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Resumen en español

En el presente trabajo investigamos teóricamente las propiedades electró-

nicas de una capa de grafeno sobre un sustrato piezoeléctrico. Concreta-

mente, estudiamos el efecto de los modos de vibración acústicos de superficie

sobre los electrones del grafeno. Este trabajo está dividido en seis caṕıtulos

y varios apéndices, siendo el objetivo de estos últimos el que el material sea

lo más autocontenido posible.

El primer caṕıtulo introduce una visión general de los actores princi-

pales en este trabajo. El grafeno es un material de dos dimensiones que ha

atráıdo una atención creciente internacionalmente desde su aislamiento por

Novoselov y Geim en 2004. Está formado por una red de átomos de car-

bono en forma de panal. El grafito, la forma más común de carbono puro,

puede ser visto como si estuviera hecho por láminas de grafeno débilmente

acopladas. El grosor atómico del grafeno, combinado con sus propiedades

electrónicas únicas originadas por el comportamiento de sus electrones como

si no tuvieran masa, convierte a este material en un objeto excepcional de

elevado interés fundamental y aplicado.

Dado que este alótropo del carbono es un material atómicamente fino, la

dinámica de sus portadores de carga es muy sensible a los campos electro-

magnéticos circundantes, y la posibilidad de cambiar la concentración de

sus portadores de carga in situ aplicando un voltaje externo de puerta es

una caracteŕıstica clave de muchos dispositivos basados en el grafeno. La

alt́ısima movilidad de los portadores en grafeno suspendido es posibilitada

por las altas frecuencias de los fonones ópticos en esta dura red de panal.

1



2 RESUMEN EN ESPAÑOL

Por consiguiente, los efectos del scattering de electrón-fonón en su trans-

porte son pequeños en comparación con los de los metales convencionales.

Sin embargo, en la mayoŕıa de arquitecturas de dispositivos, el grafeno está

depositado en un sustrato, y todos los modos de la red del sustrato que

inducen un campo eléctrico influirán sobre los portadores de la lámina de

grafeno, haciendo que la elección del sustrato sea crucial para determinar

las caracteŕısticas resultantes de transporte en el dispositivo.

Por otro lado, las ondas acústicas de superficie (SAWs, del inglés) creadas

en materiales piezoeléctricos residen en la superficie de un sólido o en la in-

terfase entre dos sólidos. Han sido utilizadas por mucho tiempo para contro-

lar las propiedades de estructuras y materiales semiconductores. Las SAWs

pueden ser usadas para convertir señales mecánicas en señales eléctricas y

viceversa. Una primera descripción básica de la piezoelectricidad y de sus

ondas de superficie en el primer caṕıtulo es seguida a continuación por un

estudio cuantitativo de su propagación y de sus principales caracteŕısticas

en el segundo caṕıtulo (en parte en forma de review).

Además de la deformación mecánica, la vibración de la red iónica en un

material piezoeléctrico produce un campo eléctrico que viaja con la SAW.

Este campo puede transportar portadores de carga en una monocapa de

grafeno depositada sobre dicho material, lo cual permite investigar, por

ejemplo, la estructura de niveles de Landau del grafeno en presencia de un

campo magnético externo. La necesidad de cuantificar los efectos tanto para

SAWs macroscópicas como sus cuantos de vibración, los fonones acústicos,

conduce al tercer caṕıtulo. Ah́ı se estudia la interacción entre los electrones

de un metal bidimensional y los fonones acústicos del sustrato piezoeléctrico

subyacente. A partir de argumentos energéticos fundamentales se pueden

obtener desigualdades generales.

Como resultado, se puede probar que la atracción mediada por fonones

nunca supera la repulsión de Coulomb electrónica, al menos para longitudes

de onda largas. Por tanto, en el cuarto caṕıtulo estudiamos la influencia

de dichos fonones en las interacciones electrón-electrón y en las posibles

inestabilidades de apareamiento de un gas de electrones bidimensional como
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el del grafeno.

En el quinto caṕıtulo investigamos las propiedades many-body del grafeno

sobre un sustrato piezoeléctrico, centrándonos en la interacción entre los

electrones del grafeno y los fonones piezoeléctricos de superficie. Calculamos

las autoenerǵıas de electrones y de fonones, como también la movilidad

electrónica limitada por los fonones del sustrato. Enfatizamos la importan-

cia del correcto apantallamiento del vértice de la interacción electrón-fonón

y discutimos diversos comportamientos ĺımite como función de la enerǵıa

del electrón, la temperatura y el nivel de dopaje. El efecto de los fonones

acústicos de superficie en los electrones del grafeno se compara con el de

los fonones intŕınsecos de deformación del grafeno. Se comprobará que los

fonones del sustrato tienden a dominar sobre los fonones intŕınsecos para

dopajes bajos prácticamente a cualquier temperatura.

El último caṕıtulo contiene las conclusiones globales de este trabajo.

Los resultados numéricos para los recorridos libres medios y las movili-

dades electrónicas mostradas se muestran aplicables para diversos materiales

piezoeléctricos con diferentes estructuras de red y magnitudes piezoeléctricas.

Nuestro estudio puede ser por tanto relevante para dispositivos de grafeno

operando en el régimen de transporte baĺıstico, y en escenarios donde la

interferencia cuántica induce fenómenos de localización.

El trabajo presentado aqúı ha dado lugar a las siguientes dos publica-

ciones: Refs. [1, 2]. Los dos primeros caṕıtulos, aśı como los apéndices,

contienen material relevante de review, donde no se sigue ninguna fuente

concreta sino que se combinan varias referencias de forma creativa. En al-

gunas de sus subsecciones se presenta trabajo original no incluido en las

Refs. [1, 2]. El tercer y el cuarto caṕıtulo están basados en el contenido

de la Ref. [1], mientras que la Ref. [2] ha inspirado el quinto caṕıtulo. En

ambos caṕıtulos se añaden algunos comentarios cualitativos y detalles de

cálculo no incluidos en las publicaciones por brevedad.

Finalmente, me gustaŕıa dar las gracias a Francisco Guinea y Fernando

Sols por la dirección de la presente tesis doctoral. Asimismo, doy las gra-
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cias a Ivar Zapata por su paciencia y enseñanzas; a Jürgen Schiefele, Fer-

nando Calle y Jorge Pedrós por su trabajo y valiosos comentarios, a mis

simpáticos compañeros del departamento de F́ısica de Materiales de la Uni-

versidad Complutense de Madrid (especialmente a los buenos de Luis Ruiz-

Valdepeñas y Juan Ramón Muñoz de Nova), y a mi padre Emiliano González

y mi t́ıa Ana Maŕıa González por su apoyo.



Abstract

In the present work, we investigate theoretically the electronic propierties

of a graphene layer on a piezoelectric substrate. Specifically, we study the

effect of the surface acoustic vibration modes on the graphene electrons.

This work is divided in six chapters plus several appendices whose goal is

to render the material as self-contained as possible.

The first chapter introduces a basic survey of the main actors in this

work. Graphene is a two-dimensional material that has received increasing

worldwide attention since its isolation by Novoselov and Geim in 2004. It

is formed by a honeycomb lattice of carbon atoms. Graphite, the most

common form of pure carbon, can be viewed as made of weekly coupled

graphene layers. The single-atom thickness of graphene, combined with its

unique electronic properties stemming from the effectively massless behavior

of electrons, converts this material into a special object of high fundamental

and applied interest.

Because this carbon allotrope graphene is an atomically thin material, its

charge-carrier dynamics is very sensitive to the surrounding electromagnetic

fields, and the possibility of changing graphene’s carrier concentration in

situ by applying an external gate voltage is a key feature in many graphene-

based devices. The extremely high carrier mobility in suspended graphene is

enabled by the high frequencies of the optical phonons in the stiff honeycomb

lattice. Thus, the effects of electron-phonon scattering on transport are

small in comparison with conventional metals. However, in most device

architectures, graphene is deposited on a substrate, and all lattice modes of

5



6 ABSTRACT

the substrate material that induce an electric field will influence the carriers

in the graphene sheet, making the choice of substrate material crucial for

the resulting transport characteristics of the device.

On the other hand, surface acoustic waves (SAWs) created in piezoelec-

tric materials reside at the surface of a solid or at the interface between two

solids. They have for long been used to control the properties of semicon-

ductor materials and structures. SAWs may be used to convert mechanical

into electric signals and vice versa. A first basic description of piezoelec-

tricity (highlighting their huge variety of applications and its importance in

physics, as well as the important scientists spending some time within its

study) and these waves in the first chapter, is followed by a quantitative

study of their propagation and main characteristics in the second chapter

(in part review-like).

Apart from the mechanical deformation, the vibration of the ionic lat-

tice in a piezoelectric material produces an electric field travelling along

with the SAW. This field permits the transport of charge carriers in mono-

layer graphene deposited on top of the piezomaterial and, for instance, the

probing of graphene’s Landau level structure in the presence of an exter-

nal magnetic field. The need to quantify those effects accurately both for

macroscopic SAWs and their vibration quanta, the acoustic phonons, leads

to the third chapter. There, the interaction between the electrons of a two-

dimensional metal and the acoustic phonons of an underlying piezoelectric

substrate is investigated. Fundamental inequalities can be obtained from

general energy arguments.

As a result, phonon-mediated attraction can be proven to never over-

come electron Coulomb repulsion, at least for long phonon wavelengths.

Therefore, in the fourth chapter, we study the influence of these phonons

on the electron-electron interactions and the possible pairing instabilities of

a two-dimensional electron gas such as graphene.

In the fifth chapter, we investigate the many-body properties of graphene

on top of a piezoelectric substrate, focusing on the interaction between the
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graphene electrons and the piezoelectric acoustic phonons. We calculate the

electron and phonon self-energies as well as the electron mobility limited by

the substrate phonons. We emphasize the importance of the proper screen-

ing of the electron-phonon vertex and discuss the various limiting behaviors

as a function of electron energy, temperature, and doping level. The effect

on graphene electrons of the piezoelectric acoustic phonons is compared with

that of the intrinsic deformation acoustic phonons of graphene. Substrate

phonons shall be seen to tend to dominate over intrinsic ones for low doping

levels virtually at any temperature.

The global conclusions of this work are contained in the last chapter. The

numerical results for mean free paths and electron mobilities shown are seen

to be applicable to a variety of piezoelectrical materials with different lattice

structures and piezoelectric strengths. Our study can be thus relevant for

graphene devices operating in the ballistic transport regime and for scenarios

where quantum interference induces localization phenomena.

The work presented here has given rise to the following two publications:

Refs. [1, 2]. The first two chapters, as well as the appendices, contain rele-

vant review material where no particular source is followed but rather sev-

eral different references are combined in a creative form. Some subsections

there contain original work not included in the former references, especially

in Sec. 2.4. The third and fourth chapters are based on the content of

Ref. [1], while Ref. [2] has inspired the fifth chapter. Some qualitative com-

ments and calculation details not included in the publications for the sake

of brevity, are added to both chapters.

Finally, I would like to thank Francisco Guinea and Fernando Sols for

the direction of this doctoral thesis. Likewise, I thank Ivar Zapata for

their patience and teachings; Jürgen Schiefele, Fernando Calle and Jorge

Pedrós for their work and valuable discussions, all my nice colleagues at the

Materials Physics Department of the Universidad Complutense de Madrid

(especially the friendly Luis Ruiz-Valdepeñas and Juan Ramón Muñoz de

Nova), and my father Emiliano González and aunt Ana Maŕıa González for

their support.
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Chapter 1

Introductory material

1.1 Graphene and other 2D van der Waals mate-

rials

Graphene has received great attention since its isolation in 2004 [3] and the

Nobel Prize in Physics in 2010 awarded to the main discoverers: Konstantin

Novoselov and Andre Geim [4]. This two-dimensional material has quickly

received attention in many scientific-research fields ranging from the very

theoretical solid-state physics, to particle physics, nuclear physics, experi-

mental physics, chemistry, and related technological fields. There are many

great reviews and books (in particular about the theoretical-physics topics

addressed in this thesis, e.g., Refs. [5, 6, 7]).

For the non-expert reader, we can say that graphene consists essentialy

of an atom-thick layer of graphite. It is just a 2D array of carbon, the

atomic element of “life” and the organic chemistry. An element whose

atoms have 6 protons, 6 electrons (1s22s22p6 as electronic configuration)

and two stable isotopes: 12C (the most common, being 98.9% of the natural

carbon, with zero nuclear spin, and having 6 neutrons), and 13C (with finite

nuclear spin from its 7 neutrons, but constituting just 1.1% of all natural

carbon). Moreover, carbon has many unstable isotopes as well, mostly quite

1



2 CHAPTER 1. INTRODUCTORY MATERIAL

short-lived (from nanoseconds to minutes) except for the widely known 14C,

whose half-life is around 5730 years, which allows to estimate the age of

carbonaceous materials.

This sixth element of the Periodic Table is widely known in its 3D forms,

namely diamond and graphite. The former consists chemically of the carbon

atoms arranged in a tetrahedral structure such that the necessary energy

for exciting a 2s electron into a 2p state (electronic configuration 2s12p3)

becomes compensated by the bonding of the sp3-hybridized orbitals, which

makes a very robust, strong insulator. The graphene structure keeps just

three electrons from each single sp2-hybridized atom thus forming σ-bonds

in a plane, whereas a last electron in each atom remains in a single p orbital

perpendicular to that plane (benzene structure), begetting π-bonds. A col-

lection of many planes like that just described, with very strong in-plane

bondings while stacked onto each other by weak van der Waals perpendic-

ular forces, forms the structure of graphite. This structure explains why

it is so useful as a lubricant or as an instrument for writing (see Fig. 1.1).

In fact, when one writes on a paper with a pencil, thin layers from the

tip become separated and attached to the paper. Among them, we may

find single layers (one-atom-thick graphite planes) which are referred to as

graphene. This term is used as well when just a few layers of graphite re-

main, keeping some 2D and graphene characteristics. Then we may speak

of bilayer graphene, trilayer graphene, etc.

1.1.1 Graphene and other 2D materials on substrates

This isolation and observation of graphene [3] as a purely 2D atomic crystal

and its electronic charge-conducting carriers inside [8, 9] was really unex-

pected from both the Peierls-Landau theory on its stability [10] and the lack

of experimental tools to observe one-atom-thick membranes. Despite these

pessimistic expectations, graphene was luckily spotted by a subtle optical ef-

fect stemming from the pencil debris on a SiO2 substrate. At the beginning

of the new graphene era, its isolation was easily accepted by the community
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Figure 1.1: Carbon 3D structures. Left: diamond as macroscopically found
(top) and its molecular tetrahedral structure (bottom). Right: same for
graphite, showing a sample of three of its constituent graphene layers.

because graphene samples lied on the surface of a 3D bulk substrate or were

embedded in a larger 3D structure. However, it was soon discovered that

the support of a 3D substrate was not essential. In fact, freely suspended

graphene membranes were fabricated and well characterized [11]. These

samples were not totally flat due to out-of-plane deformations as high as 1

nm.

After years of predominance of the graphene paradigm, this topic of re-

search has been extended to the large and growing family of many other

single- or few-layer materials holding 2D electronic systems, with many

different electronic properties among them, ranging from conductors (e.g.

NbSe2) to semiconductors (e.g. MoS2) and insulators (e.g. hBN, for hexag-

onal boron nitride). The different mechanical, chemical and electronic prop-

erties of this new type of materials provide a wealth of research opportuni-

ties. They can be isolated or combined with the same van der Waals forces
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Figure 1.2: Two-dimensional (2D) materials and van der Waals het-
erostructures. Left: combination of different 2D materials by mechanically
sandwich-assembling them. Center: van der Waals heterostructure already
assembled. Right: the same heterostructure while being grown onto a sub-
strate by techniques such as chemical vapor deposition (CVD) or physical-
epitaxy technology. Taken from Ref. [12].

which bind graphene layers into graphite, raising new questions for further

research and technological applications (see Fig. 1.2).

Regarding suspended 2D materials such as graphene, they are usually

disordered and their quality and characteristics are poorer than expected

in substrates like SiO2. Whereas some improvements are caused by the

aforementioned suspension in free space [13] (only at low temperatures due

to the intrinsic flexural phonons [14]), that geometry imposes severe limita-

tions regarding device funcionality and architecture. It is then essential for

the future technological progress to get suspended-like sample qualities by

placing the 2D material onto a proper substrate. In the case of graphene,

it seems that hBN, as an isomorph of graphite with boron and nitrogen

occupying the alternate positions of their periodic-table neighbor C, has

produced the best results from the very beginning, in contexts where high

mobilities and large carrier density homogeneities are requested [15, 16].

For the sake of completeness, the very basic and needed electronic prop-

erties of graphene are reviewed too and all the details are left to the App. A,

an important part of the main material to be studied in this thesis.
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1.2 The piezoelectric effect. Some history and ba-

sic phenomenology.

The piezoelectric effect is another key ingredient of the present work. As in

the case of graphene and for completeness, we present here a short review

of its essentials, leaving the technical parts to the Apps. B and C for those

readers who are not familiarized with the topic.

Piezoelectricity can be defined as a “linear interaction between mechani-

cal and electrical systems in non-centric crystals or similar structures” [17],

see Fig. 1.3(a). It is thus mathematically stated as a proportional relation

between the electric displacement vector D and the strain tensor û via a

third-rank tensor, the piezoelectric tensor ê. Equivalently, and with dif-

ferent proportionality constants, one may use the stress tensor T̂ for the

mechanical degrees of freedom. The magnitude ê has physical dimensions

of polarization, that is, charge per unit area (if the stress tensor is used in-

stead of the strain to establish the proportionality law, the other resulting

piezoelectric tensor d̂ has units of charge divided by force).

This common and useful effect was discovered by the brothers Pierre

and Jacques Curie in 1880 from their work on pyroelectricity (an effect

analogous to piezoelectricity, but relating the polarization to temperature

instead of strain), which was discovered in tourmaline 23 centuries ago by

Theophrastus, who observed the electrical charge in this material when he

heated it. The French brothers realized that some crystals became polarized

when they were macroscopically deformed in some directions, in contrast to

others, making piezoelectricity a strongly anisotropic effect and very related

to symmetry in crystals. Some months later, Gabriel Lippmann predicted

successfully the converse piezoelectric effect in the same crystals, that is,

the deformation of a piezoelectric crystal when placed inside electric fields

[see Fig. 1.3(b)]. In 1888 and after the discovery of the piezoelectric effect

in quartz, they proposed it as an instrument in metrology. This effect in

quartz was used by Marie Curie later to measure radioactivity, achieving

the Nobel Prize in Chemistry in 1911.
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In general, the study piezoelectricity is rather multidisciplinary. Its re-

search and development requires knowledge of tensor calculus, elasticity

theory, crystallography, as well as thermodynamics. Moreover, the experi-

mental work requires the cooperation of physicists, chemists and engineers.

Its study can be addressed within a macroscopic (phenomenological) frame-

work (as in App. B) or a microscopic (atomistic) one (as in App. C), both

being necessary for a comprehensive understanding.

The first big treatise about piezoelectricity using the physics of crys-

tals and their symmetry was completed by Voigt more than 100 years ago

(we owe him the famous “Voigt notation” in terms of some tensors), who

used some thermodynamic potentials for the study, based in the principles

formulated by Lord Kelvin. Later, towering figures such as Ginzburg ap-

peared in the field and applied the Landau theory to the thermodynamics

of piezoelectrics (and ferroelectrics). Even Schrödinger and Born tried to

use an atomic aproach in order to explain piezoelectric properties of quartz.

We may also mention Bragg and Gibbs, who used X-ray methods for some

qualitative explanations [17]. Piezoelectricity has even been suggested as a

mechanism for the functioning of biological systems, first done by Pasteur

about 100 years ago.

The ubiquitous applications of piezoelectricity in scientific and techno-

logical fields were discussed at major conferences from the very beginning

by physicists as well-known as the aforementioned ones. For example, Paul

Langevin invented sonars due to his activity on the emission and detection

of underwater sound waves. Piezoelectric devices are nowadays used in all

kind of circuitry in sensors, watches, microphones, speakers, medical diag-

nosis, vecell phones, computer memories... as outlined in Fig. 1.3(c), where

a list of piezoelectricity-based applications is given.
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Figure 1.3: Schematics of the piezoelectric effect. (a) Sketch of the direct
effect: the pressure/strain applied to a piezoelectric material produces a
measurable voltage. (b) The converse piezoelectric effect: now the elec-
tric field applied to the body causes its deformation. (c) Summary of the
technical applications of piezoelectricity, as taken from Ref. [17].

1.3 Elastic waves in crystals

As P. G. de Gennes (Nobel Prize in Physics 1991) writes in the foreword of

Refs. [18, 19]: “The story of elastic waves is fascinating, from the very early

mechanical aspects -well covered in The theory of solids by Lord Rayleigh-

right up to the quantum behavior, initiated by Einstein and Debye early in

the 20th century.”.

Elastic waves are mechanical vibrations that propagate in gases, liquids

and solids. Our topic of surface acoustic waves in piezoelectrics requires

the previous knowledge of the general subject of elastic (non-piezoelectric)

crystals, which have their own elastic waves in the bulk (as reviewed in
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App. D) and at the surface (mostly detailed in App. E). These purely elastic

waves have properties related to those in piezoelectric materials. In general,

however, the term “SAW” is used for elastic waves occuring at the surface

of a piezoelectric crystal, specifically those of the Rayleigh type (there are

others types of waves, as will be seen), which lie at the basis of many

electronic devices.

1.3.1 Surface acoustic waves in piezoelectrics

In general, there are many scenarios of non-infinite media carrying acoustic

waves in the literature. The boundaries of such a finite medium impose

additional conditions in the wave equations to be satisfied, and they can

change the type of wave by reflections and transmissions, including the pos-

sibility to build mechanical waveguides by confining them in some concrete

parts of the solid.

But the main kind of waves to be studied in this work are those taking

place at the surface of a crystal in vacuum. The most important waves in

this scenario are called Rayleigh waves (see Fig. 1.4) and their details are dis-

cussed in App. E for isotropic solids before turning to the more anisotropic

crystals (in App. F for the bulk, and in Ch. 2 for the surface). While the

former admit relatively easy analytical solutions, the latter cases must be

usually solved just by numerical methods.

Apart from their intrinsic theoretical interest, isotropic elastic waves have

also many features in common with the solutions for anisotropic materials,

as is the case with bulk waves. After a proper understanding of waves in

purely elastic materials without any piezoelectric effects, one must turn to

the more general and complicated case of crystals with both anisotropic elas-

tic and piezoelectric properties, where the mechanical stresses and strains

are coupled to electric fields.
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Figure 1.4: Sketch of a Rayleigh wave at the surface of a semi-infinite
medium. Just after their discovery, they became important for geophysi-
cists because, as pointed out by Lord Rayleigh: “...play an important part
in earthquakes... diverging in two dimensions only, they must acquire at
a great distance from the source a continually increased preponderance...”
[20, 21].

1.3.2 Generation of SAWs and main applications

After the first decades of applications of piezoelectrics and acoustic waves in

the bulk, the 1960s gave rise to the common usage of SAWs in many fields of

electronics, with many different compact and inexpensive signal-processing

components, yielding big size savings of the order of 105 (the ratio of the

light velocity to the sound velocity). In contrast to bulk waves, surface

waves are always accesible for this goal [22].

The first proposals for ultrasonic surface-wave generation consisted of a

wedge arrangement [24], which converted a homogeneous plane wave sup-
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Figure 1.5: SAW devices and applications. (a) Sketch of the elementary
SAW device with two transducers, one for generation and the other for
reception. (b) Summary of the main surface-wave devices and their appli-
cations, as taken from Ref. [23].

ported by the wedge into a surface wave along the interface region under

it. Then, the interdigital transducer (IDT) appeared, opening the possibil-

ity to generate propagating surface waves in the gigahertz-frequency range

[25, 26] and allowing to borrow all the lithographic techniques from semi-

conductor manufacture for their developement. IDTs consist essentially

in comb-shaped electrodes photoetched onto a piezoelectric substrate [see

Fig. 1.5(a)] that can convert a sinusoidal voltage applied on it into a prop-

agating SAW and vice versa, that is, to receive a SAW signal and convert
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it into an electric pulse (provided that the frequency of the signal matches

the proper sound wavelength imposed in the geometry of the electrodes, see

Refs. [19, 23] for further information on their operation).

After the discovery of the IDT, all kind of SAW devices with different

applications were developed and integrated in many different instruments

such as TVs and cell phones, as outlined in Fig.1.5(b). Billions of SAW

devices are produced every year this way. As early as in 1977, Williamson

[27] pointed out 44 different SAW devices and 45 government systems using

them.

1.3.3 SAWs and two-dimensional electron systems

In addition to their general applications, coherent SAWs generated on piezo-

electric substrates have also many applications both for nanoscale electronic

devices and for the theoretical and experimental physics in the field of low-

dimensional systems by probing their electronic properties. For example, in

the topic of graphene and its related 2D van der Waals materials.

Especially important is the well-known equation, derived elsewhere [28,

29]:
∆vs
vs
− iκ

q
=

K2/2

1 + iσxx/σm
, (1.3.1)

relating the SAW-velocity change ∆vs, the SAW-attenuation coefficient κ

and the longitudinal electronic conductivity in a 2D electronic sample σxx,

as functions of the chemical potential, temperature and/or magnetic field

(with K and σm being constants depending on the geometry and the in-

trinsic properties of the piezoelectric substrate where the SAW is gener-

ated). The interaction of these coherent waves have measured this way

the Shubnikov-de Haas oscillations many decades ago in classical quasi-2D

electronic systems in GaAs/AlxGa1−xAs heterostructures [30] and more re-

cently in graphene [31].

On the other hand, since the first theoretical prediction of the classical

acoustoelectric effect [32] (generation of a non-linear-coupled electric current
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from an acoustic wave) in the bulk and its subsequent experimental obser-

vation [33], this effect was probed as well in the context of SAWs in classical

2D electronic systems [30, 34], and lately in graphene sheets [35, 36] and

graphene nanoribbons [37]. These studies in 2D have also suggested impor-

tant applications of SAWs for metrology and quantum computation in the

single-electron regime, both in classical 2D electronic systems [38, 39] and

with related technologies in graphene [40]. Even in the fields of chemical

sensors [41] and plasmonics [42], SAWs have generated interest in the study

of their coupling with charge carriers living in two dimensions.



Chapter 2

Piezoelectric surface acoustic

waves

2.1 Reformulation of the surface-acoustic-wave prob-

lem with piezoelectricity

Appendix E is dedicated entirely to analytical methods to find elastic waves

confined to surfaces from the solutions in the bulk, where exact analyti-

cal solutions for Rayleigh waves were given in isotropic, non-piezoelectric

scenarios. The introduction of anisotropy requires the use of numerical

methods to find the analogous solutions from those in the bulk, albeit a

related method to solve the wave equation is used.

First, we note that a general solution in the surface cannot be guaranteed

to exist [43], but there seems to be no practical conditions where they ac-

tually do not exist, especially with the proven bound (given below) for the

electromechanical coupling constant K2
R < 1, with K2

R ∼ e2/εc. An inspec-

tion of the literature theorems (see e.g. Refs. [43, 44, 45]) assures existence

for all anisotropic, non-piezoelectric media, unless in very exceptional cases

where the bulk waves directly satisfy the boundary conditions. This guar-

antees an almost-general solution for piezoelectric SAWs with metal-cover

13
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Air or vacuum

Piezoelectric

Figure 2.1: A flat piezoelectric substrate with an interface to air or vacuum,
with b = [cos(θ), sin(θ)] the propagation direction of the piezoelectric SAW.

(zero electric field) boundary conditions (see below), but this result cannot

be extended to the free-surface piezoelectric case, except for the smallest

piezoelectric-tensor values.

The situation is schematically depicted in Fig. 2.1. The {x3 ≡ z = 0}
surface is supposed to be free of tension and, when acting as a substrate to a

deposited 2D electronic material sheet, free of electrodes as well. In further

sections below, flat electrodes (at z = 0+), which supply no mechanical

stresses, will be allowed.

The SAWs are solutions to the equations derived in Apps. D, F for the

displacements u1, u2, u3 [see Eqs. (F.1.1)]:

ρüi = cijkl
∂2uk
∂xj∂xl

+ ekij
∂2ϕ

∂xj∂xk
, i = 1, 2, 3 ,

0 = εjk
∂2ϕ

∂xj∂xk
− ejkl

∂2uk
∂xj∂xl

, (2.1.1)

where cijkl are the components of the elastic tensor, ejkl are the components

of the piezoelectric tensor, and εjk are the components of the dielectric
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tensor. The Einstein summation convention of repeated indices is used.

These solutions have the form of plane waves propagating along and lo-

calized near the surface z = 0 in the direction specified by the unit vector

b = [cos θ, sin θ], that is:

uj = Aj exp[ik(bixi − vt)] ,
ϕ = A4 exp[ik(bixi − vt)] , (2.1.2)

where the definition of b := [cos(θ), sin(θ), b3] has been extended here to

three dimensions, so that b3 is now a complex variable to be determined by

the requirements of boundedness or causality of normal modes (see below).

In what follows, v > 0 and k > 0 is always assumed, and the dielectric

tensor ε̂ is taken relative to vacuum. In that case, the resulting Christoffel

equations for the amplitudes Aa (here a, b = 1, 2, 3, 4 and i, j, k, l = 1, 2, 3)

read

0 =
(
Γab − δ′abρv2

)
Aa , (2.1.3)

with Γab defined as

Γjk = biblcijkl ,

Γj4 = bibkeijk ,

Γ44 = −bibkεikεvac , (2.1.4)

where δ′ij = δij , δ
′
4a = δ′a4 = 0, and ρ is the constant density of the piezo-

electric solid.

Note that the modulus k disappears, which means that there is no dis-

persion for a given propagating direction. Hence, given the propagation

direction θ and the velocity v, the solutions for det
(
Γab − δ′abρv2

)
= 0 as a

function of b3 is a set of no more than 8 complex values, in which, because

of the reality of the coefficients, each complex root comes together with its

conjugate, and among these, one must choose the ones with Im b3 < 0, so

that the modes are not exponentially growing deep into the solid. In the
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case of purely real solutions, usual arguments on causality demand that

one has to take only those modes with radiation (outgoing from the surface

z = 0) boundary conditions db3(v)/dv < 0 (see Ref. [46]). Hence, the total

number of allowed modes is 4, and the general solution is written as the

sum [we use now u4 := ϕ and write r = (R, z), with the 2D position vector

R = (x, y)]:

ua(r, t) = CnA
(n)
a eikb

(n)
3 z exp [ik(b ·R− vt)] , (2.1.5)

with n = 1, 2, 3, 4 indexing the normal modes.

Much simpler is the equation at vacuum/air. The solution is purely

electric and can be written as:

ϕ(R, z, t) = u4(R, 0, t)e−kz , (2.1.6)

because of the continuity of the potential.

Cut terminology

A convention to specify the direction of the surface and the wave propa-

gation with respect to the crystal is needed to define unambiguously the

problem. The direction x3 perpendicular and pointing outwardly to the

surface is called the cut. For example, “Z-Cut zinc oxide” means that a

ZnO crystal is bounded with a surface perpendicular to its Z-axis. The

axis cut can be followed by the propagation direction, so that “Z-X zinc

oxide” would mean a wave vector parallel to the X-axis of the crystal in the

previous cut.

2.1.1 Boundary conditions

The mechanical boundary conditions are the same as in Eq. (E.1.2) for a

free-surface, that is, Ti3(R, 0, t) = 0 for i = 1, 2, 3. This leads to:

Cnb
(n)
k (A

(n)
j c3ijk +A

(n)
4 ek3i) = 0 , (2.1.7)
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where b(n) :=
[
cos(θ), sin(θ), b

(n)
3

]
, hence Ci are proportional to C4.

These conditions are to be supplemented now with an electric boundary

condition, for which we will consider two main possibilities in this problem.

If the surface is free, the continuity of the normal component of the electric

displacement D3 in the surface is imposed, since there are no free charges:

D3(R, 0−, t) = k ϕ(R, 0+, t) εvac . (2.1.8)

The second possibility applies when the boundary is covered by a thin

metal layer with perfect conductivity. Then, the electric field drops to 0 at

the surface without modification of the mechanical conditions, which means:

ϕ(R, 0, t) = 0 . (2.1.9)

These two typical conditions give different solutions with different veloc-

ities. The difference between both wave velocities is a measure of the cou-

pling of the electric and mechanical fields, as pointed out in the App. F.2

regarding the piezoelectric stiffening.

2.2 Typical approximations

For the sake of completeness and to make connection with the existing lit-

erature about these surface waves and the theoretical derivations of the

interactions, some sections regarding the typical approximations made in

these systems are attached, justifying why they work so well with the pro-

totypical case of GaAs. This ubiquitous piezoelectric material is explored

as an example.

2.2.1 Isotropic approximation for weak piezoelectricity

Even though the most common definition for a piezoelectric tensor in the

literature of elasticity and piezoelectricity (usually engineer-oriented) is that
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which we have given for eijk in SI units of C/m2 with [23]

Di = εijεvacEj + eijkujk (2.2.1)

= −εijεvac
∂ϕ

∂xj
+

1

2
eijk

(
∂uj
∂xk

+
∂uk
∂xj

)
,

this same phenomenon is sometimes described in c.g.s. units, with the

electric displacement D in such material, given as D = ε0(4πP − ∇ϕ). In

c.g.s language, the polarization vector is P = Pi = βijkujk, where β̂ = βijk

is the tensor of piezoelectric moduli [47, 48, 49, 50], and here ε0 is the

adimensional, relative dielectric constant of the material (1 in vacuum).

In a general material, in the case of certain symmetries and the choice of

some specific coordinate axes, as in Sec. C.2, the piezoelectric tensors reduce

to a number, i.e., all the terms βijk being 0 except for ijk all different. This

occurs, for example, with the cubic structure of gallium arsenide choosing

its inner latice axis to be X-Y-Z for the problem, where β = 2.4× 107 V/cm

in the former description [49]; and the dielectric tensor is a scalar, with

εij ≡ ε0 = 12.8. In the Voigt notation:

 Px

Py

Pz

 =

 0 0 0 β
8π 0 0

0 0 0 0 β
8π 0

0 0 0 0 0 β
8π





uxx

uyy

uzz

2uyz

2uxz

2uxy


(cgs)

, (2.2.2)
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which is equivalent to the former description in Eq. (2.2.1): Dx

Dy

Dz

 =

 ε0εvac 0 0

0 ε0εvac 0

0 0 ε0εvac


 Ex

Ey

Ez

+

+

 0 0 0 e14 0 0

0 0 0 0 e14 0

0 0 0 0 0 e14





uxx

uyy

uzz

2uyz

2uxz

2uxy


(SI)

. (2.2.3)

Eq. (2.2.2) is equivalent to Px = β
4πuyz, Py = β

4πuxz, Pz = β
4πuxy and

Eq. (2.2.3) to Dx = ε0εvacEx + 2e14uyz, Dy = ε0εvacEy + 2e14uxz, Dz =

ε0εvacEz+2e14uxy. Therefore, both descriptions are related by β ≡ 2e14/ε0.

In App. D, dealing with an isotropic [i.e., a cubic material with 2c44 =

c11 − c12, see Eq. (D.3.1)], non-piezoelectric (ê = 0) material, Rayleigh

solutions were given in terms of the longitudinal ∂2ul/∂t
2 = v2

l ∆ul and

transversal ∂2ut/∂t
2 = v2

t∆ut. The solution was:

uq(r, t) = Cq exp[i(q ·R− ωqt)]vq(z) + c.c. (2.2.4)

for 3D r = (x, y, z) and 2D R = (x, y), with elliptic polarization:

vq(z) = −iq̂ (eκlqz − fκteκtqz) + ẑ (κle
κlqz − feκtqz) , (2.2.5)

provided that q̂ = q/q, ẑ = n̂ are the proper unit vectors, κl(α) =
√

1− αζ2,

κt(α) =
√

1− ζ2, α = v2
t /v

2
l , ωq = ζvtq = vsq, f(α) =

√
κl/κt and ζ is the

solution of a sixth order equation containing just the parameter α, which

determines the sound velocity of the Rayleigh modes vs [51, 49], as discussed

after Eq. (E.1.3).

When the material is in addition a piezoelectric crystal, the previous

Rayleigh solution to the surface-wave equation is not exact, because it ne-
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glects the coupling term eijk ∂
2ϕ/∂xj∂xk between displacement and electric

fields as well as possible anisotropies among the elastic terms. From the

Poisson equation ∇· (−ε̂∇ϕ+ êu) = 0, one gets that ϕ ∼ êu
ε , and this term

eijk ∂
2ϕ/∂xj∂xk is then of the order of ∼ ê2

ε̂ĉ cijkl
∂ukl
∂xj

. Here, the important

number K2 = ê2

ε̂ĉ plays the role of the electromechanical coupling coefficient

(discussed in App. F.2). In the case of K2 of 1% or less, it is reasonable to

neglect the electric term eijk ∂
2ϕ/∂xj∂xk for the wave equation, assuming

a very small error in this way.

In this common example of GaAs, it is β = 2.4 × 107 V/cm or e14 =

0.16 C/m2, though there is a considerable uncertainty among the measure-

ments of this quantity [29]. On the other hand, c11 = 12.26×108 N/m2, c12 =

5.71 × 108 N/m2, c44 = 6.00 × 108 N/m2, ρ = 5307 Kg/m3, and K2 < 0.01

so that the previous reasoning applies to neglect the terms with ê2/ε in

comparison with the much bigger elastic terms with ĉ, which are 2 or 3

orders of magnitude bigger. On top of it, the anisotropy ratio is 1.8, so the

isotropic approximation for the purely elastic wave serves as a good first

approximation.

In that case, one considers the “bare” approximate elastic Rayleigh dis-

placement fields as the solution of the first three Eqs. (F.1.1), so that the

electric field ϕq(r, t) is solved from the Poisson equation and the appropiate

boundary conditions [49, 50] (free surface in this case):

[∂2
z − q2]ϕq(r, t) = Cqβqxqye

iωqt[−3κle
κlqz + f(1 + 2κ2

t )e
κtqz] , (2.2.6)

4πε0Pz − ε0∂zϕq(z → 0−) = −ε0∂zϕq(z → 0+) , (2.2.7)

∂rϕq(z → 0−) = ∂rϕq(z → 0+) , (2.2.8)

and then, after some straightforward algebra:

ϕq(r, t) =Cqζ
−2 qxqy

q2
β exp [i(q ·R− ωqt)]

× [3κlα
−1eκlqz − f(1 + 2κ2

t )e
κtqz + Ceqz] , (2.2.9)

with C = (ε0+1)−1[−3κlα
−1(1+κlε0)+f(1+2κ2

t )(1+κtε0)−ε0ζ
2(1−fκt)],



2.2. TYPICAL APPROXIMATIONS 21

and finally solving the problem of the displacements and the electric field

analytically within a good approximation.

2.2.2 Perturbative treatment

The former problem for the purely elastic wave can also be solved approx-

imately without assuming isotropy, taking into account the anisotropic na-

ture of the elastic tensor. The piezoelectricity remains neglected provided

that the electromechanical factors are still small enough.

In that case, whereas the general problem must be solved numerically

with the formalism in App. D.2 with the appropiate boundary conditions in

the interface, there are some cases in high-symmetry directions or specific

materials that admit a very accurate analytical treatment. For example,

many different cases in cubic (and some non-cubic) materials and their

trends are discussed in Refs. [18, 21]. Unfortunately, since there are so

many different scenarios, surface cuts and propagation directions among

crystals, it is impossible to derive general formulas for all those cases.

For example, in the studied case of GaAs (or any cubic crystal), the

whole equations for the three spatial and the electrical degrees of freedom

read exactly:

ρ∂2
t ux = c11∂

2
xux + c44[∂2

yux + ∂2
zux] + (c11 + c44)[∂x∂yuy + ∂x∂zuz]

+ 2e14∂y∂zϕ , (2.2.10)

ε0εvac∆ϕ = 2e14[∂y∂zux + ∂x∂zuy + ∂x∂yuz] . (2.2.11)

Equation (2.2.10) actually represents three equations, with ρ∂2
t uy and ρ∂2

t uz

obtained from cyclic permutations of (2.2.10).
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The boundary conditions for the free surface at z = 0 are:

T13 = c44(∂xuz + ∂zux) + e14∂yϕ = 0 , (2.2.12)

T23 = c44(∂yuz + ∂zuy) + e14∂xϕ = 0 ,

T33 = c11∂zuz + c12(∂xux + ∂yuy) = 0 ,

Dz(0
−)−Dz(0

+) = [e14(∂yux + ∂xuy)− ε0εvac∂zϕ+ εvackϕ]z=0 = 0 .

The solution of both systems of equations simultaneously would provide

an exact solution. In the justified case of the non-piezoelectric approxima-

tion e14 ≡ 0, one can take the solutions of the first system from the ansatz

[52]:

uq(r, t) = Ae−Ωqzei(q·R−ωqt) , (2.2.13)

with given 2D wave vector q in the surface, and the frequency ωq remaining

a parameter to give three complex solutions in Ω. Then, one varies the

frequency till the combination of the three partial waves satisfy the second

set of solutions of the boundary conditions.

In this example, taking q = q(1, 1)/
√

2, that is, propagation in the [110]-

direction, and after some straightforward algebra [53, 29, 39], one finds that

the equation for the boundary conditions is independent of Ω, numerically

found from:(
1− c11

c44
X

)(
c11c

′
11 − c2

12

c2
11

−X
)2

= X2

(
c′11

c11
−X

)
, (2.2.14)

with c′11 = 1
2(c11 + c12 + 2c44) and X = ρv2

s/c11, giving the velocity in this

direction by vs = ω(1,1)/q [here ω(1,1) stands for ωq at q = q(1, 1)/
√

2].

Moreover, in this case of propagation direction, the three solutions of Ω

in the ansatz are reduced to two complex-conjugate ones Ω,Ω∗, satisfying

the quadratic equation, after choosing the proper sign of Re(Ω) to avoid

divergences at z → −∞ in the ansatz:

0 = (c′11 −Xc11 − Ω2c11)(c44 −Xc11 − Ω2c44) + Ω2(c12 + c44)2 , (2.2.15)
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and such that the solution for the global purely elastic problem in the surface

lies again in the sagittal plane, as the isotropic Rayleigh waves do, but given

analytically in the present case by:

uq ·
1√
2

(1, 1, 0) = Cq

(
e−Ωqz−iφ + e−Ω∗qz+iφ

)
ei(q·R−ω(1,1)t) , (2.2.16)

iuq · (0, 0, 1) = Cq

(
γe−Ωqz−iφ + γ∗e−Ω∗qz+iφ

)
ei(q·R−ω(1,1)t) , (2.2.17)

with

γ = Ω

[
c12 + c44

c44 − (X + Ω2)c11

]
, e−2iφ = −γ

∗ − Ω∗

γ − Ω
. (2.2.18)

In general, and contrary to the isotropic case, the velocity (or frequency)

now turns out to be direction dependent, and the decay to the bulk has

both real and imaginary parts, so that the amplitude oscillates with depth.

It is interesting to note from the solution how the bigger the anisotropic

ratio [defined as A := 2c44/(c11− c12)] is, the slower the decay becomes (see

Fig. 5.15 in Ref. [18] and App. D).

Finally, as in the previous section for the isotropic case, one assumes this

solution for the mechanical fields in first order and plugs the displacement

from Eq. (2.2.16) into the Poisson equation [Eq. (2.2.11)], obtaining the

following expression for the electric field:

ϕq = iCq
e14

ε0εvac

(
C1e

−Ωqz−iφ + C2e
−Ω∗qz+iφ + C3e

qz
)
ei(q·R−ω(1,1)t) ,

C1 = C∗2 =
γ − 2Ω

Ω2 − 1
, (2.2.19)

with C3 obtained from the boundary conditions:

C3 =
−2

1 + ε−1
0

[
cosφ+ ε−1

0 Re(C1e
−iφ) + Re(ΩC1e

−iφ)
]
. (2.2.20)

This solution is of course located inside the material, the electric field in the

outside vacuum being much simpler. It is a harmonic function (the Poisson
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equation here becomes the Laplace equation) given by:

ϕq = ϕq(0)e−qzei(q·R−ω(1,1)t) , (2.2.21)

with an elementary decay law from its initial value, given by the boundary

condition of the continuity of the potential. In this manner, this section

illustrates with an example how this typical approximation method works.

2.2.3 Approximation using stiffened elastic constants

As pointed out after Eq. (F.2.3), in order to find the solution of bulk piezo-

electric waves, it is possible to solve the problem in the bulk for a piezoelec-

tric plane wave as in Eq. (F.2.1), exactly as if it were a non-piezoelectric

anisotropic elastic wave as in Eq. (D.1.2). This becomes possible after a

replacement is made of the actual elastic constants cijkl of the material by

the effective ones:

c′ijkl = cijkl +
emijenklkmkn
εmnkmkn

, (2.2.22)

once the wave vector k = (k1, k2, k3) of the problem is given, and the solution

being valid for any crystal and surface/wave vector orientation.

Unfortunately, it is impossible to get an exact solution in the case of

surface acoustic waves by this method, since the given surface wave vector

is 2D and the third component, k3, is in general complex and can have many

different values; except in very particular cases, e.g., the Bleustein-Gulyaev

waves, to be studied below. There, one solves easily for the elastic terms,

and it is enough to consider the wave equations without the piezoelectric

term, just with a renormalized elastic constant c̃ = c + e2/ε (in these very

simple modes e, c, ε are constants and c is related to the sound velocity,

c = ρv2
s) [54].

However, if one sets k3 ≡ 0 as an approximation to obtain stiffened elastic

constants as in Eq. (2.2.22), it is feasible to obtain an approximate solution

of the surface-wave problem by just solving a purely elastic problem. Such

an approximation would be exact for bulk waves in the crystal whose wave
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vectors were parallel to the cut surface (k3 = 0).

For example, LiNbO3 has piezoelectric parameters of order of ê ∼ 1 C/m2

and ε ∼ 40εvac, so that K2 ≈ 0.027, which is much larger than its GaAs

counterpart. When the above approximation is used, lithium niobate is

found to have velocities differing less than 3% from the experimentally ob-

served ones. If the alternative (isotropic) approximation is made of taking

ê ≡ 0 from the beginning, the estimated velocities are lower than the ex-

perimental ones by at least 15% [21, 55].

2.3 Exact solution

In the general case of piezoelectric materials, it is no longer suitable to

neglect the eijk terms in the wave equation [Eq. (F.1.1)] for the problem

at the surface. For example, the isotropic Rayleigh-wave approximation in

the case of LiNbO3 leads to surface-acoustic-wave velocities about 15% too

low, as it was said in the previous section, and without the correct angular

dependence [21, 23]. Moreover, we note that even some perovskites have

K2 ∼ 0.6− 0.8 in some directions.

2.3.1 General method

The general theory of the surface-wave solution with the proper boundary

conditions is already developed in many references [23, 56, 18]. The solu-

tions must be numerically found with the aid of the full elastic, dielectric

and piezoelectric tensors, and the correct use of the direction of the cut

in the substrate, which could make necessary an appropiate change of the

coordinate basis.

Once the 2D direction q and the ansatz in Eq. (2.1.2) is established, the

trial of a surface-wave velocity vs = ω/q gives the general solution as a com-

bination of partial waves, Eq. (2.1.5). This has to be done in the computer

iterating in the unknown vs till a combination of partial waves, satisfying
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the system of wave equations, fulfills as well the boundary conditions stated

in Sec. (2.1.1).

A computer is not able in general to solve the above problem exactly,

but with an arbitrary finite accuracy for the velocity and the coefficients

Cn in Eq. (2.1.5). While there is no dispersion on a given direction, the

dependence on the velocity with the direction can range from highly non-

trivial shapes to constant functions. The former case happens, for example,

in LiNbO3, whose velocities are shown in Fig. 2.2 as a funcion of direction

in three canonical cuts and for a free surface. The latter case occurs, for

example, with the trigonal wurtzites when they are cut with the Z-axis in

the c-direction of their lattice pyramids (see Fig. C.1). The wave direction is

symmetric enough to reduce as well the four general partial-wave solutions

to three or even two as in the isotropic non-piezoelectric materials.

The piezoelectric Rayleigh waves are those solutions which have the lowest

velocity. They are similar to the classical Rayleigh waves in isotropic mate-

rials, but show extra particular features, namely, the mentioned anisotropic

velocity magnitude, the oscillatory decay (stemming from the nonzero real

and imaginary parts of k3), and the fact that the displacement is not con-

fined to the sagittal plane, but usually has a nonzero component perpen-

dicular to it. This last remark does not apply to the electric field since the

electric potential is constant in the direction perpendicular to the saggital

plane. These features make piezoelectric Rayleigh waves slightly different

from isotropic Rayleigh waves.

There is another equivalent approach used to solve this problem exactly.

It consists in evaluating the surface permittivity, as outlined below [18, 23,

28].
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Figure 2.2: Calculated Rayleigh-wave velocities in the X,Y and Z-Cuts of
LiNbO3, in coincidence with the solutions found many years ago in Ref. [55].
For the Z-cut (Xcut/Y-cut), the zero angle corresponds to the x-axis (y-
axis/z-axis) with the angle growing towards the y-axis (z-axis/x-axis), as in
Ref. [2].
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2.3.2 Surface permittivity

For any proposed velocity for the solution, the normal component of the

electric displacement is, at the interface:

D3(R, 0−, t) = ik exp [ik(b ·R− vt)]Cnb(n)
k (A

(n)
j e3jk −A(n)

4 ε3kεvac) ,

(2.3.1)

and this allows to introduce the (relative) piezoelectric surface permittivity

as the ratio [using the general solution Eq. (2.1.5)]:

ε̃(k/ω) := − D3(R, 0−, t)

kϕ(R, 0−, t) εvac
= −i

Cnb
(n)
k (A

(n)
j e3jk −A(n)

4 ε3k)

CmA
(m)
4 εvac

, (2.3.2)

which depends on v(θ) and θ only through the relations k := kb and ω :=

kv.

Similarly, on the other side of the interface, this obvious relation holds:

1 =
D3(R, 0+, t)

kϕ(R, 0+, t) εvac
. (2.3.3)

Hence, the surface charge at the interface can be expressed as the difference

of the electric displacements at either side of the interface:

σ(0) = D3(0+)−D3(0−) = kϕ(0)[1 + ε̃(k/ω)]εvac , (2.3.4)

where the factor exp [ik(b · r− vt)] is implicitly assumed.

From Eq. (2.3.4), a free-surface propagating wave only exists if

1 + ε̃(k/ω) = 0 , (2.3.5)

i.e. the phase velocity vs(θ) of the wave is given by 1+ ε̃(b/vs(θ)) = 0. This

is the piezoelectric-Rayleigh-wave condition within the free-surface bound-

ary conditions, to be solved in the computer by iteration until the minimum

result for the modulus |1 + ε̃(b/vs(θ))| is found.
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Figure 2.3: Example of plot of a surface permittivity, in this case for LiNbO3

(Y-Cut) and wave propagation along the Z-axis, solved with a program as
that in Ref. [57] (solid lines). The dashed lines are calculated with the Inge-
brigsten’s approximation [18, 28]. The velocities vs and vϕ=0 are those of a
free surface (ε̃ = −1) and a metallic-covered surface (ε̃ =∞), respectively.

On the other hand, if the boundary is covered by a perfectly conducting

metallic film, the short-circuit condition would mean ϕ(R, 0, t) = 0, that is:

ε̃(k/ω) =∞ . (2.3.6)

2.4 Properties of the surface permittivity

There are free-software tools available to compute any kind of surface waves

and permittivities [57], which can be programmed numerically either, and

the results have the structure shown in Fig. 2.3 as an example.
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It was shown in the previous section that ε̃ = ∞ for the velocity vϕ=0

of a surface wave with metallic boundary condition, and ε̃ = −1 for the

usual piezoelectric Rayleigh waves with the free surface covered by a vac-

uum. In-between, there are the negative values of ε̃ that solve theoretically

the problem when the piezoelectric material is covered by any hypothetical

dielectric with ε = −εvac ε̃. The lowest velocity arises with the metallic cov-

ering, since the electric fields screen completely the tangential electric fields

accompanying the wave, so that the piezoelectric stiffening (see App. F.2)

becomes lower.

In Ref. [58] it is shown that the energetic stability of the piezoelectric

guarantees that Im ε̃(b/vs(θ)) = 0 up to a vL(θ) > v0(θ), with ε̃(b/v0(θ)) =

0. In that range, the four modes in Eq. (2.1.5) are purely decaying on the

substrate side. vL(θ) marks the starting point at which the piezoelectric

surface permittivity has an imaginary part, which reflects the influence of

bulk modes (recall that, exactly as in the case of isotropic Rayleigh waves,

the piezoelectric modes have velocities lower than the bulk ones, owing to the

imaginary component of the wave vector k3 perpendicular to the surface).

The pseudo-resonances above that threshold correspond to the so-called

“pseudo-surface” waves, which leak energy of the wave into the bulk of the

piezoelectric material. In the important resonance for surface waves with

metallic covering and near the Rayleigh solution, the permittivity can be

well approximated by Ingebrigsten’s formula:

ε̃(k/ω) = ε̃HF
(ω/k)2 − v2

0

(ω/k)2 − v2
ϕ=0

. (2.4.1)

Here, this ε̃HF := lim
ω→∞

ε̃(k/ω) will be shown to be lower than ε̃LF =

lim
ω→0+

ε̃(k/ω). The former will also be shown in the next subsection to have

the same functional form as the surface permittivity for a pure dielectric,

when the coordinates 1-3 are taken, respectively, along the wave direction

and the surface normal.

A central quantity in the evaluation of devices which use piezoelectric

Rayleigh waves is the SAW electromechanical coupling coefficient KR(θ),
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introduced through the relation at 1 + ε̃(b/vs(θ)) = 0:

K2
R(θ)/2

ε̃HF(θ) + 1
=

[
vs(θ)

∂ε̃(k/v)

∂v

∣∣∣
v=vs(θ)

]−1

. (2.4.2)

Later it will be shown that very general considerations require the fol-

lowing bound:

0 ≤ KR(θ) < 1 , (2.4.3)

which is one of the central results of this thesis.

2.4.1 High-frequency limit of ε̃(k/ω)

In this section it will be shown that, if one takes the propagating direction

along the x-axis, then:

ε̃HF = εp :=
√
ε11ε33 − (ε13)2 . (2.4.4)

In fact, the modes equation Eq. (2.1.3) is written as:

M̂

(
~u

ϕ

)
≡
(

Γ− ρv21 ~γ

~γ> −εεvac

)(
~u

ϕ

)
= 0 , (2.4.5)

where the form of the 3 × 3 matrix Γ, 3 × 1 vector ~γ and constant ε as a

function of b [where b = (1, 0, b)] can be read from Eq. (2.1.3).

There are two possibilities for the variation of b as v → ∞, either (a)

b→ bsm <∞, (“sm” means small) or (b) b ∼ bbg →∞ (“bg” is for big).

In case (a), Γ−ρv21 will never be singular. Then, using the determinant

formula from Schur’s complement det(M̂) = det(Γ−ρv21) det(−ε−~γ · (Γ−
ρv21)−1 · ~γ), it is immediate to realize that ε = O(v−2), which leads to the

decaying root bsm = −(ε31 + iεp)/ε33.
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From the modes equation (2.4.5), it is found that:(
~usm

ϕsm

)
'
(
O(v−2)

1

)
, (2.4.6)

where here and in the rest of this subsection, the modes amplitudes are

normalized, so that ϕsm,bg = 1.

For the other case (b), from the modes equation (2.4.5), one finds that

bbg = O(v). Hence, expanding M̂ from:

Γij ' b2bg c3ij3

γi ' e33i b
2
bg

ε ' ε33 b
2
bg , (2.4.7)

but now the general form of these modes is(
~ubg

ϕbg

)
'
(
α

(i)
j

1

)
, (2.4.8)

where the notation in Eq. (2.1.5) has been used, and α
(1,2,3)
a for the three

(~ubg, ϕbg) modes and α
(4)
a for the (~usm, ϕsm) mode are chosen.

Choosing the constant C4 = 1, the mechanical boundary condition of

Eq. (2.1.7) leads to:

0 ' Ckb(k)(α
(k)
j c3ij3 + e33i) + (e13i + b(4)e33i) , (2.4.9)

and Ck = O(v−1), so the denominator in Eq. (2.3.2) can be approximated

as Cmα
(m)
4 ' 1.

On the other hand, the “big” (bg) contribution to the displacement field

is, to order O(v0):

D3(0−)|bg ' ikcib(i)(α(i)
j e33j − ε33εvac) ' 0 , (2.4.10)

the last approximate equality comes from the second Eq. (2.4.5) together
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with Eq. (2.4.7).

Collecting all these results together with the “small” contribution to

D3(0+) into Eq. (2.3.2), one finally gets [59]:

ε̃HF = −ib4k(ε3k) = εp . (2.4.11)

2.4.2 Relation to response functions

Let us now consider a 1D situation, in which flat electrodes parallel to

the y-axis operate on top of the piezoelectric substrate shown in Fig. 2.1.

Therefore, the angle θ = 0 is chosen, and there is no y dependence. Then,

θ is omitted and not written in this subsection.

The charge-potential relation Eq. (2.3.4) for the amplitudes is written so

that the complex admittance χ(k, ω) is defined as:

ϕ(k, ω) = γ(k, ω)σ(k, ω)

γ(k, ω) :=
1

|k|
1

(ε̃(k, ω) + 1)εvac
, (2.4.12)

where the possibility of negative k is now allowed, because of the omission

of the θ dependence. From Eq. (2.1.3), ε̃(k, ω) = f((ω/k)2) = f(v2), and

its analytical extensions can be guessed from the requirements of causality,

which for ω > 0 mean that the poles and zeros of γ(k, ω) are placed in the

lower complex ω half-plane.

The instantaneous part is defined as:

γ∞(k) :=
1

|k|
1

(ε̃HF + 1)εvac
=

∫
dx e−ikxγ∞(x) , (2.4.13)

and the retarded and static contributions:

γret(k, ω) := γ(k, ω)− γ∞(k) =

∫
dx

∫ ∞
0

ei(ωt−kx)φ(x, t) , (2.4.14)
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γ0(k) := γ(k, 0) =
1

|k|
1

(ε̃LF + 1)εvac
=

∫
dx e−ikxγ0(x) ,

γ0(x) = γ∞(x) +

∫ ∞
0

ds φ(x, s)e−ηs , (2.4.15)

where η is to be understood as η → 0+.

All this amounts to writing the general linear causal relation [60]:

ϕ(x, t) =

∫
dx′
[
γ∞(x− x′)σ(x′, t) +

∫ t

−∞
dt′ φ(x− x′, t− t′)σ(x′, t′)

]
.

(2.4.16)

The power delivered to the electrodes to maintain a given ϕ(x, t), σ(x, t)

(in this subsection, it is assumed that all fields which depend on space-time

are real) is:
dU(t)

dt
=
√
A

∫
dxϕ(x, t)σ̇(x, t) , (2.4.17)

where
√
A is the length along the y-direction.

If starting from zero fields and charges, one adiabatically turns on a given

surface charge distribution σ(x, t) = σ(x) exp(ηt), from Eqs. (2.4.16-2.4.17)

the total energy supplied is:

∆Uad√
A

=

∫
dx

∫
dx′σ(x)

γ0(x− x′)
2

σ(x′)

=
1

2(ε̃LF + 1)εvac

∫
dk

2π

|σ(k)|2
|k| . (2.4.18)

Analogously, an instantaneous charging to the same final charge distri-

bution σ(x, t) = θε(t)σ(x), with θε(t) a differentiable approximation to the

Heaviside θ-function such that θτ (t)→ θ(t), τ → 0+, requires an amount of

work given by:

∆Uinst√
A

=

∫
dx

∫
dx′ σ(x)

γ∞(x− x′)
2

σ(x′)

=
1

2(ε̃HF + 1)εvac

∫
dk

2π

|σ(k)|2
|k| . (2.4.19)
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The second process, being non-adiabatic, absorbs more energy from the

source that exerts work on the system. This extra energy is employed in

inducing surface-wave and bulk-wave excitations. As a result, ∆Uinst >

∆Uad, which implies:

ε̃HF < ε̃LF . (2.4.20)

2.4.3 Energy carried by a piezoelectric SAW pulse

For piezoelectric phenomena, the Poynting vector is given in Eq. (F.4.3) in

the App. F:

Pj = −Tij u̇i + ϕḊj , (2.4.21)

which after use of Eq. (F.1.1) can be seen to be a bilinear expression in the

vectors (ua, ua,i) and (u̇b, u̇b,j) (here i, j = 1, 2, 3 and a, b = 1, 2, 3, 4; where

u4 = ϕ).

For any given pulse propagating in the x-direction, ua(x, y, z, t) = fa(x−
vt, z), one can compute the total energy which crosses x (it is obviously

independent of x)

∆Upulse =

∞∫∫∫
−∞

dt dy dz P1(x, y, z, t)

=
√
A

∞∫∫
−∞

dt dz gr(x− vt, z)Prsgs(x− vt, z) , (2.4.22)

where gr, gs are taken from the vector components ua, ua,i, u̇a, u̇a,i with r, s =

1, 2, ..., 16, and Prs is a constant matrix whose elements come from the

tensors ê, ĉ, ε̂. Fourier-analyzing gr(x − vt, z) =
∫

(dk/2π) eik(x−vt)gr(k, z),

where because of reality gr(k, z)
∗ = gr(−k, z), one obtains:

∆Upulse =
√
A

1

v

∫
dk

2π

∫
dz gr(k, z)Prsgs(k, z)

∗ , (2.4.23)
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but then [18, 23], the expression:

1

2

∫
dz gr(k, z)Prsgs(k, z)

∗ =
v|k|

4
ω
∂ε̃(k, ω)

∂ω
|ϕ(k, 0)|2 (2.4.24)

is the time-average power per unit length crossing a yz-section, carried by

a harmonic piezoelectric SAW, whose electric-potential amplitude is ϕ(k, 0)

at the interface. The result is therefore:

∆Upulse =
√
A

(ε̃HF + 1)εvac

K2
R

∫
dk

2π
|k||ϕ(k, 0)|2 . (2.4.25)

2.5 Other types of piezoelectric surface acoustic

waves

One must be aware that Rayleigh-like solutions do not exhaust the possible

solutions of piezoelectric surface acoustic waves, in spite of being the most

important by far. As in the case of purely elastic materials (outlined in

Sec. E.2 in the App. E), there are other possibilities for solutions of the

wave equation arising in this piezoelectric scenario in the surface.

The case of a standard, semi-infinite, non-layered, piezoelectric surface

contains new kind of waves different than the Rayleigh ones. A very im-

portant example lies in the so-called Bleustein-Gulyaev [54] waves, strongly

related to the SH waves in the elastic scenario. These analytical solutions

only appear if the saggital plane is normal to an even-order axis of the crys-

tal, with an exponential decay from the surface of the form exp (−K2kz).

Here, k is the wave vector, z is the spatial coordinate perpendicular to the

surface, and K2 is a nonzero electromechanical coupling coefficient, whose

smallness makes the wave to be lightly bounded to the surface (for example,

the penetration depth of this wave in CdS is around 44 wavelengths, in stark

contrast to the single-wavelength penetration of Rayleigh waves). In exactly

the same way as the Rayleigh modes, a metallic layer renormalizes the bare

velocity of free Bleustein waves from vs to ṽs, where ṽ2
s = v2

s(1 −K4) [see

Eq. (3.3.15)].



2.5. OTHER TYPES OF SAWS 37

In other circumstances, extra solutions appear in unique propagation di-

rections, such as the pseudo-surface acoustic waves, and there is a small in-

terval around their direction allowing for the so-called leaky surface acoustic

waves, which are not true surface waves. Even though they can be impor-

tant for the topic of surface-acoustic-wave devices and IDTs, the fact that

they appear only in very singular directions make them much less important

for the topic of microscopic electron-phonon interactions.

In the case of the layered systems, it is seen in the App. E that elas-

tic Rayleigh waves can become dispersive, and comprise multiple modes.

The situation in piezoelectric materials becomes much more complex and

is developed in more specialised literature (cited in Refs. [23, 18, 56]). A

deeper analysis of a piezoelectric substrate, possibly layered, would require

their computation and a quantization to study their coupling to the carriers

in the 2D metallic material placed onto the substrate (which is the topic

of Ch. 3), since these other waves appear in all directions, exactly as the

semi-infinite Rayleigh-wave solutions do.

All surface waves together modify the slowness-surface projections as

those shown in Fig. D.1 after the introduction of the other modes [21, 23],

begetting new curves and branches.



Chapter 3

Quantization of surface

acoustic waves and their

interaction with electrons

3.1 Surface electron-phonon Hamiltonian

The surface of any material interacts with quantum fields such as those of

electrons, photons, and phonons, very much as in the bulk. For example,

an electron (or charged quasiparticle) attached to a surface exerts forces

upon the charged ions of the surface, changing their dynamics. Moreover,

the ions act back again on the first electron, modifying its properties, such

as its energy and effective mass. This influence modifies as well the prop-

erties of ensembles of 2D electron gases near that surface and the space-

time dependent dielectric functions ε(r, r′, t, t′) describing these fields. The

quantum-mechanical theory of these general kind of interactions (in the form

of electron-phonon Hamiltonians) is described in any many-body physics lit-

erature [61, 62, 63, 64].

While many lattice-induced surface effects are analogous to the 3D bulk

ones, there are some features arising due the new dimensionality and geom-

38
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etry. For example, the usual (bare) 3D Fourier transform of the Coulomb

potential changes from e2

4πεvacr
→ e2

εvacq2
to the new q-dependent function

e2

2εvacq
. Also, a dielectric constant in a plane medium surrounded by two di-

electrics with ε1 above and ε2 below changes the in-plane dielectric constant

to ε1+ε2
2 [65, 29]. All the 2D electron-phonon physics is relevant for surfaces

near classical 2DEG in semiconductor heterostructures [66, 67] or with the

placing of two-dimensional materials like graphene onto them, something

unavoidable in the practical uses of these 2D crystals (see Sec. 1.1.1).

3.1.1 Fröhlich Hamiltonian

In a polar semi-infinite material, the coupling of a single electron in its

surface with the longitudinal optical phonons in that surface is given by

the Fröhlich Hamiltonian [16, 42, 68, 69, 70, 71]. This is usually written in

second-quantized language in the form:

HFr =
∑
k,σ

Eka
†
k,σak,σ + ~ω0

∑
q

b†qbq +Hop
e-ph , (3.1.1)

Hop
e-ph =

1√
A

∑
k,q,σ

γop
q a†k+q,σak,σbq + H.c. ,

where a†k+q,σ, ak,σ are the electron creation and annihilation operators,

respectively, with momentum k and spin σ and b
(†)
q is the phonon annihila-

tion (creation) operator. Ek is the energy of the electron in the state (k, σ)

and ~ω0 for each phonon (they are approximated by Einstein dispersionless

modes with frequency ω0). If the electron is embedded in a 2DEG, its en-

ergies can always be linearized close to the Fermi surface by Ek = ±~vFk.

The area A will drop by passing from the sum to an integral in k-space via

the density of states. This Fröhlich interaction is given by the vertex γop
q ,
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usually in units of eV cm (but adimensional in some references [72]):

|γop
q |2 = g

e2~ω0

2q
= g

2πεvacαfs~(~ω0)vF

q
, (3.1.2)

g =
1

εvac

(
1

ε∞ + 1
− 1

ε0 + 1

)
, (3.1.3)

and derived exactly as in the case of 3D [64]. Here, ε∞, ε0 denote the relative

dynamic and static dielectric constants, respectively; and αfs = e2

4πεvac~vF .

The high-frequency dielectric constant ε∞ only includes the screening of the

very fast excitons. In three dimensions, in the bulk of the polar material,

this interaction looks quite the same, except for the fact that the long-range

Coulomb factor is q−2 instead of q−1 and one has just εi instead of εi + 1

(the former 1 applying when the system is covered by the air/vacuum) for

i = 0,∞; together with an extra factor 2 [64, 61]. The change from SI units

to cgs proceeds just with the replacement e2/εvac → 4πe2.

This Hamiltonian is the basis of the Fröhlich polaron theory [61, 73, 74,

75], a classical topic in the big problem of the polaron arising many decades

ago and strongly studied since the 40-50s with any kind of perturbation

theory or variational methods with path integrals.

3.1.2 Dielectric function for 2D electron gases interacting

with Fröhlich optical phonons

In a many-electron system, one just adds to the previous single-electron

Hamiltonian [Eq. (3.1.1)] the extra electron-electron interaction, and the

chemical potential µ is introduced through the replacement Eq → Eq − µ,
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where Eq is the single-electron energy:

H = HFr +
1

2A

∑
q

v
(∞)
q ρ(q)ρ(−q) , (3.1.4)

v
(∞)
q =

e2

2ε∞εvacq
, ε∞ =

ε∞ + 1

2
,

ρ(q) =
∑
k,σ

a†k+q,σak,σ .

In particular, when a graphene layer or a 2D material is placed onto

such a polar semi-infinite 3D substrate (surrounded by air/vacuum), the

carriers from the 2DEG of graphene interact with the polar optical 2D

phonons arising in the interfacial surface of the substrate. The Hamiltonian

is exactly like this except for an exponential factor γop
q ∝ e−qd, with d the

distance from graphene to the substrate. This must be attached as a factor

to the vertex from before. It can be approximated as 1 provided that the

graphene layer is placed directly onto the substrate, since d would be some

angstroms, and the inverse of the wave vectors q would be much bigger,

as we shall see. Actually, the Fröhlich matrix element term in Eq. (3.1.2)

is only valid for long wavelengths from phonons quite far from the edge of

the Brillouin zone, such as those in the range of the Fermi wave vector of

graphene.

In order to describe the properties of this coupled system of 2D phonons

and electrons (or, more specifically, graphene electrons and surface optical

modes from the substrate), the main goal is to compute the dielectric func-

tion ε(q, ω) in such a way that the total dressed electron-electron interaction

is:

Veff(q, ω) =
vq

ε(q, ω)
=

e2

2ε(q, ω)q
. (3.1.5)

The calculation of ε(q, ω) can be done at least in three ways. One can

use a phenomenological model for the ions as oscillators with polarizability

∝ (ω2
0 − ω2)−1. Or it is possible to consider the ions as a plasma analogous

to the electronic one but with charge Ze and mass M much bigger than the
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electrons’ [76]. In any case, one gets the well-known result [61]:

ε(q, ω) = ε∞ +
ε0 − ε∞
1− ω2

ω2
0

− vq Π0(q, ω) , (3.1.6)

where Π0 is the irreducible polarization function of the 2D electron gas

[66, 77].

The third (and most common and rigorous) method to get an effective in-

teraction proceeds by combining both electron-electron and electron-phonon

interactions in a RPA scheme from the combined Hamiltonian, dressing the

interaction as in Fig. 3.1, by summing to infinite order in perturbation the-

ory to get a Dyson-like equation. All the non-bubble virtual processes are

neglected and this is well justified for low values of the parameter rs [62]

[Eq. (4.2.3)]. The result can be expressed as:

Veff(q, ω) =
vq

ε(q, ω)
=

v
(∞)
q + V op

ph (q, ω)

1−
[
v

(∞)
q + V op

ph (q, ω)
]

Π0(q, ω)
, (3.1.7)

where V op
ph (q, ω) = |γop

q |2Gop
0 (q, ω), and Gop

0 (q, ω) = 2ω0

~(ω2−ω2
0+iη)

as the

bare optical phonon propagator (η → 0+). Solving the Dyson equation

self-consistently leads to the previous effective interaction in Eq. (3.1.7).

This mechanism of remote electron-phonon scattering in graphene has been

mainly studied for substrates supporting these kind of Fröhlich optical-

phonon modes [16, 78, 79, 80, 81, 82, 83, 84].

At low frequencies (ω � ω0), corresponding to the interaction between

electrons whose difference in energies is very small in the scale of the optical

energies (around ~ω0 ∼ 0.1 eV), the bare phonon-mediated electron-electron

interaction is V op
ph (q, ω ' 0) = |γop

q |2Gop
0 (q, ω ' 0) = e2

εvacq

(
1

ε∞+1 − 1
ε0+1

)
.

This has the same form as the Coulomb interaction because |γop
q |2 ∼ 1/q

and ~ω0 is constant, except for a factor which implies that at small fre-

quencies (in the scale of ω0) the dynamic core-exciton-generated dielectric

constant ε∞ is to be substituted by the static ε0, and that is exactly the

definition of the static dielectric constant which enters in the derivation of
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k

k + q k′ − q

k′
V ∞

q V OP
ph (q, ω)

k

k + q k′ − q

k′

= +
Veff(q, ω)

Π0(q, ω)+

Figure 3.1: Diagrammatics of the electron-electron interaction in a solid.
Top: bare electron-electron interactions mediated by the Coulomb repulsion
(photons) and by optical phonons, respectively. Bottom: effective electron-
electron interaction in the RPA.

the phenomenological Fröhlich interaction.

At these small frequencies and for q < 2kF , the dielectric function leads

to the classical RPA result:

ε(q, ω ' 0) = ε0 εRPA(q, 0) , (3.1.8)

εRPA(q, 0) = 1− v(0)
q Π0(q, 0) = 1 +

kTF

q
, (3.1.9)

kTF =
e2D(EF )

2 εvac ε0
=

2gvαfs

ε0
kF = 2gvrskF , (3.1.10)
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being kTF the Thomas-Fermi screening wave vector andD(EF ) = gvkF/π~vF

the electronic density of states at the Fermi energy (gv is the valley degen-

eracy, e.g. gv = 2 in monolayer graphene).

In these materials, the long-range net electron-electron interaction is al-

ways repulsive and never overscreened, even though it can become greatly

reduced by the optical phonons provided that the ratio ε∞/ε0 is quite small.

That happens in very polar materials such as the ferroelectrics. This over-

simplified model does not account for direction anisotropies or the usual

case of many different modes (it can be refined with better anisotropic os-

cillator models with similar results) but it contains the important essence

of the role of the optical modes screening the slower acoustic phonons.

3.1.3 Deformation-potential interaction

Another important source for the electron-phonon interaction, both in the

bulk or in a 2D surface, comes from the deformation potential [49, 85, 86, 87],

especially important for crystals lacking a piezoelectric effect, such as a pure

ideal graphene layer. To lowest order in the displacement of the atoms of

a solid, the electric energy stored in a displacement is proportional to the

strain:

eφ = Ξijuij , (3.1.11)

where the deformation-potential tensor Ξij has the same symmetry con-

siderations as the piezoelectric one and other tensors (see Sec. C.2). In

particular, it becomes a scalar in a cubic crystal, so that the interaction of

electrons with acoustic deformation-potential phonons reads:

HDA
e-ph = Ξ∇ · u , (3.1.12)

where u is the mechanical displacement of the phononic field.

From the very introduction of this phenomenon (see Ch. 3 in Ref. [47])

as a microfield, a key feature of this potential is that it should not be

screened like other macroscopic fields, i.e., φ is not a macroscopic potential
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in the sense of the macroscopic Maxwell’s equations in Eq. (3.1.11). All

the screening processes are included in the first-order approximation within

the deformation tensor. In discussing theoretical issues, however, many

researchers do it and compare to non-screened results [88, 89, 90]. The

results after screening might be accounted with reasonable skepticism.

3.2 2D piezoelectric electron-phonon interactions

The coupling of the piezoelectric-SAW phonons to the electrons from a

2DEG or from graphene has been computed, within certain simplifying

assumptions and for definite substrate crystal structures, for example in

Refs. [29, 49, 50], based in the bulk theory [47, 61]. These methods of deriva-

tion of the surface electron-phonon interaction for a piezoelectric material

have been performed only within a purely elastic Rayleigh wave approxi-

mation [49, 50] or for definite propagating directions [29], exactly as the

solutions for SAWs explained in Sec. 2.2. But these methods fail in stronger

piezoelectric materials and for other crystal symmetries, as pointed out

there. Moreover, the obtained vertices are expressed in terms of a matching

constant whose physical interpretation is rather obscure, allowing for just

order of magnitude estimates.

A central topic in this work is to calculate a general electron-phonon

interaction [see Eq. (4.1.2)], which is expressed solely in terms of physical

quantities characterizing the response of the substrate surface. We empha-

size that all the quantities appearing in the vertex are both computable from

linear piezo-elasticity theory and experimentally measurable. One of them,

the ubiquituous electromechanical coupling coefficient, KR, will turn out to

be central to all computations, serving as a natural dimensionless parameter

which provides the scale for the effect of the substrate piezoelectricity on

the 2D electron system. Moreover, from very general considerations, it will

be possible to provide bounds on its size: 0 ≤ KR < 1 [see Eq. (4.1.17)].
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It is important to note that the vertex written here is derived within

the framework of linear piezo-elastic theory, which means that its validity

should be restricted to low-amplitude, low-frequency and long-wavelength

phenomena. Bulk modes are also left aside in this work. On the other hand,

our study is not restricted to any approximation based on the symmetry or

the piezoelectric softness of the substrate.

3.2.1 Classical approximations

Let us suppose the simple case of a GaAs substrate (see Sec. 2.2), with a

2DEG at the interface (z = 0) between vacuum (z > 0) and the substrate

(z ≤ 0), as in Fig. 2.1. In order to compute the interaction of the 2DEG

electrons with the acoustic piezoelectric phonons located in this surface, it

is needed to find the displacement uq(r, t) for each mode with any wave

vector q, to quantize it and to find the associated electric potential ϕq(r, t).

From the approximate solution in Sec. 2.2, the constant Cq is taken such

that the total energy (averaged in time) of the mode [see Eq. (F.3.3)], given

by

〈E(uq)〉 =
1

2
ρ

∫
d3r

(ü)2 + (v2
l − 2v2

t )(∇ · u)2 + 2v2
t

∑
ij

(uij)
2

 ,

(3.2.1)

is equal to 〈E(uq)〉 = ~ωq. The constant is found this way to be

Cq =

(
1

A

~
ρvsa

)1/2

≡ C , (3.2.2)

with a of order 1. It does not depend on q, as opposed to the bulk modes

[49]. From the classical field in Eq. (2.2.4) in this non-piezoelectric case, the

general quantized displacement field becomes:

u(r, t) = C
∑
q

bq exp[i(q ·R− ωqt)] vq(z) + H.c. , (3.2.3)
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including the electric-potential operator from Eq. (2.2.9):

φ(r, t) = C
∑
q

bqϕq + H.c. , (3.2.4)

where b
(†)
q is now the phononic annihilation (creation) operator for a SAW

mode with wave vector q, acting on the Fock space of the SAW phonons.

In this example of GaAs within this isotropic non-piezoelectric approx-

imation, the electron-phonon-interaction term for the Hamiltonian, analo-

gous to the Fröhlich interaction in Eq. (3.1.1), comes from the new matrix

elements of the electric potential felt by the electrons (e = 1.6 × 10−19 C

is in this case the electron charge and should not be confused with the

piezoelectric tensor ê or its components eij):

HPA
e-ph =

∫
dr eρ(r, t)φ(r, t) =

1√
A

∑
k,q,σ

γPA
q a†k+q,σak,σbq + H.c. , (3.2.5)

and the vertex in this case is given by [see Eq. (2.2.9)]:

γPA
q = C

√
A
eβζ−2ε0

ε0 + 1

qxqy
q2

[3κlα
−1(1− κl)

− f(1 + 2κ2
t )(1− κt)− ζ2(1− fκt)] , (3.2.6)

which is of order:

γPA
q ∼

√
~
ρvs

eβ
(cgs)

=

√
~
ρvs

2ee14

ε0εvac (SI)

. (3.2.7)

The proportionality factor 1√
a
[3κlα

−1(1 − κl) − ...] is [see Eq. (3.2.2)]

of course of order 1 and it depends just on the elastic constants and the

geometry. This interaction is anisotropic because qx = q cos θ and qy =

q sin θ with θ measured in the surface. For a general material, it has an
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expansion within this (non-piezoelectric wave) approximation as:

|γPA
q |2 =

∑
n≥0

cPA
j (sin θ)2n , (3.2.8)

with terms cPA
j of order ∼ ~

ρvs
e2ê2

ε2
.

In addition to their characteristic anisotropy, it must be noted that γPA
q

does not depend on the modulus q. This happens because the electric

potential φ is proportional to the displacement and thus to the characteristic

normalization C ∝
(

~
ρvsa

)1/2
, not dependent on q, that arises at the surface

for these modes [see the discussion right before Eq. (3.2.3)] from the fact that

a quantum of energy ∝ q is confined in a layer below the surface of thickness

∼ λ ∝ 1/q. By contrast, a dependence on q does arise in the typical metal

bulk-phonon modes or in semiconductor deformation potentials, where γq ∼√
q [86, 76], or even in piezoelectric modes in the bulk, where γq ∼ q−1 [47].

Deformation-potential interaction

In addition to the mainly studied piezoelectric interaction, one must add the

electron-phonon-interaction effects arising from the deformation potential of

the acoustic phonons from this GaAs substrate (or from the 2D material

itself). As explained in Sec. 3.1.3, and from Eqs. (3.2.3) and (3.1.12), one

ends up in this case with the interaction term:

HDA
e-ph =

1√
A

∑
k,q,σ

γDA
q a†k+q,σak,σbq + H.c. , γDA

q = C
√
Aαζ2ΞGaAs q .

(3.2.9)

This vertex, being proportional to the change in volume associated with

each phonon, is now proportional to q and hence its influence decreases

for long wavelengths. In the case of GaAs and upon introduction of the

proper numerical values [49], the ratio of both vertices becomes γDA
q /γPA

q '
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q × 10−7 cm.

3.2.2 Figure of merit for GaAs

It is possible to compute K2 in the simple well-known cubic example of

GaAs, as outlined before. Recall (see Sec. 2.2) that the piezoelectric and

dielectric tensors are given by the numbers e14 ≈ 0.15 C/m2 (strongly de-

pendent on the reference), ε0 ≈ 12 [now denoting a relative constant, so

that ε̂ = 12 εvac13×3 in SI units as in Eq. (2.2.3)], and the elastic tensor is

[see Eq. (C.2.6)]:

ĉ =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


, (3.2.10)

with the GaAs parameters c11 = 12.26×1010 N/m2, c12 = 5.71×1010 N/m2,

c44 = 6.00× 1010 N/m2. From those values in the wave equation, the longi-

tudinal and transversal (isotropic-approximated) sound velocities are easily

deduced: v2
l = c11/ρ and v2

t = c44/ρ. Moreover, ζ = 0.9 for the Rayleigh

velocity vs = ζvt.

So, should one estimate a magnitude of the electron-phonon interaction

(as in Sec. 3.1.2 for optical phonons) for the acoustic piezophonons on GaAs,

we would write:

V PA
ph (q, 0) =

2|γPA
q |2

~vsq
∼ e2

ε0εvac

e2
14

ε0εvacc44
, (3.2.11)

which enters the calculation through the dimensionless product:

V PA
ph (q, 0)[−Π0(q, 0)] = p

αfs

ε0
K2kF

q
. (3.2.12)
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The proportionality constant p in this simple case is [see Eq. (3.2.6)]:

p =
16

aζ6
[3κlα

−1(1− κl)− f(1 + 2κ2
t )(1− κt)− ζ2(1− fκt)]2

× sin2 2θq ≈ 1.9 sin2 2θq . (3.2.13)

Considering also the fact that K2 ≈ 0.003 for these parameters, we con-

clude that the static phonon-mediated electron-electron interaction for this

substrate is negligible compared to the Coulomb repulsion.

In a polaron theory such as that developed for the optical phonons [61],

we may write Eq. (3.1.7) as:

Veff(q, ω) =

e2

2ε0εvacq
+

2|γPAq |2vsq
~(ω2−v2sq2)

1−
[

e2

2ε0εvacq
+

2|γPAq |2vsq
~(ω2−v2sq2)

]
Π0(q, ω)

. (3.2.14)

In the static limit, with the parameters from above for monolayer graphene

(or another material with a linearized electronic dispersion):

Veff(q, ω ' 0) =

(
αfs~vF
ε0
− αfs~vFpK2

ε0

)
2π
q

1 +
(
αfs~vF
ε0
− αfs~vFpK2

ε0

)
2π
q

2kF
π~vF

, (3.2.15)

one concludes that in the range of frequencies ω � ωq = vsq, the only

effect of the piezoelectric phonons is that of providing an extra source of

screening to further renormalize the static dielectric constant exactly in the

same way as has been shown for the optical Fröhlich phonons [61], since all

interactions have the 2D Coulomb form 1/q in Eq. (3.2.15).

Finally, we note that the fact that piezoelectric effects in GaAs play

a small role in the electron-electron interaction, is compatible with those

effects being important in the carrier mobility [50] or in the interactions

underlying SAW-based conveyor belts [38, 39].
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3.2.3 General electron-piezoelectric phonon interaction

Even though most materials are either non-piezoelectric or their piezoelec-

tric coupling constants are small enough (K2 is 0.01 or even lower), it has

been noticed [see Eq. (3.2.6)] that the piezoelectric vertex, which is propor-

tional to the piezoelectric tensor, enters the effective interactions through

a second order process. Therefore, a variation in this tensor of about an

order of magnitude results in a variation of two orders of magnitude in

the coupling parameters. Several works on electron-phonon interactions in

piezoelectrics use other materials such as ZnO and AlN, whose associated

piezoelectric fields are around 10 times stronger than those of GaAs [91],

which increases the previous interaction by a factor of 100. But there ex-

ist piezoelectric materials whose coefficients are even an order of magnitude

bigger than ZnO/AlN, for example LiNbO3, BaTiO3 or PZT (lead zirconate

titanate, PbTixZr1−xO3), among many oxides with the perovskite structure

and formula ABO3. These compounds tend to show ferroelectric proper-

ties, and are sometimes reminiscent of the layers between CuO2 planes in

cuprate high-temperature superconductors (see Table 3.1).

Since it is no longer feasible to neglect the eijk terms in the wave equations

for these hard piezoelectrics (as explained in Sec. 2.3.1), one must solve the

wave equation with an exact solution [of the type of Eq. (2.1.5)] with an

arbitrary factor Cq, to be quantized as in the GaAs case, but based on an

exact energy equation including all the fields [see Eqs. (F.3.1),(F.3.2)]:

ua(r, t) = Cq

4∑
n=1

CnA
(n)
a eikb

(n)
3 z exp [ik(b ·R− vt)] , (3.2.16)

〈Eq〉 =

〈∫
average A

dR

∫ 0

−∞
dz
dE

dV
(r, t)

〉
= hωq = ~vs(q)q ≡ F (Cq) ,

dE

dV
=

1

2

[
(ü2
x + ü2

y + ü2
z) + uijTij + D ·E

]
. (3.2.17)

To determine Cq here, it is useful for computational purposes to note that

the average kinetic energy is equal to the potential energy, as will be seen

in Eq. (3.3.4).
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In order to proceed to obtain the pure quantum-mechanical interaction,

it is better to adopt an alternative approach involving useful dielectric and

response functions, so that the matrix element for the interaction can be

expressed from directly measurable quantities (not having large uncertain-

ties like the tensors ê, ĉ) for the coupling. The numerically approximated

parameter pK2 [Eqs. (3.2.14), (3.2.15)] becomes K2
R (with p exactly one)

when K is replaced by KR.

3.3 Exact electron-SAW interaction

We return to the general scenario (see Fig. 2.1) but considering the pos-

sibility of flat electrodes at z = 0+, which supply no mechanical stresses.

The purpose of this section is to show that the general interaction between

the propagating piezoelectric SAWs and an electron at the surface can be

described with a Hamiltonian of the form (3.1.1) with (SI units are used

throughout the present section, as is typical for piezoelectrics)

ωq = vs(θ)|q| ,

γPA
q =

KR(θ)√
2

[
vs(θ)~e2

(ε̃HF(θ) + 1)εvac

]1/2

, (3.3.1)

where q := q [cos(θ), sin(θ)] and εvac is the air or vacuum electric permittiv-

ity. The piezoelectric specific parameters are vs(θ), the piezoelectric SAW

velocity; 0 ≤ K2
R(θ) < 1, the SAW electromechanical coupling coefficient;

and ε̃HF(θ) := limω→∞ ε̃(q/ω) (with ω → ∞ within the acoustic frequency

scale), the high-frequency (HF) limit of the piezoelectric surface permittiv-

ity, as in Sec. 2.4 (see Refs. [18, 19]). They all depend on the propagation

direction of the SAW, as the notation suggests.



3.3. THE EXACT INTERACTION 53

3.3.1 Hamiltonian and interaction vertex

The linear equations of piezoelectricity, Eqs. (F.1.1), can be derived from a

Lagrangian (see Ref. [92]):

L [uj , ϕ] =
1

2

∫
d3r [ρu̇iu̇i − cijklui,juk,l − 2eijkϕ,iuj,k + εijεvacϕ,iϕ,j ] ,

(3.3.2)

where it has been written the subindex “,j” stands for ∂/∂xj , while u̇i :=

∂ui/∂t. The canonical momentum to ϕ is zero, so that the system is con-

strained. The Hamiltonian is then:

H [uj , ϕ] =
1

2

∫
d3r (ρu̇iu̇i + cijklui,juk,l + εijεvacϕ,iϕ,j) . (3.3.3)

For a given harmonic propagating piezoelectric SAW without surface

charges, i.e., a wave with the form of Reua(r, z, t) from Eqs. (2.1.5), (2.1.6)

fulfilling the equations of motion Eqs. (F.1.1) and boundary conditions

Eqs. (2.1.7), (2.3.4) with σ(0) = 0, it is straightforward to show that the

kinetic energy [first term in Eq. (3.3.3), coming exclusively from elastic vi-

brations in the substrate] is the same as the potential energy [last two terms

in Eq. (3.3.3), containing contributions from the elastic deformations and

the electrostatic energy stored both in the substrate and in free space]. We

just need to multiply the wave terms in Eq. (F.1.1) by ui and to integrate by

parts, and obtain a sort of virial theorem for piezoelectric termodynamics,

that is: ∫
d3r 〈Tijuij + EiDi〉 =

∫
d3r

1

2

〈
ρu̇2

i

〉
. (3.3.4)

On the other hand [18], for the interval 0 < vs(θ) < vL(θ), the positivity

of the kinetic and potential energies gives ∂ε̃(k/ω)/∂ω > 0. For these kind

of waves one has the following equation, obtained easily from the definition

of a susceptance function and its relation to the total energy and surface



54 CHAPTER 3. QUANTIZED WAVES, INTERACTIONS

permittivity [18] [when 1 + ε̃(k/ω) = 0]:

Hharm =
1

4
Akω

∂ε̃(k/ω)εvac

∂ω
|ϕ0|2 =

1

2
Ak|ϕ0|2

(ε̃HF(θ) + 1)εvac

K2
R(θ)

, (3.3.5)

where A is the area of the sample, ϕ0 := Cnα
(n)
4 is the amplitude of the

electric potential at the interface [see Eq. (2.1.5)], and the high-frequency

limit ε̃HF(θ) := limω→∞ ε̃(k/ω) has been introduced together with the SAW

electromechanical coupling coefficient, KR(θ), through the relation at 1 +

ε̃(k/ω) = 0 [see Eq. (2.4.2)]:

K2
R(θ)/2

ε̃HF(θ) + 1
=

[
ω
∂ε̃(k/ω)

∂ω

]−1

. (3.3.6)

The electrons of the graphene sheet (or any other charged quasiparticle

coming, for example, from a two-dimensional structure deposited at the

piezoelectric substrate) feel the electric potential of the piezoelectric SAW.

The interaction is then given by the total potential at the position of the

electron:

VPA(R) = −eϕ(R, 0, t = 0) . (3.3.7)

On the other hand, the one-phonon normalization means that ϕ0 from

Eq. (3.3.5) should be chosen so that Hharm = ~ω = ~vs(θ)k, and thus one

finally gets Eq. (3.1.1) with the vertex in Eq. (3.3.1) .

3.3.2 Boundedness of K2
R

To prove rigorously the general bound 0 ≤ K2
R(θ) < 1, it is necessary to

recover the formalism of response functions in Sec. 2.4.2, allowing ideal

electrodes, parallel to the y-axis, operating on top of the piezoelectric sub-

strate. There, processes which turn on a given final charge distribution σ(x)

were considered, either adiabatic or instantaneous, each one with supplied

energies ∆Uad, ∆Uinst, the former energy being smaller than the latter.

After the sudden charge, i.e., at t > 0, the time evolution and relaxation
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of the potential are, as follows from Eqs. (2.4.15) and (2.4.16):

ϕ(x, t) =

∫
dx′σ(x′)

[
γ∞(x− x′) +

∫ t

0
dt′φ(x− x′, t− t′)

]
t→∞−−−→

∫
dx′σ(x′)γ0(x− x′) , (3.3.8)

this relaxed field being the same as that obtained after the adiabatic process

leading to the same charge distribution.

The space Fourier, time Fourier-Laplace transform of this potential is:

ϕ(k, ω) :=

∫
dx

∫ ∞
0

dt ei(ωt−kx)ϕ(x, t) =
iσ(k)

ω + iη
γ(k, ω) , (3.3.9)

where the change ω → ω + iη (η ≡ 0+) is made to ensure convergence.

Since γ(k, ω) has poles at the Rayleigh-wave condition [Eq. (2.3.5)], one

can isolate their contribution ϕRW(x, t) to ϕ(x, t). It is:

ϕRW(k, ω) :=
iσ(k)

|k|
K2
R/2

(ε̃HF + 1)εvac

(
1

ω − ωk + iη
+

1

ω + ωk + iη

)
,

(3.3.10)

where ωk = vk and the two terms come from the two identical SAWs propa-

gating to the right and to the left. A small 0+ has been added to ensure that

the poles of the admittance are in the lower complex-ω half-plane. Inverting

to get the spacetime behavior, one obtains two dispersionless propagating

SAWs:

ϕRW(x, t) =
K2
R

2

[
ϕ(x− vt, 0+) + ϕ(x+ vt, 0+)

]
, (3.3.11)

where ϕ(x ± vt, 0+) =
∫

(dk/2π) eik(x±vt)γ∞(k)σ(k) [see Eq. (3.3.8)]. The

energy carried by these two pulses is, using Eq. (2.4.25):

∆URW =
√
A

K2
R/2

(ε̃HF + 1)εvac

∫
dk

2π

|σ(k)|2
|k| , (3.3.12)

which is the energy stored in each traveling SAW, i.e. ∆URW = K2
R ∆Uinst
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from Eq. (2.4.19). Since we have at our disposal no more than ∆Uinst −
∆Uad > 0, the condition ∆URW < ∆Uinst − ∆Uad must be fulfilled. From

Eqs. (2.4.18)-(2.4.20) one concludes that:

K2
R ≤

ε̃LF − ε̃HF

ε̃LF + 1
< 1 . (3.3.13)

Actually, this bound is slightly lower than 1.

One can obtain an alternative definition for the electromechanical cou-

pling coefficient in this scenario, as the ratio of the efficiency of conversion

between electric and acoustic energy in a piezoelectric material:

K2
R =

∆URW

∆Uinst
, (3.3.14)

together with a third possible definition, all being equivalent. This third

definition follows by applying Ingebrigsten’s approximation [Eq. (2.4.1)],

the definition in Eq. (2.4.2), and the fact that v0, vs, vϕ=0 are very close to

each other [18]. This last definition is related to the piezoelectric-stiffening

effect, as described in App. F.2, measuring the change in SAW velocities

∆v = vs − vϕ=0 due to the piezoelectric effect:

K2
R u

2

1 + ε−1
p

v0 − vϕ=0

vϕ=0
≈ 2(vs − vϕ=0)

vϕ=0
, (3.3.15)

the second inequality being valid just when the relative dielectric constant

of the piezoelectric material is much bigger than that of the air.

3.4 Numerical examples

Numerical values for the electromechanical coupling coefficient in many ma-

terials and directions can be found in the general literature on piezoelec-

tricity. That is not the case for the less-studied electron-phonon vertex.

Luckily, we can prove the general formula in Eq. (4.1.2), so that knowledge

of the former coefficient is sufficient (together with knowledge of the sound
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velocity and material dielectric constants) to obtain the latter. For the sake

of completeness, we copy a few values from Ref. [56] in Table 3.1.

The numerical examples which we discuss in this section can be shown to

agree with the approximation in Eq. (3.3.15). This represents an important

simplification because the general formulæ involve complicated functions

of many tensor components coming from the solution of the Christoffel

equations. To compute the exact coupling in any direction in an arbitrary

material, it is necessary to resort to numerical methods, as those used to

find the SAW solutions.

Material (class) Propagation Wave KR

Bi12GeO20 (Cubic) [1 1 0] longitudinal 0

Bi12GeO20 (Cubic) [1 1 0] [0 0 1]- shear

√
e241

c44ε11
= 0.338

Bi12GeO20 (Cubic) [1 1 0] [1 1 0]-shear 0

CdS (6mm) Z-axis longitudinal 0

CdS (6mm) Z-axis shear

√
e233

c33ε33
= 0.156

CdS (6mm) X-axis Z-shear 0

CdS (6mm) X-axis Y-shear

√
e215

c44ε11
= 0.192

LiNbO3 (3m) Z-axis longitudinal

√
e233

c33ε33
= 0.163

LiNbO3 (3m) Z-axis shear 0

ZnO (6mm) Z-axis longitudinal

√
e233

c33ε33
= 0.302

ZnO (6mm) Z-axis shear 0

ZnO (6mm) X-axis Z-shear

√
e215

c44ε11
= 0.268

ZnO (6mm) X-axis Y-shear 0

Table 3.1: Selected values of a few electromechanical coupling constants in
several materials and specific direction propagations, which can be given

easily in terms of a ratio
e2λµ
cνξεij

for some λ, µ, ν, ξ = 1, ..., 6 and i, j = 1, 2, 3.

Taken from Ref. [56].

The point group of ZnO and AlN gives isotropic couplings with the Z-cut

and therefore isotropic sound velocities. On the other hand, their X and

Y-cuts are equivalent. This is not the case, for example, in LiNbO3, whose
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K2
R(θ) and vertex values in the X,Y and Z-cuts are shown in Fig. 3.2. For

some graphs of the velocities in different cuts in this latter material, see

Fig. 2.2 and Ref. [55]. Recall that the cut terminology refers to the lattice

axis perpendicular to the surface. The reader may review the subsection

“Cut terminology” in Sec. 2.1 or Refs. [93, 94] if not familiar with that

terminology. In the case of GaAs, an excellent approximation for the vertex

is given by the sinusoidal expression in Eq. (3.2.6).
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Figure 3.2: Some representative magnitudes for SAW phonons and for two
different materials with different symmetries (LiNbO3 and ZnO) as a func-
tion of the angle within the crystal plane parallel to the cut plane, in the
X-Y-Z-cuts (denoted between parentheses) chosen for all. For the Z-Cut
(X-Cut/Y-Cut), the 0 angle correspond to the x-axis (y-axis/z-axis) mov-
ing forward towards the y-axis (z-axis/x-axis). Upper: Electromechanical
coupling coefficient. Lower: Electron-phonon vertex. The plots are obtained
by processing data for the elastic, dielectric and piezoelectric tensors taken
from Refs. [18, 49, 56] and references therein.



Chapter 4

SAW-induced many-body

effects on electronic layers

4.1 Piezoelectric 2D electron-phonon Hamiltonian

The present chapter aims to clarify the role of acoustic piezoelectric surface

phonons, which form the microscopic quanta of SAWs [95], in graphene-

on-piezomaterial structures. It has been shown in the previous chapter

(as well as in Ref. [18]) that there exists a relation between the amplitude

of the electric potential at the surface of a piezoelectric material, ϕ0 =

ϕ(q, ω), and the total energy Hharm [see Eq. (3.3.5)]. Hence, a standard

quantization procedure (see Sec. 3.3.1) showed that the interaction between

a single electron and the spontaneous piezoelectric Rayleigh waves in that

surface can be written as:

HPA
e-ph =

1√
A

∑
k,q,σ

γPA
q a†k+q,σak,σbq + H.c. , (4.1.1)

γPA
q =

KR(θ)

2

√
~e2vs(θ)

εHF(θ)εvac
, (4.1.2)

60
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where A is the area of the sample, ak,σ, a
†
k,σ are the electron operators with

σ = ± for the electron spin, bk, b
†
k are the piezoelectric-phonon operators,

and εHF(θ) := [ε̃HF(θ) + 1]/2 .

4.1.1 Layer containing an electron gas

When a two-dimensional material such as graphene is placed onto a piezo-

electric substrate (see Sec. 1.1.1), the validity of the shown interaction

Hamiltonian (4.1.2) requires two further assumptions: first, the 2DEG or

multilayered graphene sample should be thin enough so that in Eq. (2.1.6),

kmaxd � 1, where d is the width of the sample and kmax is the maximum

allowed phonon momentum [see the comments after Eq. (3.1.4)]. And sec-

ond, this maximum momentum should be sufficiently small for the classical

piezo-elasticity theory, as shown in Eqs. (F.1.1), to remain valid. If one as-

sumes a maximum momentum on the order of kF =
√
πn ∼ 106−107 cm−1,

this last restriction is not violated for the usual electronic densities n in

doped semiconductors.

The resulting total Hamiltonian for the combined system of the 2D elec-

tron gas and the piezoelectric Rayleigh phonons is:

H =
∑
k,σ

Eka
†
k,σak,σ+~

∑
q

ωq b
†
qbq+HPA

e-ph+
1

2A

∑
q

v
(0)
q ρ(q)ρ(−q) , (4.1.3)

where Ek is the electron energy for a 2D wave vector k (see Sec. A.2), ωq =

vs(θ)q is the dispersion relation for the piezoelectric SAW phonon of 2D

wave vector q, vs(θ) is the SAW propagation velocity, v
(0)
q = e2/2εHFεvacq ,

and ρ(q) =
∑

k,σ a
†
k+q,σak,σ is the Fourier transform of the electron density.

The derivation proceeds exactly like that for the total Hamiltonian of a 2D

electron gas with optical phonons (see Sec. 3.1.2).

The sound velocities vs(θ) of piezoelectric acoustic phonons are anisotropic

(they depend on a direction angle θ) and typically two or three orders of

magnitude smaller than the Fermi velocity vF in graphene or another 2DEG,

which yields a relatively low value of the maximum acoustic frequency. In
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fact, in the derivation of any piezoelectric electron-phonon interaction, it is

taken into account that the Fröhlich optical phonons (slower than the elec-

trons) respond instantaneously in the time scales of the acoustic phonons

by implicitly taking the effective dielectric constants of the problem as the

static ones.

Thus the dielectric screening effects due to the substrate can be described

by its static (also anisotropic) dielectric constant ε0(θ). This constant com-

bines both core excitons and optical phonons as well as any high-frequency

(instantaneous) polarization forces which screen the fields created by the

piezoelectric acoustic phonons [61]. Then, in the graphene case, the Fourier

transform of the repulsive Coulomb interaction over the substrate reads the

same, with εHF(θ) (see Sec. 2.4.1) replaced by ε0,

v
(0)
q =

e2

2ε0(θ)εvacq
, (4.1.4)

where ε0(θ) = ε0(θ)+1
2 is the effective (relative) dielectric constant at the

substrate-air interface [29], and q = |q| with q = (qx, qy) and θ ≡ arg(qx +

iqy). The interaction between the graphene electrons and the piezoelectric

acoustic (PA) phonons is therefore given by the former HPA
e-ph in Eq. (4.1.1)

with:

γPA
q =

KR(θ)

2

[
~e2vs(θ)

ε0(θ)εvac

] 1
2

= KR(θ)

[
παfs~2vF vs(θ)

ε0(θ)

] 1
2

. (4.1.5)

Here αfs = e2

4πεvac~vF ' 2.2 in graphene, and ak,σ is the Fermi operator for an

electron of the graphene layer with wave vector ~k, spin-valley-cone index

σ, and energy

Ekσ = ~svFk , (4.1.6)

where s = ±1 is the cone index. It is to be understood that, in the absence of

the substrate, we are in the usual Fermi-liquid regime of (doped) graphene.
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4.1.2 Effective electron-electron interaction

The coupling in Eq. (4.1.5) enables a phonon-mediated electron-electron

interaction

V PA
ph (q, ω) = |γPA

q |2GPA
0 (q, ω) , (4.1.7)

where

GPA
0 (q, ω) =

2ωq/~
ω2 − ω2

q + i0+
(4.1.8)

denotes the bare propagator of the surface acoustic phonons. This interac-

tion admits a diagrammatic representation, as shown in Fig. 3.1 and as is

standard for electron-phonon couplings.

By including screening effects due to the charge carriers in graphene, as

described by the polarization Π0(q, ω) (see Refs. [77, 96]), one can define

the total effective electron-electron interaction in terms of an anisotropic

dielectric function ε(q, ω):

Veff(q, ω) =
e2

2ε(q, ω)εvacq

=
v

(0)
q + V PA

ph (q, ω)

1−
[
v

(0)
q + V PA

ph (q, ω)
]

Π0(q, ω)
. (4.1.9)

For frequencies small in the scale of the acoustic phonons [or the Bloch-

Grüneisen temperature kBTBG := 2~vskF , see Eq. (5.2.14)], the bare electron-

phonon-electron interaction contributes to the long-range part of the total

interaction with a q dependence similar to that of the Coulomb repulsion:

V PA
ph (q, ω ' 0) = |γPA

q |2GPA
0 (q, ω ' 0) = −

2|γPA
q |2

~vsq
. (4.1.10)

Note that, given the fact that γPA
q is q-independent [see Eq. (4.1.5)], here

it is the acoustic-phonon propagator GPA
0 (q, ω ' 0) that introduces the

coulombic long-range dependence in q via the dispersion of the modes. In

Sec. 4.2.1, it will be shown that a similar final q dependence has a different

origin in the case of optical phonons.
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In this low-frequency limit, Π0(q, ω ' 0) ' −D(EF ) = −2kF /π~vF for

monolayer graphene [77], or Π0(q, ω ' 0) ' −D(EF ) = −m/2π~2 for a

2DEG with effective mass m [97]. These two static limits are exact for

q < 2kF . In the graphene case, by defining:

εRPA(q, ω) = 1− v(0)
q Π0(q, ω) , (4.1.11)

one obtains, for ω → 0:

εRPA(q, ω) ' εRPA(q, 0) , (4.1.12)

where the static dielectric function satisfies:

εRPA(q, 0) = 1 +
kTF(θ)

q
(4.1.13)

for q < 2kF , where:

kTF =
4αfskF
ε̄0(θ)

(4.1.14)

is the (anisotropic) Thomas-Fermi wave vector and kF the Fermi wave vec-

tor, the factor of 4 accounting for spin-valley degeneracy.

We may also define the renormalized phonon propagator:

G̃PA(q, ω) =
GPA

0 (q, ω)

1− V PA
ph (q,ω)Π0(q,ω)

εRPA(q,ω)

. (4.1.15)

Then, Eq. (4.1.9) can be decomposed into an electron-electron and an

electron-phonon part [61, 62]. Some straightforward algebra leads to:

Veff(q, ω) =
v

(0)
q

εRPA(q, ω)
+

∣∣∣∣∣ γPA
q

εRPA(q, ω)

∣∣∣∣∣
2

G̃PA(q, ω) , (4.1.16)

as shown diagrammatically in Fig. 4.1.

It is desirable to emphasize the importance of the electronic screening

of the electron-phonon vertex as shown in Eq. (4.1.16). This will strongly
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V RPA
q (q,ω)

=
V (0)

q

+ Π0(q,ω)

G̃PA(q,ω)
+

GPA
0 (q, ω)

=

+

=
γ̃PA
q γPA

q

+ Π0

= +
Veff(q, ω) G̃PA(q, ω)|γ̃PA

q |2V RPA
q (q, ω)

Figure 4.1: Diagrammatics of the screening of the electron-phonon vertex in
a metallic system. Within an equivalent RPA scheme, the effective electron-
electron interaction is separated into an electron-electron Coulombic part
and an electron-phonon part with a screened vertex and renormalized

phonon propagator. In the second line, V RPA(q, ω) = v
(0)
q [εRPA(q, ω)]−1 is

the first term of Eq. (4.1.16). In the fourth line, γ̃PA
q = γPA

q [εRPA(q, ω)]−1

is the screened vertex in the same equation.
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influence the role of scattering processes involving low values of q, and is

sometimes not well included in the literature, a common mistake being

the placement of the screening outside the square of the second term in

Eq. (4.1.16).

In the limit of low frequencies, ω ' 0, there can be no effective attraction

for electrons close to the Fermi surface. Specifically, we will prove that the

following inequality [see Eq. (3.3.13)] is satisfied:

−V PA
ph (q, ω ' 0)

v
(0)
q

= K2
R(θ) < 1 , (4.1.17)

which is an important result of this thesis.

4.2 Basic input parameters of the theory and main

approximations

Given the parameters KR(θ), vs(θ) and ε0(θ), the electron-phonon inter-

action γPA
q (θ) is computed from Eq. (4.1.5). A dimensionless parame-

ter λe-ph(θ) characterizing the strength of the coupling of Eqs. (4.1.5),

(4.1.10) can be obtained from multiplying the resulting effective interac-

tion in Eq. (4.1.7) at q = kF by the density of states at the Fermi energy:

D(EF ) = −Π0(kF , 0) =
2kF
π~vF

, (4.2.1)

which leads to:

λe-ph(θ) ≡ V PA
ph (kF q̂, 0) Π0(kF , 0) =

4

π~2vs(θ)vF
|γPA

q |2 = 4K2
R(θ)rs(θ) ,

(4.2.2)

where q̂ = q/q and the parameter

rs(θ) ≡
αfs

ε0(θ)
(4.2.3)
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characterizes the ratio between the interaction and kinetic energies (as in

the Winger-Seitz theory [64]). This yields for the ratio between the piezo-

electric interaction and the residual static Coulomb repulsion precisely the

electromechanical coupling coefficient K2
R(θ), characteristic of each piezo-

electric material, that can be measured in SAW experiments:

λe-ph

λe-e
= K2

R , (4.2.4)

where

λe-e(θ) = v
(0)
kF q̂

Π(kF , 0) =
4αfs

ε0(θ)
= 4rs(θ) (4.2.5)

is the dimensionless electron-electron coupling strength in substrate-screened

graphene. The same parameter for the Fröhlich optical phonons would be

λe-op = 4αfs(ε∞
−1 − ε0

−1), as will be seen in Sec. 4.2.1.

Some angle-averaged values for selected representative materials, as taken

from Refs. [18, 49, 56], are summarized in Table 4.1. Recall that roughly

K2
R ∼ ê2

ĉε0
, where ê is a value for the piezoelectric tensor and ĉ for the elastic

tensor [30]. For example, the materials considered in Ref. [42], namely ZnO

and AlN, have associated piezoelectric tensors that are much larger than

those of the widely used GaAs [91], which increases the electron-phonon

coupling by more than one order of magnitude. Despite being more piezo-

electric, the dielectric tensors in the strongest ferroelectrics are so high that

the interaction decreases [but not the ratio to the highly screened Coulomb

repulsion; see Eq. (4.2.4)].

We keep the approximations made in the vertex (4.1.5) (flat interface and

long wavelengths compared with the lattice spacing), which is in any case

more accurate than those used in the previous literature on piezoelectric

phonons. In the present work, and as in the previous literature, we do not

take into account any possible deformation or influence of the geometrical

details of the interface in the graphene sheet. Many parameters are used

as well as if they were isotropic by employing an angle-averaging procedure

(as shown in the Table 4.1) to give some exact analytical results mentioned

below.
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Material Cut K2
R ε0 vs(

cm
s ) |γPAq |2 (eVcm)2 λe-ph 4rs

GaAs (cubic) X-Y-Z 0.0015 6.9 2.70× 105 1.71× 10−20 0.0019 1.3
ZnO (6mm) Z-Cut 0.016 4.8 2.71× 105 2.70× 10−19 0.029 1.8
ZnO (6mm) X-Cut 0.0064 4.8 2.63× 105 6.60× 10−20 0.0074 1.8
AlN (6mm) Z-Cut 0.0026 5.0 5.85× 105 9.18× 10−20 0.0046 1.8
AlN (6mm) X-Cut 0.0048 5.0 5.81× 105 1.66× 10−19 0.0084 1.8

LiNbO3 (3m) Z-Cut 0.0068 19 3.85× 105 4.25× 10−20 0.0032 0.46
LiNbO3 (3m) Y-Cut 0.017 20 3.59× 105 9.35× 10−20 0.0077 0.44
LiNbO3 (3m) X-Cut 0.019 20 3.60× 105 9.80× 10−20 0.0080 0.44
PZT-4 (6mm) Z-Cut 0.027 350 2.26× 105 5.37× 10−21 7.0× 10−4 0.025
PZT-4 (6mm) X-Cut 0.0021 350 1.80× 105 3.17× 10−22 5.2× 10−5 0.025

Table 4.1: Angle-averaged values of the electromechanical coupling coeffi-
cient K2

R appearing in Eq. (4.1.5), the effective dielectric constant ε̄0, the
sound velocity vs, the vertex strength γPA

q [see Eq. (4.1.5)], the dimension-
less coupling strength λe-ph defined in Eq. (4.2.2), and the ratio kTF/kF for
several materials. Numerical values of the elastic tensors have been taken
from Refs. [18, 49, 56] and references therein.

4.2.1 Comparison with optical phonons

For simplicity, let us focus on a single branch of the longitudinal optical (LO)

phonons for which a constant frequency ω0 is assumed. The total Hamilto-

nian reads as in Eq. (4.1.3) except for the replacements (see Sec. 3.1.1):

ωq → ω0 , (4.2.6)

v
(0)
q → v

(∞)
q :=

e2

2ε∞εvacq
, (4.2.7)

ε∞ :=
ε∞ + 1

2
,

γPA
q → γOP

q :=

(
g
e2~ω0

2εvacq

) 1
2

, (4.2.8)

g :=

(
1

ε∞ + 1
− 1

ε0 + 1

)
> 0 ,

where the previous standard notation for dielectrics is used: ε∞ is the dielec-

tric constant coming from very-high-frequency interband electronic transi-

tions and ε0 would be the static dielectric constant in the absence of the
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piezoelectric phonons at frequencies much smaller than ω0.

Again, as shown in the discussion around Eq. (4.1.10), for small fre-

quencies (ω � ω0), the bare phonon-mediated electron-electron interaction

contributes to the long-range part of the total interaction like the Coulomb

repulsion:

V OP
ph (q, ω ' 0) = |γOP

q |2GOP
0 (q, ω ' 0) = −g e2

εvacq
. (4.2.9)

However, in contrast to the piezoelectric case, it is here the vertex that

introduces the coulombic dependence in q. At small frequencies, ω � ω0, a

single optical phonon is not enough either to provide overscreening, because

−V OP
ph (q, ω ' 0)

v
(∞)
q

=
ε0 − ε∞
ε0 + 1

< 1 . (4.2.10)

4.3 Effect of piezoelectric phonons on supercon-

ducting instabilities

Equipped with the effective electron-electron interaction which results from

taking into account the exchange of these acoustic phonons between the

electrons in graphene (or other 2D materials), the question can be raised

of whether these interactions might be attractive and, depending on some

material parameters and the tunable electronic density of graphene, per-

haps strong enough to generate electron Cooper pairing and superconduc-

tivity [61]. One can further ask whether such a superconductivity could be

observed at temperatures attainable in a laboratory without resorting to

huge (not achievable through gates) doping levels, as predicted for intrinsic

graphene phonons [98] or for Kohn-Luttinger or electronic superconductiv-

ity in other graphene heterostructures with repulsive interactions [99].

From Eqs. (4.1.17) and (4.1.9), one sees that in the static limit (ω ' 0)
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and for q < 2kF , Veff can be written in the form:

Veff(q, 0) =
[1−K2

R(θ)]v
(0)
q

1 +
[
1−K2

R(θ)
]
v

(0)
q D(EF )

, (4.3.1)

where it should be noted that we do not assume q � kF , as discussed in

the paragraph following Eq. (4.1.2). From the inequality in Eq. (4.1.17),

one is thus led to conclude that overscreening of the Coulomb repulsion by

the phonon-mediated attraction is not possible. Moreover, and following

standard textbook reasoning (see for example Ref. [76]), BCS-type insta-

bilities must also be ruled out. Note however that this conclusion could be

substantially changed in case new hard-piezoelectric materials were found.

A similar result holds for a single branch of optical phonons, as can be seen

from Eq. (4.2.10) (see however Ref. [100] for the effect of multiple optical-

phonon branches from the substrate on superconducting instabilities).

Moreover, in case such overscreening occurred, the static dielectric con-

stant from Eq. (4.1.9) would predict unphysical features such as unstable

phononic modes with ω̃(qc) = 0 for some qc 6= 0 and even imaginary fre-

quencies for q < qc. No matter how small the absolute difference |1−K2
R(θ)|

happened to be, there would always exist a pole for the static interaction in

Eq. (4.1.9) at small enough q (what cannot occur in standard BCS metals

[76]), signaling a different type of instability, possibly a charge density wave.

On the other hand, the result in Eq. (4.1.17) for the vertex could still lead

to higher-angular-momentum pairing instabilities (as in the Kohn-Luttinger

mechanism [101]) provided that K2
R(θ) is sufficiently large and anisotropic,

a case not considered here.

4.3.1 Eliashberg formalism

The previous reasoning about the absence of superconducting instabilities,

is incomplete and somewhat oversimplified. Three reasons support this

claim: (i) Long-wave piezoelectric phonon excitations (as considered in the

present work) can never be the only source of effective electron-electron in-
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teractions; in particular, it has not been taken into account the short-range

electric fluctuations of the substrate. (ii) There is definitely some dynamic

overscreening at high frequencies [see Eq. (4.1.7)]. And (iii) Coulomb in-

teraction has to be properly renormalized by taking into account collisions

with high momentum transfer, which diminishes the Coulomb repulsion and

thus comparatively strengthens the other attraction mechanisms.

Leaving aside the first objection momentarily, one can use the Eliash-

berg formalism, as applied to graphene (in Ref. [98]) to deal with the other

two objections. The effective interaction could cause superconducting in-

stabilities if a dimensionless electron-phonon coupling λPA happened to be

greater than a (also dimensionless) Coulomb pseudopotential µ∗ coming

from high-energy renormalizations [102, 98]. The coupling constant λPA

in the Eliashberg formalism is the same appearing in (the real part of the)

self-energy calculations to renormalize the Fermi velocity (see Subsec. 5.2.2),

and is given by:

α2
PAF (ω) =

|γPA|2
2π2~2vsvF

√
1− (ω/vs2kF

)2

(1 + kTF
ω/vs

)2
,

λPA = 2

∫ ∞
0

α2
PAF (ω)

ω
dω =

rs
π
K2
R F (2rs) , (4.3.2)

F (x) =

∫ 1

0

t
√

1− t2 dt
(t+ x)2

= −2 + xπ +
(1− 2x2) acosh(x−1)√

1− x2
,

where rs(θ) := αfs/ε(θ), and the symbols rs, vs, γ
PA,K2

R stand for the Fermi

surface angle-averaged quantities of the same name. The constant µ∗ equals

µ∗ =
1
4D(EF )V

1 + 1
4D(EF )V log(EF~ωc )

, (4.3.3)

where ωc is some energy cutoff which should satisfy ωDebye � ωc � EF /~
[98] and V comes from the Fermi-surface average of the Thomas-Fermi
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renormalized Coulomb repulsion v
(0)
q /(1 + kTF

q ). Then:

1

4
D(EF )V =

rs
π
G(2rs) , (4.3.4)

G(x) =

∫ 1

0

√
1− t2 dt
t+ x

= −1 +
πx

2
+
√

1− x2 acosh(x−1) ,

and therefore, provided that one takes ~ωc ' kBTBG, it is log
(
EF
~ωc

)
'

log( vF2vs
) ' 5. Thus, an estimate of the effective pseudo-potential is:

µ∗ '
rs
π G(2rs)

1 + 5rs
π G(2rs)

. (4.3.5)

There could be intravalley (note that in this analysis, just long-wavelength

piezoelectric phonons are taken into account, hence no intervalley pairing

instability could occur. This question is addressed in the next paragraph)

superconducting instabilities provided that:

1 <
λPA

µ∗
= K2

R

F (2rs)

G(2rs)

[
1 +

5rs
π
G(2rs)

]
, (4.3.6)

which imposes a constraint on the value of K2
R from the piezoelectric sub-

strate with respect to quantities depending on rs. The coupling KR should

be very large and actually greater than 1 for this choice of ωc, although there

could exist superconductivity in this idealized case of a system consisting

just of the graphene electrons and long-wavelength piezoelectric phonons,

provided that EF /~ωc is larger and K2
R close to 1.

In order to amend the first objection, one has to consider proper phonons

of the electronic system (e.g. from graphene), in conjunction with the short

range of the piezoelectric ones. Then, pairing instabilities due to intervalley

scattering have to be considered as well, because the intravalley-scattering

terms contribute also to the intervalley-pairing gap. With the notation in

Ref. [98], an estimate of the critical temperature for the intravalley pairing

is [98] T intra
c = 1.13 ~ωDebye exp

(
− 1+λ
λ11−µ∗11

)
, and a very similar result is

obtained for the intervalley transition T inter
c = 1.13 ~ωDebye exp

(
− 1+λ
λ−µ∗12

)
,
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with λ = λ11 + λ12 and the previously computed λPA included into the in-

travalley term λ11 (λ12 denotes the contribution from all intervalley terms).

Here, the pseudo-potential µ∗12 is only slightly larger than µ11, and both

are given by similar formulas as in Eq. (4.3.3), but with the replacement

ωc → ωDebye.

The upshot of this discussion is that the long-wavelength piezoelectric

phonons work in favor of pairing instabilities, as shown in Fig. 4.2. It must

be emphasized, however, that we are not claiming that a piezoelectric sub-

strate per se necessarily increases the critical temperature, since it could be

the case that other piezoelectric fluctuations not considered in the present

study, for instance, shorter-wavelength modes (whose effect in other scenar-

ios seems in any case to be negligible compared with the long-wavelength

modes [103]) may work against pairing instabilities.
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Figure 4.2: Critical temperature and variation from the “bare” one in
Ref. [98] for graphene on a piezoelectric substrate, as a function of the
conduction-band density. Three pairs of plots are given for three different
values of KR and the two values of the constant C = 3.5 and 5 in Eq. (5.1)
for λ in the previous Ref. [98].



Chapter 5

Electron self-energy and

mobility of doped graphene

on a piezoelectric substrate

5.1 Phonon self-energy

After analyzing within a diagrammatic framework the effective carrier in-

teraction due to exchange of surface phonons in the previous chapters, the

self-energies acquired by both phonons and charge carriers are studied in

the present chapter. Unlike in the previous section, here we focus on the

case of graphene, while the piezoelectric material remains arbitrary except

in some numerical examples. A generalization to other 2D materials would

be straightforward.

Everything will be computed within the parameters and notation of

Sec. 4.2, including the approximations there discussed. Specifically, we as-

sume a flat interface and the elastic (long-phonon wavelength) limit for the

piezoelectric material. The common assumption that the interface is large

enough to permit the neglect of geometrical effects due to finite-size bound-

aries is made as well. This is expected to be a good approximation for

75
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system sizes much larger than the length scales of the problem (k−1
F and

k−1
TF). The analytical limits and the computation of scattering rates will be

often made with angle-averaged substrate parameters.

While the renormalization of the Fermi velocity and the phonon self-

energy due to piezoelectric substrate phonons turns out to be small, it will

be shown that in some regimes the substrate effects dominate momentum-

relaxation mechanism in graphene. For that purpose, we will compare life-

times and mobilities with those obtained when only the intrinsic acoustic

deformation phonons are considered.

As the piezoelectric coupling of Eq. (4.1.1) enables the transfer of energy

between carriers in graphene and the phonon modes of the substrate ma-

terial, the latter acquire an extra decay rate due to Landau damping. In

order to assess the magnitude of this effect, we proceed to estimate the self-

energy of the substrate phonons due to their interactions with the graphene

carriers. Substituting the bare propagator from Eq. (4.1.8):

G̃PA(q, ω) =
2ωq/~

ω2 − ω2
q − 2~−1ωq|γPA

q |2 Π0(q,ω)
εRPA(q,ω)

. (5.1.1)

In the phonon-frequency range ω ∼ vsq � vF q which is the most interest-

ing, the polarization function can be approximated by (see e.g. Ref. [104]):

Π0(q, ω) ' −D(EF )

(
1 + i

ω

vF q

)
, (5.1.2)

in the RPA electron-electron dielectric function of Eq. (4.1.11), so that in

terms of the parameter λe−ph(θ), the poles of G̃PA are shifted to:

ω̃q = ±vsq
(

1− λe−ph
kF

q + kTF

) 1
2

∓ i λe−ph
vs
vF

vskF
2

(
q

q + kTF

)2

. (5.1.3)

In the long-wavelength limit (q � kF ), the leading order of the ratio of the
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= +

V RPA
q (q, iνn)

k, iωnk, iωn

Veff(q, iνn)

k, iωnk, iωn

Ṽ PA
ph (q, iνn)

k, iωnk, iωn

Figure 5.1: Electron self-energy in the G0W approximation, see Eq. (5.2.1).

imaginary and real parts of the dressed-phonon energy goes like:∣∣∣∣ Im(ω̃q)

Re(ω̃q)

∣∣∣∣ ' 1

2
K2
R

vs
vF

(
q

kTF

)±1

, (5.1.4)

where (q/kTF)±1 � 1, the case kTF � q � kF being meaningful only in

those materials where kTF is substantially smaller that kF . Due to the

fact that vF /vs ∼ 300 and to the K2
R(θ) values shown in Table 4.1 for

typical materials, the lifetime of the phonons can be neglected in all analyzed

regimes. It can also be shown that, near the quasiparticle poles, the residue

Zq is close to unity (i.e., the wave-function renormalization is weak):

G̃PA(q, ω) ' Zq
2ω̃q/~
ω2 − ω̃2

q

(5.1.5)

Zq ' 1 + λe−ph
kF

q + kTF
. (5.1.6)

Thus in the following, the fact that substrate phonons are well-defined,

stable quasiparticles can be assumed, and the renormalized phonon propa-

gator of Eq. (5.1.5) will be approximated by the bare one, Eq. (4.1.8).

5.2 Electron self-energy

This section focuses on the case of n-doped graphene (EF > 0), so that

the electron self-energies shall be calculated at energies ~ω in the upper

Dirac cone. With an effective electron-electron interaction Veff given in

Eq. (4.1.16) and Fig. 4.1, the self-energy acquired by the charge carriers in

graphene (within the G0W approximation [61], as indicated in Fig. 5.1) has
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the general form:

Σ+(k, iωn) = −kBT
∑

s=±
∑

q

∑
iνn

F+s(k,k + q)

×Gel
0,s(k + q, iωn + iνn)Veff(q, iνn) , (5.2.1)

where the subscript + refers to the conduction band (the calculation for Σ−

being analogous), the index s = ± is summed over both bands,

Gel
0,s(k, ω) = (ω − Eks − µ)−1 (5.2.2)

denotes the (bare) electron propagator, iνn and iωn are, respectively, the

bosonic and fermionic Matsubara frequencies, and the spinor-overlap factor

F+s(k,k + q) =
1

2
(1 + s cosα) (5.2.3)

arises due to the sublattice structure of graphene [5], α being the angle

formed by k and k + q.

Equation (4.1.16) for Veff allows one to separate the self-energy Σ+ into

contributions due to electron-electron and electron-phonon interactions. While

the former has been considered in Refs. [104, 105], the contributions of

graphene intrinsic optical or acoustic phonons, as well as optical substrate

phonons, to the electron self-energy have been studied in Refs. [84, 104].

Thus the present work shall focus entirely on the effect of piezoelectric

acoustic substrate phonons, as expressed in the self-energy term:

ΣPA
+ (k, iωn) =− kBT

∑
s=±

∑
q

∑
iνn

F+s(k,k + q)

×Gel
0,+ (k + q, iωn + iνn) Ṽ PA

ph (q, iνn) , (5.2.4)

where

Ṽ PA
ph (q, ω) ≡

∣∣∣∣∣ γPA
q

εRPA(q, ω)

∣∣∣∣∣
2

G̃PA(q, ω). (5.2.5)

In order to sum over Matsubara frequencies, one must follow Ref. [61] and
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approximate the vertex renormalization by its static limit [see Eq. (4.1.13)]

while neglecting the phonon self-energy, i.e., the factor Ṽ PA
ph (q, ω) is replaced

in Eq. (5.2.4) by:

V̄ PA
ph (q, ω) ≡

∣∣∣∣∣ γPA
q

εRPA(q, 0)

∣∣∣∣∣
2

GPA
0 (q, ω) . (5.2.6)

The result is the following retarded self-energy:

ΣPA
+ (k, ω) =

∑
s=±

∫
dq

(2π)2

∣∣∣∣∣ γPA
q

εRPA(q, 0)

∣∣∣∣∣
2

F+s(k,k
′)

×
[
nB(~ωq) + nF (εk′s)

~ω + ~ωq − εk′s + i0+
+
nB(~ωq) + 1− nF (εk′s)

~ω − ~ωq − εk′s + i0+

]
, (5.2.7)

where k′ stands for k′ ≡ k + q ,

nB(~ωq) =

[
exp

(
~ωq

kBT

)
− 1

]−1

, (5.2.8)

nF (εk′s) =

[
exp

(
εk′s
kBT

)
+ 1

]−1

, (5.2.9)

denote the Bose and Fermi distributions, respectively, and the energies

εks = Eks − µ are taken relative to the chemical potential. The real and

imaginary parts of Eq. (5.2.7) are being evaluated separately. Hereafter, the

assumption T � TF ≡ k−1
B EF is understood, so that the zero-temperature

RPA dielectric function can be used [77]. Since µ ' EF , one can write:

εks = ~vF (ks− kF ) . (5.2.10)

One must be aware too that very low doping leads to a low Fermi temper-

ature TF , so that the zero-temperature εRPA may become inaccurate and

should be replaced by the Debye-Hückel approximation. Then, the screen-

ing would increase in this scenario of graphene with bigger temperatures.

This behavior contrasts sharply with that found in conventional (nonzero

mass) 2D electron systems [106].
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5.2.1 Imaginary part

The imaginary part of Eq. (5.2.7) acquires the form:

Im ΣPA
+ (k, ω) = −π

∑
s=±

∑
t=±

∫
dq

(2π)2

∣∣∣∣∣ γPA
q

εRPA(q, 0)

∣∣∣∣∣
2

1 + s cosα

2

× [nF (~ωq + t~ω) + nB(~ωq)] δ(~ω + t~ωq − εk′s), (5.2.11)

where t=±1 corresponds to the absorption or emission of a phonon, respec-

tively.

Setting ω = εk+ in Eq. (5.2.11), that is, considering the on-shell self-

energy, yields the value ~/(2τq) for the decay width of charge carriers with

wave vector k. Here, it is assumed that the renormalization of the Fermi

energy ∆EF = Re ΣPA(kF , 0), as given by the pole of the dressed elec-

tron propagator, is tiny enough, as can be checked in the next section [see

Eq. (5.2.32) and related ones]. To obtain analytical expressions for the

asymptotic behaviors of the on-shell self-energy, it is convenient to intro-

duce the quasi-elastic approximation:

δ(εk+ + t~ωq − εk′s) ' δ(εk+ − εk′s) (5.2.12)

in Eq. (5.2.11), which is well justified since vF /vs ∼ 300. Since we work

with kF > 0, the s = − term is null. Hereafter, εk will be equivalent to εk+,

so that:

εk = ~vF (k − kF ) . (5.2.13)

For magnitude estimates, εk > 0 will be assumed.

The relevant scale for finite-temperature effects in graphene, like in any

other system whose carrier densities are much smaller than in conventional

metals, is the Bloch-Grüneisen temperature TBG, defined as the temperature

scale of the acoustic phonons in the Fermi sea.

kBTBG ≡ 2~vskF . (5.2.14)
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Note that TBG is different from the Debye temperature in the usual case of

an integer number of carriers per atom.

Zero temperature, small k

At zero temperature (here it means T � εk/kB, TBG), nF in (5.2.11) be-

comes a step function which cuts off the momentum integration, while nB

vanishes. Then, in the limit εk � ~vskTF [for which the largest contributing

q in Eq. (5.2.11) is q ∼ εk/~vs, so that one can assert q � kTF] the quasi-

particle lifetime decays as a ε3k near the Fermi surface while depending on

the direction of the k vector:

−Im ΣPA
+ (k,εk) '

1

6π

|γPA
⊥ |2

~vFk2
TF⊥

ε3k
(~vs⊥)3

=
λ⊥
24

(
kF
kTF⊥

)2( vF
vs⊥

)2( εk
EF

)3

~vFkF , (5.2.15)

where all the substrate-related constants, like λ⊥ ≡ λe-ph(θ⊥k) of Eq. (4.2.2),

have to be taken in the direction θ⊥k perpendicular to k. The fast ε3k
decrease (as εk → 0) is due to the vertex renormalization, since εRPA in

Eq. (5.2.11) diverges for q � kTF [see Eq. (4.1.13)].

Hereafter, the subindex ⊥ is removed from the anisotropic parameters in

those expressions where they are assumed to be direction-independent or

only their order of magnitude matters.

Zero temperature, larger k

For εk � ~vskTF, one obtains the result:

−Im ΣPA
+ (k, εk) '

λ

4
~vsk

∫ 1

0

y2
√

1− y2(
y + kTF

2k

)2 dy =
λ~vsk

4
f

(
kTF

2k

)
, (5.2.16)

f(x) = 3x+
π

4
(1− 6x2) +

(3x3 − 2x) acosh(x−1)√
1− x2

. (5.2.17)
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This admits two regimes, one for ~vskTF � εk � EF ,

− Im ΣPA
+ (k, εk) '

λkBTBG

8
f

(
2αfs

ε0

)
, (5.2.18)

while for εk � EF :

− Im ΣPA
+ (k, εk) '

λπvs
16vF

εk . (5.2.19)

Returning to the low-energy (εk � ~vskTF) regime [see Eq. (5.2.15)], it

should be noted that, without the vertex-screening effect [that is, setting

εRPA → 1 in Eq. (5.2.11)], instead of the ε3k behavior one would find the

linear-εk dependence characteristic of a marginal Fermi liquid:

− Im ΣPA
+(no scr)(k, εk) '

λ⊥
8
εk , (5.2.20)

which (for materials such that kTF � kF ) behaves similarly to the true self-

energy in the range ~vskTF � εk � ~vskF , since εRPA tends to unity for

the momenta q � kTF dominating the integral in Eq. (5.2.11). We will see

however that a small offset remains due to the contribution of the screened

low-q values (q � kTF).

Table 4.1 shows representative angle-independent material parameters,

including those that will be used for the numerical calculations discussed

in Sec. 5.3. From Eqs. (5.2.15),(5.2.20) and the parameter values shown in

Table 4.1, it is safe to conclude that, at zero temperature, the damping rate

due to the electron-phonon coupling is always much smaller than εk. Thus

the single-electron quasiparticles near the Fermi surface are well defined.

Small k, low nonzero temperature

So far we have assumed zero temperature, i.e., kBT � εk. At nonzero

temperatures, the vertex renormalization is fundamental to avoid logarith-

mic divergences. These occur for the unscreened self-energy at any nonzero

temperature due to the divergent contribution of small-q values. Focus-

ing on the correctly screened self-energy, it is considered first the nonzero,

low-temperature limit εk � kBT � 2~vskTF, kBTBG. Again, only the
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perpendicular-to-k substrate-related constants appear. One obtains:

−Im ΣPA
+ (k, εk) ' λ⊥kBT

(
kF
kTF⊥

)2( T

TBG⊥

)2 7ζ(3)

2
, (5.2.21)

with 7ζ(3)/2 ' 4.21. The essential independence from k of the lifetime

(which allows for the replacement k ' kF ) is a general property of the case

εk � T . In those materials where ε0 is so high that kTF � kF , and therefore

a temperature regime exists such that εk � ~vskTF � kBT � kBTBG, the

T 3 law is replaced by a ∼ T log T behavior. Specifically, the asymptotic

expression reads:

−Im ΣPA
+ (k, εk) ' λ⊥kBT

(
kF
kTF⊥

)2

log

(
~vskTF

kBT

)
. (5.2.22)

Extra crossing terms appear when both kBT and εk are of comparable

magnitude, but both smaller than ~vskTF:

−Im ΣPA
+ (k, εk) '

λ

32

(
ε0

αfs

)2( T

TBG

)2 [
4ζ(3)− 4Li3

(
−e−εk/kBT

)]
kBT

+
λ

96

(
ε0

αfs

)2( εk
kBTBG

)2

εk +
λπ2

96

(
ε0

αfs

)2( T

TBG

)2

εk ,

with Li3(x) denoting the trilogarithm function. This is equivalent to the

typical expression for 3D metals τ−1 ∝ [ε2k + (πkBT )2] [1 + exp(εk/kBT )]−1

[97], but in our case with some extra crossing terms. Of course, one must add

the electron-electron contribution with the known laws τ−1 ∝ ε2k log(εk/EF )

for T � εk and τ−1 ∝ T 2 log(T/TF ) for εk � T in the 2DEG, whether

parabolic or (chiral) linear [97, 104].

Small k, high temperature

The high-temperature limit (TBG � T , while only εk � EF is required),
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where phonons are nondegenerate, yields:

−Im ΣPA
+ (k, εk) '

λ

4
kBT

∫ 1

0

y
√

1− y2(
y + kTF

2k

)2 dy =
λkBT

4
g

(
kTF

2k

)
, (5.2.23)

g(x) = −2 + πx+
(1− 2x2) acosh(x−1)√

1− x2
. (5.2.24)

The logarithmic divergence of the function g at x → 0 becomes relevant

in the limit k � kTF, where:

− Im ΣPA
+ (k, εk) '

λkBT

4

[
log

(
4k

kTF

)
− 2

]
. (5.2.25)

Comparison with graphene intrinsic phonons

Comparing Eqs. (5.2.15), (5.2.21), and (5.2.23) with the corresponding lim-

iting expressions for the electron self-energy induced by the graphene in-

trinsic deformation-potential acoustic (DA) phonons (see Sec. 3.1.3), we see

below that, for an important range of parameter values, the inverse lifetime

is dominated by the piezoelectric substrate phonons.

For estimates, we borrow the values of ΣDA
+ (k, εk) from Ref. [104]. Specifi-

cally, with a deformation constantD ' 25 eV, and taking kF = [kF ] 106 cm−1

(this momentum unit corresponds to a density of k2
F /π ' 3.2× 1011 cm−2,

see Sec. A.3), one obtains from Eq. (5.2.15):

Im ΣPA
+ (k, εk)

Im ΣDA
+ (k, εk)

' 20

[kF ]2
λ ε2

0

εk
1 meV

, (5.2.26)

for kBT � εk � ~vskTF.

Likewise, at nonzero temperatures (εk/kB � T � TBG), one gets from

Eq. (5.2.21):
Im ΣPA

+ (k, εk)

Im ΣDA
+ (k, εk)

' 100

[kF ]2
λ ε2

0

kBT

1 meV
. (5.2.27)

Finally, at high temperatures (εk/kB � TBG � T ), one obtains from
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Eq. (5.2.23) the k-independent ratio:

Im ΣPA
+ (k, εk)

Im ΣDA
+ (k, εk)

'
35 g

(
2αfs
ε0

)
[kF ]

λ . (5.2.28)

From these ratios, one concludes that piezoelectric acoustic phonons can

dominate over deformation acoustic phonons in an appreciable range of

realistic material parameters, especially for small carrier concentrations.

The smaller value of D ' 6.8 eV also found in the literature [50, 88] would

increase further the relative importance of piezoelectric phonons against

intrinsic ones. The values of D ' 7.8 eV and 12 eV used in Refs. [107, 108],

respectively, are closer to the value of 6.8 eV considered in the Refs. [50, 88].

This seems to suggest that the value of 25 eV from Ref. [104], which we have

used, might be too large.

5.2.2 Real part

For the real part of the self-energy, one obtains from Eq. (5.2.7):

Re ΣPA
+ (k, ω) =

∑
s=±

∫
dq

(2π)2

∣∣∣∣∣ γPA
q

εRPA(q, 0)

∣∣∣∣∣
2

F+s(k,k
′)

×
[
nB(~ωq) + nF (εk′s)

~ω + ~ωq − εk′s
+
nB(~ωq) + 1− nF (εk′s)

~ω − ~ωq − εk′s

]
, (5.2.29)

where the denominators are to be understood as principal values. Unlike

for many-body effects directly caused by the electron-electron interaction,

this phonon contribution to the electron self-energy tends to be negligibly

small compared to the Fermi energy. However, its derivatives are larger.

As a result, the phonon-induced contributions to the Fermi-velocity renor-

malization are larger than those stemming from the direct electron-electron

interactions.

Since the partial derivative ∂Re ΣPA
+ (k, ω)/∂(vFk) is, by a factor of vs/vF ,

smaller than ∂Re ΣPA
+ (k, ω)/∂ω (see Ref. [109]), it suffices to focus on the
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frequency derivative, in contrast to the case of electron-electron interactions,

where both derivatives matter [61, 110]. We thus approximate:

ṽF (k̂) = vF

[
1− ∂Re ΣPA

+ (k̂kF , ω)

∂ω

∣∣∣∣
ω=0

]−1

, (5.2.30)

for the (direction-dependent) renormalization of the Fermi velocity in graphene

induced by piezoelectric acoustic substrate phonons.

For further analysis, it us useful to separate Eq. (5.2.7) into three terms

[61]:

ΣPA
+ = Σ

(ph)
+ + Σ

(el)
+ + Σ

(vac)
+ , (5.2.31)

where Σ
(ph)
+ contains just the Bose factor nB(~ωq), Σ

(el)
+ the Fermi factor

nF (εk′s), and Σ
(vac)
+ the remaining vacuum term. In the following, as in the

previous subsection, angle-independent material parameters are assumed.

The real part of Σ
(vac)
+ at ω = 0 is independent of the Fermi energy:

Re Σ
(vac)
+ (k, 0) ' − λ

16

vs
vF

[
~vFkc + ~vFk log

(
kc − k
k

)]
, (5.2.32)

where kc is a cutoff momentum of the order of the inverse lattice spacing.

Because of the small prefactor, Re Σ
(vac)
+ (kF , 0) represents a weak correc-

tion to the chemical potential for all relevant carrier densities, even for

kc � kF . We will see that its derivative can also be neglected because

∂ωRe Σ
(vac)
+ (kF , 0) ' (λ/4)(vs/vF )(1 + log kF /kc)� ∂ωRe Σ

(el)
+ (kF , 0).

At temperatures T � TBG, the term containing the Bose factors Re Σ
(ph)
+

is exponentially small, while at temperatures T � TBG it does not grow

larger than a factor T/TBG times the expression in Eq. (5.2.32). Hence one

can also neglect ∂ωRe Σ
(ph)
+ .

Thus the only term that can affect the electronic properties is Re Σ
(el)
+ (k, ω),

which is likewise small in magnitude, at most twice the term shown in

Eq. (5.2.32), but has a larger derivative. Note that here the quasi-elastic

approximation (~ωq � εk′) is not informative, since Re Σ
(el)
+ (k, ω) vanishes
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when ~ωq is set to zero.

The integral:

∂Re Σ
(el)
+ (k̂kF , ω)

∂ω

∣∣∣∣
ω=0

= −
∑
s=±

∫
dq

(2π)2

∣∣∣∣∣ γPA
q

εRPA

∣∣∣∣∣
2

F+s(k,k
′) nF (εk′s)

(5.2.33)

×
[

1

(εk′s − ~ωq)2
− 1

(εk′s + ~ωq)2

]
can be computed by changing variables (dq → dk′, with k′ = k + q) and

performing the radial integral first by parts, with:

u = k′nF (εk′s) , dv =
dk′

(εk′s ± ~vsq)2
.

One arrives at a direction-dependent expression which integrates over the

Fermi surface:

∂Re Σ
(el)
+ (k̂kF , ω)

∂ω

∣∣∣∣
ω=0

= −
∫ 2π

0

dα

~vF (2π)2

∣∣∣∣∣γPA
k+q

εRPA

∣∣∣∣∣
2

F+s(k,k + q)
2

~ωq
,

(5.2.34)

where, as in Eq. (5.2.3), α is the angle between k and k + q.

After further averaging over the Fermi surface (i.e., over k̂ directions),

the ratio in Eq. (5.2.30) becomes similar to the temperature prefactor of the

high-temperature damping in Eq. (5.2.23):

ṽF =
vF

1 + λ
4πf

(
kTF
2kF

) =
vF

1 +
K2
Rrs
π f (2rs)

, (5.2.35)

where, we recall, all variables are angle-averaged. Inspection of Eq. (5.2.35)

shows that the renormalization of the Fermi velocity cannot exceed 3%

even for K2
R ∼ 1, and KR is usually much smaller. The result shown

in Eq. (5.2.35) permits us to confirm the validity of neglecting the vac-

uum and phonon self-energy parts. A more accurate estimate of the ra-
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tios between derivatives yields ∂ωRe Σ
(vac)
+ /∂ωRe Σ

(el)
+ = O(vs/vF ) � 1,

while ∂ωRe Σ
(ph)
+ /∂ωRe Σ

(el)
+ is O(vs/vF ) for T � TBG and O(T/TF ) for

TBG � T � TF .

5.2.3 Electron mobility

Within Boltzmann transport theory, the momentum (or transport) relax-

ation time τ+tr(k) (where the subscript denotes “transport” and + denotes

the band) is calculated analogously to the inverse lifetime in Sec. 5.2.1, but

with an extra angular factor (1 − cosα) = 2 sin2(α/2) = q2/2k2 in the

integrand, which increases the weight of large-angle scattering processes.

Specifically, Eq. (5.2.11) is replaced by:

~
2 τPA

+tr(k)
= π

∑
s=±

∑
t=±

∫
dq

(2π)2

q2

2k2

∣∣∣∣∣ γPA
q

εRPA(q, 0)

∣∣∣∣∣
2

1 + s cosα

2

× [nF (~ωq + tεk) + nB(~ωq)] δ(εk+ − εk′s) , (5.2.36)

where the quasielastic approximation has been made. The inclusion of this

additional q2 factor in the integrand improves the quasielastic approxima-

tion, changes the power-law scaling at low temperatures (by generating an

extra factor T 2), and corrects the lifetime with a constant factor at temper-

atures greater than TBG.

Low temperature

For quasiparticle energies such that εk/kB � T , one finds (after angle aver-

aging) results that are essentially independent of εk, i.e., τPA
+tr(k) ' τPA

+tr(kF ).

In the low, yet nonzero temperature regime εk/kB � T � 2rsTBG, one ob-
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tains:

~
2 τPA

+tr(kF )
' λkBT

8

(
kBT

~vskTF

)4 k2
TF

k2
F

∫ ∞
0

dx x4csch(x)

=
λkBT

8

(
ε0

αfs

)2( T

TBG

)4 93 ζ(5)

2
, (5.2.37)

(93 ζ(5)/2 ' 48.2) which should be compared to Eq. (5.2.21). The shift

from a T 3 to a T 5 behavior is due to the transport-induced reduced weight

(by a factor q2/2k2
F ) of the low-q values dominating the inverse transport

lifetime at low temperatures.

If the vertex screening is neglected, one still obtains a convergent result,

despite the temperature being nonzero, because the low-q divergence is al-

ready suppressed by the transport-associated angular weighting factor. We

obtain
~

2 τPA
+tr(kF )(no scr)

' λ7ζ(3)

4
kBT

(
T

TBG

)2

, (5.2.38)

and recall that the non-transport equivalent of this equation is divergent, as

discussed in the Sec. 5.2.1 [see the discussion before Eq. (5.2.21)]. The limit

(5.2.38) is coincident with the T 3 dependence found in Ref. [50], where the

vertex screening (in the particular case of GaAs) is not taken into account.

The neglect of vertex screening is acceptable in the temperature regime

2rsTBG . T � TBG in those materials with 4rs � 1, because in that case

the integral in Eq. (5.2.36) is dominated by exchanged momenta q such

that kTF � q � kF , which are little sensitive to vertex screening. This

intermediate regime of temperatures does not exist for substrate materials

such that 2rs ∼ 1.

A similar situation is found for the electron decay caused by intrin-

sic deformation phonons: at these low temperatures, the inverse electron-

momentum relaxation time due to intrinsic phonons may decay like T 4 or

T 6 depending on the details of the DFT calculation [88], which can be inter-

preted as an effect of the screened interaction at low-q processes. From the

comments regarding the screening of these phonons, given in Sec. 3.1.3, it
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does not seem correct to explicitly screen them, and the actual mechanism

for the change of the decay law should be another.

High temperature

For the high-temperature range T � TBG, it is:

~
2 τPA

+tr(kF )
' λ

2
kBT

∫ 1

0
x
√

1− x2 dx =
λ

6
kBT , (5.2.39)

to be compared with Eq. (5.2.23). The absence of a qualitative change in

the temperature dependence as one shifts from non-transport to transport

lifetime is due to the relatively small weight, at high temperatures, of the

transport-reduced, low-q processes.

Thus one sees that the transport scattering rates are comparable to the

previous imaginary self-energies except for an extra (T/TBG)2 factor appear-

ing at low temperatures, due to extra angular suppression of the otherwise-

dominant low-q events. A similar comparison holds for the intrinsic acoustic

deformation-potential phonons, where:

~
2
τDA

+tr(kF )−1 ' 10

(
T

TBG

)2

Im ΣDA
+ (kF , 0) (5.2.40)

at low temperatures, while:

~
2
τDA

+tr(kF )−1 ' 1

2
Im ΣDA

+ (kF , 0) (5.2.41)

for high temperatures. In the last two equations, we compare the results

of Refs. [50, 104] for the transport scattering rate and the inverse lifetime,

respectively.

Comparison with graphene intrinsic phonons

In analogy with Sec. 5.2.1, one may compare the transport rates due to

deformation and piezoelectric phononic modes. In the low-temperature limit
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(as before, [kF ] is kF in units of 106 cm−1),

τPA
+tr(kF )−1

τDA
+tr(kF )−1

' 200

[kF ]2
λε2

0

kBT

1 meV
, (5.2.42)

while at temperatures above TBG:

τPA
+tr(kF )−1

τDA
+tr(kF )−1

' 45

[kF ]
λ , (5.2.43)

independent of temperature. Upon inserting the specific material parame-

ters, Eq. (5.2.43) is in agreement with the calculations of Ref. [50], where

PA and DA transport rates are compared for GaAs. Equations (5.2.42) and

(5.2.43) must be compared to Eqs. (5.2.27) and (5.2.28) of Sec. 5.2.1, re-

spectively. Like in the non-transport lifetime estimates there presented, note

that piezoelectric phonons dominate over deformation phonons at non-small

couplings and low densities. We recall that Ref. [50] used a deformation con-

stant D = 6.8 eV, quite smaller than the value D = 25 eV [104] used here.

That replacement reduces 1/τDA by about a factor of ten and makes the

substrate PA phonons relatively more important.

Mobility

Finally, in order to compute the electron mobility, one averages the momen-

tum relaxation time [see Eq. (5.2.36)] ,

τtr ≡
∫
dεD(ε)τ+tr(k(ε))[−dnF (ε)/dε] , (5.2.44)

and because the energy derivative peaks at EF while τ+tr(k) varies slowly

with k, one can write the classical Drude formula for the mobility:

µ =
e τ+tr(kF )

m∗
=
evF
~kF

τ+tr(kF ) , (5.2.45)

in terms of τ+tr(k) computed at the Fermi level and the “effective mass”

m∗ = ~kF /vF of the graphene Dirac fermions.
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5.3 Numerical results

In the following, numerical results for the various rates and mean free paths

derived in Secs. 5.2.1 and 5.2.3 are presented and discussed. Unless other-

wise stated, the numerical values of this section are computed for ZnO (see

Sec. C.1, Fig. C.1) substrates in the Z-Cut, which is isotropic (see Fig. 3.2)

and whose parameters are λ = 0.03 and ε0 = 4.8, which implies kTF/kF ' 2

and kBTBG/EF ' 0.0054.

Imaginary part

In the upper plot of Fig. 5.2, the imaginary part of the on-shell self-energy is

shown, as a function of the parameter εk/EF > 0, for different temperatures.

The curves are universal in the sense that they are density-independent.

The zero-temperature curve shows, for small εk, the limiting ε3k behav-

ior of Eq. (5.2.15), which arises due to the combined effect of screening

and the phase-space restrictions faced by the electrons when losing energy

via phonon emission. This restriction disappears when εk is greater than

any phononic energy, i.e., εk � kBTBG. Above this threshold, the imagi-

nary part of the self-energy becomes energy-independent, as predicted by

Eq. (5.2.18). At still higher energies (εk � EF , not shown in the upper

plot of Fig. 5.2), it increases linearly with the length of the constant-energy

circumference at the quasiparticle energy Ek+ ∝ k. Such a linear increase

with k would appear with a negligible slope in the tiny scale of εk ∝ (k−kF )

of the upper plot of Fig. 5.2. Specifically, the slope is, in the dimensionless

units of the upper plot of Fig. 5.2, (λπ/16)(vs/vF ).

The upper plot of Fig. 5.2 also shows that a further increase in tem-

perature (T > TBG) smears these features due to phonon excitation and

electron heating near the Fermi energy, as exemplified in Eq. (5.2.23). The

effect of vertex screening in the regime of low εk, low T can be appreci-

ated in Fig. 5.3, for both ZnO and (angle-averaged) PZT substrates with

their much higher dielectric constant (and thus smaller λ). For the sake

of comparison, the graphics include also the linear approximation (5.2.20),

which holds better for PZT because its large dielectric constant reduces the
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Figure 5.2: Imaginary part of the self-energy and inelastic scattering length
of charge carriers in graphene on ZnO (Z-cut) as a function of the energy,
εk/EF = (k − kF )/kF . Upper: Im ΣPA

+ for different temperatures. The
curves are valid for all densities. Lower: Inelastic mean free path l for
different carrier concentrations at room temperature (T = 300 K = 26
meV/kB). The inset shows l at T = 0 for the same densities. The Bloch-
Grüneisen temperature TBG is given in Eq. (5.2.14). For this material,
kBTBG = 0.0054EF (for all carrier densities) and kTF/kF ' 2 (thus TBG '
~vskTF/kB). For these three densities, kBTBG = 0.2, 0.63, 2 meV, while
EF = 37.4, 117, 374 meV.
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size of the phase-space region where the screening of the phonon interac-

tion by the electron cloud (vertex correction) is really important. Unlike

for ZnO, in this material kTF is considerably smaller than kF , which leaves

room for an intermediate range of εk values for which the approximation

εRPA ' 1 is acceptable while the linear behavior still holds. As announced

in Sec. 5.2.1, after Eq. (5.2.20), there is an offset between the true imaginary

self-energy and the linear approximation due to the reduced contribution of

the screened low-q processes.

The upper plot of Fig. 5.4 shows the temperature dependence of Im ΣPA
+

for fixed values of εk. At low temperatures (T � εk, hot-electron regime),

these decay linewidths are independent of T . Note that in this figure the

nonzero values of εk are well above ~vskTF and thus the limit in Eq. (5.2.15)

does not apply. At higher temperatures (T > TBG), the linear behavior of

Eq. (5.2.23) is recovered.

Inelastic mean free path

The lower plots of Figs. 5.2 and 5.4 are devoted to the inelastic scattering

mean free path, which is the inverse of the imaginary part of the on-shell

self-energy:

l(k) =
~vF

2 Im ΣPA
+ (k, εk)

. (5.3.1)

The lower plot of Fig. 5.2 shows values for l(k) as a function of εk for three

cases of typical doping conditions. Note that they tend to coincide at small

εk, as suggested by Eq. (5.2.23) (case T > TBG), which predicts a doping-

independent low-εk (k → kF ) limit at nonzero temperatures. Finally, the

inset of the lower plot of Fig. 5.2 clearly displays the three energy regimes

that hold at zero temperature and which can be inferred from Eqs. (5.2.15)-

(5.2.19).

The temperature dependence of l is shown in the lower plot of Fig. 5.4. A

crossover from (T -independent) low-temperature to (T−1) high-temperature

behavior can be appreciated for T ∼ TBG, in agreement with Eqs. (5.2.15)

and (5.2.23). One must note, however, that Eq. (5.2.15) does not truly
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Figure 5.3: Low-energy behavior of the imaginary part of the self-energy
at zero temperature. The solid, dashed and dotted lines correspond, re-
spectively, to the exact values, the values without vertex screening, and the
values obtained (in the unscreened case) from the linear λ/8 approxima-
tion of Eq. (5.2.20). Upper: Graphene on ZnO (Z-cut). Lower: Graphene
on PZT-4 (Z-cut), for which kBTBG/EF = 0.0045, kTF/kF ' 0.025, and
~vskTF/EF ' 5.7× 10−5. See Table 4.1 for λ values.
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Figure 5.4: Imaginary part of the self-energy and inelastic scattering length.
Upper: Im ΣPA

+ as a function of T/TBG for different values of εk/EF . Lower:
l as a function of T for εk = 0.1 eV ' 1160 K and different doping levels. The
inset shows the corresponding curves for εk = 0. Here, EF ' 185 kBTBG.
The values of TBG for these three densities are 2.35, 7.35, 23.5 K.
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apply to the low-temperature sector of this graph, because here εk > ~vskTF,

unlike the assumption in Eq. (5.2.15). This explains the discrepancy in the

density dependence. For this material, ~vskTF takes values 0.2, 0.63, 2 meV

for the three listed densities, all much smaller than the value εk = 100 meV

there considered.

The inset shows the corresponding curves for εk = 0. A clear crossover

for T−3 to T−1 behavior is observed at T ∼ TBG, in agreement with

Eqs. (5.2.21) and (5.2.23).

Density dependence (divergent without screening)

For a fixed value of k and at room temperature, Fig. 5.5 shows the variation

of Im ΣPA
+ and of the mean free path as a function of the carrier density. A

logarithmic divergence in the linewidth, accompanied by a vanishing mean

free path, is seen to appear in the undoped regime, where the description

of the system employed in the present paper is not valid anymore (see, e.g.

Ref. [111]). This spurious low-doping behavior can be expected from an

extrapolation of Eq. (5.2.23) to low doping.

Mobility values and comparison with intrinsic phonons

In the upper plot of Fig. 5.6, the electron mobility µ [see Eq. (5.2.45)], due

only to piezoelectric phonons, is shown. The T−5 and T−1 behaviors can be

appreciated at low and high temperatures, respectively, as expected from

Eqs. (5.2.37) and (5.2.39) taking into account Eq. (5.2.45) for the density

dependence.

Finally, in the lower plot of Fig. 5.6, we compare the substrate-induced

mobility to that stemming only from graphene intrinsic phonons, with D =

25 eV. The total combined mobility due to (piezoelectric and intrinsic-

deformation) acoustic phonons is µ =
(
µ−1

PA + µ−1
DA

)−1
. Specifically, the

ratio between the two inverse mobilities is plotted. The smaller value of

D = 6.8 eV would reduce the intrinsic inverse mobility by an order of mag-

nitude and correspondingly would increase the relative importance of piezo-

electric phonons. This ratio between transport scattering rates shows two

clear low- and high-T regimes with linear-in-T and T -independent behav-
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iors, respectively, in agreement with Eqs. (5.2.42) and (5.2.43). At low and

high temperatures, the relative importance of the PA phonons increases

with decreasing density. There is an intermediate temperature regime in

which the density dependence is inverted. Thus one sees that the piezoelec-

tric phonons dominate over a wide range of temperatures and densities. If

D = 6.8 eV for the intrinsic phonons is chosen, then the momentum relax-

ation due to PA phonons here computed prevails essentially always except

at very high temperature and density or for extremely low temperatures.
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Figure 5.5: Imaginary part of the self-energy and inelastic scattering length
as a function of the doping, for different materials, at fixed (room) temper-
ature and electronic state k =

√
π × 1013 cm−2 (recall kF =

√
πn). Upper:

Im ΣPA
+ as a function of carrier density n. Lower: l as a function of n in the

same units for the same materials.
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Figure 5.6: Electron mobility due only to piezoelectric acoustic phonons and
its comparison with that due to intrinsic phonons. Upper: The mobility µPA

as a function of the temperature, for several carrier concentrations. Lower:
The ratio µDA/µPA, where µDA is the mobility obtained when only the
deformation potential of intrinsic phonons (with D = 25 eV) is included.
The ratio between mobilities must be increased by a factor (25/6.8)2 ' 13.5
when the value D = 6.8 eV is used [50]. The values of TBG for these doping
levels are given in the caption of Fig. 5.4, while TF = 434, 1360, 4340 K.



Chapter 6

Conclusions

6.1 General conclusions

We have derived a general expression for the two-dimensional piezoelectric

electron-phonon interaction valid for any piezoelectric substrate covered by a

two-dimensional electron system, as in the classical 2D Fröhlich Hamiltonian

for the optical phonons, and characterized the magnitude of the interaction.

From the derived interaction vertex, it can be shown that the relative

size of the static phonon-mediated electron-electron interaction with respect

to the original Coulomb repulsion turns out to be exactly K2
R < 1. By

applying the Eliashberg formalism to graphene [98], one is able to assess,

in terms of KR, the influence that these low-frequency and long-wavelength

phonons have on possible BCS-type instabilities. The conclusion is that

present piezoelectric materials are not able to either induce s-wave pairing

by themselves or affect in a significant way any pairing instability which

could be already present in graphene, a conclusion that could change in

case novel strongly piezoelectric materials were found.

Our results show that electron overscreening cannot be achieved even

with the strongest piezoelectric phonons because, as we have proved in this

work, K2
R < 1 is always satisfied. Nevertheless, these phonons could enhance
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superconductivity in contexts where it already exists in the absence of the

substrate. This can be the case, for example, in bulk few-layer MoS2 with

most of the carriers confined to the first layer [112, 113], or in Ca-decorated

graphene laminates, consisting of well separated and electronically decou-

pled graphene crystallites [114]. It can be the case too in other contexts

where superconductivity is postulated to exist but not yet observed due to

experimental difficulties (e.g. very heavily doped graphene [98] or metal-

adatom-decorated graphene [115]). Other examples are the recent high-

temperature superconductor system of 2D FeSe on top of the ferroelectric

SrTiO3 (whose optical phonons have been analyzed, with conclusions sim-

ilar to ours [100] and where the strong piezoelectric phonons could play

an important role as well), and the recent “magic-angle” twisted bilayer

graphene systems [116].

For typical materials, with relatively low values of K2
R and λ as shown

in Tab. 4.1, it seems that the effect of the piezoelectric phonons should

not be big. However, any hypothetical material with similar values of the

dielectric constant and elastic tensors (such as e.g. ZnO in the Z-Cut) but

whose piezoelectric constants were around 5 times bigger (so that values

of K2
R ∼ 0.5 and λ ∼ 0.9 could be reached), which is not an unrealistic

assumption; would change the scenario considerably. In particular, the

former Eliashberg-McMillan theory would not apply [72, 117]. An important

change in this scenario could occur as well if it were possible to enhance

the interaction via stimulated phonon absorption and emission, something

which could be made feasible by introducing a grid of SAWs under the

2DEG, a case that has not been contemplated in the present work.

Our diagrammatic approach for electron-phonon interactions also takes

into account the renormalization of both phonon modes and carrier states

due to electron-phonon interactions, and it emphasizes the importance of

all the involved screening processes for a correct evaluation of the mean free

path and carrier mobility. We have obtained numerous analytical limits as

a function of carrier energy, density, and temperature, which have allowed

us to understand the trends shown by the numerical results.
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We may emphasize that the inverse mobility due to piezoelectric acous-

tic phonons increases with carrier density at high temperatures, while it is

a decreasing function of density at low temperatures [see the upper plot

in Fig. (5.6)], the latter trend being understandable in terms of increased

electron screening at high densities. On the other hand, the temperature

dependence of the inverse mobility is much more pronounced at low tem-

peratures.

When compared with the values obtained when only intrinsic deforma-

tion phonons are taken into account, one finds that the contributions of the

piezoelectric acoustic phonons to the inverse lifetime and to the mobility

dominate over a considerable range of temperatures and doping levels, a

parameter range that becomes almost pervasive if low values of the defor-

mation coupling constant are chosen from the literature.

As our results are applicable to piezoelectric materials of various lattice

symmetries and interaction strengths, they will be helpful in the devel-

opment of electronic devices involving graphene deposited on piezoelectric

substrates. Among such potential devices, we may mention the graphene

field-effect transistor on a piezoelectric substrate as studied experimentally

in Refs. [107] and [118] with PZT and LiNbO3, respectively. That class

of setups was also investigated as a possible basis for the building of non-

volatile memories [119]. Finally, a suitable understanding of the interaction

between graphene electrons and acoustic piezoelectric phonons will enhance

applications based on the use of piezoelectric surface acoustic waves beneath

a graphene layer.



Appendix A

Basic electronic properties of

graphene

A.1 Generalities

Although it was thought to not exist at that time, the basic electronic

properties of graphene were derived many decades ago as a starting point

to understand graphite [120]. The analysis of a single layer of graphene is

the natural starting point too when it is placed on a (3D) substrate, which

can strongly modify the properties of the monolayer material. So let us first

consider a single, perfect layer of carbon arranged in the graphene structure

(as in Fig. 1.1, bottom right). We reproduce below the derivation of one of

its most interesting aspects: its low-energy quasiparicles are equivalent to

the so-called massless, chiral, Dirac fermions.

In fact, the graphene honeycomb lattice is formed from a triangular Bra-

vais lattice with a basis of two atoms per unit cell, separated by the distance

a = 1.42 Å, such that the lattice-basis vectors are:

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−
√

3
)
, (A.1.1)
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and the reciprocal-lattice (also triangular) vectors are thus given by:

b1 =
2π

3a

(
1,
√

3
)
, b2 =

2π

3a

(
1,−
√

3
)
. (A.1.2)

From this hexagonal structure, each atom from one sublattice is con-

nected to three nearest-neighbor atoms from the other sublattice, their po-

sition vectors being [see Fig. A.1(a)]:

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)
, δ3 =

a

2
(−1, 0) . (A.1.3)

In this array of carbon atoms, the sp2-hybridized states give rise to oc-

cupied bonding and empty antibonding bands, separated respectively by a

large gap [see Fig. A.1(b) for a planar representation]. On the other hand,

the π-states form a single band, whose energies near the Fermi surface give

rise to a conical linear dispersion in the first approximation, as will be seen

below.

In a tight-binding Hamiltonian described by a 2× 2 matrix with hopping

parameter t, the basis of electron states consists of two π-states belong-

ing to atoms from the first [amplitude ψA(k)] and the second [amplitude

ψB(k)] sublattices, having no coupling within each sublattice in the nearest-

neighbor approximation:

H(k)ψ(k) =

[
0 −tf(k)

−tf∗(k) 0

][
ψA(k)

ψB(k)

]
= E(k)

[
ψA(k)

ψB(k)

]
,

(A.1.4)

with f(k) =

3∑
i=1

exp(k · δi) = 2 exp

(
ikxa

2

)
cos

(
kya
√

3

2

)
+ exp(−ikxa) .
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Figure A.1: The basic crystal and band structure of graphene. (a) The
honeycomb lattice of graphene with the two sublattices and basis vectors,
together with the reciprocal lattice. (b) Planar representation of the band
structure near the high-symmetry points. (c) 3D representation of the π-
band structure including a zoom at the conical dispersion from the Dirac
point in K.

Therefore, the energies of the eigenstates turn out to be [see Fig. A.1(c)]:

E(k) = ±t |f(k)| = ±
[

3 + 2 cos(
√

3kya) + 4 cos

(√
3kya

2

)
cos

(
3kxa

2

)]1/2

,

(A.1.5)

where the plus sign applies to the upper (π∗-antibonding) band and the

minus is for the lower (π-bonding) band.

There are two very special high-symmetry points at the edge of the

Brillouin zone which are very important for the physics of graphene [see
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Fig. A.1(a)], given by:

K =
2π

3a

(
1,

1√
3

)
, K′ =

2π

3a

(
1,− 1√

3

)
. (A.1.6)

These two points, located at the corners of the Brillouin zone, are called

Dirac points. As can be seen from Eq. (A.1.5), they are the only points

where the energy becomes 0 and they are equivalent to the other four points

in the corners (two are equivalent to K and the other two are equivalent

to K′), since they can be joined to each other by reciprocal lattice vectors.

That is, E(K) = E(K′) = 0.

In the zero-doping ideal regime, and since each carbon atom contributes

precisely with one electron to the band, all negative-energy states are filled

and all positive-energy ones are empty. The Fermi “surface” is located pre-

cisely at those two points with a zero gap, like any other semiconductor.

This clear symmetry between electron and hole states is broken by tak-

ing into account the next-nearest-neighbor hopping energy t′ in the tight-

binding Hamiltonian. From first-principle calculations and experiment, t

turns out to be t ' 2.8 eV� t′ ' 0.07 eV, so that t′ can be well neglected

to a first approximation and thus the nearest-neighbor approximation is

really accurate throughout the whole Brillouin zone.

One of the fundamental properties of graphene becomes manifest when

expanding the energies near the Dirac points. In fact, taking q = k−K and

q′ = k−K′ with q � K, q′ � K ′, the Hamiltonian in Eq. (A.1.4) becomes

(after excluding a constant phase factor by an unitary transformation of the

basis):

H(q) =
3at

2

(
0 qx + iqy

qx − iqy 0

)
+O(q2) , (A.1.7)

H(q′) =
3at

2

(
0 qx − iqy

qx + iqy 0

)
+O(q2) , (A.1.8)

with 3at
2 = ~vF , being vF ' 106 ms−1. This is a linear dispersion for the
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energy around the Dirac points [see Eq. (A.1.5)], as first obtained by P.

Wallace [120] in 1947 [see the zoom in Fig. A.1(c)]:

E(q) = E(q′) = ±~vF q + O(q2) . (A.1.9)

A.2 Dirac fermions

Within any realistic experimental scenario, graphene appears to be electron

or hole-doped via impurities or surrounding electric fields, and EF � t,

being the density of carriers much smaller than one electron per carbon atom

(usually around n ∼ 1010−1014 cm−2). As can be seen from straightforward

algebra [121], it is possible to derive an effective Hamiltonian around the

Dirac points, with the replacements qx → −i∂x; qy → −i∂y and such that:

HK = −i~vF σ ·∇ , (A.2.1)

σ = (σx, σy) =

[(
0 1

1 0

)
,

(
0 −i
i 0

)]
, ∇ = (∂x, ∂y) . (A.2.2)

This is the effective Hamiltonian around the conical point (called valley)

K. It corresponds to the effective-mass approximation, or k · p theory. It

is possible to derive a description around the two valleys K, K′, with the

basis vectors:

Ψ = (ψKA, ψKB, ψK′A, ψK′B)T , (A.2.3)

and with the 4× 4 Hamiltonian:

H =

(
HK 0

0 HK′

)
, being HK′ = HT

K , (A.2.4)

which is more complete than the Hamiltonian arising from taking just one

valley.

The eigenspinors of the reduced 2×2 Hamiltonian take the form (around
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K, for example):

ψ±(q) =
1√
2

[
exp (−iθq/2)

± exp (iθq/2)

]
, (A.2.5)

with the signs corresponding to the energies Ek = ±~vFk (the eigenspinor

around K′ is the time-reversal transformed one) and θq = arctan(qx/qy).

In the terminology of graphene, the sublattice degree of freedom regard-

ing the sublattice position (and not the real spin, as it is usually the case

for spinors) is called pseudospin. This means that the eigenfunctions have a

well-defined (pseudo-)helicity, given by the projection operator of the mo-

mentum along the pseudospin direction h = 1
2 σ · q̂. Thus, the electrons

(holes) have a positive (negative) energy with the direction of the momen-

tum positively (negatively) oriented along the pseudospin.

In summary, the graphene carriers are described as in Quantum Electro-

dynamics (QED), by massless (ultra-relativistic) Dirac chiral fermions of

spin 1/2, with the real velocity of light (c ' 3 × 108 m/s) replaced by the

Fermi velocity vF ' c/300.

A.3 Effective mass and density of states

This description of graphene electrons in terms of massless Dirac fermions

was demonstrated experimentally soon after the discovery of graphene [9]

regarding measures of the ciclotron mass of the carriers, and the latter dis-

covery of the anomalous (half-integer) quantum Hall effect, chirality, Berry’s

phase, and impressive relativistics effects such as Klein tunneling [122].

Above all, there is one fundamental difference between the graphene-

energy dispersion in Eq. (A.1.9) and the energy dispersion of the usual two-

dimensional electron gas (2DEG) in classical electronics, where E2DEG(q) =
~2q2
2m , and m is a constant effective electron mass. In the case of graphene, the

Fermi velocity is constant and does not depend on the energy or momentum,

whereas vF,2DEG = ~q/m =
√

2E/m. The graphene effective mass is zero,
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but for some purposes one may define an “effective mass” m∗ = ~kF /vF ,

with kF denoting the Fermi wave vector.

The density of states in graphene changes substantially from the finite-

mass 2DEG. Most importantly, it does depend on the doping level. One

obtains:

D(E) =
dn(E)

dE
=

2E

π(~vF )2
=

2kF
π~vF

, (A.3.1)

where a factor of 4 should be added to account for the valley and spin

degeneracy. The total density of electrons is related to the Fermi wave

vector as n = k2
F /π. This result is in stark contrast to the 2DEG with

finite mass, whose density of states is constant and given by D(E) = gvm
π~2 ,

with gv accounting for a possible valley degeneracy (see Ref. [7] for a good

comparison between both types of electronic systems).



Appendix B

Macroscopic description of

piezoelectric materials

B.1 Basic elements of elasticity theory and ther-

modynamics

From a macroscopic point of view, a material is considered as a compact,

continuous set of material points with the surface as its boundary, without

taking into account any atomic structure as in actual materials. In this

continuum limit, the physical magnitudes are averaged over small volume

elements which macroscopically look infinitesimal.

To understand the mathematical description of piezoelectricity, the reader

needs to know the basic elements of elasticity (linear) theory and thermo-

dynamics. Let us suppose that any point in an elastic continuous body, as

described by the coordinates (x1, x2, x3) ≡ xi becomes slightly deformed to

the new coordinates x′i, such that the displacement in that point becomes

ui = x′i − xi. From the smallness of the deformations, the strain tensor is

111
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defined as the symmetrical second-rank tensor [51]:

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

=

 u11 u12 u13

u12 u22 u23

u13 u23 u33

 (Voigt notation)≡

 u1
1
2u6

1
2u5

1
2u6 u2

1
2u4

1
2u5

1
2u4 u3

 , (B.1.1)

sometimes written as a six-component vector within the Voigt notation. In

this notation, the new suffix 1 now stands for the old 11, 2 for 22, 3 for 33,

4 for 23 (or 32), 5 for 31 (or 13) and 6 for 12 (or 21).

On the other hand, an analysis of the forces applied in an elastic body

leads to de definition of the stress tensor as:

Tij =

 T11 T12 T13

T12 T22 T23

T13 T23 T33

 (Voigt notation)≡

 T1 T6 T5

T6 T2 T4

T5 T4 T3

 , (B.1.2)

such that Tiknk = Ti · n̂ is the force acting in the surface element given by

the normal n̂ = (n1, n2, n3) in xi and ∂Tik
∂xk

= ∇ · Ti is the i-th component

of the force applied per unit volume in xi. An analysis of the torques in

equilibrium shows that this tensor is symmetric as well, allowing the use of

the Voigt notation as shown in this last equation above (with the convenient

omission of the 1/2 fractions as in the case of the strain tensor).

A generalization of Hooke’s law for small deformations leds to the defini-

tion of the fourth-rank elastic stiffness tensor ĉ = cijkl, such that the linear

relation between the stress and strain tensors holds (where the typical Ein-

stein summation convention is assumed throughout the appendices):

Tij = cijklukl , (B.1.3)

From the symmetry of the stress and the strain, one realizes that the

tensor ĉ is symmetric with regard to the interchanges i↔ j or k ↔ l. From

thermodynamic arguments [given below in Eq. (B.1.11)], it can be seen that
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it is also symmetric with respect to the interchange (ij)↔ (kl). This allows

one to extend the Voigt notation to this 4-rank tensor ĉ so that Eq. (B.1.3)

becomes:

T1

T2

T3

T4

T5

T6


=



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66





u1

u2

u3

u4

u5

u6


, (B.1.4)

with (c11, c12, c13, c14, c15, c16) ≡ (c1111, c1122, c1133, c1123, c1113, c1112) and so

on, having thus ĉ at most 21 independent coordinates.

In an elastic body at temperature T with internal-energy density per unit

volume U and entropic density per unit volume S subjected to an elastic,

quasistatic, infinitesimal deformation with homogeneous strain duij ≡ duλ

and stress T̂ ; the first and second laws of thermodynamics lead to the

internal-energy change:

dU = TdS + δW = TdS + Tijduij
(Voigt notation)≡ TdS + Tλduλ , (B.1.5)

since the infinitesimal work per unit volume in the elastic solid can be shown

to be given by the double-dot product δW = T̂ : dû = Tij duij . This allows

to express the stress tensor as the derivative (at constant entropy):

Tλ =

(
∂U

∂uλ

)
S

. (B.1.6)

For isothermal processes, it is more convenient to use differentials of other

thermodynamic potentials as the Helmholtz free energy F = U −TS or the

Gibbs free energy G = U − TS− uλTλ = F − uλTλ, which satisfy the linear
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constitutive equations:

dF = −SdT + Tλduλ , (B.1.7)

dG = −SdT − uλdTλ , (B.1.8)

so that the stress and strain tensors become related by the derivatives at

constant temperature:

Tλ =

(
∂F

∂uλ

)
T

, (B.1.9)

uλ = −
(
∂G

∂Tλ

)
T

. (B.1.10)

From the exactness of the differentials of the thermodynamic potentials, as

given by the Maxwell’s relations in thermodynamics, one gets the aforemen-

tioned symmetry of the stiffness tensor. For example, at constant temper-

ature:

cλµ =

(
∂Tλ
∂uµ

)
T

=

(
∂2F

∂uµ∂uλ

)
T

=

(
∂2F

∂uλ∂uµ

)
T

=

(
∂Tµ
∂uλ

)
T

= cµλ .

(B.1.11)

B.2 Introduction to piezoelectricity

Any piezoelectric material is a polarizable material and thus it has dielec-

tric properties. To characterize these from a macroscopic point of view, one

must work with macroscopic Maxwell equations, first derived by Lorentz,

and disregard microscopic local variations associated with the molecular

structure [76]. The key electrical magnitudes to describe them are the elec-

tric displacement D, the electric field E and the electric polarization P,

which are related (in SI units) as D = ε0E + P. In a dielectric material,

one must replace this vacuum permittivity constant ε0 with a general tensor

called permittivity tensor ε̂ = εij to express the following linear constitutive
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equation, similar to the previous Hooke’s law:

Di = εijEj . (B.2.1)

In a dielectric, elastic body subject to a reversible, infinitesimal process with

electric fields Ei, Di, the electrostatic field-energy density must be added

to Eq. (B.1.5) as:

dU = TdS + Tλduλ + EidDi , (B.2.2)

since the work per unit volume of the electric forces can be shown to be

δW = E · dD. As in the case of a purely elastic material, sometimes it can

be more convenient to introduce other thermodynamic potentials like the

Helmholtz free energy F = U − TS or the Gibbs free energy, given in this

case by G = U −TS− uλTλ−DkEk = F − uλTλ−DkEk, which satisfy the

new linear constitutive equations:

dF = −S dT + Tλ duλ + Ek dDk , (B.2.3)

dG = −S dT − uλ dTλ +Dk dEk . (B.2.4)

In a dielectric, elastic material as thermodynamically described by three in-

dependent variables, one being thermal (entropy or temperature), one elas-

tic (strain or stress) and one electric (electric displacement or electric field);

any independent variable can be obtained from the first partial derivatives

of the thermodynamic potentials, as in the previous subsection. Namely,

for example:

Tλ =

(
∂F

∂uλ

)
T,D

, uλ = −
(
∂G

∂Tλ

)
T,E

, (B.2.5)

Ek =

(
∂F

∂Dk

)
T,û

, Dλ = −
(
∂G

∂Ek

)
T,T̂

, ... (B.2.6)



116 APPENDIX B. MACROSCOPIC DESCRIPTION

and the dielectric tensor from a second partial derivative of a thermody-

namic potential, like the elastic tensor. Now:

εij =

(
∂Di

∂Ej

)
T,T̂

=

( −∂2G

∂Ej∂Ei

)
T,T̂

=

( −∂2G

∂Ei∂Ej

)
T,T̂

=

(
∂Dj

∂Ei

)
T,T̂

= εji ,

(B.2.7)

proving in addition from basic thermodynamics that this dielectric tensor

is symmetrical (this is not general, since it does not hold out of equilibrium

or upon introducing magnetic fields [48]). Thus the dielectric tensor allows

one to use the Voigt notation with the previous convention:

εij =

 ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 (Voigt notation)≡

 ε1
1
2ε6

1
2ε5

1
2ε6 ε2

1
2ε4

1
2ε5

1
2ε4 ε3

 . (B.2.8)

Now, in a material with both elastic and dielectric properties, it is possible

that the two kinds of magnitudes couple in first order. This manifests

macroscopically as the non-vanishing of other second-order derivatives of

thermodynamic potentials, giving rise to the piezoelectric effect, described

by a third-rank tensor. For example:

eijk =

(
∂Di

∂ujk

)
T,E

=

( −∂2G

∂ujk∂Ei

)
T

(Voigt)≡
( −∂2G

∂uλ∂Ei

)
T

=

(
∂Di

∂uλ

)
T,E

= eiλ ,

(B.2.9)

the aforementioned piezoelectric tensor, having at most 18 independent co-

ordinates. From this relation, one gets immediately the converse piezoelec-

tric effect for these materials, just reversing the order of derivation:

eiλ =

(
∂Di

∂uλ

)
T,E

=

( −∂2Ge
∂uλ∂Ei

)
T

=

( −∂2Ge
∂Ei∂uλ

)
T

= −
(
∂Tλ
∂Ei

)
T,û

= eiλ ,

(B.2.10)

where we have invoked the electric Gibbs function Ge = F−DkEk satisfying

dGe = −SdT −DkdEk + Tλduλ [17].
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In these piezoelectric materials, the Hooke’s law and the proportionality

between D and E are replaced by the more general coupled linear equations

(in practice, one must note a difference between the ε̂, ê components at

constant strain or at constant stress, which are close to each other but not

equal. In the following equation, those at constant strain are implied):

Di = εikEk + eiλuλ , (B.2.11)

Tµ =− ekµEk + cλµuλ . (B.2.12)

In the Voigt notation, the previous product of the piezoelectric tensor and

the strain in the sum can be expressed by the matrix product:

eijkujk = eiλuλ =

 e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36





u1

u2

u3

u4

u5

u6


. (B.2.13)



Appendix C

Microscopic theories of the

piezoelectric effect

C.1 A simple one-dimensional model

Bearing in mind the atomic structure of materials, and of crystals among

them, one is led to explain the phenomenon of piezoelectricity in terms of

the atoms forming each piezoelectric crystal, where the origin of the physical

mechanism underlies.

As a rough, simple one-dimensional example (as in Ref. [18]), one can

consider a relatively simple diatomic crystal such as ZnO, which is studied

in the main text as a substrate for graphene and which forms the wurtzite

structure (see Fig. C.1). Let us consider a row along the Z-direction in

the material, that is, the c-axis of the hexagonal structure, where positively

charged zinc atoms are alternated with negatively charged oxygen atoms.

These rows are repeated along that axis of symmetry and one of them is

isolated for the calculations, as in Fig. C.1.

Let Q and −Q be the effective charges of each ion, let K1 and K2 be the

spring force constants of the short and long bonds, respectively; and let a

be the lattice length, that is, the separation between each ZnO molecule in

118
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Figure C.1: Microscopic view of the wurtzite structure of ZnO and a rough
model for its piezoelectricity in the vertical Z-direction. (a) Atomic struc-
ture of the wurtzite showing the bonds between the alternating atoms. Note
that the Z-axis is perpendicular to the faces of the hexagonal prisms, and a
plane perpendicular to this axis cuts alternating bonds. (b) An elementary
part of a row along the (now horizontal) Z-axis showing the two kind of
bonds between oxygen and zinc atoms, without any applied forces or strain.
(c) Forces applied to an atom in equilibrium after the introduction of a field
or a strain.

the lattice, whereas b (< a) is the intra-molecule atomic distance. From the

equilibrium at rest, the cells are subjected to an applied uniform electric field

Ez ≡ E along the positive Z-direction and an uniform strain uzz = ∆a
a ≡ U

along the axis, both either finite or zero.

Now one can consider the unit cell consisting of two electric dipoles, one

formed by half the negative O atom (charge Q/2) joining half the positive

close intra-cell Zn atom; and the other dipole formed by the other half O

atom and half the positive far Zn atom from the next cell. The deformation

by itself induces an asymmetric change between both dipoles (since the

spring constants K1,K2 are different) leading to an electric dipole (direct

piezoelectric effect), and the applied electric field alone causes the ions to

be moved in opposite directions, thus generating a strain (and also stress

via the induced forces, which is the inverse piezoelectric effect). If n is the
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number of ZnO molecules per unit volume, then N = na is the number

of rows crossing the area perpendicular to the axis. This unit area in the

wurtzite structure is cut by alternating rows separated by a half period a/2,

crossing each one by springs of constants K1 and K2, as in the picture.

Therefore, in this rough model, the estimates for the induced polarization

along the Z-axis Pz ≡ P (electric dipole per unit volume) and stress Tzz ≡ T
(net force per unit area in the positive Z-direction) are:

P =
nQ

2
∆(a− b)− nQ

2
∆b =

nQ (∆a− 2∆b)

2
, (C.1.1)

T =
N

2
K2∆(a− b) +

N

2
K1∆b =

na

2
[K2∆a+ (K1 −K2)∆b] . (C.1.2)

From the forces applied in the oxygen atoms, the equilibrium condition

allows to get one displacement from the other:

−QE +K2∆(a− b)−K1∆b = 0 , (C.1.3)

so that the electric displacement D = ε0E + P and the stress are finally

related to E and u by:

D =

(
ε0 +

nQ2

K1 +K2

)
E +

nQ

2

K1 −K2

K1 +K2
aU = εE + eU, (C.1.4)

T =Na2 K1K2

K1 +K2
U − nQ

2

K1 −K2

K1 +K2
aE = cU − eE . (C.1.5)

In this simple model, one obtains roughly the piezoelectric coefficient

e333 ≡ e, the stiffness constant c3333 ≡ c and the dielectric constant ε33 ≡ ε,
such that the direct and inverse-piezoelectric-effect laws in Eq. (B.2.10)

hold. It is very important to note that the asymmetry is the key ingredient,

since there would be no piezoelectricity if both spring constants K1,K2

were equal. The real mechanism is more complex, not only because of the

dimensionality, because of the tensorial proportionality between the fields

and elastic strain and stresses and because of the couplings of the dynamics

in all directions; but also because the effect occurs as well in monatomic
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crystals. Moreover, everything is much more subtle than the facts that this

model can show, as will be seen in the last subsection of this App. C.

C.2 Symmetry considerations

From the knowledge of the symmetry of the crystal, one can infer many

restrictions for the piezoelectric tensor, exactly the same that happens with

the elasticity (and dielectric) tensor and the elastic (and dielectric) prop-

erties [48, 51]. A very immediate result stated in many general solid-state

books [86] as an example of a tensor transformation under a symmetry oper-

ation, is the fact that no centrosymmetrical material can show piezoelectric

properties.

From the 32 possible point groups among the crystals, 11 are centrosym-

metric, so they have no piezoelectric effect. This occurs because an inversion

operation [namely (x, y, z)→ (−x,−y,−z)] leaves the crystal invariant, but

the piezoelectric tensor ê, as a third-rank tensor relating the proportionality

between the vector E and the two-rank strain tensor û, transforms to minus

ê (i.e., eijk → −eijk). Since the initial and transformed piezoelectric tensors

must be equal, also being one opposite of the other, they are both zero.

The non-centrosymmetrical condition is necessary but not sufficient to

bear piezoelectricity. The cubic 432 class has no center of symmetry, but its

symmetry itself is enough to make all piezoelectric coefficients vanish. The

other 20 classes do show piezoelectric properties.

A complete discussion on the crystallographic point groups, their trans-

formations and their effects on the piezoelectric coefficients, together with

all the derivations, can be found elsewhere in the literature (e.g. Refs. [17,

18, 22, 23, 51, 123]). As an example, we can show some examples of tensors

which are specific of materials used in this thesis.

Trigonal 3m class

For example, LiNbO3 and tourmaline belong to this class.
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ê =

 0 0 0 0 e15 −e22

−e22 e22 0 e15 0 0

e13 e13 e33 0 0 0

 , (C.2.1)

ĉ =



c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c11−c12
2


, ε̂ =

 ε11 0 0

0 ε11 0

0 0 ε33

 .

(C.2.2)

Tetragonal 4mm class and hexagonal 6mm class

For example, ferroelectric BaTiO3, PZT and KNbO3 belong to the class

4mm; whereas non-ferroelectric ZnO, CdS, AlN belong to the class 6mm.

ê =

 0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 , (C.2.3)

ĉ =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66


, ε̂ =

 ε11 0 0

0 ε11 0

0 0 ε33

 . (C.2.4)

The only difference among these three tensors for both classes is that for

the latter hexagonal 6mm class: c66 = c11−c12
2 (as in the case of the 3m

class).

Cubic 43m class

For example, GaAs and CuI belong to this class.
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ê =

 0 0 0 e14 0 0

0 0 0 0 e14 0

0 0 0 0 0 e14

 , (C.2.5)

ĉ =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


, ε̂ =

 ε11 0 0

0 ε11 0

0 0 ε11

 . (C.2.6)

C.3 The geometric-phase theory of polarization

After the introduction of a simple atomic model and the following crystal-

symmetry considerations (the latter will always remain valid, without any

dependence on the model for piezoelectricity but just on the point group

of the crystal), one can try to deepen in order to find a precise quantum-

theoretical model for the phenomenon of piezoelectricity. A further explo-

ration leads to the conclusion that the first atomic model in Sec. C.1 is

more than just rough, it is indeed wrong for several reasons. All the details

regarding the problems in the definition of polarization are pointed out in

the literature [124, 125, 126]. For the sake of completeness and without

trying to go very deeply into a subject which is not the central matter of

this thesis, the main points of the precise quantum-mechanical theory shall

be described in this subsection, following the review by R. Resta [125].

First of all, the (macroscopic) polarization, given as the dipole moment

per unit volume after it is defined inside a unit cell, is ill-defined; even in

classical models taking into account the Clausius-Mossotti equation with

localized charges, when no ambiguity arises. This problem on the choice of

the unit cell is already pointed out in the old literature [76]. Moreover, the

existence of covalent bondings would make this definition inapplicable, even

in the case that one tries a definition using the precise charge density ρ(r)
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taking integrals such as V −1
∫
dr r ρ(r) in the volume V . In this case, the

polarization P would impose problems that are dependent on the surfaces

and the shape of the material, and making it to be not a relevant bulk

property, well defined in the termodynamic limit.

Regarding the total polarization, one must note that it is actually the

“differential” polarization which is measured in the experiment, defined as

the variation ∆P =
∫
dλ dP

dλ in the polarization P from a previous initial

state, induced upon the introduction of some new parameter λ (such as the

stress/strain to compute a piezoelectric effect, or the relative displacement

between sublattices to compute the polarization from optical phonons).

That has actually been done in the rough previous model, since Eq. (C.1.1)

was taking implicitly the difference of polarization from the initial state,

and not the total dipole moment.

A precise quantum-mechanical description of the macroscopic polariza-

tion is possible within the geometric-phase approach [127]. Let us con-

sider the variation of some parameter λ between 0 and 1, other than an

external electric field and let us assume zero temperature as well. Let

H(λ) = (− i~∂r)2/2me + V (λ)(r) be a Hamiltonian of the electronic system

in the solid for each value of λ with single-particle eigenstates ψ
(λ)
n (r), being

connected to each other continuously in λ and lying in n bands, n = 1, ..., n.

In this one-body scenario, V (λ) is given from a Kohn-Sham, Hartree-Fock

or any other mean-field electronic potential.

From Bloch’s theorem, the single-electron orbitals can be chosen with a

wave vector q so that:

ψ(λ)
n (r) = eiq·r u(λ)

n (r) , with u(λ)
n (r + Rl) = u(λ)

n (r) (C.3.1)

for any lattice vector Rl, and these u
(λ)
n are eigenstates of this other Hamil-

tonian:

H(λ)(q) =
1

2me
(−i~∂r + ~q)2 + V (λ)(r) , (C.3.2)

provided that the direct-lattice vectors are spanned by the primitive Ri

(with i = 1, 2, 3). If the reciprocal-lattice vectors are spanned by the prim-
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itive vectors Gj (j = 1, 2, 3), it is possible to transform the coordinates

(q, λ) of the problem to the dimensionless ξk, k = 1, 2, 3, 4, given by:

q = ξ1G1 + ξ2G2 + ξ3G3 , with ξj =
1

2π
q ·Rj , j = 1, 2, 3 and ξ4 = λ .

(C.3.3)

This allows to write the Berry connection and curvature of the problem as

X(ξ) = i
n∑
n=1

〈un(ξ)| ∇ξ |un(ξ)〉 , (C.3.4)

Yij =
∂Xj(ξ)

∂ξi
− ∂Xi(ξ)

∂ξj
= 2 Im

n∑
n=1

〈
∂un(ξ)

∂ξi

∣∣∣∂un(ξ)

∂ξj

〉
, (C.3.5)

respectively, the former being gauge-dependent and playing the same role as

the usual vector potential in the Aharonov-Bohm effect, while the curvature

is gauge-invariant and plays the role of the magnetic field.

Finally, it can be shown [125] that the physical polarization ∆P in each

direction j is given from the four-dimensional ξ-integral in the unit hyper-

cube [0, 1]× [0, 1]× [0, 1]× [0, 1] (Ω is the cell volume):

Gj ·∆P =
2e

Ω

∫
dξ Yj4(ξ) , j = 1, 2, 3 . (C.3.6)

It is the fact that a change of polarization induces an electring current

(from the continuity equation) that allows one to get a definition of the

polarization as a bulk property. At the end, all the relevant information is

contained in the phases of the electronic wave functions, which account for

the currents, and making a valid definition in the thermodynamic limit. It

is not enough to find the charge densities, given from the modulus of the

wave functions.

The result in Eq. (C.3.6) can be shown as well to coincide with the ordi-

nary linear-response theory, from a displacement current j = ∂P
∂t obtained
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via perturbation theory. The equation here reads (BZ means Brillouin zone):

P(λ) =
4~e

(2π)3me
Im

n∑
n=1

∞∑
m=n+1

(C.3.7)

∫
BZ
dq
〈u(λ)
n (q)| i~∂r |u(λ)

m (q)〉 〈u(λ)
m (q)| ∂λV (λ) |u(λ)

n (q)〉[
E

(λ)
m (q)− E(λ)

n (q)
]2 .

In this section, we have shown how non-trivial and theoretically involved

this subject of piezoelectricity actually is, despite its usual orientation for

engineers and technicians in the majority of books.
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Elastic waves in crystals

D.1 Equation of motion

Focusing on the elastic materials without the piezoelectric effect, it is easy

to obtain a wave equation [18, 22, 23, 56] from the most elementary concepts

in elasticity theory as summarized in Sec. B.1. It is Newton’s second law at

each pointlike volume element of the material, whose acceleration is given

by the second derivative of the displacement, that is ∂2ui/∂t
2 ≡ üi, in

the directions i = 1, 2, 3. As explained in that section, the force (per unit

volume) applied on the volume element of the elastic body in that point has

its components in each direction i given from the stress tensor, as the sum

∂Tij/∂xj . This means that Newton’s second law reads:

ρüi =
∂Tij
∂xj

, i = 1, 2, 3 , (D.1.1)

where ρ is the mass density, since the forces are given per unit volume, and

the fields ui, Tij are implicitly functions of the three position coordinates

and time (r, t) = (x1, x2, x3, t).

When the approximations of elasticity theory are valid, which is the case

for the typical waves in crystals, the previous equations can be written in

127
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terms of just the displacement vector at each point, with the aid of Hooke’s

law and the definition of strain. That is:

ρüi = cijkl
∂ukl
∂xj

= cijkl
∂2ul

∂xj∂xk
, i = 1, 2, 3 , (D.1.2)

where the symmetry of the elastic tensor ĉ has been used to rearrange the

terms in the sum.

D.2 Plane-wave solutions

Let us suppose the simplest possible solution, that is, a plane-wave solution

to the equation of motion with a given wave vector k = (k1, k2, k3). This

wave is given by the real part of:

ui = Ai exp [i(ωt− k · r)] = Ai exp [i(ωt− kjxj)] . (D.2.1)

Here, Ai is the wave amplitude in the i-direction (whose subscript should

not to be confused with i =
√
−1 when it is not a subscript, as in the

argument of the exponential), and ω is the angular frequency. Now, in the

equation of motion, Eq. (D.1.2), one must note that the time derivative

equals the product by iω and the space derivative in the j-direction equals

the product by ikj . So the three equations of motion read:

(ρω2δil − cijklkjkk)ul = 0 = (ρω2δil − cijklkjkk)Al , i = 1, 2, 3 . (D.2.2)

These equations are called Christoffel equations. This homogeneous linear

system of 3 equations has a solution provided that the determinant of the

coefficients matrix (ρω2δil − cijklkjkk) is 0.

From the three roots of ω2 in the determinant, one obtains the displace-

ments A (up to an arbitrary global factor due to homogeneity) of the three

possible waves. One gets also the phase velocity ω/|k| [of order v ∼ (ĉ/ρ)1/2]

and the group velocity vg = ∂kω (which in general does not have the same

direction as k; both velocities are parallel just for some isotropic cases where
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ω only depends on |k|). It is to be noted that the function ω(k) is homo-

geneous of degree one, which can be seen after dividing the previous equa-

tions by |k|. In particular, the group velocity just depends on the direction

of propagation, and there are in general three different velocities for each

direction, depending on the chosen solution. Those solutions, giving the di-

rections A/|A| of the displacements, are orthogonal to each other, since the

above determinant gives the principal values of a symmetrical second-rank

tensor.

The phase-velocity surface (it is usually the inverse, namely, the slowness

surface) can be plotted for different materials, highlighting their anisotropy.

Lots of examples can be found in the literature, in particular in those books

cited in this section, such as the plots in Fig. D.1.

D.3 The isotropic case

The anisotropic properties among crystals generate wave equations so cum-

bersome that they can be solved commonly just by numerical methods. But

there are isotropic materials such as polycrystalline solids, glasses and nor-

mal liquids, whose elastic waves can be easily found, and having solutions

that are valid for other materials as a first approximation.

From symmetry considerations, it can be shown [51, 18] that an isotropic

material has just two independent components of the elastic tensor, being

of the form of an elastic tensor in a cubic crystal [see Eq. (C.2.6)], with

the further restriction that c44 = 1/2(c11 − c12). The Lamé coefficients are

introduced so that the elastic tensor of such material is cijkl = λδijδkl +
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Figure D.1: Point group of α-quartz and wave-velocity surfaces from
three different directions. The letters L and T refer to “longitudinal”
and “transversal”, where the former waves are faster. Actually they are
quasi-longitudinal and quasi-transversal, being just purely longitudinal or
transversal in some isotropic cases or directions. Here the Z-directions mean
Z1 = [100], Z2 = [120], Z3 = [001]. Figures taken from Ref. [22].

µ(δikδil + δilδjk), or equivalently:

ĉ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, (D.3.1)

and Hooke’s law becomes:

Tij = λ (u11 + u22 + u33) δij + 2µuij . (D.3.2)
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From thermodynamical arguments, it can be shown [48] too that µ > 0 and

µ + (2/3)λ > 0. Both coefficients are related to the Young’s modulus and

the Poisson’s ratio of the material as well.

Everything together allows one to obtain a relatively simple solution to

the acoustic wave with the aid of Eq. (D.2.2) and its notation. Here, it

becomes:

ρω2A = (λ+ µ)(k ·A)k + µ|k|2A . (D.3.3)

This equation produces three exact solutions. Two of them have their di-

rections A perpendicular to k, consisting in pure transverse waves with

velocity vt (they satisfy ∂2
t A = v2

t∇2A, ∇ · A = 0). The other solution

has its direction parallel to k, consisting in a pure longitudinal wave with

velocity vl (it satisfies ∂2
t A = v2

l∇2A, ∇ ×A = 0). The velocities, of the

order of some thousands of m/s, are independent of the frequency. They

are equal to the group velocities, given by:

vt =

√
µ

ρ
< vl =

√
λ+ 2µ

ρ
, (D.3.4)

so that the projections of the velocity surfaces (as in the previous Fig. D.1)

in this case would consist in three circumferences centered at the origin, two

of them with the same radii for the transversal (T ) modes, and one with a

bigger radius for the longitudinal (L) mode.

Sometimes, the anisotropy factor is defined as A =: 2c44/(c11 − c12) for

cubic crystals, so that the closer it is to 1, the more purely longitudinal

and transversal the waves are, and the closer to circumferences the curves

like those in Fig. D.1 become. This subject is well described in Ref. [56].

In Ref. [21], a table of anisotropic ratios is given for many cubic crystals,

ranging from the relatively high value of sodium, ANa = 7.00 to the low value

of potassium chloride, AKCl = 0.375, with the almost-isotropic tungsten

value in the middle, given by AW = 0.995. There, the influence of this

factor on the properties and velocities of some kind of elastic surface waves

is shown as well in different crystals
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Elastic surface acoustic

waves

E.1 Rayleigh waves in isotropic elastic solids

Rayleigh waves were discovered more than 100 years ago [20] and are pre-

sented as well in the most basic literature of elasticity theory [51]. In this

kind of surface waves, the amplitude of the displacement decays exponen-

tially fast from the surface, such that all the mechanics is essentially con-

centrated within a distance of the order of the wavelength below the surface

(see Fig. E.1a).

Let the infinite isotropic surface be extended in the x1, x2-directions and

given by the equation {x3 = 0}, such that the material occupies the half-

space {x3 ≤ 0}. Then, Rayleigh waves can be described from the longitudi-

nal ∂2ul/∂t
2 = v2

l ∆ul and transversal ∂2ut/∂t
2 = v2

t∆ut components. Both

partial waves satisfy the plane-wave condition in Eq. (D.2.1) and are added

up to build the Rayleigh wave that satisfies Eq. (D.3.3) and the boundary

conditions. Each partial wave is allowed to have imaginary components of
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Figure E.1: Properties of a Rayleigh wave including the fast decrease of its
displacement below the surface. Here λR = 2π/q is the Rayleigh wavelength.
(a) Sketch of the -exaggerated- displacement (the lines) in any point of the
material near the surface (at the top layer) from the equilibrium points (the
dots). (b) Solutions for ζ = vs/vt as a function of

√
α = vt/vl, depending

on each material’s elastic properties. (c) Amplitudes of the displacements
u3, in the direction perpendicular to the surface and u1, parallel to the wave
vector, as a function of the distance |x3| to the surface. The factor i is due
to the elliptic polarization. Taken from Ref. [23].

the wave vectors kl,kt, in order to decay to the bulk. The solution is:

uq(r, t) = Aq(x3) exp [i(q ·R− ωqt)] , (E.1.1)

for 3D bulk vectors r = (x1, x2, x3), k = (k1, k2, k3) and 2D surface vectors
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R = (x1, x2), q = (k1, k2). Due to the general wave equation, to avoid

diverging magnitudes when x3 → −∞, each component ik3 in the longi-

tudinal and transversal-wave exponentials must be taken as the (negative)

roots −
√
q2 − ω2

v2
, being v = vl, vt for each case, respectively.

On the other side, the free surface must satisfy the boundary conditions

given by the cancellation of the stresses in the normal direction of the sur-

face, that is:

Ti3(x1, x2, x3 ≡ 0, t) = 0 , i = 1, 2, 3 . (E.1.2)

All the equations together are enough to obtain the solution. After some

algebra, one finds that this Rayleigh wave has elliptic polarization contained

in the saggital plane (that plane containing the surface normal in the x3-

direction and the wave-propagation direction, given by q). The solution is

Eq. (E.1.1) with:

Aq(z)

|Aq(z)| = −iq̂ (eκlqz − fκteκtqz) + ẑ (κle
κlqz − feκtqz) , (E.1.3)

provided that q̂ = q/q, ẑ = n̂ are the proper unit vectors, κl(α) =
√

1− αζ2,

κt(α) =
√

1− ζ2, α = v2
t /v

2
l , ωq = ζvtq = vsq, f(α) =

√
κl/κt and ζ is the

solution of a sixth-order equation containing just the parameter α, which

determines the sound velocity of the Rayleigh modes vs (as in Fig. E.1b.)

[51, 49]. This number ζ is less than 1 (usually between 0.85-0.97), so that

the Rayleigh-wave velocity vs = ω
q is less than the transversal velocity in

the crystal, which was obvious from the fact that q > ω
vt

.

E.2 Other types of waves

Rayleigh waves are not the only waves that can exist at the surface of

an elastic solid. In the case of an isotropic material, though, the only

alternative type of surface wave with a nonzero component in a direction

perpendicular to the sagittal plane is the SH (shear-horizontal) wave. From

the boundary conditions (T13 = T23 = T33 = 0 for z = 0), one gets that
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this is a transversal plane wave with wave vector q along the surface, and

displacement orthogonal to q. It can be shown that this is not a true surface

wave, since the displacements are independent of x3 [23].

Other possibilities arise when the semi-infinite solid is layered, that is,

covered with another layer of finite thickness. Such a structure can happen,

for example, in the litosphere (Fig. 1.4) or in a surface-wave device, when a

metal layer is deposited on a piezoelectric insulator. In this case, there can

exist the so-called Rayleigh layered waves and the Love waves.

The former ones are analogous to the Rayleigh waves of the previous

section. One must remember that the 3D wave vector k = (q1, q2, k3) of

the Rayleigh partial waves had k3 such that ik3 was the negative root of

q2 − ω2/v2, so that u3 −→
x3→−∞

0. Since the first layer is finite, it is possible

to take both roots for ik3 = ±
√
q2 − ω2/v2 for the partial solution there.

For the surface of the semi-infinite crystal, one must build a Rayleigh wave

matching continuously the wave in the layer above, satisfying the boundary

conditions, and the general solutions can be found in the literature [23, 56].

As expected intuitively, the velocity of this wave is nearly the same as that

occurring at the covering material if its thickness is much bigger than the

wavelength (the whole wave would be contained there essentially), and it

tends to be the Rayleigh velocity of the semi-infinite material for lower

thicknesses. Besides the fundamental Rayleigh modes here described, there

exist the higher Sezawa modes [128].

For the Love waves, the partial wave in the covering layer is of the SH

form (mentioned in the first paragraph) matching a Rayleigh wave in the

infinite material. The dispersion properties are similar to those of layered

Rayleigh waves. Both kind of waves are shown schematically in Fig. E.2.

There exist as well analogs of the previous waves for materials which are

infinite in the x1, x2-directions, but bounded in the x3-direction, such as a

parallel-sided plate. In that context, the Rayleigh-type solution is called

Lamb wave, and there are SH-waves as well.
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Figure E.2: Different possible surface waves arising at the surface of layered
media. (a) Love wave, showing the displacements (red arrows) perpendicu-
lar to the wave direction and localized near the surface. (b) Rayleigh layered
wave, equivalent to those studied in the previous section (see Sec. E.1).



Appendix F

Piezoelectricity in an elastic

medium

F.1 Equation of motion rewritten

In the context of piezoelectricity, one cannot merely apply Hooke’s law

like in a purely elastic medium, but rather must use its generalization in

Eq. (B.2.12), where the electric-field degree of freedom is introduced.

Like the strain, which derives from the mechanical displacement in each

point, the electric field derives from a potential, namely, the electric poten-

tial ϕ, i.e., E = −∇ϕ. This quasistatic approximation is justified provided

that these elastic waves travel much slower than the electromagnetic ones,

and this is the case for the studied sound-like waves, since the ratio of the

light and sound velocities is of the order of 105 (a useful mnemonic rule

for many estimates is the rough approximation c/vF ∼ vF /vs ∼ 300, which

compares the speed of light and typical Fermi and sound velocities).

A fourth equation is obtained from the electric displacement D as given

in Eq. (B.2.11). In order to relate it to the electric-potential degree of

freedom ϕ, one notes that the piezoelectric solid is taken to be a dielectric

insulator, so that the absence of free charges implies ∇ ·D = 0. This fact
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adds the fourth equation to the previous ones arising for each spatial degree

of freedom, and these four equations together read now:

ρüi = cijkl
∂2uk
∂xj∂xl

+ ekij
∂2ϕ

∂xj∂xk
, i = 1, 2, 3 ,

0 = εjk
∂2ϕ

∂xj∂xk
− ejkl

∂2uk
∂xj∂xl

, (F.1.1)

analogous to the three equations in (D.1.2).

F.2 Plane waves in the bulk. Piezoelectric stiffen-

ing

For the simplest case of a plane wave in an infinite material, namely, a

wave described by the displacement in Eq. (D.2.1), the set of equations are

supplemented with the electric-potential degree of freedom. The solution is

assumed to be the real part of:

ui =Ai exp [i(ωt− k · r)] , i = 1, 2, 3,

ϕ =A4 exp [i(ωt− k · r)] . (F.2.1)

The new equations of motion, Eq. (F.1.1), modify the previous Christoffel

equations [see Eq. (D.2.2)]. Now it is necessary to solve:

ρω2ui = cijklkjkluk + ekijkjkkϕ , i = 1, 2, 3 ,

0 = ejklklkjuk − εjkkjkkϕ . (F.2.2)

After substitution in ϕ, the modified Christoffel equations read:[
ρω2δik − cijklkjkl −

(emknkmkn)(ejilkjkl)

εmnkmkn

]
Ak , i = 1, 2, 3 . (F.2.3)

This implies that one must address a new problem which appears to be

equal to the pure-elastic-wave-propagation problem in Sec. D.2 albeit with
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a correction to the coefficients matrix in Eq. (D.2.2) given by terms of the

form CiCk/C, with Ci = ejilkjkl, C = εjlkjkl. This correction takes into

account the new electric forces which appear in the material upon inclusion

of the piezoelectric effect and which are added to the elastic restoring forces.

This relative correction to the purely elastic problem is always of order

(relative to the term cijklkjkl) ê
2/ε̂ĉ and is called piezoelectric stiffening. It

is measured in a given direction by a number, called the electromechanical

coupling constant/factor, which is K2 = e2/εc in a rough 1D model, as it is

well illustrated in Ref. [30]. This very important number measures also the

relative change in velocity (v − v0)/v0 from an acoustic wave propagation

without piezoelectricity, whose velocity v0 is of the order of v0 ∼
√
ρ/ĉ (see

Sec. D.2), to the new scenario with piezoelectric-stiffened elastic constants

of the order ĉ→ ĉ (1 + ê2/ε̂ĉ).

Of fundamental importance for the topic of surface acoustic waves is the

boundedness of this coefficient, which will be seen to be very restricted to

small numbers, usually a few percent and sometimes zero for some specific

propagation directions, as can be seen in the change of the slowness surfaces

[22]. The more piezoelectric a material is (as measured by the constants of

the tensor ê, sometimes as big as dozens of C/m2), the bigger the constants

in ĉ and ε̂ are. For example, in quartz one has ĉ ∼ 0.1 C/m2 and ε ' 5 εvac,

so that the electromechanical factor for waves travelling along the Z-axis is

K2 = e233/c33ε33 ' 0.0085. The ferroelectric PZT has ê ' 20 C/m2, which

increases ê2 by four orders of magnitude, but ε turns to be so large (∼ 102-

103εvac) that K2 ' 0.36. An intermediate case is found in lithium niobate,

where ê is of order 1 C/m2 and ε some dozens of εvac, yielding K2 ' 0.027.

The smallness of these corrections also proves that the isotropic or purely

elastic approximation can be an excellent one in many cases. In particular,

it is still possible to speak of quasi-longitudinal or quasi-transversal waves.

More important for this work are the piezoelectric (quasi-)Rayleigh waves,

described for isotropic materials in App. E and detailed in Ch. 2.
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F.3 Power flow. Energy of a displacement field

Any acoustic disturbance in a piezoelectric crystal involves the generation,

storage and transport of energy. Their description comes from the basic

energetic considerations of these materials, as discussed in App. B.1 and

shown in Eqs. (B.1.5), (B.2.2).

The instantaneous internal-energy density is given from these considera-

tions by products of the form

Ep = Tijuij + EiDi , (F.3.1)

which must be added to the kinetic-energy density per unit volume at each

point, given by:

Ek =
1

2
ρu̇2

i . (F.3.2)

In the linear elasticity theory, when the linear Eqs. (B.2.11), (B.2.12)

hold, both quantities can be readily expressed in terms of just the four

fields ui, ϕ. For example, in an elastic, isotropic, non-piezoelectric material

as extensively studied in the Apps. E, D.3, the total energy functional can

be written [49, 51]:

E[u] =
1

2
ρ

∫
V
d3r

(ü)2 + (v2
l − 2v2

t )(∇ · u)2 + 2v2
t

∑
ij

(uij)
2

 , (F.3.3)

where the two acoustic (longitudinal and transversal) velocities are given in

terms of the elastic coefficients appearing in Hooke’s law, Eq. (D.3.4).

When the wave solutions are given in terms of the typical harmonic,

plane-wave, complex functions as in Eq. (F.2.1) and it is needed to compute

the time-average energy, it is easy to show that the mean values of the

previous energy densities are given by:

〈Ep〉 =
1

2
Re
(
Tiju

∗
ij + EiD

∗
i

)
, 〈Ek〉 =

1

2
Re

(
1

2
ρu̇iu̇

∗
i

)
=

1

4
ρu̇iu̇

∗
i .

(F.3.4)
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F.4 Poynting’s theorem for piezoelectrics

There exists a variant of Poynting’s theorem for piezoelectric media analo-

gous to the famous theorem for electromagnetic fields. The latter (merely

electromagnetic) theorem reads [56, 65]:

∂u

∂t
+∇ · S = −J ·E , (F.4.1)

where u = 1/2(E · D + B · H) is the energy density of the electric and

magnetic fields, J is the current density and S = E × H is the Poynting

vector. Integrating that differential expression in an arbitrary volume with

the aid of the divergence theorem, one finds an important energy-balance

result: the change in the electromagnetic energy in any region of the space

per unit time is given by the sum of the work exerted by the field forces

and the energy radiated outwards from the volume in that unit time. The

energy radiated away is given exactly by the flux of the Poynting vector S

through the surface embracing that volume.

Analogous principles operate in a piezoelectric material [18, 21, 56]. In

this scenario, the change of energy density stored in the fields is given by

the time derivative d/dt(Ek +Ep) of the sum of the energies in Eqs. (F.3.1),

(F.3.2). It can be shown from the wave equation (D.1.2) and both energy-

density expressions, that the work density w per unit volume exerted by the

mechanical and electric fields follows the rate

dw

dt
=

d

dt
(Ek + Ep) +∇ ·P , (F.4.2)

where the generalized piezoelectric Poynting vector is given by the expres-

sion:

Pi(r, t) = −Tij
∂uj
∂t

+ ϕ
∂Di

∂t
. (F.4.3)

Again, in the case of plane-wave, complex, harmonic solutions such as

those in Eq. (F.2.1), the piezoelectric time-averaged Poynting vector can be
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rewritten as

〈Pi(r, t)〉 =
1

2
Re

(
−Tij

∂u∗j
∂t

+ ϕ
∂D∗i
∂t

)
, (F.4.4)

which, when averaged in time, leads to (F.4.2).
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