as indicated in Fig. 5.5, and
the stabilizer generators are face operators

Xf =
∏
v∈f

Xv; Zf =
∏
v∈f

Zv (5.39)

From this equation we can recognise that the color code is self-dual. Similar to (5.30),
the stabilizers in the color code are subject to the following constraints

∏
f∈Fr

Xf =
∏
f∈Fg

Xf =
∏
f∈Fb

Xf ,
∏
f∈Fr

Zf =
∏
f∈Fg

Zf =
∏
f∈Fb

Zf . (5.40)

2As we shall see, due to the Eastin-Knill theorem [89], saturating here means being able to
implement one gate from Ld, not any gate.

5.3 Topological error correction 124

From this, the number of independent stabilizers generators is 2F − 4 = 2(|Fr|+ |Fb|+
|Fg|)− 4. We compute the number of encoded qubits as the number of physical qubits
(vertices, V) minus the number of stabilizer generators (2F − 4). Given that the lattice
is trivalent, E = 3

2V , and since the Euler characteristic is χ = 2(1− g) = V − E + F ,
we have

k = V − 2F + 4 = V + 4 + 2(V −E − 2(1− g)) = 3V − 2E + 4− 4 + 4g = 4g, (5.41)

doubling the amount of qubits we got in the surface code.
In the color code, there are 6 types of closed string operators, three different colors,

and 2 different Pauli operators, X and Z. Denoting by γ a closed string, c the color,
and V γ

c the vertices bounding a c-colored edge in γ, these are

Xc
γ =

∏
v∈V γ

c

Xv, Zc
γ =

∏
v∈V γ

c

Zv. (5.42)

However, not all string operators are independent, because

Xr
γX

g
γX

b
γ = 1, Zr

γZ
g
γZ

b
γ = 1, (5.43)

so it is sufficient to consider just two colors. To understand the commutation rules
of these string operators, the key is to check whether Xc′

γ and Zc
γ coincide in an even

or odd number of qubits. If they cross an even number of times [Xc′
γ , Z

c
γ] = 0. This

necessarily happens, for example, if c = c′ [41]. In contrast, if c ̸= c′ and Zc
γ and Xc′

γ

cross an odd number of times, {Xc′
γ , Z

c
γ} = 0.

Let us now analyze the logical operators in this code. Similar to the surface code,
if a closed string γ may be contracted to a point via stabilizer generators, then it is a
homologically trivial stabilizer element. As such, since only two colors are independent,

S ≃ Bred,X
1 ×Bred,Z

1 ×Bgreen,X
1 ×Bgreen,Z

1 . (5.44)

On the other hand, those strings that cannot be contracted but commute with the
stabilizers form the normalizer,

N (S) ≃ Zred,X
1 × Zred,Z

1 × Zgreen,X
1 × Zgreen,Z

1 . (5.45)

5.3 Topological error correction 125

Figure 5.4 Error strings in the color code. Similar to Fig. 5.2, the errors should
be corrected by an open string of operator joining excitations, so this figure may
alternatively be interpreted as fusion rules of excitations. (a) Two excitations of the
same color and type X/Z can be joined by a string of the same color. (b) Three
excitations of the same type but different colors can be joined at the vertex they share.
(c) Three excitations of types X, Z, and XZ, and the same color might also be joined
to correct the errors. Figure from Ref. [133] under CC-BY 4.0 license.

And finally, we obtain logical operators X̄i, Z̄i as

N (S)
S
≃ Hred,X

1 ×Hred,Z
1 ×Hgreen,X

1 ×Hgreen,Z
1 . (5.46)

As such, the color code is a CSS code. If closed strings γ are elements of the normalizer
of the stabilizer group N (S), open strings represent errors and whose boundaries will
signal a +1 syndrome, see Fig. 5.4. These errors Ea can be corrected closing the string
with E†

b = Eb, so hopefully E†
bEa ∈ S and the logical information is preserved.

To compute the distance of a color code, we have to find the smallest non-detectable
error, or in other words, the smallest weight between the logical operators. However, in
this case, non-trivial elements of the normalizer do not need to be single-color strings.
Rather, the string may branch into a string net. On the other hand, similarly to the
surface code, we may introduce boundaries of a given color by removing stabilizer
operators of such color. Similar to the surface code, red close string operators γ may
end up in red boundaries, making them commutative with any stabilizer and therefore
an element of N (S). In contrast, if a red closed string γ only encloses red boundaries,
then it is part of the stabilizer group S, as it can be contracted to the boundary [41].

5.3 Topological error correction 126

Figure 5.5 6-6-6 Color code, primal and dual lattices. Left: trivalent primal
lattice, with qubits on the vertices. Right: dual lattice, with qubits on the faces. In
this dual lattice, each edge can be assigned the complementary color of the vertices
bounding it. To introduce boundaries allowing to encode logical qubits, we remove the
stabilizers corresponding to the bottom blue vertices, upper-right green vertices, and
upper-left red vertices.

We have already seen that the color code encodes twice the number of logical qubits
than the equivalent surface code. However, the most remarkable difference between
these codes is the color code capability to transversally implement the

S =
1 0

0 i

 (5.47)

and Hadamard gates, which together with the C-Not allow these codes to generate the
Clifford group. Transversal implementation of gates is very useful because it prevents
errors from propagating in the code.

The Hadamard gate can be easily implemented on the triangular codes such as
Fig. 5.5 and Fig. 5.6, because both X̄ and Z̄ strings are applied over the same physical
qubits. As such, H⊗nX̄H⊗n = Z̄, and consequently, we can take H̄ = H⊗n. As for
the S̄ gate, the desired behavior would be S̄†Z̄S̄ = Z̄ and S̄†X̄S̄ = Ȳ . However, to
transversally implement this gate we need to make sure that S̄ = S⊗n does not take us
outside the code space. Instead, we find that (S⊗n)†XfS

⊗n = ivXfZf , where face f
has v vertices [46]. Staying in the +1 subspace, so the stabilizer group is preserved,
is recovered for codes where the number of qubits per face is a multiple of 4, like the
4-8-8 code in Fig. 5.3. Furthermore, if the number n of qubits in the code is such that

5.3 Topological error correction 127

1 2 3

4

5 6

7

1 2 3

4

5 6

7

Figure 5.6 Simplest color code of distance d = 3, with boundaries. Operator X
on vertices 2, 4, 5, and 6 would form a string net with the three colored edges. A
weight-three logical operator would be string net red boundary – 2– 4 –7 – blue and
yellow boundaries.

n = 1 mod 4, then we obtain

S⊗nX̄(S†)⊗n = in mod 4X̄Z̄ = iX̄Z̄ = Ȳ , S⊗nZ̄(S†)⊗n = Z̄. (5.48)

Thus, in this code, we can implement the S̄ = S⊗n transversally, and consequently,
also the entire Clifford group.

If we have a member from the 6-6-6 color code family, Fig. 5.5 we can still find a
way to transversally implement the S̄ rotation [151]. The key aspect to notice is that
the set of vertices can be split in two disjoint sets S1 and S2 under the condition that
two vertices in an edge are part of different sets and |S1| = |S2|+ 1. Since the number
of qubits is odd, but each stabilizer is applied to an even number of qubits, we can
choose S̄ = S⊗(q∈S1)(S†)⊗(q∈S2). Then [151],

S̄X̄S̄† = i|S1|−|S2|X̄Z̄ = iX̄Z̄ = Ȳ , S̄Z̄S̄† = Z̄. (5.49)

The stabilizer subspace will similarly be preserved because in each stabilizer there is
an equal number of qubits in S1 and S2 [151]

S̄Xf S̄
† = i|S1∩f |−|S2∩f |XfZf = XfZf ∈ S; S̄Zf S̄

† = Zf ∈ S. (5.50)

Thus, a transversal gate is also possible in the 6-6-6 codes if we take the members of
the family depicted in Fig. 5.5.

5.4 Towards fault-tolerant quantum computing 128

Similar to the extension of surface codes we saw in the previous Section 5.3.2, we
can also generalize the surface code to a family of color codes of d dimensions [47]. In
general, the conditions will be

1. The lattice is d-valent: each vertex is connected to d edges.

2. d-cells can be d+ 1-colored such that no adjacent d-cells share color.

We depict the simplest three-dimensional color code in Fig. 5.7. In this case, the qubits
are still on the vertices, and the Z stabilizers are still attached to faces, but the X
stabilizers are instead cell stabilizers Xc. The attractiveness of the 3d color code is its
capability to transversally implement the gate

T =
√
S =

1 0
0 i1/2

 (5.51)

If each stabilizer has weight multiple of 8, and n mod 8 =: l ∈ {1, 3, 5, 7} then T̄ = T⊗n

implements the logical operator

T̄ |0̄⟩ = |0̄⟩ ; T̄ |1̄⟩ = il/2 |1̄⟩ , (5.52)

and maps the code subspace to itself. A similar construction might be implemented
for the d-dimensional color code, with gate

Rd =
1 0

0 2
iπ

2d ,

 (5.53)

thus saturating the Bravyi-König bound [54, 197, 252]. In such color codes, the Z
stabilizers are attached to faces and X stabilizers to d-cells. However, this arrangement
does not allow us to transversally implement the Hadamard gate anymore, as X and
Z stabilizers no longer have the same support. Finally, it is worth mentioning that,
similarly to surface codes, in d = 4 we similarly find a self-correcting quantum code [45].

5.4. Towards fault-tolerant quantum computing

So far we have discussed two of the main families of error-correcting codes, the
surface and color codes. Unfortunately, we have not found any code that allows us
to fault-tolerantly and transversally implement a set of universal gates, {H,C-Z, T}.
Is this possible? It turns out that the answer is negative: according to a theorem by

5.4 Towards fault-tolerant quantum computing 129

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1515

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 5.7 Simplest example of the 3d color code, similar to Fig. 5.6. X stabilizers
are attached to cells, while Z stabilizers do so in faces. Boundaries must be placed
around the code, such that they are of a different color than the cells they touch. This
color code admits transversal implementation of C-Not and T gates.

Eastin and Knill, any transversal set of gates generates a finite group and therefore
cannot be universal [89].

What alternatives do we have? The most popular option is to couple a high-
threshold error code, such as the surface code, with a smaller stabilizer code that
is only used to generate magic states T |+⟩. Each of these states will, later on, be
consumed to implement one T gate on the surface code via quantum teleportation [53].
To generate these magic states, it is customary to implement a distillation procedure:
starting with many noisy copies implemented via non-fault tolerant T gates, one can
generate a few cleaner copies. The most famous of these distillation procedures is
known as the 15 to 1 protocol [53], which takes 15 noisy copies and outputs a single

5.4 Towards fault-tolerant quantum computing 130

Figure 5.8 Three-dimensional color code with boundaries, primal and dual
lattices, generalization of Fig. 5.5. Left: 4-valent primal lattice, with qubits on
the vertices. Edges are shown with the complementary color of the vertices in the
corresponding dual face. Right: dual lattice, with qubits on the cells. Each face
can be assigned the complementary color of the vertices bounding it. To introduce
boundaries allowing to encode logical qubits, we remove the stabilizers corresponding
to the boundary k-faces, see (5.54).

one with less error. In particular, assuming Pauli error p, the output state will be
subject to error 35p3.

Magic state distillation is rather costly, and while there have been many advances
since the early protocols, they are still often considered the bottleneck step to im-
plementing fault-tolerant quantum algorithms. A recent review of several distillation
methods may be found in Ref. [165]. The alternative approach is using subsystem
codes, two codes that can implement different sets of gates but are based on the same
lattice and encode the same number of logical qubits. The most prominent example is
gauge color codes, which we briefly review next.

5.4.1. Gauge color codes

Gauge color codes are a generalization of color codes, first introduced by Héctor
Bombín in Ref. [42]. Here we will mostly follow their description by Ref. [151], that
more naturally describes them in the dual picture in Fig. 5.5 over a lattice L. Such
lattices are a collection of d-simplices δ, defined using independent vertices ei,

δ =
{

d∑
i=0

tiei
∣∣∣∑

i

ti = 1
}
, dim δ := d, ti ∈ R+, ei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0). (5.54)

5.4 Towards fault-tolerant quantum computing 131

For example, 0-simplices are vertices, 1-simplices are edges, 2-simplices are faces
(triangles), and 3-simplices are cells (tetrahedra). The code is the union of a set of
d-simplices of the same dimension L = ∪iδi, and dimL = dim δi is the dimension of
the color code.

If we have a d-simplex δ, we can also define its k-faces [151]

∆k(δ) = {σ ⊂ δ|σ is a k-simplex, with k ≤ d}. (5.55)

Each d-simplex contains
(
d+1
k+1

)
such k-faces. Additionally, we will denote by ∂L the

boundary of L, and ∆′
k(L) := ∆k(L\∂L). Color codes, as we have discussed, are also

characterized by a function, called ‘color’ that maps each vertex to Zd+1,

color : ∆0L 7→ Zd+1. (5.56)

The possible values in Zd+1 are understood as different colors. We can also assign
colors to a d-simplex as the union of colors of its vertices

color(δ) =
⊔

v∈∆0(δ)
color(v). (5.57)

Apart from L being (d+ 1) colorable, we need L to be the triangulation of a d-simplex.
Then, we attach a qubit to each d-simplex in the interior of L, such that for σ ⊂ L\∂L,
we define the set of qubits connected to σ as

Q(σ) = {δ ∈ ∆d(L)|σ ⊂ δ}. (5.58)

For example, in the two-dimensional color code from the dual lattice in Fig. 5.5, δ
would refer to the triangles and σ to the edges or vertices. More concretely, to each
edge, there are two triangles/qubits attached, and to each vertex, there are six, except
in the border. When we say an operator is supported over a simplex σ, we mean that
it is applied over the corresponding qubits, e.g., X(σ) = X[Q(σ)].

Color codes are also CSS subsystem stabilizer codes, a generalization of stabilizer
codes in which code generators do not need to commute [153]. They are defined by
their gauge group [42]:

G = ⟨X(δ), Z(σ)|∀δ ∈ ∆′
d−2−z(L),∀σ ∈ ∆′

d−2−x(L)⟩ , (5.59)

5.4 Towards fault-tolerant quantum computing 132

= ZS = XS ∈ S = ZG = XG ∈ G

Figure 5.9 Gauge elements in three-dimensional gauge color code CCL(x =
0, z = 0), depicted in the primal lattice L∗. In the primal lattice depicted, qubits are
attached to vertices, gauge operators to faces (right figure), and stabilizer operators
to cells (left figure), as explained in the main text. Figure similar to those appearing
in Ref. [56], generating code modified from the one courteously provided by Prof.
Benjamin Brown.

with3 x+z ≤ d−2. This induces a stabilizer group over the gauge group, S = ZG(G) ⊂
G [42],

S = ⟨X(δ), Z(σ)|∀δ ∈ ∆′
x(L),∀σ ∈ ∆′

z(L)⟩ . (5.60)

We refer to such color code as the CCL(x, z). For instance, in 2 dimensions there is
only one color code on L, CCL(0, 0). Stabilizer generators are attached to vertices
(∆0(L)) and coincide with the gauge generators, whereas physical qubits are attached
to faces (δ ∈ ∆d=2(L)). The support of a stabilizer operator on vertex σ are those
qubits whose faces contain the vertex σ, i.e. Q(σ). Any color code for which G = S is
a stabilizer color code. Else, it is a subsystem color code.

Let us give two more examples: the three-dimensional color code with X stabilizers
attached to vertices and Z stabilizers attached to edges is the stabilizer color code
CCL(0, 1). On the other hand, the CCL(0, 0) subsystem color code has, in the primal
(dual) lattice L∗ (L), gauge generators attached to faces (edges) and stabilizer generators
attached to cells (vertices), see Fig. 5.9. Since two faces (edges) may share an odd
number of qubits, gauge stabilizers do not need to commute. In three dimensions,
there are four edges arriving at each vertex, so the corresponding faces do not need to
share an edge.

Code words in CSS codes are those that lie in the +1 eigenspace of the element
of the stabilizer. Furthermore, two bit-strings are equivalent if they are connected by
an element of G\S [151]. As a consequence, one may formally decompose the space
as a tensor product of logical and gauge qubits: |ψ⟩ |g⟩. This allows to distinguish
two types of logic gates. Bare logical operators Ūbare : |ψ⟩ |g⟩ 7→ (Ū |ψ⟩) |g⟩ do not

3The d− 2 condition is due to the minimal dimension of color codes being d = 2.

5.4 Towards fault-tolerant quantum computing 133

Figure 5.10 Gauge color code. Left: structure of the primal lattice L∗. The lattice
is composed of truncated octahedrons and cubes, colored with four possible values.
Qubits lie in the vertices. Right: Errors in the color code form either a single string, of
color blue-green as in the first figure; or a stringnet such as the one shown in the second
figure of colors red-blue, red-yellow and red-green. Strings and stringnets may end in a
boundary. Each colored face indicates a −1 gauge face measurement. Furthermore,
at each cell, the product of the gauge measurements of each color gives us repeated
syndrome measurements that enable single-shot error correction [43]. Figures similar
to those appearing in Ref. [56], generating code modified from the one courteously
provided by Prof. Benjamin Brown.

affect the gauge qubits. We denote by X̄ = X⊗n and Z̄ = Z⊗n the bare logical
Pauli operators X and Z [151]. In contrast, dressed logical may also affect them,
Ūdressed : |ψ⟩ |g⟩ 7→ (Ū |ψ⟩) |g′⟩. We then define the logical states as

|0̄⟩ |gx⟩ :=
∑
XG∈G

XG |0⟩⊗n , |1̄⟩ |gx⟩ := X̄ |0̄⟩ |gx⟩ , (5.61)

where we have used that elements of the gauge group do not change the logical
information, and |0̄⟩ |gx⟩ and |1̄⟩ |gx⟩ are +1 eigenstates of the XG ∈ G generators [151].
Alternatively, we can encode the logical qubits using

|0̄⟩ |gz⟩ :=
∑
XS∈S

XS |0⟩⊗n , |1̄⟩ |gz⟩ := X̄ |0̄⟩ |gz⟩ , (5.62)

with |0̄⟩ |gz⟩ and |1̄⟩ |gz⟩ are +1 eigenstates of the ZG ∈ G generators, as ZGXS |0⟩⊗n =
XSZG |0⟩⊗n = XS |0⟩⊗n [151].

Apart from Pauli X̄ and Z̄, we want to know what gates we can implement
transversally. C-Z is transversal because it is a CSS code and can therefore be

5.4 Towards fault-tolerant quantum computing 134

implemented physical-qubit-wise between two copies of the code. Similarly, if the
code is self-dual, CCL(x, x), then H̄ = H⊗n transforms the X̄ into Z̄ as strings have
support over the same physical qubits. However, it is also important to notice that
this operator is a dressed logical operator, as it exchanges XG ↔ ZG [151].

Finally, to complete a universal set of gates, we want to explore the possibility of
applying R̄ℓ, defined in (5.53). As we did for the 6-6-6 two-dimensional color code, we
divide the physical qubits in two disjoint sets S1 ∪ S2 = Q(L) such that the logical
gate is defined as R̄ℓ = (Rk

ℓ)⊗(q∈S1)(R−k
ℓ)⊗(q∈S2), with k ∈ {1, . . . , 2n − 1} ensuring

k(|S1| − |S2|) = 1 mod 2ℓ. (5.63)

Finding such a k is always possible, [151, Page 7] and it will implement the desired
behavior. On the other hand, though, we want to make sure that R̄ℓ commutes with
gauge operators, so we need [151]

∀XG ∈ G, |S1 ∩Q(XG)| = |S2 ∩Q(XG)| mod 2ℓ. (5.64)

In the two-dimensional color code, this condition meant that stabilizer/gauge operators
had equal support over S1 and S2 elements. By imposing this constraint, we are making
sure that R̄ℓ will be a bare logical operator. One way of enforcing (5.64) is to satisfy
that, for any subset of gauge operators {XG1 , . . . , XGm}, [42, Equation 3] and [151,
Lemma 6] ∣∣∣∣∣S1

m⋂
i=1
Q(XGi

)
∣∣∣∣∣ =

∣∣∣∣∣S2

m⋂
i=1
Q(XGi

)
∣∣∣∣∣ mod 2ℓ−m+1. (5.65)

Since gauge operators XGi
are attached to d− 2− z simplices δi, we can analyze the

qubits to which they are attached. Let

m⋂
i=1
Q(δi) = Q(τ) or ∅. (5.66)

If the intersection is not an empty set, then ∪iδi ⊂ τ ∈ L\∂L. Now, if dim τ = m < d,
we have [151, Lemma 7]

|S1 ∩Q(τ)| = |S2 ∩Q(τ)| , (5.67)

and we can use this fact to prove (5.65):∣∣∣∣∣S1

m⋂
i=1
Q(XGi

)
∣∣∣∣∣−

∣∣∣∣∣S2

m⋂
i=1
Q(XGi

)
∣∣∣∣∣ = |S1 ∩Q(τ)| − |S2 ∩Q(τ)| = 0. (5.68)

5.4 Towards fault-tolerant quantum computing 135

In summary, to transversally implement R̄ℓ one possibility is to ensure that the
union of up to ℓ gauge operators is contained in a simplex τ of dimension smaller
than d. Let us see what this entails with respect to the coloring. We know that
d ≥ color(τ) ≥ color(∪iδi) ≥ m(d− 1− z), because each c-simplex is colored with c+ 1
colors. Taking m = ℓ, we find that

ℓ ≤ d

d− 1− z (5.69)

Since x+ z ≤ d− 2, ℓ is maximized for z = d− 2, which makes self-duality impossible
but ensures that ℓ = d

d−1−z = d. Therefore, we have seen that self-dual gauge color
codes allow transversal implementation of H̄, and CCL(0, d − 2) that of R̄d, but
both conditions are incompatible for d > 2, as would be expected from Eastin-Knill
theorem [89]. We can also arithmetically check that we fail to simultaneously obtain
self-duality and transversal implementation of R̄3 in any dimension, as we would need

x = z ≥ 2d− 3
3 ⇒ x+ z ≥ 4

3d− 2 > d− 2⇒⇐ x+ z < d− 2. (5.70)

There is a way out, however, called gauge fixing, which helps connect the self-dual
codes CCL(z, z), where we can transversally apply H̄, and CCL(0, d− 2), where we
can transversally apply R̄d.

To understand how it works, consider the three-dimensional case CCL(0, 0) and
CCL(0, 1). In the former, stabilizer operators are applied over cells in L∗, while in
the latter, ZS ∈ S stabilizers are applied over faces. This means imposing additional
constraints over the Z measurement of such faces, over the subsystems code CCL(0, 0).
Thus, the gauge fixing procedure checks such face stabilizers and corrects them, so
they are in the +1 subspace of the Z face stabilizers of CCL(0, 1). In other words, if
the gauge qubits are in the state |gz⟩, we can implement R̄3 transversally. However,
when we apply H̄ = H⊗n we transform:

|ψ⟩ |gz⟩ 7→ (H̄ |ψ⟩) |gx⟩ . (5.71)

Gauge fixing immediately after (measuring the face stabilizers and correcting them)
ensures we can recover the |gz⟩ state necessary to implement any further R̄3 gates. The
entire procedure can be applied transversally:

|ψ⟩ |gz⟩
H⊗n

7−−→ (H̄ |ψ⟩) |gx⟩
gauge fix7−−−−−→ (H̄ |ψ⟩) |gz⟩ . (5.72)

5.5 Concluding thoughts 136

It is possible to use gauge fixing between CCL(x, z) and CCL(x′, z′) as long as
they encode the same number of logical qubits, and x ≥ x′ and z ≥ z′. In that
case S ′ ⊆ S and G ⊆ G ′ [151]. Gauge color codes are also interesting because they
allow for so-called ‘single-shot error correction’: instead of measuring high-weight
stabilizer operators in 3 dimensions, we can measure the gauge operators, from which
the stabilizer operators’ eigenvalues can be deduced. Furthermore, since each cell
contains faces of different colors, we automatically recover several parity checks that
allow us to identify measurement errors [43]. Fascinatingly, one may also create gauge
subsystem codes and achieve single-shot error corrections from the toric code [152].
Finally, (gauge) color codes allow switching back and forth between 2 and 3 dimensions,
instead of between two three-dimensional color codes [44]. This procedure is called
code-switching and similarly allows for a universal and transversal set of gates. Though
beautiful, in the high physical error regime magic state distillation has still been found
to offer an advantage over this procedure [38].

5.5. Concluding thoughts

In this chapter, we have reviewed the basics of quantum error correction, with
special attention to the most popular topological stabilizer codes: the surface and color
codes. Not only that, but we have built our way up and explained how to achieve
fault tolerance via gauge fixing in the latter. However, there are many topics we have
not discussed. For example, there are many other codes [82], some with the same
geometry as some superconducting quantum chips [100], others specifically designed for
photons [106, 194, 241] which can be embedded in full fault-tolerant quantum computing
architectures [25, 49]. Alternatively, there have also been quantum computing proposals
that make use of the topological properties of Majorana fermions [166].

However, what is most exciting is that just a few years after Google’s quantum
supremacy experiment [13, 267, 172] we are now approaching the physical error required
to start implementing quantum error correction. There have been several experiments
approaching the error-correction threshold [149, 212, 202, 266, 2], which open the door
to the implementation of many fault-tolerant quantum algorithms discussed in this
thesis. In conclusion, we can only say that we are living in an exciting time for quantum
computing.

5.6 Results 137

5.6. Results

We have explained the basics of classical and quantum error correction, with a
focus on Stabilizer and CSS codes.

We have presented the family of Topological error-correcting codes, and their
two well-known members: the surface and color codes. We have indicated how
both encode logical qubits and how to implement logic gates.

We have also described how Clifford gates can be efficiently implemented in a color
code, but also that non-Clifford gates require either magic state distillation or
gauge fixing techniques. Further, we have explained that the theorem of Easting
and Knill forbids the existence of a topological code with a set of universal and
transversal logic gates, even if do not restrict ourselves to three dimensions [89].

We have described the gauge color codes as a way to achieve fault tolerance,
via the procedure of gauge fixing. This method allows the implementation of
non-Clifford gates in the 3d color code, while the rest of the operations are
implemented in its two-dimensional version.

We are working on a Machine Learning decoder, following work previously carried
out in our group.

Bibliography

[1] Aaronson, S. and Ambainis, A. (2009). The need for structure in quantum speedups.
arXiv preprint arXiv:0911.0996.

[2] Acharya, R., Aleiner, I., Allen, R., Andersen, T. I., Ansmann, M., Arute, F., Arya,
K., Asfaw, A., Atalaya, J., Babbush, R., et al. (2022). Suppressing quantum errors
by scaling a surface code logical qubit. arXiv preprint arXiv:2207.06431.

[3] Alcaide, E. (2019). Minifold: a deeplearning-based mini protein folding engine.
https://github.com/EricAlcaide/MiniFold/.

[4] Alicki, R., Horodecki, M., Horodecki, P., and Horodecki, R. (2010). On thermal
stability of topological qubit in kitaev’s 4d model. Open Systems & Information
Dynamics, 17(01):1–20.

[5] Ambainis, A. (2004). Quantum walk algorithm for element distinctness. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’04, page 22–31, USA. IEEE Computer Society.

[6] Ambainis, A. (2010). Variable time amplitude amplification and a faster quantum
algorithm for solving systems of linear equations. arXiv preprint arXiv:1010.4458.

[7] Ambainis, A., Gilyén, A., Jeffery, S., and Kokainis, M. (2020). Quadratic speedup
for finding marked vertices by quantum walks. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pages 412–424.

[8] Anand, A., Schleich, P., Alperin-Lea, S., Jensen, P. W., Sim, S., Díaz-Tinoco,
M., Kottmann, J. S., Degroote, M., Izmaylov, A. F., and Aspuru-Guzik, A. (2022).
A quantum computing view on unitary coupled cluster theory. Chemical Society
Reviews.

[9] Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science,
181(4096):223–230.

[10] Anfinsen, C. B., Haber, E., Sela, M., and White Jr, F. (1961). The kinetics of
formation of native ribonuclease during oxidation of the reduced polypeptide chain.
Proceedings of the National Academy of Sciences of the United States of America,
47(9):1309.

[11] Apers, S. and Sarlette, A. (2019). Quantum fast-forwarding: Markov chains and
graph property testing. Quantum Information & Computation, 19(3–4):181–213.

https://github.com/EricAlcaide/MiniFold/

Bibliography 139

[12] Arrazola, J. M., Di Matteo, O., Quesada, N., Jahangiri, S., Delgado, A., and
Killoran, N. (2022). Universal quantum circuits for quantum chemistry. Quantum,
6:742.

[13] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas,
R., Boixo, S., Brandao, F. G., Buell, D. A., et al. (2019). Quantum supremacy using
a programmable superconducting processor. Nature, 574(7779):505–510.

[14] Augustino, B., Nannicini, G., Terlaky, T., and Zuluaga, L. F. (2021). An infeasible-
inexact quantum interior point method for convex quadratic symmetric cone opti-
mization.

[15] Babai, L. (2016). Graph isomorphism in quasipolynomial time. In Proceedings of
the forty-eighth annual ACM Symposium on Theory of Computing, pages 684–697.

[16] Babbush, R., Berry, D. W., McClean, J. R., and Neven, H. (2019). Quantum
simulation of chemistry with sublinear scaling in basis size. npj Quantum Information,
5(1):1–7.

[17] Babbush, R., Berry, D. W., Sanders, Y. R., Kivlichan, I. D., Scherer, A., Wei,
A. Y., Love, P. J., and Aspuru-Guzik, A. (2017). Exponentially more precise quantum
simulation of fermions in the configuration interaction representation. Quantum
Science and Technology, 3(1):015006.

[18] Babbush, R., Gidney, C., Berry, D. W., Wiebe, N., McClean, J. R., Paler, A.,
Fowler, A., and Neven, H. (2018a). Encoding electronic spectra in quantum circuits
with linear t complexity. Physical Review X, 8(4):041015.

[19] Babbush, R., McClean, J. R., Newman, M., Gidney, C., Boixo, S., and Neven, H.
(2021). Focus beyond quadratic speedups for error-corrected quantum advantage.
PRX Quantum, 2(1):010103.

[20] Babbush, R., Perdomo-Ortiz, A., O’Gorman, B., Macready, W., and Aspuru-Guzik,
A. (2012). Construction of energy functions for lattice heteropolymer models: a case
study in constraint satisfaction programming and adiabatic quantum optimization.
arXiv preprint arXiv:1211.3422.

[21] Babbush, R., Wiebe, N., McClean, J. R., McClain, J., Neven, H., and Chan, G.
K.-L. (2018b). Low-depth quantum simulation of materials. Physical Review X,
8(1):011044.

[22] Babej, T., Fingerhuth, M., et al. (2018). Coarse-grained lattice protein folding on
a quantum annealer. arXiv preprint arXiv:1811.00713.

[23] Banchi, L., Fingerhuth, M., Babej, T., Ing, C., and Arrazola, J. M. (2020).
Molecular docking with gaussian boson sampling. Science Advances, 6(23):eaax1950.

[24] Bank, R. E. and Scott, L. R. (1989). On the conditioning of finite element equations
with highly refined meshes. SIAM Journal on Numerical Analysis, 26(6):1383–1394.

Bibliography 140

[25] Bartolucci, S., Birchall, P., Bombin, H., Cable, H., Dawson, C., Gimeno-Segovia,
M., Johnston, E., Kieling, K., Nickerson, N. H., Pant, M., et al. (2021). Fusion-based
quantum computation. arXiv preprint arXiv:2101.09310.

[26] Bateman, H. (1953). Higher transcendental functions, volume II, volume 1.
McGraw-Hill Book Company.

[27] Becke, A. D. (1988). Density-functional exchange-energy approximation with
correct asymptotic behavior. Physical Review A, 38(6):3098.

[28] Becke, A. D. (1993a). Density-functional thermochemistry. iii. the role of exact
exchange. The Journal of Chemical Physics, 98(7):5648–5652.

[29] Becke, A. D. (1993b). A new mixing of hartree–fock and local density-functional
theories. The Journal of Chemical Physics, 98(2):1372–1377.

[30] Bennett, C. H., Bernstein, E., Brassard, G., and Vazirani, U. (1997). Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523.

[31] Berger, B. and Leighton, T. (1998). Protein folding in the hydrophobic-hydrophilic
(hp) is np-complete. In Proceedings of the second annual International Conference
on Computational Molecular Biology, pages 30–39.

[32] Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M. S., Ahmed, S.,
Arrazola, J. M., Blank, C., Delgado, A., Jahangiri, S., et al. (2018). Pennylane:
Automatic differentiation of hybrid quantum-classical computations. arXiv preprint
arXiv:1811.04968.

[33] Berry, D. W., Ahokas, G., Cleve, R., and Sanders, B. C. (2007). Efficient quantum
algorithms for simulating sparse hamiltonians. Communications in Mathematical
Physics, 270(2):359–371.

[34] Berry, D. W., Childs, A. M., Cleve, R., Kothari, R., and Somma, R. D. (2015).
Simulating hamiltonian dynamics with a truncated taylor series. Physical Review
Letters, 114(9):090502.

[35] Berry, D. W., Gidney, C., Motta, M., McClean, J. R., and Babbush, R. (2019).
Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank
factorization. Quantum, 3:208.

[36] Berry, D. W., Kieferová, M., Scherer, A., Sanders, Y. R., Low, G. H., Wiebe, N.,
Gidney, C., and Babbush, R. (2018). Improved techniques for preparing eigenstates
of fermionic hamiltonians. npj Quantum Information, 4(1):1–7.

[37] Bespalova, T. A. and Kyriienko, O. (2021). Hamiltonian operator approximation
for energy measurement and ground-state preparation. PRX Quantum, 2(3):030318.

[38] Beverland, M. E., Kubica, A., and Svore, K. M. (2021). Cost of universality: A
comparative study of the overhead of state distillation and code switching with color
codes. PRX Quantum, 2(2):020341.

Bibliography 141

[39] Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand,
A., Degroote, M., Heimonen, H., Kottmann, J. S., Menke, T., et al. (2022). Noisy
intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1):015004.

[40] Bloch, F. (1929). Über die quantenmechanik der elektronen in kristallgittern.
Zeitschrift für physik, 52(7):555–600.

[41] Bombín, H. (2013). An introduction to topological quantum codes. arXiv preprint
arXiv:1311.0277.

[42] Bombín, H. (2015a). Gauge color codes: optimal transversal gates and gauge
fixing in topological stabilizer codes. New Journal of Physics, 17(8):083002.

[43] Bombín, H. (2015b). Single-shot fault-tolerant quantum error correction. Physical
Review X, 5(3):031043.

[44] Bombín, H. (2016). Dimensional jump in quantum error correction. New Journal
of Physics, 18(4):043038.

[45] Bombín, H., Chhajlany, R. W., Horodecki, M., and Martin-Delgado, M.-A. (2013).
Self-correcting quantum computers. New Journal of Physics, 15(5):055023.

[46] Bombín, H. and Martin-Delgado, M. A. (2006). Topological quantum distillation.
Physical Review Letters, 97(18):180501.

[47] Bombín, H. and Martin-Delgado, M. A. (2007). Topological computation without
braiding. Physical Review Letters, 98(16):160502.

[48] Born, M. and Oppenheimer, R. (1927). Zur quantentheorie der molekeln. Annalen
der Physik, 389(20):457–484.

[49] Bourassa, J. E., Alexander, R. N., Vasmer, M., Patil, A., Tzitrin, I., Matsuura,
T., Su, D., Baragiola, B. Q., Guha, S., Dauphinais, G., et al. (2021). Blueprint for a
scalable photonic fault-tolerant quantum computer. Quantum, 5:392.

[50] Boyer, M., Brassard, G., Høyer, P., and Tapp, A. (1998). Tight bounds on
quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505.

[51] Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002). Quantum amplitude
amplification and estimation. Contemporary Mathematics, 305:53–74.

[52] Bravyi, S. and Kitaev, A. Y. (2002). Fermionic quantum computation. Annals of
Physics, 298(1):210–226.

[53] Bravyi, S. and Kitaev, A. Y. (2005). Universal quantum computation with ideal
clifford gates and noisy ancillas. Physical Review A, 71(2):022316.

[54] Bravyi, S. and König, R. (2013). Classification of topologically protected gates for
local stabilizer codes. Physical Review Letters, 110(17):170503.

[55] Brenner, S. C., Scott, L. R., and Scott, L. R. (2008). The mathematical theory of
finite element methods, volume 3. Springer.

Bibliography 142

[56] Brown, B. J., Nickerson, N. H., and Browne, D. E. (2016). Fault-tolerant error
correction with the gauge color code. Nature Communications, 7(1):1–8.

[57] Buhrman, H., Cleve, R., Watrous, J., and De Wolf, R. (2001). Quantum finger-
printing. Physical Review Letters, 87(16):167902.

[58] Campbell, E. T. (2019). Random compiler for fast hamiltonian simulation. Physical
Review Letters, 123(7):070503.

[59] Campbell, E. T. (2021). Early fault-tolerant simulations of the hubbard model.
Quantum Science and Technology, 7(1):015007.

[60] Campos, R., Casares, P. A. M., and Martin-Delgado, M. A. (2022). Quantum
metropolis solver: A quantum walks approach to optimization problems. arXiv
preprint arXiv:2207.06462.

[61] Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M.,
Kivlichan, I. D., Menke, T., Peropadre, B., Sawaya, N. P., et al. (2019). Quantum
chemistry in the age of quantum computing. Chemical Reviews, 119(19):10856–10915.

[62] Casares, P. A. M., Campos, R., and Martin-Delgado, M. A. (2022a). Qfold:
quantum walks and deep learning to solve protein folding. Quantum Science and
Technology.

[63] Casares, P. A. M., Campos, R., and Martin-Delgado, M. A. (2022b). TFermion:
A non-Clifford gate cost assessment library of quantum phase estimation algorithms
for quantum chemistry. Quantum, 6:768.

[64] Casares, P. A. M. and Martin-Delgado, M. A. (2020a). A quantum active learn-
ing algorithm for sampling against adversarial attacks. New Journal of Physics,
22(7):073026.

[65] Casares, P. A. M. and Martin-Delgado, M. A. (2020b). A quantum interior-
point predictor–corrector algorithm for linear programming. Journal of Physics A:
Mathematical and Theoretical, 53(44):445305.

[66] Casares, P. A. M., Sheng Loe, B., Burden, J., hEigeartaigh, S., and Hernández-
Orallo, J. (2022c). How general-purpose is a language model? usefulness and safety
with human prompters in the wild. Proceedings of the 36th AAAI Conference on
Artificial Intelligence, 36(5):5295–5303.

[67] Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K.,
McClean, J. R., Mitarai, K., Yuan, X., Cincio, L., et al. (2021). Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644.

[68] Chakraborty, S., Luh, K., and Roland, J. (2020a). Analog quantum algorithms
for the mixing of markov chains. Physical Review A, 102(2):022423.

[69] Chakraborty, S., Luh, K., and Roland, J. (2020b). How fast do quantum walks
mix? Physical Review Letters, 124(5):050501.

Bibliography 143

[70] Chao, R., Ding, D., Gilyen, A., Huang, C., and Szegedy, M. (2020). Find-
ing angles for quantum signal processing with machine precision. arXiv preprint
arXiv:2003.02831.

[71] Childs, A. M., Kothari, R., and Somma, R. D. (2017). Quantum algorithm for
systems of linear equations with exponentially improved dependence on precision.
SIAM Journal on Computing, 46(6):1920–1950.

[72] Childs, A. M., Ostrander, A., and Su, Y. (2019). Faster quantum simulation by
randomization. Quantum, 3:182.

[73] Chow, E. (2000). A priori sparsity patterns for parallel sparse approximate inverse
preconditioners. SIAM Journal on Scientific Computing, 21(5):1804–1822.

[74] Clader, B. D., Jacobs, B. C., and Sprouse, C. R. (2013). Preconditioned quantum
linear system algorithm. Physical Review Letters, 110(25):250504.

[75] Cleve, R., Ekert, A., Macchiavello, C., and Mosca, M. (1998). Quantum algorithms
revisited. Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 454(1969):339–354.

[76] Clinton, L., Cubitt, T., Flynn, B., Gambetta, F. M., Klassen, J., Montanaro, A.,
Piddock, S., Santos, R. A., and Sheridan, E. (2022). Towards near-term quantum
simulation of materials. arXiv preprint arXiv:2205.15256.

[77] Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19(90):297–301.

[78] Coudron, M. and Menda, S. (2020). Computations with greater quantum depth
are strictly more powerful (relative to an oracle). In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pages 889–901.

[79] Dantzig, G. B. (1951). Application of the simplex method to a transportation
problem. Activity Analysis of Production and Allocation.

[80] Das, R. and Baker, D. (2008). Macromolecular modeling with rosetta. Annual
Review of Biochemistry, 77:363–382.

[81] Das, R., Qian, B., Raman, S., Vernon, R., Thompson, J., Bradley, P., Khare, S.,
Tyka, M. D., Bhat, D., Chivian, D., et al. (2007). Structure prediction for casp7
targets using extensive all-atom refinement with rosetta@ home. Proteins: Structure,
Function, and Bioinformatics, 69(S8):118–128.

[82] Dauphinais, G., Ortiz, L., Varona, S., and Martin-Delgado, M. A. (2019). Quantum
error correction with the semion code. New Journal of Physics, 21(5):053035.

[83] De Wolf, R. (2019). Quantum computing: Lecture notes. arXiv preprint
arXiv:1907.09415.

[84] Delgado, A., Casares, P. A. M., dos Reis, R., Zini, M. S., Campos, R., Cruz-
Hernández, N., Voigt, A.-C., Lowe, A., Jahangiri, S., Martin-Delgado, M. A., Mueller,
J. E., and Arrazola, J. M. (2022). Simulating key properties of lithium-ion batteries
with a fault-tolerant quantum computer. Phys. Rev. A, 106:032428.

Bibliography 144

[85] Dennis, E., Kitaev, A. Y., Landahl, A., and Preskill, J. (2002). Topological
quantum memory. Journal of Mathematical Physics, 43(9):4452–4505.

[86] Derby, C. and Klassen, J. (2021). A compact fermion to qubit mapping part 2:
Alternative lattice geometries. arXiv preprint arXiv:2101.10735.

[87] Derby, C., Klassen, J., Bausch, J., and Cubitt, T. (2021). Compact fermion to
qubit mappings. Physical Review B, 104(3):035118.

[88] Dirac, P. A. M. (1930). Note on exchange phenomena in the thomas atom.
Mathematical Proceedings of the Cambridge Philosophical Society, 26(3):376–385.

[89] Eastin, B. and Knill, E. (2009). Restrictions on transversal encoded quantum gate
sets. Physical Review Letters, 102(11):110502.

[90] Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Break-
throughs in Statistics, pages 569–593. Springer.

[91] Escrig, G., Campos, R., Casares, P. A. M., and Martin-Delgado, M. A. (2022).
Parameter estimation of gravitational waves with a quantum metropolis algorithm.
arXiv preprint arXiv:2208.05506.

[92] Ettinger, M., Høyer, P., and Knill, E. (2004). The quantum query complexity
of the hidden subgroup problem is polynomial. Information Processing Letters,
91(1):43–48.

[93] Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quantum approximate
optimization algorithm. arXiv preprint arXiv:1411.4028.

[94] Ferris, A. J. (2014). Fourier transform for fermionic systems and the spectral
tensor network. Physical Review Letters, 113(1):010401.

[95] Fingerhuth, M., Babej, T., et al. (2018). A quantum alternating operator
ansatz with hard and soft constraints for lattice protein folding. arXiv preprint
arXiv:1810.13411.

[96] Fowler, A. G., Mariantoni, M., Martinis, J. M., and Cleland, A. N. (2012). Surface
codes: Towards practical large-scale quantum computation. Physical Review A,
86(3):032324.

[97] Ge, Y., Tura, J., and Cirac, J. I. (2019). Faster ground state preparation and
high-precision ground energy estimation with fewer qubits. Journal of Mathematical
Physics, 60(2):022202.

[98] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741.

[99] Gidney, C. and Fowler, A. G. (2019). Efficient magic state factories with a
catalyzed |CCZ⟩ to 2 |T ⟩ transformation. Quantum, 3:135.

[100] Gidney, C., Newman, M., Fowler, A., and Broughton, M. (2021). A fault-tolerant
honeycomb memory. Quantum, 5:605.

Bibliography 145

[101] Gingrich, R. M., Williams, C. P., and Cerf, N. J. (2000). Generalized quantum
search with parallelism. Physical Review A, 61(5):052313.

[102] Giovannetti, V., Lloyd, S., and Maccone, L. (2008). Quantum random access
memory. Physical Review Letters, 100(16):160501.

[103] Goings, J. J., White, A., Lee, J., Tautermann, C. S., Degroote, M., Gidney, C.,
Shiozaki, T., Babbush, R., and Rubin, N. C. (2022). Reliably assessing the electronic
structure of cytochrome p450 on today’s classical computers and tomorrow’s quantum
computers. Proceedings of the National Academy of Sciences, 119(38):e2203533119.

[104] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572.

[105] Gottesman, D. and Chuang, I. L. (1999). Demonstrating the viability of universal
quantum computation using teleportation and single-qubit operations. Nature,
402(6760):390–393.

[106] Gottesman, D., Kitaev, A. Y., and Preskill, J. (2001). Encoding a qubit in an
oscillator. Physical Review A, 64(1):012310.

[107] Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle simulations.
Journal of Computational Physics, 73(2):325–348.

[108] Griffiths, D. J. and Schroeter, D. F. (2018). Introduction to quantum mechanics.
Cambridge university press.

[109] Grimsley, H. R., Economou, S. E., Barnes, E., and Mayhall, N. J. (2019).
An adaptive variational algorithm for exact molecular simulations on a quantum
computer. Nature Communications, 10(1):1–9.

[110] Grote, M. J. and Huckle, T. (1997). Parallel preconditioning with sparse approx-
imate inverses. SIAM Journal on Scientific Computing, 18(3):838–853.

[111] Grover, L. K. (1998). Quantum computers can search rapidly by using almost
any transformation. Physical Review Letters, 80(19):4329.

[112] Grover, L. K. (2005). Fixed-point quantum search. Physical Review Letters,
95(15):150501.

[113] Grover, L. K., Patel, A., and Tulsi, T. (2006). Quantum algorithms with fixed
points: The case of database search. arXiv preprint quant-ph/0603132.

[114] Haah, J. (2019). Product decomposition of periodic functions in quantum signal
processing. Quantum, 3:190.

[115] Hadfield, S., Wang, Z., O’gorman, B., Rieffel, E. G., Venturelli, D., and Biswas,
R. (2019). From the quantum approximate optimization algorithm to a quantum
alternating operator ansatz. Algorithms, 12(2):34.

[116] Hallgren, S., Russell, A., and Ta-Shma, A. (2003). The hidden subgroup problem
and quantum computation using group representations. SIAM Journal on Computing,
32(4):916–934.

Bibliography 146

[117] Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). Quantum algorithm for
linear systems of equations. Physical Review Letters, 103(15):150502.

[118] Hart, W. E. and Istrail, S. (1997). Robust proofs of np-hardness for protein
folding: general lattices and energy potentials. Journal of Computational Biology,
4(1):1–22.

[119] Hastings, M. B., Watson, G. H., and Melko, R. G. (2014). Self-correcting quantum
memories beyond the percolation threshold. Physical Review Letters, 112(7):070501.

[120] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and
their applications. Biometrika, 57(1).

[121] Havlíček, V., Troyer, M., and Whitfield, J. D. (2017). Operator locality in the
quantum simulation of fermionic models. Physical Review A, 95(3):032332.

[122] Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Physical
Review, 136(3B):B864.

[123] Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V., and Preskill, J. (2021).
Provably efficient machine learning for quantum many-body problems. arXiv preprint
arXiv:2106.12627.

[124] Ivanyos, G., Sanselme, L., and Santha, M. (2008). An efficient quantum algorithm
for the hidden subgroup problem in nil-2 groups. In Latin American Symposium on
Theoretical Informatics, pages 759–771. Springer.

[125] Jensen, F. (2013). Atomic orbital basis sets. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 3(3):273–295.

[126] Jin, J.-M. (2015). The finite element method in electromagnetics. John Wiley &
Sons.

[127] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly
accurate protein structure prediction with alphafold. Nature, 596(7873):583–589.

[128] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.
In Proceedings of the sixteenth annual ACM Symposium on Theory of Computing,
pages 302–311.

[129] Kassal, I., Jordan, S. P., Love, P. J., Mohseni, M., and Aspuru-Guzik, A.
(2008). Polynomial-time quantum algorithm for the simulation of chemical dynamics.
Proceedings of the National Academy of Sciences, 105(48):18681–18686.

[130] Keen, T., Dumitrescu, E., and Wang, Y. (2021). Quantum algorithms for ground-
state preparation and green’s function calculation. arXiv preprint arXiv:2112.05731.

[131] Kempe, J., Kitaev, A. Y., and Regev, O. (2006). The complexity of the local
hamiltonian problem. SIAM Journal of Computing, 35(5):1070–1097.

Bibliography 147

[132] Kerenidis, I. and Prakash, A. (2016). Quantum recommendation systems. arXiv
preprint arXiv:1603.08675.

[133] Kesselring, M. S., Pastawski, F., Eisert, J., and Brown, B. J. (2018). The
boundaries and twist defects of the color code and their applications to topological
quantum computation. Quantum, 2:101.

[134] Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. In
Doklady Akademii Nauk, volume 244, pages 1093–1096. Russian Academy of Sciences.

[135] Khoury, M. and Hadfield-Menell, D. (2018). On the geometry of adversarial
examples. arXiv preprint arXiv:1811.00525.

[136] Kieferová, M., Scherer, A., and Berry, D. W. (2019). Simulating the dynamics
of time-dependent hamiltonians with a truncated dyson series. Physical Review A,
99(4):042314.

[137] Kim, I. H., Liu, Y.-H., Pallister, S., Pol, W., Roberts, S., and Lee, E. (2022).
Fault-tolerant resource estimate for quantum chemical simulations: Case study on
li-ion battery electrolyte molecules. Physical Review Research, 4(2):023019.

[138] Kirby, W., Fuller, B., Hadfield, C., and Mezzacapo, A. (2022). Second-quantized
fermionic operators with polylogarithmic qubit and gate complexity. PRX Quantum,
3:020351.

[139] Kirkpatrick, J., McMorrow, B., Turban, D. H., Gaunt, A. L., Spencer, J. S.,
Matthews, A. G., Obika, A., Thiry, L., Fortunato, M., Pfau, D., et al. (2021). Pushing
the frontiers of density functionals by solving the fractional electron problem. Science,
374(6573):1385–1389.

[140] Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598):671–680.

[141] Kitaev, A. Y. (1995). Quantum measurements and the abelian stabilizer problem.
arXiv preprint quant-ph/9511026.

[142] Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals of
Physics, 303(1):2–30.

[143] Kivlichan, I. D., Gidney, C., Berry, D. W., Wiebe, N., McClean, J. R., Sun,
W., Jiang, Z., Rubin, N., Fowler, A., Aspuru-Guzik, A., et al. (2020). Improved
fault-tolerant quantum simulation of condensed-phase correlated electrons via trot-
terization. Quantum, 4:296.

[144] Kivlichan, I. D., McClean, J. R., Wiebe, N., Gidney, C., Aspuru-Guzik, A., Chan,
G. K.-L., and Babbush, R. (2018). Quantum simulation of electronic structure with
linear depth and connectivity. Physical Review Letters, 120(11):110501.

[145] Kohn, W. (1985). Highlights of condensed matter theory. In International School
of Physics” Enrico Fermi, pages 1–15.

Bibliography 148

[146] Kohn, W. (1999). Nobel lecture: Electronic structure of matter—wave functions
and density functionals. Reviews of Modern Physics, 71(5):1253.

[147] Kohn, W. and Sham, L. J. (1965). Self-consistent equations including exchange
and correlation effects. Physical Review, 140(4A):A1133.

[148] Koralov, L. and Sinai, Y. G. (2007). Theory of probability and random processes.
Springer Science & Business Media.

[149] Krinner, S., Lacroix, N., Remm, A., Di Paolo, A., Genois, E., Leroux, C., Hellings,
C., Lazar, S., Swiadek, F., Herrmann, J., et al. (2022). Realizing repeated quantum
error correction in a distance-three surface code. Nature, 605(7911):669–674.

[150] Krovi, H., Magniez, F., Ozols, M., and Roland, J. (2016). Quantum walks can
find a marked element on any graph. Algorithmica, 74(2):851–907.

[151] Kubica, A. and Beverland, M. E. (2015). Universal transversal gates with color
codes: A simplified approach. Physical Review A, 91(3):032330.

[152] Kubica, A. and Vasmer, M. (2021). Single-shot quantum error correction with
the three-dimensional subsystem toric code. arXiv preprint arXiv:2106.02621.

[153] Kubica, A. and Yoshida, B. (2018). Ungauging quantum error-correcting codes.
arXiv preprint arXiv:1805.01836.

[154] Kubica, A., Yoshida, B., and Pastawski, F. (2015). Unfolding the color code.
New Journal of Physics, 17(8):083026.

[155] Kutzelnigg, W. and Morgan III, J. D. (1992). Rates of convergence of the
partial-wave expansions of atomic correlation energies. The Journal of Chemical
Physics, 96(6):4484–4508.

[156] Kyriienko, O. (2020). Quantum inverse iteration algorithm for programmable
quantum simulators. npj Quantum Information, 6(1):1–8.

[157] Lee, C., Yang, W., and Parr, R. G. (1988). Development of the colle-salvetti
correlation-energy formula into a functional of the electron density. Physical Review
B, 37(2):785.

[158] Lee, J., Berry, D. W., Gidney, C., Huggins, W. J., McClean, J. R., Wiebe, N.,
and Babbush, R. (2021). Even more efficient quantum computations of chemistry
through tensor hypercontraction. PRX Quantum, 2(3):030305.

[159] Lee, S., Lee, J., Zhai, H., Tong, Y., Dalzell, A. M., Kumar, A., Helms, P., Gray,
J., Cui, Z.-H., Liu, W., et al. (2022). Is there evidence for exponential quantum
advantage in quantum chemistry? arXiv preprint arXiv:2208.02199.

[160] Lee, S.-H. and Jeong, H. (2022). Universal hardware-efficient topological
measurement-based quantum computation via color-code-based cluster states. Phys-
ical Review Research, 4(1):013010.

Bibliography 149

[161] Lemieux, J., Duclos-Cianci, G., Sénéchal, D., and Poulin, D. (2021). Resource
estimate for quantum many-body ground-state preparation on a quantum computer.
Physical Review A, 103(5):052408.

[162] Lemieux, J., Heim, B., Poulin, D., Svore, K., and Troyer, M. (2020). Efficient
Quantum Walk Circuits for Metropolis-Hastings Algorithm. Quantum, 4:287.

[163] Lin, L. and Tong, Y. (2020). Near-optimal ground state preparation. Quantum,
4:372.

[164] Litinski, D. (2019a). A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum, 3:128.

[165] Litinski, D. (2019b). Magic state distillation: Not as costly as you think. Quantum,
3:205.

[166] Litinski, D. and von Oppen, F. (2018). Quantum computing with majorana
fermion codes. Physical Review B, 97(20):205404.

[167] Loaiza, I., Khah, A. M., Wiebe, N., and Izmaylov, A. F. (2022). Reducing
molecular electronic hamiltonian simulation cost for linear combination of unitaries
approaches. arXiv preprint arXiv:2208.08272.

[168] Low, G. H. and Chuang, I. L. (2017). Optimal hamiltonian simulation by quantum
signal processing. Physical Review Letters, 118(1):010501.

[169] Low, G. H. and Chuang, I. L. (2019). Hamiltonian simulation by qubitization.
Quantum, 3:163.

[170] Low, G. H., Kliuchnikov, V., and Schaeffer, L. (2018). Trading t-gates for dirty
qubits in state preparation and unitary synthesis. arXiv preprint arXiv:1812.00954.

[171] Low, G. H. and Wiebe, N. (2018). Hamiltonian simulation in the interaction
picture. arXiv preprint arXiv:1805.00675.

[172] Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T.,
Bulmer, J. F., Miatto, F. M., Neuhaus, L., Helt, L. G., Collins, M. J., et al. (2022).
Quantum computational advantage with a programmable photonic processor. Nature,
606(7912):75–81.

[173] Magniez, F., Nayak, A., Roland, J., and Santha, M. (2011). Search via quantum
walk. SIAM Journal on Computing, 40(1):142–164.

[174] Manthiram, A. (2020). A reflection on lithium-ion battery cathode chemistry.
Nature Communications, 11(1):1–9.

[175] Martin, R. M. (2020). Electronic structure: basic theory and practical methods.
Cambridge university press.

[176] Martyn, J. M., Rossi, Z. M., Tan, A. K., and Chuang, I. L. (2021). Grand
unification of quantum algorithms. PRX Quantum, 2(4):040203.

Bibliography 150

[177] Matousek, J. and Gärtner, B. (2006). Understanding and using linear program-
ming. Springer Science & Business Media.

[178] McArdle, S., Campbell, E. T., and Su, Y. (2022). Exploiting fermion number in
factorized decompositions of the electronic structure hamiltonian. Physical Review
A, 105(1):012403.

[179] McClain, J., Sun, Q., Chan, G. K.-L., and Berkelbach, T. C. (2017). Gaussian-
based coupled-cluster theory for the ground-state and band structure of solids.
Journal of Chemical Theory and Computation, 13(3):1209–1218.

[180] McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H.
(2018). Barren plateaus in quantum neural network training landscapes. Nature
Communications, 9(1):1–6.

[181] McClean, J. R., Rubin, N. C., Lee, J., Harrigan, M. P., O’Brien, T. E., Babbush,
R., Huggins, W. J., and Huang, H.-Y. (2021). What the foundations of quantum
computer science teach us about chemistry. The Journal of Chemical Physics,
155(15):150901.

[182] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E. (1953). Equation of state calculations by fast computing machines. The Journal
of Chemical Physics, 21(6):1087–1092.

[183] Mohammadisiahroudi, M., Fakhimi, R., and Terlaky, T. (2022). Efficient use of
quantum linear system algorithms in interior point methods for linear optimization.
arXiv preprint arXiv:2205.01220.

[184] Møller, C. and Plesset, M. S. (1934). Note on an approximation treatment for
many-electron systems. Physical Review, 46(7):618.

[185] Moore, C., Russell, A., and Schulman, L. J. (2008). The symmetric group defies
strong fourier sampling. SIAM Journal on Computing, 37(6):1842–1864.

[186] Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bulletin
of the American Mathematical Society, 26:394–395.

[187] Mosca, M. and Ekert, A. (1998). The hidden subgroup problem and eigenvalue
estimation on a quantum computer. In NASA International Conference on Quantum
Computing and Quantum Communications, pages 174–188. Springer.

[188] Motta, M., Sun, C., Tan, A. T., O’Rourke, M. J., Ye, E., Minnich, A. J., Brandao,
F. G., and Chan, G. K. (2020). Determining eigenstates and thermal states on
a quantum computer using quantum imaginary time evolution. Nature Physics,
16(2):205–210.

[189] Moult, J., Pedersen, J. T., Judson, R., and Fidelis, K. (1995). A large-scale
experiment to assess protein structure prediction methods. Proteins: Structure,
Function, and Bioinformatics, 23(3):ii–iv.

Bibliography 151

[190] Mulligan, V. K., Melo, H., Merritt, H. I., Slocum, S., Weitzner, B. D., Watkins,
A. M., Renfrew, P. D., Pelissier, C., Arora, P. S., and Bonneau, R. (2020). Designing
peptides on a quantum computer. bioRxiv, page 752485.

[191] Murty, K. G. (1983). Linear programming. Springer.

[192] Nagaj, D., Wocjan, P., and Zhang, Y. (2009). Fast amplification of qma. Quantum
Information & Computation, 9(11):1053–1068.

[193] Nielsen, M. A. and Chuang, I. L. (2002). Quantum Computation and Quantum
Information. American Association of Physics Teachers.

[194] Noh, K., Chamberland, C., and Brandão, F. G. (2022). Low-overhead fault-
tolerant quantum error correction with the surface-gkp code. PRX Quantum,
3(1):010315.

[195] Ortiz, G., Gubernatis, J. E., Knill, E., and Laflamme, R. (2001). Quantum
algorithms for fermionic simulations. Physical Review A, 64(2):022319.

[196] Outeiral, C., Morris, G. M., Shi, J., Strahm, M., Benjamin, S. C., and Deane,
C. M. (2021). Investigating the potential for a limited quantum speedup on protein
lattice problems. New Journal of Physics, 23(10):103030.

[197] Pastawski, F. and Yoshida, B. (2015). Fault-tolerant logical gates in quantum
error-correcting codes. Physical Review A, 91(1):012305.

[198] Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., and Aspuru-Guzik,
A. (2012). Finding low-energy conformations of lattice protein models by quantum
annealing. Scientific Reports, 2:571.

[199] Perdomo-Ortiz, A., Truncik, C., Tubert-Brohman, I., Rose, G., and Aspuru-Guzik,
A. (2008). Construction of model hamiltonians for adiabatic quantum computation
and its application to finding low-energy conformations of lattice protein models.
Physical Review A, 78(1):012320.

[200] Peruzzo, A., McClean, J. R., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J.,
Aspuru-Guzik, A., and O’brien, J. L. (2014). A variational eigenvalue solver on a
photonic quantum processor. Nature Communications, 5(1):1–7.

[201] Portugal, R. (2013). Quantum walks and search algorithms, volume 19. Springer.

[202] Postler, L., Heuβen, S., Pogorelov, I., Rispler, M., Feldker, T., Meth, M.,
Marciniak, C. D., Stricker, R., Ringbauer, M., Blatt, R., et al. (2022). Demonstration
of fault-tolerant universal quantum gate operations. Nature, 605(7911):675–680.

[203] Potra, F. A. and Wright, S. J. (2000). Interior-point methods. Journal of
Computational and Applied Mathematics, 124(1-2):281–302.

[204] Preskill, J. (2022). Lecture notes for physics 219: Quantum computation. Caltech
Lecture Notes.

[205] Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quantum support vector
machine for big data classification. Physical Review Letters, 113(13):130503.

Bibliography 152

[206] Reiher, M., Wiebe, N., Svore, K. M., Wecker, D., and Troyer, M. (2017). Eluci-
dating reaction mechanisms on quantum computers. Proceedings of the National
Academy of Sciences, 114(29):7555–7560.

[207] Remler, D. K. and Madden, P. A. (1990). Molecular dynamics without effective
potentials via the car-parrinello approach. Molecular Physics, 70(6):921–966.

[208] Robert, A., Barkoutsos, P. K., Woerner, S., and Tavernelli, I. (2021). Resource-
efficient quantum algorithm for protein folding. npj Quantum Information, 7(1):1–5.

[209] Romero, J., Babbush, R., McClean, J. R., Hempel, C., Love, P. J., and Aspuru-
Guzik, A. (2018). Strategies for quantum computing molecular energies using the
unitary coupled cluster ansatz. Quantum Science and Technology, 4(1):014008.

[210] Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews
of Modern Physics, 23(2):69.

[211] Ryabinkin, I. G., Yen, T.-C., Genin, S. N., and Izmaylov, A. F. (2018). Qubit
coupled cluster method: a systematic approach to quantum chemistry on a quantum
computer. Journal of Chemical Theory and Computation, 14(12):6317–6326.

[212] Ryan-Anderson, C., Bohnet, J., Lee, K., Gresh, D., Hankin, A., Gaebler, J.,
Francois, D., Chernoguzov, A., Lucchetti, D., Brown, N., et al. (2021). Realization of
real-time fault-tolerant quantum error correction. Physical Review X, 11(4):041058.

[213] Schuch, N. and Verstraete, F. (2009). Computational complexity of interacting
electrons and fundamental limitations of density functional theory. Nature Physics,
5(10):732–735.

[214] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., and Killoran, N. (2019). Evalu-
ating analytic gradients on quantum hardware. Physical Review A, 99(3):032331.

[215] Seeley, J. T., Richard, M. J., and Love, P. J. (2012). The bravyi-kitaev transfor-
mation for quantum computation of electronic structure. The Journal of Chemical
Physics, 137(22):224109.

[216] Senior, A., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin,
C., Zidek, A., Nelson, A., Bridgland, A., et al. (2020). Improved protein structure
prediction using potentials from deep learning. Nature.

[217] Shavitt, I. and Bartlett, R. J. (2009). Many-body methods in chemistry and
physics: MBPT and coupled-cluster theory. Cambridge university press.

[218] Shepherd, J. J., Grüneis, A., Booth, G. H., Kresse, G., and Alavi, A. (2012).
Convergence of many-body wave-function expansions using a plane-wave basis: From
homogeneous electron gas to solid state systems. Physical Review B, 86(3):035111.

[219] Shewchuk, J. R. et al. (1994). An introduction to the conjugate gradient method
without the agonizing pain.

[220] Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–332.

Bibliography 153

[221] Simon, D. R. (1997). On the power of quantum computation. SIAM Journal on
Computing, 26(5):1474–1483.

[222] Somma, R. D., Boixo, S., and Barnum, H. (2007). Quantum simulated annealing.
arXiv preprint arXiv:0712.1008.

[223] Somma, R. D., Boixo, S., Barnum, H., and Knill, E. (2008). Quantum simulations
of classical annealing processes. Physical Review Letters, 101(13):130504.

[224] Somma, R. D., Ortiz, G., Gubernatis, J. E., Knill, E., and Laflamme, R.
(2002). Simulating physical phenomena by quantum networks. Physical Review A,
65(4):042323.

[225] Stair, N. H. and Evangelista, F. A. (2021). Simulating many-body systems with
a projective quantum eigensolver. PRX Quantum, 2(3):030301.

[226] Stair, N. H., Huang, R., and Evangelista, F. A. (2020). A multireference quantum
krylov algorithm for strongly correlated electrons. Journal of Chemical Theory and
Computation, 16(4):2236–2245.

[227] Stephens, P. J., Devlin, F. J., Chabalowski, C. F., and Frisch, M. J. (1994).
Ab initio calculation of vibrational absorption and circular dichroism spectra using
density functional force fields. The Journal of Physical Chemistry, 98(45):11623–
11627.

[228] Steudtner, M. (2019). Methods to simulate fermions on quantum computers with
hardware limitations. PhD thesis, Leiden.

[229] Steudtner, M. and Wehner, S. (2018). Fermion-to-qubit mappings with varying
resource requirements for quantum simulation. New Journal of Physics, 20(6):063010.

[230] Student (1908). The probable error of a mean. Biometrika, pages 1–25.

[231] Su, Y., Berry, D. W., Wiebe, N., Rubin, N., and Babbush, R. (2021a). Fault-
tolerant quantum simulations of chemistry in first quantization. PRX Quantum,
2(4):040332.

[232] Su, Y., Huang, H.-Y., and Campbell, E. (2021b). Nearly tight trotterization of
interacting electrons. Quantum, 5:495.

[233] Suzuki, M. (1991). General theory of fractal path integrals with applications
to many-body theories and statistical physics. Journal of Mathematical Physics,
32(2):400–407.

[234] Szabo, A. and Ostlund, N. S. (2012). Modern quantum chemistry: introduction
to advanced electronic structure theory. Courier Corporation.

[235] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199.

Bibliography 154

[236] Szegedy, M. (2004). Quantum speed-up of markov chain based algorithms. In
45th Annual IEEE Symposium on Foundations of Computer Science, pages 32–41.
IEEE.

[237] Tang, E. (2019). A quantum-inspired classical algorithm for recommendation
systems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 217–228.

[238] Tang, E. (2021). Quantum principal component analysis only achieves an
exponential speedup because of its state preparation assumptions. Physical Review
Letters, 127(6):060503.

[239] Thouless, D. J. (1960). Stability conditions and nuclear rotations in the hartree-
fock theory. Nuclear Physics, 21:225–232.

[240] Tubman, N. M., Mejuto-Zaera, C., Epstein, J. M., Hait, D., Levine, D. S.,
Huggins, W., Jiang, Z., McClean, J. R., Babbush, R., Head-Gordon, M., et al. (2018).
Postponing the orthogonality catastrophe: efficient state preparation for electronic
structure simulations on quantum devices. arXiv preprint arXiv:1809.05523.

[241] Tzitrin, I., Bourassa, J. E., Menicucci, N. C., and Sabapathy, K. K. (2020).
Progress towards practical qubit computation using approximate gottesman-kitaev-
preskill codes. Physical Review A, 101(3):032315.

[242] University of Washington (2021). Rosetta@home. boinc.bakerlab.org.

[243] Van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated annealing. In Simulated
Annealing: Theory and Applications, pages 7–15. Springer.

[244] Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G.,
Yuan, D., Stroe, O., Wood, G., Laydon, A., et al. (2022). Alphafold protein structure
database: Massively expanding the structural coverage of protein-sequence space
with high-accuracy models. Nucleic Acids Research, 50(D1):D439–D444.

[245] Vasmer, M. and Browne, D. E. (2019). Three-dimensional surface codes: Transver-
sal gates and fault-tolerant architectures. Physical Review A, 100(1):012312.

[246] Verstraete, F. and Cirac, J. I. (2005). Mapping local hamiltonians of fermions to
local hamiltonians of spins. Journal of Statistical Mechanics: Theory and Experiment,
2005(09):P09012.

[247] von Burg, V., Low, G. H., Häner, T., Steiger, D. S., Reiher, M., Roetteler, M.,
and Troyer, M. (2021). Quantum computing enhanced computational catalysis.
Physical Review Research, 3(3):033055.

[248] Vosko, S. H., Wilk, L., and Nusair, M. (1980). Accurate spin-dependent electron
liquid correlation energies for local spin density calculations: a critical analysis.
Canadian Journal of Physics, 58(8):1200–1211.

[249] Wan, K., Berta, M., and Campbell, E. T. (2022). Randomized quantum algorithm
for statistical phase estimation. Physical Review Letters, 129(3):030503.

boinc.bakerlab.org

Bibliography 155

[250] Wannier, G. H. (1937). The structure of electronic excitation levels in insulating
crystals. Physical Review, 52(3):191.

[251] Watrous, J. (2001). Quantum algorithms for solvable groups. In Proceedings of
the thirty-third annual ACM Symposium on Theory of Computing, pages 60–67.

[252] Watson, F. H., Campbell, E. T., Anwar, H., and Browne, D. E. (2015). Qudit
color codes and gauge color codes in all spatial dimensions. Physical Review A,
92(2):022312.

[253] Werner, H.-J., Manby, F. R., and Knowles, P. J. (2003). Fast linear scaling
second-order møller-plesset perturbation theory (mp2) using local and density fitting
approximations. The Journal of Chemical Physics, 118(18):8149–8160.

[254] Whitfield, J. D., Havlíček, V., and Troyer, M. (2016). Local spin operators for
fermion simulations. Physical Review A, 94(3):030301.

[255] Whitfield, J. D., Yung, M., Tempel, D. G., Boixo, S., and Aspuru-Guzik, A.
(2014). Computational complexity of time-dependent density functional theory. New
Journal of Physics, 16(8):083035.

[256] Wiebe, N. and Granade, C. (2016). Efficient bayesian phase estimation. Physical
Review Letters, 117(1):010503.

[257] Wierichs, D., Izaac, J., Wang, C., and Lin, C. Y.-Y. (2022). General parameter-
shift rules for quantum gradients. Quantum, 6:677.

[258] Wigner, E. and Jordan, P. (1928). Über das paulische äquivalenzverbot. Zeitschrift
für Physik, 47:631.

[259] Wocjan, P. and Abeyesinghe, A. (2008). Speedup via quantum sampling. Physical
Review A, 78(4):042336.

[260] Wocjan, P. and Zhang, S. (2006). Several natural bqp-complete problems. arXiv
preprint quant-ph/0606179.

[261] Wong, R. and Chang, W.-L. (2021). Quantum speedup for protein structure
prediction. IEEE Transactions on NanoBioscience.

[262] Wossnig, L., Zhao, Z., and Prakash, A. (2018). Quantum linear system algorithm
for dense matrices. Physical Review Letters, 120(5):050502.

[263] Ye, Y., Todd, M. J., and Mizuno, S. (1994). An O(
√
nL)-iteration homogeneous

and self-dual linear programming algorithm. Mathematics of Operations Research,
19(1):53–67.

[264] Yoder, T. J., Low, G. H., and Chuang, I. L. (2014). Fixed-point quantum search
with an optimal number of queries. Physical Review Letters, 113(21):210501.

[265] Yung, M.-H. and Aspuru-Guzik, A. (2012). A quantum–quantum metropolis
algorithm. Proceedings of the National Academy of Sciences, 109(3):754–759.

Bibliography 156

[266] Zhao, Y., Ye, Y., Huang, H.-L., Zhang, Y., Wu, D., Guan, H., Zhu, Q., Wei, Z.,
He, T., Cao, S., et al. (2022). Realization of an error-correcting surface code with
superconducting qubits. Physical Review Letters, 129(3):030501.

[267] Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin,
J., Wu, D., Ding, X., Hu, Y., et al. (2020). Quantum computational advantage using
photons. Science, 370(6523):1460–1463.

	Tesis Pablo Antonio Moreno Casares
	Contents
	Abstract
	Resumen
	List of publications
	Conference contributions and internship
	1 Introduction
	2 Quantum Search
	2.1 Objectives
	2.2 A tale of two rotations: Grover's algorithm
	2.2.1 Amplitude Amplification
	2.2.2 Fixed point Amplitude Amplification and the first glimpse of Quantum Signal Processing

	2.3 Quantum walks
	2.3.1 Hitting time and search algorithms
	2.3.2 Mixing time and Monte Carlo algorithms

	2.4 QFold
	2.4.1 The QFold algorithm
	2.4.2 Results

	2.5 Results

	3 Quantum Linear Algebra
	3.1 Objectives
	3.2 The Fourier transform & phase estimation algorithms
	3.2.1 The hidden subgroup problem

	3.3 Linear Algebra
	3.3.1 Solving linear systems of equations
	3.3.2 Improving the QLSA performance
	3.3.3 Qubitization

	3.4 Interior point methods
	3.5 Support Vector Machines
	3.6 Dequantization
	3.6.1 Examples

	3.7 Results

	4 Quantum Chemistry
	4.1 Objectives
	4.2 Introduction
	4.3 Classical quantum chemistry
	4.3.1 Hartree-Fock
	4.3.2 Density Functional Theory
	4.3.3 Coupled-Cluster

	4.4 Hamiltonian simulation
	4.4.1 Quantization and fermion to qubit mapping
	4.4.2 Basis choice
	4.4.3 Hamiltonian simulation techniques

	4.5 Quantum state preparation
	4.5.1 Unitary coupled-cluster & variational quantum eigensolver
	4.5.2 Projection methods

	4.6 TFermion
	4.7 Lithium batteries
	4.8 Results

	5 Quantum error correction
	5.1 Objectives
	5.2 Introduction to error codes
	5.2.1 CSS codes
	5.2.2 Stabilizer codes

	5.3 Topological error correction
	5.3.1 Homology
	5.3.2 Surface code
	5.3.3 Color code

	5.4 Towards fault-tolerant quantum computing
	5.4.1 Gauge color codes

	5.5 Concluding thoughts
	5.6 Results

	Bibliography

