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Generalized quantum PageRank algorithm with arbitrary phase rotations
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The quantization of the PageRank algorithm is a promising tool for a future quantum internet. Here we
present a modification of the quantum PageRank, introducing arbitrary phase rotations (APR) in the underlying
Szegedy’s quantum walk. We define three different APR schemes with only one phase as a degree of freedom. We
have analyzed the behavior of these algorithms in a small generic graph, observing that a decrease of the phase
reduces the standard deviation of the instantaneous PageRank, so the nodes of the network can be distinguished
better. However, the algorithm takes more time to converge, so the phase cannot be decreased arbitrarily. With
these results we choose a concrete value for the phase to later apply the algorithm to complex scale-free graphs.
In these networks, the original quantum PageRank is able to break the degeneracy of the residual nodes and
detect secondary hubs that the classical algorithm suppresses. Nevertheless, not all of the detected secondary
hubs are real according to the PageRank’s definition. Some APR schemes can overcome this problem, restoring
the degeneration of the residual nodes and highlighting the truly secondary hubs of the networks. Finally, we have
studied the stability of the new algorithms. The original quantum algorithm was known to be more stable than
the classical. We have found that one of our algorithms, whose PageRank distribution resembles the classical

one, has a stability similar to the original quantum algorithm.
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I. INTRODUCTION

The revolution of search engines to surf the internet
originates from algorithms inspired by the PageRank algo-
rithm [1-4]. Contrary to its competitors, whose ranking of
pages was quite subjective, the PageRank algorithm classi-
fies in an objective manner, taking into account the structure
of links between the pages. Beyond its importance in the
World Wide Web (WWW), it is worth mentioning that the
PageRank algorithm has a lot of applications, such as in
bibliometrics [5,6], finances [7], metabolic networks [8], drug
discovery [9], protein interaction networks [10], and social
networks [11].

In the early era of quantum computing there has been great
interest in the development of large-scale quantum networks
with the perspective of a future quantum internet [12-14].
Quantum networks require less resources than a full quan-
tum computer, and thus are expected to become available
before having a fault-tolerant quantum computer. As happens
with classical information, the quantum information of the
quantum internet will need to be classified. In this sense,
the classical PageRank could be used in a classical computer
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to classify the quantum information. However, it is sensible
to think that a quantized version of the PageRank algorithm
will classify the quantum information better, taking into ac-
count the effects of superposition and interference of quantum
mechanics. With that purpose, in 2012 a quantization of the
PageRank algorithm was proposed [15]. This quantization
was based on a quantum walk introduced by Szegedy [16] as a
generalization of the Grover algorithm [17], since the classical
PageRank algorithm can been understood as a random walk
in the network formed by the pages (nodes) and their links
(edges). The classical simulation of the quantum algorithm
belongs to the computational complexity class P, so it can
be simulated in a classical computer to classify the quantum
information of near-term quantum networks, even lacking a
fault-tolerant quantum computer.

The quantum PageRank was first implemented in small
networks, showing intriguing properties such as a violation
in the nodes ranking [15]. Later, it was scaled to complex net-
works, showing further properties such as a better resolving of
the network structure [18]. Since then, there has been a recent
interest in the quantum PageRank. For example, other quanti-
zations such as coined discrete-time quantum walks [19] and
continuous-time quantum walks [20-22] have been proposed,
and have even been realized experimentally in the continuous-
time version using photons [23]. It has also been coupled to
quantum search as a further step towards a quantum search
engine [24]. On one hand, the results obtained with the quan-
tum algorithm are expected to be more sensible for quantum
networks. However, until larger quantum networks become
available, this is still an open problem. On the other hand, if
we consider that the information is classical, then the quantum
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PageRank shows features that can even enhance the classical
algorithm in this context. Thus, the quantum PageRank is
interesting not only for the future quantum networks, but also
for the current classical ones.

Szegedy’s quantum walk has a wide range of applications,
such as optimization and artificial intelligence, for example.
With the purpose of going beyond this quantum walk, in this
paper we propose a modification of the algorithm, introducing
arbitrary phase rotations (APR). This technique was intro-
duced in the context of Grover quantum search [17,25-28],
and has been used to improve its performance [29-31] and
even make it deterministic [32,33]. In order to show how arbi-
trary phase rotations can enhance this quantum walk, we apply
this modification to the quantum PageRank. We will compare
our results with those of the original quantum PageRank using
first the same small graph studied in Ref. [15], and later using
scale-free networks, which are complex networks that model
the WWW [34]. We will be comparing the performance of the
new quantum algorithms with classical information, keeping
in mind that the results can be of interest for future quantum
networks as well.

This paper is structured as follows. In Sec. II we introduce
the PageRank algorithm and our new approach. In Sec. III
we study the effect of the new quantum algorithm in a small
generic graph. In Sec. IV we apply this algorithm to com-
plex scale-free networks. In Sec. V we study the stability
of the new algorithms. Finally, we summarize and conclude
in Sec. VI. In several appendices we elaborate more on the
details when necessary and apply our generalized quantum
PageRank to Erd6s—Rényi networks.

II. NEW QUANTUM PAGERANK ALGORITHMS

The aim of this work is to study the effect of introduc-
ing APR on Szegedy’s quantum walk applied to quantum
PageRank. Before describing this modification, let us review
the classical algorithm and its quantization, whose complete
details can be found in Ref. [15].

In the classical algorithm [, is defined as the vector whose
entries are the classical importance or PageRanks of every
page P.. The naive definition of the PageRank is the following:

o k)
I.(P) = Z outdeg(P;)’ W

P;eB;

where B; is the set of nodes linking to the node P; and
outdeg(P;) is the outdegree of the node P;. This formula
means that the importance of a node depends of the nodes that
link to it. The more important a linking node is, the greater is
its contribution to the PageRank. However, its contribution is
equally distributed between all the nodes it links to.

In order to compute the PageRank, we use a random walk
in a directed graph whose nodes represent the pages P; and the
associated connectivity N x N matrix H, defined as

1/outdeg(P;) if P; € B;,
Hy, = / g(Pj) if P; Bi )

0 otherwise,
where N is the number of nodes in the network. With this
matrix Eq. (1) can be expressed as I. = HI., so we can apply
a power method to obtain the eigenvector /.. However, for

the algorithm to work this matrix must be patched. First, it
needs all columns where all the elements are zeros (which
correspond to nodes whose outdegree is zero) to be substituted
with columns with all entries equal to 1/N. This results in
a (column-) stochastic matrix E, where all columns sum up
to one. Secondly, before performing the random walk, this
matrix E is mixed with another matrix 1 where all entries are
equal to 1, obtaining a primitive and irreducible matrix called
the Google matrix G:

G .=aF +

(-

N 1. 3)
The parameter « is called the damping parameter correspond-
ing to the previous mixing, and its value lies in [0,1]. It was
found by Brin and Page that the optimal value is @ = 0.85. In
our paper this value of the damping parameter is considered
unless otherwise stated. This mixing can be interpreted as
that the random walk is performed in the network of interest
driven by E with probability ¢, and with probability 1 — o the
walker makes a random hopping driven by the matrix 1. We
perform the random walk with the patched matrix G, so we
redefine the vector of PageRanks satisfying I. = GI... Thus, it
is the eigenvector with eigenvalue 1 of the matrix G. Thanks
to the mixing with the random hopping matrix, a random walk
performed with the matrix G over any probability distribution
will converge to this eigenvector. Then, we can use a power
method to obtain this eigenvector. We only have to take a
probability distribution and repeatedly apply the matrix G un-
til it converges. In this work, we choose the equally probability
distribution.

The quantization of this algorithm that we are going to deal
with is based on the quantum walk of Szegedy [16], using
as a transition matrix G. The Hilbert space is the span of
all the vectors representing the N x N directed edges of the
duplicated graph, i.e., H = span{|i){|j)2, i,j € N x N} =
CN ® CV, where the states with indexes 1 and 2 refer to the
nodes on two copies of the original graph.

We define the vectors,

N
W) = i)y ® Y v/Galk)s. @)

k=1

which are a superposition of the vectors representing the edges
outgoing from the ith vertex, whose coefficients are given by
the square root of the ith column of the matrix G. From these
vectors we define the projector operator onto the subspace
generated by them:

N
=) 1Y {vl. 5)
k=1

The quantum walk operator U is defined as
U :=82I-1), 6)

where S is the swap operator between the two quantum reg-
isters, i.e., S.: Ziqul li, j)(J, k|. Since the swap operator
changes the directedness of the graph, the operator U must be
applied an even number of times, so the actual time evolution
operator is chosen as W := U?.
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The initial state of the system is chosen to be

| X

= —— l 5 7
Vo) = < ; ) ™
and the final state is [ ¢(t)) = W'|y). The position of the
walker after the quantum evolution is described by the register
2 of the quantum state, so the projection onto the computa-
tional basis of the second register will give us the quantum
PageRanks for each node:

(P 1) = [l g D). ®)

This quantum PageRank depending on time is called the in-
stantaneous PageRank [15], and it fluctuates in time instead
of converging. For that reason, the time-averaged quantum
PageRank is defined as

1 T
IP) = 7 ) Iy(Pr1). )
t=0

This quantity converges for a sufficiently large value of
T [18]. In the following, when we refer to the quantum PageR-
ank we mean the time-averaged quantum PageRank unless we
mention explicitly the instantaneous PageRank.

The introduction of arbitrary phase rotations is done in
Grover’s algorithm by introducing complex phases in the
reflection operators. Then, they apply an arbitrary complex
phase to the perpendicular component of a vector, instead of
changing its sign. The part 2IT — 1 of the quantum walk oper-
ator corresponds to a reflection over the subspace generated by
the states |;), so a natural modification of Szegedy’s quantum
walk to introduce APR is to define a new unitary operator as

U©):=S(1 — 1M — 1), (10)

where 6 € (—m, 7].

As we have mentioned, the quantum PageRank needs to
preserve the directedness of the graph, so we need to apply
this operator an even number of times. Let us define the actual
unitary time evolution operator of the quantum PageRank
algorithm as

W (61, 6,) := U (62)U (01), QY

where in general 6; # 6,. Thus, now the quantum PageRanks
will be obtained in the same manner as before, but the final
state will be [y (r)) = W'(61, 62)|). This gives rise to a
new family of quantum PageRank algorithms with 6; and 6,
as two degrees of freedom.

If we choose 8; = 6, = m, the original quantum PageRank
algorithm is recovered, so we are going to name that particular
case the standard case. To study the effect of choosing differ-
ent phases, we are going to define three APR schemes with
only one degree of freedom 6:

(1) Equal-phases scheme: both phases are equal, i.e., 8, =
6, =06.

(2) Opposite-phases scheme: phases have opposite signs,
i.e., 91 = —92 =6.

(3) Alternate-phases scheme: the first phase is fixed to 7,
while the second phase is free, i.e., 6; = 7w, 6, = 6. We have
found that the results for 68; = 6, 6, = & are similar, so we do
not take into account that case in this work.

IR
s 7

FIG. 1. Small generic graph with seven nodes, where each node
represent a web page and the directed edges represent links between
web pages.

Since the operator IT is real, inverting the sign of the phase
6 would result in complex conjugating the operator W (6;, ;).
The initial statevector is also real, so the final result would just
be the complex conjugated. However, the quantum PageRanks
are real probabilities, so there would not be any effect. For that
reason, w.l.o.g. 0 € [0, ].

The matrix representing the unitary operator W (6, 6,) is
of size N> x N2, so to simulate it classically we need memory
resources that scale as O(N*), as opposed to the classical algo-
rithm, whose memory requirements scale as O(N?). Thus, the
naive classical simulation of the quantum PageRank is very
difficult when dealing with complex networks. This problem
can be overcome using the spectral decomposition of the
operator, avoiding the use of such a big matrix in order to
save memory resources. Such a method for simulating the
standard quantum PageRank is explained in Ref. [15], and in
Appendix A we show a generalized version that takes into
account the APR. The optimized method only needs to store
2N eigenvectors from the dynamical subspace of the unitary
operator, and since these vectors are N2 dimensional, the total
memory requirements scale as O(N 3.

Regarding the application of this algorithm in a quantum
computer, there have been advances in constructing efficient
circuits for Szegedy’s quantum walk for certain kinds of
graphs [35]. The proposed circuits consist of the construction
of a unitary operator that diagonalizes the reflection operator,
so that the reflection can be implemented with a multicon-
trolled m gate. Then, to take into account the APR in the
circuit, it would only be necessary to change the multicon-
trolled 7 gate to a multicontrolled P(6) gate, where P(0) is a
gate that adds a phase ¢ to the controlled qubit. This means
that given a circuit for implementing the standard quantum
PageRank algorithm, it can be easily modified to implement
the new algorithms with APR.

In the following section we will study the effect of the
phase 6 in a simple small generic graph, and we will choose
a concrete value of 6 for studying the algorithm on complex
graphs.

III. SMALL GENERIC GRAPH

Once we have defined the family of quantum PageRanks
that we are going to study, we want to see the effect of the free
parameter 6 in the three APR schemes described above. For
this task we are going to use a small generic graph with seven
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FIG. 2. Time-averaged quantum PageRanks for the alternate-
phases scheme with 6 = 7 /2, 7 /10, and 7 /100 for the small generic
graph with seven nodes. They are compared with the classical PageR-
anks and the standard quantum PageRanks.

nodes (see Fig. 1) that was previously introduced in Ref. [15]
to study the standard quantum PageRank.

In Ref. [15] it was shown that the classically most impor-
tant node was node 7, followed by node 5, whereas the less
important node was node 4, as can be seen in Fig. 2. Their
instantaneous PageRanks defined by Eq. (8) for the standard
quantum PageRank are reviewed in Fig. 3(a), where it can be
seen that the fluctuation changes the relative importance not
only between nodes 5 and 7, but also between these nodes
and the less important node 4. For that reason, the decision
was made to take the time-averaged quantum PageRank (9)
to rank these nodes. This quantity converges in time, as can
be seen in Fig. 3(b). To see the effect of the complex phase
6 on the instantaneous quantum PageRanks, we show the re-
sults for the alternate-phases scheme. However, similar results
are obtained for the other APR schemes, which are shown
in Appendix B. As three interesting cases we choose a de-
creasing 6 like & = 7 /2, 7 /10, and 7 /100. For 8 = 7 /2 the
instantaneous quantum PageRanks in Fig. 3(c) have a smaller
amplitude, allowing to properly distinguish the most impor-
tant nodes from the less important node, and it is also shown
that the fluctuation is slower. This oscillation gets slower and
slower as we reduce the phase 6, as can be seen for 6 = 7 /10
and 0 = 7 /100 in Figs. 3(d) and 3(e), respectively.

The time-averaged quantum PageRanks for the alternate-
phases scheme are shown in Fig. 2, together with the standard
quantum and the classical PageRanks. We observe that as the
phase decreases, the distribution gets closer to the classical
one, up to a limit. Indeed, from 6 = 7 /10 the ranking of
the nodes is the same as that in the classical case, restor-
ing the ranking violation showed by the standard quantum
PageRank [15]. However, the smaller 6 is, the slower is the
oscillation of the instantaneous PageRank, so we need more
time to average the dynamics properly. This results in a slower
convergence of the algorithm. In Figs. 3(f)-3(h) we show how
the averaged quantum PageRank converges more slowly as the
complex phase decreases. For this reason, we cannot decrease
the angle 6 arbitrarily.

We can use the classical fidelity defined as

N
fh,b) =" JLP)L(P) (12)
i=1

TABLE 1. Fidelity with the classical PageRank distribution for
the standard quantum algorithm and the three APR schemes with
60 =m /2, /10, and 7 /100, for the small generic graph.

Quantum case 0=m/2 6 =mn/10 6 =m/100
Standard 0.9546

Equal phases 0.9874 0.9886 0.9887
Opposite phases 0.9638 0.9622 0.9621
Alternate phases 0.9870 0.9940 0.9941

to measure the similarity between the quantum distributions
and the classical one. The results for the three values of 6
analyzed with the three APR schemes are summarized in
Table I. From this table and Figs. 2, 14, 16 (see Appendix B)
we can see that the major effect of the APR is achieved with
6 = m /2. Then we can use this value, allowing the algorithm
to converge relatively quickly, in the same manner as the
standard quantum algorithm.

Once we have chosen a concrete value of 6, we can com-
pare the results for the three APR schemes with & = 7 /2. The
averaged quantum PageRanks are shown in Fig. 4. We can see
that for these graphs the equal-phases and alternate-phases
cases gets qualitatively closer to the classical distribution,
whereas the opposite-phases case resembles more the stan-
dard quantum distribution. As we will see later, this behavior
depends on the type of graph, and will be different for com-
plex networks.

If we consider the rankings of nodes, which are summa-
rized in Table II, we observe that the classical ranking is
violated in all the quantum cases. The node that is shifted
in the ranking varies between APR schemes. However, it
is worth mentioning that all algorithms detect the two most
important nodes as well as the less important node properly.

Another important result of the introduction of the APR
is that the standard deviation of the fluctuation of the in-
stantaneous quantum PageRank is reduced. In Table III we
summarize the standard deviations for all nodes in the three
APR schemes with 6 = 7 /2. The most significant reduction
occurs in the alternate-phases case, although in general the
three schemes show a tendency to decrease the standard devia-
tion. This allows to better distinguish between different nodes,
improving the performance of the quantum algorithm.

TABLE II. Ranking of the nodes of the small generic graph for
the classical algorithm, the standard quantum algorithm, and the
three APR schemes with & = /2. The shifted node with respect to
the classical ranking is marked in red.

Classical Standard Equal phases Opposite phases Alternate phases

7 7 7 7 7
5 5 5 5 5
3 6 2 6 3
2 3 3 3 2
1 2 1 2 6
6 1 6 1 1
4 4 4 4 4
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FIG. 3. Instantaneous PageRanks of nodes 7, 5, and 4 of the small generic graph for (a) the standard quantum algorithm, (c) the alternate-
phases algorithm with 6 = /2, (d) the alternate-phases algorithm with 6 = /10, and (e) the alternate-phases algorithm with 6 = 7 /100.
Time-averaged quantum PageRanks for all nodes vs time for (b) the standard quantum algorithm, (f) the alternate-phases algorithm with
0 = 1 /2, (g) the alternate-phases algorithm with & = /10, and (h) the alternate-phases algorithm with & = 7 /100. It is observed that as 6
decreases, the quantum fluctuations get slower and the algorithm takes more time to converge.

IV. APPLICATION TO COMPLEX SCALE-FREE
GRAPHS NETWORKS

A. PageRank distributions
TABLE III. Standard deviations for the PageRanks of the nodes

of the small generic graph using the standard quantum algorithm and Now that we have seen the effe({t of the APR in a §m311
the three APR schemes with 6 = 77 /2. network, we want to study the behavior of the new algorithms

in complex networks, where the standard quantum algorithm
Node Standard Equal phases Opposite phases Alternate phases has shown a good performance [18]. In this context, we are
going to use scale-free networks, which not only are good

1 0.046 0.044 0.030 0.029 models of the World Wide Web [34] but also have a wide
2 0.071 0.071 0.033 0.044 range of applications such as in neuronal connections [36],
i 8823 8822 gggg 88‘;2 metabolomics [37,38], and finances [39]. These kinds of
: ’ : : graphs are characterized by a power law distribution in the
5 0.105 0.081 0.088 0.072 . . X
connectivity of nodes [40], and it has been observed that
6 0.070 0.034 0.064 0.034 the classical and t PaceRanks al h 1
7 0.102 0.078 0.084 0.068 e classical and quantum PageRanks also show a power law

behavior [18,41].
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FIG. 4. Time-averaged quantum PageRanks for the three APR
schemes with 8 = 7 /2 for the small generic graph with seven nodes.
They are compared with the classical PageRanks and the standard
quantum PageRanks.

Scale-free networks are formed by continuously adding
nodes, which are connected to the existing nodes with a
probability that is proportional to the in- and out-degree of
the existing nodes. Thus, it is expected that the first nodes
added to the model have the largest number of nodes linking
to them, which turns out in a higher ranking. These nodes will
constitute the main hubs of the network, where the term hub
refers to a node with a relatively large number of links [18].
In our work we implement the model described in Ref. [42] to
create random directed scale-free graphs using the PYTHON li-
brary NetworkX [43] with the default parameters. This model
considers networks with multiple edges and loops. In order
to be in concordance with the PageRank’s definition in (1),
we have eliminated duplicated edges, but there would not be
a major difference if we considered it. At the same time, no
major difference in the results has been found whether we
eliminate the loops or not, and we have decided to keep them.

In Ref. [18] it was observed that with the classical PageR-
ank the less important nodes are quite degenerate. However,
the standard quantum PageRank could break this degeneracy.
This meant that the quantum algorithm could unveil the struc-
ture of the graph in more detail. To study the effect of the
APR with this kind of graphs, we have constructed a ran-
dom scale-free graph with 32 nodes. The resulting network is
shown in Fig. 5(a), whereas the classical PageRank and all the
quantum PageRanks are shown in the histogram of Fig. 5(b).
We can see effectively that the classical distribution has a
degeneracy of the less important nodes, broken in the quan-
tum distribution. When we look at the new algorithms with
APR we find intriguing properties. Whereas the equal-phases
case shows a pattern similar to the standard quantum algo-
rithm, the opposite-phases and alternate-phases cases show
a partial restoring of the degeneration of the less important
nodes, resembling the classical distribution. This can be seen
explicitly, for example, in nodes 20-26, where the standard
and equal-phases algorithms find differences in importance
not present in the other distributions. Regarding the main
hubs, as expected, they correspond to the three first nodes
and are detected properly by all the algorithms. Moreover, the
classical relative importance of the three main hubs is kept by
all the quantum algorithms, although this may not be the case
for other graphs of the same class.

[ IClassical
e M standard
/ B Equal-Phases  10.35
| | Opposite-Phases [0.30
5 g [ Aternate-Phases 025 =
——1

v 1619

FIG. 5. (a) Scale-free network with 32 nodes. The inner (green)
nodes correspond to the main hubs. The middle (orange) nodes
correspond to secondary hubs. The outer (blue) nodes correspond
to residual nodes without links pointing to them. (b) PageRank
distributions of the scale-free network. The classical distribution is
compared with all the quantum distributions, using 6 = 7 /2 in the
three APR schemes. We see a partial restoration of the degeneracy of
the less important nodes for the opposite-phases and alternate-phases
schemes.

Let us look deeper at the structure of the graph. According
to the classical definition of PageRank in (1), those nodes
without links pointing to them would have null PageRank.
Due to the patches introduced to built the Google matrix, these
nodes have a small nonnull PageRank, which is the same for
all of them. These nodes are the outer (blue) nodes of Fig. 5(a).
In the histogram we can effectively see that all of them are
degenerate in the classical distribution. Node 14 is a secondary
hub with two nodes linking to it, and since one of the linking
nodes is a main hub (node 3), its PageRank is high enough
to distinguish it. However, nodes 5, 16, and 19, which have
a node linking to them, have a small classical PageRank that
is very similar to the less important nodes. This means that
the classical PageRank is not able to identify all secondary
hubs properly. In the case of the standard quantum algorithm,
it lifts the importance of these secondary hubs. Nevertheless,
it breaks the degeneracy of the less important nodes in such
a manner that some of these residual nodes overshadow the
secondary hubs. See, for example, how node 9, which should
be residual, has a greater importance than nodes 5 and 16.
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FIG. 6. Standard deviations for the quantum PageRanks of a
random scale-free graph with 32 nodes. & = /2 has been used for

the three APR schemes. The standard deviations decrease for the
opposite-phases and alternate-phases schemes.

The fact that nodes which are equal from the point of view
of (1) are different in the quantum PageRank can make us
think that the quantum algorithm is sensitive not only to the
nodes linking to a concrete node, but also to the nodes it
points to.

When we add the APR to the quantum algorithm, we do not
find a significant difference in the equal-phases case. How-
ever, in the opposite-phases and alternate-phases algorithms
the residuals nodes are again degenerate in majority. Note
that node 9 has a slightly greater importance in the alternate-
phases algorithm than the other residual nodes, but it is still
less important than the truly secondary hubs. This means that
in these APR schemes the quantum algorithms are practically
only sensitive to the in-degree distribution of the nodes, as
in the classical one. Moreover, these two schemes maintain
the quantum property of highlighting secondary hubs with
respect to the classical algorithm, as can be seen in nodes 5,
16, and 19. This makes these algorithms a valuable tool for
ranking nodes in a scale-free network, because they improve
the classical deficiencies while solving the problematic quan-
tum sensitivity to the out-degree distribution.
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Note that in the small generic graph the APR schemes
that more resembled the classical distribution were the
equal-phases and alternate-phases cases. However, here the
equal-phases scheme is more similar to the standard quantum
case, and the opposite-phases scheme is more similar to the
classical distribution. This suggests that the behavior of the
APR schemes depends on the kind of graph.

As happened with the small graph, we have found that
the standard deviation of the quantum PageRank can be de-
creased using certain APR schemes. In Fig. 6 the standard
deviations for all the nodes are shown for the four quan-
tum algorithms. While the equal-phases scheme seems to
have standard deviations similar to the standard case, the
opposite-phases and alternate-phases schemes show a clear
improvement, decreasing the standard deviations. Recall that
these last two schemes are those that have a partial restoration
of the degeneration. This highlights the valuable importance
of the opposite-phases and alternate-phases schemes as APR
alternatives to the standard quantum algorithm.

B. Power law distribution of the PageRanks

Since scale-free networks follow a power law distribution
in the connectivity of the nodes, they also have a similar
behavior in the PageRanks distribution [18,41]. Then, the
PageRank can be expressed as

[~iF, (13)
where i is the index of the node after sorting them by impor-
tance, and B is a constant coefficient. Taking logarithms to
both sides of (13), we obtain

log! ~ —Blogi. (14)

Then, plotting the sorted nodes in a logarithmic way, we
expect to see a linear behavior. This plot is shown in Fig. 7(a)
for the graph with 32 nodes used previously. We can see
that the standard and equal-phases quantum algorithms show
a smoother behavior due to the degeneracy breaking of the
less important nodes. The classical, opposite-phases, and
alternate-phases algorithms have a big degeneration in the
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FIG. 7. (a) Logarithmic plot of the PageRanks vs the node index (after sorting) for a random scale-free graph with 32 nodes. (b) Averaged
logarithmic plot of the PageRanks vs the node index (after sorting) for an ensemble of 50 random scale-free graphs with 32 nodes. The
classical distribution is compared with all the quantum distributions, using & = /2 in the three APR schemes. We see a partial restoration of
the degeneracy of the less important nodes for the opposite-phases and alternate-phases schemes.
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FIG. 8. Averaged logarithmic plot of the PageRanks vs the node index (after sorting) for an ensemble of 50 random scale-free graphs with
(a) 64 nodes and (b) 128 nodes. The classical distribution is compared with all the quantum distributions, using 6 = 7 /2 in the three APR
schemes. We see that the behavior is independent of the size of the network.

less important nodes, so the decay in PageRank before the
degenerate region is more abrupt. Moreover, these last two
APR schemes were able to highlight truly secondary hubs,
and the less important nodes have a higher PageRank than in
the classical distribution, so the distribution is also smoother
with respect to the classical one.

To ensure that this behavior is not particular for this con-
crete graph, but for the majority of the scale-free graphs with
32 nodes, we have averaged the sorted PageRanks from an
ensemble of 50 random scale-free graphs. The averaged re-
sults are shown in Fig. 7(b). This confirms that the discussion
above is valid for the scale-free graphs class with 32 nodes,
rather than for a concrete graph. Furthermore, we claim that
the above discussion holds for scale-free graphs with a higher
number of nodes. With this purpose, we show the averaged
logarithmic plot of the sorted nodes for scale-free graphs
with 64 and 128 nodes in Figs. 8(a) and 8(b), respectively,
obtaining similar results as with 32 nodes.

The coefficient 8 in (14) is a measurement of the smooth-
ness of the power law distribution. We can obtain the
coefficient B for each algorithm after a linear fitting of the
logarithmic plots. In Fig. 9 we show the power law distribution
for an ensemble of 50 graphs with 256 nodes, as well as the
linear fitting for each algorithm. In the classical algorithm
and in the opposite-phases and alternate-phases schemes the
fitting has been made only with the nondegenerate nodes,
since the degenerate region has a constant distribution. The
separation between both regions is shown with a vertical line.
We can see that the standard quantum algorithm as well as the
equal-phases case have a smoother behavior with respect to
the other algorithms, which is characterized by a smaller value
of 8. Moreover, the power law distribution extends to the less
important nodes since they are not degenerate. This can be
related with the previous discussion that these algorithms are
more sensitive to both the in- and out-degree distributions of
the nodes, thus better capturing the power law of the vertex
connectivity. On other hand, as expected, the opposite-phases
and alternate-phases distributions are smoother than the clas-
sical one, having a slightly smaller value of §. Finally, we
have also done the linear fitting for ensembles of 50 graphs
with 32, 64, and 128 nodes. The values of g8 for each case are

summarized in Table IV. In the four cases we see a similar
qualitative behavior of B between the different algorithms,
although the absolute values can change slightly with the
number of nodes.

V. STABILITY OF GENERALIZED QUANTUM
PAGERANKS

We have fixed the damping parameter « in (3) to o = 0.85
since that is the value that showed an optimal performance in
the classical algorithm. It is known that the classical algorithm
is very sensitive to the value of this parameter [44], and the
authors of Ref. [18] found that the standard quantum PageR-
ank algorithm is more stable for scale-free networks. The aim
of this section is to study how the introduction of the APR
schemes affects the stability of the quantum PageRank.

For this purpose, we start with the random scale-free graph
with 32 nodes of Fig. 5(a). We can measure the similarity
between two distributions obtained with different damping
parameter « using the fidelity defined in (12). We analyze
the behavior of this fidelity between the distribution obtained
for a value of o € [0.1, 0.99] and the usual distribution with
o = 0.85. These fidelities are represented in Fig. 10(a) for
the classical and all the quantum algorithms, with 6 = /2
in the APR schemes. We observe that the fidelity for the
classical algorithm decreases very quickly with the parameter
o, reaching a value under 0.70. However, as it was also shown

TABLE IV. Values of the coefficient  in the power law distri-
bution of the PageRank for all the algorithms using ensembles of
scale-free graphs with 32, 64, 128, and 256 nodes. § = 7 /2 has been
used in the three APR schemes.

Algorithm N=32 N=1064 N=128 N =256
Classical 1.53 1.55 1.38 1.27
Standard 1.04 1.02 0.90 0.83
Equal phases 1.06 1.02 0.90 0.83
Opposite phases 1.34 1.38 1.28 1.23
Alternate phases 1.35 1.35 1.25 1.20
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FIG. 9. (a) Averaged logarithmic plot of the PageRanks vs the node index (after sorting) for an ensemble of 50 random scale-free graphs
with 256 nodes. (b—f) Linear fitting to Eq. (14) for (b) the classical algorithm, (c) the standard quantum algorithm, (d) the equal-phases
algorithm, (e) the opposite-phases algorithm, and (f) the alternate-phases algorithm. In (b), (e), and (f), only the nondegenerate region has
been take into account. & = /2 has been used in the three APR schemes. We see that the standard quantum algorithm and the equal-phases

algorithm follow a smoother power law.

in Ref. [18], the standard quantum algorithm is by far more
stable, with a minimum fidelity of approximately 0.93.
Regarding the quantum algorithms with APR, we find that
they are more stable than the classical too. On one hand, both
the equal-phases and alternate-phases cases show a similar
behavior (the former slightly better), which is intermediate
between the standard quantum and the classical algorithms.
On the other hand, the opposite-phases algorithm seems to be
approximately as stable as the standard quantum algorithm.
We find this result surprising, since the equal-phases algo-
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rithm is the one that shows a distribution of PageRanks similar
to the standard quantum case, whereas the opposite-phases
algorithm restores the degeneracy of the nodes in a pattern
similar to the alternate-phases case. Then, the opposite-phases
algorithm seems to be very promising for scale-free graphs,
since it resembles the classical distribution of PageRanks
highlighting truly secondary hubs, and maintains the quantum
stability. To ensure that this intriguing behavior is not particu-
lar for this concrete network, but is a property of the scale-free
networks class, we have averaged the stability results for 50
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FIG. 10. (a) Fidelity of the PageRank distributions vs the damping parameter o, with respect to the distribution with « = 0.85, for a random
scale-free graph with 32 nodes. (b) Averaged fidelity of the PageRank distributions vs the damping parameter «, with respect to the distribution
with o = 0.85, for an ensemble of 50 random scale-free graphs with 32 nodes. The classical distribution is compared with all the quantum
distributions, using 6 = 7 /2 in the three APR schemes. We see that all the quantum algorithms are more stable than the classical one, with the

standard and the opposite-phases algorithms being the most stable.
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FIG. 11. Averaged fidelity of the PageRank distributions vs the damping parameter «, with respect to the distribution with o = 0.85,
for an ensemble of 50 random scale-free graphs with (a) 64 nodes and (b) 128 nodes. The classical distribution is compared with all the
quantum distributions, using & = 7 /2 in the three APR schemes. We see that the main behavior is independent of the network size, albeit the
opposite-phases scheme can outperform the standard quantum algorithm for 128 nodes in a certain range of «.

random scale-free graphs with 32 nodes in Fig. 10(b), finding
results that fit in the discussion above.

To ensure that this behavior holds for bigger scale-free net-
works, we have averaged the results for 50 scale-free graphs
with 64 nodes in Fig. 11(a) and with 128 nodes in Fig. 11(b).
We effectively find a similar behavior to before. It is worth
noting that for the networks with 128 nodes there is a region
where the opposite-phases algorithm outperforms the standard
quantum algorithm. Indeed, we have found for a lot of graphs
in this class that the curve with the opposite-phases scheme is
slightly above the curve of the standard quantum case for all
values of «.

Finally, we shall see what happens with the fidelity not only
for @ = 0.85, but for any pair («, '), witha, &’ € [0.1, 0.99].
We show the averaged results for the ensemble of graphs
with 128 nodes in Fig. 12 using heat maps. The standard
quantum algorithm shows a good stability region that extends
to all values of «, having a minimal fidelity of 0.92 in the
extreme pairs. As expected, the opposite-phases algorithm has
a similar pattern, but the fidelity drops slightly at the extremal
pairs of «, reaching a minimal fidelity of 0.87. The classical
algorithm is the least stable, with the fidelity quickly falling
when we move out of the central region. The minimal value of
fidelity reached is 0.70. Last, the equal-phases and alternate-
phases algorithms show an intermediate behavior between the
classical and the standard quantum algorithms. The minimal
values of fidelity are 0.80 and 0.73, respectively. These results
seem to reinforce the previous discussion about the stability
of the PageRank algorithm.

VI. CONCLUSIONS

We have reviewed the quantization of Google’s PageR-
ank algorithm in order to modify it, introducing arbitrary
phase rotations (APR) in the underlying Szegedy’s quantum
walk. This modification introduces two degrees of freedom
in the algorithm. However, we have defined three simple
schemes, called equal-phases, opposite-phases, and alternate-
phases schemes, with only one parameter 6. Furthermore, we
have shown a method to simulate these new algorithms in a
classical computer.

We have applied the new quantum algorithms with APR to
a small generic graph with seven nodes, comparing the results
with those described in the literature. We have found that
the decrease in the value of 6 reduces the standard deviation
of the instantaneous quantum PageRank, allowing to better
distinguish between nodes. However, the oscillation of the
instantaneous PageRank gets slower, so that the time-averaged
quantum PageRanks need more time to converge. This means
that we cannot reduce the phase 6 arbitrarily. We have chosen
a value of & = /2 as a value where the APR scheme has
a great effect on the time-averaged PageRank while the con-
vergence time is short. With this value we have seen that the
equal-phases and alternate-phases distributions more resem-
ble the classical one, whereas the opposite-phases distribution
resembles the standard quantum one.

We have studied the time-averaged quantum PageRank
with APR in scale-free complex networks since they are good
models of the World Wide Web. It was known that the stan-
dard quantum algorithm was able to highlight secondary hubs
of the networks, whose PageRank was suppressed in the clas-
sical distribution. Moreover, the quantum algorithm breaks the
degeneracy of the residual nodes, which should be all degener-
ate as they do not have nodes linking them. This could yield a
problem, as those residual nodes can overshadow the actual
secondary hubs. The opposite-phases and alternate-phases
schemes overcome this problem, restoring the degeneration
and making them residual. Thus, these two schemes have
a distribution that resembles the classical one but highlight-
ing truly secondary hubs. However, the equal-phases scheme
yields a distribution very similar to the standard quantum one.
Regarding the standard deviation of the quantum PageRanks,
we have found that the opposite-phases and alternate-phases
schemes can decrease it, but the equal-phases scheme does
not. Since the effect of the different schemes is different from
what was found in the small generic graph, we conclude
that the effect depends on the kind of network. Moreover, in
Appendix C we show some results for a particular instance
of the Erd6s-Rényi graph, observing a different behavior of
some APR schemes with respect to the scale-free graphs.

Scale-free networks follow a power law distribution in the
connectivity of the nodes. It was known that the classical and
quantum PageRanks also have a power law behavior, being
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FIG. 12. Averaged fidelity of the PageRank distributions for all pairs («, «’), for an ensemble of 50 random scale-free graphs with 128
nodes, using (a) the classical algorithm, (b) the standard quantum algorithm, (c) the equal-phases algorithm, (d) the opposite-phases algorithm,
and (e) the alternate-phases algorithm. & = 7 /2 has been used in the three APR schemes. We see that all the quantum algorithms are more
stable than the classical one, with the standard and the opposite-phases algorithms being the most stable.

smoother in the case of the quantum algorithm since it breaks
the degeneracy of the residual nodes. Comparing all of our al-
gorithms, we have found that the standard quantum algorithm
and that with the equal-phases scheme have the smoothest
distribution, and the power law extends to the residual nodes.
The fact that the residual nodes are not degenerate and also
follow a power law may indicate that these two quantum
algorithms are sensitive to the out-degree distribution of the
nodes, since they do not have any node linking to them, and
thus they inherit the power law of the connectivity charac-
teristic of scale-free networks. We have also seen that the
opposite-phases and alternate-phases schemes have a slightly
smoother distribution than the classical algorithm.

We have studied the stability of the PageRank algorithm
with respect to the damping parameter « in the scale-free
networks. In the literature it was shown that the classical
algorithm was quite unstable, whereas the quantum algorithm
improved in stability considerably. In the case of the APR
schemes, we expected that the equal-phases scheme was the
most stable, since its PageRank distribution is very similar
to that of the standard quantum algorithm. Surprisingly, the
opposite-phases scheme is the most stable, being comparable
to the standard quantum case. The equal-phases and alternate-
phases schemes have a similar intermediate stability, despite
the fact that their PageRank distributions are rather different.

Taking all the results together, the fact that the algorithm
with the opposite-phases scheme is able to highlight the sec-
ondary nodes that the classical cannot, keeps degenerate the
residual nodes, reduces the standard deviation of the time-
averaged PageRank, and also has a good stability similar to
the original quantum algorithm makes this new algorithm a
valuable tool as an alternative to both classical and standard
quantum PageRank for scale-free networks.

In the future, it would be interesting to study what hap-
pens in complex networks when we use phases other than
7 /2, other APR schemes, or even introduce more phases to
the algorithm. It would also be interesting to apply these
algorithms to other kinds of complex networks, such as hier-
archical networks. Finally, although we have used Szegedy’s
quantum walk with APR for the PageRank algorithm, it could
be of interest for other applications, such as quantum search,
optimization, or machine learning.
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APPENDIX A: SPECTRAL DECOMPOSITION
AND CLASSICAL SIMULATION OF SZEGEDY’S
QUANTUM WALK WITH APR

In Ref. [15] it is shown how to decompose the time evo-
lution operator of the quantum walk for the standard case.
Here we are going to show the general decomposition for
the operator, taking into account the complex phases. This
decomposition will allow to simulate the final statevector in
a faster manner and with less memory resources. This can
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FIG. 13. Instantaneous PageRanks of nodes 7, 5, and 4 of the small generic graph for the equal-phases algorithm with (a) 6 = 7 /2,
(b) 0 = /10, and (c) 8 = 7 /100. Time-averaged quantum PageRanks for all nodes vs time for the equal-phases algorithm with (d) 6 = 7 /2,
(e) 8 = /10, and (f) 8 = 7 /100. It is observed that as € decreases, the quantum fluctuations get slower and the algorithm takes more time to

converge.

be used for simulating not only the quantum PageRank, but
also any Szegedy quantum walk with APR that uses either the
operator U (6) or W (01, 6>).

We start by defining the N x N matrix D whose entries are

Dij :==/GijGjis (AD)

where there is no sum over repeated indexes. We also define
the operator A from the space of vertex CV to the space of
edges CN @ CV:

(A2)

N
walm

which satisfies that AAT = 1, ATA = 1, and D = ATSA.
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L 030 « g=mp
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0.051
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FIG. 14. Time-averaged quantum PageRanks for the equal-
phases scheme with 6 = /2, 7 /10, and 7 /100 for the small generic
graph with seven nodes. They are compared with the classical PageR-
anks and the standard quantum PageRanks.

The matrix D is symmetric, so it can be diagonalized,
yielding N eigenvectors |A) with eigenvalues A. With them,
we define the vectors |A) = A|A), which belong to the Hilbert
space where the quantum walk is performed. Now we are go-
ing to show that the vectors |A) and S|A) generate an invariant
subspace of U (0) for any 8. We apply U (9) to |A) and S|k)
and using the properties of the operators defined above,

U@)x >= —e?S|%), (A3)

U©)SIh) = [1 — e®1aS[i) — [%). (A4)
Then, the action over these vectors yields vectors in the
subspace formed by them, i.e., they generate an invariant sub-
space. Since these vectors are independent of 6, this subspace
is the same for every U(0), and we call it Zy. Moreover,
the product of two unitaries with different phases, i.e., the
operator W (6;, 6,) = U (6,)U (68,), also have this subspace as
invariant because it does not depend on the complex phases.

The span of the vectors |A) coincides with the span of the
vectors |1;), and since IT is the projector onto the subspace
formed by these vectors, the action of IT over any vector
orthogonal to them is null. The subspace orthogonal to Zy
is orthogonal to all |A) so the quantum walk operator in this
subspace acts just like U(0) = —S for any value of 6. This
means that all the eigenvalues are £1 in the orthogonal sub-
space. Since the subspace is independent of 6, it is the same
for the operator W (61, 6,), and all the eigenvalues are equal to
1. Thus, all the dynamics of the walk occurs in the subspace
Ty, and the problem reduces to finding the eigenvectors and
eigenvalues of W (6, 6,) in this subspace.

We start by solving the eigenvalue problem for the sim-
ple operator U(6). We make the following ansatz for the
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FIG. 15. Instantaneous PageRanks of nodes 7, 5, and 4 of the small generic graph for the opposite-phases algorithm with (a) 6 = 7 /2,
(b) 6 = /10, and (c) 6 = 7 /100. Time-averaged quantum PageRanks for all nodes vs time for the opposite-phases algorithm with (d) 8 =
w/2,(e) 8 = /10, and (f) 6 = 7 /100. It is observed that as 6 decreases, the quantum fluctuations get slower and the algorithm takes more

time to converge.
eigenvectors in the subspace Zy:

o) = |X) = nSI%), (AS)
where g is the eigenvalue of the eigenvector |ug), both de-

pending on the phase 8. We apply U (0) to it, and using (A3)
and (A4),

UO)lig) = polk) — (€ +[1 — e®ugh)SIA).  (A6)
By definition of eigenvector we also have
U©)pe) = pglr) — u2SIn). (A7)

0.354 —*— Classical
—e— Standard
L0307 a=mp
5 0.251 6=m/10
x 6 =n/100
© 0.20
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0.05
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FIG. 16. Time-averaged quantum PageRanks for the opposite-
phases scheme with 6 = /2, 7 /10, and 7 /100 for the small generic
graph with seven nodes. They are compared with the classical PageR-
anks and the standard quantum PageRanks.

Equaling both expressions, we obtain an equation for the
eigenvalues,

—py = —e” —[1—e"lugh, (A8)

whose solution is
[1— e £ /[1 — €222 + 4ei®
2

With this we can calculate the eigenvectors of U (6). However,
these depend on the complex phase 8. This means that they are
not the same for the operator W (6, 6,) unless 8; = 6,. In that
case, the eigenvectors would be the same, and the eigenvalues
would be 2.

In the general case for W (6, 6,) where 6, # 6,, let us
call v = v(6y, 6,) to the eigenvalues of the eigenvectors |v) =
[v(6y, 6>)) in the invariant dynamical subspace Z;;. We use the
following more general ansatz for the eigenvectors:

v) = |X) — aS|[%),

Mo (A9)

(A10)

where a is a parameter to determinate that depends on the two
phases as well on A. We apply the operator to this eigenvector,
and using (A3), (A4), and (A6),

W (61, 62)|v) = (¢ + Crar)[R)

— (@™ + [ + Ciar]CMS[N),  (AlD)

where C; = 1 — ¢%. Using the definition of eigenvector,
W6y, 62)|v) = v[A) — vaS|x). (A12)

We obtain a system of two equations with two variables, a
and v:

v =¢9 4+ Cian, (A13)

va = ae'® + [ + Clar]Coh. (A14)
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FIG. 17. (a) Erd6s-Rényi network with 32 nodes. (b) PageRank distributions of the Erdds-Rényi network. The classical distribution is
compared with all the quantum distributions, using & = 7 /2 in the three APR schemes.

After substituting the first equation into the second one, we
finally have a second-order equation for a. After solving that
equation, we can calculate the (at most) 2N eigenvalues and
eigenvectors of the operator W (6, 6,) in the dynamical sub-
space Zy.

Once the eigenvectors are obtained, we can project the
initial state onto them. Raising the eigenvalues to the power
of t, we can calculate the dynamical component of the final
state without the need of the N> x N? matrix. In the quantum
PageRank algorithm the initial state lies in the dynamical
subspace, so its component in the orthogonal subspace is null.
However, for a more general initial vector, once we project it
onto the dynamical subspace, we can calculate its orthogonal
component. Since W (0, 6,) = (—=8)* =1 in the orthogonal
subspace, this component does not change with the time evo-
lution and can just be added once the dynamical component is
calculated.

APPENDIX B: RESULTS FOR THE OTHER APR SCHEMES
OF THE GENERIC GRAPH WITH SEVEN NODES

In the main paper we have shown how the decrease of
the phase 6 affects the instantaneous PageRanks for the
alternate-phases algorithm. Here we show that similar results
are obtained for the other APR schemes. In Figs. 13 and 15
we show that the decrease of the phase 6 increases the period
of the quantum fluctuations for the equal phases and opposite
phases, respectively. This results in a longer time for the
time-averaged quantum PageRank to converge. Furthermore,
it is interesting that in the opposite-phases case the quantum
fluctuations get a modulated behavior. Finally, in Figs. 14
and 16 we show that the major effect due to the APR scheme
is achieved with 8 = 7 /2, so we can take this value as a
trade-off between having a short convergence time and a great
effect due to the APR.

APPENDIX C: ERDOS-RENYI GRAPHS

In order to benchmark the results found for scale-free
graphs, we can use Erd6s-Rényi random graphs [45,46]. The-
ses graphs are constructed by connecting a set of vertices
randomly by adding edges with a fixed probability. In our
work we are going to use a directed Erd6s-Rényi network with

32 nodes created using NetworkX [43], where we have chosen
the probability for adding edges as p = 0.1. The network is
shown in Fig. 17(a). The distributions of PageRanks for the
classical algorithm and all the quantum algorithms are shown
in the histogram of Fig. 17(b). In Ref. [18] it was found
that both the classical and the standard quantum PageRank
algorithms did not identify hubs in this class of networks. We
observe that this is also the case for all the quantum algorithms
with APR, since all the distributions are rather homogeneous.
It was also observed in Ref. [18] that the quantum algorithm
changed the ranking of nodes with respect to the classical
one, and we observe something similar. With regard to the
APR schemes, the equal-phases algorithm has a similar dis-
tribution to the standard quantum case, in the same manner
as with scale-free networks. However, the opposite-phases
and alternate-phases distributions are different from both the
classical and standard quantum ones. Thus, with Erd6s-Rényi
networks we do not obtain any quantum distribution that
resembles the classical one. This highlights the fact that the
effect of the APR schemes depends on the class of network
that we are dealing with.

If we consider the standard deviations of the quantum
PageRanks, however, we observe a similar effect to that with
scale-free networks. In Fig. 18 we can see that for the equal-

—— Standard

—— Equal-Phases
Opposite-Phases

—— Alternate-Phases

o o o o

o o o =)

P N @ N
\ ) A |

Standard Deviation

0.00

10 13 16 19 22 25 28 31
Node

1 4 7

FIG. 18. Standard deviations for the quantum PageRanks of a
random Erds-Rényi graph with 32 nodes. & = 7 /2 has been used
for the three APR schemes. The standard deviations decrease for the
opposite-phases and alternate-phases schemes.
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FIG. 19. (a) Fidelity of the PageRank distributions vs the damping parameter «, with respect to the distribution with « = 0.85, for a
random Erd6s-Rényi graph with 32 nodes. (b) Averaged fidelity of the PageRank distributions vs the damping parameter ¢, with respect to the
distribution with o = 0.85, for an ensemble of 50 random Erd&s-Rényi graphs with 32 nodes. The classical distribution is compared with all
the quantum distributions, using & = 7 /2 in the three APR schemes. We see that all the quantum algorithms are less stable than the classical
one. The alternate-phases and opposite-phases schemes improve the stability of the standard quantum algorithm.

phases case the standard deviations are similar to those of the
standard quantum algorithm, whereas for the opposite-phases
and alternate-phases cases the standard deviations are signifi-
cantly smaller.

Finally, we have analyzed the stability of the algorithm
with respect to the damping parameter « for this network. In
Fig. 19(a) we show the fidelity of the PageRank distributions
for o € [0.01, 0.99] with respect to the distribution with o =
0.85. We find that now the classical algorithm is more stable
than all the quantum algorithms. However, all algorithms are
actually quite stable, with the worst fidelity being around 0.95.
This behavior can be due to the quite homogeneous pattern

of the distributions. Since a decrease of alpha results in a
greater importance of the random hopping, and this random
hopping tends to give a homogeneous distribution, the de-
crease of the parameter o here has little effect. However, it
is interesting to note that the introduction of the APR im-
proves the stability of the standard quantum algorithm. To
ensure that these results are nor particular for this instance
of Erdds-Rényi graphs, we have averaged over an ensemble of
50 random graphs with 32 nodes, obtaining Fig. 19(b). We can
see that the opposite-phases and alternate-phases schemes im-
prove the standard quantum algorithm, although the effect is
small.
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