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Abstract

This thesis has been divided into two parts of different proportions. The first part is the main
work of the candidate. It deals with the optimization of chemical reactors, and the study of
the effectiveness, as it will explained in the next paragraphs. The second part is the result of
the visit of the candidate to Prof. Häim Brezis at the Israel Institute of Technology (Technion)
in Haifa, Israel. It deals with a particular question about optimal basis in L2 of relevance in
Image Proccesing, which was raised by Prof. Brezis.

The first part of the thesis, which deals with chemical reactors, has been divided into
four chapters. It studies well-established models which have direct applications in Chemical
Engineering, and the notion of “effectiveness of a chemical reactor”. One of the main
difficulties we faced is the fact that, due to the Chemical Engineering applications, we were
interested in dealing with root-type nonlinearities.

The first chapter focuses on modeling: obtaining a macroscopic (homogeneous) model
from a prescribed microscopic behaviour. This method is known as homogenization. The
idea is to consider periodically repeated particles of a fixed shape G0, at a distance ε , which
have been rescaled by a factor aε . This factor is usually of the form aε =C0εα , where α ≥ 1
and C0 is a positive constant. The aim is to study the different behaviours as ε → 0, when
the particles are no longer considered. It was known that depending of this factor there are
usually different behaviours as ε → 0. First, the case of big particles and small particles are
treated differently. The latter, which have been the main focus of this chapter, are divided
into subcritical, critical and supercritical holes. Roughly speaking, there is a critical value
α∗ such that the behaviours α = 1 (big particles), 1< α < α∗(subcritical particles), α = α∗

(critical particles) and α > α∗ (supercritical particles) are significantly different.
The main focus of the thesis has been in the cases α > 1, although some new results

for the case α = 1 have been obtained (see [DGCT15; DGCT16]). In the subcritical cases
we have significantly improved the regularity of the nonlinearities that are allowed, by
applying uniform approximation arguments (see [DGCPS17d]). We also proved that, when
the diffusion depends on the gradient (p-Laplacian type) with p greater than the spatial
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dimension, no critical scales exists (see [DGCPS17b]). Also, this thesis includes some
unpublished estimates which give a unified study of these cases, and provide some new
insights. The newest and most relevant results in this sections are the ones obtained for
the critical case. The state of the art in this field was dealing only with the case in which
the shape of the particles (or holes), G0, is a ball. In this direction we have shown that
the case of maximal monotone graphs behaves as expected, providing a common roof for
results with Neumann, Dirichlet and even Signorini boundary conditions (see [DGCPS17a;
DGCPS17c]). In this case we have shown that the “strange” nonlinear term appearing in the
homogeneous problem is always smooth, even when the microscopic problem is not. This
behaviour can be linked to Nanotechnological properties of some materials. Furthermore, we
have managed, for the time in the literature, to study the cases in which G0 is not a ball (see
[DGCSZ17]). In this last paper, the techniques of which are very new, gives some seemingly
unexpected results, that answer the intuition of the experts. The results mentioned above
were obtained by applying a modification of Tartar’s oscillating test function method. The
periodical unfolding method has also been applied by this candidate, in some unpublished
work, and this was acknowledged by the authors of [CD16].

The contributions presented in this chapter improve many different works in the literature,
and it has been presented in Table 1.1. The work in this chapter has been presented in the
international congress ECMI 2016 (Spain, 2016) and Nanomath 2016 (France, 2016). At
the time of presentation of this thesis a new paper dealing with the critical case and general
shape of the particles has been submitted for publication.

The second chapter deals with a priori estimates for the effectiveness factor of a chemical
reactor, which is a functional depending of the solution of the limit behaviour deduced in
Chapter 1. This problems comes motivated, for example, by the application to waste water
treatment tanks. Once we have obtained a homogeneous model, our aim is to decide which
reactors are of optimizer in some classes, and also provide bounds for the effectiveness.
In this direction, we have dealt with Steiner symmetrization, which allows us to compare
the solution of any product type domain Ω1 ×Ω2, which would represent the chemical
reactor, with a cylinder of circular basis, B×Ω2, where |B|= |Ω1|. In this direction we have
published two papers [DGC15b; DGC16] dealing with convex and concave kinetics, which
extends the pioneering paper [ATDL96]. The work in this chapter has been presented in
the following congresses: MathGeo 2013 (Spain), 10th AIMS Conference in Dynamical
Systems, Differential Equations and Applications (Spain, 2013), Nanomath 2014 (Spain,
2014), Mini-workshop in honour of Prof. G. Hetzer (USA, 2016).
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The third chapter deals with direct shape optimization techniques. This can be organized
into two sections: shape differentiation and convex optimization. Shape differentiation
is a technique that, given a initial shape Ω0 characterizes the infinitesimal change of the
solution of our homogeneous problem when we consider deformations (I +θ)(Ω0). In this
directions two papers have been published. First, we studied the Fréchet differentiable case,
that requires the kinetic to be twice differentiable (see [DGC15a]). This was a first step to
the problem in which we were interested, the case of non-smooth kinetic. In this setting, the
solution may even develop a dead core (see [GC17]). Another of the techniques of direct
optimization we applied was the convex optimization of the domain G0. If we only allow the
admissible set of shapes G0 to be convex sets, then we have some compactness results, that
guaranty that there exist optimal sets in this family (see [DGCT16; DGCT15]). The work
in this chapter has been presented in the 11th AIMS Conference on Dynamical Systems,
Differential Equations and Applications (USA, 2017).

The fourth chapter deals with linear elliptic equations with a potential, −∆u+Vu = f ,
where the potential, V , “blows up” near the boundary. This kind of equations appear as a
result of the shape differentiation process, in the non-smooth case. The problems with a
transport term, ∇u ·b, −∆u+∇u ·b+Vu is studied, in collaboration with Profs. Jean-Michel
Rakotoson and Roger Temam. Different results of existence, uniqueness and regularity of
solutions of this equations are presented (see [DGCRT17]). One of this results is the fact
that, shall the blow up of the potential V be fast enough, the condition Vu ∈ L1 can act as
a boundary condition for u. Some unpublished results are included in this chapter, which
improve some of the results of [DGCRT17], in a limit case, by applying an extension of the
argument in [DGCRT17] suggested recently by Prof. Brezis to this candidate, and which
have not been published. The work in this chapter has been presented in the 11th AIMS
Conference on Dynamical Systems, Differential Equations and Applications (USA, 2017).
At the time of submission of this thesis a new paper improving the results of [DGCRT17] is
under development.

The fifth chapter develops the second part of the thesis, and includes results obtained
during the 2017 visit to Prof. Brezis (see [BGC17]). They improve some previous results by
Brezis in collaboration with the group of Prof. Ron Kimmel. We showed that the basis of
eigenvalues of −∆ with Dirichlet boundary conditions is the unique basis to approximate
functions in H1

0 in L2 in an optimal way.
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Besides the contributions in this thesis, this candidate has also developed other projects.
The author published, jointly with Prof. Brú and Nuño, a paper [BGCN17] which involved
the simulation of the fractional Laplacian in bounded domains, and their study by new
statistical physics techniques. Besides this work, the candidate studied the modeling of
Lithium-ion batteries, and is about to publish work on the well-posedness of the Newman
model. This was presented in the 11th AIMS conference on Dynamical Systems (USA,
2017).



Resumen en castellano

Esta tesis se ha divido en dos partes de tamaños desiguales. La primera parte es la compo-
nente central del trabajo del candidato. Se encarga de la optimización de reactores químicos
de lecho fijo, y el estudio de su efectividad, como se expondrá en los siguientes párrafos. La
segunda parte es el resultado de la visita del candidato al Prof. Häim Brezis en el Instituto
Tecnológico de Israel (Technion) en Haifa, Israel. Se entra en una pregunta concreta sobre
bases óptimas en L2, que es de importancia en Tratamiento de Imágenes, y que fue formulado
por el Prof. Brezis.

La primera parte de la tesis, que estudio reactores químicos, se ha dividido en 4 capítulos.
Estudia un modelo establecido que tiene aplicaciones directas en Ingeniería Química, y la
noción de efectividad. Una de las mayores dificultades con la que nos enfrentamos es el
hecho que, por las aplicaciones en Ingeniería Química, estamos interesados en reacciones de
orden menor que uni (de tipo raíz).

El primer capítulo se centra en la modelización: obtener un modelo macroscópico (ho-
mogéneo) a partir de un comportamiento microscópico prescrito. A este método se le conoce
como homogeneización. La idea es considerar partículas periódicamente repetidas, de forma
fija G0, a una distancia ε , y que han sido reescaladas por un factor aε . La expresión habitual
de este factor es aε = C0εα , donde α ≥ 1 y C0 es una constante positiva. El objetivo es
estudiar los diferentes comportamientos cuando ε → 0, y ya no se consideran las partículas.
Primero, los casos de partículas grandes y partículas pequeños se tratan de formas distintas.
Este segundo, que ha sido el central en esta tesis, se divide en subcrítico, crítico y supercrítico.
En términos generales, existe un valor α∗ tal que los comportamientos de los casos α = 1
(partículas grandes), 1 < α < α∗ (partículas subcríticos), α = α∗ (partículas críticos) y
α > α∗ (partículas supercríticos) son significativamente distintos. El objetivo central de la
tesis han sido los casos α > 1, aunque se han obtenido también algunos resultados para el
caso α = 1 (ver [DGCT15; DGCT16]). En el caso subcrítico hemos mejorado significati-
vamente la regularidad de las no-linealidades permitidas, por argumentos de aproximación
uniforme (ver [DGCPS17d]). También hemos demostrado que, cuando la difusión depende
del gradiente (operadores de tipo p-Laplaciano) con p mayor que la dimensión espacial,
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entonces no existen escalas críticas (ver [DGCPS17b]). Además, esta tesis incluye esti-
maciones no publicadas que dan un estudio unificado de estos casos, e introducen nuevas
perspectivas. Los resultados más nuevos y más relevantes en estas secciones son los que
se refieren al caso crítico. El estado del arte en este campo era lidiar sólo con el caso en
que la forma de la partícula es una esfera. En esta dirección hemos mostrado que los grafos
maximales monótonos se comporta como era de esperar, dando un techo común a los resulta-
dos con condiciones de frontera Neumann, Dirichlet e incluso Signorini (ver [DGCPS17a;
DGCPS17c]). En este caso hemos demostrado que el término “extraño” en el problema
homogéneo es siempre regular, incluso cuando la no-linealidad del problema microscópico
no lo es. Este comportamiento se puede enlazar con propiedes Nanotecnológicas de algunos
materiales. También hemos conseguido estudiar el caso en las partículas no son esferas, si no
que tienen una forma más general (ver [DGCSZ17]). En este último artículo, que emplea
las técnicas muy nuevas, se dan algunos resultados de aspecto aparentemente inesperado,
pero que satisfacen la intuición de los expertos. Todo los resultados presentados en el texto
precedente son obtenidos utilizando modificaciones del método de funciones test oscilantes
de Tartar. El método de desdoble periódico (periodical unfolding en inglés) también ha sido
usado por el candidato, en un trabajo sin publicar, y ha sido reconocido en los agradecimien-
tos de [CD16]. Las contribuciones de este capítulo mejoran muchos trabajos previous, como
se ha presentado en la Tabla 1.1. El trabajo de este capítulo se ha presentado en los congresos
internacionales ECMI 2016 (Spain) y Nanomath 2016 (France).

El segundo capítulo trata sobre estimaciones a priori del factor de efectividad de las
reacciones químicas: un funcional que depende de la solución del problema límite obtenido
en el Capítulo 1. Este problema viene motivado, por ejemplo, por la aplicación en reactores
de tratamiento de aguas residuales. Una vez que se ha obtenido el problema homogeneizado,
nuestro objetivo es decidir qué reactores son optimizadores de este funcional, y dar cotas para
la efectividad. En este sentido, hemos trabajado con la optimización de Steiner, que permite
comparar reactores de la forma Ω1 ×Ω2 con reactores cilíndricos de la forma B×Ω2, donde
|B| = |Ω1|. En esta dirección se han publicado dos trabajos, [DGC15b; DGC16] lidiando
con no-linealidades convexas y cóncavas. El trabajo de este capítulo se ha presentado en
los siguientes congresos: MathGeo 2013 (España), 10th AIMS Conference in Dynamical
Systems, Differential Equations and Applications (España, 2013), Nanomath 2014 (España),
Mini-workshop in honour of Prof. G. Hetzer (USA, 2016).

El tercer capítulo trata con técnicas de optimización de formas directas. Se ha organizado
en dos secciones: diferenciación de formas y optimización convexa. La diferenciación de
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formas es una técnica que, dado un una forma inicial Ω0, caracteriza el cambio infinitesimal
de la solución de nuestro problema homogeneizado cuando se considera una deformación
(I +θ)(Ω0). En esta dirección se han publicado dos artículos. Primero hemos estudiado la
diferenciabilidad en el sentido de Fréchet, que requiere que la cinética sea dos veces derivable
(ver [DGC15a]). Éste fue un primer paso hacia el problema en que estábamos interesados, el
caso no-suave. En este contexto, la solución puede desarrollar un dead core (ver [GC17]).
Otra de las técnicas que hemos usado es la optimización convexa directa del dominio G0. Si
solo consideramos el conjunto admisible de formas G0 dentro de la familia convexa, entonces
podemos obtener la existencia de extremos (ver [DGCT16; DGCT15]). Este trabajo ha sido
presentado en el 11th AIMS Conference in Dynamical Systems, Differential Equations and
Applications (USA, 2017).

El cuarto capítulo trata con ecuaciones elípticas con un potencial, −∆u+Vu = f , donde
el potencial, V , “explota” cerca del borde. Este tipo de ecuaciones aparecen como resultado
del proceso de diferenciación de formas del Capítulo 3, en el caso en que aparece un dead
core. El problema con un término de transporte, b⃗ ·∇u, fue también estudiado. Se obtuvieron
diferentes resultados de existencia, regularidad y unicidad de soluciones (ver [DGCRT17]).
Uno de los resultados más sorprendentes es que si V explota suficientemente rápido, entonces
la condición Vu ∈ L1, que se suponía habitualmente como púramente técnica, se convierte en
una condición de contorno Dirichlet homogénea. Los resultados expuestos en esta tesis se
han presentado en el 11th AIMS Conference in Dynamical Systems, Differential Equations
and Applications (USA, 2016). Se incluyen en esta tesis algunos resultados no publicados,
sugeridos por Häim Brezis, que mejoran a los publicados en algunos casos. En el momento
del déposito se está trabajando en un borrador que mejora, aún más, estos resultados.

El quinto capítulo desarrolla la segunda parte de la tesis, e incluye resultados obtenidos
durante la visita en 2017 al Prof. Häim Brezis (ver [BGC17]). Se mejoran algunos resultados
previos con el grupo de Ron Kimmel, sobre la existencia y unicidad de bases óptimas para
representación de funciones H1 en L2.

Además de las contribuciones incluídas en esta tesis, el candidato ha desarrollado otros
proyectos. El candidato ha publicado, conjuntamente con Antonio Brú y Juan Carlos Nuño,
un artículo [BGCN17] que incluye la simulación numérica de un laplaciano fraccionario en
un dominio acotado, y su estudio mediante técnicas de física estadística. Además de este
trabajo se ha estudiado la modelización de baterías de ion-Litio, y se va a publicar un trabajo
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sobre la buena formulación del modelo de Newman (problema abierto desde 1971). Este
último trabajo se presentó en el congreso 11th de la AIMS (USA, 2016).
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C n(Ω) where n ∈ N∪ {∞}. Space of n times differentiable functions with continuous
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Part I

Optimization of chemical reactors





Introduction

Rutherford Aris and the definition of effectiveness.

The monographs of R. Aris [Ari75] and Aris and Strieder [AS73] model the behaviour of
chemical reactions in terms of partial differential equations. Their works are amongst the
first to consider the microscopic behaviour of the system, and derive from it the macroscopic
properties.

In their book, Aris and Strieder model a Chemical Reactor by an open set Ω. In it, they
model the concentration of a Chemical Reactant by a spatial function c = c(x). For the
constituent equation they introduce an spatial diffusion term div(De∇c) and a reaction term
r(c) (the amount of reaction that is produced as a function of the amount of reactant). Their
spatial model results:

div(De∇c) = r(c) in Ω.

This equation alone is ill-posed, since there are many solutions of this problem. To fix a
single one another equation needs to be considered. The author choose to allow a flux in the
boundary of ∂Ω. The full model results:





div(De∇c) = r(c) in Ω,

De⃗n ·∇c = kc(c f − c), on ∂Ω,
(1)

where kc is a permitivity constant of the boundary and c f is a maximum concentration of the
reactant admitted by the solvent.

One of the novelties in the mentioned book is the they also propose a model, which we
will call non homogeneous, in which the reactor contains many microscopic particles, which
they model by an open domain G of Rn (usually n = 2 or 3). In this model that the reaction
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is taking place on the boundary of the particles. The following model comes up:




div(De∇c) = 0, Ω̂

De⃗n ·∇c = kc(c f − c), ∂Ω

De⃗n ·∇c = r̂(c), ∂G

(2)

where Ω̂ = Ω\G and G represents pellets and r̂ is a reaction rate, possibly different from r.
They represent the situation as Figure 1.

12 

de 

o 

Introduction and Preliminaries 

B* 

o 
o 

Fig. 1.5.1. Random spheres of radius a. The void region r, reaction zone j/" -.y, the 
interface ar, and the unit normal vector n to a'f· are shown. The minimum 
distance from the point x in the void to the reactive interface is e(x). The regions 
about the point x of radius c + a from which spheres are excluded, and the 
adjacent shell of thickness dE in which at least one sphere center is found are 
also indicated. 

the void 'f" with a nearest point on the interface a'f" at a distance be-
tween e and e + de, is the product of the probability Pv of finding no 
sphere center within a spherical volume 4n(e + a)3/3 multiplied by the 
probability P s of at least one sphere center within the shell of radii 
(e + a) to (e + a) + de 

P(e) de = PsPv 

or from (1.3.7) 

P(e) de = 4n(e + af n de exp { - 4n(e + a)3 n/3} 

where n is the density of sphere centers. 

1.6. Variational Principles Applied to the Diffusion Equation 

(1.5.2) 

(1.5.3) 

We shall not attempt to set up a grand variational formulation from 
which all our cases can be deduced by various specializations, preferring 
to sketch the derivation of the equations rather lightly in the places 
where they arise, but there is a formulation of complementary variational 

Fig. 1 Domain as portrayed in [AS73]. In a small change of notation we have considered Ω
instead of V and Ω̂ instead of V̂ .

Aris and Strieder define the effectiveness factor of the chemical reactor as

E =
1

|Ω|r(c f )

ˆ
Ω

r(c)

for the homogeneous problem, where c is the solution of (1) and

Ê =
1

|∂ Ω̂|r̂(c f )

ˆ
∂ Ω̂

r̂(c)

for the non-homogeneous model, where c is the solution of (2).
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Another novelty in the work of Aris and Strieder is that, albeit by naive methods, they
show which model of type (1) we must consider once we if we consider a constituent equation
of form (2) (and viceversa).

This effectiveness factor is a very relevant quantity. There is a lot of mathematical
literature dedicated to it (see, e.g., [BSS84; DS95]). It will be the main quantity under
investigation in Chapters 2 and 3, through very different techniques.

Amongst other things, they were interested in the behaviour of the effectiveness in the
different domains and, in particular, in choosing domains of optimal effectiveness.

Fig. 2 Image showing some (probably estimated) curves of the effectiveness factor E as a
function of the shape parameters of the cylinder. Extract from [AS73]

Roughly speaking, the aim of Chapter 1 is to properly define the set Ω̂, to study in which
sense we can pass from the equation over Ω̂ to the equation over Ω and in which sense we
can pass from Ê to E .

A comment on the notation

The first part of this thesis applies techniques for different problems from different fields of
Applied Mathematics, which involve different communities. Whenever possible, we have
tried to be consistent along the paper, but in some cases this would have made reading more
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inconvenient for some of the specialists. In particular the use of σ ,g and β changes between
Chapter 1 and the rest.

In Chapter 1 we define wε as the solution of (1.9), and the uε = 1−wε as the solution of
(1.12). Then, under some assumptions, we show that ũε to u, which is the solution of (1.180).
This will be the relevant function studied in chapter 2 and onwards. In this setting we define
the effectiveness as (1.14) and (1.15). Then, in Chapter 2 and onwards, w is the solution of
(2.1), whereas u = 1−w is the solution of (2.2), and the effectiveness is defined as (2.3) and
(2.4).



Chapter 1

Deriving macroscopic equations from
microscopic behaviour: Homogenization

1.1 Formulation of the microscopic problem

Let us present the precise mathematical formulation of the problem we will be interested in,
and that is directly motivated by the problem proposed by Aris.

1.1.1 Open domain with particles

Fig. 1.1 The domain Ωε .

Let us set up the geometrical framework. Let Ω ⊂ Rn be an open set (bounded and regular,
for simplicity), and let the shape of a generic inclusion (in our setting a particle, but it applies
also to the case of a hole) be represented by a domain G0 be an open set homeomorphic to
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a ball such that G0 ⊂ Y = (0,1)n (i.e., there exists a invertible continuous map Ψ : U →V
between open sets of Rn, U and V , where G0 ⊂U and V contains the open ball of radius one,
Ψ(G0) is the ball and Ψ−1 is continuous).

Considering the parameter ε > 0 the distance between the equispaced particles, we will
typically be set in the following geometry

Gε
i = εi+aεG, i ∈ Zn (1.1)

ϒε =
{

i ∈ Zn : Gε
i ⊂ Ω

}
, (1.2)

Gε =
⋃

i∈ϒε

Gε
i , (1.3)

Sε =
⋃

i∈ϒε

∂Gε
i , (1.4)

Ωε = Ω\Gε . (1.5)

We will sometimes consider that
aε =C0εα . (1.6)

The parameter α ≥ 1 indicates the size of the particle relative to the repetition. We will also
use the notion of periodicity box

Y ε
i = εi+ εY. (1.7)

G0

Y =
[
−1

2 ,
1
2

]n

εαG0

εY

Fig. 1.2 The reference cell Y and the scalings by ε and εα , for α > 1. Notice that, for α > 1,
εαG0 (for a general particle shaped as G0) becomes smaller relative to εY , which scales as
the repetition. In most of our cases G0 will be a ball B1(0).
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1.1.2 Governing equation

We will consider that there is no diffusion inside Gε , but it can be seen as a catalyst agent,
producing a reaction on its boundary





−div(Aε∇wε) = f̂ ε Ωε ,

Aε∇wε ·n+β (ε)σ̂(wε) = ĝε Sε ,

wε = 1 ∂Ω.

(1.8)

Here σ̂ is the reaction kinetics, typically a nondecreasing function. Notice that ∂Ωε =

∂Ω∪Sε . The parameter β (ε) modulates the intensity of the reaction, and its value shall be
precised shortly.

We will also deal, in this problem, with nonlinear diffusion




−∆pwε = f̂ ε Ωε ,

∂wε
∂νp

+β (ε)σ̂(wε) = ĝε Sε ,

wε = 1 ∂Ω,

(1.9)

where p> 1 and

−∆pw = div(|∇w|p−2∇w)

∂w
∂νp

= |∇w|p−2∇w ·n.

The quasilinear diffusion operator −∆p represents the cases in which the diffusion coefficient
depends of |∇w| (see [Día85] and the references therein). Notice that for p = 2 we get
the usual, linear, Laplacian operator. However, for p> 2 the operator becomes degenerate
(the diffusion coefficient vanishes when |∇w|= 0) and for 1< p< 2 the operator becomes
singular (the diffusion coefficient is unbounded as |∇w| → 0).

A change in variable Boundary condition w = 1 is not nice in terms of functional spaces.
We will thus choose the change in variable

uε = 1−wε . (1.10)
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With the change of variable in mind we can rewrite (1.8) as





−div(Aε∇uε) = f ε Ωε ,

Aε∇uε ·n+β (ε)σ(uε) = gε Sε ,

uε = 0 ∂Ω,

(1.11)

and (1.9) as 



−∆puε = f ε Ωε ,

∂uε
∂νp

+β (ε)σ(uε) = gε Sε ,

uε = 0 ∂Ω,

(1.12)

where

σ(u) = σ̂(1)− σ̂(1−u), f ε = σ̂(1)− f̂ ε , gε = σ̂(1)− ĝε . (1.13)

1.1.3 Effectiveness and ineffectiveness

As motivated by the definition of Aris we define the effectiveness of the non-homogeneous
problem as

Eε(Ω,G0) =
1
|Sε |

ˆ
Sε

σ̂(wε). (1.14)

Since in this chapter we will deal with uε rather than wε let us define the ineffectiveness
functional

ηε(Ω,G0) =
1
|Sε |

ˆ
Sε

σ(uε). (1.15)

We have that
ηε(Ω,G0) = σ(1)−Eε(Ω,G0). (1.16)

Hence, in terms of convergence and optimization, analyzing one of the functionals is exactly
the same as analyzing the other one.

1.1.4 Maximal monotone operators. A common roof

In some contexts, it is desirable to substitute the condition

∂uε
∂νp

+β (ε)σ(uε) = 0 on Sε (1.17)
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by the Dirichlet boundary condition

uε = 0 on Sε , (1.18)

or even the case of Signorini type boundary condition (also known as boundary obstacle
problem) 




uε ≥ 0 Sε ,

∂νpuε +β (ε)σ0(uε)≥ 0 Sε ,

uε
(
∂νpuε +β (ε)σ0(uε)

)
= 0 Sε .

(1.19)

There is a unified presentation of this theory, using (1.9). The idea is to use maximal monotone
operators (see [Bré73] or [Bro67])

Definition 1.1. Let X be a Banach space and σ : X → P(X ′). We say that σ is a monotone
operator if, for all x, x̂ ∈ X ,

⟨x− x̂,ξ − ξ̂ ⟩X×X ′ ≥ 0 ∀ξ ∈ σ(x), ξ̂ ∈ σ(x̂). (1.20)

We define the domain of σ as

D(σ) = {x ∈ X : σ(x) ̸= /0}. (1.21)

Here /0 is the empty set. We say that σ is a maximal monotone operator if there is no other
monotone operator σ̃ such that D(σ)⊂ D(σ̃) and σ(x)⊂ σ̃(x) for all x ∈ X .

It can be shown that any maximal monotone operator in R is given by a monotone
functions, the jumps of which are filled by a vertical segment. It is immediate to prove the
following:

Proposition 1.1. Let σ ∈ C (R) be nondecreasing. Then σ is a maximal monotone operator.

Furthermore

Proposition 1.2. Let σ : R → R be a nondecreasing function, and let (xn)n be its set of
discontinuities. Then, the function

σ̃(x) =





σ(x) x ∈ R\{xn : n ∈ N},
[σ(x−n ),σ(x+n )] x = xn for some n ∈ N,

(1.22)

is a maximal monotone operator.
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Boundary condition (1.18) can be written in terms of maximal monotone operators as
(1.17) with

σ(x) =





/0 x< 0,

R x = 0,

/0 x> 0.

(1.23)

One the other hand, (1.19) can be written as (1.17) with

σ(x) =





/0 x< 0,

(−∞,0] x = 0,

σ0(x) x> 0.

(1.24)

Of course, the use of maximal monotone operators escapes the usual framework of classical
solutions of PDEs. We will present the definition of weak solutions for this setting in Sec-
tion 1.4.1.

Another advantage of maximal monotone operators is the simplicity to define inverses.
For σ : R→ P(R) we define its inverse in the sense of maximal monotone operators as the
map σ−1 : R→ P(R) given by

σ−1(s) = {x ∈ R : s ∈ σ(x)}. (1.25)

It is a trivial exercise that σ−1 is also a maximal monotone operator.

1.2 An introduction to homogenization

The main idea of this theory is to consider an inhomogeneous setting -be it due to some
oscillating term in the equation or because of the domain itself- and decide which homoge-
neous equation can approximate the result in a “mean field approach” in order to “remove”
these obstacles. Usually, studying the heterogeneous medium is not feasable, whereas the
homogeneous equation can be easily undestood.

In order to fix notations, let us define some Sobolev spaces. For Ω a smooth set we define
the space

W 1,p
loc (Ω) = { f : Ω → R : for all K ⊂ Ω compact , f ∈W 1,p(K)}. (1.26)
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For Γ ⊂ ∂Ω we define

W 1,p(Ω,Γ) = { f ∈ C ∞(Ω) : f = 0 on Γ}W 1,p

. (1.27)

Some particular cases deserve their own notation:

W 1,p
0 (Ω) =W 1,p(Ω,∂Ω),

H1(Ω,Γ) =W 1,2(Ω,Γ),

H1
0 (Ω) =W 1,2

0 (Ω).

Finally, for a cube Q, we define

W 1,p
per (Q) = { f ∈W 1,p(Q) : f can be extended by periodicity to W 1,p

loc (R
n)}. (1.28)

The theory of homogenezation is very broad and has been adapted to deal with many
problem, from fluid mechanics to Lithium-ion batteries (see, e.g., [BC15]). Many books can
be found which aim to give an introduction to this extensive and technical field (see, e.g.,
[BLP78; SP80; CD99; Tar10]).

In this Chapter we aim to give a comprehensive study of the problem in which the domain
Ω contains some inclusions (or holes). This kind of problem, for which the literature is quite
extensive, is known sometimes as the problem of “open domain with holes”.

1.2.1 Some first results

To illustrate, in a very simple example, how some of the ideas work, let us go back to one the
earliest results in homogenization. The idea behind the following example is a G-convergence
argument (owed to Spagnolo [Spa68]).

Example 1.1. Let a : R → R be a [0,1]-periodic function such that 0 < α ≤ a ≤ β , f ∈
L2(0,1) and aε(x) = a

( x
ε
)

. We consider the one dimensional problem




− d

dx

(
aε duε

dx

)
= f x ∈ (0,1),

uε(0) = uε(1) = 0.
(1.29)

By multiplying by uε and integrating, we have that the sequence uε is bounded in H1
0 (0,1),

and therefore
uε ⇀ u0



14 Effectiveness and Homogenization

in H1
0 (0,1) and, by the same argument

aε∇uε = ξε ⇀ ξ0

is convergent in H1(0,1) (since f ∈ L2) and, in the limit




− d

dx

(
ξ 0)= f x ∈ (0,1),

u(0) = u(1) = 0.
(1.30)

holds. It is well-known that, for h ∈ L2(0,1), h
( ·

ε
)
⇀
´ 1

0 h in L2(0,1). Hence, up to a
subsequence,

∇uε =
1
aε ξ ε ⇀

ˆ 1

0

1
a(x)

dx ·ξ 0 (1.31)

in L2(0,1). Hence ξ 0 = 1´ 1
0

1
a(x)dx

du0
dx and thus u0 satisfies





− d
dx


 1´ 1

0
1

a(x)dx

du
dx


= f x ∈ (0,1),

u(0) = u(1) = 0.

(1.32)

The term a0 =
1´ 1

0
1

a(x)dx
is sometimes known as effective diffussion coefficient. This concludes

this example.

One of the many works in homogenization in dimension higher than one is due to J.L
Lions [Lio76], which contains a compendium of different references (e.g. [Bab76]). The
focus of this work is the problem of oscillating coefficients

Aεuε = f , Aεv = div
(

A
( x

ε

)
∇v
)

(1.33)

where A = (ai j) is a matrix, ai j = a ji ∈ L∞([0,1]n) and are extended by periodicity. This
models the behaviour of a periodical two phase composite (a material formed by the inclusion
of two materials with different properties). This work is, no doubt, based on previous results,
for example by Spagnolo (see, e.g., [Spa68]) on the limit behaviour of problems −div(Akuk)

as Ak → A∞.

The different approaches are very well presented in [BLP78] and [CD99].
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1.2.2 Different techniques of homogenization

Here we will briefly present some of the most relevant methodologies applied in homoge-
nization. Most of them have been applied to our problem, as we will see later.

Multiple scales method One of the possibilities in dealing with the limit consists on
considering an expansion -which is known as asymptotical expansion- of the solutions as

uε(x) = u0

(
x,

x
ε

)
+ εu1

(
x,

x
ε

)
+ · · · , (1.34)

and deriving the behaviour from there. This method, which is now known as multiple scales
method is still very much in use to these days (see, e.g., [Día99; BC15]).

This kind of argument work in two steps. First, a formal deduction of the good approxi-
mation and a later rigorous proof. In particular, they use repeatedly the computation that, if
v = v(x,ξ ) then

∂
∂xi

(v(x,ε−1x)) =
∂v
∂xi

(x,ε−1x)+ ε−1 ∂v
∂ξi

(x,ε−1x). (1.35)

Substituting (1.34) into −div(Aεuε) = f and gathering terms the is seen that

uε(x) = u0(x)+ εξ̂
( x

ε

)
·∇u0 + ε2θ̂ : D2u0 + · · · , (1.36)

and the equations for u0, ξ̂ and θ̂ can be found explicitly. The second part of this kind of
argument is to estimate the convergence. It can be shown that

∥∥∥uε(x)−
(

u0(x)+ εξ̂
( x

ε

)
·∇u0 + ε2θ̂ : D2u0

)∥∥∥
H1(Ω)

≤Cε
1
2 . (1.37)

Detailed examples can be found, e.g., in [CD99, Chapter 7], [BLP78] or, for the case of the
elasticity equation, [OSY92].

The Γ-convergence method This method introduce by De Giorgi [DF75] and later devel-
oped in [DD83; Dal93]. The essential idea behind the Γ-convergence method is to study the
problem in its energy form and study the conditions under which convergence of the energies
implies convergence of their minimizers, the solutions of the elliptic problems. Here we
present some results extracted from [Dal93].
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Definition 1.2. Let X be a topological space. The Γ-lower limit and Γ-upper limit of a
sequence (Fn) of functions X → [−∞,∞] are defined as follows

(
Γ− liminf

n→+∞
Fn

)
(x) = sup

U∈N (x)
liminf
n→+∞

inf
y∈U

Fn(y) (1.38)

(
Γ− limsup

n→+∞
Fn

)
(x) = sup

U∈N (x)
limsup
n→+∞

inf
y∈U

Fn(y) (1.39)

where N (x) = {U ⊂ X open : x ∈ U} . If there exists F : X → [−∞,+∞] such that F =

Γ− liminfn→+∞ Fn = Γ− limsupn→+∞ Fn then (Fn) we say that Fn Γ-converges to F , and we
denote it as

F = Γ− lim
n→+∞

Fn. (1.40)

For the length of this section we will note

F ′ = Γ− liminf
n→+∞

Fn, (1.41)

F ′′ = Γ− limsup
n→+∞

Fn. (1.42)

The results that make this technique interesting for us are the following:

Theorem 1.1. Suppose that (Fn) are equi-coercive in X. Then F ′ and F ′′ are coercive and

inf
x∈X

F ′(x) = liminf
n→+∞

inf
x∈X

Fn(x). (1.43)

Proposition 1.3. Let xn be a minimizer of Fn in X and assume that xn → x in X. Then

F ′(x) = liminf
n→∞

Fn(xn), F ′′(x) = limsup
n→∞

Fn(xn). (1.44)

In the context of homogenization we are mainly interested in the behavior of functionals

Fε(u,A) =





ˆ
A

f
( x

ε
,u(x),Du(x)

)
u ∈W 1,p(A),

+∞ otherwise,
(1.45)

where p> 1.

Assume f = f (y,Du) satisfies the following

i) For every x ∈ Rn the function f (x, ·) is convex of class C 1.
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ii) For every ξ ∈ Rn is measurable and Y -periodic (where Y is the unit cube).

iii) There exists ci ∈ R i = 0, · · · ,4 such that c1 ≥ c0 > 0 and

c0|ξ |p ≤ f (x,ξ )≤ c1|ξ |p + c2, (1.46)∣∣∣∣
∂ f
∂ξ

(x,ξ )
∣∣∣∣≤ c3|ξ |p−1 + c4. (1.47)

Then, let

f0(ξ ) = inf
v∈W 1,p

per (Y )

ˆ
Y

f (y,ξ +Dv(y))dy. (1.48)

Then for every sequence εn → 0 we have that Fεn Γ-converges to F0 the functional defined by

F0(u,A) =





ˆ
A

f0(Du) u ∈W 1,p(A),

+∞ otherwise.
(1.49)

Function f0 can be characterized in a more practical manner.

Proposition 1.4. We have that

f0(ξ ) =
ˆ

Y
f (y,Dv(y))dy, (1.50)

where u is the unique function that





v ∈W 1,p
loc (R

n),

Dv is Y −periodic,´
Y Dv = ξ ,

div(Dξ f (y,Dv)) = 0 in Rn in the sense of distributions.

(1.51)

Applying this method we can obtain the same result as in Example 1.1 in a way that can
generalized to higher dimension

Example 1.2. Let n = 1 and Ω = Y = (0,1). Let us consider solutions of problem for the
operator −div(a( x

ε )u
ε). We consider the energy function

f (x,ξ ) = a
( x

ε

)
|ξ |2. (1.52)
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Let us characterize v given by Proposition 1.4. Since (av′)′ = 0 we have that that v′ = a0
a ,

where k is a constant. Taking into account that
´ 1

0 v′ = ξ we deduce that

a0 =
1´ 1

0
1

a(x)dx
ξ .

Therefore

f0(ξ ) =
ˆ 1

0
a(y)|v′(y)|2dy =

ˆ 1

0
a(y)

a2
0

a(y)2 dy|ξ |2 = a2
0

ˆ
1

a(y)
dy|ξ |2

= a0|ξ |2,

where the effective diffusion is given by the coefficient

a0 =
1´ 1

0
1

a(x)dx
.

Hence, as we previously showed in Example 1.1, the limit of this kind −div(a( x
ε )u

ε) is
−div(a0u). Depending on the space X we consider, we can fix one type of boundary
condition or another. This completes this example.

In [Dal93] examples in higher dimensions are presented. This method was applied to
our cases of interest, with some modification, by [Kai89] and [Gon97]. The details of this
last paper (which is extremely synthetic and skips most of the computations) are given in
Appendix 1.A.

The two-scale convergence method The two-scale method was introduced by Nguetseng
[Ngu89] and later developed by Allaire [All92; All94]. The central definition of the theory is
the following:

Definition 1.3. Let (vε) be a sequence in L2(Ω). We say that the sequence vε two scale
converges to a function v0 ∈ L2(Ω×Y ) if, for any function ψ = ψ(x,y) ∈ D(Ω;C ∞

per(Y ))
one has

lim
ε→0

ˆ
Ω

vε(x)ψ
(

x,
x
ε

)
=

1
|Y |

ˆ
Ω

ˆ
Y

v0(x,y)ψ(x,y). (1.53)

By taking ψ = ψ(x) in the previous definition it is immediate that

vε ⇀V 0 =
1
|Y |

ˆ
Y

v0(·,y)dy (1.54)
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weakly in L2(Ω). The key point of this theory is to study the convergence of functions of the
type ψ(x, x

ε ), and then apply them suitably to the weak formulation.

Tartar’s method of oscillating test functions This method is due to L. Tartar (see [Tar77;
Tar10; MT97]). The idea behind it is to consider the appropriate weak formulation and select
suitable test functions ϕε , with properties that, in the limit, reveal weak formulation of the
homogeneous problem.

This is, basically, the general method applied to obtain the results of this thesis. As well
shall see, its is not a straightforward recipy, and the choice of test function and their analysis
can become a very hard task. Many detailed examples will be given in the following text.
Perhaps the most illustrative, due to its simplicity, is Section 1.5.7.

One of the main difficulties that rise with this method in domains with particles or holes
is the need of a common functional space, since uε ∈ Lp(Ωε). This leads to the construction
of extension operators Pε : W 1,p(Ωε)→W 1,p(Ω), that will be discussed in Section 1.5.1.

The periodical unfolding method The periodical unfolding method was introduced by
Cioranescu, Damlamian and Griso in [CDG02; CDG08]. It consists on transforming the so-
lution to a fixed domain Ω×Y . The case of particles (or holes) was considered in [CDGO08;
CDDGZ12; CD16]. The latter paper acknowledges the contribution of the author of this
thesis.

Let us present the reasoning in domains with particles (or holes). The idea is to decompose
every point in Ω as a sum

x = [x]Y +{x}Y (1.55)

where [x]Y is the unique element in Zn such that x− [x]Y ∈ [0,1)n. That is, we have that [·]Y
is constant over Y j

ε .

We define the operator

Tε,δ : ϕ ∈ L2(Ω) 7→ Tε,δ (ϕ) ∈ Lp(Ω×Rn)

as

Tε,δ (ϕ)(x,z) =





ϕ
(

ε
[ x

ε

]
Y
+ εδ z

)
(x,z) ∈ Ω̂ε ×

1
δ

Y,

0 otherwise,
(1.56)
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where

Ω̂ε = interior




⋃

ξ∈Zn:
ε(ξ+Y )⊂Ω

ε(ξ +Y )


 . (1.57)

Notice that Tε,δ (ϕ)(x,z) is piecewise constant in x. The boundary of G j
ε corresponds to

Ω̂ε ×∂G0.

The big advantage of this approach is that it removes the need to construct extension
operators. Therefore, it allows to considers non-smooth shapes of G0. This method as
shown very good result, and the properties of Tε,δ (uε) are well understood, at least in the
non-critical cases.

1.3 Literature review of our problem

Let us do a comprehensive review of the literature. Let us understand why. Recall the
definition (1.2), (1.3) and (1.5). In a moderate abuse of notation, which will not lead to
confusion let us use the notations:

• If a ∈ R, |a| will indicate its absolute value.

• If A ⊂ Rn is a set of dimension m (i.e. m = n if the domain is open, m = n− 1 if
A = ∂U for U open, etc.) then |A| will indicate its m-dimensional Lebesgue measure.

• If A is a finite set, then |A| will indicate its cardinal (i.e. the number of the elements).

We also introduce two notations. Given (aε)ε>0,(bε)ε>0 sequence of real number we define

aε ∼ bε ≡ lim
ε→0

aε
bε

∈ (0,+∞) (1.58)

aε ≪ bε ≡ lim
ε→0

aε
bε

= 0. (1.59)

First, we estimate |ϒε |. Since

∣∣∣∣∣Ω−
⋃

j∈ϒε

(ε j+ εY )

∣∣∣∣∣→ 0, (1.60)

we have that |Ω|
|ϒε |εn =

|Ω|
|ϒε ||εY | → 1, (1.61)
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as ε → 0. Hence
|ϒε | ∼ ε−n. (1.62)

We can therefore compute

|Gε |=
∣∣∣∣∣
⋃

j∈ϒε

(ε j+aεG0)

∣∣∣∣∣ (1.63)

= |ϒε ||aεG0|
∼ ε−nan

ε

∼ (aεε−1)n. (1.64)

We see that the the case aε ∼ ε is different from the case aε ≪ ε . In the first case, known, as
case of big particles, |Gε | has a positive volume in the limit. We will show that this volumet-
ric presence affects the kind of homogenized diffusion. The diffusion coefficient becomes a
function of G0. However, it has been shown that when aε ≪ ε , case known as case of small
particles, we have no volumetric contribution, and, as we will see, the diffusion is not affected.

Under some conditions, it has been reported that the case aε ≪ ε presents a critical scale
a∗ε that separates different behaviour (the precise values and behaviours will be given later):

• In the subcritical case a∗ε ≪ aε ≪ ε the nature of the kinetic is preserved

• In the critical case aε ∼ a∗ε the nature of the kinetic changes. This effect is known as
the appearance of an strange term.

• in the supercritical case aε ≪ a∗ε the problem behaves, in the limit, as the case σ ≡ 0.
This case is not very relevant, as we will see in Section 1.5.7.

All of this problems have undergone extensive work, and Table 1.1 presents a detailed
literature review, focusing on the case studied in terms of aε and the regularity of σ . We
hope this table puts the contributions of the author to this field in context.

1.3.1 Homogenization with big particles aε ∼ ε

Dirichlet boundary conditions on the particles. The first work in this direction is [CS79].
It deals with problem (1.12) with p = 2 but fixing the value of uε in Gε

j to a constant not
necessarily zero rather than the Neumann boundary condition. This paper introduces the
extension operator

Pε : {u ∈ H1(Ωε) : u = const. on ∂Gε
i , u = 0 on ∂Ω}→ H1

0 (Ω) (1.65)
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such that
∥Pεv∥H1(Ω) ≤C∥v∥H1(Ωε ). (1.66)

The advantage for the perforated domain problem is that Pεuε are all defined in the same
space H1

0 (Ω), and therefore the convergence is easy to establish. In this paper the authors
study several structures for matrix Aε in (1.11). The authors show that Pεuε ⇀ u, the solution
of 




div(a0∇u) = f Ω,

u = 0 ∂Ω,
(1.67)

where a0 is an effective diffusion matrix that depends of G0. The nature of this result is
similar to Example (1.1).

Neumann boundary conditions on the particles Later [CD88a] dealt with problem (1.12)
with p = 2 (equivalently (1.12) with Aε = I) in the case σ(u) = au and gε(x) = g

( x
ε − j

)
in

∂G j
ε . Their approach is an asymptotic expansion (this method is known as multiple scales

method, see [SP80]).

If
´

∂T g(y)dS = 0 they consider

uε(x) = u0(x,y)+ εu1(x,y)+ · · · (1.68)

where y = x
ε . Otherwise they perform the expansion

uε(x) = ε−1u−1(x,y)+u0(x,y)+ εu1(x,y)+ · · · . (1.69)

The result is that Pεuε ⇀ u, the solution of

∑
i, j

qi j
∂ 2u

∂xi∂x j
+

|∂T |
|Y | au =





f if
´

∂T g(y)dS = 0,´
∂T g(y)dS otherwise,

(1.70)

where qi j is given as

qi j = δi j +
1

|Y \T |

ˆ
Y\T

∂ χ j

∂yi
dy, (1.71)
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and χi are the solutions of the so-called cell problems:





−∆χi = 0 in Y \T,
∂ (χi+yi)

∂ν = 0 on ∂T,

χi Y -periodic.

(1.72)

The surprising conclusion is that uε → u0 in the first case, but 1
ε uε → u−1 in the second.

The nonlinear problem was later studied by Conca, J.I. Díaz, Timofte and Liñán in
[CDT03; CDLT04]. Their technique, which involves oscillating test functions, requires the
introduction of extension operators

Pε : {u ∈ H1(Ωε) : u = 0 on ∂Ω}→ H1
0 (Ω) (1.73)

such that (Pεu)|Ωε = u. This techniques allows for a fairly general class of nonlinearities σ ,
but not all can be considered. In particular, they consider the following cases σ = σ(x,v)

∣∣∣∣
∂σ
∂v

(x,v)
∣∣∣∣≤C(1+ |v|q), 0 ≤ q<

n
n−2

(1.74)

or

|σ(x,v)| ≤C(1+ |v|q), 0 ≤ q<
n

n−2
. (1.75)

The result is, naturally, that Pεuε ⇀ u in H1
0 (Ω), where u is the solution of




−div(a0(G0)∇u)+ |∂G0|

|Y\G0|σ(u) = f in Ω,

u = 0 on ∂Ω,
(1.76)

and
a0(G0) = (qi j) (1.77)

is the effective diffusion matrix, where qi j are given by (1.71).

The same results as in [CDLT04] were obtained in [CDZ07] applying the unfolding
method (developed for this case in [CDZ06]). The advantage of the unfolding method is that
it reduces the regularity constraints on ∂T .
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1.3.2 Homogenization with sub-critical small particles a∗ε ≪ aε ≪ ε

The first result in this direction can be found in [CD88b]. The difficulty of this case is to
understand the behaviour of the integrals β (ε)

´
Sε
· as ε → 0. The theory in [CD88b] is rather

comprehensive for the case p = 2. In their work the authors detect that, for p = 2, there
exists values a∗ε , depending on the spatial dimension, such that the behaviour changes. The
term critical case already appears in this text. However, they are unable to specify what
happens in this case.

The work in understanding the behavior of the boundary integral under the different
situation of p and regularity of σ has been incremental over the last decades (see table 1.1). In
Section 1.5.2 we present a unified approach that covers most of the results for the sub-critical
cases. Through approximation techniques, developed in [DGCPS17d] and briefly presented
in Section 1.5.5, the non smooth cases can be treated.

1.3.3 Homogenization with critical small particles

Dirichlet boundary condition First, Hruslov dealt with the Dirichlet homogeneous bound-
ary condition on the holes [Hru72] (see the higher order case in [Hru77]) in a rather convoluted
an functional way. In 1997 a measure theoretic analysis dealt the appearance of “strange
term” in [CM97]. This later paper was much easier to understand.

The Neumann boundary condition The linear Neumann boundary condition was stud-
ied first in the homogeneous setting: [Hru79; Kai89; Kai90; Kai91]. The linear setting,
σ(u) = λu, was studied later in [OS96] (see also [OS95]).

In [Kai89; Kai91] (see also [Kai90]) an analysis of the nonlinear critical and subcritical
cases is made by Kaizu, who is unable to properly characterize the change of the nonlinearity
in the critical case. The first paper to properly study this case, and characterize the nature
of the new (“strange”) nonlinear function, is [Gon97], which applies the technique of Γ-
convergence when G0 is a ball, smooth σ and n = 3. The very surprising result is the
following

Theorem 1.2. Let G0 be a ball and assume

i) n = 3, aε = εα α ≤ 3 = α∗, β (ε) = ε−γ ∼ β ∗(ε). That is γ = 2α −3

ii) ∂σ
∂u ≥C > 0
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iii) There exists a nonnegative function a ∈ C ∞
0 (Ω) such that

ρ(x,u) = 2
ˆ u

0
σ(x,s)ds+a(x)≥ 0. (1.78)

Then, Pεuε ⇀ u in H1
0 (Ω) where u is the solution of the problem

{
−∆u+4πC(x,u) = f Ω,

u = 0 ∂Ω,
(1.79)

and

C(x,u) =

{
σ(x,u) 2< α < 3,

H(x,u) α = γ = 3,
(1.80)

being H is the (unique) solution of functional equation

H(s) = σ(s−H(s)). (1.81)

However, there are a few steps that are not clearly justified in the paper. The computations
of this paper have been detailed and explained in this thesis (as unpublished material) and
correspond to Section 1.A.

The case of general n, non smooth σ and −∆p were later studied in detail. This different
problems introduce a different number of difficulties, and are a larger part of the work
developed by the author of this thesis. For many years, the only case of G0 that was
understood was a ball:

• The usual Laplacian in Rn for n = 3: [Gon97]

• The usual Laplacian in Rn for n ≥ 2: [ZS11] [ZS13]

• The p-Laplace operator and 2< p< n: [SP12] [Pod10] [Pod12] [Pod15].

• n-Laplacian for n ≥ 2: The critical size of holes in the case p < n is aε = ε
n

n−p .
Naturally, this critical exponent α∗

p blows up as p → n. As it turns out, a critical case
also exists for the case p = n, and this was studied in [PS15].

• Roots and Heaviside type nonlinearity: [DGCPS16] .

• Signorini boundary conditions: [DGCPS17a]
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• Maximal monotone operators and 1< p< n: [DGCPS17c]. This result covers all the
previous cases under a common roof.

In 2017, the author of this thesis jointly with J.I. Díaz, T.A. Shaposhnikova and M.N. Zubova
[DGCSZ17], considered (for the first time in the literature) the case of G0 not a ball. The
structure of the limit equation is unprecedented in the literature.
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Dirichlet σ = 0 σ = λu
0< k1 ≤ σ ≤ k2

σ(x,u) ∈ C 1

|σ ′(s)| ≤C|u|p−1

(σ(x,u)−σ(x,v))≥C|u− v|p

|σ ′(u)| ≤C(1+ |u|r)
or

|σ(u)| ≤C(1+ |u|r)
Signorini σ m.m.g.

B
ig
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rt
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p = 2 α = 1 [CS79] [CD88a]

[CDLT04]

[CDZ07] (see also [CDZ06])

Sm
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ln
on
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rt
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p = 2

1< α <
n

n− p

[CD88b] [OS96]
[Gon97] (N = 3)

[ZS11][ZS13]
[SP12] [Kai89],[DGCPS17d] [JNRS14] [Kai91]

2< p< n

1< p< 2 [Pod15]
[DGCPS17d]

p = n
aε

e−ε
− n

n−1
→ 0 [Podolskii and Shaposhnikova (to appear)]

p> n α > 1 [DGCPS17b]

Sm
al

lc
ri

tic
al

pa
rt

ic
le

s

p = 2
α =

n
n− p

G0 a ball

[Hru72] [CM97] [OS96]
[Gon97] (N = 3)

[ZS11][ZS13]
[SP12] [Kai89] [JNRS11] [Kai91] , [DGCPS17c]

2< p< n (σ = |u|q−1u) [GPPS15]

1< p< 2 [DGCPS17c] [DGCPS16] [DGCPS17a]
[DGCPS17c]

p = 2
α =

n
n− p

G0 not a ball
[DGCSZ17]

p = n
aε

e−ε
− n

n−1
→C ̸= 0 [PS15]

Table 1.1 Schematic representation of bibliography for the homogenization problems (1.11), (1.12). Where α is present aε =C0εα .
Gray background represents new results introduced by this thesis.



28 Effectiveness and Homogenization

1.4 A unified theory of the case of small particles aε ≪ ε

1.4.1 Weak formulation

When σ :R→R we usually define a weak solution of (1.12) as a function uε ∈W 1,p(Ωε ,∂Ω)

such that
ˆ

Ωε

|∇uε |p−2∇uε ·∇v+β (ε)
ˆ

Sε

σ(uε)v =
ˆ

Ωε

f εv+β (ε)
ˆ

Sε

gεv (1.82)

for all v ∈W 1,p(Ωε ,∂Ω). In Section 1.1.4 we introduced the concept of maximal monotone
operator. When σ is a maximal monotone operator this definition is no longer valid, since
σ(uε(x)) may be multivalued. We change the previous equation by

Definition 1.4. We say that uε ∈W 1,p(Ωε ,∂Ω) is a weak solution of (1.12) if there exists
ξ ∈ Lp(Sε) such that ξ (x) ∈ σ(uε(x)) for a.e. x ∈ Sε and

ˆ
Ωε

|∇uε |p−2∇uε ·∇v+β (ε)
ˆ

Sε

ξ v =
ˆ

Ωε

f εv+β (ε)
ˆ

Sε

gεv, (1.83)

for all v ∈W 1,p(Ωε ,∂Ω).

Uniqueness of this kind of solution is a direct consequence of the monotonicity of σ (see,
e.g., [Día85]). However, it is not easy to show directly that there exist solutions of (1.12) in
this sense. The energy formulation is much better for this task.

1.4.2 Energy formulation

Let us start by considering the usual case σ : R→ R. In this setting it is standard to define
the energy functional over W 1,p(Ωε ,∂Ω) as

Jε(v) =
1
p

ˆ
Ωε

|∇v|p +β (ε)
ˆ

Sε

Ψ(v)−
ˆ

Ωε

f εv−β (ε)
ˆ

Sε

gεv, (1.84)

where Ψ(s) =
´ s

0 σ(τ). It is common to say that the energy formulation for (1.12) is

Jε(uε) = min
v∈W 1,p(Ωε ,∂Ω)

Jε(v). (1.85)

For smooth σ it can be shown that the unique solution uε of (1.12) is the unique minimizer
of this functional. One possible way to give a meaning to (1.12) is to use this formulation.
For that we recall the concept of the subdifferential:
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Definition 1.5. Let X be a Banach space and J : X → (−∞,+∞] be a convex function. We
usually define the domain of J as

D(J) = {x ∈ X : J(x) ̸=+∞}. (1.86)

We define the subdifferential of J as the map ∂J : X → P(X ′) given by

∂J(x0) = {ξ ∈ X ′ : J(x)− J(x0)≥ ⟨ξ ,x− x0⟩ ∀x ∈ X}. (1.87)

As is turns out, for every maximal monotone operator σ defined in R there exists a convex
function Ψ such that σ = ∂Ψ. Furthermore, this Ψ can be chosen uniquely under the extra
condition Ψ(0) = 0.

This energy formulation connects directly with the concept of weak solution. The
subdifferential Aε = ∂Jε is given by the set of dual elements ξ̂ such that

⟨ξ̂ ,w⟩=
ˆ

Ωε

|∇v|p−2∇v ·∇w+β (ε)
ˆ

Sε

ξ w−
ˆ

Ωε

f εw−β (ε)
ˆ

Sε

gεw, (1.88)

where ξ (x) ∈ σ(v(x)) for a.e. x ∈ Sε (see, e.g., [Lio69]).

The weak formulation of (1.12) is, precisely,

Aεuε ∋ 0. (1.89)

1.4.3 Formulation as functional inequalities

Let us prove the equivalence between the weak and energy formulations:

Lemma 1.4.1 (Chapter 1 in [ET99]). Let X be a reflexive Banach space, J : X → (−∞,+∞]

be a convex functional A = ∂J : X → P(X ′) be its subdifferential. Then the following are
equivalent:

i) u is a minimizer of J,

ii) u ∈ D(A) and 0 ∈ Au.

If either hold, then

iii) For every v ∈ D(A) and ξ ∈ Av

⟨ξ ,v−u⟩ ≥ 0. (1.90)
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Furthermore, assume that J is Gâteaux-differentiable on X and A is continuous on X then
iii)) is also equivalent to i)).

Remark 1.1. Naturally, if there is uniqueness of iii) then the i)-iii) are also equivalent.

Remark 1.2. One should not confuse condition iii) with the -very similar- Stampacchia
formulation (see e.g. [Día85]). For a bilinear form a and a linear function G the Stampacchia
formulation is

a(u,v−u)≥ G(v−u) (1.91)

for all v in the correspondent space, whereas in formulation iii) we have a(v,v−u).

From Lemma 1.4.1 we can extract some characterizing equations of the weak solution,
which will be useful later.

Proposition 1.5. Let uε be a minimizer of Jε . Then
ˆ

Ωε

|∇uε |p−2∇uε ·∇(v−uε)+ ε−γ
ˆ

Sε

(Ψ(v)−Ψ(uε))≥
ˆ

Ωε

f (v−uε), (1.92)

there exists ξ ∈ σ(v(x)) such that

ˆ
Ωε

|∇v|p−2∇v · (v−uε)+β (ε)
ˆ

Sε

ξ (v−uε)≥
ˆ

Ωε

f (v−uε), (1.93)

and
ˆ

Ωε

|∇v|p−2∇v · (v−uε)+β (ε)
ˆ

Sε

(Ψ(v)−Ψ(uε))≥
ˆ

Ωε

f (v−uε), (1.94)

hold for all v ∈W 1,p(Ωε ,∂Ω).

Proof. Let us assume that uε is a minimizer of Jε . Considering characterization iii) of
Lemma 1.4.1 we have that

ˆ
Ωε

|∇v|p−2∇v ·∇w+β (ε)
ˆ

Sε

ξ w ≥
ˆ

Ωε

f εw (1.95)

for some ξ such that ξ (x) ∈ σ(uε(x)). Since Ψ is convex and σ = ∂Ψ we have that

Ψ(v)−Ψ(uε)≥ ξ (v−uε). (1.96)

Hence, (1.92) is proved.
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Equation (1.93) can be obtained by considering the Brézis-Sibony characterization of the
weak of (1.12) (see Lemme 1.1 of [BS71] or Theorem 2.2 of Chapter 2 in [Lio69]). Finally,
let us prove (1.94). Consider the map x ∈ Rn → |x|p ∈ R. It is a convex map with derivative
D|x|p = p|x|p−2x. Hence, for a,b ∈ Rn we have that

|a|p −|b|p ≥ p|b|p−2b · (a−b). (1.97)

Hence
|b|p −|a|p ≤ p|b|p−2b · (b−a). (1.98)

Considering b = ∇v and a = ∇uε we have that

|∇v|p −|∇uε |p ≤ p|∇v|p−2∇v · (v−∇uε). (1.99)

Taking into account this fact and that uε is a minimizer of Jε we have that

0 ≤ J(v)− J(uε) =
1
p

ˆ
Ωε

(|∇v|p −|∇uε |p)+β (ε)
ˆ

Sε

(Ψ(v)−Ψ(uε))−
ˆ

Ωε

f (v−uε)

(1.100)

≤ 1
p

ˆ
Ωε

(|∇v|p −|∇uε |p)+β (ε)
ˆ

Sε

(Ψ(v)−Ψ(uε))−
ˆ

Ωε

f (v−uε). (1.101)

Thus, we have obtained (1.94).

Under some conditions, one can show that these Variational Inequalities are, in fact,
equivalent to the definition of weak and energy solutions. Since we will not need this, we
give no further details here.

1.5 Existence and uniqueness of solutions

To prove the existence of solutions we can use Convex Analysis to prove the existence of
minizers of uε , or consider a very strong theorem. To state in its broadest generality we
introduce (following Brezis, see [Bre68]) the definition

Definition 1.6. Let V be a reflexive Banach space. We say that A : V → V ′ is a pseudo
monotone operator if it is bounded and it has following property: if u j ⇀ u in V and that

limsup
j→+∞

⟨T (u j),u j −u⟩ ≤ 0,
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then, for all v ∈ X ,
liminf
j→+∞

⟨T (u j),u j − v⟩ ≥ ⟨T (u),u− v⟩. (1.102)

We can now state the theorem

Theorem 1.3 ([Bre68], also Theorem 8.5 in [Lio69]). Let A : V →V ′ be a pseudo-monotone
operator and ϕ a proper convex function lower semi-continuous such that





there exist v0 such that ϕ(v0)< ∞ and

(Au,u− v0)+ϕ(u)
∥u∥ → ∞, as ∥u∥→ ∞.

(1.103)

Then, for f ∈V ′, there exists a unique solution of the problem

(A(u)− f ,v−u)+ϕ(v)−ϕ(u)≥ 0, ∀v ∈V. (1.104)

Uniqueness is a routine task. Let us give a sketch of proof, when σ is a maximal monotone
operator and p ≥ 2. Assume that u1

ε ,u
2
ε satisfy (1.83). Considering the difference between

the two formulations
ˆ

Ωε

(|∇u1
ε |p−2∇u1

ε −|∇u2
ε |p−2∇u2

ε) ·∇v+β (ε)
ˆ

Sε

(ξ 1 −ξ 2)v = 0. (1.105)

Taking v = u1
ε −u2

ε , since (ξ 1 −ξ 2)(u1
ε −u2

ε) we have that

ˆ
Ωε

|∇(u1
ε −u2

ε)|p ≤ 0. (1.106)

There u1
ε −u2

ε is a constant. This constant is 0, due to the boundary condition. This concludes
the proof.

We provide a complete proof of existence and uniqueness Considering the weak formula-
tion the following result is immediate.

Proposition 1.6 ([DGCPS17d]). Let p> 1. Then, for every ε > 0 there exists a unique weak
solution of (1.12) uε ∈W 1,p(Ωε ,∂Ω). Furthermore, there exists a constant C independent
of ε such that

∥∇uε∥p−1
Lp(Ωε )

≤C(∥ f ε∥Lp′(Ωε )
+β (ε)β ∗(ε)−1∥gε∥L∞(Sε )). (1.107)

Some extra information can be given about the pseudo-primitive Ψ(uε).
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Proposition 1.7 ([DGCPS17c]). There exists a unique uε ∈W 1,p(Ωε ,∂Ω) weak solution of
(1.92). Besides, there exists K > 0 independent of ε such that

∥∇uε∥Lp(Ωε )+ ε−γ∥Ψ(uε)∥L1(Sε ) ≤ K. (1.108)

1.5.1 Extension operators

In order to introduce a definition of “convergence” we will need to construct an extension
operator so that all solutions are extended to a common Sobolev space. If we do this correctly
we will be able to take advantage of the compactness properties of this common space.

Let A ⊂ B. We say that P is an extension operator if P : F(A) = { f : A → R} → F(B)
and has the property that P( f )|A = f . Let p> 1. We will say that a family of linear extension
operator

Pε : W 1,p(Ωε)→W 1,p(Ω) (1.109)

is uniformly bounded if there exists a constant C > 0, independent of ε , such that

∥Pεu∥W 1,p
0 (Ω)

≤C∥u∥W 1,p
0 (Ωε )

∀u ∈W 1,p(Ωε). (1.110)

A family of operators with this property, for 1 ≤ p<+∞, was constructed in [Pod15]. The
idea is to apply the following theorem

Theorem 1.4 (Theorem 7.25 in [GT01]). Let Ω be a Ck−1,1 domain in Rn, k ≥ 1. Then (i)
C ∞(Ω̄) is dense in W k,p(Ω), 1 ≤ p<+∞ and (ii) for any open set Ω′ ⊃⊃ Ω there exists a
linear extension operator E : W k,p(Ω)→W k,p

0 (Ω′) such that Eu = u in Ω and

∥Eu∥W k,p(Ω′) ≤C∥u∥W k,p(Ω) (1.111)

where C =C(k,Ω,Ω′).

We consider a large ball B such that Y ⋐ B and the linear extension operator

E : W 1,p(Y \G0)→W 1,p(B) (1.112)

such that
∥Eu∥W 1,p(B) ≤C0∥u∥W 1,p(Y\G0)

. (1.113)

In particular,
∥∇Eu∥Lp(B) ≤C1∥∇u∥Lp(Y\G0). (1.114)
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Let us scale it down by aε :

Eε, j : W 1,p((ε j+aεY )\G j
ε)→W 1,p(Y,G0)

E→W 1,p(B)→W 1,p(ε j+aεB). (1.115)

Notice that, rather than Y j
ε \G j

ε we are considering the aε -rescale of Y . By a simple change
in variable we observe that

∥∇Eε, ju∥Lp(ε j+B) ≤C1∥u∥Lp((ε j+aεY )\G j
ε )
. (1.116)

Let u ∈W 1,p
0 (Ωε). Let us consider extend by 0 outside Ω, i.e.

ũ(x) =





u(x) x ∈ Ωε ,

0 x ∈ Rn \Ω.
(1.117)

We then define

Pεu(x) =





Eε, jũ(x) x ∈ ε j+aεY, j ∈ ϒε ,

u(x) otherwise.
(1.118)

This is well defined, since the sets ε j+aεY does not overlap for ε small. It is clear that Pε is
linear, Pεu = u in Ωε and, by considering the sum over the space decomposition, we have
the uniform bound (1.110), so Pεu ∈W 1,p(Ω). Since the boundary behaviour has not been
modified, Pεuε ∈W 1,p

0 (Ω). We can conclude

Lemma 1.5.1. Let G0 ∈ C 0,1 such that G0 ⋐ Y . Then, there exists a uniformly bounded
family of linear extension operators (1.109).

1.5.1.1 Extension operators and Poincaré constants

We will use the existence of a Poincaré constant for W 1,p
0 (Ω), Cp,Ω, such that

∥v∥Lp(Ω) ≤Cp,Ω∥∇v∥Lp(Ω), ∀v ∈W 1,p
0 (Ω). (1.119)

This constant Cp,Ω is known to exist for every domain Ω bounded. However, it is not trivial
to show that all domain Ωε have a common constant. The following result is very often used
in the literature but it is seldom stated. In [DGCPS17b] we took the time to prove it.

Theorem 1.5 ([DGCPS17b]). Let p > 1. If there exists a sequence of uniformly bounded
extension operators in W 1,p

0 then there exists a uniform Poincaré constant for W 1,p(Ωε ,∂Ω),
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in the sense that

∥u∥Lp(Ωε ) ≤C∥∇u∥Lp(Ωε ) ∀u ∈W 1,p
0 (Ωε) and ε > 0, (1.120)

where C does not depend of ε . In particular, let

∥∇Pεu∥Lp(Ω) ≤ Kp∥∇u∥Lp(Ωε ) ∀u ∈W 1,p
0 (Ωε), (1.121)

hold and Cp,Ω be a Poincaré constant for W 1,p
0 (Ω). Then, C = KpCp,Ω.

1.5.1.2 Convergence of the extension

Hence, the solution uε can be extended, and Pεuε is a bounded sequence in W 1,p(Ω). Thus,
it has a weak limit. The focus of the theory of homogenization is to characterize the equation
satisfied by the limit function.

1.5.2 On treating the boundary measure and the appearance of a criti-
cal case

Treating the sequence of integrals
´

Sε
is a delicate business. Before we begin their study

rigorously, we will start by providing some intuitive (informal) computations.

1.5.2.1 An informal approach

Let us focus first on (1.11). Its weak formulation reads
ˆ

Ωε

Aε∇uε∇ϕ +β (ε)
ˆ

Sε

σ(uε)ϕ =

ˆ
Ωε

f εϕ +β (ε)
ˆ

Sε

gεϕ (1.122)

Let us see how the coefficient β (ε) is decisive for the limit behaviour. First, we should keep
in mind that (1.61). For a continuous function ϕ ∈C 1(Ω) we have, since |∂Gε

i |= an−1
ε |∂G0|

that

β (ε)
ˆ

Sε

ϕ = β (ε) ∑
i∈ϒε

ˆ
∂Gi

ε

ϕ = β (ε) ∑
i∈ϒε

(
ϕ(xi

ε)|∂Gi
ε |+
ˆ

∂Gi
ε

ϕ ′(ξ i
ε(x))(x− xi

ε)

)

(1.123)

= ∑
i∈ϒε

(
β (ε)ϕ(xi

ε)a
n−1
ε |∂G0|+α i

ε
)
. (1.124)
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If
β (ε)an−1

ε ∼ εn, (1.125)

we have (almost) a Riemann sum in the first term, except for the term Y i
ε ∩∂Ω ̸= /0 (but this

part has no contribution as ε → 0). We check immediately that

|α i
ε | ≤ ∥ϕ ′∥∞2 diam(Gi

ε)|∂Gε
i |β (ε)≤ ∥ϕ ′∥∞2 diam(Gi

ε)|∂G0|β (ε)an−1
ε

= 2∥ϕ ′∥∞ diam(G0)β (ε)an
ε

= 2∥ϕ ′∥∞ diam(G0)aεεn.

Hence, we can expect that

β (ε)
ˆ

Sε

ϕ →





C
ˆ

Ω
ϕ β (ε)∼ β ∗(ε),

0 β (ε)≪ β ∗(ε),

+∞ β (ε)≫ β ∗(ε),

(1.126)

where, recalling (1.125),
β ∗(ε) = a1−n

ε εn (1.127)

as ε → 0. Notice that

|Sε |=
∣∣∣∣∣
⋃

j∈ϒε

(ε j+∂ (aεG0))

∣∣∣∣∣= |ϒε ||∂ (aεG0)| ∼ ε−nan−1
ε ∼ 1

β ∗(ε)
. (1.128)

Therefore, up to constants, this is an average

β ∗(ε)
ˆ

Sε

should behave like
1
|Sε |

ˆ
Sε

. (1.129)

If there is any good behaviour, the only expectable result is that

1
|Sε |

ˆ
Sε

→ 1
|Ω|

ˆ
Ω
. (1.130)

This is true, at least, for constant functions.

Remark 1.3. In particular, if we consider the case aε =C0εα , β (ε) = ε−γ and β ∗(ε) = ε−γ∗

we can expect that
γ∗ = α(n−1)−n. (1.131)
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Thus, if β (ε) is too small we cannot expect any reaction term in the limit equation,
hence (in some sense) it becomes uninteresting. If β (ε) is too large then there the reaction
dominates the diffusion, we write

β (ε)−1β ∗(ε)
ˆ

Ωε

∇uε∇ϕ +β ∗(ε)
ˆ

Sε

σ(uε)ϕ = β (ε)−1β ∗(ε)
ˆ

Ωε

f ϕ +β ∗(ε)
ˆ

Sε
gεϕ

(1.132)
and we see the diffusion term disappear in the effective equation.

This good intuitions are not always true. In Theorem 1.6 we will see some assumptions
under which this intuitions hold.

1.5.2.2 A trace theorem for aεG0 in εY

The most difficult part of this analysis is the study of the boundary measure
´

Sε
, as well as

the unexpected properties of the diffusion in the critical case. The following estimate will
be fundamental to our study. The proof can be found for p = 2 and n ≥ 2 in [CD88b] and a
different proof [OS96] in the case of balls. Here we extend the proof in [CD88b] to the case of
p> 1 and n ≥ 2. Some of the following results were for 1< p< n were presented in [Pod15].

In the following pages we present a unified analysis of the different cases, similar to that
of [CD88b], but including the cases p ̸= 2.

Lemma 1.5.2. Let u ∈W 1,p(Yε), p> 1. Then

ˆ

aε G0

|u|p ≤Can−1
ε


ε−n

ˆ

Yε

|u|p + τε

ˆ

Yε

|∇u|p

 (1.133)

where

τε ∼





ap−n
ε p< n,

ln
(

ε
aε

)p−1

p = n,

ε p−n p> n,

(1.134)

and C is a constant independent of ε and u.

Proof. Let
Bε = B(0,ε)\ (aεG0) (1.135)
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and let ϕ ∈ C ∞(Bε). Since G0 is star shaped then we can represent it in polar coordinates as

∂G0 = {(ρ,θ) : ρ = Φ(θ),θ ∈ Θ}, (1.136)

where Θ = [0,2π]× [−π
2 ,

π
2 ]

n−2.

G0

θ

ρ

Fig. 1.3 The domain G0 and its representation in polar coordinates.

The Jacobian can be written as ρn−1J(θ). Let us write u in polar coordinates as χ(ρ,θ) =
u(x). Then, as in [CD88b],

ˆ
aε G0

|u|pdx = an−1
ε

ˆ
Θ
|χ(aεΦ(θ),θ)|pJ(θ)F(θ)dθ , (1.137)

where

F(θ) =
n

∏
i=1

√
Φ(θ)2 +

(
∂Φ
∂θi

)2

. (1.138)

We write, for any ρ > aεΦ(θ) and θ ∈ Θ

χ(aεΦ(θ),θ) = χ(ρ,θ)−
ˆ ρ

aε Φ(θ)

∂ χ
∂ t

(t,θ)dt.

For p> 1, due to convexity

|χ(aεΦ(θ),θ)|p ≤ 2p−1 |χ(ρ,θ)|p +2p−1

∣∣∣∣∣

ˆ ρ

aε Φ(θ)

∂ χ
∂ t

(t,θ)dt

∣∣∣∣∣

p

.
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On the other hand
∣∣∣∣∣∣∣

ρ̂

aε Φ(θ)

∂ χ
∂ t

(t,θ)dt

∣∣∣∣∣∣∣

p

≤

∣∣∣∣∣∣∣

ρ̂

aε Φ(θ)

∂ χ
∂ t

(t,θ)t
n−1

p t−
n−1

p dt

∣∣∣∣∣∣∣

p

≤




ρ̂

aε Φ(θ)

t−
n−1
p−1 dt




p−1


ρ̂

aε Φ(θ)

∣∣∣∣
∂ χ
∂ t

(t,θ)
∣∣∣∣

p

tn−1dt


 .

Taking
b1 = min

θ∈Θ
Φ(θ) b2 = max

θ∈Θ
Φ(θ)

we get

|χ(aεΦ(θ),θ)|p ≤ 2p−1 |χ(ρ,θ)|p +2p−1τε




ρ̂

aε Φ(θ)

∣∣∣∣
∂ χ
∂ t

(t,θ)
∣∣∣∣

p

tn−1dt


 ,

where

τε =




ρ̂

aε b1

t−
n−1
p−1 dt




p−1

.
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Integrating over Bε we obtain

ˆ

Θ

ρ̂

aε Φ

|χ(aεΦ(θ),θ)|pρn−1J(θ)F(θ)dρdθ

≤ 2p−1
ˆ

Θ

ρ̂

aε Φ

|χ(ρ,θ)|p ρn−1JFdρdθ

+2p−1
ˆ

Θ

εˆ

aε Φ

τε




ρ̂

aε Φ(θ)

∣∣∣∣
∂ χ
∂ t

(t,θ)
∣∣∣∣

p

tn−1dt


ρn−1JFdρdθ

≤ 2p−1
ˆ

Θ

ρ̂

aε Φ

|χ(ρ,θ)|p ρn−1JFdρdθ

+2p−1τετ2,ε

ˆ

Θ

τε




ρ̂

aε Φ(θ)

∣∣∣∣
∂ χ
∂ t

(t,θ)
∣∣∣∣

p

tn−1dt


JFdρdθ ,

where

τ2,ε =

ˆ ε

b1aε

ρn−1dρ. (1.139)

We can estimate the integral we wanted by

ˆ

Θ

ρ̂

aε Φ

|χ(aεΦ(θ),θ)|pρn−1J(θ)F(θ)dρdθ

≥ τ3,ε

ˆ

Θ

ρ̂

aε Φ

|χ(aεΦ(θ),θ)|p J(θ)F(θ)dρdθ

= τ3,ε∥ϕ∥p
Lp(∂ (aε G0))

,

where

τ3,ε =

ˆ ε

b2aε

ρn−1dρ. (1.140)
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Since τ−1
3,ε τ2,ε is bounded we can conclude the estimate on ∥u∥Lp(∂ (aε G0)). On the other hand

τ
1

p−1
ε =





1
1− n−1

p−1

(
ε1− n−1

p−1 − (b1aε)
1− n−1

p−1

)
p ̸= n,

ln
(

ε
b1aε

)
p = n,

∼





a
1− n−1

p−1
ε p< n,

ln
(

ε
aε

)
p = n,

ε1− n−1
p−1 p> n,

(1.141)

which concludes the proof.

Remark 1.4. It is not surprising that the W 1,n(Ω) for Ω ⊂ Rn behaves differently. For
example, radial solution solution of ∆nu = 0 in Rn includes ln |x|, whereas for any other
p-Laplacian radial solutions are of power type.

From this point forward we will assume that

G0 is star-shaped. (1.142)

1.5.3 Behaviour of
´

Sε
and appearance of a∗ε

Define function Mε(x) as the unique Yε - periodic built through the solution of the boundary
value problem





∆pmε = µε x ∈ Yε = εY \aεG0;

∂νpmε = 1 x ∈ ∂ (aεG0) = S0
ε ;

∂νpmε = 0 x ∈ ∂Yε \S0
ε ;

,

ˆ

Yε

mε(x)dx = 0. (1.143)

where µε is a constant defined so as to satisfy the integrability condition

µε =
ε−nan−1

ε |∂G0|
1− (aεε−1)n|G0|

. (1.144)

That is
Mε(x) = mε(x−P j

ε ), x ∈ Y j
ε . (1.145)

The aim of this section is to prove the following result

Theorem 1.6. Assume that aε ≪ ε ,

β (ε)∥Mε∥p−1
Lp(Ωε )

→ 0 (1.146)
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as ε → 0 and let
β0 = lim

ε→0
µεβ (ε). (1.147)

Then, for all sequence vε ∈ Lp(Ω) such that vε → v in Lp(Ω) we have that

β (ε)
ˆ

Sε

vεdS → β0

ˆ

Ω

vdx (1.148)

as ε → 0.

Function mε has the nice property of allowing us to write, for any test function ϕ ∈
W 1,p(Yε),

−
ˆ

Yε

|∇mε |p−2∇mε∇ϕdx+
ˆ

S0
ε

ϕds = µε

ˆ

Yε

ϕdx. (1.149)

We will use the following fact

Lemma 1.5.3. Let p> 1. Then

∥∇mε∥p−1
Lp(Yε )

≤Can−1
ε
(
ε−n+p + τε

) 1
p . (1.150)

Proof. Setting in (1.149) ϕ = mε and the definition of mε(x), we obtain

∥∇mε∥p2

Lp(Yε )
≤
( ∣∣∣∣
ˆ

S0
ε

mεds
∣∣∣∣+µε

∣∣∣∣
ˆ

Yε

mεdx
∣∣∣∣
)p

≤
(ˆ

S0
ε

|mε |ds+µε ×0
)p

≤
((ˆ

S0
ε

1p′
) 1

p′
(ˆ

S0
ε

|mε |p
) 1

p
)p

≤
(ˆ

S0
ε

1ds
)p−1

∥mε∥p
Lp(S0

ε )

≤C1a(n−1)(p−1)
ε ∥mε∥p

Lp(S0
ε )
≤

≤ C2a(n−1)(p−1)
ε an−1

ε

(
ε−n∥mε∥p

Lp(Yε )
+ τε∥∇mε∥p

Lp(Yε )

)

≤ C3ap(n−1)
ε

(
ε−n+p + τε

)
∥∇mε∥p

Lp(Yε )
(1.151)

which concludes the proof.
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We have that

ap(n−1)
ε ε−n+p

an(p−1)
ε

= (aεε−1)p−n (1.152)

which in the case aε =C0εα results in

ap(n−1)
ε ε−n+p

an(p−1)
ε

=Cε(p−n)(α−1). (1.153)

Using the previous estimates we get:

Corollary 1.1. Let p> 1. Then

∥∇mε∥Lp(Yε ) ≤





Ca
n
p
ε p< n,

Caε ln
(

ε
aε

) 1
n

p = n,

Ca
n−1
p−1
ε ε

p−n
p(p−1) p> n.

(1.154)

This allows us to write the following result:

Corollary 1.2. Let aε ≪ ε . Then, since |ϒε | ∼ ε−n,

∥∇Mε∥Lp(∪ jY
j

ε )
≤





C(aεε−1)
n
p 1< p ≤ n,

C(aεε−1) ln(a−1
ε ε)

1
n p = n,

C(aεε−1)
n−1
p−1 p> n.

(1.155)

Corollary 1.3. Let vε ∈W 1,p(Ωε ,∂Ω). Then,

β (ε)
ˆ

Sε

vε = ρε +β (ε)µε ∑
j∈ϒε

ˆ
Y j

ε

vεdx (1.156)

where
0 ≤ ρε ≤Cβ (ε)∥Mε∥p−1

Lp(Ωε )
, (1.157)

and C depends only on Ω and ∥vε∥W 1,p(Ωε ).
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Proof.

β (ε)
ˆ

Sε

vε = β (ε) ∑
j∈ϒε

ˆ

Y j
ε

div(|∇M j
ε |p−2∇M j

ε vε) =

= β (ε) ∑
j∈ϒε

ˆ

Y j
ε

|∇M j
ε |p−2∇M j

ε ∇vεdx+

+β (ε) ∑
j∈ϒε

ˆ

Y j
ε

(∆pM j
ε )vεdx =

= β (ε) ∑
j∈ϒε

ˆ

Y j
ε

|∇M j
ε |p−2∇M j

ε ∇vεdx+

+β (ε) ∑
j∈ϒε

µε

ˆ

Y j
ε

vεdx (1.158)

Using Hölder’s inequality

β (ε)
ˆ

Ωε

|∇Mε |p−1|∇vε |dx ≤Cβ (ε)∥Mε∥p−1
Lp(Ωε )

. (1.159)

which concludes the proof.

This is the reason why critical scales appear in the homogenization process for p ≤ n
and none can appear when p > n. The critical case occurs when ρε ̸→ 0. In particular, if
ρε →C ̸= 0 (where ρε is the quantity given by (1.156)) then the critical case rises, as we will
see in Section 1.5.8.

Proof of Theorem 1.6. Due to Corollary 1.3 and
∣∣∣∣∣ ∑j∈ϒε

ˆ
Y j

ε

vε −
ˆ

Ω
vε

∣∣∣∣∣≤ ∥vε∥Lp(Ω)

∣∣∣∣∣Ω\
⋃

j∈ϒε

Y j
ε

∣∣∣∣∣→ 0, (1.160)

which completes the proof.

Also, this explicit computation explains the a priori strange formula for the critical scales.
Consider the good scaling β ∗(ε).
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Corollary 1.4. We have that

β ∗(ε)∥Mε∥p−1
Lp(Ωε )

≤





Ca
p−n

p
ε ε

n
p p< n,

Cε ln
(
a−1

ε ε
) n−1

n p = n,

Cε p> n.

(1.161)

Remark 1.5. The right hand side of (1.161) is rather significant. As will see immediately in
Theorem 1.6, the fact that this right hand goes to 0 as ε → 0 is a sufficient condition for the
integrals to behave nicely in the limit, and thus will see later that we are in the subcritical
case. A priori, these estimates need to be sharp. However, as will see in Section 1.5.4, it is
sharp, and a∗ε is the value such that the RHS of (1.161) converges to a constant.

Remark 1.6. If aε =C0εα and β (ε) = ε−(α(n−1)−n), then the result implies that

ε−γ
ˆ

Sε

vεdS →Cn−1
0 |∂G0|

ˆ
Ω

vdx (1.162)

as ε → 0 if α < n
n−p . If α > n

n−p then

ε−γ
ˆ

Sε

vεdS → 0. (1.163)

1.5.3.1 Lp −Lq estimates for Sε

It is obvious that there are Lp −Lq estimates for Sε , in the sense that, if 0< p< q, for every
ε > 0 there exists a constant Cε such that

(ˆ
Sε

|v|p
) 1

p

≤Cε

(ˆ
Sε

|v|q
) 1

q

∀v ∈ Lq(Sε). (1.164)

The interesting question is whether we can do this with uniform constant Cε . The fact is that
such results are true, but we have to be careful with the choice of constants. We will use this
in the following sections.

Lemma 1.5.4. Let 0< p< q. Then, there exists C, independent of ε , such that

(
β ∗(ε)

ˆ
Sε

|v|p
) 1

p

≤C
(

β ∗(ε)
ˆ

Sε

|v|q
) 1

q

∀v ∈ Lq(Sε). (1.165)
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1.5.4 The critical scales a∗ε

It has been long present in the literature that the critical size of holes in the case 1< p< n is

a∗ε = ε
n

n−p . (1.166)

We will see in Sections 1.5.6, 1.5.7 and 1.5.8 that the three situations are entirely different.
This critical value aligns precisely with estimate (1.161). As indicated in Remark 1.5, a∗ε is
the value such that the RHS of (1.161) converges to a constant. If we write aε =C0εα , this
critical exponent α∗ = n

n−p blows up as p → n.

As it turns out, a critical case also exists for the case p = n, and this was studied in [PS15].
The critical choice, as presented in that paper, is the one that satisfies

β (ε)an−1
ε ε−n →C2

1 , (1.167)
1

β (ε)
1

n−1 aε ln 4aε
ε

→−C2
2 , (1.168)

where C1,C2 ̸= 0. Again, estimate (1.161) is sharp. Although this a bit more convoluted.
Equation (1.167) only indicates β (ε)∼ β ∗(ε). Let us read (1.168) carefully

1 ∼− 1

β (ε)
1

n−1 aε ln 4aε
ε

∼ 1

β (ε)
1

n−1 aε ln ε
4aε

Since Dε ∼ 1 is equivalent to 1
Dε

∼ 1 we have that

1 ∼ β (ε)
1

n−1 aε ln
ε
aε

∼ a−1
ε ε

n
n−1 aε ln

ε
aε

∼ ε
n

n−1 ln
ε
aε
.

This is exactly what we anticipated in (1.161). Again, a∗ε is the value such that the RHS of
(1.161) converges to a constant. We can give the critical scale explictly

a∗ε = εe−ε−
n

n−1
. (1.169)
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We point out that this critical scale is not of the form a∗ε = εα , but rather the convergence to
0 of a∗ε is much faster as ε → 0.

For p> n we deduce that there exists no critical scale. In [DGCPS17b] the authors first
noted that no critical scale in the realm aε = εα may exist. The estimates in this thesis go
much further. Since, for p> n, the RHS of (1.161) always converges to 0 we can guaranty
that no aε critical may exist. In this sense we can say that, for p> n, a∗ε = 0. With this no-
tation, the cases p> n in Theorem 1.7 are a direct improvement of the results in [DGCPS17b].

To summarize, going forward we will keep in mind that the critical scale is precisely

a∗ε =





ε
n

n−p 1< p< n,

εe−ε−
n

n−1 p = n,

0 p> n.

(1.170)

1.5.5 Double approximation arguments

In the process of homogenization is typically more convenient to work with a function σ
that is as smooth as possible. Many authors have only stated their results for such smooth
σ . Since the central theme of this thesis deals with root-type σ , it was one of our aims to
develop a framework to extend the result to general σ . A natural way to do this, which has
been successful in the past, is to consider uniform approximations. This is the subject of this
section.

The following comparison results are obtained in [DGCPS17d]. They allow us to extend
the results proved for σ smooth to the case of σ non as smooth.

Lemma 1.5.5 ([DGCPS17d]). Let σ , σ̂ be continuous nondecreasing functions such that
σ(0) = 0 and u, û be their respective solutions of (1.12) with f ε = f ∈ Lp′(Ω) and gε = 0.
Then, there exist constants C depending on p, but independent of ε , such that

i) If 1< p< 2

∥∇(uε − ûε)∥Lp(Ωε ) ≤Cβ (ε)β ∗(ε)−1∥σ − σ̂∥C (R)

(
∥∇uε∥2−p

Lp(Ωε )
+∥∇ûε∥2−p

Lp(Ωε )

) 2
p
.

(1.171)

ii) If p ≥ 2 then

∥∇(uε − ûε)∥p−1
Lp(Ωε )

≤Cβ (ε)β ∗(ε)−1∥σ − σ̂∥C (R). (1.172)
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We need to study a sufficiently large family of functions σ so that the uniform R
approximation by smooth functions is possible. The following condition seems to fit our
purposes:

|σ(t)−σ(s)| ≤C(|t − s|α + |t − s|p) ∀t,s ∈ R, (1.173)

for some 0 < α ≤ 1 and p ≥ 1. It represents “local Hölder” continuity, in the sense that
there is no need for the function to be differentiable. On the other hand, as |s− t| →+∞, the
function σ behaves like a power, and then σ can be non sublinear at infinity.

We have the following approximation result:

Lemma 1.5.6. Let σ ∈ C (R), nondecreasing and there exists 0 < α ≤ 1, p > 1 such that
(1.173) holds. Then, for every 0 < δ < 1

4C there exists σδ ∈ C (R) (piecewise linear) such
that

∥σδ −σ∥C (R) ≤ δ , (1.174)

0 ≤ σ ′
δ ≤ Dδ 1− 1

α , (1.175)

where D depends only on C,α, p.

The idea now is to consider the solution uε,δ of problems





−∆puε,δ = f ε Ωε ,

∂νpuε,δ +σδ (uε,δ ) = gε Sε ,

uε,δ = 0 ∂Ω.

(1.176)

The process is the following. Pass to the limit as ε → 0 for δ fixed, and characterize the limit
of the solution Pεuε,δ as ε → 0 to some function uδ . Then study the limit of function uδ

as δ → 0 to a certain function û, the equation for which can be obtained through standard
theory. The idea is to construct uniform bounds, that allow us to show û is the limit of Pεuε .
We will see an example of application of this reasoning in the following section.

1.5.6 Homogenization of the subcritical cases a∗ε ≪ aε ≪ ε

In this section we will study the limit behaviour for

1< p<+∞ a∗ε ≪ aε ≪ ε. (1.177)
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Due to the definitions of β0 (see (1.147)) and µε (see (1.144)) we have that

β0 = |∂G0| lim
ε→0

β (ε)β ∗(ε)−1. (1.178)

The aim of this subsection will be to prove the following result:

Theorem 1.7. Let 1< p< n, f ε = f ∈ Lp′(Ω),gε = g ∈W 1,∞(Ω), a∗ε ≪ aε ≪ ε , σ ∈ C (R)
nondecreasing such that σ(0) = 0 and

|σ(v)| ≤C(1+ |u|p−1). (1.179)

Then the following results hold:

i) Let β0 <+∞. Then, up to a subsequence Pεuε ⇀ u in W 1,p
0 (Ω), where u is the unique

solution of {
−∆pu+β0σ(u) = f +β0g Ω,

u = 0 ∂Ω.
(1.180)

ii) Let β0 = +∞, g = 0 and σ ∈ C 1. Then, up to a subsequence Pεuε ⇀ u in W 1,p
0 (Ω)

and u satisfies
u(x) ∈ σ−1(0) (1.181)

a.e. in Ω. In other words, σ(u(x)) = 0 for a.e. x ∈ Ω. In particular, if σ is strictly
increasing then u = 0.

The regularity of σ will be the key difficulty of our approach. As mentioned in the
previous section, let us first study the smooth case.

Remark 1.7. When aε =C0εα and βε = ε−γ∗ then it is easy to compute that

β0 = |∂G0|Cn−1
0 . (1.182)

This coefficient is obtained in all cases.

Smooth kinetic Just the estimates on the normal derivatives allows to homogenize the
noncritical case directly if σ is a uniformly Lipschitz continuous function, since in that case
the sequence σ(uε) in W 1,p(Ωε ,∂Ω) is bounded, and we can pass to the limit in the standard
weak formulation. However, a further analysis allows to do so in many different settings.

Even the case of σ monotone nondecreasing such that σ(0) = 0 and σ ′ locally bounded
is easy to understand. Then, we can pass to the limit in formulation (1.93). If we consider test
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functions v ∈W 1,∞
0 (Ω), then σ(v) ∈W 1,∞

0 (Ω). From the definition of (1.12) it is immediate
that ∥∇uε∥W 1,p

0 (Ω)
is bounded and hence that Pεuε ⇀ u in W 1,p(Ωε). Then, if β (ε)∼ β ∗(ε)

ˆ
Ω
|∇v|p−2∇v · (v−u)dx+β0

ˆ
Ω

σ(v)(v−u)≥
ˆ

Ωε

f vdx. (1.183)

The case β (ε)≫ β ∗(ε) can be studied in a even easier way. In the weak formulation we
get

β ∗(ε)β (ε)−1
ˆ

Ωε

|∇uε |p∇uε ·∇v+β ∗(ε)
ˆ

Sε

σ(uε)v = β ∗(ε)β (ε)−1
ˆ

Sε

f v (1.184)

for any v ∈W 1,p(Ωε ,δΩ). Then, at least for σ ∈W 1,∞(R) monotone nondecreasing such
that σ(0) = 0, as ε → 0 ˆ

Ω
σ(uε)v = 0. (1.185)

Hence σ(uε) = 0. It is important to remark that in the previous literature the limits were
identified to uε = 0, but this is only because σ is required to be strictly increasing (see Table
1.1).

Non smooth kinetic The case of σ ∈ C (R), nondecreasing and σ(0) = 0 and the case
β (ε)β ∗(ε)−1 → 0 can be treated thanks to the approximation Lemma 1.5.5. In essence

∥uε −uε,δ∥W 1,p ≤C∥σ −σδ∥α
∞ (1.186)

for some power α > 0, where σδ is smooth. Hence, as ε → 0, Pεuε,δ ⇀ uδ in W 1,p(Ω),
where uδ is the solution of

{
−∆puδ +β0σδ (uδ ) = f +β0g Ω,

uδ = 0 ∂Ω.
(1.187)

Furthermore, Pεuε ⇀ u in W 1,p(Ω), and the uniform comparison holds in the limit

∥u−uδ∥W 1,p ≤C∥σ −σδ∥α
∞. (1.188)

It is easy to show that, as δ → 0, we have that uδ ⇀ û in W 1,p(Ω), the solution of (1.180).
As we pass δ → 0 in (1.188) we deduce that u = û.
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1.5.7 Homogenization of the supercritical case aε ≪ a∗ε

As mentioned before this case is not very relevant. The proof is very simple. Here we present
briefly the proof by Shaposhnikova and Zubova in [ZS13].

Theorem 1.8. Let σ ∈W 1,∞(R) and let us us consider uε the solution of (1.12) for p = 2,
where f ε = f ∈ L2(Ω) and gε = 0. Let aε ≪ a∗ε . Then, Pεuε ⇀ u in H1

0 (Ω), where u is the
unique solution of 



−∆u = f Ω,

u = 0 ∂Ω.
(1.189)

Remark 1.8. Notice that the previous result is independent of β (ε). If g ̸≡ 0 then, due to
Proposition 1.6 we should consider only the cases β (ε)≪ β ∗(ε) and β (ε)∼ β ∗(ε).

Proof. We already know that Pεuε ⇀ u in H1
0 (Ω) independently of β (ε), due to Proposition

1.6, since gε = 0. Let
K0 = max

y∈G0
|y|.

Let us define, for j ∈ ϒε , functions ψ j
ε ∈C∞

0 (Ω) such that 0 ≤ ψ j
ε ≤ 1 and

ψ j
ε (x) =





0 if |x−P j
ε | ≥ 2K0aε ,

1 if |x−P j
ε | ≤ K0aε ,

|∇ψ j
ε | ≤ Ka−1

ε , (1.190)

and let
ψε = ∑

j∈ϒε

ψ j
ε . (1.191)

It is clear that ψε = 1 in G j
ε . Due to the size of the support, it is also easy to check that

ψε → 0 in H1(Ω). (1.192)

Let ϕ ∈ H1
0 (Ω). Taking ϕ(1−ψε) as a test function in the weak formulation of (1.12) for

p = 2, we have that
ˆ

Ωε

∇uε∇(ϕ(1−ψε))+β (ε)
ˆ

Sε

σ(uε)ϕ(1−ψε) =

ˆ
Ωε

f ϕ(1−ψε). (1.193)

Since (1−ψε) = 0 on Sε we have that

β (ε)
ˆ

Sε

σ(uε)ϕ(1−ψε) = 0. (1.194)
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On the other hand ϕ(1−ψε)→ ϕ in H1 we have that the limit as ε → 0 of equation (1.193)
is ˆ

Ω
∇u∇ϕ =

ˆ
Ω

f ϕ. (1.195)

This completes the proof.

Remark 1.9. As it is clearly seen in the proof, the information of the limit weak formulation
is revealed by the choice of a specific sequence of test function. The auxiliary function ψε

oscillate, by construction, with the repetition of particle. This is precisely why this method is
known as oscillating test function.

In the following sections we will present the results obtained by the author in the critical
cases.

1.5.8 Homogenization of the critical case when G0 is a ball and 1< p<

n

In this section we will study the behaviour for

1< p< n aε =C0εα β (ε) = ε−γ α =
n

n− p
γ = α(n−1)−n.

In this cases, the limit behaviour is the solution of the following problem:

{
−∆pu+A |H(u)|p−2H(u) = f Ω

u = 0 ∂Ω
(1.196)

where

A =

(
n− p
p−1

)p−1

Cn−p
0 ωn (1.197)

and H is the solution of the functional equation

B0|H(x,s)|p−2H(x,s) = σ(x,s−H(x,s))−g(x) (1.198)

B0 =

(
n− p

C0(p−1)

)p−1

(1.199)

where gε(x) = β (ε)g(x).

As it can be seen in Table 1.1 there are many previous works in this direction. The term
|H(u)|p−2H(u) is usually refered to as strange term in homogenization. Since σ and H are
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different functions it can be said that the nature of the reaction changes. This change of
behaviour between the critical and subcritical cases has driven some researchers to make a
connection between this critical case and the unexpected properties of well-studied elements
when presented in nanoparticle form. For example, while a presentation as of gold as
microparticles is inert (behaviour at microscale and macroscale coincide), some studies have
shown that gold nanoparticles are, in fact, catalysts (see [Sch+02]).

1.5.8.1 Weak convergence

This case is the trickiest. In this direction we first studied the case of power type reactions
σ(u) = |u|q−1u, where 0 ≤ q< 1. The case q = 0 corresponds to the case of the Heaviside
functions (which needs to be understood in the sense of maximal monotone operators). In
this direction we published [DGCPS16]. The results and techniques applied in these cases
were later generalized in [DGCPS17c], that deals with a general maximal monotone operator
and 1< p< n. We dealt firstly with the case g = 0, σ = σ(u) and G0 is a ball.

The good setting for this equation is the energy setting, and we consider the definition of
solution (1.94).

As its turns out, equation (1.198), which can be rewritten for maximal monotone operators
as

B0|H(s)|p−2H(s)⊂ σ(s−H(s)), (1.200)

has the following nice property

Lemma 1.5.7. Let σ be a maximal monotone operator. Then (1.200) has a unique solution
H, a nondecreasing nonexpansive function R→ R (i.e. 0< H ′ ≤ 1 a.e.).

In fact, function H can be written in the following way

H(r) = (I +σ−1 ◦Θn,p)
−1(r), (1.201)

where
Θn,p(s) = B0|s|p−2s. (1.202)

and B0 is given by (1.199)
We proved the following

Theorem 1.9 ([DGCPS17c]). Let n ≥ 3, 1 < p < n, α = n
n−p , γ = α(p− 1) and G0 be a

ball. Let σ be any maximal monotone operator of R2 with 0 ∈ σ(0) and let f ∈ Lp′(Ω).

Let uε ∈W 1,p
0 (Ωε ,∂Ω) be the (unique) weak solution of problem (1.12) where f ε = f and

gε = 0. Then there exists an extension ũε of uε such that ũε ⇀ u in W 1,p
0 (Ω) as ε → 0 where
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u ∈W 1,p
0 (Ω) is the (unique) weak solution of the problem (1.196) associated to the function

H, defined by (1.201).

We seek to apply oscillating test functions of the form vε = v−H(v)Wε , where v is a test
function of the limit problem. For this we define the auxiliary problem

Wε =





wε(x−P j
ε ) x ∈ B j

ε \G j
ε ,

0 x /∈ ∪ jB
j
ε ,

1 x ∈ ∪ jG
j
ε ,

(1.203)

where P j
ε is the center of Y j

ε = ε j+ ε[−1
2 ,

1
2 ]

n, B j
ε = B

(
P j

ε ,
ε
4

)
, G j

ε = B
(

P j
ε ,aε

)
and wε is

the solution of 



−∆pwε = 0 aε < |x|< ε
4
,

wε = 0 |x|= ε
4
,

wε = 1 |x|= aε .

(1.204)

This function can be computed explicitly

wε(x) =
|x|−

n−p
p−1 −

( ε
4

)− n−p
p−1

a
− n−p

p−1
ε −

( ε
4

)− n−p
p−1

. (1.205)

The profile of this radial function can be seen in Figure 1.4

aε ε
4

|x|

wε(x)

Fig. 1.4 Function wε

For 1 ≤ q ≤ p ˆ
Ω
|∇Wε |qdx ≤ Kε

n(p−q)
n−p , (1.206)

hence

Wε → 0

{
strongly in W 1,q

0 (Ω) if 1 ≤ q< p,

weakly in W 1,p
0 (Ω).

(1.207)
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The second statement may not seem obvious. However, in W 1,p the norm is bounded, and
hence there must exist a weak limit. This limit must coincide with the W 1,q limits for q< p,
and therefore must be 0.

Theorem 1.10 (Theorem 1.2 in [DGCPS17c]). Let 1< p< n and uε ∈W 1,p
0 (Ωε ,∂Ω) be a

sequence of uniformly bounded norm, v ∈ C ∞
c (Ω), h ∈W 1,∞(Ω) and let

vε = v−hWε . (1.208)

Then

lim
ε→0



ˆ

Ωε

|∇vε |p−2∇vε ·∇(vε −uε)dx


= lim

ε→0
(I1,ε + I2,ε + I3,ε) , (1.209)

where

I1,ε =

ˆ

Ωε

|∇v|p−2∇v ·∇(v−uε)dx (1.210)

I2,ε =−ε−γB0

ˆ

Sε

|h|p−2h(v−h−uε)dS (1.211)

I3,ε =−Aεε ∑
j∈ϒε

ˆ

∂T j
ε

|h|p−2h(v−uε)dS, (1.212)

and Aε is a bounded sequence. Besides, if ũε is an extension of uε and ũε ⇀ u in W 1,p
0 (Ω)

then, for any v ∈W 1,p
0 (Ω)

lim
ε→0

ˆ

Ωε

|∇v|p−2∇v ·∇(v−hWε −uε)dx =
ˆ

Ω

|∇v|p−2∇v ·∇(v−u)dx. (1.213)

Applying the convexity inequality

Ψ(v−H(v))−Ψ(uε)≤ B0|H(v)|p−2H(v) (1.214)

(this is the reason why B0|H(v)|p−2H(v) ∈ σ(v−H(v))) and hence the good choice is
h = H(v). Thus, we show that we have Pεuε ⇀ u in W 1,p(Ω) and u satisfies that, at least for
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v ∈W 1,∞(Ω),

ˆ
Ω
|∇v|p−2∇v · f (v−u)+A

ˆ
Ω
|H(v)|p−2H(v)(v−u)≥

ˆ
Ω

f v, (1.215)

with A given by (1.197) which is enough to conclude the result.

1.5.8.2 Some examples

A relevant case in the applications corresponds to the Signorini type boundary condition
(1.19), which can be written with the maximal monotone operator (1.24), given

H(s) =





H0(s) s ≥ 0,

s s< 0,
(1.216)

where
B0|H0(s)|p−2H0(s) = σ0(s−H0(s)), s> 0. (1.217)

This result was obtained previously in [JNRS14] by ad hoc techniques. In [DGCPS17c], we
provide it as a corollary of a more general theory.

1.5.8.3 Strong convergence with correctors

It was known in the literature that, at least for smooth σ ,

∥u− (uε −H(uε)Wε)∥W 1,p(Ωε ,∂Ω) → 0 (1.218)

as ε → 0. Nonetheless, it seems that no one had noticed that Wε converges strongly to 0 in
W 1,q for q< p. From this fact, we deduce immediately that

∥u−uε∥W 1,q(Ωε ,∂Ω) → 0, for q< p. (1.219)

In the case of Signorini boundary conditions we proved the strong convergence (with
the corrector term for q = p and without it when q< p), which, for the case 1< p< 2, was
published in [DGCPS17a].
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1.5.9 Homogenization of the critical case when G0 is not a ball and
p = 2

For many years, several authors have tried to find a functional equation similar to (1.198)
for the case in which G0 is not a ball. In [DGCSZ17] we proved that such equation does not
exist in a strict sense. Nonetheless, a equation of form (1.196) still holds, but with a more
complicated function H.

Let G0 be diffeomorphic to a ball, p = 2 and aε =C0εα∗
. Then, for any given constant

u ∈ R, we define ŵ(y;G0,u), for y ∈ Rn \G0, as the solution of the following one-parametric
family of auxiliary external problems associated to the prescribed asymmetric geometry G0

and the nonlinear microscopic boundary reaction σ(s):





−∆yŵ = 0 if y ∈ Rn \G0,

∂νyŵ−C0σ(u− ŵ) = 0, if y ∈ ∂G0,

ŵ → 0 as |y| → ∞.

(1.220)

We will prove in Section 4 that the above auxiliary external problems are well defined and, in
particular, there exists a unique solution ŵ(y;G0,u) ∈ H1(Rn \G0), for any u ∈ R.

Definition 1.7. Given G0, we define HG0 : R→R by means of the identity

HG0(u) :=
ˆ

∂G0

∂νyŵ(y;G0,u)dSy

=C0

ˆ
∂G0

σ(u− ŵ(y;G0,u))dSy, for any u ∈ R.
(1.221)

Remark 1.10. Let G0 = B1(0) := {x ∈ Rn : |x|< 1} be the unit ball in Rn. We can find the
solution of problem (1.220) in the form ŵ(y;G0,u) =

H (u)
|y|n−2 , where, in this case, H (u) is

proportional to HB1(0)(u). We can compute that

HG0(u) =
ˆ

∂G0

∂ν ŵ(u,y)dSy

=

ˆ
∂G0

(n−2)HG0(u)dSy

= (n−2)H (u)ω(n),
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where ω(n) is the area of the unit sphere. Hence, due to (1.221), H (u) is the unique solution
of the following functional equation

(n−2)H (u) =C0σ(u−H (u)). (1.222)

In this case, it is easy to prove that H is nonexpansive (Lipschitz continuous with constant 1).
As mentioned before, this equation has been considered in many papers (see [DGCPS17c]
and the references therein).

In [DGCSZ17] we proved several results on the regularity and monotonicity of the
homogenized reaction HG0(u) below. Concerning the convergence as ε → 0 the following
statement collects some of the more relevant aspects of this process:

Theorem 1.11. Let n ≥ 3, aε = C0ε−γ , γ = n
n−2 , σ a nondecreasing function such that

σ(0) = 0 and that satisfies (1.223).

|σ(s)−σ(t)| ≤ k1|s− t|α + k2|s− t| ∀s, t ∈ R, for some 0< α ≤ 1. (1.223)

Let uε be the weak solution of (1.12) with p = 2, f ε = f ∈ L2(Ω) and gε = 0. Then there
exists an extension to H1

0 (Ω), still denoted by uε , such that uε ⇀ u0 in H1(Ω) as ε → 0,
where u0 ∈ H1

0 (Ω) is the unique weak solution of




−∆u0 +Cn−2

0 HG0(u0) = f in Ω,

u0 = 0 on ∂Ω.
(1.224)

Remark 1.11. Since |HG0(u)| ≤C(1+ |u|) it is clear that HG0(u0) ∈ L2(Ω).

Lemma 1.5.8. HG0 is a nondecreasing function. Furthermore:

i) If σ satisfies (1.223), then so does HG0 .

ii) If σ ∈ C 0,α(R), then so is HG0 .

iii) If σ ∈ C 1(R), then HG0 is locally Lipschitz continuous.

iv) If σ ∈W 1,∞(R), then so is HG0 .
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1.6 Homogenization of the effectiveness factor

We conlude the theoretical results in this chapter by presenting some results on the conver-
gence of the effectiveness factor. They can be found in [DGCT16].

Here, as in [CDLT04], we consider the following regularity assumptions:

|g′(v)| ≤C(1+ |v|q), 0 ≤ q<
n

n−2
, (1.225)

and we consider the strictly increasing and uniformly Lipschitz condition:

0< k1 ≤ g ′(u)≤ k2. (1.226)

We proved the following result, which seems to fulfill the intuitions expressed by Aris in his
many works on the subject:

Theorem 1.12 ([DGCT16]). Assume that p = 2, aε =C0εα , 1 ≤ α < n
n−2 and

• If α = 1, (1.225),

• If 1< α < n
n−2 , (1.226).

Then
1
|Sε |

ˆ
Sε

σ(uε)→
1
|Ω|

ˆ
Ω

σ(u) as ε → 0. (1.227)

This result was later improved in

Theorem 1.13 ([DGCPS17d]). Let p> 1, a∗ε ≪ aε ≪ ε , β ∼ β ∗ and σ be continuous such
that σ(0) = 0. Let uε and u be the solutions of (1.12) and (1.180). Lastly, assume either:

i) σ is uniformly Lipschitz continuous (σ ′ ∈ L∞), or

ii) σ ∈ C (R) and there exists 0< α ≤ 1 and q> 1 such that we have (1.173) and

(σ(t)−σ(s))(t − s)≥C|t − s|q, ∀t,s ∈ R. (1.228)

Then (1.227) holds.

Remark 1.12. As we have seen, the behaviour of
´

Sε
in the critical case is more convoluted.

Thus, a convergence of type (1.227) should not be expected. However, results of similar
nature, applying the strong convergence with corrector (1.218) are work under development.
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1.7 Pointwise comparison of solutions of critical and non-
critical solutions

Since we do not have a natural definition of effectiveness in the critical case, the claim that
it is “more effective” than the non critical case -a claim that is often made in the Nanotech-
nology community- is difficult to test. However, we know that, for the non critical cases the
effectiveness is increasing with the value of w. Thus, we have studied whether we can find a
pointwise comparison of the critical and noncritical limits.

Assume in (1.9) that ĝε = 0. Then (1.12) becomes





−∆puε = 0 x ∈ Ωε ,

∂νpuε + ε−γσ(uε) = ε−γ σ̂(1) x ∈ Sε ,

uε = 0 x ∈ ∂Ω.
(1.229)

Notice that the presence of wε = 1 on ∂Ω is translated to a source in Sε for uε . When aε ∼ a∗ε ,
the strange term H is the solution of

B0|H(s)|p−2H(s) = σ(s−H(s))− σ̂(1). (1.230)

Then wε converges weakly in W 1,p(Ω) to wcrit, the solution of




−∆pwcrit +A |h(wcrit)|p−2h(wcrit) = 0 Ω,

wcrit = 1 ∂Ω,
(1.231)

and h is given by

|h(w)|p−2h(w) = σ̂(1)−|H(1−w)|p−2H(1−w). (1.232)

In the noncritical cases, a∗ε ≪ aε =C0εα ≪ ε , we know that an extension of wε converges
weakly in W 1,p(Ω) to wnon-crit, the solution of




−∆pwnon-crit + ˆA σ̂(wnon-crit) = 0 Ω,

wnon-crit = 1 ∂Ω,
(1.233)

with ˆA =Cn−1
0 |∂G0|.
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We showed, first in [DGC17] under restricted assumptions and later in [DGCPS17c], that
a pointwise comparison holds. We stated the following theorem:

Theorem 1.14 ([DGCPS17c]). Let n ≥ 3, p ∈ [2,n), aε ∼ a∗ε , f ε = 0 and σ̂ ∈ C (R) non
decreasing such that σ(0) = 0 Then, we have that

wcrit ≥ wnon-crit. (1.234)

The critical case produces a pointwise “ better” reaction.

1.8 Some numerical work for the case α = 1

To obtain explicit numerical solutions of the different homogeneous and nonhomogeneous
problems COMSOL Multiphysics was applied1. Also, using the LiveLink tool, it allows to
create a Matlab code that we have used to generalize the construction of the obstacles in our
domains.

Fig. 1.5 Interfase of the COMSOL software

1The author wishes to thank Carlos Arechalde Pérez, Pablo Cañones Martín, Denis Coccolo Góngora, Nadia
Loy and Amarpreet Kaur for their work during the IX Modelling Week UCM 2015, where the images were
produced under the guidance of this author.
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1.8.1 Numerical solutions of the non-homogeneous problem

We have simulated that each pellet is inside a periodicity cell. The input parameter of the
function is ε , the side of this periodicity cell, that has four times the area of the pellet. Figure
1.6 shows what happened if we change the value of ε

(a) ε = 1
3

(b) ε = 1
5

(c) ε = 1
12

(d) ε = 1
18

Fig. 1.6 Level set of the solution of (1.8) for Aε = I, σ(u) = u and aε = ε . Different values
of ε , of domain Ω and G0 are presented
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1.8.2 Numerical solutions of the cell problem

The cell problem has solutions which are rather characteristic. If the domain G0 is symmetric
with respect to the axis so is the solution. Due to the periodic boundary conditions, is usually
not easy to simulate the solution with “black box” software.

(a) χ1 solution (b) χ2 solution

Fig. 1.7 Level set of the solutions of (1.72) for G0 a square

(a) Circular inclusions (b) Square inclusions

Fig. 1.8 Two obstacles T , and the level sets of the solution of the cell problem (1.72)

1.8.3 Numerical solutions of the homogeneous problem

From all of the nonhomogeneous simulations, the most interesting results are obtained for the
smallest ε , because we can see that diffussion in this case is pretty similar to the homogenized
problem, as we expected, because of the theoretical results.
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Fig. 1.9 Level sets of the solution of the homogenized problem (1.76), corresponding to the
different cases in Figure 1.6

1.8.4 Approximation of the numerical solutions

The L2 convergence is guarantied by the theoretical results.

(a) Squares inside square (b) Hexagons inside hexagon (c) Circles inside circle

Fig. 1.10 L2 norm convergence of ũε → u

Nonetheless, the L∞ convergence has never been proven in the theorical setting. However,
the numerical solutions seem to converge.

(a) Squares inside square (b) Hexagons inside hexagon (c) Circles inside circle

Fig. 1.11 L∞ norm convergence of ũε → u
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1.8.5 Convergence of the effectiveness

(a) Squares inside square (b) Hexagons inside hexagon (c) Circles inside circle

Fig. 1.12 Convergence efectiveness result: Red line shows the value of non homogeneous
problem. Blue line shows the convergence of the homogeneous problem as a function of the
value n = 1

ε . Notice the order of magnitude in the graphs.
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Appendix 1.A Explanation of [Gon97]

The first paper to properly characterize the change of nonlinear kinetic is [Gon97], which
applies the technique of Γ-convergence when G0 is a ball. However, there are a few steps that
are not clear (at least to a part of the community). We will try to clarify them in this section.

1.A.1 A Γ-convergence theorem

First, we introduce a Γ-convergence theorem proved in [Gon97] under ad-hoc assumptions.
More general statements of similar nature can be found in [Dal93].

Theorem 1.15 ([Gon97]). Let Xε ,X be Hilbert spaces and Φε and Φ be functionals in these
spaces. Let us assume that Φε satisfy the following conditions:

i) There exists θ > 0 such that

Φε(u+ v)≥ Φε(u)+Lε(u;v)+C∥v∥θ
ε ∀u,v ∈ Xε (1.235)

holds, where Lε is the linear functional with respect to v given by the Fréchet differential
of Φε at a point u,

ii) uε ∈ Xε is a minimizer of Φε such that

Φε(0)≥ Φε(uε)≥C1∥uε∥2
ε −C2 (1.236)

where C1 and C2 are constants.

Suppose there exists a set M ⊂ X that is everywhere dense in X and operators Pε : Xε →
X ,Rε : M → Xε satisfying the conditions

i) ∥Pεwε∥ ≤C∥wε∥ε ,∀wε ∈ Xε

ii) PεRεw → w weakly in X as ε → 0, for every w ∈ M

iii) limε→0 ΦεRεw = Φw, for all w ∈ M

iv) For any γε ∈ Xε such that Pεγε → γ weakly in X and any w ∈ M

lim
ε→0

|Lε(Rεw;γε)| ≤ Ψ(∥w∥)∥γ∥ (1.237)

where Ψ(t) is a continuous function of t ≥ 0.
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Then Pεuε → u weakly in X as ε → 0 and u is a minimizer of Φ.

With Goncharenko’s notation Pε is a sort of extension operator (at least asymptotically),
where Rε is an adaptation operator.

1.A.2 Proof of Theorem 1.2

The result stated by Goncharenko is Theorem 1.2. Let us prove this result.

The choice of spaces is, naturally,

X = H1
0 (Ω) Xε = H1(Ωε ,∂Ω) M =C2

c (Ω). (1.238)

Let us define

Vε =

{
v ∈ Xε :

∂v
∂n

+σ ε(v) = 0,Sε

}
.

The main argument of the paper is to show the Γ-convergence of the energy functional. We
define the energy function to be minimized by the solutions:

Φε(vε) =

ˆ
Ωε
(|∇vε |2 +2 f εvε)dx+

ˆ
Sε

ε−γρ(vε)dΓ.

It is easy to check that Φε satifies the hypothesis of Theorem 1.15. The technique of the
proof by Goncharenko passes by the construction of the following operator

Rε : M = C 2(Ω)→V ε

which imposes the boundary condition to any C2 functions. Let ϕ(t) be continuous (0 ≤ ϕ ≤
1) and such that

ϕ(t) =





1 t ≤ 3
2 .

0 t ≥ 2.

Let us suppose there is only one particle, a ball of center 0. Let us say we want a behaviour
of the type

Rεw ∼





w(xi) εα − scale,

w(x)+Fεw(x) ε − scale,

w(x) 1− scale,
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for some operator Fε , to be defined later. Then we can define Rε in three parts

Rεw = w(x)+(w(0)−w(x))ϕ
( |x|

εα

)
+Fεw(x)ϕ

(
4|x|
ε

)
,

each one of them captures the behaviour in three different zones. Since the particle is a ball
we can try with a operator Fε that yields radial functions: Fεw(x) = Fεw(|x|).

Let us impose the condition Rεw ∈V ε . The definition of this function in the paper comes
out of the blue to serve its purpose. We wanted here to explain the rationale behind this
choice. First, in a neighbourhood of {|x|= εα}= G0

ε we find that

ϕ
( |x|

εα

)
= 1,

so in this neighborhood

Rεw(x) = w(x0)+Fεw(x), εα < |x|< 3
8

εα .

Therefore
∇Rεw(x) = (Fεw)′(|x|) x

|x|
and, on {|x|= εα}, we have

∂Rεw
∂n

+ ε−γσ(Rεw(x)) = (Fεw)′(εα)+ ε−γσ(w(0)+Fεw(εα)).

where, we remind that γ = 2α −3. Hence, it will be useful to take Fεw a function such that
φ ′ =−φ 2. This is, precisely φ(s) = A

s . If Fεw(|x|) =−Aε

|ε| (so that the derivative later on has
a nice sign) we have that

Aεε−2α = ε−2α+3σ(w(0)−Aεε−α).

Hence
Aεε−3 = σ(w(0)−Aεε−α).

Now take Bε = Aεε−3 then
Bε = σ(w(0)+Bεε3−ε),
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in the limit the equation would become




B0 = σ(w(0)) α < 3,

B0 = σ(w(0)−B0) α = 3.

The previous reasoning explains the following choices. When α = γ = 3 let us take
Aε = Aε3 where A is the solution of the implicit equation

A = σ(w(0)−A).

Since H is the solution of (1.81) we have that

A = H(w(0)).

On the other hand, for α < 3 let us choose simply A = σ(w(0)).

Eventually

Rεw = w(x)+(w(0)−w(x))ϕ
( |x|

εα

)
− Aε

|x|ϕ
(

4|x|
ε

)
.

It is important that we do not loose the notion that 0 ≤ Aε ≤ ε3. Eventually, since the particles
are balls located at the points xi

Rεw(x) = w(x)+
N(ε)

∑
i=1

(w(xi)−w(x))ϕ
( |x− xi|

εα

)
−

N(ε)

∑
i=1

Aε
i

|x− xi|
ϕ
(

4|x− xi|
ε

)
,

where

Aε
i = Aiε3, Ai =





σ(w(xi)) α < 3,

H(w(xi)) α = 3.
(1.239)

The deduction of the estimates of the convergence were also not detailed in Goncharenko’s
paper. We give the details in the following lines. We have that

∇Rεw =∇w+
N(ε)

∑
i=1

(−∇w(x))ϕ
( |x− xi|

εα

)
+

N(ε)

∑
i=1

(w(xi)−w(x))ϕ ′
( |x− xi|

εα

)
x− xi

|x− xi|εα

(1.240)

+
N(ε)

∑
i=1

Aε
i

|x− xi|2
ϕ
(

4|x− xi|
ε

)
−

N(ε)

∑
i=1

Aε
i

|x− xi|
ϕ ′
(

4|x− xi|
ε

)
x− xi

|x− xi|ε
. (1.241)
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When integrating the squares of the above (which is easily done is spherical coordinates)
only a couple of terms survive: for sure the terms without ϕ and, from the ones with ϕ only
the most singular one, the term

Aε
i

|x− xi|2
ϕ
(

4|x− xi|
ε

)

is to be significant. Let us see how. First we integrate

ˆ
Ωε

∣∣∣∣
Aε

i
|x− xi|2

ϕ
(

4|x− xi|
ε

)∣∣∣∣
2

dx = A2
i ε6
ˆ Cε

εα

1
r4 ϕ

(
4r
ε

)
r2dr

= A2
i ε5
ˆ 1

εα−1

1
s2 ϕ(4s)ds ∼ A2ε6−α .

The other terms go to 0 as ε p, p> 3 and so

ˆ
Ωε

|Rεw|2dx =
ˆ

Ωε

|w|2 +
N(ε)

∑
i=1

Cε p =

ˆ
Ωε

|w|2 +Cε p−3, p> 3,

and ˆ
Ωε

|∇Rεw|2dx =
ˆ

Ωε

|∇w|2 +
N(ε)

∑
i=1

Aiε3−α +Cε p−3, p> 3,

since Ai = H(w(xi)) as the author says

Φε(Rεw) =
ˆ

Ωε
(|∇w|2 ++2 f εRεw)dx+

N(ε)

∑
i=1

A2
i ε6−α

+

ˆ
Sε

ε−γρ(Rεw)dΓ+E(ε,w)

=

ˆ
Ωε
(|∇w|2 +2 f εRεw)dx+

N(ε)

∑
i=1

A2
i ε3

+ ε−γ ∑
i∈ϒε

ˆ
Gε

i

ρ(w(xi)−Aiεε−α)dΓ+E(ε,w).

where E(ε,w) goes to 0. Classical integration results guaranty the convergence of the
Riemann sum. When α = 3

N(ε)

∑
i=1

A2
i ε6−α =

N(ε)

∑
i=1

H(w(xi))
2ε3 →

ˆ
Ω

H(w(x))2.
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Notice that, if α < 3, then

N(ε)

∑
i=1

A2
i ε6−α = ε3−α

N(ε)

∑
i=1

σ(w(xi))
2ε3 → 0.

On the other hand

ε−γ ∑
i∈ϒε

ˆ
Gε

i

ρ(w(xi)−Aiεε−α)dΓ → 4π





ˆ
Ω

ρ(x) α < 3,
ˆ

Ω
ρ(x−H(x)) α = 3.

(1.242)

Thus, the Γ-limit is

Φ(w) =
ˆ

Ω
|∇w|2 +2 f w+





ρ(x) 2< α < 3,

H(w(x))2 +ρ(x−w(x)) α = 3.
(1.243)

Hence, we see the appearance of the “strange term” for α = 3. If α < 3 then we do not have
this term, as it is noted on the paper. Surprisingly, note that the strange comes out of the
diffusion operator. Applying Theorem 1.15 we conclude the proof of Theorem 1.2.





Chapter 2

Optimizing the effectiveness:
symmetrization techniques

From this chapter on, due to the common practice of notation in this fields, which does not
coincide with the practice the homogenization community will use the notation that follows
for the homogeneous problem derived in the previous section:




−∆w+β (w) = f̂ in Ω,

w = 1 on ∂Ω.
(2.1)

As we will play now with different domains Ω we will denote this solution wΩ. By introducing
the change in variable u = 1−w the problem can be reformulated as




−∆u+g(u) = f in Ω,

u = 0 on ∂Ω,
(2.2)

where g(u) = β (1)−β (1− u) and f = β (1)− f̂ . In this case we write the effectiveness
factor as:

E (Ω) =
1
|Ω|

ˆ
Ω

β (wΩ)dx (2.3)

and the ineffectiveness η(Ω) = β (1)−E (Ω) as

η(Ω) =
1
|Ω|

ˆ
Ω

g(uΩ)dx. (2.4)

Roughly, we aim to find extremal sets Ω which maximize and minimize this functional,
applying rearrangement techniques.
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2.1 Geometric rearrangement: Steiner and Schwarz

As stated by Polya and Szegö [PS51] symmetrization is a geometric operation invented
by Jakob Steiner1 (see [Ste38] for the original reference). The original idea of Steiner
symmetrization, as presented in [PS51] is purely geometrical: Considering a body B and a
plane construct another body B∗ such that:

• it is symmetrical with respect to the plane and

• for every line perpendicular to the plane, the intersections between it and the bodies B
and B∗ have the same lengths.

This process is shown to not increase the surface area, and to maintain the volume unchanged
(this is simply a consequence of Fubini-Tonelli’s theorem). By taking different planes we
can deduce that, for fixed volume, a convex domain is a minimizer of surface area.

Later H. Schwarz2 applied a similar method, but in which symmetrization was taken
with respect to a line. As Steiner did with is symmetrization, Schwarz proved that Schwarz
symmetrization leaves the volumen unchanged but diminishes (in the sense that it never
increases) the surface area. In particular, Schwarz rearrangement can be obtained as a limit
of Steiner symmetrizations. This was done for convex bodies in [PS51, p. 190], [Lei80, p.
226], and for non convex bodies in [BLL74].

For some reason, the original definition of Schwarz symmetrization was diffused in the
literature, as noted by Kawohl in [Kaw85, p. 16]:

Polya and Szegö distinguish between Schwarz and point symmetrization.
Their definition of "symmetrization of a set with respect to a point" coincides
with our [in his book] definition of Schwarz symmetrization and is commonly
refered to as Schwarz symmetrization [Ban80b; Lio80; Mos84].

We will present later the definition as it commonly used nowadays. Let us start by saying a
few words about isoperimetric inequalities.

1Jakob Steiner (18 March 1796 – 1 April 1863) was a Swiss mathematician who worked primarily in
geometry.

2Karl Hermann Amandus Schwarz (25 January 1843 – 30 November 1921) was a German mathematician,
known for his work in complex analysis. Do not confuse with Laurent-Moïse Schwartz (5 March 1915 – 4 July
2002), a French mathematician. The later pioneered the theory of distributions, which gives a well-defined
meaning to objects such as the Dirac delta function.
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2.2 Isoperimetric inequalities

As mentioned in the previous section, one of the most classical result obtained via sym-
metrization techniques is the isoperimetric inequality:

From all n-dimensional bodies of a given volume, the n-ball is the one of least
surface.

In the plane the solution was believed to be the circle from the time of Kepler. However the
first succesful attempt towards proving this result mathematically in dimension 2 was made
by Steiner in 1838 (see [Ste38]). This isoperimetic inequality in the plane can be written as
follows. Let Ω be a smooth domain in R2, let A be its surface area and L its perimeter. Then

4πA ≤ L2. (2.5)

Of course, equality holds for the circle. The surprising fact is that holds only when the
domain is a circle.

Since this initial result there has been substancial research in this direction. For example,
Hurwitz in 1902 applied Fourier series (see [Hur01]) and, in 1938, E. Schmidt made a proof
using the arc length formula, Green’s theorem and the Cauchy-Schwarz inequality (see
[Sch39]).

A generalization of the isoperimetric inequalities is already well known. It can be written
in the following terms:

Theorem 2.1 (Federer, 1969 [Fed69]). Let S ⊂Rn be such that S has finite Lebesgue measure.
Then

nω
1
n
n Ln(S)

n−1
n ≤ Mn−1

∗ (∂S) (2.6)

where ωn is the volume of the n-ball, Mn
∗ is the Minkowski content and Ln is the Lebesgue

measure.

In [Tal16; Ban80a; Rak08; BK06] the reader can find a survey on the study isoperimetric
inequalities.

This geometrical inequality is equivalent to a result which is of interest to the specialist
in Partial Differential Equations: the Sobolev inequality

nω
1
n
n

(ˆ
Rn

|u| n
n−1

) n−1
n

≤
ˆ
Rn

|∇u|, ∀u ∈W 1,1
c (Rn). (2.7)
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2.3 From a geometrical viewpoint to rearrangement of func-
tions

Once a particular type of rearrangement Ω∗ of a set Ω is understood there is a natural way to
define the rearrangement of a function u : Ω → R. Consider the level sets:

Ωc = {x ∈ Ω : u(x)≥ c}, c ∈ R. (2.8)

One can define the rearrangement u∗ of u as:

u∗ : Ω∗ → R, u∗(x) = sup{c ∈ R : x ∈ (Ωc)∗}. (2.9)

Over the years, several other different types of rearrangements have been developed, an
applied with success to different types of problems, with particularly good results in geome-
try and function theory, specially in PDEs. A catalogue of this techniques can be found in
[Kaw85] (although there are many others excelent references, e.g., [Rak08; Ban80b]).

As noted in [PS51] both Steiner and Schwarz symmetrization reduce the Dirichlet integral
of functions vanishing in the boundary. Informally

ˆ
Ω∗

|∇u∗|2 ≤
ˆ

Ω
|∇u|2, if u = 0 on ∂Ω (2.10)

This immediately appeals to the imagination of the PDE specialist. What seemed as a purely
geometrical tool becomes a functional one.

2.4 The coarea formula

Symmetrization is the art of understanding the level set. The following result, known as the
coarea formula, allows us to make consider level sets as domain of integration in Fubini-
Tonelli theorem-like change of variable. For smooth functions it follows directly as a change
of variables. A more general form it was stated by Federer in [Fed59] for Lipschitz functions
and for bounded variation functions by Fleming and Rishel in [FR60]. We present the result
as it appears in Federer’s book [Fed69].
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Theorem 2.2. Let u be a Lipschitz function. Then for all g ∈ L1(Ω) then

ˆ
Ω

g(x)|∇u(x)|dx =
ˆ +∞

−∞

(ˆ
u−1(t)

g(x)dHn−1(x)

)
dt (2.11)

where Hn is n-dimensional Hausdorff measure.

The usual formulation is the particular case g ≡ 1. This formula, jointly with the
isoperimetric inequality, gives a proof of the Sobolev inequality for W 1,1(Rn) given by (2.7).

2.5 Schwarz rearrangement

2.5.1 Decreasing rearrangement

For the purpose of this thesis we will focus mainly on two types of rearrangements: Schwarz
and Steiner rearrangements. In particular we will be interested in studying this rearrangement
as a tool in studying the Laplace operator, and other operators in divergence form as a first
step for the consideration of problem (2.1). First, we introduce the (modern) definition of
Schwarz symmetrization

Definition 2.1. Let Ω ⊂ Rn. We define the Schwarz rearrangement of Ω as

Ω⋆ = B(0,R), such that |Ω⋆|= |Ω|. (2.12)

where B(0,R) as ball centered at 0 of radius R.

The process of symmetrization for this kind of problems was introduced by Faber [Fab23]
and Krahn [Kra25; Kra26] in their proof of the Rayleigh’s conjecture, which can be stated in
the following terms

Theorem 2.3 (Rayleigh-Faber-Krahn). Let

λ (Ω) = min
u∈H1

0 (Ω)

´
Ω |∇u|2´

Ω u2 . (2.13)

Then
λ (Ω)≥ λ (Ω⋆). (2.14)
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In modern terms λ (Ω) is, of course, known as the first eigenvalue for the Laplace operator,
and λ (Ω) can be though as the smallest real number such that




−∆u = λu, Ω,

u = 0, ∂Ω,
(2.15)

has a nontrivial solution. The nontrivial solutions of this problem are known as eigenfunction.
They will be used extensively in Part II.

Definition 2.2. Let u : Ω → R be a measurable function. We define the distribution function
of u, µ : [0,+∞)→ [0,+∞), as

µ(t) = |{x ∈ Ω : |u(x)|> t}| (2.16)

and the decreasing rearrangement of u, u∗ : [0,+∞)→ R as

u∗(s) = sup{t ≥ 0 : µ(t)> s}. (2.17)

Definition 2.3. We introduce the Schwarz rearrangement u⋆ of u as

u⋆(x) = u∗(ωn|x|n) (2.18)

where ωn represents the volume of the n-dimensional unit ball.

2.5.2 The three big inequalities and one big equation

There are several inequalities involving these rearrangements which will be of a great impor-
tance for us.

The Hardy-Littlewood-Polya inequality is very import since it allows to bound products
in L2. It can be stated as follows

Theorem 2.4 (Hardy-Littlewood-Polya, 1929 [HLP29]). Let Ω be a measurable subset of
Rn and f ,g be non negative measurable functions. Then

ˆ
Ω

f g ≤
ˆ |G|

0
f ∗g∗. (2.19)

The second remarkable inequality is Riesz’s inequality . It is very useful in order to make
a priori comparisons with Green’s kernel
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Theorem 2.5 (Riesz, 1930 [Rie30]). Let Ω be a measurable subset of Rn and f ,g be non
negative measurable functions. Then

ˆ

Rn×Rn

f (x)g(x− y)h(y)dxdy ≤
ˆ

Rn×Rn

f ⋆(x)g⋆(x− y)h⋆(y)dxdy. (2.20)

Both results, and further techniques, were compiled in one of the references text in the
subject [HLP52].

Only a few years after the first appearance of these two results, in 1945, Polya and
Szegö publish [PS45], were they introduce the following inequality, to prove that the capac-
ity of a condenser diminishes or remains unchanged by applying the process of Schwarz
symmetrization.

Theorem 2.6 (Polya-Szego [PS45]). Let u : Rn → R+ in W 1,p(Rn) where 1 ≤ p< ∞. Then

ˆ
Rn

|∇u⋆|p ≤
ˆ
Rn

|∇u|p. (2.21)

This result was also useful in the proof of the Choquard conjecture by Lieb [Lie77].

The collaboration between Polya and Szegö continued in time, and they updated [PS51]
over several editions. This is a reference text in isoperimetric inequalities and the use of
different rearrangements in Mathematical Physics.

The final inequality could be one the most important in the theory, because it is used to
convert the original PDE for u to a PDE for µ .

Theorem 2.7 ([BZ87]). Let u ∈W 1,p for some 1 ≤ p< ∞. Then the following holds:

i) µ is one-to-one.

ii) u∗ ◦
(

µ(t)
ωn

) 1
n
= Id.

iii) We can decompose µ as

µ(t) = |{x ∈ Ω : |∇u|= 0,u(x)> t}|+
ˆ +∞

t

ˆ
u−1(t)

|∇u|−1dHn−1ds. (2.22)
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iv) For almost all t,

−∞<
dµ
dt

≤
ˆ

{x∈Ω:u(x)=t}

−1
|∇u|dHn−1, a.e. t ∈ R. (2.23)

Equality holds in the previous item if |∇u| ̸= 0.

v) For almost all t, dµ
dt < 0.

2.5.3 Concentration and rearrangement

Even though the stronger results show that we have a pointwise comparison u⋆ ≤ v this is
not the case in general. However, there is a property much nicer in terms of rearrangements:
the concentration. This term, which appears frequently in the mathematical literature, must
not be confused with the chemical concept of concentration. As will see from the following
definition they are entirely different.

Definition 2.4. Let Ω be an open set of Rn and let ψ ∈ L1(Ω1),φ ∈ L1(Ω2), |Ω1| = |Ω2|.
We say that the concentration of φ is less or equal than the concentration of ψ , and we denote
this by φ ⪯ ψ if ˆ t

0
φ∗(s)ds ≤

ˆ t

0
ψ∗(s)ds, ∀t ∈ [0, |Ω|]. (2.24)

Equivalently, ˆ
Br(0)

φ⋆(x)dx ≤
ˆ

Br(0)
ψ⋆(x)dx. (2.25)

The following lemma is a very important result. It allows to understand the importance
of convex functions in symmetrization.

Lemma 2.5.1. Let y,z ∈ L1(0,M), y and z nonnegative. Suppose that y is nonincreasing and

ˆ t

0
y(s)ds ≤

ˆ t

0
z(s)ds, ∀t ∈ [0,M]. (2.26)

Then, for every continuous non decreasing convex function Φ we have

ˆ t

0
Φ(y(s))ds ≤

ˆ t

0
Φ(z(s))ds, ∀t ∈ [0,M]. (2.27)

Applying this result it is possible to obtain the following properties (see [HLP52; HLP29;
RF88; CR71; ATL89]).
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Proposition 2.1. Let Ω1,Ω2 be Borel sets in RN1,RN2 respectively such that |Ω1|= |Ω2| and
φi ∈ L1

+(Ωi) (i.e. it is is in L1 and non-negative). Then, the following are equivalent:

i) φ1 ⪯ φ2

ii) F(φ1) ⪯ F(φ2) for every nondecreasing, convex function F on [0,+∞) such that
F(0) = 0.

iii) For all ψ ∈ L1 ∩L∞(Ω1)

ˆ
Ω1

ϕ1ψ ≤
ˆ |Ω2|

0
ϕ∗

2 ψ∗ =
ˆ

Ω⋆
2

ϕ⋆
2 ψ⋆ (2.28)

iv) For all ψ nonincreasing on (0, |Ω1|), ψ ∈ L1 ∩L∞(0, |Ω1|)
ˆ |Ω1|

0
ϕ∗

1 ψ ≤
ˆ |Ω2|

0
ϕ∗

2 ψ. (2.29)

2.5.4 Schwarz symmetrization of elliptic problems

It is precisely in 1962, in a book in honor of Polya edited by Szegö [Wei62] that Weinberger
extends the results by Faber and Krahn to obtain isoperimetric results for the Dirichlet
problem with general elliptic self adjoint operator

L =
N

∑
i, j=1

∂xi

(
ai j(x)∂x j

)
. (2.30)

In 1976 Bandle [Ban76a] gives a pointwise estimates of the decreasing rearrangements of
the solution of −∆u+αu+1 with Dirichlet boundary condition. In 1978, in [Ban78], she
gives estimates on the Green kernel. In the same year Alvino and Trombetti [AT78] present
result similar to Weinberger’s for degenerate (non elliptic) equations.

In 1979 Talenti [Tal79] apply Schwarz symmetrization techniques, to improve upon the
results of Weinberger and Bandle. He focuses on non linear elliptic equations of the form




−div(a(x,u,∇u))+g(x,u) = 0 Ω,

u = h ∂Ω,
(2.31)

under the hypothesis

i) There exists A : [0,+∞)→ R convex such that :
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i) a(x,u,ξ ) ·ξ ≥ A(|ξ |)
ii) A(r)/r → 0 as r → 0

ii) g is measurable and
(g(x,u)−g(x,0))u ≥ 0 (2.32)

iii) h ∈ L∞(Ω) and ˆ
Ω

A(|∇h|)< ∞. (2.33)

In the case h ≡ b a constant Talenti introduces the “rearranged problem”



−div(A(|∇v|)

|∇v|2 ∇v) = f ⋆ Ω⋆,

v = b ∂Ω⋆.
(2.34)

He manages to prove, for the first time in literature, that we can compare pointwise u⋆ with a
different solution (which is easier to compute analytically). In fact

u⋆ ≤ v, a.e. Ω⋆ (2.35)

Notice that, if a(x,u,ξ ) = ξ , the operator is the usual Laplace operator and A(ξ ) = ξ 2.

In 1980 P.L. Lions [Lio80] provides a simpler proof of this result in the linear case with
h ≡ 0 and extends the estimates to operator in the form A = Lu+ c were L is second order
elliptic and c : Ω → R. He compares the problems




−∆u+ cu = f Ω,

u = 0 ∂Ω,
and




−∆v+(c+)⋆⋆v− (c−)⋆v = f ⋆ Ω⋆

v = 0 ∂Ω⋆
(2.36)

where φ⋆⋆(x) = φ∗∗(ωn|x|) and φ∗∗(s) = φ∗(|Ω| − s). This last function is known as the
increasing rearrangement of φ . Analogously to the Schwarz rearrangement φ⋆⋆ represent
represents the unique radial increasing function with the same distribution function as |φ | (it
can be defined by analogy to the Schwarz rearrangement).

Lions shows that, ˆ
Ω

F(|u|)≤
ˆ

Ω⋆
F(v) (2.37)
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for all function F : R+ →R+ positive, increasing and convex. Besides, if c ≤ 0, we have that

u⋆ ≤ v, a.e. Ω⋆. (2.38)

At the end of this paper Lions indicates that some nonlinear cases are immediately
covered by the linear case, by simply taking a sequence of solutions −∆un+1 = g(un) and
applying the comparison, since g(un)

⋆ = g(u⋆n). Around the same time, in 1979, Chiti in
[CP79] (see [Chi79] in Italian) proved a similar result, by using a limit of simple functions.
However, his result was presented as a Orlicz norm result, rather than as a PDE result.

The ideas behind both [Tal79] and [Lio80] is explained very elegantly in 1990 by Talenti
in [Tal90]. By applying the Hardy-Littlewood-Polya inequality, the isoperimetric inequality
in Rn and the coarea formula one the boundary value problem can be rewritten in terms of a
ODE for the distribution function

nω
1
n
n µ(t)1− 1

n B

(
nω

1
n
n

µ(t)1− 1
n

µ ′(t)

)
≤
ˆ µ(t)

0
g(s)ds. (2.39)

Returning to a chronological order, in 1984, in the more general context of Mathematical
Physics, Mossino publishes a book [Mos84] which contains a number of interesting state-
ments on elliptic problems. However, none of the results are necessary to the interest of this
Thesis.

In 1985 Díaz in [Día85] polishes some of the previously presented rearrangement tech-
niques, in order to obtain estimates for free boundaries that rise in problem (2.40), when g is
not a Lipschitz function. The results are extended to the p-Laplace operator and the regularity
hypothesis are simplified. The following theorem is stated:

Theorem 2.8. Let u,v be the solutions of problems



−div(A(x,u,∇u))+g(u) = f1 Ω,

u = 0 ∂Ω,
(2.40)

and



−∆pv+g(v) = f2 Ω,

v = 0 ∂Ω,
(2.41)
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where

i) A is a Caratheodory function such that A(x,u,ξ )≥ |ξ |p

ii) g is continuous non decreasing such that g(0) = 0

iii) f1 ∈ Lp′(Ω) such that f1 ≥ 0

iv) f2 ∈ Lp′(Ω⋆) such that f2 = f ⋆2

v)
´ t

0 f ∗1 ≤
´ t

0 f ∗2 for all t ∈ [0, |Ω|]

Then ˆ t

0
g(u∗)≤

ˆ t

0
g(v∗), t ∈ [0, |Ω|]. (2.42)

In particular, for any convex nondecreasing real function Φ
ˆ

Ω
Φ(g(u))≤

ˆ
Ω⋆

Φ(g(v)). (2.43)

Notice that, in this more general setting, the result is not as strong as in the case withouth
the absortion. We do not have a pointwise comparison of u⋆ and v. Behind the proof is the
following lemma

Lemma 2.5.2. Let u be the solution of (2.40). Then u∗ is absolutely continuous in [0, |Ω|]
and

− du∗

ds
(s)≤

(
1

nω
1
n
n s

n−1
n

) p
p−1 [ˆ s

0
f ∗1 (θ)dθ −

ˆ s

0
g(u∗(θ))dθ

]
. (2.44)

Let v be the solution of (2.41), then equality holds if g2 is radial.

In the proof of this lemma there are two main ingredients. The first is a general statement
on the distribution function.

Lemma 2.5.3. Let z ∈W 1,p
0 (Ω), z ≥ 0. Then if µ(t) = |{x ∈ Ω : z(x)> t}| one has

nω
1
n
n µ(t)

n−1
n ≤

(
−dµ

dt
(t)
) 1

p


− d

dt

ˆ

{z(x)>t}

|∇z(x)|pdx




1
p

. (2.45)

The second one is a particular computation on an integral of the solution of problem
(2.40).
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Lemma 2.5.4. Let u ∈W 1,p
0 (Ω) be a nonnegative solution of (2.40). Then the function

Ψ(t) =
ˆ

{u(x)>t}

A(x,u,∇u) ·∇udx (2.46)

is a decreasing Lipschitz continuous function of t ∈ [0,+∞), and the inequality

0 ≤−dΨ
dt

(t)≤
ˆ µ(t)

0
f ∗1 (s)ds−

ˆ µ(t)

0
g(u∗(s))ds. (2.47)

The last assertion of the theorem is a consequence of the Lemma 2.5.1.

Finally in 1990 Alvino, Trombetti and Lions, in [ATL90], prove the result for a general
operator in the form

Lu =−div(A(x)∇u)+∇(b(x)u)+d(x) ·∇u+ c(x)u (2.48)

under weak restriction on the operators. For completeness, and under the general operator
−div(a(x,u,∇u)), jointly with Ferone in [AFTL97], they extend the Polya-Szegö inequality
and some of the previous lemmas to a more general context. As a corollary of their analysis
they manage to obtain an comparison of the form u⋆ ≤Cnv.

2.5.5 Schwarz rearrangement of parabolic problems

The application of rearrangement techniques to parabolic equations was considered for the
first time in 1976 by C. Bandle in [Ban76b]. This result was announced in 1975 in a Comptes
Rendus note (see [Ban75]). The compared problems in this case are





∂u
∂ t

−∆u = f (x) Ω× (0,∞),

u = 0 ∂Ω× [0,+∞),

u(·,0) = u0 Ω

, and





∂v
∂ t

−∆v = f ⋆(x), Ω⋆× (0,∞),

v = 0 ∂Ω⋆× [0,+∞),

v(·,0) = v⋆0 Ω⋆,
(2.49)

where Ω has to be piecewise analytic. As described in the text:

The proof is based on a differential inequality and uses very much a system of
curvilinear coordinates defined by the level surfaces of u(x, t). The introduction
of those coordinates requires a strong assumption on the regularity of u(x, t).
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Let µ, µ̃ be the distribution functions of u and v respectively. By defining

H(a, t) =
ˆ t

0
µ(t,s)ds, H̃(a, t) =

ˆ a

0
µ̃(t,s)ds. (2.50)

Then





−∂H
∂ t

+ p(a)
∂ 2H
∂a2 +

ˆ ·

0
f ∗(s)ds ≥ 0

H(0, t) = 0,

∂H
∂a

(0, t) = max
Ω

u(x, t),

∂H
∂a

(|Ω|, t) = 0,





−∂ H̃
∂ t

+ p(a)
∂ 2H̃
∂a2 +

ˆ ·

0
f ∗(s)ds = 0

H̃(0, t) = 0,

∂ H̃
∂a

(0, t) = max
x∈Ω⋆

v(x, t),

∂ H̃
∂a

(|Ω|, t) = 0.
(2.51)

From this we can conclude that u ⪯ v.

After this initial result, that worked only for smooth classical solutions some general-
izations appeared. In 1982 J. L. Vazquez showed similar results for the porous medium
equation: ut −∆ϕ(u) = f (see [Váz82]). Mossino and Rakotoson in 1986 (see [MR86])
obtained a similar result under weaker regularity by considering the directional derivative of
the rearrangement, a technique that first appeared in [MT81].

A generalization comes in 1992, by Alvino, Trombetti and P.L. Lions in [ALT92], by
applying the techniques in [MR86], simple properties of the fundamental solution and
semigroup theory (in particular the Trotter formula which will be introduced in Section
2.7.3), which allows to reduce the regularity condition on the data and the solution. They
obtain the expect comparison between the problem:





∂u
∂ t −div(A(x, t)∇u)+a(x, t)u = f (x, t) Ω× (0,T ),

u = 0 ∂Ω× (0,T ),

u = u0 Ω×{0},
(2.52)

under the assumptions




ai j,a ∈ L∞(Ω× (0,T )), f ∈ L2(Ω× (0,T )),u0 ∈ L2(Ω),

∃ν ∈ L∞(0,T ),α > 0,∀ξ ∈ Rn : ξ tA(x, t)ξ ≥ ν(t)|ξ |2 ≥ α|ξ |2,
(2.53)
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and the problem




∂v
∂ t −ν(t)∆v+{a1 −a2}v = g(x, t) Ω⋆× (0,T ),

v = 0 ∂Ω⋆× (0,T ),

v = u⋆0 Ω⋆×{0}.
(2.54)

under the assumptions




ai ∈ L∞
+(Ω⋆× (0,T )),v0 ∈ L2

+(Ω⋆),g ∈ L2
+(Ω⋆× (0,T )),

a2,−a1,g are spherically symmetric, nonincreasing

with respect to |x|, for almost all t ∈ (0,T ),

(2.55)

As stated in [ALT92] the result reads:

Theorem 2.9. Let u be the solution of (2.52) under hypothesis (2.53) and v the solution
(2.54) under hypothesis (2.55). Assume further that,





u0 ⪯ v0, a−(t)⪯ a2(t), f (t)≺ q(t),´ r
0 (a1)

∗∗ ≤
´ r

0 (a
∗∗)+, for all r ∈ [0, |Ω|], for a.e. t ∈ (0,T )

(2.56)

Then, for all t ∈ [0,T ],
u(t)⪯ v(t) (2.57)

(in the sense of Definition 2.4).

2.6 A differentiation formula

Most results in PDEs using symmetrizaqtion techniques pass by the consideration of differ-
entiation formulas of the following function

H(s,y) =
ˆ

{u(x,y)>t}

f (x,y)dx. (2.58)

In 1998 Ferone and Mercaldo in [FM98] state a second order differentiation formula for
rearrangements (citing works in Steiner rearrangement, [ATDL96], which we will present in
the following section)
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Theorem 2.10. Let Ω = Ω′× (0,h) u be a nonnegative function in W 2,p(Ω), were p> n+1
and let f be Lipschitz in Ω. Assume that

|{x ∈ Ω : |∇xu|= 0,u(x,y) ∈ (0,supu(·,y))}|= 0, ∀y ∈ (0,h). (2.59)

Then we have

i) For any y ∈ (0,h), H is differentiable with respect to s for a.e. s ≥ 0 and

∂H
∂ t

(t,y) =−
ˆ

u(x,y)=t

f (x,y)
|∇xu| dHn−1(x). (2.60)

ii) For every fixed s, H is differentiable with respect to y and

∂H
∂y

(s,y) =
ˆ

u(x,y)>t

∂ f
∂y

(x,y)dx+
ˆ

u(x,y)=t

∂u
∂y

(x,y)
f (x,y)
|∇xu| dHn−1(x). (2.61)

From this we can extract the following corollary, which is of capital importance in
symmetrization.

Corollary 2.1. Let u ∈W 1,∞(Ω× (0,h)) be nonnegative. Then

ˆ

u(x,y)>u∗(s,y)

∂ 2u
∂y2 (x,y)dx =

∂ 2

∂y2

ˆ s

0
u∗(σ)dσ −

ˆ
u(x,y)=u∗(s,y)

(
∂u
∂y

)2

|∇xu| dHn−1(x) (2.62)

+




ˆ

u(x,y)=u∗(s,y)

∂u
∂y (x,y)

|∇xu| dHn−1(x)




2


ˆ

u(x,y)=u∗(s,y)

1
|∇xu|dHn−1(x)




−1

.

(2.63)

2.7 Steiner rearrangement

The idea of the Schwarz rearrangement (in the modern definition) is to consider radially
decreasing functions. A smart analysis of the pros and cons of performing this symmetrization
is presented in [ATDL96]:

On the one hand, these results [on the Schwarz symmetrization] make the prob-
lem of determining a priori estimates easier by turning it into a one-dimensional
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problem; on the other hand, by this symmetrization process, the differential prob-
lem may lose properties that arise from the symmetry of the data with respect to
a group of variables. In order to preserve this kind of symmetry, it is usefull to
check whether comparison results hold when a partial symmetrization such as
Steiner symmetrization is used.

In 1992 Alvino, Díaz, Lions and Trombetti introduce a new definition of Steiner sym-
metrization, which differs slightly from the one in [PS51]. We will follow this new definition.
We point out that the new definition (which we give in precise terms below) can be obtained,
as it was the case in of Schwartz symmetrization, as a limit of Steiner symmetrization per-
pendicular to a hyperplane, in the sense presented in [PS51].

The idea behind this (new) Steiner rearrangement is to symmetrize radially only in some
variables, and therefore only works in product domains Ω = Ω′×Ω′′.

Definition 2.5. Let
Ω = Ω′×Ω′′ ⊂ Rn1 ×Rn2 . (2.64)

We usually refer to the variables in Ω′ as x, and to the variables in Ω′′ as y. We define the
Steiner rearrangement of Ω with respect to the variables x as

Ω# = B(0,R)×Ω′′ where |B(0,R)|= |Ω′|, (2.65)

where B(0,R)⊂ Rn1 is the ball centered at 0 of radius R.

Remark 2.1. Notice that
Ω# = (Ω′)⋆×Ω′′. (2.66)

We can define the functional rearrangement as follows:

Definition 2.6. Let Ω = Ω′×Ω′′ ⊂ Rn1 ×Rn2 , u : Ω′ → R be a measurable function. We
define the distribution function of u, µ : [0,+∞)×Ω′′ → [0,+∞), as

µ(t,y) = |{x ∈ Ω : |u(x,y)|> t}|, (2.67)

and the decreasing rearrangement of u, u∗ : [0,+∞)×Ω′′ → R as

u∗(s,y) = sup{t ≥ 0 : µ(t,y)> s}. (2.68)

Finally we introduce the Steiner rearrangement of u as

u#(x,y) = u∗(ωn1|x|n1,y), (x,y) ∈ Ω#, (2.69)
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where ωn represents the volume of the n-dimensional ball.

Remark 2.2. Notice that

u#(x,y) = (u(·,y))⋆(x), (x,y) ∈ (Ω′)⋆×Ω′′ = Ω#. (2.70)

Naturally, the Steiner rearrangement shares, for every y, the same properties as the
Schwarz rearrangement.

2.7.1 Steiner rearrangement of elliptic equations

As announced in [ADLT92], in [ATDL96] Alvino, Trombetti, Díaz and P.-L. Lions prove the
following result

Theorem 2.11. Let

Lu = −
n

∑
i, j=1

∂
∂x j

(
ai j(x,y)

∂u
∂xi

)
−

m

∑
h,k=1

∂
∂yk

(
bhk(x,y)

∂u
∂yh

)

−
n

∑
i=1

m

∑
h=1

∂
∂yh

(
cih(y)

∂u
∂xi

)
−

n

∑
i=1

m

∑
h=1

∂
∂xi

(
dhi(y)

∂u
∂yh

)
(2.71)

and let u be a weak solution of the Dirichlet problem




Lu = f Ω,

u = 0 ∂Ω.
(2.72)

We assume the following:

i) Coefficients ai j,bhk,cih,dhl and f belong to L∞(Ω),

ii) (ellipticity condition) there exists ν > 0 such that, for every (ξ ,η) ∈ Rn ×Rm and a.e.
(x,y) ∈ Ω

n

∑
i, j=1

ai j(x,y)ξiξ j +
m

∑
h,k=1

bhk(y)ηhηk

+
n

∑
i=1

m

∑
h=1

cih(y)ξiηh +
n

∑
i=1

m

∑
h=1

dhi(y)ξiηh ≥ |ξ |2 +ν |η |2, (2.73)

iii) Ω = Ω′×Ω′′ open, bounded subset of Rn and Rm, respectively.
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Let v be the weak solution of the problem



−∆xv−∑m

h,k=1
∂

∂yk

(
ahk(x,y) ∂u

∂yh

)
= f Ω#,

v = 0 ∂Ω#.
(2.74)

Then we have, for any y ∈ Rm

ˆ s

0
u∗(σ ,y)dσ ≤

ˆ s

0
v∗(σ ,y)dσ . (2.75)

The proof of this result is highly technical. It uses, as it was the cases in previous results
in the literature, the differential geometry behind the level sets, considering specially the case
of C1 solutions. Besides, in the effort of taking about the most general elliptic operator, the
presence of subscripts i, j,h,k makes the work quite baroque.

In 2001 Chiacchio and Monetti in [CM01] (see also [Chi04]) introduce lower order terms
to same equation. They deal with operators in the form:

Lu =−∆u−
n

∑
i=1

∂
∂xi

(bi(y)u)−
m

∑
j=1

∂
∂y j

(b̃ j(y)u)+
n

∑
i=1

di(y)
∂u
∂xi

+
m

∑
i=1

d̃ j(y)
∂u
∂y j

+ c(y)u

(2.76)
Later, in 2009, Chiacchio studies the eigenvalue problem (see [Chi09]).

2.7.2 Steiner rearrangement of linear parabolic problems

By applying [FM98] the following result can be deduced immediately. It is not written
formally in any known paper, however, it is mentioned in [Chi04] and [Chi09].

Proposition 2.2. Let u and v be the weak solutions of




∂u
∂ t −∆u = f Ω× (0,T ),

u = 0 ∂Ω× (0,T ),

u(0) = u0 Ω,

and





∂v
∂ t −∆v = f # Ω# × (0,T ),

v = 0 ∂Ω# × (0,T ),

v(0) = v0 Ω#,

(2.77)

and let
U(t,s,y) =

ˆ s

0
u∗(t,σ ,y)dσ , V (t,s,y) =

ˆ s

0
v∗(t,σ ,y)dσ . (2.78)
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Then, there exists g(s)≥ 0 such that

Ut −g(s)Uss −∆yU ≤
ˆ s

0
f ∗(σ ,y)dσ , Vt −g(s)Vss −∆yV =

ˆ s

0
f ∗(σ ,y)dσ . (2.79)

Hence we deduce that

Proposition 2.3. For a.e. y ∈ Ω′′ and a.e. t > 0

u0(·,y)⪯ v0(·,y) =⇒ u(t, ·,y)⪯ v.(t, ·,y). (2.80)

2.7.3 The Trotter-Kato formula

In order to treat our problem we will apply the Neveu-Trotter-Kato theorem, that characterizes
the convergence of the semigroup in terms of the convergence of its generators. The abstract
statement can be found in [Bré73].

Theorem 2.12. Let (An) and A be maximal monotone operators such that D(A)⊂ ∩nD(An).
Let Sn and S be the semigroups generated by −An and −A respectively. The following
properties are equivalent:

i) For every x ∈ D(A), Sn(·)x → S(·)x uniformly in compact subsets of [0,+∞).

ii) For every x ∈ D(A) and every λ > 0, (I +λAn)−1x → (I +λA)−1x.

There is an important corollary to this theorem, that allows us to study the semigroup of
an operator given by a sum of operators as the sequential application of the semigroup of
each of these operators.

Proposition 2.4 ([Bré73, Proposition 4.4 (p. 128)]). Let A,B be univoque maximal mono-
tone operators such that A+B is maximal monotone. Let SA,SB,SA+B be the semigroups
associated to −A,−B,−(A+B). Let C be a closed convex subset of D(A)∩D(B) such that
(I +λA)−1(C)⊂C and (I +λB)−1C ⊂C. Then, for every x ∈C∩D(A)∩D(B),

[
SA

( ·
n

)
SB

( ·
n

)]n
x → SA+B(·)x (2.81)

uniformly in every compact subset of [0,+∞).
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2.7.4 Steiner rearrangement of semilinear parabolic problems

In [DGC15b] and [DGC16] J.I. Díaz and myself apply Proposition 2.3, the Trotter-Kato
theorem (in the form of Proposition 2.4) and explicit comparisons of the pointwise ODE

ut +g(u) = f (2.82)

to obtain the following symmetrization results. The proofs can be found in the corresponding
papers collected in the Appendix.

Theorem 2.13 ([DGC15b]). Let g be concave, verifying

ˆ τ

0

dσ
g(σ)

< ∞, ∀τ > 0. (2.83)

Let h ∈W 1,∞(0,T ), such that h(t)≥ 0 for all t ∈ (0,T ), f ∈ L2(0,T : L2(Ω)) with f ≥ 0 in
(0,T ) and let u0 ∈ L2(Ω) be such that u0 ≥ 0. Let, u ∈C([0,T ] : L2(Ω))∩L2(δ ,T : H1

0 (Ω))

and v ∈C([0,T ] : L2(Ω#))∩L2(δ ,T : H1
0 (Ω

#)), for any δ ∈ (0,T ), be the unique solutions
of

(P)





∂u
∂ t −∆u+h(t)g(u) = f (t), in Ω× (0,T ),

u = 0, on ∂Ω× (0,T ),

u(0) = u0, on Ω,

(P#)





∂v
∂ t −∆v+h(t)g(v) = f #(t), in Ω# × (0,T ),

v = 0, on ∂Ω# × (0,T ),

v(0) = v0, on Ω#,

where v0 ∈ L2(Ω#), v0 ≥ 0 is such that

ˆ s

0
u∗0(σ ,y)dσ ≤

ˆ s

0
v∗0(σ ,y)dσ , ∀s ∈ [0, |Ω′|].

Then, for any t ∈ [0,T ] and s ∈ [0, |Ω′|]
ˆ s

0
u∗(t,σ ,y)dσ ≤

ˆ s

0
v∗(t,σ ,y)dσ .

Theorem 2.14 ([DGC16]). Let β be a concave continuous nondecreasing function such
that β (0) = 0. Give T > 0 arbitrary and let f ∈ L2(0,T : L2(Ω)) with f ≥ 0 in (0,T ) and
let w0 ∈ L2(Ω) be such that 0 ≤ w0 ≤ 1. Let w ∈C([0,T ] : L2(Ω))∩L2(δ ,T : H1

0 (Ω)) and
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z ∈C([0,T ] : L2(Ω#))∩L2(δ ,T : H1
0 (Ω

#)), for any δ ∈ (0,T ), be the unique solutions of

(P)





∂w
∂ t −∆w+λβ (w) = f (t) in Ω× (0,T ),

w = 1 on ∂Ω× (0,T ),

w(0) = w0 on Ω,

(P#)





∂ z
∂ t −∆z+λβ (z) = f #(t), in Ω# × (0,T ),

z = 1, on ∂Ω# × (0,T ),

z(0) = z0, on Ω#,

where z0 ∈ L2(Ω#), 0 ≤ z0 ≤ 1 is such that

ˆ |Ω′|

s
z∗0(σ ,y)dσ ≤

ˆ |Ω′|

s
w∗

0(σ ,y)dσ , ∀s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′.

Then, for any t ∈ [0,T ], s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′

ˆ |Ω′|

s
z∗(t,σ ,y)dσ ≤

ˆ |Ω′|

s
w∗(t,σ ,y)dσ . (2.84)

In terms of the comparison of the effectiveness we have the following consequence:

Corollary 2.2. In the assumptions of Theorem 2.16, for any t ∈ [0,+∞) we have

ˆ
Ω#

β (z(t,x))dx ≤
ˆ

Ω
β (w(t,x))dx. (2.85)

We include now an unpublished alternative proof to one given in [DGC15b]. Let us
define SA as the solution of





ut +Au = 0, (0,T )×Ω

u = 0, x ∈ ∂Ω

u = u0, t = 0

(2.86)

and SA(t)u0 = u(t). If we solve in Ω# the semigroup operator will be called S#
A. For the

remainder of the text β : R→ R is a nondecreasing function, and if A = β then A represents
the Nemitskij operator associated to β in the sense that Au = β ◦u.
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Proposition 2.5. Let f ∈ L2(Ω) and u0 ⪯ v0 . Then, for a.e. t ∈ (0,T )

S−∆− f (t)u0 ⪯ S#
−∆− f #(t)v0. (2.87)

Proof. We proceed as in [Ban76b]. We write a parabolic inequality for U(t,σ ,y), whereas
for V the equality holds and the result follows from the comparison principle.

Proposition 2.6. Let β be convex and u0 ⪯ v0. Then, for a.e. t ∈ (0,T )

Sβ (t)u0 ⪯ S#
β (t)v0. (2.88)

Proposition 2.7. Let f ∈ L2(Ω) and u0 ⪯ v0. Then, for a.e. t ∈ (0,T )

S−∆+β− f (t)u0 ⪯ S#
−∆+β− f #(t)v0 (2.89)

Proof. The Trotter-Kato formula applies

(
S−∆− f

( t
n

)
Sβ

( t
n

))n
u0 → S−∆+β− f (t)u0, (2.90)

(
S#
−∆− f #

( t
n

)
S#

β

( t
n

))n
v0 → S#

−∆+β− f #(t)v0. (2.91)

Thus, by applying the previous propositions

(
S−∆− f

( t
n

)
Sβ

( t
n

))n
u0 ⪯

(
S#
−∆− f #

( t
n

)
S#

β

( t
n

))n
v0. (2.92)

as n →+∞ in L2(Ω) and L2(Ω#) uniformly in t for t ∈ [0,T ]. Hence, the comparison holds
in the limit.

Proof of Theorem 2.16. Let us first assume that f ∈ C ([0,T ];L2(Ω)). Let us split [0,T ] in n
parts tn

k = k
nT and let f n be a piecewise constant function, given by

f n(t) = f (tn
k ) for t ∈ [tn

k , t
n
k+1).

Take the mild solution un. Since f n is piecewise constant, a simple induction argument shows
that we can take the semigroups piecewise, for t ∈ [tn

k , t
n
k+1)

un(t) = S−∆+β− f (tn
k )
(t − tn

k )S−∆+β− f (tn
k−1)

(
T
n

)
· · ·S−∆+β− f (0)

(
T
n

)
u0 (2.93)



96 A priori bounds: symmetrization

Applying the same reasoning for vn we get, for t ∈ [tn
k , t

n
k+1)

vn(t) = S#
−∆+β− f (tn

k )
# (t − tn

k )S#
−∆+β− f (tn

k−1)
#

(
T
n

)
· · ·S#

−∆+β− f (0)#

(
T
n

)
v0 (2.94)

Applying the formulation (2.93) and (2.94) and Proposition 2.7 finite times we have that, for
a.e. t ∈ [0,T ]

un(t)⪯ vn(t). (2.95)

It is easy to check that f n → f in L2((0,T )×Ω) and ( f n)# = ( f #)n → f # in L2((0,T )×Ω#)

(see, for example, [Rak08]). Due to the properties of the equations we have that un → u in
L2((0,T )×Ω) and vn → v in L2((0,T )×Ω#). Therefore, the comparison (2.95) holds also
in the limit, which concludes the proof for f ∈ C ([0,T ];L2(Ω)). For f ∈ L2((0,T )×Ω) we
take a sequence of functions ( f n) ∈ C ([0,T ]×Ω), f n → f in L2((0,T )×Ω). Due to the
continuity of ·# : L2(Ω× (0,T )) 7→ L2(Ω# × (0,T )) the result follows.

2.7.5 Steiner symmetrization of semilinear elliptic problems

In [DGC15b] and [DGC16] the proof of the semilinear elliptic problem is done by passing to
the limit in the parabolic problem. If the comparison holds for every time it holds for the
limit elliptic problem. The details can be found in the indicated papers.

Theorem 2.15 ([DGC15b]). Let g be concave, verifying

ˆ τ

0

dσ
g(σ)

< ∞, ∀τ > 0. (2.96)

Let f ∈ L2(Ω) with f ≥ 0. Let u ∈ H1
0 (Ω) and v ∈ H1

0 (Ω
#) be the unique solutions of

(P)




−∆u+g(u) = f in Ω,

u = 0, on ∂Ω

(P#)




−∆v+g(v) = f #, in Ω#,

v = 0, on ∂Ω#.

Then, for any s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′.

ˆ s

0
u∗(σ ,y)dσ ≤

ˆ s

0
v∗(σ ,y)dσ .
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Theorem 2.16 ([DGC16]). Let β be a concave continuous nondecreasing function such that
β (0) = 0. Let f ∈ L2(Ω) with f ≥ 0, 0 ≤ w0 ≤ 1. Let w ∈ H1(Ω) and z ∈ H1(Ω#) be the
unique solutions of

(P)




−∆w+λβ (w) = f in Ω,

w = 1 on ∂Ω,

(P#)




−∆z+λβ (z) = f # in Ω#,

z = 1 on ∂Ω#,

Then, for any s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′

ˆ |Ω′|

s
z∗(σ ,y)dσ ≤

ˆ |Ω′|

s
w∗(σ ,y)dσ . (2.97)

2.8 Other kinds of rearrangements

2.8.1 Relative rearrangement

Another rearrangement technique which has brought a lot of results in the last century is
known as relative rearrangement. We will use its properties in Chapter 4.

Let us define this rearrangement

Definition 2.7. Let u be a measurable function, v ∈ L1(Ω) and, for s ∈ [0, |Ω|]

w(s) =





ˆ

Q(s)

v(x)dx, if |P(s)|= 0,

ˆ

Q(s)

v(x)dx+

s−|Q(s)|ˆ

0

(v|P(s))∗(σ)dσ , if |P(s)| ̸= 0.

(2.98)

where

P(s) = {x ∈ Ω : u(x) = u∗(s)}, (2.99)

Q(s) = {x ∈ Ω : u(x)> u∗(s)}. (2.100)
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The relative rearrangement of v with respect to u as

v∗u(s) =
dw
ds

(s). (2.101)

It is known that if v ∈ Lp(Ω) then ∥v∗u∥Lp(0,|Ω|) ≤ ∥v∥Lp(Ω). Many other properties can be
found in [Rak88].

One of such results is the following:

Theorem 2.17 (Rakotoson and Temam [RT90]). Let Ω be a bounded connected set, ∂Ω
of class C2. Let f ∈ L1(Ω) and u ∈ W 1,1(Ω). For almost every t ∈ (essinf(u),esssup(u))
(where essinf and esssup are the essential infimum and supremum) we have

d
dt

ˆ
{x∈Ω:u(x)>t}

f (x)dx = µ ′(t) f ∗u (µ(t)). (2.102)

Another application of such kind of rearrangement is the obtention of a L∞ bound for
semilinear equations given by Leray-Lions type operators (see [Rak87]). The results can be
generalized to weighted spaces, and similar results are obtained (see [RS97; RS93a; RS93b]).

This kind of technique has also been used in Chapter 4 to obtain estimates of very weak
solutions.

We complete this chapter by saying a few words on weighted rearrangements.

Gaussian rearrangement

The previous approaches to rearrangement yields good results in bounded domains. However,
unbounded domains are not covered, since Ω⋆ would be the whole of Rn. A rearrangement
based on the the Gaussian distribution

ϕ(x) = (2π)−
n
2 exp

(
−|x|

2

)
(2.103)

can be applied. It has been used in several papers [BBMP02; Di 03; CO04] with good results.

The idea is to define a weighted measure to substitute the Lebesgue measure

|Ω|ϕ =

ˆ
Ω

ϕ ∈ [0,1]. (2.104)
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We this definition in mind the can the rearrangement of a set as

Ω♯
ϕ = {x = (x1, · · · ,xn) : x1 > a} such that |Ω♯

ϕ |= |Ω|. (2.105)

For a function u : Ω → R we define

µϕ(t) = |{x ∈ Ω : |u(x)|> t}|ϕ , (2.106)

u∗ϕ(s) = inf{t ≥ 0 : µ(t)≤ s},s ∈ [0,1] (2.107)

and u♯ϕ : Ω♯
ϕ → R as the only function such that

|{x : Ω♯
ϕ : |u♯ϕ(x)|> t}|ϕ = |{x ∈ Ω : |u(x)|> t}|ϕ . (2.108)

Naturally u♯ϕ(x) = u♯ϕ(x1) = u∗(k(x1)). This rearrangement is well suited to compare elliptic
problem in which the coefficient are of Gaussian-type. Let us state here the result for the
parabolic problem

Theorem 2.18 ([CO04]). Let u be an analytical solution of




∂u
∂ t − 1

ϕ div(ϕ∇u) = f Q = Ω× (0,T ),

u = u0 t = 0,

u = 0 ∂Ω.

(2.109)

where f ∈ L2(Q,ϕ) and u0 ∈ H1
0 (Ω,ϕ). Let v be the symmetrized solution





∂v
∂ t − 1

ϕ div(ϕ∇v) = f ♯ϕ Ω♯
ϕ × (0,T ),

v = (u0)
♯
ϕ t = 0,

v = 0 ∂Ω.

(2.110)

Then, ˆ s

0
u∗ϕ(t,σ)dσ ≤

ˆ s

0
v∗ϕ(t,σ)dσ ∀s ∈ [0,1]. (2.111)





Chapter 3

Shape optimization

3.1 Shape differentiation

The main goal of this section is to analyze the differentiability, with respect to the domain Ω,
of the effectiveness factor (2.3)

E (Ω) =
1
|Ω|

ˆ
Ω

β (wΩ)dx. (3.1)

For convenience, we will sometimes refer to the ineffectiveness (2.4). This will pass by the
differentiation of functions wΩ (resp. uΩ) defined by (2.1) (resp. (2.2)).

This kind of problem falls within the family of problems already considered by Hadamard
[Had08] and it has been studied by several authors in the literature (see, e.g., [MS76; Pir12;
Sim80] and the references therein). In the most general formulation this family of problems
may be associated to the general boundary value problem:





A(u(D)) = f , in D,

B(u(D)) = g, on ∂D
(3.2)

and the question is to study the differentiability with respect to D of a functional which can
by given generally as

J(D) =

ˆ
D

C(uD)dx,

where A,B,C are operators or functions that may contain also some derivatives of uD and D
is a domain belonging to a certain class.
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As mentioned before, our aim is to study the differentiability of functional (2.4). We
consider a fixed open bounded regular domain of Rn, Ω0, and study its deformations given
by a “small” function θ : Rn → Rn, so that the new domain is Ω = (I +θ)Ω0, where I is the
identity function

I(x) = x. (3.3)

We consider, as it is the case in chemistry catalysis, g and f such that 0 ≤ wΩ,uΩ ≤ 1. Be-
sides the above mentioned references we recall here the articles [Der80] for a linear problem
with a Dirichlet constant boundary condition and [MPM79] where a semilinear equation
arising in combustion was considered (corresponding, in our formulation to take g(u) =−eu).

First we studied in [DGC15a] the case in which g (and β ) are smooth (in W 2,∞(R)).
Then, in [GC17] we studied some non smooth cases. In particular, due to its importance in
Chemical Engineering, we will discuss the case of root type non linearities. This is much
more difficult, since for this kind on nonlinearity a dead core appears, and therefore the
non-differentiable point of the nonlinearity might be in the range of the solution.

3.1.1 Fréchet derivative when β ∈W 2,∞

In order to obtain properties in the sense of derivatives, we consider two approaches, mim-
icking the approach in Differential Geometry. We first consider the global differentiability
of solutions (as it was done in the linear cases in [HP05; All07] and for abstract problems
in [Sim80]), which unfortunately requires derivatives in spaces of very regular functions,
and then we take advantage of the differentiation along curves (the approach followed in
[SZZ91]).

Let us recall that, for Ω ⊂ Rn, uΩ is the unique solution of (2.2) (we assume that the
formulation of the problem leads to the uniqueness of solutions). Let Ω0 be a fixed smooth
domain. We will work in the family of deformations

Ωθ = (I +θ)Ω0 (3.4)

where θ ∈W 1,∞(Rn,Rn). We will consider the Lagrangian representation of uΩθ as

uθ = uΩθ , (3.5)
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and the Eulerian representations

ûθ = uθ ◦ (I +θ). (3.6)

Notice that
uθ : Ωθ → R ûθ : Ω0 → R.

It turns out that ûθ simplifies the study of the differentiability of uΩ and the functional η(Ω)

with respect to Ω.

Our proof relies heavily on the Implicit Function Theorem. The application of this theo-
rem requires an uniform choice of functional space, which would require some additional
informations on u. This kind of difficulties in the functional setting is well portrayed in
[Bre99].

For the nonlinearity g we shall consider the following assumptions:

Assumption 3.1. g is nondecreasing.

Assumption 3.2. The Nemitskij operator for g (which we will denote again by g in some
circumstances, as a widely accepted abuse of notation)

G : H1(Ω) → L2(Ω) (3.7)

u 7→ g◦u (3.8)

is well defined and is of class C m for some m ≥ 1.

We recall that Assumption 3.2 immediately implies that [DG](v)ϕ = g′(v)ϕ for ϕ,v ∈
H1(Ω) and that, if G is of class C k, with k > 1 then necessarily g(s) = as+ b for some
a,b ∈ R (see, e.g., [Hen93]).

Our first result collects some general results on the differentiability of the solution uΩ

with respect to Ω:

Theorem 3.1 ([DGC15a]). Let g satisfy Assumption 3.1 and 3.2. Then, the map

W 1,∞(Rn,Rn) → H1
0 (Ω0)

θ 7→ ûθ
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(where ûθ is defined by (3.6)) is of class C l in a neighbourhood of 0 if f ∈ Hk(Rn) where
l = min{k, l}. Furthermore, the application

u : W 1,∞(Rn,Rn) → L2(Rn)

θ 7→ uθ

(where uθ is given by (3.5) and extended by zero outside Ωθ ) is differentiable at 0. In fact
u′(0) : W 1,∞(Rn,Rn)→ H1(Ω0) and

u′(0)θ +∇uΩ0 ·θ ∈ H1
0 (Ω0).

Remark 3.1. Since the function is only differentiable at 0 we will simplify write u′ to
represent u′(0).

One of the easiests ways to characterize the global derivative is, as usually, to compute
the directional derivatives.

Definition 3.1. We will say that Φ is a curve of deformations of Ω0 if

Φ : [0,T )→W 1,∞(Rn,Rn)

is such that detΦ(τ)> 0 and Φ(0) = I.

Assumption 3.3. We will say that θ is a curve of small perturbations of the identity if
Φ(τ) = I +θ(τ) is a curve of deformations and

i) θ : [0,T )→W 1,∞(Rn,Rn) is differentiable at 0 (from the right)

ii) θ(0) = 0.

Sometimes we will consider higher order derivatives too. We will refer to θ or Φ
indistinctively, since they relate by Φ(τ) = I +θ(τ). It will be common that we consider the
curve of deformations

Φ(τ) = I + τθ , (3.9)

for a fixed deformation θ ∈W 1,∞(Rn,Rn). In this notation we will admit the abuse of no-
tation θ(τ) = τθ , where naturally both elements are different, but this should not lead to
confusion.

In this terms, the above theorem leads to:
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Corollary 3.1. Let Φ be a a curve of deformations of class C k. Then τ 7→ vθ(τ) is of class
C l with l = min{m,k}.

Our second result concerns the characterization of u′. We have:

Theorem 3.2. Let g satisfy Assumption 3.1 and 3.2. Let θ be a curve satisfying assump-
tions 3.3. Then u is differentiable along Φ at least at 0. That is, the directional derivative
d

dτ (u◦Φ) exists, and it is the solution u′ of the linear Dirichlet problem




−∆u′+λg′(uΩ0)u

′ = 0 in Ω0,

u′ =−∇uΩ0 ·θ ′(0) on ∂Ω0.
(3.10)

We point out that the above result shows, in other terms, for θ ∈ W 1,∞(Rn,Rn), that
u′(0)θ is the unique weak solution of the Dirichlet problem




−∆u′+λg′(uΩ0)u

′ = 0, in Ω0,

u′ =−∇uΩ0 ·θ , on ∂Ω0.
(3.11)

As consequence we have:

Corollary 3.2. The function u′ : W 1,∞(Rn,Rn)→ H1(Ω0) is continuous. In fact, since due
to Assumption 3.2, the solution u of (2.2) verifies u ∈W 2,p(Ω0) for any p ∈ [1,+∞), then for
any q ∈ [1,+∞)

|u′(0)(θ)|q ≤ c|∇u ·θ |Lp(∂Ω0) ≤ c|θ |∞|∇uΩ0|Lp(∂Ω0) (3.12)

≤ c(p)|θ |∞|uΩ0 |W 2,p(Ω0)
. (3.13)

Concerning the differentiability of the effectiveness factor functional we have:

Theorem 3.3. On the assumptions of Theorem 3.1, let

η̂(θ) =
ˆ
(I+θ)Ω0

g(u(I+θ)Ω0)dx. (3.14)

Then η is of class C m in a neighbourhood of 0. It holds that

η̂(m)(0)(θ1, · · · ,θm) =

ˆ
Ω0

dn

dθn · · ·dθ1
(g(ûθ )Jθ ) dx. (3.15)
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Its first derivative can be expressed in terms of u

η̂ ′(0)(θ) =
ˆ

Ω0

(
g′(uΩ0)u

′ +div(g(uΩ0)θ)
)

dx, (3.16)

and, if ∂Ω0 is Lipschitz,

η̂ ′(0)(θ) =
ˆ

Ω0

g′(uΩ0)u
′ dx+g(0)

ˆ
∂Ω0

θ ·n dS, (3.17)

where u′ = u′(0)(θ).

As a direct consequence we get:

Corollary 3.3. On the assumptions of Theorem 3.1, it holds that

η ′(θ) =
1

|Ω0|

(ˆ
Ω0

g′(uΩ0)u
′ dx−η(0)

ˆ
∂Ω0

θ ·n dS
)
.

Corollary 3.4. On the assumptions of Theorem 3.1, if Φ is a volume preserving curve of
deformations then

η ′(θ) =
1

|Ω0|

ˆ
Ω0

g′(uΩ0)u
′ dx.

We point out that if g is Lipschitz (i.e. g ∈W 1,∞(R)) then we get that

|η(θ)−η(0)|= |η ′(0)(λθ)| ≤ c|g′|∞|u|W 2,p|θ |∞.

The details of the proof of the results in this section can be found in [DGC15a]. They
will be ommited here to speed-up the presentation of results.

3.1.1.1 Functional setting: Nemitskij operators and the implicit function theorem.

Let us formalize what we mean by a shape functional. At the most fundamental level it
should be a function defined over a set of domain, that is defined over a subset C of P(Rn).
Since we want to differentiate this functional we, at the very least, need to define proximity,
that is a way to define the neighbourhood of a set. As it is usual in the literature of shape
optimization we work over the set of weakly differentiable bounded deformations with
bounded derivative, i.e. over the Sobolev space W 1,∞(Rn,Rn).

Definition 3.2. We say that a functional I : C⊂ P(Rn)→ R is defined on a neighbourhood
of Ω0 ⊂ Rn if there exists U a neighbourhood of 0 on W 1,∞(Rn,Rn) such that I is defined
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over {(Id +θ)(Ω0) : θ ∈U}. We say that I is differentiable at Ω0 if the application

W 1,∞(Rn;Rn) → R

θ 7→ I((Id +θ)(Ω0))

is differentiable at 0.

We present a sufficient condition so that Assumption 3.2 holds. This is widely used in the
context of partial differential equations, but as far as we know no reference is known besides
it being an exercise in [Hen93]. That being the case we provide a proof1. Other conditions,
mainly on the growth of g can be considered so that Assumption 3.1 and 3.2 hold.

Lemma 3.1.1. Let g ∈W 2,∞(R). Then the Nemitskij operator (3.8) (in the sense Lp(Ω)→
L2(Ω)) is of class C 1 for all p> 2. In particular, Assumption 3.2 holds.

Proof. Let us define G the Nemitskij operator defined in (3.8). Consider it G : Lp(Ω) →
L2(Ω) for p ≥ 2. We first have that, for L = max{∥g∥∞,∥g′∥∞,∥g′′∥∞}

∥G(u)−G(v)∥2
L2 =

ˆ
Ω
|g(u)−g(v)|2dx ≤ L

ˆ
Ω
|u− v|2dx

so that G is continuous. For p> 2 let ϕ ∈ C ∞(Ω) we compute

∥g(u+ϕ)−g(u)−g′(u)ϕ∥2
L2 =

ˆ
Ω
|g′(ξ (x))−g′(u(x))|2|ϕ(x)|2dx

for some function ξ (x), between u(x) and u(x)+ϕ(x), due to the intermediate value theorem.
We have that

|g′(ξ (x))−g′(u((x))| ≤L|ξ (x)−u(x)| ≤ L|ϕ(x)|
|g′(ξ (x))−g′(u(x))| ≤2L

|g′(ξ (x))−g′(u(x))| ≤L21−α |ϕ(x)|α , ∀α ∈ (0,1).

Therefore,

∥g(u+ϕ)−g(u)−g′(u)ϕ∥2
L2 ≤ L222−2α

ˆ
Ω
|ϕ(x)|2+2αdx.

Let 2< p< 4 then we have that p = 2+2α with 0< α < 1. We then have that

∥g(u+ϕ)−g(u)−g′(u)ϕ∥L2 ≤ L21−α∥ϕ(x)∥1+α
Lp ,

1This candidate is thankful to Prof. J.M. Arrieta for the details of the proof.
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which proves the Fréchet differenciability. For p> 4 we have that Lp(Ω) ↪→ L3(Ω). Further-
more, for any given dimension n we can use the Sobolev inclusions H1(Ω) ↪→ Lp(Ω) with
p> 2, proving the desired differenciability.

Some other well-known results are quoted now:

Theorem 3.4. Let g ∈W 1,p(Rn). Then the map

G : W 1,∞(Rn,Rn) → Lp(Rn) (3.18)

θ 7→ g◦ (I +θ) (3.19)

is differentiable in a neighbourhood of 0 and

G′(0) = (∇g)◦ (I +θ).

Theorem 3.5 ([HP05, Lemme 5.3.3.]). Let

g : W 1,∞(Rn,Rn) → Lp(Rn),

Ψ : W 1,∞(Rn,Rn) → W 1,∞(Rn,Rn)

continuous at 0 with Ψ(0) = I,

W 1,∞(Rn,Rn) → Lp(Rn)×L∞(Rn;Rn) (3.20)

θ 7→ (g(θ),Ψ(θ)) (3.21)

differentiable at 0, with g(0) ∈W 1,p(Rn) and

g′(0) : W 1,∞(Rn,Rn) → W 1,p(Rn)

is continuous. Then the application

G : W 1,∞(Rn,Rn) → Lp(Rn) (3.22)

θ 7→ g(θ)◦Ψ(θ) (3.23)

is differentiable at 0 and
G′(0) = g′(0)+∇g(0) ·Ψ′(0).

To conclude this section we state a classical result, the Implicit Function Theorem. This
result is typically a direct consequence of the Inverse Function Theorem. In the Banach space
setting this result is originally due to Nash and Moser (see [Nas56; Mos66]). In the detailed
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survey [Ham82] the author points towards Zehnder [Zeh76] as one of the first presentations
as implicit function theorem.

Theorem 3.6 (Implicit Function Theorem). Let X ,Y and Z be Banach spaces and let U,V be
neighbourhoods on X and Y , respectively. Let F :U×V → Z be continuous and differentiable,
and assume that DyF(0,0) ∈ L (Y,Z) is bijective. Let us assume, further, that F(0,0) = 0.
Then there exists W neighbourhood of 0 on X and a differentiable map f : W → Y such that
F(x, f (x)) = 0. Furthermore, for x and y small, f (x) is the only solution y of the equation
F(x,y) = 0. If F is of class C m then so is f .

3.1.1.2 Differentiation of solutions

For the reader convenience we repeat here the general result in [Sim80]:

Theorem 3.7. Let D be a bounded domain such that ∂D be a piecewise C 1 and assume
that D is locally on one side of ∂D. Let u0 be the solution of (3.2). Let us use the notation
C k = C k(Rn,Rn) and k ≥ 1. Assume that

u(θ) ∈W m,p((I +θ)D) (3.24)

and that for every open set D′ close to D (for example D′ = (I+θ)D for small θ in the norm
of C k), A,B,C : W m−1,p(D′)→ D ′(D) are differentiable and





A : W m,p(D′)→ D ′(D′)

B : W m,p(D′)→W 1,1(D′)

C : W m,p(D′)→ L1(D′)

(3.25)

and

C k → W m,p (3.26)

θ 7→ u(θ)◦ (I +θ) (3.27)

is differentiable at 0. Then:

i) The solution u is differentiable in the sense that

u : C k →W m−1,p
loc (D) is differentiable
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and the derivative (i.e. the local derivative u′ in the direction of τ) satisfies

∂A
∂u

(u0)u′ = 0, in D. (3.28)

ii) If 



θ 7→ B(u(θ))◦ (I +θ) is differentiable at 0 into W 1,1(D),

(i.e. with the W 1,1(D) topology in the image set)

B(u0) ∈W 2,1(D),

g ∈W 2,1(Rn)

(3.29)

then u′ satisfies
∂B
∂u

(u0)u′ =−τ ·n ∂
∂n

(B(u0)−g). (3.30)

iii) If 



θ 7→C(u(θ))◦ (I +θ) is differentiable at 0 into L1(D),

C(u0) ∈W 1,1(D),
(3.31)

then θ 7→ J(θ) is differentiable and its directional derivative in the direction of τ is:

∂J
∂θ

(0)τ =

ˆ
D

∂C
∂u

u′ dx+
ˆ

∂D
τ ·nC(u0) dS. (3.32)

3.1.1.3 Differentiation under the integral sign

We shall follow some reasonings similar to the ones presented in [HP05]. Let us define
Ωτ = Φ(τ,Ω0) and consider a function f such that f (τ) ∈ L1(Ωτ). We take interest on the
map

I : R → R (3.33)

τ 7→
ˆ

Ωτ

f (τ,x) dx =
ˆ

Ω0

f (τ,Φ(τ,y))J(τ,y) dy (3.34)

where f (τ,x) = f (τ)(x) and the Jacobian

J(τ,y) = det(DyΦ(τ,y)).
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Theorem 3.8. Let Φ satisfy Assumption 3.3, f such that

f : [0,T ) → L1(Rn)

τ 7→ f (τ)

is differentiable at 0 and, besides, it satisfies the spatial regularity at τ = 0

f (0) ∈W 1,1(RN).

Then, τ 7→ I(τ) =
´

Ωτ
f (τ) is differentiable at 0 and

I′(0) =
ˆ

Ω0

f ′(0)+div
(

f (0)
∂Φ
∂τ

(0)
)
.

If Ω0 is an open set with Lipschitz boundary then

I′(0) =
ˆ

Ω0

f ′(0)+
ˆ

∂Ω0

f (0)n · ∂Φ
∂τ

(0).

In simpler terms, under regularity it holds that

∂
∂τ

∣∣∣∣
τ=0

(ˆ
Gτ

f (τ,x)dx
)
=

ˆ
Ω0

{
∂ f
∂τ

(0,x)+div
(

f (0,x)
∂Φ
∂τ

(0,x)
)}

dx. (3.35)

We have some immediate consequences of Theorem 3.8

Lemma 3.1.2. Let g ∈ W 1,1(RN) and Ψ : [0,T )→ W 1,∞ be continuous at 0 such that Ψ :
[0,T )→ L∞ is differentiable at 0, and let Z be its derivative. Then

G : [0,T ) → L1(Rn) (3.36)

τ 7→ g◦Ψ(τ) (3.37)

is differentiable at 0 and G′(0) = ∇g ·Z.

Lemma 3.1.3 (Differentiation under the integral sign). Let E be a Banach space and

f : E ×Ω → R (3.38)

(v,y) 7→ f (v,y) (3.39)
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such that

f̃ : E → L1(Ω) (3.40)

v 7→ f (v, ·) (3.41)

is differentiable at v0. Let

F : E → R (3.42)

v 7→
ˆ

Ω
f (v,y)dy (3.43)

Then F is differentiable at v0 and

DF(v) =
ˆ

Ω
(Dv f̃ )(v)(y).

3.1.2 Gateaux derivative when β ∈W 1,∞

Once the case β ∈W 2,∞(R) is understood, let us focus on the less smooth case β ∈W 1,∞(R).
In this case, we can only prove that the shape derivative exists in the Gateaux sense (which is
weaker than the Fréchet sense).

Theorem 3.9. Let θ ∈ W 1,∞(Rn,Rn), β ∈ W 1,∞(R) be nondecreasing such that β (0) = 0
and f ∈ H1(Rn). Then, the applications

R → L2(Ω0)

τ 7→ u(I+τθ)Ω0 ◦ (I + τθ),

and

R → L2(Rn)

τ 7→ u(I+τθ)Ω0

are differentiable at 0. Furthermore, duτ
dτ |τ=0 is the unique solution of (3.11).

In this chapter we will be particularly interested in the case in which β ′ only has blow-up
at w = 0. Let us define

v =
dwτ
dτ

∣∣∣
τ=0

. (3.44)
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We can rewrite (3.11) in terms of w



−∆v+β ′(wΩ0)v = 0 Ω,

v+∇wΩ0 ·θ = 0 ∂Ω.
(3.45)

Remark 3.2. In most cases, the process of homogenization developed in Chapter 1 leads to
an homogeneous equation (2.1) in which β is the same as the function in the microscopic
problem, and thus it is natural that β be singular at 0. However, it sometimes happens that
the limit kinetic is different. In the homogenization of problems with particles of critical size
(see [DGCPS17c]) it turns out that the resulting kinetic in the macroscopic homogeneous
equation (2.1) satisfies β ∈W 1,∞, even when the original kinetic of the microscopic problem
was a general maximal monotone graph.

3.1.2.1 From W 2,∞ to W 1,∞ ∩C 1

Let us show that the shape derivative is continuously dependent on the nonlinearity, and thus
that we can make a smooth transition from the Fréchet scenario presented in [DGC15a] to
our current case. For the rest of the paper we will use the notation:

Lemma 3.1.4. Let f ∈ L2(Rn), β ∈W 1,∞(R) be a nondecreasing function such that β (0) = 0
and let βn ∈W 2,∞(R) nondecreasing such that βn(0) = 0. Let wn be the unique solution of




−∆wn +βn(wn) = f Ω0,

wn = 1 ∂Ω0.
(3.46)

Then

∥wn −w∥H1(Ω0)
≤C∥βn −β∥L∞(R) (3.47)

∥wn −w∥H2(Ω0)
≤C(1+∥β ′∥L∞(R))∥βn −β∥L∞(R). (3.48)

Furthermore, let β ∈C1(R)∩W 1,∞(R) and vn be the unique solution of




−∆vn +β ′

n(wn)vn = 0 Ω0,

vn +∇wn ·θ = 0 ∂Ω0.
(3.49)

Then, if βn → β in W 1,∞(R),
vn ⇀ v in H1(Ω0). (3.50)
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Remark 3.3. In (3.47) we used the notation

∥βn −β∥L∞ = sup
x∈R

|βn(x)−β (x)|.

It doesn’t mean that either βn or β are L∞(R) functions themselves, but rather that their
difference is pointwise bounded. In fact, this bound is destined to go 0 as n →+∞.

3.1.3 Shape derivative with a dead core

We can prove that the shape derivative in the smooth case has, under some assumptions, a
natural limit when β is not smooth.

In some cases in the applications (see, e.g., [Día85]) we can take β so that β ′(wΩ0) has a
blow up. It is common, specially in Chemical Engineering, that β ′(0) = +∞ and

NΩ0 = {x ∈ Ω0 : wΩ0(x) = 0}

exists and has positive measure (see [Día85]). This is region is known as a dead core. In this
case β ′(wΩ0) = +∞ in NΩ0 . Due to this fact, the natural behaviour of the weak solutions of
(3.45) is v = 0 in NΩ0 . We have the following result

Theorem 3.10. Let β be nondecreasing, β (0) = 0, β ′(0) = +∞,

β ∈ C (R)∩C 1(R\{0}),

and assume that |NΩ0| > 0, θ ∈ W 1,∞(Rn,Rn) and 0 ≤ f ≤ β (1). Then, there exists v a
solution of 




−∆v+β ′(wΩ0)v = 0 Ω0 \NΩ0,

v = 0 ∂NΩ0,

v =−∇wΩ0 ·θ ∂Ω0,

(3.51)

in the sense that v ∈ H1(Ω0), v = 0 in NΩ0 , v =−∇wΩ0 ·θ in L2(∂Ω0), β ′(wΩ0)v
2 ∈ L1(Ω0)

and ˆ
Ω0\NΩ0

∇v∇ϕ +

ˆ
Ω0\NΩ0

β ′(w)vϕ = 0 (3.52)

for every ϕ ∈W 1,∞
c (Ω0 \NΩ0). Furthermore, for m ∈ N, consider βm defined by

β ′
m(s) = min{m,β ′(s)}, βm(0) = β (0) = 0,
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and let wm,vm be the unique solutions of (3.46) and (3.49). Then,

vm ⇀ v, in H1(Ω0), (3.53)

where v is a solution of (3.51).

The uniqueness of solutions of (3.51) when β ′(wΩ0) blows up is by no means trivial.
Problem (3.51) can be written in the following way:

−∆v+V (x)v = f (3.54)

where V (x) = β ′(wΩ0(x)) may blow up as a power of the distance to a piece of the boundary.
This kind of problems are common in Quantum Physics, although their mathematical treat-
ment is not always rigorous (cf. [Día15; Día17]).

In the next section we will show some estimates on β ′(wΩ0). Let us state here some
uniqueness results depending on the different blow-up rates.

When the blow-up is subquadratic (i.e. not too rapid), by applying Hardy’s inequality
and the Lax-Migram theorem, we have the following result (see [Día15; Día17]).

Corollary 3.5. Let NΩ0 have positive measure and β ′(u(x)) ≤ Cd(x,NΩ0)
−2 for a.e. x ∈

Ω0 \NΩ0 . Then the solution v is unique.

The study of solutions of problem (3.54) in Ω0 when V ∈ L1
loc(Ω0) was carried out by

many authors (see [DR10; DGCRT17] and the references therein). Existence and uniqueness
of this problem in the case V (x) ≥ Cd(x,∂Ω0)

−r with r > 2 was proved in [DGCRT17].
Applying these techniques one can show that

Corollary 3.6. Let NΩ0 have positive measure and β ′(w(x))≥Cd(x,NΩ0)
−r,r > 2 for a.e.

x ∈ Ω0 \NΩ0 . Then the solution v is unique.

Similar techniques can be applied to the case β ′(w(x))≥Cd(x,NΩ0)
−2. This will be the

subject of a further paper2.

2At the time of writing this thesis, there is a draft of such a paper by this candidate jointly with J.I. Díaz and
J.M. Rakotoson
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3.1.4 Estimates of wΩ0 close to NΩ0

Let us study the solution wΩ0 on the proximity of the dead core and the blow up behaviour of
β ′(wΩ0). First, we recall a well-known example

Example 3.1. Explicit radial solutions with dead core are known when β (w) = |w|q−1w
(0< q< 1), Ω0 is a ball of large enough radius and f is radially symmetric. In this case it is
known that NΩ0 exists, has positive measure and

1
C

d(x,NΩ0)
−2 ≤ β ′(wΩ0)≤Cd(x,NΩ0)

−2.

For the details see [Día85].

In fact, we present here a more general result to study the behaviour in the proximity of
the dead core, based on estimates from [Día85].

Proposition 3.1. Let f = 0, β be continuous, monotone increasing such that β (0) = 0, w
be a solution of (2.1) that develops a dead core NΩ0 of positive measure and assume that
∂NΩ0 ∈ C 1. Define

G(t) =
√

2
(ˆ t

0
β (τ)dτ +αt

) 1
2

, where α = max
{

0, min
x∈∂Ω0

H(x)
∂w
∂n

(x)
}
, (3.55)

and assume that 1
G ∈ L1(R). Then

wΩ0(x)≤ Ψ−1(d(x,NΩ0)), in a neighbournood of NΩ0 , (3.56)

where Ψ(s) =
´ s

0
dt

G(t) .

Example 3.2 (Root type reactions). Let f = 0, β (s) = λ |s|q−1s with 0 < q < 1 and let Ω0

be a convex set such that NΩ0 exists and satisfies that ∂NΩ0 ∈ C 1. Then

wΩ0(x)≤Cd(x,NΩ0)
2

1−q . (3.57)

Furthermore
β ′(wΩ0(x))≥Cd(x,NΩ0)

−2. (3.58)

Remark 3.4. The regularity assumptions on ∂NΩ0 are by no means trivials. Examples can
be constructed in which this does not hold. However, there are many cases of relevance the
applications in which this regularity holds.
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3.2 Convex optimization of the homogenized solutions

This section includes results published in [DGCT15] [DGCT16].

For the homogenized problem, we have the following optimality result:

Theorem 3.11. Let 1 ≤ α < n
n−2 , 0< θ < |Y |, C,D be fixed proper subsets of Y and ε̃ > 0.

Let us assume that

G0 satisfies the uniform ε̃-cone property. (3.59)

We define

Uadm = {C ⊂ G0 ⊂ D : G0 satisfies (3.59) and |G0|= θ},
Cθ (D) = {G0 ⊂ D : G0 is open, convex and |G0|= θ}.

Then, at fixed volume θ ∈ (0, |Y |), there exists a domain of maximal (and minimal) effective-
ness for the homogenized problem (see Chapter 1) in the class of G0 ∈Uadm ∩Cθ (D).

For small (non-critical) holes, we can characterize the optimizer shape in the class of
fixed volume.

Theorem 3.12. For the case 1< α < n
n−2 , the ball is the domain G0 of maximal effectiveness

for a set volume in the class of star-shaped C2 domains with fixed volume.

Remark 3.5. It is a curious fact that Theorem 3.12 is opposed to the homogenization with
respect to the exterior domain Ω. In this context, when Ω is a ball has least effectivity, as
can be shown by rearrangement techniques (see [Día85]). In the context of product domains,
Ω = B×Ω′′ is the least effective on the class Ω = Ω′×Ω′′ for set volume, at least for convex
or concave kinetics as presented in Chapter 2 (see [DGC15b; DGC16; KS80]).

Through standard procedures in weak solution theory, one easily gets several results (see,
e.g., [Bré71a]).

3.2.1 Some auxiliary results for convex domains

For the optimization, we will restrict ourselves to a general enough family of domains, but
in which we can define a topology which makes the family to be compact. It is well known
(see, for example, [Pir84]) that the following result holds true.
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Theorem 3.13 ([Pir84]). The class of closed subsets of a compact set D is compact in P(Rn)

for the Hausdorff convergence.

A proof for the continuity of the effective diffusion a0(G0) (given by (1.77)) under the
Hausdorff distance in Uadm can be found in [HD95].

Lemma 3.2.1 ([HD95]). If Uadm is compact with respect to the Hausdorff metric and if
(Gn

0)⊂Uadm, Gm
0 → G0 as m → ∞, G0 ∈Uadm, then a0(Gm

0 )→ a0(G0) in Mn(R), where a0

is the effective diffusion matrix given by (1.77).

The behaviour of the measure |Y \G0| is slightly more delicate (we include a commentary
even though, in our case, this will be constant). A distance with a definition similar to
Hausdorff metric is the Hausdorff complementary distance

dHc(Ω1,Ω2) = sup
x∈Rn

|d(x,Ωc
1)−d(x,Ωc

2)|.

It has the following property: given open domains (Ωm)m,Ω, such that dHc(Ωm,Ω) → 0
as m → ∞ then liminfm |Ωm| ≥ |Ω|. However, lower semicontinuity of the measure of the
boundary (|∂G0|) is, in general, false (see [HD95] for some counterexamples). Nevertheless,
the set of convex domains has a number of very interesting properties (see [Van04]).

Lemma 3.2.2 ([Van04]). The topological spaces (Cθ (D),dH) and (Cθ (D),dHc) are equiva-
lent.

The continuity of the boundary measure is provided by the following result, proved in
[BG97].

Lemma 3.2.3 ([BG97]). Let (Ωm),Ω ∈Cθ (D). If Ω1 ⊂ Ω2, then |∂Ω1| ≤ |∂Ω2|. Moreover,

if Ωm
dH→ Ω, then |Ωm| → |Ω| and |∂Ωm| → |∂Ω|, as m → ∞.

For the continuity of solutions with respect to G0, we need the following theorem on the
continuity of the associated Nemitskij operators of g (see, for example, [Dal93] and [Lio69]).

Lemma 3.2.4 ([Lio69]). Let g : Ω×R→ R be a Carathéodory function such that

|g(x,v)| ≤C(1+ |v|q) (3.60)

holds true for q = r
t with r ≥ 1 and t < ∞. Then, the map

Lr(Ω)→ Lt(Ω) v 7→ g(x,v(x))

is continuous in the strong topologies.
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Lemma 3.2.5. Let A be the set of elliptic matrices and let g satisfy (3.60) for some 0 ≤ q ≤
n

n−2 . Let u(A,λ ) be the unique solution of




−div(A∇u)+λg(u) = f , in Ω,

u = 1, on ∂Ω,

Then, the application

A ×R+ → H1(Ω) (A,λ ) 7→ u(A,λ ),

is continuous in the weak topology.

Proof. Let us define G(u) =
´ u

0 g(s)ds and

JA,λ (v) =
1
2

ˆ
Ω
(A∇v) ·∇v+

ˆ
Ω

λG(v)−
ˆ

Ω
f v.

We know that u(A,λ ) is the unique minimizer of this functional. Let Am → A and λm →
λ be two converging sequences. It is easy to prove that um = u(Am,λm) is bounded in
H1(Ω) and, up to a subsequence, um ⇀ u in H1 as m → ∞. Therefore,

´
Ω(A∇u) ·∇u ≤

liminfm
´

Ω(Am∇um) ·∇um. We can apply Theorem 3.2.4 to show that G(um)→ G(u) in L1

as n → ∞ (see details for a similar proof, for example, in [CDLT04]) and we have that
u = u(A,λ ).

Corollary 3.7. The map (I,λ ) 7→ u, where I is the identity matrix, is continuous in the weak
topology of H1.

Corollary 3.8. In the hypotheses of Lemma 3.2.5, the maps (A,λ ) 7→
´

Ω g(u(A,λ )) and
(I,λ ) 7→

´
Ω g(u(I,λ )) are continuous.

3.3 Some numerical work for the case α = 1

The following work is part of [DGCT15].

There exists a large literature on the computation and behaviour of the homogenized
coefficient a0(G0), both from the mathematics and the engineering part (see, e.g., [ABG09],
[HD95], [Kri03]). In these papers, one can find power series techniques and numerical
analysis, generally for spherical obstacles. As it is common in the literature (e.g. [ABG09]),
we use the commercial software COMSOL. As said on the introduction, in Nanotechnology,
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however, it is a common misconception that the measure of the surface alone, |∂G0|, is a
good indicator of the effectiveness of the obstacle.

Considering obstacles with some symmetries (for N = 2 it is sufficient that they are
invariant under a 900 rotation) in general, it is well known that

a0(G0) = α(G0)I, (3.61)

where α(G0) is a scalar (see, for example, [ABG09], [Kri03]) and I is the identity matrix in
MN(R). In this case, it can be easily proved that the effectiveness is an decreasing function
of

λ (G0) =
|∂G0|

α(G0)|Y \G0|
(3.62)

(it is a direct consequence of the comparison principle, see [Día85]). In fact, this is the
only relevant parameter (once g(u) is fixed) of the equation (1.76). The behaviour of the
effectiveness with respect to the coefficient λ can also be numerically computed:

Fig. 3.1 Plot of η as a function of λ when Ω is a 2D circle.

Let us consider, in dimension two for simplicity, the following obstacles:

(a) Circular particle (b) Square particle

Fig. 3.2 Two types of particle G0, and the level sets of the solution of the cell problem (1.72)
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We can numerically compute the homogenized diffusion coefficient a0(G0) via a para-
metric sweep on the size of the particle.

Fig. 3.3 The effective diffusion coefficient α(G0) as a function of |Y \G0|.

Now, we can couple this with direct computations of |∂G0| and compare the behaviour
of both indicators.

(a) Classical coefficient |∂G0|. (b) New coefficient λ (G0)

Fig. 3.4 Coefficients |∂G0| and λ (G0) as a function of |Y \G0|.





Chapter 4

Very weak solutions of problems with
transport and reaction

In studying shape differentiation when the nonlinear kinetic term β (u) is non smooth we find
that we need to understand problems of the form

−∆u+β ′(u0)u = f , (4.1)

where β ′(u0) blows up in the proximity of the boundary of the dead core. Since β ′(u0) is a
priori known (before we study u) we can define V (x) = β ′(u0). The expected behaviour is,
in the blow up case that V (x)∼ d(x,∂Ω)−α where α > 0. Thus, we become interested in
the study of the problem

−∆u+V (x)u = f . (4.2)

4.1 The origin of very weak solutions

The notion of very weak solution with data f such that f d(·,∂Ω) ∈ L1(Ω) first appears in an
unpublished paper by Brézis [Bré71b], and was later presented in [BCMR96]. Let

δ (x) = d(x,∂Ω), x ∈ Ω. (4.3)

If u ∈ C 2(Ω) is a solution of the following problem

{
−∆u = f Ω,

u = u0 ∂Ω,
(4.4)
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then, integrating twice by parts we obtain that

−
ˆ

Ω
u∆ϕ =

ˆ
Ω

f ϕ −
ˆ

∂Ω
u0

∂ϕ
∂n

(4.5)

for every ϕ ∈ W 2,∞(Ω)∩W 1,∞
0 (Ω). A fortiori, even if u is not of class C 2, since, for this

test functions, ϕ
δ ∈ L∞(Ω), the problem (4.5) is well formulated for data f and u0 such that

f δ ∈ L1(Ω) and u0 ∈ L1(∂Ω). Equation (4.5) is known as the very weak formulation of
problem (4.4).

The surprising new result introduced by Brézis in 1971 is

Theorem 4.1 ([Bré71b]). Let f be measurable such that δ f ∈ L1(Ω) and let u0 ∈ L1(∂Ω).
There exists a unique u∈ L1(Ω) such that (4.5) for all ϕ ∈W 2,∞(Ω)∩W 1,∞

0 (Ω). Furthermore,
there exists a constant C > 0 such that

∥u∥L1(Ω) ≤C(∥δ f∥L1(Ω)+∥u0∥L1(∂Ω)) (4.6)

Moreover, u satisfies that

−
ˆ

Ω
|u|∆ρ +

ˆ
∂Ω

|u0|
∂ρ
∂n

≤
ˆ

Ω
f ρsign(u) (4.7)

for all ρ ∈W 2,∞(Ω)∩W 1,∞
0 (Ω), where

sign(s) =





1 s> 0,

0 s = 0,

−1 s< 0,

(4.8)

He goes further in a second result that states the following:

Theorem 4.2. Let f be measurable in Ω such that δ f ∈ L1(Ω), u0 ∈ L1(∂Ω) and β monotone
nondecreasing and continuous. Then there exists a unique u ∈ L1(Ω) such that δβ (u) ∈
L1(Ω) that satisfies

−
ˆ

Ω
δϕ +

ˆ
Ω

β (u)ϕ =

ˆ
Ω

f ϕ −
ˆ

∂Ω
u0

∂ϕ
∂n

(4.9)
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for all ϕ ∈W 2,∞(Ω)∩W 1,∞
0 (Ω). Furthermore, if u and û are two solutions corresponding to

f , f̂ ,u0, û0 then

∥u− û∥L1(Ω)+∥δβ (u)−δβ (û)∥L1(Ω) ≤C(∥δ f −δ f̂∥L1(Ω)+∥u0 − û0∥L1(∂Ω)) (4.10)

where C depends only on Ω.

The theory of very weak solutions developed in the 20th-century focused on the use of
weighted Lebesgue spaces. Let L0(Ω) be the space of measurable functions in Ω, µ ∈ L0(Ω)

and 1 ≤ p ≤+∞. We define the weighted Lp space as

Lp(Ω,µ) =
{

f ∈ L0(Ω) :
ˆ

Ω
| f |pµ <+∞

}
. (4.11)

However, a more modern theory will require the definition of some interpolation spaces,
known as Lorentz spaces, which allow for sharp regularity results, and have nice embedding
and duality properties.

4.2 Lorentz spaces

In order to get sharper results of regularity we introduce some interpolation spaces. Lorentz
defined the following spaces in [Lor50; Lor51].

Definition 4.1. Given 0< p,q ≤ ∞ define

∥ f∥(p,q) =





(ˆ ∞

0

(
t

1
p f ∗(t)

)q dt
t

) 1
q

q<+∞,

sup
t>0

t
1
p f ∗(t) q =+∞,

and L(p,q)(Ω) = { f measurable in Ω : ∥ f∥(p,q) <+∞}.

There is an alternative definition of the Lorentz spaces, which is the one we have
considered.

Definition 4.2. Let 1 ≤ p ≤+∞, 1 ≤ q ≤+∞ . Let u ∈ L0(Ω). We define

||u||p,q =





[ˆ
Ω∗

[
t

1
p |u|∗∗(t)

]q dt
t

] 1
q

q<+∞,

sup
0<t≤|Ω|

t
1
p |u|∗∗(t) q =+∞,

where |u|∗∗(t) =
1
t

ˆ t

0
|u|∗(s)ds.
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We define
Lp,q(Ω) = { f measurable in Ω : ∥u∥p,q <+∞}.

These spaces are equal, and their norms equivalent, to the previously defined Lorentz
spaces.

Proposition 4.1 (Corollary 1.4.1 in [Rak08]). Let 1< p ≤+∞,1 ≤ q ≤+∞. Then

Lp,q(Ω) = L(p,q)(Ω)

with equivalent quasi-norms.

The functionals ∥ · ∥(p,q) do not, in general, satisfy the triangle inequality. However, Lp,q

is a quasi-Banach space. The following properties are known

Proposition 4.2 ([Gra09]). i) If 0< p ≤ ∞ and 0< q< r ≤+∞ then L(p,q) ⊂ L(p,r).

ii) L(p,p) = Lp for all p ≥ 1.

iii) Let 1 ≤ p,q< ∞. Then (L(p,q)(Ω))′ = L(p′,q′)(Ω).

iv) If q< r < p then L(p,∞)(Ω)∩L(q,∞)(Ω)⊂ Lr(Ω) (even for Ω unbounded)

v) If Ω is bounded and r < p, then L(p,∞)(Ω)⊂ Lr(Ω)

For the convenience of the reader we include an inclusion diagram for 1≤ q≤ r< p<+∞
and Ω bounded:

L(∞,∞) = L∞
cC

qq

� _

��

L(p,1) � � //� _

��

L(p,q) � � //� _

��

L(p,∞) = weak Lp
iI

vv

� _

��

L(r,1) � � // L(r,q) � � // L(r,r) = Lr � � // L(r,∞).

4.3 Modern theory of very weak solutions

Even though very weak solutions have been studied in many different contexts (see, e.g.
[MV13]) the papers most linked with the research in this thesis corresponds to [DR09; DR10].
In [DR09] the regularity of very weak solutions

{
−∆u = f Ω,

u = 0 ∂Ω,
(4.12)
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is studied, which can be formulated as (4.5) when u0 = 0, and solutions and its gradients are
shown to be in Lorentz spaces. For the reader’s convenience a brief description of this was
given in Section 4.2.

Later, in [DR10] the authors tackle the problem

{
−∆u+Vu = f Ω,

u = 0 ∂Ω,
(4.13)

where V ≥−λ1(Ω), the first eigenvalue of the Laplacian, which can be written in very weak
formulation as





Vu ∈ L1(Ω,δ ),

−
ˆ

Ω
u∆ϕ +

ˆ
Ω

Vuϕ =

ˆ
Ω

f ϕ ∀ϕ ∈W 2,∞ ∩W 1,∞
0 (Ω).

(4.14)

In [DR10] the authors prove an existence result for the most general case. As a matter of
fact, they also add a nonlinear term β (u) to (4.13).

In this chapter Ω ⊂ Rn and
p′ =

p
p−1

. (4.15)

Theorem 4.3 ([DR10]). Let V ∈ L1
loc(Ω) with V ≥−λ ≥−λ1, where λ1 is the first eigenvalue

of L =−div(A∇u) where A is symmetric, uniformly elliptic and C0,1(Ω̄). Then, there exists
a unique solution u ∈ Ln′,∞(Ω)∩W 1,q(Ω,δ ) for every 1 ≤ q< 2n

2n−1 satisfying





Vu ∈ L1(Ω,δ ),ˆ
Ω

uLϕ +

ˆ
Ω

Vuϕ =

ˆ
Ω

f ϕ ∀ϕ ∈W 2,∞ ∩W 1,∞
0 (Ω).

(4.16)

Furthermore

i) ∥Vu∥L1(Ω,δ ) ≤C∥ f∥L1(Ω,δ ),

ii) ∥u∥Ln′,∞(Ω)C∥ f∥L1(Ω,δ ),

iii) The following also holds

ˆ
Ω
|∇u|qδ ≤C∥ f∥

q
2
L1(Ω,δ )

(
1+∥ f∥n′

L1(Ω,δ )

)1− q
2
. (4.17)
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Nonetheless, since δ−r /∈ L1(Ω) for r > 1 , δ−α /∈ L1(Ω,δ ) for α > 2. Therefore, we set
out to see what could be done in this case. In [DGCRT17] the author, jointly with J. I. Díaz,
J. M. Rakotoson and R. Temam, solved some cases left open in [DR10].

Theorem 4.4. Let Ω be bounded and V ≥ cd(x,∂Ω)−s,s > 2. Then there exists a unique
very weak solution u ∈ L1(Ω) of the problem

−∆u+Vu = f in Ω

in the sense that




Vu ∈ L1(Ω,δ ),

−
ˆ

Ω
u∆ϕ +

ˆ
Ω

Vuϕ =

ˆ
Ω

f ϕ ∀ϕ ∈W 2,∞
c (Ω).

(4.18)

We will prove this result in Section 4.6.

Remark 4.1. Notice that the uniqueness theorem is stated without imposing any boundary
conditions in a classical way (the test functions have compact support).

Later, Brezis proved the same result for s = 2, in personal communication to the author
during his visit to Technion by an extension of the previous argument.

Theorem 4.5. Let Ω be bounded and V ≥ cd(x,∂Ω)−2. Then there exists a unique u ∈ L1(Ω)

such that (4.18)

We will include the details of the proof of this improvement1.

4.3.1 Very weak solutions in problems with transport

In developing the theory, thanks to a very fruitful collaboration with J.M. Rakotoson (U.
Poitiers, France) and R. Temam (U. Indiana, USA) we managed to extend the results to the
problem with a transport term




−∆u+ b⃗ ·∇u+Vu = f Ω,

u = 0 ∂Ω,
(4.19)

where 



div b⃗ = 0 Ω,

b⃗ ·n = 0 ∂Ω.
(4.20)

1At the time of writing, a draft paper containing further improvements is in preparation jointly with J.I. Díaz
and J.M. Rakotoson
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This case is very relevant in incompressible flows. The very weak formulation of this problem
can be written as

ˆ
Ω

u(−∆ϕ − b⃗ ·∇ϕ +V ϕ) =
ˆ

Ω
f ϕ ∀ϕ ∈W 2,∞(Ω)∩W 1,∞

0 (Ω). (4.21)

In order to be very clear about the definition of very weak solution, and the sense in which
we define boundary conditions. We collect now some definitions:

Definition 4.3. Let V, f ∈ L1
loc and b⃗ ∈ Ln(Ω)n, satisfy (4.20) in the sense that

ˆ
Ω

ϕ∇u · b⃗ =−
ˆ

Ω
u∇ϕ · b⃗ (4.22)

for all ϕ ∈W 1,∞(Ω) and u ∈W 1,n′(Ω) (see an explanation of this definition in Remark 4.2).
Let us define the following types of very weak solutions

• Local very weak solution of (4.19) (i.e. without boundary condition). We say that u
is v.w.s. without b.c. if (4.21) holds for every ϕ ∈ C 2

c (Ω).

• Very weak solution of (4.19) in the sense of weights We say that u is v.w.s. with
weight if it satisfies (4.21) holds for every ϕ ∈ C 2

c (Ω) and Vu ∈ L1(Ω,δ ).

• Very weak solution of (4.19) in the sense of traces We say that u is v.w.s. with
Dirichlet homogeneous boundary conditions if (4.21) holds for every ϕ ∈ C 2(Ω) such
that ϕ = 0 on ∂Ω and Vu ∈ L1(Ω,δ ).

We have the following result

Theorem 4.6. Let f ∈ L1(Ω,δ ),V ∈ L1
loc(Ω) and b⃗ ∈ Lp,1(Ω) such that div b⃗ = 0 in Ω and

b⃗ ·n = 0 on ∂Ω where either

i) p> n or

ii) p = n and b⃗ is small in Ln,1 (in the sense that ∥⃗b∥n,1 ≤ Ks0
n1 for a constant specified in

[DGCRT17]).

Then,

i) there exists a very weak solution without boundary condition u ∈ Ln′,∞(Ω).

ii) If V ∈ L1(Ω,δ ), then there exists a v.w.s. in the sense of traces in u ∈ Ln′,∞(Ω).

iii) If V ∈ Lp,1(Ω), then there exists a unique v.w.s. in the sense of traces u ∈ Ln′,∞(Ω).
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iv) If V ≥ cδ−α for some α > 2, then there exists a unique v.w.s. in the sense of weights
u ∈ Ln′,∞(Ω).

We conclude this statement section by explaining our definition of (4.20).

Remark 4.2. Assume first that b⃗,u,ϕ are smooth, and that b⃗ satisfies (4.20). Then

div(uϕ⃗b) = ∇(uϕ) · b⃗+uϕ div b⃗ = ∇(uϕ) ·b
= u∇ϕ · b⃗+ϕ∇u · b⃗.

Integrating over Ω
ˆ

∂Ω
uϕ⃗b · n⃗ =

ˆ
Ω

u∇ϕ · b⃗+
ˆ

Ω
ϕ∇u · b⃗.

Since b⃗ · n⃗ = 0 on ∂Ω we have that (4.22) holds. We can pass to the limit for less smooth
b⃗,u,ϕ .

4.4 Existence and regularity

We will construct the solution as a limit of problems with cutoff. Let us define the cut-off
operator, for k > 0

Tk(s) =





s |s| ≤ k,

k sign(s) |s|> k,
(4.23)

and let
Vk = Tk ◦V. (4.24)

4.4.1 Regularity of the adjoint operator −∆− u⃗ ·∇
Given T ∈ H−1(Ω) we focus first on the regularity of the adjoint problem

ˆ
Ω

∇φ∇ϕ −
ˆ

Ω
b⃗ ·∇φϕ +

ˆ
Ω

V φϕ = ⟨T,ϕ⟩ (4.25)

∀ϕ ∈ H1
0 (Ω).

By applying the Lax-Milgram theorem we can show that



4.4 Existence and regularity 131

Proposition 4.3. Let T ∈ H−1(Ω), V ∈ L0(Ω) satisfying V ≥ −λ > −λ1 (where λ1 is the
first eigenvalue of −∆ with Dirichlet boundary condition). Let

W = {ϕ ∈ H1
0 (Ω) : (V +λ )φ 2 ∈ L1(Ω)} (4.26)

endowed with
[ϕ]2W = ∥ϕ∥2

H1
0 (Ω)

+

ˆ
Ω
(V +λ )ϕ2. (4.27)

Then there exists a unique element φ ∈ W such that (4.25) holds for every ϕ ∈ W . Moreover

∥φ∥H1
0 (Ω) ≤

λ1

λ1 −λ
∥T∥H−1, (4.28)

(ˆ
Ω
(V +λ )ϕ2

) 1
2

≤
(

λ1

λ1 −λ

) 1
2

∥T∥H−1. (4.29)

It is clear that if T ∈ H−1 then there exists a unique solution φk ∈ H1
0 (Ω) of

ˆ
Ω

∇φk∇ϕ −
ˆ

Ω
b⃗∇φkϕ +

ˆ
Ω

Vkφkϕ = ⟨T,ϕ⟩, ∀ϕ ∈ H1
0 (Ω). (4.30)

It turns out that φk → φ strongly in H1
0 (Ω). We can show that the regularity can be improved

Proposition 4.4. Let T ∈ L
n
2 ,1(Ω)⊂ H−1(Ω) and V ≥ 0. Then φ ∈ L∞(Ω) and there exists

a constant C =C(n,Ω) such that

∥φ∥L∞(Ω) ≤C∥T∥
L

n
2 ,1(Ω)

. (4.31)

Proposition 4.5. Let V ∈ L0(Ω) and

T =−div F⃗ F⃗ ∈ LF =





Ln,1(Ω)n n ≥ 3,

L2+ε(Ω)2 n = 2.
(4.32)

Then φ ∈ L∞(Ω) and there exists a constant C =C(n,Ω) such that

∥φ∥L∞(Ω) ≤C∥F⃗∥LF . (4.33)

Proposition 4.6. Let

i) b⃗ ∈ Lp,q(Ω) with p> n,

ii) 0 ≤V ∈ Lr,q(Ω) where r = np
n+p ,
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iii) T =−div F⃗ where F⃗ ∈ Lp,q(Ω) for 1 ≤ q ≤+∞.

Then φ ∈W 1Lp,q(Ω). Moreover, there exists Kpq = K(p,q,n,Ω) such that

∥∇φ∥Lp,q ≤ Kpq(1+ ∥⃗b∥Lp,q +∥V∥Lr,q)∥F∥Lp,q(Ω)n. (4.34)

Proposition 4.7. If b⃗, F⃗ ∈ Lp,∞(Ω)n for p> n then φ ∈ C 0,α(Ω̄) for α = 1− n
p .

As an auxiliary space we will use the spaces of bounded mean oscillation

Definition 4.4. A locally integrable function f on Rn is said to be in bmo(RN) if

∥ f∥bmo(RN) = sup
0<diam(Q)<1

1
|Q|

ˆ
Q
| f (x)− fQ|dx+ sup

diam(Q)≥1

1
|Q|

ˆ
Q
| f (x)|dx<+∞

where the supremum is taken over all cube Q ⊂ Rn the sides of which are parallel to the
coordinates axes and

fQ =
1
|Q|

ˆ
Q

f (y)dy.

Definition 4.5. A locally integrable function f on a Lipschitz bounded domain Ω is said to
be in bmor(Ω) (r stands for restriction) if

∥ f∥bmor(Ω) = sup
0<diam(Q)<1

1
|Q|

ˆ
Q
| f (x)− fQ|dx+

ˆ
Ω
| f (x)|dx<+∞, (4.35)

where the supremum is taken over all cube Q ⊂ Ω the sides of which are parallel to the
coordinates axes.
In this case, there exists a function f̃ ∈ bmo(RN) such that

f̃
∣∣∣
Ω
= f and ∥ f̃∥bmo(RN) ≤ cΩ · || f ||bmor(Ω). (4.36)

Proposition 4.8. Let b⃗, F⃗ ∈ bmor(Ω)n and V ∈ bmor(Ω). Then:

i) b⃗φ ∈ bmor(Ω)n,

ii) ∇φ ∈ bmor(Ω)n.

We can even estimate some second order derivatives

Proposition 4.9. Let b⃗ ∈ Lp,q, T,V ∈ Lp,q(Ω) for some p > n and 1 ≤ q ≤ +∞. Then
φ ∈W 2Lp,q(Ω) and there exists K = K(p,q,n,Ω) such that

∥φ∥W 2Lp,q ≤ K
1+ cε0 ∥⃗b∥Lp,q +∥V∥Lp,q

1− ε0∥⃗b∥Lp,q
∥T∥Lp,q, (4.37)
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where ε0 > 0 is such that ε0∥⃗b∥Lp,q < 1 and cε0 →+∞ as ε → 0.

For the proof of the existence of solutions in Theorem 4.6 the idea is to consider uk the
solution of

−∆uk + b⃗k ·∇uk +Vkuk = fk (4.38)

where fk = Tk ◦ f and b⃗k is an approximating sequence in

V = {⃗b ∈ C ∞
c (Ω)n : div b⃗ = 0 in Ω}, (4.39)

which has adherence in Lp,q the set

V = { ∈ Lp,q(Ω)n : div b⃗ = 0 in Ω,⃗b · n⃗ = 0 on ∂Ω}.(4.40)In order to get some uniform
estimate (we want to apply the Dunford–Pettis compactness theorem) we consider the family
of test functions 



−∆φk,E − b⃗ j ·∇φk,E = χE Ω,

φk,E = 0 ∂Ω.
(4.41)

The previously established regularity result assure that

∥φk,E∥W 2Ln,1 ≤C∥χE∥Ln,1 ≤C|E| 1
n . (4.42)

From this reasoning we can extract some conclusions (see [DGCRT17] for the details)
ˆ

E
u j ≤C|E| 1

n

ˆ
Ω

fkδ , (4.43)

∥u j∥Ln′,∞ ≤C
ˆ

Ω
f δ , (4.44)

ˆ
Ω

Vkukδ ≤C(1+ ∥⃗b∥Ln,1)

ˆ
Ω

f δ . (4.45)

With some additional work we show that there exists u ∈ L1(Ω) such that

i) u j → u in L1(Ω),

ii) Vu ∈ L1(Ω) (by applying Fatou’s lemma),

iii) Vkukδ ⇀Vuδ in L1
loc(Ω),

iv) if V ∈ L1(Ω,δ ), then Vkukδ ⇀Vuδ in L1(Ω).
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This is enough to show that u is a v.w.s. without boundary condition. If V ∈ L1(Ω,δ ) then u
is a v.w.s. in the sense of traces. If V ≥Cδ−α with α > 2 then

+∞>

ˆ
Ω
|u|V δ ≥C

ˆ
Ω
|u|δ 1−α (4.46)

hence u ∈ L1(Ω,δ−r) for some r > 1. For the uniqueness of solutions in this last case we
must set a suitable theory.

4.5 Maximum principles in some weighted spaces

The classical maximum principle states that, if u ∈ C 2(Ω) and




−∆u ≤ 0 in Ω,

u ≤ 0 on ∂Ω,
=⇒ u ≤ 0. (4.47)

We will say that a space X satisfies a maximum principle if



−∆u ≤ 0 in D ′(Ω),

u ∈ X on ∂Ω,
=⇒ u ≤ 0. (4.48)

Since it will be used very subtly in the following sections, we recall the following definition

Definition 4.6. Let u be an integrable function. We say that −∆u = f in D ′(Ω) if

−
ˆ

Ω
u∆ϕ =

ˆ
Ω

f ϕ ∀ϕ ∈ C ∞
c (Ω).

To show that some spaces satisfy the property above, let us state an approximation lemma
for the space of test functions.

Remark 4.3. One of the useful properties of (4.47) is that it allows to prove uniqueness of
solutions straightforwardly. Let f ∈ C (Ω). Consider two solutions ui such that




−∆ui = f in Ω,

ui = 0 on ∂Ω.
(4.49)

Then, one immediately proves that u1 −u2 ≤ 0 and u2 −u1 ≤ 0. Hence u1 = u2.

In order to prove the relevant results in this Chapter we will use the following maximum
principle:
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Theorem 4.7. Let u ∈ L1(Ω) be such that

−
ˆ

Ω
u∆ϕ ≤ 0, ∀ϕ ≥ 0, ϕ ∈W 1,∞

0 (Ω)∩W 2,∞(Ω). (4.50)

Then u ≤ 0.

A very useful result to be used in conjuction with this kind of maximum principle is
known as Kato’s inequality (which was originally published in [Kat72]). To present it we
give the definition of the positive sign function: for s ∈ R

sign+(s) =





1 s> 0,

0 s ≤ 0.
(4.51)

Theorem 4.8 (Kato’s inequality as presented in [MV13]). Assume that u, f ∈ L1
loc(Ω) and

−∆u ≤ f in D ′(Ω). Then:

i) −∆|u| ≤ f signu in D ′(Ω).

ii) −∆u+ ≤ f sign+ u in D ′(Ω).

Remark 4.4. It is very important to compare the test functions in (4.50) with the ones of the
definition of −∆u ≤ 0 in D ′(Ω).

4.5.1 Some approximation lemmas

Approximation in W 1,∞
0 with weights In [DGCRT17] we proved the following result,

which is stated for the spaces

W m,∞
c (Ω,δ r) = { f ∈W m,∞(Ω,δ r) : ∃K ⊂ Ω compact such that f = 0 a.e. in Ω\K}.

Theorem 4.9. The following density results hold:

i) Let r > m. Then W m,∞
c (Ω,δ r) is dense in W m,∞(Ω,δ r)

ii) Let r > m−1. Then W m,∞
c (Ω,δ r) is dense in W 1,∞

0 (Ω)∩W m,∞(Ω,δ r).

Remark 4.5. Notice that, without the weights, the results do not hold. If a sequence
( fn) ∈W m,∞

c (Ω) converges to a function f in the norm of this space, due to the continuity of
trace f ∈W 1,∞

0 (Ω). Hence, the adherence of W m,∞
c (Ω) with the W m,∞(Ω) norm can not be

the whole space W m,∞(Ω).
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We will prove that

Proposition 4.10. Let ϕ ∈W m,∞, then for r > m there exists (ϕn)⊂W m,∞
c such that

δ r(∂αϕn)
L∞
→ δ r(∂αϕ), |α|< r,m.

If ϕ ∈W 1,∞
0 ∩W m,∞ then

δ r(∂αϕn)
L∞
→ δ r(∂αϕ), |α|< r+1,m.

The proof is based on the existence and bounds of the cut-off function we will define
now. Let ψ ∈ C ∞(R) be a non decreasing function such that 0 ≤ ψ ≤ 1 and

ψ(s) =





1, s ≥ 1,

0, s ≤ 0.

Let, for x ∈ Ω,

ηε(x) = ψ
(

δ (x)− ε
ε

)
.

We have constructed a function ηε which will be of relevance to us.

Lemma 4.5.1. Let Ω be such that ∂Ω ∈ C 2. Then, there exists a sequence of function ηε

such that

i) suppηε ⊂ {δ ≥ ε},

ii) supp(1−ηε)⊂ {δ ≤ 2ε},

iii) |Dαηε(x)| ≤Cε−|α|.

The approximating sequence that we construct to prove Proposition 4.10 is precisely, for
ϕ ∈W m,∞(Ω), given by ϕn = η 1

n
ϕ . The details of the proof (which requires several sharp

estimations) can be found [DGCRT17].

Approximation in L1(Ω,δ )′ The mentioned improvement by Brezis is the following.

Theorem 4.10. Let u ∈ L1(Ω,δ−1) and ϕ ∈W 2,∞(Ω)∩W 1,∞
0 (Ω). Then

ˆ
Ω

u∆(ϕηε)→
ˆ

Ω
u∆ϕ. (4.52)
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Proof. Taking into account that

∆(ηεϕ) = ηε∆ϕ +2∇ηε ·∇ϕ +ϕ∆ηε , (4.53)

we have that

−
ˆ

Ω
u∆(ηεϕ) =−

ˆ
Ω

uηε∆ϕ −2
ˆ

Ω
u∇ηε ·∇ϕ −

ˆ
Ω

uϕ∆ηε . (4.54)

Using the fact that u
δ ∈ L1(Ω), δηε → δ in L∞(Ω) and ∆ϕ ∈ L∞(Ω):

−
ˆ

Ω
uηε∆ϕ =−

ˆ
Ω

u
δ

δηε∆ϕ →−
ˆ

Ω

u
δ

δ∆ϕ =−
ˆ

Ω
u∆ϕ.

On the other hand

∣∣∣∣
ˆ

Ω
u∇ηε ·∇ϕ

∣∣∣∣≤
∣∣∣∣∣

ˆ
{ε<δ<2ε}

u
δ

δ∇ηε ·∇ϕ

∣∣∣∣∣

≤
ˆ
{ε<δ<2ε}

|u|
δ

δ∥∇ηε∥L∞(Ω)∥∇ϕ∥L∞(Ω)

≤Cε∥∇ηε∥L∞(Ω)

ˆ
{ε<δ<2ε}

|u|
δ

≤C
ˆ
{ε<δ<2ε}

|u|
δ
.

Since u/δ ∈ L1(Ω) and the Lebesgue measure m({ε < δ < 2ε})→ 0 we have

ˆ
Ω

u∇ηε ·∇ϕ → 0 as ε → 0.

Due the Hardy inequality in W 1,∞
0 (Ω) we have that ϕ

δ ∈ L∞(Ω). Therefore

∣∣∣∣
ˆ

Ω
uϕ∆ηε

∣∣∣∣≤
∣∣∣∣∣

ˆ
{ε<δ<2ε}

u
δ

ϕ
δ

δ 2∆ηε

∣∣∣∣∣

≤
∥∥∥ϕ

δ

∥∥∥
L∞(Ω)

ε2∥∆ηε∥L∞(Ω)

ˆ
{ε<δ<2ε}

|u|
δ

≤C
ˆ
{ε<δ<2ε}

|u|
δ

→ 0 as ε → 0.

This concludes the proof.
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4.5.2 Maximum principle of −∆ in L1 with weights and without bound-
ary condition

In [DGCRT17] we proved a first result in this direction, which we will write following the
definitions in [MV13].

Theorem 4.11 ([DGCRT17]). Let u ∈ L1(Ω,δ−r) for some r > 1 be such that −∆u ≤ 0 in
D ′(Ω), i.e.

−
ˆ

Ω
u∆ϕ ≤ 0, ∀ϕ ∈ C ∞

c (Ω), ϕ ≥ 0. (4.55)

Then u ≤ 0.

Proof. Assume first that r> 1. Let ϕ ∈W 1,∞
0 ∩W 2,∞ and let ϕn ∈W 2,∞

c be the approximating
sequence constructed in Proposition 4.10 (e.g. η 1

n
ϕ where ηε is given by Lemma 4.5.1).

Then
0 ≥−

ˆ
Ω

u∆ϕn =−
ˆ

Ω
uδ−r(∆ϕn)δ r.

Since uδ−r ∈ L1(Ω) and δ r∆ϕn → δ r∆ϕ in L∞ we can pass to the limit and obtain

0 ≥−
ˆ

Ω
uδ−r∆ϕδ r =−

ˆ
Ω

u∆ϕ,

which proves the result.

Combining this fact with Theorem 4.8 we have the following result (without boundary
condition)

Corollary 4.1. Let u ∈ L1(Ω,δ−r) for some r > 1 be such that −∆|u| ≤ 0 then u = 0.

Prof. Häim Brezis improved Theorem 4.11 in a personal communication. The proof is a
refinement of the one in [DGCRT17].

Theorem 4.12. Let u ∈ L1(Ω,δ−1) be such that −∆u ≤ 0. Then u ≤ 0.

Proof. Let 0 ≤ ϕ ∈W 2,∞(Ω)∩W 1,∞
0 (Ω). Since 0 ≤ ηεϕ ∈W 2,∞

c (Ω) we can use it as a test
function. We have that

−
ˆ

Ω
u∆(ϕηε)≤ 0.

Therefore, due to Theorem 4.10 and the previous estimates,

0 ≥−
ˆ

Ω
u∆(ϕηε)→−

ˆ
Ω

u∆ϕ.
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Finally, for any ϕ ∈W 2,∞(Ω)∩W 1,∞
0 (Ω), we have that

−
ˆ

Ω
u∆ϕ ≤ 0.

Due to Theorem 4.7, we have that u ≤ 0.

4.5.3 Maximum principle of −∆+ b⃗ ·∇ in L1 with weights

Theorem 4.13 ([DGCRT17]). Let ū ∈W 1,1
loc (Ω) and b⃗ū ∈ L1

loc(Ω) and

Lū =−∆ū+div(⃗bū) ∈ L1
loc(Ω). (4.56)

Define the dual operator
L∗ψ̄ =−∆ψ̄ − b⃗ ·∇ψ̄. (4.57)

Then

i) For all ψ ∈ D(Ω), ψ ≥ 0 we have that

ˆ
Ω

ū+L∗ψ ≤
ˆ

Ω
ψ sign+(ū)Lū. (4.58)

That is, Lū+ ≤ sign+(u+)Lū in D ′(Ω).

ii) L(|ū|)≤ sign(ū)Lū in D ′(Ω).

4.6 Uniqueness of very weak solutions of problem (4.18)

We provide here the proof of the extended result Theorem 4.5, which has not been published.
For the proof of Theorem 4.4 can be found in [DGCRT17].

Proof of Theorem 4.5. The existence result was shown in [DGCRT17]. Since the problem is
linear let us show uniqueness for f = 0. Since Vu ∈ L1(Ω,δ ) we have that u ∈ L1(Ω,δ−1).
We have that −∆u =−Vu in the sense of distributions. Applying Theorem 4.8 we have that

−∆|u| ≤ −(signu)Vu =−V |u| ≤ 0 (4.59)

Applying Theorem 4.12 we have u = 0.
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4.7 On weights and traces

It was noted on [Kuf85] that some power type weights in L1 induce zero trace on continuous
functions L1(Ω,δ−r)∩C (Ω̄)⊂ C0(Ω̄). This naturally raises the question: Is uδ−α ∈ Lp for
some α and p a sufficient condition to have uniqueness in an elliptic equation even when the
solution does not neccesarily have a trace? Does the weight work as a trace, even when there
is no trace? A number of results in this directions are provided in [Kuf85], for p> 1

W k,p(Ω,δ ε) =W k,p
0 (Ω,δ ε)(=C∞

0 (Ω)
W k,p(Ω,δ ε )

) (4.60)

and

u ∈W 1,p(Ω) and
u
δ
∈ Lp(Ω) ⇐⇒ u ∈W 1,p

0 (Ω). (4.61)

In this sense it is natural that something like this might be used as a boundary condition. In
some cases, the fact that the solution is in such a weighted appears naturally.

In fact, due to Theorem 4.12, weights in the form of negative powers of the distance to
the boundary can be used to define “Dirichlet boundary conditions” for elliptic equations and
ensure uniqueness. In particular, our aim is to show that, if we assume




−∆u = 0 in D ′(Ω),

u ∈ L1(Ω,δ−1),
or




−∆u+Vu = 0 in D ′(Ω),

u ∈ L1(Ω,δ−1),

then u = 0 in Ω.

4.7.1 Weights and Hardy’s inequalities in L1(Ω)

The equivalence (4.61), which holds for p > 1 and is useful throughout this Chapter, is
heavily linked with Hardy’s inequality for W 1,p

0 (Ω) for p> 1:

ˆ
Ω

( |u|
δ

)p

≤C
ˆ

Ω
|∇u|p ∀u ∈ C ∞

c (Ω). (4.62)

(see [Har25; BM97]). Neither of these results is true for p = 1 (see, e.g., [Psa13]).

The following facts for the case p = 1 are known for a smooth bounded domain in Rn:

i) If u ∈W 1,1
0 (Ω) and −∆u = 0 in D ′(Ω) then u = 0.
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ii) If u ∈W 1,1(Ω) and u
δ ∈ L1(Ω) then u ∈W 1,1

0 (Ω).

iii) u ∈W 1,1
0 (Ω) does not imply u

δ ∈ L1(Ω).

We proved that

iv) If u
δ ∈ L1(Ω) and ∆u = 0 in D ′(Ω) then u = 0.

The following question2 seems natural:

Does it exist a weight function p(x) such that:

u ∈W 1,1
0 (Ω) =⇒ u

p
∈ L1(Ω),

and
∆u = 0 in D ′(Ω)

u
p ∈ L1(Ω)

}
=⇒ u = 0, (4.63)

both hold?

If p(x) satisfies (4.63), we will say that weight 1
p gives a Dirichlet boundary condition in a

generalized sense.

We will focus in the case Ω = (0,1)⊂ R. We consider the set of admissible weights:

X= {p ∈ C ([0,1]) : p(0) = 0, p(1) = 0, p> 0 in (0,1)}.

Naturally, the distance to the boundary is a function in this set.

The map u ∈ W 1,1
0 (0,1) 7→ u

p ∈ L1(0,1) is continuous if and only if there exists C > 0
such that the following Hardy-type inequality is satisfied:

ˆ 1

0
|u′| ≥C

ˆ 1

0

|u|
p
, ∀u ∈ C ∞

c (0,1). (4.64)

Remark 4.6. In [Psa13] the author studies the possible nature of weights p such that (4.64)
holds.

We can answer negatively to the question above.

2which was raised to the candidate by H. Brezis in May 2017
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Theorem 4.14. There exists no p ∈ X that satisfies both (4.63) and (4.64) for Ω = (0,1).

For the proof we will state several intermediate results.

Lemma 4.7.1. Let p ∈ X satisfy (4.64). Then 1
p ∈ L1(0,1).

Proof. For 0 < ε < 1 define uε = χ[ε,1−ε] ∈ BV (0,1), the characteristic function of the
interval [ε,1− ε]. We have that u′ε = δε −δ1−ε and |u′|= δε +δ1−ε . By passing to the limit
by an approximating sequence in C ∞

c (0,1) and applying the coarea formula (see Section 2.4),
we write (4.64) as

2 ≥C
ˆ 1−ε

ε

1
p
.

As ε → 0 we deduce that ˆ 1

0

1
p
≤ 2

C
.

This proves the lemma.

Lemma 4.7.2. If p ∈ X satisfies (4.63) then 1
p /∈ L1.

Proof. If 1
p ∈ L1 then we can take u = 1 and (4.63) is not satisfied.

We have the following extra information:

Lemma 4.7.3. If 1
p /∈ L1(0, 1

2) and 1
p /∈ L1(1

2 ,1) then (4.63) holds.

Proof. Let u ∈ D ′(0,1) be such that u′′ = 0. Then u(x) = a+bx for some a,b ∈ R.
Assume, towards a contradiction that u ̸≡ 0. There exists at most one c ∈ [0,1] such that
u(c) = 0. We distinguish 4 cases. If no c exists then |u(x)| ≥ D> 0. Then

+∞>
1
D

ˆ 1

0

|u|
p

≥
ˆ 1

0

1
p
.

This is a contradiction. If c = 0 then |u| ≥ D> 0 in (1
2 ,1). Then

+∞>
1
D

ˆ 1

1
2

|u|
p

≥
ˆ 1

1
2

1
p
.

This is also a contradiction. The same happens if c = 1. If c ∈ (0,1) then |u| ≥ D in
(0,ε)∪ (1− ε,1). Then

+∞>
1
D

(ˆ ε

0

|u|
p
+

ˆ 1

1−ε

1
p

)
≥
ˆ ε

0

1
p
+

ˆ 1

1−ε

|u|
p

This concludes the proof.
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4.7.2 A decomposition problem

The notions of trace and weighted boundary condition do not inter-relate. A question that
emerges3 is the follow:

what happens if we know that a function is the sum of two parts, one satisfying
a boundary condition in the sense of traces and the other one in the sense of
weights (a generalized version of it).

We have the following result:

Proposition 4.11. Let u satisfy the following:

i) ∆u = 0 in D ′(Ω).

ii) u = u1 +u2

iii) u1 ∈W 1,1
0 (Ω)

iv) u2
δ ∈ L1(Ω).

Then u = 0.

Proof. Since u2
δ ∈ L1(Ω), due to Theorem 4.10, it holds that

ˆ
Ω

u2∆(ηεϕ)→
ˆ

Ω
u2∆ϕ. (4.65)

On the other hand, since u1 ∈W 1,1
0 (Ω):

−
ˆ

Ω
u1∆(ηεϕ) =

ˆ
Ω

∇u1∇(ηεϕ) =
ˆ

Ω
ηε∇u1∇ϕ +

ˆ
Ω

ϕ∇u1∇ηε . (4.66)

Therefore, applying the properties of ηε we have that:
∣∣∣∣
ˆ

Ω
u1∆(ηεϕ)−

ˆ
Ω

u1∆ϕ
∣∣∣∣≤
ˆ

Ω
|1−ηε ||∇u1||∇ϕ|+

ˆ
Ω
|ϕ||∇u1||∇ηε | (4.67)

≤
ˆ

δ<2ε

|∇u1∇ϕ|+C
ˆ

ε<δ<2ε

δ |∇u1|ε−1 (4.68)

≤C



ˆ

δ<2ε

|∇u1|+
ˆ

ε<δ<2ε

|∇u1|


 (4.69)

→ 0, (4.70)

3Raised by H. Brezis to the candidate (Haifa, June 2017)
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since |∇u1| ∈ L1(Ω). Therefore

ˆ
Ω

u1∆(ηεϕ)→
ˆ

Ω
u1∆ϕ. (4.71)

Hence

0 =

ˆ
Ω

u1∆(ηεϕ)+
ˆ

Ω
u2∆(ηεϕ)→

ˆ
Ω

u1∆ϕ +

ˆ
Ω

u2∆ϕ =

ˆ
Ω

u∆ϕ. (4.72)

We have that ˆ
Ω

u∆ϕ = 0 ∀ϕ ∈W 1,∞
0 (Ω)∩W 2,∞(Ω). (4.73)

Therefore u = 0.

Remark 4.7. The conclusion of this result can be useful to prove the uniqueness of solutions
of some suitable non-standard linear boundary value problems.

4.7.3 The L1 weight as a trace operator in W 1,q,q> 1

Another approach to this problem is to study whether being in L1(Ω,δ−r) does imply having
trace 0 at least for functions in W 1,p(Ω) for p > 1. In this direction, in a more functional
presentation, we have proved the following new result4:

Theorem 4.15. Let Ω be a bounded domain of class C 0,1. Then, for all r > 1 and q> 1

L1(Ω,δ−r)∩W 1,q(Ω) ↪→W 1,q
0 (Ω), (4.74)

Lemma 4.7.4. Let 1∗ = n
n−1 , n ≥ 2 and α > 1. Then, there exists cΩ such that for u ∈

L1(Ω,δ−α)∩W 1,1(Ω) one has

(ˆ
Ω

∣∣∣ uδ
∣∣∣

p
) 1

p

≤ cΩ∥u∥1− 1
α

L1∗(Ω)

(ˆ
Ω
|u|δ−αdy

) 1
α
, 1< p<min

{
α,

1∗α
α −1+1∗

}
. (4.75)

Proof. By Hölder’s inequality

ˆ
Ω
|u|pδ−p =

ˆ
Ω
|u|p(1− 1

α )δ−p|u| p
α ≤

(ˆ
Ω
|u|

p(α−1)
α−p

)1− p
α
(ˆ

Ω
|u|δ−α

) p
α
. (4.76)

We impose that
p(α −1)

α − p
≤ 1∗ (4.77)

4This candidate thanks J.M. Rakotoson and J.I. Díaz for their coversation on this topic.
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which is exactly the condition on the statement.

Proof of Theorem 4.15. Let q<min
{

α, 1∗α
α−1+1∗

}
. Then u

δ ∈ Lq and therefore u ∈W 1,q
0 . If

q ≥ min
{

α, 1∗α
α−1+1∗

}
first we observe that the result holds for q̄ in the previous case and

hence we see that u ∈W 1,q̄
0 (Ω). Therefore

u ∈W 1,q(Ω)∩W 1,q̄
0 (Ω) =W 1,q

0 (Ω). (4.78)

This proves the result.

Remark 4.8. Notice that we have substituted Lp to L1 in the known result (4.61).





Part II

A problem in Fourier representation





Chapter 5

Optimal basis in Fourier representation

This chapter presents work developed while on a visit to Prof. Häim Brezis at Technion -
Israel Institute of Technology in Haifa, Israel in April-July 2017. The candidate wishes to
extend to Häim Brezis his warmest thanks for the hospitality and the mentoring. The visit
and the work led to the publication of [BGC17].

5.1 A problem in image representation

While studying compression of meshes for 3D representation Ron Kimmel and his group
stumbled upon the following question, of a strict mathematical nature:

Which is the basis of L2(Ω) that provides the best finite dimensional projections
of functions in H1

0 (Ω)?

First, we need to define the term “optimal basis”. It is natural to define as optimal a basis
b = (bi) of L2(Ω) such that, for all m ≥ 1,

∥∥∥∥∥ f −
m

∑
i=1

( f ,bi)bi

∥∥∥∥∥

2

L2

≤ αm∥∇ f∥2
L2 ∀ f ∈ H1

0 (Ω). (5.1)

with optimal constants αm. This technique led the group of Ron Kimmel to the publication of
several paper in this direction, in collaboration with Häim Brezis (see [ABK15; ABBKS16]).
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5.2 The mathematical treatment

In the works above the authors had shown that, in a bounded smooth set Ω ⊂ Rn, an optimal
basis for H1

0 (Ω)-representation in the sense of (5.1) was formed by the eigenfunctions ei of
the Laplace operator 



−∆ei = λiei in Ω,

ei = 0 on ∂Ω,
(5.2)

where 0< λ1 < λ2 ≤ λ3 ≤ ·· · is the ordered sequence of eigenvalues repeated according to
their multiplicity.

It is a classical result that

Theorem 5.1. We have, for all m ≥ 1,

∥∥∥∥∥ f −
m

∑
i=1

( f ,ei)ei

∥∥∥∥∥

2

L2

≤
∥∇ f∥2

L2

λn+1
∀ f ∈ H1

0 (Ω). (5.3)

The proof of this fact is tremendously simple, due to the orthogonality of the eigenfunc-
tions. Indeed

∥∥∥∥∥ f −
m

∑
i=1

( f ,ei)ei

∥∥∥∥∥

2

L2

=

∥∥∥∥∥
+∞

∑
i=m+1

( f ,ei)ei

∥∥∥∥∥

2

L2

=
+∞

∑
i=m+1

( f ,ei)
2

and

∥∇ f∥2
L2 =

+∞

∑
i=1

λi( f ,ei)
2 ≥

+∞

∑
i=m+1

λi( f ,ei)
2 ≥ λm+1

+∞

∑
i=m+1

( f ,ei)
2.

Combining these expressions yields the result.

The authors of [ABK15] and [ABBKS16] have investigated the “optimality” in various
directions of the basis (ei), with respect to inequality (5.3). Here is one of their results
restated in a slightly more general form:

Theorem 5.2 (Theorem 3.1 in [ABK15]). There is no integer m ≥ 1, no constant 0 ≤ α < 1
and no sequence (ψi)1≤i≤m in L2(Ω) such that

∥∥∥∥∥ f −
m

∑
i=1

( f ,ψi)ψi

∥∥∥∥∥

2

L2

≤ α
λm+1

∥∇ f∥2
L2 ∀ f ∈ H1

0 (Ω). (5.4)
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The proof in [ABK15] relies in the Fischer-Courant max-min principle (see, e.g., [Lax02]
or [Wei74]). For the convenience of the reader we present a very elementary proof based on
a simple and efficient device originally due to H. Poincaré [Poi90, p. 249-250] (and later
rediscovered by many people, e.g. H. Weyl [Wey12, p. 445] and R. Courant [Cou20, p.
17-18]; see also H. Weinberger [Wei74, p. 56] and P. Lax [Lax02, p. 319]).

Suppose not, and set

f = c1e1 + c2e2 + · · ·+ cmem + cm+1em+1 (5.5)

where c = (c1,c2, · · · ,cm,cm+1) ∈ Rm+1. The under-determined linear system

( f ,ψi) = 0, ∀i = 1, · · · ,m (5.6)

of m equations with m+ 1 unknowns admits a non-trivial solution. Inserting f into (5.4)
yields

λm+1

m+1

∑
i=1

c2
i ≤ α

m

∑
i=1

λic2
i ≤ αλm+1

m+1

∑
i=1

c2
i . (5.7)

Therefore ∑m+1
i=1 c2

i = 0 and thus c = 0. A contradiction. This proves Theorem 5.2.

The authors of [ABBKS16] were thus led to investigate the question of whether inequality
(5.3) holds only for the orthonormal bases consisting of eigenfunctions corresponding to
ordered eigenvalues. They established that a “discrete”, i.e. finite-dimensional, version
does hold; see [ABBKS16, Theorem 2.1]. But their proof of “uniqueness” could not be
adapted to the infinite-dimensional case (because it relied on a “descending” induction). It
was raised there as an open problem (see [ABBKS16, p. 1166]). The following result solves
this problem.

Theorem 5.3 ([BGC17]). Let (bi) be an orthonormal basis of L2(Ω) such that, for all m ≥ 1,

∥∥∥∥∥ f −
m

∑
i=1

( f ,bi)bi

∥∥∥∥∥

2

L2

≤
∥∇ f∥2

L2

λm+1
∀ f ∈ H1

0 (Ω). (5.8)

Then, (bi) consists of an orthonormal basis of eigenfunctions of −∆ with corresponding
eigenvalues (λi).

In fact, a more general result, which was introduced in [BGC17] as a remark, also holds:
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Theorem 5.4. Let V and H be Hilbert spaces such that V ⊂ H with compact and dense
inclusion (dimH ≤ +∞). Let a : V ×V → R be a continuous bilinear symmetric form for
which there exist constants C,α > 0 such that, for all v ∈V ,

a(v,v)≥ 0,

a(v,v)+C|v|2H ≥ α∥v∥2
V .

Let 0 ≤ λ1 ≤ λ2 ≤ ·· · be the sequence of eigenvalues associated with the orthonormal (in
H) eigenfunctions e1,e2, · · · ∈V , i.e.,

a(ei,v) = λi(ei,v) ∀v ∈V,

where (·, ·) denotes the scalar product1 in H. For every m ≥ 1 and f ∈V :

λm+1

∣∣∣∣∣ f −
m

∑
i=1

(ei, f )ei

∣∣∣∣∣

2

H

≤ a( f , f ). (5.9)

Let (bi) be an orthonormal basis of H such that for all m ≥ 1 and f ∈V

λm+1

∣∣∣∣∣ f −
m

∑
i=1

(bi, f )bi

∣∣∣∣∣

2

H

≤ a( f , f ). (5.10)

Then, (bi) consists of an orthonormal basis of eigenfunctions of a with corresponding
eigenvalues (λi).

Remark 5.1. When dimH <+∞ and V = H this result is originally due to [ABBKS16]. The
proof of “rigidity” was quite different and could not be adapted to the infinite dimensional
case. It was raised there as an open problem.

This more general formulation allows us to cover some of the most relevant situations in
the applications:

• For the optimal representation of function in H1(Ω) we must take

H = L2(Ω), V = H1(Ω), a( f ,h) =
ˆ

Ω
∇ f ·∇h+µ

ˆ
Ω

f h (5.11)

1We point that, in this general setting, it may happen that λ1 = 0 (e.g. −∆ with Neumann boundary
conditions); and λ1 may have multiplicity greater than 1
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where µ is a positive constant. Then, ei are solutions of




−∆ei +µei = λiei

∂ei
∂n = 0.

(5.12)

Notice that, depending of the choice of bilinear product, we have a different choice of
eigenfunctions.

• Let M be a compact Riemmanian manifold without boundary. Then one can choose

H = L2(M ), V = H1(M ), a( f ,h) =
ˆ

M
∇g f ·∇gh (5.13)

where g is the Riemmanian metric. Then, the basis are the solutions of

−∆gei = λiei. (5.14)

where −∆g is the Laplace-Beltrami operator. Since there is no boundary, there is no
boundary condition.

The basic ingredient of our proof is the following lemma, the proof of which is based on
Poincaré’s magic trick:

Lemma 5.2.1. Assume that (5.8) holds for all m ≥ 1 and all f ∈ H1
0 (Ω), and that

λi < λi+1 (5.15)

for some i ≥ 1. Then

(b j,ek) = 0, ∀ j,k such that 1 ≤ j ≤ i< k. (5.16)

Applying this lemma we can quickly complete the proof in the case of simple eigenvalues.
Since λ1 < λ2 then, by the lemma,

(b1,ek) = 0 ∀k ≥ 2. (5.17)

Thus b1 =±e1. Next we apply the lemma with λ2 < λ3. We have that

(b2,ek) = 0 ∀k ≥ 3. (5.18)
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Also, we have that
(b2,e1) =±(b2,b1) = 0. (5.19)

Therefore b2 =±e2. Similarly, we have that bi =±ei for i ≥ 3.

5.3 Connection to the Fischer-Courant principles

It is a very relevant part of the proof in [BGC17] that (5.3) can be understood under the light
of the Fischer-Courant principles. In particular, if one considers the functions

0 ̸= f ∈ span(e1, · · · ,em)
⊥

then, automatically,

λm+1 ≤
∥∇ f∥L2

∥ f∥L2
∀ f ∈ span(e1, · · · ,em)

⊥, f ̸= 0, ∀m ≥ 1. (5.20)

Recall that the usual Fischer-Courant max-min principle asserts that for every m ≥ 1 we have

λm+1 = max
M⊂L2(Ω)

M linear space
dimM=m

min
0̸= f∈H1

0 (Ω)

f∈M⊥

∥∇ f∥2
L2

∥ f∥2
L2

, (5.21)

(see, e.g., [Lax02] or [Wei74]). Therefore, in some sense our basis b must be a maximizer of
(5.21) for every m ≥ 1.

Applying the same technique as in the proof of our Theorem 5.3, we can prove the
following:

Proposition 5.1. Let (bi) be an orthonormal sequence in L2(Ω) such that, for every m ≥ 1,

λm+1 = min
0 ̸= f∈H1

0 (Ω)

f∈M⊥
m

∥∇ f∥2
L2

∥ f∥2
L2

where Mm = span(b1,b2, · · · ,bm). (5.22)

Then, each bi is an eigenfunction associated to λi.

The natural way to establish eigen-decomposition is through a compact, symmetric
operator A : H → H. The resolvent operator of Dirichlet problem A = (−∆)−1 : f 7→ u where
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u is given by the weak solution of



−∆u = f Ω,

u = 0 ∂Ω.
(5.23)

satisfies this properties with H = L2(Ω), due to the compact embedding H1(Ω)→ L2(Ω).
For simplicity, we will consider µn its eigenvalues. Notice that

Aei = λei =⇒ 1
λi

ei = A−1ei. (5.24)

Thus, we get that

µm((−∆)−1) =
1

λm(−∆)
. (5.25)

The spectral theorem guaranties that A = (−∆)−1 has a basis of eigenvalues that expand
L2(Ω), and the existence of a sequence of positive eigenvalues µm → 0. However, this
guaranties the spectral decomposition for −∆.

The Courant-Fischer principles are usually written in the literature for Rayleigh quotient

RA(x) =
(Ax,x)
∥x∥2 . (5.26)

of A = (−∆)−1, rather than (−∆). On the other hand, (5.21) is written in terms of R−∆.
Nonetheless, once the eigendecomposition of A is established, Theorems 5.2 and 5.3 and
(5.20) gives us a direct proof of (5.21).

Remark 5.2. The Rayleigh quotients R−∆ and R(−∆)−1 do not seem to be directly related.
Notice that

R−∆(u) =
(−∆u,u)
∥u∥2

L2

=
∥∇u∥2

L2

∥u∥2
L2

(5.27)

R(−∆)−1( f ) =
(A f , f )
∥ f∥2

L2

=
(u,−∆u)
∥∆u∥2

L2

(5.28)

=
∥∇u∥2

L2

∥∆u∥2
L2

, (5.29)
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where (5.23). Nonetheless, notice that

R−∆(ei) = λi, (5.30)

R(−∆)−1(ei) =
1
λi
. (5.31)

5.3.1 Some controversy about the Fischer-Courant principles

Principle (5.21) has several different presentations in the literature. Currently, there are two
main presentations, which are due to Fischer in 1905 [Fis05] and Courant in 1920 [Cou20].

For the rest of the section we will focus on compact symmetric operators defined over the
whole Hilbert space H. Many of the references provide sharper results, and only simplified
versions are stated here.

Let us, first, state the principles as Lax does in [Lax02]. This appears to be the commonly
accepted nomenclature.

Theorem 5.5. Let A be a compact symmetric operator in a Hilbert space H and let µn be its
eigenvalues. Then, the following statements hold:

• Fischer’s principle:
µm = max

Sm
min
x∈Sm

RA(x), (5.32)

where Sm is any linear subspace of H of dimension m

• Courant’s principle:
µm = min

Sm−1
max

x⊥Sm−1
RA(x). (5.33)

Remark 5.3. It is important to notice that (5.33) with (5.21) are both the Courant principle
even though max and min are in reverse order. This is due to (5.25). This relates strongly to
Remark 5.2.

However, Weinberger in [Wei74] assigns the credit differently. Here, (5.32) is named
Poincaré’s principle (see [Wei74, Theorem 5.1]), due to Poincaré’s seminal paper [Poi90] in
1890, in which he starts the theory of eigen-decomposition. Also, (5.33) is named Courant-
Weyl’s principle (see [Wei74, Theorem 5.2]) and it is written in a slightly more general
way

µm = min
l1,··· ,lm

linear functionals

sup
v∈H

l1(v)=···=lm(v)=0

RA(x). (5.34)
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Notice that, in infinite dimensional spaces, a linear functional li need not be continuous, so it
not be written li(v) = (w,v) for some w ∈ H. Hence, there are many more functionals in this
characterization. In Weinberger’s text, the name of Fischer does not appear.

The inclusion of the name of Weyl is due to his paper [Wey12] in which he proves the
asymptotic behaviour of eigenvalues (see also [Wey11]). Some books, e.g. [WS72], go as far
as stating the following:

An even more important variational characterization, the maximum- minimum
principle, is claimed by Weyl, who used some of its consequences in his famous
theory of asymptotic distribution of eigenvalues [W31, W32]. Later, Courant
applied the principle contained in Weyl’s fundamental inequality to a fairly
general typical situation [C2].

In [WS72] (where the authors use A as the operator with increasing eigenvalues, and thus in
direct conflict with [Lax02]) the following is stated.

Lemma 5.3.1 ([Wey12], as extracted from [WS72]). Let A be a symmetric, compact operator.
Let p1, · · · , pm−1 be any arbitrary vectors in H. Then

max
f∈H

( f ,p1)=···=( f ,pm−1)=0

RA( f )≥ µm. (5.35)

The proof again passes by the use of Poincaré’s magic trick. This, which is presented in
[WS72] as “Weyl’s lemma” must not be confused with what is usually called Weyl’s lemma,
that is the regularity of functions such that −∆u = 0 in D ′(Ω). From this result the author
extracts the proof of Courant’s principle.

5.4 Some follow-up questions

In [WS72] the problem of whether the equality can hold in (5.35) for a finite orthonormal
set b = (b1, · · · ,bN) is studied. This question was also answered in [BGC17] in some of the
relevant cases.

Remark 5.4. After the publication of the paper the authors were made aware of the interest
of this question by many authors. The terminology employed by the specialists in this field is
n-widths. See, e.g., [Pin85; EBBH09; FS17] and the references therein.

Let us present merely the case in which only N = 2.
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Remark 5.5. Assume that b = b1 ∈ L2(Ω) is such that ∥b∥L2 = 1 and

∥ f − ( f ,b)b∥2
L2 ≤ 1

λ2
∥∇ f∥2

L2 ∀ f ∈ H1
0 (Ω). (5.36)

Of course, (5.36) holds with b = e1. From Lemma 5.2.1 we know that (5.36) implies that

(e2,b) = 0. (5.37)

Clearly, (5.37) is not sufficient. Indeed, take b = e3. Then, (5.37) holds but (5.36) fails for
f = e1. We do not have a simple characterization of the functions b satisfying (5.36). But
we can construct a large family of functions b (which need not be smooth) such that (5.36)
holds. Assume that 0< λ1 ≤ λ2 < λ3. Let χ ∈ L2(Ω) be any function such that

(e1,χ) = 0, (5.38)

(e2,χ) = 0, (5.39)

∥χ∥2
L2 = 1. (5.40)

Set

b = αe1 + εχ α2 + ε2 = 1, with 0< ε < 1. (5.41)

Then, there exists ε0 > 0, depending on (λi)1≤i≤3, such that for every 0< ε < ε0 (5.36) holds
(see [BGC17]).

Remark 5.6. In the general setting of Theorem 5.4 it may happen that 0 = λ1 < λ2. Suppose
now that b ∈ H is such that ∥b∥H = 1 and

∥ f − ( f ,b)b∥2
H ≤ 1

λ2
a( f , f ) ∀ f ∈V. (5.42)

Claim: we have b =±e1. Indeed, let f = e1 in (5.42) we have that

∥e1 − (e1,b)b∥2
H ≤ λ1

λ2
= 0, (5.43)

Therefore b =±e1.
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On the influence of pellet shape on the effectiveness factor
of homogenized chemical reactions

J. I. Díaz∗, D. Gómez-Castro∗ and C. Timofte†

Abstract— One of the most popular principles of Nanotechnology, especially in the context of composite media, says, roughly
speaking, that one of the reasons for the optimality of certain composite media comes from the fact that when the size of the small
particles decreases (maintaining a prescribed total volume) then their total surface increases and this leads to peculiar properties
which cannot be observed when the particles are big. What is really relevant in this context is a suitable balance between the
total surface and the homogenized diffusion. In order to fix ideas, we consider the case of adsorption chemical reactions on the
surface of a set of particles in a periodic composite structure (medium). We know that the solution of our problem converges
to the solution of a related homogenized semilinear elliptic problem. Our main goal is to study the behaviour of the so-called
effectiveness factor ηε for the chemical reactions, defined at the microscale, and to establish the relation between this factor and
the corresponding one η defined for the homogenized problem. Moreover, we shall study the effect of the shape of the pellets
(in particular, their total surface |∂T | and the homogenized diffusion coefficient a0(T )) in the homogenized effectiveness factor.
We prove the existence of an optimal convex shape of the particles for the effectiveness functional.

Introduction

Let Ω be an open bounded connected set in RN and let us
insert in it a set of identical periodically distributed obstacles
T ε. Let us denote the resulting domain by Ωε ε being a small
parameter related to the characteristic size of the obstacles. We
assume that the size of the obstacles is of the order of r(ε). In
such a domain, we shall study a semilinear problem involving
diffusion and suitable chemical reactions taking place on the
boundary of the inclusions. There exists a critical size of the
inclusions that separates different asymptotic behaviours of the
solution of such a problem. We shall discuss here only the case
of the so-called big particles . The case of small particles and,
in particular, the interesting case of critical particles will be
addressed in a forthcoming paper. Under suitable hypotheses,
it is well-known that the solution of our problem converges, as
ε goes to zero, to the solution of a new elliptic PDE, containing
an extra-term generated by the chemical reactions taking place
on the surface of the particles.

Our main goal is to study the behaviour of the so-called
effectiveness factor ηε and to establish the relation between this
factor and the corresponding one defined for the homogenized
problem. We shall be also interested in analyzing the effect
of the shape of the particles (in particular, their total surface
|∂T | and the homogenized diffusion coefficient a0(T )) in both

functionals. We shall prove the existence of convex shapes
which maximize the effectiveness.

One of the most popular principles of Nanotechnology, es-
pecially in the context of composite media, says, roughly
speaking, that one of the reasons for the optimality of certain
composite media comes from the fact that when the size of
the small particles decreases (maintaining a prescribed total
volume) then their total surface increases and this leads to pe-
culiar properties which cannot be observed when the particles
are big (see e.g. [22], [18] and [5]).

We show some numerical experiments in which this ratio is
not the only relevant parameter, but rather the one given by a
balance between the measure of the surface of the pellets and
their shape.

1 Problem setting

Let Ω ⊂ RN , with N ≥ 3, be a bounded connected open set
such that |∂Ω| = 0 and let Y = (− 1

2 , 1
2 )N be the reference cell

in RN . Let ε be a real parameter taking values in a sequence
of positive numbers converging to zero. ε represents a small
parameter related to the characteristic size of the particles. Let
T be another open bounded subset of RN , with the boundary
∂T of class C2. T will be called the elementary particle and

∗Instituto de Matemática Interdisciplinar and Dpto. de Matemática Aplicada, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid. Spain.
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we assume that 0 belongs to T and that T is star-shaped with
respect to 0. Since T is bounded, without loss of generality, we
can assume that T ⊂ Y . Let r : R+ → R+ be a continuous
map, related to the size of the pellet. We shall assume that
r(ε) ∼ ε. These are known as big particles. The case of small
particles, when limε→0 r(ε)/ε = 0 and r(ε) < ε/2, will be
treated in a forthcoming paper.

REMARK 1 Even though the usual term in homogenization
theory for the inclusions is holes (in order to give the idea that
something has been removed from the domain) here we will
avoid this terminology. For us, these inclusions will be pellets,
for example the ones that can be found in fixed bed reactors
and towers. Therefore, we will refer to these holes as pellets,
particles or even inclusions and obstacles.

For each ε and for any vector i ∈ ZN , we shall denote by
T ε
i the translated image of r(ε)T by the vector εi, i ∈ ZN :

T ε
i = εi + r(ε)T. Also, let us denote by T ε the set of all the

pellets contained in Ω, i.e.

T ε =
��

T ε
i | T ε

i ⊂Ω, i ∈ ZN
�

and let the number of pellets be n(ε) = #
�
i ∈ ZN : T ε

i ⊂Ω
�

.

Set Ωε = Ω \ T ε. Therefore, Ωε is a periodically perforated
structure with pellets of the size r(ε). Let us notice that the
inclusions do not intersect the fixed boundary ∂Ω.

Let Sε = ∪{∂T ε
i | T ε

i ⊂Ω, i ∈ ZN}. So, ∂Ωε = ∂Ω ∪ Sε. We
shall consider the homogenization of problems in the form

(1)





−Δuε = f in Ωε,
∂uε

∂ν + µ(ε)g(uε) = 0 on Sε,
uε = 1 on ∂Ω,

where ν is the exterior unit normal to Sε,

(2) g is a maximal monotone graph such that g(0) = 0,

(single-valued or even multivalued) and

(3) f ∈ L2(Ω), f ≥ 0.

A particular case we shall discuss is the Freundlich isotherm:

(4) g(u) = |u|p−1u, p ∈ (0, 1].

Also, we can consider the limit case of zero order reactions:

(5) g(u) =





0 u < 0,
[0, 1] u = 0,
1 u > 0.

We address here the interesting cases in which µ(ε)|Sε| =
O(1). In fact, we can consider that if r(ε) = εα, then µ(ε) =
ε−γ , γ = α(N − 1) − N. In our case, i.e. for big particles,
α = 1, and so γ = −1.

Through standard procedures in weak solution theory, one
easily gets the following result (see, e.g., [6]).

PROPOSITION 2 (WELL-POSSEDNESS) Under the assump-
tions (2) and (3), there exists a unique solution u ∈ H2(Ω) of
(1).

PROPOSITION 3 (STRONG MAXIMUM PRINCIPLE) Under
the assumptions (2) and (3), uε > 0 in Ωε.

Proof. . By the maximum principle, we have that uε ≥ 0.
Now, we can apply the comparison principle with uε, the non-
negative solution of

�
−Δuε = f in Ωε,
uε = 0 on ∂Ω ∪ Sε,

to obtain uε ≥ uε in Ωε. For uε, we can apply the bound found
in [15]

uε(x) ≥ c

��

Ω

f(y) d(y, ∂Ωε) dy

�
d(x, ∂Ωε), x ∈ Ωε,

which proves the result. �

We can see a couples of the steps of the homogenization
process in the following COMSOL simulation.

(a) ε = 0.33 (b) ε = 0.11

Figure 1: Fixed bed reactors with big pellets (rε = ε) and the
level set of the solution of problem (1) for f = 0, (4) where
p = 1

2 , µ(ε) = ε.

2 Homogenization of the state equation

Assume that r(ε) = ε and either a smooth kinetic

(6) |g�(v)| ≤ C(1 + |v|q), 0 ≤ q <
N

N − 2

or not necessarily a smooth one with bounded growth

(7) |g(v)| ≤ C(1 + |v|q), 0 ≤ q <
N

N − 2
.

Following the theory in [9] and [10], the solution uε of problem
(1), properly extended to the whole of Ω, converges weakly in
H1(Ω), as ε → 0, to u ∈ H1(Ω), i.e. uε � u, where u is the
unique solution of the following homogenized problem

(8)

�
− div (a0(T )∇u) + |∂T |

|Y \T |g(u) = f in Ω,

u = 1 on ∂Ω.
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The proof of existence and uniqueness of a weak solution for
this problem can be found, e.g., in [12]. Here, a0(T ) ∈
MN (R) is the classical homogenized matrix (see, e.g., [9]).
If we write a0(T ) = (qij), then

qij = δij +
1

|Y \ T |

�

Y \T

∂χj

∂yi
dy,

where χi are the solutions of the so-called cell problems:

(9)





−Δχi = 0 in Y \ T,
∂(χi+yi)

∂ν = 0 on ∂T,
χi Y -periodic.

For the corresponding result in the case of small particles, we
refer to [16]. Let us mention that in the critical case, i.e. the
case in which r(ε) = εN/(N−2), the extra-term arising in the
homogenized equation is defined in terms of the solution of a
functional equation involving the nonlinear function g.

2.1 Effectiveness and homogenization

For the case of smooth kinetics, we shall assume that g(0) = 0
and we shall impose growth condition (6) on the nonlinearity
g. Inspired by the definition given in the linear case p = 1 by
the chemical engineer R. Aris (see [1] and [2]), we define the
notion of effectiveness of the pellet in this more general setting
as follows:

(10) ηε(T ) =
1

|Sε|

�

Sε

g(uε)dσ.

This is well defined since g(uε) ∈ W 1,q̄
0 (Ω), q̄ = 2N

q(N−2)+N .

Definition (10) can be naturally extended to the homogenized
case, as follows

(11) η(T ) =
1

|Ω|

�

Ω

g(u)dx.

PROPOSITION 4 For ε→ 0, it follows that ηε(T ) → η(T ).

Proof. From [8] (see also [9]), it holds that

ε

�

Sε

g(uε(x))dσ → |∂T |
|Y |

�

Ω

g(u(x))dx, as ε→ 0.

Since, by explicit computation, |Sε| = n(ε)|∂(εT )| =
n(ε)εN−1|∂T |, when the cells tend to cover the total volume,

n(ε)|Y |εN = n(ε)|εY | → |Ω|, as ε→ 0,

we have that |Sε|ε→ |Ω||∂T |, as ε→ 0. Hence, as ε→ 0,

ηε(T ) =
1

|Sε|

�

Sε

g(uε(x))dσ → 1

|Ω|

�

Ω

g(u)dx = η(T ),

which proves the result. �

REMARK 5 It is an open problem whether or not this conver-
gence remains true under more general nonlinearities g. Our
proof of the convergence relies on [8], in which one requires
differentiability of g(uε). We can define the effectiveness ηε by
means of g(trSε(u

ε)). However, the proof, in essence, requires
that we consider trSε(g(uε)). It is our belief that a proof of the
general case might need an extension of the results in [8] or a
completely new approach.

REMARK 6 The convergence remains true for the kinetic (4)
in the case of domains in which there exists δ > 0 such that
uε ≥ δ uniformly on ε, that is, no dead core exists. For the
solution u, the region where u = 0 (which might have positive
measure) is known in the literature as a dead core. Conditions
for the existence and location of a dead core in this and other
kinds of equations can be found in [12], [4] and the references
therein. In the case when a dead core exists, even though the
limit theorem does not apply, the strong maximum principle
(Proposition 3) suggests that the effectiveness is higher prior to
the homogenization process.

3 Existence of optimal pellet shapes

Once we know the effect that a general obstacle T causes, it
seems reasonable to perform domain optimization. First, we
show an abstract result of existence of optimal hole shape. We
will focus on the homogenized model (8). Our main result is
the following one:

THEOREM 7 Let 0 < θ < |Y |, C, D be fixed proper subsets
of Y and ε̃ > 0. Let us consider the hypothesis

T satisfies the uniform ε̃-cone property.(12)

We define

Uadm = {C ⊂ T ⊂ D : T satisfies , (12) and |T | = θ},

Cθ(D) = {T ⊂ D : T is open, convex and |T | = θ}.

At fixed volume θ ∈ (0, |Y |), there exists a domain of maximal
effectiveness in the class of T ∈ Uadm ∩ Cθ(D).

REMARK 8 Optimization of the effectiveness considering the
homogenized domain Ω (the chemical reactor) has also been
studied (see [13], [14] and the references therein). In this
situation, the existence of a dead core affects the effectiveness
negatively.

REMARK 9 Dealing with the optimization of the domain Ω,
there exist no optimal shapes considering a general frame-
work (see [4], [14]). We conjecture that new results may be
also obtained by applying methods analogous to the ones that
follow.
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REMARK 10 As in [9], the problem in which we consider
reactions inside the pellets can also be addressed. Let us
consider the system of equations





−DfΔuε = f in Ωε,
−DpΔvε + ag(vε) = 0 in Ω \ Ωε,

−Df
∂uε

∂ν = Dp
∂vε

∂ν on Sε,
uε = vε on Sε,
uε = 1 on ∂Ω,

with a, Df , Dp > 0 and f ∈ L2(Ω). If we introduce the
matrix A = DfχY \T +DpχT where I is the identity matrix in
MN (R), then the homogenized problem for big pellets is (see
[9])

�
− div (A0∇u) + a |T |

|Y \T |g(u) = f in Ω,

u = 1 on ∂Ω,

where A0 = (a0
ij) is the homogenized matrix, whose entries

are defined as follows: a0
ij =

�
Y

(aij + aik
∂χj

∂yk
)dy, in terms of

the functions χj , i = 1, ..., N, Y -periodic solutions of the cell
problems −div(A∇(yj + χj)) = 0. In this context, the results
would be analogous and the proofs perhaps even simpler.

We see in (8) that the effect of T is present in three terms:
a0(T ), |∂T | and |Y \ T |. Therefore, any sensible choice of
topology for the set of admissible domains T in a search for
optimal obstacles must make this expressions continuous.

A logical choice of topology in the space of shape is the one
given by the Hausdorff distance

dH(Ω1,Ω2) = sup{ sup
x∈Ω1

d(x,Ω2), sup
x∈Ω2

d(x,Ω1)}.

For the optimization, we will restrict ourselves to a general
enough family of domains, but in which we can define a
topology which makes the family compact. It is well known
(see, for example, [23]) that the following result holds true.

THEOREM 11 ([23]) The class of closed subsets of a com-
pact set D is compact for the Hausdorff convergence.

A proof for the continuity of the effective diffusion under the
Hausdorff distance in Uadm can be found in [17].

LEMMA 12 ([17]) If Uadm is compact with respect to the
Hausdorff metric and if Tn → T , (Tn) ⊂ Ua as n → ∞,
T ∈ Uadm, then a0(Tn) → a0(T ) in MN (R).

The behaviour of the measure |Y −T | is slightly more delicate
(we include a commentary even though, in our family, this will
be constant). For this, a distance with a definition similar to
Hausdorff metric, the Hausdorff complementary distance

dHc(Ω1,Ω2) = sup
x∈Rn

|d(x,Ωc
1) − d(x,Ωc

2)|,

has the following property: for open domains, dHc(Ωn,Ω) →
0 as n → ∞ implies lim infn |Ωn| ≥ |Ω|. However, lower
semicontinuity of the measure of the boundary (|∂T |) is, in
general, false (see [17] for some counterexamples). Neverthe-
less, the set of convex domains has a number of very interesting
properties (see [24]).

LEMMA 13 ([24]) The topological spaces (Cθ(D), dH) and
(Cθ(D), dHc) are equivalent.

The continuity of the boundary measure is provided by the
following theorem, proved in [7].

LEMMA 14 ([7]) Let (Ωn),Ω ∈ Cθ(D). If Ω1 ⊂ Ω2, then

|∂Ω1| ≤ |∂Ω2|. Moreover, if Ωn
dH→ Ω, then |Ωn| → |Ω| and

|∂Ωn| → |∂Ω|, as n → ∞.

For the continuity of solutions with respect to T , we need the
following theorem of continuity of Nemitskij operators (see,
for example, [19], [11] and [21]).

LEMMA 15 ([21]) Let G : Ω → R → R be a Carathéodory
function such that (7) with q = r

t with r ≥ 1 and t < ∞.
Then, the map

Lr(Ω) → Lt(Ω) v �→ G(x, v(x))

is continuous in the strong topologies.

LEMMA 16 Let A be the set of elliptic matrices and let g
satisfy (7). Then, the application

A × R+ → H1(Ω) (A,λ) �→ u,

where u is the unique solution of
�

−div(A∇u) + λg(u) = f, in Ω,
u = 1, on ∂Ω,

is continuous in the weak topology.

Proof. . Let G(u) =
� u

0
g(s)ds and

JA,λ(v) =
1

2

�

Ω

(A∇v) · ∇v +

�

Ω

λG(v) −
�

Ω

fv.

We know that u(A,λ) is the unique minimizer of this func-
tional. Let An → A and λn → λ be two converging sequences.
It is easy to prove that un = u(An,λ) is bounded in H1(Ω)
and, up to a subsequence, un � u in H1 as n → ∞.
Therefore,

�
Ω
(A∇u)∇u ≤ lim infn

�
Ω
(An∇un)∇un. We

can apply Theorem 15 to show that G(un) → G(u) in L1

as n → ∞ (see details for a similar proof, for example, in [9])
and we have that u = u(A,λ). �

COROLLARY 17 In the hypotheses of the previous lemma,
the map (A,λ) �→

�
Ω

g(u(A,λ)) is continuous.
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With these tools, we can prove now our main result.

Proof. of Theorem 7 First, we have that Lemmas 12 and 14
imply that the application T �→ (a0(T ),λ(T )) is continuous.
Then, Corollary 17 implies that T �→ η(T ) is continuous.
Therefore, since Cθ(D) is closed and Uadm is compact, by
Lemma 12 we have the compactness of Uadm ∩ Cθ(D) and
the existence of maximizers. �

4 Effectiveness for obstacles with some symme-
tries. Numerical experiments

There exists a large literature on the computation and behaviour
of the homogenized coefficient a0(T ), both from the mathe-
matics and the engineering part (see, e.g., [3], [17], [20]). In
these papers, one can find power series techniques and numeri-
cal analysis, generally for spherical obstacles. As it is common
in the literature (e.g. [3]), we use the commercial software
COMSOL. As said on the introduction, in nanotechnology,
however, it is a common misconception that the measure of
the surface alone, |∂T |, is a good indicator of the effectiveness
of the obstacle.

Considering obstacles with some symmetries (for N = 2
it is sufficient that they are invariant under a 900 rotation)
in general, it is well known that a0(T ) = α(T )I , where
α(T ) is a scalar (see, for example, [3], [20]) and I is the
identity matrix in MN (R). In this case, it can be easily
proved that the effectiveness is an decreasing function of
λ(T ) = |∂T |/(α(T )|Y \ T |) (it is a direct consequence of
the comparison principle, see [12]). In fact, this is the only
relevant parameter (once g(u) is fixed) of the equation (8). The
behaviour of the effectiveness with respect to the coefficient λ
can also be numerically computed:

Figure 2: Plot of η as a function of λ when Ω is a 2D circle.

Let us consider, in two dimensions for simplicity, the following
obstacles:

(a) Circular inclusions (b) Square inclusions

Figure 3: Two obstacles T , and the level sets of the solution of
the cell problem (9)

We can numerically compute the homogenized diffusion coef-
ficient a0(T ) via a parametric sweep on the size of the obstacle.

Figure 4: The effective diffusion coefficient α(T ). Circular
particles in red and square particles in blue

Now, we can couple this with direct computations of |∂T | and
compare the behaviour of both indicators.

(a) Classical coefficient |∂T |. (b) New coefficient λ(T ) as a function
of the concentration |Y \ T |

Figure 5: Coefficients |∂T | and λ(T ). Circular particles in red
and square particles in blue

Since |Y \T | = 1−θ and since η is monotone decreasing with
respect to λ, what Figure 5 represents is a comparison between
the effectiveness of circular and square pellets for different θ.
We can conclude that, in the computed cases, circular pellets
are more efficient. This could have also been deduced solely
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from the consideration of |∂T |. However, even though the
relative order is not affected, what we see in Figure 5 is that
the behaviour close to minimum and maximum admissible θ
(which correspond with θ = 0 and the pellet touching the
boundary of the cell) on each is radically different (notice the
steepness). The fact that the circle appears to be more effective
contrast with the fact that in the homogenized reactor Ω a
sphere is worst (see [4], [13], [14]).
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THE EFFECTIVENESS FACTOR OF REACTION-DIFFUSION

EQUATIONS: HOMOGENIZATION AND EXISTENCE OF OPTIMAL

PELLET SHAPES

JESÚS ILDEFONSO DÍAZ, DAVID GÓMEZ-CASTRO, AND CLAUDIA TIMOFTE

Dedicated to an exceptional mathematician, David Kinderlehrer, with admiration.

Abstract. We study the asymptotic behaviour of the so-called effectiveness factor ηε
of a nonlinear diffusion equation that occurs on the boundary of periodically distributed
inclusions (or particles) in an ε-periodic medium. Here, ε is a small parameter related to

the characteristic size of the inclusions, which, in the homogenization process, will tend

to 0. The inclusions are modeled as homothecy of a fixed pellet T , rescaled by a factor
r(ε). We study the cases in which r(ε) = O(εα), known as big holes, for α = 1, as well as

non-critical small holes, for 1 < α < n
n−2

. We will prove the existence of some convex

shapes which maximize the effectiveness of the homogenized problem. In particular, we
deduce that for small holes the sphere is the domain of highest effectiveness.

1. Introduction

We study the asymptotic behaviour of the so-called effectiveness factor ηε of nonlinear
diffusion equations for which a reaction occurs on the boundary of periodically distributed
inclusions (or particles) in an ε-periodic medium.

To be more precise, let Ω ⊂ RN , with N ≥ 3, be a bounded connected open set such
that |∂Ω| = 0 and let Y = (− 1

2 ,
1
2 )N be the reference cell in RN . Let T be another open

bounded subset of RN , with the boundary ∂T of class C2. T will be called the elementary
particle. We assume that 0 belongs to T and that T is star-shaped with respect to 0. Since
T is bounded, without loss of generality, we can assume that T ⊂ Y . We point out that,
even though the usual term in homogenization theory for inclusions is holes (in order to
give the idea that something has been removed from the domain), here we will avoid this
terminology. For us, these inclusions will be pellets, for example the ones that can be found
in fixed bed chemical reactors and towers. Therefore, we will refer to these holes as pellets,
particles or even inclusions and obstacles.

2010 Mathematics Subject Classification. homogenization, effectiveness factor, semilinear elliptic

equations.

Key words and phrases. 35J61, 35B27, 25B40, 49K20.
Received 28/09/2016, accepted 08/11/2016.
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Abstract—We extend previous papers in the literature concerning the homogenization of Robin type bound-
ary conditions for quasilinear equations, in the case of microscopic obstacles of critical size: here we consider
nonlinear boundary conditions involving some maximal monotone graphs which may correspond to discon-
tinuous or non-Lipschitz functions arising in some catalysis problems. 
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Papers [2–10] were devoted to the study of asymp-
totic behavior of the solution to the boundary value
problem for the p-Laplacian  in ε-periodi-
cally perforated domain with nonlinear Robin-type
boundary condition that contains function . It
was supposed there that  is a smooth function of
it’s arguments, monotone by variable u. In this paper
we extend the method introduced in [3, 4, 7–10] to
deal with the problems with more general conditions
on the function . As in all papers in which the
holes are of critical size and the adsorption parameter
has a critical power of ε (we will precise this later) we
observe a change in the nature of the nonlinearity. Our
aim is to present this change in the case

, , which is not differentiable
at 0, and in the case when σ is the maximal monotone
operator for the Heaviside function, which is a mul-
tivalued operator, and . In a further paper [12]
we extend the arguments to the case of general maxi-
mal monotone graphs σ and .

1  The article was translated by the authors.
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Function , , is the maximal mono-
tone continuous mapping [11], that depends on
parameter q

(2)

We note that  is the maximal monotone map-
ping for the Heaviside function, i.e. multivalued func-
tion

(3)

Boundary conditions of this type correspond to the
presence of so called chemical reaction of order q on
the boundary of cavities [5, 6]. The motivation to trun-
cate the powers comes from the chemical modeling, in
which concentrations impose range in [0, 1], but it
also corresponds to the case , for which the
solution is bounded.

Applying monotonicity tools (see, e.g., [11]) it is
easy to see that problem (1) is equivalent to ask for

, satisfying the integral inequality

(4)

for any arbitrary function , where
 for  is the primitive of . For 

we have that
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and if q = 0 then
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the set of infinitely differentiate functions in , that
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It is well known that problem (1) has unique weak
solution (see., e.g. [1, Theorem 8.5]). The following
estimation is valid
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for an arbitrary function . Here,

, with  the surface area of

the unit sphere in .
Proof. (a) Consider the case q = 0. Denote

. Note that the integral inequality in the case
when q = 0 has the form

(15)

where  is the positive part of function φ, .
From (15) we conclude

(16)
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We substitute the test function in (17) and we con-
sider the remaining integrals over  in the left-hand
side of variational inequality (17):

(30)

Note that

(31)

Next we compare integrals over the same subsets of
 in the left-hand side of inequality (17). We have 
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where . Using
Young’s inequality we get

(33)

Therefore,

(34)

The remaining integrals over subsets of  are con-
sidered in the similar way and we establish that the
sum of all integrals over the corresponding subsets of

 is non-positive. Therefore, the limit function u sat-
isfy variational inequality

for an arbitrary function . Again taking
, with arbitrary, and making

 we obtain that u is a weak solution the usual
sense.
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HOMOGENIZATION OF VARIATIONAL INEQUALITIES
OF SIGNORINI TYPE FOR THE p-LAPLACIAN
IN PERFORATED DOMAINS WHEN p ∈ (1, 2)

J.I. DÍAZ, D. GÓMEZ-CASTRO, A.V. PODOLSKIY, AND T.A. SHAPOSHNIKOVA

Works [6, 4] are concerned with the investigation of the asymptotic be-

havior of the solution of the variational inequality for the p - Laplace op-

erator, where p ∈ [2, n) and ε-periodically perforated domain with nonlin-

ear Robin type boundary condition. In the present work we investigate

a similar homogenization problem for the p - Laplacian in the case when

p ∈ (1, 2). It is known (see [2]) that for this values of p the considered prob-

lems describe the motion of non-Newtonian fluids. This type of diffusion

is also used to describe certain problems of Newtonian fluids in turbulent

regime (see, e.g., [3]). The operator also has some interest in the context

on non-linear elasticity.

Let Ω be a bounded domain in Rn, n ≥ 3, with a smooth boundary ∂Ω.

Denote Y = (−1/2, 1/2)n and let G0 be the unit ball centered at the origin.

For δ > 0 we define and a given set B ⊂ Rn we define δB = {x|δ−1x ∈ B}.
We also define, for j ∈ Zn, Gj

ε = aεG0 + εj,

Ω̃ε = {x ∈ Ω|ρ(x, ∂Ω) > 2ε}, Gε =
⋃

j∈Υε

Gj
ε,

(where 0 < ε << 1), aε = C0ε
α, α = n

n−p and

Υε =
{
j ∈ Zn : (aεG0 + εj) ∩ Ω̃ε 6= ∅

}
.

It is easy to check that |Υε| ∼= dε−n where d > 0 is a constant. Finally, let

us define Y j
ε = εY + εj, j ∈ Υε (where we point out that Gj

ε ⊂ Y j
ε and

that the center of the ball Gj
ε coincides with the center of Y j

ε ) and

Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

Date: September 30, 2016.
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In this setting we consider the following nonlinear diffusion problem




−∆puε = f, x ∈ Ωε,

−∂νpuε ∈ ε−γσ(uε), x ∈ Sε,
uε = 0, x ∈ ∂Ω,

(1)

where p ∈ (1, 2), ∆pu ≡ div(|∇u|p−2∇u), ∂νpu ≡ |∇u|p−2(∇u, ν) and with

ν the outward unit normal to Sε and γ = α(p − 1), f ∈ Lp
′
(Ω), p

′
= p

p−1 ,

and σ the following maximal monotone graph

σ(λ) =





σ0(λ), λ > 0,

(−∞, 0], λ = 0,

∅, λ < 0,

(2)

where σ0 ∈ C1(R), σ0(0) = 0, σ
′
0(λ) ≥ k1 > 0 and k1 is a constant.

We note that boundary value problem (1) with a function such as σ(λ)

in the boundary condition corresponds to the problem with the one-sided

restrictions, i.e. Signorini type problem




uε ≥ 0,

∂νpuε + ε−γσ0(uε) ≥ 0 and

uε(∂νpuε + ε−γσ0(uε)) = 0, on Sε.

Let us define the following functions

ψ̂(λ) =

λ∫

0

σ0(τ)dτ, (3)

ψ(λ) =

{
ψ̂(λ), λ ≥ 0,

+∞, λ < 0.
(4)

This convex l.s.c. function ψ has σ as its subdifferential, in the sense that

ψ(λ)− ψ(µ) ≤ ξ(λ− µ), ∀λ, µ ∈ R, ξ ∈ σ(λ) (5)

This is typically denoted σ = ∂ψ. The weak solution of the problem (1) is

defined as a function

uε ∈ Kε = {g ∈ W 1,p(Ωε, ∂Ω) : g ≥ 0 a.e. on Sε},
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satisfying the integral inequality
∫

Ωε

|∇uε|p−2∇uε∇(φ− uε)dx+ ε−γ
∫

Sε

(ψ̂(φ)− ψ̂(uε))ds

≥
∫

Ωε

f(φ− uε)dx (6)

for any arbitrary function φ ∈ Kε.

Let H(λ) be the solution of the functional inclusion

B0|H|p−2H ∈ σ(λ−H), (7)

where B0 > 0 is a constant. In the case of σ as in (2), inclusion (7) has a

unique solution of the form

H(λ) =

{
H0(λ), λ > 0,

λ, λ ≤ 0,
(8)

where H0(λ) is the solution of the functional equation

B0|H0|p−2H0 = σ0(λ−H0). (9)

Note that H0(0) = 0. If we decompose u = u+ − u− where u+, u− ≥ 0 are

the positive and negative parts of u then we have

H(u) = H0(u
+)− u−, |H(u)|p−2H(u) = |H0(u

+)|p−2H0(u
+)− |u−|p−2u−.

Also,

Lemma 1. For every s 6= 0, 0 < H ′(s) ≤ 1. In particular, H is a Lipschitz

continuous function.

Proof. If H0(s) ≤ 0, since σ0(0) = 0, σ′0(s) ≥ k1 > 0

0 ≥ B0|H0|p−2H0 = σ0(s−H0(s)) ≥ k1(s−H0(s))

then s ≤ 0. So, for s > 0, H(s) = H0(s) > 0. Hence, for s > 0

B0H0(s)
p−1 = σ0(s−H0(s)). Differentiating with respect to s, for s > 0

B0(p− 1)H0(s)
p−2 = σ′0(s−H0(s))(1−H ′0(s)),

H ′0(s) =
σ′0(s−H0(s))

B0(p− 1)H0(s)p−2 + σ′0(s−H0(s))
,



4 J.I. DÍAZ, D. GÓMEZ-CASTRO, A.V. PODOLSKIY, AND T.A. SHAPOSHNIKOVA

which is in (0, 1). Since, for s < 0, H(s) = s we finish the proof. �

Remark 1. In if σ is given by (2), H(s) ≤ s for all s ∈ R. For s ≤ 0 this

is obvious and for s > 0 we point out that H(0) = 0 and H ′(s) ≤ 1.

Let ũε ∈ W 1,p
0 (Ω) be a W 1,p – extension of uε, that satisfies the following

inequalities

‖ũε‖W 1,p(Ω) ≤ K‖uε‖W 1,p(Ωε), ‖∇ũε‖Lp(Ω) ≤ K‖∇uε‖Lp(Ωε), (10)

Considering (6) it is easy to check that

‖∇uε‖Lp(Ωε) ≤ K.

Hence, using this inequality and estimations (10) we conclude that there

exists a subsequence (denote as the original sequence), such that as ε→ 0

ũε ⇀ u weakly in W 1,p
0 (Ω). (11)

We will use systematically that the function

Φp : Lp(Ω)N → Lp
′
(Ω)N , ξ 7→ |ξ|p−2ξ (12)

is continuous in the strong topology (see [8]).

The following theorem gives us the description of function u. What is

remarkable in it is that a sequence of variational inequalities converges

to the solution of a single-valued quasilinear equation with a Lipschitz

absortion term.

Theorem 1. Let α = n
n−p, γ = α(p − 1), p ∈ (1, 2), n ≥ 3. Suppose that

uε ∈ W 1,p(Ωε, ∂Ω) is the weak solution of the problem (1), where σ(λ) is

given by formula (2) and ũε ∈ W 1,p
0 (Ω) is a W 1,p-extension of uε satisfying

(10). Then, the function u defined in (11) is a weak solution of the following

problem {
−∆pu+A(n, p)|H(u)|p−2H(u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(13)

where function H(λ) is given by formula (8), H0(λ) is a solution of the

equation (9) for B0 =
(
n−p
p−1

)p−1

C1−p
0 , A(n, p) =

(
n−p
p−1

)p−1

Cn−p
0 ωn and ωn

is the surface area of the unit sphere in Rn.
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We will use the following auxiliary function Wε defined as follows

Wε =





wj
ε, x ∈ T jε \Gj

ε, j ∈ Υε,

1, x ∈ Gε,

0, x ∈ Rn \ ⋃
j∈Υε

T jε ,

where wj
ε is the solution of the following value problem





∆pw
j
ε = 0, x ∈ T jε \Gj

ε,

wj
ε = 1, x ∈ ∂Gj

ε,

wj
ε = 0, x ∈ ∂T jε ,

and T jε denotes the ball of radius ε/4 which center coincides with the center

of cube Y j
ε . It is easy to show that

∫

Ωε

|∇Wε|qdx ≤ Kεn(p−q)/(n−p), (14)

where 1 ≤ q ≤ p. Wε → 0 in W 1,q
0 (Ω) ε → 0, for q < p. Also, the W 1,p

0

norm is bounded, so it has a weakly convergent subsequence. The limit of

that sequence must be its W 1,q
0 limit, hence Wε ⇀ 0 weakly in W 1,p

0 (Ω) as

ε→ 0.

Proof of Theorem 1. Taking into account (3) and using the monotonicity

of function |λ|p−2λ for p > 1, from inequality (6) we derive that uε satisfies

the following inequality

∫

Ωε

|∇φ|p−2∇φ∇(φ−uε)dx+ε−γ
∫

Sε

σ0(φ)(φ−uε)ds ≥
∫

Ωε

f(φ−uε)dx, (15)

for any function φ ∈ Kε.

Let v ∈ W 1,∞(Ω) and let us consider φ = v−WεH(v) as a test function,

where H(λ) is defined by (8). Notice that φ|Sε
= v − H(v) ≥ 0 due to

Remark 1, and hence φ ∈ Kε. Let us define ψε = φ− ũε, and rewrite (15)
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as I1
ε + I2

ε ≥ I3
ε where

I1
ε =

∫

Ωε

|∇(v −WεH(v))|p−2∇ψεdx

I2
ε = ε−γ

∫

Sε

σ(v −H(v))ψεds I3
ε =

∫

Ωε

fψε

Let us define

ξ1 = Φp(∇(v −WεH(v))), ξ2 = Φp(∇v) ξ3 = Φp(∇(WεH(v))),

We write I1
ε = J1

ε + J2
ε + J3

ε where

J1
ε =

∫

Ωε

(ξ1 − (ξ2 − ξ3)) · ∇ψε, J2
ε =

∫

Ωε

ξ2 · ∇ψε, J3
ε = −

∫

Ωε

ξ3 · ∇ψε.

Lemma 3 below implies the inequality |ξ1 − (ξ2 − ξ3)| ≤ C(|ξ2||ξ3|)
p−1
2 .

Hence, we can write

|J1
ε | ≤ K

∫

Ωε

|∇v|p−12 |∇(WεH(v))|p−12
(
|∇(WεH(v))|+ |∇v|+ |∇uε|

)
dx

≤ K

∫

Ωε

(
|∇v|p−12 |∇(WεH(v))|p+1

2 + |∇v|p+1
2 |∇(WεH(v))|p−12

+ |∇v|p−12 |∇(WεH(v))|p−12 |∇uε|
)
dx

≤ K

∫

Ωε

(
|∇Wε|

p+1
2 + |∇uε||∇Wε|

p−1
2

)
dx

Applying Hölder’s inequality for p on the second term

|J1
ε | ≤ K

{
‖∇Wε‖

2
p+1

L
p+1
2 (Ω)

+ ‖∇uε‖Lp(Ω)

(∫

Ω

|∇Wε|
p
2

)p−1
p

}
→ 0

as ε→ 0 by taking into account that p
2 ,

p+1
2 < p and estimate (14). More-

over, convergence (11) implies

lim
ε→0

J2
ε =

∫

Ω

|∇v|p−2∇v∇(v − u)dx. (16)
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Consider J3
ε . Splitting ∇(WεH(v)) = Wε∇H(v) + H(v)∇Wε, since

Wε∇H(v) → 0 in Lp(Ω)N , Φp is continuous and ψε is bounded in W 1,p

we have that

lim
ε→0

J3
ε = − lim

ε→0

∫

Ωε

Φp(H(v)∇Wε) · ∇ψε.

On the other hand, it is easy to check that

lim
ε→0

∫

Ωε

|∇Wε|p−2∇Wε · ∇(|H(v)|p−2H(v)ψε) = lim
ε→0

∫

Ωε

Φp(H(v)∇Wε) · ∇ψε.

Hence

J3
ε = −

∫

Ωε

|∇Wε|p−2∇Wε · ∇[|H(v)|p−2H(v)(v −WεH(v)− uε)]dx+ αε,

where αε → 0 as ε→ 0. From Green’s formula we derive that J3
ε = K1

ε+K2
ε

K1
ε = −

∑

j∈Υε

∫

∂Gj
ε

∂νpw
j
ε|H(v)|p−2H(v)(v −H(v)− uε)ds

K2
ε = −

∑

j∈Υε

∫

∂T j
ε

∂νpw
j
ε|H(v)|p−2H(v)(v − uε)ds+ αε

Taking into account that

∂νpw
j
ε

∣∣∣
∂Gj

ε

=
(n− p)ε− n

n−p

(p− 1)C0(1− κε)
, (17)

∂νpw
j
ε

∣∣∣
∂T j

ε

= −(n− p)22(n−1)/(p−1)C
(n−p)/(p−1)
0 ε1/(p−1)

(p− 1)(1− κε)
, (18)

where κε → 0 as ε → 0 and that γ = α(p − 1) we obtain, taking into

account (9) that

K1
ε + I2

ε = ε−γ
∫

Sε

[
σ(v −H(v))−B0|H(v)|p−2H(v)

]
(v −H(v)− uε)ds+ βε

= ε−γ
∫

Sε

[
|v−|p−2v−

]
(v+ −H(v+)− uε)ds+ βε

= ε−γ
∫

Sε

[
|v−|p−2v−

]
(−uε)ds+ κε ≤ βε
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where βε → 0 as ε→ 0 since uε ≥ 0 on Sε.

We will use the next lemma to pass to the limit in K1
ε (see [10]).

Lemma 2. Let uε ∈ H1
0 (Ω) and uε ⇀ u0 as ε→ 0 in H1

0(Ω), then
∣∣∣∣∣∣∣∣
22(n−1)ε

Nε∑

j=1

∫

∂T j
ε/4

uεdS − ωn
∫

Ω

u0dx

∣∣∣∣∣∣∣∣
→ 0, ε→ 0,

where ωn is the surface area of the unit sphere in Rn.

Due Lemma 2 we deduce that

K1
ε → A(n, p)

∫

Ω

|H(v)|p−2H(v)(v − u)dx, as ε→ 0 (19)

whereA(n, p) =
(
n−p
p−1

)p−1

Cn−p
0 ωn. From (15)-(19) we derive that u satisfies

following inequality
∫

Ω

|∇u|p−2∇v∇(v − u)dx+A(n, p)

∫

Ω

|H(v)|p−2H(v)|p−2(v − u)dx

≥
∫

Ω

f(v − u)dx. (20)

This inequality implies that u is a weak solution of the problem (13). �

In the next theorem we will prove convergence in the norm of space

W 1,p
0 (Ωε) of the solution of the problem (1) with a corrector to the solution

of the homogenized problem.

Theorem 2. Let α = n
n−p, γ = α(p − 1), p ∈ (1, 2), n ≥ 3. Suppose that

uε ∈ W 1,p(Ωε) is a weak solution of the problem (1) and u is a weak solution

of the problem (13) possessing the additional smoothness u ∈ W 1,∞(Ω).

Then

‖∇(uε +WεH(u)− u)‖Lp(Ωε) → 0, as ε→ 0 (21)

In particular, since Wε → 0 in W 1,q(Ω) for q < p, we have, for all q < p

‖∇(uε − u)‖Lq(Ωε) → 0, ε→ 0
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Remark 2. Under some smoothness hypothesis of σ0 and f , u ∈ W 1,∞(Ω)

is often achieve. See [5, 1, 9, 7].

Proof of Theorem 2. Inequality (6) implies that
∫

Ωε

|∇uε|p−2∇uε∇(φ− uε)dx+ ε−γ
∫

Sε

σ0(φ)(φ− uε)ds

≥
∫

Ωε

f(φ− uε)dx. (22)

In inequality (22) we substitute φ = u −WεH(u) and in the weak for-

mulation of problem (13), namely,
∫

Ω

|∇u|p−2∇u · ∇v +A(n, p)

∫

Ω

|H(u)|p−2H(u)v =

∫

Ω

fv

we take, as a test function, v = −Ψε, where Ψε = u−WεH(u)− ũε and ũε

is a W 1,p-extension uε on Ω. Let us define,

ξε1 = Φp(∇uε), ξ2 = Φp(∇u)

By adding the two expressions we obtain Iε1 + Iε2 + Iε3 ≥ Iε4 where

Iε1 =

∫

Ωε

(ξε1 − ξ2) · ∇Ψε, Iε2

∫

Gε

ξ2 · ∇Ψε

Iε3 = ε−γ
∫

Sε

σ(u−H(u))Ψε −A(n, p)

∫

Ω

|H(u)|p−2H(u)Ψε

Iε4 =

∫

Gε

fΨε

It is clear that Iε2 , I
ε
4 → 0 as ε → 0 due to weak convergence and the fact

that |Gε| → 0. We define

ξε3 = Φp(∇(WεH(u))), ξε4 = Φp(∇(u−WεH(u)))

We decompose Iε1 = Jε1 + Jε2 + Jε3

Jε1 =

∫

Ωε

(ξε1 − ξε4) · ∇Ψε Jε2 =

∫

Ωε

(ξε4 − ξ2 + ξε3) · ∇Ψε Jε3 = −
∫

Ωε

ξε3 · ∇Ψε
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Applying Lemma 3 we have that

|Jε2 | ≤ C

∫

Ωε

|∇u|p−12 |∇(WεH(u))|p−12 |∇(u−WεH(u)− uε)|dx→ 0, as ε→ 0.

On the other hand, we can write

Jε3 = −
∫

Ωε

|∇Wε|p−2∇Wε∇
(
|H(u)|p−2H(u)Ψε

)
+ δε

= −
∑

j∈Υε

∫

∂Gj
ε

∂νpw
j
ε|H(u)|p−2H(u)Ψεds−

−
∑

j∈Υε

∫

∂T j
ε

∂νpw
j
ε|H(u)|p−2H(u)Ψεds+ δε,

where δε → 0. Therefore, Jε3 + Iε3 → 0 as ε → 0, due to the explicit

expression of ∂νpw
j
ε and H. So, finally, Jε1 → 0. We will use the following

inequality (see [2]). For all 1 < p < 2 and ξ, η ∈ Rn

C
|ξ − η|2

|ξ|2−p + |η|2−p ≤ (|ξ|p−2ξ − |η|p−2η)(ξ − η). (23)

Hence, for ξ = ξε1 and η = ξε4, we deduce that

C

∫

Ωε

|∇(uε − u+WεH(u))|2
|∇uε|2−p + |∇(u−WεH(u))|2−p ≤

∫

Ωε

(ξε1 − ξε4) · ∇Ψε = Jε1 → 0

as ε→ 0. Using Holder’s inequality (21), which concludes the proof. �
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Appendix A. An auxiliary lemma

Lemma 3. Let p ∈ (1, 2), n ≥ 2. Then there exists constant C = C(n, p)

such that for all a, b ∈ Rn following inequality is valid

∣∣∣|a− b|p−2(a− b)− (|a|p−2a− |b|p−2b)
∣∣∣ ≤ C

(
|a||b|

)p−1
2

.
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Proof. Without loss of generality we can assume that |a| ≥ |b| > 0. Let

u = a
|a| , v = b

|b| , |u| = |v| = 1, ξ = u · v, ξ ∈ [−1, 1], k = |a|
|b| ≥ 1. The

desired inequality in written in these new variables takes the following form

||ku− v|p−2(ku− v)− (kp−1u− v)| ≤ Ck(p−1)/2.

By squaring this inequality we get

K(k, ξ) = (k2 − 2kξ + 1)p−1 + k2(p−1) + 1− 2kp−1ξ

− 2(k2 − 2kξ + 1)(p−2)/2(kp + 1− kξ − kp−1ξ) ≤ C2kp−1.

Consider function

f(k, ξ) =
K(k, ξ)

kp−1
= kp−1

(
1− 2ξ

k
+

1

k2

)p−1

+ kp−1 + k1−p − 2ξ−

− 2
(

1− 2ξ

k
+

1

k2

)(p−2)/2

(kp−1 − ξ − kp−2ξ + k−1).

Decomposing functions (1 − 2ξ/k + 1/k2)β for β = p − 1, (p − 2)/2 in

Taylor series as k → ∞, k > 1 +
√

2, and equating the coefficients of

corresponding degrees, we obtain

f(k, ξ) = αk1−p + βkp−2 + o
(1

k

)
,

where α and β depend only on p and ξ. Hence, f(k, ξ) → 0 as k → ∞.

Thus there exists k1 > 1 +
√

2 such that f(k, ξ) < 1 for all k > k1,

|ξ| ≤ 1. It’s easy to show that function f(k, ξ) is continuous on the set

D = {(k, ξ)|1 ≤ k ≤ k1, |ξ| ≤ 1}. So there exists a positive constant M

that depends on p such that max
(k.ξ)∈D

|f(k, ξ)| ≤ M . Hence, function |f | is

bounded by max(M, 1) for all permissible k and ξ. �
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This paper addresses an investigation of the asymptotic behaviour as ε → 0 of the 
solution to the boundary value problem associated with the p-Laplace operator in 
an ε-periodically structured domain with a nonlinear Robin-type condition specified 
on the boundary of the periodic subdomains. This kind of domains include the so 
called perforated media as well as the case of isolated particles distributed in a 
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consider a non-critical size of the particles. The objective of this paper is twofold. 
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the homogenization of the effectiveness factor of the reactor, which is of relevance 
in Chemical Engineering.
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0. Introduction

We will study asymptotic behaviour as ε → 0 of the solution to the boundary value problem associated 
with the p-Laplace operator in an ε-periodically structured domain with a nonlinear Robin-type condition 
specified on the boundary of the periodic subdomains. This kind of domains include the so called perforated 
media as well as the case of isolated particles distributed in a periodic way. This second case arise quite often 
in Chemical Engineering. Here we consider a non-critical size of the perforations or particles. The objective 
of this paper is twofold. First, a homogenized problem is constructed and a theorem is proved stating weak 
convergence as ε → 0 of the solution of the original problem to the solution of the homogenized one. The 
closest papers in the literature are [31,32] where the case p = 2 was considered, [17–19,26] dedicated to the 
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case 2 < p < n and [11] where the case p > n was investigated. In contrast to the mentioned papers we 
consider here that the reaction function σ needs not be smooth. In order to achieve this result we introduce 
uniform approximation arguments, that allow us to deal with such reaction functions.

The case when the size of particles is non critical is characterized by the fact that the homogenized 
problem contains the same nonlinearity as the nonhomogeneous problem. As we will see, if the condition is 
∂nuε + β(ε)σ(uε) = 0 on the boundary of the inclusions (see (3)), then the homogenized interior equation 
contains a reaction term of the form λσ(u) (see (19)). However, there are critical cases in which the nature 
of the nonlinearity changes. More precisely, the limit equation for the interior contains a reaction term of the 
form λH(u), where H is different from σ, instead of the term λσ(u) in (19) (see [9,10,12,17–20,25,29,32]). 
For further reference see [18,17,19]. In the critical case, due to the technique used, the considered inclusions 
are balls whereas in this noncritical case a general shape is considered.

The second main result of the paper is the analysis of the asymptotic limit of the effectiveness functional 
(as introduced by Aris, see [2,3]), which extends results in [13,14] to the cases p �= 2 and σ Hölder continuous.

1. Statement of results

1.1. Problem setting

Let Ω be a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂Ω and let Y = (−1
2 , 

1
2 )n. Let G0

be a smooth open set such that G0 ⊂ Y . For δ > 0 and B ⊂ Rn let δB = {x ∈ Rn : δ−1x ∈ B}. For ε > 0
we define Ω̃ε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε}, where ρ is the distance function. Let aε > 0, define the set of 
inclusions

Gε =
⋃

j∈Υε

(aεG0 + εj) =
⋃

j∈Υε

Gj
ε,

where Υε = {j ∈ Zn : (aεG0 + εj) ∩ Ω̃ε �= ∅}, Zn is the set of vectors z with integer coordinates. Define 

Y j
ε = εY + εj, where j ∈ Υε, and note that Gj

ε ⊂ Y
j

ε. Finally, we define

Ωε = Ω \ Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

Notice that the number of inclusions is of the order of ε−n, in the sense that

lim
ε→0

|Υε|
ε−n

= |Ω|. (1)

Throughout this paper we will write

aε 
 bε ⇐⇒ lim
ε→0

aεb
−1
ε = 0

aε ∼ bε ⇐⇒ lim
ε→0

aεb
−1
ε ∈ (0,+∞).

We will consider that the sizes of the particles are smaller than their repetition, in the sense that

aε 
 ε. (2)

Sometimes, this case is known as tiny holes (in our case they can be thought of as tiny particles). We 
consider the problem of nonlinear diffusion in Ωε with a nonlinear reaction taking place on Sε:
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⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−Δpuε = f(x), x ∈ Ωε,

∂νp
uε + β(ε)σ(uε) = β(ε)g, x ∈ Sε,

uε = 0, x ∈ ∂Ω,

(3)

where Δpu ≡ div(|∇u|p−2∇u), ∂νp
u ≡ |∇u|p−2(∇u, ν), ν is the outward unit normal vector to Sε , σ is a 

continuous nondecreasing function such that σ(0) = 0, f ∈ Lp′(Ω) and g ∈ W 1,∞(Ω) and, for every ε > 0, 
β(ε) is a nonnegative constant.

This problem can be obtained as a change of variable u = 1 − w, σ(u) = σ̃(1) − σ̃(w) of the following 
problem, which appears in Chemical Engineering in the design of fixed-bed reactors (see, for example, [30])

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−Δpwε = f(x), x ∈ Ωε,

∂νp
wε + β(ε)σ̃(wε) = 0, x ∈ Sε,

wε = 1, x ∈ ∂Ω.

(4)

In this setting, a typical nonlinearity in the applications is σ̃(w) = |w|q−1w with 0 < q < 1. This kinetics is 
not locally Lipschitz and therefore the approaches in the literature do not apply directly to this case.

A quantity of great interest in the applications is the effectiveness, which can be expressed as

Eε(Ω, G0) = 1
|Sε|

∫

Sε

σ̃(wε) dS, (5)

in the nonhomogeneous case and as

E(Ω, G0) = 1
|Ω|

∫

Ω

σ̃(w) dx, (6)

in the homogenized case. It represents the ratio of the actual amount of reactant consumed per unit time 
in Ω to the amount that would be consumed if the interior concentration were everywhere equal to the 
ambient concentration. A high effectiveness is desirable in most applications. For isothermal and endothermic 
reactions, we see that 0 ≤ Eε, E < 1. This definition was introduced by Aris in the linear case (p = 2 and 
σ = λu, see [1,21,3]). The study of this functional is equivalent to the study of the ineffectiveness

ηε = 1
|Sε|

∫

Sε

σ(uε) dS, η = 1
|Ω|

∫

Ω

σ(u) dx. (7)

The mathematical properties have widely been studied, see [4–8]. The aim of this paper is to prove that 
ηε → η as ε → 0.

1.2. Weak formulations

Let us define the energy functional

Jε(v) = 1
p

∫

Ωε

|∇v|p dx + β(ε)
∫

Sε

Φ(v) dS −
∫

Ωε

fv dx − β(ε)
∫

Sε

gv dS (8)
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where Φ(s) =
∫ s

0 σ(τ)dτ . Its subdifferential Aε = ∂Jε is given by

〈Aεv, w〉 =
∫

Ωε

|∇v|p−2∇v · ∇w dx + β(ε)
∫

Sε

σ(v)w dS −
∫

Ωε

fw dx − β(ε)
∫

Sε

gw dS. (9)

We say that uε is a weak solution of (3) if Aεuε = 0. However, σ(uε) is usually not a well behaved sequence 
(in the sense that it may not converge in H1(Ω)). We would rather work with an equivalent formulation 
that does not include it. In this direction, we have the following characterization of minimizers:

Lemma 1 (Chapter 1 in [16]). Let X be a reflexive Banach space, J : X → (−∞, +∞] be a convex functional 
A = ∂J : X → P(X ′) be its subdifferential. Then the following are equivalent:

i) u is a minimizer of J ,
ii) u ∈ D(A) and 0 ∈ Au.

If either hold, then

iii) For every v ∈ D(A) and ξ ∈ Av

〈ξ, v − u〉 ≥ 0. (10)

Furthermore, assume that J is Gâteaux-differentiable on X and A is continuous on X then iii) is also 
equivalent to i).

Remark 1. Naturally, if there is uniqueness of iii) then the i)–iii) are also equivalent.

Remark 2. One should not confuse condition iii) with the Stampacchia formulation (see e.g. [6]). For a 
bilinear form a and a linear function F this function is

a(u, v − u) ≥ G(v − u) (11)

for all v in the correspondent space, whereas with this formulation we have a(v, v − u). The advantage of 
the representation we consider is that one of the elements can be taken constant as ε → 0.

We will say that uε is a weak solution of (3) if it is a minimizer of Jε in W 1,p(Ωε, ∂Ω).

Proposition 1 ([26]). Let p > 1. Then there exists an extension operator

Pε : W 1,p(Ωε, ∂Ω) → W 1,p
0 (Ω). (12)

Furthermore, there exists a constant C independent of ε such that

‖∇Pεuε‖Lp(Ω) ≤ C‖∇uε‖Lp(Ω). (13)

Hence, there exists a subsequence of the original sequence Pεuε that admits a weak W 1,p
0 (Ω) limit, which 

we will define as u. The aim of this paper is to characterize u.
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1.3. Homogenization of solutions for 1 < p < n

We state two approximation lemmas, which are key to our arguments.

Lemma 2. Let σ ∈ C(R) be nondecreasing such that σ(0) = 0. Then there exists σε ∈ C1(R) non decreasing 
such that σε(0) = 0 and ‖σ − σε‖∞ ≤ ε.

Let us define the critical values of aε and β, for 1 < p < n

a∗
ε = ε

n
n−p , β∗(ε) = a−(n−1)

ε εn, (14)

which separates different asymptotic behaviours of the solution. We focus on the cases aε � a∗
ε, since the 

critical case is aε ∼ a∗
ε. Notice that

|Sε| = |Υε||aε∂G0| = an−1
ε |Υε||∂G0|. (15)

Taking into account (1) we get

|Sε|
β∗(ε)|Ω||∂G0|

→ 1. (16)

The value β∗ separates the behaviours as shown by the following theorem. In fact, let us define

β0 = |∂G0| lim
ε→0

β(ε)β∗(ε)−1. (17)

Theorem 1. Let 1 < p < n, g ∈ W 1,∞(Ω), a∗
ε 
 aε 
 ε, σ ∈ C(R) nondecreasing such that σ(0) = 0 and

|σ(v)| ≤ C(1 + |v|p−1). (18)

Then the following results hold:

i) Let β0 < +∞. Then, up to a subsequence Pεuε ⇀ u in W 1,p
0 (Ω), where u is the unique solution of

⎧
⎨
⎩

−Δpu + β0σ(u) = f + β0g Ω,

u = 0 ∂Ω.
(19)

ii) Let β0 = +∞, g = 0 and σ ∈ C1. Then, up to a subsequence Pεuε ⇀ u in W 1,p
0 (Ω) and u satisfies

u(x) ∈ σ−1(0) (20)

a.e. in Ω. In other words, σ(u(x)) = 0 for a.e. x ∈ Ω. In particular, if σ is strictly increasing then 
u = 0.

Remark 3. In particular, if β0 = 0 then the limit problem does not contain any reaction term. If aε = C0ε
α

and β(ε) = ε−γ we have

α ∈
(

1, n

n − p

)
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β0 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 γ < α(n − p) − n,

Cn−1
0 |∂G0| γ = α(n − p) − n,

+∞ γ > α(n − p) − n.

Remark 4. The same result holds for p = n, where the condition on the size aε is

ε
n

n−1 ln(a−1
ε ε) → 0, as ε → 0 (21)

(see [27]) and for p > n, where a critical size of inclusions doesn’t exist so there is no condition on a∗
ε

(see [11]). We can write the critical size for any p > 1 as:

a∗
ε =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ε
n

n−p if 1 < p < n,

εe−
( 1

ε

)1− 1
n if p = n,

0 if p > n.

(22)

The value of β∗ is still

β∗(ε) = a−(n−1)
ε εn. (23)

1.4. Homogenization of the effectiveness factor when p > 1

We conclude by stating a theorem on homogenization of the effectiveness functional that improves pre-
vious results by the authors (see [13,14]). We give conditions so that

1
|Sε|

∫

Sε

σ(uε) dS → 1
|Ω|

∫

Ω

σ(u) dx as ε → 0. (24)

To achieve this we need a stronger approximation result for the family of Hölder-continuous functions.

Remark 5. If I is a bounded interval then C1(I) ⊂ C0,α(I). This is not true if I is unbounded. For example, 
all functions in C0,α(R) are sublinear. We introduce the following condition

|σ(t) − σ(s)| ≤ C(|t − s|α + |t − s|p) ∀t, s ∈ R, (25)

that represents “local Hölder” continuity, in the sense that there is no need for the function to be differen-
tiable. On the other hand, as |s − t| → +∞, the function σ behaves like a power, and then σ can be non 
sublinear.

Lemma 3. Let σ ∈ C(R), nondecreasing and there exists 0 < α ≤ 1, p > 1 such that (25) holds. Then, for 
every 0 < ε < 1

4C there exists σε ∈ C(R) (piecewise linear) such that

‖σε − σ‖C(R) ≤ ε, (26)

0 ≤ σ′
ε ≤ Dε1− 1

α , (27)

where D depends only on C, α, p.

Theorem 2. Let p > 1, a∗
ε 
 aε 
 ε, β ∼ β∗ and σ be continuous such that σ(0) = 0. Let uε and u be the 

solutions of (3) and (19). Lastly, assume either:
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i) σ is uniformly Lipschitz continuous (σ′ ∈ L∞), or
ii) σ ∈ C(R) and there exists 0 < α ≤ 1 and q > 1 such that we have (25) and

(σ(t) − σ(s))(t − s) ≥ C|t − s|q, ∀t, s ∈ R. (28)

Then (24) holds.

Remark 6. If 0 < q < 1 root functions: σ(s) = |s|q−1s do not satisfy (28). However, the following cut-off to 
a linear function does satisfy (28):

σ(s) =

⎧
⎨
⎩

|s|q−1s |s| ≤ s0,

σ0 + λs |s| > s0,
where sq

0 = σ0 + λs0. (29)

Hence, the results in this paper hold for σ(s) = |s|q−1s where 0 < q < 1 holds, at least for bounded solutions. 
We point out that in many context in the applications u is bounded (e.g. if f is a bounded function). For 
example, in Chemical Engineering u typically represents a concentration, so 0 ≤ u ≤ 1.

2. Auxiliary results and estimates

2.1. Estimates on the boundary integrals

First let us introduce a uniform trace information in Sε.

Proposition 2 ([26]). Let p > 1 and assume (2). Then

i) There exists C, independent of ε, such that, for u ∈ W 1,p(Ωε, ∂Ω), it holds that

β∗(ε)
∫

Sε

|u|p dS ≤ C

∫

Ωε

|∇u|p dx. (30)

ii) If vε ⇀ v in W 1,p
0 (Ω) and a∗

ε 
 aε 
 ε, then

β∗(ε)
∫

Sε

vε dS → |∂G0|
∫

Ω

v dx. (31)

Remark 7. Notice that the natural trace on Sε, 
∫

Sε
· dS, is not well behaved in order to pass to the limit (in 

the sense if u0 ∈ H1
0 (Ω) and u0(x) ≥ C0 > 0 in some set A ⊂ Ω of positive measure, then 

∫
Sε

u0 dS → +∞
as ε → 0). However, the average over Sε, 1

|Sε|
∫

Sε
· dS, behaves much better, as it is shown by Proposition 2.

Lemma 4. Let 0 < r < s. Then, there exists C, independent of ε, such that

⎛
⎝β∗(ε)

∫

Sε

|u|r dS

⎞
⎠

1
r

≤ C

⎛
⎝β∗

∫

Sε

|u|s dS

⎞
⎠

1
s

. (32)

Proof. Let q = s
r > 1. Then q′ = s

s−r . Applying Hölder’s inequality we find that

∫

Sε

|u|r dS ≤ C

⎛
⎝
∫

Sε

|u|s dS

⎞
⎠

r
s
⎛
⎝
∫

Sε

1 s
s−r dS

⎞
⎠

s−r
s
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β∗(ε)
∫

Sε

|u|r dS ≤ Cβ∗(ε)
1
q + 1

q′

⎛
⎝
∫

Sε

|u|s dS

⎞
⎠

r
s

|Sε|
s−r

s

≤ C

⎛
⎝β∗(ε)

∫

Sε

|u|s dS

⎞
⎠

r
s

(β∗(ε)|Sε|)
s−r

s

≤ C

⎛
⎝β∗(ε)

∫

Sε

|u|s dS

⎞
⎠

r
s

,

which concludes the result. �
With these results we can prove that

Proposition 3. Let p > 1. Then, for every ε > 0 there exists a unique weak solution of (3) uε ∈ W 1,p(Ωε, ∂Ω). 
Furthermore, there exists a constant C independent of ε such that

‖∇uε‖p−1
Lp(Ωε) ≤ C(‖f‖Lp′ (Ωε) + β(ε)β∗(ε)−1‖g‖L∞(R)). (33)

Proof. Considering uε as a test function in the weak formulation of (3)
∫

Ωε

|∇uε|p ≤
∫

Ωε

fuε + β(ε)
∫

Sε

guε (34)

≤
∫

Ωε

fuε + β(ε)β∗
ε (ε)−1β∗

ε (ε)
∫

Sε

guε (35)

≤ C(‖f‖Lp′ + β(ε)β∗
ε (ε)−1‖g‖L∞)‖∇uε‖Lp . (36)

This proves the result. �
2.2. Characterization of solutions

The proof of the furthermore statement in Lemma 1 can be found in [16]. In fact we state the following 
characterization, which could improve the regularity required, but that we do not apply due to the applied 
homogenization techniques.

Lemma 5 (Proposition 2.2 of Chapter II in [16]). Let us assume that J = J1 + J2 and J1 and J2 being 
l.s.c. convex functions on a convex set C into R, J1 being Gâteaux-differentiable with differential J ′

1. Then 
if u ∈ C, the following three conditions are equivalent:

i) u is a minimizer of J ;
ii) For every v ∈ C

〈J ′
1(u), v − u〉 + J2(v) − J2(u) ≥ 0; (37)

iii) For every v ∈ C

〈J ′
1(v), v − u〉 + J2(v) − J2(u) ≥ 0. (38)
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We have the following lemma, which is classical (see, e.g. [6]):

Lemma 6. Let 1 < p < +∞ and σ be a nondecreasing function. Then if

X = W 1,p(Ωε, ∂Ω) C = {v ∈ X : Φ(v) ∈ L1(Sε)}

J(v) = Eε(v) Av = Aεv

J1(v) = 1
p

∫

Ωε

|∇v|p dx −
∫

Ωε

fv dx − β(ε)
∫

Sε

gv dS

J ′
1(v)(w) =

∫

Ωε

|∇v|p−2∇v · ∇w dx −
∫

Ωε

fw dx − β(ε)
∫

Sε

gw dS

J2(v) = β(ε)
∫

Sε

Φ(v) dS

〈J ′
2(v), w〉 = β(ε)

∫

Sε

σ(v)w dS,

or

X = W 1,p(Ω), C = {v ∈ X : Φ(v) ∈ L1(Ω)}

J = J1 + J2

J1(v) = 1
p

∫

Ω

|∇v|p dx −
∫

Ω

fv dx − β0

∫

Ω

gv dx

〈J ′
1(v), w〉 = 1

p

∫

Ω

|∇v|p−2∇v · ∇w dx −
∫

Ω

fw dx − β0

∫

Ω

gw dx

J2(v) = β0

∫

Ω

Φ(v) dx

J ′
2(v)(w) = β0

∫

Ω

σ(v)w dx,

we have that J1, J2 : C → R, J1 is convex, J1 is Gâteaux differentiable. Furthermore, if (18) holds then 
C = X, J2 is Gâteaux-differentiable in X and J ′ is continuous on X.

Remark 8. The furthermore statement in Lemma 1 was first proved in [15]. Condition (18) is given by the 
fact that, v �→ G(v) is Lr(Ω) → Lt(Ω) is continuous if |G| ≤ C(1 + |v| r

t ). Notice that, for r = p and t = p′

we have r
t = p − 1. In this case, J satisfies the continuity condition for Lp → L1, which is enough to make 

J continuous. It is likely that (18) is purely a technical requirement so that iii) implies i).

2.3. On the coercivity of the p-Laplacian, when 1 < p < 2

We will need the following auxiliary lemma, that deals with the coercivity of the p-Laplace operator:
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Lemma 7. Let 1 < p < 2 and u, v ∈ W 1,p(Ω). Then

∫

Ω

|∇(u − v)|p dx ≤ C

⎛
⎝
∫

Ω

|∇(u − v)|2
|∇u|2−p + |∇v|2−p

dx

⎞
⎠

p
2
⎛
⎝
∫

Ω

(|∇u|2−p + |∇v|2−p)
p

2−p dx

⎞
⎠

2−p
p

≤ C

⎛
⎝
∫

Ω

(|∇u|p−2∇u − |∇v|p−2∇v) · ∇(u − v) dx

⎞
⎠

p
2

×

⎛
⎝
∫

Ω

(|∇u|2−p + |∇v|2−p)
p

2−p dx

⎞
⎠

2−p
p

. (39)

Proof. The first inequality is a direct consequence of the Hölder inequality
⎛
⎝
∫

Ω

|∇(u − v)|p

(|∇u|2−p + |∇v|2−p)
p
2

(
|∇u|2−p + |∇v|2−p

) p
2 dx

⎞
⎠

≤

⎛
⎝
∫

Ω

|∇(u − v)|2
|∇u|2−p + |∇v|2−p

dx

⎞
⎠

p
2
⎛
⎝
∫

Ω

(|∇u|2−p + |∇v|2−p)
p

2−p dx

⎞
⎠

2−p
p

,

and the second one is due to the estimate for vectors, ξ, η ∈ Rn, not both zero:

|ξ − η|2
|ξ|2−p + |η|2−p

≤ C
(
|η|p−2η − |ξ|p−2ξ

)
· (η − ξ),

this concludes the proof. �
2.4. Comparison of solutions with different kinetics

We have the following comparison lemma for the solutions:

Lemma 8. Let σ, ̂σ be continuous functions, σ satisfies (28) for some q > 1 and let uε and ûε be the 
corresponding solutions of (3) with β ∼ β∗. Then

β(ε)
∫

Sε

|uε − ûε|q ds ≤ C‖σ − σ̂‖
q

q−1
C(R). (40)

Proof. We use u − û as a test function, and via the monotonicity of σ we have

β(ε)
∫

Sε

(σ(u) − σ(û))(u − û) dS ≤
∫

Ωε

|∇(u − û)|p dS + β(ε)
∫

Sε

(σ(u) − σ(û))(u − û) dS

≤ β(ε)
∫

Sε

(σ̂(û) − σ(û))(u − û) dS

≤ ‖σ − σ̂‖C(R)β(ε)
∫

Sε

|u − û| dS

≤ C‖σ − σ̂‖C(R)

⎛
⎝β(ε)

∫

Sε

|u − û|q dS

⎞
⎠

1
q

.
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Due to (28) we have that

β(ε)
∫

Sε

|u − û|q dS ≤ C‖σ − σ̂‖C(R)

⎛
⎝β(ε)

∫

Sε

|u − û|q dS

⎞
⎠

1
q

⎛
⎝β(ε)

∫

Sε

|u − û|q dS

⎞
⎠

1− 1
q

≤ C‖σ − σ̂‖C(R),

which concludes the result. �
Lemma 9. Let σ, ̂σ be continuous nondecreasing functions such that σ(0) = 0 and u, ̂u be their respective 
solutions of (3). Then, there exist constants C depending on p, but independent of ε, such that

i) If 1 < p < 2

‖∇(uε − ûε)‖Lp(Ωε) ≤ Cβ(ε)β∗(ε)−1‖σ − σ̂‖C(R)

(
‖∇uε‖2−p

Lp(Ωε) + ‖∇ûε‖2−p
Lp(Ωε)

) 2
p

. (41)

ii) If p ≥ 2 then

‖∇(uε − ûε)‖p−1
Lp(Ωε) ≤ Cβ(ε)β∗(ε)−1‖σ − σ̂‖C(R). (42)

Proof. By considering the difference of weak formulations we can write, for the test function u2 − u1,
∫

Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1) · ∇(u2 − u1) dx + β(ε)
∫

Sε

(σ2(u2) − σ2(u1))(u2 − u1) dS

= β(ε)
∫

Sε

(σ1(u1) − σ2(u1))(u2 − u1) dS.

Applying monotonicity, Proposition 2 and Lemma 4
∫

Ω

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1) · ∇(u2 − u1) dx

≤ β(ε)‖σ2 − σ1‖∞β∗(ε)−1

⎛
⎝β∗(ε)

∫

Sε

|u1 − u2|p dS

⎞
⎠

1
p

≤ Cβ(ε)‖σ2 − σ1‖∞β∗(ε)−1‖∇(u1 − u2)‖Lp(Ωε).

Part ii) follows directly. Let us prove part i). Applying Lemma 7 we have that

‖∇(u1 − u2)‖p
Lp ≤ C

(
β(ε)β∗(ε)−1‖σ2 − σ1‖∞‖∇(u1 − u2)‖Lp

) p
2

×

⎛
⎝
∫

Ω

(|∇u1|2−p + |∇u2|2−p)
p

2−p dx

⎞
⎠

2−p
p
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‖∇(u1 − u2)‖Lp ≤ Cβ(ε)β∗(ε)−1‖σ2 − σ1‖∞

⎛
⎝
∫

Ω

(|∇u1|2−p + |∇u2|2−p)
p

2−p dx

⎞
⎠

2
p

2−p
p

≤ Cβ(ε)β∗(ε)−1‖σ2 − σ1‖∞
(
‖∇u1‖2−p

Lp + ‖∇u2‖2−p
Lp

) 2
p

,

which proves the result. �
2.5. Proof of the approximation lemmas

There is extensive literature on the approximation of functions in bounded intervals, in particular approx-
imation that preserve the monotonicity. For example, it is known that Bernstein polynomials of a monotone 
function are also monotone, and the convolution with a positive kernel also preserves global monotonicity. 
Finer results are known as to the approximation of functions which are piecewise monotone by functions 
that share their monotonicity (i.e. comonotone functions. In this direction see, e.g. [22–24,28]).

One of the canonical options in this direction is the Yosida approximation, but, in general this only 
converges pointwise. This is natural, since one can approximate a discontinuous function by Lipschitz 
continuous ones, and therefore the limit cannot be uniform. We choose, locally, a convolution with mollifiers.

Proof of Lemma 2. Let σε,0 ∈ C1([−1, 1]) be an approximation of σ such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

σε,0 = σ in {−1, 0, 1},
‖σε,0 − σ‖C([−1,1]) ≤ ε

σε,0 is nondecreasing.

This can be done, since, for example, the convolution of σ with nonnegative mollifiers are nondecreasing. 
Let σε,1 ∈ C1([1, 2]) be an approximation of σ in [1, 2] such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σε,1 = σ in {1, 2},
σ′

ε,1(1) = σ′
ε,0(1),

‖σε,1 − σ‖C([1,2]) ≤ ε,

σε,1 is nondecreasing.

We proceed analogously in [n, n +1], [−(n +1), −n] for n ∈ N. We finally construct σε ∈ C1(R) by matching 
the pieces. �
Proof of Lemma 3. Let ε < 1

4C and δ =
(

ε
4C

) 1
α < 1. If |x − y| ≤ δ then

|σ(x) − σ(y)| ≤ D(|x − y|α + |x − y|p) ≤ D(δα + δp)

≤ 2Dδα = ε.

We define

σε(nδ) = σ(nδ), n ∈ Z (43)
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and linear in (n, n + 1). Since σ is nondecreasing so is σε. For x ∈ [δ(n − 1), δn] we have

|σ(x) − σε(x)| ≤ |σ(x) − σ(δn)| + |σ(δn) − σε(x)|

≤ ε

2 + |σε(δn) − σε(x)|

≤ ε

2 +
(
σε(δn) − σε(δ(n − 1))

)

= ε

2 +
(
σ(δn) − σ(δ(n − 1))

)

≤ ε

2 + ε

2
= ε.

On the other hand, for x ∈ (δ(n − 1), δn) we have

0 ≤ σ′
ε(x) = σ(δn) − σ(δ(n − 1))

δ
≤ C(δα−1 + δp−1) ≤ Dε1− 1

α ,

which concludes the result. �
3. Proof of Theorem 1

Proof of Theorem 1. We rewrite the problem, due to Lemma 1 as
∫

Ωε

|∇v|p−2∇v · ∇(v − uε) dx + β(ε)
∫

Sε

σ(v)(v − uε) dS

≥
∫

Ωε

f(v − uε) dx + β(ε)
∫

Sε

g(v − uε) dS ∀v ∈ W 1,p
0 (Ω). (44)

Let us start by considering σ ∈ C1(R). If either β0 = +∞ and g = 0 or β0 < +∞, we can apply Proposition 3
to show that Pεuε are uniformly bounded in W 1,p

0 (Ω), and therefore there exists u ∈ W 1,p
0 (Ω) and a 

subsequence of Pεuε (denoted as the original sequence) such that

Pεuε ⇀ u in W 1,p
0 (Ω) as ε → 0. (45)

Then it is known that (see [26,29,32]), for v ∈ W 1,∞
0 (Ω) we have

∫

Ωε

|∇v|p−2∇v · ∇(v − uε) dx →
∫

Ω

|∇v|p−2v · ∇(v − u) dx

∫

Ωε

f(v − uε) dx →
∫

Ω

f(v − u) dx

β∗(ε)
∫

Sε

σ(v)(v − uε) dS → |∂G0|
∫

Ω

σ(v)(v − u) dx

β∗(ε)
∫

Sε

g(v − uε) dS → |∂G0|
∫

Ω

g(v − uε) dx,
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as ε → 0. If β0 < +∞ we can pass to the limit in (44) as ε → 0 and obtain

∫

Ω

|∇v|p−2∇v · ∇(v − u) dx + β0

∫

Ω

σ(v)(v − u) dx

≥
∫

Ω

f(v − u) dx + β0

∫

Ω

g(v − u) dx ∀v ∈ W 1,∞
0 (Ω). (46)

Applying density, Lemma 6 and Lemma 1 this is equivalent to u being a solution of (19).
If β0 = +∞ and g = 0 then we write (44) as

β∗(ε)β(ε)−1
∫

Ωε

|∇v|p−2∇v · ∇(v − uε) dx + β∗(ε)
∫

Sε

σ(v)(v − uε) dS

≥ β∗(ε)β(ε)−1
∫

Ωε

f(v − uε) dx.

By passing to the limit we obtain

∫

Ω

σ(v)(v − uε) dx ≥ 0, v ∈ W 1,∞
0 (Ω).

Again, applying Lemma 1 we deduce the result.
Let σ ∈ C(R) and β0 < +∞. By Lemma 2 there exist nondecreasing functions (σm) ⊂ C1(R) such that 

σm(0) = 0, σm → σ in C(R). Let uε,m and um be the solutions of (3) and (19) with kinetics σm, which by 
the previous proof satisfy

Pεuε,m ⇀ um in W 1,p
0 (Ω) as ε → 0. (47)

Applying Lemma 9 we have that

‖∇ (uε − um,ε) ‖Lp(Ω) ≤ Cβ(ε)β∗(ε)−1‖σm − σ‖C(R) if 1 < p < 2,

‖∇ (uε − um,ε) ‖p−1
Lp(Ω) ≤ Cβ(ε)β∗(ε)−1‖σm − σ‖C(R) if 2 ≤ p < n.

Passing to the limit as ε → 0 in these estimates we get

‖∇ (u − um) ‖Lp(Ω) ≤ C‖σm − σ‖C(R) if 1 < p < 2,

‖∇ (u − um) ‖p−1
Lp(Ω) ≤ C‖σm − σ‖C(R) if 2 ≤ p < n.

By uniform boundedness there exists û ∈ W 1,p
0 (Ω) such that um ⇀ û in W 1,p(Ω) as m → +∞. By continuity 

of the equation with respect to the kinetics we know that û is the solution of (19). From the previous estimate 
we have that u = û, which concludes the proof. �
Remark 9. Notice that condition (18) is only used to show that (46) implies that u is a solution of (19). 
However, if we show that (46) has a unique solution then condition (18) can be removed. Also, if u is 
bounded then this condition can also be removed.
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4. Proof of Theorem 2

Proof of Theorem 2. Applying the results of this paper for the case 1 < p < n, which extend naturally to 
p = n (see Remark 4) and [11] for the case p > n we have that Pεuε ⇀ u in W 1,p

0 (Ω).
First, let us suppose that σ′ ∈ L∞. Then σ(uε) is bounded in W 1,p(Ωε, ∂Ω). Hence, it is easy to show that 

Pεσ(uε) ⇀ σ(u) in W 1,p
0 (Ω). Hence, applying Proposition 2 we have the result for σ uniformly Lipschitz.

Let σ ∈ C0,α(R) such that (25), (28) are satisfied. According to Lemma 3 there exist a sequence of 
nondecreasing functions (σm) ⊂ C(R) such that σ′

m ∈ L∞ and σm → σ in C(R).
Let uε,m be the corresponding solution of (3) with kinetics σm. Then we have

∣∣∣∣∣β(ε)
∫

Sε

σ(u) dS − β(ε)
∫

Sε

σm(uε,m) dS
∣∣∣∣∣ ≤ β(ε)

∫

Sε

|σ(uε) − σm(uε)| dS

≤ β(ε)
∫

Sε

|σ(uε) − σ(uε,m)| dS + β(ε)
∫

Sε

|σ(uε,m) − σm(uε,m)| dS

≤ Cβ(ε)
∫

Sε

|uε − uε,m|α dS + β(ε)|Sε|‖|σ − σm‖C(R)

≤ C

⎛
⎝β(ε)

∫

Sε

|uε − uε,m|q dS

⎞
⎠

α
q

+ β(ε)|Sε|‖|σ − σm‖C(R)

≤ C
(
‖σ − σm‖

α
q−1
C(R) + ‖σ − σm‖C(R)

)
.

In particular, taking any m ∈ Z we show that up to a subsequence the following convergence holds

ηε = 1
|Sε|

∫

Sε

σ(u) dS → η0 as ε → 0.

Applying the first part of the proof, we have that

∣∣∣∣∣∣
η0 − 1

|Ω|

∫

Ω

σm(um) dx

∣∣∣∣∣∣
≤ C

(
‖σ − σm‖

α
q−1
C(R) + ‖σ − σm‖C(R)

)
.

Due to Lemma 9 we have that, as m → +∞, um → u in Lp(Ω). Also, due (25) we have that σ(um) → σ(u)
in L1(Ω). Hence

‖σm(um) − σ(u)‖L1(Ω) ≤ ‖σm(um) − σ(um)‖L1(Ω) + ‖σ(um) − σ(u)‖L1(Ω)

≤ ‖σm − σ‖C(R) + ‖σ(um) − σ(u)‖L1(Ω).

Therefore, σm(um) → σ(u) in L1(Ω). Hence,

η0 = 1
|Ω|

∫

Ω

σ(u) dx.

Since every convergent subsequence of (ηε) has the same limit η0 we conclude the proof. �
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Abstract. The main objective of this article is to get a complete charac-

terization of the homogenized global absorption term, and to give a rigorous
proof of the convergence, in a class of diffusion processes with a reaction on the

boundary of periodically “microscopic” distributed particles (or holes) given

through a nonlinear microscopic reaction (i.e. under nonlinear Robin micro-
scopic boundary conditions). We introduce new techniques to deal with the

case of non necessarily symmetric particles (or holes) of critical size which leads

to important changes in the qualitative global homogenized reaction (such as
it happens in many problems of the Nanotechnology). Here we shall merely

assume that the particles (or holes) Gjε, in the n-dimensional space, are dif-

feomorphic to a ball (of diameter aε = C0εγ , γ = n
n−2

for some C0 > 0). To

define the corresponding “new strange term” we introduce a one-parametric
family of auxiliary external problems associated to canonical cellular problem

associated to the prescribed asymmetric geometry G0 and the nonlinear mi-

croscopic boundary reaction σ(s) (which is assumed to be merely a Hölder
continuous function). We construct the limit homogenized problem and prove

that it is a well-posed global problem, showing also the rigorous convergence
of solutions, as ε → 0, in suitable functional spaces. This improves many

previous papers in the literature dealing with symmetric particles of critical

size.

1. Introduction

It is well-known that the asymptotic behaviour of the solution of many relevant
diffusion processes with reaction on the boundary of periodically “microscopic” dis-
tributed particles (or holes) is described through the solution of a global reaction-
diffusion problem in which the global reaction term (usually an absorption term if
the microscopic reactions are given by monotone non-decreasing functions) main-
tains the same structural properties as the microscopic reaction (see, for instance,
[3]) and its many references to previous results in the literature).

A certain critical size of the “microscopic particles” may be responsible of a
change in the nature of the homogenized global absorption term, with respect to
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the structural assumptions on the microscopic boundary reaction kinetic. It seems
that the first result in that direction was presented in the pioneering paper by V.
Marchenko and E. Hruslov [15] dealing with microscopic non-homogeneous Neu-
mann boundary condition (see also the study made by E. Hruslov concerning linear
microscopic Robin boundary conditions in [12, 11]). A –perhaps– more popular
presentation of the appearance of some “strange term” was due to D. Cioranescu
and F.Murat [2] dealing with microscopic Dirichlet boundary conditions (see also
[13]).

This change of behavior from the microscopic reaction to the global homo-
geneized reaction term is one of the characteristics of the nanotechnological effects
(see, e.g., [20]) and it does not appear for particles of bigger size (relative to their
repetition) than the critical scale (see, e.g., [6] and the references therein). The to-
tal identification of the new or “strange” reaction term is an important task which
was considered by many authors under different technical assumptions. In the case
of nonlinear microscopic boundary reactions the first result in the literature was
the 1997 paper by Goncharenko [10] (see also the precedent paper [13]). The identi-
fication (and the rigorous proof of the convergence in the homogenization process)
requires to assume that the particles (or holes) are symmetric balls of diameter
aε = C0ε

γ , γ = n
n−2 , for some C0 > 0. Many other researches were developed for

different problems concerning critical sized balls (see [22, 18, 5] and the references
therein). Recently, a unifying study concerning the homogenization for particles
(or holes) given by symmetric balls of critical order was presented in [7]: the treat-
ment was extended to a microscopic reaction given by a general maximal monotone
graph which allows to include, as special problems, the cases of Dirichlet or nonlin-
ear Robin microscopic boundary conditions. The case of particles of general shape
when n = 2 was studied in [19], with the limit behaviour being similar to the case
of spherical inclusions and n ≥ 2.

The main task of this paper is to get a complete characterization of the homog-
enized global absorption term in the class of problems given through a nonlinear
microscopic reaction (i.e. under nonlinear Robin microscopic boundary conditions)
and for non necessarily symmetric particles (or holes). Here we will merely assume
that the particles (or holes) Gjε are a rescaled version of a set G0, diffeomorphic
to a ball (where the scaling factor is aε = C0ε

γ , γ = n
n−2 for some C0 > 0). To

define the corresponding new “strange term” we introduce a one-parametric family
of auxiliary external problems associated to canonic cellular problem, which play
the role of a “nonlinear capacity” of G0 and the nonlinear microscopic boundary
reaction σ(s) (which is assumed to be merely a Hölder continuous function). We
construct the limit homogenized problem and prove that it is well-posed global
problem, showing also the rigorous convergence of solutions, as ε → 0, in suitable
functional spaces.

2. Statement of main results

Let Ω be a bounded domain in Rn n ≥ 3 with a piecewise smooth boundary ∂Ω.
The case n = 2 requires some technical modifications which will not be presented
here. Let G0 be a domain in Y = (− 1

2 ,
1
2 )n, and G0 be a compact set diffeomorphic

to a ball. Let C0, ε > 0 and set

aε = C0ε
α for α =

n

n− 2
. (2.1)
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For δ > 0 and B a set let δB = {x | δ−1x ∈ B }. Assume that ε is small enough so

that aεG0 ⊂ εY . We define Ω̃ε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε }. For j ∈ Zn we define

P jε = εj, Y jε = P jε + εY, Gjε = P jε + aεG0.

We define the set of admissible indexes:

Υε =
{
j ∈ Zn : Gjε ∩ Ω̃ε 6= ∅

}
.

Notice that |Υε| ∼= dε−n where d > 0 is a constant. Our problem will be set in the
following domain:

Gε =
⋃

j∈Υε

Gjε, Ωε = Ω \Gε

Finally, let

∂Ωε = Sε ∪ ∂Ω, Sε = ∂Gε.

We consider the following boundary value problem in the domain Ωε

−∆uε = f, x ∈ Ωε,

∂νuε + ε−γσ(uε) = 0, x ∈ Sε,
uε = 0, x ∈ ∂Ω,

(2.2)

where γ = α = n
n−2 , f ∈ L2(Ω), ν is the unit outward normal vector to the

boundary Sε, ∂νu is the normal derivative of u. Furthermore, we suppose that
the function σ : R → R, describing the microscopic nonlinear Neumann boundary
condition, is nondecreasing, σ(0) = 0, and there exist constants k1, k2 such that

|σ(s)− σ(t)| ≤ k1|s− t|α + k2|s− t| ∀s, t ∈ R, for some 0 < α ≤ 1. (2.3)

Remark 2.1. Condition (2.3) means that σ is locally Hölder continuous, but it
is only sublinear towards infinity. This condition is weaker than u ∈ C0,α(R) or σ
Lipschitz, that correspond, respectively, to k2 = 0 and k1 = 0.

Remark 2.2. Condition (2.3) on σ is a purely technical requirement. This kind
of regularity can probably be improved. In particular, as shown in [4, 7] the kind
of homogenization techniques and result that will be presented later can be expect
for any maximal monotone graph σ.

For any prescribed set G0, as before, and for any given u ∈ R, we define
ŵ(y;G0,u), for y ∈ Rn \G0, as the solution of the following one-parametric family
of auxiliary external problems associated to the prescribed asymmetric geometry
G0 and the nonlinear microscopic boundary reaction σ(s):

−∆yŵ = 0 if y ∈ Rn \G0,

∂νy ŵ − C0σ(u− ŵ) = 0, if y ∈ ∂G0,

ŵ → 0 as |y| → ∞.
(2.4)

We will prove in Section 4 that the above auxiliary external problems are well
defined and, in particular, there exists a unique solution ŵ(y;G0,u) ∈ H1(Rn \
G0), for any u ∈ R. Concerning the corresponding “new strange term”, for any
prescribed asymmetric set G0, as before, and for any given u ∈ R we introduce the
following definition.
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Definition 2.3. Given G0 we define HG0
: R→R by means of the identity

HG0
(u) :=

∫

∂G0

∂νy ŵ(y;G0,u) dSy

= C0

∫

∂G0

σ(u− ŵ(y;G0,u)) dSy, for any u ∈ R.
(2.5)

Remark 2.4. Let G0 = B1(0) := {x ∈ Rn : |x| < 1} be the unit ball in Rn. We

can find the solution of problem (2.4) in the form ŵ(y;G0,u) = H(u)
|y|n−2 , where, in

this case, H(u) is proportional to HB1(0)(u). We can compute that

HG0
(u) =

∫

∂G0

∂νŵ(u, y) dSy

=

∫

∂G0

(n− 2)HG0
(u) dSy

= (n− 2)H(u)ω(n),

where ω(n) is the area of the unit sphere. Hence, due to (2.5), H(u) is the unique
solution of the following functional equation

(n− 2)H(u) = C0σ(u−H(u)). (2.6)

In this case, it is easy to prove that H is nonexpansive (Lipschitz continuous with
constant 1). This equation has been considered in many papers (see [7] and the
references therein).

We shall prove several results on the regularity and monotonicity of the homog-
enized reaction HG0

(u) in the next section. Concerning the convergence as ε → 0
the following statement collects some of the more relevant aspects of this process:

Theorem 2.5. Let n ≥ 3, aε = C0ε
−γ , γ = n

n−2 , σ a nondecreasing function such

that σ(0) = 0 and that satisfies (2.3). Let uε be the weak solution of (2.2). Then
there exists an extension to H1

0 (Ω), still denoted by uε, such that uε ⇀ u0 in H1(Ω)
as ε→ 0, where u0 ∈ H1

0 (Ω) is the unique weak solution of

−∆u0 + Cn−2
0 HG0

(u0) = f Ω,

u0 = 0 ∂Ω.
(2.7)

Remark 2.6. Since |HG0
(u)| ≤ C(1 + |u|) it is clear that HG0

(u0) ∈ L2(Ω).

3. On the ε-global problem

Some comments on the well-posednes and some a priori estimates concerning
the ε-global problem (2.2), when the nondecreasing function σ ∈ C(R), σ(0) = 0
satisfies (2.3), are collected in this section. We start by introducing some notations:

Definition 3.1. Let U be an open set and Γ ⊂ ∂Ω. We define the functional space

H1(U,Γ) = {f ∈ C∞(U) : f |Γ = 0}H
1(U)

.

Thanks to well-known results (see, e.g. the references given in [7]) there exists a
unique weak solution of problem (2.2): i.e. uε ∈ H1(Ωε, ∂Ω) is the unique function
such that ∫

Ωε

∇uε∇ϕdx+ ε−γ
∫

Sε

σ(uε)ϕdS =

∫

Ωε

fϕdx, (3.1)
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for every ϕ ∈ H1(Ωε, ∂Ω). As a matter of fact, in order to get a proof of the
convergence of uε as ε→ 0, under the general assumption (2.3), it is useful to recall
that, thanks to the monotonicity of σ(u), we can write the weak formulation of
(2.2) in the following equivalent way (for details see [6]):

∫

Ωε

∇ϕ · ∇(ϕ− uε) dx+ ε−γ
∫

Sε

σ(ϕ)(ϕ− uε)ds ≥
∫

Ωε

f(ϕ− uε) dx, (3.2)

for every ϕ ∈ H1
0 (Ω).

Concerning some initial apriori estimates, we recall that we can work with ũε ∈
H1

0 (Ω) given as an extension of uε to Ω such that

‖ũε‖H1(Ω) ≤ K‖uε‖H1(Ωε), ‖∇ũε‖L2(Ω) ≤ K‖∇uε‖L2(Ωε), (3.3)

where K does not depend on ε. The construction of such an extension is given,
e.g., in [17] (the W 1,p equivalent, for p 6= 2, can be found in [18]).

Now, considering in the weak formulation (3.1) the test function ϕ = uε, and
using the monotonicity of σ, we obtain

‖∇uε‖2L2(Ωε) ≤ K. (3.4)

where K does not depend on ε. From (3.4) we derive that there are a subsequence
of ũε (still denote by ũε) and u0 ∈ H1

0 (Ω) such that, as ε→ 0, we have

ũε ⇀ u0 weakly in H1
0 (Ω), (3.5)

ũε → u0 strongly in L2(Ω). (3.6)

In Section 4 we characterize the limit function u0 ∈ H1
0 (Ω).

4. On the regularity of the strange term

4.1. Auxiliary function ŵ. The existence and regularity of solution in domains

O = Rn \G0 (4.1)

which are commonly known as exterior domains, has been extensively studied (see,
e.g., [9] and the references therein).

Based on the rate of convergence to 0 as |y| → +∞ we consider the space

X =
{
w ∈ L1

loc(O) : ∇w ∈ L2(O), w|∂G0
∈ L2(∂G0), |w| ≤ K

|y|n−2

}
(4.2)

It is a standard result, known as Weyl’s lemma, that any harmonic function is
smooth (of class C∞) in the interior of the domain. It was first proved for the whole
space by Hermann Weyl [21], and later extended by others to any open set in Rn
(see, e.g., [14]).

Remark 4.1. Notice that w̃(y;G0, u) = −ŵ(y;G0,−u) is a solution of (2.4) that
corresponds to σ̃(s) = −σ(−s). Hence, any comparison we prove for u ≥ 0 we
automatically prove for u ≤ 0.
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4.1.1. A priori estimates.

Lemma 4.2 (Weak maximum principle in exterior domains). Assume that w ∈ X
is such that

−∆w ≤ 0 D′(O),

w ≤ 0 ∂G0.

Then w ≤ 0 in O.

Proof. Let R > 0. Consider OR = O∩BR. Since w ∈ X then w ≤ K
|y|n−2 . Using the

hypothesis w ≤ 0 on ∂G0 and this fact, K
Rn−2 on ∂OR. We can apply the standard

weak maximum principle for weak solutions in OR to show that w ≤ K
Rn−2 on OR.

As R→ +∞ we prove the result. �

Analogously, we have the strong maximum principle.

Lemma 4.3. Let σ nondecreasing, u ∈ R, ŵ ∈ X be a weak solution of (2.4). Then

min{0, u} ≤ ŵ ≤ max{0, u} (4.3)

Proof. For u = 0, w = 0 follows from a monotonicity argument. Assume u > 0.
Let ψ ∈W 1,∞(R) non-increasing such that

ψ(s) =

{
1 s < 1

2

0 s > 1

and consider the test function ϕ = (w − u)+ψ
(d(·,∂G0)

R

)
. Then

∫

O
|∇(w − u)+|2ψ

(d(x, ∂G0)

R

)
dx+

∫

O
(w − u)+

ψ′
(d(x,∂G0)

R

)

R
∇w · ∇ddx

= C0

∫

∂G0

σ(u− w)(w − u)+ dS ≤ 0

and

∣∣∣
∫

O
(w − u)+

ψ′
(d(x,∂G0)

R

)

R
∇w · ∇ddx

∣∣∣dx

≤ C
∫

{R
2 <d<R}

w

R
|∇w|dx

≤ C
(∫

{R
2 <d<R}

|w|2
R2

dx
)1/2(∫

O
|∇w|2 dx

)1/2

≤ C

R
n−2
2

(∫

O
|∇w|2 dx

)1/2

→ 0,

as R→∞. Therefore,

0 ≤
∫

0≤d<R
2

|∇(w − u)+|2 dx ≤
∫

O
|∇(w − u)+|2ψ

(d(x, ∂G0)

R

)
dx

≤ −
∫

O
(w − u)+

ψ′
(
d(x,∂G0)

R

)

R
∇w · ∇ddx.
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As R→ +∞ we obtain that ∫

O
|∇(w − u)+|2 dx = 0. (4.4)

In particular (w − u)+ ≥ 0 is a constant. Since, as |y| → +∞ we show that the
constant must be (−u)+ = 0 we deduce that w − u ≤ 0.

If u < 0 we apply the previous argument with σ̃(s) = −σ(−s). �

Lemma 4.4. Let u ∈ R, w ∈ X such that w ≤ u in ∂G0 and −∆w ≤ 0 and

K0 = max
z∈∂G0

|z|n−2.

Then

w ≤ K0u

|y|n−2
∀y ∈ O.

Proof. Notice that

max
z∈∂G0

w(z)|z|n−2 ≤ u max
z∈∂G0

|z|n−2 = K0u.

Then

w ≤ K0u

|y|n−2
y ∈ ∂G0.

Since w − K0u
|y|n−2 is subharmonic and tends to 0 as |y| → +∞, we can apply the

weak maximum principle to deduce that

w(y) ≤ K0u

|y|n−2
y ∈ Rn \G0.

This proves the result. �

By the same argument it is easy to prove that any classical solution ŵ ∈ C2(O)∩
C(O) is, in fact, in X. Furthermore, we have an explicit expression of the K in the
definition of X for the solutions of (2.4):

Lemma 4.5. Let ŵ ∈ X be a solution of (2.4). Then

|ŵ(y;G0, u)| ≤ K0|u|
|y|n−2

∀y ∈ O. (4.5)

Lemma 4.6. Let R0 = max∂G0
|y|, ŵ ∈ X be a weak solution of (2.4). Then

max
|y|=R

|∇ŵ(y;G0, u)| ≤ K|u|
(R−R0)n−1

∀R > R0 (4.6)

where K does not depend on u or R.

Proof. Let |y0| = R. Let B be a ball centered at y0 of radius R−R0

2 . In B we have

|y| ≥ R−R0

2 . Since ∂ bw
∂xi

is a harmonic function, and applying Lemma 4.5, we have

∂ŵ

∂xi
(y0) =

1

|B|

∫

B

∂ŵ

∂xi
dy =

1

|B|

∫

∂B

ŵνi dS,

∣∣ ∂ŵ
∂xi

(y0)
∣∣ ≤ |∂B||B|

K|u|
(R−R0)n−2

≤ K|u|
(R−R0)n−1

.

This completes the proof. �
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4.1.2. Uniqueness, comparison and approximation of solutions.

Lemma 4.7. Let u ∈ R, σ1, σ2 be two nondecreasing functions such that σ1 ≤ σ2

in [0,+∞) and let w1, w2 ∈ X satisfy (2.4). Then w1 ≤ w2.

Proof. We subtract the two weak formulations, and consider ϕ = (w1 − w2)+ as a
test function. We obtain that∫

Rn\G0

|∇(w1 − w2)+|2 dx =

∫

∂G0

(σ1(u− w1)− σ2(u− w2))(w1 − w2)+ dS

Thus, in the set {w2 ≤ w1} we have that u− w2 ≥ u− w1 and, hence,

σ2(u− w2) ≥ σ2(u− w1) ≥ σ1(u− w1),

so

σ1(u− w1)− σ2(u− w2) ≤ 0.

Thus, since (w1 − w2)+ ≥ 0 a.e. in ∂G0, we have that
∫

Rn\G0

|∇(w1 − w2)+|2 dx ≤ 0. (4.7)

Hence (w1−w2)+ = c constant. Since (w1−w2)+ → 0 as |y| → +∞, we have that
c = 0 and thus w1 ≤ w2. �

Corollary 4.8. There exists, at most, one solution w ∈ X of (2.4).

Lemma 4.9. Let σ1, σ2 ∈ C(R) be two nondecreasing function. Let ŵi(·;G0, u) ∈ X
be a solution of

−∆yŵi = 0 if y ∈ Rn \G0,

∂νy ŵi − C0σi(u− ŵi) = 0, if y ∈ ∂G0,

ŵi → 0 as |y| → ∞.
(4.8)

Then

‖∇(ŵ1 − ŵ2)‖2L2(O) ≤ C|u|‖σ1 − σ2‖L∞(I), (4.9)

where

I = {u− ŵ1(y;G0, u) : y ∈ Rn \G0} ⊂ R, (4.10)

and C is independent of u.

Proof. By taking as test function ϕ = ŵ1 − ŵ2 in the weak formulation of these
equations we have that

‖∇(ŵ1 − ŵ2)‖2L2(O) ≤
∫

O
|∇(ŵ1 − ŵ2)|2 dx

+

∫

∂G0

(σ2(u− ŵ2)− σ2(u− ŵ1))(ŵ1 − ŵ2) dS

=

∫

∂G0

(σ1(u− ŵ1)− σ2(u− ŵ1))(ŵ1 − ŵ2) dS

≤ ‖σ1 − σ2‖∞
∫

∂G0

|ŵ1 − ŵ2|dS

≤ C|u|‖σ1 − σ2‖∞.
This completes the proof. �
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4.1.3. Existence and regularity.

Lemma 4.10. Let u ∈ R and σ uniformly Lipschitz. Then, there exists ŵ ∈ X a
weak solution of (2.4). Furthermore, ŵ satisfies (4.5).

Proof. Let us assume that u > 0. Let λ > 0, and consider µ > 0 such that

F : z 7→ C0σ(u− z) + µz

is nondecreasing. Let w0 = 0. We define the sequence wk ∈ H1(O) as the solutions
of

−∆wk+1 + λwk+1 = λwk O,
∂νwk+1 + µwk+1 = F (wk) ∂G0,

wk+1 → 0 |y| → +∞.
This sequence is well defined, since λ > 0 applying the Lax-Milgram theorem.
Indeed, if wk ∈ H1(O) then F (wk) ∈ H1/2(∂G0) so that wk+1 ∈ H1(O).

Let us show that 0 ≤ wk ≤ wk+1 ≤ u a.e. in O and ∂G0 for every n ≥ 1. We
start by showing that 0 ≤ w1. This is immediate because F (0) = C0σ(u) ≥ 0.
Let us now show that, if wk−1 ≤ wk then wk ≤ wk+1. Considering the weak
formulations: ∫

O
∇wk+1∇v dx+ λ

∫

O
wk+1v dx+ µ

∫

∂G0

wkv dS

= λ

∫

O
wk+1v dx+

∫

∂G0

F (wk)v dx

(4.11)

we have that∫

O
∇(wk − wk+1)∇v dx+ λ

∫

O
(wk − wk+1)ϕdx+ µ

∫

∂G0

(wk − wk+1)v dS

= λ

∫

O
(wk−1 − wk)v dx+

∫

∂G0

(F (wk−1)− F (wk))v dS

Consider v = (wk − wk+1)+ ≥ 0. We have that wk−1 ≤ wk therefore wk−1 −
wk, F (wk−1)− F (wk) ≤ 0. Hence
∫

O
|∇(wk − wk+1)+|2 dx+ λ

∫

O
|(wk − wk+1)+|2 dx+ µ

∫

∂G0

|(wk − wk+1)+|2 dS

= λ

∫

O
(wk − wk+1)v dx+

∫

∂G0

(F (wk−1)− F (wk))v dS ≤ 0

so that (wk − wk+1)+ = 0. Hence wk ≤ wk+1 a.e. in O and in ∂G0. With an
argument similar to the one in Lemma 4.3, one proves that wk+1 ≤ u a.e. in O and
∂G0.

The sequence wk is pointwise increasing a.e. in O. Therefore, there exists a
function w such that

wk(y)↗ w(y) a.e. O. (4.12)

Taking traces, the same happens in ∂G0. Hence

wk(y)↗ w(y) a.e. ∂G0. (4.13)

Thus F (wk) ↗ F (w) a.e. in L2(∂G0). Since F (w) ≤ F (u) and ∂G0 has bounded
measure, we have that

F (wk)→ F (w) in L2(∂G0). (4.14)
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We have that

−∆wk+1 = λ(wk − wk+1) ≤ 0 O.
Hence, wk are all subharmonic. Then, since wk → 0 as |y| → 0 and wk ∈ X and
wk ≤ u on ∂G0, by Lemma 4.4 we have that

0 ≤ wk ≤
K0u

|y|n−2
.

in particular wn ∈ X. Passing to the limit we deduce that

0 ≤ w ≤ K0u

|y|n−2
y ∈ O

Hence w → 0 as |y| → +∞. Applying an equivalent argument to the one in Lemma
4.9 we have that ∇wk is a Cauchy sequence in L2(O)n. In particular, there exists
ξ ∈ L2(O)n such that

∇wk → ξ in L2(O)n.

Consider O′ ⊂ O open and bounded. Then we have that
∫

O′
|∇wk|2 dy ≤

∫

O
|∇wn|2 dy

is bounded, and ∫

O′
|wk|2 dy ≤ |u|2|O′|.

Hence, there is convergent subsequence in H1(O′). Any convergent subsequence
must have the same limit, so wk ⇀ w H1(O′). In particular

ξ = ∇w a.e. O′.
Since this works for every O′ bounded we have that ∇w ∈ L2(O)n, hence w ∈ X,
and

∇wn → ∇w in L2(O)n.

Using this fact and (4.14), we can pass to the limit in the weak formulation to
deduce that

−∆w = 0 O,
∂w

∂n
= C0σ(u− w) ∂G0.

In particular, a solution of (2.4). The same reasoning applies to case u < 0. �

Corollary 4.11. Let σ ∈ C(R) be nondecreasing be such that

|σ(u)| ≤ C(1 + |u|). (4.15)

Then, there exists a unique solution of (2.4).

Proof. Let us assume first that u > 0. Let σm ∈ C1([0, |u|]) be a pointwise in-
creasing sequence that approximates σ uniformly in [0, |u|]. Since σm is Lipschitz,
then ŵm exists by the previous part. Because of Lemma 4.7, the sequence ŵm of
solutions of (2.4) is pointwise increasing. Since we know that, we have that ŵm ≤ u
then, for a.e. y ∈ O, ŵm(y) is a bounded and increasing sequence

ŵm(y)↗ w(y).
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for some w(y). In particular

0 ≤ w(y) ≤ K0u

|y|n−2
y ∈ O.

Applying as in the proof of Lemma 4.10 we deduce that w ∈ X and it is a solution of
(2.4). The proof for u < 0 follows in the same way, by taking a pointwise decreasing
sequence σm. �

With the same techniques we can prove the following (applying that u− w ≥ 0
for u ≥ 0 and u− w ≤ 0 for u ≤ 0):

Lemma 4.12. Let u ∈ R, O′ ⊂ O bounded, σ, σm be nondecreasing continu-
ous functions such that σ(0) = σm(0) = 0 and |σm| ≤ |σ| and σm → σ in
C([−2|u|, 2|u|]). Then:

ŵm(·;G0, u)→ ŵ(·;G0, u) strongly in H1(O′). (4.16)

Furthermore,

(1) If u ≥ 0 then ŵm ↗ ŵ a.e. y ∈ O and y ∈ ∂G0.
(2) If u ≤ 0 then ŵm ↘ ŵ a.e. y ∈ O and y ∈ ∂G0.

4.1.4. Lipschitz continuity with respect to u.

Lemma 4.13. For every y ∈ Rn \ G0, ŵ(y;G0,u) is a nondecreasing Lipschitz-
continuous function with respect to u. In fact,

|ŵ(u1;G0, y)− ŵ(y;G0, u2)| ≤ |u1 − u2| ∀u1, u2 ∈ R, ∀y ∈ Rn \G0. (4.17)

Furthermore, for every y ∈ ∂G0, ∂νŵ(y;G0, u) is also nondecreasing in u.

Proof. Let us consider first that σ ∈ C1(R). We have that ŵ(·;G0, u) ∈ C(O)∩C2(O)
for every u ∈ R and the equation is satisfied pointwise (see [14]).

Let us first consider u1 > u2. We want to prove the following

0 ≤ ŵ(u1;G0, y)− ŵ(y;G0, u2) ≤ u1 − u2 (4.18)

∂νŵ(u1;G0, y) ≥ ∂νŵ(y;G0, u2). (4.19)

That

ŵ(u1;G0, y) ≥ ŵ(y;G0, u2). (4.20)

follows from the comparison principle. Indeed, let us plug ŵ(u1;G0, y) in the equa-
tion for ŵ(y;G0, u2):

−∆ŵ(u1;G0, y) = 0 Rn \G0,

∂νy ŵ(u1;G0, y)− C0σ(u2 − ŵ(u1;G0, y))

= C0 (σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2))) ≥ 0 ∂G0,

ŵ(u1;G0, y)→ 0 |y| → +∞.

(4.21)

Therefore, ŵ(u1;G0, y) is a supersolution of the problem for ŵ(y;G0, u2). Applying
the comparison principle we deduce (4.20).

We define

g(u1, u2, y) = ŵ(u1;G0, y)− ŵ(y;G0, u2) ≥ 0. (4.22)
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The function g is the solution of the following elliptic problem:

∆yg = 0 if y ∈ Rn \G0,

∂νyg − C0

(
σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2))

)
= 0 if y ∈ ∂G0,

g → 0 as |y| → ∞.
(4.23)

Let us consider the boundary condition for y ∈ ∂G0:

∂νyg(y) = C0(σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2)))

multiplying by u1 − u2 − g(u1, u2, y), and applying the monotonicity of σ, we have

(∂νg(y))(u1 − u2 − g(y)) ≥ 0 ∀y ∈ ∂G0. (4.24)

Let g(y0) = max∂G0
g for some y0 ∈ ∂G0. By the strong maximum principle

g(y0) = maxRn\G0
g. Hence g(y) ≤ g(y0) for y ∈ Rn \G0 and we have

∂νyg(y0) ≥ 0.

Assume, first, that σ is strictly increasing. We study two cases. If ∂νyg(y0) > 0
then, by (4.24),

u1 − u2 ≥ g(y0) ≥ g(y) ∀y ∈ Rn \G0.

If ∂νg(y0) = 0 then, by (4.23),

σ(u1 − ŵ(y0;G0, u1)) = σ(u2 − ŵ(y0;G0, u2))

u1 − ŵ(y0;G0, u1) = u2 − ŵ(y0;G0, u2)

u1 − u2 = g(y0) ≥ g(y) ∀y ∈ Rn \G0.

Either way, we deduce that (4.18) holds. Hence,

σ(u1 − ŵ(u1;G0, y)) ≥ σ(u2 − ŵ(y;G0, u2)) ∀y ∈ ∂G0

so (4.19) holds. This concludes the proof when σ is strictly increasing.
Let σ be a nondecreasing function and U = max{|u1|, |u2|}. We consider an ap-

proximation sequence σm of σ in [−2U, 2U ] by strictly increasing smooth functions
such that |σm| ≤ |σ|. Consider ŵm as defined in Lemma 5.7. We have that

ui − ŵ(y;G0, ui) ∈ [−2U, 2U ] ∀i = 1, 2,∀y ∈ Rn \G0.

By the previous part ŵm satisfies (4.18) and (4.19). Applying Lemma 4.12 we have
a.e.-pointwise convergence ŵm(ui, y) → ŵ(ui, y) for i = 1, 2, up to a subsequence,
as m → +∞. Therefore (4.18) and (4.19) hold almost everywhere in y. Since ŵ
is continuous, (4.18) and (4.19) hold everywhere. This concludes the proof in the
case u1 > u2.

If u1 < u2 we can exchange the roles of u1 and u2 in (4.18) to deduce (4.17).
This concludes the proof. �

4.1.5. Auxiliary function ŵjε. We conclude this section by introducing the following
function:

Definition 4.14. Let u ∈ R, j ∈ Υε and ε > 0. We define

ŵjε(x;G0, u) = ŵ
(x− P jε

aε
;G0, u

)
. (4.25)
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It is clear that this function is the solution of the problem

−∆ŵjε = 0 Rn \Gjε,
∂nŵ

j
ε − ε−γσ(u− ŵjε) = 0 ∂Gjε

ŵjε → 0 |x| → +∞.
(4.26)

We have the following estimates:

Lemma 4.15. Let ε, r > 0 and x ∈ ∂T jrε. Then

|ŵjε(x;G0, u)| ≤ K|u|∣∣∣x−P
j
ε

aε

∣∣∣
n−2 ≤

K|u|an−2
ε

rn−2εn−2
≤ K|u|
rn−2

ε2 (4.27)

where K does not depend on r, |u| or ε.

Lemma 4.16. For ε, r > 0 be such that aε <
rε

2R0
. Let x ∈ ∂T jrε. Then

|∇ŵjε(x;G0, u)| ≤ K|u|
rn−1

ε, (4.28)

where K does not depend on r, ε or j.

Proof. By the definition of ŵjε we have

∇ŵjε(x;G0, u) = a−1
ε (∇ŵ)

(x− P jε
aε

;G0, u
)

Therefore, for x ∈ ∂T jrε,

|∇ŵjε| = a−1
ε

∣∣∇ŵ
(x− P jε

aε

)∣∣ ≤ K|u|a−1
ε(

|x−P j
ε

aε
| −R0

)n−1

≤ K|u|an−2
ε

(rε− aεR0)
n−1 ≤

K|u|an−2
ε(

rε
2

)n−1

≤ K|u|
rn−1

ε.

This completes the proof. �

4.2. Properties of HG0
.

Lemma 4.17. HG0 is a nondecreasing function. Furthermore:

(1) If σ satisfies (2.3), then so does HG0 .
(2) If σ ∈ C0,α(R), then so is HG0

.
(3) If σ ∈ C1(R), then HG0

is locally Lipschitz continuous.
(4) If σ ∈W 1,∞(R), then so is HG0

.

Proof. Let us prove the monotonicity of HG0
(u) given by (2.5). Let u1 > u2. By

applying (4.19) we deduce that HG0
(u1) ≥ HG0

(u2).
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Assume (2.3). Indeed, taking into account (4.17) we deduce

|HG0
(u)−HG0

(v)|

≤ C0

∫

∂G0

|σ(u− ŵ(y;G0,u))− σ(v − ŵ(y;G0, v))|dSy

≤ C0k1

∫

∂G0

(
|u− v|+ |ŵ(y;G0,u)− ŵ(y;G0, v)|

)α
dSy

+ C0k2

∫

∂G0

(
|u− v|+ |ŵ(y;G0,u)− ŵ(y;G0, v)|

)
dSy

≤ K1|u− v|α +K2|u− v|

(4.29)

In particular, if u ∈ C0,α(R), then k2 = 0 and K2 = 0.
Assume now that σ ∈ C1(R). Let u1, u2 ∈ R. We have that, for y ∈ ∂G0

|∂νy ŵ(u1;G0, y)− ∂νy ŵ(u2, y)|
= C0|σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2))|

≤ C|σ′(ξ)|
(
|u1 − u2|+ |ŵ(u1;G0, y)− ŵ(y;G0, u2)|

)

≤ C|σ′(ξ)||u1 − u2|.
for some ξ between u1 − ŵ(y;G0, u1) and u2 − ŵ(y;G0, u2). Since |ŵ(u, y)| ≤ |u|,
for every K ⊂ R compact there exists a constant CK such that

|∂νy ŵ(y;G0, u1)− ∂νy ŵ(y;G0, u2)| ≤ CK |u1 − u2| ∀u1, u2 ∈ K.
Therefore,

|HG0(u)−HG0(v)| ≤ C̃K |u1 − u2| ∀u1, u2 ∈ K.
Let σ ∈W 1,∞(R). By approximation by nondecreasing functions σn ∈W 1,∞ ∩ C1,
we obtain that

|∂νy ŵ(y;G0, u1)− ∂νy ŵ(y;G0, u2)| ≤ 2‖σ′‖∞|u1 − u2|. (4.30)

Therefore,

|HG0(u)−HG0(v)| ≤ 2‖σ′‖∞|∂G0||u1 − u2| ∀u1, u2 ∈ R. (4.31)

This completes the proof. �

Lemma 4.18. Let u ∈ R. Let σ, σm be nondecreasing continuous functions such
that σ(0) = σm(0) = 0 satisfy (2.3) with the same constants k1, k2 and α, |σm| ≤ |σ|
and σm → σ in C([−2U, 2U ]) for some U > 0. Then

HG0,m → HG0 in C([−U,U ]). (4.32)

Proof. Let u ∈ [0, U ]. By Lemma 4.12 we know that

u− ŵm(y;G0, u)↘ u− ŵ(y;G0, u) for a.e. y ∈ ∂G0.

In particular, due to the dominated convergence theorem, HG0,m(u) → HG0
(u).

An equivalent argument applies to u ∈ [−U, 0]. Hence

HG0,m → HG0
pointwise in [−U,U ].

Since all σm satisfy (2.3) with the same k1, k2, α, we know that Hm satisfies (4.29)
with the same K1,K2 and α. Hence, HG0,m is an equicontinuous sequence. Ap-
plying the Ascoli-Arzela theorem we know that the sequence is relatively compact
in C([−U,U ]) with the supremum norm. It has, at least, a uniformly convergent
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subsequence. Since every convergent subsequence has to converge to HG0
, we know

that the the whole sequence HG0,m converges to HG0 uniformly in [−U,U ]. �

Remark 4.19. When ∂G0 is assumed C2 it is possible to develop other type of
techniques (which we shall not present in detail here) showing the existence and
uniqueness of solution ŵ(y;G0,u). Indeed, the existence of ŵ(y;G0,u) can be built
through passing to the limit after a truncation of the domain process (with the
artificial boundary condition ŵ(y;G0,u) = 0 on the new truncated boundary).
The maximum principle for classical solutions (see, e.g. [14], [8, p.206] or [1])
allows to get universal a priori estimates which justify the weak convergence and
thanks to the monotonicity of the nonlinear term in the interior boundary condition
the passing to the limit can well-justified. In addition, it can be proved (see the
indicated references) that the limit is also a classical solution on the whole exterior
domain. Moreover, the same technique (i.e. the maximum principle for classical
solutions) implies the comparison, uniqueness and continuous dependence of the
solution ŵ(y;G0, u).

5. Proof in the smooth case σ ∈ C1(R)

5.1. Auxiliary function wjε. To pass to the limit as ε→ 0 in (3.2) we need some
auxiliary functions.

Definition 5.1. Let u ∈ R, ε > 0 and j ∈ Υε. We define the function wjε(·;G0, u)
as the solution of the problem

∆wjε = 0 if x ∈ T jε/4 \G
j
ε,

∂νxw
j
ε − ε−γσ(u− wjε) = 0 if x ∈ ∂Gjε,

wjε = 0 if x ∈ ∂T jε/4,
(5.1)

where

T jr = {x ∈ Rn : |x− P jε | ≤ r}, (5.2)

P jε is the center of Y jε . Finally, we define

Wε(x;G0, u) =

{
wjε(x;G0, u) if x ∈ T jε/4 \G

j
ε, j ∈ Υε,

0 if x ∈ Rn \ ∪j∈ΥεT
j
ε/4.

(5.3)

Applying the comparison principle we obtain the following result.

Lemma 5.2. Let u ≥ 0. Then 0 ≤ wjε(·;G0, u) ≤ ŵjε(·;G0, u). If u ≤ 0 then
ŵjε(·;G0, u) ≤ wjε(·;G0, u) ≤ 0.

Remark 5.3. Note that, if u = 0, then wjε(·;G0, 0) ≡ 0.

Let us prove some properties of Wε(x;G0, u). First, we introduce the following
lemma.

Lemma 5.4 (Uniform trace constant). There exists a constant CT > 0 such that,
for all ε > 0

ε−γ
∫

∂Gj
ε

|f |2 dS ≤ CT
∫

T j
ε/4
\Gj

ε

|∇f |2 dx ∀f ∈ H1
(
T jε/4 \G

j
ε, ∂T

j
ε
4

)
(5.4)
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Proof. First, we extend f to H1
0 (Y jε ) where Y jε = εj + εY . In [17] we find that

ε−γ
∫

∂Gj
ε

|f |2 ≤ C
(∫

Y j
ε

|f |2 +

∫

Y j
ε

|∇f |2
)
. (5.5)

Since f = 0 on ∂Y jε , taking f̃(y) = f(P jε + εy), we have
∫

Y

|f̃ |2 dy ≤ C
∫

Y

|∇f̃ |2 dy. (5.6)

Since ∇xf = ε∇y f̃ we have
∫

Y j
ε

|f |2 ≤ ε2

∫

Y j
ε

|∇f |2. (5.7)

Hence, the result is proved. �

We have some precise estimates on the norm of Wε:

Lemma 5.5. For all u ∈ R, we have

‖∇Wε‖2L2(Ωε) ≤ K(|u|+ |u|2), (5.8)

‖Wε‖2L2(Ωε) ≤ K(|u|+ |u|2)ε2. (5.9)

Proof. Let u ∈ R be fixed. If we take wjε as a test function in weak formulation of
problem (5.1) we obtain

∫

T j
ε/4
\Gj

ε

|∇wjε|2 dx− ε−γ
∫

∂Gj
ε

σ(u− wjε)wjε dS = 0.

We rewrite this as follows:∫

T j
ε/4
\Gj

ε

|∇wjε|2 dx+ ε−γ
∫

∂Gj
ε

σ(u− wjε)(u− wjε) dS = ε−γ
∫

∂Gj
ε

σ(u− wjε)udS.

Since σ is nondecreasing we have that

‖∇wjε‖2L2(T j
ε/4
\Gj

ε)
≤ ε−γ |u|

∫

∂Gj
ε

|σ(u− wjε)|dS.

Because of (2.3) and that |s|α ≤ 1 + |s| for every s ∈ R, we have

ε−γ
∫

∂Gj
ε

|σ(u− wjε)|dS ≤ k1ε
−γ
∫

∂Gj
ε

|u− wjε|α dS + k2ε
−γ
∫

∂Gj
ε

|u− wjε|dS

≤ k1ε
−γ |∂Gjε|+ (k1 + k2)ε−γ

∫

∂Gj
ε

|u− wjε|dS.

Applying Lemma 5.4 and that, for every a, b, C ∈ R it holds that ab ≤ C2

2 a
2+ 1

2C2 b
2,

we obtain

(k1 + k2)ε−γ
∫

∂Gj
ε

|u− wjε|dS ≤ ε−γC|∂Gjε|+
1

2CT |u|
ε−γ

∫

∂Gj
ε

|u− wjε|2 dS

≤ C|u|ε−γ |∂Gjε|+
1

2CT |u|
‖u− wjε‖2L2(∂Gj

ε)

≤ C|u|εn +
1

2|u| ‖∇(u− wjε)‖2L2(T j
ε/4
\Gj

ε)

= C|u|εn +
1

2|u| ‖∇w
j
ε‖2L2(T j

ε/4
\Gj

ε)
.
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Therefore,

‖∇wjε‖2L2(T j
ε/4
\Gj

ε)
≤ K(|u|+ |u|2)εn +

1

2
‖∇wjε‖2L2(∂Gj

ε)
.

Thus, we have

‖∇wjε‖2L2(T j
ε/4
\Gj

ε)
≤ K(|u|+ |u|2)εn.

Adding over j ∈ Υε, and taking into account that #Υε ≤ dε−n, we deduce that
(5.8) holds. Using Friedrich’s inequality we obtain

‖wjε‖2L2(T j
ε/4
\Gj

ε)
≤ ε2K‖∇wjε‖2L2(T j

ε/4
\Gj

ε)
,

so (5.9) holds. This completes the proof. �

5.2. Auxiliary function vjε = wjε − ŵjε. Let us define:

vjε = wjε − ŵjε. (5.10)

This functions is the solution of the problem

∆vjε = 0 if x ∈ T jε/4 \G
j
ε,

∂νv
j
ε − ε−γ(σ(u− wjε)− σ(u− ŵjε)) = 0, if x ∈ ∂Gjε,

vjε = −ŵjε(x;G0, u), if x ∈ ∂T jε/4.
(5.11)

Lemma 5.6. The following estimates hold
∑

j∈Υε

‖∇(wjε(x;G0, u)− ŵjε(x;G0, u))‖2
L2(T j

ε
4
\Gj

ε)
≤ K(|u|+ |u|2)ε2, (5.12)

∑

j∈Υε

‖wjε(x;G0, u)− ŵjε(x;G0, u)‖2
L2(T j

ε/4
\Gj

ε)
≤ K(|u|+ |u|2)ε4. (5.13)

Proof. From Lemma 5.2 it is clear that

|vjε(x;G0, u)| ≤ |ŵjε(x;G0, u)| ∀x ∈ T jε/4 \Gjε. (5.14)

Integrating by parts vjε(∆v
j
ε) and using (5.11) we deduce that

∫

T j
ε/4
\Gj

ε

|∇vjε|2 dx− ε−γ
∫

∂Gj
ε

(σ(u− wjε)− σ(u− ŵ))vjε dS

= −
∫

∂T j
ε/4

(∂νv
j
ε)ŵ

j
ε(x;G0, u) dS

By the monotonicity of σ and applying Green’s first identity, we have

‖∇vjε‖2L2(T j
ε/4
\Gj

ε)
≤ −

∫

∂T j
ε/4

(∂νv
j
ε)ŵ

j
ε(x;G0, u) dS

= −
∫

T j
ε/4
\T j

ε/8

∇vjε∇ŵjε dx+

∫

∂T j
ε/8

(∂νv
j
ε)ŵ

j
ε dS.

Applying Lemmas 4.15 and 4.16 we have

|vjε(x;G0, u)| ≤ |ŵjε(x;G0, u)| ≤ K|u|ε2.

|∇ŵjε(x;G0, u)| ≤ K|u|ε
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for all x ∈ T jε/8, where K does not depend on ε. Since vjε is harmonic, denoting

T xr = {z ∈ Rn : |x− z| < r} we have

|∂v
j
ε

∂xi
(x)| = 1

|T xε/16|
∣∣∣
∫

Tx
ε/16

∂vjε
∂xi

dx
∣∣∣ =

K

εn

∣∣∣
∫

∂Tx
ε/16

vjενi dS
∣∣∣ ≤ K|u|ε.

for all x ∈ T jε/4 \ T
j
ε
8
, since T xε/16 ⊂ T

j
ε/4 \ T

j
ε/16. Hence, we have

∣∣∣
∫

T j
ε/4
\T j

ε/8

∇vjε∇ŵjε dx
∣∣∣ ≤ K(|u|+ |u|2)εn+2,

∣∣∣
∫

∂T j
ε
8

(∂νv
j
ε)ŵ

j
ε dS

∣∣∣ ≤ K(|u|+ |u|2)εn+2.

From this we deduce that

‖∇vjε‖2L2(T j
ε/4
\Gj

ε)
≤ K(|u|+ |u|2)εn+2.

From Friedrich’s inequality,

‖vjε‖2L2(T j
ε/4
\Gj

ε)
≤ K(|u|+ |u|2)εn+4.

Then, adding over j ∈ Υε we obtain
∑

j∈Υε

‖∇vjε‖2L2(T j
ε/4
\Gj

ε)
≤ K(|u|+ |u|2)ε2,

∑

j∈Υε

‖vjε‖2L2(T j
ε/4
\Gj

ε)
≤ K(|u|+ |u|2)ε4.

This estimates completes the proof. �

5.3. Convergence of integrals over ∪j∈Υε∂T
j
ε/4.

Lemma 5.7. Let HG0
(u) be defined by formula (2.5), φ ∈ C∞0 (Ω) and hε, h ∈

H1
0 (Ω) be such that hε ⇀ h in H1

0 (Ω) as ε→ 0. Then, we have that

− lim
ε→0

∑

j∈Υε

∫

∂T j
ε
4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε(x) dS = Cn−2

0

∫

Ω

HG0
(φ(x))h(x) dx

(5.15)

where ν is an unit outward normal vector to T jε/4.

Proof. Let us consider the auxiliary problem

∆θjε = µjε x ∈ Y jε \ T
j

ε/4, j ∈ Υε,

−∂νθjε = ∂νŵ
j
ε(x;G0, φ(P jε )) x ∈ ∂T jε ,

−∂νθjε = 0 x ∈ ∂Y jε ,
〈θjε〉Y j

ε \T j
ε/4

= 0,

(5.16)

where ν is a unit inwards normal vector of the boundary of Y jε \ T jε/4. We choose,

against the convention, the inward normal vector so that it coincides with the unit
outward normal vector of T jε/4 \Gjε in their shared boundary. We changed the sign
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accordingly. The constant µjε is given by the compatibility condition of the problem
(5.16):

µjεε
n
∣∣Y \ T 0

1/4

∣∣ =

∫

∂T j
ε/4

∂νŵ
j
ε(x;G0, φ(P jε )) dS

= −
∫

∂Gj
ε

∂νŵ
j
ε(x;G0, φ(P jε )) dS

= −an−2
ε

∫

∂G0

∂νy ŵ(φ(P jε ), y) dSy,

Therefore,

µjε =
−an−2

ε HG0
(φ(P jε ))

|Y \ T 0
1/4|εn

=
−Cn−2

0 HG0
(φ(P jε ))

|Y \ T 0
1/4|

,

From the integral identity for the problem (5.16) we obtain

−
∫

Y j
ε \T j

ε

|∇θjε|2 dx = µjε

∫

Y j
ε \T j

ε/4

θjεdx−
∫

∂T j
ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
θjε dS. (5.17)

Applying Lemma 4.16 and using the estimates from [17], we deduce
∫

∂T j
ε/4

∣∣(∂νxŵjε(x;G0, φ(P jε ))
)
θjε
∣∣dS

≤ K|φ(P jε )|ε
∫

∂T j
ε/4

|θε|dS

≤ K|φ(P jε )|εn−1
2 +1‖θjε‖L2(∂T j

ε/4
)

≤ K|φ(P jε )|εn+1
2

{
ε−

1
2 ‖θjε‖L2(Y j

ε \T j
ε/4)

+
√
ε‖∇θjε‖L2(Y j

ε \T j
ε/4)

}

≤ K|φ(P jε )|εn+2
2 ‖∇θjε‖L2(Yε\T j

ε/4)
.

In particular, since |φ(P jε )| ≤ ‖φ‖∞ we can make a uniform bound, independent of
j and ε. Thus, we have

‖∇θjε‖2L2(Y j
ε \T j

ε)
≤ Kεn+2. (5.18)

Adding over j ∈ Υε we have

∑

j∈Υε

∫

Y j
ε \T j

ε/4

|∇θjε|2 dx ≤ Kε2. (5.19)

Hence, by the definition of θjε, we obtain
∣∣∣
∑

j∈Υε

∫

∂T j
ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε dS −

∑

j∈Υε

∫

Y j
ε \T j

ε/4

µjεhε dx
∣∣∣

=
∣∣∣
∑

j∈Υε

∫

Y j
ε \T j

ε/4

∇θjε∇hε dx
∣∣∣ ≤ Kε‖hε‖H1(Ω,∂Ω).

Therefore,

lim
ε→0

∑

j∈Υε

∫

∂T j
ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε dS = lim

ε→0

∑

j∈Υε

∫

Y j
ε \T j

ε/4

µjεhε dx.
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From the definition of µjε we deduce

∑

j∈Υε

∫

Y j
ε \T j

ε/4

µjεhε dx+
Cn−2

0

|Y \ T 0
1/4|

∑

j∈Υε

∫

Y j
ε \T j

ε/4

HG0(φ(x))hε dx

= − Cn−2
0

|Y \ T 0
1/4|

∑

j∈Υε

∫

Y j
ε \T j

ε/4

(
HG0

(φ(P jε ))−HG0
(φ(x))

)
hε dx.

Using (4.17) we obtain
∣∣∣
∑

j∈Υε

∫

Y j
ε \T j

ε/4

(HG0
(φ(P jε ))−HG0

(φ(x)))hε dx
∣∣∣

≤ K‖hε‖L2(Ω) max
j

∣∣∣
∫

∂G0

∂νy ŵ(y;G0, φ(P jε ))− ∂νy ŵ(y;G0, φ(x)) dSy

∣∣∣

= K‖hε‖L2(Ω) max
j

∣∣∣
∫

∂G0

σ
(
φ(P jε )− ŵ(y;G0, φ(x))

)

− σ
(
φ(P jε )− ŵ(y;G0, φ(P jε ))

)
dSy

∣∣∣

≤ K max
j

(∣∣∣ŵ(y;G0, φ(P jε ))− ŵ(y;G0, φ(x))
∣∣∣

+
∣∣∣ŵ(y;G0, φ(P jε ))− ŵ(y;G0, φ(x))

∣∣∣
α)

≤ K max
j

(
|φ(P jε )− φ(x)|+ |φ(P jε )− φ(x)|α

)

≤ K(aε + aαε )→ 0 as ε→ 0.

Hence

lim
ε→0

∑

j∈Υε

∫

Y j
ε \T j

ε/4

µjεhε dx = − lim
ε→0

Cn−2
0

|Y \ T 0
1/4|

∑

j∈Υε

∫

Y j
ε \T j

ε/4

HG0
(φ(x))hε dx.

From [16, Corollary 1.7] we derive

lim
ε→0

Cn−2
0

|Y \ T 0
1/4|

∑

j∈Υε

∫

Y j
ε \T j

ε/4

HG0
(φ(x))hε dx = Cn−2

0

∫

Ω

HG0
(φ(x))hdx.

This completes the proof. �

Lemma 5.8. Let HG0(u) be defined by formula (2.5), φ ∈ C∞0 (Ω) and hε, h ∈
H1

0 (Ω) be such that hε ⇀ h in H1
0 (Ω) as ε→ 0. Then, we have

− lim
ε→0

∑

j∈Υ

∫

∂T j
ε
4

(
∂νw

j
ε(x;G0, φ(P jε ))

)
hε dS = Cn−2

0

∫

Ω

HG0
(φ(x))hdx. (5.20)

Proof. Using Lemma 5.6 and applying Green’s identity we obtain
∑

j∈Υε

∫

∂T j
ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))− ∂νwjε(x;G0, φ(P jε ))

)
hε dS

= −
∑

j∈Υε

∫

∂T j
ε/4

∂νv
j
εhε dS

= −
∑

j∈Υε

∫

T j
ε/4
\Gj

ε

∇vjε∇hε dx+

∫

∂Gj
ε

∂νv
j
εhε dS
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= −
∑

j∈Υε

∫

T j
ε/4
\Gj

ε

∇vjε∇hε dx

+ ε−γ
∑

j∈Υε

∫

∂Gj
ε

(
σ(φ(P jε )− wjε)− σ(φ(P jε )− ŵ)

)
hε dS.

From Cauchy’s inequality and the properties of vjε we have

∣∣∣
∑

j∈Υε

∫

T j
ε/4
\Gj

ε

∇vjε∇hε dx
∣∣∣ ≤ ε−1

∑

j∈Υε

‖∇vjε‖2L2(T j
ε
4

)
+ ε‖∇hε‖2L2(Ωε)

≤ Kε.

Using the estimates from Lemma 5.6 we deduce

ε−γ
∑

j∈Υε

∣∣∣
∫

∂Gj
ε

(
σ(φ(P jε )− wjε)− σ(φ(P jε )− ŵjε)

)
hε dS

∣∣∣

≤ ε−γ
∑

j∈Υε

∫

∂Gj
ε

‖σ′‖L∞([−2‖φ‖∞,2‖φ‖∞])|vjε||hε|dS

≤ Kε−γ
∑

j∈Υε

∫

∂Gj
ε

|vjε||hε|dS

≤ Kεε−γ/2‖hε‖L2(Sε)

≤ Kε‖∇hε‖L2(Ω),

where K depends on ‖φ‖∞. Therefore,

∣∣∣
∑

j∈Υε

∫

∂T j
ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))− ∂νwjε(x;G0, φ(P jε ))

)
hε dS

∣∣∣ ≤ Kε. (5.21)

From this inequality and Lemma 5.7 we deduce that

− lim
ε→0

∑

j∈Υ

∫

∂T j
ε/4

(
∂νw

j
ε(x;G0, φ(P jε ))

)
hε dS

= − lim
ε→0

∑

j∈Υε

∫

∂T j
ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε dS

= Cn−2
0

∫

Ω

HG0(φ(x))hdx.

This completes the proof. �

5.4. Proof of Theorem 2.5 for σ ∈ C1(R). Let φ ∈ C∞0 (Ω). We define

W̃ε(x;φ) =

{
Wε(x;G0, φ(P jε )) Y jε \Gjε, j ∈ Υε

0 Ω \ ∪j∈Υε
Y
j

ε, j ∈ Υε.
(5.22)
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We have that W̃ε(·;φ) ∈ H1
0 (Ω) and W̃ε(·;φ) ⇀ 0 in H1(Ω) as ε → 0. Using

ϕ = φ− W̃ε(x;φ) as a test function in inequality (3.2) we obtain
∫

Ωε

∇(φ− W̃ε(x;φ))∇(φ− W̃ε(x;φ))− uε) dx

+ ε−γ
∑

j∈Υε

∫

∂Gj
ε

σ(φ− wjε(x;G0, φ(P jε )))(φ− wjε(x;G0, φ(P jε ))− uε) dS

≥
∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx.

(5.23)

Taking into account that wjε(x;G0, u) is a solution of the problem (5.1), we can
rewrite this in the form∫

Ωε

∇φ∇(φ− W̃ε(x;φ)− uε) dx

−
∑

j∈Υε

∫

∂T j
ε
4

∂νw
j
ε(x;G0, φ(P jε ))(φ− uε) dS

− ε−γ
∑

j∈Υε

∫

∂Gj
ε

σ(φ(P jε )− wjε(x;G0, φ(P jε )))(φ− wjε(x;G0, φ(P jε ))− uε) dS

(5.24)

+ ε−γ
∑

j∈Υε

∫

∂Gj
ε

σ(φ− wjε(x;G0, φ(P jε )))(φ− wjε(x;G0, φ(P jε ))− uε) dS (5.25)

≥
∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx.

We choose the boundary condition for wjε so that (5.24) cancels (5.25) out in the
limit. We observe that

ρε =
∣∣∣ε−γ

∑

j∈Υε

∫

∂Gj
ε

(
σ(φ(P jε )− wjε(x;G0, φ(P jε )))− σ(φ− wjε(x;G0, φ(P jε )))

)

×
(
φ− wjε(x;G0, φ(P jε ))− uε

)
dS
∣∣∣

≤ ε−γ
∑

j∈Υε

∫

∂Gj
ε

‖σ′‖L∞([−U,U ])‖∇φ‖L∞(Ω)aε|φ− wjε(x;G0, φ(P jε ))− uε|dS

≤ Kaε → 0,

where U = 2‖φ‖∞ and K depends of ‖φ‖∞. Taking this into account we have
∫

Ωε

∇φ∇(φ− W̃ε(x;φ)− uε) dx

−
∑

j∈Υε

∫

∂T j
ε
4

∂νw
j
ε(x;G0, φ(P jε ))(φ− uε) dS

≥
∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx− ρε.

(5.26)

From Lemma 5.5 we have

lim
ε→0

∫

Ωε

∇φ∇(φ− W̃ε(x;φ)− uε) dx =

∫

Ω

∇φ∇(φ− u0) dx, (5.27)
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lim
ε→0

∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx =

∫

Ω

f(φ− u0) dx. (5.28)

Applying Lemma 5.8 for hε = φ− uε we have

− lim
ε→0

∑

j∈Υε

∫

∂T j
ε
4

(
∂νw

j
ε(x;G0, φ(P jε ))

)
(φ−uε) dS = Cn−2

0

∫

Ω

HG0(φ(x))(φ−u0)dx.

Therefore u0 satisfies the inequality∫

Ω

∇φ∇(φ− u0) dx+ Cn−2
0

∫

Ω

HG0
(φ(x))(φ− u0) dx ≥

∫

Ω

f(φ− u0) dx.

for any φ ∈ H1
0 (Ω). Therefore, u ∈ H1

0 (Ω) satisfies the identity
∫

Ω

∇u0∇φdx+ Cn−2
0

∫

Ω

HG0
(u0)φdx =

∫

Ω

fφdx,

where φ ∈ H1
0 (Ω). Thus, u is a weak solution of (2.7). This completes the proof of

the Theorem 2.5 when σ is C1(R). �

6. Proof in the Hölder-continuous case

Let σ ∈ C(Ω) be satisfying (2.3). Applying [6, Lemma 2] we deduce there a
sequence of nondecreasing functions σδ ∈ C1(R) such that σδ(0) = 0, |σδ| ≤ |σ|
and σδ → σ in C(R). Therefore σδ satisfies (2.3). Applying the result in the previous
section, we have that

Pεuε,δ ⇀ uδ in H1(Ω). (6.1)

where uδ is the solution of (2.7) with Hδ instead of HG0
.

By the approximation lemmas in [6] we have

‖∇(uε − uε,δ)‖L2(Ωε) ≤ C‖σδ − σ‖∞ (6.2)

Therefore,
‖∇(u− uδ)‖L2(Ω) ≤ C‖σδ − σ‖∞ (6.3)

Since, by Lemma 4.18, Hδ,G0
converges uniformly over compacts to HG, applying

standard methods (see Lemma 7.1) we deduce that uδ → û0, where û0 is the
solution of (2.7). Notice that, due to Lemma 4.17, we have that, if u0 ∈ L2(Ω)
then HG0

(u0) ∈ L2(Ω).
By uniqueness of the limit u0 = û and it is the solution of (2.7). This completes

the proof of Theorem 2.5 in the general case. �

7. Appendix: A convergence lemma

Lemma 7.1. Let Hm, H : R→ R be nondecreasing functions that satisfy (2.3) with
the same constants k1, k2, and such that Hm → H uniformly over compacts. Let
um, u be the corresponding solutions of (2.7) with Hm and H respectively. Then

um ⇀ u in H1
0 (Ω). (7.1)

Proof. We have ∫

Ω

|∇um|2 dx ≤ C
∫

Ω

|f |2 dx (7.2)

Therefore, up to a subsequence, there is a weak limit in H1
0 (Ω), let this be ũ. A

further subsequence guaranties that

um → ũ in L2(Ω),
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um → ũ a.e. Ω.

Let x ∈ Ω such that um(x)→ u(x) in R. In particular the sequence is bounded so
Hm(um(u(x))) → H(u(x)) because of the uniform convergence over compact sets.
Hence

Hm(um)→ H(ũ) a.e. in Ω. (7.3)

On the other hand, we have

|Hm(um)| ≤ k1|um|α + k2|um| ≤ k1 + (k1 + k2)|um|,∫

Ω

|H(um)|2 dx ≤ C
(
|Ω|+

∫

Ω

|um|2 dx
)

≤ C
(
|Ω|+

∫

Ω

|f |2 dx
)

Hence, up to a subsequence, there exists H̃ ∈ L2(Ω) such that

Hm(um) ⇀ H̃ in L2(Ω).

By Egorov’s theorem, we have that, for every δ > 0 there exists Aδ measurable

such that |Aδ| < δ and Hm(um)→ H(ũ) uniformly Ω \Aδ. Since Hm(um) ⇀ H̃ in

L2(Ω \Aδ) we have that H(ũ) = H̃ a.e. in Ω \Aδ. Hence H(ũ) = H̃ in a.e. Ω, so

Hm(um) ⇀ H(ũ) in L2(Ω).

By passing to the limit in the weak formulation we deduce that ũ = u. �
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Abstract In previous works, the homogenization of the problem with p-Laplace diffusion
and nonlinear reaction in the boundary of periodically distributed particles in n-dimensional
domains has been studied in the cases where p ≤ n. The main trait of the cases p ≤ n is
the existence of a critical size of the particles, for which the nonlinearity arising of the limit
problem does not coincide with the non linear term of the microscopic reaction. The main
result of this paper proves that in the case p > n there exists no critical size.
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1 Introduction

The main goal of this paper is to study the behaviour arising in the homogenization process
applied to chemical reactions taking place on fixed-bed nanoreactors, at the microscopic
level, on the boundary of the particles
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⎧
⎨

⎩

−�puε = f (x) x ∈ �ε,

−∂νp uε ∈ ε−γ σ (uε) x ∈ Sε,

uε = 0 x ∈ ∂�,

(1)

for a very general type of chemical kinetics (here given by the maximal monotone graph σ of
R
2). Here the diffusion is modeled by the quasilinear operator �puε ≡ div(|∇uε|p−2∇uε)

with p > 1. Notice that p = 2 corresponds to the linear diffusion operator, and that p �= 2
appears in turbulent regime flows or non-Newtonian flows (see [2]). The “normal derivative”
must be then understood as ∂νp uε = |∇uε|p−2∇uε ·ν, where ν is outward unit normal vector
on the boundary of the particles Sε ⊂ ∂�ε. In fact we shall consider the structural assumption

n < p < +∞ and n ≥ 3. (2)

In previous works, the cases where p ≤ n have been studied (see [3–6,9,10,12] for the
details). The main trait of this cases is the existence of a critical size of the particles, for
which the non linear term arising of the limit problem does not coincide with the non linear
term of the microscopic reaction. If the size of the particles is larger than this critical size
then the limit problem is of the form

{
−�pu + Aσ(u) = f �

u = 0 ∂�
(3)

where A > 0. If the size of the particles is critical, the limit problem becomes
{

−�pu + B|H(u)|p−2H(u) = f �

u = 0 ∂�
(4)

where B > 0 and H is the solution of functional equation depending only on σ , n and the
shape of the particle.

The main result of this paper proves that for p > n there exists no critical size. That is, the
solution uε converges to the homogenized solution u of problem (3) where A is a constant
that will be specified later.

The plan of the rest of the paper is the following: Sect. 2 will be devoted to the statement
of the main results, whilst Sects. 3 and 4 are devoted to the proofs.

2 Statement of results

Definition 1 (Perforated domain �ε) Let � be a bounded domain in R
n , n ≥ 2, with a

smooth boundary ∂� and let Y = (−1/2, 1/2)n . Denote by G0 a smooth open set such that
G0 ⊂ Y . For δ > 0 and B an open set we define δB = {x | δ−1x ∈ B }. For ε > 0 we define
�̃ε = {x ∈ � | ρ(x, ∂�) > 2ε }. Let aε = C0ε

α , where α > 1 and C0 is positive number.
Define

Gε =
⋃

j∈ϒε

(aεG0 + ε j) =
⋃

j∈ϒε

G j
ε , (5)

where ϒε = { j ∈ Z
n : (aεG0 + ε j) ∩ �̃ε �= ∅}, Zn is the set of vectors z with integer

coordinates. Define Y j
ε = εY + ε j , where j ∈ ϒε . It is clear that Gε

j ⊂ Y ε
j . Define

�ε = �\Gε, Sε = ∂Gε, ∂�ε = ∂� ∪ Sε.

It can be checked that |ϒε| ∼= dε−n , for some constant d > 0, in the sense that |ϒε|/ε−n → d
as ε → 0.
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In this geometry we consider the problem
⎧
⎪⎨

⎪⎩

−�puε = f (x) x ∈ �ε,

∂νp uε + ε−γ σ (uε) = 0 x ∈ Sε,

uε = 0 x ∈ ∂�,

(6)

where �pu ≡ div(|∇u|p−2∇u), ∂νp u ≡ |∇u|p−2(∇u, ν), ν is the outward unit normal

vector to Sε and σ is a nondecreasing function such that σ(0) = 0 and f ∈ L p′
(�). In this

paper we will be interested in the case p > n and α > 1.
We define W 1,p(�ε, ∂�) as the closure in W 1,p of { f ∈ C∞(�ε) : f |∂� = 0}.

Definition 2 Let (�ε) be a sequence of domains �ε ⊂ � ⊂ R
n and ∂� ⊂ ∂�ε where � is

bounded.We say that the sequence has a uniformly bounded sequence of extension operators
in W 1,p if there exists a sequence (Pε) where:

Pε : W 1,p(�ε) → W 1,p(�) (7)

where Pεu|�ε = uε for every u ∈ W 1,p(�ε) and there exists Kp > 0 independent of ε such
that

‖∇Pεu‖L p(�) ≤ Kp‖∇u‖L p(�ε), for every ε > 0. (8)

Applying the techniques in [8] we can prove that

Lemma 1 The sequence (�ε) has an uniformly bounded sequence of extension operators.

We will use the existence of a Poincaré constant for W 1,p
0 (�), Cp,�, such that

‖v‖L p(�) ≤ Cp,�‖∇v‖L p(�), v ∈ W 1,p
0 (�). (9)

In fact we can also show the following, which is seldom stated

Theorem 2 Let p > 1. If there exists a sequence of uniformly bounded extension operators
in W 1,p

0 then there exists a uniform Poincaré constant for W 1,p(�ε, ∂�). In particular, if (8)

holds and Cp,� is a Poincaré constant for W 1,p
0 (�), then, K pCp,� is a Poincaré constant

for W 1,p(�ε, ∂�).

Proof We simply indicate that

‖v‖L p(�ε) ≤ ‖Pεv‖L p(�) ≤ Cp,�‖∇Pεv‖L p(�) ≤ Cp,�Kp‖∇v‖L p(�ε) (10)

which concludes the proof. ��
Our aim is to prove the following results

Theorem 3 Let n < p < +∞, α > 1, σ be a continuous nondecreasing function such that
σ(0) = 0, uε be the solution of (6) and let

γ ∗ = α(n − 1) − n. (11)

Then, Pεuε ⇀ u in W 1,p
0 (�) where u ∈ W 1,p

0 (�) is the unique weak solution of one of the
following problem
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1. If γ = γ ∗ then {
−�pu + Aσ(u) = f, �,

u = 0 ∂�
(12)

where A = Cn−1
0 |∂G0|.

2. If γ < γ ∗ then {
−�pu = f �,

u = 0 ∂�.
(13)

Lemma 4 Let n < p < +∞, α > 1 and σ ≡ 0. Then Pεuε ⇀ u in W 1,p
0 (�) where u is

the unique solution of (13) (equivalently (12) for σ ≡ 0).

Theorem 5 Let n < p < +∞, α > 1, γ > γ ∗ and σ ∈ C1(R) nondecreasing function such
that σ(0) = 0. Then, there exists u ∈ W 1,p

0 (�) such that, up to a subsequence, Pεuε ⇀ u in

W 1,p
0 (�) and

σ(u(x)) = 0, a.e. x ∈ �. (14)

In other words, u(x) ∈ σ−1(0) for a.e. x ∈ �.

Remark 1 In this setting (p > n) there exists no critical exponent α∗. This is quite natural
since, for p < n the critical exponent results α∗ = n

n−p . The case p = n was done in [9].

We will use the following comparison result, which will be proved later

Lemma 6 Let p > 2 and let uε, ûε be the solutions of (6)with σ and σ̂ continuous functions.
Then,

‖∇(uε − ûε)‖p−1
L p(�ε)

≤ Cε
γ ∗−γ

p ‖σ − σ̂‖C(R). (15)

Remark 2 Since any function v ∈ W 1,p(�), p > n is Hölder with the estimate

|v(x) − v(y)| ≤ C |x − y|1− n
p ‖∇v‖L p(�), if [x, y] ⊂ � (16)

where [x, y] = {λx + (1 − λy) : λ ∈ [0, 1]}, we have that (Pεuε) is uniformly Hölder
continuous, and therefore (uε) is also uniformly Hölder continuous.

We need some information on the traces on Sε . We can compute the following lemma,
analogous to results in [8] which, for the proof, points to [7].

Lemma 7 Let p > n and u ∈ W 1,p(Yε) where Yε = εY\aεG0. Then,
∫

aεS0
|u|pdS ≤ K

(

an−1
ε ε−n

∫

Yε

|u|pdx + an−1
ε ε p−n

∫

Yε

|∇u|pdx
)

(17)

where K is independent of ε.

Remark 3 In particular, if aε = C0ε
α we have

∫

aεS0
|u|pdS ≤ K

(

εγ ∗
∫

Yε

|u|pdx + an−1
ε ε p−n

∫

Yε

|∇u|pdx
)

(18)

This explains the choice of γ ∗. If p < n then an−1
ε ε p−n is replaced by a p−1

ε . In that case

a p−1
ε

εγ ∗ = C p−1
0 εα(p−n)+n . (19)
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For the cases p < n this exponent is the one that produces the appearance of a critical case,
which corresponds to α = n

n−p . In the case p = n a similar expression exists, but is more
self-involved (see [9]).

The following result will be instrumental in the proof. Nonetheless it has a great intrinsic
mathematical value.

Proposition 1 Let p > n, α > 1, γ ∗ = α(n − 1) − n and vε ⇀ v in W 1,p
0 (�). Then

ε−γ ∗
∫

Sε

vεdS → A
∫

�

vdS (20)

where
A = Cn−1

0 |∂G0|. (21)

This result does not hold if p < n, and this causes the appearance of a term known as
strange term, first noticed by Cioranescu and Murat for the linear problem [1], and which
has been well documented also in the nonlinear case (see, e.g., [6,12]).

The technique for the proof of this result uses the following auxiliary result.Define function
Mε(x) as Yε—periodic solution of the boundary value problem

⎧
⎨

⎩

�pmε = με, x ∈ Yε = εY\aεG0;
∂νpmε = 1, x ∈ ∂(aεG0) = S0ε ;
∂νpmε = 0, x ∈ ∂Yε\S0ε ;

, με = Cn−1
0 εα(n−1)−n |∂G0|
1 − (aεε−1)n |G0| ,

and
∫

Yε

mε(x)dx = 0. (22)

This has the nice property of allowing us to write, for any test function ϕ ∈ W 1,p(Yε)

−
∫

Yε

|∇mε|p−2∇mε∇ϕdx +
∫

S0ε

ϕdS = με

∫

Yε

ϕdx . (23)

Denote by P j
ε the center of the ball G j

ε = P j
ε + aεG0. Let T

j
ε denote the ball of radius

ε/4 centered at the point P j
ε . Let M

j
ε = mε(x − Pε

j ) be the solution of the boundary value
problem. We will use the following fact, which we will prove later

Lemma 8 The following estimate holds

‖∇Mε‖L p(∪ j Y
j

ε )
≤ C(aεε

−1)
n−1
p−1 (24)

3 Proof of Proposition 1

Proof of Lemma 8 Setting in (23) ϕ = mε and applying Theorem 2, Lemma 7 and the
definition of mε(x), we obtain



J. I. Díaz et al.

‖∇mε‖p2

L p(Yε)
≤

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣
∣

∫

S0ε

mεdS

∣
∣
∣
∣
∣
∣
∣

+ με

∣
∣
∣
∣
∣
∣
∣

∫

Yε

mεdx

∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎠

p

≤
⎛

⎜
⎝

∫

S0ε

1dS

⎞

⎟
⎠

p−1

‖mε‖p
L p(S0ε )

≤ C1a
(n−1)(p−1)
ε ‖mε‖p

L p(S0ε )

≤ C2a
(n−1)(p−1)
ε

(
an−1
ε ε−n‖mε‖p

L p(Yε)
+ an−1

ε ε p−n‖∇mε‖p
L p(Yε)

)

≤ C3

(
a p(n−1)
ε ε p−n + a p(n−1)

ε ε p−n
)

‖∇mε‖p
L p(Yε)

(25)

≤ C4a
p(n−1)
ε ε p−n‖∇mε‖p

L p(Yε)
, (26)

Finally, we have the following inequality

‖∇mε‖L p(Yε) ≤ Ka
n−1
p−1
ε ε

p−n
p(p−1) . (27)

Hence, since #ϒε ≤ Cε−n we get the estimate

‖∇Mε‖L p(∪ j Y
j

ε )
≤ C(aεε

−1)
n−1
p−1 , (28)

which concludes the proof. ��

Remark 4 Notice that from (25) to (26) we apply that p > n. In the case p < n the other

term is dominant, and hence the comparison is ‖∇Mε‖L p ≤ C(aεε
−1)

n
p (see [8]).

Let M j
ε (x) be a restriction of function Mε(x) on Y j

ε . Using the definition of M j
ε (x), we

can make the following transformations

ε−γ

∫

Sε

vεdS = ε−γ
∑

j∈ϒε

∫

Y j
ε

div(|∇M j
ε |p−2∇M j

ε vε)dx

= ε−γ
∑

j∈ϒε

∫

Y j
ε

|∇M j
ε |p−2∇M j

ε ∇vεdx

+ ε−γ
∑

j∈ϒε

∫

Y j
ε

(�pM
j
ε )vεdx

= ε−γ
∑

j∈ϒε

∫

Y j
ε

|∇M j
ε |p−2∇M j

ε ∇vεdx

+ ε−γ
∑

j∈ϒε

με

∫

Y j
ε

vεdx (29)
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Using (28), we get

ε−γ

∫

�ε

|∇Mε|p−1|∇vε|dx ≤ Cε−γ

⎛

⎜
⎝

∫

�ε

|∇Mε|pdx
⎞

⎟
⎠

p−1
p

≤ Cε−α(n−1)+nan−1
ε ε1−n = Cε. (30)

Therefore, we have

lim
ε→0

ε−γ
∑

j∈ϒε

∫

Y j
ε

|∇M j
ε |p−2∇M j

ε · ∇vεdx = 0 (31)

and, finally, we use the fact (see [13]) that, since vε ⇀ v in W 1,2(�) we have

ε−γ
∑

j∈ϒε

με

∫

Y j
ε

vεdx → Cn−1
0 |∂G0|

∫

�

vdx . (32)

Remark 5 Notice that, for p < n estimate (30) transform into Cε
1
p (n−α(n−p)) producing the

appearance of a critical α (see [8]).

4 Proof of Theorem 3

First, let us prove the auxiliary lemma

Proof of Lemma 6 By considering the difference of weak formulations we can write, for the
test function u1 − u2

∫

�

(|∇u2|p−2∇u2 − |∇u1|p−2∇u1) · ∇(u2 − u1)dx

+ ε−γ

∫

Sε

(σ2(u2) − σ2(u1))(u2 − u1)dS

= ε−γ

∫

Sε

(σ1(u1) − σ2(u1))(u2 − u1)dS. (33)

For p ≥ 2 it is true that (see [11] or [2, Lemma 4.10])

‖∇(u1 − u2)‖p
L p(�ε)

≤

∣
∣
∣
∣
∣
∣
∣

ε−γ

∫

Sε

(σ2(u1) − σ1(u1))(u2 − u1)dS

∣
∣
∣
∣
∣
∣
∣

(34)

≤ ε−γ |Sε|
1
p′ ‖σ2 − σ1‖∞‖u1 − u2‖L p(Sε) (35)

≤ Cε
− γ

p ‖σ2 − σ1‖∞‖u1 − u2‖L p(Sε), (36)

since |Sε| ≤ Cε−γ . By applying Lemma 7 we deduce that

‖∇(u1 − u2)‖p
L p(�ε)

≤ K ε
− γ

p ‖σ1 − σ2‖∞ε
γ ∗
p

× (‖u1 − u2‖L p(�ε) + ‖∇(u1 − u2)‖L p(�ε)

)
. (37)
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Applying the uniform Poincaré inequality we deduce

‖∇(u1 − u2)‖p
L p(�ε)

≤ K ε
γ ∗−γ

p ‖σ1 − σ2‖∞‖∇(u1 − u2)‖L p(�ε). (38)

which concludes the proof.
We consider the weak formulation

∫

�ε

|∇uε|p−2∇uε · ∇vdx + ε−γ

∫

Sε

σ (uε)vdS =
∫

�ε

f vdx, ∀v ∈ W 1,p
0 (�). (39)

Since uε is a weak solution and p > n we have that

‖∇uε‖p−1
L p(�ε)

≤ ‖ f ‖L p(�ε) (40)

Therefore (uε) is a bounded sequence in W 1,p(�ε). Hence (Pεuε) is a uniformly Hölder
sequence in �, and therefore uniformly bounded

‖uε‖C(�) ≤ ‖Pεuε‖C(�) ≤ C, for some C > 0. (41)

Hence we have that
∫

�ε

|∇uε|p−2∇uε · ∇vdx →
∫

�

|∇u|p−2∇u · ∇vdx, (42)

∫

�ε

f vdx →
∫

�

f vdx . (43)

Proof of Theorem 3 First let us assume that γ < γ ∗. Let uε,0 be the solution corresponding
to σ ≡ 0. Then

‖uε − uε,0‖W 1,p(�ε)
≤ ε

γ−γ ∗
p(p−1) ‖σ‖

1
p−1
C(K ) (44)

where K is a compact such that ‖Pεuε‖L∞ , ‖Pεuε,0‖L∞ ∈ K ⊂ R. Then Pεuε ⇀ u0 the
solution of (13) by applying Lemma 4.

Assume thatγ = γ ∗.We start by consideringσ ∈ C1(R). Since the solutions are uniformly
bounded and continuous, we have that

‖σ ′(uε)‖C(Sε) ≤ ‖σ ′(uε)‖C(�) ≤ C (45)

since σ ′ is continuous. Notice that σ(Pεuε) = Pε(σ (uε)) on �ε . Hence

‖∇(σ (uε))‖L p(�ε) ≤ ‖σ ′(uε)‖C(�)‖∇uε‖L p(�ε) ≤ C. (46)

Therefore there exists σ̂ ∈ W 1,p(�) such that Pεσ (uε) ⇀ σ̂ . Since p > n the convergence
is also in the sense of C(�), and therefore σ̂ = σ(u). Hence, we conclude that for v ∈ W 1,p

we have

ε−γ ∗
∫

Sε

σ (uε)vdS → A
∫

�

σ(u)vdx . (47)

Then, limit becomes
∫

�

|∇u|p−2∇u · ∇vdx + A
∫

�

σ(u)vdx =
∫

�

f vdx, ∀v ∈ W 1,p
0 (�). (48)



Non existence of critical scales in the homogenization

Let σ ∈ C(�). Let us consider an approximating sequence σ ∈ C1, σ−1(0) = 0 and
σδ → σ in C([−M, M]) as δ → 0 where ‖Pεuε‖C(�) < M for all ε > 0. We have that

‖uε − uε,δ‖p−1
W 1,p ≤ C‖σδ − σ‖C([−M,M]). (49)

Passing to the limit we have that

‖u − uδ‖p−1
W 1,p ≤ C‖σδ − σ‖C([−M,M]), (50)

where uδ satisfies (12), with σδ instead of σ . As δ → 0 the sequence uδ → w where w is the
solution of (12). Therefore, due to (50) we have that u = w, which concludes the proof. ��
Proof of Theorem 5 If γ > γ ∗ we write

εγ−γ ∗
∫

�ε

|∇uε|p−2∇uε∇vdx + ε−γ ∗
∫

Sε

σ (uε)vdS = εγ−γ ∗
∫

�ε

f vdx, (51)

for all v ∈ W 1,p
0 (�). Hence, in the limit

A
∫

�

σ(u)v dx = 0, ∀v ∈ W 1,p
0 (�). (52)

That is σ(u(x)) = 0 for a.e. x ∈ �. ��
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Abstract: The aim of this paper is to consider the asymptotic behavior of boundary value problems in n-
dimensional domains with periodically placed particles, with a general microscopic boundary condition on
the particles and a p-Laplace diffusion operator on the interior, in the case inwhich the particles are of critical
size. We consider the cases in which 1 < p < n, n ≥ 3. In fact, in contrast to previous results in the literature,
we formulate the microscopic boundary condition in terms of a Robin type condition, involving a general
maximalmonotone graph, which also includes the case ofmicroscopic Dirichlet boundary conditions. In this
way we unify the treatment of apparently different formulations, which before were considered separately.
We characterize the so called “strange term” in the homogenized problem for the case in which the particles
are balls of critical size. Moreover, by studying an application in Chemical Engineering, we show that the
critically sized particles lead to a more effective homogeneous reaction than noncritically sized particles.

Keywords: Homogenization, p-Laplace diffusion, nonlinear boundary reaction, noncritical sizes,
maximal monotone graphs

MSC 2010: 35B25, 35B40, 35J05, 35J20

1 Introduction
Awell-known effect in homogenization theory is the appearance of some changes in the structural modelling
of the homogenized problem for suitable critical size of the elements configuring the “micro-structured” ma-
terial. It seems that the first result in this direction was presented in the pioneering paper by Marchenko and
Hruslov [27]. Amore popular presentation of the appearance of some “strange terms” was due to Cioranescu
and Murat [4]. Both articles dealt with linear equations with Neumann and Dirichlet boundary conditions,
respectively. Since thenmanypaperswere devoted to different formulations, e.g.,more general elliptic partial
differential equations (possibly of quasilinear type), Robin type and other boundary conditions of different
nature, etc. It is impossible to mention all of them here (a few of them will be mentioned in the rest of the
introduction) but the reader may imagine that the nature of this “strange term” may be completely different
according to the peculiarities of the formulation in consideration (something that was already indicated at
the end of the introduction of the paper by Cioranescu and Murat [4]).
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2 | J. I. Díaz et al., Characterizing the strange term in critical size homogenization

Themain goal of this paper is to characterize the change of structural behavior arising in the homogeniza-
tion process when applied to chemical reactions taking place on fixed-bed nanoreactors, at the microscopic
level, on the boundary of the particles

{{{
{{{
{

−∆puε = f(x), x ∈ Ωε ,
−∂νpuε ∈ ε−γσ(uε), x ∈ Sε ,
uε = 0, x ∈ ∂Ω

(1.1)

for a very general type of chemical kinetics (here given by the maximal monotone graph σ of ℝ2). Thanks
to this generality on the maximal monotone graph σ, our treatment also includes the case of microscopic
Dirichlet boundary conditions. In thiswaywe unify the treatment of apparently different formulations, which
before were considered separately.

The diffusion is modeled by the quasilinear operator ∆puε ≡ div(|∇uε|p−2∇uε), with p > 1. Notice that
p = 2 corresponds to the linear diffusion operator, and that p ̸= 2 appears in turbulent regime flows or non-
Newtonian flows (see [8]). As it is well known, this operator appears in many other contexts and is one of the
best examples of quasilinear operators leading to a formulation in terms of nonlinear monotone operators
(see, e.g., [1, 7, 26]).

The “normal derivative”must be then understood as ∂νpuε = |∇uε|p−2∇uε ⋅ ν, where ν is the outward unit
normal vector on the boundary of the particles Sε ⊂ ∂Ωε. In fact, we will consider the structural assumption

1 < p < n, n ≥ 3.

The cases p ≥ n are completely different, see [31, 32] (see also, for instance, the study made for a general
monotone quasilinear equation with Dirichlet boundary conditions in [7]).

As mentioned before, the generality assumed on themaximal monotone graph σ ofℝ2 allows to treat, in
a unified way, different cases as the case of Dirichlet boundary conditions, which corresponds to the choice
of σ given by

D(σ) = {0} and σ(0) = (−∞, +∞) (1.2)

(see, e.g. [1]), and the case of nonlinear Robin type boundary conditions, which corresponds (see, e.g. [24])
to the case in which D(σ) = ℝ and σ is a continuous nondecreasing function.

The domain Ωε ⊂ ℝn is assumed to have an ε-periodical structure. Since our main goal is to get a very
precise description of the so-called “strange term” in the homogenized problem,we shall assume that the par-
ticles are balls of radius aε = C0εα, where α > 1. One of the interesting properties that arise from our precise
characterization is that there is uniqueness of solutions of the homogenized problem. This was not always
proved in previous results (cf. the general framework considered in [7], and how their characterization, given
in their Lemma 5.1, is not enough to get the uniqueness of solution of their homogenized problem). The con-
sideration of particles of a general shape is a difficult task, especially the exact identification of the “strange
terms”. A similar formulation to the one considered in this paper for that case can be obtained, at least for
continuous σ, and has been the subject of a different paper (see [15]).

The problem has two different parameters: α, the size of the particles, and γ, the normalization factor of
the boundary condition on Sε. When they have critical values

α =
n

n − p
, γ = α(n − 1) − n = α(p − 1),

then ourmain result in this paper shows that the homogenized problem involves a different distributed chem-
ical kinetics nonlinearity:

{
−∆pu +A|H(u)|p−2H(u) = f(x) in Ω,
u = 0 on ∂Ω,

(1.3)

where
A = (

n − p
p − 1)

p−1
Cn−p0 ωn (1.4)
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and H : ℝ→ ℝ is given by
H(r) = (I + σ−1 ∘ Θn,p)−1(r), (1.5)

with
Θn,p(s) = B0|s|p−2s for s ∈ ℝ

and
B0 = (

n − p
C0(p − 1))

p−1
, (1.6)

where ωn is the surface area of the unit sphere inℝn. We show that, for anymaximal monotone graph σ, H is
a nondecreasing contraction, and thus the existence, uniqueness and continuous dependence of solutions
of the homogenized problem is consequence of well-known results on monotone operator theory.

The change of behavior from the nonlinearity of type σ in the nonhomogeneous problem to the nonlin-
earity H in the homogeneous problem is one of the characteristics of the nanotechnological effects (see, e.g.,
[33]) and does not appear if 1 ≤ α < n

n−p (see [5, 34]).
Before presenting the details of the notation used above, let us mention that our main aim is to provide a

common roof and extend (under different points of view) some previous results in the literature concerning
different structural assumptions (i.e., the functions σ and H) after the homogenization process.

The case of Robin boundary conditions ∂nu + β(ε)σ(u) = 0 on Sε was first studied by Marchenko and
Hruslov in a series of papers dealing mainly with the linear case σ(u) = λu, see [19–21, 27]. Some references
on different choices of smooth functions σ can be found in [6, 18, 22, 24, 25, 29, 37] and the references
therein. For further references, see [13, 16, 17, 23]. Some previous results by the authors [11], formulated
there for some not necessarily Lipschitz functions σ and p ∈ [2, n), will be here extended to the case a general
maximal monotone graph σ (which includes the case of Dirichlet boundary conditions) and p ∈ (1, n).

The special case of Dirichlet boundary condition uε = 0 on Sε, covered by (1.2), gives σ−1(s) = 0 for any
s ∈ ℝ, and so H(r) = r for any r ∈ ℝ. Therefore, the “strange term” arising in the homogenized equation be-
comes A|u|p−2u. This was shown for p = 2 in the pioneering paper by Cioranescu and Murat [4]. However,
even in this simple case, the treatment in [7] for the case p ̸= 2 is not as sharp as in our case. In [7], Dal Maso
and Skrypnik do not provide an explicit expression for this strange term. In fact, their characterization (see
[7, Lemma 5.1]) does not guaranty uniqueness of solutions of the homogenized problem.

The case of the boundary condition

uε ≥ 0, ∂nuε + ε−γσ0(uε) ≥ 0, uε(∂nuε + ε−γσ0(uε)) = 0 on Sε ,

whichwas studied for smooth σ0 in [22] by ad hoc techniques, is also covered by the common proof provided
in this paper, by taking

D(σ) = [0, +∞), σ(u) =
{
{
{

(−∞, 0] if u = 0,
σ0(u) if u > 0.

See also [12, 28].
The choice of the critical values of α and γ might appear arbitrary. Let us give some reasons why this

is a good choice. First, if N(ε) is the number of particles, then N(ε) ∼ ε−n. It is easy to see that |Sε| =
N(ε)|∂(aεG0)| ∼ εα(n−1)−n, where G0 is the unit ball centered at 0. Let us analyze the choice of γ. If we
consider the reaction term on the weak formulation, with σ(uε) a bounded sequence in L∞ and v a bounded
test function, then

1
|Sε|

∫
Sε

σ(uε)v dS ∼ ε−(α(n−1)−n) ∫
Sε

σ(uε)v dS

is a bounded sequence. Hence, if the sequence uε is bounded in L∞ and v is a bounded test function, then

ε−γ ∫
Sε

σ(uε)v dS

can only be expect to tend to either 0 or +∞ if γ ̸= α(n − 1) − n, and hence we will lose the reaction term on
the equation on the homogenized equation or we lose the equation altogether. If the macroscopic behavior
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4 | J. I. Díaz et al., Characterizing the strange term in critical size homogenization

is given by a reaction diffusion equation (with nontrivial reaction), then the choice scaling γ as ε → 0 can be
no other.

The appearance of the critical value of α has to do with a property of traces. It is known (see [30]) that

∫
aεS0

|u|p dS ≤ K(an−1ε ε−n ∫
Yε

|u|p dx + ap−1ε ∫
Yε

|∇u|p dx).

As it turns out, the critical scale is the one in which both terms in the right-hand side have the same order of
convergence. Notice that, in the critical case α = n

n−p , we have γ = α(p − 1).
Notice that for a Newtonian fluid inℝ3 (n = 3, p = 2), the critical size corresponds to α = 3. Obviously the

critical value of α is an increasing function of p. Therefore, for non-Newtonian dilatant fluids or a Newtonian
flow in turbulent regime (p > 2), our assumption means α > 3, the particles are tiny with respect to their
repetition, whereas for pseudoplastic fluids (p < 2), the critical particles satisfy α < 3, and hence are not so
tiny with respect to their repetition.

A relevant application of our results is the following. Let us consider the usual formulation in Chemical
Engineering (see [9, 35]) with a constant external supply

{{{
{{{
{

−∆wε = 0, x ∈ Ωε ,
∂νwε + ε−γg(wε) = 0, x ∈ Sε ,
wε = 1, x ∈ ∂Ω,

where g is a nondecreasing real function such that g(0) = 0. In order to adapt our results, we introduce the
change in variable u = 1 − w and σ(u) = g(1) − g(1 − u), and the problem becomes

{{{
{{{
{

−∆uε = 0, x ∈ Ωε ,
∂νuε + ε−γσ(uε) = ε−γg(1), x ∈ Sε ,
uε = 0, x ∈ ∂Ω.

Notice that the presence of wε = 1 on ∂Ω is translated to a source in Sε for uε. We will see later (Theorem 6.2)
that the new equation for H, when α = n

n−2 , is

n − 2
C0

H(s) = σ(s − H(s)) − g(1), (1.7)

that is,

H(u) = −(g−1(n − 2
C0

⋅ ) + Id)
−1
(1 − u),

so that an extension of wε converges weakly in H1(Ω) to wcrit, the solution of

{
−∆wcrit +Ah(wcrit) = 0 in Ω,
wcrit = 1 on ∂Ω,

and h is given by

h(w) = (g−1(n − 2
n

⋅ ) + Id)
−1
(w).

Notice that in the case of Neumann problems, σ(s) ≡ 0 for any s ∈ R, and although σ−1 is a well-known
maximal monotone graph, the more direct identification of the “strange term” H(u) is obtained trough the
implicit equation (1.7), since in this case we get that

H(s) = −
C0g(1)
n − 2 for any s ∈ ℝ.

In the noncritical cases, 1 < α < n
n−2 , we will show that an extension of wε converges weakly in H1(Ω) to

wnon-crit, the solution of

{
−∆wnon-crit + Âg(wnon-crit) = 0 in Ω,
wnon-crit = 1 on ∂Ω,
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with Â = Cn−10 |∂G0|. Finally, we will show in Theorem 6.3 that

wcrit ≥ wnon-crit,

so we have a pointwise “better” reaction in the critical case [10]. We point out that a different criterion to
establish the optimality of the reaction in terms of the so-called “chemical effectiveness” was considered by
the authors in [14].

The plan of the rest of the paper is the following: Section 2 will be devoted to the statement of the main
results, Section 3 contains the proof of the existence results for equation (1.1) and the characterization of H,
Section 4 is devoted to the proof of the main result, Theorem 2.4, and Section 5 contains the proof of the
auxiliary Theorem 2.9, which studies the limit of the diffusion. We conclude the paper with Section 6, where
we study the noncritical case and the pointwise comparison of its homogenized solution with the critical
case.

2 Statement of the main results
Let Ω be a bounded domain in ℝn, n ≥ 3, with a smooth boundary ∂Ω, and let Y = (−1

2 ,
1
2 )
n. Denote by

G0 = B1(0) the unit ball centered at the origin. This plays a crucial role in the proof. As far as we known, no
results are known in the critical cases if G0 is not a ball. For δ > 0 and ε > 0, we define sets δB = {x : δ−1x ∈ B}
and Ω̃ε = {x ∈ Ω : ρ(x, ∂Ω) > 2ε}. Let

aε = C0εα ,

where α > 1 and C0 is a given positive number. Define

Gε = ⋃
j∈Υε

(aεG0 + εj) = ⋃
j∈Υε

Gjε ,

where Υε = {j ∈ ℤn : (aεG0 + εj) ∩ Ω̃ε ̸= 0}, N(ε) = |Υε| ≅ ε−n, andℤn denotes the set of vectors z with integer
coordinates. Define Y jε = εY + εj, where j ∈ Υε and note that G

j
ε ⊂ Y

j
ε and center of the ball G

j
ε coincides with

the center of the cube Y jε. Our “microscopic domain” is defined as

Ωε = Ω \ Gε , Sε = ∂Gε , ∂Ωε = ∂Ω ∪ Sε .

We define the spaceW1,p
0 (Ωε , ∂Ω) as the completion, with respect to the norm ofW1,p(Ωε), of the set of

infinitely differentiable functions in Ωε equal to zero in a neighborhood of ∂Ω, that is,

W1,p
0 (Ωε , ∂Ω) = {u ∈ W1,p(Ωε) : u = 0 on ∂Ω}.

Concerning the solvability of problem (1.1), we start by introducing the notion of weak solution. Since
we assume that σ : ℝ→P(ℝ), where P(ℝ) denotes the set of subsets of ℝ, we recall, by well-known results
(see, e.g., [2]), that

σ is a maximal monotone graph ofℝ2, 0 ∈ σ(0), (2.1)

and that there exists a convex lower semicontinuous function Ψ : ℝ→ (−∞, +∞], with Ψ(0) = 0, such that
σ = ∂Ψ is its subdifferential. We also know that if we define

D(σ) = {r ∈ ℝ such that σ(r) ̸= 0},

where 0 denotes the empty set, and

D(Ψ) = {r ∈ ℝ such that Ψ(r) < +∞},

then D(σ) ⊂ D(Ψ) ⊂ D(Ψ) = D(σ).
In the rest of the paper we will always assume that f ∈ Lp� (Ω), where, as usual, p� = p

p−1 .
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Since uε is the minimizer of the following energy functional inW1,p(Ωε , ∂Ω) (see [1, 26]):

E(u) = ∫
Ωε

|∇u|p dx + ε−γ ∫
Sε

Ψ(u) dS − ∫
Ωε

fu dx,

we consider the following definition of weak solution.

Definition 2.1. Wewill say that uε ∈ W1,p(Ωε , ∂Ω) is a weak solution of problem (1.1) if uε(x) ∈ D(Ψ) for a.e.
x ∈ Sε, and for all v ∈ W1,p(Ωε , ∂Ω), we have

∫
Ωε

|∇uε|p−2∇uε ⋅ ∇(v − uε) dx + ε−γ ∫
Sε

(Ψ(v) − Ψ(uε)) dS ≥ ∫
Ωε

f(v − uε) dx. (2.2)

The existence and uniqueness of a weak solution to problem (2.2) is an easy consequence of well-known
results:

Proposition 2.2. There exists a unique uε ∈ W1,p(Ωε , ∂Ω) weak solution of (2.2). Besides, there exists K > 0
independent of ε such that

‖∇uε‖Lp(Ωε) + ε−γ‖Ψ(uε)‖L1(Sε) ≤ K. (2.3)

The homogenized problem will involve the function H : ℝ→ ℝ given by (1.5). Let us present some of the
properties satisfied by H.

Lemma 2.3. If σ satisfies (2.1), then the function H defined by (1.5) is a nondecreasing nonexpansion on ℝ
(i.e., a nondecreasing Lipschitz continuous function of Lipschitz constant L ≤ 1). Moreover, this function H is
the unique function H : ℝ→ ℝ satisfying the relation

B0|H(r)|p−2H(r) ∈ σ(r − H(r)) for any r ∈ ℝ. (2.4)

Concerning thehomogenizedproblem (1.3),wepoint out that sinceH is anondecreasingnonexpansiononℝ,
for the parametersA andB0 given by (1.4) and (1.6), and for f ∈ Lp

� (Ω), there exists a unique weak solution
u ∈ W1,p

0 (Ω) of problem (1.3). Moreover, |H(u)|p−2H(u) ∈ Lp� (Ω). For the proof it is enough to set V = W1,p
0 (Ω)

and define the operator A : V → V� by

⟨Av, w⟩ = ∫
Ω

|∇v|p−2∇v ⋅ ∇w dx + ∫
Ω

A|H(v)|p−2H(v)w dx for any w ∈ V. (2.5)

Notice that, since H is Lipschitz, H(v) ∈ Lp(Ω) for any v ∈ Lp(Ω). Then A is a hemicontinuous strictly mono-
tone coercive operator, and the existence and uniqueness of a weak solution u is standard (see, e.g., [26]).

Wewill make fundamental use of the following reformulation of a weak solution. Since the limit operator
A : V → V�, with V = W1,p

0 (Ω), given by (2.5), is hemicontinuous and monotone, we can use the Brezis–
Sibony characterization (see [3, Lemma 1.1] or [26, Chapter 2, Theorem 2.2]), that is, u ∈ W1,p

0 (Ω) is a weak
solution of (1.3) if and only if

∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u) dx + ∫
Ω

B0|H(v)|p−2H(v)(v − u) dx ≥ ∫
Ω

f(v − u) dx for any v ∈ W1,p
0 (Ω). (2.6)

The main result of this paper is the following convergence result.

Theorem 2.4. Let n ≥ 3, 1 < p < n, α = n
n−p and γ = α(p − 1). Let σ be any maximal monotone graph of ℝ2,

with 0 ∈ σ(0), and let f ∈ Lp� (Ω). Let uε ∈ W1,p
0 (Ωε , ∂Ω) be the (unique) weak solution of problem (1.1). Then

there exists an extension ũε of uε such that ũε ⇀ u in W1,p
0 (Ω) as ε → 0, where u ∈ W1,p

0 (Ω) is the (unique)
weak solution of problem (1.3) associated to the function H, defined by (1.5).

Remark 2.5. The case n = 2 can be studied by similar techniques, although some of the computations vary.
In particular, the critical value of α does not verify the same formula.

The other key result we will prove in this paper is Theorem 2.9 below, the statement of which requires some
preliminary lemmas. The extension ũε of solutions uε can be obtained by applying the methods of [30].
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Lemma 2.6. Let Ωε be the domain defined above and let 1 < p < n, n ≥ 3. Then there exists an extension oper-
ator Pε : W1,p(Ωε) → W1,p(Ω) such that

‖Pεu‖W1,p(Ω) ≤ C1‖u‖W1,p(Ωε),
‖∇(Pεu)‖Lp(Ω) ≤ C2‖∇u‖Lp(Ωε).

Moreover, by applying this extension theoremand themethods introduced in [30],we canprove the following
useful estimates.

Lemma 2.7. (i) Let u ∈ W1,p
0 (Ωε , ∂Ω), p > 1 and n ≥ 3. Then there exists positive constant C such that

‖u‖Lp(Ωε) ≤ C‖∇u‖Lp(Ωε).

(ii) Let u ∈ W1,p(Yε) be such that ∫Yε u = 0. Then

‖u‖Lp(Yε) ≤ K1ε‖∇u‖Lp(Yε),

where the constant K1 is independent of ε.

Thanks to the apriori estimate (2.3) and theproperties of the extensionoperator Pε :W1,p
0 (Ωε , ∂Ω)→W1,p(Ω),

we know that and there exists u ∈ W1,p
0 (Ω) such that

Pεuε ⇀ u inW1,p
0 (Ω).

The difficult task is to show that u ∈ W1,p
0 (Ω) is the weak solution of problem (1.3) such as it is ensured in

Theorem 2.4.
Motivated by this and (2.6), we will also use the fact that if uε ∈ W1,p

0 (Ωε , ∂Ω) is the weak solution of
problem (1.1), then

∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε) dx + ε−γ ∫
Sε

(Ψ(v) − Ψ(uε)) dS ≥ ∫
Ωε

f(v − uε) dx (2.7)

for any test function v ∈ W1,p(Ωε , ∂Ω).
The problematic term, in order to pass to the limit, is the boundary integrals over Sε. Here we will follow

a technique of proof introduced by the last author (Shaposhnikova) in collaborationwith different co-authors
(see, e.g., [28, 34, 37]), which can be applied in different frameworks.

Lemma 2.8. Let zε ∈ W1,p
0 (Ω) for some p > 1, and assume that zε ⇀ z0 inW

1,p
0 (Ω) as ε → 0. Then

!!!!!!!!!
22(n−1)ε ∑

j∈Υε
∫

∂T jε/4
zε dS − ωn ∫

Ω

z0 dx
!!!!!!!!!
→ 0 as ε → 0,

where ωn is the surface area of the unit sphere inℝn.

This lemma (which we remark is independent of α and γ, see the proof in [37]) is the key point of the ho-
mogenization technique in the critical case. It is based in the general idea that if Pjε is the center of the ball
Gjε = {x ∈ Y jε : |x − P

j
ε| < aε} and if T

j
ε denotes the ball of radius ε/4 centered at the point P

j
ε, then we can get

several explicit estimates on the solution wjε(x) for j = 1, . . . , N(ε) of the auxiliary cellular boundary value
problem

{{{{
{{{{
{

∆pw
j
ε = 0, x ∈ T jε \ G

j
ε ,

wjε = 1, x ∈ ∂Gjε ,

wjε = 0, x ∈ ∂T jε .

(2.8)

One of the many remarkable properties of this cellular problem is that its (unique) weak solution, wjε, is
radially symmetric (recall that G0 is a ball) and satisfies that ∂νpw

j
ε is constant on ∂T

j
ε and on ∂G

j
ε. Due to the

divergence theorem,

∫

Gjε

|∇wjε|p−2∇w
j
ε ⋅ ∇z dx = ∫

∂T jε

z∂νpw
j
ε dS + ∫

∂Gjε

z∂νpw
j
ε dS for any z ∈ W1,p(T jε \ G

j
ε).
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8 | J. I. Díaz et al., Characterizing the strange term in critical size homogenization

Furthermore, we can make explicitly several computations. Hence, we have an explicit way to compare the
reaction term on Sε with an auxiliary term on balls with radius Cε, and Lemma 2.8 becomes very useful.

Another key idea of our proof is to relate a general test function v ∈ W1,p
0 (Ω), used to check the limit

characterization (2.6), with some suitable correction vε, which is a better fitted test function in the micro-
scopic weak formulation (2.7). In fact, by density, it will be enough to do that with a smooth test function
v ∈ C∞

c (Ω). We will construct such adaptation among test functions in the form vε = v − hWε, where, for the
moment, h ∈ W1,∞(Ω) without any other property, and, which is crucial,Wε ∈ W1,∞

0 (Ω) defined as

Wε =

{{{{
{{{{
{

wjε , x ∈ T jε \ G
j
ε , j = 1, . . . , N(ε) = |Υε|,

1, x ∈ Gε ,
0, x ∈ ℝn \⋃N(ε)

j=1 T jε ,

(2.9)

with wjε the solution of the auxiliary cellular boundary value problem (2.8). The following technical result
will explain why the function H, arising in the limit problem (1.3), was taken in this concrete form (more
precisely, so that (2.4) holds), different from the boundary kinetics σ.

Theorem 2.9. Let uε ∈ W1,p
0 (Ωε , ∂Ω), 1 < p < n, be a sequence of uniformly bounded norm, and let v ∈ C∞

c (Ω),
h ∈ W1,∞(Ω) and vε = v − hWε . Then

lim
ε→0

( ∫
Ωε

|∇vε|p−2∇vε ⋅ ∇(vε − uε) dx) = lim
ε→0

(I1,ε + I2,ε + I3,ε),

where

I1,ε = ∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε) dx, (2.10)

I2,ε = −ε−γB0 ∫
Sε

|h|p−2h(v − h − uε) dS,

I3,ε = −Aεε ∑
j∈Υε

∫

∂T jε

|h|p−2h(v − uε) dS, (2.11)

with Aε being a bounded sequence, see (5.1). Besides, if ũε is an extension of uε and ũε ⇀ u inW1,p
0 (Ω), then,

for any v ∈ W1,p
0 (Ω),

lim
ε→0

∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − hWε − uε) dx = ∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u) dx.

The aforementioned corrector term in the form hWε, where h ∈ W1,∞(Ωε , ∂Ω) will be taken to satisfy the
condition h(x) = H(v(x)) for a.e. x ∈ Ω, with H given by (2.4). These conditions rise naturally so that the term
I2,ε above cancels out with the reaction term.

Remark 2.10. In general, it is expected that the convergence ũε → u can be improved to strong convergence
by adding a corrector term. In fact, if σ is smooth, it is known that uε − H(uε)Wε → u strongly in W1,p

0 (Ω)
(see, e.g., [37]). It is possible to adapt these arguments to the case of some maximal monotone graphs as, for
instance, the one given by the Signorini boundary condition (see [12]).

3 Existence of uε and characterization of the function H
Proof of Proposition 2.2. Consider the Banach space V = W1,p

0 (Ωε , ∂Ω). Let Aε : V → V� be the operator de-
fined by

⟨Aεv, w⟩ = ∫
Ωε

|∇v|p−2∇v ⋅ ∇w dx for any w ∈ W1,p
0 (Ωε , ∂Ω).
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Then A is a hemicontinuous strictlymonotone coercive operator [26]. Define φε : W1,p
0 (Ωε , ∂Ω) → (−∞, +∞]

by

φε(u) =
{
{
{

ε−γ ∫Sε Ψ(trSε (u)) dS if trSε (u(x)) ∈ D(Ψ) for a.e. x ∈ Sε ,
+∞ otherwise.

It is clear that φε is a convex lower semicontinuous function with φε ̸≡ +∞. Since f ∈ V�, we have that uε is
a weak solution of problem (1.1) if and only if

⟨Aε(uε) − f, v − uε⟩ + φε(v) − φε(uε) ≥ 0 for all v ∈ V.

Thus, the existence and uniqueness of a weak solution uε of problem (1.1) is consequence of [26, Chapter 2,
Theorem 8.5].

In order to prove the a priori bound (2.3), let v ∈ W1,p
0 (Ωε , ∂Ω). Then, we have

∫
Ωε

|∇uε|p dx + ε−γ ∫
Sε

Ψ(uε) dS ≤ ∫
Ωε

|∇uε|p−2∇uε ⋅ ∇v dx + ε−γ ∫
Sε

Ψ(v) dS − ∫
Ωε

f(v − uε) dx.

Given δ ∈ (0, 1), we apply Young’s inequality, ab ≤ δ|a|p� + Cδ|b|p, to get
∫
Ωε

|∇uε|p−2∇uε ⋅ ∇v dx ≤ δ ∫
Ωε

|∇uε|p dx + Cδ ∫
Ωε

|∇v|p dx.

Therefore, since Ψ ≥ 0, taking v = 0 and applying Hölder’s and Poincaré’s inequalities, we have

(1 − δ)‖∇uε‖
p
Lp(Ωε) + ε

−γ‖Ψ(uε)‖L1(Sε) ≤ ∫
Ωε

fuε dx ≤ C‖f‖Lp� (Ω)‖∇uε‖Lp(Ωε),
which leads to the result.

Proof of Lemma 2.3. Let Θn,p(s) = B0|s|p−2s for s ∈ ℝ. Since σ−1 is also a maximal monotone graph of
ℝ2, for any p > 1 and B0 > 0, the graph σ−1 ∘ Θn,p is also a maximal monotone graph of ℝ2. Indeed, let
D(σ−1) = [a, b] for some −∞ ≤ a < b ≤ +∞, and let (σ−1)0 be the principal section (i.e., the nondecreasing
function) of the graph σ−1. This means that

(σ−1)0(r) = inf σ−1(r), r ∈ [a, b].

Then, since Θn,p is strictly increasing, σ−1 ∘ Θn,p is a monotone graph,

D(σ−1 ∘ Θn,p) = [Θ−1n,p(a), Θ−1n,p(b)] and (σ−1 ∘ Θn,p)0 = (σ−1)0 ∘ Θn,p .

In particular, if σ−1 is multivalued in some point c ∈ (a, b), then σ−1 ∘ Θn,p(c) is the full interval

σ−1 ∘ Θn,p(c) = [(σ−1)0(Θn,p(c)−), (σ−1)0(Θn,p(c)+)],

and this implies that σ−1 ∘ Θn,p is a maximal monotone graph ofℝ2 (see [2, Example 2.8.1]).
Now, since σ−1 ∘ Θn,p is also a maximal monotone graph ofℝ2, we know that (I + σ−1 ∘ Θn,p) is an injec-

tive application such that R(I + σ−1 ∘ Θn,p) = ℝ (see [2]). Thus, if H is defined by (1.5), then H is a nonexpan-
sion onℝ (see [2, Proposition 2.2]). Hence,

(I + σ−1 ∘ Θn,p)(H(r)) = r

for any r ∈ ℝ and, in consequence,
H(r) + σ−1 ∘ Θn,p(H(r)) = r.

In other words,
σ−1 ∘ Θn,p(H(r)) = r − H(r).
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10 | J. I. Díaz et al., Characterizing the strange term in critical size homogenization

This implies that r − H(r) ∈ D(σ) for any r ∈ ℝ and that Θn,p(H(r)) ∈ σ(r − H(r)) for any r ∈ ℝ, which proves
that H(r) satisfies relation (2.4). Moreover, from the definition of H, it is obvious that H is nondecreasing (in
fact if σ is strictly increasing, then H is also a strictly increasing function).

On the other hand, such function H(r) is the unique function satisfying relation (2.4), since applying the
inverse graph

σ−1 ∘ Θn,p ∘ H ⊃ (I − H)

implies that (I + σ−1 ∘ Θn,p) ∘ H = I, and so, necessarily, H = (I + σ−1 ∘ Θn,p)−1. Of course, from the implicit
formula, H is strictly increasing.

4 Proof of Theorem 2.4
Since G0 is ball, it is easy to see that

wjε(x) =
|x − Pjε|−

n−p
p−1 − (ε/4)−

n−p
p−1

(C0εα)−
n−p
p−1 − (ε/4)−

n−p
p−1 , x ∈ T jε , \G

j
ε , (4.1)

is the unique solution of (2.8).

Lemma 4.1. IfWε is defined by (2.9), then the following estimate holds:

∫
Ωε

|∇Wε|q dx ≤ Kε
n(p−q)
n−p for any 1 ≤ q ≤ p. (4.2)

In particular,
Wε ⇀ 0 inW1,p

0 (Ω) as ε → 0.

Proof. Estimate (4.2) is an explicit computation. For q = p, we obtain from it that, up to a subsequence, there
exists W0 ∈ W1,p

0 (Ω) such that Wε ⇀ W0 in W1,p
0 (Ω). For q < p, we have that Wε → 0 in W1,q

0 (Ω), hence
W0 = 0.

Proof of Theorem 2.4. Let v ∈ C∞
c (Ω) and h = H(v), with H : ℝ→ℝ given by (1.5). Then h ∈ W1,∞(Ω). Let

vε = v − hWε ∈ W
1,p
0 (Ωε , ∂Ω), with Wε ∈ W1,∞

0 (Ω) defined by (2.9). Due to (2.7), we know that uε satisfies
the inequality

∫
Ωε

|∇vε|p−2∇vε ⋅ ∇(vε − uε) dx + ε−γ ∫
Sε

(Ψ(vε) − Ψ(uε)) dS ≥ ∫
Ωε

f(vε − uε) dx.

SinceWε → 0 in Lp(Ω) (due to the compact inclusion), by Theorem 2.9, we can deduce that

lim
ε→0

[I1,ε + I2,ε + I3,ε + ε−γ ∫
Sε

(Ψ(vε) − Ψ(uε)) dS] ≥ lim
ε→0

∫
Ωε

f(vε − uε) dx = ∫
Ω

f(v − u) dx.

Since H : ℝ→ ℝ satisfies (2.4), by applying that if ξ ∈ ∂Ψ(s0) = σ(s0), then Ψ(s) − Ψ(s0) ≥ ξ(s − s0), we can
write

I2,ε + ε−γ ∫
Sε

(Ψ(vε) − Ψ(uε)) dS = ε−γ ∫
Sε

[Ψ(v − H(v)) − Ψ(uε) −B0|H(v)|p−2H(v)(v − H(v) − uε)] dS ≤ 0,

since B0|H(v(x))|p−2H(v(x)) ∈ σ(v(x) − H(v(x))) for any x ∈ Ω. We can pass also to the limit in (2.10) and
(2.11) to get that

∫
Ω

|∇v|p−2∇v∇(v − u) dx + ∫
Ω

B0|H(v)|p−2H(v)(v − u) dx ≥ ∫
Ω

f(v − u) dx,

and since v ∈ C∞
c (Ω) is arbitrary, by density, this also holds for every v ∈ W1,p

0 (Ω). Hence, we get that u is the
unique weak solution of (1.3).
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5 Proof of Theorem 2.9
The proof of Theorem 2.9 for p = 2 can be found in [36], and for 2 < p < n in [34]. Here we will complete the
proof for 1 < p < 2. We need some auxiliary results.

Lemma 5.1 ([12]). Let 1 < p < 2. Then there exists positive constant C = C(p) such that the inequality
!!!!|a − b|p−2(a − b) − (|a|p−2a − |b|p−2b)!!!! ≤ C(|a||b|)

p−1
2

is valid for all a, b ∈ ℝn.

By using this result, we prove the following lemma.

Lemma 5.2. Let1 < p < 2, n ≥ 3, v ∈ W1,∞
0 (Ω)andφ ∈ W1,p

0 (Ω). Let ηε ∈ W1,p(Ω)be such that ‖∇ηε‖Lq(Ω) → 0
for some q ∈ [1, p) as ε → 0. Then

lim
ε→0

( ∫
Ωε

|∇(v − ηε)|p−2∇(v − ηε) ⋅ ∇φ dx) = lim
ε→0

( ∫
Ωε

|∇v|p−2∇v ⋅ ∇φ dx − ∫
Ωε

|∇ηε|p−2∇ηε ⋅ ∇φ dx).

Proof. By Lemma 5.1, by applying Hölder’s inequality, we have
!!!!!!!
∫
Ωε

|∇(v − ηε)|p−2∇(v − ηε) ⋅ ∇φ dx − (∇v|p−2∇v − |∇ηε|p−2∇ηε) ⋅ ∇φ dx
!!!!!!!

≤ C ∫
Ωε

|∇v|
p−1
2 |∇ηε|

p−1
2 |∇φ| dx

≤ K‖∇v‖
p−1
2

∞ ‖∇ηε‖
p−1
2

L
p+1
2 (Ωε)

‖∇φ‖
L
p+1
2 (Ωε)

,

since 1 < p+1
2 < p. This proves the result.

We have all the tools we need for the proof of Theorem 2.9.

Proof of Theorem 2.9. As said before, it is enough to consider the case p ∈ (1, 2). Applying Lemma 5.2, we
obtain

lim
ε→0

( ∫
Ωε

|∇vε|p−2∇vε ⋅ ∇(vε − uε) dx) = lim
ε→0

(J1,ε + J2,ε),

where

J1,ε = ∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − hWε − uε) dx,

J2,ε = ∫
Ωε

|∇(hWε)|p−2∇(hWε) ⋅ ∇(v − hWε − uε) dx.

Moreover,
lim
ε→0

J1,ε = lim
ε→0

(I1,ε + ∫
Ωε

|∇v|p−2∇v ⋅ ∇(hWε) dx) = lim
ε→0

I1,ε .

On the other hand,

lim
ε→0

J2,ε = lim
ε→0

( ∫
Ωε

|∇Wε|p−2∇Wε ⋅ ∇(v − hWε − uε) dx)

= lim
ε→0

( ∑
j∈Υε

∫

∂T jε

|∇wjε|p−2∂νw
j
ε|h|p−2h(v − uε) dS + ∑

j∈Υε
∫

∂Gjε

|∇wjε|p−2∂νw
j
ε|h|p−2h(v − h − uε) dS),

where ∂νg is the usual normal derivative of g. Using (4.1), we get

∂νw
j
ε
!!!!∂T jε =

d
dr
wjε

!!!!!!r=ε/4 = −
(n − p)2

2n−2
p−1 C n−p

p−1
0 ε

1
p−1

(p − 1)(1 − (C0εα)
n−p
p−1 ε− n−pp−1 2 2n−2p

p−1 )
,

∂νw
j
ε
!!!!∂Gjε = −

d
dr
wjε

!!!!!!r=aε
=

(n − p)ε
−n
n−p

(p − 1)C0(1 − (C0εα)
n−p
p−1 ε− n−pp−1 2 2n−2p

p−1 )
.
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12 | J. I. Díaz et al., Characterizing the strange term in critical size homogenization

Therefore,

lim
ε→0

J2,ε = lim
ε→0

(Aεε ∑
j∈Υε

∫

∂T jε

|h|p−2h(v − uε) ds − ε−γ ∫
Sε

((
n − p
p − 1)

p−1
C1−p0 |h|p−2h)(v − h − uε) ds − Qε),

where

Aε = (
n − p
p − 1)

p−1 22n−2Cn−p0

(1 − (C0εα)
n−p
p−1 ε− n−pp−1 2 2n−2p

p−1 )p−1
(5.1)

and

Qε =
1 − (1 − a

n−p
p−1
ε ε

p−n
p−1 2 2n−2p

p−1 )p−1

Cp−10 (1 − a
n−p
p−1
ε ε

p−n
p−1 2 2n−2p

p−1 )p−1
(
n − p
p − 1)

p−1
ε−γ ∫

Sε

|h|p−2h(v − h − uε) dS.

It is an easy (but tedious) task to check that
lim
ε→0

Qε = 0,

which concludes the proof.

6 Noncritical case and pointwise comparison of
homogenized solutions with the critical case

For A ⊂ ℝm, let C(A) denote the space of continuous functions on A.

Theorem 6.1. Let n ≥ 3, p ∈ [2, n), 1 < α < n
n−p , f ∈ L

∞(Ω) and r ∈ C(Ω̄). Let also σ ∈ C(ℝ) be nondecreasing
such that σ(0) = 0 and let uε be the solution of

{{{
{{{
{

−∆puε = f, x ∈ Ωε ,
∂νpuε + ε−γσ(uε) = ε−γr, x ∈ Sε ,
uε = 0, x ∈ ∂Ω.

(6.1)

Then ũε ⇀ unon-crit inW
1,p
0 (Ω), where unon-crit is the solution of

{
−∆pu + Âσ(u) = f + Âr in Ω,
u = 0 on ∂Ω,

(6.2)

with Â = Cn−10 |∂G0|.

Proof. Assume first that
0 < k1 ≤ σ� ≤ k2.

Then the result holds by [34, Theorem 3].
Applying the estimates in [29], we check that (Pεuε) is bounded inW1,p

0 (Ω), hence there exists a limit û
such that, up to a subsequence, Pεuε → û strongly in Lp(Ω) and weakly inW1,p

0 (Ω).
Let M be such that ‖uε‖L∞(Ωε) ≤ M (see [8]). Let σδ be a sequence such that 0 < k1,δ ≤ σ�δ ≤ k2,δ and

σδ → σ in C([−M,M]) as δ → 0. Let uε,δ be the solution of (6.1) with σδ. We can check, again from estimates
in [29], that

‖uε − uε,δ‖Lp(Ωε) ≤ C‖σ − σδ‖C([−M,M]).

Passing to the limit as ε → 0, indicating that Pεuε,δ ⇀ uδ in W1,p
0 (Ω), where uδ is the solution of (6.2) with

σδ, we have that
‖û − uδ‖Lp(Ω) ≤ C‖σ − σδ‖C([−M,M]).

It is easy to check that uδ → u in Lp(Ω), where u is the solution of the problem with σ. Therefore, Pεuε → u
in Lp(Ω) as ε → 0 and u = û.
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Theorem 6.2. Let n ≥ 3, p ∈ [2, n), α = n
n−p , f ∈ L

∞(Ω) and r ∈ C(Ω̄). Let also σ ∈ C(ℝ) be nondecreasing such
that σ(0) = 0 and let uε be the solution of (6.1). Then ũε ⇀ ucrit inW

1,p
0 (Ω), where ucrit is the solution of

{
−∆pu +A|H(x, u)|p−2H(x, u) = f in Ω,
u = 0 on ∂Ω,

and H is the solution of

B0|H(x, s)|p−2H(x, s) = σ(s − H(x, s)) − r(x) a.e. in Ω.

Sketch of proof. Wecan apply the same reasoning as before and the fact thatHδ → H, in the sense ofmaximal
monotone graphs, as σδ → σ in C([−M,M]).

Theorem 6.3. Assume the conditions of the two previous theorems, f = 0 and r(x) ≡ g(1) = 1. Then, we have
that ucrit ≤ unon-crit.

Proof. The condition on f and r guarantee that 0 ≤ u ≤ 1 in both cases. It is easy to check thatH is increasing,
and H(s) ≤ 0 for s ∈ [0, 1]. It is easy to establish the following inequality on the zero order terms:

B0|H(s)|p−2H(s) ≥ Â(σ(s) − g(1)).

Therefore, applying the comparison principle (see, e.g., [8]), we have the result.
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A Mathematical Proof in Nanocatalysis: Better
Homogenized Results in the Diffusion of a
Chemical Reactant Through Critically Small
Reactive Particles

Jesús Ildefonso Dı́az and David Gómez-Castro

Abstract We consider a reaction-diffusion where the reaction takes place on the
boundary of the reactive particles. In this sense the particles can be though as a cata-
lysts, that produce as change in the ambient concentration wε of a reactive element.
It is known that depending on the size of the particles with respect to their periodic
repetition there are different homogeneous behaviors. In particular, there is a case
in which the kind of nonlinear dynamics changes, and becomes more smooth. This
case can be linked with the strange behaviors that arise with the use of nanoparti-
cles. In this paper we show that that concentrations of a catalyst are always higher
when nanoparticles are applied.

1 Introduction

We consider a reaction-diffusion problem in which the reaction takes place on the
boundary of the inclusions. In this sense the inclusions can be though as a catalysts,
that produce as change in the ambient concentration wε of a reactive element. This
is standardly modeled as





−∆wε = 0 Ωε ,

∂ν wε + ε−γ g(wε) = 0 Sε ,

wε = 1 ∂Ω ,

(1)
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where g is a nondecreasing function such that g(0) = 0, Ωε is a perforated domain,
∂Ωε = Sε ∪∂Ω , R. Aris defined (see, e.g., [1]) the effectiveness of a reactor Ω as

ηε =
1
|Sε |

∫

Sε
g(wε). (2)

In the case where the particles are large (in a sense that would be precised later), the
the problem can be though homogenous, as Ωε → Ω then wε → w (in a sense that
would be precised lated), where the effective problem results

{
−∆w+Ag(w) = 0 Ω ,

w = 1 ∂Ω ,
(3)

for a certain constant A. In this setting Aris defined the effectiveness for the effective
problem as

η =
1
|Ω |

∫

Ω
g(w)dx. (4)

This kind of problems, when g is not Lipschitz, has been shown to develop, in some
cases, a region of positive measure {x ∈Ω : u(x) = 0}. This region, which is some-
times known as a dead core, has been studied in [2, 5].

Nonetheless, when the holes are of a sufficiently small size with respect to their
repetition, the behaviour of the limit changes and becomes

{
−∆w+Bh(w) = 0 Ω ,

w = 1 ∂Ω ,
(5)

and h is a new nonlinearity, which we will introduce later, and B> 0 is a constant.

This change in behaviour, which is related to the pioneering paper [3], will be
linked to new surprising properties that arise with the use of nanoparticles (see [11]).
In this setting, the good definition for the effectiveness of the limit problem is un-
clear.

The aim of this paper is to show that homogenized problem is more effective in
the case associated with nanoparticles than the other cases. It represents a mathe-
matical proof of some experimental facts in the literature.

2 Statement of results

Let Ω be a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂Ω and let
Y = (−1/2,1/2)n. Denote by G0 = B1(0) the unit ball centered at the origin. For
δ > 0 and ε > 0 we define δB = {x |δ−1x ∈ B} and Ω̃ε = {x ∈Ω |ρ(x,∂Ω)> 2ε}.
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Let
aε =C0εα , (6)

where α > 1 and C0 is a given positive number. Define

Gε =
⋃

j∈ϒε

(aε G0 + ε j) =
⋃

j∈ϒε

G j
ε ,

where ϒε = { j ∈ Zn : (aε G0 + ε j)∩ Ω̃ ε 6= /0}, |ϒε | ∼= dε−n, d = const > 0, Zn is
the set of vectors z with integer coordinates. The reference cell is represented by
Figure 1.

T

Y =
[
−1

2 ,
1
2

]N

εαT

εY

Fig. 1 The reference cell Y and the scalings by ε and εα , for α > 1. Notice that, for α > 1, εα T
(for a general particle shaped as T ) becomes smaller relative to εY , which scales as the repetition.
In our case T will be a ball B1(0).

Define Y j
ε = εY + ε j, where j ∈ϒε and note that G j

ε ⊂ Y j
ε and center of the ball

G j
ε coincides with the center of the cube Y j

ε . Our “microscopic domain” is defined
as

Ωε = Ω \Gε , Sε = ∂Gε , ∂Ωε = ∂Ω ∪Sε ,

which can be represented as in Figure 2.
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Fig. 2 The fixed bed reactor, i.e., the domain Ωε .

We define the space W 1,p(Ωε ,∂Ω) be the completion, with respect to the norm
of W 1,p(Ωε), of the set of infinitely differentable functions in Ω ε equal to zero in a
neighborhood of ∂Ω .

We are interest in understating the comparison of the limits of (1) when α ∈
(1, n

n−2 ) and α = n
n−2 , which are known as the subcritical and critical cases in ho-

mogenization. The case α = 1 was studied in [4]. In order to do this, we consider
the change in variable u = 1−w, σ(u) = g(1)−g(1−u) we have





−∆uε = 0 Ωε ,

∂ν uε + ε−γ σ(uε) = ε−γ g(1) Sε ,

uε = 0 ∂Ω .

(7)

Studying the family of solution (uε)ε>0 is difficult, since they are not defined in the
same domain. We consider a family of linear extension operators (see [10])

Pε : {u ∈ H1(Ωε) : u = 0,∂Ω}→ H1
0 (Ω) (8)

such that
‖∇Pε u‖L2(Ω) ≤ ‖∇u‖L2(Ωε ). (9)

We define the different possible limits:

• If α ∈
(
1, n

n−2

)
the u = unon-crit, which for A =Cn−1

0 ωn satisfies

{
−∆unon-crit +Aσ(unon-crit) = Ag(1) Ω ,

unon-crit = 0 ∂Ω .
(10)

• If α = n
n−2 then ucrit, which for B = (n−2)Cn−2

0 ωn =
n−2
C0

A satisfies
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{
−∆ucrit +BH(ucrit) = 0 Ω ,

ucrit = 0 ∂Ω ,
(11)

where H is the solution of the functional equality

n−2
C0

H(s) = σ(s−H(s))−g(1). (12)

We will start by indicating that, in the sense of maximal monotone graphs, in the
particular case of σ(u) = g(1)−g(1−u) one has

Lemma 1. Let σ be a maximal monotone graph, then the solution H of (12) is given
by

H(u) =−
(

g−1
(

n−2
C0
·
)
+ Id

)−1

(1−u). (13)

Hence H(u)≤ 0 for every u ∈ [0,1].

Remark 1. Notice that, in particular, in equation (5) we have

h(w) =
(

g−1
(

n−2
C0
·
)
+ Id

)−1

(w) (14)

which is a nondecreasing function such that h(0) = 0.

Lemma 2. Let σ be a bounded maximal monotone graph of [0,1]×R, then H is
non-expansive in [0,1] (and hence Lipschitz continuous).

Proof. If σ ∈ C 1([0,1]), differentiating (12) with respect to s we derive

H ′(s) =
σ ′(s−H(s))

n−2
C0

+σ ′(s−H(s))
∈ (0,1). (15)

Hence,
|H(t)−H(s)| ≤ |t− s| (16)

for all t,s ∈ [0,1]. If σ is a maximal monotone graph, let σδ ∈ C 1([0,1]) be an
approximation in the sense of maximal monotone graphs σδ → σ . In particular,
Hδ → H pointwise, and hence

|H(t)−H(s)| ≤ |t− s| (17)

which concludes the proof. ut

We have the following homogenization result.

Theorem 1 ([12]). Let α > 1, γ = α(n−1)−n and σ ∈C 1(R) be such that σ(0) =
0 and

0< k1 ≤ σ ′(s)≤ k2 (18)



6 Jesús Ildefonso Dı́az and David Gómez-Castro

and let uε be the weak solution of (7). Then, the extension Pε uε converge as ε → 0

Pε uε →
{

unon-crit if α ∈
(
1, n

n−2

)
,

ucrit if α = n
n−2 ,

(19)

strongly in W 1,p
0 (Ω) for 1≤ p< 2 and weakly in H1

0 (Ω).

Since, in our case 0≤ uε ≤ 1 then we can have a simple corollary:

Corollary 1. Let σ ∈ C ([0,1]), nondecreasing and such that σ(0) = 0, then (19)
weakly in H1

0 (Ω).

Proof. Applying the estimates in [9] we check that (Pε uε) is bounded in H1
0 (Ω),

hence there exists a limit û such that, up to a subsequence, Pε uε → û strongly in L2.
Let σδ be such that it satisfies Theorem (1) and σδ → σ in C ([0,1]) as δ → 0.

Let uε,δ the solution of (7) with σδ . We can check, again with estimates in [9] that

‖uε −uε,δ‖L2(Ω ε ) ≤C‖σ −σδ‖C ([0,1]). (20)

Passing to the limit as ε → 0

‖û−uδ‖L2(Ω) ≤C‖σ −σδ‖C ([0,1]). (21)

On the other hand, applying the theory of maximal monotones graphs, it is easy to
check that Hδ the solution of (12) with σδ satisfies Hδ →H in the sense of maximal
monotone graphs. In both cases, then, it is easy to check that uδ → u in L2 where u
is the solution of the problem with H or σ . Therefore uε → u as ε → 0. ut
It is known already (see [8]) that, for the non critical cases the effectiveness behaves
as expected

ηε → η , as ε → 0. (22)

However, the noncritical case the dynamics changes. Therefore it is not clear
whether it is natural to define the effectiveness in the usual way. Nonetheless, we
can give a pointwise inequality. Let ucrit and unon-crit be the solutions of (11) and
(10)

Theorem 2. Let σ ∈ C ([0,1]) be such that σ(0) = 0. Then

ucrit ≤ unon-crit. (23)

Proof. Since H(s)≤ 0 we have that

BH(s) = (n−2)Cn−2
0 ωnH(s) =Cn−1

0 ωn
n−2
C0

H(u) (24)

=Cn−1
0 ωn (σ(s−H(s))−g(1)) = A(σ(s−H(s))−g(1)) (25)

≥ A(σ(s)−g(1)) . (26)

Therefore, applying the comparison principle, ucrit ≤ unon-crit. ut
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Remark 2. Therefore, if g ∈ C ([0,1]), the concentration w in the critical case is
always larger than in the non critical cases

wcrit ≥ wnon-crit. (27)

We have a pointwise better reaction.

Remark 3. This kind of result has been proved in many different cases. In particu-
lar, for non smooth σ in the form of a root or a Heaviside function and nonlinear
diffusion in the form of a p-Laplacian see [6]. The case of Signorini type boundary
conditions can be found in [7].
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On the Effectiveness of Wastewater Cylindrical Reactors: an Analysis Through Steiner

Symmetrization

J. I. DÍAZ
1 and D. GÓMEZ-CASTRO

1

Abstract—The mathematical analysis of the shape of chemical

reactors is studied in this paper through the research of the opti-

mization of its effectiveness g such as introduced by R. Aris around

1960. Although our main motivation is the consideration of reac-

tors specially designed for the treatment of wastewaters our results

are relevant also in more general frameworks. We simplify the

modeling by assuming a single chemical reaction with a monotone

kinetics leading to a parabolic equation with a non-necessarily

differentiable function. In fact we consider here the case of a single,

non-reversible catalysis reaction of chemical order q; 0\q\1 (i.e.,

the kinetics is given by bðwÞ ¼ kwq for some k[ 0). We assume

the chemical reactor of cylindrical shape X ¼ G � ð0;HÞ with G

and open regular set of R
2 not necessarily symmetric. We show

that among all the sections G with prescribed area the ball is the set

of lowest effectiveness gðt;GÞ. The proof uses the notions of

Steiner rearrangement. Finally, we show that if the height H is

small enough then the effectiveness can be made as close to 1 as

desired.

Key words: Wastewater treatment, chemical reactor tanks,

effectiveness, Steiner symmetrization.

1. Introduction

One of the most important problems on environ-

ment in Geosciences is the treatment of wastewater

flows. Most industrial wastewater treatments are

carried out in a series of cylindrical-type tanks. In

some of them a diffusion-reaction process takes place

specially in the trickling filter phase in which

wastewater flows downward through a bed of rocks,

gravel, slag, peat moss, or plastic media reacting on a

layer (or film) of microbial slime covering the bed

media. The process (see , e.g., RODRIGUEZ et al. 2012;

VICENTE et al. 2011; ROSAS et al. 2014 and its refer-

ences) involves adsorption of organic compounds in

the wastewater by the microbial slime layer, diffusion

of air into the slime layer to provide the oxygen

required for the biochemical oxidation of the organic

compounds. In this paper, we shall assume that an

ideal homogenization process was applied (by pass-

ing to the limit e ! 0 on the porosity of the solid bed)

so that the chemical reaction can be assumed as

distributed over all the reactor cylinder (see, e.g.,

CONCA et al. 2003, 2004 and their references). Sim-

plifying the modeling process we arrive to the

consideration of a single, non-reversible catalysis

reaction of q-order on a chemical reactor X of

cylindrical shape

X ¼ G � ð0;HÞ;

with G an open regular set of R2 (or more in general

R
N) not necessarily symmetric. We point out that, in

spite of the abovementioned motivation, our mathe-

matical results can be applied to a larger framework

(for instance the own structure of the set X can be

taken much more in general (see Sect. 3). It is useful

to separate the boundary of X in its lateral parts ol X
and its horizontal parts ohX, so that olX ¼ oG

�ð0;HÞ and ohX consists in the union of the top and

bottom boundaries: ohX ¼ ðohXÞH [ ðohXÞ0 with

ðohXÞH ¼ X� fHg and ðohXÞ0 ¼ G � f0g. We shall

use also the notation x ¼ ðx; yÞ with x ¼ ðx1; x2Þ 2 G

and y 2 ð0;HÞ: A similar notation can be introduced

if R2 is replaced by R
N and (0, H) by a set in R

m.

In order to fix ideas we shall consider here the

following parabolic model
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ow
ot
� Dw þ kbðwÞ ¼ 0 in ð0;þ1Þ � X;

w ¼ 1 on ð0;þ1Þ � olX;
ow
on

¼ lð1 � wÞ on ð0;þ1Þ � ohX;
wð0; xÞ ¼ w0ðxÞ in X;

8
>><

>>:

ð1Þ

where

bðwÞ ¼ wq; 0\q� 1

(q is called reaction order), k[ 0,

w0 2 L1ðXÞ; 0�w0 � 1; ð2Þ

n denotes the unit normal exterior vector to ohX and

the Robin coefficient l is taken in a generalized way as

l 2 ½0;þ1�: In fact, we assume that the value of l can

be different for the top or the bottom surfaces , i.e.,

l ¼ lH on ðohXÞH ¼ G � fHg;
l0 on ðohXÞ0 ¼ G � f0g:

(

So, very often lH ¼ 0 (which corresponds to the case

of an open tank) and/or l0 ¼ þ1 (which must be

understood as a Dirichlet type boundary condition

w ¼ 1 on ð0;þ1Þ � ðohXÞ0 and that corresponds to

a tank alimented also from the bottom).

The limit case, the case of 0-order reactions,

q ¼ 0, can also be considered (see Remark 5) with

the help of some special multivalued maximal

monotone graph of R
2. We also mention that some

larger generality can be considered also concerning

the differential operator (see Remark 5).

As mentioned before, as proved in CONCA

et al. (2004), this is the limit as e ! 0 of the fol-

lowing models

�Dwe ¼ f inXe;
owe
om þ lðeÞbðweÞ ¼ 0 on Se;

we ¼ 1 on oX;

8
><

>:
ð3Þ

where Xe is a domain with fixed obstacles (which due

to the chemical implications we will call pellets),

where e[ 0 has to do with the size of each obstacle

and Se represents the boundary of the pellets and oX
the boundary of the reactor. This kind of problem is

an intuitive model of fixed bed reactors. In this sense

problem (1) can be seen as a homogenized problem

for fixed bed reactors. This can model a large num-

ber of process in Geosciences.

Due to one of those ‘‘gifts’’ of interdisciplinarity,

problem (1) also models the heat energy stored by the

Earth. The so-called Sellers model considers the averaged

surface atmospheric climate proposing the equation:

ow

ot
� Dw þ bðuÞ ¼ QHðuÞ:

In the above model, the functions H and b are

assumed Lipschitz continuous. There is a different

model proposed by Budyko in which the function

H is assumed to be discontinuous but we shall not pay

attention here to this case (see DÍAZ 1996). The

techniques presented in this paper (mainly the

application of the Trotter–Kato formula and its con-

sequences) are extensible to the Sellers model, since

the operator is omega-accretive (see BENILAN et al.,

unfinished manuscript).

We shall also consider, as by-product of our

results concerning the parabolic problem, the asso-

ciated stationary problem (formally obtained when

making t ! þ1)

�Dw þ kbðwÞ ¼ 0 in X;

w ¼ 1 on olX;
ow
on

¼ lð1 � wÞ on ohX:

8
><

>:
ð4Þ

The main optimality element in the study of the shape

of such chemical reactors is given in terms of a notion

introduced in 1957 by R. Aris (see references in

STRIEDER and ARIS 1973): the so called effectiveness

factor which is defined as

gðt : G;HÞ :¼ 1

HjGj

Z

X
bðwðt; xÞÞdx:

In a pioneering work, R. Aris presented, in his book

(STRIEDER and ARIS 1973), in collaboration with W.

Strieder, the study of a linear model (q ¼ 1) for a finite

number of catalyst particles, which they always con-

sider spherical. Here we will consider cylinders of

arbitrary basis and reactions of order less or equal than

one, which are much more frequent in practice, but

which result in non-linear models requiring delicate

mathematical tools. We recall that when 0\q\1 the

solutions may give rise to a dead core, an interior

region where no reaction is taking place. This dead

core, which can be defined, for a given t� 0, as

NwðtÞ ¼ fx 2 X : wðt; xÞ ¼ 0g:

J. I. Dı́az et al. Pure Appl. Geophys.



We shall not give here estimates on the size and

location of the dead core regions (see Sect. 4,

Remark 4). Obviously, the presence of dead cores

affects negatively the global effectiveness, and is to

be avoided in the shape optimization process. Intu-

itively, it represents volume where no catalyst is

present, and thus no reaction is taking place.

Although more realistic models may incorporate

more complex and sophisticated aspects that the ones

here presented, our main goal is to give a conceptual

justification of why these reactors are wide and low.

In fact, we shall prove here that among all the sec-

tions G, with prescribed area, the ball is the set of

lowest effectiveness gðt : G;HÞ (Theorem 2.1). Our

proof uses the notions of Steiner rearrangement. In

contrast to that, we shall also show that if the height

of the tank H is small enough then the effectiveness

can be made as close to 1 as desired (Theorem 2.2).

The organization of this paper is the following:

the above main results are stated in Sect. 2 where

some numerical experiences are commented. Sec-

tion 3 is devoted to the proof of Theorem 2.1. The

notion of Steiner rearrangement of a function is

introduced and several properties showing the com-

parison in mass of the Steiner rearrangement of the

solution of problem (1) and the solution of the

‘‘symmetrized problem’’ are given. In particular, we

show how the so-called Trotter–Kato formula can be

applied even under non-autonomous formulation.

Finally, Sect. 4 contains the proof of Theorem 2.2 as

well as a series of remarks on more general frame-

works in which our main results remain valid.

2. Main Results and Some Numerical Experiences

Thanks to the maximum principle, it is clear that the

solution w of (1) must satisfy that 0�wðt; xÞ� 1 for

a.e. x 2 X and for any t � 0. Then, in which follows, it

will be useful to introduce the change of unknown

u ¼ 1 � w for which the problem may be rewritten as

ou
ot
� Du þ kgðuÞ ¼ kbð1Þ in ð0;þ1Þ � X;

u ¼ 0 on ð0;þ1Þ � olX;

� ou
on
¼ lu on ð0;þ1Þ � ohX;

uð0; xÞ ¼ u0ðxÞ on X;

8
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>>>:

ð5Þ

where

gðuÞ ¼ bð1Þ � bð1 � uÞ: ð6Þ

Thus, we can assume that g is a continuous increasing

function with gð0Þ ¼ 0. We recall that the existence

and uniqueness of a weak solution u 2 Cð½0;þ1Þ :
L1ðXÞÞ \ L1ðð0;þ1Þ � XÞ is today a well-known

result. Moreover, it is also known that when t ! þ1
then uðt; �Þ ! u1ð�Þ in L2ðXÞ (see e.g., DÍAZ 1994

and its references).

We shall start by giving a rigorous proof of the

well-known principle (from an experimental point of

view) that among all cylindrical reactors with pre-

scribed volume the one with a circular section is the

least effective:

Theorem 2.1 For fixed basis volume Gj jeffective-

ness is least on an circle. That is, let A[ 0 and let B

the ball centered at the origin and let G be any

other n-dimensional open regular set such that

jGj ¼ jBj ¼ A. Then

gðt : B;HÞ� gðt : G;HÞ:

Moreover, the same inequality holds for the associ-

ated stationary problems.

Remark 1 In contrast to the case in which the

effectiveness is compared with the one on a ball of R3

having the same volume than X; the proof of the

above theorem for the stationary case seems quite

complicated without proving first the analogous result

for the associated parabolic problem. That was one of

our motivations not to simplify our formulation to the

easier case of the stationary problem.

In order to illustrate the conclusion of Theorem 2.1

we produced a numerical experience concerning a

particular (one-parametric) family of elliptic cylinders

Ga � ð0;HÞ. The elliptic cylinders are assumed with a

prescribed volume V. So, given the lower semiaxis a,

the greater semiaxis ba is given by the identity

paba ¼ V
H

. In other words, the ellipse family is defined

by the parameter a through the expression

Ga ¼ ðx1; x2Þ 2 R
2 :

x1

a

� �2

þ x2

ba

� �2

¼ 1

( )

;

ba ¼ V

Hpa
:

ð7Þ

The image below shows a minimum of the effec-

tiveness over this one-parametric family of elliptic

On the Effectiveness of Wastewater Cylindrical...



cylinders Xa ¼ Ea � ð0; 1Þ, in which if we choose

V ¼ pH and so the value a ¼ 1 corresponds to the

case of a circular section (Fig. 1).

Our second main result deals with the pure

Dirichlet problem (l ¼ þ1) and gives a detailed

statement of the well-known principle (from an

experimental point of view) that among all cylindri-

cal reactors with the prescribed volume low reactors

are very effective. We introduce the auxiliary func-

tion w 2 C2ðXÞ given as the unique solution of

�Dw ¼ 1 in X;

w ¼ 0 on oX:

�

ð8Þ

Theorem 2.2 Assume l ¼ þ1: Let V ¼ jXj ¼
jGjH ¼ AH [ 0 be a fixed volume and let BH be the

ball of RN centered at the origin such that jBH j ¼ A:

Assume also

1 � w0ðxÞ� kwðxÞ a:e: x 2 X:

Then

gðt : G;HÞ!1 as H ! 0: ð9Þ

More precisely, for any t [ 0 and a.e x 2 X

1� bðwðt; xÞÞ� 1

� Vð4 þ 2ðN þ 1ÞÞð2N þ 1Þ�
Nþ1

2

p2xNþ1

H2

 !2=ðNþ3Þ

:

ð10Þ

The above estimate holds also for the solution of the

associated stationary problem (4).

In order to illustrate quantitatively conclusion 2

we produced a numerical experience concerning the

family of symmetric cylinder reactors Br � ð0;HÞ:
Motivated by the special case considered in

ARIS (1975) (see its Figure 4.5.1) when computing

curves for this phenomenon for the linear case q ¼ 1,

we have taken H ¼ c�2 16
3

� �1
3 and r ¼ c 2

3

� �1
3 with c a

variable parameter. In the next figure we can see how

H ! 0 implies g ! 1 (Fig. 2). We can also see how,

in this case, g ! 1 as q ! 0 (this is because, for this

volume, no dead core exists even in the worst case

scenario).

Remark 2 The numerical experiences were pro-

duced by using a semi-implicit iterative algorithm

[see SPIGLER and VIANELLO 1995 for a proof of the

convergence in an abstract framework which includes,

as a special case, problem (1] under the conditions

assumed in this paper). The chosen scheme applies

finite differences in time and finite elements in space.

The time discretization for time step h is

unþ1 � hDunþ1 ¼ un � hgðunÞ:

The scheme is chosen implicit in time on the diffu-

sion so that the operator in unþ1 is coercive, and thus

the sequence is uniquely determined in H1
0ðXÞ.

However, the method is explicit in the non-linearity,

Figure 1
Effectiveness factor for a family of ellipses with the same area. a Time evolution of the effectiveness for two cylinders, one circular a = 1 and

one elliptical a = 0.5 both of the same volume, with initial condition w0 = 1 on X. b Effectiveness for the elliptic problem for different values

of Ga and q

J. I. Dı́az et al. Pure Appl. Geophys.



which makes the problem linear in unþ1, thus

allowing for faster simulations. The implementation

of the finite element method was performed through

the automated library FEniCS, which meshes simple

domains in two and three dimensions, constructs the

continuous Galerkin finite elements necessary and

solves the linear systems.

3. The Circular Section is the Least Effective: Steiner

Symmetrization. Proof of Theorem 2.1

The proof of Theorem 2.1 will use some

inequalities on Steiner symmetrization obtained in

ALVINO et al. (1996). As a matter of fact, we shall

improve also a previous result by the authors (DÍAZ

and GÓMEZ-CASTRO 2014a) corresponding, essen-

tially, to the case q� 1: It turns out that our result

remains true under a more general setting by

replacing the vertical space R by R
m: We start by

recalling that given a general measurable function

h : RN � R
m ! R, with N;m� 1, for a fixed y 2 R

m

we can define the Steiner distribution function lh :

R� R
m ! R by means of

lhðt; yÞ ¼ jfx 2 R
N : jhðx; yÞj[ tgj:

The Hardy–Littlewood–Polya decreasing rearrange-

ment h� : ½0;þ1Þ � R
m ! R is given as

h�ðs; yÞ ¼ supft[ 0 : lhðt; yÞ[ sg
¼ infft[ 0 : lhðt; yÞ� sg:

It is well known that if x represents a generic mea-

surable subset of RN � R
m then

Z s

0

h�ðr; yÞ dr ¼ sup
jxj¼s

Z

x
hðx; yÞ dx: ð11Þ

Finally, for y 2 R
m prescribed, we define the Steiner

symmetrization of h with respect to x as

h#ðx; yÞ ¼ h�ðxN jxjN ; yÞ;

where xN is the measure of the N-dimensional ball.

The basic idea underlying Steiner symmetrization is

to consider the integral of the function over slices.

Given s[ 0 and y 2 R
m we take very particular sli-

ces of the form

GðyÞ ¼ fx 2 R
N : uðx; yÞ[ u�ðs; yÞg;

where jGðyÞj ¼ s (by construction of u�). Variable

s should formally be included in the definition but

this will not lead to confusion.

Explicit calculations can be performed in simple

cases. The following figure provides and example of

the exact distribution function and Steiner rear-

rangement for the function

uðx; yÞ ¼
0; jðx; yÞj[ 1;

2ð1 � x2 � y2Þ; 1
2
� jðx; yÞj � 1;

1; jðx; yÞj[ 1:

8
><

>:

In this section we shall use a more general

framework. We introduce the following notations

(Fig. 3):

X ¼ X0 � X00

and ðx; yÞ 2 X0 � X00 for an arbitrary point (note that

in our initial framework X0 ¼ G and X00 ¼ ð0;HÞ).
We shall denote by B a ball such that jBj ¼ jX0j and

then we introduce

X# ¼ B � X00:

Remark 3 In the case where we rearrange with

respect to all variable, i.e., no y is presented (and, in

an abuse of notation m ¼ 0) the symmetrization is

know as Schwarz symmetrization. Since it will be

Figure 2
Effectiveness for the elliptic problem on cylinder with varying

aspect ratio. Simulation
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useful to use both symmetrizations, for Schwarz

rearrangement we will use the notation ~u. We also

introduce the truncation at level y 2 X00 as

uyðxÞ ¼ uðx; yÞ; ðx; yÞ 2 X0 � X00:

Is clear from the definition that,

euyðsÞ ¼ u�ðs; yÞ:

For the case where time is introduced, even though

the application is written u(t, x, y) we will never

rearrange with respect to t.

The image below (Fig. 4) shows an artistic

comparison between Steiner and Schwarz sym-

metrizations for the function

uðx; y; zÞ ¼ e�10x2�5y2�10z2ð1 � xÞxð1 � yÞyð1 � zÞz;
ðx; y; zÞ 2 ½0; 1�3:

This function has a single maximum point, and we

show cross cuts of symmetrizations.

Our main result leading to the conclusion of

Theorem 2.1 is the following:

Theorem 3.1 Let b be a concave continuous non-

decreasing function such that bð0Þ ¼ 0. Give

T [ 0arbitrary and let f 2 L2ð0; T : L2ðXÞÞwith f � 0

in (0, T) and let w0 2 L2ðXÞ be such that 0�w0 � 1.

Let d[ 0 be fixed and w 2 Cð½0; T � : L2ðXÞÞ\
L2ðd;T : H1

0ðXÞÞand z 2 Cð½0; T� : L2ðX#ÞÞ \ L2ðd;
T : H1

0ðX#ÞÞ be the unique solutions of

ðPÞ

ow
ot
� Dw þ kbðwÞ ¼ f ðtÞ in X� ð0; TÞ;

w ¼ 1 on oX� ð0; TÞ;
wð0Þ ¼ w0 on X;

8
><

>:

ðP#Þ

oz
ot
� Dz þ kbðzÞ ¼ f#ðtÞ; in X# � ð0; TÞ;

z ¼ 1; on oX# � ð0; TÞ;
zð0Þ ¼ z0; on X#;

8
><

>:

where z0 2 L2ðX#Þ, 0� z0 � 1 is such that

Z jX0 j

s

z�0ðr; yÞdr�
Z jX0 j

s

w�
0ðr; yÞdr;

8s 2 ½0; jX0j� and a.e. y 2 X00:

Then, for any t 2 ½0; T �, s 2 ½0; jX0j� and a.e. y 2 X00

Z jX0 j

s

z�ðt; r; yÞdr�
Z jX0 j

s

w�ðt; r; yÞdr: ð12Þ

In terms of the comparison of the effectiveness we

have the following consequence (which will be proved

in Sect. 3) leading to the proof of Theorem 2.1:

Corollary 3.2 In the assumptions of Theorem 3.1,

for any t 2 ½0;þ1Þ we have
Z

X#
bðzðt; xÞÞdx�

Z

X
bðwðt; xÞÞdx: ð13Þ

The interest on the above two results is that the

conclusions remains true for the associated stationary

problems.

Figure 3
Computation of Steiner symmetrization. a Function u. b Distribution function l. c Steiner rearrangement u�

J. I. Dı́az et al. Pure Appl. Geophys.



Corollary 3.3 The mass and effectiveness com-

parison given by (12) and (13), respectively, remain

valid for the solutions of the corresponding stationary

problems.

As mentioned before, Theorem 3.1 extends pre-

vious result by the authors (DÍAZ and GÓMEZ-

CASTRO 2014a). For the proof of this result we apply,

essentially, the same techniques as in the cited article,

but with some refinements concerning the nature of

the non-linear term bðwÞ (i.e., g(u) in the equivalent

formulation (5)). In contrast to our work (DÍAZ and

GÓMEZ-CASTRO 2014a) we shall work with the

increasing rearrangement. We start by recalling the

following simple property: if f : ½0; jX0j� ! R is a

real function such that 0� f � L then ðL � f Þ�ðsÞ ¼
L � f �ðjX0j � sÞ and in particular

Z s

0

ðL � f ðtÞÞ�dt ¼ L �
Z jX0j

jX0j�s

f �ðtÞdt

(the proof can be found, for instance, in

MOSSINO 1984).

As in DÍAZ and GÓMEZ-CASTRO (2014a), we shall

prove the above theorem by means of the Trotter–

Kato formula. So we shall need to consider previ-

ously two auxiliary problems. The first problem

corresponds to the associated linear diffusion

problem:

Proposition 3.4 Let 0�w0; z0 � 1

ðAÞ

ow
ot
� Dw ¼ 0; ð0; TÞ � X

w ¼ 1; ð0; TÞ � oX

w ¼ w0; f0g � X

8
><

>:

ðA#Þ

oz
ot
� Dz ¼ 0; ð0; TÞ � X#

z ¼ 1; ð0; TÞ � oX#

z ¼ z0; f0g � X#

8
><

>:

and

Z jX0j

s

z�0ðr; yÞ dr�
Z jX0 j

s

w�
0ðrÞ dr; s 2 ½0; jX�:

Then

Z jX0 j

s

z�ðt; r; yÞ dr�
Z jX0j

s

w�ðt; r; yÞ dr;

s 2 ½0; jX�:

Proof Let us consider u ¼ 1 � w and v ¼ 1 � z.

Then u and v are solutions of the problems

ðBÞ

ou
ot
� Du ¼ 0; ð0;TÞ � X

u ¼ 0; ð0;TÞ � oX

u ¼ u0; f0g � X

8
><

>:

ðB#Þ

ov
ot
� Dv ¼ 0; ð0; TÞ � X#

v ¼ 0; ð0; TÞ � oX#

v ¼ v0; f0g � X#

8
><

>:

where now u0; v0 � 0 are given as u0 ¼ 1 � w0 and

v0 ¼ 1 � z0. Since, for any s 2 ½0; jX0j�, we have that

Figure 4
Comparison of Steiner and Schwarz rearrangements of a given function. a A given measurable function on X ¼ ½0; 1�3, which we choose

constant on the boundary. b Steiner symmetrization with respect to (x, y). c Schwarz symmetrization
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Z s

0

u�
0ðrÞ dr ¼ L �

Z jX0 j

jX0 j�s
w�

0ðrÞ dr

� L �
Z jX0 j

jX�s
z�0ðrÞz0 �

Z s

0

v�0ðrÞ dr

then
Z s

0

u�
0ðr; yÞ dr�

Z s

0

v�0ðr; yÞ dr:

Under this conditions, it is proven in CHIACCHIO

(2004) that, for any t� 0 and for any s 2 ½0; jX0j�, we

have the comparison
Z s

0

u�ðt; r; yÞdr�
Z s

0

v�ðt; r; yÞd r: ð14Þ

The key idea the proof of the result in CHIAC-

CHIO (2004) is to integrate each term of the equation

of problem (B) over the sets XyðsÞ ¼ fx 2 R
N :

ðx; yÞ 2 X and uðt;x; yÞ[ u�ðt; s; yÞg for each t [ 0

and to use the differentiation formula

o2F

oyioyj

� �

i;j

�
Z

XyðsÞ

o2u

oyioyj

� �

i;j

; ð15Þ

where

Fðt; s; yÞ ¼
Z s

0

u�ðt; r; yÞdr:

Inequality (15) was proved for the first time in the

literature in the paper (ALVINO et al. 1996) (see also

an alternative proof in FERONE and MERCALDO 1998).

In CHIACCHIO (2004) we find the application of this

formula to the parabolic problem (with the additional

proof of the comparison with respect the formula

obtained for the case of radially symmetric sections).

Applying (14), finally we arrive to the conclusion

since

Z jX0j

jX0j�s
z� ¼ L �

Z s

0

v� � L �
Z s

0

u� ¼
Z jX0 j

jX0 j�s
w�:

which concludes the proof. h

The second auxiliary problem corresponds to a

distributed non-linear ordinary differential equation.

Proposition 3.5 Let b be a concave continuous

non-decreasing function such that bð0Þ ¼ 0: Let u, v

satisfy

ðBÞ
wt þ kbðwÞ ¼ 0; X� ð0; TÞ;

w ¼ w0; X� f0g;

�

ðB#Þ zt þ kbðzÞ ¼ 0; X# � ð0; TÞ;
z ¼ z0; X# � f0g:

(

Assume

Z jX0 j

s

z�0ðr; yÞdr�
Z jX0 j

s

w�
0ðr; yÞdr;

8s 2 ½0; jX0j�; a:e:y 2 X00:

Then we have

Z jX0 j

s

z�ðt; r; yÞdr�
Z jX0 j

s

w�ðt; r; yÞdr

8t[ 0; s 2 ½0; jX0j�; a.e. y 2 X00:

Proof For any e[ 0 and y 2 X00 prescribed, let

we;yðt; xÞ, ze;yðt; xÞ be the solutions of the ðe; yÞ-para-

metric family of semilinear parabolic problems

ðPðe; yÞÞ

ow
ot
� eDxw þ kbðwÞ ¼ fyðtÞ in X0 � ð0; TÞ;

w ¼ 1 on oX0 � ð0; TÞ;
wð0Þ ¼ ðw0Þy on X0;

8
><

>:

ðP#ðe; yÞÞ

oz
ot
� eDz þ kbðzÞ ¼ f#y ðtÞ in B � ð0;TÞ;

z ¼ 1 on oB � ð0; TÞ;
zð0Þ ¼ ðz0Þy on B:

8
><

>:

Notice that the diffusion operator is only dependent

of the x-variables. Then, by Theorem 1 of DÍAZ

(1991) we know that, for any e[ 0 and y 2 X00

prescribed,

Z jX0j

s

fze;yðt; rÞdr�
Z jX0 j

s

gwe;yðt; rÞdr

8t [ 0; s 2 ½0; jX0j�:
ð16Þ

Moreover, we can know apply Theorem 3.16 on

BREZIS (1973)

ze;y ! zy as e ! 0 in Cð½0; T � : L2ðBÞÞ;
we;y ! wy as e ! 0 in Cð½0;T� : L2ðGÞÞ:

Then, passing to the limit in (16) we get

Z jX0 j

s

ezyðt; rÞdr�
Z jX0j

s

fwyðt; rÞdr

8t [ 0; s 2 ½0; jX0j�:

J. I. Dı́az et al. Pure Appl. Geophys.



Finally, it is enough to observe that since y 2 X00 is

prescribed then the Schwarz rearrangement fwyðt; rÞ
coincides with the Steiner rearrangement w�ðt; r; yÞ
(see Remark 3) and the result holds. h

3.1. Proof of Theorem 3.1.

Proof of Theorem 3.1 The special case f ¼ 0 is

easier. Since we know

Z jX0 j

s
z�0ðr; yÞ dr�

Z jX0j

s
w�

0ðr; yÞ dr; 8s; 8y

applying Propositions 3.4 and 3.5 inductively we get

Z jX0 j

s
SA

t

n

� �
SB

t

n

� �� �n

z0

h i�
ðr; yÞ dr

�
Z jX0 j

s
SA#

t

n

� �
SB#

t

n

� �� �n

w0

h i�
ðr; yÞ dr

where SA is the semigroup associated to problem

(A) and analogously for SB, SP, SA# , SB# , and

SP# .Taking limits, applying the Trotter–Kato formula

(see Proposition 4.3 BREZIS 1973) and applying con-

vergence under the integral sign we get
Z s

0

½SPðtÞz0��ðr; yÞdr�
Z s

0

½SP#ðtÞw0��ðr; yÞdr

for any t 2 ½0; T �, for any s 2 ½0; jX0j� and a.e. y 2 X00.

For the case f 6¼ 0 and time dependent, the Trot-

ter–Kato formula can be also applied (see, e.g.,

VUILLERMOT et al. 2008). In fact, to deal with the

affine case f ðtÞ 6¼ 0 we shall use a ‘‘reduction of order

technique’’ argument which can be found on BENI-

LAN et al. (unfinished manuscript). We point out that

by an approximation argument and then passing to

the limit process we can assume, without loss of

generality, that in fact f 2 H1ð0; T ; L2ðXÞÞ. We shall

argue by using the formulation of the problem with

homogeneous Dirichlet condition, that is u ¼ 1 � w

as unknown, for the case of the general set X and with

v ¼ 1 � z as unknown for the ball X#: We also

introduce the following notations:

f̂ ðtÞ ¼ kbð1Þ � f ðtÞ:

and given any function h 2 H1ð0; T ; L2ðXÞÞ, for a.e.

t 2 ð0; TÞ we define the function hðt þ �Þ 2
H1ð0; T; L2ðXÞÞ by the application s 7!hðt þ sÞ. We

also introduce the vectorial function UðtÞ ¼

ðuðtÞ; f ðt þ �ÞÞ 2 L2ðXÞ � H1ð0; T ; L2ðXÞÞ. We pro-

ceed in a similar way for the case of the domain

X#: we define VðtÞ ¼ ðvðtÞ; f#ðt þ �ÞÞ 2 L2ðX#Þ�
H1ð0; T; L2ðX#ÞÞ. Then, it is easy to see that U, V are

the respective unique solutions of the ‘‘autonomous

vectorial problems’’

oU
ot
þ L̂U ¼ 0; t 2 ð0; TÞ

Uð0Þ ¼ ðu0; f̂ Þ

(

oV
ot
þ L̂V ¼ 0; t 2 ð0; TÞ

Vð0Þ ¼ ðv0; f̂#Þ

(

where

L̂ðu; nÞ ¼ ð�Du þ gðuÞ � nð0 þ �Þ; n0Þ:

Here n0 represents simply the derivative of n. We can

use a decomposition L̂ ¼ L̂1 þ L̂2 in the following

way:

L̂1ðu; nÞ ¼ ð�Du þ hðtÞgðuÞ; 0Þ;
L̂2ðu; nÞ ¼ ð�nð0 þ �Þ; n0Þ:

Let us define the problems

ðCÞ
oU
ot
þ L̂1U ¼ 0;

Uð0Þ ¼ ðu0; f̂ Þ;

(

; ðC#Þ
oV
ot
þ L̂1V ¼ 0;

Vð0Þ ¼ ðv0; f̂#Þ;

(

ðDÞ
oU
ot
þ L̂2U ¼ 0;

Uð0Þ ¼ ðu0; f̂ Þ;

(

; ðD#Þ
oV
ot
þ L̂2V ¼ 0;

Vð0Þ ¼ ðv0; f̂#Þ;

(

and the correspondent solution operators

SCðtÞðu0; f̂ Þ ¼ ðSPðtÞu0; f̂ Þ;
SC#ðtÞðv0; f̂#Þ ¼ ðSPðtÞu0; f̂#Þ;

SDðtÞðu0; f̂ Þ ¼ u0 þ
Z t

0

f̂ ðsÞds; f̂

� �

;

SD#ðtÞðv0; f#Þ ¼ v0 þ
Z t

0

f̂#ðsÞds; f̂#
� �

:

Let Q be the projection operator such that

uðtÞ ¼ QUðtÞ. Let us study QSC and QSD. Since, for

any t 2 ½0; T �, for any s 2 ½0; jX0j� and a.e. y 2 X00;
Z s

0

u�
0ðr; yÞ dr�

Z s

0

v�0ðr; yÞ dr;

we have, by the above explicit formulas (for the first

component we apply the similar proof as in the case

f ¼ 0)
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Z s

0

½Q SCðtÞðu0; f Þ��ðr; yÞdr

�
Z s

0

½Q SC#ðtÞðv0; f
#Þ��ðr; yÞdr;

Z s

0

½Q SDðtÞðu0; f Þ��ðr; yÞdr

�
Z s

0

½Q SD#ðtÞðv0; f#Þ��ðr; yÞdr:

By applying an induction argument again we get
Z s

0

Q SC

t

n

� �
SD

t

n

� �� �n

ðu0; f Þ
h i�

ðr; yÞdr

�
Z s

0

Q SC#

t

n

� �
SD#

t

n

� �� �n

ðv0; f#Þ
h i�

ðr; yÞdr:

Finally, since all the operators are maximal monotone

operators on their respective Hilbert spaces, we can

take limits by applying the Trotter–Kato formula

(which justify the convergence of the limits) and the

result holds. h

3.2. Proof of Corollary 3.2: End

of the Proof of Theorem 2.1

For the proof we shall need a classical result.

Lemma 3.6 (HARDY et al. 1929) Let

~y; ~z 2 L1ð0;MÞ, ~y; ~z� 0 a.e.. Suppose y is non-in-

creasing and
Z s

0

~yðrÞ dr�
Z s

0

~zðrÞ dr; 8s 2 ½0;M�:

Then, for every continuous non-decreasing convex

function U we have
Z s

0

Uð~yðrÞÞ dr�
Z s

0

Uð~zðrÞÞ dr 8s 2 ½0;M�:

Proof of Corollary 3.2 Applying the theorem and

Lemma 3.6 to

UðsÞ ¼ bð1Þ � bð1 � sÞ;
~yðrÞ ¼ 1 � z�ðjX0j � r; yÞ;
~zðrÞ ¼ 1 � w�ðjX0j � r; yÞ

we get that

Z jX0 j

s

bðz�ðt; r; yÞÞdr�
Z jX0 j

s

bðw�ðt; r; yÞÞdr:

It is a classical result (see MOSSINO 1984) that for F

Borel and u measurable it holds that

Z

X0
FðuÞ ¼

Z jX0 j

0

Fðu�Þ

In particular, the comparison holds between w and z.

All that remains is to integrate on X00, apply Fubini’s

theorem and the result follows. h

3.3. The Elliptic Case

Proof of Corollary 3.3 Since there is uniqueness of

solutions for the stationary problem (4) then, by

applying Corollary 3 of DÍAZ (1994) we get that

wðtÞ ! w in H1ðXÞ; as t ! þ1 (with w the unique

solution of problem (4) with l ¼ þ1, i.e., the

Dirichlet problem w ¼ 1 on oX). Moreover, since the

application u 7!u� is continuous with respect to the

convergence in L1 (see e.g., MOSSINO 1984) we get

that the mass comparison is stable by passing to the

limit as t ! þ1 and the result holds.

4. Proof of Theorem 2.2 and Further Remarks

We shall use the function u ¼ kw is a supersolu-

tion (we recall that w is given by (8)). We shall apply

the following previous result in the literature due to

BANDLE (1985):

Theorem 4.1 Let X 	 R
n be an open bounded set

of measure V ¼ jXj such that X is contained between

two parallel ðn � 1Þ-dimensional hyperplanes at

distance 2q and let w be the solution of problem (8).

Then

kwk1þn
2

1 �CVq2

with

C ¼ ð4 þ 2nÞð2nÞ�
n
2

p2xn

: ð17Þ

Proof of Theorem 2.2 Thanks to the assumption on

the initial datum, since we are dealing with the

Dirichlet problem [l ¼ þ1 in (5)] and

0� u ¼ 1 � w� 1, 0� gðuÞ� 1; we get that u ¼ kw
is a supersolution of problem (5). Then, applying

J. I. Dı́az et al. Pure Appl. Geophys.



Theorem 4.1 to X ¼ G � ð0;HÞ, i.e., with n ¼ N þ 1

and 2q ¼ H, we get that

kukL1ð0;T ;L1ðXÞÞ ! 0; as H ! 0;

and, in particular

essinf
ð0;TÞ�X

bðwÞ ! 1; as H ! 0:

More precisely, for any t � 0 and a.e x 2 X

1� bðwðx; tÞÞ� 1 � Vð2N þ 6Þð2N þ 1Þ�
Nþ1

2

p2xNþ1

H2

 !2=ðNþ3Þ

;

ð18Þ

which proves the assertion for the case of the para-

bolic problem (even if V ¼ jXj ¼ jGjH is

prescribed). In the case of the associated stationary

problem, since we know that wðtÞ ! w in H1ðXÞ; as

t ! þ1 (see the proof of Corollary 3.3) then, by the

dominated Lebesgue theorem we know that

bðwðtÞÞ ! bðwÞ in L1ðXÞ; as t ! þ1 and thus the

estimate (18) remains valid replacing bðwðtÞÞ by

bðwÞ (since the bounds are independent of t). h

Remark 4 We shall not enter in this paper in the

study of the free boundary (the boundary of the dead

core) associated to the solutions w(t) and w of the

parabolic and elliptic problems (1) and (4), respec-

tively. We recall that the key assumption for the

formation of such free boundary is the condition

0\q\1. We send the reader to the monographs

DÍAZ (1985) and ANTONTSEV et al. (2001) for an

extensive treatment with numerous references.

Remark 5 All the results of this paper can be

extended to more general frameworks according

different point of views. For instance, with respect to

the diffusion operator it is possible to replace the

Laplacian operator �Dw by a general second-order

elliptic operator of the type

Lu ¼ �
XN

i;j¼1

o

oxj

aijðx; yÞ
ou

oxj

� �

�
Xm

h;k¼1

o

oyk

bhkðyÞ
ou

oyh

� �

�
XN

i¼1

Xm

h¼1

o

oyh

cihðyÞ
ou

oxi

� �

�
XN

i¼1

Xm

h¼1

o

oxi

dhiðyÞ
ou

oyh

� �

ð19Þ

with bounded coefficients (here we followed the

notation of Sect. 3). In that case, the comparison via

Steiner symmetrization is made with respect the

solution (on a cylinder of symmetric section) asso-

ciated to the operator

L#v ¼ �Dxv �
Xm

h;k¼1

o

oyk

bhkðyÞ
ov

oyh

� �

:

No special change in the statements arises if the

operator Lu involves transport first-order terms of the

type

Xm

k¼1

bkðyÞ
ou

oyk

:

Quasilinear terms with respect to the x-variable (that

is, those in which Steiner symmetrization is per-

formed) can be allowed, too. The presence of

transport terms in the x-variable can also be consid-

ered, but then the expression of the rearranged

operator L#v must be modified (see,e.g., CHIACCHIO

and MONETTI 2001 and its references). On the other

hand, it is still an open problem how to deal with

quasilinear terms in the y-variables. We point out that

Theorem 4.1 (which play a fundamental role in the

proof of Theorem 2.2) was obtained in BAN-

DLE (1985) for the case of a general second-order

elliptic operator of the type (19). Concerning the

reaction term bðwÞ ¼ wq; the results of this paper can

be extended also to the case q ¼ 0 by means of the

consideration of the maximal monotone graph of R2

given by

bðwÞ ¼ 0 if w\0; bðwÞ ¼ 1 if w[ 0 and bð0Þ ¼ ½0; 1�:

ð20Þ

(see, e.g., DÍAZ 1985, Chapter 2). As a matter of fact,

the proof of Proposition 3.5 (an thus Theorem 3.1)

remains valid under the same assumptions on b that

Theorem 1 on DÍAZ (1991), i.e., b non-decreasing

function with bð0Þ ¼ 0 and such that

b ¼ b1 þ b2 ð21Þ

where b1 is concave and b2 is convex. The results can

be extended also to the ‘‘enthalpy formulation’’ of

some porous media type equations (associated to a

linear operator Lu) in the spirit of the framework

presented in DÍAZ (1991, 1992, 2001). It is also pos-

sible to extend the results to the more realistic case of

suitable coupled systems of the type

On the Effectiveness of Wastewater Cylindrical...



ow
ot
� dwDw þ R1ðw; uÞ ¼ 0 in ð0;þ1Þ � X;

ou
ot
� duDu þ R2ðw; uÞ ¼ 0 in ð0;þ1Þ � X;

(

under suitable structural assumptions on the coupling

reaction terms R1ðw; uÞ and R2ðw; uÞ (see Theorem 3

of DÍAZ 1991 for dw; du [ 0 and DÍAZ and STAK-

GOLD 1994 for dw [ 0 and du ¼ 0). Some results on

the Steiner rearrangement for the case of Neumann

boundary conditions can be found in FERONE and

MERCALDO (2005) and CHIACCHIO (2004).

Remark 6 It can be shown (see BANDLE and VER-

NIER-PIRO 2003) that, in spite of Theorem 2.2,

domains X of optimal effectiveness do not exist for

reactions bðwÞ ¼ wq with 0\q\1. Nevertheless, for

the limit case of zero order reactions [with bðwÞ
given by (20)] any result proving that there is no dead

core for a concrete X shows that the effectiveness

attains its maximum value for this domain X (several

criteria for the non-formation of the dead core were

given in Chapter 2 of DÍAZ 1985).

Remark 7 The study of the optimality of the

effectiveness factor in terms of shape differentiation

on X is the main object of the paper (DÍAZ and

GÓMEZ-CASTRO 2014b).
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Abstract. We extend some previous results in the literature on the Steiner rearrange-

ment of linear second order elliptic equations to the semilinear concave parabolic prob-

lems and the obstacle problem.

1. Introduction. In this paper we extend some previous results in the literature on the
Steiner rearrangement of second order semilinear parabolic problems of the type





∂u
∂t −∆u+ h(t)g(u) = f, in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u(0) = u0, on Ω,

where Ω is a bounded open subset of RN , h ∈ W 1,∞(0, T ) is such that h(t) ≥ 0 for all
t ∈ (0, T ) and g is a concave continuous nondecreasing function such that g(0) = 0 satisfying
that ∫ τ

0

dσ

g(σ)
<∞, ∀τ > 0. (H)

We recall that the existence and uniqueness of a weak solution u ∈ C([0, T ] : L2(Ω)) ∩
L2(δ, T : H1

0 (Ω)) for any δ ∈ (0, T ) can be obtained, for instance, by the application of the
theory of maximal monotone operators in L2(Ω) (see [6], [2] and [4]).

Let us start by recalling that given a general measurable function v : Rn×Rm → R, with
n,m ≥ 1 and n + m = N , for a fixed y ∈ Rm we can define the function µv : R × Rn → R
by means of

µv(t, y) = |{x ∈ Rn : |v(x, y)| > t}|.
The Hardy-Littlewood-Polya decreasing rearrangement v∗ : [0,+∞)× Rm → R is given as

v∗(s, y) = sup{t > 0 : µv(t, y) > s} = inf{t > 0 : µv(t, y) ≤ s}.
It can be shown that, if ω represents a generic measurable subset of Rn × Rm∫ s

0

v∗(σ, y) dσ = sup
|ω|=s

∫

ω

v(x, y) dx, a.e. y ∈ Rm. (1)

Finally we define the Steiner symmetrization of v with respect to x as

v#(x, y) = v∗(ωn|x|n, y), a.e. y ∈ Rm,
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where ωn is the measure of the n-dimensional ball (see details, for instance, in [10], [11]).
The basic idea underlying Steiner symmetrization is to consider the integral of the func-

tion over slices. We take very particular slices of the form

G(y) = {x ∈ Rm : u(x, y) > u∗(s, y)}
where |G(y)| = s (by construction of u∗). Variable s should formally be included in the
definition but this will not lead to confusion.

We shall use the following notations:

Ω = Ω′ × Ω′′

is a product domain, where (x, y) ∈ Ω′×Ω′′. We shall denote by B a ball such that |B| = |Ω′|
and then we introduce

Ω# = B × Ω′′ Ω∗ = (0, |Ω′|)× Ω′′.

Our main result is the following:

Theorem 1.1. Let g be concave, verifying (H). Let h ∈W 1,∞(0, T ), such that h(t) ≥ 0 for
all t ∈ (0, T ), f ∈ L2(0, T : L2(Ω)) with f ≥ 0 in (0, T ) and let u0 ∈ L2(Ω) be such that
u0 ≥ 0. Let u ∈ C([0, T ], L2(Ω)) ∩ L2(δ, T : H1

0 (Ω)) and v ∈ C([0, T ] : L2(Ω#)) ∩ L2(δ, T :
H1

0 (Ω#)) be the unique solutions of

(P )





∂u
∂t −∆u+ h(t)g(u) = f(t), in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(0) = u0, on Ω,

(P#)





∂v
∂t −∆v + h(t)g(v) = f#(t), in Ω# × (0, T ),

v = 0, on ∂Ω# × (0, T ),

v(0) = v0, on Ω#,

where v0 ∈ L2(Ω#), v0 ≥ 0 is such that
∫ s

0

u∗0(σ, y)dσ ≤
∫ s

0

v∗0(σ, y)dσ, ∀s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′.

Then, for any t ∈ [0, T ] and s ∈ [0, |Ω′|]
∫ s

0

u∗(t, σ, y)dσ ≤
∫ s

0

v∗(t, σ, y)dσ a.e. y ∈ Ω′′.

The main idea of the proof is to use a generalization of the Trotter-Kato formula and
to decompose the process in two different steps: the parabolic case without any absorption
term (g ≡ 0) and the consideration of the auxiliary distributed ODE

{
ξt + h(t)g(ξ) = 0,

ξ(0) = ξ0.

Theorem 1 extends previous results in the literature on the comparison of Steiner rear-
rangements which until now were merely related to linear problems (see [1], [13], [7], [8], [9]
and their references). The case in which g is convex is considered in [12].

2. Some definitions on the Steiner symmetrization. We recall that Hardy’s inequality
and (1) provides us with the estimate

∫

Ω(y)

f(x, y) dx ≤
∫ s

0

f∗(σ, y) dσ, a.e. y ∈ Rm.

Now, let u be a measurable function. We define the auxiliary function

F (s, y) =

∫ s

0

u∗(σ, y) dσ, a.e. y ∈ Rm.
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From the definition of the rearrangement we have that

F (s, y) =

∫

Ω(y)

u(x, y) dx, a.e. y ∈ Rm.

In [1] it was shown that:

Lemma 2.1. Let F be defined as before and let u be regular enough. Then,

∂F

∂yi
=

∫

Ω(y)

∂u

∂yi

(
∂2F

∂yi∂yj

)
≥
(∫

Ω(y)

∂2u

∂yi∂yj

)

in the sense of matrices.

The results in [1] where presented on the stationary case and without non linear pertur-
bation (the integro-differential equation which results is very difficult to treat by maximum
principle arguments). Now, we may consider t, the time variable as a first y component, we
may extend all of the above to the evolutionary case. It, then, holds that

∂F

∂t
=

∫

Ω(t,y)

∂u

∂t

and the analogous for the second derivative, which we will not need. This is also a conse-
quence of other results ([3], [14], [15]).

To conclude the definitions we define the concentration relation as

u 4 v ≡
∫ s

0

u∗(σ, y) dσ ≤
∫ s

0

v∗(σ, y) dσ, a.e. y ∈ Ω′′, for any s ∈ [0, |Ω′|].

Although it is not strictly a result on symmetrization the following lemma (see, e.g., [10])
is a very useful tool for what follows.

Lemma 2.2. Let y, z ∈ L1(0,M), y, z ≥ 0 a.e., suppose y is non-increasing and
∫ s

0

y(σ) dσ ≤
∫ s

0

z(σ) dσ, ∀s ∈ [0,M ].

Then, for every continuous non-decreasing function Φ we have
∫ s

0

Φ(y(σ)) dσ ≤
∫ s

0

Φ(z(σ)) dσ ∀s ∈ [0,M ].

Written in terms of the concentration relation the above property can be read as

y 4 z =⇒ Φ(y) 4 Φ(z)

for any function Φ convex and increasing.

Extending the above concentration relation we can define

Definition 2.3. Let Ω1 ≡ Ω and Ω2 ≡ Ω#. Let

Si : L2(Ωi)→ C([0, T ] : L2(Ωi))

We say that the pair (S1, S2) is Steiner concentration monotone if given ui ∈ L2(Ωi) we
have that

u1 4 u2 =⇒ S1(t)u1 4 S2(t)u2, for any t ∈ [0, T ].

It will be useful to recall that if (uin) ∈ L2(Ωi) are two L2- convergent sequences such
that uin → ui and u1

n 4 u2
n then u1 4 u2.
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3. Steiner comparison for linear parabolic equations and for a distributed non-
linear ODE. We first compare the semigroup of a linear equation an its Steiner sym-
metrization, to show they are Steiner concentration monotone pairs. The following result
can be proven by using as fundamental ingredient the proof for the elliptic case: see [8] for
a detailed proof.

Proposition 1. Let

(A)





∂u
∂t −∆u = 0, in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u(0) = u0, on Ω,

,

(A#)





∂v
∂t −∆v = 0, in (0, T )× Ω#,

v = 0, on (0, T )× ∂Ω#,

v(0) = v0, on Ω#,

and let S∆ and S∆# be their associated L2 semigroups on Ω and Ω# respectively. Then
(S∆, S∆#) is a Steiner concentration monotone pair.That is, if

∫ s

0

u∗0(σ, y)dσ ≤
∫ s

0

v∗0(σ, y)dσ, ∀s ∈ [0, |Ω′|], a.e. y ∈ Ω′′,

then we have∫ s

0

u∗(t, σ, y)σ ≤
∫ s

0

v∗(t, σ, y)σ ∀t ∈ [0, T ],∀s ∈ [0, |Ω′|], a.e. y ∈ Ω′′,

where u = S∆(·)u0 and v = S∆#(·)v0.

Concerning nonlinear distributed ODEs we have:

Proposition 2. Let g be concave verifying (H) and let h ∈ L∞(0, T ), h ≥ 0. Let u, v satisfy

(B)

{
∂u
∂t + h(t)g(u) = 0, in (0, T )× Ω,

u(0) = u0, on Ω,
,

(B#)

{
∂v
∂t + h(t)g(v) = 0, in (0, T )× Ω#,

v(0) = v0, on Ω#.

Finally, let SB and SB# be their associated evolution Green operators (i.e. the associated
semigroups if h(t) is constant). Then (SB , SB#) is a Steiner concentration monotone pair.
That is, if

∫ s

0

u∗0(σ, y)dσ ≤
∫ s

0

v∗0(σ, y)dσ, ∀s ∈ [0, |Ω′|], a.e. y ∈ Ω′′,

then we have∫ s

0

u∗(t, σ, y)dσ ≤
∫ s

0

v∗(t, σ, y)dσ ∀t > 0, s ∈ [0, |Ω′|], a.e. y ∈ Ω′′,

for the solutions u = SB(·)u0, v = SB#(·)v0.

Proof. In a first step we assume, in addition that g is Lipschitz continuous and g(0) = ε > 0.
Let

Φ(ξ) =

∫ ξ

0

dσ

g(σ)
, Ψ = Φ−1, H(t) =

∫ t

0

h(σ)dσ.

It is easy to check that

(SB(t)u)(x, y) = Ψ(Φ(u0(x, y)−H(t)), (SB#(t)v)(x, y) = Ψ(Φ(v0(x, y)−H(t)).
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For these solutions

µSB(t)u0
(τ, y) =|{x ∈ Rn : |u(t, x, y)| > τ}|

=|{x ∈ Rn : u0(x, y) > Φ(Ψ(τ +H(t)))}|
=µu0(Φ(Ψ(τ) +H(t)), y).

Since Φ, Ψ are monotone increasing then
(
SB(t)u0

)∗
(s, y) = inf{τ > 0 : µu0(Φ(Ψ(τ) + t), y) ≤ s}

= inf{Φ(Ψ(σ)−H(t)) : µu0
(σ, y) ≤ s}

=Φ

(
Ψ
(

inf{σ > 0 : µu0
(σ, y) ≥ s}

)
−H(t)

)

=Φ

(
Ψ
(
u∗0(s, y)

)
−H(t)

)
= u∗(t, s, y).

Therefore, u∗ satisfies
∂u∗

∂t
+ h(t)g(u∗) = 0.

Now let w = eλtu, then we have by the lemma w∗ = eλtu∗, and so we have that w∗ satifies

∂w∗

∂t
+ eλth(t)g(e−λtw∗)− λw∗ = 0.

We choose λ large enough so that eλth(t)g(e−λtw)− λw be nonincreasing function on u for
every t ∈ (0, T ). Analogous calculations provided information on z = eλtv. Let

T̃ = sup

{
t :

∫ s

0

u∗(t, σ, y) ≤
∫ s

0

v∗(t, σ, y)σ, ∀s ∈ [0, |Ω′]
}
≥ 0.

Since eλth(t)g(e−λtw)− λw is concave, for t < T̃ , we apply lemma 2.2 and get

d

dt

∫ s

0

(w∗(t, σ, y)− z∗(t, σ, y))dσ

=

∫ s

0

h(t)(eλth(t)g(e−λtz)− λz − (eλth(t)g(e−λtw)− λw))dσ ≤ 0.

So, we get

eλt
∫ s

0

(u∗(t, σ, y)− v∗(t, σ, y))dσ =

∫ s

0

(w∗(t, σ, y)− z∗(t, σ, y))dσ ≤ 0

and the result follows once g is Lipschitz continuous and g(0) = ε.
In the general case since g is associated to a maximal monotone graph of R2 we can

approximate it by its Yosida approximation (which is still concave and satisfies (H)) and
we get the result by passing to the limit. Finally we make ε ↓ 0 and use the continuity of
solutions with respect to g (see [5] and [4]).

4. Proof of the main theorem. The special case f = 0 and h(t) ≡ h independent on t
is easier. Since we know∫ s

0

u∗0(σ, y) dσ ≤
∫ s

0

v∗0(σ, y) dσ, ∀s,∀y

applying Proposition 1 and Proposition 2 inductively we get
∫ s

0

[(
SA

(
t

n

)
SB

(
t

n

))n
u0

]∗
(σ, y) dσ

≤
∫ s

0

[(
SA#

(
t

n

)
SB#

(
t

n

))n
v0

]∗
(σ, y) dσ
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where SA is the semigroup associated to problem (A) and SB is the semigroup associated
to problem (B) and analogously for SA# and SB# .

Taking limits, applying the Trotter-Kato formula (see [5]) and applying convergence under
the integral sign we get

∫ s

0

[SP (t)u0]∗(σ, y)dσ ≤
∫ s

0

[SP#(t)v0]∗(σ, y)dσ

for any t ∈ [0, T ], for any s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′. For the case f 6= 0 and h(t) time
dependent the Trotter-Kato formula can be also applied (see, e.g. [16]). In fact, to deal with
the affine case f(t) 6= 0 we shall use a ”reduction of order technique” argument which can
be found on [4]. We point out that by an approximation argument and posterior passing to
the limit process we can assume, without loss of generality, that in fact f ∈ H1(0, T ;L2(Ω)).
Now, let us define f(t + ·) ∈ H1(0, T ;L2(Ω)) : s 7→ f(t + s) and U(t) = (u(t), f(t + ·)) ∈
L2(Ω)×H1(0, T ;L2(Ω)), V (t) = (v(t), f#(t+ ·)) ∈ L2(Ω#)×H1(0, T ;L2(Ω#)). Let us note
that U is the unique solution of

{
∂U
∂t + L̂U = 0, t ∈ (0, T )

U(0) = (u0, f)

{
∂V
∂t + L̂V = 0, t ∈ (0, T )

V (0) = (v0, f
#)

where
L̂(u, ξ) = (−∆u+ h(t)g(u)− ξ(0), ξ′).

We can use a decomposition L̂ = L̂1 + L̂2 in the following way:

L̂1(u, ξ) = (−∆u+ h(t)g(u), 0), L̂2(u, ξ) = (−ξ(0), ξ′).

Let us define the problems

(C)

{
∂U
∂t + L̂1U = 0,

U(0) = (u0, f),
, (C#)

{
∂V
∂t + L̂1V = 0,

V (0) = (v0, f
#),

(D)

{
∂U
∂t + L̂2U = 0,

U(0) = (u0, f),
, (D#)

{
∂V
∂t + L̂2V = 0,

V (0) = (v0, f
#),

and the correspondent solution operators

SC(t)(u0, f) = (SP (t)u0, f), SC#(t)(v0, f
#) = (SP (t)u0, f),

SD(t)(u0, f) =

(
u0 +

∫ t

0

f(s)ds, f

)
, SD#(t)(v0, f

#) =

(
v0 +

∫ t

0

f#(s)ds, f#

)
.

Let Q be the projection operator such that u(t) = QU(t). Let us study QSC and QSD.
Since ∫ s

0

u∗0(σ, y) dσ ≤
∫ s

0

v∗0(σ, y) dσ, for all s ∈ [0, |Ω′|] and a.e. y ∈ Ω′′

we have, by the above explicit formulas (for the first component we apply the similar proof
as in the case f = 0)

∫ s

0

[Q SC(t)u0]∗(σ, y)dσ ≤
∫ s

0

[Q SC#(t)v0]∗(σ, y)dσ,

∫ s

0

[Q SD(t)u0]∗(σ, y)dσ ≤
∫ s

0

[Q SD#(t)v0]∗(σ, y)dσ.

By applying an induction argument again we get
∫ s

0

[
Q

(
SC

(
t

n

)
SD

(
t

n

))n
u0

]∗
(σ, y)dσ

≤
∫ s

0

[
Q

(
SC#

(
t

n

)
SD#

(
t

n

))n
v0

]∗
(σ, y)dσ.
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Finally, since all the operators are maximal monotone on their respective Hilbert spaces, we
can take limits, apply the Trotter-Kato formula to justify the convergence of the limits and
the result holds.

5. Remarks and applications. We point out that the main result applies to the parabolic
obstacle problem:




∂u
∂t −∆u− f(t, x) ≥ 0, u ≥ 0
(∂u∂t −∆u− f(t, x))u = 0

}
in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,
u(0) = u0, on Ω,

assumed u0 ∈ L2(Ω), u0 ≥ 0 and f ∈ L2(0, T : L2(Ω)). The main argument is it can be
reformulated in terms of




∂u
∂t −∆u+ β(u) 3 f(t, x) + 1, in (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u(0) = u0, on Ω,

where β is the maximal monotone graph of R2 given by

β(r) =





∅, r < 0,

(−∞, 1], r = 0,

{1}, r > 0,

and that β(u) can be approximated by a sequence βλ(u) of non decreasing concave functions

satisfying (H) (take, for instance, βλ(u) such that βλ(u) = u
1
λ if u ≥ 0). It is well known

that the correspondent solutions uλ converge strongly in C([0, T ] : L2(Ω)) to the solution u
of the obstacle problem and so the comparison of the associated Steiner rearrangements is
mantained after passing to the limit.

Finally, we also mention that the associated nonlinear elliptic equation{
−∆u+ g(u) = f(x), in Ω

u = 0, on ∂Ω

can be considered in this framework (since we can write u(x) = limt→∞ u(t, x) for some suit-
able u(t, x) solution of a nonlinear parabolic problem for which we can apply Theorem 1.1).
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Abstract. In applications it is common to arrive at a problem where the

choice of an optimal domain is considered. One such problem is the one asso-
ciated with the steady state reaction diffusion equation given by a semilinear

elliptic equation with a monotone nonlinearity g. In some contexts, in partic-

ular in chemical engineering, it is common to consider the functional given by
the integral of this nonlinear term of the solution dived by the measure of the

domain Ω in which the pde takes place. This is often related with the effec-

tiveness of the reaction. In this paper our aim is to study the differentiability
of such functional as study connected to the optimality of the best chemical

reactor.

1. Introduction and statement of results

The main goal of this article is to analyze the differentiability, with respect to
the domain Ω, of the effectiveness factor

E(Ω) =
1

|Ω|

∫

Ω

β(wΩ)dx

where wΩ is the solution of the problem arising in chemical catalysis [2, 3]

−∆w + β(w) = f̂ , in Ω,

w = 1, on ∂Ω.
(1.1)

The model can be obtained in different ways, including homogenization techniques:
see, e.g. [6] and [5]. By introducing the change in variable u = 1− w the problem
can be reformulated as

−∆u+ g(u) = f, in Ω,

u = 0, on ∂Ω.
(1.2)
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where g(u) = β(1) − β(1 − u) and f = β(1) − f̂ . In this case instead of the
effectiveness factor we can study η(Ω) = 1− E(Ω)

η(Ω) =
1

|Ω|

∫

Ω

g(uΩ)dx , (1.3)

where uΩ is the solution of (1.2). In the chemical context this factor represents the
amount of reaction taking place.

This kind of problems fall with the family of problems studied by several authors
in the literature (see, e.g. [18, 19, 20] and the references therein). In the most
general case this family of problems may be described by:

A(u(D)) = f, in D,

B(u(D)) = g, on ∂D
(1.4)

and the functional can by given generally as

J(D) =

∫

D

C(uD)dx,

where A,B,C may contain also some derivatives of uD. In this paper we shall
concentrate our attention in problem (1.2) and we shall provide elementary and
direct proofs of results which could be obtained from the general theory but under
stronger assumptions (see, for instance, the statement taken from [20] which is
reproduced here in Section 2).

As mentioned before, our aim is to study the differentiability of functional (1.3).
We consider a fixed domain open bounded regular set of Rn, Ω0, and study its
deformations given by a function θ : Rn → Rn, so that the new domain is Ω = (Id+
θ)Ω0. We consider, as it is the case in chemistry catalysis, g and f such that 0 ≤
u ≤ 1. We also mention that this kind of differentiation result also appears in many
other contexts. Besides the above mentioned references we recall here the articles
[7] for a linear problem with a Dirichlet constant boundary condition and [17] were
a semilinear equation arising in combustion was considered (corresponding, in our
formulation to take g(u) = −eu).

To obtain this properties in the sense of derivatives, we consider two approaches,
mimicking the approach in differential geometry. We first consider the global dif-
ferentiability of solutions (as it was done in the linear cases in [15, 1] and the most
general case in [20]), which unfortunately requires derivatives in spaces of too reg-
ular functions, and then we take advantage of the differentiation along curves (the
approach followed in [21]).

Let us call, for simplicity, uΩ the solution of (1.2). This corresponds to the
Lagrangian understanding of the problem in the sense that the functional under
study is study in terms of the direct domain Ω. However, we can consider the
Eulerian understanding of the problem by recalling that in this family of domains,
Ω = (Id+ θ)Ω0, we can introduce a new function vθ : Ω0 → R defined by

vθ = (I + θ)∗u(I+θ)Ω0
= u(I+θ)Ω0

◦ (I + θ), (1.5)

simplifying the study of the differentiability of uΩ and the functional η(Ω) with
respect to Ω.

Our proof relies heavily on the Implicit Function Theorem. The application of
this theorem requires an uniform choice of functional space, which would require
some additional information on u. This kind of problems in the functional setting
is well portrayed in [4].
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For the nonlinearity g we shall consider the following assumptions:

Hypothesis 1.1. g is nondecreasing

Hypothesis 1.2. The Nemitskij operator for g (which we will denote again by g in
some circumstances, as a widely accepted abuse of notation) G : H1(Ω) → L2(Ω)
defined by

G(u) = g ◦ u (1.6)

is of class Cm for some m ≥ 1.

We recall that Hypothesis 1.2 immediately implies that [DG](v)ϕ = g′(v)ϕ for
ϕ, v ∈ H1(Ω) and that if G is of class Ck with k > 1 then necessarily g(s) = as+ b
for some a, b ∈ R.

Our first result collects some general results on the differentiability of the solution
uΩ with respect to Ω:

Theorem 1.3. Let g satisfy Hypothesis 1.1 and 1.2. Then, the map W 1,∞(Rn,Rn)→
H1

0 (Ω0),

θ 7→ vθ

(where vθ is defined by (1.5)) is of class Cl in a neighbourhood of 0 if f ∈ Hk(Rn)
where l = min{k, l}. Furthermore, the application u : W 1,∞(Rn,Rn)→ L2(Rn),

θ 7→ u(I+θ(Ω0))

(where uθ is extended by zero outside (I + θ)(Ω0)) is differentiable at 0. In fact
u′ : W 1,∞(Rn,Rn)→ H1(Ω) and

u′(0)θ +∇uΩ0
· θ ∈ H1

0 (Ω).

As in differential geometry, to compute a derivative we can take two routes. The
first one is to show the existence of a global derivative, and this allows to compute
some properties of our functions. The other one, is to compute the derivative along
curves.

Definition 1.4. We say that Φ is a curve of deformations if Φ : [0, T )→W 1,∞(Ω0)
with det Φ(τ) > 0.

Hypothesis 1.5. We will say that θ is a curve of small perturbations of the identity
(with direction V ) if Φ(τ) = I + θ(τ) is a curve of deformations and

(1) θ : [0, T )→W 1,∞(Rn) is differentiable at 0,
(2) θ(0) = 0,
(3) θ′(0) = V .

Sometimes we consider higher order derivatives too. We will refer to θ or Φ
indistinctively, since they relate by Φ(τ) = I+θ(τ). Thus, the above theorem leads
to:

Corollary 1.6. Let Φ be a a curve of deformations of class Ck. Then τ 7→ vθ(τ) is

of class Cl with l = min{m, k}.

Our second result concerns the characterization of u′.
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Theorem 1.7. Let g satisfy Hypothesis 1.1 and 1.2. Let θ be a curve satisfy-
ing assumptions 1.5. Then u is differentiable along Φ at least at 0. That is, the
directional derivative d

dτ (u ◦ Φ) exists, and it is the solution u′ of

−∆u′ + λg′(uΩ0
)u′ = 0 in Ω0,

u′ = −∇uΩ0 · V, on ∂Ω0.
(1.7)

We point out that the above result shows, in other terms, that u′(0)θ is the
unique weak solution of

−∆u′ + λg′(uΩ0
)u′ = 0, in Ω0,

u′ = −∇uΩ0
· θ, on ∂Ω0.

(1.8)

As consequence we have the following result.

Corollary 1.8. The function u′ : W 1,∞(Rn,Rn)→ H1(Ω) is continuous. In fact,
since the solution u of (1.2) u ∈W 2,p(Ω) for any p ∈ [1,+∞) then for any q ∈ [1, p],

|u′(0)(θ)|q ≤ c|∇u · θ|Lp(∂Ω0)

≤ c|θ|∞|∇uΩ0
|Lp(∂Ω0)

≤ c(p)|θ|∞|uΩ0 |W 2,p(Ω0).

Concerning the differentiability of the effectiveness factor functional we have the
following theorem.

Theorem 1.9. Under the assumptions of Theorem 1.3, let

η̂(θ) =

∫

(I+θ)Ω0

g(u(I+θ)Ω0
)dx. (1.9)

Then η is of class Cm in a neighbourhood of 0. It holds that

η̂(m)(0)(θ1, · · · , θm) =

∫

Ω0

dn

dθn · · · dθ1
(g(vθ)Jθ) dx. (1.10)

Its first derivative can be expressed in terms of u,

η̂′(0)(θ) =

∫

Ω0

(g′(uΩ0
)u′ + div(g(uΩ0

)θ)) dx, (1.11)

and if ∂G is Lipschitz

η̂′(0)(θ) =

∫

Ω0

g′(uΩ0
)u′ dx+ g(0)

∫

∂Ω0

θ · ndS, (1.12)

where u′ = u′(0)(θ).

Corollary 1.10. Under the assumptions of Theorem 1.3 it holds that

η′(θ) =
1

|Ω0|
(∫

Ω0

g′(uΩ0
)u′ dx− η(0)

∫

∂Ω0

θ · ndS
)
.

Corollary 1.11. Under the assumptions of Theorem 1.3 if Φ is a volume preserving
curve then

η′(θ) =
1

|Ω0|

∫

Ω0

g′(uΩ0)u′ dx .
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We point out that if g is Lipschitz (i.e. g ∈W 1,∞(R)) then we obtain

|η(θ)− η(0)| = |η′(0)(λθ)| ≤ c|g′|∞|u|W 2,p |θ|∞.
This allows to get some generalizations of the last result in cases in which the
absorption term g is not so regular, as for instance when β(w) = wq and q ∈ (0, 1).
Nevertheless, if there is a non-empty dead core (in the literature the dead core is
defined as {x ∈ Ω : wΩ(x) = 0} where wΩ is the solution of (1.1)) some additional
arguments must be developed, in the line of [14], where some unbounded potentials
are considered. This will the subject of a separated paper by the authors [12].

We end this paper by presenting, in Section 5, some applications of the above
results in terms of the Schwarz and Steiner symmetrization as well as by illustrating
them for some special families of domains by means of some numerical experiences.

2. Functional setting: Nemitskij operators and the implicit function
theorem

Let us formalize what we mean by a shape functional. At the most fundamental
level it should be a function defined over a set of domain, that is defined over C ⊂
P(Rn). Since we want to differentiate we, at the very least, need to define proximity,
that is a way to define neighbourhood of a set. As it is usual in the literature of shape
optimization we work over the set of weakly differentiable bounded deformations
with bounded derivative, the Sobolev space W 1,∞(Rn,Rn).

Definition 2.1. We say that J is defined on a neighbourhood of Ω0 ⊂ Rn if
there exists U a neighbourhood of 0 on W 1,∞(Rn,Rn) such that J is defined over
{(Id + θ)(Ω0) : θ ∈ U}. We say that J is differentiable at Ω0 if the application
W 1,∞(Rn;Rn)→ R,

θ 7→ J((Id+ θ)(Ω0))

is differentiable at 0.

We present a sufficient condition so that Hypothesis 1.2 holds. This is widely used
in the context of partial differential equations, but as far as we know no reference
is known besides it being an exercise in [16]. That being the case we provide the
usual proof. Other conditions, mainly on the growth of g can be considered so that
assumptions 1.1.1.2 holds.

Lemma 2.2. Let g ∈ W 2,∞(R). Then the Nemitskij operator (1.6) in the sense
Lp(Ω)→ L2(Ω) is of class C1 for all p > 2. In particular, Hypothesis 1.2 holds.

Proof. Let us define G the Nemitskij operator defined in (1.6). Consider it G :
Lp(Ω)→ L2(Ω) for p ≥ 2. We first have that, for L = max{‖g‖∞, ‖g′‖∞, ‖g′′‖∞}

‖G(u)−G(v)‖2L2 =

∫

Ω

|g(u)− g(v)|2dx ≤ L
∫

Ω

|u− v|2dx2

so that F is continuous. For p > 2 let ϕ ∈ C∞(Ω) we compute

‖g(u+ ϕ)− g(u)− g′(u)ϕ‖2L2 =

∫

Ω

|g′(ξ(x))− g′(u(x))|2|ϕ(x)|2dx

for some function ξ by the intermediate value theorem. We, of course, have that

|g′(ξ(x))− g′(u((x))| ≤ L|ξ(x)− u(x)| ≤ L|ϕ(x)|
|g′(ξ(x))− g′(u(x))| ≤ 2L
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|g′(ξ(x))− g′(u(x))| ≤ L21−α|ϕ(x)|α, ∀α ∈ (0, 1) .

Therefore,

‖g(u+ ϕ)− g(u)− g′(u)ϕ‖2L2 ≤ L222−2α

∫

Ω

|ϕ(x)|2+2αdx .

Let 2 < p < 4 then we have that p = 2 + 2α with 0 < α < 1. We then have that

‖g(u+ ϕ)− g(u)− g′(u)ϕ‖L2 ≤ L21−α‖ϕ(x)‖1+α
Lp

which proves the Frechet differentiability. Of course for p > 4 we have that
Lp(Ω) ↪→ L3(Ω). Furthermore, for any given dimension n we have Sobolev in-
clusions H1(Ω) ↪→ Lp(Ω) with p > 2, proving the differentiability. �

Some other well-known results are quoted now.

Theorem 2.3. Let g ∈ W 1,p(Rn). Then the map G : W 1,∞(Rn,Rn) → Lp(Rn)
given by θ 7→ g ◦ (I + θ) is differentiable in a neighbourhood of 0 and

G′(0) = (∇g) ◦ (I + θ) .

Theorem 2.4 ([15, Lemme 5.3.3.]). Let g ∈W 1,p(Rn),

Ψ : W 1,∞(Rn,Rn)→W 1,∞(Rn,Rn)

continuous at 0 with Ψ(0) = I, W 1,∞(Rn,Rn)→ Lp(Rn)× L∞(Ω),

θ 7→ (g(θ),Ψ(θ))

differentiable at 0, with g(0) ∈W 1,p(Rn) and

g′(0) : W 1,∞(Rn,Rn)→W 1,p(Rn)

continuous. Then the application G : W 1,∞(Rn,Rn)→ Lp(Rn),

G(θ) = g(θ) ◦Ψ(θ)

is differentiable at 0 and

G′(0) = g′(0) +∇g(0) ·Ψ′(0).

To conclude this section we state a classical result.

Theorem 2.5 (Implicit Function Theorem). Let X,Y and Z be Banach spaces
and let U, V be neighbourhoods on X and Y , respectively. Let F : U × V → Z
be continuous and differentiable, and assume that DyF (0, 0) ∈ L(Y,Z) is bijective.
Let assume, further, that F (0, 0) = 0. Then there exists W neighbourhood of 0 on
X and a differentiable map f : W → Y such that F (x, f(x)) = 0. Furthermore, for
x and y small, f(x) is the only solution y of the equation F (x, y) = 0. If F is of
class Cm then so is f .

3. Differentiation of solutions. Proof of Theorems 1.3 and 1.7

For the reader convenience we repeat here the general result in [20]:

Theorem 3.1. Let D be a bounded domain such that ∂D be a piecewise C1 and
assume that D is locally on one side of ∂D. Let u0 be the solution of (1.4). Let us
use the notation Ck = Ck(Rn,Rn) and k ≥ 1. Assume that

u(θ) ∈Wm,p((I + θ)D) (3.1)
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and that for every open set D′ close to D (for example D′ = (I + θ)D for small θ′

in the norm of Ck),

A : Wm,p(D′)→ D′(D′)
B : Wm,p(D′1,1(D′)

C : Wm,p(D′1(D′)

A,B,C : Wm−1,p(D′)→ D′(D) differentiable

(3.2)

and Ck →Wm,p: θ 7→ u(θ) ◦ (I + θ) is differentiable at 0. Then:

(1) The solution is differentiable in the sense that u : Ck → Wm−1,p
loc (D) is

differentiable and the derivative the local derivative u′ in the direction of τ
satisfies

∂A

∂u
(u0)u′ = 0, in D. (3.3)

(2) If θ 7→ B(u(θ)) ◦ (I + θ) is differentiable at 0, into W 1,1(D), B(u0) ∈
W 2,1(D) and g ∈W 2,1(Rn), then u′ satisfies

∂B

∂u
(u0)u′ = −τ · n ∂

∂n
(B(u0)− g). (3.4)

(3) If θ 7→ C(u(θ)) ◦ (I + θ) is differentiable at 0 into L1(D), and C(u0) ∈
W 1,1(D), then θ 7→ J(θ) is differentiable and its directional derivative in
the direction of τ is:

∂J

∂θ
(0)τ =

∫

D

∂C

∂u
u′ dx+

∫

∂D

τ · nC(u0) dS. (3.5)

Let us prove now our first contribution.

Proof of Theorem 1.3. We take several steps. For simplicity, allow the notation

Ωθ = (I + θ)(Ω0).

We first check that vθ satisfies

− div(A(θ)∇v) + λJθg(vθ) = (f ◦ (I + θ))Jθ

in H−1(Ω), where

A(θ) = Jθ(I +Dθ)−1(I +t Dθ)−1, Jθ = det J(I + θ) .

For that, consider for a given ϕ ∈ H1
0 (Ω0) the auxiliar function ϕθ = ϕ◦(I+θ)−1 ∈

H1
0 (Ωθ) by definition of uθ we have

∫

Ωθ

(∇uθ∇ϕθ + λg(uθ)ϕθ) dx =

∫

Ωθ

fϕθ dS ∀ϕ ∈ H1
0 (Ω0).

Then by a change of variable, the result follows.
Let us define the operator F : W 1,∞ ×H1

0 (Ω0)→ H−1(Ω0), by

F (θ, v) = div(A(θ)∇v) + λJθg(v)− (f ◦ (I + θ))Jθ

of class C1 (or Cm) in a neighbourhood of θ = 0. On that direction we check

• θ ∈ W 1,∞ 7→ Jθ = det(I + Dθ) ∈ L∞ of class C∞ since θ ∈ W 1,∞ →
I +Dθ ∈ L∞(Rn,Mn) and det is a polynomic operator.
• θ ∈W 1,∞ 7→ (I +Dθ)−1 =

∑
q≥0(−1)qDθq ∈ L∞(Rn,Mn) is C∞,

• (A, v) ∈ L∞(Rn,Mn)×H1
0 (G) 7→ − div(A∇v) ∈ H−1(G) is C∞ since it is

bilinear and continuous.
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• Through the lemma θ 7→ k(θ) = (f ◦ (I + θ))Jθ ∈ L2(Rn) ⊂ H−1(Ω0) is C1

so F ∈ C1. Note that, if f = 0 then F ∈ Cm.
It holds that

DvF (0, 0)ϕ = −∆ϕ+ λg′(u(· : 0))ϕ

and, since g′ ≥ 0, we have that Dv(0, v) : H1
0 (G) → H−1(G) is a isomorphism

by Lax-Milgram’s theorem. Through the implicit function theorem (theorem 2.5)
there exists a map θ ∈ W 1,∞ → v(θ) ∈ H1

0 (Ω0) of class C1 is f ∈ H1(Rn) and Cm
if f = 0 such that

F (θ, v(θ)) = 0 .

If we we consider uniqueness for the elliptic problem we find that

v(θ) = vθ.

Simple substitution returns uθ. By Theorem 2.4 we have the differentiability of
u. �

Once this is done we can make explicit calculations for the directional derivative.

Proof of Theorem 1.7. Let us now characterize the directional derivative. Let θ ∈
W 1,∞ be fixed, let us call u′ = u′(0)(θ) and let Φ a curve of perturbations of the
identity with V = θ. We differenciate on the variational formulation

∫

Rn
fϕdx =

∫

Rn
(−uτ∆ϕ+ λg(uτ )ϕ) dx ϕ ∈ C∞c (Ω)

to obtain

0 =

∫

Ω0

(−u′∆ϕ+ λg′(u0)u′ϕ) dx, ϕ ∈ C∞c (Ω) (3.6)

(observe that h(x) = λg′(u0(x)) is a known function). This means that u′ is a very
weak solution of the aforementioned equation (1.8). Since we know that u′ ∈ L2(Rn)
we can apply regularity theory for this equation.

For the boundary condition vθ = 0 on ∂Ω0, for all θ and therefore v′ = 0, ∂Ω0.
Since vτ = uτ ◦ Φ(τ) we have

u′ +∇uΩ0
· θ = v′ ∈ H1

0 (Ω0)

which provides the boundary condition. Therefore, we have
∫

Ω0

(−u′∆ϕ+ λg′(u0)u′ϕ) dx =

∫

∂Ω0

((∇uΩ0
· θ)∂nϕ) dS, ϕ ∈ C2

0(Ω) (3.7)

we can obtain a Kato type inequality to shows uniqueness of very weak solutions
(see [13]). For the regularity we apply the following classical trick. Since u′ is know

we can take f̃ = −λg′(u0)u′ ∈ L2(Ω) and η̃ = −∇u · θ ∈ L2(∂Ω) and find z the
unique solution in H1(Ω0) of

−∆z = f̃ , in Ω

z = η̃, on ∂Ω

classical theory. Then z is a very weak solution of (3.7) and, by uniqueness, u′(0) =
z ∈ H1(Ω). �

Remark 3.2. In the case that further regularity is necessary v ∈ H1
0 ∩Hm then

deformation must taken in Wm,∞. A theory analogous to that on [15] for higher
differentiability can be obtained for the non-linear case.
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4. Differentiation the functional. Proof of Theorem 1.9 and its
corollaries

We shall follow a reasoning similar to the one presented in [15]. Let us define
Gt = Φ(t, G) and consider a function f such that f(τ) ∈ L1(Gt). We take interest
on the map I : R→ R,

I(τ) =

∫

Gτ

f(τ, x) dx =

∫

G

f(τ,Φ(τ, y))J(τ, y) dy (4.1)

where f(τ, x) = f(τ)(x),

J(τ, y) = det(DyΦ(τ, y)).

Theorem 4.1. Let Φ very assumptions 1.5, f such that f : [0, T ) → L1(Rn) is
differentiable at 0 and

f(0) ∈W 1,1(RN ) .

Then, τ 7→ I(τ) =
∫
Gτ
f(τ) is differentiable at 0 and

I ′(0) =

∫

G

f ′(0) + div(f(0)V ) .

If G is an open set with Lipschitz boundary then

I ′(0) =

∫

G

f ′(0) +

∫

∂G

f(0)n · V.

In simpler terms, under regularity it holds that

∂

∂τ

∣∣∣
τ=0

(∫

Gτ

f(τ, x)dx
)

=

∫

Ω0

{∂f
∂τ

(0, x) + div
(
f(0, x)

∂Φ

∂τ
(0, x)

)}
dx. (4.2)

We have some immediate consequences of Theorem 4.1

Lemma 4.2. Let g ∈ W 1,1(RN ) and Ψ : [0, T ) → W 1,∞ be continuous at 0 such
that Ψ : [0, T ) → L∞ is differentiable at 0, and let Z be its derivative. Then the
mapping [0, T )→ L1(Rn),

τ 7→ g ◦Ψ(τ)

is differentiable at 0 and G′(0) = ∇g · Z.

Lemma 4.3 (Differentiation under the integral sign). Let E be a Banach space

and f : E × Ω→ R be such that f̃ : E → L1(Ω)

f̃(x) = f(x, ·)
is differentiable at x0. Let F : E → R,

F (x) =

∫

Ω

f(x, y)dy .

Then F is differentiable at x0 and

DF (x) =

∫

Ω

(Dxf̃)(x)(y).

Now we can prove the third of our main results.
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Proof of Theorem 1.9. It is classical that we can differentiate under the integral
sign ∫

Ω

f(t, x)dx

with respect to t as many times as f is differentiable, and that the integral commu-
tates with the derivative. This shows the derivability with vJθ under the integral
sign. For the remaining equations we have to be a little more subtle and apply the
previous theorem. Let f(τ) = g ◦ uτ . From the know formulas we must compute

f ′(τ) = (g′ ◦ u0)u′

Thus
∂

∂τ

∣∣∣
τ=0

(∫

Gτ

g(uτ ) dx
)

=

∫

Ω0

{g′(u0)u′ + div (g(u0)Φ′(0))} dx.

If Ω0 is Lipschitz then

∂

∂τ

∣∣∣
τ=0

(∫

Gτ

g(uτ ) dx
)

=

∫

Ω0

g′(u0)u′x+ g(0)

∫

∂Ω0

Φ′(0) · ndS. (4.3)

Equation (1.10) is guaranteed since g(v) : W 1,∞ → H1
0 (Ω) → L1(Ω) is C1, and so

we can differentiate under the integral sign. �

To show equation (1.10) we need a formula of differentiation under the integral
sign

Proof of Corollary 1.10. Given the functional

I(Ω) =
1

|Ω|

∫

Ω

g ◦ uΩdx

If we do not impose constant volume we have also to differentiate the volume
measure

I(Φ) =

∫
Φ(G)

g ◦ uΦ(Ω0)dx∫
Φ(G)

dx

over a curve of deformations Φ(τ) we have, applying the formula of differentiation
of fractions

dI

dτ

∣∣∣
τ=0

=
1

|Ω0|2
(
|Ω0|

d

dτ

(∫

Φ(G)

g ◦ uΦ(Ω0)dx
)

−
(∫

Ω0

div Φ′(0) · ndx
)(∫

Φ(G)

g ◦ uΦ(Ω0)dx
))
,

which, once simplified, gives the result. �

The proof of Corollary 1.11 relies on the following Proposition.

Proposition 4.4. Let Φ(τ) be a volume preserving family of deformations of Ω0

in the sense of Hypothesis 1.5. Then
∫

Ω0

div Φ′(0) dx = 0.

If G is Lipschitz then ∫

∂Ω0

Φ′(0) · ndS = 0.
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Proof. Define Gτ = Φ(Ω0, τ); then

c =

∫

Gτ

1 dx .

From this and theorem 4.1 we obtain

0 =

∫

Ω0

∂1

∂τ
+ div (1Φ′(0)) dx,

which proves the first part of the result. The second is an immediate consequence
of the divergence theorem. �

Remark 4.5. Note that the condition Φ(0) = I is paramount. For example con-
sider the family of deformations

Φ(τ)(x, y) =
(

(1 + τ)x,
1

1 + τ
y
)
.

These are isovolumetric deformations of any circle centered at 0, and of course
Φ(0) = 0. We can compute

div Φ′(τ) = 1− 1

(1 + τ)2
.

This is only zero at τ = 0 (that is where Φ(τ) = I) even though the transformations
are isovolumetric at any given τ .

Remark 4.6. For generalizing to the case g = g(x, u), we need to assume that the
Nemitskij operator G : W 1,∞(Ω)×H1(Ω)→ L2(Ω),

G(Φ, v) = g(Φ(x), v(x))

is Cm and that
∂g

∂v
(x, v) ≥ 0.

In this case the operator on the implicit function theorem will be

F (θ, v) = −div(A(θ)v) + g((I + θ)−1, v)Jθ = fJθ

with derivative

DvF (0, v)ϕ = −(∆ϕ)(x) +
∂g

∂v
(x, v(x))ϕ(x).

5. Applications

Rearrangement techniques: Schwarz and Steiner symmetrization. From
Schwarz symmetrization we know (see e.g. [8], [9]) that, if g is either concave or
convex and θ is volume preserving then η(θ) ≤ η(0) (that is: the sphere is the least
effective reactor). Therefore

∫

G

g′(u0)u′ = η̃′(0) = 0.

For the Steiner symmetrization we know that, as we have proven in [10], for
concave g, and in [11], for convex g (note that this is equivalent to concave β), the
following holds:
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Theorem 5.1. Let g be a concave or convex continuous nondecreasing function
such that g(0) = 0. Let f ∈ L2(Ω) be nonnegative, i.e. f ≥ 0, and |B| = |Ω′′| with
B a ball. Then

η(Ω′ × Ω′′) ≤ η(Ω′ ×B). (5.1)

So, for G = B × G2 3 (x, y), we have for all deformations θ = (θ1, 0) with θ1

volume preserving and g convex or concave,∫

G

g′(u0)u′ =

∫

G2

∫

B

(g′(u0)u′ + div(g(u0)θ)

=

∫

G2

∫

B

(g′(u0)u′ + divx(g(u0)θ1)

=

∫

G2

{∫

B

g′(u0)u′ + g(0)

∫

∂B

θ1 · n
}

=

∫

G2

∫

B

g′(u0)u′

=

∫

G

g′(u0)u′ .

Whenever the Nemitskij operator for g is of class C2 we get

η′(0)(θ) = 0, η′′(0)(θ, θ) ≤ 0 .

Applying the bounds for η′(0) we have as consequence an a priori estimate of the
effectiveness factor in terms of the value of the functional for a circular cylinder:

Proposition 5.2. If B is a ball such that |B| = |Ω′| then

η(B × Ω′′)− c(p)|g′|∞|u|W 2,p |θ|∞ ≤ η(Ω′ × Ω′′) ≤ η(B × Ω′′).

Figure 1. Effectiveness on isovolumetric ellipses with smaller
semiaxes a, for the kinetic g(u) = 1− (1− u)1/q.

Numerical experiments. The following numerical experiments were performed
with COMSOL Multiphysics.
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Solution in elliptic cylinder Curve of the effectiveness

Figure 2. Effectiveness on elliptic cylinders with smaller semiaxes
a, for the kinetic g(u) = 1 − (1 − u)1/q, 0 < q < 1 (this kinetic
corresponds to β(w) = wq, which is known in chemistry as the
Freundlich isotherm).

Solution in rectangular cylinder Surface of the effectiveness for h = 10
and a, b as parameters. Dotted lines
represent curves of equal area

Figure 3. Effectiveness on rectangular cylinders [0, a] × [0, b] ×
[0, h], for the kinetic g(u) = 1− (1− u)2 and h = 10.

Example 5.3 (Schwarz symmetrization). Let g = g1 + g2 where g1 is convex
and g2 is concave. It is well known, see [8] and [9], that a sphere is the least
effective reactor for our problem in each isoperimetric family (to be more precise,
isovolumetric families). We can see this in terms of derivatives through a family of
ellipses

Φ(x, y, τ) = (a(τ)x, a(−τ)y)
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Figure 4. A triangular cylinder.

for a regular such that a(0) = 1, even when we have no volume conservation. It
turns out that since this is a symmetric curve of linear transformations we have
that

I(τ) = I(−τ) .

Since we have differentiability it must hold that I ′(0) = 0. Since we have that this
is a minimum and we are able to differentiate twice I ′′(0) = 0.

Example 5.4 (Steiner symmetrization). The same computations hold for trans-
formations

Φ(x, y, z, τ) = (a(τ)x, a(−τ)y, z)

This is a particular case of the results in [10] and [11]. If we consider a (uni-
parametric) family of elliptic cylinders of fixed height then we have the analogous
result .

We can even do this analysis on two parametric families, for example in square
or triangular cylinder were we consider both dimensions on the basis.

This analysis can be repeated over other families, like triangular cylinders with
results of the same exact nature.
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publications du Laboratoire d’Analyse Numérique, Université de Paris VI, 1976.
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Instituto de Matemática Interdisciplinar and Dpto. de Matemá tica Aplicada, Facultad
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SHAPE DIFFERENTIATION OF
A STEADY-STATE REACTION-DIFFUSION PROBLEM

ARISING IN CHEMICAL ENGINEERING:
THE CASE OF NON-SMOOTH KINETIC

WITH DEAD CORE

DAVID GÓMEZ-CASTRO

Abstract. In this paper we consider an extension of the results in shape differentia-
tion of semilinear equations with smooth nonlinearity presented in Díaz, J.I., Gómez-
Castro, D.: An Application of Shape Differentiation to the Effectiveness of a Steady
State Reaction-Diffusion Problem Arising in Chemical Engineering. Electron. J. Dif-
fer. Equations. 22, 31—45 (2015) to the case in which the nonlinearities might be less
smooth. Namely we will show that Gateaux shape derivatives exists when the nonlin-
earity is only Lipschitz continuous, and we will give a definition of the derivative when
the nonlinearity has a blow up. In this direction, we will study the case of root-type
nonlinearities.

1. Introduction

In this paper we consider the shape differentiation of a family of diffusion-reaction
problems introduced by Aris in the context of optimization of chemical reactors depend-
ing on the spatial domain (see [1]). It was later shown that the model can be rigorously
deduced as a limit of different nonhomogeneous microscopic models (see [3, 4]). In
particular we will be interested in the solutions of problem

{
−∆w + β(w) = f, in Ω,
w = 1, on ∂Ω,

(1.1)

and their behaviour as we deform the domain Ω.

It will be sometimes useful to consider the change in variable u = 1 − w, g(u) =
β(1) − β(1 − u) and f̂ = β(1) − f , so that we have u = 0 on the boundary. After this
change in variable we have that u is the solution of

{
−∆u+ g(u) = f̂ , in Ω,
u = 0, on ∂Ω.

(1.2)

These functions will be sometimes denoted uΩ, wΩ when different domains are considered.

2010 Mathematics Subject Classification. 35J61, 46G05, 35B30.
Key words and phrases. Shape differentiation; reaction-diffusion; chemical engineering; dead core.
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In [8] (see also [15, 13, 14]) the authors showed that, if β ∈ W 2,∞(R) and f ∈ L2(Ω)
then the maps

W 1,∞(Rn,Rn) → H1
0 (Ω)

θ 7→ u(I+θ)Ω ◦ (I + θ)
W 1,∞(Rn,Rn) → L2(Rn)

θ 7→ u(I+θ)Ω,

where the extension by 0 is considered in Rn \Ω, are Fréchet differentiable at 0. Fixing
θ ∈ W 1,∞(Rn,Rn) it was shown in [8] that the directional derivative (the derivative of
uτ = u(I+τθ)Ω with respect to τ , duτ

dτ = duτ
dτ |τ=0) is the solution of the following problem

{
−∆duτ

dτ + g′(uΩ)duτ
dτ = 0, in Ω,

duτ
dτ = −∇uΩ · θ, on ∂Ω.

(1.3)

Notice that, since u = 1−w, we have that duτ
dτ = −dwτ

dτ . Hence, taking into account that
g′(u) = −β′(w), we have that

{
−∆dwτ

dτ + β′(wΩ)dwτ
dτ = 0, in Ω,

dwτ
dτ = −∇wΩ · θ, on ∂Ω.

(1.4)

The aim of this paper is to extend this kind of results to the case when β /∈W 2,∞. First,
we will show that, when β ∈W 1,∞ then the Gateaux shape derivative exists. However,
if β is not locally Lipschitz continuous, the solution of (1.1) might develop a region of
positive measure

NΩ = {x ∈ Ω : wΩ(x) = 0}. (1.5)
This region, known as dead core, was studied at length in [5, 2]. It is a necessary
condition for the existence of this region that β′(wΩ) = +∞. Hence, equation (1.4)
cannot be understood immediately in a standard way. In this setting, we will show that
there exists a limit of the previous theory.

2. Statement of results

For the rest of the paper Ω ⊂ Rn will be a fixed domain, of class C2, and n ≥ 2.

2.1. Existence and estimates of shape derivatives.

2.1.1. Existence of Gateaux derivative when β ∈ W 1,∞. In [8] the authors prove the
existence of a shape derivative in the Fréchet sense when β ∈W 2,∞(R). Nonetheless, as
is it usually the case, the equation for the derivative is well defined in a straightforward
way when β ∈W 1,∞(R). In fact, the following result shows that, if β ∈W 1,∞(R) rather
than W 2,∞(R), then the shape derivative exists only in the Gateaux sense, which is
weaker than the Fréchet sense.

Theorem 2.1. Let θ ∈W 1,∞(Rn,Rn), β ∈W 1,∞(R) be nondecreasing such that β(0) =
0 and f ∈ H1(Rn). Then, the applications

R → L2(Ω)
τ 7→ u(I+τθ)Ω ◦ (I + τθ),
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and

R → L2(Rn)
τ 7→ u(I+τθ)Ω

are differentiable at 0. Furthermore, duτ
dτ |τ=0 is the unique solution of (1.3).

Remark 2.2. In most case, the process of homogenization mentioned in the introduction
gives an homogeneous equation (1.1) in which β is the same as in the microscopic limit,
and thus it is natural that β be singular. However, it sometimes happens that the limit
kinetic is different. In the homogenization of problems with particles of critical size (see
[9]) it turns out that the resulting kinetic in the macroscopic homogeneous equation (1.1)
satisfies β ∈ W 1,∞, even when the original kinetic of the microscopic problem was a
general maximal monotone graph.

2.1.2. From W 2,∞ to W 1,∞ ∩ C1. Let us show that the shape derivative is continuously
dependent on the nonlinearity, and thus that we can make a smooth transition from the
Fréchet scenario presented in [8] to our current case. For the rest of the paper we will
use the notation:

v = dwτ

dτ

∣∣∣
τ=0

(2.1)

Lemma 2.3. Let f ∈ L2(Rn), β ∈ W 1,∞(R) be nondecreasing functions such that
β(0) = 0 and let βn ∈ W 2,∞(R) nondecreasing such that βn(0) = 0. Let wn be the
unique solution of

{
−∆wn + βn(wn) = f Ω,
wn = 1 ∂Ω.

(2.2)

Then

‖wn − w‖H1(Ω) ≤ C‖βn − β‖L∞ (2.3)
‖wn − w‖H2(Ω) ≤ C(1 + ‖β′‖L∞)‖βn − β‖L∞ . (2.4)

Furthermore, let β ∈ C1(R) ∩W 1,∞(R) and vn be the unique solution of
{
−∆vn + β′n(wn)vn = 0 Ω,
vn +∇wn · θ = 0 ∂Ω.

(2.5)

Then
vn ⇀ v in H1(Ω). (2.6)

Remark 2.4. In (2.3) the notation

‖βn − β‖L∞ = sup
x∈R

|βn(x)− β(x)|

does mean that either βn or β are L∞(R) functions themselves, but rather that their
difference is pointwise bounded, and, in fact, this bound is destined to go 0 as n→ +∞.
We will use this notation throughout the paper.



4 D. GÓMEZ-CASTRO EJDE-2017/??

2.1.3. Shape derivative with a dead core. We can prove that the shape derivative in the
smooth case has, under some assumptions, a natural limit when β not smooth.

In some cases in the applications (see [5]) we can take β so that β′(wΩ) has a blow
up. It is common, specially in Chemical Engineering, that β′(0) = +∞ and NΩ exists
(see [5]). In this case β′(wΩ) = +∞ in NΩ. Due to this fact, the natural behaviour of
the weak solutions of (1.4) is v = 0 in NΩ. We have the following result

Theorem 2.5. Let β be nondecreasing, β(0) = 0, β′(0) = +∞,

β ∈ C(R) ∩ C1(R \ {0}),
and assume that |NΩ| > 0, θ ∈ W 1,∞(Rn,Rn) and 0 ≤ f ≤ β(1). Then, there exists v a
solution of 




−∆v + β′(wΩ)v = 0 Ω \NΩ,

v = 0 ∂NΩ,

v = −∇wΩ · θ ∂Ω,
(2.7)

in the sense that v ∈ H1(Ω), v = 0 in NΩ, v = −∇wΩ · θ in L2(∂Ω), β′(wΩ)v2 ∈ L1(Ω)
and ∫

Ω\NΩ
∇v∇ϕ+

∫

Ω\NΩ
β′(w)vϕ = 0 (2.8)

for every ϕ ∈W 1,∞
c (Ω \NΩ). Furthermore, for m ∈ N, consider βm defined by

β′m(s) = min{m,β′(s)}, βm(0) = β(0) = 0,

and let wm, vm be the unique solutions of (2.2) and (2.5). Then,

vm ⇀ v, in H1(Ω), (2.9)

where v is a solution of (2.7).

The uniqueness of solutions of (2.7) when β′(wΩ) blows up is by no means trivial.
Problem (2.7) can be written in the following way:

−∆v + V v = f (2.10)

where V = β′(wΩ) may blow up as a power of the distance to a piece of the boundary.
This kind of problems are common in Quantum Physics, although their mathematical
treatment is not always rigorous (cf. [6, 7]).

In the next section we will show estimates on β′(wΩ). Let us state here some unique-
ness results depending on the different blow-up rates.

When the blows is subquadratic (i.e. not too rapid), by applying Hardy’s inequality
and the Lax-Migram theorem, we have the following result (see [6, 7]).

Corollary 2.6. Let NΩ have positive measure and β′(u(x)) ≤ Cd(x,NΩ)−2 for a.e.
x ∈ Ω \NΩ. Then the solution v is unique.
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The study of solutions of problem (2.10) in Ω when V ∈ L1
loc(Ω) by many authors

(see [11, 10] and the references therein). Existence and uniqueness of this problem in
the case V (x) ≥ Cd(x, ∂Ω)−r with r > 2 was proved in [10]. Applying these techniques
one can show that

Corollary 2.7. Let NΩ have positive measure and β′(u(x)) ≥ Cd(x,NΩ)−r, r > 2 for
a.e. x ∈ Ω \NΩ. Then the solution v is unique.

Similar techniques can be applied to the case β′(u(x)) ≥ Cd(x,NΩ)−2. This will be
the subject of a further paper.

2.2. Estimates of wΩ close to NΩ. Let us study the solution wΩ on the proximity of
the dead core and the blow up behaviour of β′(wΩ). First, we present a known example

Example 2.8. Explicit radial solutions with dead core are known when β(w) = |w|q−1w
(0 < q < 1), Ω is a ball of large enough radius and f is radially symmetric. In this case
it is known that NΩ exists, has positive measure and

1
C
d(x,NΩ)−2 ≤ β′(wΩ) ≤ Cd(x,NΩ)−2.

For the details see [5].

In fact, we present here a more general result to study the behaviour in the proximity
of the dead core, based on estimates from [5].

Proposition 2.9. Let f = 0, β be continuous, monotone increasing such that β(0) = 0,
w be a solution of (1.1) that develops a dead core NΩ of positive measure and ∂NΩ ∈ C1.
Assume that

G(t) =
√

2
(∫ t

0
β(τ)dτ + αt

) 1
2
, where α = max

{
0, min

x∈∂Ω
H(x)∂w

∂n
(x)

}
, (2.11)

is such that 1
G ∈ L1(R). Then

wΩ(x) ≤ Ψ−1(d(x,NΩ)), where Ψ(s) =
∫ s

0

dt

G(t) , (2.12)

in a neighbournood of NΩ.

Example 2.10 (Root type reactions). Let f = 0, β(s) = λ|s|q−1s with 0 < q < 1 and
Ω be convex such that NΩ exists and ∂NΩ ∈ C1. Then

wΩ(x) ≤ Cd(x,NΩ)
2

1−q . (2.13)
Furthermore

β′(wΩ(x)) ≥ Cd(x,NΩ)−2. (2.14)

3. Proof of Theorem 2.1

For the rest of the paper let us note
uτ = u(I+τθ)Ω. (3.1)

Notice that u0 = uΩ.
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Let us define Uτ = u(I+τθ)Ω ◦ (I + τθ) ∈ H1
0 (Ω). Again U0 = u0 = uΩ. We have that

∫

Ω
Aτ∇Uτ∇ϕ+

∫

Ω
g(Uτ )ϕJτ =

∫

Ω
fτϕJτ , (3.2)

where Jτ is the Jacobian of the transformation. fτ = f ◦ (I + τθ) and Aτ is the
corresponding diffusion matrix (see [8] for the explicit expression). Fortunately, Jτ ≥ 0
and, for τ small, we have that ξ · Aτ ξ ≥ A0|ξ|2 for some A0 > 0 constant. Considering
the difference of the weak formulations of Uτ and U0 = uΩ we have that

∫

Ω
Aτ∇(Uτ − u0)∇ϕ+

∫

Ω
(g(Uτ )− g(u0))Jτϕ =

∫

Ω
(fτJτ − f)ϕ+

+
∫

Ω
(I −Aτ )∇u0∇ϕ

+
∫

Ω
(Jτ − 1)g(u0)ϕ.

Hence, due to the monotonicity of g, we have that
∥∥∥∥∇

(
Uτ − u

τ

)∥∥∥∥
L2
≤ C

(∥∥∥∥
fτ − f

τ

∥∥∥∥
L2

+
∥∥∥∥
Aτ − I

τ

∥∥∥∥
L∞

‖∇u0‖L2 +
∥∥∥∥
Jτ − 1
τ

∥∥∥∥
L∞

‖g(u0)‖L2

)

Since fτ , Aτ and Jτ are differentiable at 0, there is weak H1
0 (Ω) limit. Hence, the limit

is strong in L2(Ω). Therefore, the function

uτ = Uτ ◦ (I + τθ)−1 (3.3)

is differentiable with respect to τ ∈ R with images in L2(Ω) at τ = 0. Besides,

H1
0 (Ω) ∋ dUτ

dτ

∣∣∣
τ=0

= duτ
dτ

∣∣∣
τ=0

+∇u0 · θ. (3.4)

To characterize the derivative, we differenciate on the variational formulation
∫

Rn
fϕ =

∫

Rn
(−uτ∆ϕ+ g(uτ )ϕ) ∀ϕ ∈ C∞c (Ω).

Considering the difference of the equations for uτ and u0 and diving by τ

0 =
∫

Rn

(
−uτ − u0

τ
∆ϕ+ g(uτ )− g(u0)

τ
ϕ

)
(3.5)

=
∫

Rn

uτ − u0
τ

(
−∆ϕ+ g(uτ )− g(u0)

uτ − u0
ϕ

)
. (3.6)

Notice that ∣∣∣∣
g(uτ )− g(u0)

uτ − u0

∣∣∣∣ ≤ ‖g′‖L∞ .

Therefore, up to a subsequence, g(uτ )−g(u0)
uτ−u0

converges weakly in L2(Ω). On the other
hand since uτ → u0 pointwise, again up to a subsequence, so

g(uτ )− g(u0)
uτ − u0

→ g′(u0) a.e. in Ω. (3.7)



SHAPE DIFFERENTIATION: NON SMOOTH CASE 7

Via a Césaro mean argument we have that the weak L2 limit and pointwise limit coincide.
Hence, passing to the limit in L2(Ω)

0 =
∫

Ω

duτ
dτ

∣∣∣
τ=0

(−∆ϕ+ g′(u0)ϕ
)
, ϕ ∈ C∞c (Ω). (3.8)

Therefore duτ
dτ is the unique solution of (1.3). �

4. Proof of Lemma 2.3

By considering the difference of the weak formulations we have that
∫

Ω
∇(wm − w)∇ϕ+

∫

Ω
(βm(wm)− βm(w))ϕ =

∫

Ω
(β(w) − βm(w))ϕ.

Taking ϕ = wm − w, and using the monotonicity of βm we have that
‖∇(wm − w)‖2

L2 ≤ ‖βm − β‖L∞‖wm − w‖L1(Ω).

Using Poincaré inequality and the embedding L1 →֒ L2 we have that
‖wm − w‖L2 ≤ C‖βm − β‖L∞ .

By considering the equation
‖∆(wm − w)‖L2 = ‖β(w) − βm(wm)‖L2

≤ ‖β(w) − β(wm)‖L2 + ‖β(wm)− βm(wm)‖L2

≤ ‖β′‖L∞‖wm − w‖L2 + ‖βm − β‖L∞ .

Hence, to deduce (2.4) we apply that
‖wm − w‖H2 ≤ C(‖∆(wm − w)‖L2 + ‖wm − w‖L2).

Considering the difference of the weak formulations of the problems for vm and v we
have that∫

Ω
∇(vm − v)∇ϕ =

∫

Ω
(β′(w)v − β′m(wm)vm)ϕ

=
∫

Ω
(β′(w) − β′m(wm))vmϕ+

∫

Ω
β′(w)(v − vm)ϕ

=
∫

Ω
(β′(w) − β′(wm))vmϕ+

∫

Ω
(β′(wm)− β′m(wm))vmϕ

+
∫

Ω
β′(w)(v − vm)ϕ (4.1)

for all ϕ ∈ H1
0 (Ω). Considering the test function ϕ = vm − v +∇(wm − w) · θ ∈ H1

0 (Ω)
we have, applying (2.4)

∫

Ω
|∇(vm − v)|2 ≤ C(1 + ‖wm − w‖H2)

×
(
(1 + ‖β′(w)‖L∞)‖wm − w‖H2

+ ‖vm‖L2(‖β′m + β′‖L∞ + ‖β′(wm)− β′(w)‖L∞)
)
.
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We cannot guaranty that ‖β′(wm)−β′(w)‖∞ goes to zero. However it is, indeed, bounded
by 2‖β′‖L∞ . On the other hand, taking into account the boundary condition
‖vm− v‖L2(∂Ω) ≤ C‖∇(wm−w)‖L2(∂Ω) ≤ C‖wm−w‖H2(Ω) ≤ C‖βm−β‖L2 → 0. (4.2)

Hence, there is a weak limit v̂ ∈ H1(Ω)
vm − v ⇀ v̂ in H1(Ω). (4.3)

Due to (4.2) we have that v̂ ∈ H1
0 (Ω). Taking into account (4.1) and the fact that

β′(wm) → β′(w) a.e. in Ω, have that
∫

Ω
∇v̂∇ϕ+

∫

Ω
β′(w)v̂ϕ = 0 ∀ϕ ∈ H1

0 (Ω). (4.4)

Taking ϕ = v̂ ∈ H1
0 (Ω) as a test function we deduce that v̂ = 0. �

5. Proof of Theorem 2.5

We start by pointing out that, due to the condition on f we have that 0 ≤ wm ≤ 1.
Since βm ր β in [0, 1] we have wm is pointwise decreasing (see [12]). Hence, there exists
a pointwise limit w such that wm ց w a.e. in Ω. In particular 0 ≤ w ≤ 1. Due to the
Dominated Convergence Theorem we have that

wm → w in Lp(Ω) ∀1 ≤ p < +∞. (5.1)
Let U ⊂ Ω be an open neighbourhood of ∂Ω such that U ∩NΩ = ∅ and ∂U ∈ C2. Then

wU = inf
U
w > 0. (5.2)

We have that wm ≥ w ≥ wU . We have that β ∈ C1([wU , 1]) and, hence, βm → β in
C1([wU , 1]). Therefore

βm(wm) → β(w) in Lp(Ω \ U) ∀1 ≤ p < +∞, (5.3)
Since ‖wm‖H1 ≤ C(1+‖βm(wm)‖L2 +‖f‖L2) we have that wm ⇀ w in H1(Ω), and thus
that w is the unique solution of (1.1). Applying this

∆wm = βm(wm)− f → β(w) − f = ∆w in Lp(Ω \ U). (5.4)
Thus

‖wm − w‖H2(Ω\U) ≤ C(‖∆(wm − w)‖L2(Ω\U ) + ‖wm −w‖L2(Ω\U )) → 0. (5.5)
Hence

wm → w in H2(Ω \ U).
In particular

∇wm → ∇w in H
1
2 (∂Ω)n.

Since β′m ∈ L∞(R) we take the “shape derivative” vm solution of (2.5), which is well
defined. Let us find their limit.
Let us show we show that

β′m(wm) → β′(w) a.e. in Ω. (5.6)
First, let x /∈ NΩ. Then β is C1 in w(x). Therefore β′(wm(x)) → β′(w(x)). Hence,
the sequence β′(wm(x)) is bounded, so β′(wm(x)) ≤ m0 for some m0 large. Thus
β′m(wm(x)) = β′(wm(x)) for m ≥ m0. Hence the convergence is proved for x /∈ NΩ.



SHAPE DIFFERENTIATION: NON SMOOTH CASE 9

Let x ∈ NΩ. Then β′(w(x)) = +∞. Since wm(x) → w(x) then β′(wm(x)) → +∞. In
that case, we have that

β′m(wm(x)) = β(wm(x)) ∧m→ +∞ = β(w(x)).
This completes the proof of (5.6).
Let us show that sequence (vm) is bounded in H1(Ω). There exist two open sets U0, U1 ⊂
Ω such that ∂Ω ⊂ U1, NΩ ⊂ U0, U0 ∩ U1 = ∅. There also exists a smooth transition
function Ψ such that Ψ = 0 in U0 and Ψ = 1 in U1. Let us define gm = Ψ∇wm·θ ∈ H1(Ω).
Then ϕ = vm+gm ∈ H1

0 (Ω) and it can be used as a test function in the weak formulation.
Hence ∫

Ω
∇vm∇(vm + gm) +

∫

Ω
β′m(wm)vm(vm + gm) = 0.

Therefore, through standard arguments
∫

Ω
|∇vm|2 +

∫

Ω
β′m(wm)v2

m = −
∫

Ω
∇vm∇gm −

∫

Ω
β′m(wm)vmgm

≤
(∫

Ω
|∇vm|2

) 1
2
(∫

Ω
|∇gm|2

) 1
2

+
(∫

Ω
β′m(wm)v2

m

) 1
2
(∫

Ω
β′m(wm)g2

m

) 1
2

≤ 1
2

(∫

Ω
|∇vm|2 +

∫

Ω
β′m(wm)v2

m

)

+ C

(∫

Ω
|∇gm|2 +

∫

Ω
β′m(wm)g2

m

)
.

Since β′m(wm) is uniformly bounded in L∞(Ω\U0) we have that the sequence is bounded:
(∫

Ω
|∇vm|2 +

∫

Ω
β′m(wm)v2

m

)
≤ C

(∫

Ω
|∇gm|2 +

∫

Ω
β′m(wm)g2

m

)
≤ C.

In particular, there exists v ∈ H1(Ω) such that, up to a subsequence,
vm ⇀ v in H1(Ω).

Also, due to Fatou’s lemma ∫

Ω
β′(w)v2 ≤ C. (5.7)

Since β′(w) = +∞ in NΩ we have that v = 0 a.e. in NΩ. For ϕ ∈ W 1,∞
c (Ω \ NΩ) we

have that ∫

Ω\NΩ
∇vm∇ϕ+

∫

Ω\NΩ
β′m(wm)vmϕ = 0. (5.8)

Let us consider the compact subset K = suppϕ ⊂ Ω \NΩ. Let us show that β′(wm) →
β′(w) in L2(K). We have 0 < wK ≤ w ≤ wm in K. Due to the Dominated Convergence
Theorem we have that β′m(wm) → β′(w) strongly in Lp(K) for 1 ≤ p < +∞.
Hence, by passing to the limit we deduce that

∫

Ω\NΩ
∇v∇ϕ+

∫

Ω\NΩ
β′(w)vϕ = 0. (5.9)

This completes the proof. �
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6. Proof of Proposition 2.9

Let us consider x0 ∈ ∂NΩ and

W (t) = wΩ(x0 + tn(x0)) (6.1)

where n(x0) represents the normal vector to ∂NΩ at x0. Due to Theorem 1.24 in [5], we
have that

1
2 |∇wΩ(x)|2 ≤

∫ wΩ(x)

0
β(s)ds + αwΩ(x) (6.2)

for all x ∈ Ω. Hence
dW

dt
≤
∣∣∣∣
dW

dt

∣∣∣∣ = |∇wΩ(x0 + tn(x0)) · n(x0)|

≤ |∇wΩ(x0 + tn(x0))| ≤ G(wΩ(x0 + tn(x0)))
= G(W (t)).

Thus, W is a solution of the following Ordinary Differential Inequality
{
dW
dt (t) ≤ G(W (t)),
W (0) = 0.

(6.3)

Let us consider Wε the solution of
{
dWε
dt (t) = G(Wε(t)),
vε(0) = ε.

(6.4)

This problem has a unique smooth solution, since G ∈ C1(R \ {0}) ∩ C(R) is strictly
increasing and G(0) = 0. In fact, solving this simply separable O.D.E., we obtain that

Wε(t) = Ψ−1(t + Ψ(ε)). (6.5)

Due to the monotonicity of G we have that

W (t) ≤Wε(t) ∀t ≥ 0. (6.6)

Passing to the limit as ε→ 0 in (6.5) we have that

W (t) ≤ Ψ−1(t). (6.7)

Hence, since we can parametrize a neighbourhood of ∂NΩ by (x, t) ∈ ∂NΩ×(−λ0, λ0) 7→
x+ tn(x), we deduce that

w(x) ≤ Ψ−1(d(x,NΩ)) (6.8)
at least in a neighbournood of ∂NΩ. This proves the result. �
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Abstract

In this paper we prove the existence and uniqueness of very weak solutions to linear
diffusion equations involving a singular absorption potential and/or an unbounded convec-
tive flow on a bounded open set of IRN . In most of the paper we consider homogeneous
Dirichlet boundary conditions but we prove that when the potential function grows faster
than the distance to the boundary to the power -2 then no boundary condition is required
to get the uniqueness of very weak solutions. This result is new in the literature and must
be distinguished from other previous results in which such uniqueness of solutions without
any boundary condition was proved for degenerate diffusion operators (which is not our
case). Our approach, based on the treatment on some distance to the boundary weighted
spaces, uses a suitable regularity of the solution of the associated dual problem which is here
established. We also consider the delicate question of the differentiability of the very weak
solution and prove that some suitable additional hypothesis on the data is required since
otherwise the gradient of the solution may not be integrable on the domain.
Keywords linear diffusion equations, singular absorption potential, unbounded convective
flow, no boundary conditions, dual problem, local Kato inequality, distance to the boundary
weighted spaces.
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1 Introduction

In this paper we want to develop a weighted space approach to study the existence, uniqueness
and regularity of linear diffusion equations involving singular and unbounded coefficients of the
type

− ∆ω + ~u · ∇ω + V ω = f on Ω, (1)

where V is a very singular potential being in general non negative and locally integrable. To fix
ideas, we shall consider mainly the case of Dirichlet boundary conditions

ω = 0 on ∂Ω, (2)

but our weighted space approach can also be adapted to the case of Neumann boundary conditions
and, what is more remarkable, to the case of no boundary conditions on ∂Ω (but still getting
the uniqueness of solutions) for some specially singular potentials (see the subsection 4.2 in
section 4). Here Ω is an open bounded smooth (for instance with ∂Ω of class C2,1) of IRN ,
N > 2, (the case N = 1 and u =constant is considerably simpler) . The external forcing term
f(x) will be assumed such that

f ∈ L1(Ω; δ) (3)

where the weight in this space is given by

δ(x) = d(x, ∂Ω) (4)

(sharper results will require some slight restrictions to (3) (see for instance section 4.3). We recall
that (3) is optimal in the cases V ≡ 0 and ~u = ~0 as it can be shown by explicitly computing the
Green kernel for special domains.
Although we shall indicate later the detailed assumptions on the data, we anticipate now that
we shall always assume that the convective flow vector ~u satisfies

{
~u ∈ LN (Ω)N , div ~u = 0 in D′(Ω) and

~u · ~n = 0 on ∂Ω
(5)

where ~n denotes the unit exterior normal vector to ∂Ω. Notice that, due to (5), the weak solution
notion adapted to equation (1) is equivalent to the one defined for the treatment of the equation
in divergent form that is

− ∆ω + div (~uω) + V ω = f in Ω. (6)

It is well-known that the mathematical treatment of diffusion equations such as (1)
(
or (6)

)

leads to quite satisfactory results (in view of some applications) when the data f , ~u and V are
assumed to be bounded. Nevertheless, the main interest of this work concerns the limit cases
in which V (x) is assumed to be a singular function (mainly with its singularity located on ∂Ω)
and/or when ~u is an unbounded vector (satisfying (5)). Let us indicate some relevant applications
leading to the consideration of such limit cases :

1. The vorticity equation in fluid mechanics. Equation (1) can be derived from the stationary
Navier-Stokes in 2D

− ∆~u+ (~u · ∇)~u + ∇p = ~F (7)

taking the curl of the equation and setting

f = ~F · ~k, ω = curl ~u · ~k, (8)

where ~k is the last element of the canonical basis in IR3 (see e.g. [46]). Nevertheless, as far
as we know no satisfactory theory is available in the literature under the general condition
that ~F · ~k ∈ L1(Ω; δ).
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2. Schrödinger equation with singular potentials. It is well-known that the consideration of
the bound states ψ(x, t) = e−iEtω(x) leads to the stationary Schrödinger equation

− ∆ω + V (x)ω = Eω in IRN . (9)

The Heisenberg uncertainty principle makes specially interesting the consideration of po-
tentials which are critically singular on ∂Ω more precisely, such that

V (x) > c

δ(x)2
, a.e x ∈ Ω, (10)

for some c > 0, which implies that ω =
∂ω

∂~n
= 0 on ∂Ω, so that we can assume that ω ≡ 0

on IRN − Ω (see [15, 16]). Here we shall not consider any eigenvalue problem like (9) but
the study of (1) for potentials V (x) satisfying (10) will be very useful for later works in
this direction.

3. Linearization of singular and/or degenerate nonlinear equations. For many different pur-
poses, it is very convenient to “approximate” the solutions of quasilinear diffusion equations
of the type

− ∆ϕ(w) + div
(
~φ(w)

)
+ g(w) = f(x) in Ω (11)

by the solutions of the associated linearized equation. This is what appears, for instance,
in the study of the stability of the associated parabolic or hyperbolic equations and also
in some control problems associated with (11). Usually, it is assumed that ϕ is a strictly
increasing function. So by considering θ := ϕ(w) we get

− ∆θ + div
(
~ψ(θ)

)
+ h(θ) = f(x) in Ω, (12)

with {
~ψ : IR → IRN , ~ψ = ~φ ◦ ϕ−1,

h = g ◦ ϕ−1.
(13)

Now, assume that θ∞(x) is a given solution of (12), satisfying, for instance, θ∞ = 0 on ∂Ω.
Then the “formal linearization” of equation (13) around the solution θ∞(x) coincides with
equation (1) when we take

~u(x) := ~ψ
(
θ∞(x)

)

and
V (x) = h′(θ∞(x)

)
.

What makes difficult the study of the corresponding problem (1) is the fact that in many

cases relevant in the reaction-diffusion theory (see e.g. [26]) functions ~ψ′(r) and h′(r)
present a singularity at r = 0 and so, at least on ∂Ω, the coefficients ~u and ~V are singular.
A qualitative information on the behavior of θ∞(x) near ∂Ω allows us to get the precise
information about the singularities of ~u and/or V near ∂Ω

(
which, for instance, is of the

type (10)
)
.

4. Shape optimization in Chemical Engineering. When dealing with the problem of shape
optimization for chemical reactors and applying technics of shape differentiation, it was
shown that if g ∈ W 2,∞(IR), then the solutions u0 of the problem

{
−∆u+ g(u) = f, Ω,

u = 1, ∂Ω,
(14)
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are differentiable with respect to the domain in the sense of Hadamard [25] and after de-
veloped in Murat and Simon [32, 43] and the derivative u′ in the direction of a deformation
θ ∈ W 1,∞(IRn, IRn) is the solution of the problem

{
−∆u′ + g′(u0)u

′ = 0,

u′ + θ · ∇u ∈ H1
0 (Ω).

(15)

Applying the theory developed for the general case (1), we can give a meaning to the
shape derivative if the domain is not smooth as, for example, for root type kinetics (see
[17, 24]). These nonlinear terms g(u) are known in chemistry as Freundlich kinetics and
have signifiant importance. Once again, taking V (x) ≡ g′(u0(x)

)
we arrive to problem (1).

Some previous papers dealing with data in L1(Ω; δ) and/or singular potentials (with usually
~u = ~0) are [20, 18, 37, 1, 29, 40, 6] (see also the references therein).

We also mention that sometimes it is possible to get conclusions for the stationary problem
(1) (with ~u = ~0) through the consideration of the associated evolution equations (see e.g. [7], [8]
and its references).

In this paper we shall work with the notion of “very weak solutions” (v.w.s.) of problem (1).

Definition 1.1. (Very weak solutions of problem (1)).
Let f be in L1(Ω; δ) and ~u ∈ LN,1(Ω)N with div (~u) = 0 in D′(Ω), ~u ·~n = 0 on ∂Ω, V measurable
and non negative function. A very weak solution ω of (1) is a function ω ∈ LN ′,∞(Ω) satisfying

V ω ∈ L1(Ω; δ) and

∫

Ω

ω
[
− ∆φ− ~u · ∇φ+ V φ

]
dx =

∫

Ω

fφ dx, (16)

for all φ ∈ C2(Ω) with φ = 0 on ∂Ω, if V ∈ L1(Ω; δ), or for all φ ∈ C2
c (Ω) if V ∈ L1

loc(Ω).

Notice that we look for a function in the space LN ′,∞(Ω) where N ′ = N
N−1 instead of

ω ∈ L1(Ω) as usual, in order to get more general assumptions on ~u and V .

We also also point out that our study will be concentrated in the case of “absorption” po-
tentials V (x) > 0 a.e. x ∈ Ω. In fact, as we shall see later, the study is also applicable to some
general potentials such that e.g. V (x) > −λ with 0 < λ < λ1 (λ1 being the first eigenvalue of
the Laplacian on Ω with zero Dirichlet boundary condition). As we shall show, this does not
induce a restriction on the growth of the singularity of such absorption potentials near ∂Ω (in
contrast with the well-known results for negative potentials, see e.g. [7]).

The detailed definition of the Lorentz spaces Lp,q(Ω) and some other spaces which we shall
use in our study will be the object of Section 2 of this paper. Other preliminary results and the
statement of some of our main conclusions will be also presented there.

The proof of the existence and uniqueness of a very weak solution (v.w.s.) for (1) needs a
deep study of the dual problem associated with (1)

{
−∆φ− ~u · ∇φ+ V φ = T in Ω,

φ = 0 on ∂Ω.
(17)
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Notice the change of sign in the convection term. We anticipate that in some cases no boundary
condition will be assumed on φ.

In Section 3, we discuss, depending on V and ~u, the existence and the regularity of the
solution of the dual problem. After this, we shall be concerned with the existence of the very
weak solution in LN ′,∞(Ω) ∩L1(Ω;V δ), when V > 0 is locally integrable. We will show that the
very weak solution ω of equation (1) under zero Dirichlet or Neumann boundary condition has

its gradient in the Sobolev-Lorentz weighted space W 1L1+ 1
N ,∞(Ω; δ) in particular we shall get

the estimate ∫

{x:|∇ω|(x)<λ}
δ(x)dx 6 constant

λ1+ 1
N

for all λ > 0, (18)

under the mere assumption ~u ∈ LN,1(Ω)N . Thus, we can conclude that ∇ω ∈ L1
loc(Ω).

The question of uniqueness of v.w.s. given by (16), when V is only in L1
loc(Ω) is one of the

major difficulties in this general framework. When V is sufficiently integrable, say V ∈ LN,1(Ω),
then we derive the uniqueness thanks to the regularity of the dual problem. If V is only locally
integrable, but V is bounded from below by cδ−r, r > 2 near the boundary, then the v.w.s.
is unique even when no boundary condition is specified on ∂Ω (but we additionally know that
V ω ∈ L1(Ω; δ)).
The uniqueness proof relies on the L1(Ω; δ)-accretiveness property of the operator (see [36])
Tω = −∆ω+div (~u ω) when ω ∈ L1(Ω; δ−r)∩W 1,1

loc (Ω). This is given through the following local
version of the Kato’s type inequality

∫

Ω

ω+T
∗ψ dx 6

∫

Ω

ψ sign +(ω)Tω dx, whenever Tω ∈ L1
loc(Ω), ψ ∈ D(Ω), (19)

and a special approximation of test function ϕ in C2(Ω) by a sequence of functions of the type
ϕn(x) = δ(x)rhn(x) with h ∈ C2

c (Ω) and r > 0 (see Lemma 4.4). We point out that, besides
the concrete interest of (19) in itself; such an inequality has many consequences since it allows
to apply the semigroup operators theory on suitable functional spaces.
Concerning very weak solutions (where no differentiability is asked to the function ω), a natural
question (originally set by H. Brézis in 1972 when ~u = 0) is then : when should we have |∇ω| in
L1(Ω)? The answer to this question will require some suitable additional integrability conditions
on f and ~u.

Note that for proving some additional integrability for the very weak solutions ω is a delicate
task. Indeed, we shall show that for some special cases of ~u ∈ C0,α(Ω), α > 0, there exists
f ∈ L1

+(Ω; δ) such that ||ω||LN′ = +∞ when N > 3.This leads to an additional question : under

what conditions could we improve the integrability of ω, to say ω ∈ LN ′
(Ω)? The answer to this

question is also one of the main results of this paper.

Before stating the study of the main equation (1), we shall recall some notations and functional
spaces that we shall use.

2 Notations, preliminary definitions and results

Before stating our main results concerning equation (1) we need to recall some notations and
some functional spaces which are relevant for the study of the “dual problem” (17) under very
general regularity assumptions on the coefficients ~u and T .
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Definition 2.1. ( bmo(IRN )) [23].
A locally integrable function f on IRN is said to be in bmo(IRN ) if

sup
0<diam (Q)<1

1

|Q|

∫

Q

|f(x) − fQ| dx+ sup
diam (Q)>1

1

|Q|

∫

Q

|f(x)|dx

≡ ||f ||bmo(IRN ) < +∞,

where the supremum is taken over all cube Q ⊂ IRN the sides of which are parallel to the
coordinates axes.

Here fQ =
1

|Q|

∫

Q

f(y)dy.

Definition 2.2. ( bmor(Ω) ) [11, 12].
A locally integrable function f on a Lipschitz bounded domain Ω is said to be in bmor(Ω) (r
stands for restriction) if

sup
0<diam (Q)<1

1

|Q|

∫

Q

|f(x) − fQ| dx+

∫

Ω

|f(x)|dx ≡ ||f ||bmor(Ω) < +∞, (20)

where the supremum is taken over all cubeQ ⊂ Ω the sides of which are parallel to the coordinates
axes.
In this case, there exists a function f̃ ∈ bmo(IRN ) such that

f̃
∣∣∣
Ω

= f and ||f̃ ||bmo(IRN ) 6 cΩ · ||f ||bmor(Ω). (21)

Remark 1.
The above definition adapted to the case where the domain Ω is bounded, is equivalent to the
definition given in [12, 11]. The main property (21) is due to P.W Jones [27].
This extension result implies that bmor(Ω) embeds continuously into Lexp(Ω) (a space which we
shall introduce below in Definition 2.5.)

Definition 2.3. (Campanato space L2,N (Ω).)
A function u ∈ L2,N (Ω) if

||u||L2(Ω) + sup
x0∈Ω,r>0

[
r−N

∫

Q(x0,r)∩Ω

|u− ur|2 dx
] 1

2

:= ||u||L2,N (Ω) < +∞.

Here

ur :=
1

|Q(x0; r) ∩ Ω|

∫

Q(x0;r)∩Ω

u(x) dx.

In fact the two above definitions are equivalent :

Theorem 2.1. [40]
For a Lipschitz bounded domain Ω one has

L2,N (Ω) = bmor(Ω), with equivalent norms.

We set
L0(Ω) =

{
v : Ω → IR Lebesgue measurable

}

and we denote by Lp(Ω) the usual Lebesgue space 1 6 p 6 +∞. Although it is not too standard,
we shall use the notation W 1,p(Ω) = W 1Lp(Ω) for the associate Sobolev space. We shall need
the following definitions:
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Definition 2.4. (of the distribution function and monotone rearrangement.)
Let u ∈ L0(Ω). The distribution function of u is the decreasing function

m = mu : IR 7→ [0, |Ω|]

mu = mu(t) = measure
{
x : u(x) > t

}
= |

{
u > t

}
|.

The generalized inverse u∗ of m is defined by

u∗(s) = inf
{
t : |

{
u > t

}
| 6 s

}
, s ∈ [0, |Ω|[

and is called the decreasing rearrangement of u. We shall set Ω∗ =]0, |Ω| [.

We recall now the following definitions :

Definition 2.5.
Let 1 6 p 6 +∞, 0 < q 6 +∞ :
• If q < +∞, one defines the following norm for u ∈ L0(Ω)

||u||p,q = ||u||Lp,q :=

[∫

Ω∗

[
t

1
p |u|∗∗(t)

]q dt

t

] 1
q

where |u|∗∗(t) =
1

t

∫ t

0

|u|∗(σ)dσ.

• If q = +∞,

||u||p,∞ = sup
0<t6|Ω|

t
1
p |u|∗∗(t).

The space Lp,q(Ω) =
{
u ∈ L0(Ω) : ||u||p,q < +∞

}
is called a Lorentz space.

• If p = q = +∞, L∞,∞(Ω) = L∞(Ω).
The dual of L1,1(Ω) is called Lexp(Ω)

Remark 2. We recall that Lp,q(Ω) ⊂ Lp,p(Ω) = Lp(Ω) for any p > 1, q > 1.

For α > 0, we define

Lα
exp(Ω) =




v : Ω → IR, sup

0<s<|Ω|

|v|∗(s)(
1 − Log

s

|Ω|

)α < +∞




,

Lp(LogL)α =

{
f : Ω → IR,

∫

Ω∗

[(
1 − Log

s

|Ω|

)α

|f |∗(s)
]p

ds < +∞
}
.

When there is no possible confusion, we denote by the same symbol the space product V N and
V .
We recall also that if v, u ∈ L1(Ω), then

v∗u=̇ lim
λց0

(u + λv)∗ − u∗
λ

exists in a weak sense and it is called the relative rearrangement of v with respect to u. More
precisely, we have the following result (see [31, 35]).
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Theorem 2.2.
Let Ω be a bounded measurable set in IRN, u and v two functions in L1(Ω) and let w : Ω∗ → IR
be defined by:

w(s) =

∫

{u>u∗(s)}
v(x)dx +

∫ s−|u>u∗(s)|

0

(
v
∣∣∣
{u=u∗(s)}

)
∗
(σ)dσ,

where v
∣∣∣
{u=u∗(s)}

is the restriction of v to {u = u∗(s)}.

Then

(u+ λv)∗ − u∗
λ

⇀
λ→0

dw

ds
in

{
Lp(Ω∗)-weak if v ∈ Lp(Ω), 1 6 p < +∞
L∞(Ω∗)-weak-star if v ∈ L∞(Ω)

.

Moreover,

∣∣∣∣
dw

ds

∣∣∣∣
Lp(Ω∗)

6 |v|Lp(Ω).

One property that we shall use for the relative rearrangement is the following one:

Proposition 1.
Let v > 0, and u be two functions in L1(Ω). Then

(v∗u)∗∗ 6 v∗∗.

There is a link between the derivative of u∗ and the relative rearrangement of the gradient of
u as it was proved in [35, 41]. We will use only the following result (see [35])

Theorem 2.3.

(a) Let u ∈ W 1,1
0 (Ω), u > 0. Then

−u′
∗(s) 6 s

1
N −1

Nα
1
N

N

|∇u|∗u(s) a.e in Ω∗,

and

−u′
∗∗(s) 6 s

1
N −1

Nα
1
N

N

(|∇u|∗u)∗∗(s) a.e. in Ω∗.

(b) Let u ∈ W 1,1(Ω). Then if Ω is a Lipschitz connected open set of IRn

−u′
∗(s) 6 min(s, |Ω| − s)

1
N −1

Q(Ω)
|∇u|∗u(s),

where Q(Ω) is a suitable constant depending only on Ω.

Note that u∗ is in W 1,1
loc (Ω∗) under statements (a) and (b) (see [35, 41]).

Let V be a Banach space contained in L1
loc(Ω).The norm on V is denoted by || · ||V (or simply

|| · ||). We define the Sobolev space over V , for m ∈ IN by

WmV =
{
v ∈ L1

loc(Ω) : Dαv ∈ V for any |α| = α1 + . . .+ αN 6 m
}
.

In particular, W 1
0 V = W 1V ∩W 1,1

0 (Ω).

The following density result can be found in [22, 38, 40]:
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Theorem 2.4. (Density)

Let Ω be a bounded set of class C1,1. Then, the set {ϕ ∈ C2(Ω) : ϕ = 0 on ∂Ω
}

is dense in
{
ϕ ∈ W 2Lp,q(Ω) : ϕ = 0 on ∂Ω

}
, 1 < p < +∞, 1 6 q 6 +∞.

Remark 3.
Here and along the paper ~u is at least in LN (Ω)N , div (~u) = 0 in D′(Ω) and ~u · ~n = 0 on ∂Ω, if
N > 3 and ~u ∈ L2+ε(Ω), for some ε > 0 if N = 2. The value of ~u · ~n on ∂Ω is defined through
the Green’s formula (see [46]).

The following density result can be proved using the same argument as for the Lp-case (see
[46, 13])

Proposition 2. (Density of smooth functions).
Let 1 < p < +∞ and 1 6 q 6 ∞. Then the closure of the set

V =
{
~u ∈ C∞

c (Ω)N : div (~u) = 0 in Ω
}

in Lp,q(Ω)N (resp. (LN (LogL)α)N , α > 0 ) is the space

V :=
{
~u ∈ Lp,q(Ω)N (resp. (LN (Log L)α)N , α > 0 ) : div (~u) = 0 and ~u · ~n = 0on∂Ω

}
.

Due to Proposition 2, a standard approximation argument leads to :

Lemma 2.6.

For all Lipschitz mappings G : IR → IR, and for all φ ∈ W 1
0L

N ′
(Ω) with N ′ =

N

N − 1
, one has

∫

Ω

(~u · ∇φ)G(φ) dx = 0.

Lemma 2.7.
For all ω ∈ H1

0 (Ω), and for all φ ∈ H1
0 (Ω)

∫

Ω

(~u · ∇ω)φdx = −
∫

Ω

~u · ∇φω dx.

Let us remark that,
• if N > 3 ∣∣∣∣

∫

Ω

~u · ∇ω φdx
∣∣∣∣ 6 ||~u||LN ||∇ω||L2 ||φ||L2∗ where

1

2∗ +
1

2
+

1

N
= 1, (22)

• if N = 2 the above inequality holds true after replacing N by 2 + ε and 2∗ by
2(2 + ε)

ε
.

We shall need the following classical result (see [28]) :

Lemma 2.8.
Let X →֒c Y →֒ Z be three Banach spaces each continuously embedded in the next one, the first
inclusion is supposed to be compact. Then, for all ε > 0 there exists a constant cε > 0 such that
∀φ ∈ X

||φ||Y 6 ε||φ||X + cε||φ||Z .
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3 Existence, uniqueness, regularity and results for the dual problem

3.1 Case where the potential V is only measurable and bounded from
below

We first study the solvability of the dual problem (17) (equivalent to (23) below and the regularity
of its solutions.
The following result, consequence of the Lax-Milgram theorem, is a remarkable fact due to the
low regularity assumed on the data ~u and V :

Proposition 3.
Let T ∈ H−1(Ω) (dual space ofH1

0(Ω)), ~u satisfying (5) and let V ∈ L0(Ω) satisfying V > −λ
for some λ ∈ [ 0, λ1) where λ1 is the first eigenvalue of −∆ under the zero Dirichlet boundary

condition. Define W =
{
ϕ ∈ H1

0 (Ω) : (V + λ)ϕ2 ∈ L1(Ω)
}
, and let W ′ denotes its dual.

Then, there exists a unique φ ∈ H1
0 (Ω), with (V + λ)φ2 ∈ L1(Ω), such that

(P)V,T − ∆φ− ~u · ∇φ+ V φ = T in W ′. (23)

Moreover,

||φ||H1
0 (Ω) =

(∫

Ω

|∇φ|2dx
) 1

2

6 λ1

λ1 − λ
||T ||H−1(Ω),

(∫

Ω

(V + λ)φ2dx

) 1
2

6
(

λ1

λ1 − λ

) 1
2

||T ||H−1(Ω),

V φ ∈ L1
loc(Ω).

If furthermore V ∈ L1
loc(Ω), then the equation (23) holds in the sense of distributions in D′(Ω)

Proof. We endow W with the following norm

[ϕ]2W = ||ϕ||2H1
0 (Ω) +

∫

Ω

(V + λ)ϕ2dx.

Let us consider the bilinear form on W given by

a(ψ, ϕ) =

∫

Ω

∇ψ · ∇ϕdx−
∫

Ω

~u · ∇ψϕdx +

∫

Ω

(V + λ)ψϕdx

−λ
∫

Ω

ψϕdx, (ψ, ϕ) ∈ W 2.

Then, by Lemmas 2.6 and 2.7

a(ψ, ψ) =

∫

Ω

|∇ψ|2 − λ

∫

Ω

ψ2dx+

∫

Ω

(V + λ)ψ2dx > α0

[∫

Ω

(V + λ)ψ2 +

∫

Ω

|∇ψ|2
]
, (24)

with α0 > 0.

According to the above remark (22), since ~u ∈ LN (Ω)N , the bilinear form is continuous on
W and we have

|a(ψ, ϕ)| 6 M [ψ]W [ϕ]W ,
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with M = 3(1 + ||~u||LN ). Moreover, since W →֒ H1
0 (Ω) →֒ L2(Ω) →֒ H−1(Ω) →֒ W ′ we have

〈T, ψ〉H−1H1
0

6 ||T ||H−1 [ψ]W , ∀ψ ∈ W.

Thus we may apply the Lax-Milgram theorem to derive the existence of a unique φ ∈ W ,
such a(φ, ψ) = 〈T, ψ〉H−1H1

0
∀ψ ∈ W. The estimate on φ follows from (24).

If V ∈ L1
loc(Ω) then one has

D(Ω) ⊂ W.

Moreover, since

∫

Ω

(V + λ)φ2dx is finite, the Cauchy-Schwarz inequality yields

0 6
∫

Ω′
(V + λ)|φ|dx 6

(∫

Ω

(V + λ)φ2dx

) 1
2

(∫

Ω′
(V + λ)dx

) 1
2

< +∞ (25)

for any open set Ω′ relatively compact in Ω.
Writing ∫

Ω′
|V φ|dx 6

∫

Ω′
(V + λ)|φ|dx + λ

∫

Ω

|φ|dx,

the right hand is finite taking into account (25) and the fact that φ ∈ L2(Ω) . Thus, we have
∀ Ω′ ⊂⊂ Ω, V φ ∈ L1(Ω′). We conclude that V φ ∈ L1

loc(Ω).

As usual in some problems of Quantum Mechanics (see e.g. Lemma 2.1 of [15]) it is very
useful to approximate the solution φ ∈ H1

0 (Ω) of the dual problem (23) found in Proposition 3 by
a sequence of solutions φk corresponding to a sequence of bounded potentials Vk approximating
V . Let us define Vk by

Vk = min(V, k).

Proposition 4. (Approximation by bounded potentials).
Let T ∈ H−1(Ω), ~u and V as in Proposition 3. Then, the sequence φk ∈ H1

0 (Ω) of solutions of
the problems

(P)Vk,T :

∫

Ω

∇φk · ∇ψdx −
∫

Ω

~u∇φkφdx +

∫

Ω

Vkφkψdx = 〈T, ψ〉, ∀ψ ∈ H1
0 (Ω),

converges to φ strongly in H1
0 (Ω), where φ is the unique solution of (P)V,T found in Proposition

3.

Sketch of the proof of Proposition 4. One has, following the arguments of the Proposition 3, that

||φk||H1
0

+

(∫

Ω

(Vk + λ)φ2
kdx

) 1
2

6 2

(
λ1

λ1 − λ

)
||T ||H−1(Ω). (26)

Thus, φk remains in a bounded set of H1
0 (Ω). So we may assume that it converges to a function

ϕ weakly in H1
0 (Ω) and a.e. in Ω. The above relation (26) implies that:

(∫

Ω

(V + λ)ϕ2dx

) 1
2

+ ||ϕ||H1
0

6 2

(
λ1

λ1 − λ

)
||T ||H−1(Ω). (27)

This shows that ϕ ∈ W (where W is the space defined in the proof of Proposition 3). Moreover,
since for all ψ ∈ W we have ~uψ ∈ L2∗′

(Ω) (see the above remark), we deduce

lim
k→+∞

∫

Ω

~u · ∇φkψdx =

∫

Ω

~u · ∇ϕψdx. (28)
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The sequence (Vk + λ)φkψ satisfies Vitali’s condition, since for any measurable subset B ⊂ Ω,
we have ∣∣∣∣

∫

B

(Vk + λ)φkψdx

∣∣∣∣ 6 2

(
λ1

λ1 − λ

)
||T ||H−1(Ω)

(∫

B

(V + λ)ψ2dx

) 1
2

(29)

and
lim

k→+∞
(Vk + λ)(x)φk(x)ψ(x) = (V + λ)(x)ϕ(x)ψ(x). (30)

Thus

lim
k→+∞

∫

Ω

(Vk + λ)φkψdx =

∫

Ω

(V + λ)ϕψdx. (31)

We then deduce that ϕ is solution of the problem (P)V,T and by uniqueness ϕ = φ. Therefore,
the whole sequence φk converges to φ weakly in W and strongly in L2(Ω).

To prove the strong convergence in H1
0 (Ω), let us note, using the equations (P)Vk,T and

(P)V,T , that

lim
k→+∞

∫

Ω

|∇φk|2dx+

∫

Ω

(Vk + λ)φ2
kdx = λ

∫

Ω

φ2dx+ 〈T, φ 〉 =

∫

Ω

(V + λ)φ2 +

∫

Ω

|∇φ|2dx.

Therefore, if we introduce Uk = (∇φk;φk

√
Vk + λ) ∈ L2(Ω)N+1, U∞ = (∇φ;φ

√
V + λ) we have

• lim
k→+∞

|Uk|2L2(Ω)N+1 = |U∞|2L2(Ω)N+1,

• Uk converges to U∞ weakly in L2(Ω)N+1.

Thus Uk converges to U∞ strongly in L2(Ω)N+1.

Remark 4.
Let us notice that for φ ∈ L2(Ω) the conditions (V +λ)φ2 ∈ L1(Ω) and |V |φ2 ∈ L1(Ω), φ ∈ L2(Ω)
are equivalent. Indeed, since V + λ = |V + λ|,

∫

Ω

|V |φ2dx 6
∫

Ω

(V + λ)φ2dx+ λ

∫

Ω

φ2 6
∫

Ω

|V |φ2dx+ 2λ

∫

Ω

φ2dx.

For this reason, from now, we will assume that λ = 0.

Proposition 5.
Under the same assumptions as for Proposition 3 (with λ = 0), if T > 0, T ∈ L1(Ω) ∩H−1(Ω)
then φ > 0.

Proof. We have φ− ∈ W and

0 > −
∫

Ω

|∇φ−|dx−
∫

Ω

V φ−dx =

∫

Ω

Tφ−dx > 0.

Thus
φ− = 0.

For the treatment of (1) we shall need some additional regularity for the solutions of the dual
problem (23) independent of ~u or V . We start by proving the boundedness of φ by means of
some rearrangement technics ([35] p.126 of Th 5.5.1, see also [45]).

We point out that L
N
2 ,1(Ω) →֒ H−1(Ω).
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Proposition 6. (L∞-estimates).

Let φ be the solution of (23)when T ∈ L
N
2 ,1(Ω), V > 0. Then φ ∈ L∞(Ω) and there exists a

constant KN(Ω) independent of ~u and V such that

||φ||L∞(Ω) 6 KN(Ω)||T ||
L

N
2

,1(Ω)
.

Proof. We shall argue in a way similar to the proof of Theorem 5.3.1 in [35]. According to
Proposition 4 , it is enough to prove the proposition for V ∈ L∞

+ (Ω), and and for T > 0, since
the equation (23) is linear. Thus φ > 0, therefore, in this proof v = |φ| = φ, but we shall keep
the notation v because in the general case we cannot use anymore this maximum principle. Let
v = |φ|, Gs(σ) = (σ − v∗(s))+ sign (σ), σ ∈ IR, s ∈ Ω∗. The mapping σ 7→ Gs(σ) is Lipschitz.
Then following Lemma 2.6 ∫

Ω

(~u · ∇φ)Gs(φ) dx = 0.

Therefore, we derive
∫

Ω

∇φ · ∇Gs(φ) =

∫

v>v∗(s)

|∇φ|2dx =

∫

Ω

T (x)Gs(φ)(x)dx −
∫

Ω

V (x)Gs(φ)dx.

Differentiating this relation with respect to s, we find

d

ds

∫

v>v∗(s)

|∇φ|2dx = −v′
∗(s)

∫

v>v∗(s)

(
T (x) − V (x)

)
dx 6 −v′

∗(s)
∫ s

0

T∗(σ)dσ

where T∗ is the monotone rearrangement of T (we use the fact that V > 0).
Therefore, we arrive at

[
|∇φ|2

]
∗v

(s) 6 −v′
∗(s)

∫ s

0

T∗(σ)dσ. (32)

Since

|∇φ| = |∇v|, and − v′
∗(s) 6 s

1
N −1

Nα
1
N

N

|∇v|∗s(s)

(
the PSR property (see Theorem 3 of [35])

)
and |∇v|∗v 6

[
|∇v|2

] 1
2

∗v
, we infer from (32)

− v′
∗(s) 6 s

2
N −2

(Nα
1
N

N )2

∫ s

0

T∗(σ)dσ. (33)

Thus, integrating (33) between 0 to |Ω|, we find

||φ||L∞ 6 cN

∫ |Ω|

0

s
2
N T∗∗(s)

ds

s
≡ cN ||T ||

L
N
2

,1(Ω)
.

An analogous result can be obtained when T = −div (~F ), with ~F ∈ LN,1(Ω)N .

Proposition 7.
Let N > 2, and let φ be a solution of (23)when T = −div (~F ), ~F ∈ LN,1(Ω)N if N > 3,
~F ∈ L2+ε(Ω)2 if N = 2.
Then φ ∈ L∞(Ω) and there exists a constant KN(Ω) > 0 independent of ~u and V such that

||φ||L∞(Ω) 6 KN (Ω)||~F ||LV with LV = LN,1(Ω)N if N > 3, L2+ε(Ω)2 if N = 2.
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Proof. For convenience, we write F for ~F . Thanks to Proposition 4, we can use the same test
function Gs(φ) as in the proof of Proposition 6. Then

∫

Ω

∇φ · ∇Gs(φ)dx +

∫

Ω

V (x)Gs(φ)dx =

∫

Ω

F · ∇Gs(φ)dx.

We differentiate this equation with respect to s as before, for a.e. s ∈ Ω∗, and find

[
|∇v|2

]
∗v

(s) − v′
∗(s)

∫

v>v∗(s)

V (x)dx =
[
F · ∇φ

]
∗v

(s). (34)

Since, V > 0 and v′
∗(s) 6 0, we obtain

[
|∇v|2

]
∗v

(s) 6
[
|F |2

] 1
2

∗v

[
|∇v|2∗v

] 1
2 (s), (35)

[
|∇v|2

] 1
2

∗v
(s) 6

[
|F |2

] 1
2

∗v
(s). (36)

We have as before:

− v′
∗(s) 6 s

1
N −1

Nα
1
N

N

[
|∇v |2

] 1
2

∗v
(s). (37)

We infer that for a.e. s

− v′
∗(s) 6 s

1
N −1

Nα
1
N

N

[
|F |2

] 1
2

∗v
. (38)

Integrating this relation between 0 and |Ω| and using the Hardy-Littlewood inequality (see [35]
p.118-121) we obtain

||φ||L∞ 6




cN

∫

Ω∗

σ
1
N −1

(
|F |2)

1
2∗∗(σ)dσ, if N > 3,

c2,ε‖F ‖L2+ε(Ω)2 , if N = 2.

We conclude as in [35] p. 118-120, Proposition 5.2.2.

Remark 5. The problem considered in this Section 3.1 was previously considered by other

authors in the special case of −→u ≡ −→
0 (see, e.g. [14] and its references), nevertheless we emphasize

that the results of this section must be understood as preliminary results with respect the study
we shall present in the following sections of this paper. In particular, what is specially important
for us is to obtain a continuous dependence estimate with respect to the data (namely the velocity−→u , the potential V, and the right hand side f) since we need to carry out several perturbations
of those data in the next sections. As far as we know, such estimates are new in the literature
(and, of course, they were not given in the above mentioned reference).

3.2 Some regularity results with an integrable potential V and bounded
from below

As a first consequence of Proposition 3 and Proposition 7 we can deduce Meyer’s type regularity
giving a better information on the gradient of the solution of (23).

14



Proposition 8. (W 1Lp,q-estimate)
Let N > 2. Assume that there exists p > N and q ∈ [ 1,+∞], such that




~u ∈ Lp,q(Ω)N V > 0, V ∈ Lr,q(Ω), r =

Np

N + p
,

T = −div (~F ) with ~F ∈ Lp,q(Ω)N .

Then, the unique solution φ of the equation (23) belongs to W 1Lp,q(Ω). Moreover, there exists
a constant Kpq > 0 independent of ~u such that :

||∇φ||Lp,q(Ω) 6 Kpq (1 + ||~u||Lp,q + ||V ||Lr,q) ||F ||Lp,q(Ω)N .

Proof. (We shall simply write F, F0, F1 for ~F , ~F0, ~F1). We first assume that ~u ∈ V . We know

from Proposition 7 that φ ∈ L∞(Ω) and that there exists a constant independent of ~u, V and ~F
and V such that

||φ||∞ 6 KN(Ω)||F ||Lp,q(Ω). (39)

Therefore, there exists a vector field F0 ∈ Lp,q(Ω)N such that

V φ = −div (F0) and ||F0||Lp,q 6 K1,N(Ω)||V ||Lr,q ||φ||∞,

that is
||F0||Lp,q 6 K1N (Ω)||V ||Lr,q ||F ||Lp,q(Ω).

Setting F1 = F − F0, we can write (23) as

− ∆φ = −div (F1 − ~uφ). (40)

But, we have ~uφ ∈ Lp,q(Ω)N since φ ∈ L∞(Ω) according to the above Proposition 7. Hence

||~uφ||Lp,q(Ω)N 6 ||~u||Lp,q ||φ||L∞ 6 KN ||F ||Lp,q ||~u||Lp,q .

We may apply the W 1Lp,q result to (40) (see [42, 9, 2, 36]) to deduce that

||∇φ||Lp,q 6 Kp||F1 − ~uφ||Lp,q 6 KpNq(1 + ||~u||Lp,q + ||V ||Lr,q )||F ||Lp,q . (41)

For the general case, we consider uk ∈ V such that uk → u strongly in Lp,q(Ω)N . Let φk be the
solution of equation (23) where φ is replaced by φk

−∆φk − ~uk∇φk + V φk = T = −div (F ).

The sequence (φk)k satisfies

||φk||L∞ 6 KN ||F ||Lr,q and ||φk||H1
0

6 ||T ||H−1 ,

and then (φk)k converges weakly in H1
0 (Ω) to φ the solution of (23) . Since φk satisfies (41) , we

deduce that φ also satisfies (41) and (23) .

As an immediate consequence of the above result.

Proposition 9.
Let ~u and ~F be in Lp,∞(Ω)N for some p > N . Then, the solution of (23) satisfies

φ ∈ C0,α(Ω) with α = 1 − N

p
.
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Proof. According to the Sobolev embedding (see [35]), we have

W 1Lp,∞(Ω) →֒ C0,α(Ω), with α = 1 − N

p
.

Now we shall consider the case of more general data ~u and V .

Proposition 10.
Assume that ~u and ~F are in bmor(Ω)N and V is in bmor(V ). Then the solution φ of the equation
(23) satisfies

1. ~uφ ∈ bmor(Ω)N

2. ∇φ ∈ bmor(Ω)N .

Proof. Since bmor(Ω) →֒ Lp,q(Ω) for all p > N and q ∈ [1,+∞], we deduce from Proposition 8
and Proposition 9 that :

φ ∈ C0,α(Ω) ∀α ∈ [0, 1 [ and − ∆φ = −div ( ~F1 − ~uφ),

where ~F1 was defined in the proof of Proposition 8 (see equation (40)). From Stegenga mul-

tiplier’s result, ~uφ ∈ bmor(Ω)N whenever ~u is in bmor(Ω)N [44, 47]. Therefore ~F1 − ~uφ ∈
bmor(Ω)N . We may appeal to Campanato’s result [10] to derive then that ∇φ ∈ bmor(Ω)N and

||∇φ||bmor
6 K

(
||F ||bmor

+ ||~u φ||bmor
+ ||F0||bmor

)
.

We shall end this paragraph by proving a W 2Lp,q(Ω)-regularity result for the solutions of the
dual problem (23)which will lead to interesting conclusions for the direct problem (1).
For this, we shall use the following ADN constant

Ks
pq = sup

v∈H1
0 (Ω)∩W 2Lp,q(Ω)

||v||W 2Lp,q(Ω)

||v||Lp,q(Ω) + ||∆v||Lp,q(Ω)
, (42)

which is finite due to the well-known Agmon-Douglis-Nirenberg’s regularity result combined with
the Marcinkiewicz interpolation Theorem.
We shall improve now the regularity obtained in Proposition 10. We consider ε0 > 0 (fixed) so
that Ks

pqε0||~u||Lp,q(Ω) 6 1
2 .

Proposition 11. (W 2Lp,q(Ω) regularity for p > N)
Let φ be the solution of (23)when T ∈ Lp,q(Ω), p > N, q ∈ [1,+∞]. Assume, furthermore, that
~u ∈ Lp,q(Ω)N and V ∈ Lp,q(Ω). Then

φ ∈ W 2Lp,q(Ω).

Moreover, there exist constants cε0 , KpqN > 0 such that

||φ||W 2Lp,q(Ω) 6
KpqNcε0(1 + ||V ||Lp,q + ||~u||Lp,q(Ω))

1 −Ks
pqε0||~u||Lp,q(Ω)

||T ||Lp,q(Ω).
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Proof. We assume first that ~u ∈ V . Arguing as in Proposition 8, since we can assume that
T = div ~F for suitable ~F we get that the solution φ of (23) is in W 1Lp,q(Ω) and then

−∆φ = ~u∇φ+ T − V φ ∈ Lp,q(Ω).

By the Agmon-Douglis-Nirenberg regularity results and the Marcinkiewicz interpolation theorem
we deduce that φ ∈ W 2Lp,q(Ω). Moreover, since p > N and q ∈ [ 1,+∞], we have the following
continuous embeddings :

W 2Lp,q(Ω) →֒ C1(Ω) →֒ Lp,q(Ω).

The first inclusion is compact so we may appeal to Lemma 2.8 to derive that ∀ ε > 0, there exists
cε > 0 such that

||∇φ||∞ 6 ε||φ||W 2Lp,q(Ω) + cε||φ||Lp,q(Ω). (43)

From the equation satisfied by φ, we have

||∆φ||Lp,q(Ω) 6 ||~u||Lp,q(Ω)||∇φ||∞ + ||T ||Lp,q(Ω) + ||V ||Lp,q ||φ||∞, (44)

and using the ADN constant

||φ||W 2Lp,q(Ω) 6 Ks
pq

(
||φ||Lp,q(Ω) + ||∆φ||Lp,q(Ω)

)
. (45)

We combine those last three equations and derive that for any ε > 0

||φ||W 2Lp,q(Ω)(1 − εKs
pq||~u||Lp,q(Ω)) 6 Ks

pq||φ||Lp,q(Ω)

(
1 + cε||~u||Lp,q(Ω)

)

+Ks
pq||T ||Lp,q(Ω)(1 + ||V ||Lp,q)K2N . (46)

Next, we consider ~uk ∈ V such that ~uk → ~u ∈ V . Then, choosing ε = ε0 > 0 such that

ε0K
s
pq sup

k
|| ~uk||Lp,q(Ω) 6 1

2
, we deduce from relation (46) that φk corresponding to the solution

of (23) , that is −∆φk − ~uk · ∇φk + V φk = T ∈ Lp,q(Ω), belongs to a bounded set of W 2Lp,q(Ω)
when k varies. Therefore, the strong limit φ in C1(Ω) is the solution of (23) and it satisfies also
the relation (46) for all ε ∈]0, ε0 ]. From Proposition 6, we have

||φ||Lp,q(Ω) 6 KN(Ω)||T ||Lp,q(Ω). (47)

Combining relations (46) and (47) with ε = ε0, we derive the result.

The case where p = N can also be treated in the same way provided that the norm of ~u in
LN,1(Ω) is small enough in the sense that

||~u||LN,1(Ω) 6 θKs0
N1 for some θ ∈ [ 0, 1 [, (48)

Ks0
N1 = Ks

N1 sup
φ∈H1

0 (Ω)∩W 2LN,1(Ω)

||∇φ||∞
||φ||W 2LN,1

. (49)

Proposition 12. (Regularity in W 2LN,1(Ω)).
Let φ be the solution of (23) when T ∈ LN,1(Ω), V ∈ LN,1(Ω). Assume that ~u satisfies relation
(48). Then φ ∈ W 2LN,1(Ω). Moreover, there exists a constant K ′

N(Ω) (independent of ~u) such
that

||φ||W 2LN,1(Ω) 6 K ′
N(Ω)(1 + ||V ||LN,1)

1 −Ks0
N1||~u||LN,1

||T ||LN,1(Ω).
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Proof. The proof follows the same argument as for the proof of Proposition 11. Nevertheless,
the embedding W 1LN,1 ⊂ C(Ω) is not compact and this explains the condition (48).

There are many other spaces between the space Lp,1(Ω) and LN,1(Ω) for which we can obtain
a regularity result for the second derivatives of φ.

Here we want only to consider the space Λ = (LN (LogL)
β
N )N for β > N − 1.

Indeed this space is included in LN,1(Ω) and contains Lp(Ω) for all p > N .

Theorem 3.1. (Regularity in W 2LN(Ω)).
Let T and V be in LN (Ω), ~u ∈ Λ, div (~u) = 0 and ~u · ~n = 0 on ∂Ω. Then the unique solution φ

of (23) belongs to W 2LN (Ω) and choosing ε > 0 such that ε||~u||Λ 6 1

2
, there exists a constant

Kε > 0 such that

||φ||W 2LN (Ω) 6 Kε(1 + ||~u||Λ + ||V ||LN )

1 − ε||~u||Λ
||T ||LN(Ω).

The proof firstly depends on the following Trudinger’s type embedding :

Lemma 3.1. (Trudinger’s embedding)
We have

W 1
0L

N(Ω) →֒ L
1

N′
exp(Ω).

Moreover, for all v ∈ W 1
0L

N (Ω)

sup
t6|Ω|

|v|∗(t)
(

1 + Log
|Ω|
t

) 1
N′

6 K0||∇v||LN (Ω), with K0 =
1

Nα
1
N

N

.

Proof. According to the pointwise Sobolev inequality for the relative rearrangement, we have for
u = |v| (see Theorem 2.3)

− u′
∗(s) 6 s

1
N −1

Nα
1
N

N

|∇u|∗u(s). (50)

We integrate this formula from t to |Ω| knowing that u∗(|Ω|) = 0, and using the Hölder inequality,
we get

u∗(t) 6 1

Nα
1
N

N

∫ |Ω|

t

s
1
N −1|∇u|∗u(s)ds 6 1

Nα
1
N

N

(
Log

|Ω|
t

) 1
N′

|| |∇u|∗u||LN . (51)

Therefore from (51), implies using Theorem 2.2

sup
t6|Ω|

u∗(t)
(

1 + Log
|Ω|
t

) 1
N′

6 1

Nα
1
N

N

|| |∇u|∗u||LN 6 1

Nα
1
N

N

||∇u||LN .

The key result for the proof of Theorem 3.1 is the following compactness inclusion :

Theorem 3.2. (Compact inclusion for W 1
0L

N (Ω)).

W 1
0L

N (Ω) is compactly embedded in Lα
exp(Ω) for α >

1

N ′ .
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Proof. Let (un)n be a bounded sequence in W 1
0L

N(Ω). We may assume that un ⇀ u in
W 1

0L
N (Ω)-weakly and almost everywhere in Ω. Let c = Max

n
||un − u||

L
1

N′
exp

< +∞.

For ε > 0, there exists δ > 0 such that

c
(

1 + Log
|Ω|
t

)α− 1
N′

6 ε for all t 6 δ.

Therefore, we have : if t 6 δ

|un − u|∗(t)(
1 + Log

|Ω|
t

)α 6 c
(

1 + Log
|Ω|
t

)α− 1
N′

6 ε;

if t > δ then, since |un − u|∗ is nonincreasing

|un − u|∗(t) 6 1

δ

∫ δ

0

|un − u|∗(s)ds,

so that

sup
t>δ

|un − u|∗(t)(
1 + Log

|Ω|
t

)α 6 1

δ

∫ δ

0

|un − u|∗(s)ds.

The right hand side of this inequality tends to zero as n goes to infinity. Hence, for n > nε with
nε large enough

sup
0<t<|Ω|

|un − u|∗(t)(
1 + Log

|Ω|
t

)α 6 ε.

As a corollary of the above theorem, since W 2LN ∩W 1
0L

N →֒ W 1
0L

α
exp →֒ LN , we have:

Corollary 1. (of Theorem 3.2)
Let α > 1

N ′ . Then, for every ε > 0, there exists cε > 0 such that ∀ v ∈ W 2LN(Ω)∩ H1
0 (Ω)

||∇v||Lα
exp

6 ε||∆v||LN + cε||v||LN .

Proof. We use the equivalence of norms ||v||W 2LN (Ω)∩H1
0
≡||∆v||LN+||v||LN and apply Lemma 2.8

with
Y = W 1

0L
α
exp(Ω), X = W 2LN (Ω) ∩H1

0 (Ω), Z = LN (Ω).

Proof of Theorem 3.1. We first assume that ~u ∈ V , and T ∈ L∞(Ω). Then, the unique solution
φ of (23) satisfies

||∆φ||LN 6 ||T ||LN + ||~u · ∇φ||LN + ||V ||LN ||φ||∞
6 KN(1 + ||V ||N )||T ||N + ||~u · ∇φ||LN . (52)
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We have

||~u · ∇φ||NLN 6
∫

Ω∗

|~u|N∗ |∇φ|N∗ dt 6 sup
t∈Ω∗

|∇φ|N∗ (t)
(

1 + Log
|Ω|
t

)β

∫

Ω∗

|~u|N∗ (t)

(
1 + Log

|Ω|
t

)β

dt,

which implies

||~u∇φ||LN 6 ||∇φ||Lα
exp

||~u||Λ with α =
β

N
>

1

N ′ . (53)

Let ε > 0 be fixed. There exists cε > 0 such that

||~u · ∇φ||LN 6 (ε||∆φ||LN + cε||φ||LN )||~u||Λ

(see Corollary 1 of Theorem 3.2). Combining this with relation (52), we have ∀ ε > 0, ∃ c1ε > 0

||∆φ||LN (1 − ε||~u||Λ) 6 c1ε(1 + ||~u||Λ + ||V ||LN )||T ||LN . (54)

Secondly, we consider T ∈ LN(Ω) and ~u ∈ V . There exist ~uk ∈ V such that ~uk → ~u strongly in
Λ and Tk ∈ L∞(Ω) with

||Tk||LN 6 ||T ||LN .

Then from relation (54), the solution φk of (23) satisfies

||∆φk||LN (1 − ε|| ~uk||Λ) 6 c1ε(1 + ||~uk||Λ + ||V ||LN )||T ||LN . (55)

We choose ε0 > 0 such that

ε0 sup
k

||uk||Λ 6 1

2
.

Then φk remains in a bounded set of W 2LN(Ω) ∩ H1
0 (Ω). So it converges to φ weakly in

W 2LN (Ω) ∩H1
0 (Ω) and we have

||∆φ||LN (1 − ε0||~u||Λ) 6 c1ε0
(1 + ||~u||Λ + ||V ||LN )||T ||LN , (56)

and
||φ||LN 6 |Ω| 1

N ||φ||∞ 6 KN(Ω)||T ||LN (Ω)

(according to Proposition 6). This gives the results.

4 Very weak solutions of problem (1) with and without
the Dirichlet boundary condition.

We now want to apply all those regularity results to the study of equation (1). We first start
with some definitions of the weak solution associated with (1).

4.1 Existence and regularity of the very weak solution for a locally
integrable potential V > 0

We start by considering the existence of very weak solutions of equation (1) with the Dirichlet
boundary condition (23)when the potential V is a nonnegative locally integrable function.
We can use the definition of very weak solution (see Definition 1.1).
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Theorem 4.1.
Let f ∈ L1(Ω; δ). Let ~u be in Lp,1(Ω)N with div (~u) = 0 in D′(Ω), ~u ·~n = 0 on ∂Ω. Furthermore,
assume that either p > N or p = N and ||~u||LN,1 < Ks0

N1 (see (48)). Then, there exists a very
weak solution ω in the sense of (16), which is unique, if V ∈ Lp,1(Ω).

Remark 6.
In section 4.2, we shall discuss the uniqueness of the v.w.s when V /∈ LN,1(Ω).

Proof. First, we assume that f > 0. Let uj ∈ V be such that ~uj → ~u strongly in Lp,1(Ω)N and
fj ∈ L∞(Ω) such that 0 6 fj(x) 6 f(x) a.e and fj(x) → f(x) a.e. According to Proposition 4,
Proposition 11 or Proposition 12, there exists a unique function ωj > 0 such that

{
−∆ωj + ~uj · ∇ωj + Vjωj = fj ,

ωj ∈ H1
0 (Ω) ∩W 2Lp,1(Ω),

(57)

which is equivalent to saying that





∫

Ω

ωj

[
− ∆φ − ~uj · ∇φ

]
dx =

∫

Ω

fjφdx −
∫

Ω

Vjωjφdx,

∀φ ∈ W 2Lp,1(Ω) ∩H1
0 (Ω).

(58)

We argue as in [20, 18, 36]. Let E be a measurable subset of Ω and χE its characteristic function.
Then, there exists a non negative function φj ∈ W 2Lm(Ω), ∀m < +∞, satisfying

{
−∆φj − ~uj∇φj = χE in Ω,

φj = 0 on ∂Ω.
(59)

We consider a small number ε > 0 such ε sup
j

||~uj||LN,1 6 1

2
. Therefore, we have

||φj ||W 2LN,1 6 K0||χE ||LN,1 6 K1|E| 1
N .

Thus
∫

E

ωjdx =

∫

Ω

ωj

[
− ∆φj − ~uj∇φj

]
dx 6

∫

Ω

fjφj 6 K1

(∫

Ω

|fj |δ
)

||φj ||W 2LN,1

6 K0|E| 1
N

∫

Ω

|fj |δdx. (60)

By the Hardy-Littlewood property we conclude that

sup
t6|Ω|

t
1

N′ |ωj |∗∗(t) 6 K0

∫

Ω

|fj|δdx 6 K0

∫

Ω

|f |δdx. (61)

Moreover, choosing φ = ϕ1 as the test function with −∆ϕ1 = λ1ϕ1, and ϕ1 = 0 on ∂Ω, we have

λ1

∫

Ω

ωjϕ1dx +

∫

Ω

Vjωjϕ1dx 6 ||∇ϕ1||∞ ||ωj ||LN′,∞ ||~uj ||LN,1 + c

∫

Ω

|fj |δdx

6 c
(
1 + ||~uj ||LN,1

) ∫

Ω

|fj|δdx,
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for a suitable constant c > 0. Thus Vjωj remains in a bounded set of L1(Ω; δ) and

∫

Ω

Vjωjδdx 6 c
(
1 + ||~uj||LN,1

) ∫

Ω

|fj |δdx. (62)

If f has a constant sign, we write fj = fj+ − fj− with fj+ = max(fj , 0) > 0.
Denoting by ω+

j the v.w.s. associated to fj+ and by ω−
j the one associated to fj−,we see that

ωj = ω+
j − ω−

j satisfies (58) and we have also the estimates (61) and (62).

In particular, since |ωj| 6 ω+
j + ω−

j

∫

Ω

Vj |ωj|δdx 6 c
(
1 + ||uj||LN,1

) ∫

Ω

|fj |δdx. (63)

We conclude that (ωj)j converges weak-* to ω in LN ′,∞(Ω) =
(
LN,1(Ω)

)∗
. To obtain a

strong convergence, we need a local estimate of the gradient. For that purpose, we shall prove
the boundedness of ωj in the Lorentz-Sobolev weighted space W 1L1+ 1

N ,∞(Ω; δ). For this, we
shall need the following result due to Philippe Bénilan and co-authors whose proof can be found
in [5] Lemma 4.2, with generalization in [40].

Proposition 13.
Let v ∈ L1(Ω, δα), and α ∈ [ 0, 1 ]. Assume that there exists a constant c0 > 0 such that for all
k > 0

Tk(v) := min(|v|; k) sign (v) ∈ W 1L2(Ω, δα),

and ∫

Ω

|∇Tk(v)|2δαdx+

∫

Ω

|Tk(v)|2δαdx 6 c0k. (64)

Then, there exists a constant c, depending continuously on c0 > 0, such that for all λ > 0

∫

{x:|∇v|(x)>λ}
δα(x)dx 6 c

λ1+ 1
N+α−1

.

In particular, if vj is a sequence converging weakly in L1(Ω) to a function v, satisfying the
inequality (64) ∫

Ω

|∇Tk(vj)|2δαdx 6 c0k ∀j, ∀k,

then vj converges to v weakly in W 1,q(Ω′) for all q ∈
[
1,

N + α

N + α− 1

[
and all Ω′ ⊂⊂ Ω, with a

subsequence, vj(x) → v(x) a.e. in Ω.

We first need to prove the following a priori estimate :

Proposition 14.
Let ωj be the solution of (57), ω its weak limit in LN ′,∞(Ω). Under the same assumptions as for
Theorem 3.1, there exists a constant c0 > 0 such that:

∫

Ω

∣∣∇Tk(ωj)
∣∣2δdx+

∫

Ω

∣∣∇Tk(ω)
∣∣2δdx 6 c0k ∀ k > 0, ∀ j.
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Proof. Let ϕ1 be the first eigenvalue of the Dirichlet problem −∆ϕ1 = λ1ϕ1 in Ω, ϕ1 = 0 on
∂Ω. Then, there exist constants such that c1δ(x) 6 ϕ1(x) 6 c2δ(x) ∀x ∈ Ω. We consider the
approximate problem given in equation (57) say

{
−∆ωj + ~uj · ∇ωj + Vjωj = fj ,

ωj ∈ W 1,1
0 (Ω) ∩W 2Lp,1(Ω),

with |fj(x)| 6 |f(x)|, fj → f a.e, ~uj → ~u in Lp,1(Ω)N−strongly and ωj → ω weakly-* in

LN ′,∞(Ω).
For k > 1, we choose Tk(ωj)ϕ1 as a test function; then VjωjTk(ωj)ϕ1 > 0 and we derive after
some integrations by parts :

∫

Ω

|∇Tk(ωj)|2ϕ1dx+ λ1

∫

Ω

ϕ1

(∫ ωj

0

Tk(σ)dσ

)
dx−

∫

Ω

~uj · ∇ϕ1

∫ ωj

0

Tk(σ)dσdx6c2k
∫

Ω

|f |δdx. (65)

This relation implies:

∫

Ω

|∇Tk(ωj)|2δ(x) 6 c3k

∫

Ω

|ωj |δdx+ c2k

∫

Ω

|f |δdx+ c3k

∫

Ω

|~uj | |ωj |dx. (66)

By the Hölder inequality

∫

Ω

|~uj | |ωj |dx 6 c4||~uj ||LN,1 · ||ωj ||LN′,∞ 6 c4||~uj ||
∫

Ω

|f |δdx. (67)

From relation (66) and (67), we then have :

∫

Ω

|∇Tk(ωj)|2δ(x)dx 6 c5(1 + ||~uj ||LN,1)

(∫

Ω

|f |δdx
)
k. (68)

Letting j → +∞, we deduce from (68) and Proposition 13 :

∫

Ω

|∇Tk(ω)|2δ(x)dx 6 c0k with c0 = c5(1 + ||~u||LN,1)

∫

Ω

|f |δdx.

Then the LN ′,∞-regularity of ω implies

∫

Ω

|Tk(ω)|2δdx 6 c0k

∫

Ω

|ω|dx.

Corollary 2 (of Propositions 13 and 14).
Let ω be as in the proof of the previous proposition. Then, there exists a constant c6 > 0 such
that

||∇ω||
L1+ 1

N
,∞(Ω;δ)

6 c6

∫

Ω

|f(x)|δ(x)dx.

In particular, we have, for all q < 1 +
1

N
,

∫

Ω

|∇ω|qδ(x)dx 6 cq

∫

Ω

|f(x)|δ(x)dx.
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To pass to the limit in (57), we argue as in [19] p. 1041. We emphasize the main differences
due to the additional term ~u · ∇ω.

Let us note that by the above Proposition 11, we have (for a subsequence still denoted as
(ωj)j) that

1. ωj(x) → ω(x) a.e. (and thus Vjωj → V ω a.e. in Ω).

2. ωj ⇀ ω weakly in W 1,q(Ω; δ), ∀ q < 1 +
1

N
.

3. ωj → ω strongly in Lr(Ω), for any r < N ′.

In particular, we deduce from the above statement 1., relation (63) and Fatou’s lemma

Lemma 4.1.
Under the assumptions of Theorem 4.1 and Proposition 14 one has

∫

Ω

V |ω|δdx 6 c
(
1 + ||u||LN,1

) ∫

Ω

|f |δdx.

Lemma 4.2.
Under the assumptions of Theorem 4.1 and Proposition 14 one has

lim
j→+∞

∫

Ω

|~ujωj − ~uω|dx = 0.

Proof. Since ~uj → ~u in LN,1(Ω), and a.e. in Ω, we have

lim
j→+∞

~uj(x)ω(x) = ~u(x)ω(x) a.e.

It is enough to show that (~ujωj)j satisfies Vitali’s condition : ∀ ε > 0 ∃η > 0 such that if E ⊂ Ω
is measurable with |E| 6 η then

lim sup
j→+∞

∫

E

|~ujωj|dx 6 ε.

But from Hölder’s inequality we have

∫

E

|~ujωj |dx 6 ||~uj ||LN,1(E)||ωj ||LN′,∞(Ω) 6 c||~uj ||LN,1(E),

so that

lim sup
j→+∞

∫

E

|~ujωj|dx 6 c||~u||LN,1(E).

Since
||~u||LN,1(E) −−−−→

|E|→0
0,

we derive that it satisfies the Vitali condition. Therefore, we have proved the lemma.

Then we have the following result analogous to Lemma 2.3 of [19].
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Lemma 4.3.
We assume that V ∈ L1

loc(Ω), and V > 0. Then

Vjωjδ ⇀ V ωδ weakly in L1
loc(Ω).

Furthermore, if V ∈ L1(Ω; δ), then

Vjωjδ ⇀ V ωδ weakly in L1(Ω).

Proof. Let t ∈ IR+. Consider a sequence of functions γm in C1(IR) ∩W 1,∞(IR) such that

γ′
m > 0 ∀ s ∈ IR,

γm(s) → −1 for s < −t as m → +∞,

γm(s) → 1 for s > t as m → +∞,

γm(s) = 0 on − t 6 s 6 t,

and let ϕ1 ∈ C2(Ω) with −∆ϕ1 = λ1ϕ1 in Ω, ϕ1 = 0 on ∂Ω, λ1 > 0.
Taking ϕ1γm(ωj) as a test function in relation (57) we get

∫

Ω

∇ωj · ∇
(
ϕ1γm(ωj)

)
+

∫

Ω

Vjωjϕ1

(
γm(ωj)

)
dx +

∫

Ω

~uj · ∇ωjγm(ωj)ϕ1dx

=

∫

Ω

fjγm(ωj)ϕ1dx. (69)

We write ∇ωjγm(ωj) = ∇
[∫ ωj

0

γm(σ)dx

]
so that

∫

Ω

(~uj · ∇ωj)γm(ωj)ϕ1dx = −
∫

Ω

div (ujϕ1)

∫ ωj

0

γm(σ)dσdx

= −
∫

Ω

~uj∇ϕ1

(∫ ωj

0

γm(σ)dσ

)
dx.

As m → +∞, treating the remaining terms in (69) as in [19], we derive

∫

|ωj |>t

Vj |ωj |δdx 6 c

[∫

|ωj|>t

|f |δdx+

∫

|ωj |>t

|ωj|δdx +

∫

|ωj|>t

|~uj | |ωj|dx
]
. (70)

This relation proves that Vjωjδ remains in a bounded set of L1(Ω) but also that the set{
Vj |ωj |δ, j ∈ IN

}
is x compact for the σ(L1;L∞)-topology, so we may appeal to the Dunford-

Pettis to conclude. Indeed, let us set

Γj(t) :=

∫

|ωj |>t

|f(x)|δ(x)dx +

∫

|ωj |>t

|ωj|δdx+

∫

|ωj|>t

|~ujωj |dx.

For a.e. t > 0,

lim
j→+∞

Γj(t) = Γ(t) =

∫

|ω|>t

|f(x)|δ(x)dx +

∫

|ω|>t

|ω|δdx+

∫

|ω|>t

|~uω|dx,

and ∣∣∣
{
|ω| > t

}∣∣∣ + sup
j

∣∣∣
{
|ωj | > t

}∣∣∣ 6 constant

t
−−−−→
t→+∞

0,
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we deduce that for any ε > 0, there exists tε > 0 such that, for all j ∈ IN,

Γj(tε) 6 ε.

Let Ω0 ⊂ Ω such that V δ ∈ L1(Ω0) (thus Ω0 6= Ω if V is only locally integrable). Then by the
Lebesgue convergence dominate theorem for a.e. t,

lim
j→+∞

∫

Ω0

∣∣∣χ|ωj|6t(x)Vjωj(x) − χ{|ω|6t}(x)V (x)ω(x)
∣∣∣δ(x)dx = 0,

since

lim
|A|→0

∫

A

V |ω|δdx = 0
(
V ωδ ∈ L1(Ω)

)
.

Therefore there exists η > 0 such that if A ⊂ Ω0, |A| 6 η, then for all j ∈ IN,
∫

A∩{|ωj|6tε}
Vj |ωj |δdx 6 ε.

Hence, for all j ∈ IN, all A ⊂ Ω0, with |A| 6 η
∫

A

Vj |ωj |ϕdx 6 Γj(tε) +

∫

A

Vj |ωj |δdx 6 2ε.

This conclude the proof of Lemma 7.

The passage to the limit, we will distinguish two different cases :

1. Case V ∈ L1(Ω; δ) For all φ ∈ C2(Ω), φ = 0, we have

lim
j

∫

Ω

Vjωjφdx =

∫

Ω

V ωφdx (71)

(since
φ

δ
∈ L∞(Ω) and Vjωjδ converges to V ωδ for σ(L1;L∞) topology). Therefore, since

−
∫

Ω

ωj∆φdx −
∫

Ω

~ujωj∇φdx +

∫

Ω

Vjωjφdx =

∫

Ω

fjφdx, (72)

we let j → +∞ to deduce that ω is a v.w.s. using Lemma 4.2 and the convergences of ωj.

2. Case V ∈ L1
loc(Ω) We consider φ ∈ W 2LN,1(Ω) with support φ be a compact in Ω. Then

the same argument holds since Vjωjδ tends to V ωδ weakly in L1
loc(Ω). Then (71) and (72)

hold true 



∫

Ω

ω
[
− ∆φ− ~u∇φ+ V φ

]
dx =

∫

Ω

fφdx,

∀φ ∈ W 2LN,1(Ω), support(φ) compact in Ω.
(73)

If V ∈ Lp,1(Ω), the solution is unique. Indeed, if we denote by ω the difference of two solutions
then ∫

Ω

[
− ∆ϕ− ~u∇ϕ+ V ϕ

]
ωdx = 0 ∀ϕ ∈ C2(Ω), ϕ = 0 on δΩ.

Let us consider the function φ solution of
{

−∆φ− ~u∇φ+ V φ = sign (ω),

φ ∈ H1
0 (Ω).

(74)
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Then φ ∈ W 2LN,1Ω →֒ C1(Ω) for V ∈ LN,1(Ω). Thus

∫

Ω

ω
[
− ∆φ− ~u∇φ+ V φ

]
dx = 0, (75)

since
{
ϕ ∈ C2(Ω) : ϕ = 0 on ∂Ω

}
is dense in W 2LN,1(Ω)∩H1

0 (Ω). Combining the relations (74)

and (75) we find : ∫

Ω

|ω|dx = 0 i.e. ω ≡ 0.

4.2 A result of uniqueness of solution when the potential is bounded
from below by c δ−r, r > 2

The purpose of this section is to show the following uniqueness result.

Theorem 4.2.
Assume that V is locally integrable V > 0, and such that

∃ c > 0, V (x) > cδ(x)−r, in a neighborhood U of the boundary, with r > 2.

Then, the v.w.s. ω found in Theorem 4.1 is unique.

This theorem relies on the following general result which does not require any information
about the boundary condition, since the required additional information is written in another
way :

Theorem 4.3. (Comparison principle)
Let ω be in L1(Ω; δ−r) ∩ W 1,1

loc (Ω), r > 1. Let ω ∈ LN ′,∞(Ω) and ~u ∈ Lp,1(Ω) with p > N or
p = N with a small norm. Assume that

Lω≡̇ − ∆ω + div (~u ω) 6 0 in D′(Ω).

Then
ω 6 0 in Ω.

As an immediate corollary of the above theorem we have

Corollary 3. of Theorem 4.3
Assume the hypotheses of Theorem 4.3 hold and let f ∈ L1

loc(Ω). Then there exists at most one

function ω ∈ L1(Ω; δ−r) ∩W 1,1
loc (Ω), r > 1 solution of Lω = f in D′(Ω).

For the proof of Theorem 4.3, we need the following extension of the Kato’s inequality whose
proof is similar to the one given in [30] :

Theorem 4.4. (Local Kato’s inequality)
Let ω ∈ W 1,1

loc (Ω) with ~u ω ∈ L1
loc(Ω). Assume that Lω = − ∆ω + div (~u ω) belongs to L1

loc(Ω).
Then

1. ∀ψ ∈ D(Ω), ψ > 0,

∫

Ω

ω+L∗ψdx 6
∫

Ω

ψsign +(ω)L(ω)dx,

i.e. L(ω+) 6 sign +(ω)L(ω) in D′(Ω).
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2. L(|ω|) 6 sign (ω)L(ω) in D′(Ω).
Here

sign +(σ) =

{
1 if σ > 0,

0 if σ 6 0,
sign (σ) =

{
1 ifσ > 0,

−1 if σ < 0,

L∗ψ = −∆ψ − ~u · ∇ψ, for ψ ∈ C∞
c (Ω).

Proof. Following [30], we first remark that for any α ∈ C∞
c (Ω), L(αω) ∈ L1(Ω) since, one has,

in D′(Ω),
L(αω) = αLω − ω∆α− 2∇ω · ∇α+ (~uω) · ∇α ∈ L1(Ω).

Thus, the conclusion 1. will be proved if we show that

L(αω)+ 6 sign +(αω)L(αω) in D′(Ω).

For this purpose, we may assume that ω ∈ W 1,1(Ω) with compact support and Lω ∈ L1(Ω).
Moreover, if ρj ∈ C∞

c (IRN ) is a sequence of mollifiers, and ω ⋆ ρj ∈ C∞
c (Ω) we have

L(ω ⋆ ρj) = Lω ⋆ ρj → Lω in L1(Ω).

So, it is sufficient to show the inequality number for ω ∈ C∞
c (Ω). From here, we argue as for the

case where L is replaced by the Laplacian operator (see Proposition 1.5.4 p.21 in [30] for more
details). We approximate the functions sign + by a sequence of convex, non-decreasing functions
hε such that

lim
ε→0

h′
ε(t) = sign +(t); lim

ε→0
hε(t) = t+

sup
ε>0

|h′
ε|(t) is independent of ε.

Thus, for all ψ ∈ C∞
c (Ω), ψ > 0, we have

∫

Ω

hε(ω)L∗ψdx 6
∫

Ω

ψh′
ε(ω)Lωdx, (76)

where L∗ψ = −∆ψ − ~u · ∇ψ.

Indeed, ψh′
ε(ω) is in C∞

c (Ω) and then the convexity of hε implies

∫

Ω

ψh′
ε(ω)Lωdx > −

∫

Ω

hε(ω)∆ψdx+

∫

Ω

~uψh′
ε(ω) · ∇ωdx.

Since div (~u) = 0, and h′
ε(ω)∇ω = ∇hε(ω) we have

∫

Ω

~uψh′
ε(ω) · ∇ωdx =

∫

Ω

~uψ · ∇hε(ω)dx = −
∫

Ω

~u · ∇ψhε(ω)dx.

Thus we get (76).

As in [30], letting ε → 0, we have

∫

Ω

ω+L∗ψdx 6
∫

Ω

ψsign +(ω)Lωdx ∀ψ ∈ D(Ω), ψ > 0.

We derive conclusion1., as in [30], for ω ∈ W 1,1
c (Ω) and the same for conclusion 2.
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To extend the set of test functions from D(Ω) to other sets of functions we need the following
approximation result.

Lemma 4.4. (Approximation of functions in Wm,∞(Ω) by a sequence in Wm,∞
c (Ω))

Let Wm,∞
c (Ω) =

{
ϕ ∈ Wm,∞(Ω) with compact support

}
, 1 < m < +∞ and assume that ∂Ω is

of class Cm, r > 0. Then, for ϕ ∈ Wm,∞(Ω) there exists a sequence (ϕn)n, ϕn ∈ Wm,∞
c (Ω),

such that

1. δr(Dαϕn) → δr(Dαϕ) strongly in L∞(Ω), for all α such that |α| < r.

2. Moreover, if ϕ ∈ W 1,∞
0 (Ω) then

sup
n

||∇ϕn||∞ 6 cΩ||∇ϕ||∞, (cΩ with independent of ϕ),

δr(Dαϕn) → δr(Dαϕ) strongly in L∞(Ω) for |α| < r + 1.

3. If ϕ > 0 then one can take ϕn > 0.

4. If ϕ ∈ Cm(Ω) then ϕn ∈ Cm
c (Ω). By the density of C∞

c (Ω) in Cm
c (Ω), ϕn in this case can

be taken in C∞
c (Ω).

Proof. Let h ∈ C∞(IR) be such that 0 6 h 6 1, h(σ) =

{
1 if σ > 1,

0 if σ 6 0

Since ∂Ω ∈ Cm, δ is of class Cm in a neighborhood U of ∂Ω (see [22]). Let 0 < ε < 1 be such
that {

x ∈ Ω : δ(x) 6 ε
}

⊂ U

and define, for x ∈ Ω,

hε(x) = h

(
2δ(x) − ε

ε

)
, (77)

so that hε(x) = 1 if δ(x) > ε, hε(x) → 1 as ε → 0, and hε(x) = 0 if δ(x) < ε/2.
One has

|Dαhε(x)| 6 c ε−|α|, for a constant c > 0 independent of x and ε.

Since we have, by Leibniz’s formula

Dα
(
ϕ(1 − hε)

)
(x) =

∑

β+γ=α

cγβD
βϕ(x)Dγ(1 − hε)(x), (78)

(cγβ are constant depending only on γ, β) and for γ 6= 0.

δr(x)
∣∣Dγhε(x)

∣∣ 6 c ε−|γ|+r, (79)

we then deduce, that

δr(x)
∣∣Dα

(
ϕ(1 − hε)

)
(x)

∣∣ 6 c


 ∑

β+γ=α, γ 6=0

|Dβϕ(x)|ε−|γ|+r + δr|Dαϕ|(1 − hε)


 .

Therefore
sup
x∈Ω

δr(x)
∣∣Dαϕ(1 − hε)(x)

∣∣ 6 c ε−|α|+r. (80)
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Taking ε =
1

n
, and ϕn = h 1

n
ϕ is convenient for large n > n0. If furthermore ϕ ∈ W 1,∞

0 (Ω) then

|ϕ(x)| 6 δ(x)||∇ϕ||∞.

Hence,

δr
∣∣Dα

(
ϕ(1 − hε)

)
(x)

∣∣ 6 c δr+1(x)ε−|α| + c
∑

β 6=0,β+γ=α

∣∣Dβϕ|(x)
∣∣Dγ(1 − hε)|δr(x) 6 c ε−|α|+r+1.

On the other hand





on δ(x) 6 ε
∣∣∇(ϕhε)(x)

∣∣ 6 |ϕ(x)|∇hε(x)| + 2||∇ϕ||∞ 6 c ||∇ϕ||∞
[
1 +

δ(x)

ε

]

6 c ||∇ϕ||∞,
on δ(x) > ε

∣∣∇ϕn(x)
∣∣ 6 2||∇ϕ||∞.

Moreover, one has

δr(x)
∣∣∣∇

(
ϕ(1 − hε)

)∣∣∣(x) 6 δr|Dϕ|(x)
(
1 − hε(x)

)
+ c δr+1(x)||∇ϕ||∞|∇hε| 6 c εr.

Thanks to the above approximation lemma we can modify the set of the test functions in the
Kato’s inequality as follows

Corollary 4. (of Theorem 4.4 : Variant of Kato’s inequality)
Let ω be in W 1,1

loc (Ω) ∩ LN ′,∞(Ω), ω ∈ L1(Ω; δ−r) for r > 1 and ~u ∈ LN,1(Ω)N with div (~u) =
0, ~u · ~n = 0. Assume furthermore that Lω = −∆ω + div (~uω) is in L1(Ω; δ).
Then for all φ ∈ C2(Ω), φ = 0 on ∂Ω, φ > 0 one has

1.

∫

Ω

ω+L∗φdx 6
∫

Ω

φ sign +(ω)L(ω)dx,

2.

∫

Ω

|ω|L∗φdx 6
∫

Ω

φ sign (ω)L(ω)dx,

where L∗φ = −∆φ− ~u · ∇φ = −∆φ− div (~uφ).

Proof. Let φ > 0 be in C2(Ω) with φ = 0 on ∂Ω. Then according to Lemma 4.4, we have a
sequence φn ∈ C2

c (Ω), φ > 0, such that

{
δr∆φn → δr∆φ in C(Ω) for r > 1,

δr∇φn → δr∇φ in C(Ω)N , ||∇φn||∞ 6 c||∇φ||∞.

Therefore

lim
n→+∞

∫

Ω

ω+∆φndx = lim
n→+∞

∫

Ω

ω+δ
−r · δr∆φndx =

∫

Ω

ω+∆φdx,

since ω+ ∈ L1(Ω; δ−r) and r > 1.
By the Lebesgue dominated convergence theorem, one has

lim
n→+∞

∫

Ω

~u · ∇φnω+dx =

∫

Ω

~u · ∇φω+dx, since ~u · ω+ ∈ L1(Ω)N .
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Therefore
∫

Ω

ω+L∗φdx = lim
n→∞

∫

Ω

ω+L∗φndx 6 lim
n→+∞

∫

Ω

φnsign +ω sign +Lωdx

=

∫

Ω

φ sign +ωLω (since
|φn|
δ

6 ||∇φn||∞ 6 c||∇φ||∞).

Now we come to the proof of the uniqueness result stated in Theorem 4.2.

Proof of Theorem 4.2. Since the v.w.s. ω satisfies V ω ∈ L1(Ω; δ), so if V > c δ−r, for r > 2, we
have in a neighborhood U of ∂Ω

∫

Ω

|ω|δ−(r−1)dx 6 c

∫

U

V |ω|δdx+ c1

∫

Ω

|ω|dx < +∞.

Thus ω ∈ L1(Ω; δ−r̃) with r̃ = r − 1 > 1 for r > 2.
If ω1, ω2 are two v.w.s. then ω = ω1 − ω2

Lω = L(ω1 − ω2) = −∆ω + div (~uω) = −V ω ∈ L1(Ω; δ).

We deduce from the Corollary 4 of Theorem 4.4 that ∀φ > 0, φ ∈ C2(Ω), φ = 0 on ∂Ω

∫

Ω

|ω|L∗φdx 6 −
∫

Ω

φ sign (ω)V ωdx = −
∫

Ω

φV |ω|dx 6 0.

For ~u ∈ Lp,1(Ω)N , (p > N as in the statement of Theorem 4.2) let us consider φ0 ∈ H1
0 (Ω)

solution of
L∗φ0 = −∆φ0 − ~u∇φ0 = 1.

Then φ0 > 0, φ0 ∈ W 2Lp,1(Ω) according to the above regularity result, (see Propositions 11 or
12) and φ0 can be approximated by a sequence φ0j ∈ C2(Ω), φ0j > 0, φ0j = 0 on ∂Ω satisfying

L∗
jφ0j = −∆φ0j − ~uj · ∇φ0j = 1, ~uj → ~u in Lp,1, ~uj ∈ V ,

so that
||φ0j ||W 2Lp,1 6 c.

Indeed, we may assume that φ0j converges weakly to a function φ0 in W 2Lp,1(Ω),

∇φ0j(x) → ∇φ0(x) and φ0j(x) → φ0(x) a.e. x ∈ Ω.

Since ∫

Ω

|ω| | ~uj − ~u| 6 || ~uj − ~u||LN,1 |ω|LN′,∞ ,

and
||∇φ0j ||∞ 6 c,

we deduce that

lim
j→+∞

∫

Ω

|ω|~uj · ∇φ0j =

∫

Ω

|ω|~u · ∇φ0dx.

Thus
L∗φ0 = 1, φ0 ∈ W 2LN,1(Ω) ∩H1

0 (Ω).
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By uniqueness φ0 = φ0 and then L∗
jφ0j ⇀ L∗φ0 weakly in LN,1. Since, we have

∫

Ω

|ω|L∗φ0jdx 6 0.

0 6
∫

Ω

|ω|dx =

∫

Ω

|ω|L∗
jφ0jdx 6

∫

Ω

|ω|(L∗
jφ0j − L∗φ0j)dx −−−−→

j→+∞
0,

we arrive to ω = 0.

Remark 7.
In Theorem 4.3 and Theorem 4.4, if ~u ≡ 0 (or ~u ∈ C1(Ω)N ) then we can weaken the conditions
on ω reducing it to ω belongs to L1(Ω; δ−r), r > 1. Then the above conclusions hold true.

Remark 8.
In fact, in Corollary 3, we can state that the unique solution of (1) (without any indication of
the boundary condition) must satisfy that ω = 0 on ∂Ω at least if ω is differentiable. Indeed, a
consequence of Lemma 7 we have

L1(Ω, δ−r) ∩W 1Lp,q(Ω) = W 1
0L

p,q(Ω) if r > 1 (1 6 p, q 6 +∞).

Remark 9. There is a large amount of works in the literature in which the uniqueness of
solutions of suitable elliptic problems is established without indicating any boundary condition
but these previous papers deal with degenerate elliptic operators (see, e.g. [3], [4], [21] and the
references therein). We point out that the main reason to get this type of results in our case (in
which the diffusion operator is the simplest one and is not degenerate) is the presence of a very
singular coefficient of the zero order term (the potential V (x)) which is ”pathological” since it is
more singular on the boundary of the domain than what the Hardy inequality may allow.

4.3 Boundedness in LN ′
(Ω) of the v.w.s., regularity and blow-up in

absence of any potential (V = 0)

Since the very weak solutions found in Theorem 4.1 needs not be in L1(Ω) our main goal now
(assuming V ≡ 0) is to analyze under which conditions ω is globally integrable. We have

Theorem 4.5. (Integrability in LN ′
(Ω).)

Let f be in L1
(
Ω; δ

(
1+ |Log δ|

) 1
N′

)
,

1

N
+

1

N ′ = 1, V = 0, ~u ∈ (LN (LogL)
β
N )N , with β > N−1,

div (~u) = 0 in Ω and ~u · ~n = 0 on ∂Ω. Then the unique very weak solution ω of equation (1)
belongs to LN ′

(Ω).

We recall the

Lemma 4.5. (see [37])
Let Ω be a bounded open Lipschitz set and α > 0. Then, there exists a constant cα(Ω) > 0 such
that ∀φ ∈ W 1

0L
α
exp(Ω)

|φ(x)| 6 cα(Ω)δ(x)(1 + |Log δ(x)|)α||∇φ||Lα
exp(Ω).

Proof of Theorem 4.5 (boundedness in LN ′
(Ω)). Let ω be the very weak solution found in The-

orem 4.1 and assume that
f ∈ L1

(
Ω; δ(1 + |Log δ|) 1

N′
)
.
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We know that there exists a sequence ~uj ∈ V such that the corresponding sequence (ωj)j satis-

fying relation (58) verifies ωj ⇀ ω weak-* in LN ′,∞ and that ∀φ ∈ H1
0 ∩W 2LN(Ω)

∫

Ω

ωj

[
− ∆φ− ~uj∇φ

]
dx =

∫

Ω

fφdx. (81)

Here ~uj converges in (LN (LogL)
β
N )N = Λ to ~u strongly where β > N − 1. Let g ∈ LN(Ω)and

let φj be the solution of

φj ∈ W 2LN (Ω) such that − ∆φj − ~uj∇φj = g in Ω, φj = 0 on ∂Ω.

Then according to Theorem 3.1, we have

||φj ||W 2LN (Ω) 6 Kε
1 + ||~uj ||Λ
1 − ε||~uj||Λ

||g||LN (Ω),

with

ε sup
j

||~uj ||Λ 6 1

2
, for some ε > 0.

Thus
||φj ||W 2LN (Ω) 6 K(Ω)||g||LN (Ω). (82)

By the Trudinger’s type inclusion (see Lemma 3.1)

||∇φj ||
L

1
N′
exp

6 K10||φj ||W 2LN (Ω) 6 K11||g||LN (Ω). (83)

Therefore, considering equation (81), we have

∫

Ω

ωjgdx =

∫

Ω

fφjdx, (84)

with the help of Lemma 4.5 with α =
1

N ′ and estimate (83), this relation gives:

∫

Ω

ωjgdx 6 K12||g||LN

∫

Ω

|f |δ(x)(1 + |Log δ(x)|) 1
N′ dx. (85)

Hence

sup
||g||LN =1

∫

Ω

ωjgdx 6 K12

∫

Ω

|f |δ(x)(1 + |Log δ(x)|) 1
N′ dx, (86)

which shows that :

||ω||LN′(Ω) 6 K12

∫

Ω

|f |δ(x)(1 + |Log δ(x)|) 1
N′ dx, (87)

proving the result.

For the case V ≡ 0, we can always obtain the W 1,q(Ω)-regularity, for q > 1, provided some
integrability on f but also on ~u. Here is a first result in that direction :

Theorem 4.6.
Let f be in L1(Ω; δ(1 + |Log δ|)), V = 0, and ~u in bmor(Ω)N . Then, the very weak solution
found in Theorem 4.1 belongs to W 1,1

0 (Ω).
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Proof. As before we consider the approximating problem (57) with ~uj = ~u, say

{
−∆ωj + ~u · ∇ωj = fj in Ω,

ωj ∈ H1
0 (Ω) ∩W 2Lp,1(Ω) ∀ p < +∞.

Thus, taking φ ∈ W 1
0 bmor(Ω) we have

∫

Ω

∇ωj · ∇φdx+

∫

Ω

~u · ∇ωjφdx =

∫

Ω

fjφdx ⇐⇒
∫

Ω

[
∇ωj · ∇φ− ~u · ∇φωj

]
dx =

∫

Ω

fjφdx.

Let Fj =
∇ωj

|∇ωj |
if ∇ωj 6= 0, and 0 otherwise, Fj ∈ L∞(Ω)N , ||Fj ||∞ 6 1. According to

Proposition 10, there exists a function φj ∈ W 1
0 bmor(Ω) such that

−∆φj − ~u∇φj = −div (Fj), and ||φj ||W 1
0 Lq 6 c9||Fj ||Lq 6 cq < +∞ ∀ q > 1,

⇐⇒
∫

Ω

∇φj∇ϕdx −
∫

Ω

~u∇φjϕdx =

∫

Ω

Fj∇ϕdx ∀ϕ ∈ H1
0 (Ω).

Choosing ϕ = ωj, we have

∫

Ω

|∇ωj |dx =

∫

Ω

∇φj · ∇ωj dx−
∫

Ω

~u · ∇φjωj dx =

∫

Ω

fjφj dx. (88)

FromLemma 4.5, and by the John-Nirenberg inequality (see [47]) we have :

|φj(x)| 6 c(Ω)δ(x)(1 + |Log δ(x)|)||∇φj ||Lexp 6 c(Ω)δ(x)(1 + |Log δ(x)|)||∇φj ||bmor(Ω). (89)

We recall that
||∇φj ||bmor

6 K(||Fj ||∞ + ||~uφj ||bmor
) 6 c, (90)

since φj → φ strongly in C0,α(Ω) (see Proposition 10).
Combining (88) to (90), we have

∫

Ω

|∇ωj |dx 6 c

∫

Ω

|fj |δ(x)(1 + |Log δ|)dx 6 K

∫

Ω

|f |δ(1 + Log δ|)dx; (91)

using also the fact that




ωj → ω strongly in Lq(Ω) q < N ′,

ωj ⇀ ω weakly in W 1,q
loc (Ω) 1 < q < 1 +

1

N
,

we deduce that : ∫

Ω

|∇ω|dx 6 c

∫

Ω

|f |δ(1 + |Log δ|)dx.

Let us prove that if we enhance the integrability condition on f to f ∈ L1(Ω, δα) for some

α ∈] 0, 1 [ then we can weaken the condition on ~u to ~u ∈ L
N

1−α (Ω)N and in that case we have
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Theorem 4.7.
Let f be in L1(Ω, δα) for some α ∈] 0, 1 [, V = 0, ~u ∈ L

N
1−α (Ω) with div (~u) = 0, ~u · ~n = 0 on

∂Ω. Then, the very weak solution ω found in Theorem 4.1 belongs to W 1
0L

N
N−1+α (Ω). Moreover,

there exists a constant K(α; Ω) > 0 such that

||ω||
W 1

0 L
N

N−1+α (Ω)
6 K(α; Ω)

(
1 + ||~u||

L
N

1−α

)
||f ||L1(Ω,δα).

The proof of Theorem 4.7 relies on the following result, dual of Proposition 8.

Proposition 15.

Let ~u ∈ Lp,q(Ω), p > N, q ∈ [ 1,+∞], V = 0, and F ∈ Lp′,q′
(Ω)N ,

1

p
+

1

p′ = 1 =
1

q
+

1

q′ . Then

there exists ω ∈ W 1
0L

p′,q′
(Ω) such that

− ∆ω + ~u · ∇ω = −div (F ), (92)

which is equivalent to

a(ω;φ) =

∫

Ω

∇ω · ∇φdx +

∫

Ω

~u · ∇ωφdx =

∫

Ω

F · ∇φdx (93)

∀φ ∈ W 1
0L

p,q(Ω). Moreover

||∇ω||Lp′,q′ 6 Kpq(1 + ||~u||Lp,q)||F ||Lp′,q′

Proof. Let G be in Lp,q(Ω)N , p > N . Following Proposition 8, there exists a function φ0 ∈
W 1

0L
p,q(Ω) such that

∫

Ω

∇φ0 · ∇ϕfx−
∫

Ω

~u · ∇φ0ϕdx =

∫

Ω

G · ∇ϕdx ∀ϕ ∈ C∞
c (Ω).

Since

−
∫

Ω

~u · ∇φ0ϕdx =

∫

Ω

~u · ∇ϕφ0 dx,

by using a density argument over the set of test functions there exists

a(ϕ, φ0) =

∫

Ω

∇φ0 · ∇ϕ+

∫

Ω

~u · ∇ϕφ0 =

∫

Ω

G · ∇ϕdx ∀ϕ ∈ W 1
0L

p′,q′
(Ω). (94)

Let Fk ∈ L∞(Ω)N , with |Fk(x)| 6 |F (x)| in Ω. Then we have that ωk ∈ W 1
0L

p′,q′
(Ω) ∩ H1(Ω)

such that

a(ωk, φ) =

∫

Ω

Fk · ∇φdx ∀φ ∈ W 1
0L

p,q(Ω). (95)

Choosing φ = φ0 in this last equation, we find that

∫

Ω

G · ∇ωk dx = a(ωk, φ0) =

∫

Ω

Fk · ∇φ0 dx. (96)

Following Proposition 8, we have

||∇φ0||Lp,q 6 Kpq(1 + ||~u||Lp,q )||G||Lp,q . (97)
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From relation (96) and (97), we have

∫

Ω

G · ∇ωk dx 6 Kpq(1 + ||~u||Lp,q)||Fk||Lp′,q′ ||G||Lp,q . (98)

So that we have

sup
||G||Lp,q=1

∫

Ω

G · ∇ωkdx 6 Kpq(1 + ||~u||Lp,q)||F ||Lp′,q′ (99)

||∇ωk||Lp′,q′ 6 Kpq(1 + ||~u||Lp,q )||F ||Lp′,q′ . (100)

By standard argument, we derive the existence of ω satisfying (92) as a weak limit of ωk in
W 1Lp′,q′

(Ω).

Proof of Theorem 4.7. Since f ∈ L1(Ω; δα), according to [18], there exists F = ∇v ∈ L
N

N−1+α (Ω)N ,
f = −div (F ). Moreover, the function Fk = ∇vk satisfying −∆vk = Tk(f) converge to F strongly

in L
N

N−1+α (Ω)N (vk and v are in W 1
0L

N
N−1+α (Ω)).

Since the very weak solution ω found in Theorem 4.1 is the weak-* limit of the solutions of
the regularized problem





−∆ωk + ~u · ∇ωk = fk = Tk(f) = −div (Fk),

ωk ∈ W 2Lq(Ω) ∩H1
0 (Ω) with q =

N

1 − α
> N,

and

||∇ωk||Lq′ (Ω) 6 Kq(1 + ||~u||Lq)||Fk||Lq′ (Ω), q′ =
N

N − 1 + α
,

letting k → +∞, we derive the result once we know that ||F ||Lq′ 6 c||f ||L1(Ω,δα).

When α = 0, that is f ∈ L1(Ω), we can weaken the integrability assumption on ~u as we state
in the following result :

Theorem 4.8.
Let f be in L1(Ω), V = 0, ~u ∈ LN (Ω)N with div (~u) = 0 on ∂Ω, ~u · ~n = 0 on ∂Ω. Then, the very
weak solution ω found in Theorem 4.1 belongs to W 1

0L
N ′,∞(Ω).

Moreover, there exists a constant c(Ω) > 0, independent of ~u, such that

||∇ω||LN′,∞(Ω) 6 c(Ω)||f ||L1(Ω).

Proof. Let ~uj ∈ V be such that ~uj → ~u in LN (Ω)N , and let fj ∈ L∞(Ω) be such that |fj(x) 6
|f(x)| and fj(x) → f(x) a.e, x ∈ Ω.
Let us consider the functions ωj ∈ W 2Lm(Ω) ∩H1

0 (Ω) ∀m < +∞ satisfying

−∆ωj + ~uj · ∇ωj = fj .

Then ∫

Ω

|∇Tk(ωj)|2dx+

∫

Ω

~uj · ∇
∫ ωj

0

Tk(σ)dσ =

∫

Ω

Tk(ωj)fj(x)dx,

and since by integration by parts we have

∫

Ω

~uj · ∇
∫ ωj

0

Tk(σ)dσ = 0 we get

∫

Ω

|∇Tk(ωj)|2dx 6 k

∫

Ω

|f(x)|dx. (101)
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By the Poincaré-Sobolev inequality

∫

Ω

|Tk(ωj)|2dx 6 cΩk

∫

Ω

|f(x)|dx.

By Proposition 13, we deduce that

‖∇ωj||LN′,∞(Ω) 6 cΩ

∫

Ω

|f(x)|dx.

Since ~uj → ~u in LN(Ω)N and by compactness ωj → ω in LN ′
(Ω)(

note that W 1LN ′,∞(Ω) →֒ L
N

N−2 ,∞(Ω) for N > 3 ( see [35])
)
, we then have for all φ ∈ C2(Ω)

with φ = 0 on ∂Ω, ∫

Ω

ωj~uj∇φdx −−−−→
j→+∞

∫

Ω

ω~u · ∇φdx,

so that ω solves (16) for V ≡ 0.

As for the case ~u = 0, the additional regularity questions are numerous; for instance, does
there exists a datum f ∈ L1(Ω; δ) for which we have

∫

Ω

|∇ω|dx = +∞ or

∫

Ω

|ω|N ′
dx = +∞?

For the explosion of the norm of ω in LN ′
, we can adopt the same proof as for the explosion

of the gradient in L1(Ω). We have

Theorem 4.9. (blow-up in LN ′
(Ω))

Assume that N > 3, ~u ∈ C0,α(Ω)N , α > 0, V = 0. Then there exists a function f in

L1
+(Ω; δ)\L1(Ω, δ(1+|Log δ|) 1

N′ ) such that the very weak solution ω found in Theorem 4.1 satisfies

that ω does not belong to LN ′
(Ω)).

First we recall the following result that can be proved as in [39] (see also [40]).

Lemma 4.6. Let N > 3. There exists a function g ∈ LN
+ (Ω) such that the unique solution

ψ ∈ W 2LN(Ω) ∩H1
0 (Ω) of −∆ψ − ~u · ∇ψ = g satisfies :

1. ψ(x) > c1δ(x), ∀x,

2. sup

{
ψ(x)

δ(x)
, x ∈ Ω

}
= +∞,

3. L1
+(Ω; δ)\L1(Ω, ψ) is non empty.

Arguing as in [39], [1], we consider gk = Tk(g), g given by Lemma 4.6 such that

ψk ∈ W 2Lq(Ω) ∩H1
0 (Ω) for all q < +∞, −∆ψk − ~u∇φk = Tk(g).

Now assume that for all f ∈ L1(Ω; δ), we have for the v.w.s. ||ω||LN′ < +∞. Then by
the Banach-Steinhauss uniform boundedness theorem as in [1, 39], we derive the existence of a
constant c0 > 0 such that

||ω||LN′ 6 c0

∫

Ω

|f |δdx ∀ f ∈ L1(Ω; δ),
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and ∫

Ω

ω
[
− ∆φ− ~u · ∇φ

]
dx =

∫

Ω

fφ dx ∀φ ∈ W 2LN,1(Ω) ∩H1
0 (Ω).

Taking φ = ψk, and f ∈ L1
+(Ω; δ)\L1

+(Ω, ψ) we see that

0 6
∫

Ω

fψk =

∫

Ω

ωgk dx 6 ||ω||LN′ ||g||LN < +∞. (102)

Letting k → +∞, we have a contradiction since

limk→+∞

∫

Ω

fψk >
∫

Ω

fψ dx = +∞,

which concludes the proof Theorem 4.9.

Remark 10.
We can give the more precise information that the function f in Theorem 4.9 is not in L1(Ω; δ(1+

|Log δ|) 1
N′ ) (due to Theorem 4.5).

4.4 Some final conclusion

In the opinion of the authors, the results of this paper open many different further applications in
different directions. Besides the consideration of the list of concrete problems mentioned in the
Introduction other studies can be carried out. For instance, following the arguments of [19], it is
not complicated to extend many of the results of this paper to the study of semilinear problems
for which equation (1) is replaced by the equation

−∆ω + ~u · ∇ω + V ω + β(x, u,∇u) = f(x) on Ω,

when β is nondecreasing in u. Moreover the consideration of parabolic problems of the type

ωt − ∆ω + ~u · ∇ω + V ω + β(x, u,∇u) = f(t, x) on Ω × (0, T ),

can be carried out with the help of the results of this paper (mainly the L1(Ω; δ)-accretiveness
property of the associates operator). The details will be given in some separate work by the
authors.
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After this article was completed, we learned, during a presentation at a conference (March
29-30, 2017) in Poitiers, France, that L. Orsina and A. Ponce have obtained related results in
the references [33, 34]. Their results deal essentially with the existence and the use of the normal
derivative for any function in W 1,1

0 (Ω). In the improved version [34] that they sent to us by
the authors after the conference, they add a new proposition (Proposition 2.7) which provides a
complement to our results since it gives a qualitative property for ω solution of our problem (16)
if the velocity ~u is zero when the solution is integrable on the whole domain (for a right hand
side f in L1(Ω, δ(1 + |Logδ|)). We note also that J.I.Dı́az has already derived results similar to
their Proposition 2.7 in [15, 16].
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[24] Gómez-Castro D., Shape differentiation of a steady-state reaction-diffusion problem aris-
ing in chemical engineering: the case of non-smooth kinetic with dead core. To appear in
Electronic Journal of Dierential Equations, Vol. 2017.

[25] Hadamard J., Sur le problème d’analyse relatif à l’équilibre des plaques élastiques en-
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2002.

[29] Merker J., Rakotoson J.M., Very weak solutions of Poisson’s equation with singular
data under Neumann boundary conditions 52 Cal. of Var. and P.D.E. (2015) 705-726 DOI
10.1007/s00526-014-0730-0 (2014).
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We discuss optimal L2-approximations of functions controlled in the H1-norm. We prove 
that the basis of eigenfunctions of the Laplace operator with Dirichlet boundary condition 
is the only orthonormal basis (bi) of L2 that provides an optimal approximation in the 
sense of∥∥∥∥∥ f −
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( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�), ∀n ≥ 1.

This solves an open problem raised by Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel, 
and N. Sochen (Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 
1155–1167).
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On s’intéresse à l’approximation optimale pour la norme L2 de fonctions contrôlées en 
norme H1. On prouve que la base des fonctions propres du laplacien avec condition de 
Dirichlet au bord est l’unique base orthonormale (bi) de L2 qui réalise une approximation 
optimale au sens de∥∥∥∥∥ f −
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( f ,bi)bi

∥∥∥∥∥
2
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≤ ‖∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�), ∀n ≥ 1.

Ceci résout un problème ouvert posé par Y. Aflalo, H. Brezis, A. Bruckstein, R. Kimmel 
et N. Sochen (Best bases for signal spaces, C. R. Acad. Sci. Paris, Ser. I 354 (12) (2016) 
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1. Introduction and main result

This note is a follow-up of the papers by Y. Aflalo, H. Brezis and R. Kimmel [2] and Y. Aflalo, H. Brezis, A. Bruckstein, R. 
Kimmel and N. Sochen [1].

Let � ⊂ RN be a smooth bounded domain. Let e = (ei) be an orthonormal basis of L2(�) consisting of the eigenfunctions 
of the Laplace operator with Dirichlet boundary condition:{

−�ei = λiei in �,

ei = 0 on ∂�.
(1)

where 0 < λ1 < λ2 ≤ λ3 ≤ · · · is the ordered sequence of eigenvalues repeated according to their multiplicity.
We first recall a very standard result:

Theorem 1.1. We have, for all n ≥ 1,∥∥∥∥∥ f −
n∑

i=1

( f , ei)ei

∥∥∥∥∥
2

L2

≤ ‖ ∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�). (2)

Here and throughout the rest of this paper (·, ·) denotes the scalar product in L2(�).
Indeed, we may write∥∥∥∥∥ f −

n∑
i=1

( f , ei)ei

∥∥∥∥∥
2

L2

=
∥∥∥∥∥∥

+∞∑
i=n+1

( f , ei)ei

∥∥∥∥∥∥
2

L2

=
+∞∑

i=n+1

( f , ei)
2. (3)

On the other hand,

‖∇ f ‖2
L2 =

+∞∑
i=1

λi( f , ei)
2 ≥

+∞∑
i=n+1

λi( f , ei)
2 ≥ λn+1

+∞∑
i=n+1

( f , ei)
2. (4)

Combining (3) and (4) yields (2). �
The authors of [2] and [1] have investigated the “optimality” in various directions of the basis (ei), with respect to 

inequality (2). Here is one of their results restated in a slightly more general form.

Theorem 1.2 (Theorem 3.1 in [2]). There is no integer n ≥ 1, no constant 0 ≤ α < 1 and no sequence (ψi)1≤i≤n in L2(�) such that∥∥∥∥∥ f −
n∑

i=1

( f ,ψi)ψi

∥∥∥∥∥
2

L2

≤ α

λn+1
‖∇ f ‖2

L2 ∀ f ∈ H1
0(�). (5)

The proof in [2] relies on the Fischer–Courant max–min principle (see Remark 3.3 below). For the convenience of 
the reader, we present a very elementary proof based on a simple and efficient device originally due to H. Poincaré [5, 
pp. 249–250] (and later rediscovered by many people, e.g., H. Weyl [7, p. 445] and R. Courant [3, pp. 17–18]; see also H. 
Weinberger [6, p. 56] and P. Lax [4, p. 319]).

Suppose not, and set

f = c1e1 + c2e2 + · · · + cnen + cn+1en+1 (6)

where c = (c1, c2, · · · , cn, cn+1) ∈ Rn+1. The under-determined linear system

( f ,ψi) = 0, ∀i = 1, · · · ,n (7)

of n equations with n + 1 unknowns admits a non-trivial solution. Inserting f into (5) yields

λn+1

n+1∑
i=1

c2
i ≤ α

n+1∑
i=1

λic
2
i ≤ αλn+1

n+1∑
i=1

c2
i . (8)

Therefore 
∑n+1

i=1 c2
i = 0 and thus c = 0. A contradiction. This proves Theorem 1.2. �

The authors of [1] were thus led to investigate the question of whether inequality (2) holds only for the orthonormal 
bases consisting of eigenfunctions corresponding to ordered eigenvalues. They established that a “discrete”, i.e., finite-
dimensional, version does hold; see [1, Theorem 2.1] and Remark 3.2 below. But their proof of “uniqueness” could not 
be adapted to the infinite-dimensional case (because it relied on a “descending” induction). It was raised there as an open 
problem (see [1, p. 1166]). Our next result solves this problem.
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Theorem 1.3. Let (bi) be an orthonormal basis of L2(�) such that, for all n ≥ 1,∥∥∥∥∥ f −
n∑

i=1

( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λn+1
∀ f ∈ H1

0(�). (9)

Then, (bi) consists of an orthonormal basis of eigenfunctions of −� with corresponding eigenvalues (λi).

2. Proof of Theorem 1.3

A basic ingredient of the argument is the following lemma:

Lemma 2.1. Assume that (9) holds for all n ≥ 1 and all f ∈ H1
0(�), and that

λi < λi+1 (10)

for some i ≥ 1. Then

(b j, ek) = 0, ∀ j,k such that 1 ≤ j ≤ i < k. (11)

Proof. Fix k > i. Let l be the largest integer l ≤ k − 1 such that

λl < λl+1. (12)

Clearly

i ≤ l (13)

and

λl+1 = λl+2 = · · · = λk. (14)

Applying (9) for n = l, we get∥∥∥∥∥ f −
l∑

i=1

( f ,bi)bi

∥∥∥∥∥
2

L2

≤ ‖∇ f ‖2
L2

λl+1
∀ f ∈ H1

0(�). (15)

We use again Poincaré’s “magic trick”. Take f of the form

f = c1e1 + · · · + clel + cek (16)

such that

( f ,b j) = 0 ∀ j = 1, · · · , l. (17)

This is a system of l linear equations with l + 1 unknowns, so that there are nontrivial solutions. We may as well assume 
that

c2
1 + · · · + c2

l + c2 = 1. (18)

By (15) and (14), we have

λl+1 ≤ λ1c2
1 + · · · + λlc

2
l + λkc2 = λ1c2

1 + · · · + λlc
2
l + λl+1c2. (19)

From (18) we get

λl+1(c2
1 + · · · + c2

l ) ≤ λ1c2
1 + · · · + λlc

2
l . (20)

Thus

(λl+1 − λ1)c2
1 + · · · + (λl+1 − λl)c2

l ≤ 0. (21)

By (12) the coefficients λl+1 − λi are positive for every i = 1, · · · , l. Therefore

c1 = · · · = cl = 0. (22)

Hence c = ±1 so that f = ±ek and by (17)

(b j, ek) = 0 ∀ j = 1, · · · , l. (23)

The conclusion follows from (23) and (13). �
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Before we present the proof in the general case, for the convenience of the reader, we start with the case of simple 
eigenvalues. Since λ1 < λ2 then, by the lemma,

(b1, ek) = 0 ∀k ≥ 2. (24)

Thus b1 = ±e1. Next we apply the lemma with λ2 < λ3. We have that

(b2, ek) = 0 ∀k ≥ 3. (25)

Also, we have that

(b2, e1) = ±(b2,b1) = 0. (26)

Therefore b2 = ±e2. Similarly, we have that bi = ±ei for i ≥ 3.
We now turn to the general case:

Proof of Theorem 1.3. As above we have b1 = ±e1. Consider the first index i ≥ 2 such that λi < λi+1. Call it i1. From the 
lemma we have that

(b j, ek) = 0 ∀ j,k such that 1 ≤ j ≤ i1 < k. (27)

Therefore b2, · · · , bi1 ∈ span(e2, · · · , ei1 ). Hence, each b j with 2 ≤ j ≤ i1 is an eigenfunction of −� with corresponding 
eigenvalue λ = λ2 = · · · = λi1 . Therefore, due to dimensions, b2, · · · , bi1 is an orthonormal basis of

span(b2, · · · ,bi1) = span(e2, · · · , ei1) = ker(−� − λi1 I); (28)

in particular each

ek ∈ span(b1, · · · ,bi1) k = 1, · · · , i1. (29)

Consider the next block

λ = λi1+1 = · · · = λi2 < λi2+1. (30)

From the lemma we have that

(b j, ek) = 0 ∀ j,k such that 1 ≤ j ≤ i2 < k. (31)

We also know that for j ≥ i1 + 1,

(b j, ek) = 0 k = 1, · · · , i1 (32)

because of (29). Combining (31) and (32) yields

(b j)i1+1≤ j≤i2 ∈ span(e j)i1+1≤ j≤i2 . (33)

As above, we conclude, using (30), that bi1+1, · · · , bi2 is an orthonormal basis of

span(b j)i1+1≤ j≤i2 = span(e j)i1+1≤ j≤i2 = ker(−� − λi2 I). (34)

Similarly for the next blocks. �
3. Final remarks

Remark 3.1. We call the attention of the reader to the fact that the functions bi are only assumed to be in L2(�) and we 
deduce from Theorem 1.3 that (surprisingly) they belong to H1

0(�) ∩ C∞(�).

Remark 3.2. Theorem 1.3 holds in a more general setting. Let V and H be Hilbert spaces such that V ⊂ H with compact and 
dense inclusion (dim H ≤ +∞). Let a : V × V → R be a continuous bilinear symmetric form for which there exist constants 
C, α > 0 such that, for all v ∈ V ,

a(v, v) ≥ 0,

a(v, v) + C | v|2H ≥ α‖v‖2
V .

Let 0 ≤ λ1 ≤ λ2 ≤ · · · be the sequence of eigenvalues associated with the orthonormal (in H) eigenfunctions e1, e2, · · · ∈ V , 
i.e.,

a(ei, v) = λi(ei, v) ∀v ∈ V ,

where (·, ·) denotes the scalar product in H . We point out that, in this general setting, it may happen that λ1 = 0 (e.g., −�

with Neumann boundary conditions); and λ1 may have multiplicity > 1. Recall that, for every n ≥ 1 and f ∈ V :
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λn+1

∣∣∣∣∣ f −
n∑

i=1

(ei, f )ei

∣∣∣∣∣
2

H

≤ a( f , f ). (35)

Let (bi) be an orthonormal basis of H such that for all n ≥ 1 and f ∈ V

λn+1

∣∣∣∣∣ f −
n∑

i=1

(bi, f )bi

∣∣∣∣∣
2

H

≤ a( f , f ). (36)

Then, (bi) consists of an orthonormal basis of eigenfunctions of a with corresponding eigenvalues (λi). The proof is identical 
to the one above.

When dim H < +∞ and V = H , this result is originally due to [1]. The proof of rigidity was quite different and could 
not be adapted to the infinite-dimensional case. It was raised there as an open problem.

Remark 3.3. Recall that the usual Fischer–Courant max–min principle asserts that for every n ≥ 1, we have

λn+1 = max
M⊂L2(�)

M linear space
dim M=n

min
0 �= f ∈H1

0(�)

f ∈M⊥

‖∇ f ‖2
L2

‖ f ‖2
L2

, (37)

(see, e.g., [4] or [6]). Our technique sheds some light about the structure of the maximizers in (37). Let (bi) be an orthonor-
mal sequence in L2(�) such that, for every n ≥ 1,

λn+1 = min
0 �= f ∈H1

0(�)

f ∈M⊥
n

‖∇ f ‖2
L2

‖ f ‖2
L2

where Mn = span(b1,b2, · · · ,bn). (38)

Then, each bi is an eigenfunction associated with λi . This is an easy consequence of the proof of Theorem 1.3.

Remark 3.4 (rigidity of the tail). Assume that (9) holds only for n = k, k + 1, · · · . Let the eigenvalues be simple. Applying the 
same reasoning as in our proof gives

span(b1, · · · ,bn) = span(e1, · · · , en) n = k,k + 1, · · · (39)

The same argument as before yields bi = ±ei for i = k + 1, k + 2, · · · . Concerning the bi ’s for i ≤ k, we only know that 
b1, · · · , bk ∈ span(e1, · · · , ek) and therefore they are smooth. A similar result holds if the eigenvalues are not simple.

Remark 3.5. We now turn to the reverse situation, i.e., we assume that (9) holds only for 1 ≤ n ≤ k. In this case (9) yields 
very little information on the bi ’s. Consider for example the case n = k = 1. In other words, assume that b = b1 ∈ L2(�) is 
such that ‖b‖L2 = 1 and

‖ f − ( f ,b)b‖2
L2 ≤ 1

λ2
‖∇ f ‖2

L2 ∀ f ∈ H1
0(�). (40)

Of course, (40) holds with b = e1. From Lemma 2.1, we know that (40) implies that

(e2,b) = 0. (41)

Clearly, (41) is not sufficient. Indeed, take b = e3. Then, (41) holds but (40) fails for f = e1. We do not have a simple 
characterization of the functions b satisfying (40). But we can construct a large family of functions b (which need not be 
smooth) such that (40) holds. Assume that 0 < λ1 ≤ λ2 < λ3. Let χ ∈ L2(�) be any function such that

(e1,χ) = 0, (42)

(e2,χ) = 0, (43)

‖χ‖2
L2 = 1. (44)

Set

b = αe1 + εχ α2 + ε2 = 1, with 0 < ε < 1. (45)
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Claim: there exists ε0 > 0, depending on (λi)1≤i≤3, such that for every 0 < ε < ε0 (40) holds. We have, for f ∈ H1
0(�), and 

with ci = ( f , ei),

1

λ2
‖∇ f ‖2

L2 − ‖ f − ( f ,b)b‖2
L2 = 1

λ2
‖∇ f ‖2

L2 −
(
‖ f ‖2

L2 − ( f ,b)2
)

(46)

=
+∞∑
i=1

λi

λ2
c2

i −
+∞∑
i=1

c2
i + ( f ,b)2. (47)

On the other hand

( f ,b)2 = (α( f , e1) + ε( f ,χ))2 (48)

= α2c2
1 + 2αε( f , e1)( f ,χ) + ε2( f ,χ)2 (49)

= α2c2
1 + 2αε( f − c2e2, e1)( f − c2e2,χ) + ε2( f ,χ)2 (50)

≥ α2c2
1 − 2ε‖ f − c2e2‖2

L2 (51)

= α2c2
1 − 2ε

∑
i �=2

c2
i . (52)

Going back to (47), using (45) and choosing ε < ε0 small enough, yields

1

λ2
‖∇ f ‖2

L2 − ‖ f − ( f ,b)b‖2
L2

≥
(

λ1

λ2
− 2ε − ε2

)
c2

1 +
+∞∑
i=3

(
λi

λ2
− 1 − 2ε

)
c2

i (53)

≥ 0. (54)

Remark 3.6. In the general setting of Remark 3.2, it may happen that 0 = λ1 < λ2. Suppose now that b ∈ H is such that 
‖b‖H = 1 and

‖ f − ( f ,b)b‖2
H ≤ 1

λ2
a( f , f ) ∀ f ∈ V . (55)

Claim: we have b = ±e1. Indeed, let f = e1 in (55) we have that

‖ e1 − (e1,b)b‖2
H ≤ λ1

λ2
= 0. (56)

Therefore b = ±e1.
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