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A B S T R AC T

T
he work of this thesis is focused on the analysis of fluctuating electromagnetic fields
(area denoted optical coherence) applied to optical forces (conservation of momentum
of light). The theory of optical forces for deterministic fields is a thoroughly studied

area. The main consequences are commonly applied to the area of biology, where the trapping of
particles is of vital importance. However, the effect of the fluctuations of the fields generated by
an optical source is often neglected. Hitherto, we did not know almost anything about the effects
of the fluctuation fields in the mechanical action of particles, i.e, if they could be beneficial
or harmful when put into practice. This thesis will try to propose simple models which will
help to understand this new feature of light. Although this thesis is purely theoretical, we have
attempted to provide experimental proposals as well as we have tried to estimate the physical
quantities which could be measured in a laboratory.

The origin of optical coherence became important around the 50s with the early work in
theory of coherence and polarization of light with E. Wolf as the main precursor. A seemingly
unrelated domain of study arose with the works of such renowned names as Casimir, Liftshitz and
Liftshitz among others, on forces generated by the vacuum energy fluctuations. These studies
showed the attraction between objects due to the vacuum energy (E = h̄ω/2, the quantum
harmonic oscillator).

My role in this thesis has been to develop, analyze and demonstrate the effect of the random-
ness of light in different types of particles of current interest. To this end, the thesis is divided
into 5 parts:

The first part (Part I), which includes Chapter 1, is dedicated to the introduction of the
main topic: the theory of random processes. Emphasis will be put on some definitions such as
average, ensemble average, correlations of processes, etc., in connection with the problems at
hand. Section 1.3 is more focused on stochastic processes in optics, it develops the difference
between spatial and temporal coherence of light, being this the concept that will play a more
important role in this work. The van Cittert - Zernike theorem will be discussed (Section 1.4)
as well as an illustrative example of some random processes in nature (Subsection 1.4.1). On
the other hand, we will put the basis of the theory of the angular spectrum representation of
electromagnetic fields (Section 1.5). This tool will be used several times throughout this thesis.

The second part (Part II) is composed of chapters 2 and 3. In these Chapters we will develop
the coherence (Chapter 2) and polarization (Chapter 3) phenomena produced by statistically
homogeneous sources respectively. In particular, Chapter 2 studies the spatial evolution of the
cross spectral density function, which will give us an idea about the correlation of the fields at
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distances shorter than the wavelength. We will show the role of the evanescent waves and the
surface plasmon polariton excitation. Appendix A supports the results presented here and it
has not been published in any scientific journal. In Chapter 3 we shall study the polarization of
light, considering surface wave excitation. The first Section contains the classical two-dimensional
degree of polarization (Section 3.3), and the different ways to characterize it, this helps to study
its three-dimensional analogue (Section 3.4). Later we focus on the controversy to find a suitable
definition for the degree of polarization for three-dimensional electromagnetic fields.

The interaction between a stochastic field and small particle will be studied in Part III. Prior to
this, we introduce the concept of optical force for a deterministic wavefield, and the contribution
of the different momenta of light (linear, orbital and spin). Next, it will be shown how the usual
equations for the optical forces from deterministic fields may be extended to random fields due
to their ergodicity. In order to see the influence of the degree of coherence of light in optical
forces, we will study the classical double slit experiment to see if the coherence affects, and in
which way, to the dynamics of the particle. It is demonstrated that, like with visibility of fringes,
the coherence affects the optical forces.

Part IV, which includes Chapters 5 and 6, will study in detail the forces produced by statisti-
cally homogeneous sources. In Chapter 5, we will use a simple model to show how the evanescent
modes (relevant in near field optics) and the propagating ones affect the conservative and non-
conservative forces respectively. A test particle will be used in order to illustrate the main results.
Chapter 6 will make emphasis on particles with a magnetodielectric response, taking into account
the force resulting from the electric and magnetic dipoles and the interference between them.
We will make an optical analog to the effect studied by Liftshitz for purely thermal sources. We
will show how using a quasi-monochromatic optical source, the results are very similar to those
obtained previously using the fluctuation-dissipation theorem. Also, we will show how certain
asymptotic laws are not correct in the limit at which the particles can not be characterized by
the static polarizability.

Finally Part V comprises the last two chapters of this thesis. Up to this point, we were using
sources whose spectrum is spatially homogeneous along the plane source (S(ρ, ω) = S(ω)). Later
on, we develop a theory of optical forces for Schell model sources. In Chapter 7 we show the use
of an optical tweezer setup to observe the trapping of dielectric particles by fluctuating sources.
We will demonstrate how a suitable choice of the source parameters can benefit the optical trap
with a power density at the plane of the source smaller with respect to what a fully coherent
source (such as a laser) would need to trap it. In Chapter 8, we will implement a numerical model
to calculate optical forces (or other phenomena associated with the randomness of the light) for
Schell sources. The study of the propagation of light through nontrivial geometries is a very
difficult task to solve analytically. Although throughout the thesis analytical calculations have
prevailed over numerical study, the task of characterizing structures is almost impossible with
the conventional techniques. Therefore, we will implement the coherent mode representation of
a Gaussian Schell model source with a commercial difference finite element code. This method
will allow us to study complex configurations. In this chapter we focus mainly on the creation
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of photonic states on a pair of dielectric particles forming bonding and antibonding associated
with resonances of the isolated particles.
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R E S U M E N

E
l trabajo de esta tesis está enfocado al análisis de campos electromagnéticos fluctu-
antes (área denominada coherencia óptica) aplicado a fuerzas ópticas (conservación del
momento de la luz). La teoría de fuerzas ópticas por campos deterministas es un área

estudiada en profundidad. Sus principales consecuencias son comúnmente aplicadas al área de
la biología, donde el atrapamiento y manejo de partículas es de vital importancia. No obstante,
el efecto que tienen las fluctuaciones de los campos generados por una fuente de luz, suelen ser
pasados por alto. Hasta ahora, no se sabia prácticamente nada sobre cual era el efecto de las
fluctuaciones de la luz en la acción mecánica de las partículas, es decir, si podían ser favorables o
perjudiciales a la hora de llevarlos a la practica. En esta tesis se ha intentado proponer sencillos
modelos que ayuden al entendimiento de esta nueva característica de la luz. Aunque esta tesis
es puramente teórica, siempre se han intentando dar propuestas experimentales, así como se ha
intentado estimar las magnitudes físicas que se podrían medir en un laboratorio.

El origen de la coherencia óptica toma importancia en torno a la década de los 50 con los
primeros trabajos en teoría de coherencia y polarización de la luz con E. Wolf como principal
precursor. Por otro lado, en esa misma época surgieron también los primeros trabajos de fuerzas
generadas por fluctuaciones energéticas del vacío, con nombres tan reconocidos como Casimir,
London o Liftshitz entre otros. En estos trabajos se demostraba la atracción entre objetos debido
a la energía del vacío (E = h̄ω/2, el oscilador armónico cuántico).

Mi papel aquí es el de desarrollar, analizar y demostrar el efecto que tiene la aleatoriedad de
la luz en distintos tipos de partículas de actual interés. Para tal fin, la tesis se ha dividido en 5
partes:

La primera parte de la tesis (Parte I), que engloba el Capítulo 1, está dedicado exclusivamente
a la introducción del tema principal: la teoría de procesos aleatorios. Se hará hincapié en algunas
definiciones como promedio, conjunto promedio, correlaciones de procesos, etc., válidas para
cualquier proceso no determinista. Más centrados en los procesos estocásticos que se dan en
óptica, la Sección 1.3 desarrollará la diferencia entre la coherencia espacial y temporal de la
luz, siendo la primera característica la que jugará un papel más importante en este trabajo. Se
demostrará el teorema de van Cittert-Zernike (Sección 1.4), así como un ejemplo ilustrativo de
lo que ocurre en algunos procesos aleatorios en la naturaleza (Subsección 1.4.1). Por otro lado, se
pondrán las bases sobre la representación angular en ondas planas de campos electromagnéticos
(Sección 1.5). Esta herramienta será usada varias veces a lo largo de esta tesis.

La segunda parte de la tesis (Parte II) esta constituida por los Capítulos 2 y 3. En estos
capítulos se desarrollarán los fenómenos de coherencia (Capítulo 2) y polarización (Capítulo 3)
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producidos por fuentes homogéneas. Concretamente, en el Capítulo 2 se estudiará la evolución
espacial de la densidad espectral cruzada, que nos dará una idea de la correlación de los campos a
distancias menores que la longitud de onda. Se demostrará el papel de las ondas evanescentes y de
la excitación de plasmones superficiales. El Apéndice A corrobora los resultados aquí presentados
y no ha sido publicado en ninguna revista científica. En el Capítulo 3 se estudiará la polarización
de la luz, teniendo en cuenta la excitación de ondas superficiales. En la primera sección de este
capitulo se estudiará el usual grado de polarización bidimensional (Sección 3.3), así como las
distintas formas de caracterizarlo, para más adelante estudiar su análogo tridimensional (Sección
3.4). Aquí profundizaremos en la controversia a la hora de encontrar una definición adecuada
para el grado de polarización para campos electromagnéticos tridimensionales.

Una vez terminado el desarrollo y estudio de los fenómenos propiamente derivados de la
coherencia de la luz, en la Parte III se estudiará la interacción entre los campos estocásticos y
partículas pequeñas. Antes de esto, introduciremos el concepto de fuerza óptica para un campo
determinista, y la contribución de los diferentes momentos de la luz (lineal, orbital y de espín). A
continuación se demostrará como las ecuaciones usuales para fuerzas ópticas a partir de campos
deterministas se pueden extrapolar a campos aleatorios gracias a la ergodicidad de los mismos.
Para ver la influencia del grado de coherencia de la luz en las fuerzas ópticas, se estudiará un
experimento clásico como el de la doble rendija para ver si la coherencia afecta, y en que manera,
a la dinámica de la partícula. Del mismo modo que se demostró que la coherencia influía en la
visibilidad de las franjas, está también influirá en las fuerzas ópticas.

La Parte IV, que engloba los Capítulos 5 y 6 estudiará en detalle las fuerzas producidas
por fuentes estadísticamente homogéneas. En el Capítulo 5, se usará un sencillo modelo de
fuente para demostrar como los modos evanescentes (relevantes en óptica de campo cercano)
y propagantes afectan a las fuerzas conservativas y no conservativas respectivamente. Se usará
una partícula tipo test para visualizar los resultados. Por otro lado, en el Capítulo 6 se hará un
fuerte hincapié en la respuesta magnetodieléctrica de la partícula, teniendo en cuenta la fuerza
resultante del dipolo eléctrico, el magnético y la interferencia entre ambos. Se hará un análogo
óptico al efecto estudiado por Liftshitz para fuentes puramente térmicas. Se demostrará como
con una fuente óptica cuasi-monocromática, los resultados obtenidos son muy similares a los
ya obtenidos previamente usando el teorema de fluctuación-disipación. También se demostrará
como algunas leyes asintóticas son erróneas en el límite en el cual las partículas no pueden ser
caracterizadas por una polarizabilidad estática.

En la última parte (Parte V) se desarrollan los dos últimos capítulos de la tesis. Hasta este
punto, se han utilizado fuentes cuyo espectro es homogéneo respecto a la posición a lo largo de
la fuente (S(ρ, ω) = S(ω)). A partir de ahora desarrollaremos una teoría de fuerzas para fuente
denominadas de Schell. En el Capítulo 7 usaremos una configuración de pinza óptica para ver
el atrapamiento de partículas puramente dieléctricas por este tipo de fuentes fluctuantes. De-
mostraremos como una elección adecuada de los parámetros que la definen, puede beneficiarnos
a la hora de atrapar partículas con una intensidad en el plano de la fuente menor que la que
una fuente totalmente coherente (como por ejemplo la de un láser) necesitaría para atraparla.
En el Capítulo 8 se implementará un modelo numérico para calcular fuerzas ópticas (o cualquier
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otro fenómenos asociado a la aleatoriedad de la luz) para fuentes de Schell. El estudio de la
propagación de la luz a través de espacios no triviales es un tema muy complicado de resolver
analíticamente. Aunque a lo largo de toda la tesis ha prevalecido el cálculo analítico por encima
del numérico, la idea de estudiar otras estructuras se hace casi imposible con las técnicas clásicas.
Por ello, implementaremos la representación en modo coherentes para una fuente Gaussiana de
Schell en un programa comercial de diferencias de elementos finitos. Este método nos dará la
posibilidad de estudiar estructuras complejas. En este capítulo nos centraremos sobretodo en
la creación de estados fotónicos sobre un par de partículas dieléctricas que a su vez formarán
estados de enlace y antienlace que estarán asociados a las resonancias de las partículas aisladas.
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Part I

INTRODUCTION TO THE THEORY OF COHERENCE AND
ANGULAR SPECTRUM REPRESENTATION OF

WAVEF IELDS





1
S O M E P R E L I M I N A R Y C O N C E P T S

T
he main goal of this chapter is to introduce many of the concepts that will be used in
one way or another throughout this thesis. Firstly, I will talk about the characterization
of a stochastic process, and for this purpose we will need to familiarize with most of

the definitions which will be presented. Secondly, I will pay attention to the meaning of temporal
and spatial coherence of a wavefield, trying to explain these two concepts. Thirdly, I will develop
one of the main theorems in the theory of partially coherent waves: the van Cittert-Zernike
theorem. Finally, and due to its importance on this thesis, I will also explain the basis of the
angular plane wave representation of a wavefield.

Although most of the definitions here presented are based on a scalar formulation, a large
amount of problems found in optics can be described without using a complete electromagnetic
theory. We will not explain the details about the transition to a scalar theory, however a gener-
alization of the correlation functions and its laws, discussed next, to vector fields can be found
in [1] (Subsection 8.4) and in [2] (Subsection 3.2).

1.1 some basic concepts about stochastic processes

Throughout this thesis, we will work with random or stochastic processes and some key concepts
as ensemble average, correlations, stationary or ergodicity will appear. Therefore, it is worth
introduce and explain them. The following concepts are completely general for any type of
classical wave such as mechanical or electromagnetic perturbations.

All the concepts introduced here can be found in some textbooks like [3–5].
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some preliminary concepts

1.1.1 The ensemble average

Firstly, we shall assume a random function x(t) to be real, at least in some domain of t, with
a probability density p(x, t). All the different realizations of x(t) constitute the totality of the
random process. Hence the expectation value of x(t) is

〈x(t)〉 =
∫ ∞
−∞

xp(x, t)dx, (1.1)

where
∫∞
−∞ p(x, t)dx = 1.

In a different way, we can also consider the countable collection of the possible realizations of
x(t), i.e., (1)x(t), (2)x(t), (3)x(t)... If we have access to every realization of the process, we can
alternatively define

〈x(t)〉 = Lim
N→∞

1
N

∞∑
r=1

(r)x(t). (1.2)

time average

ensemble average

t
(1)x(t)

t

(2)x(t)

t

(n)x(t)

Figure 1.1: Ensemble realization (r)x(t) (r = 1, 2, ..) of a random process x(t)

Equations (1.1) and (1.2) are equivalent definitions of the ensemble average. Analogously we
can define the mean-square and the variance as

〈
x(t)2〉 =

∫ ∞
−∞

x2p(x, t)dx = Lim
N→∞

1
N

∞∑
r=1

(r)x(t)2, (1.3)

and
σ2 =

〈
x(t)2〉− 〈x(t)〉2 , (1.4)
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1.1 some basic concepts about stochastic processes

respectively. Notice that, in general, this average is different from the usual time-average, an
averaged quantity of a single system over a time interval

x(t) = Lim
T→∞

1
2T

∫ T

−T
x(t)dx. (1.5)

1.1.2 Correlations

The probability density p(x, t) does not describe the random process completely. Imagine that
we want information about what is happening in two different instants of time, x(t1), x(t2) and
the correlation between them. Such information is provided by the joint probability density of
the variates t1, t2

p2 (x2, t2; x1, t1) . (1.6)

The function p2 (x2, t2; x1, t1) contains more information about the general process than its
counterpart p1 (x1, t1), i.e., p2 carries information about the correlation in two different times
and p(x, t) (c.f. Eq. (1.1))∫ ∞

−∞
p2 (x2, t2; x1, t1) dx2 = p1(x1, t1) = p(x, t). (1.7)

Thus, p2 (x2, t2; x1, t1) allows us to calculate the mean value 〈x(t)〉 and the two-time correlation
function Γ (t1, t2)

Γ (t1, t2) = 〈x(t1)x(t2)〉 =
∫ ∞
−∞

x(t1)x(t2)p2 (x2, t2; x1, t1) dx1dx2. (1.8)

As we have commented, the function p2 contains more information than p1, however, if we want
to calculate the correlation at three different instant of times, we will need, analogously to p2,
a more general function p3 (x3, t3;x2, t2; x1, t1). Obviously, this can be extended to an infinite
probability density pn

pn (xn, tn;xn−1, tn−1; . . . ; x1, t1) . (1.9)

Although in this section we have considered x(t) as a real random function, the phenomena
here discussed can be extrapolated to complex stochastic functions z(t) = x(t) + iy(t), being x(t)
and y(t), in general, two real non-deterministic functions. In this case, the correlation function
Γ (t1, t2) is defined as

Γ (t1, t2) = 〈z∗(t1)z(t2)〉 =
∫ ∞
−∞

z∗(t1)z(t2)p2 (z2, t2; z1, t1) dx1dx2dy1dy2. (1.10)
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some preliminary concepts

1.1.3 Stationary

Many random functions of time have the property that its behavior does not change with time.
In a more rigorous way, we say that a random process is stationary if its probability density
p(x, t) is invariant under a translation of the origin of time, i.e.,

p(x, t) = p(x, t+ T ). (1.11)

Under this condition, the expectation value is also invariant under the same translation

〈x(t)〉 =
∫ ∞
−∞

xp(x, t)dx =
∫ ∞
−∞

xp(x, t+ T )dx. (1.12)

The correlation function Γ (t1, t2) leads to

Γ (t1, t2) = 〈x(t1)x(t2)〉

=
∫ ∞
−∞

x(t1)x(t2)p2 (x2, t2; x1, t1) dx1dx2

=
∫ ∞
−∞

x(t)x(t+ t2 − t1)p2 (x2, t+ t2 − t1; x1, t) dx1dx2

= 〈x(t)x(t+ t2 − t1)〉 , (1.13)

where we can see that Γ (t1, t2) only depends on t1 and t2 through its difference. Therefore,
Γ (t1, t2) is usually written as Γ (t2 − t1). From Eq. (1.13) is easy to demonstrate that Γ (t1, t2)

is symmetric
Γ (t2 − t1) = Γ (t1 − t2) . (1.14)

For a complex random function, if the process is stationary, the correlation function Γ (t1, t2)

obeys the Hermiticity condition

Γ (t2 − t1) = Γ∗ (t1 − t2) . (1.15)

1.1.4 Ergodicity

As introduced in Section 1.1.1, calculating the expectation value 〈x(t)〉 can be a difficult task
because we need to have access to every realization of the ensemble {x(t)}. Nevertheless, it is
common that every realization carries the same information about the stationary random process
as the rest of them. In this case the time-average of every realization is given by

(r)x(t) = Lim
T→∞

1
2T

∫ T

−T

(r)x(t)dx. (1.16)

If the time-averages (r)x(t) are then all equal and coincide with the ensemble average 〈x(t)〉,

(r)x(t) = 〈x(t)〉 , (1.17)

the random process is then said to be an ergodic process. Although at first glance it may seem
surprising that these two quantities can coincide because it looks like it will depend on every
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1.2 spectral properties

realization, and although we can not generalize, this feature is very common in optics. However,
we invite the reader to delve into this topic by reading references [3–5]

From now on, we will assume that we are dealing with statistically stationary and ergodic
processes, hence, there will be no difference between time-average (Eq. (1.5)) and ensemble
average (Eq. (1.1)).

1.2 spectral properties

The Fourier spectrum is a useful tool employed in many technical disciplines as physics or
engineering because it provides information about the components of a signal in the frequency-
domain. In the case that concerns us, the task of defining a Fourier transform of a random
process is not as trivial, nevertheless, we will ignore some mathematical details assuming that it
is possible.I.1

1.2.1 The Wiener-Khintchine theorem

Let us consider a complex random process z(t) and we will assume that one of the realizations
can be expressed as a Fourier integral

(r)z (t) =
∫ ∞
−∞

(r)z̃ (ω) e−iωtdω, (1.18)

(r)z̃ (ω) = 1
2π

∫ ∞
−∞

(r)z (t) eiωtdt. (1.19)

The spectral product of two different components of the process z(t) is

(r)z̃∗ (ω) (r)z̃
(
ω′
)

= 1
(2π)2

∫∫ ∞
−∞

(r)z∗ (t) e−iωt(r)z
(
t′
)
eiω
′t′dtdt′. (1.20)

Taking the ensemble average 〈· · ·〉 of the previous equation and assuming that the process is
stationary (see Subsection 1.1.3), Eq. (1.20) leads to

〈
z̃∗ (ω) z̃

(
ω′
)〉

= 1
(2π)2

∫∫ ∞
−∞

Γ (τ ) ei(ω−ω
′)teiω

′τdtdτ, (1.21)

where τ = t′ − t and Γ (τ ) = 〈z∗(t)z (t+ τ )〉. Performing one of the integrations in Eq. (1.21),
and taking the definition of the Dirac delta distributionI.2 into account, we obtain〈

z̃∗ (ω) z̃
(
ω′
)〉

= S (ω) δ
(
ω− ω′

)
, (1.22)

where
S (ω) = 1

2π

∫ ∞
−∞

Γ (τ ) eiωτdτ, (1.23)

I.1 some details can be found in [3] and references therein.
I.2 1

2π

∫
ei(ω−ω

′)tdt = δ (ω− ω′)

7
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Γ (τ ) =
∫ ∞
−∞

S (ω) e−iωτdω. (1.24)

Equation (1.22) manifests the importance of the formalism in Fourier space. For a random process
the spectral components at different frequencies ω, ω′ are uncorrelated (delta-correlated). Eqs.
(1.23,1.24) are generally known as the Wiener-Khintchine theorem and Eq. (1.23) is usually
denoted as the spectral density or the power spectrum.

1.2.2 Cross-spectral density (generalized Wiener-Khintchine theorem)

Let us consider two different complex random processes z1 (t1) and z2 (t2). We define the cross-
correlation function as

Γ12 (t, t+ τ ) = 〈z∗1 (t1) z2 (t+ τ )〉 . (1.25)

As in Eqs. (1.14,1.15), if the two process zi (ti), i = 1, 2, are stationary

Γ12 (τ ) = Γ∗12 (−τ ) . (1.26)

By analogy to Eq. (1.22) of the spectral density S (ω), we may define the cross-spectral density
of two (or n different) process as〈

z̃∗i (ω) z̃j
(
ω′
)〉

= Wij (ω) δ
(
ω− ω′

)
, (i, j = 1, 2, 3 . . .) (1.27)

where z̃∗i (ω) has been defined in Eq. (1.19). In the case of i = j, we recover the definition of the
spectral density (c.f. Eq. (1.23))

Wii (ω) = Si (ω) . (1.28)

In a similar way to the previous section:

Wij (ω) = 1
2π

∫ ∞
−∞

Γij (τ ) eiωτdτ, (1.29)

Γij (τ ) =
∫ ∞
−∞

Wij (ω) e
−iωτdω, (1.30)

where Wij and Γij give us information about the processes denoted as i, j. Eqs. (1.29) and (1.30)
are usually known as the generalized Wiener-Khintchine theorem.

Instead of Wij (ω), we may also define a normalized cross-spectral density function µij (ω):

µij (ω) =
Wij (ω)

[Wii (ω)]
1/2 [Wjj (ω)]

1/2

=
Wij (ω)

[Si (ω)]
1/2 [Sj (ω)]

1/2 , (1.31)

where
0 ≤

∣∣µij (ω)∣∣ ≤ 1, (1.32)

being the lower limit the case when the processes are totally uncorrelated and the upper one
when they are totally correlated. Notice that µii (ω) = 1. This normalized cross-spectral function
will be referenced as the spectral degree of coherence.
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1.3 temporal coherence versus spatial coherence

1.3 temporal coherence versus spatial coherence

In Sections 1.1 and 1.2 we have been dealing with general stochastic situations, however, we are
concerned about random processes which appear in optics.

Precisely because the optical sources have a finite size and the wavefield emerged is not com-
pletely monochromatic, it is said that the light is not completely coherent. Now we will introduce
some important aspects in optical coherence from a conceptual point of view (the most important
formal aspects have already been explained in the previous section).

1.3.1 Temporal coherence

The temporal coherence gives us information about the bandwidth of a source and describes
the possibility of a wave to interfere with a time-shifted version of itself. Hence, let us consider
a partially coherent quasi-monochromatic source with a bandwidth ∆ν smaller than the mean
frequency ν̃, i.e., ∆ν/ν̃ � 1. The beam from the source is divided in two through a beam splitter
(see Fig. 1.2) and it is recombined and projected on a screen after a path difference ∆l = c∆t. It
is well-known that the interference pattern will be observed if

∆t∆ν < 1. (1.33)

Hence, we can define the coherence time as

tc ∼
1

∆ν
, (1.34)

and the longitudinal coherence length as

lc ∼
c

∆ν
= λ̃2

∆λ
, (1.35)

where λ̃ is the mean wavelength. We shall assume that the path difference between the mirrors in
Fig. 1.2 is ∆l = 2(d2− d1). An interference pattern will be observed only if the coherence length
lc is larger than the path difference ∆l. If we consider an ideal source emitting a monochromatic
wavefield (∆ν → 0), from Eq. (1.35) we can estimate that the coherence length will tend to
infinity (lc →∞).

In order to provide an estimation of the coherence length, let us consider a white source with
bandwidth ∆λ = (800− 400)nm centered at λ̃ = 600nm. Substituting these parameters in Eq.
(1.35) we obtain lc = 900nm, hence, in order to obtain an interference pattern we should have
a path difference ∆l ' 0, in fact, the use of broadband sources is a way to calibrate the optical
setup. Nowadays, optical sources such as He-Ne can achieve values around lc = 300m. Due to
this large lc, lasers are usually denoted as coherent sources.

Now we will define the auto-correlation function at different instants of time Γ (r, r, τ ) and
the complex degree of temporal coherence g (r, r, τ ) as

Γ (r, r, τ ) = 〈U∗(r, t)U(r, t+ τ)〉 , (1.36)

9
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Figure 1.2: Michelson interferometer.

and
g (r, r, τ ) = 〈U

∗(r, t)U(r, t+ τ)〉
〈U∗(r, t)U(r, t)〉 , (1.37)

respectively. A way to measure the coherence time is to calculate the value at which the function
|g (r, r, τ | drops to 1/e.

1.3.2 Spatial coherence

Now we will discuss spatial coherence. Temporal coherence and spatial coherence are two phenom-
ena independent of each other, i.e., an optical source with a high degree of temporal coherence
can have a low degree of spatial coherence and vice versa. For instance, in the experiment of
reference [6], the light is assumed quasi-monochromatic, however the source is partially coherent
(in terms of spatial coherence).

The physical meaning is also different, the time coherence provides information about how
monochromatic a wavefield is, whereas the spatial coherence gives information about the size of
the source. Let us imagine a point source (Fig. 1.3(a)) whose light is not necessarily monochro-
matic. At the points denoted as P1 and P2 the field is identical because they belong to the same
wavefront, or in other words, the points P1 and P2 are totally correlated. Let us now imagine
a secondary point source near of the original (Fig. 1.3(b)). Due to the fact that each wavefield
comes from a different point source which fluctuates independently, it is said that P1 and P2

are uncorrelated or partially correlated. In 1.3.1 we have described the Michelson interferometer
experience in order to provide an idea about the concept of temporal coherence. Let us now
consider another interference problem, the double slit experiment (Fig. 1.4). The observed in-
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P1

P2

(a) Point source

P1

P2

(b) Extended source

Figure 1.3: Schemes about point (a) and extended sources (b).

terference fringes in B are an estimation of the correlation between points P1 and P2. In this
experiment the interference pattern will be observed if the two pinholes are contained in a region
in the plane A whose area is of the order of the coherence area

Ac = R2λ2

S2 , (1.38)

where S refers to the linear dimension of the source and R is the distance from the source to the
source plane. The square-root of this quantity is denoted as the transverse coherence lengthI.3.
Analogously, if we denote by d the maximum distance between the pinholes for which we can
observe the interference fringes, the coherence area is defined as

Ac = πd2. (1.39)

Precisely, this maximum distance would be the transverse coherence length. Let us pay attention
to Eq. (1.38). We can see that as we reduce the dimensions of the source (point source S → 0),
the coherence area tends to infinity (Ac → ∞). Another important consequence of this simple
formula is that by increasing the distance between the source and the plane A, the coherence
area also increases. This phenomenon will be explained in Section 1.4.

Next we will give some numerical examples regarding the coherence area [3]. For sunlight,
which can be considered as a collection of independently radiating atoms, the coherence area
is Ac ' 10−3mm2, however for stars this value is increased up to Ac ' 1m2. This is another
manifestation of how sources which are placed far away from the observation plane have a large
coherence area and manifests the build-up of coherence on propagation, as shown by the van
Cittert-Zernike theorem to be discussed. Light from common laser sources are spatially coherent.

Now we will define the equal-time correlation function at different positions Γ (r1, r2, 0), and
the complex degree of spatial coherence g (r1, r2, 0) as

Γ (r1, r2, 0) = 〈U∗(r1, t)U(r2, t)〉 , (1.40)

I.3 In this thesis, we will more concern with the effects of spatial coherence in different problems, thus, this transverse
coherence length will be simply denoted in the following as coherence length or correlation length

11
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Figure 1.4: Schemes about point (a) and extended sources (b).

and
g (r, r, 0) = 〈U

∗(r1, t)U(r2, t)〉
〈U∗(r, t)U(r, t)〉 . (1.41)

respectively. In the same way as we have defined the coherence time, the transverse coherence
length is usually calculated as the value at which the function |g (r1, r2, 0| drops to 1/e.

1.4 the van cittert-zernike theorem in frequency domain

Having reached this point, we can study one of the main features of the classical theory of optical
coherence, the van Cittert-Zernike theorem, which, as its name suggests, was developed by P.H.
van Cittert in 1934 [7] and F. Zernike in 1938 [8].

For simplicity, we shall assume an ensemble of scalar random fields {U (r, ω)}. The correlation
properties of the field are characterized by the cross-spectral density function (cf. Eq. 1.27)

W (r1, r2, ω) = 〈U∗ (r1, ω)U (r2, ω)〉 , (1.42)

and for r1 = r2 = r, W (r1, r2, ω) becomes the spectral density

S (r, ω) = W (r, r, ω) = 〈U∗ (r, ω)U (r, ω)〉 . (1.43)

According to the Huygens-Fresnel principle, if the extent of the source plane is small compared
to the distance between the source plane and the observation one, the field U (r, ω) diffracted
by the planar screen can be expressed as [2]

U (r, ω) = eikz

iλz

∫∫ ∞
−∞

U (ξ, η) ei
k
2z [(x−ξ)

2+(y−η)2]dξdη (1.44)
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Figure 1.5: Optical system considered.

where k = 2π/λ, being λ the wavelength of light. The coordinates (ξ, η) refer to the coordinates
of the aperture (see Fig. 1.5). Now, substituting Eq. (1.44) into Eq. (1.42) we can calculate the
cross-spectral density function at the plane z1 = z2 = z = constant

W (x1, y1, x2, y2, z, ω)

=
(

1
λz

)2 ∫∫ ∞
−∞

W (0) (ξ1, η1, ξ2, η2)

×e−i
k
2z [(x1−ξ1)2+(y1−η1)

2]ei
k
2z [(x2−ξ2)2+(y2−η2)

2]dξ1dη2dξ1dη2, (1.45)

where W (0) (ξ1, η1, ξ2, η2) = 〈U∗ (ξ1, η1)U (ξ2, η2)〉 is the cross-spectral density at the plane
z = 0. Eq. (1.45) represents the change on propagation of the correlation function W (r1, r2, ω).

We shall assume that all the points at our source plane z = 0 are completely uncorrelated.
This is expressed mathematically as

W (0) (ξ1, η1, ξ2, η2, ω)

= A

√
S(0) (ξ1, η1, ω)

√
S(0) (ξ2, η2, ω)δ (ξ1 − ξ2) δ (η1 − η2) , (1.46)

being A a positive constant. Using Eq. (1.46) into Eq. (1.45) and the properties of the delta
function we can calculate the cross-spectral density

W (x1, y1, x2, y2, z, ω)

= A

(λz)2 e
−i k2z [x

2
1−x

2
2+y2

1−y
2
2 ]
∫ ∞
−∞

S(0) (ξ, η) e−i
k
z [(x2−x1)ξ+(y2−y1)η]dξdη. (1.47)

Instead of usingW (r1, r2, ω), it is more appropriate to calculate the spectral degree of coherence
(c.f. Eq. (1.31))

µ (r1, r2, ω) = W (r1, r2, ω)√
S (r1, ω)

√
S (r2, ω)

. (1.48)

Hence, using Eqs. (1.47) and (1.48), the degree of coherence leads to

µ (x1, y1, x2, y2, z, ω) =
∫∞
−∞ S(0) (ξ, η, ω) e

−i
[
k∆x
z ξ+ k∆y

z η
]
dξdη∫∞

−∞ S(0) (ξ, η, ω) dξdη
, (1.49)
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where ∆x = x2−x1 and analogously for ∆y. The numerator of Eq. (1.49) is the Fourier transform
of the spectral density of the source S(0) (ξ, η, ω) with the spatial frequency k∆x

z

(
k∆y
z

)
. Eq. (1.49)

leads to the following conclusions:

• In the far zone, the spectral degree of coherence µ (x1, y1, x2, y2, z, ω) is proportional to the
two-dimensional Fourier transform of the power spectrum S(0) (ξ, η) across the spatially
incoherent source. Eq. (1.49) is usually denoted as the van Cittert-Zernike theorem in space
frequency domain.

• The spectral degree of coherence increases on propagation. A light wave from an uncor-
related source becomes spatially coherent as it propagates. This phenomenon was briefly
commented in 1.3.2

1.4.1 An illustrative example: Spatial coherence from ducks

In the previous section we have introduced an important concept in classical optical coherence
theory: the change of the cross-spectral density function with the propagation due to an uncor-
related source.

At first, it seems a difficult concept to interpret. It is not trivial to understand that the most
uncorrelated source can generate a collection of waves whose interference, in propagation, will
be coherent. One of the tasks of a researcher is to try to extrapolate what we do to real life
situations, and this is what Wayne H. Knox, Miguel Alonso and Emil Wolf did in Reference [9].

The experiment is the study of the theorem developed in Section 1.4 in a very visual way. In
this unusual experiment the random wave generation is performed by thirteen Rouen ducks, i.e.,
the role of the source W (0) (ξ1, η1, ξ2, η2) in Eq. (1.45) is played by the ducks, in other words,
the ducks behave like atoms, light bulb or any optical source.

The ducks randomly enter the water (obviously independently of one another), generating a
collection of independent waves. As we can see in Fig. 1.6(a)-(b), the waves are uncorrelated,
they are propagating without interfering with the rest of them, at least in a perfect (totally
coherent) way, showing the lack of correlation. Nevertheless, as they are propagated, the correla-
tion between the waves increase (see Fig. 1.6(d)), behaving as a single wave formed by a single
duck.

It is worth remarking the latter conclusion. Let us imagine that the only thing we can see is the
far-field. There is no way to distinguish whether the observed wave comes from a point source (a
single duck or a single emitter) or a set of them (a group of ducks or emitters). Mathematically
this is expressed by Eq. (1.49).
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Figure 1.6: Frames of the experiment from ducks. The whole video can be found at this link
http://www.youtube.com/watch?v=4o48J4streE

1.5 angular spectrum representation of wavefields

Throughout this thesis, we could say that one of the most powerful tools that we have used in
order to calculate the propagation of electromagnetic fields is the angular plane wave spectrum
of a wavefield. This technique gives us the possibility to take into account all the contributions to
the electromagnetic field, i.e., the propagating (homogeneous) and evanescent (inhomogeneous)
waves and allows us to decompose complex fields to simpler ones such as plane waves.

In this representation, any wavefield is represented as a superposition of propagating and
evanescent plane waves as a solution of source-free Maxwell’s equations

∇×H = 1
c

∂D
∂t

, (1.50a)

∇×E = −1
c

∂B
∂t
, (1.50b)

∇ ·D = 0, (1.50c)

∇ ·B = 0. (1.50d)

Let us consider the geometry of Fig. 1.7. We shall assume that our physical electromagnetic
field depends on time in the following way

E (r, t) = Re
{

E (r) e−iωt
}
, (1.51)
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Figure 1.7: Notation of the angular spectrum representation.

and is placed in a region of space z ≥ 0. This field may be coming from a scattering process, a
diffuser, etc. These secondary sources will be considered located at z < 0, remaining the half-
space z ≥ 0 a source-free region. The space-dependent part of the wave will satisfy the Helmholtz
equation (

∇2 + k2)E (r) = 0, (1.52)

where k = k0n = nω/c, being c the speed of light in vacuum and n the refractive index of
the medium. Now, let us assume that we know the value of the electric field at a given plane
z = constant = 0 and we can write it as a Fourier integral, namely [3, 10]

E (x, y, 0) =
∫∫ ∞
−∞

e (sx, sy) eik(sxx+syy)dsxdsy, (1.53)

where the angular amplitude e (sx, sy) can be written in connection to the boundary value of
the electric field at the constant plane z = 0

e (sx, sy) =
(
k

2π

)2 ∫∫ ∞
−∞

E (x, y, 0) e−ik(sxx+syy)dxdy. (1.54)

Now, introducing Eq. (1.53) into Eq. (1.52), we can write the propagation of the angular spectrum
either in terms of the value of the electric field E (x, y, 0), i.e., [3, 10]

E (x, y, z) =
(
k

2π

)2 ∫∫ ∞
−∞

∫∫ ∞
−∞

E
(
x′, y′, 0

)
×eik(sx(x−x′)+sy(y−y′))e±ikszzdsxdsydx′dy′, (1.55)

or in terms of the angular spectrum e (sx, sy)

E (x, y, z) =
∫∫ ∞
−∞

e (sx, sy) eik(sxx+syy)e±ikszzdsxdsy, (1.56)

where the symbol ± refers to the plane of propagation (+ if it is propagated towards planes
z > 0 and vice versa). In Eq. (1.55) the third component of the propagation unit vector s =
(sx, sy, sz) = (s⊥, sz) is defined as

sz =
√

1− (s2
x + s2

y). (1.57)
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Depending on the value of s2
x + s2

y, the third component of the propagation vector (sz) can be
real or purely imaginary. Assuming that the wave is propagated towards z ≥ 0, we shall discuss
two cases:

1) Evanescent (inhomogeneous) waves: s2
x + s2

y > 1. In this case,

sz = i
√
s2
x + s2

y − 1, (1.58)

and substituting into the integrand of Eq. (1.56) we have

eik(sxx+syy)e−k
√
s2x+s2y−1z. (1.59)

The propagated field decays exponentially as e−k|sz ||z| along the z-axis, hence the modes
are attenuated with the distance to the source and they propagate along a plane parallel
to the plane z = 0. As an example, we shall assume a value of |sz| = 2. Expressing
k = 2π/λ, being λ the wavelength of the spectrum, we have e−

4π
λ |z|. For a distance of

z = λ, the exponential gives us e−4π ' 3.5× 10−6 !. The integrand of Eq. (1.56) is almost
zero. Hence, these waves will be negligible at distances z ≥ λ and if we want to work with
them, our laboratory has to be placed at subwavelength distances from z = 0. For optical
waves, this conveys nanoscale dimensions.

2) Propagating (homogeneous) waves: s2
x + s2

y < 1. In this second point,

sz =
√

1− s2
x + s2

y, (1.60)

and
eik(sxx+syy)eik

√
1−s2x+s2yz = eik(sxx+syy+

√
1−s2x+s2yz), (1.61)

being the contribution to the angular wave spectrum due to oscillating plane waves. The
plane wave components propagate into z ≥ 0 with a propagation vector s = (s⊥, sz) =
(sx, sy, sz).

As it follows from Maxwell’s equations, the electric field is connected with the magnetic vector,
which in a similar way leads to

H (x, y, z) =
∫∫

h (sx, sy) e
ik(sxx+syy)e±ikszzdsxdsy, (1.62)

where h (sx, sy) is the angular spectrum of the magnetic field H (x, y, z). Hence, applying
Maxwell’s equations to Eqs. (1.56) and (1.62), we have that for each plane wave component
[10]

s · e (sx, sy) = s · h (sx, sy) = 0, (1.63)

h (sx, sy) = s× e (sx, sy) . (1.64)

In summary, Eqs. (1.56) and (1.62) give us the relationship between the electromagnetic field
E (r) , H (r) at any point of the half-space z > 0 and its boundary value E (x, y, 0) , H (x, y, 0).
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1.5.1 The Rayleigh formulation of diffraction

Although it will not be demonstrated in detail, we will show the connection between the angular
wave spectrum and the classical formulas of diffraction. In Eq. (1.55) the integral

G
(
x− x′, y− y′, z

)
=
(
k

2π

)2 ∫∫ ∞
−∞

eik(sx(x−x
′)+sy(y−y′))e±ikszzdsxdsy (1.65)

is usually denoted as propagator. On the other hand, one can demonstrate that the angular wave
representation of a spherical divergent wave is

eikr

r
= ik

2π

∫∫ ∞
−∞

1
sz
eik(sxx+syy+sz |z|)dsxdsy, (1.66)

also known as the Weyl’s representation of the spherical wave. Looking into detail the Eqs. (1.65)
and (1.66), one can observe that they are related by the following relationship

G
(
x− x′, y− y′, z

)
= − 1

2π
∂

∂z

(
eikR

R

)
, (1.67)

where R = |r− r′| . From Eqs. (1.67) and (1.55), we can write E (x, y, z) as

E (x, y, z) = −1
2π

∫∫ ∞
−∞

E
(
x′, y′, 0

) ∂
∂z

(
eikR

R

)
dxdy, (1.68)

which is usually called the Rayleigh diffraction formula of first kind [2, 3, 10] and it is the solution
of the Dirichlet boundary value problem of the Helmholtz equation for a half-space. The solution
of the Neumann problem may be obtained in a similar manner.
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Part II

SPAT IAL CORRELATIONS AND THREE -D IMENS IONAL
DEGREE OF POLARIZAT ION IN THE NEAR -F IELD OF

STATIST ICALLY HOMOGENEOUS SOURCES : EFFECTS ON
SURFACE WAVES





2
S U B WAV E L E N G T H S PAT I A L C O R R E L AT I O N S F R O M
PA R T I A L LY C O H E R E N T S O U R C E S : S U R FAC E WAV E
E XC I TAT I O N

2.1 motivation

W
e saw in Section 1.4 that the behavior of the cross spectral density in the far-field is
governed by the van-Cittert-Zernike-theorem, however, at these distances the evanes-
cent modes are completely negligible (see Section 1.5). From the beginning of near-

field optics, there have been very few publications (most of them will be listed in this chapter)
which have studied in detail the interaction between the different electromagnetic field fluctua-
tions in this regime.

In this chapter I will show in detail, from a simple scalar formulation, the effects on the
cross-spectral density of the evanescent modes, and the consequence of exciting surface plasmon
polaritons (SPP) on the surface where is contained the source. To this end, using the angular
spectrum representation I will separate the contributions of evanescent and propagating modes,
showing that evanescent waves are relevant for incoherent sources but irrelevant for spatially
coherent systems.

2.2 introduction

The resolution limit is a well-known issue in classical optics. The Rayleigh criterion of resolution
establishes that the minimum resolvable separation between two image points is

R = 0.61λ
NA

, (2.1)

where NA = n sin θ is the numerical aperture for a lens and n, θ are the refractive index of
the surrounded medium and the half-angle of the cone of light which can enter in the lens,
respectively. This definition comes from the first minimum of the Airy pattern produced by the
diffraction of a circular pinhole [2]. One way to interpret this resolution limit lies on the loss
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of evanescent waves in the angular spectrum. As we commented in Section 1.5, if we want to
take these evanescent modes into account, our observation has to be made at subwavelength
distances, in this way, near-field techniques can obtain substantially higher resolution.

On the other hand, this resolution limit is also connected with the transversal coherence length
σ. Let us take, for instance, the Lambertian source [3] (this is an example of homogeneous source,
a concept which will be defined in the next section). A Lambertian source has a far-field radiant
intensity (J (r, ω) = r2W (r, r, ω) for the scalar case) proportional to cos θ and a degree of
spectral coherence equals to

µ(0) (ρ1,ρ2, ω) = sin (kρ)

kρ
, (2.2)

being ρ = |ρ1 − ρ2|. Fig. 2.1 (right) shows the degree of coherence given by Eq. (2.2) as a
function of the normalized distance ρ/λ, thus, if we recover the definition of coherence length
(see Section 1.3.2), we see that σ ∼ λ/2, i.e., the classical resolution limit.

To overcome this limit, the incorporation of evanescent modes is crucial, being this feature
demonstrated theoretically [11–13] and experimentally [14]. Namely, reference [11] demonstrates
the subwavelength spatial correlations of radiated fields for uncorrelated (δ-correlated) thermal
sources and the role of surface plasmon polaritons (SPP) on the source surface (the concept of
SPP will be also introduced). A delta-correlated source is that whose coherence length σ tends
to zero, however, a partially coherent source adopts any possible σ. If we have no SPPs, the role
of the spatial coherence of the source has been analyzed on both, the spectrum and the spatial
coherence of the near field, for free-space propagation at subwavelength distances [13, 14].

Then, this chapter studies the effects on the cross spectral density W (r1, r2, ω) due to the
interplay between SPP excitation and the spatial coherence of the source. Radiative and non-
radiative parts of the angular correlation tensor are analyzed in order to see the contributions
(or not) of the evanescent modes.

ρ/λ

µ(
0)
(k

ρ,
ω
)

0 1 2 3 4
−0.5

0

0.5

1

Figure 2.1: Left: Illustration about the resolution limit. Right: Degree of coherence for a Lambertian
source
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Figure 2.2: Left: Illustrating the notation. Right: Radiation pattern of a Lambertian source.

Prior to analyze these effects, we will introduce the concept of homogeneous source and surface
wave.

2.3 on the concept of statistically fluctuating homogeneous sources

Throughout this and some others chapters, we will study the effects of fluctuating electric fields
which emerge from a statistically homogeneous source. Then, it is worth introducing this concept.
For this task, it seems most appropriate to borrow a footnote from an article by Emil Wolf [15]:

“By statistically homogeneous source one means a source for which all the probability densities
that characterize the behavior of the field at an arbitrary number of source points are invariant
with respect to translation of all the points on the source plane. This requirement implies, in
particular, that the second-order cross-spectral density function is also invariant with respect to
such a translation, this being the fact expressed by eq. (5)II.1. It is clear that strict statistical
homogeneity demands that the source occupies the whole z-plane. Throughout this paper we
will use the term “statistical homogeneity” also for a finite source in the approximate sense that
eq. (5) hold whenever the points r1 and r2 both lie within the source area.”

In other words, the spectrum is homogeneous (with respect to the position) across the plane
of the source. Many common sources such as the recently cited Lambertian or thermal obey this
law [16]

II.1 This equation is the same that Eq. (2.18) of this thesis
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Figure 2.3: Geometry considered

2.4 introduction to surfaces waves

In this chapter (and in Chapters 3 and 5), the surface waves will be added to the properties
of the source. A surface wave is a type of electromagnetic wave which is propagated along the
surface between two different media and is evanescent in the direction perpendicular to the
surface (exp (−k0 |sz| z)). In particular, a surface plasmon polariton (SPP) can be understood
as the coupling between a coherent electron oscillation and an electromagnetic wave [17, 18].

Let us analyze under which conditions SPPs can be excited. Thus, we shall consider the
geometry of Fig. 2.3. This geometry consist of two different media characterized by their electric
permittivity, and magnetic permeability values εi (ω), µi (ω) (i = 1, 2) respectively. The fields
in these two media can be written as

E1 (r, ω) = E0
1e
ik0(s⊥ρ+sz,1z) z > 0, (2.3)

E2 (r, ω) = E0
2e
ik0(s⊥ρ−sz,2z) z < 0, (2.4)

being k0 = ω/c the wavenumber in free-space, c the speed of light in vacuum, ρ a two-dimensional
position vector and k0sz the third component of the propagation vector (k0s = k0 (s⊥, sz) =
(K, kz)) which fulfills the relation

s2
z,i = εiµi − s2

⊥, Imsz,i ≥ 0. (2.5)

On the other hand, across an interface, the electromagnetic field satisfies some continuity con-
ditions. If we denote as n21 the unit normal vector to the interface directed from region 2 to
region 1 (see Fig. 2.3), these conditions are:

n21 × (E2 −E1) = 0, (2.6a)

n21 × (H2 −H1) = 4π
c

J, (2.6b)

n21 · (D2 −D1) = 4πσ, (2.6c)

n21 · (B2 −B1) = 0. (2.6d)

In these equations J and σ are the electric current and the charge density at the interface
respectively.

In order to discuss the behavior of surface waves, we will consider two different states of
polarization: s- and p-polarization.
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2.4.1 s-polarization

In s-polarization, the electric field is perpendicular to the plane (y, z), thus Ei ‖ ux (i,= 1, 2).
From Maxwell’s equations (see Eqs. 1.50) and Eqs. (2.6a) and (2.6b) we obtain

E0
x,1 −E0

x,2 = 0, (2.7)

sz,1
µ1

E0
x,1 + sz,2

µ2
E0
x,2 = 0, (2.8)

respectively. For these equations the non-trivial solution is obtained if and only if sz,1µ2 +
sz,2µ1 = 0. Using Eq. (2.5) the surface-wave dispersion relation is

k2
0s

2
⊥ =

(ω
c

)2 µ1µ2 [ε1µ2 − ε2µ1]

µ2
2 − µ2

1
, (2.9)

where we have omitted the frequency dependence in εi, µi for brevity. Namely, for ε1 = ε2 = ε,
Eq (2.9) leads to

K = ω

c

√
µ1µ2
µ2 + µ1

ε. (2.10)

Eq. (2.10) represents the dispersion relation for s-polarization. For non-magnetic media µ2 +µ1 >

0, then, there are no poles in Eq. (2.10), i.e. no surface waves are excited for s-polarization.

2.4.2 p-polarization

In p-polarization the electric field lies in the plane (y, z), thus Ex,i = 0. In a similar way to the
previous section, from the continuity conditions, we obtain that at the interface

E0
y,1 −E0

y,2 = 0, (2.11)

ε1E
0
z,1 − ε2E

0
z,2 = 0. (2.12)

On the other hand, we apply the Maxwell equation ∇ ·E = 0 to the two media

syE
0
y,1 + sz,1E

0
z,1 = 0, (2.13)

syE
0
y,2 + sz,2E

0
z,2 = 0. (2.14)

Using the two previous equations in order to write E0
z,i in terms of E0

y,i, we can solve the system
equations. Again, the non-trivial solution is obtained if and only if sz,1ε2 + sz,2ε1 = 0. The
dispersion relation for p-polarization is

k2
0s

2
⊥ =

(ω
c

)2 ε1ε2 [µ1ε2 − µ2ε1]

ε2
2 − ε2

1
, (2.15)

which is identical to Eq. (2.9) making the change εi ↔ µi. If we consider µ1 = µ2 = µ, Eq. (2.15)
leads to

K = ω

c

√
ε1ε2
ε2 + ε1

µ (2.16)
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and for material-vacuum interfaces (ε1 = µ1 = 1)

K = ω

c

√
ε2

ε2 + 1 . (2.17)

Eq. (2.17) expresses the dispersion relation for a material-vacuum interface and shows that a
SPP cannot be excited with a plane wave whose lateral component of the wavevector is such that
k0s⊥ ≤ k0. Coupling of photons into SPPs can be achieved, for instance, using total internal
reflection (TIR) with a prism. Under this condition s⊥ can fulfill the condition s⊥ > 1, i.e., Eq.
(2.5) is purely imaginary showing the evanescent character of the field along the z-direction.

2.5 correlation effects at subwavelength distances: effect of
surface plasmon polaritons

Let us now address the interplay between SPPs and spatial coherence. To this end, let a planar
source be statistically stationary and homogeneous. Its emission surface is the plane z = 0, where
p-polarized fields excite plasmon polaritons (SPPs). Then the source cross-spectral density at
frequency ω is [3]

W (0)(ρ1,ρ2, ω) = F (ρ1 − ρ2, ω), (2.18)

where ρ1 and ρ2 stand for two position vectors in the plane z = 0.

The spectrum of the light at a point ρ of the source plane is: S(0)(ρ, ω) = W (0)(ρ,ρ, ω)
= F (0, ω) = S(0)(ω), and the spectral degree of coherence is written down as

µ(0)(ρ1,ρ2, ω) = F (ρ1 − ρ2, ω)/S(0)(ω). (2.19)

We shall assume that the source is also statistically isotropic. Let us choose it Gaussian correlated,
so that

µ(0)(ρ1,ρ2, ω) = µ(0)(ρ, ω)

= exp[−ρ2/2σ2], (2.20)

where σ is the source coherence length and ρ = |ρ1 − ρ2|

The cross-spectral density of the field emitted by this source into the half space z > 0 is [19]

W (r1, r2, ω) = k2
∫
G(ks⊥, ω)eik(s·r1−s∗·r2)d2s⊥, (2.21)

where the angular spectrum G, corresponding to the Fourier transform of the limiting value of
W (r1, r2, ω) at z = 0, is

G(ks⊥, ω) = S(0)(ω)µ̃(0)(ks⊥, ω)|A(ks⊥, ω)|2, (2.22)

In Eq. (2.22) µ̃(0)(ks⊥, ω) must be substituted by the two-dimensional Fourier transform of
µ(0)(ρ, ω):

µ̃(0)(ks⊥, ω) = (σ2/2π) exp[−(kσs⊥)2/2], (2.23)

26



2.5 correlation effects at subwavelength distances: effect of surface
plasmon polaritons

where s⊥ =
√
s2
x + s2

y. The unit vector s = (s⊥, sz), (s⊥ = (sx, sy)), has explicitly (see Eq. (2.5))

sz =
√

1− s2
⊥, s2

⊥ ≤ 1, (2.24)

sz = i
√
s2
⊥ − 1, s2

⊥ > 1, (2.25)

for propagating waves and for inhomogeneous (evanescent) components respectively. A(ks⊥, ω)
stands for the p-polarization Fresnel coefficient, (either on reflection or on transmission) at z = 0.
Notice that on writing the angular spectrum e(s⊥, ω) of the field propagated from the source
into the half space z > 0 as: e(s⊥, ω) = e(0)(s⊥, ω)A(ks⊥, ω), (e(0)(s⊥, ω) represents the angular
spectrum of the field emitted by the random source without reflection or transmission effects
at any interface that it might content, and hence without plasmon polariton excitation), then
on making use of Eq. (3.15) of [19] for

〈
e(0) (s1,⊥

)
e(0)∗ (s2,⊥

)〉
in the expression G(ks⊥, ω) =

〈e(s1⊥, ω)e∗(s2⊥, ω)〉 of the angular spectrum of W (r1, r2, ω) (cf. Eqs. (3.6) and (3.7) of [19]),
one readily obtains Eq. (2.22).

On considering Eqs. (2.19) and the Gaussian form of µ(0), we shall write

S(0)(ω) = S(ω)/(2πσ2), (2.26)

to formally express that the source is δ-correlated when σ → 0 , so that F (ρ) → S(ω)δ(2)(ρ)
(This way of expressing correlation functions is customary in several studies of statistical fields,
see e.g. Eqs. (2.13) and (3.4) of Refs. [20] (Section 6.3.2) and [21], respectively.); where δ(2)

represents the two-dimensional δ-function.

Also, F̃ (ks⊥, ω) = S(0)(ω)µ̃(0)(ks⊥) → S(ω)/(2π)2 when σ → 0. S(ω) is a positive quantity
such that S(ω) =

∫
F (ρ, ω)d2ρ for any σ.

We shall evaluate W (r1, r2, ω) at planes: z = constant > 0. It will now be useful to de-
compose Eq. (2.21) into the sum of the homogeneous and of the evanescent wave contribu-
tions: Wh (r1, r2, ω) and We (r1, r2, ω), respectively. Namely: W (r1, r2, ω) = Wh (r1, r2, ω) +
We (r1, r2, ω). Then, using Eqs. (2.19)-(2.26) one has for the homogeneous part of W (r1, r2, ω):

Wh (r1, r2, ω) = Wh (ρ, z, ω)

= (k/2π)2S(ω)
∫
s2⊥≤1

e−
1
2 (kσs⊥)2 |A(ks⊥, ω)|2eiks⊥·ρd2s⊥. (2.27)

In a similar way, the evanescent wave contribution We (r1, r2, ω) is:

We (ρ, z, ω) = (k/2π)2 S(ω)
∫
s2⊥>1

e−
1
2 (kσs⊥)2 |A(ks⊥, ω)|2

× e(iks⊥·ρ)e−2k
√
s2x+s2y−1zd2s⊥. (2.28)

Let the random source surface be Gold. Choosing for instance the wavelength λ = 2π/k =
495.9nm, the permittivity is ε = −2.546 + i3.37. The wavevector ksSPP⊥ = ±k[ε/(ε + 1)]1/2

corresponds to a pole of A(ks⊥, ω) [10, 17] that characterizes the SPP excited at z = 0.

Figs. 2.4(a) and 2.4(b) show (2π/k)2 S(ω)−1W (ρ, z, ω) versus ρ/λ at the two planes: z = λ/20
and 2λ, respectively, and for different values of σ. Notice that (2π/k)2 ×S(ω)−1Wh (ρ, z, ω) and
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Figure 2.4: (2π/k)2S(ω)−1W (ρ, z, ω), in arbitrary units (a.u.), versus ρ/λ at λ = 495.9nm, for different
values of the source coherence length σ. (a) Evanescent part at the plane z = λ/20. The maximum
normalized We(0, λ/20, ω) for σ = 0 is 52.1 a.u.. The normalized homogeneous part Wh(0, λ/20, ω) (not
shown) is smaller than 1.2. (b) Homogeneous part at the plane z = 2λ. The normalized evanescent part
We(0, 2λ, ω) (not shown) is smaller than 0.1.

(2π/k)2S(ω)−1We (ρ, z, ω) are negligible in Fig. 2.4(a) and 2.4(b), respectively; and thus they
are not represented. The reflection Fresnel coefficient is employed in all calculations, although
similar results would be obtained by using the transmission coefficient. In Fig. 2.4(a), (z = λ/20),
one sees a pure near-field effect on W (r1, r2, ω). An increase of σ diminishes the short range
correlation of this normalized W (r1, r2, ω), (namely, the values of the central lobe at ρ < λ/2,
which has subwavelength width up to σ ' λ/4). The increase of σ also diminishes the oscillating
long range normalized correlation at ρ > λ/2. This is due to a decrease of the amplitude of the
oscillations of (2π/k)2S(ω)−1W (ρ, z, ω), contributed by the evanescent wave part of the angular
spectrum, which in this case is concentrated in the vicinity of the angular frequencies: ±ksSPP⊥
of SPP excitation.

We anticipate that the large value of (2π/k)2S(ω)−1W (0, z, ω) at z � λ and as σ → 0,
is a manifestation of the contribution of the surface wave resonances to near field intensity
enhancements. This was known for deterministic surfaces [17], but now [cf. Eq. (2.28)] we show
it in the normalized spectral density close to the surface of a statistical source. All this is next
shown.

We thus emphasize that, as seen in Fig. 2.4(a), the amplitude of the oscillations ofW (r1, r2, ω)

have a subwavelength period for z � λ and are maximum for δ-correlated sources. On the other
hand, these oscillations disappear when σ grows up to values about σ = λ/2 and larger; [as
we shall next see, this is due to the then narrower low pass filter (2π/k)2S(ω)−1F̃ (ks⊥, ω) =
exp[−1

2 (kσs⊥)2] in the integrand of Eqs. (2.27) and (2.28)].

At larger z, (cf. Fig. 2.4(b) for z = 2λ) the main lobe of W becomes broader, as expected, and
its width tends to a value which is not smaller than the well known value [3, 20]: λ/2, correspond-
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Figure 2.5: (2π/k)2S(ω)−1G(ks⊥, ω), (a.u.), for a Gaussian correlated source with an Au surface. The
effect of the SPP excitation is characterized by the peaks of the Fresnel reflection coefficient magnitude
|A(ks⊥)|2 in Eq. (2.22). The wavelength λ = 495.9nm and the coherence lengths σ are the same as in
Figs. 2.4(a) and 2.4(b). For σ = 0 and λ/8 the SPP peaks of G are 11.97 at sSP P

⊥ = ±1.13 and 8.10
at sSP P
⊥ = ±1.12, respectively. Notice that for σ = 0 this normalized angular spectrum coincides with

|A(ks⊥, ω)|2

ing to the spatial resolution limit imposed by the evanescent wave filter exp(−2k
√
s2
x + s2

y − 1z)
in Eq. (2.28); and which was established as the effective width of an incoherent (e.g. thermal)
source from observations that, at the time, were not yet made in the near field region [3, 20].
Nevertheless, as remarked above, the contribution of We to the subwavelength features of W , to
its value W (0, z, ω), as well as to those values of W at large ρ/λ, not only decreases with the
observation distance z, but also with an increase of the source coherence length σ.

Fig. 2.5 illustrates the fundamentals of all these effects. There the normalized angular spectrum
(2π/k)2S(ω)−1G(ks⊥, ω) = exp[−(kσs⊥)2/2] |A(ks⊥, ω)|2 is shown as a function of s⊥. Notice
that since the planar source has statistical isotropy, there is no preferential direction for s⊥ to
excite the SPP, and hence this vector can be represented by its magnitude s⊥ in the argument
of G(ks⊥, ω). As seen in Fig. 2.5, the excitation of the SPPs is characterized by two high peaks
of the factor |A(ks⊥, ω)|2 of Eq. (2.22) at s⊥ = ±sSPP⊥ in the non radiative zone, whose height
and width are larger and smaller, respectively, as the metal losses decrease. These two spikes,
symmetrically situated with respect to s⊥ = 0, are responsible for the oscillations of W (ρ, z, ω)

whose period in this ρ-variable of Fourier transformation, [cf. Eq. (2.28)], is inversely proportional
to the peak separation: 2ksSPP⊥ > 2k, and hence is subwavelength as mentioned above; even
though it is broadened by non-zero values of σ.

As σ increases, the width of the random wavefield normalized power spectrum (2π/k)2 ×S(ω)−1

F̃ (ks⊥, ω) = exp[−(kσs⊥)2)/2] diminishes until it obliterates the Fresnel coefficient contribution
|A|2, first in the evanescent region with a fast disappearance of the SPP peak contributions,
and hence of the oscillations of W (r1, r2, ω); and then in the radiative region as σ increases
further. In any case, this increase of σ lowers the area enclosed by (2π/k)2S(ω)−1G(ks⊥, ω)
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Figure 2.6: Homogeneous and evanescent parts of the normalized cross-spectral density
(2π/k)2S(ω)−1W (ρ, z, ω) at z = λ/20, λ = 495.9nm. (a) σ = λ/3 and 3λ/8. (b) σ = λ/8 but with no
SPP excitation. Notice the subwavelength width of the main lobe of We (r1, r2, ω) when it dominates
upon Wh (r1, r2, ω).

with the s⊥-axis, as shown in Fig. 2.5, and hence diminishes the normalized correlation value
(2π/k)2S(ω)−1W (0, z, ω), while it broadens the main central lobe of (2π/k)2S(ω)−1W (ρ, z, ω),
[cf. Figs. 2.4(a) and 2.4(b)]. As mentioned before, this means a decrease of the enhancement of
the normalized spectrum of the emitted near field, and even its eventual disappearance.

It should be remarked in this connection that for z � λ, We is dominant for very small σ,
while it approximately equals the contribution ofWh for λ/4 < σ < λ/3. From σ ' λ/2 onwards,
Wh is dominant even for z � λ. Fig. 2.6(a) illustrates this for instance at z = λ/20. There
one sees that We (r1, r2, ω) = Wh (r1, r2, ω) near σ = 3λ/8. If there were no plasmon polariton
excitation, and hence no peaks in the angular spectrum G, one can guess from Fig. 2.5 that the
much lower value σ ' λ/8 would not be far from that at which the contribution of Wh (r1, r2, ω)

and We (r1, r2, ω) would be comparable. This is shown in Fig. 2.6(b) at z = λ/20.

2.6 conclusions

In this chapter I have analyzed the effects of SPPs excitation on the surface of a statistically
homogeneous source. To this end, we have introduced the concept of surface waves. Then, we have
focused on the role of the coherence length σ in the correlation properties of the emitted field. We
have addressed the long range correlation at near-field distances due to the non-radiative part of
the angular spectrum. We have also shown and analyzed that an increase of σ in the statistically
properties of the source leads to a decrease on the correlation, losing the subwalength character
of these oscillations.
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3
D E G R E E O F P O L A R I Z AT I O N : F R O M I T S
D E F I N I T I O N I N T WO D I M E N S I O N S T O T H AT
C O N T R OV E R S I A L I N T H R E E D I M E N S I O N S

3.1 motivation

O
nce we have seen the change on propagation of the cross-spectral density W (r1, r2, ω)

in the near-field, I will turn to study the effects of the spatial coherence on the degree
of polarization (DOP) in this regime. However, the degree of polarization in the near-

field is a not resolved problem because there is not only one definition.

Thus, after a general outline, in Section 3.3, I will introduce the usual concept of degree of
polarization for two-dimensional fields and the equivalent ways of defining it. In Chapter 2 we
did not need a vector theory of electromagnetic coherence, however, to discuss the degree of po-
larization we must take into account the different components of the fluctuating electromagnetic
field.

Secondly in Section 3.4, I will examine in detail the controversy between two definitions on the
DOP for three-dimensional fields found in the literature. Nevertheless, I am obliged to mention
that the definitions we have used here are not unique, there are others that should be mentioned
[22, 23]. In that section I will try to discuss the definitions that are used more frequently in
optics. I will extend the statistically homogeneous model used for sources in Chapter 2 for
electromagnetic fields rather than for a scalar wavefield.

3.2 introduction

The degree of polarization gives us information about the portion of light which is polarized
[3]. This quantity is well-defined in 2-D fields like beams, then the field can be considered
planar, hence, the DOP can be written in terms of a 2× 2 coherence matrix Wij (r1, r2, ω) =〈
E∗i (r1, ω)Ej (r2, ω)

〉
with i, j = 1, 2 = x, y [3, 24]. Section 3.3 deals with this definition.
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degree of polarization: from its definition in two dimensions to that
controversial in three dimensions

Nevertheless, in the near field a two-dimensional formalism is not enough, we need to introduce
a third index in order to take the z-fluctuations of the field into account. Then, we have to define
a new degree of polarization in terms of a 3× 3 coherence matrix

To this end, a three-dimensional formalism was introduced by references [25, 26]. However a
unique definition of a 3-D DOP is not at all trivial. This difficulty comes from the fact that the
3× 3 coherence matrix cannot be written as a sum of a completely polarized and an unpolarized
field matrix [25], arising two main controversial definitions [25–29]

What follows is an overview about the two-dimensional degree of polarization which will help
us to understand this concept.

3.3 two-dimensional degree of polarization for planar fields.

Throughout this section the DOP will be understood as a consequence of a 2-D electromag-
netic field E = (Ex, Ey). Hence, as we have commented in the Introduction 3.2, for planar
fields (i, j = x, y), there is a consensus on the definition of the degree of polarization. For two-
dimensional random fields, the coherence matrix Wij (r1, r2, ω) at the same point, r1 = r2 = r,
can be expressed as a sum of two matrices: one of which represents a state of total polarization
(P = 1) and the other being the opposite case of totally unpolarized wavefield (P = 0) [3]

Wij (r, r, ω) = Wunpol
ij (r, r, ω) +W pol

ij (r, r, ω) , (i, j = x, y) , (3.1)

where

Wunpol
ij (r, r, ω) = A

 1 0

0 1

 , W pol
ij (r, r, ω) =

 B D

D∗ C

 , (3.2)

being A,B,C ≥ 0 and BC −DD∗ = 0 [3]. From Eqs. (3.1) and (3.2) is easy to see that

Wxx (r, r, ω) = A+B, (3.3a)

Wyy (r, r, ω) = A+C, (3.3b)

Wxy (r, r, ω) = D, (3.3c)

Wyx (r, r, ω) = D∗. (3.3d)

Taking into account these equations one can readily express the values of the coefficients A,B,C
in terms of the elements of the cross-spectral density matrix, i.e., [3]

A = 1
2

[
TrWij ±

[
(TrWij)

2 − 4 detWij

]1/2
]
, (3.4a)

B = 1
2 (Wxx −Wyy) + 1

2

[
(TrWij)

2 − 4 detWij

]1/2
, (3.4b)

C = 1
2 (Wyy −Wxx) + 1

2

[
(TrWij)

2 − 4 detWij

]1/2
, (3.4c)

where we have omitted the dependence on the position and on the frequency for brevity. It
follows from Eqs. (3.4) and Eq. (3.2) that the trace of polarized portion of the light W pol

ij is
given by

TrW pol
ij (r, r, ω) =

[
(TrWij (r, r, ω))2 − 4 detWij (r, r, ω)

]1/2
. (3.5)
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The degree of polarization can be expressed as the ratio of the intensity of the polarized part
(trace of W pol

ij ) to the total intensity of the electromagnetic field (trace of Wij), giving the
classical definition of DOP for planar fields

P (r, ω) =
TrW pol

ij (r, r, ω)
TrW (r, r, ω)

=
[

1−
4 detWij (r, r, ω)
(TrWij (r, r, ω))2

]1/2

, (3.6)

where this quantity is bounded between 0 and 1, corresponding to the cases of an unpolarized
and polarized fields, respectively. Notice that this definition is invariant under a unitary trans-
formation.

3.3.1 Two-dimensional degree of polarization in terms of the eigenvalues

There is a second way to express the value of P . Due to the hermiticity of the cross-spectral
density Wij , one can find a basis of vectors where the coherence matrix is diagonal. Hence, from
the definition of DOP (c.f. Eq. (3.6)), it is straightforward to demonstrate that P (r, ω) can be
written as

P (r, ω) =
∣∣∣∣λ1 − λ2
λ1 + λ2

∣∣∣∣ , (3.7)

being λ1, λ2 the real and non-negative eigenvalues of the coherence matrix. The representation
of P (r, ω) in terms of the eigenvalues will be used in the rest of the sections of this chapter for
the case of arbitrary 3D electromagnetic fields.

3.3.2 Two-dimensional degree of polarization in terms of the Stokes parameters: the Poincaré
sphere

A more visual way to express the different states of the polarization is writing the DOP as a
linear combination of the 2× 2 unit matrix and the three Pauli matrices σj (j = 1, . . . , 3), being
the coefficients the four Stokes parameters Sj , (j = 0, . . . , 3)

↔
W (r, r, ω) =

3∑
j=0

Sj (r, r, ω) σj , (3.8)

where we have written
↔
W (r, r, ω) representing the coherence matrixWij (r, r, ω) in order to avoid

confusion in the notation of Pauli matrices. In Eq. (3.8) the Stokes parameters are expressed in
terms of the elements of Wij (r, r, ω) as

S0 = Wxx (r, r, ω) +Wyy (r, r, ω) , (3.9a)

S1 = Wxx (r, r, ω)−Wyy (r, r, ω) , (3.9b)

S2 = Wxy (r, r, ω) +Wyx (r, r, ω) , (3.9c)

S3 = i (Wyx (r, r, ω) +Wxy (r, r, ω)) , (3.9d)
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Figure 3.1: Three-dimensional view of polarization states. This figure is based on (see this link:
http://tex.stackexchange.com/questions/113900/draw-polarized-light)

and vice-versa as

Wxx (r, r, ω) = 1
2 (S0 + S1) , (3.10a)

Wyy (r, r, ω) = 1
2 (S0 − S1) , (3.10b)

Wxy (r, r, ω) = 1
2 (S2 + iS3) , (3.10c)

Wyx (r, r, ω) = 1
2 (S2 − iS3) , (3.10d)

where the first Stokes parameter S0 represents the total intensity (S0 = TrWij (r, r, ω)). On
substituting from these formulas into Eq. (3.6), we obtain the expression for the DOP in term
of the Stokes parameters

P (r, ω) =
(
S2

1 + S2
2 + S2

3
)1/2

S0
. (3.11)

If the field is completely polarized, i.e, P (r, ω) = 1 we have

S2
0 = S2

1 + S2
2 + S2

3 , (3.12)

however, if the optical field is partially polarized, S2
1 + S2

2 + S2
3 represents the part of P (r, ω)

that is completely polarized, i.e., S2
1 + S2

2 + S2
3 < 1 and S2

0 6= S2
1 + S2

2 + S2
3 . In this case, the

Stokes parameters are generally normalized to the total intensity S0

s1 = S1
S0
, s2 = S2

S0
, s1 = S3

S0
. (3.13)

According to Eq. (3.11), the DOP is

P (r, ω) =
(
s2

1 + s2
2 + s2

3
)1/2

. (3.14)
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Figure 3.2: Representation of a normalized Stokes vector and different states of polarization.

It is intuitive to see that equation (3.14) represents a sphere of radius equal to the degree of
polarization, therefore any polarization state can be drawn using the unit vector s = (s1, s2, s2).
If the field is fully polarized, the normalized Stokes vector endpoint is on a sphere with unit
radius. This sphere is usually denoted as Poincaré sphere. On the other hand, if the field is not
fully polarized, the Stokes vector endpoint will be inside the sphere and the length of the vector
will be P .

In order to represent the vector s in spherical polar coordinates we introduce the azimuthal
angle Ψ (0 < Ψ < 2π) and the polar angle ζ (−π/2 < ζ < π/2) (see Fig. 3.2). With these
variables the vector s can be expressed as

s1 = |s| cos ζ cos Ψ, (3.15a)

s2 = |s| cos ζ sin Ψ, (3.15b)

s3 = |s| sinζ. (3.15c)

With this representation, each state of polarization is represented by a specific point on the
Poincaré sphere. Some of them are represented in Fig. 3.2. For example, for a value of ζ = 90o,
s1 = s2 = 0 and s3 = |s|, the Poincaré vector represent a circular polarization state, therefore, the
North and the South Poles of the sphere represent right and left circular polarization, respectively.
When the Poincaré vector lies in the equator of the sphere (s3 = 0), linear states of polarization
are represented.

3.4 three-dimensional degree of polarization

In this section I will address the problem of the DOP for three-dimensional electromagnetic fields
E = (Ex, Ey, Ez), hence, P (r, ω) has to be redefined in order to consider Ez.

Under this consideration, I will focus on two definitions adopted by Setälä et al. [25] and by
Ellis et al.[26], that will be denoted by PS and PE , respectively. Both have led to a scientific

35



degree of polarization: from its definition in two dimensions to that
controversial in three dimensions

debate on their merits [28, 29] not yet settled. Whereas the justification of PS is based on the
generalized Stokes parameters in 3-D [25], PE is defined as the rate of a total polarized and of
a totally unpolarized field [26] as the usual way (see. Eq. (3.6)). When the 3-D electromagnetic
field components oscillates equally in the three directions, both definitions converge to zero (like
the 2-D field, being λ1 = λ2 in Eq. (3.7)), however, if the field is 2-D and it oscillates in the xy
plane, the formalism of Setälä et al. establishes that the field cannot be completely unpolarized,
since then 1/2 ≤ PS ≤ 1; however the definition by Ellis et al. recovers the usual one for planar
fields with 0 ≤ PE ≤ 1[3].

The aim of this section is demonstrating that, for the wide variety of statistically homogeneous
sources (cf. Section 2.3), those two definitions are identical when either the source coherence
length tends to zero or when the field is considered at subwavelength distance from the source in
such a way that it tends to zero as this coherence length increases. We will also address excitation
of surface plasmon polaritons on the source [11, I], showing that they enlarge those ranges of
equality of both DOP definitions.

Let us consider a planar source at z = 0, emitting a quasi-monochromatic random electric
field at frequency ω into the space z ≥ 0. We shall express it as an angular wave spectrum of
plane waves [3, 10]

E (r, ω) =
∫ ∞
−∞

e (ks⊥, ω) eiks·rd2s⊥, (3.16)

where the propagation vector k = ks = k (s⊥, sz) is defined in Eq. (2.25) of the previous chapter.
The angular amplitude e (ks⊥, ω) is the Fourier inverse of the limiting value of the electric vector
at z = 0 (see Section 1.5).

We assume that the source is statistically homogeneous, i.e. the cross-spectral density tensor
at z = 0 only depends on the position ρi (i = 1, 2) trough the difference ρ1 − ρ2. Hence, the
angular correlation tensor is expressed as [16]

Aij
(
ks⊥, ks′⊥, ω

)
=

〈
e∗i (ks⊥, ω) ej

(
ks′⊥, ω

)〉
= k2Ẽij

(
ks⊥, ks′⊥, ω

)
= k4δ(2) [k (s⊥ − s′⊥

)]
Ẽ(0)
ij

[
k

2
(
s⊥ + s′⊥

)]
, (3.17)

where δ(2) is the two-dimensional Dirac delta function and Ẽij (ks⊥, ks′⊥, ω) is the four dimen-
sional Fourier transform of E (0)ij (ρ1,ρ2, ω). Thus, the cross-spectral density tensor at r1 = r2 = r
is

Wij (r, r, ω) = k2
∫ ∞
−∞
Ẽij (ks⊥, ω) eik(sz−s

∗
z)zd2s⊥. (3.18)

Notice, that Eq. (3.18) is the same as Eq. (2.21) if we write r1 = r2 = r, however, the difference
is given by the electromagnetic formulation used in this chapter. We shall decompose the angular
amplitude e (ks⊥, ω) into s and p polarized modes [31]:

e (ks⊥, ω) = es (ks⊥, ω) ŝ + ep (ks⊥, ω) p̂, (3.19)
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where the caret denotes a unit vector and ŝ = ŝ⊥× ẑ and p̂=|s⊥| ẑ+ sz ŝ⊥. Remark that e (ks⊥) ·
s = ŝ · p̂ = 0. Hence, in terms of these modes the angular correlation tensor is written as

Ẽij (ks⊥, ω) = Ass (ks⊥, ω) ŝiŝj +App (ks⊥, ω) p̂∗i p̂j
+ Asp (ks⊥, ω) ŝip̂j +Aps (ks⊥, ω) p̂∗i ŝj , (3.20)

being Amn = 〈e∗m (ks⊥, ω) en (ks⊥, ω)〉, (m,n = s, p). For a statistically homogeneous, and also
isotropic, source (W (0)

ij (r1, r2, ω) = E (0)ij (|ρ1 − ρ2| , ω)), the symmetry of this tensor implies that
Aij = 0 if i 6= j and Ass = App = A [32], thus

Ẽij (ks⊥, ω) = A (ks⊥, ω) (ŝiŝj + p̂∗i p̂j) . (3.21)

Now we can calculate the 3× 3 coherence matrix at r1 = r2 = r. Substituting Eq. (3.21) into
Eq. (3.18) and employing cylindrical coordinates: sx = s⊥cosφ, sy = s⊥ sinφ to perform the
integral, one sees after integration in the azimuthal variable φ that the non-diagonal elements
are zero, i.e. Wij (r, r, ω) = 0 if i 6= j and Wxx = Wyy 6= Wzz. Hence the cross-spectral density
at r1 = r2 = r is diagonal, viz.

Wij (r, r, ω) =


Wxx 0 0

0 Wxx 0

0 0 Wzz

 . (3.22)

We next address the two definitions of the DOP of the emitted field, namely:

PS (r, ω) =

√
(λ1 − λ2)

2 + (λ1 − λ3)
2 + (λ2 − λ3)

2

√
2 (λ1 + λ2 + λ3)

, (3.23)

and
PE (r, ω) = λ′1 − λ′2

λ′1 + λ′2 + λ′3
. (3.24)

In 3-D both quantities are bounded by 0 and 1. λ1, λ2 and λ3 are the eigenvalues of the diagonal
coherence matrix (3.22) which directly areWxx,Wyy andWzz, respectively. Moreover, Eq. (3.22)
conveys that λ1 = λ2. On the other hand, λ′1, λ′2 and λ′3 are also the eigenvalues of the coherence
matrix but ordered such that λ′1 ≥ λ′2 ≥ λ′3. We distinguish two cases: (i) When λ1 > λ3 then
λ′1 = λ1 = λ′2 = λ2 and λ′3 = λ3, then one sees from (3.23) and (3.24) that PS = λ1−λ3

2λ1+λ3
and

PE = 0. (ii) When λ3 > λ1 then λ′1 = λ3 and λ′3 = λ1 = λ′2 = λ2; in this case the 3-D PS and
PE are identical and equal to λ3−λ1

2λ1+λ3
. Notice that when λ1 = λ3, (which of course also means

that λ2 = λ3), both definitions coincide being zero and hence describing completely unpolarized
fields.

In Chapter 2 we have demonstrated the sub-diffraction-limited coherence lengths in near-field.
In particular, for thermal (δ-correlated) sources, the coupling of SPPs implies a high polarization
of the emitted field [33], however, the spatial coherence of the source will play an important role
as we have demonstrated for the correlation function[I].

Hence, in order to see the effects of the coherence length of the source, of permittivity ε =
ε′ + iε′′, in the three-dimensional DOP, we consider the field transmission through its boundary

37



degree of polarization: from its definition in two dimensions to that
controversial in three dimensions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2

W
z
z
 /

 W
x
x

z/λ

λ
3
 > λ

1

λ
3
 < λ

1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2

W
z
z
 /

 W
x
x

z/λ

λ
3
 > λ

1

λ
3
 < λ

1

σ = λ/2

σ = λ/3

σ = λ/4

σ = λ/8

σ = 0   

Figure 3.3: Wzz (r, r, ω) /Wxx (r, r, ω) versus distance from the source, (in units of wavelength λ), for
different values of the coherence length σ. The calculations are done at λ = 500 nm, (ε = 4.2 + i18.1).

surface z = 0 by addressing the Fresnel coefficients for s and p modes. From Eqs. (3.18) and
(3.21) the expression of the cross-spectral density Wij (r, r, ω) is

Wij(r, r, ω) = k2
∫ ∞
−∞
A(ks⊥, ω)(sisj |ts|2+p∗i pj |tp|2)eik(sz−s∗z)zd2s⊥, (3.25)

where ts (s⊥) and tp (s⊥) are the Fresnel transmission coefficients for s and p polarizations
respectively, (cf. also [I]). The dielectric-vacuum interface supports SPPs when ε′ < 1; they
propagate along the surface with a wave vector ksspp⊥ . Only for p-polarization have the Fresnel
coefficients a pole at ksspp⊥ = ±k

√
ε/(ε+ 1) (see dispersion relation given by Eq. (2.17))

We shall consider a source with E (0) (ρ, ω) = exp
(
−ρ2/2σ2) /2πσ2, where ρ = |ρ1−ρ2| and σ

is the source coherence length, then the 2-D Fourier transform of E (0) (ρ, ω) is given by A (ks⊥) =
exp

(
−(kσs⊥)2/2

)
(cf. Eq. (2.20)). Figure 3.3 shows Wzz (r, r, ω) /Wxx (r, r, ω) = λ3/λ1, [which

by Eq. (3.22) is the same as Wzz (r, r, ω) /Wyy (r, r, ω) = λ3/λ2], for different values of σ. The
horizontal line at the unity value of the ordinate divides the plot into two regimes according
to whether Wzz (r, r, ω) /Wxx (r, r, ω) is smaller or larger than 1. Evidently these two regions
correspond to the two above discussed cases: (i) and (ii), respectively. One observes that when σ
approaches zero Wzz (r, r, ω) /Wxx (r, r, ω) ≥ 1, which corresponds to case (ii) and hence both
definitions PS and PE tend to be equivalent. However, as one moves beyond one wavelength
away from the source, and thus the contribution of evanescent waves disappears, one approaches
case (i), the two definitions PS and PE tend to differ from each other, more markedly the larger
σ is, and to be constantly equal to their far zone values for any σ, except for those sources with
σ very small or zero for which the ratio λ3/λ1 tends to 1, or close to it, then both PS and PE
are close to 0 so that the emitted field becomes completely unpolarized. On the other hand, as
σ grows to λ/2 and above, the contribution of evanescent waves tend to appear at progressively
extremely shorter distances from the source plane and the ratio λ3/λ1 approaches zero, which
means that PS tends to 1/2 while PE = 0. In this respect, we see the crucial role played by the
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coherence length of the source, analogously to that observed in correlation effects of the near
field (cf. Chapter 2).
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Figure 3.5: PS and PE versus distance to the source when SPPs are excited on its surface. The surface
metal is Au at 620nm (ε = −9.1 + i1.2).

To better illustrate the above, Fig. 3.4 shows the 3-D PS and PE . As said before, while when
σ → 0 both definitions tends to coincide, for larger σ we see an “anomalous” behavior in PS ;
namely while PE monotonically decays to 0 as σ or z/λ grow, PS decreases to 0 (λ1 = λ2) at
a certain value of z/λ which is smaller the larger σ is, and then grows again with z/λ up to a
constant value. When σ approaches λ/2 the abscisa z/λ of this zero-minimum tends to 0 and

39



degree of polarization: from its definition in two dimensions to that
controversial in three dimensions

PS grows right from z = 0 with values that are bounded by 1/2. By contrast, the maximum
PE = PS ' 0.5 occurs from a δ-correlated source while PE is zero for σ ≥ λ/2.

We now address excitation of SPPs on the source surface. Figure 3.5 shows the corresponding
PS and PE ; both are now enhanced. This agrees with the results obtained in [33] for PS from δ-
correlated sources. Their maxima coincide: PS = PE ' 0.8 when σ = 0. It was mentioned above
(cf. Fig. 3.4) that both DOP tend to coincide when σ < λ/2; now we see that the contribution of
SPPs, a pure near-field effect, helps to fulfil this coincidence (and hence the condition λ1 = λ3)
for larger values of z. Although not discussed here, analogous effects are found when we address
homogeneous sources like those thermal, whose source function correlations are given by the
fluctuation-dissipation theorem [11]. As we have commented previously, in this case, these source
functions are δ-correlated and the two definitions of DOP are equivalent. However, again once
we assume non-zero correlation lenghts, we obtain different values for PS and PE .

3.5 conclusions

This chapter analyzes the DOP under different situations. Firstly, we have described the classical
two-dimensional DOP for planar fields. Then, we have focused on the three-dimensional DOP
trying to find a way to clarify it. We have shown how two different definitions established for
the 3-D degree of polarization may be equivalent both in the near and far field. This occurs
depending on the correlation properties of the source, i.e., when σ → 0, both definitions have an
identical behavior, nevertheless, for σ > λ/4, they show a different behavior on propagation: for
z > λ both definitions tend to zero, however, Ellis et al. definition remains constant, and Setälä
et al. definition increases. In particular, when SPPs are addressed, the distance up to which both
definitions coincide is larger than when they are not excited

40



Part III

THEORY OF OPTICAL FORCES FROM PARTIALLY
COHERENT L IGHT





4
M E C H A N I C A L AC T I O N O N S M A L L PA R T I C L E S O F
R A N D O M L I G H T

4.1 motivation

T
he earlier chapters deal with the main concepts and ideas on the theory of coherence
and polarization. Nevertheless, this is not the main aim of this thesis, indeed, the
previous chapters emerged as answers to questions that we asked ourselves when we

decided to study this topic. From this point I will go beyond: what are the effects of the spatial
coherence in optical forces?. As far as I know, this question has not been addressed before, at
least in a detailed and systematic way.

I could say that before this work, the studies in this field were almost inexistent. However, I am
obliged to mention that some authors (they will be referenced below) put the bases for studying
this subject because they demonstrated that both energy and momentum are conserved in a
partially coherent wave. Therefore, in the next chapter I will introduce the concept of optical
force due to a fluctuating stochastic field.

Before entering in detail with the coherence of light, I will describe the interaction between
deterministic fields and small particles. In most of the chapters of this thesis, the force will be
expressed by two components: one conservative (also denoted gradient force) proportional to the
gradient of the intensity, and one non-conservative (without any special name) proportional to
ImE∗j ∂iEj . The latter is usually associated to the radiation pressure of light, nevertheless, this
is not completely truth. In recent years there have been several studies in which the dynamics
of the particle is written through the different contributions to the total density momentum of
light [34–40].

Once I have defined the most important equations for deterministic fields, I will recover the
stochastic character of light. To this end, and since the spatial coherence can be defined as
the ability of light to interfere at different points, the most famous experiment to check this
property is the double slit experiment. However, this experiment also gives us information about
the coherence of light. Hence, it seems logical to think that the first step in order to see the
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mechanical action on small particles of random light

Fgrad

Fnc

beam axis

Figure 4.1: Optical forces on a dipolar spherical particle. The particle will be pushed toward the beam
waist.

effects of the spatial coherence on optical forces is to reproduce theoretically this experiment for
a test particle.

4.2 introduction

It is well-known that an optical wavefield in free-space propagation will push a particle in the
propagation direction, however, a highly focused beam can trap a particle in areas where the
electromagnetic energy is maximum (see Fig. 4.1). This experimental demonstration of optical
trapping was carried out by Ashkin [41, 42]. Since then, the manipulation of particles has been
a tool of great interest in disciplines such as chemistry or biology.

The optical forces arise as consequence of the momentum conservation law [43]. Most of the
studies about this law deal with coherent wavefields [44–47], however, some of them introduce
the spatial coherence of light, demonstrating that these conservations laws are also valid for
partially coherent illumination [48, 49].

Photonic trapping manipulation is usually developed under coherent wavefields [34, 50–54],
however, classical textbooks demonstrate how coherence properties of the source affect the spec-
tral distribution of energy [3–5, 20].

Prior to this thesis (and in particular to reference [III]), three works [56–58] studied the me-
chanical action of light on Rayleigh particles in some particular focusing and beam configurations.
Nevertheless, this chapter will deal with a general formulation of optical forces from partially
coherent light without assuming any particular configuration. Because the spatial coherence in-
creases in free-space propagation (cf. Section 1.4), this feature of light should become increasingly
important as one enters in the nanoscale (or subwavelength region) [50].

In this chapter I focus primarily on the contribution to the total optical force of the electric
and magnetic orbital and spin momentum density from a fully coherent illumination. Secondly, I
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4.3 averaged optical force from a coherent wavefield: linear, orbital and
spin momentum of light

analyze in detail the case of the force exerted on a small magnetodielectric particle by a random
stationary and ergodic partially coherent external field [3]. I emphasize the influence of the degree
of coherence on these forces. To this end, I address a system that, since early studies, has been
paradigmatic to observe the nature of light and matter waves, as well as to characterize the degree
of coherence of wavefields [3]. This is the Young interference pattern from two small apertures
of an opaque screen. Concerning our study, I shall consider this configuration as discussed in the
classical work by Thompson and Wolf [6] that relates the observed visibility of the interference
fringes with the estimated degree of coherence of the light at those two apertures.

I should remark that this chapter establishes a new theory for the mean optical force on a
dipolar particle, (understood as that whose electric and/or magnetic polarizability is due to the
corresponding first electric and/or magnetic Mie coefficient [59–61]). This includes the limiting
case of Rayleigh particles, although this fact will be discussed in detail in Chapter 6.

In summary, I will study the dependence of the gradient (density energy), scattering (radiation
pressure) and curl components (spin momentum density) of the force on the cross-spectral density
of the fluctuating stationary wavefield.

4.3 averaged optical force from a coherent wavefield: linear,
orbital and spin momentum of light

In this section I will address the mechanical action on a magnetodielectric particle from a de-
terministic wavefield. In the rest of the chapter I will demonstrate the analogy between this
formulation and that for a fluctuating random field. From Maxwell’s theory we know that radia-
tion carries energy and momentum. When a photon interacts with matter, there is an exchange
of momentum. In general, this momentum can be seen as the sum of two contributions: one
orbital and one from the spin of light. Whereas the orbital momentum [62, 63] is associated with
the spatial distribution of the wavefronts, the spin [64] is associated with the polarization of the
field (cf. Chapter 3).

The main goal of this section is to make a complete overview of this new point and demonstrate
the relation with the usual expressions that we will manage in this thesis.

4.3.1 Relations between linear, orbital and spin momentum densities.

Let us begin defining the linear momentum density p. Considering a monochromatic electromag-
netic field [exp (−iωt)], the time-averagedIII.1 Poynting vector and the linear momentum density
p are related by the expression [1, 43]:

p (r) = 〈S (r)〉
c2 = 1

8πµcRe {E (r)×B∗ (r)} . (4.1)

III.1 Notice that only in this section the average 〈·〉 is understood as the time-average
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From now on, the spatial dependence of the electric and magnetic fields will be assumed for
brevity. This definition is associated to the commonly addressed radiation pressure (see Sec-
tion 4.3.3), which appears in many textbooks as the main consequence of the conservation of
momentum.

For the harmonic electromagnetic field, we can express the electric field in terms of the curl
of the magnetic vector and vice-versa [35]

∇×B = −inkE, (4.2)

∇×E = (ik/n)B, (4.3)

where we have defined the radiation wavenumber k = nω/c, being n = √εµ the refractive index
of the arbitrary medium. As I have commented in the introduction of this chapter, the (total
linear) momentum density (cf. Eq. (4.1)) can be written in terms of the orbital momentum
density p◦i and the spin momentum density psi (i = e,m for the electric (e) and magnetic (m)
densities) [35, 36]. Using the vectorial relation

A · (∇)B = A× (∇×B) + (A · ∇)B, (4.4)

where A · (∇)B is understood as the scalar product of a vector A with the gradient of a vector
B (or in a tensorial way Aj∂iBj , with i, j = 1, 2, 3 = x, y, z), and Eqs. (4.2)-(4.3), we can express
it involving only electric field terms, namely

p = 1
8πcµRe {E×B∗}

= n

8πcµk Im {E
∗ × (∇×E)}

= n

8πcµk

[
Im {E∗ · (∇)E}+ 1

2∇× Im {E∗ ×E}
]

= p◦e + pse. (4.5)

Thus, the electric orbital and spin momentum densities are explicitly:

p◦e = 1
8πωµ Im {E

∗ · (∇)E} (4.6)

pse = 1
16πωµ∇× Im {E∗ ×E} (4.7)

This interpretation of the linear momentum is not unique, there is an analogous way to express
this momentum p using only the magnetic fields:

p = 1
8πcµRe {E×B∗}

= 1
8πcµnk Im {B

∗ × (∇×B)}

= 1
8πcµnk

[
Im {B∗ · (∇)B}+ 1

2∇× Im {B∗ ×B}
]

= p◦m + psm. (4.8)

Thus, the magnetic orbital and spin momentum densities are explicitly

p◦m = 1
8πωµ2ε

Im {B∗ · (∇)B} (4.9)

psm = 1
16πωµ2ε

∇× Im {B∗ ×B} (4.10)
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spin momentum of light

(a) Orbital momentum density of light. (b) Spin momentum density of light.

Figure 4.2: Three-dimensional view of momentum densities

As follow from Eqs. (4.7)-(4.10), if the electric (magnetic) field is linearly polarized, the contribu-
tion to the total momentum of the spin momentum density is zero, in other words, its existence
is associated with the rotation of the electric (magnetic) field along the axis of propagation.
This situation occurs for circular polarization, having two states of polarization: (left-)right-
handed/(counter-)clockwise circularly polarized light. III.2

4.3.2 Contribution of the momentum densities to the optical force

Now, we will make emphasis on the contribution of the different momentum densities to the force.
For a magnetodielecric particle, the force can be written in terms of the electric and magnetic
dipoles, arising a third term as consequence of the interference between them [44, 59, 65]:

〈Fe〉 = 1
2Re {d · (∇)E∗} , (4.11)

〈Fm〉 = 1
2Re {m · (∇)B∗} , (4.12)

〈Fem〉 = −k
4

3

√
µ

ε
Re {d×m∗} . (4.13)

If we express the induced dipoles moments d,m in terms of the incident fields E,B, i.e. d = αeE
and m = αmB, being αe, αm the electric and magnetic polarizabilitiesIII.3, we can split the
total (electric or magnetic) force 〈Fe,m〉 in two: one conservative (∇ × Fconse,m = 0) and one
non-conservative (∇×Fnce,m 6= 0) [59, 66]:

〈Fe〉 = 1
2Re {αeE · (∇)E∗}

= 1
4Reαe∇ |E|

2 + 1
2 ImαeIm {E

∗ · (∇)E}

= 〈Fconse 〉+ 〈Fnce 〉 . (4.14)

III.2 Notice also that these definitions coincide with the expressions of references [38, 40], however, there is a difference
in a factor 1/2 due to they split the total momentum as p = p◦e + pse + p◦m + psm,

III.3 In order to avoid any confusion with the momentum densities, in this section we will denote the induced electric
dipole as d instead of the usual notation p.
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〈Fm〉 = 1
2Re {αmB · (∇)B∗}

= 1
4Reαm∇ |B|

2 + 1
2 ImαmIm {B∗ · (∇)B}

= 〈Fconsm 〉+ 〈Fncm 〉 . (4.15)

〈Fem〉 = −k
4

3

√
µ

ε
Re {αeα∗mE×B∗}

= −k
4

3

√
µ

ε
(Re {αeα∗m}Re {E×B∗} − Im {αeα∗m} Im {E×B∗}) . (4.16)

From Eqs. (4.14) and (4.15) and Eqs. (4.6) and (4.9), we see that the non-conservative force is
proportional to the orbital momentum density (see [67])

〈Fnce 〉 = 1
2 ImαeIm {E

∗ · (∇)E}

= 4πωµIm {αe}p◦e, (4.17)

〈Fncm 〉 = 1
2 ImαmIm {B∗ · (∇)B}

= 4πωµ2εIm {αm}p◦m. (4.18)

If we write the orbital momentum density as the difference of the linear and spin, i.e., p◦e = p−pse
(analogously for the magnetic field) and we use the definitions of the previous subsection, we
obtain [34, 59]:

〈Fe〉 = 1
4Reαe∇ |E|

2 + k

2n ImαeRe {E×B∗} − 1
2 Imαe

1
2∇× Im (E∗ ×E)

(4.19)

〈Fm〉 = 1
4Reαm∇ |B|

2 + kn

2 ImαmRe {E×B∗} − 1
2 Imαm

1
2∇× Im (B∗ ×B)

(4.20)

Notice that these equations are exactly the same as the Eqs. (42), (45) and (43), (50) respectively
of reference [59]. Now we see three contributions: the first term in Eqs. (4.19) and (4.20), which
is proportional to the gradient of the density of electromagnetic energy [1, 10], will push the
particle towards zones of maximum intensity and it is the main responsible in nanomanipulation
techniques (see Fig. 4.1). The second one is the traditional radiation pressure term, and will
push the particle in the Poynting vector direction. The third shows the force due to the spatial
distribution of spin density.

On the other hand, Eq. (4.16) reveals the fundamentals of the relevant topic of tractor forces
[68–71]. As we can see, this force is directed towards the −Re {E×B∗} direction, thus, if we
are capable of making this term much larger than their electric and magnetic counterparts, the
particle will be pushed to the source.
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4.4 averaged optical force from a partially coherent wavefield

4.3.3 Dimensional analysis: radiation pressure and momentum density

Now we will make a small digression to justify the use of the previous expressions for the mo-
mentum densities. This is based on dimensional analysis. Let us begin expressing the dimensions
of the Poynting vector (see Eq. (4.1)):

〈S〉 = velocity× electric field×magnetic field

= velocity× electric field2

= length
time ×

energy
length

= power
area . (4.21)

This quantity represents the density of flow of energy, i.e., the rate of energy transfer per unit
area. Now, for photons we know from the energy-momentum relation that E = pc, thus, if we
consider instead of this expression the ratio 〈S〉 /c, this leads to

〈S〉
c

= time× power
length× area

= force
area ≡ pressure. (4.22)

This is the well-known radiation pressure term. If we divide this expression by c, as in Eq. (4.1)
we obtain

〈S〉
c2 = time×Force

length× area

= momentum
volume ≡ momentum density, (4.23)

which is the quantity on which we have been working in the previous subsection.

4.4 averaged optical force from a partially coherent wavefield

Now I turn to the main topic. The goal is to demonstrate how the previous expressions for the
force are also valid for a partially coherent illumination. To this end, we shall consider fluctuating
time stationary and ergodic fields [1, 3]. For a single realization whose real electric and magnetic
vectors are E(r) (r, t) and B(r) (r, t), respectively, at a space point r and time t, the frequency
decomposition is [3]

E(r) (r, t) =
∫ ∞
−∞

Ẽ(r) (r, ω) e−iωtdω, (4.24)

B(r) (r, t) =
∫ ∞
−∞

B̃(r) (r, ω) e−iωtdω. (4.25)

The corresponding complex analytic signals are [1, 3]:

E (r, t) =
∫ ∞
−∞

Ẽ (r, ω) e−iωtdω, (4.26)

B (r, t) =
∫ ∞
−∞

B̃ (r, ω) e−iωtdω, (4.27)
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where those Fourier integrals should be considered in the sense of distribution theory. In addition,
we have

Ẽ (r, ω) = Ẽ(r) (r, ω) , ω ≥ 0

= 0 , ω < 0
, (4.28)

B̃ (r, ω) = B̃(r) (r, ω) , ω ≥ 0

= 0 , ω < 0
. (4.29)

The analytical signal is related to the real and imaginary parts trough

E (r, t) = 1
2

[
E(r) (r, t) + iE(i) (r, t)

]
, (4.30)

B (r, t) = 1
2

[
B(r) (r, t) + iB(i) (r, t)

]
, (4.31)

where superscripts (r) and (i) denote the real and imaginary parts, respectively. For each Carte-
sian component of these electric and magnetic vectors, they form a Hilbert transform pair in
the t variable [1, 3]. We shall now calculate the ensemble average (cf. Section 1.1.1) of the force
exerted by the random field on a dipolar particle, (understood in the sense mentioned in Section
4.4), over its different realizations:

〈F(r, t)〉 =
〈(

p(r)(r, t) · ∇
)

E(r)(r, t) + 1
c

∂p(r)(r, t)
∂t

×B(r)(r, t)
〉
, (4.32)

p(r) is the real part of the dipole moment induced by the fluctuating incident wave on the particle.
If αe denotes the particle electric polarizability, one has that

p(r, t) = αeE(r, t). (4.33)

Denoting: ∂p/∂t = ṗ, and due to a well-known property of the derivative of Hilbert transforms
[3], the real and imaginary parts of each Cartesian component of ṗ are Hilbert transforms of
each other in t.

Let us evaluate the fist term of Eq. (4.32). Taking Eqs. (4.26), (4.27), (4.30), (4.31) and
(4.33) into account, omitting the explicit r, t dependence in the forthcoming notation; this is (cf.
[1, 3, 4]): 〈

p
(r)
j ∂jE

(r)
i

〉
=

〈(
pj + p∗j

)
∂j (Ei +E∗i )

〉
= Lim

T→∞
1

2T

∫ T

−T
dt
[∫ ∞
−∞

e−i(ω1+ω2)t 〈p̃j(r, ω1)∂jẼi(r, ω2)
〉
dω1dω2

+
∫ ∞
−∞

e−i(ω1−ω2)t
〈
p̃j(r, ω1)∂jẼi

∗(r, ω2)
〉
dω1dω2

+
∫ ∞
−∞

e−i(−ω1+ω2)t
〈
p̃j
∗(r, ω1)∂jẼi(r, ω2)

〉
dω1dω2

+
∫ ∞
−∞

e+i(ω1+ω2)t
〈
p̃j
∗(r, ω1)∂jẼi

∗(r, ω2)
〉
dω1dω2

]
, (4.34)
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4.4 averaged optical force from a partially coherent wavefield

Where i, j = 1, 2, 3 and Einstein’s convention of omitting the sum symbol
∑3
j=1 on the repeated

index j has been used. Using the properties of Dirac delta distribution: 2πδ(ω) =
∫∞
−∞ e−iωtdt

and δ(ω) = δ(−ω), the previous equation reduces to〈
p

(r)
j ∂jE

(r)
i

〉
= 2π

[∫ ∞
−∞

g
(p,E)
i (r, ω1, ω2) δ (ω1 + ω2) dω1dω2

+
∫ ∞
−∞

g
(p,E∗)
i (r, ω1, ω2) δ (ω1 − ω2) dω1dω2

+
∫ ∞
−∞

g
(p∗,E)
i (r, ω1, ω2) δ (ω1 − ω2) dω1dω2

+
∫ ∞
−∞

g
(p∗,E∗)
i (r, ω1, ω2) δ (ω1 + ω2) dω1dω2

]
, (4.35)

where the cross-spectral function g(U,V )
i (r, ω1, ω2) is

g
(U,V )
i (r, ω1, ω2) = Lim

T→∞
1

2T
〈
Ũj(r, ω1)∂j Ṽi(r, ω2)

〉
, (4.36)

Ũj(r, ω) and Ṽi(r, ω) (i, j = 1, 2, 3) being the spectra of two analytic signal Cartesian compo-
nents.

On performing the ω2 integration in Eq. (4.35) and taking into account that due to Eqs. (4.26)
- (4.29) , and to Eq. (4.36), one has that

g
(U,V )
i (r, ω1,−ω1) = 0, (4.37)

only the second and third terms of Eq. (4.35) are different from zero. Thus finally〈
p

(r)
j ∂jE

(r)
i

〉
= 4πRe

∫ ∞
−∞

Lim
T→∞

1
2T
〈
p̃j(r, ω1)∂jẼi

∗(r, ω1)
〉
dω1

= 4πRe
∫ ∞
−∞

g
(p∗,E)
i (r, ω1, ω1) dω1, (4.38)

where Re denotes the real part.

On the other hand, writing as εijk the antisymmetric Levi – Civita tensor, (i, j, k = 1, 2, 3);
the second term of Eq. (4.32) is:

1
c
εijk

〈
ṗ

(r)
j B

(r)
k

〉
= 1

c
εijk

〈
(ṗj + ṗ∗j )(Bk +B∗k)

〉
. (4.39)

1
c
εijk

〈
(ṗj + ṗ∗j )(Bk +B∗k)

〉
=

εijk
c

Lim
T→∞

1
2T

∫ T

−T
dt
[∫ ∞
−∞

(−iω1)e−i(ω1+ω2)t 〈p̃j(r, ω1)B̃k(r, ω2)
〉
dω1dω2

+
∫ ∞
−∞

(−iω1)e−i(ω1−ω2)t
〈
p̃j(r, ω1)B̃k

∗(r, ω2)
〉
dω1dω2

+
∫ ∞
−∞

iω1e
−i(−ω1+ω2)t

〈
p̃j
∗(r, ω1)B̃k(r, ω2)

〉
dω1dω2

+
∫ ∞
−∞

iω1e
+i(ω1+ω2)t

〈
p̃j
∗(r, ω1)B̃k

∗(r, ω2)
〉
dω1dω2

]
. (4.40)
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Or in a more compact form
1
c
εijk

〈
(ṗj + ṗ∗j )(Bk +B∗k)

〉
= 2π

c
εijk

[∫ ∞
−∞

(−iω1)W (p,B)
jk (r, ω1, ω2)δ(ω1 + ω2)dω1dω2

+
∫ ∞
−∞

(−iω1)W (p,B∗)
jk (r, ω1, ω2)δ(ω1 − ω2)dω1dω2

+
∫ ∞
−∞

iω1W
(p∗,B)
jk (r, ω1, ω2)δ(ω1 − ω2)dω1dω2

+
∫ ∞
−∞

iω1W
(p∗,B∗)
jk (r, ω1, ω2)δ(ω1 + ω2)dω1dω2

]
, (4.41)

where the cross-frequency density tensor W (U,V )
jk (r, ω1, ω2) is

W
(U,V )
jk (r, ω1, ω2) = Lim

T→∞
1

2T
〈
Ũj(r, ω1)Ṽk(r, ω2)

〉
, (4.42)

On performing the ω2 integration in Eq. (4.41) and taking into account that due to Eqs. (4.27)
- (4.29), one has that

W
(U,V )
jk (r, ω1,−ω1) = 0. (4.43)

only the second and third terms of Eq. (4.41) remain different from zero.

Now, since B = c/iω∇×E, i.e. −iωB∗k = cεklm∂lE
∗
m, and taking into account that εijkεklm =

δilδjm − δimδjl, δil being the Kronecker delta unit tensor, Eq. (4.41) becomes

1
c
εijk

〈
ṗ

(r)
j B

(r)
k

〉
= 4πRe

∫ ∞
−∞

Lim
T→∞

1
2T
[〈
p̃j(r, ω1)∂iẼj

∗(r, ω1)
〉

−
〈
p̃j(r, ω1)∂jẼi

∗(r, ω1)
〉]

dω1. (4.44)

We now introduce Ejk(r, r′, τ) = 〈Ej(r, t)Ek∗(r′, t+ τ)〉 as the electric field coherence tensor
[3, 4] expressed as

Ejk(r, r′, τ) =
∫ ∞
−∞
Ẽjk(r, r′, ω)e−iωτdω, (4.45)

Ẽjk(r, r′, ω) being the electric field cross-spectral density tensor III.4 defined as

Ẽjk(r, r′, ω) = Lim
T→∞

1
2T
〈
Ẽ∗j (r, ω)Ẽk(r′, ω)

〉
. (4.46)

On introducing Eqs. (4.38) and (4.44) into Eq. (4.32), and taking Eqs. (4.33), (4.45) and (4.46)
into acount, one finally obtains for the averaged force acting on a dipolar particle [44], the
following expression in terms of the analytic signal associated to the random field

〈Fi(r, t)〉 = 4πRe
∫ ∞
−∞

Lim
T→∞

1
2T
〈
p̃j(r, ω)∂iẼj

∗(r, ω)
〉
dω

= 4πRe
∫ ∞
−∞

αe∂
(∗)
i Lim

T→∞

1
2T
〈
Ẽj(r, ω)Ẽj

∗(r, ω)
〉
dω

= 4πRe
∫ ∞
−∞

αe∂
(∗)
i TrẼjk(r, r, ω)dω, (4.47)

III.4 It is well-known that the expression (4.46) is one of the "smoothing" alternatives to estimate the cross-spectral
density of the random process E(r, t) considered as truncated in time beyond |t|= T [1, 3, 4]. Another way is to
write [20]: Ẽjk(r, r′, ω) = lim∆ω→0

∫ ω+∆ω/2
ω−∆ω/2

〈
Ẽ∗j (r, ω)Ẽk(r′, ω′)

〉
dω′.
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4.4 averaged optical force from a partially coherent wavefield

where we have replaced ω1 by ω. The symbol Tr denotes the trace. On the other hand, ∂(∗)
i means

that the derivative with respect to the ith component of r is made on the complex-conjugated
component E∗j .

Eq. (4.47) may also be expressed in terms of the coherence tensor as

〈Fi(r, t)〉 = 4πRe
{〈
pj(r, t)∂iE∗j (r, t)

〉}
= 4πRe

{
αe∂

(∗)
i

〈
Ej(r, t)E∗j (r, t)

〉}
= 4πRe

{
αe∂

(∗)
i TrEjk(r, r, 0)

}
. (4.48)

In Eq. (4.48) we have recalled that acording to (4.45) one has Ejk(r, r, 0) =
∫∞
−∞ Ẽjk(r, r, ω)dω.

On introducing the mean force components at frequency ω:
〈
F̃i(r, ω)

〉
as

〈Fi(r, t)〉 = 2π
∫ ∞
−∞

〈
F̃i(r, ω)

〉
dω, (4.49)

we see that according to Eq. (4.47) we may express them as:〈
F̃i(r, ω)

〉
= 2Re[αe∂(∗)

i TrẼjk(r, r, ω)]. (4.50)

In most instances, specially when handling experimental data, one has access to Ejk(r, r′, τ) or
Ẽjk(r, r′, ω) directly, but not to the field of which they are correlations, then adopting the ordering
of functions and variables as written in Eq. (4.46) it may be more convenient to express the
derivative ∂(∗)

i in Eqs. (4.47)-(4.50) simply by that with respect to the ith-Cartesian component
of r as:

∂
(∗)
i TrẼjk(r, r, ω) = [∂iTrẼjk(r, r′, ω)]r′=r. (4.51)

∂
(∗)
i TrEjk(r, r, τ) = [∂iTrEjk(r, r′, τ)]r′=r. (4.52)

Where it is understood that one takes first the derivative with respect to xi (i = 1, 2, 3) of the
corresponding element of the coherence tensor, afterwards making r′ = r. In this connection, it
shold be remarked that such expressions for non-local interactions of the field and the induced
dipole have recently been addressed in microcavities [72].

Eq.(4.49) shows how the mean force vector at each frequency ω adds to build up the field force.
Of course for a quasimonochromatic field just the component of the mean force at the center
frequency ω̄ of the spectrum approximates the force.

The above calculations also lead to the conclusion that, being p, ṗ, E and B analytic signals
of t, one also has that 〈

ṗ
(r)
j B

(r)
k

〉
= 2Re

〈
ṗjB

∗
k

〉
,〈

p
(r)
j ∂jE

(r)
i

〉
= 2Re

〈
αeEj∂jE

∗
i

〉
. (4.53)

Notice that introducing Eqs. (4.53) into Eq. (4.32), one obtains again (4.48).

Eq. (4.48) and its frequency counterpart (4.50) show that the mean force is linked to the
coherence tensor of the field. This latter quantity fulfills the Helmholtz equation whose integral
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representation leads to well known propagation laws in coherence theory, like the Zernike law
and the Van Cittert-Zernike theorem, or to the dependence of the intensity on the degree of
coherence of the wavefield in the primary or secondary source surface that emits it [1, 3, 4].
Hence all these phenomena have consequences for the averaged force.

4.4.1 Conservative and non-conservative components of the averaged optical force. The case
of magnetodielectric particles

In Section 4.3.2 we have shown that the time averaged force from coherent fields may be ex-
pressed as the sum of three parts, one conservative and two non-conservative, (cf. also [34, 59]),
namely, a gradient, a scattering and a curl of a electric spin density. Similarly, the force spectral
components given by Eq. (4.50) lead to (for vacuum)

〈F(r, t)〉 = 2πReαe
∫ +∞

−∞
Lim
T→∞

1
2T

〈
∇
∣∣Ẽ(r, ω)

∣∣2〉 dω
+4πImαeRe

{∫ +∞

−∞
Lim
T→∞

1
2T
〈
kẼ(r, ω)× B̃∗(r, ω)

〉
dω
}

+4πImαeIm
{∫ +∞

−∞
Lim
T→∞

1
2T
〈(

Ẽ∗(r, ω) · ∇
)

Ẽ(r, ω)
〉
dω
}
, (4.54)

where Im denotes the imaginary part. In Eq. (4.54) the physical meaning is the same as stated
in Section 4.3.2, i.e., the first term represents the conservative or gradient force, whereas the
second and third terms correspond to the non-conservative scattering component, or radiation
pressure, and to the curl force, respectively. Likewise, one may write the same decomposition for
the averaged force spectral components in ω−space, [cf. Eq. (4.50)]:〈

F̃ (r, ω)
〉

= Reαe∇
〈∣∣Ẽ (r, ω)

∣∣2〉+ 2kImαeRe
{〈

Ẽ (r, ω)× B̃∗ (r, ω)
〉}

+2ImαeIm
{〈(

Ẽ∗ (r, ω) · ∇
)

Ẽ (r, ω)
〉}
. (4.55)

It should be remarked that if the particle is magnetodielectric, namely, if additionally it has
a magnetic polarizability αm [59], then in a similar way as for Eq. (4.55) one obtains for the
averaged force on the particle due to the magnetic field F̄mi (r, t) = 2Re

{
αm∂

(∗)
i TrBjk(r, r, 0)

}
,

Bjk(r, r′, τ) =
〈
Bj(r, t)B∗k(r, t+ τ)

〉
:〈

F̃m (r, ω)
〉

= Reαm∇
〈∣∣B̃ (r, ω)

∣∣2〉+ 2kImαmRe
{〈

Ẽ (r, ω)× B̃∗ (r, ω)
〉}

+2ImαmIm
{〈(

B̃∗ (r, ω) · ∇
)

B̃ (r, ω)
〉}
. (4.56)

And for the mean force due to the interaction between the electric and magnetic dipole in-
duced in the particle 〈F e−mi (r, t)〉 = −(8/3)k4Re

{
αeα

∗
mεijkGjk(r, r, 0)

}
, with Gjk(r, r′, τ) =〈

Ej(r, t)B∗k(r, t+ τ)
〉
[59]:

〈
F̃e−m

〉
= −4k4

3
{
Re(αeα∗m)Re

〈
Ẽ× B̃∗

〉
− Im(αeα∗m)Im

〈
Ẽ× B̃∗

〉}
= −4k4

3 Re(αeα∗m)Re
〈
Ẽ× B̃∗

〉
+4k3

3 Im(αeα∗m)
[

1
2∇

〈∣∣Ẽ∣∣2〉−Re
〈
(Ẽ∗ · ∇)Ẽ

〉]
. (4.57)
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For the sake of brevity, we have omitted in the notation of Eq. (4.57) the arguments r and ω

of the analytic signal spectral vectors Ẽ and B̃. In this chapter, we study the mean force on a
particle with electric polarizability αe only. [cf. Eq. (4.55)].

4.4.2 Conservative and non-conservative components from the momentum densities

Now let us address the contribution of the different momentum densities (linear, orbital and
spin) of the partially coherent light. As we stated in Section 4.3, the total electric force can be
written as〈

F̃e,i
〉

= 2Re
{
αe∂

(∗)
i TrẼjk (r, r, ω)

}
= 2ReαeRe

{
∂

(∗)
i TrẼjk (r, r, ω)

}
− 2ImαeIm

{
∂

(∗)
i TrẼjk (r, r, ω)

}
=

〈
F̃ conse,i

〉
+
〈
F̃nce,i

〉
. (4.58)

From Eq. (4.6), we see that the non-conservative term is proportional to the orbital momentum
density of light 〈p◦e〉 〈

F̃nce,i
〉

= −2ImαeIm
{
∂

(∗)
i TrẼjk (r, r, ω)

}
= 16πωImαe

〈
p◦e,i
〉
. (4.59)

Notice, that in equation we write 〈p◦e〉 with angular brackets 〈·〉 because in this case, the orbital
momentum density is understood within the framework of classical second-order coherence theory
of vector electromagnetic fields, where the conservations laws are also established [49, 73]. Thus,
without loss of generality, we can write 〈p◦e〉 = 〈pe〉 − 〈pse〉, and the total electric force leads to〈

F̃e (r, ω)
〉

= Reαe∇
〈∣∣Ẽ (r, ω)

∣∣2〉+ 16πωImαe 〈pe〉 − 16πωImαe 〈pse〉 , (4.60)

and analogously for the magnetic force, we have〈
F̃m (r, ω)

〉
= Reαm∇

〈∣∣Ẽ (r, ω)
∣∣2〉+ 16πωImαm 〈pm〉 − 16πωImαe 〈psm〉 . (4.61)

These equations manifest the contribution of the momentum density of a partially coherent
electromagnetic field.

4.4.3 Transition to a scalar theory: Dependence of the averaged optical force of propagated
fields on the coherence at a diffraction plane. A Young interference configuration

Eqs. (4.55)-(4.61) manifest the dependence of the force on the statistical properties of the source.
To illustrate this with a simple example, let us consider a wavefield whose electric and magnetic
vectors at frequency ω are realizations of an ensemble of random functions each of which may be
described by a scalar member U(r, ω) of a statistical ensemble U(r, ω) exp(−iωt) of monochro-
matic fields, all of frequency ω. [20, 74]. (Of course, this space-frequency description may also
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apply to a quasimonochromatic field, whose spectrum is centered at a mean frequency ω̄ of its
spectrum).

The monochromatic electric vector realizations at frequency ω may be expressed as: Ẽ(r, ω) =
U(r, ω)e(ω), (cf. Section 8.4 of [1]). This a common situation in Fourier optics [2]. The vector
e(ω) is real (linear polarization). On introducingW (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉 as the cross-
spectral density of U(r, ω) [3], writing ∂(∗)

i W (r, r, ω) = [∂iW (r, r′, ω)]r′=r = 〈U(r, ω)∂iU∗(r, ω)〉
and taking real and imaginary parts in Eq. (4.50) one obtains〈

F̃i (r, ω)
〉

= 2|e(ω)|2Re {αe 〈∂iU∗(r, ω)U(r, ω)〉}

= 2|e(ω)|2[ReαeRe 〈U(r, ω)∂iU∗(r, ω)〉

−ImαeIm 〈U(r, ω)∂iU∗(r, ω)〉]. (4.62)

The first term of Eq. (4.62), is the mean gradient force, which is expressed as [see also the first
term of Eq. (4.55)]: 〈

F̃ gradi (r, ω)
〉

= |e(ω)|2Reαe∂iW (r, r, ω)

= |e(ω)|2Reαe∂i
〈
|U(r, ω)|2

〉
. (4.63)

The second term of Eq. (4.62) is proportional to the mean energy flow spectral density 〈S〉
associated to the scalar wavefunction U(r, ω) [10]:

〈Si(r, ω)〉 = −1
k
Im 〈U(r, ω)∂iU∗(r, ω)〉 . (4.64)

As such, it is the averaged scattering force, or mean radiation pressure, i.e.〈
F̃ sci (r, ω)

〉
= −2|e(ω)|2ImαeIm

{
∂

(∗)
i W (r, r, ω)

}
= −2|e(ω)|2ImαeIm

{
[∂iW (r, r′, ω)]r′=r

}
= 2k|e(ω)|2Imαe 〈Si(r, ω)〉 . (4.65)

Eq. (4.65) manifests the correspondence of 〈S〉 in this scalar formulation of the radiation pressure
with the mean Poynting vector 〈S〉 = (c/8πµ) 〈E×B∗〉 in the second term of Eq. (4.55) acording
to the vector representation.

Notice that the mean curl of electric spin density which according to the third term of Eq.
(4.55) takes on the form〈

F̃ curli (r, ω)
〉

= 2ImαeIm
{
e∗j (ω)ei(ω)∂jW (r, r, ω)

}
, (4.66)

where ∂i means the derivative in the non-conjugated function, i.e.,

∂iW (r, r, ω) = 〈U∗(r, ω)∂iU(r, ω)〉. (4.67)

Taking into account Maxwell’s divergence equation ∇ ·E (r, ω) = 0 in Eq. (4.66), it is easy to
demonstrate that

〈
F̃ curli (r, ω)

〉
will be zero if Im

{
e∗j (ω)ei(ω)

}
= 0; which evidently holds since

e(ω) is real.

According to the Huygens-Fresnel principle [1, 3, 4] the fluctuating realizations at frequency
ω of the field propagated from points r′ of a surface A up to a point r are given by

U(r, ω) = − ik2π

∫
A
U(r′, ω)e

ikR

R
d2r′. (4.68)
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4.4 averaged optical force from a partially coherent wavefield

where R = |r− r′| and k = 2π/λ, the wavelength being λ . Thus from Eq. (4.62) the averaged
force on a dipolar particle in r will be

〈
F̃i (r, ω)

〉
= −2

(
k

2π

)2
|e(ω)|2Re

{
αe

∫
A

∫
A

[ik+ 1
R1

]R1
R1

W (r′1, r′2, ω)

× e−ikR1

R1

eikR2

R2
d2r′1d2r′2

}
, (4.69)

Ri = r− r′i, Ri = |r− r′i|, (i = 1, 2). As mentioned above, Eq. (4.69) exhibits the dependence
of the mean force exerted by the propagated field on its coherence properties on a surface A.

For instance, we consider the surface A being composed of an opaque screen with two point
holes, (see Fig. 4.3), so that the random field wavefunction in A is: U(r′, ω) = U(q1, ω)δ(r′ −
q1) + U(q2, ω)δ(r′ − q2). Then from Eqs. (4.68), (4.69), (4.63) and (4.65) we obtain for the
conservative and non-conservative force components on a particle at a point P of position vector
r: 〈

F̃grad (r, ω)
〉

= −2
(
k

2π

)2
|e(ω)|2Reαe

{〈
|U(q1, ω)|2

〉 R1
R4

1
+
〈
|U(q2, ω)|2

〉 R2
R4

2

+ |W (q1,q2, ω)|
R1R2

[(
R1
R2

1
+ R2
R2

2

)
cos (k(R1 −R2) + α(q1,q2, ω))

+
(

R1
R1
− R2
R2

)
k sin (k(R1 −R2) + α(q1,q2, ω))

]}
, (4.70)

〈
F̃sc (r, ω)

〉
= 4

(
k

2π

)2
|e(ω)|2Imαe

{〈
|U(q1, ω)|2

〉
k

R1
R3

1
+
〈
|U(q2, ω)|2

〉
k

R2
R3

2

+ |W (q1,q2, ω)|
R1R2

[
R1
R2

1
(kR1 cos (k(R1 −R2) + α(q1,q2, ω))

+ sin (k(R1 −R2) + α(q1,q2, ω)))

+R2
R2

2
(kR2 cos (k(R1 −R2) + α(q1,q2, ω))

− sin (k(R1 −R2) + α(q1,q2, ω)))]} . (4.71)

Denoting Ri = r− qi, (i = 1, 2), and α (q1,q2, ω) being the phase of W (q1,q2, ω).

In the Fresnel and Fraunhofer regions one may approximate R1 ' R2 in the denominators of
Eq. (4.70). Also, for kRi � 1, (i = 1, 2), the cos terms are negligible versus the sin terms and the
gradient force has a sinusoidal standing wave behavior, proportional to the difference: R1 −R2.
On the other hand, the sin terms of (4.71) are negligible versus the cos terms, rendering a
scattering force proportional to the intensity pattern. This will be discussed again in Section
4.5 in connection with the configuration of Thompson and Wolf experiment, which replaces the
two point holes of this schematic example by real apertures. In addition, by dropping in Eqs.
(4.70) and (4.71) the corresponding factor constituted by the real and imaginary part of the
electric polarizability, we observe that the action on particles situated at points Ri � λ by the
Imαe-normalized repulsive scattering force produced by each independent pinhole, is much larger
along Ri than that of the corresponding Reαe-normalized attractive gradient force.
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4.5 interference of two quasimonochromatic random waves: degree
of coherence and averaged optical force

In this section we address the force on a dipolar particle in the configuration of the classical two-
aperture arrangement by Thompson and Wolf, employed in 1957 to observe and characterize
the degree of coherence of a light wave [6]. Like in the original work by these authors we shall
address quasimonochromatic light whose spectrum is centered at the frequency ω̄. However, the
procedure is identical working with each monochromatic member of the statistical ensemble of
wavefunctions, were the disturbance spectrum broader.

As shown in the scheme of Fig. 4.3, the wavefield emitted by a spatially incoherent source is
brought by a lens L1 to the mask A in z = 0, containing two small circular apertures of radius
a, centered at points r′1 = (q1, 0) and r′2 = (q2, 0), respectively. A second lens L2 sends the field
diffracted in A to points P of a screen B coinciding with its focal plane. Of course in this case
the cross-spectral density is W (r, r′, ω) = J(r, r′)δ(ω − ω̄). J(r, r′) being the mutual intensity
function [1, 3] given by the equal-time correlation: 〈U∗(r, t)U(r, t)〉.

Then, the spectral degree of coherence of the wave in A: µ(q1,q2, ω̄) = W (q1,q2, ω̄)/
[W (q1,q1, ω̄)W (q2,q2, ω̄)]1/2 coincides with the degree of coherence g(q1,q2, 0) [6], which in
turn is simply: J(q1,q2) /[J(q1,q1)J(q2,q2)]1/2. µ or g (which, as seen, may indistinctly be
used for quasimonochromatic light) are expressed by means of the Van-Cittert-Zernike theorem
[1, 3] in terms of the intensity exiting the incoherent source, and they equal 2J1(u)/u in z = 0.
Where u = 2πρh/(λ̄∆). ρ being the radius of the source, assumed planar and circular, and ∆

denoting the distance between the source and L1 [6]. In this way, we establish the influence of
the partial coherence in A of the light emitted by the random incoherent source, on the optical
force from the diffracted field upon a dipolar particle placed in B.

In the vector theory of diffraction, within the range of validity of the Kirchhoff approximation,
the electric vector of frequency ω diffracted by an aperture centered in r = 0 in a screen A is
expressed in the far zone as [10, 43]

Ẽ(r, ω) = ieikr

2πr k×
∫
A

n× Ẽ(i)(r′, ω)e−ik·r′ds′, (4.72)

where k = ks = (2π/λ)s, s = r/r is a unit vector in the direction of observation r = (x, y, z), r′

denotes a coordinate in the aperture whose element of surface area is ds′, and n is the unit out-
ward normal to ds′. The time-dependence e−iωt is understood, and Ẽ(i)(r′) = e(i)(ω) exp(ikn(i) ·
r′), (|n(i)|= 1, Ime(i) = 0), is the electric field incident on the mask A.

Assuming n(i) = (0, 0, 1), a flat opaque screen in z = 0 with a circular aperture of center r′ = 0
and radius a produces according to Eq. (4.72) the diffracted field [1, 2]

Ẽ(r, ω) = U (r, ω) e(ω), (4.73)

where
U(r, ω) = eikzei

k
2z (x2+y2)

(
πa2

iλz

)(
2J1(v0)

v0

)
. (4.74)
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Figure 4.3: Schematics of the configuration for observing interference at points P = (x, y, d) of a screen
B by diffraction of light, propagated from an incoherent source, at two apertures in A, centered at points
r′1 = (q1, 0) and r′2 = (q2, 0), respectively. q1 = (x1, y1), q2 = (x2, y2). 2h = |q1 − q2|.

In Eqs. (4.73) and (4.74) we have written e(ω) = s×
(

n× e(i)(ω)
)
and the v0 the dimensionless

factor v0 = ka
√
x2 + y2/z, respectively.

Next we study the effect of the degree of coherence in A of the wavefield at the mean frequency
ω̄, propagated from the quasimonochromatic fluctuating source, on the averaged optical force
upon a dipolar particle in the Fraunhofer zone. Hence we shall address the consequences of the
correlation between the field at the two circular apertures in z = 0, centered at q1 ≡ (0, h) and
q2 ≡ (0,−h), as shown in Fig. 4.3. To this end, we evaluate the field at an arbitrary point P in
the plane B at z = d where the particle is situated, produced on diffraction in A, (cf. Fig. 4.3)
within the Kirchhoff approximation:

U(r, ω̄)

= eik̄dei
k̄
2d (x2+y2)

(
πa2

iλ̄d

)(
2J1 (v̄0)

v̄0

)[
U(q1, ω̄)e−i

k̄hy
d +U(q2, ω̄)ei

k̄hy
d

]
,

(4.75)

where U(qi, ω̄) (i = 1, 2) is the complex amplitude of the random wavefield at q1 and q2 emitted
by the fluctuating source. v̄0 = k̄a

√
x2 + y2/z. If as in Thompson and Wolf experiment [6], one

has that
〈
|U(q1, ω̄)|2

〉
'
〈
|U(q2, ω̄)|2

〉
= I0, the observed mean intensity at P then is known

to be

〈I (r, ω̄)〉

=
〈
Ẽ(r, ω̄) · Ẽ∗(r, ω̄)

〉
= 2I0

(
πa2 |e(ω̄)|

λ̄d

)2(2J1 (v̄0)

v̄0

)2 [
1 + |µ(q1,q2, ω̄)| cos

(
φ(q1,q2, ω̄) + 2k̄hy

d

)]
.

(4.76)

The factor 2k̄hy/d represents the path difference |R1 −R2|, (see Fig. 4.3). φ(q1,q2, ω̄) is the
phase of µ(q1,q2, ω̄).

59



mechanical action on small particles of random light

The interference law of Eq. (4.76) is well known [1, 6]. We shall perform calculations of the
force with the same parameters as in Ref. [6], namely: λ̄ = 579nm, 2h = 6mm, a = 0.7mm,
d = 1.5m. We consider φ(q1,q2, ω̄) = 0 and we will initially normalize the results to the
polarizability, so that we will make Reαe = Imαe = 1; this allows us to obtain an estimation of
the relative strengths of the different force components due to diffraction, independently of the
polarizability.

In this far zone, the gradient force is governed by the expression (4.63) applied to the mean
intensity (4.76). Since the apertures are aligned along the y−axis, the y component for k̄Ri →∞
(i = 1, 2) is obtained after a long but straightforward algebra〈

F̃ grady

〉
≈ −4ReαeI0

(
πa2 |e(ω̄)|

λ̄d

)2(
2J1 (v0)

v0

)2 hk̄

d

× |µ(q1,q2, ω̄)| sin
(
φ(q1,q2, ω̄) + 2k̄hy

d

)
, (4.77)

which agrees with the remark at the end of Section 4.4.3 concerning Eq. (4.70).

This expression is just the derivative of Eq. (4.76) with respect to y, assuming that the
factor outside the brackets in (4.76) is constant, (although this is not strictly true, the terms
yielded by the y-derivative of this factor become negligible, as shown in the Appendix B.1).
The other two components:

〈
F̃ gradx

〉
and

〈
F̃ gradz

〉
are similarly obtained in the Appendix B.1.

Fig. 4.5 shows the interference pattern of 〈I〉, normalized to its maximum, at the screen B for
|µ(q1,q2, ω̄)| = 1, as well as the spatial distribution of the three components of the mean gradient
force on a dipolar particle in B due to this distribution of light. To see the relative weight of
each Cartesian component, we normalize it to the magnitude of the total mean force

∣∣〈F̃tot〉∣∣ =∣∣〈F̃grad〉+
〈
F̃sc
〉∣∣. We also observe an interference pattern along OY in each component of this

conservative force,
〈
F̃ gradz

〉
being much smaller than the other two. In addition, Fig. 4.4(b)

exhibits an oscillatory modulation of
〈
F̃ gradx

〉
along OX, (cf. Appendix B.1).

We remark that in the limiting case |µ(q1,q2, ω̄)| = 0,
〈
F̃ grady

〉
is just proportional to

∂y (2J1 (v̄0) /v̄0)
2 and the interference effect disappears, as it should. Since this y derivative

was neglected versus the term kept in Eq. (4.77), (see also Appendix B.1), the values of
〈
F̃ grady

〉
then are practically zero compared to those due to a partially coherent wave. This is seen in Fig.
4.5. The intensity pattern, which acts as a potential distribution for the illuminated particle, is
shifted by π/2 with respect to that of the conservative force

〈
F̃ grady

〉
, whose oscillation ampli-

tude progressively diminishes to zero as the value of |µ(q1,q2, ω̄)| decreases. This behavior of
the conservative force constitutes the basic mechanism of an optical tweezer with several equi-
librium positions of the particle along the lines in the screen B where 〈I〉 is maximum, . Such
points occur along OY at x = 0 , [cf. Figs. 4.4(a) and 4.4(c)], and are precisely those where〈
F̃ gradx

〉
= 0, [cf. Fig. 4.4(b)].

We next address the scattering force on a small particle in an arbitrary point of the screen
B, obtained on introducing Eq. (4.75) into Eq. (4.65), (see Appendix B.2). The scattering and
gradient force x−components are of similar magnitude, but of signs opposite to each other; this
is seen on comparing Fig. 4.6(a) with Fig. 4.4(b). By contrast, the y-component of

〈
F̃ sc
〉
is one
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Figure 4.4: Spatial distributions in theXY plane of the mean intensity and the normalized mean gradient
force components for |µ(q1,q2, ω̄)| = 1. (a) Normalized mean intensity 〈I〉. (b)

〈
F̃ grad

x

〉
. (c)

〈
F̃ grad

y

〉
.

(d)
〈
F̃ grad

z

〉
. All values are calculated on a dipolar particle at the screen plane B, placed at distance

z = d = 1.5m from the aperture screen A. The force components are normalized to Reαe and to the
magnitude of the total mean force
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〉

+
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F̃sc
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Figure 4.5: (a) Normalized mean intensity 〈I〉. (b) Normalized mean gradient force component
〈
F̃ grad
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for different values of |µ(q1,q2, ω̄)|.
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Figure 4.6: Spatial distribution in the XY plane of the normalized averaged scattering force components
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∣∣〈F̃tot
〉∣∣. (a) 〈F sc

x 〉. (b)
〈
F sc

y

〉
. (c) 〈F sc

z 〉. All
values are calculated on a dipolar particle in the screen plane B, placed at distance z = d = 1.5m from
the aperture screen A.

order of magnitude smaller than its homologous of the gradient force, suffering a sharp change
of sign at y = 0. However,

〈
F̃ scz
〉
which is given by (see the Appendix B.2)

〈
F̃ scz
〉
≈ 4k̄ImαeI0

(
πa2 |e(ω̄)|

λ̄d

)2(
2J1 (v̄0)

v̄0

)2

×
[
1 + |µ(q1,q2, ω̄)| cos

(
φ(q1,q2, ω̄) + 2k̄hy

d

)]
≈ 2k̄Imαe 〈I(r, ω̄)〉 , (4.78)

is seven orders of magnitude larger than the corresponding conservative force
〈
F̃ gradz

〉
, [compare

Fig. 4.6(c) with Fig. 4.4 (d)]. This, which is in accordance with the remark of the last paragraph
of Section 4.4.3 concerning Eqs. (4.70) and (4.71) for waves from two pinholes, stems from the
proportionality of 〈F scz 〉 to the Poynting vector [59] and hence to the mean scattered intensity
in the far zone; [observe that the normalized 〈F scz 〉 of Fig. 4.6(c) is identical to the normalized
mean intensity 〈I〉 of Fig. 4.4(a)]. As a consequence of the conservation of momentum, the
particle is pushed towards z > d (see Fig. 4.3). The ratio between the maximum values of the
gradient and scattering force components, (see Eqs. (4.77), (4.78) and the Appendix B.1 and
B.2),

〈
F̃ gradz

〉
/
〈
F̃ scz
〉

= −(y/d)
〈
F̃ grady

〉
/
〈
F̃ scz
〉

=
(
yh/d2) (|µ| /1 + |µ|) explains the difference

between the magnitudes of these force components.

The much larger strength of the normalized scattering force may prevent the lateral manipu-
lation of the particle in B. If this were the case, it may be overcame with a scheme analogous to
that employed in holographic optical tweezers [75].
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4.5 interference of two quasimonochromatic random waves: degree of
coherence and averaged optical force

Summing up, we observe that the Young experiment configuration shows us fundamental
characteristics of the optical force components, which in this system allow a scalar formulation
and thus yield no curl component. The mean scattering force is proportional to the mean scattered
intensity, its longitudinal z-component being several orders of magnitude larger than its x and y
components. On the other hand, the y and z-components of the gradient force are proportional
to the magnitude of the degree of coherence, thus becoming zero for incoherent light, and hence
their value oscillates and decreases as J1(2πρh/λ̄∆)/(2πρh/λ̄∆) versus the distance h between
apertures [6].

4.5.1 Effect of the electric polarizability on the mean optical force

We have so far estimated the different components of the mean force by only considering the
configuration of the diffracted waves; namely, by normalizing them to the particle polarizability.
However, it is worth remarking that since their actual strengths, observed in an experiment, are
proportional to Reαe (gradient force) ant to Imαe (scattering force), the relative values of these
two parts of αe should greatly influence the magnitude of these forces. Notice that although we
have concluded that

〈
F̃ grady

〉
�
〈
F̃ scz
〉
when they are normalized to Reαe and Imαe, respectively,

in most cases pertaining to dielectric particles one has that Reαe � Imαe, except in the presence
of Mie electric and/or magnetic [59, 61] or localized plasmon [76] resonances.

For a small spherical particle of radius r0, with relative permittivity εp, in the Rayleigh limit
(k̄r0 � 1), we adopt the expression for the dynamic electric polarizability [59, 61]:

αe = α
(0)
e

(
1− i23 k̄

3α
(0)
e

)−1
, (4.79)

α
(0)
e being the static polarizabilty

α
(0)
e = r3

0
εp − 1
εp + 2 . (4.80)

As an illustration, we consider a dielectric particle with r0 = 25nm and εp = 2.25. With
these data, we observe as mentioned above that Reαe = 4593nm3 � Imαe = 17nm3. The
illumination that reaches each aperture is assumed with a magnitude of the Poynting vector
(c/2)I0 |e (ω̄)|2 = 1012 W/m2. Fig. 4.7 shows the corresponding different components of the total
force, (this time of course without performing any normalization).

As seen, the patterns of Fig. 4.7(a) and Fig. 4.7(b) are equal to those of Fig. 4.4(b) and
Fig. 4.4(c) respectively; this implying that the scattering force is negligible compared to the
gradient force along OX and OY . However, although Reαe � Imαe, this is not enough for〈
F̃ gradz

〉
to exceed

〈
F̃ scz
〉
, (remember that we obtained a difference of seven orders of magnitude

between these two normalized z-components), therefore the contribution of
〈
F̃ gradz

〉
to
〈
F̃ totz

〉
is

negligible by four orders of magnitude. Notwithstanding, it is important for trapping purposes
that the y component of the force

〈
F̃ toty

〉
, which is of conservative nature, is of the same order of

magnitude as the non-conservative z-force
〈
F̃ totz

〉
. As the coherence diminishes, Fig. 4.5(b) gives
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an assessment of the corresponding decrease to be expected in both
〈
F̃ totx

〉
and

〈
F̃ toty

〉
from their

values in Figs. 4.7(a) and 4.7(b).

4.6 conclusion

In this chapter I have established a new theory of averaged photonic forces due to random
wavefields. Firstly I have demonstrated the contribution of the different momentum densities to
the optical force exerted by a deterministic wavefield, giving an additional point of view of these
forces.

Then, for partially coherent electromagnetic fields, I have put forward expressions for the force
in terms of the cross spectral-density tensors for magnetodielectric particles. I have shown that
the spatial coherence of the source will play a role in the dynamical interaction between the
fields ant the particles.

The results have been illustrated, i.e., the influence of the degree of coherence of a partially
coherent source, through the classical study on coherence by Thompson and Wolf [6]. Under this
setup, I have calculated the force components and their dependence on the degree of coherence
of the fluctuating field at the plane of the apertures. These components show a fringe pattern
spatial distribution, analogous to the intensity interference pattern observed at the screen plane.

Likewise, although I have emphasized our illustration of Section 4.4 with an scalar theory,
it will be of interest to study configurations in which optical forces are analyzed in terms of
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4.6 conclusion

the degree of polarization (cf. Chapter 3) of the fluctuating fields by making use of the full
electromagnetic model of Section 4.5. This latter electromagnetic formulation will be used, for
instance, in Chapter 6.
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Part IV

OPT ICAL FORCES FROM STATIST ICALLY
HOMOGENEOUS FLUCTUATING SOURCES





5
O P T I C A L FO R C E S F R O M S TAT I S T I C A L LY
H O M O G E N E O U S F L U C T U AT I N G S O U R C E S :
N E A R - F I E L D E F F E C T S .

5.1 motivation

J
ust like fields fluctuations affect an interference pattern, it has been demonstrated
that these random fields influence the behavior of the interactions between fields and
particles. We have studied this through a Young experiment configuration, however,

we can directly analyze this phenomenon addressing a extended partially coherent source.

In Chapters 2 and 3, different quantities from statistically homogeneous sources were studied,
therefore I will now discuss how the statistical properties of these sources can affect the optical
forces. The formerly addressed double slit experiment contained a far-field configuration, nev-
ertheless, we will now turn to the near-field. We will also address the effect of surface plasmon
polariton excitation on the surface of the source, giving an enhancement in the magnitude of the
force which will be more appreciable in the conservative components.

New analytical expressions for the forces will be obtained and I will demonstrate the crucial
role of the statistical homogeneity of the source in the different components of the optical force.

5.2 introduction

Near-field optical forces at the nanoscale convey the exchange of momentum of an evanescent
optical wavefield with a micro-object. Whereas classical far-field techniques in nanomanipulation
are limited by the diffraction limit λ/2, this new approach gives the possibility to place objects
in the desired location with larger accuracy.

Several studies have demonstrated the possibility to trap nano-objects at near-field distances
[44, 50, 51, 77], even when SPPs are excited on the source surface [78], taking advantage of the
electric field enhancement.
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optical forces from statistically homogeneous fluctuating sources:
near-field effects.

On the other hand, as quoted in previous chapters, the subject of random fields has been
extensively addressed in different contexts, ranging from macroscopic physics, (e.g. in coherence
theory [3, 4], atmospheric turbulence [79, 80], wave propagation in random and dense media [81–
83], speckle formation from random phase screens [5, 84], reflection from rough surfaces [85–88]),
to the microscopic and nanoscopic scale, (like systems of randomly distributed nanoparticles
[3, 89], quantum dots [90] and disordered photonic crystals [91], including dispersion forces
between fluctuating atoms or molecules of separated objects as thermal sources and blackbodies
at the nanoscale [79, 92–99]).

As we have tried to remark in Chapters 2 and 3, as one enters in the nano-scale, the cor-
relation properties of the fields are more relevant, showing effects. Hence, it is of interest for
optical manipulation to study the action of the random and partially coherent fields emanating
from statistical sources. In this context this chapter will show the role of the evanescent and
propagating modes.

5.3 fluctuating optical forces

In order to perform the calculus of the near-field force, we will describe the optical force using
the angular wave spectrum representation (cf. Section 1.5). Hence, let us consider a fluctuating
source emitting into z ≥ 0 from the plane z = 0; its volume being in the region z < 0 (see Fig.
and 5.1). We shall assume that the radiated random field is described by an statistical ensemble
which is stationary, then we may work in the space-frequency domain [3] so that its electric
vector in the half-space z > 0 [3, 10] is (cf. Eq. (3.16)):

E(r, ω) =
∫ ∞
−∞

e(ks⊥, ω)eiks·rd2s⊥, (5.1)

where the propagation vector k = ks has been defined for homogeneous (|s⊥|2≤ 1) and evanescent
(|s⊥|2> 1) modes in Eq. (2.25).

We shall describe the source as planar [3] on characterizing it by the limiting value at z = 0:
E(0)(ρ, ω), [r = (ρ, z)], of the random field E(r, ω) emitted into free space. It is known [3, 10]
that

e(ks⊥, ω) =
(
k

2π

)2 ∫
Σ

E(0)(ρ, ω)e−iks⊥·ρd2ρ. (5.2)

Σ denoting the source domain of integration at z = 0 (cf. Eq. (2.5)).

For simplicity, let us assume a dipolar particle with only dynamic electric polarizability αe
placed in the source vicinity (the case of magneto-dielectric particles will be discussed in Chapter
6). At these distances, the evanescent components of the emitted electromagnetic field will be
non-negligible. It should be also remarked that in writing the force as in Eq. (4.14) so far
we assume that the particle dipole does not fluctuate itself. Otherwise, one should add a term
similar to that of (4.14) containing both the fluctuating dipole moment and the electric field that
it emits. This latter term, which I shall address in Chapter 6, has been previously considered for
example in studies of Van der Waals and Casimir forces between bodies of fluctuating atoms or

70



5.3 fluctuating optical forces

s = (s⊥, sz)

y
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Particle

Figure 5.1: Illustrating the notation

molecules at a given temperature, whose current and polarization correlations are expressed by
the fluctuation-dissipation theorem [11, 79, 92, 94–100].

Then, on using Eq. (5.1) into the conservative and non-coservative part of the electric force
(cf. Eqs. (4.14) and (4.58)), one obtains

F gradi (r, ω) = −ik4Reαe
∫∫ ∞
−∞

TrA(e)
jk

(
ks⊥, ks′⊥ω

)
×
(
s∗i − s′i

)
e−ik(s

∗−s′)·rd2s⊥d2s′⊥, (5.3)

Fnci (r, ω) = 1
2 ImαeIm

{
ik

∫∫ ∞
−∞

TrA(e)
jk

(
ks⊥, ks′⊥ω

)
× s′ie

−ik(s∗−s′)·rd2s⊥d2s′⊥
}
, (5.4)

(i, j, k = 1, 2, 3), Tr denotes the trace of the electric angular correlation tensor A(e)
jk (ks⊥, ks′⊥, ω)

=
〈
e∗j (ks⊥, ω)ek(ks′⊥, ω)

〉
. Notice that since

〈
E∗jEj

〉
is real and non-negative, F gradi given by

Eq. (5.3) which equals 1
4Reαe∂i

〈
E∗jEj

〉
is a real quantity. Eqs. (5.3) and (5.4) reveal that

whereas the gradient force depends on a weighted sum of the difference vectors s∗ − s′ and, as
we shall see, it has a negative sign if Reαe is positive, thus pulling the particle towards the source,
the non-conservative force associated to Imαe which is always non-negative, only depends on the
weighted sum of vectors s and pushes the particle forward.

Notice also than in Eqs. (5.3)-(5.4), the random properties of the source are encoded into
the angular correlation tensor A(e)

jk (ks⊥, ks′⊥, ω), hence, if we know this quantity, we have the
optical force in terms of statistical parameters of the source.
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optical forces from statistically homogeneous fluctuating sources:
near-field effects.

5.3.1 Statistically homogeneous sources. Gradient and non-conservative forces

In Chapters 2 and 3 we studied in detail the random properties of statistically homogeneous
sources, in particular, at subwalength distances. Now the goal is to extend this model to partially
coherent forces. Under this assumption, the angular correlation tensor A(e)

jk (ks⊥, ks′⊥, ω) is well-
defined, hence, substituting Eq. (3.17) into Eqs. (5.3)-(5.4) we obtain the optical force for the
specific case of homogeneous sources, i.e.,

F gradi (z, ω) = F gradz,ev (z, ω)

= −ik
3

4 Reαe
∫
|s⊥|2>1

TrẼ(0)
jk (ks⊥, ω) (s∗i − si) e−2k

√
|s⊥|2−1zd2s⊥, (5.5)

The subindex in the integral of Eq. (5.5) means that the integration only extends to the non-
radiative region because the difference vector s∗ − s in Eq. (5.3) is clearly zero for propagating
waves, (|s⊥|2≤ 1). Therefore the radiative components of the field emitted by statistically homo-
geneous sources do not contribute to the gradient force, which only depends on the evanescent
components, (|s⊥|2> 1), for which s∗ − s = (0, 0, s∗z − sz) = (0, 0,−2i

√
|s⊥|2−1). Hence this

force only exists in the near field, and depends on the distance z of the particle to the source,
having solely z- component normal to its surface. In addition, this force is attractive or repulsive
depending on the sign of Reαe. Small particles with relative permittivity εp > 1 have Reαe > 0
out of resonance and thus F gradz (z, ω) will drag them towards the source. Conversely, near a
morphological resonance Reαe may be negative [50], thus this force being repulsive. However,
further study is required in this latter case, since then the particle strongly scatterers the field
emitted by the source, and therefore the analysis developed here should not be exact due to
multiple scattering of the radiation between the source and the particle, (this will be done in
Chapter 6). Hence we show here that the gradient force near a statistically homogeneous source
is entirely of non-radiative nature and may work as a tractor force [68–70, 101].

Analogously, from Eq. (5.4) one also derives for the non-conservative force Fnci a dependence
on z only:

Fnci (z, ω)

= Fnci,h (z, ω) + Fnci,ev (z, ω)

= k3

2 ImαeIm
{
i

∫
|s⊥|2≤1

TrẼ(0)
jk (ks⊥, ω) sid2s⊥

}

+ k3

2 ImαeIm
{
i

∫
|s⊥|2>1

TrẼ(0)
jk (ks⊥, ω) sie−2k

√
|s⊥|2−1zd2s⊥

}
, (5.6)

Fnci,h and Fnci,ev, denote propagating and evanescent wave contributions, which correspond to
the first and second integral terms of Eq. (5.6), respectively. Notice that Fnci,h > 0 is constant
throughout z > 0 .

Let the source also be statistically isotropic [3] so that E(0)
ij (ρ1,ρ2, ω) = E(0)

ij (ρ, ω), where
ρ = |ρ1−ρ2|. The spatial coherence function of the field in z = 0 is [16, 102, 103] TrE(0)

ij (ρ, ω) and
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5.3 fluctuating optical forces

the spectral degree of spatial coherence µ(0) (ρ, ω) = TrE(0)
ij (ρ, ω) /S(0)(ω), where the wavefield

spectrum on the source is: S(0)(ω) = TrE(0)
ij (0, ω).

To illustrate these results, we shall consider a Gaussian spectral degree of coherence as in Eq.
(2.20) (see Chapter 2), so that taking Fourier inverse one obtains

TrẼ(0)
jk (ks⊥, ω) = S(0)(ω)µ̃(0)(ks⊥, ω)

= S(ω)exp
[
− (kσ |s⊥|)2 /2

]
, (5.7)

where σ is the correlation, or coherence length of the source and S(0)(ω) = S(ω)/
(
2πσ2) IV.1 [I].

Hence, on introducing Eq. (5.7) for TrẼ(0)
jk (ks⊥, ω) into the force equations (5.5) and (5.6) and

making use of the rotational symmetry of the source, we obtain that the transversal components
of the non-conservative force are zero, viz. : Fncx,y (z, ω) = 0 since so are the corresponding integrals
of Eq. (5.6) when one performs the azimuthal angle φ integration. Also, since sz = i

√
|s⊥|2−1

for |s⊥|2> 1, the second integral in Eq. (5.6) is purely imaginary, which implies that Fncz,ev = 0.
Therefore

Fnci (z, ω) = Fnci,h(z, ω)

= k3

2 ImαeIm
{
i

∫
|s⊥|2≤1

TrẼ(0)
jk (ks⊥, ω) sid2s⊥

}
. (5.8)

Thus while Fncz,h (z, ω) > 0 is constant throughout z > 0, as so is the spectrum S(0)(ω) prop-
agating into z > 0 [13], the evanescent waves do not contribute to the non-conservative force
Fncz (r, ω).

In summary, there are two force components acting on the particle: F gradz,ev (z, ω) and Fncz,h (z, ω),
perfectly distinguishable from each other since the former is due to the non-radiative plane wave
components of the emitted field, whereas to the latter only the radiative components contribute. As
the distance from the particle to the source plane grows to values z > λ, F gradz,ev (z, ω) tends to zero
due to its evanescent wave composition. Nevertheless, as we shall see, the source coherence length
σ plays an important role on these contributions. The integration of Eqs. (5.5) and (5.8) using
the Gaussian spectral degree of coherence, quoted before: µ(0) (ρ, ω) = exp

[
−ρ2/2σ2], leads to

an analytical expression for the gradient and for the non-conservative force. For the latter, Eq.
(5.16) yields the proportion of radiation pressure and curl components for unpolarized emission.
This calculation is straightforwardly and leads to

F gradz (z, ω) = ReαeS(ω)e−
1
2k

2σ2 1
σ2

[
z

σ2 −
√
π

2

(
2z2

σ3 + 1
2σ

)
e

2z2
σ2 erfc(

√
2z/σ)

]
,

(5.9)

Fncz (z, ω) = ImαeS(ω) 1
2σ2

[
k− 1

σ

√
π

2 e
− 1

2k
2σ2erfi(kσ/

√
2)
]
, (5.10)

where erfc(x) = 1− erf(x), erf(x) being the error function: erf(x) = 2/
√
π
∫ x

0 e
−t2dt, and erfi(x)

is a positive real function defined as erfi(x) = erf(ix)/i.

IV.1 See Chapter 2, in particular Eq. (2.26), to discuss this normalized spectrum
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near-field effects.

5.3.2 The curl force

The non-conservative part of the force Fnci is the sum of a scattering force, or radiation pressure
[34, 104]

Fnci = (k/2)ImαeRe 〈E×B∗〉i
= (1/2)ImαeIm

{〈
E∗j ∂iEj

〉
−
〈
E∗j ∂jEi

〉}
, (5.11)

given by the averaged field Poynting vector, plus the curl of a electric spin density (cf. Section
4.3.2):

Fnc,curli = (1/2)ImαeIm 〈(E∗ · ∇)E〉i
= (1/2)ImαeIm

〈
E∗j ∂jEi

〉
. (5.12)

If the field emitted by the source is unpolarized: E(0)
jk (ρ, ω) = F (0)(ρ, ω)δjk, F (0)(ρ, ω) being a

scalar spatial correlation function whose two-dimensional Fourier transform will be denoted as
F̃ (0)(ks⊥, ω). Then

TrẼ(0)
jk (ks⊥, ω) = 3F̃ (0)(ks⊥, ω), (5.13)

and the radiation pressure contribution Fnc,pri to the non-conservative force is:

Fnc,pri = k3

2 Imαe
∫
|s⊥|≤1

[
TrẼjk (ks⊥, ω) si − Ẽji (ks⊥, ω) sj

]
d2s⊥

= k3

2 Imαe
∫
|s⊥|≤1

[
3F̃ (0) (ks⊥)− F̃ (0) (ks⊥)

]
sid2s⊥

= k3Imαe
∫
|s⊥|≤1

F̃ (0) (ks⊥) szd2s⊥ = Fnc,prz , (5.14)

since the azimuthal angle integrations when si is either sx or sy, is zero.

In a similar manner, the curl force contribution Fnc,curli to Fnci is

Fnc,curli = k3

2 Imαe
∫
|s⊥|≤1

Ẽji (ks⊥, ω) sjd2s⊥

= k3

2 Imαe
∫
|s⊥|≤1

F̃ (0) (ks⊥) szd2s⊥ = Fnc,curlz . (5.15)

Namely, for unpolarized radiation:

Fnc,prz = 2Fnc,curlz = 2
3F

nc
z . (5.16)

5.4 excitation of surface plasmon polaritons. numerical results

5.4.1 Normalized force

Without loss of generality, we shall also address surface plasmon polaritons (SPPs), excited on
the source plane z = 0. Let this be gold for example, choosing for instance the same parameters
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Figure 5.2: Pulling gradient optical force due to evanescent components. (a) Gradient force versus dis-
tance to the source z/λ for different values of the source coherence length σ. (b) The same force as in
(a) when SPPs are excited in the source. A significant decrease of the magnitude of this force is clearly
seen as σ grows about σ = λ/2 and beyond. The normalized value F grad

z (z, ω) /(k3S (ω)Reαe/(2π)2)
is represented in arbitrary units (a.u.).

as in Chapter 2, i.e., at λ = 459.9nm its permittivity is ε = −2.546 + i3.37 [105]. The SPP
wave vector ks⊥ = ksSPP⊥ corresponds to a pole of the Fresnel transmission coefficient (in the
assumed transmission set-up configuration), tp(ks⊥, ω). [10, 17]. Then, for p-polarization it is
easy to obtain that the former equations (5.5) and (5.6) are valid on substituting Ẽ(0)

jk (ks⊥, ω)
by Ẽ(0) (ks⊥, ω) |tp (ks⊥, ω)|2 [I]. The expression for Ẽ(0) (ks⊥, ω) can be also given by Eq. (5.7),
considering that we are in p-polarization.

Figure 5.2 shows the normalized value F gradz (z, ω) /(k3S (ω)Reαe/(2π)2) of the attractive
gradient optical force due to evanescent components for two random sources: one without and
one with excited SPPs (cf. Fig. 5.2(a) and Fig. 5.2(b), respectively). As predicted by Eq. (5.5),
the normalized gradient force drags the particle towards the source plane; (notice that since
this normalization does not include Reαe, it does not contain an eventual negative value of this
quantity). In both figures we observe its exponential increase as the distance z of the particle to
the source decreases. Nevertheless, this force is mainly governed by the coherence length σ. For
σ = λ/8 (red line), the magnitude of this force is maximum, but we observe that it presents an
important decrease, with values between 10−3 and 10−4, around σ = λ/2 (blue line) and beyond,
even at subwavelength distances z; being practically zero (F gradz ' 10−8) for σ = λ and z = 0
(this latter curve is not shown).

Hence, we demonstrate that the decrease of the source coherence length gives rise to an increase
of the gradient force and its effect is larger than that of the distance z of the particle to the
source plane. Eventually, a δ-correlated source (then σ → 0) like e.g. a thermal source, will
maximize this force. In addition, we show with Fig. 5.2(b) that the excitation of SPPs in the
source increases the strength of this near field force by approximately one order of magnitude.
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Figure 5.3: (a) Normalized total optical force, (see text), in arbitrary units (a.u.) versus distance z/λ to
the source for different values of the coherence length σ. (b) The same as in (a) when SPPs are excited.
In this latter case we observe an increment ∆z in the value z/λ at which the magnitude of the gradient
force starts to exponentially increase.

This is due to the then larger values of Ẽ(0) (ks⊥, ω) |tp (ks⊥, ω)|2 stemming from the pole of
|tp (ks⊥, ω)|2 at ksSPP⊥ (see also Fig. 2.5).

Correspondingly, Figures 5.3(a) and 5.3(b) show the normalized total force F totz (z, ω) =
[(2π)2/k3S (ω)] · (F gradz (z, ω)/Reαe+Fncz (z, ω)/Imαe), in arbitrary units, without and with SPP
excitation, respectively. At large distances (z > λ), the total force is a constant of the distance
z, and repulsive according to the behavior of the non-conservative component Fncz , which dom-
inates in this region of z, regardless of the value of σ. In addition, this non-conservative force
increases as σ decreases.

One might think that, due to its evanescent wave composition, the magnitude of the normalized
gradient force at subwavelength distances would be higher than that of the corresponding non-
conservative force, however this is not totally truth due the larger effect of the source coherence
length on F gradz rather than on Fncz . In near-field F tot ' F grad for σ ≤ λ/4; but as σ increases,
F grad becomes negligible, being for σ > λ/4 F tot ' Fnc. These effects appear in Figs. 5.3(a) and
5.3(b). Particulary, we see in Fig. 5.3(b) that if SPPs are excited, an increment ∆z appears in the
distance z/λ where the magnitude of the attractive gradient component is noticeable, (compare
Figs. 5.3(a) and 5.3(b)). The enhancement of the near field intensity due to SPPs resonances
then conveys a larger range of the gradient force.
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5.5 a source spectrum model to illustrate the optical force on a
dipolar particle

So far I have calculated the relative weights of the gradient and non-conservative forces without
taking into account the strength of the particle induced dipole. That was done by normalizing
those forces to the corresponding real and imaginary values of the particle polarizability. However,
it is well known that this latter quantity largely influences the values of these forces [59, 61];
hence, its presence should be relevant in estimating the actual mechanical action of the emitted
light. We shall now address this with a certain source spectrum model.

As we have done in Chapter 4 in order to provide a more realistic example, let us consider
a small particle of radius r0 with relative permittivity εp, in the Rayleigh limit (kr0 � 1), is
assumed. We adopt the expression for the dynamic electric polarizability which conserves energy
on scattering [59] given by Eq. (4.79).

For a non-monochromatic source, the total mean force exerted by the random field on the
dipolar particle is determined on ω-integration of each frequency component, i.e.

Fi (r) =
∫
Fi (r, ω) dω. (i = 1, 2, 3). (5.17)

Of course, as discussed above, in our study the source contributes with the Cartesian component
Fz (r, ω) only.

We assume a Gaussian spectrum model [3], so that

S(ω) = A

σω
√

2π
e
− (ω−ω0)2

2σ2
ω , (5.18)

where A, σω and ω0 are positive constants. Incidentaly, it is straightforward to see that in
the monochromatic case at frequency ω0, (σω → 0), we recover Eqs. (5.9) and (5.10) with
S (ω) = Aδ (ω− ω0) .

As an example, we perform the integral (5.17) for a small dielectric particle of radius r0 = 25nm
with a constant value of εp = 2.25 in the range of studied frequencies (cf. Section 4.5.1)IV.2. In the
case of SPP excitation, an Au source surface is considered like in Section 5.4.1, with a frequency
variation of its permittivity approximated by [106, 107]

ε(ω) = ε∞ −
ω2
d

ω2 + iγω

+
2∑
p=1

ApΩp

(
eiφp

Ωp − ω− iΓp
+ e−iφp

Ωp + ω+ iΓp

)
, (5.19)

where the values of the parameters in (5.19) are considered the same as in Ref. [107].

An optical power of 300 mW impinging the particle is assumed at the central wavelength
λ0 = 2πc/ω0 =579 nm. The spectral width is taken as: σω = 0.01 ω0. The constant A is then
adjusted to these values.

IV.2 This polarizability was used in Subsection 4.5.1 and will be also used in others chapters because it constitutes a
test particle without resonant properties.
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Figure 5.4: Total optical force in Newtons versus distance z/λ0, obtained by integration over a Gaussian
spectrum of the source. Results for different values of the coherence length σ0 are shown. (a) Surface
plasmons polaritons (SPP) are absent. (b) SPPs are excited in the metallic surface of the source.

The total force calculated on introducing Eqs. (5.9) and (5.10) into Eq. (5.17), (that is to say,
this time without introducing any normalization), is shown in Figs. 5.4(a) and 5.4(b), without
and with excitation of surface plasmon polariton resonances on the source surface, respectively.

As predicted in Section 5.4, the total force is governed in the near field by its gradient compo-
nent for σ ≤ λ/4, its magnitude increasing as the coherence length σ decreases. In addition, its
exponential growth as the particle approaches the source is remarkable. Particularly, at z/λ = 0.5
and for σ = λ/8, the magnitude of the gradient force when SPPs are excited is practically double
(3× 10−16 N) than when they are absent.

For z/λ > 1 the total force is due to its non-conservative part, however, the distance at which
this force begins to dominate is larger than as shown by Fig. 5.3 for the normalized force. This
is due to the fact that now we have introduced in the calculations Reαe which is much larger
than Imα.

On the other hand, Fig. 5.4 manifests a behavior of both the gradient and scattering plus
curl forces similar to that of their non-integrated normalized counterparts, shown in Fig. 5.3,
both without and with SPP excitation. However, the action of the gradient force reaches larger
distances from the source than its normalized counterpart as Fig. 5.4 shows on comparison with
Fig. 4.4, at least within the scale of values shown here.
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5.6 conclusions

In this chapter I have reported a study on photonic forces exerted on dipolar particles by dis-
cussing near field effects due to fluctuating sources. I have discussed the behavior of gradient
and non-conservative forces at the nanoscale, concerning optical manipulation in such physics
cases as those ranging from emission by partially correlated primary sources, i.e. beyond delta-
correlated thermal sources and blackbodies, fluctuations in nanoantennas, to secondary sources
resulting from light propagation through the turbulent atmosphere [79], speckle patterns from
a large variety of statistical structures, also including scatterers, random rough surfaces, phase
screens and optical diffusers [108–110]. Multiple scattering effects between the source and the
particle have not been considered here. These latter are addressed in the next chapter, where
resonant scattering from magnetodielectric spheres is studied.

We have seen that in the large variety of stationary statistically homogeneous and isotropic
sources, only the evanescent components contribute to the gradient (conservative) forces, while
the non-conservative part that contains radiation pressure and curl forces is due solely to emitted
propagating components. Hence the subwavelength information is encoded in the gradient forces.
Same numerical examples were given for statistically isotropic unpolarized emitted wavefields,
showing the important effect that the source coherence length has on these forces, specially on
the gradient component.

Also, due to the higher concentration of energy in the near field when there is excitation of
surface waves in the source, this largely enhances the magnitude of the gradient part of these
forces while it slightly diminishes the strength of their non-conservative part.
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6
I N T E R AC T I O N O F E L E C T R O M AG N E T I C L I G H T
W I T H A M AG N E T O - D I E L E C T R I C PA R T I C L E :
O P T I C A L G E N E R AT I O N O F VAC U U M P H O T O N I C
FO R C E S

6.1 motivation

I
n the previous chapter we studied the consequences of the interaction between a
stochastic field produced by a homogeneous source and a dielectric particle without
resonance effects. I commented briefly the similarity between this type of interactions

and thermal (deveolped by Liftshitz) and/or that of vacuum fluctuations (studied by Van der
Waals, Casimir and others).

In this chapter I will go beyond. I will remark that the optical source here addressed gives
us an excellent opportunity to compare the behavior of magnetodielectric particles in an optical
set-up, analogous to that of thermal interactions. I will make emphasis in the fact that the use
of Rayleigh particles, i.e., particles of radius r0 which fulfill kmr0 � 1 (with m = np/nh being
the relative refractive index and np, nh the refractive index of the particle and the medium
respectively), is not a good choice because the retardation effects cannot be neglected. Or what
is the same, the polarizability cannot be approximated by its static polarizability given by the
Claussius-Mossotti equation

α0 = r3
0
εp − 1
εp + 2 .

Therefore, we will analyze the forces in a similar way to Chapter 5, nevertheless, in this work,
the Mie resonances will play a role as important as the fluctuating field, showing the richness of
these interactions. In this thesis I have done emphasis on the fact that the equations of the force
are valid, not only for a small particle, but also for particles where the first two resonances of
the Mie coefficients are predominating. An example of this behavior is the case of semiconductor
spheres. Recently these particles have demonstrated some extraordinary scattering properties
(see references [60, 61, 111–114]).
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Figure 6.1: Scattering cross section for a silicon particle due to different Mie coefficients. Notice that the
factor kr0 is constant for each resonance. Adapted from [60]

Fig. 6.1 shows the scattering cross section of a silicon particle (refractive index np '
√

12)
immersed in vacuum for different values of the size parameter y = npkr0, being k = 2π/λ and
r0 the radius of the considered particle [60]. We have plotted the total cross section (due to all
Mie coefficients (see Ref. [115])) and the cross sections due to the two first electric (a1,2) and
magnetic (b1,2) coefficients. We can see how up to the value of y ' 4.2 the cross section is due to
a1 (electric dipole) and b1 (magnetic dipole). It is worth remarking that this property is universal
in the sense that it does not depend on the radius of the particle but on its size parameter, i.e.,
the dipolar resonances will always appear at y ' 3 and y ' 4. Once we have fixed the value of y
for a given refractive index, the product kr0 will give us the possibility to play with the size of
the particle or with the wavelength (we can select one, the other then being imposed).

On the other hand, once we have calculated the Mie coefficients, we can obtain the response
of the particle to these stochastic fields, i.e., the polarizability. I will try to make clear that the
imaginary part of the polarizability is not negligible (even it can be larger than the real part),
thus, the force will be given by the two previously addressed components: one conservative
(∇×Fcons = 0) and one non-conservative force (∇×Fnc 6= 0).

I also discuss in detail the asymptotic behavior of these forces in order to see the role of its
conservative and non-conservative components at short (z � λ) and large (z � λ) distances.
I will demonstrate that for an arbitrary spectrum S(ω), we recover the −1/z4 behavior of the
usual thermal (Liftshitz) force, showing that this power law is valid for any homogeneous source,
being Planck’s spectrum a particular case. In addition, we will address a new asymptotic power
law −1/z2 due to the interference of the electric and magnetic dipoles.
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6.2 introduction

Random radiation forces are a widely studied topic within the framework of thermal and/or
vacuum fluctuations. This idea is based on the fact that for any material in thermal equilibrium,
the charges are in random thermal motion generating a random electromagnetic field.

Most of the works which appear in the bibliography have dealt with delta-correlated sources,
such as those thermal and blackbodies, specially in connection with the Van der Waals (VdW)
and Casimir-Polder (C-P) interactions [94, 116–130]. An important point of view of this force
was given by Lifshitz who performed the first calculation of random forces by means of the
fluctuation-dissipation theorem for the currents [100]:〈

ji (r, ω) jj
(
r′, ω′

)〉
= 2πh̄ω2coth

(
h̄ω

2kBT

)
Imε (r, ω) δijδ

(
r− r′

)
δ
(
ω− ω′

)
, (6.1)

being h̄ the normalized Planck’s constant, kB the Boltzmann’s constant and T the absolute
temperature. This equation reveals the important feature that the random force is not arbitrary,
i.e., its correlation function is given in term of the losses of the system.

Due to the fact that this thesis develops a theory of optical forces from partially coherent
light, we do not restrict ourselves to the use of delta-correlated sources. We have the possibility
to create optical analogous of Van der Waals and Casimir interactions controlling and designing
them through the spectrum and spatial coherence of the source. Hence, we consider a statistically
homogeneous and isotropic source [3, III] emitting at visible and near-infrared (NIR) frequencies.
Notice that, at thermal wavelengths, the interaction from the primary source and the induced
dipoles is interpreted as a Liftshitz force [100], which in the limit of zero temperature T becomes
that from vacuum fluctuations, i.e. those derived by either VdW and C-P [92], depending on the
distance, and also on the use or not, of a quasistatic formulation.

Nevertheless, the optical frequencies ω addressed in the present study, are such that h̄ω/kBT �
1 at T = 300K. If we recall Eq. (6.1) and the fact that [131]

h̄ω

2 coth
(

h̄ω

2kBT

)
= h̄ω

[
1
2 + 1

e
h̄ω
kBT − 1

]
, (6.2)

the previous expression leads to the vacuum fluctuations given by the zero point energy, i.e.
≈ h̄ω/2. Hence, if we consider the emitting optical source spectrum as just given by a Planck
distribution, the forces in the visible and NIR ranges due to the particle induced fluctuating
dipoles, will be the optical analogous to those from the vacuum fluctuations in the thermal
spectrum, namely C-P and VdW. Nonetheless, we can choose by all means a random source
with a different statistics or optical spectrum. Thus our optical system constitutes an excellent
means to create, test and monitoring photonic analogous of such thermal forces as well as of
those out of thermodynamic equilibrium [118, 119].

On the other hand, this chapter deals with particles which present electric and magnetic
response due to a random electromagnetic field. Magnetodielectric particles made of non mag-
netic material of high permittiviy such as semiconductors in the optical regions, have showed
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exotic properties as scatterers and nanoantennas, as a consequence of the coupling between their
electric and magnetic dipoles induced by the illuminating light field [60, 61, 111, 132–138], in ad-
dition they are excellent laboratory systems to test and tailoring the effects of such interactions
[60, 111, 139].

Due to the magnetic response of the nanoparticle, more forces come into play in addition to
those from the excitation of the electric dipole of a conventional dielectric particle, and they keep
the above mentioned analogy with those of VdW, C-P and out of equilibrium interactions. Such
additional forces come from the excitation of a magnetic dipole in the nanoparticle; thus allowing
a larger number of degrees of freedom of relevance for the control of the mechanical interaction
and hence for object ensembling and manipulation. We will study in detail the contribution to
the force of these induced dipoles (we will refer to them as secondary sources) versus the terms
coming from the primary partially coherent source.

It should be stressed that since the total force conveys adding the contribution of waves emitted
by the random source at all frequencies of its spectrum, the most interesting cases in the NIR
and optical frequencies are those in which these fluctuating sources are quasi-monochromatic,
(∆ω � ω0, ∆ω denoting the bandwidth) [3]. Then the behavior of the nanoparticle polarizability
as the central frequency ω0 varies, leads to a rich and most interesting landscape of optical forces.
This is in contrast with what happens when the source emits with a broad spectrum such as
that given by Planck’s law, a particular case of which are e.g. those thermal widely considered
in connection with C-P and VdW forces. In this latter case such effects of the radiation force
if there existed a particle, or object, with such a rich response to the electric and/or magnetic
vector of the emission in that range of frequencies, would be washed out.

In addition, it must be remarked that out from the Rayleigh and quasistatic approximations
widely used so far for the study of thermal forces on atoms and particles, the obtention of the
radiation force by frequency integration over a wide emission spectrum such as that given by
Planck’s law, looses its significance because all Mie resonance lines of the nanoparticle would
then be swamped by this wavelength superposition. In fact the same happens also with the
dispersion resonances, present as the poles of the particle permittivity εp(ω), as well as with
those of the static plasmon: εp = −2.

Hence, I discuss the mechanical interaction of a small particle, generally being magnetodi-
electric, with the random fields from a fluctuating optical source whose general spectrum and
bandwidth may be controlled at will: e.g. whether quasi-monochromatic, or with a broader
bandwidth, in particular one may deal with one given by a Planck-like distribution, and whose
coherence length is also monitored. The nanoparticle has a rich spectral response to both the fluc-
tuating electric and magnetic vectors and thus, much beyond previous studies on C-P and VdW
thermal effects, a wealth of forces landscapes may be observed by controlling the constitutive
and emissive parameters of the particle and the source, respectively. This analysis also manifests
the limitations of previous studies, and the way to remedy them, concerning the asymptotic
spatial dependence of radiation forces.
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random electromagnetic field
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Figure 6.2: Scheme of setup and system geometry

6.3 forces on a magnetodielectric nanoparticle from a partially
coherent random electromagnetic field

The geometry considered in this chapter consists of two regions, (cf. Fig. 6.2). The one in z < 0 is
occupied by the random source with its polarization currents and it will be denoted as 1; whereas
the one in z > 0, standing as 2, is free space and contains the nanoparticle. The fluctuating source
considered here may be any random emitting medium; for instance, for laboratory experiments
it can be e.g. a random refractive index, or a random rough surface dielectric slab illuminated
by either quasi-monochromatic radiation, (like a laser), or by any other source such as a lamp
of any chosen spectral lineshape and bandwidth. Then, since this system is ergodic, on moving,
e.g. rotating, the slab, ensemble averages, equivalent to time averages, are performed in such a
way that the coherence length of the field emitted (i.e. transmitted) by this slab is defined by
the correlation length of the random medium inhomogeneities, (see e.g. [5, 10]).

6.3.1 Forces from the primary source

The Cartesian components of the ensemble averaged force exerted by a random field on a magne-
todielectric dipolar nanoparticle is the sum of an electric, magnetic and electric-magnetic dipole
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interference parts [59, III, IV] which are expressed in terms of the first electric and magnetic
Mie coefficients a1 and b1, or corresponding polarizabilities αe and αm, as [59, 141] IV.3.

〈Fi (r)〉 = 〈F ei (r)〉+ 〈Fmi (r)〉+ 〈F emi (r)〉

= ε0ε2
2 Re

{〈
αeEj (r) ∂iE∗j (r)

〉}
+ µ0µ2

2 Re
{〈
αmHj (r) ∂iH∗j (r)

〉}
− ε0ε2

Zk4
0

12π Re {(α∗eαm) 〈E∗ ×H〉i} , (6.3)

where the angular brackets denote ensemble average, i, j = 1, 2, 3, εl = ε′l + iε′′l and µl =
µ′l + iµ′′l (l = 1, 2) are the permittivity and susceptibility of the medium embedding the particle,
respectively, in our case being vacuum; and Z =

√
µ0µ2/ε0ε2. This means that the small particle

is considered as dipolar. However, it is large enough to require a Mie formulation with the first
electric and magnetic partial waves fully describing its scattering. The electric and magnetic
polarizabilities of the particle, αe and αm, are then expressed as

αe = i
6π
k3

0
a1, (6.4)

αm = i
6π
k3

0
b1, (6.5)

where the n-Mie coefficients an and bn are [60, 115]

an = 1
2
(
1− e−2iαn) = isinαneiαn , (6.6)

bn = 1
2

(
1− e−2iβn

)
= i sin βne−iβn , (6.7)

and

tanαn = m2jn (y) [xjn (x)]
′ − jn (x) [yjn (y)]′

m2jn (y) [xyn (x)]
′ − yn (x) [yjn (y)]′

, (6.8)

tan βn = jn (y) [xjn (x)]
′ − jn (x) [yjn (y)]′

jn (y) [xyn (x)]
′ − yn (x) [yjn (y)]′

. (6.9)

In these expressions m = np/nh is the relative refraction index, where np refers to the particle
and nh to the host medium (in this chapter nh = n2), x = ka, y = mka and k = nh2π/λ. The
functions jn and yn are the spherical Bessel and Neumann functions respectively.

In Eq. (6.3) Ei(r) is the total electric vector at frequency ω at any point of the half-space
z > 0; hence at the position of the particle, i.e. at r = r0, it will be

Ei (r0, ω) = Einci (r0, ω) +Epi (r0, ω) +Emi (r0, ω) . (6.10)

The associated magnetic field H can be directly obtained from Maxwell’s equations [43]. Whereas
in Eq. (6.10) the first term represents the electric field emitted from the primary source consti-
tuted by the random slab and incident on the nanoparticle, the last two terms are the electric

IV.3 Both the Gaussian and SI units are used in this thesis. Generally Gaussian units are used, however, for biblio-
graphic (or computational (cf. Chapter 8)) reasons in this chapter we use SI. Due to this fact we address explicitly
the expression of the force because the interference force differs from the previously addressed in Chapter 4 in a
factor 1/4πε0. Notice also that the expressions for the dipoles in terms of the incident fields differ from a factor
ε0 and µ−1

0 for the electric and magnetic dipoles respectively
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fields emitted by the particle induced dipoles: pi = ε0αeEinci and mi = αmH
inc
i , respectively,

after multiple reflections at the plane z = 0 [142].

The electric field incident on the particle is defined through the Green’s function GEPij which
includes the transmission Fresnel coefficients ts,p from z < 0 into z > 0. GEPij may be written as
a superposition of plane waves. Thus, in terms of the polarization currents one has

Einci (r0) = µ0ω
2
∫
V
GEPij

(
r0, r′, ω

)
Pj
(
r′, ω

)
d3r′. (6.11)

V denotes the volume occupied by the source. A more detailed description about these Green’s
functions can be found in e.g. [131, 143] and in Appendix C.

We define the cross-spectral density tensor of the source polarization Pi(r) as W (P )
ij (r1, r2, ω)

=
〈
P ∗i (r1, ω)Pj (r2, ω)

〉
. We shall address the wide variety of statistically homogeneous and

isotropic sources [3] for which

W
(P )
ij (r1, r2, ω) = S(P )(ω)µ(P )

ij (|r1 − r2|, ω). (6.12)

S(P )(ω) denotes the power spectrum of the source and µ(P )
ij (|r1 − r2|, ω) is the spectral degree

of coherence [3]. We assume a Gaussian degree of coherence, therefore the correlation function
reads W (P )

ij (r1, r2, ω) = S(P ) (ω) exp(−(|r1 − r2|)2/2σ2)δij/(2π)3/2σ3, σ being the coherence
length of the source and S(P )(ω) = S(P )(ω)/(2π)3/2σ3 representing the normalized spectrum.
Notice also that this Gaussian function is not exactly the same as in Chapter 2, here we use a
3D Gaussian function.

On inserting Eq. (6.11) into (6.3) and taking the statistical homogeneity and isotropy of the
source into account, one obtains the total force on the nanoparticle due to the random field
inciding on it after emission. Only the force along the z-axis is different from zero, namely,
the mechanical action of the source on the particle is rotationally symmetric as a consequence
of its the statistical isotropy. The conservative (gradient) part of the electric force [59, III]〈
F e,consi

〉
, associated to this incident field Eincj ,

〈
F e,consi

〉
= ε0Reαe∂i

〈
Einc,∗j (r)Eincj (r)

〉
/4 is,

(cf. Appendix C):

〈F e,consz 〉 = −k
4
0π

8ε0
ReαeS(P ) (ω)

∫ K=+∞

K=k0

√
K2 − k2

0

|γ1|2
e−

(Kσ)2
2

×

[
|ts12|

2 +
∣∣tp12
∣∣2

|n1|2 |n2|2 k4
0

(
|γ2|2 +K2

)(
|γ1|2 +K2

)]

× e−2z0Imγ2 1
Imγ1

e−
1
2σ

2Reγ2
1KdK, (6.13)

where K = (Kx,Ky), ŝ = K̂× ẑ , p̂±i = −
[
γiK̂∓Kẑ

]
/(nik0) and γi =

√
εiµik

2
0 −K2, (i = 1, 2).

n1 (n2) is the refractive index of the medium placed at z < 0 (z > 0) and the caret denotes a
unit vector. It is worth stressing that the integration range in the above equation contribution
is solely due to the evanescent modes, (see also Eq. (C.19) of Appendix C).

At this point it should be remarked that the main result of [119] is only an approximation
to Eq. (6.13) for the electric force in the limit K → k0 for a Rayleigh particle considered in
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the quasistatic limit, i.e. that with αe = a3(εp − 1)/(εp + 2), which does not conserve energy on
interaction with the random field [59]. By contrast, Eq. (6.13) accounts for all energy conserving
and retarded effects that are required for any general study, including those that otherwise could
not be tackled when a larger nanoparticle, like a magnetodielectric one, is addressed.

On the other hand, the non-conservative part of the electric force [59, III]
〈
F e,nci

〉
= ε0Imαe

Im〈Einc,∗j (r) ∂iEincj (r)〉/2, is determined in a similar way, (see Eq. (C.23)):

〈F e,ncz 〉 = k4
0π

8ε0
ImαeS(P ) (ω)

∫ K=k0

K=0

√
k2

0 −K2

|γ1|2
e−

(Kσ)2
2

×

[
|ts12|

2 +
∣∣tp12
∣∣2

|n1|2 |n2|2 k4
0

(
|γ1|2 +K2

)(
|γ2|2 +K2

)]

× 1
Imγ1

e−
1
2σ

2Reγ2
1KdK, (6.14)

where it is seen that only the homogeneous (propagating) plane wave components contribute
and yield a constant non-zero value for any r.

The magnetic and the interference forces, [cf. second and third terms of Eq. (6.3)], are calcu-
lated analogously. See also Sections C.2 and C.3 of Appendix C for a detailed deduction.

6.3.2 Forces from the secondary sources constituted by the induced fluctuating dipoles of the
nanoparticle

As previously stated, the last two terms in Eq. (6.10) are the fields emitted by the induced
dipoles in the particle, and hence connect the constitutive properties of the source and particle
through the Fresnel reflection coefficients rs,p at z = 0 and the polarizabilities, being described
in this case by GEpij and GHmij . Thus, the electric field can be calculated like in Eq. (6.11) using
GEpij and piδ(r′ − r0) instead of GEPij and Pj(r′), i.e.,

Epi (r) = µ0ω
2
∫
V
GEpij

(
r, r′, ω

)
pj
(
r′, ω

)
δ
(
r′ − r0

)
d3r′,

= µ0ω
2GEpij (r, r0, ω) pj (r0, ω) , (6.15)

and analogously the electric field emitted by the induced magnetic dipole reads

Emi (r) = Z0iω

c
GHm↔ij (r, r0, ω)mj (ω) , (6.16)

where the superscript ↔ means that the electric field generated by the magnetic dipole has the
same Green’s function as the magnetic field radiated by the electric dipole with the interchange
rs ↔ rp. Both GE(p,m)

ij and GH(p,m)
ij exponentially decay with the distance z in the evanescent

wave region (K > k0) and are oscillatory in the radiative one (K ≤ k0). They are obtained as
indicated in Section C.4.

Note that rp and tp support SPPs. The calculations are done on considering that there is mu-
tual incoherence between the nanoparticle electric and magnetic induced dipoles, i.e.,

〈
p∗imj

〉
= 0
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Figure 6.3: From left to right: Normalized electric 〈F e〉, magnetic 〈Fm〉 and interference force 〈F em〉
from a δ-correlated source. The first horizontal row shows the part of the force due to the field from the
fluctuating primary source whose exit plane is at z = 0, [first term in Eq. (6.10)]. The insets exhibit
the polarizabilities normalized to a3 vs. λ: electric, magnetic and electric-magnetic product, respectively,
which also depict the behavior of the corresponding force from each plane wave component [59], and
hence αe, αm and α∗eαm are factors in 〈F e〉, 〈Fm〉 and 〈F em〉, respectively. The second horizontal row
represents the force from the secondary source constituted by the particle induced dipoles, [second and
third terms in Eq. (6.10)]. In each figure, the warm and cold color regions, separated by a yellow line of
minimum force strength, correspond to the zones where the force is positive and negative, respectively.
The normalization of these forces is done on dividing their value by the power spectrum S(P ) (ω) of the
source

[79]. In the following, 〈F1〉 and 〈F2〉 will denote the total forces [cf. Eq. (6.3)] due to the above
mentioned contributions of the primary fluctuating source in z < 0 and of the secondary source
constituted by the particle induced dipoles, respectively.

6.4 example: the semiconductor sphere in the near infrared and
visible

We illustrate the above with a generally magnetodielectric dipolar nanoparticle constituted by
a semiconductor sphere; its anomalous scattering properties have recently received a great deal
of attention, both theoretically and experimentally [61, 112–114, 132, 139]. In particular, for
each plane wave component of the field incident on the particle, its scattered intensity in the
backscattering direction is zero [first Kerker condition (K1)] when Reαe = Reαm. Also, for each
of these incident plane wave components, the forwardly scattered intensity becomes close to a
non-zero minimum [second Kerker condition (K2)] when Reαe = −Reαm. There being no gains
in the particle, in both cases: Imαe = Imαm [61].

After performing all the integrations of the form of Eq. (6.11) for the primary source and for
the induced electric and magnetic dipoles that constitute the above mentioned secondary source,
a long but straightforward task some of whose details are shown in the Appendix C, one sees
that 〈Em∗i (r0)Emi (r0)〉 =

〈
Hp∗
i (r0)Hp

i (r0)
〉

= 0. This is relevant in connection with the Kerker
conditions.
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6.4.1 Results for a Silicon sphere. Forces from the primary source

Let the sphere be made of Si with radius a = 230nm, the incident light being in the NIR range of
1.2µm− 2µm. At these wavelengths the total cross section of the nanoparticle is fully determined
by the electric and magnetic Mie coefficients a1 and b1 (see Fig. 6.2 and Ref. [60]), respectively.
This justifies the use of Eq. (6.3) for the optical force.

In the configuration here addressed, (cf. Fig. 6.2), the surface at z = 0 is assumed to be
metallic supporting SPPs for p-polarization. We consider an Au interface as in Chapter 5, hence
supporting SPPs in the spectral range under consideration. It is worth remarking, however,
that the presence of SPPs on z = 0 is considered here because it enhances by one order the
magnitude the strength scale of the different force components, but it does not produce any
qualitative change in their relative behaviors [cf. Chapter 5]. Results are shown in the NIR;
nonetheless is worth stressing that the scaling property of these high permittivity particles leads
to identical results ranging from visible to microwave regions just by appropriately changing the
size and permittivity of the particle . (cf. Fig. 2 of [60] and also [112, 114, 137]

Fig. 6.3 shows the force terms, in a logarithmic scale, due to the fluctuating primary source
and to the induced electric and magnetic random dipoles in the particle. This representation
aims to clarifying its extremely sharp changes of sign. Unless stated otherwise, in order to see
the relative weight of each force component, all results of this section are normalized to the
power spectrum S(P ) (ω) of the source. The first horizontal row shows the force 〈F1〉 due to the
field impinging the sphere from the primary statistical source at z = 0. The second horizontal
row represents the force 〈F2〉 from the secondary source constituted by the particle induced
fluctuating electric and magnetic dipoles. The source coherence length σ is first assumed to be
zero. The insets depicts the polarizability contributions for the range of wavelengths under which
it exhibits a resonant behavior, this helps to understand the color plots.

In Figs. 6.3 (a) and 6.3 (b) we see a yellow line separating the gradient and scattering forces. For
a statistically homogeneous source, the gradient force [proportional to Reαe 〈E∗i Ei〉] is governed
uniquely by the evanescent modes and is negative for a particle with Reαe > 0, [cf. IV and Eq.
(6.13)]; hence it exponentially decays with the distance z to the source. On the other hand, the
scattering force (proportional to ImαeIm

〈
E∗j ∂iEj

〉
) is positive, i.e. pushing, and constant for

any r0. As the wavelength grows, Reαe > Imαe, [see the inset in Fig. 6.3 (a)]. This behavior
and that corresponding to αm shown in the inset of Fig. 6.3 (b) results, as consequence of the
integrations in Eqs. (6.13) and (6.14), in an extraordinary phenomenon: the contribution of the
evanescent waves to the gradient force, Eq. (6.13), is noticeable even at distances z/λ > 1. Hence,
pretty far away from the surface, the gradient force is dominant at shorter frequencies, a fact
that applies to any source which behaves as quasi-monochromatic [1] in this range of selected
wavelengths. This is a remarkable new feature of the forces introduced by the resonant nature
of these particles that we put forward for the first time.

Fig. 6.3 (c) represents the force component 〈F em1 〉 due to interference between the nanoparticle
induced electric and magnetic dipoles. In the near field this is attractive for any wavelength, even
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at distances larger than λ, where the force is proportional to −Re(α∗eαm)Si, [S = Re(E∗×H)/2
denotes the Poynting vector, which is independent of the distance z as one can see from Eq.
(C.36)]. Such a negative force is known as a pulling force, and its interest has increased in the
last years [68, 69, 101]. In this respect, Fig. 6.3 (c) shows the relevant role of the magnetodi-
electric behavior of these particles, although in this latter specific case when the two other force
components: electric and magnetic, are added this pulling effect becomes small. We state, how-
ever, that although not shown here for brevity, the sum of three components 〈F e〉, 〈Fm〉 and
〈F em〉 yields a tractor force up to the distance z ' 3λ in the range λ ' 1.7− 2µm. This is a new
feature stemming from the magnetodielectric character of this particle.

Concerning the force 〈F2〉 from the particle induced dipoles, we see in the second horizontal
row of Fig. 6.3 that its amplitude exponentially decays with the distance z to the primary source
exit plane z = 0, and its sign depends on that of the particle polarizability; nevertheless, the
oscillatory behavior of the Green’s function due to propagating plane wave components manifests
in this force. We also observe that it is six orders of magnitude larger than its counterpart 〈F1〉
from the primary fluctuating source, at least at subwavelength distances z. We shall later discuss
this fact.

To get a deeper understanding, Fig. 6.4 represents 〈F1〉 for some selected wavelengths and for
two different source coherence lengths: σ = 0 and σ = λ/4. The huge sharp changes in the sign
of the force at a given distance z/λ are clearly seen. For an statistically homogeneous source,
the electric and magnetic cross-spectral density tensors fulfill [32]

ε0
〈
E∗i (r1, ω)Ej(r2, ω)

〉
= µ0

〈
H∗i (r1, ω)Hj(r2, ω)

〉
, (6.17)

hence, in the near field one has 〈F e1 〉 = 〈Fm1 〉 and 〈F e1 〉 = −〈Fm1 〉 when the first and the second
Kerker condition hold, respectively. However, in the far zone 〈F e1 〉 = 〈Fm1 〉 for any value of r0

at Kerker conditions. For the Si nanoparticle addressed, the Kerker conditions are fulfilled at
λ1 ' 1.825µm and λ2 ' 1.53µm, (cf. Figs. 6.3 (a) and 6.3 (b) and [61]).

Fig. 6.5 depicts the range of wavelengths where the magnetic dipole predominates over the
electric one. In the near-field, where the electric (magnetic) force is solely due to the evanescent
modes, the weight of such force is due to the response of the nanoparticle through its proportion-
ality to the real part of the electric (magnetic) polarizability. Fig. 6.5 (a) exhibits a peak near
λ ' 1.25µm where the magnetic polarizability is more than one order of magnitude larger than
its electric counterpart; thus, the magnetic force will also surpass the electric one by one order of
magnitude. We can also distinguish in this figure two zones close to λ ' 1.6µm and λ ' 1.76µm
where 〈Fm1 〉 > 〈F e1 〉. On the other hand, the behavior of the force at larger distances, will be
ruled by the imaginary part of the polarizability. Fig. 6.5 (b) shows the zone, where the mag-
netic dipole predominates, and thus the magnetic force is five times larger than the electric one.
These effects, due to the magnetic response of the dielectric particle to the light field, constitutes
another main result of this chapter.
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6.4.2 Influence of the coherence length and forces from the induced dipoles

I now address the influence of the coherence length of the source. This establishes the differences
between the mechanical action of our partially coherent optical sources and most previously
studied that are δ-correlated. In particular at thermal wavelengths this would predict differences
between Liftshitz, C-P and VdW forces from thermal sources and blackbodies, both in and out
of thermodynamic equilibrium, and those generated from bodies whose currents are partially
correlated.

In our study, the transversal part of the spectral degree of coherence (cf. Section 6.3.1)
exp[−(Kσ)2/2], governs the coherence tensors and the mean forces from the random field emit-
ted by the primary source, (see Appendix C), acting as a low-pass filter in K-space, [see Eqs.
(6.13) and (6.14)], being maximum for σ = 0, i.e. when the source is white noise. Because of this
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fact, the evanescent modes present two such filters: the first is due to their own nature, while the
second stems from the spatial coherence of the source. The shape of Figs. 6.4 (d)-6.4 (f) is similar
to that of Figs. 6.4 (a)- 6.4 (c), shifted by a distance ∆z ' 0.5λ, therefore for σ > λ the force is
solely due to the non-conservative (scattering) contribution and to the interference component
〈F em1 〉, which becomes constant and positive or negative depending on the wavelength. It is
worth pointing out that the price paid on increasing the coherence length is expensive, because
at the same time there is a reduction of the force strength by various orders of magnitude [cf.
e.g. the forces shown in Figs. 6.4 (a) and 6.4 (d) at z < λ].

We now turn our study to analyze its influence on the force 〈F2〉 generated by the secondary
source, namely by the particle induced dipoles. Fig. 6.6 represents 〈F2〉 for the same wavelengths
as in Fig. 6.4. The magnitude of this force 〈F2〉 in the near-field z < λ is much larger than
that of 〈F1〉 in Fig. 6.4, thus the effect of the mechanical action 〈F2〉 of the field emitted by the
particle induced dipoles substantially dominates over that 〈F1〉 of the field that is due solely to
the primary fluctuating source. Nevertheless, as the distance z grows, all the fastly oscillating
components, electric, magnetic and that of interference of this force 〈F2〉 rapidly tend to zero,
and hence is the force 〈F1〉 from the primary source the one that dominates.

I remark that, as follows from the calculation of Ep,m and Hp,m, the cross spectral density
tensors of the electric and magnetic dipoles are not equal to each other; therefore although at
first sight it could seem that under Kerker conditions 〈F e2 〉 and 〈Fm2 〉 would fulfill relationships
similar to those of 〈F e1 〉 and 〈Fm1 〉, in fact they do not. This is seen in Fig. 6.6.

The role of the coherence length in this case is exactly the same as in Fig. 6.3; the magnitude
of the force decreases as σ grows. Future work should find a minimum value of σ for which this
optical analogous to the C-P force predominates over the contributions discussed here.
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In order to provide an estimation of the actual magnitude of these forces, now instead of study-
ing their relative values by using a normalization to S(P ) (ω) as before, we evaluate them in terms
of the optical power I0 of the source. To this end, we consider a Gaussian quasi-monochromatic
spectrum [3] centered at frequency ω0 and spectral width σω = 0.01 ω0: S(P ) (ω) = (ε0/ck3

0)
(I0/
√

2πσω) exp[−(ω − ω0)2/2σ2
ω], where I0 is the optical power in W/m2. Let this power be:

I0 = 1mW/µm2.

The resulting force exerted by the random field on the particle is determined by ω-integration
of all frequency components in the support of S(P ) (ω), i.e. Fz (r) =

∫
Fz (r, ω) dω. (cf. Eqs.

(6.13) and (6.14) for Fz (r, ω). Notice that in the integrand we have now explicitly written the
ω-dependence of the force at each frequency ω).

First I calculate the forces 〈F1〉 due to the primary source assuming it to be δ-correlated. As
seen in Fig. 6.4, the maximum magnitude of the force, (independently of whether its origin is from
the electric, magnetic, or electric-magnetic interference dipoles), occurs at subwalength distances
z where the evanescent modes are more relevant. For instance, for λ0 = 1.6µm, (λ0 = 2πc/ω0),
the particle being at z < λ0/2, the magnitude (in absolute value) of the electric force 〈F e1 〉
is in the interval: [1× 10−14, 1× 10−13Newton]; and as the distance z of the particle to the
source increases, this electric force tends to a constant value, (governed by the propagating
modes), in this interval. Obviously, the sign of the force will be frequency-dependent through
the polarizability of the particle.

Analogously, and as a consequence of Eq. (6.17), the behavior of the magnitude of the magnetic
force 〈Fm1 〉 is similar to that of 〈F e1 〉. At the same distance z, the interference force 〈F em1 〉 is
slightly different to these former. Indeed, as one sees on comparing Figs. 6.4 (b) and 6.4 (c),
〈F em1 〉 is two orders of magnitude smaller than either the electric or magnetic forces.

Subsequently, this calculation is performed for the forces 〈F2〉 induced by the secondary source,
(i.e. from the induced dipoles in the particle). The same parameters as before are assumed for
the primary source. As pointed out above in this section, at subwalength distances z, these forces
are much larger than those 〈F1〉 from the primary source. At a distance z ' λ0/10, the electric
force 〈F e2 〉, is of the order of 10−12N , a value which is certainly larger than the aforementioned
one for 〈F e1 〉. On the other hand, at a distance z ' λ0/4, 〈F e1 〉 starts to compete with 〈F e2 〉;
the latter becoming negligible at distances comparable to the wavelength λ0 of the emitted field.
Similar effects are found for the other two components 〈Fm2 〉 and 〈F em2 〉.

All these forces diminish when the coherence length σ of the primary source increases. For
instance, when σ = λ/4, they all become about three to four orders of magnitude smaller than
those previously obtained for a δ-correlated source.
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6.5 asymptotic laws in the near-field

6.5.1 Fields from the primary source

In this section I discuss the asymptotic behavior of the forces due to the field emerged from
the primary source when we are at extreme near-field distances, (z � λ), and for different
correlation lengths σ. This analysis in the optical range makes a contact with previous studies of
C-P, VdW and out of equilibrium forces corresponding to broad spectra like those from thermal
or blackbody sources, and shows their analogies as well as the limitations of applying to particles
previous studies on atoms.

In this connection, I stress the different sign of these forces in the region z � λ, either attractive
or repulsive, shown in Figs. 6.4 and 6.6, depending on the sign of the particle polarizability
according to the emission wavelength.

Multiple studies have led to a rather large landscape of C-P forces depending on both the
nature of the fluctuations and the electromagnetic properties of the sources [144]. We address
the interaction from the polarization currents of the primary source, (the magnetic currents are
negligible), and the nanoparticle, generally considered as magnetodielectric.

At distances z � λ the main contribution to the integral Eq. (6.13) comes from large values of
K, i.e., K � k0. Notice that in this case, the total electric force is solely due to the conservative
force F e,consz and consequently only the evanescent modes contribute.

We shall now consider two regimes in the quaistatic approximation K � k0 [31]: the first is
when σ → 0. This is the most studied one because it can be extrapolated to a thermal source
whose fluctuations come from Rytov’s theory [79]. Thus, in this case Eq. (6.13) leads to (see
Section C.1.2)

F e,consz ' − 3π
4ε0z4Reαe

S(P ) (ω)

|ε1 + 1|2
, (z � λ, σ → 0). (6.18)

As we can see, the force decays as 1/z4 and its sign depends on the sign of the polarizability of the
nanoparticle, which can be positive (negative) leading to a negative (positive) force respectively.
This is analogous to the well-known quasistatic dependence of the VdW force when S(P ) (ω) is
the wide Planck’s spectrum.

The second regime will be when z � λ and σ > z, in this case the electric force is given by

F e,consz ' − 4π
ε0σ4Reαe

S(P ) (ω)

|ε1 + 1|2
, (z � λ, σ > z). (6.19)

Now the source with a non-zero coherence length σ gives rise to a force which does not depend
on the distance z, i.e., for an arbitrary value of σ, the force is constant with distance and the
role of z that appeared in Eq. (6.18) is now played by σ. Notice also that when σ � λ > z the
resulting force is negligible.
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At this point I wish to point out that the conservative forces obtained in Eqs. (6.18) and (6.19)
are compatible with recent results on spatial correlations of speckle patterns at extremely close
distances form disordered media interfaces, (cf. Sec. IV of [31]).

The conservative force Fm,consz on the magnetic dipole, induced in the particle by the field
emitted from the fluctuating primary source, is similarly calculated. As stated before, these
electric and magnetic forces hold:

Fm,consz = Reαm
Reαe

F e,consz (6.20)

Next I calculate the term F emi of the force due to the interference between the induced electric
and magnetic dipoles in the particle. At these distances, this force is solely due the evanescent
modes of the angular spectrum as in the case of electric and magnetic force. We have

F emi (r) ' − k5
0

24ε0z2 Im(α∗eαm)S
(P ) (ω)

|ε1 + 1|2
,

(z � λ , σ → 0), (6.21)

F emi (r) ' − k5
0π

6ε0σ2 Im(α∗eαm)S
(P ) (ω)

|ε1 + 1|2
,

(z � λ , σ > z), (6.22)

In contrast with the corresponding Eqs. (6.18) and (6.19), the interference force decays with the
distance as 1/z2, or with the coherence length as 1/σ2.

I now turn out to study the opposite asymptotic case, i.e. that of larger distances z > λ;
this excludes any quasistatic approximation. At such large z/λ, one may expect almost no
contribution of evanescent plane wave components and thus, if like in [119] one approximated
K → k0 in the integration of Eq. (6.13), one would obtain, in analogy with the calculation
leading to Eqs. (6.18) and (6.19), an asymptotic power law for the conservative force, either
electric [119], magnetic, or electric-magnetic interference, which depending on the value of σ,
would decay as ∝ −1/z3 or ∝ −1/σ3.

However, in the range z > λ, the non-conservative component of the force Eq. (6.14) is no
longer negligible, hence contrary to what might initially be thought, the conservative component
is not enough to describe the total force on the particle at such distances. This completely changes
the variation with z of the resulting force which, as a consequence of adding the conservative
and non-conservative components, is no longer of the form ∝ −1/z3 or ∝ −1/σ3. Notice that
the existence of the non-conservative force in this regime of z/λ is a consequence of the fact
that, as mentioned before, the particle polarizabilities cannot be described by their quasistatic
expressions.

To clarify this point, Fig. 6.7 shows the different components of the force in two axes. At
these distances z, the exact expression Eq. (6.13) of F e,consz leads to the asymptotic power
law ∝ −1/z3 [119]. Nevertheless, on taking also into account F e,ncz , [cf. Eq. (6.14)], the total
electric force F ez = F e,consz + F e,ncz does no longer follow the power law -1/z3 but practically
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Figure 6.7: Components of the electric force at λ = 1.63µm. The diamonds and the blue-solid line
(left axis) represent the exact solution and the numerical fitting −1/z3, respectively, for the conservative
component [cf. Eq. (6.13) ]. The dashed lines (right axis) depict the non-conservative force (black dashed
line) (cf. Eq. (6.14) , and the total force F e
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z , (red dash-dot line). Notice how this
latter sum makes the asymptotic behavior −1/z3 of F e,cons

z to disappear, becoming almost linear with
z in the resulting total force F e

z .

varies proportional as ' 1.33z and becomes repulsive. This result points out the inadequacy of
extrapolating previous quasistatic studies made for atoms to the analysis of the mechanical action
on particles from both optical and thermal radiation. [118, 119].

6.5.2 Fields from the nanoparticle induced dipoles

I now proceed with the interaction from the fluctuating induced dipoles. The electric force will
now be proportional to Re

〈
αeE

p
j (r) ∂iE

p∗
j (r)

〉
, (with an analogous expression for the magnetic

and electric-magnetic interference forces). Now,〈
Ep∗j ∂iE

p
j

〉
= µ2

0ω
4
〈
Gp∗jk

(
r, r′

)
∂iG

p
jl

(
r, r′

)〉 〈
p∗k
(
r′
)
pl
(
r′
)〉

= k4
0 |αe|

2
〈
Gp∗jk

(
r, r′

)
∂iG

p
jl

(
r, r′

)〉
Ikl(r′, r1), (6.23)

where Ikl(r′, r1) =
〈
Einc∗k (r′, r1)Eincl (r′, r1)

〉
, r, r′ denote points of the half-space z > 0, where

the dipole particle is placed, while r1 stands for a point of z < 0, (cf. Fig. 6.2). Note that
Eq. (6.23) differs from that employed for calculating the vacuum fluctuations and the C-P force
because in Eq. (6.23) the particle induced dipoles are expressed in terms of the incident field and
not by the usual fluctuation-dissipation theorem [79]. Now to calculate the asymptotic behavior
of the force, we have to approximate two Green’s function, one for the field which is transmitted
from the primary source and another for the field which is reflected at z = 0. As for the Green’s
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function GEP , we make the same approximations as in the previous section. On the other hand,
for the Green’s function GEp, one can approximate the reflection Fresnel coefficients by [145]

rs '
k2

0 (ε1 − 1)
4K2 , rp '

ε1 − 1
ε1 + 1 . (6.24)

Taking these considerations into account, we address the first asymptotic laws for this type of
configuration. Thus, for the electric force we get in the quasistatic approximation

F e,consz (r) ' − |αe|2

128ε0z10ReαeS
(P )(ω) |ε1 − 1|2

|ε1 + 1|4
,

(z � λ , σ → 0), (6.25)

F e,consz (r) ' −
√

2π |αe|2

64ε0z7σ3 ReαeS(P )(ω) |ε1 − 1|2

|ε1 + 1|4
,

(z � λ , σ > z). (6.26)

Thus showing dependence on the distance either as 1/z10 or 1/z7. Therefore, there is a difference
of three orders of magnitude between the incoherent (σ → 0) and the partially coherent σ > 0
limits. This difference is given by Ikl which contains the coherence length σ of the source. At
these small distances, the nonconservative components of the forces are zero.

In a similar way, we derive the expression for the force from the particle induced magnetic
dipole. In this case we get

Fm,consz (r) ' −k
4
0 |αm|

2

128ε0z6 ReαmS
(P )(ω) |ε1 − 1|4

|ε1 + 1|4
,

(z � λ , σ → 0), (6.27)

Fm,consz (r) ' −
√

2πk4
0 |αm|

2

256ε0z3σ3 ReαmS(P )(ω) |ε1 − 1|4

|ε1 + 1|4
,

(z � λ , σ > z). (6.28)

Eq. (6.27) does not show the same decay with z as Eq. (6.25) exhibits for the electric force, this
shows that the induced magnetic dipole does not interact with the source plane at z = 0 in the
half-space z > 0 in the same way as the particle induced electric dipole.

The expressions for the electric-magnetic interference force are a bit more complicated to ana-
lytically derive, however, making a numerical fitting we see that it decays as −1/z8 or −1/(z5σ3)
in the incoherent and partially coherent cases, respectively.

The asymptotic expression for this secondary source force components is not meaningful at
larger distances. As remarked in Section 6.4.1, the forces from the particle induced dipole fields
decay much faster than those from the primary source fields, thus, the nonconservative com-
ponent will predominate, being constant with distance z as shown in Section 6.4.1. It should
also be noticed that in order to recover the retarded typical power law 1/z5 associated to C-P
forces from vacuum fluctuations [92], no primary source fluctuating fields should be present. As
mentioned in the introduction, h̄ω/kT � 1 at the frequencies considered, and hence if the source
obeyed a Planck law the resulting spectral distribution would be the optical analogous to that
of the vacuum fluctuations with energy h̄ω/2 [121], therefore a short of switch-off of the emitted
field would be necessary to detect such vacuum fluctuation optical analogous force.
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6.6 conclusions

In this chapter I have analyzed in detail the new effects and asymptotic power laws of photonic
forces on a resonant magnetodielectric nanoparticle due to the random electromagnetic field
emitted by a partially coherent statistically homogeneous source. Due to the universality of
the resonances peaks in the scattering cross-section of these particles, we have selected those
frequencies in the NIR in order to make an optical force analogous to vacuum fluctuations
studies

I have shown the different contributions to the force due to the Mie resonances of these mag-
netodielectric particles. Namely, we have addressed the electric, magnetic and interference force
in the near of a partially coherent source. Firstly, at near-field distances, we have demonstrated
that by a properly selection of the emission wavelength, the optical force can be attractive even
far from the emission plane. This attraction is due to the evanescent modes of the angular wave
spectrum. Secondly, at far-field distances, the force is constant, due to the homogeneous modes.
In addition, at Kerker conditions, the electric and magnetic forces can be canceled between them
predominating the force due to the interference of the induced dipoles.

I have emphasized that quasimonochromatic primary sources are the best candidates to ob-
serving the above mentioned rich variety of wavelength dependent forces. We have remarked that
a frequency superposition to determine these forces, as usually done with thermal interactions,
does not change their spatial dependence, however, it washes out their respective wavelength
behavior. Conversely, we have shown configurations where one may choose the frequency, or the
spectral position and bandwidth of illumination, to tailor a predominance of either the induced
dipole fluctuations, (the optical analogous and generalizations of the C-P or VdW forces); or
those from the primary fluctuating source emitted field, in analogy with those thermal forces
out of equilibrium.

Additionally, this chapter manifests the problems of using a quasistatic formulation of optical
forces. As we have emphasized, for these particles one has to use a rigorous Mie theory (far away
from any quasistatic approximation). In this way, we have addressed new asymptotic power laws
in the extreme near-field, namely, for the electric and magnetic forces we have shown a spatial
dependence of the form −1/z3 or −1/σ3, according to whether the source coherence length σ is
null or not. At these distances, the interference force shows a −1/z2 or −1/σ2 behavior.

On the other hand, for the induced dipoles (the secondary source) a new dependence on the
distance to the source is found for the fields from the nanoparticle induced dipoles. This is shown
to be −1/z10 or −1/z7, depending again on whether the source coherence length σ is zero or
not.
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OPT ICAL FORCES FROM GAUSS IAN SCHELL -MODEL
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7
O P T I C A L S Y S T E M S W H I C H P R O D U C E T H E S A M E
O P T I C A L FO R C E A S A F U L LY C O H E R E N T B E A M

7.1 motivation

U
p to this point, all I have been talking about optical forces has been due to sources
whose spectrum was homogeneous throughout their exit plane, however, there is a
different kind of random source of interest, specially in the generation of partially

coherent beams [3]. This pertains to sources whose spectrum depends on the position, at least
in a some selected range, thus from now on we will consider this model. This concept will be
introduced in the same way as the homogeneous sources in Chapter 2.

The sources whose spectral degree of coherence depends on two positions only through their
difference are denoted Schell sources. The study about optical forces from Gaussian-Schell Model
Sources (GSMS) was briefly started in reference [56], however, many details need to be analyzed
carefully.

In the context of GSMS, E. Collet and E. Wolf discovered in 1978 that these sources can
generate the same radial intensity as a fully coherent laser, or as a different GSMS. This result
was named equivalende theorem(ET). Since we are working in the field of stochastic sources, it
is natural the use of GSMS to try to demonstrate if an equivalent theorem can be derived for
optical forces (and the most important concept of optical tweezers).

Firstly, I will demonstrate an equivalence theorem can also be derived for optical forces in the
far-field regime, nevertheless, we will go beyond. For practical applications, the optical tweezer
is the usual way to trap particles. Usually, this trapping is due to the gradient force of light, in
a divergent Gaussian beam, the conservation of momentum will push the particle towards the
direction of propagation. Thus, I will demonstrate that the ET in far-field is only a particular
case, for free-space propagation, of a result that applies to any ABCD optical system.
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7.2 introduction

In previous chapters I have mentioned the importance of nanomanipulation, however, I have
not shown an optical trap in itself, i.e., a position where the sum of the forces on the particle
are zero. Usually the experimental techniques use TEM00 laser Gaussian beams in order to get
a configuration of optical tweezer; nevertheless, this point does not consider the fluctuation of
the fields (apart of a few works [56, 58]). Then, we will deal with optical traps generated by
statistically fluctuating optical sources.

Within this framework, it is worth remarking as said above, that about thirty years ago
important equivalence properties were demonstrated [146–148] between laser beams and those
in the far zone of the wide variety of Gaussian-Schell model fluctuating sources (GSMS) [3, 149].
Although not realized so far, when such equivalences are generalized to ABCD optical systems,
they become very relevant for optical manipulation, and showing it constitutes the main message
of this chapter.

Specifically, the equivalence theorem (ET) was established [146, 147] according to which a
fully coherent laser is not necessary to produce a highly directional intensity distribution, but a
partially coherent source of the variety of GSMSs, fulfill this property in its far zone.

In this chapter I demonstrate that a fluctuating GSMS produces the same optical force as a
laser beam, not only in the far zone, but at any output plane of a general ABCD system and, in
particular, in an optical trapping configuration. In addition, this may be done with a much lower
peak intensity. We fairly think that this opens a new door in the area of optical manipulation
because, as we will show, it is not necessary to have a rather intense spatially coherent beam in
order to create a potential well with an equilibrium position. On the contrary, lower values of
the peak intensity will produce the same optical force.

7.3 on the concept of statistically fluctuating schell-model sources

Now I will introduce the concept of Gaussian Schell model sources. This important definition
was introduced by Schell in 1961 in his Doctoral dissertation [150, Section 7.5]:

“The most important assumption of the following is that the fields are stationary in space
and time. This means that the correlation between the signal at two points depend only on the
difference in times of observation and the difference in positions, and not upon the times are
positions themselves. While in an optical system the statistics may be a function of position in
the image or object plane, a measurement of the correlation between the signals arriving at two
points in an antenna is unlikely to change from one part of the antenna to another”
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(a) Two-dimensional Gaussian function. (b) Green laser beam profile.

Figure 7.1

In ω−space, this means that the cross spectral density at the plane of the source z = 0 is
given by

W (0) (ρ1,ρ2, ω) =
√
S(0) (ρ1, ω)

√
S(0) (ρ2, ω)µ

(0) (ρ2 − ρ1, ω) . (7.1)

This condition for the correlations at the source is denoted as Schell-model sources. Notice
that for ρ1 = ρ2 = ρ, the cross spectral density isW (0) (ρ,ρ, ω) = S(0) (ρ, ω), and the spectrum
of the source is not homogeneous at the whole plane z = 0, it will depend on the position through
the two-dimensional vector ρ.

It was later introduced the concept of Gaussian-Schell model sources. For these sources, the
spectral density S(0) (ρ, ω) and the spectral degree of coherence µ(0) (ρ1,ρ2, ω) of the source are
both Gaussian. This situation is very common in optics, for instance, a fully coherent Gaussian
beam is a type of beam whose electric field at a transverse plane is a Gaussian function (see
7.1(a) and (b)). Some lasers such as Hermite-Gaussian beams have the fundamental mode (also
denoted TEM00) with this Gaussian profile.

7.4 optical forces and equivalence theorem in the far-field

Once we have introduced the concept of GSMSs, we are able to obtain the optical force due to
this fluctuation sources. Eqs. (5.3)-(5.4) express the force in terms of the angular wave spectrum,
then, we only need to calculate the term A(e)

jk (ks⊥, ks′⊥ω).

For a planar GSMS, its cross spectral density tensor W (0)
ij (ρ1,ρ2, ω) =

〈
E∗i (ρ1)Ej (ρ2)

〉
at

the plane z = 0 of the source is given by Eq. (7.1) [3], however, for the case of electromagnetic
fields it reads

W
(0)
ij (ρ1,ρ2, ω) =

√
S

(0)
i (ρ1, ω)

√
S

(0)
j (ρ2, ω)µ

(0)
ij (ρ2 − ρ1, ω) . (7.2)
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In particular, for GSMS, these quantities are Gaussian, i.e.,

Si (ρ, ω) = Aiexp[−ρ2/(2σ2
s,i(ω))], (7.3)

µij (ρ2 − ρ1, ω) = Bijexp[−|ρ2 − ρ1|2/(2σ2
g,ij(ω))]. (7.4)

The widths σ(ω)s,i and σ(ω)g,ij are usually known as the spot size and the correlation or spatial
coherence length of the source, respectively. Whereas in Chapters 2, 3, 5 and 6 the transverse
coherence length was denoted simply by σ, from now on this parameter will be denoted as σg
in order to avoid confusionsV.1. Notice that these parameters cannot be chosen arbitrarily, but
they have to fulfill a set of conditions [149]. In this chapter, for simplicity, we restrict ourselves
to completely polarized fields, i.e., the degree of polarization is equal to 1 [20], or equivalently,
the electric field only fluctuates in one direction (for example in the x−direction). At fixed
frequency and in order to simplify the notation, in what follows we shall write σi,s and σij,g

without the ω dependence nor the Cartesian subindex, understanding that we are dealing with
the x−component of the electric field (the consequences of this last assumption will be discussed
in Chapter 8)

Now I turn to calculate the optical forces. In order to make a direct illustration of the ET
previously derived in [146, 147], we first consider the zone far from the source. Then we shall
address the general ABCD system and the optical tweezer configuration. To this end, we need
the trace of the angular correlation tensor [3]:

TrAij(ks⊥,1, ks⊥,2)

' Axx(ks⊥,1, ks⊥,2) = Ak4

(4π)2(a2 − b2)e
−(αk2s2

⊥,1+αk2s2
⊥,2−2k2βs⊥,1s⊥,2)

, (7.5)

where a = 1/
(
4σ2

s

)
+ 1/

(
2σ2

g

)
, b = 1/

(
2σ2

g

)
, α = a/4(a2 − b2) and β = b/4(a2 − b2). One of the

most important characteristics of these GSMS sources is that the behavior of the emitted field
can be beam-like. To ensure this in the far-zone, the following necessary and sufficient conditions
have to be fulfilled: [3]

1/(2σs)2 + 1/σ2
g � 2π2/λ2. (7.6)

Next, in order to obtain the force in SI units, we redefine the parameter A as A/(ε0c), where
A is the peak intensity of the source in W/m2. Substituting Eq. (7.5) into Eqs. (5.3)-(5.4),
approximating sz ' 1− 1/2s2

⊥, and after a long tedious but straightforward calculation, one
derives the different components of the force. Then, performing the s⊥ and s′⊥ integrations, the
conservative components finally are

F consx,y = −Reαe
A

c

1
4σ2

s∆(z)4 e
− ρ2

2(σs∆(z))2 (x, y) (7.7)

and

F consz = Reαe
Az

4k2σ4
sδ

2∆(z)6c

(
ρ2 − 2σ2

s∆(z)2) e− ρ2

2(σs∆(z))2 . (7.8)

On the other hand the non-conservative forces read

Fncx,y = Imαe
A

c

z

2kσ2
sδ

2∆(z)4 e
− ρ2

2(σs∆(z))2 (x, y) (7.9)

V.1 In fact, as we commented in Section 2.3 we have been considering that σs � σg
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Figure 7.2: Spectral density (left) and spectral degree of coherence (right) at z = 0 for different source
parameters which generate the same radiant intensity in the far-zone.

and

Fncz = Imαe
A

2k7σ4
sδ

4∆(z)6c

[
1
2k

8σ4
sδ

4∆(z)4 − αk6σ2
sδ

2∆(z)2

+
(
k4

24 δ
4 − k2

4 z
2
)
k2ρ2

]
e
− ρ2

2(σs∆(z))2 , (7.10)

where 1/δ2 = 1/(2σs)2 + 1/σ2
g and ∆(z) = [1 + (z/kσsδ)2]1/2. Eqs. (7.7)-(7.10) express the force

exerted on a dipolar particle in the far zone by the field emitted from a GSMS in any state of
coherence. The ET [147, 148] establishes that any GSMS will generate in the far zone the same
radiant intensity J(θ) = r2TrWij(r, r, ω), (θ = ρ/z), as a laser whose spectral density at the
plane z = 0 is Sl(ρ, ω) = Alexp[−ρ2/(2σl)], if the following conditions are fulfilled:

1
σ2
g

+ 1
(2σs)2 = 1

(2σl)2 , A =
(
σl
σs

)2
Al. (7.11)

Fig. 7.2 shows the spectral density and the spectral degree of coherence for the same parameters
as in Ref. [147]. Any of these source configurations produce exactly the same radiant intensity.

When the field is beam-like, kz → ∞ and the following approximation is made in ∆(z) (cf.
Eq. (7.10) and below): ∆(z) ' z/(kσsδ) [146]. On the other hand, and in order to perform
the force calculations, we consider the same dipolar latex-like particle as in Chapter 4, i.e.,
Reαe = 4593nm3 � Imαe = 17nm3 . We have chosen this particle because we are focused on the
statistically properties of the source instead of the scattering properties, neverthless, it should
be stressed that much larger particles would lead to similar results providing that they may be
considered as dipolar (see Chapter 6 and [59, 61]) .

Next we calculate the optical forces in this regime. Fig. 7.3 shows the different contributions
(conservative and non-conservative) for the same parameters as in Fig. 7.2. As seen on comparing
Figs. 7.2 and 7.3, a source with e.g. a small coherence length σg = 2.1 and peak intensity as low
as A = 0.09 provides the same far zone force as a fully coherent one with a much larger power
A = 1 providing the spot size at the partially coherent source σs = 3.28 is larger than the one

107



optical systems which produce the same optical force as a fully coherent
beam

F
nc z
(N

)
x(m)

F
co

ns
z

(N
)

x(m)
F

nc x
(N

)

F
co

ns
x

(N
)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3−0.3 −0.2 −0.1 0 0.1 0.2 0.3

×10−23×10−30

×10−27×10−26

2

4

6

8

-3

-2

-1

0

-4

-2

0

2

4

-2

-1

0

1

2

Figure 7.3: (Conservative (first column) and non-conservative (second column) forces in the far zone for
the same source parameters as in Fig. 7.2, with A in mW/µm2 and σg and σs in mm.

σs = 1 of the fully coherent source. We see that all force plots coincide with each other, i.e. one
does not need a globally spatially coherent source, like a laser beam, as the only light source
to create a given force distribution. Any partially coherent Gaussian-Schell model source with
appropriate spot size and coherence length also does it. This constitutes one of the main results
of this chapter. As we shall now see, the same applies to the potential well of an optical trap.

It should be noticed that given the trade-off between σg and σs contained in the parameter 4a,
[cf. below Eq.(7.5)], there are infinite GSMS that yield the same radiant intensity [3], providing
they all lead to the same 4a or σl. Thus, the same conclusion may be derived for the optical force
induced by their emitted wavefield. On the other hand, it worth remarking that a peak intensity
A and width σs in the spectral density yields an integrated value of this latter magnitude in
the source plane: Aσ2

S/2π, which by the Parseval theorem , of Fourier transforms is kept in the
far-zone. Therefore, a decrease of A while controlling σs, may also lead to lower values of the
total power while maintaining the essential characteristics of the force distribution.

7.5 optical forces and equivalence theorem for optical tweezers

At this point, it is natural to ask whether the GSMS fields would trap a particle like a laser
beam does. In biophysical experiments, where there is sample damage produced by high values
of the peak intensity of the incident beam, this issue acquires vital importance, the equivalence
of low peak intensity partially coherent fluctuating beams and a high power laser beam, (or in
general between different GSMS wavefields), in regards to the depth and width of the potential
well that forms the photonic trap, constitutes a new principle for optical nanomanipulation. On
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adequately selecting the source parameters, one can minimize the optical peak intensity (see the
lowest row parameters of Fig. 7.2). As a matter of fact, this peak power can be reduced over
one order of magnitude without varying the effectiveness of the force. This is observed in the far
zone (cf. Fig. 7.3) and, as shown next, equally occurs in the focusing configuration of an optical
tweezer.

Therefore, although the far zone addressed up till now does not constitute an optical trap
in itself, (in fact, the condition 1 � (z/kσsδ)2 above employed for ∆(z) is contrary to that
corresponding to a high numerical aperture (NA): (z/kσsδ)2 � 1 required for an optical tweezer
[42]), we now put forward an analogous ET for the focusing geometry of an optical trap. This is
based on a a more general equivalence theorem that we establish for any ABCD system.

For the wavefield from a GSMS, propagating in an ABCD system in air, the width of the
output intensity w2 is written in terms of the input width w1 of the source [151] as

w2
2 = w1

2
[(

A+ B

R1

)
2 +

(
λ

πw1wc

)2
B2
]
. (7.12)

R1 being the curvature radius at the input plane and 1/w2
c = 1/w2

1 + 1/σ2
g .

On the other hand, for the laser beam, (wc → wl), one has

w2
2,l = w1,l

2

(A+ B

R1

)
2 +

(
λ

πw2
1,l

)2

B2

 , (7.13)

where the subscript l refers to the laser. Analogously, the output intensities of the GSMS, I2,
and of the laser, I2,l, fulfill:

I2 = I1

(
w1
w2

)2
, I2,l = I1,l

(
w1,l
w2,l

)2
. (7.14)
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optical systems which produce the same optical force as a fully coherent
beam

I1, and I1,l being the input intensities at ρ = 0 corresponding to the GSMS and the laser,
respectively.

For the optical tweezer configuration the potential well is created on focusing the emitted light
through a thin lens of high NA, [see Fig. 7.4(a)]. Also, A = −(z − f)/f , B = z, C = −1/f and
D = 1. Assuming that the GSMS is placed at z = 0, then w1 becomes σs, w1,l = σl and R1 →∞.
Therefore the conditions: w2 = w2,l and I2 = I2,l at the focus: z = f , lead to

1
σ2
l

= 1
σ2
s

+ 1
σ2
g
, A =

(
σl
σs

)2
Al. (7.15)

Now the parameter ∆(z) acquires the form: ∆(z) =
[(

f−z
f

)2
+
(

λz
πσswc

)2
]
, and 1/w2

c = 1/σ2
s +

1/σ2
g .

Figs. 7.4(b)-(d) show the forces on the particle at z = f = 2cm [56]. Due to we have imposed
that the conditions are fulfilled for z = f in Fig. 7.4(c) the forces are equal at this position.
Notices also that in Fig. 7.4(c) is the most incoherent case (dashed line) the case which give us
a larger value of F consz This confirms that one gets the same force as a laser in the focus for
different values of σg, σs and amplitude A. Again the latter allowing to be reduced over one
order of magnitude with respect to that of the laser beam.

7.6 conclusions

In summary, I have introduced the concept of GSMS and the effects of using these type of forces
for optical manipulation. In particular, this chapter demonstrates the importance of the selection
of the parameters which define a GSMS. We have shown that either in the far zone or in the
focus of an optical tweezer configuration, a GSMS can produce a photonic force equal to that
exerted by a fully coherent Gaussian laser beam.

I remark the fact that even decreasing the peak of the intensity at the source plane in almost
two-orders of magnitude, we get exactly the same optical force.
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8
C O H E R E N T - M O D E R E P R E S E N TAT I O N O F O P T I C A L
FO R C E S : O P T I C A L B I N D I N G O F P H O T O N I C
M O L E C U L E S .

8.1 motivation

T
hroughout all the previous chapters I have always tried to do all calculations in an
analytical way, so that one can see and understand the results just by looking at the
equations. This is very nice, but the reality is that it is very difficult to know how are

the electromagnetic fields in complex structures. In this case, the calculus of the electromagnetic
fields is a hard task, which has to be performed trough computational codes. Notice that if
we want to calculate (for instance), the optical force at subwalength distances, we have to use
Eqs. (5.3) and (5.4), i.e., we have to resolve 4-integrals whose solutions, in general, will be very
complicate to obtain.

Nowadays, the propagation of electromagnetic fields through different situations are usually
resolved through numerical methods. Therefore, the challenge will be to try to implement the
concept of partially coherent light by a code I choose employing finite elements. This type of
programs are conceived to resolve Maxwell’s equations under different circumstances, however,
they do not include the concept of random wave-field (as far as I know), indeed, they work with
deterministic fields inside a calculation window, and we have to control the boundary conditions
in this window.

Our main problem is how to include in the the code that the field to propagate and interact
with the desired particle is random. Notice that so far, in all previous chapters, we have not shown
an image of any stochastic field spatial distribution. This is because in analytic calculations we
do not know how the spatial structure of this field is, what we know are statistical momenta,
like correlation functions, power spectra, or mean values at a given source. Thus, in order to
resolve this problem, we implement the coherent mode representation (CMR) of the covariance
that amounts to the Mercer decomposition into eigenfunctions of a stochastic process [152].
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coherent-mode representation of optical forces: optical binding of
photonic molecules.

This procedure to write the cross-spetral density function has been addressed before (see
references of this chapter), but its application to optical forces is a new tool. The method is
based on the possibility to write the cross spectral density as a superposition of coherent states.
These coherent states are well defined for a one-dimensional Gaussian Schell model source, which
is the case of interest for us.

Once I have developed this numerical method, I will put it into practice for a study of the
optical binding between particles.

8.2 introduction

Chapter 6 studied the interaction between a half-space and a resonant Mie particle excited from
a statistically homogeneous source. Then, in Chapter 7 I considered a new approach, the case
of Gaussian Schell Model Sources (GSMSs) in optical systems where the evanescent modes did
not play any role. This chapter goes beyond: I will analyze in detail the behavior of random
wavefields in the near-field of a GSMS, namely, the interaction with semiconductor particles.

Firstly, I will deal with one of the main ideas of this thesis: at near-field distances, the fluctua-
tions of the electromagnetic fields along the propagation direction are not negligible. In particular,
I will study the contribution of the different Cartesian components of the trace of the angular
correlation tensor to the force, demonstrating that I have to use a full electromagnetic theory in
order to calculate the optical forces.

Secondly, I will present a new theory of optical forces based on the coherent mode representa-
tion (CMR) of a partially coherent source. This representation is based on the works of E. Wolf
(see Refs. [153, 154]) and establishes that the cross spectral density of a system of any state
of coherence may be expressed as the sum of contributions from spatially completely coherent
elementary sources, and so are its consequences for the electromagnetic force.

I shall use this CMR of optical forces not only on single particles, but also for studying
radiation-induced forces between objects, usually referred to as optical binding [51, 155]. In
this connection, recent work deals with interaction between two dipoles in presence of random
wavefields [156]. Specifically, I shall address the forces due to one-dimensional GSMS, acting
between two high refractive index dielectric cylinders. I will exploit the morphology dependent
resonances (MDR) of these objects to form different types of bonds between them. It will also be
shown how the spatial coherence of the source affects the attraction or repulsion of these bodies.
Prior to this, and in order to play with the MDRs of the cylinders, I will study the scattering
properties of non-absorbing cylinders. As mentioned in Chapter 6, these systems have provoked
much interest because they show magnetic properties in dielectric structures [60, 137, 157, 158].
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8.3 optical forces from gaussian shell model sources

8.3 optical forces from gaussian shell model sources

In this section I deal with the ensemble-averaged force experienced by a small non-resonant
particle. Chapter 5 (specifically Section 5.3) showed that this force is fully determined if we
know the trace of the angular cross-correlation tensor, i.e., A(e)

jk (ks⊥, ks′⊥ω).

Now we address the case of a planar GSMS. This is characterized by a cross-spectral density
tensor W (0)

ij (ρ1,ρ2, ω) =
〈
E∗i (ρ1)Ej (ρ2)

〉
at the plane z = 0 given by Eq. (7.2), where the

spectral density and the spectral degree of coherence of the source are both Gaussian (cf. Eq.
(7.4)). Again, the parameters σs,i and σg,ij are the spot size and the correlation - or spatial
coherence - length, respectively.

In this section, for simplicity, the electric field will be assumed to fluctuate in the X-direction,
so that the factor B in Eq. (7.4) is B = 1. It is worth remarking that fluctuations along OZ,
i.e. in the direction of propagation, are negligible in the far-field (this approach was done in
Chapter 7); nevertheless as we shall show, in the near-field they can be relevant and even larger
that the rest of fluctuations. In what follows we denote the parameters σi,s and σij,g without the
Cartesian subindex, understanding that they refer to the X-component of the electric vector.

8.3.1 Near Field Forces

Let us address the optical forces of fields from GSMSs on a small sphere, at distances from
the source shorter than the wavelength. Whereas at larger distances, the trace of the angular
correlation tensor can be approximated as TrAij ' Axx (cf. Eq. (7.5)), in the near-field, where the
resolution of the system is beyond the diffraction limit: λ/2, the fluctuations on the Z−direction
are as important as the rest of them [11]. It is well-known that this conveys a non-straightforward
3D generalization in the definition of the degree of polarization P (r, ω) [25, 26, 159, II].

Therefore, and in order to quantify the importance of these fluctuations we shall write the third
component of the angular component of the electromagnetic field ez(ksx, ω) (cf. Eq. (5.2)) in
terms of sx, i.e., ez(ks⊥, ω) = −ex(ks⊥, ω)sx/sz, with the help of the divergence law: e (ks⊥) · s =
0 (see Section 1.5). Hence, TrAij = Axx +Azz. The forces are calculated from Eqs. (5.3)-(5.4)
on writing (sx, sy) = s(cos θ, sin θ). The component Axx is addressed in Eq. (7.5) and the term
Azz is calculated from 〈e∗z(ks⊥, ω)ez(ks⊥′, ω)〉, i.e.,

〈e∗z(ks⊥, ω)ez(ks⊥′, ω)〉 =
〈
e∗x(ks⊥, ω)ex(ks′⊥, ω)

〉
s∗⊥s′⊥

s∗zs
′
z

=
Axx (ks⊥, ks′⊥, ω) s∗⊥s′⊥

s∗zs
′
z

. (8.1)

The azimuthal integrals are performed analytically, whereas the radial one is numerically done
for σg � σs, this corresponds to a globally spatially coherent source. In this limit, the four
integrals of the calculation can be expressed as a product of two integrals. We shall consider the
same small spherical particle as in Chapter 4, i.e., the polarizability is calculated from Eq. (4.79)
with a radius r0 = 25nm and εp = 2.25.
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Figure 8.1: Mean forces. Conservative component F cons
x , (first row), and non-conservative component

Fnc
x , (second row), of Fx due to the contribution of ex, (first column), and of ez , (second column),

versus the lateral displacement x of the sphere, (in wavelength units), for different spot sizes σs. The
third column displays the sum of the first and second columns. The distance of the particle to the source
is z = 0.1λ and the radius and the permittivity of the particle are r0 = 25nm and εp = 2.25 respectively.

Fig. 8.1 shows the conservative force, (first row), and the non-conservative force, (second row),
in the X−direction at a distance z = 0.1λ from the source. The contributions of the angular
amplitudes ex, (first column), and ez, (second column), are separated. The third column is the
sum of both forces. We see that all contributions of the components of e (ks⊥, ω) to F consx are
of the same order, [compare the magnitude in Figs. 8.1(a) and 8.1(b) or 8.1(d) and 8.1(e)]; thus
the fluctuating ez-s in the propagation direction are not negligible like in the far-field, namely,
TrAij 6≈ Axx. Fig. 8.2 shows the same as Fig. 8.1 but for the forces along the Z−axis. In this
case we have the same effect as in the previous figure, although Fncz is larger for the contribution
of the x−fluctuations, [compare the magnitudes in Figs. 8.2 (d)-(e)]. By adding the conservative
and non-conservative components of the force, i.e. Fig. 8.1(c) and Fig. 8.1(f), [and analogously
for Fig. 8.2], we see that the total force is only contributed by the gradient force, i.e., Fx ' F consx

and Fz ' F consz . This fact is due to the distance to the source being subwavelength.

These results also show that, in general, as σs increases, the magnitude of the forces decreases,
contrary to far-field results of previous studies as well as to other configurations where the
evanescent components do not play any role [56, 58, VI]. Notice that for σs = 0.1λ the beam
condition: 1/(2σs)2 + 1/σ2

g � 2π2/λ2 (cf. [3]) is not fulfilled, and it is precisely this value σs
that for which we obtain the largest magnitude of the force. Thus the maximum force produced
by a GSMS in the near-field corresponds to a minimum force in the far-field.

114



8.4 coherent mode representation

 

 σs = 0.5λ

σs = 0.3λ

σs = 0.1λ

(f)

x/λ

(e)

x/λ

(d)

x/λ

F
nc z
(a

rb
.u

ni
ts
)

(c)(b)(a)

F
co

ns
z

(a
rb
.u

ni
ts
)

−2 −1 0 1 2−2 −1 0 1 2−2 −1 0 1 2

×10−3

0

0.01

0.02

0.03

−1

0

1

2

3

0

0.01

0.02

0.03

−2

−1.5

−1

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

−2

−1.5

−1

−0.5

0

0.5

Figure 8.2: The same as in Fig. 8.1 for Fz

It should be pointed out that force calculations from an arbitrary partially coherent source
are difficult without approximations, and are much more lengthy than those considered next.
Electromagnetic fields in complex structures are usually computed by finite element methods
(FEM) or by finite difference time domain procedures (FDTD). In Section 8.4 and Section 8.5
we develop a robust method in order to evaluate the cross spectral density tensor Wij (r1, r2, ω),
the degree of polarization P (r, ω), and the optical forces F (r, ω) in whatever set of particles. A
test of this theoretical construction is shown in Appendix D, which confirms the results of Fig.
8.1 and Fig. 8.2.

8.4 coherent mode representation

The coherent mode representation (CMR) establishes that the coherence tensor of a stationary
optical field of any state of coherence may be represented as a superposition of coherent modes
[154, 162], i.e.,

Wij (r1, r2, ω) =
〈
E∗i (r1, ω)Ej (r2, ω)

〉
=

N∑
q=0

λq (ω)φ
∗
i,q (r1, ω)φj,q (r2, ω) , (8.2)

where λq(ω) are the eigenvalues, N is an arbitrary natural number and φq,i denote the eigenfunc-
tions which fulfill the equation [154]:∫

D
φi,q (r1, ω)Wij (r1, r2, ω) d3r1 = λq (ω)φi,q (r2, ω) . (8.3)
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Let us consider an statistical ensemble of electromagnetic fields {E(r, ω)} where each realiza-
tion can be expressed as a sum of individual eigenfunctions:

Ei(r, ω) =
∑
q

aq(ω)φi,q(r, ω), (8.4)

aq being a random coefficient. Substituting Eq. (8.4) into Eq. (8.2) we see that〈
a∗q (ω) aq′ (ω)

〉
= λq (ω) δqq′ ,

aq (ω) = λ
1/2
q (ω) eiαq , (8.5)

where αq is a real random variable uniformly distributed in the interval 0 ≤ αq < 2π.

8.4.1 Coherent Mode representation of Optical forces

We can now write the ensemble-averaged force as a sum of coherent modes by using its expression
from the momentum conservation law in terms of the Maxwell stress tensor (MST) [43, 44, 163]:

〈F (r, ω)〉 =
∑
q

∫∫
Σ

ε

2Re
{〈

(Eq · n)E∗q
〉}
− ε

4
〈
E∗q ·Eq

〉
n

+µ

2Re
{〈

(Hq · n)H∗q
〉}
− µ

4
〈
H∗q ·Hq

〉
nds. (8.6)

Σ is a surface enclosing the object experiencing the force. n represents the outward unit normal.
In our 2D calculations Σ will be a closed line. Eq, Hq and E∗q, H∗q are the q-modes and their
complex conjugates. For brevity we have omitted the space and frequency dependence of the
fields. ε and µ are the permittivity and permeability of the surrounding medium embedding the
particles, which in this work will be assumed to be vacuum. The sum of the partial forces from
each propagated eigenmode renders the resulting force exerted on the particles by the total fields
E and H. Notice that Eq. (8.6) applies to any configuration, regardless of whether the source is
spatially coherent (N = 0) or partially coherent (N > 0).

For dipolar particles the averaged total force can now be expressed in terms of the coherent
q-modes:

〈Fi (r, ω)〉 = 1
2

N∑
q=0

Re
{
αeEj,q∂iE

∗
j,q

}
= 1

2

N∑
q=0

λqRe
{
αeφj,q∂iφ

∗
j,q

}
. (8.7)

8.5 characterization of the field emitted by the gsms

Using the CMR, we shall follow the procedure put forward in [164] to characterize the fluctuating
field from a GSMS. Then the problem is 2D so that plane of work will be XY . y is the direction
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of propagation and the field fluctuates along 0Z (see Fig. 8.10). The GSMS plane is y = 0, thus
the cross-spectral density function will be:

W
(0)
zz (x1, x2, ω) = Ae

−
x2
1+x2

2
4σ2
s e
− (x1−x2)

2

2σ2
g . (8.8)

For this case, the eigenfunctions and the eigenvalues have been determined previously [3, 165]:

φq (x, ω) =
(

2c
π

)1/4 1
(2qq! )1/2Hq

(
x
√

2c
)
e−cx

2
, (8.9)

λq (ω) =
(

π

a+ b+ c

)1/2( b

a+ b+ c

)q
, (8.10)

where Hq(x) is the Hermite polynomial of order q, and

a = 1
4σ2

s
, b = 1

2σg
, c =

(
a2 + 2ab

)1/2
. (8.11)

The angular amplitude Φ(ksx) of the eigenfunction φq(x, ω), is calculated by inverse Fourier
transform of Eq. (8.9), (see [164]):

Φ(ksx) = 1
2π

∫ ∞
−∞

φ (x, ω) e−iksxxdx

= (−i)q

2π

(
2π
c

)1/4 1
(2qq! )1/2 e

− k
2s2x
4c Hq

(
ksx√

2c

)
. (8.12)

8.6 efficiency factors and polarizability of an infinitely cylinder

From now on, I will work with two-dimensional structures. Then, let us first address, in an
analogous way to references [60, 115, 166], the efficiency factors and the polarizability of an
isolated infinitely long dielectric cylinder for s and p-polarization. This formulation will be valid
in the rest of this chapter in order to localize the resonant positions.

8.6.1 S-polarization (TE)

Since we work with two-dimensional structures such as cylinders, we will make an study of the
scattered electromagnetic field. To this end, let us consider an incident electric field impinging
in a long dielectric cylinder being the electric field parallel to the cylinder axis

Ein (r) = E0êzeikr. (8.13)

Under this plane wave illumination, from a rigorous scattering Mie theory, the scattered electric
field is (see Eq. (8.34) of [115])

Es ∼ E0e
i3π/4

√
2
πkr

eikr

(
b0 + 2

∞∑
n=1

bn cos (n(π− φ))
)

êz (8.14)
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Figure 8.3: Cylinder illuminated under s or p-polarization.

where the angle φ is defined in Fig. (8.3) and in this case, the Mie coefficient bn V.2 is defined
as [115]

bn = Jn (y) J
′
n (x)−mJ

′
n (y) Jn (x)

Jn (y)H
′
n (x)−mJ

′
n (y)H

′
n (x)

, (8.15)

being m = np/nh, y = mx , x = kr0 and k = nh2π/λ. np =
√
ε and nh refer to the refractive

index of the particle (cylinder) and the host medium respectively and r0 is the radius of the
cylinder. Jn and Hn are the Bessel and Hankel functions of the first kind respectively, and the
prime denotes the derivative.

Now let us write the scattered field using the Green’s formalism. If we assume that our cylin-
der has a polarization and magnetization densities P (r, ω) and M (r, ω) respectively, and the
scattered field is due to these induced densities, we have

Es = µ0ω
2
∫
C

↔
G
EP (

ρ,ρ′, ω
)

P
(
ρ′, ω

)
d2r′ −

∫
C

↔
G
EM (

ρ,ρ′, ω
)

M
(
ρ′, ω

)
d2r′, (8.16)

where C is the circular cylinder cross section and ρ, ρ′ are two-dimensional vectors which denote
the observation point and the source point, respectively. For a single electric p and magnetic m
moment (per unit length), the previous equation reduces to:

Es = µ0ω
2↔G

EP

(ρ,ρ0, ω)p (ρ0, ω)−
↔
G
EM

(ρ,ρ0, ω)m (ρ0, ω) . (8.17)

In our case,
↔
G
EP

(ρ,ρ0, ω) and
↔
G
EM

(ρ,ρ0, ω) are the well-known dyadic Green’s functions in
vacuum [10, 43]:

↔
G
EP

0 (ρ,ρ0, ω) =
(
↔
I + 1

k2∇∇
)
G0 (ρ,ρ0, ω) , (8.18)

↔
G
EM

0 (ρ,ρ0, ω) = ∇G0 (ρ,ρ0, ω)×
↔
I , (8.19)

being G0 (ρ,ρ0, ω) the scalar Green’s function

G0 (ρ,ρ0, ω) = i

4H0 (kr) , (8.20)

V.2 This Mie coefficient is not the same as in Eq. 6.7
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with r = |ρ− ρ0|. For simplicity, let us consider the electric dipole (the magnetic one is similar).

For arbitrary polarization, the dyadic product
↔
G
EP

(ρ,ρ0, ω)p (ρ0, ω) is
↔
G
EP

0 (ρ,ρ0, ω)p = i

4H0 (kr) (ρ̂× p)× ρ̂ + i

kR
H1 (kr) (2ρ̂ (ρ̂ · p)− p) , (8.21)

and for s-polarization (p = pêz)
↔
G
EP

0 (ρ,ρ0, ω)pz = i

4H0 (kr) pêz. (8.22)

Substituting this last equation in the first term of Eq. (8.17), the scattered field due to a single
electric dipole is

Es = ik2

4ε0
H0 (kr) pêz. (8.23)

On the other hand, at infinity, the Hankel function can be approximated to [115]

Hn (kr) ∼
√

2
πkr

eikr (−i)n e−iπ/4, (8.24)

thus, from Eqs. (8.23)-(8.24), if we write the induced electric dipole p = ε0αezzEin, αezz repre-
senting the electric polarizability along the z-axis, and comparing with the first order (n = 0) of
Eq. (8.14) this leads to

αezz = 4i
k2 b0. (8.25)

In analogous way for the second term of Eq. (8.17), the magnetic polarizability along the y-axis
(m = αmyyHin) reads

αmyy = 4i
k2 b1. (8.26)

Eqs. (8.25)-(8.26) express the polarizability in terms of the two-first Mie coefficients b0 and
b1. These expressions are analogous to those defined in Eq. (6.5) of SubSection (6.3.1) for the
spherical particles in the sense that they are fully characterized by the Mie coefficients (in this
case by b0 and b1). Notice that under this formulation, we go beyond the well-known Rayleigh
limit of small particles: k0mr0 � 1.

Now we turn to the efficiency factors (or cross sections) for the cylinder. This quantity repre-
sents the energy extinguished from the incident wave in the form of absorption and/or angular
distribution of scattered intensity. Namely, for s-polarization, the scattering, extinction and ab-
sorption efficiency factors are [115]:

Qsca = 2
x

[
|b0|2 + 2

∞∑
n=1
|bn|2

]
, (8.27)

Qext = 2
x
Re
{
b0 + 2

∞∑
n=1

bn

}
, (8.28)

Qabs = Qext −Qsca. (8.29)

Note that these equations are dimensionless. Instead of efficiency factors, one can also work
with the scattering cross sections. If we define G as the geometrical cross section, the scattering
cross sections are:

σsca = QscaG, (8.30)

σsca = QextG, (8.31)

σsca = QabsG. (8.32)
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Figure 8.4: Efficiency factor Qsca of an absorptionless cylinder for s-polarization

From Eqs. (8.25) and (8.26), we can write the Q−factors in terms of the polarizabilities

Qsca = k4

8x

[
|αezz|

2 + 2
∣∣αmyy∣∣2] , (8.33)

Qext = k2

2x Im
{
αezz + 2αmyy

}
, (8.34)

and in absence of absorption (m real, thus Qext = Qabs) the Q−factors fulfill

Imαezz = k2

4 |α
e
zz|

2 , (8.35)

Imαmyy = k2

4
∣∣αmyy∣∣2 . (8.36)

Let us now address the case of a non-absorbing cylinder. Fig. (8.4) shows the efficiency factor
Qsca (see Eq. (8.27)) as function of the relative refractive index m and the size factor y = mkr0.
From this figure, we clearly identify the different Mie resonances at different values of y.

As we discussed in Section (6.2) for a sphere, we have now a very similar situation for the
cylinder. Fig. (8.4) shows a universal scaling-law for the efficiencies, once the value of the refrac-
tive index m is fixed, we can play with the x = kr0 factor to be in the range of wavelengths of
interest since for different values of the efficiency the resonance peaks constantly remain at the
same y positions. Fig. (8.5) shows the efficiency factor Qsca and the contributions of the three
first Mie orders for the cylinder of radius r0 = 300nm and relative refractive index m = 3.2.
For λ ≥ 2µm, the behavior of the particle is magnetodielectric, and we only need the two first
Mie-coefficients to calculate the total Qsca (or scattering cross section), this plot justifies the use
of the usual expression for the electric force for not so small particles, in fact, the factor x = kr0

is ∼ 1.

Fig. (8.6) shows the real and imaginary part of αezz and αmyy for the previous parameters.
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Figure 8.5: Qsca computed from Eq. (8.27) and contributions of the three first Mie coefficients in the
range of wavelength selected for a cylinder r0 = 300nm and m = 3.2. Compare these resonances with
the peaks of Fig. (8.11). S-polarization
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8.6.2 P-polarization (TM)

Let us nos write the same quantities as in the previous subsection for p-polarization. In this case
our incident electric field is perpendicular to the cylinder axis, or what is the same, the magnetic
field is parallel to the this axis (see Fig. (8.3)):

Ein (r) = E0êyeikr. (8.37)

As for s-polarization, we can determinate the electric and magnetic polarizabilities in terms of
the two first Mie coefficients, i.e.

αeyy = 4i
k2 a1, (8.38)

αmzz = 4i
k2 a0, (8.39)

where the an Mie coefficients are

an = mJ
′
n (x) Jn (y)− Jn (x) J

′
n (y)

mJn (y)H
′
n (x)− J

′
n (y)H

′
n (x)

. (8.40)

Notice that in Eqs. (8.38)-(8.39) the electric polarizability is given by the n = 1 Mie coefficient
instead of the zero order as in s-polarization. In addition, because we are in p-polarization, the
electric polarizability is directed along the y-axis. Apart from this, the rest of the quantities are
exactly the same making the next exchange: bn → an, thus, the efficienty factors are

Qsca = 2
x

[
|a0|2 + 2

∞∑
n=1
|an|2

]
, (8.41)

Qext = 2
x
Re
{
a0 + 2

∞∑
n=1

an

}
, (8.42)

Qabs = Qext −Qsca. (8.43)

Figs. (8.7), (8.8) and (8.9) shows Qsca (for an arbitrary refractive index and for the previous
cylinder) and the electric and magnetic polarizability respectively. All these figures are similar
to Figs. (2) and (3) of [60] and Fig. (1) of [61]. This is due to the symmetry of the cylinder.
Under p-polarization, the electric field sees the same geometrical cross section G as for a sphere.

It is worth remarking the magnetodielectric character of the cylinder, again, we need only the
two first Mie coefficients to determinateQsca, being negligible the rest of the contributions. Notice
also the relative position and strength of the electric resonance with respect to the magnetic one,
in Figs. (8.5) and (8.8). In this case, the imaginary part of the polarizability is the twice that
the electric one.

122



8.6 efficiency factors and polarizability of an infinitely cylinder

Figure 8.7: Efficiency factor Qsca of a lossless cylinder for p-polarization
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Figure 8.8: Qsca computed from Eq. (8.41) and contributions of three first Mie coefficients in the range
of wavelength selected for a cylinder r0 = 300nm and m = 3.2. P-polarization
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8.7 numerical setup

Once we know the scattering properties, we turn to the numerical setup. Let us consider a pair of
particles illuminated by the GSMS wavefield whose mechanical action produces optical binding
effects with characteristics of a photonic molecule. [167–169]. 2D numerical calculations are done
by means of a FEM (RF module of COMSOL 4.3a, http://www.comsol.com) and MATLAB.
Aside from some depolarization effects, the main features of the physical process: light scattering,
resonance excitation and binding, are analogous to those in 3D [166, 170, 171].

Without loss of generality, a Si cylinder with ε = 10.24 and radius r0 = 0.3µm [168] has been
considered, due to its rich Mie resonance spectra in both the visible and near IR [172] (cf. Section
8.6). This will allow us to analyze the effects of spatial coherence on these resonances and their
consequences for the induced optical forces on this pair, (see Section 8.5).

(a) (b)

Figure 8.10: (a) Illustration of the geometry for resonant wavelength identification of both the single
particle and the pair; as well as for the computation of the optical forces. An incident s-polarized field
with a GSMS profile, (amplitude A = 1W/m2, width of its intensity σs = 0.05× 1500nm, degree of
coherence σg = 100σs, 2σs, 0.5σs), impinges the Si cylinders of radius r0 with excitation of their WGMs:
TEmn. (a) In order to simulate infinite space, three absorbent, or perfectly matched, layers (PML) are
located at the upper and lateral boundaries of the calculation window; the lower boundary containing
the incident wave profile of the GSMS. (b) Detail of the geometrical cross sections of the particles
conforming the “photonic” molecule, where the light intensity |〈S(r)〉| is averaged to the surface of the
cilinder of radius r0, and the circumference Σ of radius re surrounding each particle is employed to
calculate the electromagnetic forces (per axial unit length), [cf. Eq. (13)], (see also [173]). Particles 1
and 2 stand for the lower/right, directly illuminated by the beam, and the upper/left ones, respectively.

Following the scheme shown in Fig. 8.10(a), an incident wavefield with electric vector Ez
perpendicular to the XY -plane, is launched upwards, propagating along OY . The choice of
s-polarization (TE), in contrast with p-polarization (TM), excites whispering-gallery modes
(WGMs): TEmn, (where m and n indicate the angular and radial orders, respectively), which
extend to the near field region surrounding the cylinders. This facilitates the electromagnetic
interaction between these particles. The light directly illuminates the right or lower particle,
depending on whether the orientation of the molecular set is horizontal or oblique/vertical. Cor-
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8.7 numerical setup

respondingly, either the left or the upper cylinder is mostly excited by the resonance of its
partner. This technique is performed so that the molecular states associated to anti-symmetric
field patterns with respect to the transversal axis of the molecule, [see insets OE and OO in Fig.
8.10(b)] are not destroyed, especially when the molecule is inclined with respect to the propaga-
tion direction of the beam. Notice that if both particles were simultaneously illuminated by the
beam, only those WGMs related to symmetric field patterns with respect to the molecule axis
would be excited, [see insets EE and EO in Fig. 8.10(b)].

The separation between the particles is d0 = 100nm, which makes subwavelength the molecule
dimensions, (compare the set size, 1.3µm, to the range of wavelngths under study: 1.6µm−
8.0µm). The center of the lower particle is ≈ 0.75µm. We follow the nomenclature of [167, 169]
for the molecular states, the classification being based on the E(r) field symmetry with respect to
the main directions defined by the molecule geometry, i.e. its longitudinal (Ypm) and transversal
(Xpm) axes, [see Fig. 8.10(b)]. As an example, we will examine the upper-left inset of Fig. 8.10(b).
In this case, the upper lobe is opposite to the lower one, thus it is said that E is even, (E), with
respect to OX; however, E is odd. (O), with respect to 0Y . Therefore the photonic state is
even-odd (EO). If they mismatch one another, it would be XpmYpm/OO, [cf. the upper-right
inset in Fig. 8.10(b)]. These would be similar to a double bound in the molecule. In the case in
which only one lobe of each particle interacts with the other (simple bound), the states will be
XpmYpm/EE and XpmYpm/OE, respectively.

In all cases the Ez profile at frequency ω is that of a GSMS, described in Section 8.5. The
field has an intensity 1W/m2 and σs = 0.05× 1500nm. The spatial coherence of the near field
is gradually established as the ratio between the coherence length and the width of the beam
σg/σs = 100, 2, 0.5 diminishes. The GSMS is placed in the lower boundary of the simulation
window and is implemented as a discrete sum of modes q, [see Eq. (8.9)]. As explained in Section
8.5, the lower the ratio of σg/σs, the higher the value of q, (cf. Fig. 5.17 of [3]). An iterative
process is followed in order to simulate the propagation of each of these q-modes through the
calculation window. Subsequently, they are summed up to get the propagated total fields E(r)
and H(r).

The next results show the time-averaged energy flow 〈S(x, y)〉, that shows light concentration
in the probe cylinders. Because of their dielectric nature, we average |〈S(x, y)〉| in a circle which
coincides with the geometrical cross section of the probe cylinder of radius r0, [see Fig. 8.10(b)].
This stems from the fact that, if the particle is dielectric, the intensity of the light beam that
couples to the particle WGM, is concentrated inside the cylinders, (see [174]), not outside them,
(the latter occurs for plasmonic cilinders [175]). In all cases, these intensities are normalized to
the maximum intensity of the incident Gaussian beam: |〈Smax〉| = 1W/m2.

The averaged force on the probe cylinders is calculated by employing the MST, Eq. (8.6). The
line of integration Σ surrounds each particle as seen in Fig. 8.10(b). In our 2D geometry, Σ is
the circumference of radius re, (see Fig. 8.10(b)). ε = µ = 1. Because of this 2D geometry, our
results are expressed as force per axial length unit, in N/m.
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The COMSOL calculation with complex values of E(r) and H(r) as well as of the real physical
fields: ER(r, t) = Re[E(r) exp(−iωt)] and HR(r, t) = Re[H(r) exp(−iωt)], is not straightforward.
The details of the procedure have been given in [173]. The meshing used in the simulation has a
maximum and a minimum element of λref/8 and 2.7nm, respectively. The reference wavelength
being λref = 1620nm. The maximum element growth rate, resolution of curvature, and resolution
of narrow regions are 1.3, 0.3, and 1, respectively.

8.8 a bi-particle photonic molecule illuminated by a gaussian schell
model source. effects of partial coherence in the “molecular”
states

8.8.1 Localization of resonances of a single particle. Bi-particle set: Production of “molecular”
states

In order to identify the resonant states of a photonic molecule, the spectral location of the
resonances of the single particle is required. For the sake of accuracy needed in the calculations,
and in order to deal with not too complex bonds between the particles, our study limits the
search of resonances in each individual particle to those of low angular order. This suffices to
illustrate the analysis in this work.
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Figure 8.11: Spatially coherent illumination. (a) Spectral variation of the mean of the ensemble-averaged
Poynting vector norm |〈S (r)〉|, (i.e. the light intensity), in a single cylinder illuminated by a totally
coherent GSMS beam. The two magnetic multipole peaks are swhown. (b) The same quantity in a range
of higher λ in which the Mie coefficients contributing to the scattering cross section are b0, (electric dipole,
λ = 6− 7nm), and b1, (magnetic dipole, λ = 2.7nm); hence the particle being magneto-dielectric. The
insets in (a) and (b) show the spatial distribution of |〈S (r)〉| for WGMs: TE31/WGE21 and TE11/TE01,
respectively.

Hence, the chosen wavelength is the near infrared, (NIR), in which two multipolar peaks of field
intensity localized in the cylinder, associated to its morphology dependent resonances (MDR)
are found, [see Fig. 8.11(a)]. As the insets show, these are the WGMs TE31 (λ ≈ 1205nm) and
a TE21 (λ ≈ 1620nm). At larger λ, as shown in Fig. 8.11(b) the MDRs TE11 (λ ≈ 2610nm) and

126



8.8 a bi-particle photonic molecule illuminated by a gaussian schell model
source. effects of partial coherence in the “molecular” states

 

 

R
es

on
an

ti
nt

en
si

ty
(W

)

λ (m) ×10−6
1.5 1.55 1.6 1.65 1.7 1.75

×10−3

0.5

1

1.5

2

2.5

3
(a)

 

 

R
es

on
an

ti
nt

en
si

ty
(W

)

λ (m) ×10−6
1.4 1.5 1.6 1.7 1.8 1.9 2

×10−3

0

0.5

1

1.5

2

2.5

3

3.5

4
(b)

Figure 8.12: Spatially coherent illumination. (a) |〈S (r)〉| localized in each particle of a “bi-atomic”
photonic molecule vs. λ, illuminated as in Fig. 8.11(a). This leads to the splitting of the TE21 mode
of a single particle, which produces a blue-shifted, (anti-symmetric), and a red-shifted, (symmetric),
molecular state, respectively. (b) The same quantity showing the other possibility of splitting associated
to the same MDR. The blue solid and red dashed lines in (a) stand for the right, (i.e. the one directly
illuminated), and the left particle, respectively. The same code is used in (b), now for the lower, (directly
illuminated), and the upper particle, respectively. The insets show the intensity maps of the “molecular”
states, again related to each intensity peak concentrated by both particles.

TE01 (λ ≈ 6710nm) are excited, (cf. the insets of this figure). The TE11 is interesting because, as
shown in [157, 158, 172], the cylinder scattering cross section is dominated by the Mie coefficients
b0 and b1 [166], associated to the electric and magnetic dipolar moments, p and m, respectively,
of the cylinder; therefore this particle behaves as magnetodielectric in this spectral range. In
addition, if we compare Fig. 8.6 and Fig. 8.11(b) we see how the theory developed in Section 8.6
agrees with the numerical simulation.

The concentration of intensity |〈S (r)〉| inside each particle conforming the photonic molecule
is shown in Figs. 8.12(a) and 8.12(b). A comparison between the blue solid and the red dashed
lines in Fig. 8.12(a) shows that the intensity |〈S (r)〉| in the right particle is generally higher
than that in the left one, [the same happens for the lower and the upper cylinders in 8.12(b)].
This happens because the particle directly illuminated by the beam concentrates more intensity
|〈S (r)〉|.

The calculation is focused on the different non-degenerate collective states that can produce
the TE21 mode excited in both cylinders. Due to the disposition of the lobes of the resonance,
(“even”, E, or “odd”, O in the field E spatial distribution), for each particle with respect to the
symmetry axes defined by the ensemble, which are longitudinal and transversal with respect to
the molecule axis (hereafter denoted as Ypm and Xpm, respectively), such a resonance excited
in this configuration can generate four “molecular” states [167–169, 176]. The collective states
Ypm/E can be obtained by illuminating the ensemble either in the direction parallel or transversal
to the molecule axis.

The reason to select the configuration in which the Ypm axis appears inclined by an angle
π/2 while the direction of the beam is parallel to the Y axis of the calculation window, is
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Figure 8.13: (a) The same as in Fig. 8.12(a) in the spectral range in which the single particle is magneto-
dielectric, [cf. Fig. 8.11(b)]. The first two peaks from the left are associated to the WGM: TE11, while
the third one is related to the TE01 mode. (b) The same as in Fig. 8.13(a) showing the other possibility
of splitting for the same MDRs. The interpretation of the so formed “molecular” states is similar to that
of Fig. 8.12(a) and Fig. 8.12(b).

explained in Subsection 8.8.2. Figure 8.12(a) shows this geometrical configuration, which renders
the molecular states Ypm/E as consequence of the splitting of the resonance TE21 of the single
particle into two new MDRs, associated to the disposition of the lobes with respect to the Xpm

axis, i.e. XpmYpm/OE and XpmYpm/EE, at λ = 1597nm and λ = 1665nm, respectively (see
the insets) [168].

On the other hand, in order to reproduce the collective states Ypm/O, the Ypm axis must
be inclined by an angle of π/4 with respect to the propagation direction of the beam because
of the number of intensity lobes for the resonance TE21 in the single particle. This is seen in
Fig. 8.12(b), where the molecular states Ypm/O arise as a new splitting of the resonance TE21

of the single particle, i.e. XpmYpm/OO and XpmYpm/EO, at λ = 1582nm and λ = 1693nm,
respectively, (see the detail in this figure).

All the non-degenerate states of this photonic molecule associated to the MDR TE21 in each
particle are shown by these two orientations of the ensemble. Both orientations present two
collective resonances, the Xpm/O and Xpm/E being blue- and red- shifted, (i.e. more and less
energetic, respectively). This can be explained by the insets of this figure: the Xpm/O states
concentrate relatively much more light intensity inside the cylinders than the Xpm/E ones. Each
set of orientation also reminds the formation either of a simple, [Fig. 8.12(a)], or a double, [Fig.
8.12(b)], bond between the particles [168].

By increasing the wavelength λ of illumination on this particle pair around the same range
as in Fig. 8.11(b), the behavior of the collective resonances appears to be similar to that of
Fig. 8.12(a) and Fig. 8.12(b) regarding the connection between their symmetry, (Xpm/O and
Xpm/E lobes in E), and energy, (blue- and red-shifted peaks). These states being in this case
originated by the TE11 and TE01 resonances excited in the single particle. Aiming to reproduce
its Ypm/E and Ypm/O states, the Ypm axis is constrained to be either parallel, [see Fig. 8.13(a)], or
perpendicular, [see Fig. 8.13(b)], to the direction of the light beam, respectively. The suppression,
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Figure 8.14: (a) Horizontal and (b)vertical components of the time-averaged electromagnetic forces per
axial unit length on each cylinder of the particle pair for the orientation shown in Fig. 8.12(a). (c)-(d)
The same quantities for the molecule oriented according to Fig. 8.12(b). The lines with and without
points correspond to the force on the particle 1 and 2, respectively. The colors are associated to an
illuminating GSMS beam with different coherence length-to-spot size ratios: σg/σs: σg = 100σs (black),
σg = 2σs (red), and σg = 0.5σs (blue).

in both orientations, of the less energetic molecular state associated to the TE01 WGM of the
single particle, i.e.the XpmYpm/EE, is due to the fact that the illuminating wavelength λ is
much longer than the dimensions of the molecule, this latter now being almost invisible.

8.8.2 Effects of partially coherent illumination on the electromagnetic forces between the
particles. Bonding and anti-bonding “molecular” states

Next, I consider the cylinder pair illuminated by a GSMS with different coherence lengths σg.
This allows us to understand its effect of the electromagnetic forces acting on its collective states.
As previously remarked, for this s-polarization the fields associated to these states, although
localized inside the particles, reach high intensity values in the area immediately outside them.
Taking into account the calculation from the CMR of MST, Eq. (8.6), maximum forces are thus
expected to appear when these states are excited. Two of the MDRs of the single particle: TE21

and TE11, are selected to study the electromagnetic forces acting in the optical binding between
the two cylinders which conform the photonic molecule. As discussed in Section 8.8.1, each of
these resonances splits into two collective states whose symmetry and energy are related to each
other. The TE21 mode is chosen due to its possibility to generate states in the particle pair
which remind those of a simple [Fig. 8.12(a)] and a double [Fig. 8.12(b)] bond in an atomic
molecule. The TE11 mode causes the particles to behave as magneto-dielectric, giving rise to an
interaction not only between its electric dipoles, but also between its induced magnetic ones.

Figures 8.14(a)-(b) and 8.14(c)-(d) show the electromagnetic force between the two particles
in the case of the collective states corresponding to the two first peaks of intensity |〈S (r)〉| in
Fig. 8.12(a) and Fig. 8.12(b), respectively. They correspond to the splitting of the magnetic
quadrupole b2 of the single particle of Fig. 8.11(a). The reason to choose the orientation shown
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in Fig. 8.14(a) for the molecule is now clear since the total force on the particles has two
contributions: the gradient force between the particles and that of scattering related to the
radiation pressure of the incident beam along OX and OY . On the other hand, the orientation
used in Figs. 8.14(c)-(d) causes those two force components to mix with each other along OY ,
notwithstanding remaining possible to study the interaction between both particles by means of
the force X-component.

Under completely coherent illumination, peaks of repulsive and attractive force between the
two particles appear at λ ≈ 1597nm and λ ≈ 1665nm, (cf. in Fig. 8.14(a) black lines with
and without points for the X-component of the forces on particles 1 and 2, respectively]. The
same happens in Fig. 8.14(c) at λ ≈ 1582nm and λ ≈ 1693nm. These results allow to identify
the blue-shifted XpmYpm/OE and the red-shifted XpmYpm/EE in Fig. 8.12(a) collective states
(XpmYpm/OO and XpmYpm/EO in Fig. 8.12(b)) as anti-bonding and bonding ones, respectively
[50, 167–169, 176].

The forces in the vertical direction are higher for particle 1 (which is directly illuminated) in
both orientations. In Fig. 8.14(a) this component, associated to the scattering force from the
beam, is lower for the bonding molecular state at λ ≈ 1665nm than that for the antibonding one
(at λ ≈ 1597nm), since the former renders higher values of field intensity immediately outside
the particles. For the orientation of Fig. 8.14(c), both collective states, the repulsive and the
attractive one, at λ ≈ 1582nm and λ ≈ 1693nm, suffer comparable Y-components of the total
force because now in this direction the gradient force between the particles must also be taken
into account.

When we decrease the coherence length of the source, (see red and blue lines standing for
σg = 2σs and σg = 0.5σs, respectively), both components of the force invariably diminish.
Although the dimension of the molecule and its position with respect to the source, which is in
the lower boundary of the calculation window), are subwavelength, these results are opposite
to those of Fig. 5.2 in Chapter 5, the interaction between the GSMS beam and the particles
now being more complex due to the addition of the effect from the MDRs. In fact, the intensity
pattern of the interference process which renders the particle resonance decreases, i.e. the field
lobes corresponding to the formation of the resonance in each particle loose contrast. This leads,
taking into account the force calculation, to a decrement in the field intensity values reached
outside the particles and hence in their optical attraction or repulsion.

Finally, the optical forces on the molecular states associated to the first two peaks of Fig.
8.13(a) and Fig. 8.13(b), [associated to the magnetic dipole of Fig. 8.11(b)], are shown in Figs.
8.15(a)-(b) and 8.15(c)-(d), respectively. The vertical orientation of the pair, although now mix-
ing both contributions to the total force, (i.e. gradient component between the particles and
scattering one due to radiation pressure of the light beam), renders its Y-component being the
only significant one, and behaves just as expected at λ ≈ 2230nm and λ ≈ 2680nm. Namely,
repulsive and attractive forces arise acting on the blue-shifted, XpmYpm/OE, and the red-shifted,
XpmYpm/EE, collective states, respectively [see Fig. 8.15(a)]. The force X-component remains
null because of the orientation of the pair. On the other hand, the horizontal orientation, [see
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Figure 8.15: (a)-(b) The same quantities as in Fig. 8.14(a)-(b) with the molecule oriented as in Fig.
8.13(a). (c)-(d) The same as in Fig. 8.15(a)-(b), the molecule now being oriented as in Fig. 8.13(b). The
code of lines and colors is identical to that of Fig. 8.14

Fig. 8.15(c)], deserves the same discussion on both components of the total force as that con-
cerning Fig. 8.14(a)-(b): repulsive and attractive forces between the particles now emerge at
λ ≈ 2480nm and λ ≈ 2985nm, which correspond to the blue-shifted, XpmYpm/OO, and the
red-shifted, XpmYpm/EO, molecular states. As in the previous case, the loss of coherence in the
light beam causes the decrement in the magnitude of both force components.

8.9 conclusions

In this chapter I have presented several results. Firstly I have demonstrated how at near-field
distances from the source one needs a full electromagnetic theory in order to obtain the total pho-
tonic force, i.e., the fluctuations of the field along the propagation direction can be as important
as the rest of them.

Secondly I have presented a new theory of photonic forces illuminated by partially coherent
fields, specifically for a Gaussian-Schell model source. We have demonstrated how the optical
force can be calculated by means of the MST, being this quantity decomposed into the sum of N -
coherent states. This representation is based on the coherent mode representation [154]. I have
illustrated the results with computer simulations of optical binding of Mie dipolar dielectric
cylinders with magnetodielectric behavior. This behavior has been studied in detail showing
the rich landscape of resonant states for s- or p-polarization associated to the different Mie
coefficients.

Finally I have extended the analysis to the dynamical interaction of two dielectric cylinders
forming a photonic molecule. I have shown explicitly the effects of the spatial coherence in
these resonant configurations, which are linked to the symmetric and anti-symmetric molecular
resonances, associated to bonding and anti-bonding states, respectively. The role of the interplay
between the electric and magnetic induced dipoles when such Mie resonances are induced, has
been demonstrated to be important. Now the threshold of evanescent wave contribution to the
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scattered field is critical. Namely, in addition to being at subwavelength distances from the source
plane, the particles need to be practically in contact with each other for a substantial contribution
of the inhomogeneous modes. As a consequence, as few evanescent modes are present, a decrease
of the coherence length σg conveys lower bonding and antibonding forces.
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A
N E A R - F I E L D S P E C T R A F R O M PA R T I A L LY
C O H E R E N T T H E R M A L S O U R C E S

In Chapter 2 we demonstrated the effects of the correlation length σ of the source on the cross-
spectral density at near-field. In this appendix we address the effects of the spatial coherence on
the spectral density W (r, r, ω) = S (r, ω). This effect was observed by Roychowdhury and Wolf
in [13]. In that reference they demonstrated, using a simple model of statistically homogeneous
source as we have considered in Eq. (2.18), that the spectrum observed differs from those whose
correlations at the source are δ−correlated. That paper appears pointing out the insufficiency of
the conclusions reached in [12].

In this appendix, following the steps employed in [12, 177] and using a modified version of
the fluctuation-dissipation theorem in order to take different correlation lengths into account,
we will confirm the conclusions established in [13].

Let us consider the electric field E (r, ω) in the half-space z > 0 generated by the thermal
currents j (r, ω) placed at z < 0. Using the Green’s formalism, E(r, ω) can be written [11, 143]

Ei (r, ω) = iµ0ω

∫
V
Gij

(
r, r′, ω

)
jj
(
r′, ω

)
d3r′, (i, j = x, y, z) , (A.1)

where Gij (r, r′, ω) is the dyadic Green’s function which relates the properties of the source with
the emitted field thought the transmission Fresnel coefficients [1]. We will no enter in detail
about Gij because it will be addressed in Section C.1 of this thesis.

In this example, the role of the cross-spectral density at the source (W (0) (r1, r2, ω)) will be
played by the correlation between the different Cartesian component of j (r, ω). These correla-
tions are given by the well-known fluctuation-dissipation theorem [79]

〈
ji (r1, ω) jj

(
r2, ω

′)〉 = ωΘ (ω, T )

4π2 ε0Imε (ω) δijδ (r1 − r2) δ
(
ω− ω′

)
, (A.2)

where ε (ω) is the permittivity of the half-space where the currents are contained. Θ (ω, T ) is the
thermal energy Θ (ω, T ) = h̄ω/[exp (h̄ω/kBT )− 1], being h̄ the normalized Planck’s constant,
kB the Boltzmann’s constant and T the temperature. In Eq. (A.2) the factor δ (ω− ω′) is a
consequence of the Wiener-Khintchine theorem (see Section 1.2). The function δ (r1 − r2) express
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Figure A.1: TrWij (r, r, ω) for two values of the coherence length, σ = 0 (left column) and σ = 5µm
(right column) and for different distances from the plane of the source z = 0. The red dashed-dot line
represent the contribution of the evanescent modes and the green dashed line that of the propagating
modes. The black solid line is the the sum of both contributions.

that the sources are uncorrelated (σ → 0), however, we will introduce in Eq. (A.2) a Gaussian
function in order to consider different values of σ, i.e.

〈
ji (r1, ω) jj

(
r2, ω

′)〉 = ωΘ (ω, T )

4π2 ε0Imε (ω)
e
− |r1−r2|

2

2σ2 δij

(2π)3/2 σ3
δ
(
ω− ω′

)
. (A.3)

Notice that for σ → 0 we recover the original fluctuation-dissipation theorem. As we are dealing
with an electromagnetic field instead of a scalar one, the cross-spectral density function will be
a tensor

Wij (r1, r2, ω) =
〈
E∗i (r1, ω)Ej (r2, ω)

〉
, (i, j = x, y, z) , (A.4)

in order to take into account the three Cartesian components of the electric field E (r, ω). Hence,
the power spectrum of the field will be calculated as the trace of the cross-spectral density tensor
Wij (r1, r2, ω):

S (r, ω) = TrWij (r, r, ω). (A.5)

Substituting Eq. (A.1) into Eq. (A.4), taking the trace, and using the modified fluctuation-
dissipation theorem Eq. (A.3) we can calculate the power spectrum at distances of the order of
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the wavelength λ. The calculation can be found in Appendix C (cf. Eq. (C.17)). To make the
calculus we have considered the same values of ε (ω) and T as in Ref. [12]; i.e.

ε (ω) = ε∞
ω2
L − ω2 − iγω
ω2
T − ω2 − iγω

, (A.6)

with ε∞ = 6.7, ωL = 182.7× 1012s−1, ωT = 149.5× 1012s−1 and γ = 0.9× 1012s−1; and a
temperature T = 300K.

Fig. A.1 shows our main results of this Appendix, which are in agreement with those of
[12]. The left column, where we have considered that the coherence length is zero (σ = 0),
we get the same results as in [12]. Now we will see how as we increase the distance from the
plane of the source, the spectrum changes drastically. In Fig. A.1(a), the spectrum is almost
monochromatic, where the position of the peak is due to the dielectric function ε considered (SiC
which supports SPPs in the range of thermal emission, see Ref. [12]), however, as we increase
the distance from the source z, the spectrum becomes broader. The latter effect is due to the
loss of evanescent modes. In Fig. A.1(a), the black solid line coincides with the red dashed-dot
line, which represent the evanescent modes, we could say that the propagating components of the
angular wave spectrum are negligible. Nevertheless, in Fig. A.1(c) we can see how the evanescent
modes start to decrease, being zero in Fig. A.1(e).

In the right column we have considered a value of σ = 5µm. Comparing Figs. A.1(a) and (b),
we can see something similar to Fig. 2.4. In this case, a larger value of the σ give us a spectrum
that is more similar to Fig. A.1(c) than Fig. A.1(a). As we increase σ, we loss the evanescent
modes, which are responsible for the monochromatic spectrum at subwavelength distances.

In summary and according to Ref. [13], the effects on the near-field spectra are not only due
to the evanescent modes, the spatial coherence of the source is as important as the contribution
of these modes. Interestingly, and consistent with the results of Reference Chapter 2, it is again
the completely uncorrelated source which yields the most interesting results.
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B
A N A LY T I C A L E X P R E S S I O N FO R T H E FO R C E I N
T H E T H O M P S O N A N D WO L F C O N F I G U R AT I O N

In this appendix we address the complete expressions for the different component of the optical
force within the framework developed in Chapter 4

b.1 analytical expressions of the gradient force

The following equations express the gradient force in term of the spectral degree of coherence
|µ (q1,q2, ω̄)|

• Calculation of F̃ gradx〈
F̃ gradx

〉
= −4ReαeI0

(
ak̄

zv̄0

)2(
πa2 |e (ω̄)|2

λ̄z

)2

x

[(
2J1 (v̄0)

v̄0

)2
+ 2J1 (v̄0)

v̄0

× [J0 (v̄0)− J2 (v̄0)]]

[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]
.

(B.1)

v̄0 = k̄a
√
x2 + y2/z. Observe that in this equation, none of the two terms may be ne-

glected.
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• Calculation of F̃ grady〈
F̃ grady

〉
= 4ReαeI0

(
ak̄

zv̄0

)2(
πa2 |e (ω̄)|2

λ̄z

)2

y

[(
2J1 (v̄0)

v̄0

)2
+ 2J1 (v̄0)

v̄0

× [J0 (v̄0)− J2 (v̄0)]]

[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]

−4ReαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
hk̄

z

(
2J1 (v̄0)

v̄0

)2

× |µ (q1,q2, ω̄)| sin
(
φ (q1,q2, ω̄) + 2k̄hy

z

)

=
〈
F̃ gradx

〉 y
x
− 4ReαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
hk̄

z

(
2J1 (v̄0)

v̄0

)2

× |µ (q1,q2, ω̄)| sin
(
φ (q1,q2, ω̄) + 2k̄hy

z

)
. (B.2)

Hence

〈
F̃ grady

〉
≈ −4ReαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
hk̄

z

(
2J1 (v̄0)

v̄0

)2

× |µ (q1,q2, ω̄)| sin
(
φ (q1,q2, ω̄) + 2k̄hy

z

)
. (B.3)

• Calculation of F̃ gradz〈
F̃ gradz

〉
= −4ReαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
1
z

(
2J1 (v̄0)

v̄0

)2
[J0 (v̄0)− J2 (v̄0)]

×
[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]

+4ReαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
hk̄y

z2

(
2J1 (v̄0)

v̄0

)2

× |µ (q1,q2, ω̄)| sin
(
φ (q1,q2, ω̄) + 2k̄hy

z

)
. (B.4)

Therefore

〈
F̃ gradz

〉
≈ 4ReαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
hk̄y

z2

(
2J1 (v̄0)

v̄0

)2

× |µ (q1,q2, ω̄)| sin
(
φ (q1,q2, ω̄) + 2k̄hy

z

)
= −y

z

〈
F̃ grady

〉
. (B.5)

140



B.2 analytical expressions of the scattering force

b.2 analytical expressions of the scattering force

The following equations express the scattering force in term of the spectral degree of coherence
|µ (q1,q2, ω̄)|

• Calculation of F̃ scx

〈
F̃ scx
〉

= 4ImαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
k̄x

z

(
2J1 (v̄0)

v̄0

)2

×
[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]
. (B.6)

• Calculation of F̃ scy

〈
F̃ scx
〉

= 4ImαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2
k̄y

z

(
2J1 (v̄0)

v̄0

)2

×
[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]
. (B.7)

• Calculation of F̃ scz

〈
F̃ scz
〉

= 4k̄ImαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2 (
2z2 − x2 − y2)(2J1 (v̄0)

v̄0

)2

×
[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]

' 4k̄ImαeI0

(
πa2 |e (ω̄)|2

λ̄z

)2(
2J1 (v̄0)

v̄0

)2

×
[
1 + |µ (q1,q2, ω̄)| cos

(
φ (q1,q2, ω̄) + 2k̄hy

z

)]
= 2k̄Imαe 〈I (r, ω̄)〉 . (B.8)
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C
A N A LY T I C A L D E R I VAT I O N O F E X P R E S S I O N S FO R
T H E E L E C T R I C , M AG N E T I C A N D I N T E R F E R E N C E
FO R C E S O F C H A P T E R 6

optical forces due to the primary source

In this part of the Appendix we address the main expressions which appear in Chapter 6 for the
electromagnetic field which emerges into z > 0 the half-space.

c.1 electric force

The Green’s function which relates the properties of the source placed at z < 0 and the free-
propagation in z > 0 is expressed on using Weyl’s expansion in terms of an angular spectrum of
plane waves is [10, 131, 143]

GEPij
(
r, r′, ω

)
= i

2

∫ ∞
−∞

d2K
(2π)2G

EP
ij (K) eiK(R−R′)eiγ2z−iγ1z′ , (C.1)

where the position vector is defined as r = (R, z). In this equation, the angular Green’s function
is

GEPij (K) = 1
γ1

(
ŝit

s
12ŝj + p̂+

2it
p
12p̂

+
1j

)
, (C.2)

with γi =
√
εiµik

2
0 −K2 if εiµik2

0 ≥ K2, (homogeneous waves), and γi = i
√
K2 − εiµik2

0 if
εiµik

2
0 < K2, (evanescent waves); (i = 1, 2). The vectors ŝ and p̂ are defined in the main text of

Chapter 6. The superindices s and p denote the Fresnel transmission coefficient t12 from region
1 to region 2 through z = 0 under s and p-polarization, respectively, i.e. [1, 131]

ts12 = 2γ1
γ1 + γ2

, tp12 = 2n1n2γ1
ε2γ1 + ε1γ2

. (C.3)

Notice that this notation is completely analogous to that of Chapter 2 using the wavevector
k = (K, γi) instead of the unitary wavevector s = (s⊥, sz).
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analytical derivation of expressions for the electric, magnetic and
interference forces of chapter 6

c.1.1 Conservative electric force

In this subsection I will calculate the gradient force. Using Eq. (6.11) of the main text, the
auto-correlation function leads to〈

Einc∗j (r)Eincj (r)
〉

= µ2
0ω

4
∫
V1,2

GEP∗jk

(
r, r′1

)
GEPjl

(
r, r′2

)
W

(P )
kl

(
r′1, r′2, ω

)
d3r′1d3r′2, (C.4)

where W (P )
kl (r′1, r′2, ω) is the cross-correlation function of the polarization currents. Substituting

Eqs. (C.1) and (C.2) into Eq. (C.4) we obtain the auto-correlation function in terms of the
angular Green’s function〈

Einc∗j (r)Eincj (r)
〉

= µ2
0ω

4

4

∫
V1,2

∫ ∞
−∞

d2K1

(2π)2
d2K2

(2π)2G
EP∗
jk (K1)G

EP
jl (K2)

× e−iK1(R−R′1)eiK2(R−R′2)e−
(
iγ∗2,1z−iγ

∗
1,1z
′
1
)
eiγ2,2z−iγ1,2z′2

× W
(P )
kl

(
r′1, r′2, ω

)
d3r′1d3r′2, (C.5)

where γ2
i,j = εiµik

2
0 −K2

j and (i, j) = 1, 2. Now we have to perform ten-integrals (six over the
real space and four over the K-space). To this end, we assume that W (P )

kl (r′1, r′2, ω) has the
following dependence

W
(P )
kl

(
r′1, r′2, ω

)
= S(P ) (ω)

e
−
|R′1−R′2|

2

2σ2 e
−
|z′1−z

′
2|

2

2σ2 δkl

(2π)3/2σ3 (C.6)

Substituting Eq. (C.6) into Eq. (C.5) we obtain〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4

∫
V1,2

∫ ∞
−∞

d2K1

(2π)2
d2K2

(2π)2G
EP∗
jk (K1)G

EP
jl (K2)

× e−iK1(R−R′1)eiK2(R−R′2)e−
(
iγ∗2,1z−iγ

∗
1,1z
′
1
)
eiγ2,2z−iγ1,2z′2

× S(P ) (ω)
e
−
|R′1−R′2|

2

2σ2 e
−
|z′1−z

′
2|

2

2σ2 δkl

(2π)3/2σ3 d2R′1d2R′2dz′1dz′2. (C.7)

Our goal is to simplify this expression step by step in order to extract a physical meaning. Hence,
we make the following change of variables: R′1 = R′′ + R′/2, R′2 = R′′ −R′/2.〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4

∫
V1,2

∫ ∞
−∞

d2K1

(2π)2
d2K2

(2π)2G
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EP
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i
(K2+K1

2

)
R′
e−i(K2−K1)R′′e

−
(
iγ∗2,1z−iγ

∗
1,1z
′
1
)
eiγ2,2z−iγ1,2z′2

× S(P ) (ω)
e
− |R

′|2

2σ2 e
−
|z′1−z

′
2|

2

2σ2 δkl

(2π)3/2σ3 d2R′d2R′′dz′1dz′2. (C.8)

Looking in detail this last expression we can see that the R′′-integration gives a two-dimensional
delta function δ(2) (K1 −K2)〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4 (2π)2
∫

R′,z′1,z
′
2

∫ ∞
−∞

d2K1

(2π)2
d2K2

(2π)2G
EP∗
jk (K1)G

EP
jl (K2)

× ei(K2−K1)Re
i
(K2+K1

2

)
R′
δ (K2 −K1) e

−
(
iγ∗2,1z−iγ

∗
1,1z
′
1
)
eiγ2,2z−iγ1,2z′2

× S(P ) (ω)
e
− |R

′|2

2σ2 e
−
|z′1−z

′
2|

2

2σ2 δkl

(2π)3/2σ3 d2R′dz′1dz′2. (C.9)
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C.1 electric force

Now we perform the two-dimensional integral in R′, in this case we have the Fourier transform
of a Gaussian function, i.e.,

1
(2π)2

∫
R′
e
i
(K2+K1

2

)
R′
e
− |R

′|2

2σ2 d2R′ = 2πσ2e−
(K2+K1)

2σ2
8 , (C.10)

then substituting in our main expression this leads to

〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4 (2π)42πσ2
∫
z′1,z
′
2

∫ ∞
−∞

d2K1

(2π)2
d2K2

(2π)2G
EP∗
jk (K1)G

EP
jl (K2)

× ei(K2−K1)Re−
(K2+K1)

2σ2
8 δ (K2 −K1) e

−
(
iγ∗2,1z−iγ

∗
1,1z
′
1
)
eiγ2,2z−iγ1,2z′2

× S(P ) (ω)
e
−
|z′1−z

′
2|

2

2σ2 δkl

(2π)3/2σ3 dz′1dz′2. (C.11)

The integral in K1 (or K2) is straightforward, thus eliminating the Kronecker function our
complex integrals are reduced to

〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4 2πσ2
∫
z′1,z
′
2

∫ ∞
−∞

d2K
∣∣∣GEP∗jk (K)

∣∣∣2
× e−

(Kσ)2
2 ei(γ2−γ∗2 )ze(iγ

∗
1z
′
1)e−iγ1z′2

× S(P ) (ω)
e
−
|z′1−z

′
2|

2

2σ2

(2π)3/2σ3 dz
′dz′′. (C.12)

Now we make a similar change of variables for the z-coordinate: z′1 = z′′+ z′/2 and z′2 = z′′− z′/2,
which gives

〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4 2πσ2
∫
z′,z′′

∫
d2K

∣∣∣GEP∗jk (K)
∣∣∣2

× e−
(Kσ)2

2 e−2Imγ2zeiReγ1z′e2Imγ1z′′S(P ) (ω)
e
− |z
′|2

2σ2

(2π)3/2σ3 dz
′dz′′.

(C.13)

Notice that after making the change of variable, and due the fact that the volume of the source
is at z < 0, we can perform the following integrals:∫ 0

−∞
e2z′′Imγ1dz′′ = 1

2Imγ1
, (C.14)

∫ ∞
−∞

eiReγ1z′e
− z
′,2

2σ2 dz′ = e−
1
2 (σReγ1)

2√
2πσ. (C.15)

Thus, substituting Eqs. (C.14)-(C.15) into Eq. (C.13) we have

〈
Einc∗j (r)Eincj (r)

〉
= µ2

0ω
4

4 S(P ) (ω)

∫ ∞
−∞

1
2Imγ1

∣∣∣GEPjk (K)
∣∣∣2 e− (Kσ)2

2 e−2Imγ2ze−
1
2σ

2Reγ2
1d2K

(C.16)
Now, using cylindrical coordinates (Kx,Ky) = K (cos θ, sin θ) our complex expression is simpli-
fied to :〈

Einc∗j (r)Eincj (r)
〉

= k4
0π

4ε2
0
S(P ) (ω)

∫ ∞
−∞

1
Imγ1

∣∣∣GEPjk (K)
∣∣∣2 e− (Kσ)2

2 e−2Imγ2ze−
1
2σ

2Reγ2
1KdK

(C.17)
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This equation will be very useful in order to calculate the electric force from the induced dipoles
and to verify the results of Chapter 2 (cf. Appendix A). We see that Eq. (C.17) only depends on
the position trough the z-component of the space, hence, if we calculate the gradient electric force
we obtain that Fx,y = 0. Notice also that the range of integration of this quantity is [−∞,∞].
If we take the expression of the angular Green’s function into account we have∣∣∣GEPjk (K)

∣∣∣2 = 1
|γ1|2

[
|ts12|

2 |ŝ|2 |ŝ|2 +
∣∣tp12
∣∣2 ∣∣p̂+

1
∣∣2 ∣∣p̂+

2
∣∣2] , (C.18)

and the third component of the gradient force is

〈F e,consz 〉 = −k
4
0π

8ε0
ReαeS(P ) (ω)

∫ K=+∞

K=k0

√
K2 − k2

0

|γ1|2
e−

(Kσ)2
2

×

[
|ts12|

2 +
∣∣tp12
∣∣2

|n1|2 |n2|2 k4
0

(
|γ2|2 +K2

)(
|γ1|2 +K2

)]

× e−2zImγ2 1
Imγ1

e−
1
2σ

2Reγ2
1KdK (C.19)

In this nice expression, the integral is performed over the evanescent modes. This is because the
partial derivative ∂z of Eq. (C.17) is proportional to Imγ2, and this expression is different from
zero for these modes only. The last integral has to be done numerically.

c.1.2 Asymptotic expression in extreme near-field

Now we will calculate the force in the near-field. Firstly let us explicitly introduce the Fresnel
coefficients into Eq. (C.19), this leads to

〈F e,consz 〉 = −k
4
0π

2ε0
ReαeS(P ) (ω)

∫ K=+∞

K=k0

√
K2 − k2

0e
− (Kσ)2

2

×

[
1

|γ1 + γ2|2
+ 1
|ε2γ1 + ε1γ2|2 k4

0

(
|γ2|2 +K2

)(
|γ1|2 +K2

)]

× e−2zImγ2 1
Imγ1

e−
1
2σ

2Reγ2
1KdK. (C.20)

Because we are very near of the source (z � λ), the main contribution in Eq. (C.19) is given by
values of K � k0. Under this assumption γ1 ≈ γ2 = iK, giving

〈F e,consz 〉 = −k
4
0π

2ε0
ReαeS(P ) (ω)

∫ K=+∞

K=k0

e−
(Kσ)2

2

[
1

4K2 + 4K2

|ε2 + ε1|2 k4
0

]
e−2zKKdK.

(C.21)

In this expression, the term 1/K2 is negligible giving an integral which can be performed ana-
lytically:

〈F e,consz 〉 = − 2π
|ε2 + ε1|2 ε0

ReαeS(P ) (ω)

∫ K=+∞

K=k0

e−
(Kσ)2

2 e−2zKK3dK. (C.22)

This integral will give an asymptotic behavior 1/z4 or 1/σ4 depending on whether the correlation
length is null or not (cf. Eqs. (6.18)-(6.19)).
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C.2 magnetic force

c.1.3 Non-conservative electric force

As we have seen in many parts of this thesis, the non-conservative force is proportional to
Im
{
E∗j ∂iEj

}
. If we calculate the term E∗j ∂iEj we will obtain:

〈
Einc∗j (r) ∂iEincj (r)

〉
= µ2

0ω
4

4

∫
V1,2

∫ ∞
−∞

d2K1

(2π)2
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(2π)2G
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(
iγ∗2,1z−iγ

∗
1,1z
′
1
)
eiγ2,2z−iγ1,2z′2

× W
(P )
kl

(
r′1, r′2, ω

)
d3r′1d3r′2, (C.23)

where this last expression is exactly the same as Eq. (C.5) with an important exception which
will be discussed in brief.

Due to the similarity between this equation and the theoretical development of the previous
section we will no enter in detail about how to obtain the non-conservative force, nevertheless,
the important key is in the first line of this equation. In this line we have the term i (K, γ2), if
we assume that the integration over the lateral components of the force is zero (this can be easily
proved), we have that the third component of the force is proportional to iγ2, where this quantity
will be imaginary if and only if εiµik2

0 ≥ K2, i.e., for propagating modes. Due to this fact, the
range of integration of Eq. (6.14) of the main text is extended over the homogeneous part of the
angular wave spectrum, and the factor exp (−2z0Imγ2) is equal to 1, then the non-conservative
force does not depend on the position.

c.2 magnetic force

For a statistically homogeneous source, the electric and magnetic energy are equal (see reference
[32]), hence

Fmi (r) = µ0µ2
2 Re

{〈
αmH

∗
j (r) ∂iHj (r)

〉}
= ε0µ2

4 Re {αm} ∂i
〈
E∗j (r)Ej (r)

〉
+ ε0µ2

2 Re {αm} Im
{〈
E∗j (r) ∂iEj (r)

〉}
(C.24)

The conservative (second line) and the non-conservative (third line) magnetic forces have been
calculated in the previous section.
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c.3 interference force

The force due to the interference of the electric and magnetic dipoles is proportional to 〈E∗ ×H〉i
= εijk

〈
E∗jHk

〉
. The electric and magnetic incident fields are

Eincj (r) = µ0ω
2
∫
V
GEPjl

(
r, r′, ω

)
Pl
(
r′, ω

)
d3r′ (C.25)

Hinc
k (r) = −iω

∫
V
GHPkm

(
r, r′, ω

)
Pm
(
r′, ω

)
d3r′ (C.26)

The first equation is the same of Section (C.1) with the electric Green’s function GEPjl (r, r′, ω),
however, the magnetic Green’s function GHPkm (r, r′, ω) is

GHPkm
(
r, r′, ω

)
= k0n2

2

∫
d2K
(2π)2G

H
km (K) eiK(R−R′)eiγ2z−iγ1z′ , (C.27)

with
GHkm (K) = 1

γ1

(
p̂+

2kt
s
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p
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+
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)
. (C.28)

If we calculate the quantity 〈E∗ ×H〉i we have

εijk
〈
Einc∗j Hinc

k

〉
= −iµ0ω

3εijk

∫
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GEP∗jl
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)
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(
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)
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)
d3r′1d3r′2.

(C.29)

This equation is analogous to Eq. (C.4), hence, the methodology is very similar, (the spatial
dependence of the Green’s functions is the same), however, the difference will be given by the
product of the electric and magnetic angular Green’s functions which is:

εijkG
EP∗
jl (K)GHPkl (K) = 1

|γ1|2
[(
ŝit

s∗
12ŝj + p̂+∗

2i t
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γ2 |ŝl|2 |ts12|
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∣∣tp12
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1l
∣∣2) (C.30)

Hence, we have an expression analogous to Eq. (C.17) (again, only the third component i = 3 = z

will be different from zero) where the range of integration in K will be [−∞,∞]. However, at the
end, we have to extract the real and the imaginary parts. If we look at Eq (C.30), this expression
will be purely imaginary for evanescent modes

ε3jkImGEPjl (K)∗GHkl (K) = −

√
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0

n2k0

(
|ŝl|2 |ts12|

2 −
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and purely real for propagating waves

ε3jkReGEPjl (K)∗GHkl (K) = −

√
k2

0 −K2

n2k0

(
|ŝl|2 |ts12|

2 +
∣∣tp12
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1l
∣∣2) . (C.32)

Taking these last two expressions into account, and the part of the interference force which has
the imaginary part of the product of the polarizabilities, i.e.,

F em,imagi (r) = ε0ε2
Zk4

0
12π Im {α∗eαm} Im

{
〈E∗ (r)×H (r)〉i

}
, (C.33)
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C.3 interference force

we obtain that the third component is

F em,imagz (r) = k7
0

48ε0
Im {α∗eαm}S(P ) (ω)
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(C.34)

Notice that this equation is similar to that of the conservative forces in the sense that the inte-
gration has to be performed only for non-propagating modes and it has an evanescent behavior
with the distance. Contrary to this, the part of the interference force which has the real part of
the product of the polarizabilities, i.e.,

F em,reali (r) = −ε0ε2
Zk4

0
12π Im {α∗eαm} Im

{
〈E∗ (r)×H (r)〉i

}
, (C.35)

is given by
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This expression plays the role of a non-conservative force in the sense that only the propagating
modes are relevant. It is worth remarking that this force does not depend on the position and
will be negative (positive) when Re {α∗eαm} is positive (negative), pulling the particle towards
the plane of the source.
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optical forces due to the induced dipoles

c.4 electric force

In this case, the electric field will be due to the electric and magnetic induced dipoles, i.e, Epi (r),
Emi (r). Now the source (the dipoles) will be placed in front of the primary source, hence it will
exist an interaction between them in the z > 0 half-space. This interaction will be encoded in
the Green’s function of the system. The expressions for the electromagnetic field generated by
the electric dipole will be

Epi (r) = µ0µ1ω
2GEpij

(
r, r′, ω

)
pj (ω) , (C.37)

Hp
i (r) = −iωGHpij

(
r, r′, ω

)
pj (ω) , (C.38)

and for the magnetic dipole [43, 121],

Emi (r) = Z0iω

c
GHp↔ij

(
r, r′, ω

)
mj (ω) , (C.39)

Hm
i (r) = µ0µ1ω2

Z0c
GEp↔ij

(
r, r′, ω

)
mj (ω) , (C.40)

where the symbol ↔ refers to we are using the same Green’s function with the reflection Fresnel
coefficients interchanged, i.e.,
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)
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The angular Green’s function are

GEpij (K) = ŝir
s
21ŝj + p̂+

1ir
p
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−
1j , (C.42a)

GHpij (K) = p̂+
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p
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s
21p̂
−
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being rs21, r
p
21 the reflection Fresnel coefficients

rs21 = γ2 − γ1
γ2 + γ1

, rp21 = ε1γ2 − ε2γ1
ε1γ2 + ε2γ1

. (C.43)
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C.4 electric force

c.4.1 Conservative electric force

For the electric force we need the auto-correlation function
〈
E∗j (r)Ej (r)

〉
of the fields from the

electric and magnetic dipoles. In this case, we have assumed that the cross-correlation between
the electric and magnetic dipole is zero, i.e.,

〈
p∗k (r

′
1, ω)ml (r′1, ω)

〉
= 0 (see [79]), hence〈

Ep∗j (r)Epj (r)
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= µ2
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(C.45)

where the induced dipoles can be written in terms of the incident fields
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)
, (C.46)
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leading to〈
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and analogously for
〈
Em∗j (r)Emj (r)

〉
. As we can see from this last equation, the term 〈Einc∗k Eincl 〉

has been calculated previously and the product of the Green’s functions is

GEp∗jk

(
r, r′, ω

)
GEpjl

(
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)
=
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hence we can calculate the conservative gradient force because we have the expression for〈
Ep∗j (r)Epj (r)

〉
. It is worth saying that for the electric force due to the magnetic dipole, and

because we want the force at the position of the dipole, the integration of the product of the func-
tions GHp↔∗jk (r, r′, ω)GHp↔jl (r, r′, ω) is zero, then, the electric force due to the induced magnetic
dipole is also zero. Similar to this will occur for the magnetic force due to the electric dipole.

The rest of the procedure is analogous to Section C.1, leading to the product of two single
integrals in K, one for GEp∗jk (r, r′, ω)GEpjl (r, r′, ω) and one for

〈
Einc∗k (r2, r′1, ω)Eincl (r2, r′1, ω)

〉
which are solved numerically.
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c.4.2 Non-conservative electric force

The calculus of the force will be similar to the previous one, however, we have to calculate the
product GEP∗jk (r, r′, ω) ∂iGEPjk (r, r′, ω), i.e,

GE∗jk
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)
∂iG

E
jk
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)
= −i

2

∫
d2K
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1
γ∗2
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∗
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× −1
2
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1
γ2
GEij (K) (K, γ2) e

iK(R−R′)eiγ2(z+z′).

(C.50)

The induced electric dipole (again, the contribution of the magnetic dipole will be zero) will be
given by the term

〈
Einc∗k (r2, r′1, ω)Eincl (r2, r′1, ω)

〉
.

c.5 magnetic and interference forces

For obviously reasons, from the above sections it is not necessary to give details of the calculation
of these equations.

152



D
N E A R - F I E L D P H O T O N I C FO R C E S F R O M
G AU S S I A N - S C H E L L M O D E L S O U R C E S

This appendix deals with numerical calculations from COMSOL software. Here I will try to
understand the role of the spot size, coherence length and evanescent modes of a one-dimensional
GSMS. The fundamentals of the simulations are explained in detail in Chapter 8.

I illustrate force calculations based on the coherent mode representation (CMR) of Section
8.5 (cf. Chapter 8). We address a cylinder of radius λ/100, made of Silica glass (εp = 2.1),
illuminated by a GSMS placed at y = 0, (cf. Eq. (8.8)). The distance between the source and the
center of the particle is λ/10. The number of modes is determined by the ratio σg/σs, the first
mode (q = 0) corresponding to the globally spatial coherent case studied in Section 8.3.1. The
scheme of the simulation window in which the beam propagates and is scattered by the particle,
as well as the method to calculate the optical forces, is similar to that previously explained in
Section 8.10, now for a single particle.

Fig. D.1 displays the calculated force Cartesian components. Here one cannot separate the
conservative and non-conservative components of the force since in Eq. (8.6) the MST flow
yields the total force. Each row of Fig. D.1 represents the ensemble-averaged forces 〈Fx〉 and
〈Fy〉 for different values of σs and σg, (see the legend of the figure). The first column, [Figs.
D.1(a), (d)], contains 〈Fx〉 and 〈Fy〉 for the same parameters of Figs. 8.1 and 8.2, (by inverting
the color - line code). We see that for a fully coherent source, as we decrease the value of the
spot size σs, the magnitude of the force increases. We also observe how 〈Fy〉 is negative, (i.e. the
particle is pulled to the plane of the source), for σs < 0.3λ; this is due to the contribution of the
evanescent waves. In the main text of Chapter 8 this fact is discussed.

The second column, [(Figs. D.1 (b), (e)], represents the force due to a partially coherent GSMS.
We have fixed the spot size to σs = 0.3λ. Contrary to what one could expect, it is the most
incoherent emitted field that which produces the maximum force. In the last column, although
we can see a similar behavior, we also observe that for σg > 0.5λ the force is positive, i.e., the
particle is pushed by the source towards y > 0.

In order to explain these results, in Fig. D.2 we show the exponential function exp[−k2s2
x/(4c2)]

of the angular spectrum, [cf. Eq. (8.12)], for different values of σg and σs; this helps us to
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Figure D.1: Ensemble-averaged forces Fx, (first row), and Fy, (second row), from a partially coherent
GSMS. The first column from the left pertains to the fully coherent source, (σg = 100λ � σs), which
would correspond to the case of Section 8.3. For the center and right columns σs = 0.3λ and 0.5λ,
respectively
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Figure D.2: The function exp(−k2s2
x/(4c2)) versus the transversal component sx for different values of

the spot size σg and coherence length σs. For sx > 1 the evanescent waves are not negligible.

understand the behavior of the previous figure. The black and the blue point lines represent
the width of the Gaussian function for two cases represented in the force in Figs. D.1(a) and
(d). One sees that for a fully coherent source, the Gaussian is broader for a lower value of the
spot size, thus taking more evanescent modes of the angular spectrum. The red point-dashed
line and the green-dashed lines represent two cases of Figs. D.1(b) and (e). Now, for a partially
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coherent source, fixing the value of the spot size, the evanescent modes are more important as
the coherence length of the source decreases. All this agrees with the results of Fig. D.1 and Fig.
5.2 of Chapter 5.
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