Mateos, R.M. *et al.* 2002. Los materiales rocosos de la Sierra de Tramuntana (Mallorca). Caracterización geomecánica y clasificación geotécnica. *Boletín Geológico y Minero*, 113 (4): 415-427 ISSN: 0366-0176

Los materiales rocosos de la Sierra de Tramuntana (Mallorca). Caracterización geomecánica y clasificación geotécnica

R.M. Mateos⁽¹⁾, M. Ferrer⁽¹⁾ y L.I. González de Vallejo⁽²⁾

(1) Instituto Geológico y Minero de España, Ríos Rosas, 23. 28003 Madrid. E-mail: mallorca@igme.es

(2) Departamento de Geodinámica. UCM. Facultad de Ciencias Geológicas. Avda. Complutense s/n. 28040. Madrid. E-mail: vallejo@geo.ucm.es

RESUMEN

En la Sierra de Tramuntana de la Isla de Mallorca predominan los materiales rocosos de naturaleza carbonatada, de edades comprendidas entre el Triásico inferior y la actualidad, que configuran esta prominente cadena montañosa. Con la finalidad de obtener unos mapas de orientación geotécnica, que sirvan de base para trabajos de riesgos geológicos y/o actuaciones en el territorio, se han caracterizado los principales parámetros geotécnicos de estos materiales y establecido una clasificación geotécnica en base al valor medio de su resistencia. Esta clasificación define tres grupos de materiales rocosos: rocas blandas, rocas moderadamente duras y rocas duras. Los materiales más resistentes corresponden a las brechas calcáreas y conglomerados de cantos dolomíticos de la Formación calcarenítica de Sant Elm, de edad neógena, así como a las calizas de edad liásica, que constituyen el esqueleto principal de la Sierra de Tramuntana. Las relaciones entre los diferentes parámetros analizados ponen de manifiesto un aumento de la resistencia de la roca a medida que se incrementa el contenido en carbonatos y el grado de dolomitización.

Palabras clave: caracterización geomecánica, clasificación geotécnica, macizos rocosos, Mallorca, Sierra de Tramuntana

Rock materials in the Sierra de Tramuntana (Majorca Island, Spain). Geomechanical characterization and geotechnical classification

ABSTRACT

Rock materials, mainly dolostones and limestones, from low Triassic to present time, outcrops in the Tramuntana mountain range (Mallorca island). In order to get geotechnical - guidance maps to use in geological hazard applications and land-use studies, a characterisation of the main geotechnical parameters has been carried out. Based on the uniaxial compressive strength medium values obtained for each rock material, a geotechnical classification has been developed, making three groups: soft rocks, moderately hard rocks and hard rocks. The stronger materials are the carbonate breccias and conglomerates of the Neogene as well as the liasic limestones, the framework of the mountain chain. The geotechnical characterisation reveals an increase of the compressive strength in accordance with the carbonate content and the dolomitization grade of the sample.

Key words: geomechanical characterisation, geotechnical classification, Mallorca, rocks, Sierra de Tramuntana

Introducción

El conocimiento de las propiedades y del comportamiento geomecánico de los materiales es fundamental para llevar a cabo numerosos estudios en el campo de la ingeniería geológica, destacando los relacionados con la dinámica de laderas. Considerando las propiedades geomecánicas de los materiales como uno de los factores condicionantes más importantes de la susceptibilidad de una zona a este tipo de movimientos gravitacionales, se llevó a cabo una caracterización de los materiales rocosos que afloran en la Sierra de Tramuntana de la isla de Mallorca, con la finalidad de poder elaborar unos mapas de "orientación geotécnica" que, en base a los valores de resistencia a compresión simple obtenidos, clasifica el terreno en diferentes grupos. Estas cartografías pueden ser de enorme interés para una primera valoración de la resistencia del terreno, y se han utilizado en la Sierra de Tramuntana para el análisis de susceptibilidad por movimientos de ladera, superponiéndolos a otros de factores condicionantes (pendientes, hidrogeología, etc.), con la finalidad de localizar espacialmente las zonas inestables.

Localización geográfica y encuadre geológico

La Sierra de Tramuntana constituye una alineación montañosa paralela a la costa noroccidental de la isla de Mallorca, con una orientación NE-SO (Fig.1). Presenta una anchura media de 15 km y una longitud máxima de 89 km, desde el extremo más meridional (Sa Dragonera) hasta el más septentrional (Cap de Formentor). La línea de cumbres supera los 600 m, siendo el sector central el más elevado, con numerosas cimas con cotas superiores a los 1000 m, destacando el Puig Major como el pico más alto de la Sierra (1445 m s.n.m.).

La estructura geológica de la Sierra condiciona una vertiente meridional más suave y una vertiente septentrional o litoral mucho más accidentada y abrupta, con predominio de acantilados de gran altura sobre el mar.

Las rocas más antiguas de la Isla de Mallorca afloran en el litoral de la Sierra de Tramuntana y corresponden a pequeños retazos de metapelitas ligeramente metamorfizadas del Carbonífero (Rodríguez Perea, 1998). El resto de la serie corresponde a materiales desde el Triásico inferior (Buntsandstein) hasta la actualidad, existiendo dos remarcables discontinuidades estratigráficas a finales del Mesozoico v comienzos del Mioceno (Gelabert, 1998). De forma simplificada puede decirse que, excepto los materiales del Triásico inferior (Buntsandstein) y superior (Keuper), que son sedimentos terrígenos, el resto de la serie se caracteriza por sedimentos carbonatados v/o detrítico carbonatados, constituyendo las rocas carbonatadas del Lías el esqueleto principal de la Sierra. En la Fig. 2 se representa la columna estratigráfica de los materiales que forman la Sierra de Tramuntana (Gelabert et al., 1992), con la descripción de las litologías correspondientes a cada período.

Desde el punto de vista estructural, la Sierra de Tramuntana corresponde a un sistema imbricado de cabalgamientos vergentes hacia el NO, cuyo nivel regional de despegue está constituido por los materiales blandos del Keuper. El máximo de la orogenia alpina en esta cadena montañosa tuvo lugar durante el Mioceno inferior y medio, comenzando a partir del Serravalliense una etapa distensiva, caracterizada por grandes fallas normales, que configuran la isla con el actual sistema de altos y cubetas (Gelabert, 1998).

Fig.1. Localización del archipiélago balear y de la Sierra de Tramuntana en la Isla de Mallorca *Fig.1. Location of the Balearic islands and the Sierra de Tramuntana in the Majorca island*

Mateos, R.M. et al. 2002. Los materiales rocosos de la Sierra de Tramuntana (Mallorca)... Boletín Geológico y Minero, 113 (4): 415-427

Fig.2. Columna estratigráfica tipo de la Sierra de Tramuntana (Gelabert *et al.*, 1992) *Fig.2. Stratigraphical sketch of the Sierra de Tramuntana (Gelabert* et al., 1992)

Caracterización geomecánica de los materiales rocosos

La caracterización geotécnica de los materiales rocosos, en cuanto a sus propiedades físicas y mecánicas se refiere, puede realizarse a partir de determinadas características geológicas, como son la composición mineralógica, litología, porosidad, dureza de la matriz rocosa, número y tipo de discontinuidades del macizo rocoso, grado de fracturación, grado de alteración, etc. Estas propiedades geológicas condicionan la resistencia, deformabilidad y permeabilidad de los macizos rocosos; la textura y estructura mineralógica son también aspectos que proporcionan información sobre el comportamiento mecánico de las rocas (ITGE, 1999).

Un macizo rocoso, generalmente, es una combinación de roca intacta y fracturas, y es muy difícil obtener datos fiables de la resistencia del conjunto en laboratorio, debido a la dificultad de obtener una muestra inalterada que sea representativa del macizo (Norrish y Duncan 1996). Por ello, es necesario combinar los datos obtenidos del laboratorio con observaciones de campo, especialmente aquellas representativas de un análisis de las discontinuidades: número de familias, orientación, apertura, rugosidad, relleno, etc. (ISRM, 1981).

La caracterización geomécanica de los materiales rocosos que afloran en esta cadena montañosa se realizó a partir de reconocimientos y medidas de campo, testificación de sondeos realizados en la zona y resultados de ensayos de laboratorio realizados para este trabajo. Inicialmente se llevó a cabo una recopilación de datos de numerosos sondeos de reconocimiento geotécnico elaborados por diferentes empresas privadas y organismos públicos. Para aquellos materiales de los que no se disponía de información previa se han obtenido muestras para su estudio en laboratorio.

La caracterización geomecánica se ha realizado por grupos litológicos, que en algunos casos coinciden con períodos geológicos y en otros con distintas formaciones o unidades litológicas de diferentes edades. Para cada grupo litológico se definen previamente los tramos que lo constituyen y, si es posible, se analizan los parámetros geotécnicos para cada uno de ellos.

Descripción de los grupos litológicos

Bajo el punto de vista geotécnico, el criterio más extendido para la clasificación de suelos y rocas es el valor de la resistencia a compresión simple, estableciéndose el límite entre ambos en torno a 1 MPa (ISRM, 1981). Existe un campo intermedio de materiales con comportamiento de suelos duros-rocas blandas, con valores de resistencia a compresión uniaxial comprendidos entre 1 y 25 MPa (ISRM, 1981).

En la Tabla 1 se presentan los grupos litológicos analizados correspondientes a materiales rocosos propiamente dichos de la Sierra de Tramuntana. El resto de materiales descritos en la Fig. 2 corresponde a suelos y suelos duros-rocas blandas.

Descripción litológica	Edad
Areniscas rojas y blancas silíceas bien estratificadas	Triásico inferior (Buntsandstein)
Dolomías tableadas	Triásico medio (Muschelkalk)
Dolomías cristalinas de aspecto terroso	Triásico superior (Rethiense)
Calizas, dolomías y brechas carbonatadas	Lías
Brechas, conglomerados y areniscas Fm. Calcarenítica de Sant Elm	Mioceno

Tabla 1. Materiales rocosos en la Sierra de Tramuntana Table 1. Rock materials in the Sierra de Tramuntana

Areniscas silíceas del Buntsandstein

Afloran a lo largo de la costa en la mitad SO de la Sierra, en el tramo comprendido entre las localidades de Estellencs y Valldemossa. El afloramiento más extenso es el del Port des Canonge, donde enlaza con el afloramiento de la Cala de Valldemossa. Se trata de areniscas blancas y rojas de grano medio con intercalaciones de limolitas y microconglomerados, muy cementadas y bien estratificadas. Aparecen en bancos de 0,5-1,5 m de potencia. Están constituidas por granos subangulosos de cuarzo (30-70%) y fragmentos de pizarras (5-10%). Corresponden a facies fluviales y presentan estratificaciones cruzadas a gran escala de tipo festoneado. El espesor aproximado es de 120 m, presentando a techo y a muro niveles de lutitas micáceas rojas y verdosas (Rodríguez Perea, 1984).

La caracterización de estos materiales se ha llevado a cabo en los afloramientos del Port de Estellencs y Por des Canonge. Ante la no disponibilidad de datos previos, se ha realizado una campaña de toma de muestras en campo y determinaciones de resistencia con el martillo Schmidt, haciendo hincapié en el amplio margen de error que suele presentar este método.

Los resultados de los análisis mineralógicos realizados por difracción de rayos X se recogen en la Tabla 2.

	Areniscas blanquecinas	Areniscas rojas
Mineral principal	cuarzo	dolomita
Otros minerales	feldespato potásico	cuarzo, calcita y hematites
Accesorios y trazas	mica	feldespato, mica y clorita

Tabla 2. Análisis mineralógico de las areniscas del Buntsandstein mediante difracción de rayos X $% \left({{{\rm{T}}_{{\rm{A}}}} \right)$

Table 2. Mineralogy of white and red Buntsandstein sandstones by X-Ray difraction

El análisis estadístico de más de 150 determinaciones realizadas con el martillo Schmidt, determina unos valores modales de resistencia a compresión simple de las areniscas silíceas del Buntsandstein que oscilan entre 40-50 MPa.

Dolomías tableadas del Muschelkalk

Afloran en diversas zonas de la Sierra de Tramuntana, principalmente en el litoral debido a su posición estratigráfica.

Se trata de dolomías oscuras muy bien estratificadas (tableadas), en capas de 0,5-1,5 m, con el aspecto característico de "piel de elefante", así como dolomías de aspecto terroso y brechas dolomíticas con cantos de hasta 15 cm. Pueden aparecer intercalados tramos de arcillas y limolitas rojas, margas dolomíticas grises, dolomías laminadas, carniolas y brechas dolomíticas (ITGE, 1991).

Los materiales de las facies del Muschelkalk corresponden a depósitos de plataforma somera en ambiente intermareal (Rodríguez Perea, 1984).

En afloramientos cercanos a la Cala de Estellencs, que corresponden a los tramos basales del Muschelkalk, aparecen dolomías tabulares estratificadas donde se ha realizado una campaña de determinaciones con el Martillo Schmidt. El análisis estadístico de los valores de resistencia a compresión simple obtenidos, revela valores modales entre 40-50 MPa. El tramo litológico intermedio de la secuencia del Muschelkalk corresponde a margas dolomíticas grises, dolomías laminadas, carniolas y brechas dolomíticas. Este tramo aflora en la localidad de Deià, y se han obtenido diversos parámetros geotécnicos a partir de 6 sondeos de reconocimiento recogidos en la Tabla 3.

Con los datos existentes no se puede establecer una relación entre los valores de densidad aparente del material y los correspondientes a la resistencia a compresión uniaxial. Por la descripción de los testigos, aquellos que presentan un aspecto más margoso son los que ofrecen valores de resistencia menores.

Los escasos datos disponibles de este grupo de materiales parecen indicar un tramo basal de dolomías tabulares con aspecto de "piel de elefante", que ofrecen las mayores resistencias a compresión simple del conjunto, estimadas en torno a 40-50 MPa. A medida que ascendemos en la secuencia, el carácter margoso de los materiales del Muschelkalk se va acentuando y, a consecuencia de ello, la resistencia de la roca se hace menor, entrando en el campo de comportamiento de las rocas blandas, con valores de resistencia a compresión simple inferiores a 25 MPa.

Dolomías del Retiense

Los afloramientos de estos materiales son muy abundantes en la sierra, constituyendo generalmente la base de los fuertes relieves que originan las rocas del Lías. Éstos suelen aparecer recubiertos por sedimentos recientes de tipo coluvial. Al tratarse del tránsito gradual entre el Triásico y el Jurásico, en la base de la secuencia del Retiense aparecen sedimentos muy similares a los del Keuper: margas y alternancia de margas con carniolas, areniscas yesíferas y limolitas; hacia el techo de la secuencia los materiales van siendo cada vez más carbonatados. Así, las facies características del Retiense son dolomías cristalinas de aspecto terroso (Fig. 3), dolomicritas y microdolomías brechoides, todas ellas con niveles intercalados, más o menos abundantes, de margas versicolores. El conjunto de estos materiales se depositó en una plataforma somera de ambiente litoral de llanura de mareas (ITGE, 1991).

Fig. 3. Litologías características del Retiense: dolomías de aspecto terroso. Sondeo Son March (Pollença)

Fig. 3. Upper Triassic dolostones. Son March borehole (Pollença)

Sondeo-Muestra	Prof (m)	Litología	Densidad aparente (g/cm³)	Resistencia a compresión simple (MPa)
Deià1-M1	5,10-5,36	Carniola con elevada porosidad por disolución. Huecos rellenos de arcillas ocres.	2,31	19,1
Deià1-M2	7,92-8,10	Dolomía terrosa con planos de fractura muy marcados, a 45º respecto al eje del sondeo.	2,39	16,15
Deià2-M3	5,10-5,23	Margas de colores ocres, con planos de fractura muy marcados a 45º respecto al eje del sondeo.	2,46	7,2
Deià2-M4	8,40-8,66	Dolomía terrosa, con planos de fractura a 45° y 60° respecto al eje del sondeo. Algunos niveles karstificados con huecos rellenos de arcilla.	2,22	9,60
Deià3-M5	2,20-2,38	Carniola. Elevada porosidad secundaria.	2,54	11,6
Deià3-M6	5,60-5,75	Dolomía margosa muy alterada. Planos de fractura a 45° y 60° respecto al eje del sondeo.	2,24	8,2

Tabla 3. Valores de densidad aparente y resistencia a compresión simple de los materiales del Muschelkalk Table 3. Rock density and compressive strength values of the Muschelkalk materials Se han recopilado datos geotécnicos del Retiense de la Sierra de Tramuntana a partir de varios sondeos realizados en el área de Pollença. Los resultados de los ensayos de laboratorio se recogen en la Tabla 4.

El análisis estadístico realizado a los datos obtenidos, refleja unos valores medios de resistencia a compresión simple en las dolomías de aspecto terroso del Retiense de 16 MPa, resistencias muy bajas para considerar estos materiales como "rocas", ya que estarían en el campo de comportamiento de las rocas blandas (ISRM, 1981). Las facies de brechas dolomíticas representativas del techo del Retiense presentan valores medios de resistencia a compresión simple en torno a los 30,5 MPa. Este valor decrece significativamente con el grado de alteración de la roca.

Se establece una relación de tipo exponencial entre los valores de densidad aparente y de resistencia a compresión simple (Fig. 4).

Rocas carbonatadas del Lías

Constituyen las rocas más representativas y los principales relieves de la Sierra de Tramuntana: calizas carniolares, dolomías-calizas brechoides y calizas masivas karstificadas, todas ellas facies de una extensa plataforma carbonatada. La potencia de los materiales liásicos puede ser superior a los 300 m.

La secuencia tipo de los materiales carbonatados liásicos en la Unidad George Sand-Sa Calobra (franja litoral), de muro a techo, sería la siguiente (ITGE, 1991):

Fig. 4. Relación entre la resistencia a compresión simple y la densidad aparente en los materiales del Rethiense

Fig. 4. Compressive strength-density relation of the Rethiense materials.

- dolomías oscuras granudas de grano fino bien estratificadas en la base, que se brechifican enseguida, conservando al principio los restos de la estratificación.
- brechas oligomícticas con elementos de dolomías, calizas dolomíticas y calizas micríticas del Lías inferior (Fig. 5). En algunas zonas se presentan en forma de calizas dolomíticas y calizas micríticas sin brechificar. A techo, micritas más o menos zoógenas, brechificadas o no.
- calizas arenosas amarillentas con fauna y pasadas de microconglomerados con cemento y matriz calcárea. Bien estratificadas.

Sondeo-Muestra	Prof (m)	Litología	Resistencia a compresión simple (MPa)	Densidad aparente (g/cm³)
Giga1-M1	1,6-1,8	Brecha dolomítica	26,123	2,66
Giga1-M2	2,65-2,85	Brecha dolomítica con matriz arcillosa	26,74	2,63
Giga1-M4	6,10-6,27	Brecha con matriz arcillosa	12,16	2,51
Giga1-M5	7,5-8	Brecha dolomítica muy compacta (ausencia de fracturas)	39,1	2,65
Giga2-M6	6,25-6,50	Brecha dolomítica con fracturas rellenas de arcilla	39,24	2,64
Sport1-M2	7,25	Dolomía brechoide muy alterada	33,0	2,63
Sport3-M3	4,20	Dolomía brechoide	28,0	2,58
Sport3-M7	4,60	Dolomía brechoide oquerosa, alterada	22,01	2,54
Sport3-M8	4,9	Dolomía brechoide alterada	19,5	2,50
Son Marc-M6	60	Dolomías terrosas	43,83	2,6

Tabla 4. Valores de resistencia a compresión simple y densidad aparente de diferentes litologías del Rethiense *Table 4. Compressive strength and rock density values of the Rethiense materials* brechas oligomícticas con elementos que alcanzan como mínimo las facies titónicas.

En la Tabla 5 se recogen los parámetros geomecánicos y los datos de laboratorio recopilados para los materiales liásicos. La interpretación de la descripción litológica ha intentado ser lo más estricta posible, con la finalidad de poder caracterizar geomecánicamente los diferentes tramos del Lías. El RQD de los testigos recuperados de estos materiales varía entre el 50%-85%, según descripciones realizadas por el MOPU (1994).

Las dolomías grises de grano fino que constituyen los niveles inferiores del Lías muestran valores de resistencia a compresión simple entre 32,6 MPa y 85 MPa, estimándose un valor medio de 58,2 MPa, característico de dolomías con una densidad seca de 2,75 g/cm³ y módulo de elasticidad de 1,9 x 10⁴MPa.

Las brechas poligénicas calcodolomíticas presentan cantos generalmente angulosos, con un tamaño medio de 2-3 cm y máximo de 10-20 cm. La fábrica de estas brechas puede ser *clast-supported* o *matrixsupported* (ITGE, 1991). La resistencia a compresión simple oscila entre 32 MPa y 72 MPa, siendo el valor medio estimado de 50 MPa, para una densidad de la roca de 2,75 g/cm³ y módulo de elasticidad de 2,6 x 10⁴ MPa. El amplio intervalo de resistencias puede deberse a la litología de los clastos, y al comportamiento anisotrópico de estas brechas por la naturaleza y proporción del cemento.

Las dolomías cristalinas brechoides, que generalmente se superponen a las brechas descritas anteriormente, presentan al microscopio diversos grados de dolomitización. Estas brechas presentan valores

Fig. 5. Brechas dolomíticas del Lías. Sondeo Son March (ITGE, 1999). Fig.5. Lias breccias. Son March borehole (ITGE, 1999)

de resistencia a compresión simple entre 32 MPa-77 MPa, y parece clara una relación directamente proporcional entre el grado de dolomitización de la roca y su valor de resistencia a compresión simple. El valor medio estimado para estos materiales es de 55 MPa, para una densidad de 2,75 gr/cm³ y módulo de Young de 2,7 x 10⁴ MPa. No obstante, estas dolomías pueden mostrarse muy alteradas, como las ensayadas en los sondeos de Albercux (Pollença, en el extremo más septentrional de la Sierra de Tramuntana), donde los valores de RQD obtenidos no superan el 10%. Las fracturas aparecen rellenadas por limos y arcillas y se observan huecos por disolución. La resis-

Fig. 6. Relación entre el contenido en CO₃Ca y la resistencia a compresión uniaxial en las dolomías del Lías inferior

Fig. 6. CO_3Ca -compressive strength relation of the ower liasic dolostones

Fig. 7. Relación entre la densidad seca y resistencia a compresión simple en los materiales carbonatados del Lías

Fig. 7. Dry density-compressive strength relation of the liasic materials

Muestra-sondeo Prof. Muestra (m) Litología % CO,Ca Humeda natural % Densidad seca (g/cm) Resistencia compresión simple (MPa) 1.\$7 SGOP 104,7 257 SGOP Dolomías grises oscuras de grano fino 93 0 2,81 85,1 2.\$7 SGOP 109,7 Dolomías grises oscuras de grano fino 93 0 2,81 85,1 2.\$7 SGOP 112 oscuras de grano fino 98 0,42 2,77 75,2 2.\$4 SGOP 131,5 5 75 0 2,76 71,96 3.\$4 SGOP 133,45 e 68 0 2,77 73,31 3.\$4 SGOP 133,45 e 75 0 2,76 71,96 3.\$4 SGOP 150 5 75 0 2,77 73,31 5.84 SGOP 163,0 e 98 0,21 2,78 33,43 6.510 SGOP 185,0 5 98 0,22 2,77 35,53 9.510 SGOP 278,0 76 0 2,78							
1-57 SGOP 104,7 Dolomias 93 0 2,81 85,1 2-57 SGOP 112 oscuras de grano fino 68 0 2,77 75,3 3-57 SGOP 120 oscuras de grano fino 26 0 2,79 32,64 4-57 SGOP 120 oscuras de grano fino 39 0 2,69 71,59 1-54 SGOP 125,1 5 75 0 2,76 71,96 3-54 SGOP 131,5 5 75 0 2,76 71,96 3-54 SGOP 134,45 e 79 0 2,77 73,31 5-54 SGOP 150 5 75 0 2,77 73,31 5-54 SGOP 160 2 76 4,471 75 65,03 5-54 SGOP 163 6 0 2,77 73,31 65,55 5-54 SGOP 183,0 6 98 0,21 2,76 34,46 5-51 SGOP 183,0 6 98 0,228 2,78 58,58 5-510 SGOP 185,0 7	Muestra-sondeo	Prof. Muestra (m)	Litología	% CO ₃ Ca	Humedad natural %	Densidad seca (g/cm³)	Resistencia compresión simple (MPa)
2.57 SGOP 109,7 Dolomias co 2.67 307 375 3.57 SGOP 112 oscuras de 68 0 2,71 51,2 4.57 SGOP 120 oscuras de 68 0 2,71 51,2 4.57 SGOP 133 grano fino 39 0 2,69 46,97 1.54 SGOP 131,5 98 0 2,69 71,96 3.54 SGOP 131,5 75 0 2,76 71,96 3.54 SGOP 142 79 0 2,76 65,03 5.54 SGOP 150 75 0 2,77 73,31 6.54 SGOP 150 75 0 2,77 73,31 6.54 SGOP 163,0 98 0,21 2,76 34,33 6.510 SGOP 174,0 e 96 0,22 2,77 58,58 8.510 SGOP 218,0 <td< td=""><td>1-S7 SGOP</td><td>104 7</td><td></td><td>93</td><td>0</td><td>2 81</td><td>85 1</td></td<>	1-S7 SGOP	104 7		93	0	2 81	85 1
3.57 SGOP 112 oscillation optimes cell 0.7 1.53 3.57 SGOP 120 oscuras de grano fino 26 0 2.79 32.264 5.57 SGOP 133 grano fino 39 0 2.69 71.59 1.54 SGOP 131,5 5 5 75 0 2.76 71.96 3.54 SGOP 131,5 5 75 0 2.76 71.96 3.54 SGOP 134,45 e 68 0 2.77 73.31 3.54 SGOP 150 5 75 0 2.77 73.31 5.54 SGOP 150 5 75 0 2.77 73.31 5.54 SGOP 189 5 94 0 2.78 32.46 5.510 SGOP 174,0 e 96 0.223 2.77 34.55 5.510 SGOP 185,0 5 98 0 2.80 63.00 1.510 SGOP 253.0 9 9	2-S7 SGOP	109.7	Dolomías	68	0 42	2,01	75.3
4-57 SGOP 112 Oscuras de grano fino 26 0 2.79 32,04 5-57 SGOP 133 grano fino 39 0 2,69 46,97 1-54 SGOP 125,1 grano fino 39 0 2,69 71,59 2-54 SGOP 131,5 grano fino 75 0 2,76 71,96 3-54 SGOP 132,45 grano fino 79 0 2,73 32,63 4-54 SGOP 131,5 grano fino 79 0 2,76 71,96 3-54 SGOP 142 grano fino 79 0 2,77 73,31 6-54 SGOP 150 grano fino 98 0,21 2,76 3,43 6-510 SGOP 163,0 grano 98 0,22 2,77 34,55 5-510 SGOP 163,0 grano 98 0,22 2,77 58,45 5-510 SGOP 163,0 grano 98 0,22 2,77 58,45 5-510 SGOP 1	3-S7 SGOP	112	grises	68	0	2 71	51.2
5-57 SCOP 133 grano fino 39 0 2,69 49,97 1-S4 SGOP 125,1 9 98 0 2,69 71,59 2-54 SGOP 131,5 5 75 0 2,76 71,96 3-54 SGOP 133,45 6 79 0 2,75 66,03 3-54 SGOP 150 75 0 2,77 73,31 6-54 SGOP 150 75 0 2,76 44,71 7-54 SGOP 163,0 0 98 0,21 2,76 33,43 6-54 SGOP 163,0 0 98 0,21 2,76 33,43 6-510 SGOP 163,0 0 98 0,228 2,77 58,45 6-510 SGOP 185,0 9 98 0,28 2,78 58,88 8-510 SGOP 198,0 9 76 0 2,80 63,00 12-510 SGOP 278,0 9 98 0 2,74 63,94 </td <td>4-S7 SGOP</td> <td>120</td> <td>oscuras de</td> <td>26</td> <td>0</td> <td>2,79</td> <td>32.64</td>	4-S7 SGOP	120	oscuras de	26	0	2,79	32.64
1-S4 SGOP 125,1 2 98 0 2,69 71,59 2-S4 SGOP 131,5 5 75 0 2,76 71,96 3-S4 SGOP 132,45 e 68 0 2,73 32,63 4-S4 SGOP 142 - 79 0 2,75 65,03 5-S4 SGOP 150 - 75 0 2,77 73,31 6-S4 SGOP 154 5 0 2,76 44,71 7-S4 SGOP 163,0 0 98 0,21 2,76 33,43 6-S10 SGOP 163,0 0 98 0,22 2,77 34,85 7-S10 SGOP 189,0 - 96 0,22 2,77 58,45 9-S10 SGOP 211,0 9 96 0,22 2,77 58,45 11-S10 SGOP 278,0 9 76 0 2,80 63,00 12-S10 SGOP 278,0 9 98 0 2,78 32,37 13-S10 SGOP 278,0 9 98 0 2,78 32,	5-S7 SGOP	133	grano fino	39	0	2.69	46.97
1-54 SGOP 125.1						,	-,-
2-54 SGOP 131,5 b 75 0 2,76 71,96 3-54 SGOP 133,45 e 68 0 2,73 32,63 4-54 SGOP 142 -1 79 0 2,77 73,31 6-54 SGOP 150 -1 75 0 2,77 73,31 6-54 SGOP 154 -0 98 0 2,76 34,43 6-510 SGOP 163,0 - 98 0,21 2,76 34,43 6-510 SGOP 185,0 - 98 0,28 2,78 58,58 8-510 SGOP 185,0 - 98 0,28 2,77 58,58 8-510 SGOP 185,0 - 98 0,28 2,77 58,58 9-510 SGOP 211,0 - 98 0,27 2,77 58,45 10-SIO SGOP 278,0 - 98 0 2,78 32,37 11-SIO SGOP 368,5 - 68 0 2,74 63,00 12-SIO SGOP 370,1 - 98 0 <	1-S4 SGOP	125,1	<u>.</u>	98	0	2,69	71,59
3-54 SGOP 133,45 g 68 0 2,73 32,63 4-S4 SGOP 142 79 0 2,75 65,03 5-S4 SGOP 150 75 0 2,77 73,31 6-54 SGOP 150 75 0 2,77 73,31 6-54 SGOP 189 94 0 2,78 32,46 5-S10 SGOP 163,0 98 0,21 2,76 33,43 6-510 SGOP 174,0 g 96 0,23 2,77 34,55 7-S10 SGOP 185,0 98 0,22 2,77 58,58 8-510 SGOP 198,0 9-S10 SGOP 211,0 96 0,22 2,77 58,45 10-S10 SGOP 278,0 98 0 2,78 32,37 13-S10 SGOP 307,8 98 0 2,74 63,94 12-S10 SGOP 3	2-S4 SGOP	131,5	5	75	0	2,76	71,96
4-54 SGOP 142 9 79 0 2,75 65,03 5-S4 SGOP 150 75 0 2,77 73,31 6-S4 SGOP 154 94 0 2,78 32,46 5-S10 SGOP 163,0 0 98 0,21 2,76 34,43 6-S10 SGOP 163,0 0 98 0,23 2,77 34,55 7-S10 SGOP 185,0 98 0,28 2,78 58,58 8-S10 SGOP 198,0 98 0,22 2,77 58,45 10-S10 SGOP 253,0 97 6 0 2,80 63,00 12-S10 SGOP 278,0 97 98 0 2,80 63,00 12-S10 SGOP 278,0 97 98 0 2,80 63,00 12-S10 SGOP 307,8 98 0 2,83 77,63 31 15-S10 SGOP 307,8 98 0 2,83 77,63 31 1-S14 SGOP 288 9 0 2,74 63,94 1-S14 SGOP <t< td=""><td>3-S4 SGOP</td><td>133,45</td><td>σ</td><td>68</td><td>0</td><td>2,73</td><td>32,63</td></t<>	3-S4 SGOP	133,45	σ	68	0	2,73	32,63
5-54 SGOP 150 C 75 0 2,77 73,31 6-54 SGOP 154 D 86 0 2,76 44,71 7-54 SGOP 189 D 2,78 32,46 33,43 6-510 SGOP 163,0 98 0,21 2,76 33,43 6-510 SGOP 174,0 96 0,23 2,77 34,55 7-510 SGOP 185,0 9 96 0,22 2,77 58,58 8-510 SGOP 198,0 9 96 0,22 2,77 58,45 10-S10 SGOP 253,0 9 92 0 2,78 32,37 11-S10 SGOP 278,0 9 76 0 2,80 63,00 12-S10 SGOP 370,1 4 98 0 2,77 58,33 14-S10 SGOP 370,1 4 98 0 2,74 63,94 14-S10 SGOP 323 5 9 68 0 2,74 64,00 2-S14 SGOP 323 5 0 0 2,77 55,35	4-S4 SGOP	142	<u>.</u>	79	0	2,75	65,03
6-54 SGOP 154 5 86 0 2,76 44,71 7-S4 SGOP 189 6 94 0 2,78 32,46 5-S10 SGOP 163,0 6 98 0,21 2,76 33,43 6-S10 SGOP 174,0 e 96 0,23 2,77 34,55 7-S10 SGOP 185,0 5 98 0,28 2,78 58,58 8-S10 SGOP 189,0 6 76 0 2,79 45,30 9-S10 SGOP 211,0 96 0,22 2,77 58,45 10-S10 SGOP 253,0 92 0 2,78 45,30 11-S10 SGOP 278,0 76 0 2,80 63,00 12-S10 SGOP 307,8 9 98 0 2,74 63,94 14-S10 SGOP 368,5 9 68 0 2,74 63,94 14-S10 SGOP 370,1 4 98 0 2,73 55,35 3-514 SGOP 223 100 0 2,77 55,35 3-514	5-S4 SGOP	150	L D	75	0	2,77	73,31
7-54 SGOP 189 0 2,78 32,46 5-S10 SGOP 163,0 0 98 0,21 2,76 33,43 6-S10 SGOP 174,0 e 96 0,23 2,77 34,55 7-S10 SGOP 185,0 0 98 0,28 2,78 58,58 8-S10 SGOP 198,0 0 0 2,79 45,30 9-S10 SGOP 211,0 0 96 0,22 2,77 58,45 10-S10 SGOP 253,0 97 92 0 2,79 45,30 11-S10 SGOP 278,0 97 76 0 2,80 63,00 12-S10 SGOP 370,7 49 98 0 2,74 63,94 14-S10 SGOP 370,1 4 98 0 2,83 77,63 1-S14 SGOP 238 9 100 0 2,77 55,35 3-S14 SGOP 323 6 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 33,87	6-S4 SGOP	154	ð	86	0	2,76	44,71
5-S10 SGOP 163,0 a 98 0,21 2,76 33,43 6-S10 SGOP 174,0 a 96 0,23 2,77 34,55 7-S10 SGOP 198,0 a 98 0,28 2,78 58,58 8-S10 SGOP 198,0 a a 96 0,22 2,77 58,45 10-S10 SGOP 253,0 a a 96 0,22 2,79 45,30 11-S10 SGOP 278,0 b a 96 0,22 2,77 58,45 10-S10 SGOP 278,0 b a 92 0 2,79 45,30 11-S10 SGOP 307,8 a a 98 0 2,74 63,00 12-S10 SGOP 307,8 a a 98 0 2,74 64,00 13-S10 SGOP 370,1 a g 98 0 2,74 64,00 2-S14 SGOP 323 c 100 0 2,76 75,44 4-S14 SGOP 337 o 98 0,20 2,66 41,7	7-S4 SGOP	189		94	0	2,78	32,46
6-S10 SGOP 174,0 re 96 0,23 2,77 34,55 7-S10 SGOP 185,0 0 0 0,28 2,78 58,58 8-S10 SGOP 198,0 0 0 0,22 2,77 58,45 10-S10 SGOP 211,0 m 96 0,22 2,77 58,45 10-S10 SGOP 278,0 pp 76 0 2,80 63,00 12-S10 SGOP 307,8 q 98 0 2,74 63,94 14-S10 SGOP 368,5 0 2,74 63,94 32,37 32,37 13-S10 SGOP 370,1 q 98 0 2,74 64,00 2-S14 SGOP 238 s 100 0 2,77 55,35 3-S14 SGOP 323 E 100 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63	5-S10 SGOP	163,0	d	98	0,21	2,76	33,43
7-S10 SGOP 185,0 10 98 0,28 2,78 58,58 8-S10 SGOP 198,0 96 0,22 2,77 58,45 10-S10 SGOP 211,0 m 96 0,22 2,77 58,45 10-S10 SGOP 211,0 m 96 0,22 2,77 58,45 10-S10 SGOP 278,0 10 76 0 2,80 63,00 12-S10 SGOP 307,8 92 98 0 2,78 32,37 13-S10 SGOP 307,8 94 98 0 2,74 63,94 14-S10 SGOP 368,5 98 0 2,74 63,94 14-S10 SGOP 370,1 10 98 0 2,74 64,00 2-S14 SGOP 238 98 0,20 2,66 41,72 5-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,58 26,3 33,87 <td>6-S10 SGOP</td> <td>174,0</td> <td>а</td> <td>96</td> <td>0,23</td> <td>2,77</td> <td>34,55</td>	6-S10 SGOP	174,0	а	96	0,23	2,77	34,55
8-S10 SGOP 198,0 0 0 0 0 0,22 2,77 58,45 10-S10 SGOP 211,0 0 96 0,22 2,77 58,45 10-S10 SGOP 253,0 0 92 0 2,79 45,30 11-S10 SGOP 278,0 0 76 0 2,80 63,00 12-S10 SGOP 307,8 0 2,78 32,37 13-S10 SGOP 368,5 0 2,74 63,94 14-S10 SGOP 370,1 10 98 0 2,83 77,63 1-S14 SGOP 238 0 2,74 64,00 2,77 55,35 3-S14 SGOP 264 100 0 2,77 55,35 3-S14 SGOP 323 0 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3,52 2,58 28,03 </td <td>7-S10 SGOP</td> <td>185,0</td> <td>c L</td> <td>98</td> <td>0,28</td> <td>2,78</td> <td>58,58</td>	7-S10 SGOP	185,0	c L	98	0,28	2,78	58,58
9-S10 SGOP 211,0 m 96 0,22 2,77 58,45 10-S10 SGOP 253,0 92 0 2,79 45,30 11-S10 SGOP 278,0 976 0 2,80 63,00 12-S10 SGOP 307,8 98 0 2,78 32,37 13-S10 SGOP 368,5 98 0 2,83 77,63 13-S10 SGOP 368,5 98 0 2,83 77,63 14-S10 SGOP 370,1 40 98 0 2,83 77,63 1-S14 SGOP 238 98 0 2,74 64,00 2-S14 SGOP 264 98 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3,58 2,58 28,03 2-S14 ALBERCUX	8-S10 SGOP	198,0	e				
10-S10 SGOP 11-S10 SGOP 12-S10 SGOP 12-S10 SGOP253,0 278,0 307,892 0 98 98 98 98 0 0 2,78 98 0 2,74 0 2,74 2,83 0 2,74 4,94 3,30 2,74 4,91 4,530 4,510 SGOP 3,510 SGOP 3,510 SGOP 2,514 SGOP 3,510 SGOP 2,514 SGOP 3,514 SGOP 	9-S10 SGOP	211,0	Δ	96	0,22	2,77	58,45
11-S10 SGOP 278,0 1 76 0 2,80 63,00 12-S10 SGOP 307,8 98 0 2,78 32,37 13-S10 SGOP 368,5 9 68 0 2,74 63,94 14-S10 SGOP 370,1 1 98 0 2,83 77,63 1-S14 SGOP 238 9 100 0 2,74 64,00 2-S14 SGOP 264 9 100 0 2,77 55,35 3-S14 SGOP 323 100 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 3,87 2-S14 LBERCUX 7,25 brechoide 2,63 33,87 3.849 1-S1 ALBERCUX 7,20 oquerosa 2,54 22,27 8.83 28,03 3.87 3-S2 ALBERCUX 4,90 alterada 2,50 35,16	10-S10 SGOP	253,0	s S	92	0	2,79	45,30
12-S10 SGOP 307,8 98 0 2,78 32,37 13-S10 SGOP 368,5 68 0 2,74 63,94 14-S10 SGOP 370,1 98 0 2,83 77,63 1-S14 SGOP 238 98 0 2,74 64,00 2-S14 SGOP 238 98 0 2,77 55,35 3-S14 SGOP 264 100 0 2,77 55,35 3-S14 SGOP 323 E 100 0 2,776 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX <t< td=""><td>11-S10 SGOP</td><td>278,0</td><td>i de</td><td>76</td><td>0</td><td>2,80</td><td>63,00</td></t<>	11-S10 SGOP	278,0	i de	76	0	2,80	63,00
13-S10 SGOP 368,5 0 2,74 63,94 14-S10 SGOP 370,1 98 0 2,83 77,63 1-S14 SGOP 238 98 0 2,74 64,00 2-S14 SGOP 264 98 0 2,77 55,35 3-S14 SGOP 323 E 100 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 0 2,78 33,87 3-S2 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,90 oquerosa 2,54 22,27 8-S3 ALBERCUX 4,99 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	12-S10 SGOP	307,8	ou	98	0	2,78	32,37
14-S10 SGOP 370,1 I.G. 98 0 2,83 77,63 1-S14 SGOP 238 98 100 0 2,74 64,00 2-S14 SGOP 264 100 0 2,77 55,35 3-S14 SGOP 323 E 100 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,99 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	13-S10 SGOP	368,5	C D	68	0	2,74	63,94
1-S14 SGOP 238 ^o 100 0 2,74 64,00 2-S14 SGOP 264 ^o 100 0 2,77 55,35 3-S14 SGOP 323 ^o 100 0 2,76 75,44 4-S14 SGOP 337 ^o 98 0,20 2,66 41,72 5-S14 SGOP 340,25 ^o 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza ^o 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide ^o 2,58 28,03 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 39,90 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 2,62 28,59 con oquedades con oquedades ^o 2,62 28,59 26,59	14-S10 SGOP	370,1	ž	98	0	2,83	77,63
2-S14 SGOP 264 0 2,77 55,35 3-S14 SGOP 323 0 100 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	1-S14 SGOP	238	S	100	0	2,74	64,00
3-S14 SGOP 323 b 100 0 2,76 75,44 4-S14 SGOP 337 0 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	2-S14 SGOP	264) (a	100	0	2,77	55,35
4-S14 SGOP 337 - 98 0,20 2,66 41,72 5-S14 SGOP 340,25 0 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	3-S14 SGOP	323	Ĕ	100	0	2,76	75,44
5-S14 SGOP 340,25 C 100 0 2,78 38,49 1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	4-S14 SGOP	337	0	98	0,20	2,66	41,72
1-S1 ALBERCUX 2,58 Caliza 2,63 42,93 2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	5-S14 SGOP	340,25	Δ	100	0	2,78	38,49
2-S1 ALBERCUX 7,25 brechoide 2,63 33,87 3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59	1-S1 ALBERCUX	2,58	Caliza			2,63	42,93
3-S2 ALBERCUX 4,20 oquerosa 2,58 28,03 7-S3 ALBERCUX 4,60 muy 2,54 22,27 8-S3 ALBERCUX 4,9 alterada 2,50 35,16 5-S2 ALBERCUX 7,30 Caliza nodulosa 2,61 39,90 6-S2 ALBERCUX 8,8 Caliza nodulosa con oquedades 2,62 28,59	2-S1 ALBERCUX	7,25	brechoide			2,63	33,87
7-S3 ALBERCUX4,60muy alterada2,5422,278-S3 ALBERCUX4,9alterada2,5035,165-S2 ALBERCUX7,30Caliza nodulosa2,6139,906-S2 ALBERCUX8,8Caliza nodulosa con oquedades2,6228,59	3-S2 ALBERCUX	4,20	oquerosa			2,58	28,03
8-S3 ALBERCUX4,9alterada2,5035,165-S2 ALBERCUX7,30Caliza nodulosa2,6139,906-S2 ALBERCUX8,8Caliza nodulosa con oquedades2,6228,59	7-S3 ALBERCUX	4,60	muy			2,54	22,27
5-S2 ALBERCUX7,30Caliza nodulosa2,6139,906-S2 ALBERCUX8,8Caliza nodulosa2,6228,59con oquedadescon oquedades2,6228,59	8-S3 ALBERCUX	4,9	alterada			2,50	35,16
6-S2 ALBERCUX 8,8 Caliza nodulosa 2,62 28,59 con oquedades	5-S2 ALBERCUX	7,30	Caliza nodulosa			2,61	39,90
con oquedades	6-S2 ALBERCUX	8,8	Caliza nodulosa			2,62	28,59
			con oquedades				

Mateos, R.M. et al. 2002. Los materiales rocosos de la Sierra de Tramuntana (Mallorca)... Boletín Geológico y Minero, 113 (4): 415-427

Tabla. 5. Parámetros geotécnicos de datos de laboratorio en muestras del Jurásico inferior (Lías) Table. 5. Geotechnical parametres of the liasic samples

tencia a compresión simple de estos materiales es menor que en el resto de los materiales liásicos anteriores, oscilando entre 22 y 42 MPa, con un valor medio de unos 30 MPa.

En la Fig. 6 se representa la relación lineal existente entre el contenido en CO₃Ca y el valor de resistencia a compresión simple de los materiales del Lías. A mayor proporción de CO₃Ca mayor es la resistencia del material. Este hecho queda constatado por Kavvadas y Anagnostopoulus (1998) en numerosas muestras de carbonatos analizadas en el sur de Grecia.

En la Fig. 7 se observa la relación de tipo potencial establecida entre la densidad seca de la muestra y el valor de resistencia a compresión simple. No obstante, cabe resaltar una gran nube de puntos con valores de densidad seca entre 2,7-2,8 g/cm³ con valores de resistencia a compresión simple muy variables, entre 30-85 MPa.

El Instituto Geológico y Minero de España, en el año 1996, realizó un sondeo de investigación en el entorno de la Fuente de S'Almadrava (Pollença). Se llevaron a cabo numerosos ensayos de laboratorio en testigos del Lías superior e inferior, entre ellos, un ensayo de corte directo en una de las muestras del Lías inferior que estaba afectada por un plano neto de discontinuidad. Los resultados se resumen en las Tablas 6 y 7.

Se obtienen unos valores de resistencia al corte medios para la cohesión y muy elevados para la fric-

Mateos, R.M. et al. 2002. Los materiales rocosos de la Sierra de Tramuntana (Mallorca)... Boletín Geológico y Minero, 113 (4): 415-427

Muestra	Densidad seca (g/cm³)	Resistencia a compresión simple σ, (MPa)	Módulo de Young (MPa)	Co (I	Corte D hesión MPa)	irecto Ár de f	igulo ricción
				Pico	Residual	Pico	Residual
8 a	2,69	118,5	13529	0,3	0,12	60°	49°
8 b	2,70	87,4	17448				
12	2,70	134,3	30749				

Tabla 6. Parámetros de resistencia para las muestras del Lías obtenidas en el sondeo S'Almadrava 96 Tabla 6. Strength parameters of the liasic samples. S'Almadrava borehole

Muestra	Profundidad (m)	Litología	Porosidad %	Densidad seca (g/cm³)	$\rm CO_{_3}$ Ca %
8 a, b	6,8	Caliza micrítica (Lías sup.)	1,56	2,69 2,70	89,70
12	95	Brecha calcárea (Lías inf.)	0,61	2,70	92,4

Tabla 7. Parámetros de identificación. Las muestras del Lías obtenidas en el sondeo S'Almadrava 96 Tabla 7. Properties of the liasic samples from the S'Almadrava 96 borehole

ción. Las curvas de tensión tangencial-deformación obtenidas en los ensayos de corte directo muestran una rápida caída de la resistencia tras alcanzar los valores de pico, y un amplio desarrollo de la curva de resistencia residual.

Formación calcarenítica de Sant Elm (Neógeno)

En el Terciario de la Sierra de Tramuntana, Rodríguez Perea (1984) diferencia dos secuencias sinorogénicas desarrolladas durante el Neógeno inferior y medio: la Formación calcarenítica de Sant Elm y la Formación turbidítica de Banyalbufar.

La Formación calcarenítica de Sant Elm se caracteriza por una distribución irregular a lo largo de toda la isla. Sus afloramientos están formados predominantemente por calcarenitas más o menos bioclásticas, aún cuando los conglomerados y las brechas son también frecuentes. Representan mayoritariamente facies litorales, aunque también se encuentran presentes depósitos continentales de ambiente restringido o plataforma abierta. El límite inferior de la formación presenta carácter erosivo sobre los materiales mesozoicos y paleógenos.

Los depósitos continentales de esta formación están representados por brechas calcáreas, con proporción variable de una matriz limoso rojiza. Los tamaños de los cantos oscilan entre pocos centímetros y cerca de un metro. Representan facies proximales de abanico aluvial.

Los sedimentos litorales presentan diversas asociaciones de facies, básicamente conglomerados y calcarenitas, siendo estas últimas las más características de la formación; en general son masivas y bioturbadas. Pueden encontrarse también sedimentos correspondientes a ambientes restringidos, como calcisiltitas o facies arrecifales (Deià), de escasa representación en la serie.

Para caracterizar desde el punto de vista geomecánico los materiales correspondientes a esta formación, se han ensayado los testigos de roca de los sondeos llevados a cabo por el IGME en la Vall de Son Marc y Fuente de la Almadrava (Pollenca), durante los años 1996-1999. Las muestras ensayadas de la Vall de Son Marc corresponden a facies proximales de abanico submarino donde predominan los conglomerados y brechas con cantos subredondeados poligénicos y heterométricos, en una matriz arenosa muy recristalizada, mientras que la misma formación en las inmediaciones de la Fuente de la Almadrava presenta facies más distales, con mayor presencia de niveles de sedimentos margosos. La recuperación de testigos de esta formación durante la perforación fue muy alta (98%) en todos los sondeos, con un RDQ del orden del 80% (Fig. 8).

En la Tabla 8 se recogen los valores de diferentes propiedades geotécnicas obtenidas a partir de ensayos de laboratorio realizados a testigos de roca de esta Formación.

En base a los resultados obtenidos, las brechas y conglomerados de la Formación calcarenítica de Sant Elm presentan valores altos de resistencia a compresión simple, superiores a 70 MPa. La muestra nº 7 ofrece resistencias menores por romper a favor de un plano neto de fractura definido en la roca.

Fig. 8. Facies conglomeráticas de la Fm. calcarenítica de Sant Elm. Sondeo "Son Marc"

Fig. 8. Conglomerates of Sant Elm Formation. "Son March" borehole

Esta formación se conoce en el ámbito local como "la basal", y en numerosos casos es muy difícil de diferenciar de las brechas liásicas, ya que apenas hay diferencias litológicas. Los valores de resistencia de la roca son similares en ambas formaciones y, desde el punto de vista paisajístico, las morfologías son muy parecidas.

Clasificación geotécnica

Una vez caracterizadas desde el punto de vista geomecánico las diferentes litologías rocosas que afloran en la Sierra de Tramuntana, se establece una clasificación geotécnica en base al valor medio de la resistencia a compresión simple. Esta propiedad es la más frecuentemente medida en las rocas, por lo que son numerosas las clasificaciones de materiales rocosos basadas en este parámetro. En la Tabla 9 se recogen los criterios de clasificación propuestos por la International Society of Rock Mechanics (ISRM) en 1981 y la Geological Society of London en 1970.

En la Tabla 10 se recogen los valores medios de resistencia a compresión simple de los materiales rocosos analizados en la Sierra de Tramuntana y se clasifican según los criterios definidos por el ISRM (1981).

A partir de la clasificación anterior y de las propiedades geotécnicas de los materiales rocosos que afloran en la zona de estudio, se definen tres grupos (Tabla 11): rocas blandas, rocas moderadamente duras y rocas duras.

Aplicaciones

La clasificación establecida para los materiales rocosos que afloran en la Sierra de Tramuntana ha sido empleada para la elaboración de mapas de orientación geotécnica a escala 1:25.000. Estos mapas de orientación geotécnica pueden tener numerosas aplicaciones. Se han utilizado como cartografías básicas para el análisis de susceptibilidad por movimientos de ladera, superponiendo estos mapas a los correspondientes a otros factores condicionantes, tales como pendientes, geomorfológico etc. Pueden ser

Sondeo-Muestra	Prof (m)	Litología	Absorción %	Porosidad %	CO ₃ ²⁻ %	Densidad seca (g/cm³)	Módulo de Young (MPa)	oc (MPa)
Almadrava 96-10	37	Conglomerados y microconglomerados fuertemente cementados.	0,82	2,19	63,00	2,65	27005	86,1
Son Marc-7	41	Brechas calcáreas, cantos poligénicos, heterométricos y muy angulosos. Matriz cristalina dolomitizada.			90,8	2,6		30,58
Son Marc-8	55	Conglomerados de cantos poligénicos m heterométricos y redondeados. Matriz cristalina.	γγ		91,2	2,6		77,71

Tabla 8. Resultados de laboratorio de diferentes propiedades geotécnicas. Formación Calcarenítica de Sant Elm Table 8. Engineering properties of the Sandstone Sant Elm Formation materials

Resistencia a la compresión simple (MPa)	ISRM (1981)	Geological Society of London (1970)	Ejemplos en rocas carbonatadas
1-5	Muy blanda	Blanda >1.25	
5-12.5	Planda	Moderadamente blanda	Margas
12.5-25	Біапца		
25-50	Moderadamente dura	Moderadamente dura	Margocaliza o caliza o caliza margosa. Calcarenita
50-100	Dura	Dura	Caliza y dolomía porosa
100-200	Muy dura	Muy dura	Calizas y dolomías
>200		Extremedamente dura	
>250	Extremadamente dura		

Tabla 9. Clasificación de las rocas a partir de su resistencia a compresión simple (modificado de Vallejo *et al.*, 2002) Table 9. Rock classification based on the uniaxial compressive strength (modified from Vallejo et al., 2002)

Edad Formación	Litología	Resistencia a compresión simple (MPa)	Clasificación ISRM (1981)
NEÓGENO			
Fm. Calcarenítica de Sant Elm	Areniscas, calizas, brechas y conglomerados	70	Rocas duras
JURÁSICO INF.			
Lías	Brechas dolomíticas, calizas y carniolas	50-60	Rocas duras
TRIÁSICO			
Rethiense	Dolomías terrosas	16	Rocas blandas
	Brechas dolomíticas	30,5	Rocas moderadamente duras
Muschelkalk	Dolomías tabulares "piel de elefante"	40-50	Rocas moderadamente duras
	dolomías margosas	25	Rocas blandas
Buntsandstein	Areniscas silíceas	40-50	Rocas moderadamente duras

Tabla 10. Valores medios de resistencia a compresión simple según litologías y clasificación geotécnicaTable 10. Compressive strength average values in order to lithology and geotechnical classification

una herramienta fundamental en el campo de la construcción e infraestructuras, ya que permiten prever los problemas geotécnicos que puedan tener lugar en cada zona. Diversas actuaciones como la excavación de taludes, diseño de cimentaciones, corrección de taludes inestables etc., pueden servirse de toda la información preliminar presentada, donde se establecen los valores medios de los principales parámetros geotécnicos, y especialmente el valor de resistencia a compresión simple.

No obstante, como su nombre indica, los mapas elaborados son de orientación, e implícitamente recogen el valor de resistencia a compresión simple de la matriz rocosa. El comportamiento mecánico del maciMateos, R.M. et al. 2002. Los materiales rocosos de la Sierra de Tramuntana (Mallorca)... Boletín Geológico y Minero, 113 (4): 415-427

Clasificación ISRM (1981)	Grupo litológico
Rocas blandas	 Dolomías margosas y carniolas del Muschelkalk Dolomías terrosas de la base del Rethiense
Rocas moderadamente duras	 Areniscas silíceas del Buntsandstein Dolomías tabulares del Muschelkalk Dolomías, calizas dolomíticas y brechas del Rethiense
Rocas duras	 Rocas carbonatadas del Lías Brechas y conglomerados de la Fm. calcarenítica de Sant Elm de edad Neógeno

Tabla 11. Clasificación geotécnica de los materiales rocosos de la Sierra de Tramuntana Table 11. Geotechnical classification of rock materials in the Sierra de Tramuntana

zo rocoso deberá ser evaluado teniendo en cuenta otros factores tales como el grado de fracturación y meteorización, la presencia de agua, la orientación y tipo de discontinuidades que lo afectan, el tamaño de los bloques, etc.

En la Fig. 9 se representa un fragmento del mapa de orientación geotécnica del entorno de la localidad de Deià, en el sector central de la Serra de Tramuntana.

Conclusiones

En la Sierra de Tramuntana afloran macizos rocosos de edades comprendidas entre el Triásico inferior y la actualidad, con predominio de las rocas carbonata-

Fig. 9. Mapa de orientación geotécnica en el área de Deià *Fig. 9. Guidance geotechnical map of the area of Deia*

das de edad liásica, brechas dolomíticas, calizas y carniolas, que constituyen el esqueleto de esta cadena montañosa.

La caracterización geomecánica de los diferentes materiales rocosos se ha realizado a partir de datos de campo, sondeos y ensayos de laboratorio. El valor medio de resistencia a compresión simple de la matriz rocosa ha permitido realizar una clasificación geotécnica, aplicando los criterios establecidos por la ISRM en 1981, definiendo tres grupos de materiales: rocas blandas, rocas moderadamente duras y rocas duras.

Como rocas blandas se han clasificado las dolomías margosas y carniolas del techo del Muschelkalk así como las dolomías terrosas de la base del Retiense. Estos materiales ofrecen resistencias a compresión uniaxial comprendidas entre 15-25 MPa.

Como rocas moderadamente duras se han definido las areniscas silíceas del Buntsandstein, las dolomías tabulares de la base del Muschelkalk y las dolomías y calizas dolomíticas del Retiense. Estos materiales ofrecen valores de resistencia a compresión simple comprendidas entre 30-50 MPa.

Como rocas duras, con valores de resistencia a compresión uniaxial superiores a 50 MPa e inferiores a 100 MPa, se incluyen tanto las brechas y conglomerados de la Formación calcarenítica de Sant Elm, de edad Neógeno, como las calizas, brechas y dolomías de edad liásica. En estos últimos materiales, que constituyen los principales relieves de la Sierra, se ha comprobado que la resistencia de la roca aumenta a medida que se incrementa el contenido en carbonatos de la misma.

En todos los materiales se establece una relación directamente proporcional entre la densidad de las rocas y su resistencia a compresión simple; la porosidad secundaria disminuye los parámetros de resistencia.

La clasificación geotécnica de las rocas, a partir de su resistencia a compresión simple, sirve como base

para la elaboración de mapas de orientación geotécnica, una herramienta con numerosas aplicaciones en el campo de los riesgos geológicos y la ordenación del territorio.

Agradecimientos

Queremos agradecer a las empresas Laboratorio Balear para la construcción, S.A. y H_2O , S.L., por facilitar los datos de laboratorio.

Este trabajo ha sido financiado por el Ministerio de Ciencia y Tecnología y FEDER, con el Proyecto REN2001-3378.

Referencias

- Gelabert, B., 1998. *La estructura geológica de la mitad occidental de la Isla de Mallorca*. Tesis doctoral. Colección Memorias ITGE. 129 pp.
- Gelabert, B., Sábat, F. y Rodríguez Perea, A., 1992. A structural outline of the Serra Tramuntana of Mallorca (Balearic Island). *Tectonophysics*, 203, 167-183.
- González de Vallejo, L.I., Ferrer, M. Ortuño, L. y Oteo, C., 2002. *Ingeniería Geológica*. Prentice Hall. 715 pp.
- ISRM, 1981. Suggested methods for rock characterization, testing and monitoring. ISRM. Suggested methods. Ed. E.T. Brown. Pergamon Press.
- I.T.G.E., 1999. Manual de campo para la descripción y caracterización de macizos rocosos en afloramientos.

Editores Mercedes Ferrer y Luis I. González de Vallejo. 83 pp.

- I.T.G.E., 1991. *Mapa Geológico de España. Hoja de Sóller* 670, 1:50.000. Serie MAGNA.
- Kavvadas, M.J. & Anagnostopolus, A.G., 1998. A framework for the mechanical behaviour of structured hard soils. The geotechnics of hard soils-soft rocks (2). Evangelista & Picarelli (eds). 1998 Balkema. 591-603
- Mateos, R.M. y López García, J.M. 1997,1998. Informes técnicos sobre los sondeos de investigación realizados en la zona de Pollença: Son Marc, Can Sureda, Almadrava 96, Almadrava 97. Inédito. Oficina de Proyectos del IGME en Baleares.
- MOPU, DGOH., 1994. *Túnel de Sa Costera-Sóller. Geología y sondeos*. Inédito. Direcció General de Recurs Hídrics del Govern Balear. 72 pp.
- Norrish, N.I. and Duncan, W., 1996. Stabilization of rock slopes. Landslides: Investigation and Mitigation. Special Report 247. Transportation Research Board. National Research Council. Chapter 14. 372-390.
- Rodríguez Perea, A., 1984. *El Mioceno de la Serra Nord de Mallorca. Estratigrafía, sedimentología e implicaciones estructurales.* Tesis doctoral. Universidades de las Islas Baleares y Barcelona. 532 pp.
- Rodríguez Perea, A. 1998. *La geología de la Serra de Tramuntana. La Serra de Tramuntana, aportacions per a un debat.* Papers de Medi Ambient. Sa Nostra Ed. 11-22.

Recibido: Septiembre 2001 Aceptado: Septiembre 2002