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A mis compañeros, con los que he compartido todo este tiempo en el laboratorio,

primero arriba, luego abajo y luego otra vez arriba. Ya véis, esto de la ciencia tiene sus
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Summary

The wind power output variability comprises different time scales. While there exists

a wide knowledge on either the short-term variability or the climatological conditions

of wind and its corresponding wind power, the study of the decadal and multidecadal

variations is still in its early stages. This can be attributable to different reasons, as the

relatively recent importance of wind power industry, the relevance of shorter time scales or

the difficulties in obtaining representative long time series of wind. However, interannual

to multidecadal variability timescales can substantially modify the performance of a wind

power plant during its lifetime.

In this context, this work develops a methodology to obtain wind and wind power

centennial series with daily resolution at a given point, thus contributing to shed some

light on the interannual wind and wind power variability. To do this, large-scale reanalysis

pressure data were employed as predictor of wind observations (predictand) from different

wind farms over the Iberian Peninsula (IP). By employing these data series, different tools

for the statistical downscaling of wind are designed, by employing distinct Soft-Computing

techniques as Greedy and Evolutionary Algorithms. Apart from downscaling daily wind

conditions, they allow clustering local wind regimes, which is useful to better understand

the circulation mechanisms governing surface wind variability.

When cross-validating the method, the three proposed approaches perform better in

terms of daily wind speed uncertainty reduction when compared to other approaches,

such as the Circulation Weather Types (WT, Jenkinson and Collison (1977)), or the wind

signal at the NCEP/NCAR (NCAR, Kalnay et al. (1996)) reanalysis. Correlation between

estimates and observations are 10 and 30% higher than WT and NCAR respectively, while

monthly results are even more competitive. Although comparison with other works is not

straightforward, this methodology shows better performance than studies performed over

sea.

With the new methods, 139-yr reconstructions of daily wind conditions were obtained
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over different locations on the IP. Results on its variability analysis show a long-term

negative trend of wind speed over the Central Iberian Plateau (CIP) in the second half of

the 20th century, and a positive trend at the Gibraltar Strait Area (GSA). One of the most

outstanding results on wind speed variability showed for the first time different statistically

significant (p<0.05) periodicities around the 25-yr band. Decadal and annual wind speed

distributions and wind roses were computed, showing statistically significant variability

in both wind speed or wind direction. Finally, an a posteriori Principal Components

analysis on the annual clusters frequency allowed to understand which meteorological

regimes most contribute to the annual wind speed variability.

A wind power simulation from a market wind turbine (Vestas V-82 1.65 Mw, 50 Hz)

was carried out from the reconstructed wind series. This time the 56 ensemble members

of the 20thCR (Compo et al., 2011) reanalysis was employed as wind predictor. The

computed annual output power shows a very different long-term variability depending on

the location. In this way, a significant long-term power output decrease (increase) was

observed in CIP (GSA). These trends became particularly significant during the second

part of the 20th century which, if sustained in time, must be considered in a wind farm

layout or in further repowerings. On a seasonal basis, although DJF is typically the season

with the highest contribution to power output (and so occurs at CIP), GSA does not show

a significant seasonal cycle.

The availability of 139 years of output power allowed the study of the long-term

relationships existing between the variability of the annual power output and different

factors related with it. In first place, it was observed that large-scale circulation patterns

exert a remarkable impact on the wind power interannual variability. The power output

variance explained by them rises up to 70% and 45% in SON for CIP and GSA respectively.

Although the coupling is also important in JJA or DJF at CIP, this relation has been

proven as non-stationary. There, wind power showed statistically significant negative

correlations with NAO at all seasons, although no relationships were detected at GSA.

The opposite behavior of SCAND (positive at CIP, negative at GSA) is consistent with

its spatial structure over Iberia, where an anticyclonic (cyclonic) system in its negative

(positive) mode is located over Spain, explaining thus its connection to the prevailing

easterly winds at Southern Spain.

Secondly, the reconstruction of the wind speed frequencies beyond the lower (Cut-

In) and upper (Cut-Out) wind turbine technical limits showed a high consistency with

the power output results. Results on the relationship between these parameters and the

II
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output power show an overall higher influence of Cut-In than Cut-Out, for any considered

location.

Finally, the possibility to obtain a wind speed PDF for 139 years allowed the assess-

ment of the empirical relationship between the interannual variability of the annual wind

power output and that of the shape (k) and scale (c) Weibull parameters, once the PDFs

where adjusted to that function. The long-term variability analysis of these parameters

provided trends and periodicities closely related to the wind power output, specially in

the case of c. A multilinear regression between annual power and Weibull parameters was

computed for each tower. The evidenced linearity of the obtained expression reflected

the high dependence of power with these parameters (explained variances of 98%). This

approach improved the estimation of the simulated output power as compared with that

computed through the PDF fit to a Weibull distribution. This resulted in a model spe-

cially appropriate when only k and c data is available, without the need to await for a

good fit of the PDFs to a Weibull distribution.

The introduced methodology has allowed a realistic approach to the long-term wind

clustering and its subsequent statistical downscaling with daily resolution, by exclusively

employing public domain SLP reanalysis data and with a very low computational cost.

It has been shown that it can be implemented for the reconstruction of centennial wind

series at the wind farm locations, where long-term wind measures are rarely available.

This contribution on the wind and wind power variability represents a new outlook on

their variational analysis, specially appropriated within the study of the multidecadal

variability range of the wind power performance.

III





Resumen

Introducción

La variabilidad de la producción de enerǵıa eólica comprende diferentes escalas de

tiempo. Si bien existe un amplio conocimiento ya sea sobre la variabilidad a corto plazo

o las condiciones climatológicas de viento y su enerǵıa eólica correspondiente, el estudio

de la variabilidad desde la escala interanual a la multidecenal se encuentra todav́ıa en sus

primeras etapas. Esto puede atribuirse a diversas razones, como la relativamente reciente

importancia de la industria de la enerǵıa eólica, la relevancia de escalas de tiempo más

cortas o las dificultades en la obtención de series temporales de viento suficeintemente

representativas. Sin embargo, escalas de variabilidad desde la interanual a la multidecenal

pueden modificar sustancialmente el rendimiento de un parque eólico durante su vida útil.

Objetivos

En este contexto, el objetivo general de esta tesis es analizar la variabilidad a largo

plazo de la enerǵıa eólica en determinados puntos de especial relevancia energética, me-

diante la reconstrucción de sus condiciones de viento a lo largo de más de cien años.

En el proceso de consecución de este propósito, se ha pretendido asimismo la obten-

ción de un método objetivo para la clasificación de la circulación a escala sinóptica sobre

el punto de interés y el downscaling estad́ıstico de las condiciones locales de viento a

escala diaria. Ello permitirá reconstruir las condiciones diarias del viento a lo largo de

un peŕıodo secular, lo que posibilitará el análisis de su variabilidad a largo plazo o escala

multidecadal. Finalmente será posible, para el mismo peŕıodo, la simulación de la poten-

cia de salida anual generada por un modelo de mercado de aerogenerador, permitiendo a

su vez el análisis pormenorizado de su variabilidad interanual y multidecadal.
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Métodoloǵıa

Para el diseño de un clasificador objetivo de la circulación sinóptica y su consiguiente

empleo como predictor en un downscaling estad́ıstico se emplearon datos de presión de

reanálisis a gran escala como predictor, y observaciones del viento de diferentes parques

eólicos sobre la Peńınsula Ibérica (IP) como predictando. De esta forma se llevaron a cabo

tres aproximaciones diferentes mediante el empleo de distintas técnicas de Soft Computing,

como algoritmos voraces (greedy) y evolutivos.

Dichos métodos permiten la agrupación del vientos local en una serie de clases o tipos

de viento, resultando aśı útiles para comprender mejor los mecanismos dinámicos que

rigen la variabilidad del viento superficial. La obtención de una clasificación diaria acorde

a estas clases permite la esitmación de las condiciones de viento en aquellos d́ıas o peŕıodos

sobre los que sólo se disponga de información sobre la circulación a escala sinóptica.

Aportaciones Fundamentales

La validación cruzada del método revela que las tres desarrolladas reducen la incer-

tidumbre de la velocidad del viento diaria en comparación con otros métodos, como la

circulación de los tipos de tiempo (WT, Jenkinson and Collison (1977)), o la señal de

viento en el reanálisis NCEP / NCAR (NCAR, Kalnay et al. (1996)). La correlación

entre las estimaciones y observaciones son 10 y 30% mayores que WT y NCAR respec-

tivamente, mientras que los resultados mensuales son aún más competitivos. Aunque la

comparación con resultados de otros trabajos no es sencilla, esta metodoloǵıa muestra,

por ejemplo, un mejor rendimiento que algunos estudios realizados sobre océano.

Los nuevos métodos se emplearon para la reconstrucción de 139 años de las condi-

ciones de viento diario en diferentes lugares de la IP. Los resultados en el análisis de la

variabilidad a largo plazo muestran sobre la Meseta Ibérica Central (MIC) una tendencia

de la velocidad del viento negativa en la segunda mitad del siglo 20, aśı como una ten-

dencia positiva en la Area del Estrecho de Gibraltar (AEG). Uno de los resultados más

sobresalientes revela periodicidades estad́ısticamente significativas (p<0.05) alrededor de

la banda de variabilidad de los 25 años, un resultado que no se hab́ıa observado previa-

mente y que ha sido constatado recientemente mediante series independientes a las aqúı

empleadas (Barriopedro et al., 2013). Se calcularon distribuciones de velocidad y rosas

de viento anuales y decadales, mostrando diferencias estad́ısticamente significativas tanto

entre diferentes décadas como en años dentro de una misma década. Por último, un Análi-

sis por Componentes Principales de la frecuencia anual de las clases obtenidas permitió

VI
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entender qué tipos de viento contribuyen en mayor medida a la variabilidad anual de la

velocidad del viento.

A partir de las series reconstruidas de viento se llevó a cabo la simulación de la enerǵıa

eólica producida por un modelo de aerogenerador espećıfico (Vestas V-82 1,65 Mw, 50 Hz)

para los lugares considerados. Para ello se utilizaron los 56 miembros del reanálisis del

siglo XX (Compo et al., 2011) como predictores. La potencia de salida anual muestra una

variabilidad a largo plazo muy diferente dependiendo de la ubicación. De esta manera,

se observó una tendencia negativa (positiva) en MIC (AEG). Estas tendencias resultaron

particularmente significativas durante la segunda parte del siglo XX, lo cual, de manten-

erse en el tiempo podŕıan implicar, especialmente en AEG, la necesidad de considerarlas

en el diseño del parque eólico o en próximos repowerings. Atendiendo a la variabilidad

interestacional, aunque DJF suele ser la estación de mayor contribución a la producción

de enerǵıa (y aśı sucede en MIC), AEG no muestra un ciclo estacional significativo.

La disponibilidad de 139 años de potencia de salida permitió el estudio sobre la relación

a largo plazo existente entre la variabilidad de la potencia anual generada y diferentes fac-

tores relacionados con ella. En primer lugar, se observó que los patrones de circulación a

gran escala ejercen un impacto notable en la variabilidad interanual de la enerǵıa eólica.

Aśı, durante SON estos patrones explican un 70% y un 45% de la varianza de la potencia

en MIC y AEG respectivamente. Aunque en MIC el acoplamiento también es impor-

tante en JJA o DJF, esta relación se ha manifestado no estacionaria. Alĺı, la enerǵıa

eólica mostró correlaciones negativas estad́ısticamente significativas con la NAO en todas

las estaciones, aunque no se detectaron relaciones en AEG. El comportamiento opuesto

del patrón SCAND (positivo en MIC, negativo en AEG) es coherente con su estructura

espacial sobre Iberia, donde tiene lugar un sistema anticiclónico (ciclónico) en su modo

negativo (positivo), lo que explica su conexión con los vientos predominantes del este en

el sur de España.

En segundo lugar, la reconstrucción de la frecuencia de velocidad por debajo (Cut-

In) y por encima (Cut-Out) de los ĺımites técnicos de funcionamiento del aerogenerador

mostró un alto nivel de coherencia con los resultados de la salida de potencia. Los resulta-

dos muestran una mayor influencia de estos parámetros sobre MIC, estando Cut-In más

fuertemente relacionado con la señal de potencia de enerǵıa que el Cut-Out en cualquier

emplazamiento.

Por último, la posibilidad de obtener una distribución de velocidad (PDF) para 139

años permitió la evaluación de la relación emṕırica entre la variabilidad interanual de
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la producción de enerǵıa eólica y la de los parámetros de forma (k) y escala (c) de la

distribución de Weibull. El análisis de la variabilidad a largo plazo de estos parámetros

proporcionó tendencias y periodicidades estrechamente relacionados con las de producción

eólica, especialmente en el caso de c. A partir de la regresión multilineal entre la potencia

anual y dichos parámteros se evidencia la alta dependencia de la primera con los últimos

(con varianzas explicadas del 98% no solapadas). Este modelo mejora la estimación de

la potencia de salida simulada en comparación con otras formas de calcular la potencia,

como el ajuste de la PDF a una distribución de Weibull. Este hecho da como resultado

un modelo especialmente apropiado para situaciones en las que sólo se dispone de datos

de k y c, sin necesidad de esperar a que exista un buen ajuste de la PDF anual a una

distribución de Weibull.

Conclusiones

La metodoloǵıa introducida permite la clasificación de las condiciones diarias de la cir-

culación sinóptica, pudiendo esta ser empleada en el downscaling del viento a resolución

diaria, para ello empleando datos de presión de dominio público mediante técnicas Soft-

Computing. Los métodos obtenidos se muestran capaces de ofrecer un gran rendimiento

en la estimación de las condiciones de viento local a resolución diaria, cuando se lo com-

para con el obtenido por dos aproximaciones de referencia como el viento del reanálisis

NCEP/NCAR v.2 o el metodo de los tipos de tiempo (WT).

La implementación de estos métodos en la reconstrucción de las condiciones de viento

diarias a lo largo de 139 años aśı como la simulación de la potencia eólica generada por

parte de un aerogenerador real revelaron por primera vez la existencia de periodicidades

estad́ısticamente significativas en torno a la banda de variabilidad de 25 años para ambas

regiones. Dichas series mostraron asimismo la existencia de un comportamiento contrario

entre ambas zonas consideradas, con una tendencia positiva (negativa) en AEG (MIC)

durante la segunda mitad del siglo XX. Se observó un fuerte acoplamiento de la potencia

anual a los principales patrones teleconectivos de la dinámica a gran escala, especialmente

en MIC mediante la NAO y el patrón escandinavo. Finalmente, se ha verificado la validez

de un modelo emṕırico para la estimación de la potencia anual contando unicamente con

los parámetros de la distribución de Weibull, sin necesidad de esperar a que dicha curva

se ajuste correctamente a la distribución de velocidades real.
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Chapter 1

Introduction

T
he kinetic energy of an air mass has been used by mankind since ancient times to sat-

isfy different mechanical needs. It has been so since the first vestige of sailing, dated

in 5000 BC in Mesopotamia. That technology derived into more sophisticated elements as

rotating sails over an horizontal axis for water pumping (India, 4th century BC) or grain

mills (Persia, 2nd century BC). Wind energy technological development remained latent

until 1890, when in Denmark the first wind turbine was designed to generate electricity

(Mathew, 2006). However, from the 1940’s this technology has experienced a rapid and

continuous evolution (Ackermann et al., 2005). Thus, from the mid 1990’s the genera-

tion of electricity from wind power began to represent a real alternative as a large-scale

energy source. As an example, in Spain wind energy supplied a monthly maximum of

26% of electricity share (April), overcoming 61% of the production at hourly scale (REE,

2012). In 2013, more than 21% of the electricity consumption was provided by wind

power, becoming for the first time the largest year-round electricity source in the country

(REE, 2013). These production levels place wind power as a real solution for the energetic

problem, increasingly fenced by climate change and the exhaustion of fossil fuels.

The planning of a wind power project must take into account the different variability

scales of the potential wind power output that real wind turbines would experiment at

the selected site. As it will be shown along this introduction, while there exists a wide

bibliography on the short-term variability (hours) or the climatological conditions, the

study of the long-term wind power variability (at decadal and multidecadal scales) and
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1.1. Wind Power and Wind Conditions

their governing mechanisms are still in an early phase of development. This is mostly

attributable to the difficulties in obtaining wind power measurements in a given location.

Thus, most of the decision making process is based on data sets covering a few years. This

work develops a methodology to estimate wind power variability at multidecadal scales,

thus contributing to overcome this type of problems.

1.1 Wind Power and Wind Conditions

Usually, when wind farms are planned no wind turbines have been previously installed

in the scheduled location. This means that probably records of measured wind turbine

output power are not available or, at best, they comprise only a few years of data. Thus,

in order to analyze its long-term behavior a power-related variable must be considered.

Variables like air density are related with the temporal rate of kinetic energy E extractable

from a moving air mass of density ρ through a certain area S. However, its wind speed

v is the primary meteorological variable involved in it (power, P), as it is shown through

the definition of kinetic energy:

P = dE/dt =
1

2
ρSv3 (1.1)

It must be pointed out that the real efficiency of modern wind power turbines make

that in practice the value of usable wind power through a wind power device is better

related to the square of wind speed (Anderson and Bose, 1983). In any case, since analyz-

ing multidecadal variability of wind power observations results unfeasible in most cases,

considering long-term wind variability at the location of wind power interest results an

appropriated approach to infer wind power conditions. In this way, different procedures

that simulate wind power by considering wind speed conditions have been implemented

(Şahin and Aksakal, 1998; Celik, 2004; Sailor et al., 2000). Among them, Veigas and

Iglesias (2012) or Earl et al. (2013) perform a long-term wind power variability approach

by considering wind observations from weather stations.

Although long range time series of wind observations can span more than a hundred

years back at certain meteorological stations, there exists a high probability that wind

observations are not available exactly at the point where a wind turbine is to be placed.

Since the high spatial variability of wind can make that wind conditions are extremely

different within a distance of a few hundred of meters (Pérez-Landa et al., 2007; Mott and
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Lehning, 2010; Etienne et al., 2010), the need to account for precise in situ information

becomes critical. By assuming that surface wind is the outcome of the interaction between

local and large-scale mechanisms, one solution to the lack of observations can be attained

by approaching local wind conditions from data representative of higher scales. The

different tools to perform these approach are based on their capacity to detect, retain and

harness these interactions.
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1.2. Scales of the Atmospheric Dynamics

1.2 Scales of the Atmospheric Dynamics

The atmospheric dynamics allows differentiating among different temporal and spatial

variability scales (Fiedler and Panofsky (1970); Orlanski (1975), Fig. 1.1). However,

the interactions among those scales, specially under baroclinic conditions (Tribbia and

Baumhefner, 2004), can show a high level of complexity (McFarlane, 1987; Cebeci and

Bradshaw, 1977), resulting in non-linear and non-stationary relationships among scales.

An accurate comprehension of these interactions can allow a better characterization of

the dynamics occurring at a certain scale where its variability is only partially known (Cai

and Mak, 1990; Katsoulis, 1996).
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Figure 1.1: Spatiotemporal Scales of the atmospheric circulation (adapted from Orlanski
(1975)).
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In the case of wind, its local variability at a certain point with a wind power relevance

can be properly described by studying how the atmospheric circulation at synoptic scale

interacts with different local mechanisms (Whiteman and Doran, 1993; Garratt, 1994;

Jungo et al., 2002). Nevertheless, before relating both scales an exhaustive knowledge of

the wind variability within each scale is required. The next two sections describe the main

particularities of the large-scale (synoptic) wind circulation over the region considered for

this thesis, the Iberian Peninsula, as well as the main processes involved in the microscale

(local) dynamics.

1.2.1 Synoptic Circulation over the Iberian Peninsula

The Iberian Peninsula (IP) is the area of study of this work. The highest persistence

mode in the IP dynamics is characterized by the preponderant influence of the Azores

anticyclone, generally producing a weak flow when placed over the IP. The disturbances

of this steady-state of variability are mainly ruled by the confluence of the climatological

conditions from the Atlantic Ocean (AT) and the Mediterranean basin (MED). Other

remote regions can also have an impact over the IP at specific moments, evidenced through

large-scale teleconnections at both regional (Scandinavia or Russia (Barnston and Livezey,

1987)) and planetary (ENSO, (Rocha, 1999)) scales.

The synoptic dynamics over AT is characterized by hosting a clearly defined storm

track over mid-latitudes. This semi-permanent flow is conditioned by a moderate south-

west to north-east component caused by the Gulf Stream (Joyce et al., 2009), as well as

other phenomena as baroclinic processes (Hoskins et al., 1985), linear instability (Zhang

and Held, 1999), downstream development (Chang, 1993), barotropic modulation (Lee,

1995), and diabatic heating (Chang et al., 2002). This path of instability systems exerts

an intermittent influence over the IP (Seierstad et al., 2007), with great persistence during

winter, in turn almost nonexistent in summer (Trigo et al., 2000; Rogers, 1997), and its

incidence entails moderate to high winds and a clearer relationship between synoptic

conditions and local wind.
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1.2. Scales of the Atmospheric Dynamics

Figure 1.2: Extended winter (October-March) climatology of sea level pressure (SLP by
shaded colors, hPa) and 10m wind (arrows) fields during (a) positive and (b) negative
phases of NAO. Averaged period: 1959-2007. Data for SLP and W10 were obtained
from the ERA-40 reanalysis (Uppala et al., 2005) for the period 1959-2002 and from the
ECMWF analysis for the period 2003-07. Data for the NAO index were obtained from
the NOAA/CPC (adapted from Jerez et al. (2013)).

The North Atlantic Oscillation (NAO, 2003) represents the best descriptor of the mid-

and low-frequency variability over the Atlantic. It influences the storm track and results

a useful pattern to describe the intra and interannual variability of the AT influence

on the PI. This descriptor measures fluctuations in pressure anomalies on the dipole

formed by the depression of Iceland and the Azores anticyclone. In its positive phase
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it reflects a northeastward-oriented storm track, with high pressure conditions in the IP

and Mediterranean Europe. In its negative phase, however, the southward excursion

of the Icelandic depression causes the storm track deviation in that direction, reversing

the rainfall conditions between northern and southern Europe and leading to negative

SLP anomalies over the IP. Sometimes, the predominant role of the NAO is replaced by

the Eastern Atlantic (EA) pattern, with a southern dipole spanned towards the tropics,

regulating the IP precipitation in spring (Rodriguez-Puebla et al., 1998). Jerez et al.

(2013) performed a study of the impact of NAO on wind speed over the IP (winter),

observing a negative phase associated to winds 10-15% higher than at the positive phase,

as can be seen in figure 1.2.

As for the MED, its high amount of latent heat retention and markedly irregular coastal

topography (Lionello et al., 2006a) make this region actively involved in the circulation

regime over the PI. In this environment, the storm track during the extended winter

penetrates between the Alps and Pyrenees as an intense flow on the north-eastern IP

and the Balearic Islands, reinforcing the semi-stationary genoese depression (Trigo et al.,

2000). In addition, during this season a teleconnective pattern centered over Scandinavia

(SCAND) seems to be a good descriptor of the cyclonic circulation over the Western

Mediterranean basin (Trigo et al., 2008). During spring and summer the genoese low

pressure system induces cyclogenesis precesses, reinforced by the thermal diurnal forcing

at the western are of MED (Trigo et al., 2002). In summer, however, the great amount of

acquired power in the form of sensible and latent heat promotes the arise of mesoscalar

low pressure systems. These thermal depressions, ruled by the daily thermal gradient,

induce in turn convective circulation patterns over northern Africa and the eastern half

of the IP (Lionello et al., 2006b).

Under the influence of these factors of so different nature, the synoptic wind conditions

on the IP are characterized by a specially high variability and seasonality. The region

receives the highest energy input between NW and SW directions (Gastón et al., 2008),

associated with the storm track penetrating direction during the extended winter (Oct-

May), when it presents a significantly negative correlation with the NAO (Jerez et al.,

2013), becoming almost non-existent in summer. A second synoptic-scale wind pattern on

Iberia with N and NW flows can be associated with positive pressure anomalies over the

Atlantic (Garćıa-Bustamante et al., 2012), enhancing the flow over the extreme eastern IP

(Mistral and Tramontana) and the Gibraltar Strait (Bormans et al., 1986), there occurring

with a NE and E component (Jerez and Trigo, 2013). Although it can take place year-

round, this is the only example of high flow pattern over the IP in the summer months,
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1.2. Scales of the Atmospheric Dynamics

when it appears associated with a sNAO (summer NAO, Bladé et al. (2012)) positive

index. Figure 1.3 shows the NAO impact on the Iberian wind (March), evidencing the

consistence between the Gibraltar Area positive impact and a positive pressure anomaly

over the Atlantic. A variation of this pattern occurs when the pressure gradient over the

Ebro valley is maximized and the cold air advection from the Atlantic generates a passage

of strong winds (de Pedraza and Nacional, 1964), mainly in autumn and winter (cierzo).

NAO impact on wind speed (March)

Figure 1.3: NAO impact on wind speed (March): differences in mean wind speed be-
tween negative and positive phases of NAO, statistically significant at the 10% level and
supported by significant temporal correlations between wind speed and NAO series. Gray-
shaded contours depict the differences expressed as a percentage. The superimposed white
dots indicate a signal-to-noise ratio that is below 0.75. Notice the differential signal around
the Gibraltar Strait area as a contrast to the rest of the IP (adapted from Jerez et al.
(2013)).

The great diversity within the synoptic-scale circulation over the IP, together with a

high mesoscale variability and its complex terrain make this region particularly interesting

when analyzing the variability of surface wind.

1.2.2 Wind Forcings at Local Scale

When the spatiotemporal scale of the atmospheric circulation is reduced, various ele-

ments with a local nature progressively take a stronger role and significantly modulate
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the atmospheric dynamics shown at larger scales (Cebeci and Bradshaw, 1977). At an

altitude lower than 150 m (average maximum height of the turbines) the flow is perma-

nently within the Planetary Boundary Layer (PBL), a layer characterized by hosting the

dynamic processes originated at the surface (Schlichting et al., 1968). Fundamentally, two

principles of local action can influence the circulation. On one hand lie those processes

with a thermodynamic nature, like evapotranspiration caused by differences in radiation

and humidity. Since they are highly coupled with the solar radiation incidence, they usu-

ally show a remarkable 24-hour cycle (Holtslag and De Bruin, 1988), usually accompanied

by higher frequency cycles until the one second band (Fiedler and Panofsky, 1970). On

the other hand, other mechanisms caused by the surface orographic conditions, entail a

permanent (sea, land) or quasi-permanent (ice sheet, deciduous forests) forcing on wind

(Bellecci et al., 2001).

The turbulent flux originated by diabatic heat can provide a vertical component to

the flow by forming micro convection cells or eddies, specially under unstable atmospheric

conditions in the PBL. The size of these elements will depend, among other factors, of

the radiation over surface and the amount of water vapor which can be extracted, either

by vegetal or marine evapotranspiration (Dunst, 1982). These elements, have a great

influence on the circulation characteristics transmitted from higher levels (free or stratified

atmosphere), promoting its deceleration due to the energy dissipation caused by differences

in humidity and temperature. In addition, evapotranspiration and condensation processes

can generate pressure differences capable of modulating the circulation characteristics

(Makarieva et al., 2010). Since these processes depend on the soil composition and its

use, these will constitute a factor of influence on the local dynamics, specially if there

exists a high water content, depending thus on the crop or land use (Mahrt and Ek,

1993).

Regarding the mechanical forcings, the orography is one of the main reasons for the

spatial variability of the surface wind, which is higher than other meteorological variables

such as temperature, humidity or pressure. Thus, local topography will be able to modu-

late the surface circulation intensity and direction, especially in areas with significantly

irregular conditions as mountain ranges, canyons, cliffs or straits (Corby, 1954; Wood,

2000). In turn, the roughness of the terrain constitutes a local feature with a substantial

influence on the flow intensity. This factor, which can be considered as the microscale to-

pography, plays a key role in the conservation or dissipation of momentum within the near

surface fluid. Since wind speed must be zero at the ground level according to mass con-

tinuity, roughness plays a major role in the increase that speed experiences with height.
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The most extended approximations of this increase are the logarithmic (Larsén et al.,

2012) and the power (McIntyre et al., 2011) approaches. The first one is based in the

theoretical description of the wind shear and results more appropriate at neutral atmo-

spherical conditions, as the latter is an empirical law which results more suitable during

stable or instable conditions (Kubik et al., 2011).

Thus, there is a big amount of mechanisms modulating local wind conditions. However,

most of them are not detectable by a synoptic scale atmospheric model, since they have a

scale smaller than the spatial resolution of these models. Hence, if the surface wind is to

be estimated, an accurate characterization of the local variability will be required in order

to establish robust relationships among the different scales. The most employed methods

for solving these local processes at high resolution consist on employing the information

from the coarser scale either through specific resolution modules -pbl (Fan and Sailor,

2005), microphysics (Hong and Lim, 2006), floor model (Verseghy, 1991), etc- or either on

dynamic (Baik et al., 2003; Skamarock et al., 2005) or statistical (Zorita and Von Storch,

1999; Jakob Themeßl et al., 2011) downscaling techniques. In the next section these and

other methods are detailed in the context of wind power industry applications.

1.3 Wind Variability Scales and its Application to

the Wind Power Industry

The wind speed at a given point is the result of the interaction of its variability at all time

scales. However, certain frequencies of its spectrum present energy density peaks, which

can be associated with different aspects in wind power research (Figure 1.4).

In the short-term wind speed variability different spectral density energy peaks can

be observed, at the one-minute and one-day frequency bands (Van der Hoven, 1957). In

turn, in the mid-term variability a maximum is found on the four-day frequency. Finally,

the frequency associated with the annual cycle shows a high prominence (Houghton and

Carruthers, 1976a). However, the references to surface wind cycles with frequencies lower

than the annual range are scarce (Barriopedro et al., 2013). Throughout this temporal

variability spectrum, the wind industry application scope is large and diverse. Four main

timescales can be distinguished:
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Long-Term 

Variability

Figure 1.4: Energetic spectral density model of wind speed (modified from Houghton and
Carruthers (1976b)).

• Intra-daily Variability (very short-term)

The band with periods lower than 24 hours corresponds mostly to the turbulent

effects of surface dynamics take place. However, the electrical grid system can not

admit a power fluctuation beyond a certain threshold due to possible instabilities in

the electricity supply system. Thus, the knowledge of the variability and wind fore-

cast in this range is vital from a purely operational perspective. Usually, the power

producer must submit to the electric distribution company an hourly-resolution es-

timate of the generated power, with the corresponding penalty for the producer if

this estimate is wrong. In order to optimize the short-term wind prediction dif-

ferent statistical methods have been implemented during the last decade, such as

Artificial Neural Networks (ANN, Cadenas and Rivera (2009); Salcedo-Sanz et al.

(2009)), Support Vector Machines (Salcedo-Sanz et al., 2011) or Kalman Filters

(Giebel et al., 2011; Crochet, 2004).

• Inter-daily Variability (sort-term)

The four-day cycle of the wind variability is associated with the average duration of

cyclonic synoptic-scale weather processes in mid-latitudes. The economic value of

this range forecasts lies on the ability to anticipate meteorological events which can

pose a danger for the structural safety of the facility, allowing preventing measures
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such as stopping turbine operations. Other situations that can entail a stopping

process can occur when winds weaken until falling below the wind turbine opera-

tion minimum speed (Cut-In). By attaining an accurate forecasting, operational

and maintenance shutdowns can be planned in those situations, thus minimizing the

power loss. This level of variability is captured by the numerical models, which are

usually enhanced with different statistical resources (Galanis et al., 2006; Karinio-

takis et al., 2006; Louka et al., 2008).

• Intra-annual Variability (mid-term)

The sub-annual changes in the surface flow has been analyzed through the monthly

and seasonal teleconnective impact of main large-scale patterns as ENSO (Harper

et al., 2007) or NAO (Brayshaw et al., 2011). Since wind power electricity volume

represents a great ratio on the electricity quotation, the analysis of these variability

scale is particularly relevant for commercial operators of the energy sector, which

have to bid in advance for contracts in the electricity market auctions, with a quar-

terly frequency in most countries. Different works have been performed at these

variability range, as those on the comparison of seasonal wind variability between

hemispheres (Sandwell and Agreen, 1984) or those analyzing its implications on

wind production (Weisser and Foxon, 2003).

• Inter-annual and longer Variability (long-term)

The climatic characteristics of wind has been considered since the beginning of

the wind industry as the key element in deciding the location of a wind farm. In

this regard, wind atlases have been computed through the implementation of in

situ observations or reanalysis data into models like WAsP (Wind Atlas Analysis

and Application Program, Mortensen et al. (1993)) or Regional Circulation Models

(RCM Yim et al. (2007); Lo et al. (2008); Byrkjedal and Berge (2008)). There, the

main objective is to estimate the spatial distribution of the average values of wind

conditions (see Fig. 1.5 as an example). However, the low frequency wind variability

has been scarcely considered. Although several contributions provide estimations on

wind conditions at the end of the 20th century under different forcings from climate

change scenarios (Sailor et al., 2000; Najac et al., 2009; Pryor et al., 2005a), the

multidecadal wind variability in the past has been addressed in few works (Ekström,

2002; Pryor and Barthelmie, 2003; Garćıa-Bustamante et al., 2012; Earl et al., 2013).

The following section discusses in more detail this type of variability.

12



1. Introduction

Figure 1.5: Wind resource map for Europe, with a resolution of 200m for a 80m height
(Adapted from AWS Truepower (2012).

1.4 The Long-Term Wind Variability

The wind industry has very recently paid attention to the wind variability affecting the

long-term perspective of the existing or planned facilities. This need rises from the long

planned time range of a wind project, where the wind turbines lifetime can be guaranteed

up to twenty-five years. In addition, the project can be continued beyond that time

through the wind repowering, consisting on the progressive renewal of wind turbines for

new and more advanced and efficient models. This time scale, covering from inter-annual

to centennial changes, will be referred hereafter to as multidecadal.

The available information from wind variability at multidecadal scales depends on both

the length and the temporal resolution of the data series. Its resolution will determine the

maximum analyzable frequency, while its length will determine the minimum variability
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frequency that can be considered. In this sense, the study of the multidecadal changes of

wind requires time series that at least double the time range length of the timescale to

be analyzed, with a resolution in turn high enough to study inter-annual changes. Next,

different ways to obtain a detailed wind time series from a given point of wind power

relevance are described.

1.4.1 Observations

The most immediate possibility to analyze the long-term behavior of wind is by consider-

ing observations (Baker et al., 1978; Martner and Marwitz, 1982; Wendland, 1982; Archer

and Jacobson, 2003; Veigas and Iglesias, 2012). However, these contributions are usually

limited to assess the climatological wind capacity of the site without analyzing its va-

riability. Earl et al. (2013) represents an exception since individual cases of inter-annual

variability in the UK are analyzed throughout 30 years from wind observations at forty

weather stations.

As it has been mentioned before, the high spatial and temporal wind variability adds

difficulties to this approach. The relatively recent introduction of quality wind measure-

ments compared with other variables such as temperature or pressure, and to the low

probability that a location with a high wind power interest holds a meteorological mea-

suring station beforehand makes that usually wind observations can not be considered as

representative from a multidecadal variability perspective. In addition, even considering

a flat terrain, and if observations existed, they must undergo a quality control (Eischeid

et al., 1995; DeGaetano, 1997), with the possibility of not gathering the expected con-

ditions. This requires in situ observation campaigns with a duration between one and

five years. These campaigns, although able to provide a first approximation of the wind

regime at the site, are insufficient for a multidecadal analysis.

Useful tools are the micro-scale models like WAsP (Landberg et al., 2003), which only

need nearby observations to estimate the surrounding wind conditions. They allow map-

ping wind regimes in a simple way from the extrapolation of observations under roughness

and topography forcings. Despite being wind data-dependent methods, they provide a

good performance when a high spatial density of observations is available (Hošek et al.,

2004; Landberg et al., 2003). Although this kind of models solves the dynamical governing

equations in a simplified way, they result a competitive alternative to analyze the spatial

variability of the average wind regime in a given area, reflected through a so-called Wind

Atlas (Troen and Lundtang Petersen, 1989; Mortensen et al., 2006, 2012). An alternative
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to these models has emerged during last years through the CFD (Computational Fluid

Dynamics, Van Wachem et al. (2001)) models thanks to the increasing computing power.

Contrary to WAsP, these tools are able to solve the governing flow equations in a very

limited space domain (Launder et al., 1975; Periera et al., 2010).

1.4.2 Numerical Models

Thanks to advances in computational capacity, the limitations due to the scarcity of

observations can be partially mitigated by developing models based on the numerical

integration of the equations of motion for a given time period and space resolution. Simple

models of synoptic scale weather forecasting began its development in the 50s (Aspray,

1990). Parallel to them, the first climate models, with very low resolution (35000 km) but

globally run (Global Climate Models, GCM), started its implementation (Phillips, 1956).

These approaches at different scales evolved for decades, up to offer higher performance

solutions with different purposes, either meteorological (NAM, 2006, GFS, 1989, around

40 km resolution) or climatic (CESM,2013, HadCM3, 2005, 100-200 km res.). Although

numerical methods were primarily used in the development of predictive models, in recent

decades they have been implemented for a posteriori analysis, through different reanalysis

projects. They recalculate the dynamical conditions of the atmosphere by considering

as input all kind of observed meteorological data -stations, balloons, radiosondes, etc-

and being forced to them through data-assimilation procedures. This allows to study

the past weather conditions through the increase and standarization of the spatial and

temporal resolution of the considered inputs. Thus, several projects that offer gridded data

every six hours have been developed (Kalnay et al., 1996; Uppala et al., 2005), including

those covering centennial periods (20CR2, 2011 ; HadSLP2, 2006). Finally, Pryor and

Barthelmie (2003) provide a detailed analysis for Scandinavia by assessing the long-term

wind variability and its influence in wind energy from the NCEP/NCAR (Kalnay et al.,

1996) reanalysis wind outputs.

In general, such models are able to provide an extensive spatial coverage, but its reso-

lution is insufficient for analyzing microscale wind conditions, being necessary to consider

alternatives which reduce the spatial scale (i.e. downscaling).
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1.4.3 Downscaling Techniques

In order to increase the spatial resolution of the variables obtained from GCMs at a

particular region, different dynamical downscaling techniques have been developed since

the nineties (von Storch et al., 1993; Wilby and Wigley, 1997). Regarding wind, Frey-

Buness et al. (1995) and others (Bergström, 1996; Sandström, 1997) run a mesoscalar wind

model from defining a steady-state of the atmosphere in a number of clusters. However,

the most extended downscaling technique consists on improving the resolution of GCMs by

approaching the flow equations through the finite differences method (Richardson, 1911)

at a certain number of nested domains, where the boundary conditions are obtained

from the immediately larger domain previously resolved. The implementation of these

techniques in addition to the increased computing capacity and the implementation of

resolutive modules of specific problems (microphysics, PBL, soil model, etc) conform the

Regional Circulation Models (RCMs), which allowed to increase the spatial resolution

until less than 10 Km. A wide amount of works have been performed with RCMs to

analyze a given forcing or the variability of a given feature at a specific area or height.

Numerous contributions perform a dynamical downscaling focussing on wind, either at a

localized area (Jiménez et al., 2012; Jerez et al., 2013; Jerez and Trigo, 2013) or a wider

region (Walter et al., 2006; Kanamitsu and Kanamaru, 2007).

In general, the dynamical downscaling models perform well when describing the mesoscale

circulation, but their spatial resolution of several kilometers show some troubles in ex-

plaining the mechanisms ruling the surface wind in a specific location (Grotch and Mac-

Cracken, 1991; Gates et al., 1996; Huth, 1999). This is evidenced in the troubles when

describing features as abrupt roughness changes (Hahmann et al., 2012), or when results

are employed as input for microscale approaches (Badger et al., 2010).

The Model Output Statistics, (MOS 1972) has been a widely used statistical technique

for the treatment of the atmospheric data for the computation of mid-term predictions

(Sailor et al., 2000). It was used for the preparation of the post-processing of numeri-

cal prediction models, and combines the outputs of the dynamical model with statistical

estimates (Klein and Glahn, 1974). The MOS uses numerical forecasts based on the at-

mospheric physics to predict the large-scale climate patterns and then uses equations of

statistical regression to resolve details of the surface at a smaller scale, obtaining a per-

formance usually much higher than that of any option executed separately. Following a

similar procedure, the so called empirical or statistical downscaling methods (SD) have

been developed in recent decades. These methodologies apply the statistical relationships
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observed between flow characteristics at different variability scales. These resources as-

sume these interactions as valid for other periods where no information on the smaller

scale is available. This makes possible to increase the resolution at a specific site and time

range, for which only a limited period of in situ observations are available.

Since they do not need to resolve the governing equations of flow, SD proceed at a very

low computational cost. Thus, they result particularly appropriate when solving complex

relationships between scales. In this way, such techniques are appropriate for problems in

which dynamical computing does not show a high performance, either because the local

scale encloses a special complexity (Salameh et al., 2009; van der Kamp et al., 2012),

the variable to be studied does not share an explicit relationship with the larger-scale

dynamics (as happens with phenological series (Matulla et al., 2003)), the reaction time

needed is particularly short (as in the short-term estimations described in Section 1.3) or

the period to be simulated is particularly large (Garćıa-Bustamante et al., 2012).

To perform a statistical downscaling two sets of time series belonging to different

sources are needed. On the one hand a series of the variable to be estimated at local scale

must be considered (predictand). On the other, a data set of one or more series of larger-

scale variables with some predicting value (predictors). These two sets need to match for

a period large enough so that the existing relationships between them can be identified.

This process is known as the calibration or training of the predictor. After this, and

before the retained relationships can be extended to periods where only predictor data is

available, the method will have to be cross-validated, within a test period not previously

employed at the train.

The way to relate the two pairs of data within the training has adopted a wide amount

of forms. For instance, statistical downscalings have been developed from canonical corre-

lation analysis (CCA, Von Storch and Zwiers (2001)) to estimate local values of tempera-

ture (Barnett and Preisendorfer, 1987) and precipitation (Busuioc et al., 2008), singular

value decomposition (SVD, Bretherton et al. (1992)) or Artificial Neural Networks (ANN,

Crane and Hewitson (1998); Trigo and Palutikof (1999); Cavazos (2000) while others have

estimated temperature and precipitation by linear statistical (Hanssen-Bauer et al., 2005)

or stochastic (Hundecha and Bárdossy, 2008) procedures. In turn, methods on circula-

tion patterns clustering have been applied to analyze temperature (Hewitson and Crane,

1992; Hewitson, 1994; Schubert and Henderson-Sellers, 1997), precipitation (Noguer, 1994;

Corte-Real et al., 1995; Saunders and Byrne, 1996) and sea level variability (Heyen et al.,

1996).
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The implementation of a statistical downscaling of wind is particularly appropriate to

analyse the long-term at a given site, a problem where the computational cost is specially

penalized under a dynamical approach. As it will be seen in the next section, there exist a

wide number of papers which present different methods on statistically downscaling wind

(either correlation- or regression-based). However the approaches that focus on applying

it to analyze its multidecadal variability is rather sparse (Palutikof et al., 1992; Ekström,

2002; Garćıa-Bustamante et al., 2012).

1.5 The Statistical Downscaling of Wind

1.5.1 The design of an appropriate predictor for the local wind
speed

The development of an appropriate predictor from the large-scale circulation for describing

the local wind conditions at a specific point results in critical relevance in order to obtain

an accurate model for the surface wind.

A major trouble in the training process of a statistical downscaling, specially when

considering non-linear processes, is the risk that the large-scale predictor experiences

overfitting (Hawkins, 2004; Babyak, 2004). Should this happen, it would mean that

the predictor has assimilated the characteristics of the local wind in a too high level

of detail (Salcedo-Sanz et al., 2005). Hence, in absence of a predictand it will describe

very accurately those situations which resemble the processes experienced during the

training, but it will not be able to reproduce properly the overall wind conditions. On

the other hand, a too generalistic algorithm (i.e. linear regression) can result in a low

performance when estimating the surface wind since wind conditions usually can not

be considered linear. In this way, an efficient predictor has to be able to compromise

accuracy with generality. The consideration of a wind predictor that classifies the temporal

series in different types or groups according to the synoptic characteristics contributes

to prevent the problem of overfitting (Monahan, 2012), due to the constriction of the

predictor information into a few modes of variability. A clustering is thus useful when

considering a training period long enough, so that the established similarities among

the elements within a group can be maintained in the local wind, regardless of wether

the relationship between the different groups can be non-linear. In the next section the

different methods on atmospheric circulation clustering are described.
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1.5.1.1 The classification of the synoptic circulation as a wind predictor

A wide amount of methods have been employed for the statistical downscaling of wind,

all of them by considering different information and parameterizations on the large-scale

atmospheric circulation as predictor. Most of them include a clustering process at a

certain step. Different methods on clustering synoptic circulation have been developed

from the 1950s to classify the regional dynamical conditions into a number of prevailing

patterns, usually with a daily resolution. Initially this methodology was carried out in a

subjective way (Hess and Brezowsky, 1952; Lamb, 1972), where the meteorologist decided

which type or class deserved every synoptical situation, basing its decision on the position

of the pressure systems, the flow direction or the vorticity. The first objective methods

arose by means of correlation techniques (Lund, 1963; Kirchhofer, 1974). Later other

objective methods appeared, highlighting a geostrophic-based approach first proposed by

Jenkinson and Collison (1977). They developed an automatized classification based on

the intensity and vorticity of a geostrophic approach, computed through certain pressure

differences around the center of a fixed point over the British Isles. This technique, which

became popularized as the Jenkinson-Collison types or Circulation Weather Types (WT),

was later applied to other locations like Scandinavia (Linderson, 2001) or the IP (Trigo

and DaCamara, 2000; Spellman, 2000). Autovector-based classifications were developed

(Prinicpal Components Analysis, PCA, Davis and Kalkstein (1990); Esteban et al. (2006))

including studies over the IP (Romero et al., 1999; Paredes et al., 2006; Queralt et al., 2009;

Jiménez et al., 2009). Other classifications are based on log-linear models (Prieto et al.,

2004) or Euclidean distances over the considered space, either through k-means (Garćıa-

Valero et al., 2012) or k-medoids (Hopke and Kaufman, 1990) from a CCA (Beranová and

Huth, 2008).

Regarding the classification of the atmospheric conditions exclusively attending to

the wind conditions, Green et al. (1992) performed a PCA of the vector wind series in

the analysis of transport of pollutants, while Burlando (2009) developed a wind field

classification of the Mediterranean Area by performing a Cluster Analysis (CA) through

a k-means classificator (Hartigan and Wong, 1979) and the Minimum Variance Method

(Ward Jr, 1963) on the Euclidean distances of the wind speed space.

For the statistical downscaling of wind, most of the literature has considered different

techniques on the classification of the low-resolution circulation as predictor. Thus, Palu-

tikof et al. (1992) considered the types of the Lamb classification (Lamb, 1972) which best

correlated with the geostrophic wind in order to perform correction factors, Mengelkamp
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(1999) performed a CA (Anderberg, 1973) on the geostrophic wind components and the

vertical temperature gradient. In turn, Goubanova et al. (2011); van der Kamp et al.

(2012); Davy et al. (2010); Monahan (2012); Garćıa-Bustamante et al. (2012) performed

a PCA of the large-scale selected descriptors (usually geopotential heights or pressure

fields), while Bogardi and Matyasovzky (1996); Salameh et al. (2009) and Najac et al.

(2009) applied a k-means classificator to the obtained PCs.

Additionally to preventing overfitting, the clustering of the different states of the

atmospheric conditions is also useful as a stand-alone tool that provides a clear description

on the variability of the different wind conditions. This is most clear in Salameh et al.

(2009) and Najac et al. (2009), who describe the variability of the main circulation patterns

associated with the local wind conditions in several points in France.

There are a few works which directly apply a transfer function during the training,

either through a series of multiple linear regressions and correlations of the wind compo-

nents (Ekström, 2002; Achberger et al., 2002), cumulative distribution functions of wind

speed (Michelangeli et al., 1995), or an implicit transfer function of weights within an

Artificial Neural Network (Sailor et al., 2000). This last method belongs to the so called

Soft Computing field, represented by a series of tools which allow considering an op-

timization (clustering) or regression (wind speed estimation) problem without the need

of facing all its possible solutions, allowing to obtain an approximate result of a hard

computational problem.

1.5.1.2 Circulation patterns Clustering and Soft-Computing

The realization of a PCA on the field where the wind predictor is to be extracted is a

recurrent technique in the literature. This is mainly due to its ability to extract a high

amount of information in few modes or patterns, while providing coefficients for a multiple

linear regression in which its components will be linearly independent. These features are

highly useful to mitigate redundant information in terms of explained variance by the

predictor. However, the realization of a PCA can imply certain drawbacks. First, it

requires the subjective consideration of the domain where the modes of variability will be

extracted. Considering a small number of PCs to prevent overfitting implies the dismissing

of a significant amount of information. This can imply that only 50% (van der Kamp

et al., 2012; Monahan, 2012) to 70% (Goubanova et al., 2011) of the predictor variability

is considered. Finally, the condition of independence between the predictor PCs does

not always ensure that only one type of local wind variability is retained on a certain
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PC. These factors can lead to the situation where the retained PCs do not represent the

optimal predictors of local wind within the information considered.

Furthermore, the techniques on circulation patterns clustering sometimes entail some

problems associated to the high amount of information considered. This is the case when

daily pressure field gridded data are considered. This is possible that a clustering problem,

based on the similarity within the group and the differentiation between groups, contains

implicit more efficient solutions than those found by the classical clustering techniques,

but they remain neglected due to the large number of clustering possibilities. On the

other hand, in the case of wind, a statistical model on a monthly basis entails limitations

(Pryor et al., 2005c; Monahan, 2012; Curry et al., 2012), being preferable to consider higher

resolutions as the daily scale. By doing so the amount of points of the considered time

series becomes significantly higher, thereby facilitating the obtention of longer training

periods, which ensures more robust results.

Soft-Computing techniques (SC) are able to address this type of problems. Such

methodologies, initiated at the beginning of the 90s, offer an efficient solution to a re-

gressive or an optimization problem with a small computational cost without dismissing

information. This is possible because by definition, they do not need to cover all the

possible solutions. Instead, at each iteration they follow a certain path by making use of

different properties that emulate behaviors found in the nature, offering thus an efficient

outcome. These methods include the problem solving by Fuzzy Logic (FL, Mamdani

and Assilian (1975)), Artificial Neural Networks (ANN, Hopfield (1988)), Support Vector

Machines (SVM, Osuna et al. (1997), Greedy Algorithms (GR, DeVore and Temlyakov

(1996); Bednorz (2008) or the Evolutionary Computation (EC, Back et al. (1997); Fogel

(2006).

In meteorology soft-computing techniques have been employed to produce pressure

patterns through methods as SANDRA (Philipp et al., 2007; Küttel et al., 2011). In

turn, Random Forests (Breiman, 2001) are employed for the statistical downscaling of

wind (Faucher et al., 1999; Davy et al., 2010), where a selection of the best predictors is

extracted from a list of different variables related to the circulation at low resolution. Mo-

handes et al. (2004) employ SVMs within wind speed data-only to perform a daily wind

prediction over 4 years of test, while Bouzgou and Benoudjit (2011) do so by considering

temperature and temporal and spatial coordinates. Finally, Sailor et al. (2000) perform

an ANN for the daily reconstruction of an average year from 30 years of data, and then

compare it with climate change projections. Evolutionary algorithms have been applied
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in multiple areas with positive results. These include problems on cloud microphysics

and aerosols (Krekov and Sukhanov, 2012), the prediction of atmospheric corrosion (Fang

et al., 2008), the resolution of the variational analysis of ocean dynamics (Barth, 1992)

or the development of temperature profiles (Buczak and Barrett, 1998). In the study of

wind these algorithms have been used to estimate wind in the lower atmosphere through

Doppler pulse radar (Chen et al., 2001) or for wind power short-term predictions (Jursa

and Rohrig, 2008). Finally, the greedy algorithms have been used to reduce information in

atmospheric data assimilation (Ochotta et al., 2005; Oehlert, 1996). However, evolution-

ary algorithms or greedy algorithms have not been applied previously in the classification

of a wind predictor or its statistical downscaling.

1.5.2 Sources of Uncertainty in a Statistical Downscaling

Since statistical downscalings are based on a series of empirical relationships, the quan-

tification of their estimation uncertainty results particularly important. In these kind of

approaches the uncertainty is caused mainly by two different sources. The first gathers all

kinds of uncertainty arising from the predictor. In the case of a statistical downscaling of

wind from reanalysis data, all sources of uncertainty related to data assimilation must be

considered. This includes the uncertainties due to instrumental error in the observations

used as input, and the error in the integration of the equations of movement through

the method of finite differences (Arakawa, 1966). In turn, the uncertainty due to the

initial and boundary conditions will propagate and expand the errors contained in the

previous sources (Lorenz, 1965). The second source of uncertainty lies on the statistical

exercise itself. In the case of wind, implementing clustering methods has the advantage of

reducing the dimension of the problem, but leads to the uncertainty associated with the

dispersion that exists in any clustering exercise. The method can not guarantee that the

statistical relationships are kept stationary in time, with the implicit risk to increase the

uncertainty in other periods away from the training range. Finally, the employment of a

non-deterministic method as an evolutionary algorithm requires its launching a repeated

number of times (usually 30, but will depend on the problem) in order to ensure the

robustness of the method. This will thereby generate one additional source of (system-

atic) uncertainty due to the dispersion produced by the different results obtained at every

launch.

Most of the sources of uncertainty involved in a statistical downscaling can be quan-

tified within the error values obtained through a cross-validation process. Because of its
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low computational cost, performing a cross-validation or testing results particularly sim-

ple in a statistical downscaling, offering the possibility to provide a value for the error or

uncertainty of the wind estimates.

The only uncertainty which can not be attained through a cross-validation process lies

on the possible non-stationarity of the relationships between the large-scale circulation and

the local scale in a given period. This is a feature that can not be guaranteed for other

temporal ranges away from training. Although some efforts have been recently undertaken

to analyze this issue by combining statistical approaches and numerical resources (Etemadi

et al., 2013), this still seems to represent an implicit uncertainty component inherent to

the model.

1.6 The Wind Power Long-Term Variability

Once a certain wind speed series is obtained, different aspects need to be considered

when planning a long-term simulation of wind power generated by a real wind turbine

in a specific location. The empirical discrepancies between wind speed and wind power

output from a real turbine might justify a wind power statistical downscaling by directly

employing wind power data as predictand instead of wind data. Although that approach

could contain a valid rationale, its implementation presents a series of problems, as pointed

out in 1.1. Indeed, it is very likely that wind power data are not available beforehand.

However, in the case that such records existed, these will usually embrace a short period,

since modern wind turbine installations can not be much more than a decade old. If

still this kind of data was considered, a number of factors should be taken into account,

especially when monthly and annual power regimes are considered. These items include

from wake effects in relation to other wind turbines nearby (Manwell et al., 2002) to

shutdowns by maintenance or damage, until periods where wind speed goes beyond the

operating range (minimum or maximum, Jerez et al. (2013)). Although several works

consider directly the actual measurements of power output, most of them focus on the

assessment of the wind power variability in the short term (Lee and Baldick, 2012; Frehlich,

2013) or on the analysis of different operational features of wind farms (Fertig et al., 2012)

or turbines (Ribrant and Bertling, 2007).

Multiple works have simulated wind power through different power models with wind

speed data as input (Şahin and Aksakal, 1998; Celik, 2004; Sailor et al., 2000; Earl et al.,

2013), including those which performed nearly-centennial analyses of the wind power po-
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tential (Veigas and Iglesias, 2012) from wind speed observations at several meteorological

stations. All of them employed the usual procedure to estimate wind power, consisting

on considering the theoretical wind power-wind speed cubic model, after adjusting the

wind speed probability distribution. Others, as Palutikof et al. (1987) evaluated wind

power over 52 meteorological stations through the Cliff curves (Cliff, 1977) obtained from

wind observations. These curves are simple power models that assume a wind speed

Rayleigh distribution and consider the average speed at the hub height as well as the

turbine shutdown speed.

Different distributions have been used to adjust the wind speed Probability Den-

sity Function (PDF). Several distributions have been considered in the literature, as the

Rayleigh (Hennessey Jr, 1978), von Mises (Qin et al., 2010) or Bayesian Average Mod-

els (BMA, 2010). However, the maximum likelihood estimation performed on a Weibull

(Weibull et al., 1951; Rehman et al., 1994) distribution is the most extended approach

(Rehman et al., 1994; Stevens and Smulders, 1979; Seguro and Lambert, 2000). Thus,

Pryor et al. (2005c) harnesses the generality of a Weibull fit in its statistical downscal-

ing to generate estimates of decadal wind power density from the cubic model. In turn,

Harper et al. (2007) evaluate the long-term impact of ENSO on central North America,

through a power model based on a fourth-order polynomial fit of wind speed data. In turn,

Brayshaw et al. (2011) assessed the impact of the NAO on the UK wind power generated

from wind observations through the cubic model and a number of requirements related

to the minimum and maximum speeds supported by a turbine. The same reasoning is

followed by Ruiz-Arias et al. (2012); Jerez et al. (2013); Jerez and Trigo (2013). Finally,

Garćıa-Bustamante et al. (2013) developed a model of statistical downscaling of monthly

wind power from instrumental measurements of power, constituting thus an exception to

this procedure.

However, different caveats have been reported either on the cubic model(Wilson et al.,

1976; Vries, 1979; Anderson and Bose, 1983) or the Weibull distribution (Tuller and Brett,

1984; Jamil et al., 1995; Garćıa-Bustamante et al., 2008). These circumstances motivate

to seek alternative ways to obtain a series of wind power from wind data which shows

robust validation results.
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1.6.1 Centennial Wind Power Inter-annual Series: Application
Outlook

The availability of a long simulation of the generated wind power opens the door to analyze

different coarsely known aspects, such as the impact of the large-scale circulation patterns

on wind power, or the parametrization of empirical aspects at the multi-decadal scale not

covered by the analytical expressions.

In the last few years this type of variability has been associated to large-scale circula-

tion regimes (Klink, 2007; Harper et al., 2007; Spears and Jones, 2010; Brayshaw et al.,

2011; Garćıa-Bustamante et al., 2012). Since the typical life span of most wind farms

reaches up to three decades, the multidecadal variability of wind can reach significant im-

pact in wind power production (Brayshaw et al. (2011) but specially Jerez et al. (2013);

Jerez and Trigo (2013)). Obtaining a multidecadal or centennial simulation of wind power

allows analyzing the impact that large-scale spatial patterns of climate variability exert

on the generated power from a low frequency perspective, or whether this influence is

stationary over time. In this context, the analysis of this multidecadal scale impact can

be addressed by considering the main spatial patterns at different states of variability, as

shown in Brayshaw et al. (2011).

The empirical relationship between the annual generated power and other elements

such as the shape and scale parameters of the Weibull distribution are also of interest.

Despite sharing an implicit relationship with wind power, the degree of long-term incidence

of these elements has not been deeply evaluated, basically due to the lack of available

wind power long series providing robust enough results. As a result to this, exploring new

expressions capable of describing the generated wind power output from known parameters

in a simple way becomes feasible if long series are available.

1.7 Objectives

The overall objective of this work is to analyze the long-term variability of wind power at

given points of special relevance in terms of energetic resource, by the reconstruction of

its wind conditions along more than a hundred years.

Specifically, this work will:

1. Design an objective method for the synoptic circulation clustering at daily scales
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through the implementation of an algorithm capable to identify wind patterns in

the absence of wind observations.

2. Develop a methodology capable to perform daily wind speed estimates at a specific

point of wind power relevance with a competitive performance in terms of uncer-

tainty reduction.

3. Build a reconstruction of daily wind regimes, long enough to carry out the analysis

of its interdecadal and multidecadal variability.

4. Implement, from the reconstructed wind speed series, simulations of the generated

wind power by a real wind turbine, analyzing its interdecadal and multidecadal

variability.

5. Analyse the long-term impact of the main large-scale variability modes (teleconnec-

tions, TC), as well as other wind power-related variables and parameters exert on

wind power output.

In Chapter 2 a new methodology is presented, consisting on the development of three

different wind-type clustering methods from the daily synoptic situation, through the

application of different soft-computing techniques to daily pressure fields (objective 1).

In the same chapter a strategy is proposed for the use of the obtained classifications as

predictors for a statistical downscaling of daily wind with different observational series as

predictand (objective 2). Chapter 3 accounts for two distinct parts. In the first part of

the chapter,the cross-validation of the methodology developed is performed, for different

points of wind power relevance on the IP. In the second part of the chapter a descriptive

analysis of the different obtained wind classes or types is performed.

In Chapter 4 (objective 3) a daily wind reconstruction for more than a hundred years

is carried out for the locations considered. This will allow the analysis of the multidecadal

variability of the wind speed and direction. From this basis, in Chapter 5 a simulation of

the daily generated wind power is performed. Such simulations, obtained by considering

the technical characteristics of a real wind turbine, allow analyzing the long-term varia-

bility of wind power (objective 4). The second half of the chapter computes and analyzes

the degree of impact that various elements have on such variability (objective 5).

Finally, Chapter 6 contains the main conclusions that can be drawn from this thesis,

including some considerations on potential future work.
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Chapter 2

Clustering and Statistical
Downscaling of Wind by Employing
Different Soft-Computing Tools

2.1 Introduction

I
n this chapter three different methods for the statistical downscaling of wind from the

synoptic scale circulation to the local wind conditions are introduced. As described

in the introductory chapter, most works consider the classification of the wind predictor,

mostly by retaining only few EOFs within a PCA, although it implies the loss of certain

information. Here, this problem is solved by classifying the large-scale circulation through

different soft-computing (SC) algorithms, which allow considering the whole variability

of the atmospheric circulation with a low computational cost. Within the SC tools,

Genetic or Evolutionary Algorithms (EA, Fogel (2006)) are a sub-category of Evolutionary

Computation that employ different principles of biological genetics to rule out or accept a

set of possible solutions. These algorithms provide a solution for an optimization problem

characterized by keeping a non-deterministic basis (such as ANN), leaving a small part of

the iterative process to randomness. This implies that an exact solution can not always be

ensured, providing a certain solution at every launch. However, this offers a competitive

output with a minimal computational cost. Thus, given an optimization problem, an EA

implements a set of evolutionary operators (Bäck and Schwefel, 1993), such as mutation,
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selection or crossover, to keep or discard the different individuals (solutions) at each

generation (iteration). In this way they are able to provide a valid solution with extremely

short computing time. With such characteristics, these tools seem a priori suitable for

minimizing differences in a large data set, such as a pressure field in the context of its

classification as a predictor of wind. Complementarily to EAs, Greedy Algorithms (GR)

provide a deterministic solution. Within this kind of tools, the optimal choice in each local

step of the process is chosen, with the assumption that an overall optimal solution will

be thus obtained at the end of the process. Although different works perform a statistical

downscaling of wind by employing SC tools (Faucher et al., 1999; Sailor et al., 2000; Davy

et al., 2010), EA or GR have not been previously applied.

Although the three techniques presented here consider the same synoptic circulation

data for the obtention of a wind predictor -a gridded daily SLP field-, this information

is processed differently depending on the method. Thus, the first two techniques (Sect.

2.2) are based on the classification of the synoptic circulation through a modified version

of the geostrophic approach defined by Jenkinson and Collison (1977) for their Circula-

tion Weather Types (WT). In this way, the predictor is obtained independently from the

predictand (wind observations). One of the main goals of these predictand-independent

designed methods is the ability to develop stand-alone classifications of the atmospheric

circulation into different classes according to their flow characteristics, hereafter called

Wind Types (WdT). On the other hand, the last method (Sect. 2.3) classifies the at-

mospheric circulation according to the difference of pressure between a set of pairs of

points that best cluster the wind speed observations. This means that the predictor

clustering process is coupled to the predictand (wind observations), which has been the

employed option in several previous papers (Salameh et al., 2009; Davy et al., 2010;

Garćıa-Bustamante et al., 2012). Thus, with an algorithm that classifies the synoptic

scale through continuously pivoting on the local wind observations without experiencing

overfitting the uncertainty reduction should be minimized.

2.2 Geostrophic-Based Wind Type Classification for

the Statistical Downscaling of Wind

This section describes the process followed to construct a statistical downscaling of wind

through the development of a daily classification of the synoptic conditions of the surface

flow as a predictor. First, a geostrophic-based automatized parametrization of the syn-
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optic circulation is described. Then, the clustering optimization of the obtained indices

is presented by means of two different soft-computing tools. Finally, the training pro-

cess for the statistical downscaling of wind with the obtained wind type classifications as

predictors is described.

2.2.1 SLP Clustering Optimization Problem and Wind Types
Classification

The classification of the synoptic conditions is based on the clustering optimization of

two geostrophic indices, F and Z. They can be computed directly from any gridded SLP

field. The first one is directly proportional to the geostrophic wind speed, while the second

refers to the absolute vorticity. F and Z are related to the spatial SLP field through the

geostrophic wind G. Thus, F can be determined through its relationship with the zonal

(Guλ) and the meridian (Gvλ) components of G in the following terms:

Guλ = − 1

ρf

∂p

∂y
≈ − 1

ρfλR∆λ
WF (2.1)

Gvλ =
1

ρf

∂p

∂x
≈ 1

ρfλRcos(λ)∆ϕ
SF (2.2)

whereWF and SF stand for the zonal (westerly) and meridian (southerly) components

of F , λ and ϕ are the latitude and the longitude of the measured grid point and ∆λ

and ∆ϕ, their differences. f stands for the Coriolis parameter, given by the expression

fλ = 2Ωsin(λ) (Ω represents the angular speed of the Earth), while R is the Earth radius

and ρ is the density of the air. This shows how F can be determined by differences of

pressure only.

In turn, the relationship between Z and G comes from the partial derivatives of the G

components within the x and y directions in the Cartesian plane:

∂Guλ

∂y
≈ 1

R

∆Gu

∆λ
= − 1

R2ρfλ(∆ϕ)2
WZ (2.3)

∂Gvλ

∂x
≈ 1

2Rcos(λλ)

∆Gv

∆ϕ
=

1

R2ρfλ(∆ϕ)
SZ (2.4)
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where WZ and and SZ represent the Z components produced respectively by the

West-East and the the South-North pressure differences.

F can be considered as a proper approximation (Palutikof et al., 1992) for the observed

real wind, V . The vorticity given by Z provides some complementary information on the

wind conditions when the flow intensity given by F is weaker than a given threshold.

In the employed parametrization (similar to the developed by Jenkinson and Colli-

son (1977)) F and Z are obtained for a given grid point J from the interpolation of

certain pressure values adjacent to it when a gridded SLP field is provided. The actual

arrangement of the employed grid points on a certain location J is displayed in Figure

2.1.

Figure 2.1: Example of the considered SLP grid structure employed in the definition of
the F , Z and α indexes at the introduced algorithms for a generic point J .

The following expressions show how F and Z, calculated for J at a latitude λ = 40o,

can be computed exclusively using the 16 grid point pressure values shown in Figure 2.1:

WF =
1

2
(p12 + p13)−

1

2
(p4 + p5) (2.5)
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SF =
1

cos(40o)

[
1

4
(p5 + 2p9 + p13)−

1

4
(p4 + 2p8 + p12)

]
(2.6)

so

F =
√

(WF )2 + (SF )2 (2.7)

In turn, for Z these relationships are:

WZ =
sin(40o)

sin(35o)

[
1

2
(p15 + p16)−

1

2
(p8 + p9)

]
− sin(40o)

sin(35o)

[
1

2
(p8 + p9)−

1

2
(p1 + p2)

]
(2.8)

SZ =
1

2cos2(λ40o)

[
1

4
(p6 + 2p10 + p14)−

1

4
(p5 + 2p9 + p13)−

−1

4
(p4 + 2p8 + p12) +

1

4
(p3 + 2p7 + p11)

]
(2.9)

Hence, as Z is a scalar value,

Z = WZ + SZ (2.10)

Finally, a value for the angle of the F vector direction is obtained as follows:

α = atan
SF

WF
(2.11)

Within the WT classification method, which has been used as a benchmark for our

results, a set of rules concerning F , Z and α are established in order to derive 26 Circu-

lation Types: 8 of them are purely directional related to the 8 wind rose main directions,

2 are rotational classes defining pure cyclonic and anticyclonic patterns respectively, and

16 are considered hybrid classes, produced by the mixture between pure directional and

each one of the rotational classes (Trigo and DaCamara, 2000; Spellman, 2000; Linderson,

2001).

Unlike WT, the classification criteria applied here are based in the dispersion min-

imization of the vectorial distances of the considered F values. Let F r, r = 1 . . . , r,
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be a series of a daily F vector derived for a given location J , along a given period of

time τr. Under these conditions, the values F r are clustered into a series of classes cκ

whose dispersion is, in average, minimized. This concept can be represented through the

minimization of a cost function Φ, expressed in the following expression:

ΦF (J) =
1

τr

n∑
κ=1

∑
ir∈cκ

| F cκ − F ir | (2.12)

where ir stands for a generic day of the period considered, and F cκ stands for the

average of F values within a class cκ. This clustering problem is based in the same

geometric concept of the Euclidean distances employed by Weber and Kaufmann (1995),

Kaufmann and Whiteman (1999), Gerstengarbe et al. (1999) and others to develop their

wind field spatial similarity methods within their clustering processes. However, in this

work the optimization for the reduction of F dispersion is independent from observed

wind data V , allowing to characterize wind conditions in those points or time series where

no real observations are available.

A relevant issue on the classificator design lies on the number of clusters in which

the F space will be divided. The classification scheme follows the criteria employed

by the WT, Bergström (1996) or Sandström (1997), which divided the flow space into

8 directions. In order to compare our methodology with the WT approach, here the

geostrophic flow characterization will result into 26 classes. This is achieved by assigning

3 flow intensities (i. e. 24 classes), as well as two additional classes to the central (those

close to zero) flow values, as it will be detailed in next sections. Other widely extended

SLP-based classifications of the synoptic circulation perform 29 (Hess and Brezowsky,

1969; Gerstengarbe et al., 1993; James, 2007) and 27 (Lamb, 1972) classes, making their

characteristics comparable.

2.2.2 Optimization of the Clustering Process through different
Soft-Computing Algorithms

The minimization of Φ is faced through two soft-computing algorithms, which are per-

formed in a given period of time τr (r for “training”) over a certain grid pint which lies

nearest to the meteorological tower J . One of the approaches applies an Evolutionary

Computing method (Yao et al., 1999), which allows a high computing performance when

a large range of possibilities is considered. The other one consists on a greedy (Bednorz,
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2008) algorithm. Since it is designed to obtain a deterministic solution for the problem,

its results can be easily compared to those from WT. Through these algorithms, daily

classifications according to the geostrophic wind conditions set by F can be obtained,

employing in turn Z values to distinguish among weak flow conditions.

2.2.2.1 Geostrophic Clustering Optimization through an Evolutionary Algo-
rithm, FE

The iterative procedure on clustering optimization within FE is performed by means of

an Evolutionary Algorithm (EA). Given an optimization problem, this evolutionary al-

gorithm starts from an initial set (population) of random solutions (individuals). These

solutions are computed through a set of evolutionary operators (Eiben and Smith, 2010),

which evolve and finally retain or dismiss them. This process is applied repeatedly, in a

set of loops (generations). Since individuals are selected according to the quality of the

solution they represent, a fitness operator is applied to each individual of the population.

Hence, the individuals with the best values of fitness are more likely of being selected for

replication and survival. The selected individuals are reproduced by means of crossover

and mutation operators. While crossover exchanges some genetic material between two or

more individuals, mutation changes parts of individuals with a small probability, prevent-

ing the algorithm to keep restrained in local minima. By applying this iterative procedure,

the EA explores the whole space of possible solutions, without the need to compute all of

them.

The eight angular borders A = [a1, · · · a8, ], ai ∈ [0, 360o] must be established in order

to define eight angular sectors. At the same time, every sector is split into 4 slots by 3

radial magnitudes (ra,1 < ra,2 < ra,3), so three sectorial classes are defined by the 3 highest

slots, while a near-to-zero area is defined by the lowest slot of every sector. This area for

low F values determines in turn two classes depending on wether Z is positive (cyclonic

calm) or negative (anticyclonic calm). This way a matrixR of size [3, 8] is defined, with an

independent condition that splits the weak flow in two additional classes. Eventually, all

A and R elements are adjusted in each iteration so that a consistent solution is obtained.

Figure 2.2 shows a result of this stratification on the F = [WF,SF ] space. There, each

dot represents the daily F vector, in terms of the origin of the flux.

Unlike Bergström (1996); Sandström (1997) or WT methods, with a fixed classification

criteria, here the advantages of adaptative tools as cluster analysis (Mengelkamp, 1999),

k-means (Bogardi and Matyasovzky, 1996; Salameh et al., 2009; Najac et al., 2009) or
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random forests (Faucher et al., 1999; Davy et al., 2010) are maintained. In this way, the

cluster means and the frequencies of each cluster are determined by the distribution of

the original data. This is achieved through the implementation of an EA.
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Figure 2.2: Example of the class-stratification structure performed over the F field by the
FE algorithm, where angular and radial borders are defined.

Regarding the EA structure, at each generation a population of a given number N of

individuals is developed, every one of them characterized by a certain A and R matrix.

Throughout the generations, the efficiency on the minimization of the cost function (Eq.

2.12) is assessed. The final solution is then fixed when a stopping condition is reached.

This happens when the result does not change more than a certain value compared to the

previous generation, or the limit of generations has been reached. At the first generation,

a completely random generation of the A ×R matrix (ai ∈ [0, 360o] and ri ∈ (0, inf)) is

considered for every individual. From that, each one of the following generations can be

described through a series of steps or operators:
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1. Repair: In order to keep the increasing order at both angles and the radial borders

in the encoding, elements are sorted from the smallest to the largest value.

2. Fitness: Each individual is associated with a value of fitness (i. e. performance)

obtained from the cost function (Equation (2.12)).

3. Selection: The algorithm selects those individuals whose F average class-dispersion

(or bias) is lower than the population’s average dispersion. The rest of individuals

will not survive for the next generation, and they will be replaced by new elements

created through crossover and mutation of selected individuals.

4. Crossover: Two individuals from the selected population are taken at random to

generate a new one. The configuration of the elements of the new individual, for

both the vector A and matrix R, is performed within a multi-point crossover proce-

dure. In this crossover, each ai an ri from a parent has a probability of 0.5 of being

transmitted to the new individual.

5. Mutation: The new individuals have a small probability of being mutated. For FE

this probability is 0.05. The mutation consists of modifying 50% of the elements

from the vector A and matrix R as:

e′i = ei + 0.1 ·N1(0,1) (2.13)

where ei stands for a given element of A orR before mutation, e′i is the element after

mutation and N1(0,1) represents a normalized Gaussian distribution of random

numbers with µ = 0 and σ = 1. Note that we keep the constraints ai ∈ [0, 360o]

and ri ∈ (0, inf).

For this work, this process has been performed over 3000 generations for a population of

N = 1000 individuals.

As FE employs random sequences at some of its operators, it works as a non-deterministic

application, and it obtains a different solution each time that it is launched. FE is launched

30 times for every point J . At each one of them, only the best outcomes on dispersion

minimization are considered in the results.
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2.2.2.2 Geostrophic Clustering Optimization Through a Greedy Algorithm
(FG)

A second SC algorithm has been conceived to provide a deterministic solution of the

cost function minimization. To achieve this, the F Field Optimization has been per-

formed through the design of a Greedy (Bednorz, 2008) algorithm (called hereafter FG),

an heuristic tool (Polya, 2008; Pearl, 1984) that assumes a local solution as a valid re-

sult at each step, with the hope that the final solution becomes a global optimum. FG

introduces two differences in the conditions of the algorithm structure, compared to FE:

First, the angular borders which determine the classes at the F space have been

kept fixed, so that the defined sectors coincide with the 8 cardinal wind rose directions

(similarly to WT). With this, the physical interpretation of the synoptic dynamics behind

the obtained classes is facilitated.

Second, FG tracks the dispersion minimization for every sector individually. By having

fixed the angular borders, this procedure does not imply any loss of performance. This

time the algorithm fixes the three classes at a given sector by exploring all the possibilities

in the combination of ra,1,ra,2 and ra,3 within that sector. First, the search is performed

with a tracking accuracy of 1 m/s. Once the local optimum has been found, the resolution

is increased to 0.1 m/s, and a new optimum local solution is then pursued, thus reflecting

the greedy behavior of the algorithm.

Through these features, with a similar Z condition to describe the weak flow, the

resulting algorithm structure coincides with that of FE, defined by a (A,R) matrix with

dimensions 3× 8.

2.2.3 Statistical Downscaling through Wind Type Classifications
as a Predictor

A predictor considered for a statistical downscaling needs to be calibrated or trained with

local observations. When this predictor consists on a series of clusters, the relationships

with the surface wind are usually established by means of a series of transference functions

within each one of the obtained clusters. In this way, several works (Palutikof et al., 1992;

Najac et al., 2009; Goubanova et al., 2011; Monahan, 2012; van der Kamp et al., 2012)

perform multivariate linear regressions for each one of the considered PCs as large-scale

predictors, while Faucher et al. (1999) and Davy et al. (2010) employ random forests to

build different possible predictors from those PCs. In turn, Salameh et al. (2009) devel-
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oped a series of generalized additive models to design non-linear spline-based regression

models, as others directly perform transference functions based in autoregressive mod-

els (Bogardi and Matyasovzky, 1996). In other occasions, correlation-based techniques

are employed (Garćıa-Bustamante et al., 2012), where Canonical Cluster Analysis is per-

formed between the obtained synoptic clusters and a set of wind series obtained from

several masts. Other works directly apply a transference function to each one of the

considered (non-clustered) predictors. This can be done again through multivariate linear

regressions, either of pressure gradients and relative vorticity (Pryor et al., 2005c,b; Curry

et al., 2012) or approximations of the geostrophic wind (Ekström, 2002; Achberger et al.,

2002), either through cumulative distribution functions of wind speed (Michelangeli et al.,

1995) or implicit transfer functions within ANN (Sailor et al., 2000).

In this work the classifications obtained by FE and FG are directly employed as wind

predictors in the statistical downscaling of wind. Unlike a linear regression, here the trans-

fer function between the designed predictors and the surface wind observations consists

on assigning a specific wind value Vcκ to each one of the obtained pressure-derived clusters

cκ. This prevents the downscaling process from overfitting episodes. The specific wind

vector Vcκ which will characterize each class in the plane of speeds [u, v] is defined by

the cartesian barycenter of the vector pointers representing the mean daily wind values

corresponding to the set of days ir ∈ cκ within a given period τr.

Once the training process is concluded, each one of the 26 wind types has been char-

acterized according to the real observed wind in terms of speed and direction. Thus, that

information can be employed for estimating local daily wind conditions in those periods

where only SLP daily data are available. In Fig. 2.3 a fluxogram of the process is depicted.

Details are also provided in Kirchner-Bossi et al. (2013).
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Figure 2.3: Fluxogram of the classification and training process (for either FE or FG).

2.3 Statistical Downscaling through an Evolutionary

Algorithm of Pressure Differences (PD)

Before applying the designed FE and FG methods, a third technique for the statistical

downscaling of wind will be introduced. Pressure-related gridded fields at synoptic scale

contain a large amount of information which can be very useful for the establishment of a

predictor for the daily surface wind (Monahan, 2012). However, the number of possibilities

within such a high amount of data is a handicap when trying to find an appropriate one.

In an effort to consider the whole number of gridded points within an extensive enough

domain centered over a given location with a small computational cost, a third clustering

algorithm has been designed. Unlike the first two models, which classify the atmospheric

circulation on the basis of its own SLP field information (the F and Z indices), the

Algorithm of Pressure Differences (PD, introduced in Carro-Calvo et al. (2011)) clusters
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the synoptic dynamics according to the dispersion minimization of an external dataset,

the wind observations. This means that in this case the obtention of a wind predictor

from the SLP gridded field can not be considered independent from wind observations,

and a wind type classification can not be obtained without them. In the counterpart,

these conditions maximize the accuracy in the estimation of the daily wind.

2.3.1 Cost Function

The cost function of the clustering optimization has the same basis as in the geostrophic

approaches, but this time its assessment is directly performed over the observed wind,

instead of F or Z. In addition, now two different cost functions are considered, depending

on the measure to be estimated, the vector or the speed of wind. Let dt, t = 1 . . . , T, be

a series of daily wind vectors measured in a given point, for a given period of time T . In

turn, let Pt, t = 1 . . . , T, be the daily synoptic-scale pressure fields corresponding to those

dt values. The pressure pattern extraction consists in forming a set of N clusters of daily

pressure field (space of pressure Pt) in such a way that the dispersion of its associated

wind values dt in each cluster is, in average, minimized. With the intention of optimizing

the accuracy of the wind speed estimations, here (unlike FE and FG) the wind speed

minimization is obtained through a cost function based on the unidimensional distances

at the wind module space, described as:

f2(J) =
1

T

N∑
i=1

∑
t∈γi

∣∣|dt| − |di|∣∣ (2.14)

where J is the location of the wind observations dt, N represents the amount of clusters

considered, γi represents the set of days belonging to a given class i, and di stands for the

mean value of the wind speed within class i. This expression coincides with the definition

of the Mean Absolute Error (MAE), which measures the average absolute bias between

estimations and observations. This point is sometimes important, since wind farms are

designed to be optimum for an average wind coming from a given direction.

2.3.2 Evolutionary Architecture of PD

Given the minimization problem at Eq. 2.14, it will be faced independently through a

series of concatenated generations of a certain population within an evolutionary algorithm
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until an optimum solution is found.

Before describing the evolutionary process, the problem encoding must be defined. In

this way, two parameterizations on the pressure patterns classification will be evolved in

parallel. One refers to the grid points of the pressure field to be considered, while the

other one faces the definition of the N clusters. For the first one, we will consider a matrix

of 13 × 14 surface pressure values (182 values), measured in a grid surrounding the case

of study, as shown in 2.4. From the 182 grid points (Pi), 4 pairs of points are selected (8

points Pi), and the difference of pressure Dp is measured within each pair. This means

that the 182-dimension initial problem is reduced into a four-dimensional space SD.

Regarding the second parametrization, under these four Dp coordinates the SD space

is split into N clusters, each one of them parameterized by a specific four-coordinated

centroid, initially distributed at random. Then, the centroids will characterize the dimen-

sions of the clusters according to the principles of a Voronoi diagram (Voronoi, 1908).

This way, an individual can be fully described through the expression:

[P1, . . . ,P8 | Dp11, Dp12, Dp13, Dp14, . . . , DpN1, DpN2, DpN3, DpN4] (2.15)

where the left part concerns the considered 8 grid points and the right part represents

the 4 coordinates for the N defined clusters, so an overall amount of 4N values is obtained.

Figure 2.4 shows a sample individual at the SP space, represented by four segments

defined by its 8 Pi grid points. The extremes of each one of these segments will define

the four pressure differences Dp. After the individual has been fully characterized by its

8 P grid points and its resulting N clusters, the SD space is filled by an amount T of

daily points, each one of them characterized by the four daily Dp values. Once this has

been done and the set of days has been distributed throughout the N established clusters,

the corresponding daily wind observations, similarly clustered, are introduced in the cost

function, and the average wind dispersion per cluster is measured.
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Figure 2.4: Grid employed as input for the PD algorithm (182 orange dots), around an
hypothetical location of wind speed observations (green circle). The four blue segments
represent a sample individual. The pressure values at the extremes of each one of the
segments (Pis) are subtracted to produce the four differences of pressure Dp.

Regarding the evolutionary process, at the first generation the algorithm defines a

population of L randomly generated individuals (Pi ∈ N(1, 182), Dpi ∈ R(−5, 5)). From

then until a stopping condition is found (like FE), each of the generations can be described

through different operators, characterized through the following steps:

• Crossover operator

After forming L random couples with two individuals within the population, a

crossover operator is implemented for every couple over each one of the two parts

of the individual separately, one for the selected grid points Pi and one for the Dp

centroid coordinates. At each coordinate, each parameter of the individuals has a

probability P=0.5 of being swapped with that from the other member of the couple.

The crossover operator for the Dp centroids coordinates, however, is applied in two

different modes, each of them with a probability P=0.5. One considers each one of
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the Dp coordinates separately, so new centroids are generated by combining existing

ones. Instead, the second mode considers the complete centroid (its four Dp coor-

dinates) at a time, so the centroids are kept unaltered and are fully interchanged

between the two individuals.

• Mutation operator

After the new 2L individuals have been obtained, a mutation operator is applied

within every coordinate of each individual. Mutation operator is applied with a very

low probability (Pm = 0.01). The mutation procedure is divided into two different

versions, depending on whether it is applied on the Pi grid points or to the Dp

coordinates of the individual. Since Pi ∈ N, their mutation is carried out by means

of an integer randomized values in the interval [1, 182]. In turn, the mutation of the

Dp coordinates (Dp ∈ R) is carried out by adding a value of uniform noise in the

interval [-5,5].

• Selection operator

Finally, a tournament selection is applied to the joint population formed from merg-

ing the initial and offspring populations. The result of the selection operator will

be a single population, of size L, which will be the parents of the next generation of

individuals. Once the complete joint population of parents and offspring is formed,

the standard tournament selection, as described in Yao et al. (1999), has two main

steps:

1. Pairwise comparisons are conducted over the union of parents and offspring: p

opponents are chosen uniformly at random from all the parents and offspring.

For each comparison, one individual receives a “win” if its fitness is better than

the opponent’s, which in this work will mean that the value of the cost function

is lower (optimizad clusterization).

2. The L individuals out of the union of parents and offspring that have most

“wins” are selected to be parents of the next generation.

Through this procedure, the remaining L individuals act as the parents of the next

generations, and the crossover and mutation operators are applied again in a loop

fashion, until the maximum number of generations are reached or an optimal result

is obtained.
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In Figure 2.5 the fluxogram of the evolutionary algorithm is shown. Different exper-

iments were performed in order to explore the performance obtained (in terms of wind

estimation accuracy) depending on the number of clusters considered, and the highest

yield was obtained for a value around N=25, although this amount is not absolute, and

could sometimes vary due to the non-deterministic nature of the method. For comparison

purposes with the other methods, the number of classes has been fixed in N=26.

Dp

P

p=0.01

winners & loosers

Evolutionary Fluxogram of PD 

Figure 2.5: Steps at the evolutionary process within the PD algorithm.

Unlike FG and FE, this time the classes are not arranged according to intensity or

direction. This is mainly because the non-deterministic nature of the algorithm will

lead the evolution of the solution through a different path each launch. In addition,
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PD has a cost function in a separate space than the space of wind speed vectors dt,

and the transference function is based in a non-evident relationship between wind and

Dp. These issues will yet mask the relationship between classes. However, the fact

the clustering method permanently pivotes on the observed wind speed should maximize

the performance of the considered algorithm in order to optimize the wind estimations

accuracy.
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Chapter 3

Performance of the Downscaling
methodology

3.1 Introduction

With any of the three introduced methods, the parametrization of the obtained circulation

classes by means of a wind representative allows to estimate the local wind conditions

in periods when only data on a large-scale predictor are available. However, it needs

to be cross-validated, by assessing their performance in terms of different measures of

goodness at the considered location. Once the methods are validated, the main features

of the resulting Wind Types can be described, so a better understanding on the obtained

classifications can be provided. This chapter describes the observed performance of the

statistical downscaling methods developed in the previous chapter.

First of all, the data employed to construct a large-scale predictor (pressure fields) and

a local wind predictand (wind observations) at daily scale are described (Sect. 3.2). Then

(Sect. 3.3), different measures of goodness are computed, either at daily and monthly

scales, and the obtained values are compared to other well known approaches. The third

part of the chapter (Sect. 3.4) focusses on describing the main features of the Wind Types

obtained through the FG and the FE methods.
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3.2 Input Data

As mentioned in Chapter 1, the Iberian Peninsula circulation shows a high spatial and

temporal variability, due to its complex terrain and the mixed influence of the Mediter-

ranean and the Atlantic. Here six different sites spread over the region are considered. As

in any statistical downscaling, two independent sets of data have been considered. Wind

observations from the considered locations have been employed as wind predictands, while

a series of SLP reanalysis fields have been considered to define different wind predictors,

depending on the method.

3.2.1 Wind Observations

Wind speed and direction data with a 10-minute frequency were considered from me-

teorological masts located at six different wind power projects belonging to Iberdrola

Renovables Energa. The six locations selected where those which provided the longest

time ranges. Figure 3.1 shows their distribution throughout the Iberian Peninsula. The

anemometers at the masts lie at a height between 26 and 41.5 m (see details on Table 3.1).

T1 and T2 are located in central-east Spain, relatively close to each other. In turn, T3 is

located just at the Gibraltar Strait Area, while T4 lies west, next to the Portuguese border,

and T5 and T6 stand respectively north and east of the IP. This high geographical spread

of the considered locations will ensure the assessment of the wind estimation methodology

over sites with different orographic features and governed by distinct synoptic patterns,

as will be shown later.

Wind observations range between 1995 and 2009 (T4), although most of them cover

the period 1999-2009. Since the downscaling methodology is based on a daily resolution,

the assimilation process of the wind observations consisted on computing the daily mean

wind, from averaging the 10-min measures belonging to the same day throughout more

than 10 years.
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T1
T2

T5
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Figure 3.1: Geographical location of the six considered wind measurement towers in the
PI.

Data quality was controlled through the detection of missing data and the persistence

of zero values. In the first case, a few periods without data were detected along the

observations. None of the 6 towers showed more than 13% of the series with missing

values (Table 3.1), this amount ranging from 2% (T1) to 12.9% (T5). In a second exercise,

zero wind values representing abrupt transitions from high winds were dismissed. This

was done when continuous zero values were surrounded by previous and subsequent wind

speeds higher than 5 m/s. Next, only those days which preserved more than half of their

144 daily values were included in the analysis, and their measures averaged. After these

considerations, 6 series of daily mean wind with an average length of nine years and two

months were obtained (they range between 7 (T3) and 12 years (T4)).
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Table 3.1: Main features on the considered observational wind datasets.

tower anemomenter
height (m)

period (m/yr) missing data
ratio (%)

valid time
range (years)

T1 41.5 09/1999 08/2009 5.6 9.5
T2 41 07/1999 10/2008 1.8 9.2
T3 40 08/2001 01/2009 4.9 7.2
T4 26 12/1995 10/2008 8.1 11.9
T5 41 10/1999 01/2009 12.9 8.2
T6 41.5 08/1999 08/2009 10.1 9

3.2.2 Reanalysis Data

SLP gridded data were retrieved from two different Reanalysis Projects in order to build

the synoptic scale predictors, the National Center for Environmental Prediction/National

Center for Atmospheric Research Reanalysis Project (NCEP/NCAR, 1996) and the the

second version of the “Twentieth Century Reanalysis” Project (Compo et al. (2011), here-

after 20CR). In order to ensure a common data usage for the six locations, a specific

domain was considered over the IP. For the geostrophic approaches a domain conciding

with the map in figure 2.1 waas considered, while those points represented in 2.4 where

considered in PD.

NCEP/NCAR consists on a data-assimilation process set over the GFS NCEP model,

spanning from 1948 through four daily values, at 0000, 0600, 1200 and 1800 UTC. The

considered data include all sort of available observations, including those from planes,

stations, radiosonde and satellite observations and others. After an exhaustive quality

control, the selected data are implemented through the 4-D Var data-assimilation method

into the T62L64 GFS model. This model version considers a grid with a 2.5 × 2.5 de-

gree (a grid length circa 210 km) resolution, solving 28 sigma levels. It provides more

than 80 variables, including geopotential height, temperature, relative humidity, U and

V wind components, etc., diagnostic terms as radiative heating or convective heating,

and accumulative variables like precipitation rate. Although its characteristics might

be comparable to those of other reanalysis as the ERA-Interim (Dee et al., 2011), the

NCEP/NCAR data set spans longer (1948 instead of 1979). Since averaging SLP fields

from different hours within a day can induce some artificially smoothed situations, mainly

over weather systems, the 1200 UTC SLP field has been retained as representative for the
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day. Daily SLP fields have been retained for the period 1948-2009. Within this range,

data along 1995-2009 have been employed for the statistical downscaling process, and the

rest is employed for reconstruction purposes. Many works have employed this reanalysis

within the study of surface wind (Michelangeli et al., 1995; Pryor et al., 2005a; McVicar

et al., 2008), including those building a surface wind predictor of wind from it (Ekström,

2002; Garćıa-Bustamante et al., 2012; Goubanova et al., 2011).

In order to span the wind estimations beyond the NCEP/NACR period (1948-2009),

20CR has been employed to complement the wind predictor time range. With a resolution

of 2 × 2 degrees, the 20CR Reanalysis was computed by applying an Ensemble Kalman

Filter to the background ‘first guess’ estimations from the GFS numerical weather pre-

diction model. By slightly modifying its initial conditions, an ensemble of 56 forecast

outputs are obtained for every 6-hour forecast, and the Kalman Filter selects each time

the ensemble member which best suits with observations. It has been run from 1871 to

present, representing the only available 3-D reanalysis dataset reaching the 19th century

with such resolution. By generating an ensemble of likely upper-air fields that are dy-

namically consistent with concurrent and previous pressure observation fields, it provides

a useful estimation of the uncertainty in the analysis fields at each analysis time. It as-

similates only surface pressure reports and observed monthly sea-surface temperature and

sea-ice distributions as boundary conditions, which does not represent a drawback for an

SLP-based wind predictor as the proposed here. This dataset results particularly robust

for the early decades at middle latitudes, with plenty of SLP data at the time (i.e. Europe

and North America), being less accurate outside these regions Compo et al. (2011); Wang

et al. (2012). Although the publication of this reanalysis data set is relatively recent

(2011), it has been used in several works on wind (Bronnimann et al., 2012; Candlish

et al., 2012; Dafka et al., 2013).

3.3 Cross-Validation of the Developed Methods

The requirement for cross-validating a model arises from the need to provide a measure

of its accuracy for eventual estimates performed with new predictor data. This accuracy

is usually quantified in terms of uncertainty (or error). The cross-validation must be per-

formed by considering predictor and predictand data sets which have not been previously

employed during the training. First, the new predictor data are employed to obtain a cer-

tain estimate according to the already defined transference functions. Then, this estimate

is compared with observations in order to measure its estimation goodness.
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A cross-validation was performed over a period called τs (test), whose data were not

considered at the training (τr) process. Within τs, daily SLP data are distributed into the

26 classes cκ previously defined through the classificators (i.e. the transference functions),

according to their Fs and Zs (for FE and FG) or the daily values of pressure differences

Dpi (for PD) during the training (τr). Once the new data have been classified, they are

characterized with their corresponding class-representatives Vcκ . The validation can be

determined by measuring the differences between Vcκ and the corresponding observations

at τs, Vis . The uncertainty is defined for each considered tower through the Mean Abso-

lute Error (MAE), which can be applied in the form of the vectorial objective function

(MAEV ) or the module objective function (MAE |V |), which can be calculated through

the expressions:

MAE|V |(T ) =
1

τs

26∑
cκ=1

∑
is∈cκ

||Vcκ| − |Vis|| (3.1)

MAEV (T ) =
1

τs

26∑
cκ=1

∑
is∈cκ

|Vcκ − Vis| (3.2)

where is stands for a generic day of the period τs. These expressions for the wind

speed uncertainties represent a measure of goodness for our methods (FG, FE and PD)

and reflect the degree of accuracy reached when daily wind reconstructions are performed.

This means that it is possible to estimate the wind conditions with a measure of its

uncertainty for each class cκ at a certain period where the SLP field data are available.

With respect to PD, its nature makes that the arrangement of the classes is not related

between one launch and another. Thus, it is not possible to compare the objective function

values obtained by the module and the vectorial approach class by class. However, it is

possible to analyse the average values obtained in the whole test set.

Due to the non-linear empirical relationships that can be established through a soft-

computing algorithm, these tools specially entail the risk on artificially generating favor-

able results during the training, i.e. the appearance of overfitting. In this way, apart of

properly measure the goodness of the method, a cross-validation is crucial to measure

the extent to which a certain regression or classification method can be still improved.

Thus, if its estimation error is significantly higher than those performed at the training,

then overfitting is occurring. This indicates that it is still possible to improve the perfor-

mance of the model at the test period. This improvement, and the subsequent removal

of overfitting, can be made by providing more generality to the model. This is usually

done by reducing, for example, the number of variables or clusters acting as predictors.
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When limiting the model in order to increase its generality, the accuracy at τs will be

lowered. However, with the reduction of overfitting the accuracy at τs will be increased.

This way, this process of increasing the model generality can be carried out until a com-

promise between generality and overfitting reduction is reached. This will make that the

obtained uncertainty at τs approaches its minimum attainable value. Next, results on the

cross-validation are described, either within a daily and a monthly resolution.

3.3.1 Daily and Monthly Estimation Performance of the Intro-
duced Methodology

The wind speed accuracy of the developed methods can be analyzed by comparing at the

test period the Vcκ obtained for every day with the observational wind series. The values

for the uncertainty have been computed in the form of the Mean Absolute Error for both

wind speed ( MAE |V |, 3.1) and wind vector ( MAEV , 3.2) variables. In addition, Pearson

Correlation Coefficients between estimated and observed wind speed have been calculated

for the comparison between real and reconstructed wind series. The average for the six

towers has been computed by weighting the result at each tower with its corresponding

series length, then computing the mean.

In Table 3.2 results on the MAEs obtained for every method are shown for every

tower. Results have been compared with two independent wind speed estimations, used

as reference approaches. Firstly, wind speed estimations were computed by using the

WT (Circulation Weather Types, Jenkinson and Collison (1977)) classificator. Secondly,

gridded wind values directly retrieved from NCEP/NCAR (Kalnay et al., 1996) reanal-

ysis (hereafter called W-NCAR) were considered. In order to associate W-NCAR to the

observations (as it has been done within the rest of the methods), a linear regression

between the reanalysis and the observed wind was performed at the τr period, and then

computed over W-NCAR at τs. Among the reanalysis grid points surrounding a tower,

that with the highest Pearson correlation value between W-NCAR and observations was

computed. Finally, the observed climatological mean wind speed has been considered for

control purposes. Thus, the average of the entire wind speed series within τr has been

computed. This constant value is then validated in τr. Since it can be conceived as a

1-class approach (thus considered as a no-classification, NC) the MAE obtained with this

method can be considered as an upper bound of the implemented methods’ accuracy.

Results show that, among the six considered approaches, FG, FE and PD present

the smallest module and vectorial errors for all the considered locations. The developed
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methods show an average MAE |V | reduction between 19 (FG) and 21% (FE and PD) with

respect to WT, and between 13 (FG) and 16% (FE and PD) compared with W-NCAR.

The highest performances in average for the six towers in terms of MAE |V | and MAEV

reduction are provided by PD. FE presents very similar results for MAE |V | ((an average

error just 0.7% higher), providing even a lower uncertainty than PD in T1 (-6%), T2

(-13%) and T6 (-5%), where PD is also outperformed by FG.

Table 3.2: Comparison of test results of obtained error by FG, FE and PD methods
for the six daily wind speed data sets considered. Weighted averages within each entire
classification (26 classes) for both MAE |V | and MAEV are shown. For comparison
purposes, values for WT and W-NCAR are also depicted. In addition, results on the
no-classification (1 class, NC) are also detailed.

statistic method T1 T2 T3 T4 T5 T6 mean
NC 2.17 1.79 2.93 2.13 1.87 2.75 2.27
W-NCAR 1.59 1.34 2.43 2.20 1.41 1.30 1.71

MAE |V | WT 1.65 1.49 1.99 2.55 1.76 1.51 1.82
(m/s) FG 1.32 1.22 1.83 2.00 1.36 1.12 1.48

FE 1.29 1.18 1.72 1.99 1.37 1.12 1.44
PD 1.38 1.36 1.60 1.71 1.34 1.18 1.43
NC 6.39 6.37 7.96 6.58 6.55 6.37 6.70
W-NCAR 4.35 3.41 3.85 4.17 4.21 3.67 3.94

MAEV WT 4.65 4.05 3.97 5.09 4.58 4.26 4.48
(m/s) FG 4.08 3.50 3.65 4.46 4.10 3.85 3.97

FE 3.99 3.33 3.40 4.37 3.90 3.41 3.77
PD 3.74 3.26 2.82 3.58 3.76 3.16 3.39

Regarding MAEV , PD values are lower than FE for all towers (between -3% and -

18%), and FE values are always slightly lower than FG (between -2% and -11%). In turn,

FG, FE and PD show average error values 11, 16 and 24% lower than WT. With respect

to W-NCAR, FE and PD show 4 and 14% lower uncertainties. FG shows an average error

1% higher than W-NCAR in 2 of the 6 towers.

The highest average value of the Pearson coefficient (Table 3.3) is again obtained by

PD (0.76), showing FE and FG a similar average value of 0.73. These values are all clearly

higher than W-NCAR (0.67) and WT (0.53).

Considering all the three measures, the tower which presented a higher improvement

from WT to PD is T3 (that on the Gibraltar Strait). This is consistent with the fact
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that differences between synoptic and local wind are bigger where mesoscale forcings are

higher, suggesting that the new approaches are specially useful when these local forcings

are particularly prominent, as it will be seen in section 3.4.1.

Table 3.3: Test results for the Pearson Correlations between observed wind speed and
values obtained by FG, FE and PD methods at a daily resolution. Results for W-NCAR
and WT are also depicted. All results showed statistically significant values at a confidence
level of 1%.

method T1 T2 T3 T4 T5 T6 mean
W-NCAR 0.67 0.70 0.55 0.63 0.77 0.70 0.67
WT 0.61 0.57 0.65 0.39 0.50 0.52 0.53
FG 0.77 0.73 0.71 0.68 0.72 0.77 0.73
FE 0.78 0.74 0.74 0.68 0.71 0.77 0.73
PD 0.80 0.68 0.78 0.81 0.74 0.79 0.76

A monthly timescale validation has been carried out by averaging wind speed values

according to the calendar months (tables 3.4 and 3.5). As it was expected, the uncertainty

decreased in most cases with respect to the daily resolution, due to the lower variability

when decreasing the time resolution. The ratio between MAE |V | monthly values at the

different methods is similar to those at daily scale at all towers excepting T5, where PD

is overcome by the other methods except WT. The same happens for r, where PD again

shows an anomalous performance at T5. These decreases with respect to the daily scale

(specially within r results) can be attributable to the possible existence of certain non-

stationarity at monthly scale. This would provoke that monthly averaged values at those

cases are coupled to an artificially increased monthly variability, explaining thus their

performance loss.

The best performances are respectively provided by FG (0,54 m/s) and PD (0.82).

MAE |V | overall results show that the new methods outperform W-NCAR between 24

(FE and PD) and 28% (FG), and WT between 30 (FE and PD) and 33% (FG), while the

introduced methods correlate substantially higher than WT and W-NCAR. The maximum

performance is reached at T6, with r = 0.92 (PD) and MAE |V |=0.34 m/s (FG), with

very similar results for FE. For all this, there is no clear preference for FG, FE and

PD, since their performance are similar and depend on the considered statistic, tower

and averaging period. Similar relationships are obtained for MAEV , again W-NCAR

performing particularly well at T5, with an accuracy only lower than PD.
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Table 3.4: Monthly MAE |V | and MAEV through FG, FE and PD methods at the test
period for the six wind speed data sets considered. For comparing purposes, values for
WT and W-NCAR are also depicted. Mean values are weighted according to the length of
the considered time series at each tower. All obtained r values are statistically significant
(p<0.01).

statistic method T1 T2 T3 T4 T5 T6 mean
W-NCAR 0.66 0.54 1.16 0.81 0.87 0.54 0.75

MAE |V | WT 0.72 0.63 0.73 0.91 1.19 0.72 0.81
(m/s) FG 0.44 0.32 0.79 0.62 0.89 0.34 0.54

FE 0.45 0.40 0.70 0.62 0.95 0.40 0.57
PD 0.51 0.45 0.58 0.52 1.02 0.43 0.57
W-NCAR 1.96 1.58 1.47 1.87 2.01 1.40 1.71

MAEV WT 1.87 1.49 1.65 1.74 2.05 2.04 1.81
(m/s) FG 1.44 1.09 1.44 1.63 1.52 1.58 1.45

FE 1.51 1.14 1.44 1.71 1.59 1.55 1.49
PD 1.50 1.25 0.93 1.21 1.53 1.37 1.30

Finally, r values obtained with the introduced methods show less spatial variability

than those derived from the reference approaches (table 3.5, which suggests that the new

methods performance is less sensitive to local factors. Summarizing, in overall terms all

three methods perform better than the reference approaches at both daily and monthly

scales.

Table 3.5: Same as 3.3 but for the monthly scale.
method T1 T2 T3 T4 T5 T6 mean
W-NCAR 0.67 0.80 0.41 0.61 0.79 0.75 0.67
WT 0.74 0.71 0.72 0.20 0.57 0.32 0.55
FG 0.84 0.89 0.71 0.73 0.75 0.91 0.81
FE 0.84 0.84 0.74 0.75 0.75 0.90 0.80
PD 0.84 0.85 0.83 0.91 0.52 0.92 0.82

3.3.2 Examples on Daily Wind Reconstruction

In this section some examples on the behavior of the developed methodology are shown.

Additionally, wind roses are also computed for the test period, so that the angular con-

figuration accuracy can be qualitatively assessed. It must be emphasized that this last
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exercise represents a useful tool when assessing the wind resource at the wind power

industry, and will be employed later in the wind reconstruction.

Figure 3.2 shows two estimated wind speed series at daily and monthly scales at T6

with all the considered approaches compared with observations. Figure 3.2 (a) shows

100 days within τs. It confirms the higher reconstruction performances using FG and

FE, with an overall better track than WT with respect to the observed wind. Figure

3.2b shows the monthly wind speed test reconstruction applied throughout the whole

considered instrumental time range, where FG and PD performed best.
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Figure 3.2: 100 days sample (a) of the daily wind speed reconstruction at the τs period
performed by WT, FG and FE methods for T6 compared to the observed wind speed
signal (from February 9 to May 20, 2006) and monthly (b) observed and estimated wind
speed for the period 1999-2009 by the same methods and tower.

Wind roses have been computed through FG and FE for the six considered locations,

for τs. The data cross-validation procedure to build the wind rose consisted on a similar

procedure as for wind speed. First of all the wind rose for each obtained class (frequency

and speed) is calculated in the training τs period. Then, the weighted average of these roses
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is computed depending on the frequency of each class within the considered time range.

The obtained values are displayed in Figure 3.3, where 16 sector wind rose reconstructions

are compared with the real data in τs period. Results show a consistent similarity between

the observed and reconstructed series both in wind intensity (color) and wind frequency

(shape) for each sector of the wind rose for both FG and FE methods. Fig. 3.4 shows the

same approach for PD.
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Figure 3.3: Wind roses computed from observations (left), FG (centre) and FE (right) for
the 6 towers at the test period.
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Figure 3.4: Comparison of the real and reconstructed wind speed using the proposed PD,
for Towers T1-T6, respectively.

3.3.3 Homogeneity within the Intra-Class SLP Daily Fields

Each obtained class or Wind Type within the developed methods can be associated to

an SLP synoptic situation that represents its circulation features. In this work each one

of these pressure maps has been computed by averaging the SLP field from those days

belonging to a given class. The class-representativeness of these SLP synoptic composites

associated to each one of the computed classes has been assessed as an additional measure

of goodness. To do this, the SLP dispersion (in terms of Standard Deviation σ) within all

the daily pressure fields forming the composite has been measured, for every grid point

of the considered domain (that employed for FG and FE, see figure 2.1), for every given

class. Finally, the average dispersion per grid point and class has been computed, and

weighted depending on the number of elements per class, for each one of the six considered

locations. Results have been compared to the average SLP field dispersion provided by

the WT method.

The average grid point SLP σM ’s have been compared to those (σRC) obtained by
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a random classification (RC). In this way, σRC has been measured over a set of 1000

artificially generated classifications whose elements within each class have been randomly

chosen. To perform a proper comparison, the amount of elements per class has been

set to coincide as in those classifications obtained through WT, FG, FE and PD. The

relative ratio between the average SLP dispersion (σM) of every method with respect to

the average σ of RC (σRC) has been computed, represented as:

σRR =
σRC − σM

σRC
(3.3)

Figure 3.5 shows σRR for each tower and method. Results show that the overall

dispersion of FE and FG per grid point is lower than that at WT. FG shows the best

performance in all locations, while FE is better than WT in all sites except T3, where

a slight difference (0.3%) occurs. A Chi-square Homogeneity test has been performed to

assess the statistical significance of the SLP dispersion reduction. Thus, the amount of

grid points (%) with a significant (p < 0.05) σRR was 48, 50 and 56 for WT, FG and FE

respectively. These results show a robustness in FG and FE similar or even higher than

WT to explain the synoptic circulation, specially when a large spatial scale is considered.

Finally, σRR shown by PD is clearly higher than that of the other methods, although

still overcoming WT at several towers. This is consistent with the nature of this method,

not designed to cluster the synoptic circulation, but to estimate the local wind speed

with the minimum uncertainty. These results suggest that the obtained classes are more

unambiguously and better related with V than WT, which implies, apart from a better

characterization of wind, the possibility of developing important climatic applications,

being their analysis beyond the scope of this thesis.
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Figure 3.5: Obtained values for σRR. Histograms show results as spatial averages for each
classification versus the mean SLP dispersion considering a random classification with
same number of elements per class.

3.3.4 Comparison with Previous Work

The obtained results have been compared with a wide amount of statistical downscalings

of wind listed in the introduction. However, a strict comparison could not be done with

the design made in this work, because in some cases a numerical measure of goodness is

not provided (Palutikof et al., 1992; Michelangeli et al., 1995; Bogardi and Matyasovzky,

1996), results are shown within an intra-daily (6h) timescale (Faucher et al., 1999; Davy

et al., 2010), a cross-validation is not performed (or it is not specified wether it has been

done) (Salameh et al., 2009; Mengelkamp, 1999; Pryor et al., 2005c,b), or the orographic

conditions are clearly different. In this sense, our performance is observed to be in the

same order or higher than works with oceanic (van der Kamp et al., 2012; Curry et al.,

2012; Monahan, 2012) or manifestly simple (Bergström, 1996; Sandström, 1997; Ekström,

2002) orography.

Results from Najac et al. (2009) can be more easily compared. There, a maximum

(minimum) RMSE of 2.8 m/s (1.1 m/s) and a maximum (minimum) r=0.75 (0.43) are re-

spectively obtained for daily wind speed series from 78 meteorological stations in France.

Daily values obtained by our methodology (considering FG, FE and PD) show simi-

lar RMSE ranges (maximum/minimum of 2.6/1.4 m/s) and higher performances for r

(max/min 0.81/0.68). Finally, Garćıa-Bustamante et al. (2012) show an average monthly
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wind speed linear correlation lower (0.7) than ours (0.80-0.82), although with a different

orography.

Regarding those methods employing soft-computing tools, Sailor et al. (2000) obtained

for three inland locations a climatological year constructed from 30 years of data (27 for

training), with a daily linear correlation with observations of 0.85. The same exercise

for every one of our considered methods and towers showed values between 0.82, with

less than 7 training years in average. Results also appear to be in the order of Bouzgou

and Benoudjit (2011), Mohandes et al. (2004), and Torres et al. (2005). Finally, it has

been observed that PD outperforms for all locations (Carro-Calvo et al., 2012) other

evolutionary configurations (IFEP in Yao et al. (1999)).

Since the orographic and the circulation regimes at the different studies can differ

substantially, these comparisons must be considered carefully. For instance, it must be

taken into account that the selected towers for this thesis are located at places with a

wind power relevance, with high mean wind speeds (i.e. higher uncertainties), instead

of the average wind conditions at a regular meteorological station. For the same reason,

the considered sites are placed generally at the top of hills, entailing notable complex

orographic conditions, not comparable with others with much simpler conditions or just

over sea. Finally, most studies consider locations with a high prevalence of the mid-

latitude westerlies or the Atlantic storm track (Rogers, 1997). Surface winds at these and

other regions with a clear large-scale circulation can result more easily parameterized than

those with a more weakly defined geostrophic flow.

3.4 Obtained Wind Types

The high quality of the validation performance allows analyzing the resulting Wind Types,

represented by their corresponding class-composites at the SLP field, with some depth (an-

nual frequency, wind features, etc). This is a useful exercise to understand the meteorology

and climatology associated to the wind speed variability. It must be noticed, however,

that the PD method was not designed to cluster the SLP field, but to directly estimate

local wind. This makes that PD does not show an homogeneous magnitude and direc-

tion difference between classes. Moreover, this method produces a class-arrangement that

varies from one launch to another, with no possible connection between the class identifi-

cation obtained at different launches. However, in general terms PD groups the pressure

patterns in classes which are easily recognizable as typical meteorological situations, what
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is, intuitively, a good point of reference.

3.4.1 FG and FE Wind Types: Geostrophic vs local Wind

As explained in chapter 2, F represents a valid proxy for the real wind, V . In this section

this relationship between the geostrophic index F and the observed wind V is analyzed for

FE (the FG relationship between F and V showed a similar behavior). The daily values

for F and V vectors can be represented by the vector pointers describing the origin of

the flow. Among the six studied locations, only T1 and T3 will be described here. The

reason for this is that T3 showed a very different wind regime compared to the rest of

the towers, with a highly prevalent easterly flow. Since the other towers showed a similar

relationship between F and V , T1 has been selected as representative for them. Figures

3.6 and 3.7 show F and V values obtained for T1 and T3 respectively.

In the figures, each box depicts F s and their corresponding V s values for each resulting

class. As it can be observed, at both T1 and T3 V is characterized by a weaker intensity

(a 24% smaller in average) and a counterclockwise tending direction (31o in average) than

F due to drag effects from geostrophic to the local approach. However, V is closer to F

at T1 than at T3 (specially within E, SE and S sectors), which corresponds with a minor

disturbance of the synoptic circulation. This can be observed in the difference between

grey (F ) and black (V) dots in figure 3.6. In turn, V in T3 shows a particular behavior

in addition to drag, showing an anomalously high prevalence of classes representing flow

from the east. This great contribution from easterlies can be attributable to the particular

funnel shape of the Gibraltar Strait (Dorman et al., 1995; Bormans et al., 1986) which,

unlike most of the IP, originates the prevalence of strong levanters (easterlies). In turn,

T1 can be considered as representative for the overall Central Iberian Plateau flow regime,

where westerlies are more prevalent (Jerez et al., 2013).

Although differences between F and V can be larger in T3 than in T1 due to mesoscalar

flow distortions, the correspondence between F and V evidences for all the towers an over-

all capability in both methods to retain similar wind features within elements belonging

to the same class. This clustering capability within V can was measured by calculating a

dispersion measure as the radius of a class, i.e. the average Euclidean distance to the class

representative Vcκ in the speed space. This magnitude can be derived through Equation

2.12 (by employing this time V instead of F ). The average vectorial radius per class is

clearly smaller for FG and FE methods, compared to WT, for the six considered towers.

In average WT showed for all towers a vectorial radius of dispersion 12 and a 17% bigger
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3.4. Obtained Wind Types

than that observed in FG and FE respectively. FE showed the best performance in T3,

with an improvement of a 17% compared to WT, while FG improved 9%. This can be

explained through the fact that FE is the only method which considers the angular bor-

ders as a variable to be adjusted, allowing the predominant directions to be fixed more

accurately. When speaking of wind speed module, performances are similar. The obtained

average distances for all towers was 1.70 m/s for WT, with values of 1.40 and 1.38 m/s

for FG and FE respectively, a clustering capability more than 23% higher compared to

WT.
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Figure 3.6: F and V values for each class obtained by the FE algorithm for tower T1.
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Figure 3.7: F and V values for each class obtained by the FE algorithm for tower T3.
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3.4.2 Synoptic Dynamics and Monthly Variability associated to
the obtained Wind Types

The main characteristics of the obtained classes through FG and FE are now analyzed.

These include the synoptic circulation SLP class-composites over Iberia as well as their

monthly frequencies and wind speeds.

Results are shown for T4, since it holds the largest data set compared to the other

towers (over 50% more data). Results on the pressure composite, monthly frequency and

monthly wind speed for every class are shown for FG and FE in figures 3.9 and 3.10

respectively, and compared to those obtained through WT (Fig. 3.8). Dark regions in

maps denote statistically significant (p<0.05) values for σRR (see Sect. 3.3.3), i.e. the

SLP pressure dispersion is significantly small against a class randomly computed.

The class arrangement described in sect. 2.2 for FG and FE is represented by SLP

class-composites consisting on a sectorial (N,NE,E,SE,S,SW,W and NW) and radial (M1,

M2, M3) stratification, complemented by a cyclonic (C) and an anticyclonic (A) calm

Wind Types. In general terms FE and FG circulation patterns show, compared to WT,

more clearly differentiated SLP fields among the three magnitudes of a given sector (most

clear at S, W or NW sectors). This can be explained attending to the differences in

the criteria of the methods to arrange the classes in a certain sector. In WT patterns

within a given sector are established through hybridization criteria between the pure (P)

directional type and the two cyclonic types (C and A) to form HC and HA, without

a special need to differentiate the flow intensity between HC and HA. In contrast, FG

and FE define a specific criteria for each one of the three patterns within a sector (M1,

M2 and M3). Within this module stratification it can be observed that the circulation

patterns associated to two classes from the same sector can keep bigger differences between

them, compared to WT. These differences of classification criteria also illustrate a more

balanced distribution of days frequency per class for the new methods, implying a better

characterization of the area: while WT concentrates 50% of the days in only 5 classes, FG

and FE need 8 and 10 classes to reach that ratio. This happens because WT anticyclones

(A) hold nearly a quarter of the considered period, while FG and FE anticyclones, which

refer only to calm circulations, include respectively 15 and 5% of the days.
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3.4. Obtained Wind Types

A strong seasonality is observed at different classes (histogram bars under the compos-

ites in figures 3.8, 3.9 and 3.10). It must be noticed that in many cases there is a strong

annual cycle, with a single maximum (normally in winter or in summer), or two maxima,

normally in spring and autumn. By focusing on those classes with a high wind speed (M3

flows), some circulation pattern typology can be observed. Thus, a marked winter cycle

for strong flows at sectors NW, W, SW, S and SE can be noticed. By considering their

related high wind speed and their spatial distribution, the first three classes are consistent

with the features of strong storms in winter (Trigo, 2006; Goyette, 2011), in agreement

with their associated high wind speed (Allen et al., 2010). On the other hand, SE repre-

sents a clear example of cold anticyclone at Central Europe (Lopez-Bustins et al., 2008),

while S results in a hybrid that feeds from both situations.

The maximum frequency at FG and FE calm flow patterns (C and A) is observed in

summer for all locations. Wind Type C is characterized by a weak, cyclonic horizontal

flow with a seasonal cycle perking in August and September. These features coincide with

different prevailing meteorological situations over the Iberian Peninsula in late summer,

related with convective precipitation precipitation regimes (Mosmann et al., 2004) asso-

ciated to the Iberian thermal low depression (Hoinka and Castro, 2003). On the other

hand, the anticyclonic calm (A) Wind Type presents the highest occurrence frequency in

summer, reflecting the prevailing situation where the influence of the Azores anticyclone

extends further into the Iberian Peninsula (weak flow). This circulation type is different

from the WT pure anticyclonic class, which is most prominent in winter. This difference

evidences that, although both WT or FG/FE A types describe an anticyclonic situation,

FG and FE retain those days with an explicit calm flow (with wind speeds 20% lower

than A at WT).

Other characterizations can also be found for M1 and M2 magnitudes. In this regard,

FE and FG W-M2 class (and to some extent SW-M2) presents a seasonal distribution with

maxima in spring and autumn, related to westerly moderate perturbations in the wettest

months (April and November). In turn, in N, NE and E sectors a very strong summer-

centered seasonality is observed for magnitudes M2 and M1, which provide medium-low

winds. As it can be seen in the corresponding figures (FG and FE), this set of classes

is strongly influenced by the Azores high, characterized by a weak flow in summer over

Iberia (Davis et al., 1997). Finally, when the center of this anticyclone remains stationary

west of the IP over Azores, N, NE and E flows over Iberia become stronger (M3), and the

seasonal cycle is no longer seen.
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Chapter 4

Long-Term Wind Variability

4.1 Introduction

I
n this chapter the wind conditions at the six towers are analyzed from a long-term

(i.e. multidecadal) perspective, similarly as in Kirchner-Bossi et al. (2013) is done for

T1. To do that, the daily wind is reconstructed for the period 1871-2009 by applying

the introduced statistical downscaling methodology to a 139 year daily SLP data set

ranging between 1871 and 2009. The NCEP/NCAR is employed to obtain a daily wind

classification for the period 1948-2009, while the 20CR ensemble mean is employed to

span the daily pressure field from 1947 until 1871. This construction from two different

data inputs has been also performed by Jones et al. (2012), arguing that NCEP/NCAR

data offers a slightly higher reliability for the period when it is available. Apart from

analyzing the long-term variability of the derived wind speed time series (Sect. 4.2), a

variability analysis is performed in terms of the annual wind speed Probability Density

Functions (PDF, Sect. 4.3) and the annual wind roses (Sect. 4.4). In the last section of

the chapter (Sect. 4.5) the reconstructed annual frequency of the obtained Wind Types

is considered to analyze their incidence onto the reconstructed mean annual wind speed

variability along the 139 years computed.

FG is used in this chapter because its performance is similar to the other methods,

but it has a deterministic, fixed N, NE, E, SE, S, SW, W and NW flow directions and

magnitudes, so it appears as the most robust option for a Wind Type incidence analysis.
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4.2 Wind Speed Long-Term Variability

4.2.1 Obtention of the Wind Speed Series

The daily F , Z and α values derived from the SLP daily field set 1871-2009 (20CR+NCEP/NCAR)

were used as predictors in the FG classification conditions that had been fixed at the

training period, to compute a daily 26-Wind Type classification for each one of the 6

considered locations. Then, every day was identified with its class-representative Vcκ and

an uncertainty value, which corresponds to the class-MAE values computed at the test

period. The computed daily wind speed reconstructions can be observed at figures 4.1

and 4.2). Annual reconstructed and observed values are shown jointly with an 11-year

running mean. The wind speed range between percentiles 2.5 and 97.5 is also shown for

the 11-year and the 1-year running means. To calculate these magnitudes we assumed

that the daily uncertainty computed in the test process follows a normal distribution, i.e.

the MAE equals the percentile 50 of that distribution, so the standard deviation can be

expressed as σ=MAE/0.68. In turn, the population variance (1 or 11 years, σ̄2
y) can be

derived from its relationship with the sample variance (1 day, σi
2), which is described as

follows:

σ̄y =

√∑
i=1 σ

2
i

n− 1
(4.1)

Finally, the 2.5 and 97.5 percentiles are estimated by taking into account its rela-

tionship with σ̄ in a gaussian distribution, which corresponds to ± 2.25σ̄. The higher

uncertainty observed at T4 might be associated to the existence of a certain degree of

non-stationarity in the relationships between scales throughout the whole training period.

In addition, this tower shows an abrupt wind speed peak at the 20CR-NCEP/NCAR

transition period (centered in 1948), (Fig. 4.2, T4). This kind of variability around 1940-

1960 is much smoother in T1, T2, T5 and T6, without any apparent inconsistency, so the

origin of such prominent change at T4 remains unclear.
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_
rm1y_obs

_
rm1y_rec_2.5-97.5_

rm11y_rec_2.5-97.5

_
rm11y_rec

T1

T2

T3

Figure 4.1: 1871-2009 wind speed reconstruction for T1, T2 and T3, represented in terms
of a 11-yr running mean (black). Light and dark gray represent the 1-yr and 11-yr running
mean of the uncertainty band comprised between the 2.5% and the 97.5% percentiles. The
linear regression for the whole period (straight line) and the observations’ 1-yr moving
average (red) are also depicted.
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Figure 4.2: Same as 4.1 for towers T4, T5 and T6.
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4.2.2 Climatological Wind Speed Variability

All towers except T3 show a positive correlation among them (Table 4.1). In turn, T3

shows a negative significant correlation with respect to the rest. These results confirm the

fact that, as suggested in the previous chapter, all towers except T3 share some similar

flow features. Thus, the obtained correlation values allow to consider all towers except T3

as related and somehow representative of the Central Iberian plateau (Tp) wind regimes,

yet retaining their distant location among each other (except T1 and T2, which are only

few kilometers away). Among them, T1, T2, T5 and T6 are most closely correlated. In

turn, T4 shows, although still significant, an overall lower correlation with the rest of the

towers. As shown before, T4 shows an anomalous behavior around 1950 and it has the

highest annual variability in terms of standard deviation and annual wind speed range.

Results on these and others annual variability statistics towers are summarized in Table

4.2.

The negative (significant) correlation that T3 holds with the other towers evidences

that a non negligible part of the variability of the circulation surrounding the Gibraltar

Strait is being ruled by the same mechanism governing flow at the Central Iberian plateau,

which in turn exhibits an opposite incidence at both regions.

The wind variability at T3 shows, similarly to T4, a range between the maximum

(7.26m/s in 1941) and the minimum (5.66 m/s in 1986) annual wind speed 48-18% higher

than the rest of the towers. Regarding the mean annual wind speed, T3 shows the lowest

wind speed value. However, its high wind speed range makes that, at an annual scale T3

shows a maximum annual speed value higher than some other locations (T1 and T5).

Table 4.1: Inter-annual Pearson correlation coefficients between the wind speed recon-
struction in terms of annual means at the six considered locations for the period 1871-2009.
All values are statistically significant (p<0.05).

tower T1 T2 T3 T4 T5 T6
T1 1.00 0.99 -0.42 0.43 0.74 0.87
T2 - 1.00 -0.39 0.45 0.74 0.88
T3 - - 1.00 -0.35 -0.40 -0.35
T4 - - - 1.00 0.67 0.44
T5 - - - - 1.00 0.59
T6 - - - - - 1.00
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Table 4.2: Statistics of the annual mean of the wind speed reconstructed series at the
six considered locations.

statistic T1 T2 T3 T4 T5 T6
mean (m/s) 6.90 6.72 6.29 7.66 6.54 6.97
SD (m/s) 0.30 0.23 0.30 0.36 0.22 0.23
max. (m/s) 7.72 7.36 7.26 8.60 7.24 7.66
min. (m/s) 6.36 6.28 5.66 6.97 6.02 6.51
range (m/s) 1.36 1.08 1.60 1.63 1.22 1.15

4.2.3 Multidecadal Wind Speed Variability

In order to detect possible low frequency wind variations, a spectral analysis was per-

formed on the annual wind speed series through a Fourier transform. Results revealed a

statistically significant (p < 0.025) variability cycle within the 23 year frequency band for

all towers except for T5, while a periodicity of 46 and 69 years is also detected for T3 and

T4 respectively. Figure 4.3 shows the power of the annual spectra at the six towers.

A linear trend analysis on the whole period showed slight but statistically significant

negative linear trend of around 0.1 m/s every 100 years for T1, T2, T5 and T6, while

T4 showed an increase of 0.45 ms-1/100yr, although the particular issues described above

related to this tower must be taken into account. However, during the 1871-1945 and

1960-2009 periods, linear changes are higher. In this way, through the first interval all

towers except T3 showed a significant (positive) trend (between 0.20 and 0.45 ms-1/100yr).

During 1960-2009, however, this behavior becomes opposite, and all towers but T3 show

significant negative trends, between -0.37 (T6) and -1.27 (T4) ms-1/100yr. In turn, T3

presented a significant positive trend of 0.36 ms-1/100yr.
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Figure 4.3: Power density for the variability spectrum of the six considered towers (black).
Statistically significant (p<0.025) values are those which exceed the blue label.

All these results allow to interpret the wind farm performance reached in the last years

into a multidecadal context. In this way, at Tp towers, the last period of observations

appears located within a minimum phase of the multidecadal variability, which could

induce an underestimation of the long-term wind speed resource at the Iberian plateau

region. On the other hand, T3 appears to be in a period where wind speed is tending to

increase.
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4.3 Wind Speed PDF variability

In order to analyze the differences among different years in a decade and different decades

along the whole period (1871-2009), the daily wind speed frequency distribution has been

computed for different periods at decadal and annual scales with a 1 m/s resolution.

To provide an even higher robustness to the reconstructed PDFs, the obtained Wind

Type (WdT) classification is employed here by considering, for a given class, the complete

wind speed distribution computed at the observations period (Tobs), instead of just its Vcκ
class-representative. The reconstruction process for every annual wind speed PDF can be

summarized as follows:

1. For every day of Tobs we computed the daily wind speed PDF from the 10-min.

observations.

2. The corresponding daily WdTs of Tobs were identified.

3. The daily PDFs of those days with the same WdT were merged into a WdT-PDF.

This was performed for each one of the 26 classes, so 26 WdT-PDFs were obtained.

4. Every reconstructed day was characterized with a certain WdT-PDF, according to

the WdT classification.

5. For each year, a PDF was computed from its daily PDFs.

Since all Tp locations showed a comparable variability, in this section T1 has been

selected as representative for the analysis of the long-term wind speed variability for the

central Iberia plateau, while T3 represents the existing wind regime at the Gibraltar area.

Figure 4.4 shows the T1 wind speed frequency distribution at those decades with the

highest (1926-1935) and the lowest (1979-1988) average wind speeds. Additionally, the

decade with highest interannual variability (1936-1945) is also shown. For these three

decades, the years with the highest and the lowest wind averages have been selected

to analyze possible significant changes among them. A Chi-squared test of homogene-

ity showed that 1926-1935 and 1979-1988 PDF distributions are significantly different

(p<0.05). This inhomogeneity is mostly attributable to the 3-6 m/s interval, where the

1979-1988 period shows a frequency 10% higher than the 1926-1935 decade (156 days),

and to the 9-14m/s interval, where the last shows a frequency 20% higher than the first

(127 days). For the period 1936-1945, although the PDF differences between low (1945)

80
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and high annual winds (1936) were not statistically significant, some remarkable changes

can be seen. 1945 shows a 30% higher frequency than 1936 in the first quartile (3-4 m/s).

In turn, 1936 shows frequencies 35% higher than 1945 in the third quartile (8-9 m/s).

rel. 

freq.

m/s m/s m/s

a) b) c)
rel. 

freq.

1929

1935

1945

1936

1988

1979

1926 - 1935 1936 - 1945 1979 - 1988

Figure 4.4: Reconstructed wind speed frequency distribution at T1 for the decadal (grey
bars) periods 1926-1935 (a), 1936-1945 (b) and 1979-1988 (c). Green (magenta) bars
represent the frequency distribution of the years with the highest (lowest) wind speed
average of the decade, 1935, 1936 and 1978 (1929, 1945 and 1988).

The PDFs variability in T3 is higher (Figure 4.5). The windiest decade was 1940-1949,

while the calmest occurred during 1957-1966, their wind speed PDFs being significantly

(p<0.05) different through a Chi-test of homogeneity. This inhomogeneity is most ev-

idenced in the 4-5 m/s interval, where the 1957-1966 period presents a frequency 29%

higher than the 1941-1950 period (106 days), and in the 8-15 m/s interval, where this

decade shows a frequency 40% higher (290 days). In addition, at the decade with the

highest interannual variability (1941-1950), the windiest (1941) and the calmest (1950)

years show statistically significant differences. The frequency at the first quartile (3 to

4 m/s) is 31% higher for 1950, while at the third quartile (9 to 10 m/s) 1941 shows

frequencies 112% higher.
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rel.
freq.

m/s m/s m/s

a) b) c)
rel.
freq.

1940 - 1949 1941 - 1950 1957 - 1966 1944
1941

1950
1941
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1964

Figure 4.5: As Figure 4.4 but within T3, for decades1940-1949 (a), 1941-1950 (b) and
1957-1966 (c).

4.4 Wind Direction Variability

Similarly to PDF analysis, the inter-annual and decadal wind rose variability has been

analyzed for T1 and T3. The same inputs and method than those employed for the

wind speed PDFs (steps 1-4) where employed to perform a running decadal 16-sector

wind rose reconstruction throughout the period 1871-2009. Thus, every wind rose was

obtained by first computing 26 roses, one for each class, according to their wind features

during the observations period (Tobs). Thus, every one of them was computed according

to its class-frequency and -wind speed distribution at every sector along Tobs. Then, every

reconstructed day was characterized with a wind rose according to its WdT. Finally, for

a certain year the reconstructed wind rose was obtained by considering all the daily wind

roses of that year, similarly to the class-PDFs previously obtained.

Within T1, SW is the most prevailing sector throughout the whole period. It has

been observed that when the annual average wind speed increases above the average,

the SW sector frequency is restrengthened, while N and E directional quadrants become

weakened. Thus, a statistically significant (p<0.05) Pearson correlation of 0.50 is obtained

between SW annual wind average frequency and speed. These results can be observed

also in decadal averages. In Figure 4.6 the wind roses are depicted for the the considered

decades. There, the frequency of the strongest sector (SW) is 30% higher during 1936

than in 1945. The maximum annual frequency differences within the SW sector reached

50% between 1962 (min.) and 1968 (max.).
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Figure 4.6: Wind rose reconstructions at T1 for the decades with the highest(a) the lowest
(c) and the biggest differences (b) wind speed average. Green (magenta) profiles stand
for the relative frequency per sector for the year with the highest (lowest) average wind
speed of the decade.

In T3, the great frequency during all the period (0.52) of E-SE and SE directions

(SE) reflects its particular wind regime. Figure 4.7 shows wind roses for the selected

decades. Along the whole period (1871-2009), strong frequency changes of SE can be

observed, associated to variations of the annual wind speed. In this way, wind frequency

from SE increases during the windiest years, the rest of the directions doing so when the

annual wind speed is lower (Fig. 4.7 b). This is corresponded with a significant (p<0.05)

difference of speed averages between the 10 years with highest and lowest SE frequency

values. This difference is equivalent to the 60% of the maximum observed decadal speed

range. Nevertheless, this relationship loses stationarity in the last years of the series.

Thus, the correlation coefficient between the annual wind speed and SE frequency is

0.51 during the period 1871-1960, while it is lower than 0.30 during 1961-2009. Thus,

although T3 wind speed appears to be rising in the last decades, this increase can not

be attributable to an increase of easterly winds. This is also evidenced with results from

the observational period (Fig. 3.3 c), where wind speed shows SE frequencies lower than

that at 1940-1949 (Fig. 4.7a), although similar annual wind speed values are obtained.
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Figure 4.7: As Fig. 4.6 but for T3.

4.5 Wind Type frequency variability associated to

the reconstructed wind speed

This section analyses the way the different daily Wind Types obtained through the FG

method contribute to the reconstructed annual wind speed outcome, Va. To do this, a

Principal Component Analysis (PCA) was performed on the annual frequency of occur-

rence (f) of the 26 obtained Wind Types throughout the period 1871-2009. This way

a series of Principal Components with a length of 139 years were obtained, representing

the annual evolution of the most important variability modes (EOFs) of the Wind Types’

frequencies. The PCs obtained and their corresponding EOFs were arranged according

to their percentage of explained variance of f , so called %V arf .

In order to identify which PCs retain more information on the annual wind variability,

each one of them was compared with the reconstructed annual wind speed series, and the

rate of variance shared among them r2(PC,Va) was computed. Among the 26 obtained

PCs, only those which showed a statistically significant (p<0.05) r2(PC,Va) were consid-

ered. In this context, 1 PC was considered in T1, T2 and T6, two in T4 and T5 and

3 in T3, as seen in table 4.3. It also shows that in most cases (T1, T2, T4, T6) just a

single PC was enough to explain more than 60% of the annual wind speed variability. At

each one of the towers with more than one significant PC, the considered PC secores were

computed to obtain a composed PC (CPC) from the initial ones. Figures 4.8a)-4.13a)

illustrate the six obtained PCs or PC compositions (CPC).
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4. Long-Term Wind Variability

Table 4.3: PCs retained for each tower. V arf is the rate (%) of annual Wind Type
frequency variability obtained at the annual Wind Type frequencies’ PCA, and the shared
variance between PCs and wind speed, r2(PC,Va). PCs are labeled (1,2,3) according to
the amount of %Varf observed at the PCA.

Tower PC V arf r2(PC,Va)
T1 PC2 14 74
T2 PC2 15 70

PC1 31 11
T3 PC2 12 31

PC3 9 26
PC1 41 69

T4 PC2 9 17
PC1 26 42

T5 PC2 12 25
T6 PC2 15 60

Results for the six tower EOFs are shown in Figures 4.8b)-4.13b). At every EOF,

each Wind Type shows the loading of its contribution (positive or negative) to the annual

wind speed variability. The PC composition for T3, T4 and T5 allowed to compute

more complete associated EOFs (i.e. containing more information) at those locations.

Each EOF shows the incidence that each Wind Type exerts on the annual wind speed

variability.

To a high degree, all locations within Tp show a similar Wind Type contribution

pattern, with westerlies (easterlies) showing a positive (negative) contribution to the an-

nual average wind. T4 and T5 reflect a higher positive contribution within strong (M3)

westerlies and a bigger negative input from weaker (M1) easterlies, as in T1, T2, T6 the

contribution is equally distributed through all magnitudes (M1-M3). Regarding calms, all

Tp towers showed negative contributions to annual wind, with a higher negative incidence

of cyclonic calms at T1, T2 and T6, and a higher contribution of anti-cyclonic calm at

T4 and T5.

The pattern (EOF) at T3 is clearly different. Here, SE Wind Types provide the highest

inputs, while NEs show the biggest negative coupling. According to calms, in contrast

with the other towers a positive contribution of anti-cyclonic calms is observed. This

is due to the fact that this class entails, although moderate, an easterly flow, which is

prevalent in this tower.
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4.5. Wind Type frequency variability associated to the reconstructed wind
speed

A clear display of the contribution of the daily wind regimes onto the average annual

wind speed can be illustrated by considering the wind observations at the instrumental

period and its daily classification (Figs. 4.8 c-4.13 c). There, each daily wind vector

is represented with a dot at the (u,v) space, and is characterized through a color scale

according to its Wind Type loading at the EOF. Results show a clear W-E bipolar con-

tribution to the average annual wind at all towers, with again an opposite behavior at T3

compared with the rest of the towers. Figures clearly depict surface wind as the result

between the interaction of large-scale circulation with surface forcings. In those cases

where the prevailing direction shows a W-E dipole, the contribution at every pole is clear,

with a positive input to the annual variability (red dots) at westerlies in Tps and within

easterlies at T3. However, some times the prevailing direction dipole does not show a

clear positive-negative pattern, appearing divided if the local strengthening is N-S and

the prevailing synoptic direction is W-E (T4).

The fact that so few PCs explain high percentages of the wind speed variance shows

that the classification derived from the SLP data is an appropriate wind predictor, and

the SLP information employed on reconstructing wind (considered PCs) appears clearly

isolated from the rest of the SLP variability (rest of PCs).
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Figure 4.9: Same as 4.8 but for T2.
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Figure 4.11: Same as 4.8 for T4, but this time considering the composition of the 1st
and 2nd PCs. The resulting time component (RPC) and the corresponding loadings
(composed EOF) is obtained from a linear combination of these three first modes by
means of a multiple linear regression.
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Figure 4.12: Same as 4.8 for T5, but this time considering the composition of the 1st
and 2nd PCs. The resulting time component (RPC) and the corresponding loadings
(composed EOF) is obtained from a linear combination of these three first modes by
means of a multiple linear regression.
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Figure 4.13: Same as 4.8 but for T6.
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Chapter 5

Long-term Wind Power Output
Variability

5.1 Introduction

In the previous chapter different trends and significant multidecadal changes in wind speed

have been analyzed. Here, this analysis is extended to the wind power output. To do this,

a simulation on the annual wind power output (Po) generated by a market wind turbine is

performed for the period 1871-2009 at T1 and T3 (see also Kirchner-Bossi et al. (2014)).

The fact of accounting for a long-term wind power simulation allows to assess the

impact that different factors exert on its variability in a multidecadal context. Several

works have recently evaluated the relationship between Po and atmospheric large-scale

teleconnection patterns for different locations, all of them revealing a high incidence of

the main regional (Harper et al., 2007; Spears and Jones, 2010; Brayshaw et al., 2011)

and global (Klink, 2007; Goubanova et al., 2011) teleconnection modes on wind power.

In the IP, Jerez et al. (2013) and Jerez and Trigo (2013) performed an assessment of the

influence of NAO and the other main large-scale indices on wind power for the overall

region through a dynamical downscaling, showing also a high impact on wind power at

monthly scale. Here, the long-term impact of these teleconnections on wind power and

its temporal stationarity are assessed for specific points.

Two other factors ruling the long-term variability of wind power can be faced through a

centennial wind power series, which to the best of our knowledge have not been previously
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5.2. Remarks on the Procedure and the Data Employed

considered in the literature. In first place, the incidence that the operational wind speed

thresholds of a wind turbine exert in the annual wind power output can be analyzed. These

thresholds define respectively the minimum (Cut-In) and maximum (Cut-Out) velocities

of the wind speed range at which a wind turbine can operate. Although these parameters

are obviously adjusted to optimize the generated power, a certain pair of values are set

according to the different existing wind regimes. Since wind conditions are far to be

stationary in time (as seen in the previous chapter), the extent to which these technical

limitations can impact on wind power output can significantly vary through the different

decades. Within a long-term wind speed and wind power series all these considerations

can now be studied.

The second matter addresses the influence of the wind speed PDF morphology on wind

power. A Weibull fit of the estimated wind speed PDFs allows to define it in terms of two

single values, the PDF parameters of shape k, and scale c (Celik, 2004). According to this,

the fact of accounting for a long wind power and k and c annual series allows to explore

if the annual wind power variability can become fully described empirically in terms of k

and c exclusively. Should this happen, the possibility to establish a simple expression for

the annual wind power output as a linear function of them can be considered.

5.2 Remarks on the Procedure and the Data Em-

ployed

In this chapter, we employ wind observations from T1 and T3. However, in order to

estimate the wind power output, it was necessary to consider the characteristics of a real

wind turbine. We chose the Vestas V-82 1.65 Mw (50 Hz) (Vestas, 2005), which has been

employed in several other works (McIntyre et al., 2011; Tenguria et al., 2011; Schubel and

Crossley, 2012) and it can be considered as a reference in wind power research applications.

It has a hub height of 78 m, while the 10-minute wind speed observations were performed

at 41.5 (T1) and 40 m (T3). The Wind Profile Power Law model extrapolates wind

speeds at a certain height where no data are available (Counihan, 1975). It has been

applied to adjust the wind speed observations to the turbine hub height:

v(z) = va

(
z

za

)α
, α = 0.096(log10(z0)) + 0.016(log10(z0))

2 + 0.24 (5.1)

where v(z) is the wind speed at height z, and va that at height za, while α denotes
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5. Long-term Wind Power Output Variability

the contribution of the site roughness length (z0) to the speed vertical gradient of the

atmospheric boundary layer. In our case, T1 and T3 locations present an α value of 0.2.

The employed reanalysis SLP data are slightly different in this chapter. It has been

recently reported that the fact of considering the SLP ensemble mean of the 56 simulations

could entail a certain loss of information (Donat et al., 2011), due to smoothing effects

specially within storms (Wang et al., 2012), being preferable to consider the 56 ensemble

members separately and only combining their outcomes at the end of any variable esti-

mation or model computation. In order to overcome this problem, all the 20CR-derived

variables computed in this chapter have been obtained by considering each one of the

56 ensemble components independently. Only after having computed the final derived

variables (wind power), their mean and deviation are calculated from the 56 outputs, as

it will be shown in the following sections. In this way, here wind speed reconstructions are

obtained for each one of the 56 ensemble members by performing the FE classification, in

the same wind speed was reconstructed in the previous chapter. We have used this method

because here no detailed analysis on the Wind Typing is required, so a non-deterministic

algorithm can be suitable. As seen at the validation (Sect. 3.3.1), differences between FE

and PD daily wind estimation performances were very similar.

5.3 Wind Power Output and Wind Speed

As mentioned in the introduction, the output power generated by a fluid of density ρ

through a wind turbine of surface S is related to its speed v according to the expression:

P =
1

2
CpρSv

3 (5.2)

where Cp represents the Power Coefficient of the wind turbine, with a theoretical

maximum value of 16/27 (known as the Betz limit). However, this expression is not

realistic for a wind turbine, mainly due to friction and sustentation features of the turbine

blades (Wilson et al., 1976; Vries, 1979), and power results adjust better to the square

of speed (Anderson and Bose, 1983). This makes that Cp becomes a non-linear function

of wind speed (Monroy and Alvarez-Icaza, 2006; Kjellin et al., 2011) and wind power

(Lanzafame and Messina, 2010). Beyond the consideration of this theoretical expression,

a realistic estimation of the Po from wind speed can be made if the Power Curve (Hau,

2000) of a wind turbine is considered. This curve is developed by the manufacturer along a
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5.4. Wind Power Centennial Series

theoretical-empirical performance test of the product, consisting on the implementation of

an aeroelastic model to a theoretical curve, which later must be tested experimentally. It

describes the experimental relationship observed between a series of 10-minute wind speed

averages and the mean Po actually measured. Output power can be directly estimated

from wind speed by means of the matrix product between its Probability Density Function

(PDF) and the Power Curve of the considered wind turbine (Carta et al., 2009).

As it was mentioned in Chapter 1, the fit of the wind speed PDF over a Weibull

distribution is a widely extended procedure to parameterize the wind speed conditions

at a given location. It allows to derive a smoothed curve described through only two

parameters (shape k and scale c). Particularly, a statistical fit is appropriated if wind

data are recorded at intervals longer than one hour, because wind speed can present large

short-term fluctuations (Yeter et al., 2012). Unfortunately, the goodness-of-fit of this

adjustment is not always as accurate as desired (Garćıa-Bustamante et al., 2008), specially

when the orthogonal components of the horizontal wind differ of a normal distribution

(Tuller and Brett, 1984), mainly in low wind speeds (Jamil et al., 1995). A solution to

the problems presented by a Weibull fit consists on generating a wind speed PDF by

considering the experimental data from wind. Here, since the reconstructed daily wind

speed has been computed from a high time resolution (10-minute data) homogeneous

data, the annual PDFs have been directly computed from the obtained annual wind data.

The reconstructed wind speed PDF series that allowed to compute the experiments in

this chapter were obtained according to the steps 1-4 at section 4.3. They were applied

to each one of the 56 ensemble components of the 20CR SLP dataset. Hence, a set of

56 wind speed PDFs was obtained for every year/season. For each year, a PDF was

computed by merging its daily PDFs. The 56 reconstructed wind series resulted into 56

annual PDFs, and 56 values of Po could be computed for every year. So, the average Po

and its corresponding uncertainty was computed for every year, producing a series of 139

annual Po with a certain dispersion.

5.4 Wind Power Centennial Series

Fig. 5.1 shows the evolution of the annual (a-b) and seasonal (c-j) simulated Po for the

period 1871-2009. The observed Po dispersion is represented in the figures through the

10, 25, 50, 75, 90 percentiles and the maximum and minimum values of the simulated

Po ensembles. The reduction in the Po dispersion with time is clearly evidenced. The
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5. Long-term Wind Power Output Variability

ensemble outputs are increasingly similar according to the accuracy improvements of

the 20CR inputs with time. In fact, this spread is partially related with the quality of

the 20CR reconstruction for a given year, largely dependent on the number of stations

providing pressure data in the area (Compo et al., 2011). Therefore, it is expected that

errors increase as we go back into the early decades of the 20 CR dataset.
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Figure 5.1: Annual estimated Po (1871-2009) for the Vestas V-82 turbine at T1 and T3
sites through the FE method. A-B describe the overall year-round signal, c-j stands for
the seasonal series. Since each one of the 56 ensembles produced a certain value of Po,
some dispersion was obtained for each year. The black line represents the annual mean, as
dispersion is represented in terms of the percentiles shown in the top right scale, through
a smoothing given by a 5-yr running mean. Dispersion is observed to grow as time goes
back, as expected attending the dispersion of the 20CR ensemble with time (Compo et al.,
2011). The green line denotes the Po estimated strictly from observations.
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The wind speed estimation accuracy for the method employed here was successfully

evaluated at Kirchner-Bossi et al. (2013), so no additional validation was required. We

have compared the simulated Po obtained through the wind reconstruction with the annual

values obtained directly from the wind observations, along the Tobs period. The obtained

mean Po values at T1 were 666 Kw (obs.) and 661 Kw (rec.). At T3 these values

were respectively 582 Kw (obs.) and 585 Kw (rec.). These results imply annual MAE of

26.59 Kw (T1) and 31.64 Kw (T3) with respect to the observations. In turn, the Capacity

Factor (CF , the ratio between the real mean Po and the nominal rated power of the device,

1650 Kw in this case) according to the observations was 0.36 (T1) and 0.32 (T3). These

values were obtained by considering an additional 10% power loss due to maintenance

stops, electrical grid losses and wake effects (Manwell et al., 2002). Simulations through

reconstructed wind provided identical CF values.

5.5 Long-Term Variability of the Simulated Output

Power

Both towers exhibit high interannual variability superimposed on long-term patterns. In

T1 Po reached its peak in the 1910s (813 Kw) and has experimented a continuous decline

since then. In fact, it shows an annual (statistically significant) negative trend of -41 Kw

(-5.6%) every 100 years (hereafter all trend changes refer to this period), with a minimum

value in 1953 (602 Kw). Seasonally, the biggest decrease was observed at JJA, with

a significant trend of -13 Kw/100 years, with all seasons showing negative trends (also

significant in MAM). In T3 Po shows the opposite behavior, with the minimum values at

the beginning of the 20th century (485 Kw in 1911) and highest values after 1940, peaking

in the last 30 years (maximum in 1978, 644Kw). This increase is mostly attributable to

SON, which shows a positive trend of 37 Kw (+6.7%), although all seasons presented

positive trends (all significant except MAM). Particularly, the last 10 years show even a

higher growth at MAM and JJA, with a JJA increase of 12,9 Kw (+7.6%) with respect

to the previous 130 years. In turn, the increase at SON and DJF is most evident during

the second half of the 20th century.

The wind power seasonal cycle typical at mid-latitudes was strongly evidenced in T1,

with considerable higher Po values in DJF (30% of the overall Po) than in JJA (19.5%).

However, this seasonality is less pronounced at T3 (27 and 22.2% for DJF and JJA

resp.). This anomalously high summer contribution is consistent (CL20 at Esteban et al.
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(2006)) with the anticyclonic circulation regime in summer over Iberia (Fernández-Montes

et al., 2012; Garćıa-Herrera et al., 2005), which induces relatively high wind conditions

(prevailingly easterly) over this location compared to other points of Iberia.

Multidecadal periodicities modulate the observed trends. A spectral Fourier analysis

showed the existence of several statistically significant interdecadal and multidecadal cy-

cles at T1 (27 yr) and T3 (46 and 13 yr). At T1 the annual signal seems to be spread

among all seasons, as no long-term significant cycles were found for any specific season. In

turn, T3 periodicities evidenced the main contribution of JJA (46 and 13y) and SON (13y)

to these multidecadal fluctuations. In the case of JJA, the 46y cycle could be directly

contributing to the last decade increase.

5.6 Impact of the Teleconnection Patterns on the

Simulated Output Power

To investigate the role of the teleconnection patters on the Po variability we have con-

sidered the leading modes over the North Atlantic/European Region, the North Atlantic

Oscillation (NAO), the Eastern Atlantic (EA) pattern and the Scandinavia (SCAND) pa-

ttern. All three indices where obtained from NOAA (Bell et al.). There, a Rotated Princi-

pal Component Analysis (RPCA) is performed to the 500mb field from the NCEP/NCAR

(Kalnay et al., 1996) reanalysis for the period 1950-2009, which ensures the linear inde-

pendence between them. Additionally, the simulated Po series have been compared with

the Atlantic Multidecadal Oscillation (AMO, Kaplan et al. (1998); Enfield et al. (2001)),

computed in terms of the Sea Surface Temperature (SST) at the Atlantic Ocean with a

detrend of its long-term linear signal. This index has been included in this analysis, since

the Atlantic oceanic circulation could be relevant to explain the low frequency of the wind

variability.

Figure 5.2 shows the Pearson correlation coefficient (r) between wind power and the

considered teleconnection indices. r was computed by using s 30 year running window

on a seasonal basis, for the period where the three indices are available (1950-2009).

This running window was chosen in order to investigate the temporal stationarity of

the relationship. It can be observed that T1 holds higher and significant correlations

within the four seasons compared to T3. The highest correlations at DJF (NAO) and

SON (SCAND) show a stationary behavior, with maximum signals of -0.55 and 0.79

respectively. The NAO signal in DJF shows the typical pattern in Western Europe in
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5. Long-term Wind Power Output Variability

winter (Hurrell et al., 2003), while the positive connection with SCAND is attributable to

a low pressure system centered over the Iberian Peninsula (Barnston and Livezey (1987),

SCAND referred there as Eurasia-1). A similarly high and stationary connection with an

opposite signal is also observed at SON in T3 (average r=-0.63), representing by far the

highest correlation at this location. This negative coupling with SCAND is explained by

a marked anticyclone centered over northern Spain (Barnston and Livezey, 1987), which

is consistent with the persistent easterly winds over the Gibraltar area.

Finally, the EA pattern shows a significant positive coupling with wind power in DJF

at T1 during 1950-1990 (most of the time around 0.5), after which it vanishes. Although

EA does not show any other significant seasonal connection with wind power, remarkable

correlations are found if other intra-annual periods are considered. Thus, an homogenous

and stationary (always significant) influence of EA over T1 during the extended summer

(October-April, not shown) was detected, where peaks of r=0.6 are recorded along all the

considered period. In turn, the impact of EA on T3 Po is very strong in summer, specially

in July, with significant correlations until 2006 (with peaks next to 0.6 during 1955-1990),

presenting a decreasing influence in the last years (not shown).
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SCANDEANAO

T1                                            T3

Figure 5.2: Seasonal evolution of the Pearson correlation coefficient (r) between the an-
nual wind power output at T1 (left) and T3 (right) and each one of the three principal
variability modes of the North Atlantic-European region. Years refer to the 15th year of
a 30yr running correlation. Grey regions gather those statistically significant (p<0.05) r
values.
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The overall influence of the considered teleconnection indices on Po can be represented

by the cumulated explained variance (r2) of the three patterns along the available periods.

Figure 5.3 shows the contribution to r2 of each variability mode. Results show that, in

general terms, T1 Po variability is more closely associated to large-scale circulation modes

than T3. Thus, the overall explained variance is particularly high at T1 in winter (peaking

at 69% in 1967) and autumn (highest in 1993, 79%), with a major contribution of NAO

(negatively correlated) and SCAND (positively correlated) respectively. In JJA this tower

shows a high signal with respect to NAO (also with a negative r), although it is highly

non-stationary, with an abrupt decrease in the last years, even losing significance. Finally,

MAM shows a stationary weak, but mostly significant contribution from each one of the

three modes. Regarding T3, SON is the only season with significant results, with a high

and stationary contribution from SCAND (r2 peaking at 51%)
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T1                                             T3

SCANDEANAO

Figure 5.3: Seasonal evolution of the cumulated explained variance (r2) of Output Power
at T1 (left) and T3 (right) by the three principal variability modes of the North Atlantic-
European region. Years refer to the 15th year of a 30yr running correlation.
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Finally, AMO shows a non stationary (although slightly significant) correlation with

both towers (Fig. 5.4), switching its sign during the considered period. The correlation

with T1 shows an opposite behavior compared to that obtained with T3 throughout the

entire considered period (1871-2009). It is significantly correlated with T3 since 1966

(with a maximum r=0.49), while T1 (negatively) does so since 1977. The season with

the highest correlation between wind speed and AMO is MAM (T3), with r=0.48 during

1950-1980.

T3
T1 T  MAM

T  MA

AMO vs P 30yr running correlation 

r

o

3

3

Figure 5.4: 30yr running Pearson correlation coefficient between AMO index and the
annual power output series. The horizontal axis indicates the center of every 30 yr window
considered. Dashed horizontal lines correspond to a p<(0.05) statistic significance level.
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Simulated Output Power

5.7 Incidence of the technical wind speed limits of a

wind turbine on the Simulated Output Power

Every wind turbine has a limited operational wind speed interval where it generates usable

power. This range is defined by an upper and a lower wind speed, called respectively Cut-

In and Cut-Out speed. They are set by the manufacturer and usually range between 3-5

m/s and 20-25 m/s respectively. The Cut-In value refers to the minimum speed needed to

generate power, and varies according to the turbine dimensions and aerodynamic features,

while the Cut-Out responds to security and stability reasons to ensure the scheduled

length of the device operational life. The empirical relationship of the variability of these

technical limits on the annual Po has been assessed.

We have reconstructed the annual frequency of wind speeds lower than the Cut-In

speed and wind speeds higher than the Cut-Out value for T1 and T3. The variability of

those wind speeds exceeding such technical limits can be computed through a so called

Point Over Threshold (POT ) methodology (Brabson and Palutikof, 2000), where a time

series is computed from those values higher (or lower) than a certain threshold. In this

way, two frequencies were computed: the upper POTs, which consist on those wind speeds

higher than the Cut-Out value (hereafter, PCO), and the lower POTs, defined as those

wind speeds lower than the device Cut-In speed (hereafter, PCI). The considered Cut-In

and Cut-Out values are those of the Vestas V-82, 3.5 m/s and 20 m/s respectively.

As with the Po simulation, the annual and seasonal averages of PCI and PCO were

considered, so that a 139 year series was obtained for both POT frequencies at each tower.

For the entire period, PCI corresponded to the 9 and 23 percentiles and the PCO to the

99 and 98 percentiles, for T1 and T3 respectively. Figures 5.5 and 5.6 show the annual

series of reconstructed PCI and PCO series. Again there is an increasing spread in the

early decades of the 20 CR dataset and overall, it is larger for T3 than for T1. As with

Po, the signal dispersion produced by having 56 different wind speed frequencies can be

identified through the colour scale.
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Figure 5.5: Annual(a) and seasonal (b − e) reconstruction of the wind speed frequency
lower than the Vestas V-82 Cut-In value at T1 (left) and T3 (right). Black line stands
for the ensemble annual mean, while blue tones represent the minimum value, the 10,
25, 50, 75, 90 percentiles and maximum value of the ensemble annual average frequency,
represented with a smoothing of a 5-yr moving average.
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Figure 5.6: Same as Figure 5.5 but this time the wind speed frequency higher than the
device Cut−Out value.

The PCI and PCO long-term variability was found consistent with the results obtained

for the of the annual Po. The annual frequency of PCI values at T1 (Fig.5.5 a)) showed

a significant increase expressed through a relative growth of 13.7% (as Po, every 100 yr).

In addition, all the seasonal series show a positive trend (statistically significant except
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for DJF). The increase at the observational period with respect to the simulated one is

also significant (specially at MAM and JJA), with a +8.21% increase. On the contrary, a

negative trend (also significant at MAM) was detected for PCO (relative decrease of 5.4%

-annual- and 14% -seasonal- every 100yr, Fig.5.5 a), e)).

As with Po, the variability of T3 POTs behaved the opposite way. There, PCO

values showed a significant increment (53%), while PCIs presented a significant decrease

(-3.45%). Seasonally, frequency changes are mostly attributable to SON (89% at PCO,

-10% at PCI) although DJF shows also a notable contribution (a 58% PCO growth).

Again, spectral Fourier analysis showed the existence of several statistically significant

decadal and multi-decadal cyclic fluctuations in both towers, consistent with Po results.

Thus, T1 showed two annual periodicities of 27 yr and of 46 yr for PCI, the last one being

observed also in MAM. Regarding T3, a 13 yr cycle was observed for the annual PCI

frequency, also evidenced in the JJA, while cycles of 23, 27 and 17 years were shown by

MAM, JJA and SON respectively.

The relationship of the cut-in and cut-out parameters with the annual output power

has been computed. Results show that the negative relationship of PCI with the annual Po

shares an explained variance (r2) of 95% (T1) and 81% (T3), while the positive coupling

with PCO explains 53% (T1) and 33% (T3) of the annual power series variability. Hence,

Po changes respond more directly to PCI frequencies than to PCO, both of them higher

at T1 than at T3.

5.8 Impact of the k and c Weibull parameters on the

Simulated Output Power

Although as mentioned previously a fitting of a wind speed PDF to a Weibull (Weibull

et al., 1951) distribution can present some troubles, it includes some advantages, as it

allows to parameterize the shape (k, dimensionless) and scale (c, [m/s]) of a wind speed

distribution into two single quantities. In this section the long-term interannual variability

of these parameters is compared with the Po multidecadal changes, in order to explore the

empirical relationships existing among them. The motivation to investigat this arose from

the fact that several works on either wind reconstruction (Curry et al., 2012) or climate

projections (Pryor et al., 2005b; Bogardi and Matyasovzky, 1996) base their methodology

on providing a value of c and k.
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The Weibull fit of the 139 annual PDFs (each one averaged from the 56 ensemble

members) allowed to compute the corresponding 139 annual values of k and c. This has

been done, for every year, by considering the log-linear expression obtained for a certain

probability P to have a wind speed v< vi (Miller et al., 1965). Since the Weibull PDF

(FW ) is defined as

FW (v) =
k

c

(v
c

)k−1
e−( vc )

k

(5.3)

It can be verified that its Cumulative Distribution Function (CVF) in terms of the

probability Pi is

P (v < vi) = Pi = 1− e−( vc )
k

(5.4)

If a natural logarithm is applied twice, the following linear expression is obtained:

ln[− ln(1− Pi)] = k ln(vi)− k ln c (5.5)

By considering ln[− ln(1 − Pi)] as the dependent variable and ln(vi) the independent

one, k becomes the slope of the line and −k ln c the intercept with the y-axis. This way,

for every year at T1 and T3 a linear fit was performed for 200 values of vi obtained by

defining wind speed intervals with an amplitude of 0.1 m/s along a speed range between

1.5 and 21.5 m/s. With them and their corresponding values of Pi the 139 annual values

of k and c were obtained.

First of all, the long-term variability of these parameters was explored. Fig. 5.7 shows

the resulting wind speed distributions when adjusted to a Weibull distribution for T1 and

T3. It can be seen that, through the whole period (1871-2009), the wind speed PDFs

change differently in the two considered stations. Thus, at T1 the wind speed mode (the

curve maximum) and the tail of the curve are reduced, which evidences a decrease in high

and intermediate wind speed frequencies. On the contrary, in the T3 Weibull curve the

frequency of intermediate (high) speeds is reduced (increased).
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Figure 5.7: Set of reconstructed annual Weibull probability density functions of the wind
speed distribution at T1 (top) and T3 (bottom), depicted according to time.

These morphological changes can be observed through the long-term variability of the

Weibull parameters. In this sense, a statistically significant (p<0.05) negative (positive)

trend was detected for c time series at T1 (T3). This implies a sharpening (flattering) of

the corresponding distribution, as seen in the figure. A negative trend (also significant) is

detected in the annual series of k for both towers. Usually, a decrease in k values should

imply a translation to the left of the distribution maximum, which is evidenced at T1.

However, at T3 the contribution of k appears to be overshadowed by the larger increment

of c (see section 5.8).

The difference between the observed period and the reconstructed one has also been

calculated in order to assess the consistency between the two periods, showing results

consistent with the linear trends, and obtaining statistically significant values within all

differences. Finally, a spectral analysis through a Fourier transform revealed the existence

of low frequency cycles, one of 27 years for k (T3) and 13 years for c (both towers). The

origins of these cycles remain unknown and are matter of further work. All these results

are summarized in Table 5.1.
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Table 5.1: Statistics for the annual series of the Weibull parameters derived of the obtained
wind speed annual PDFs, for T1 and T2.

T1 T3
k c k c

Mean 2.37 9.51 1.67 8.16
Std. Dev. 0.04 0.31 0.03 0.39
Lin. trend (%) -2.31 -2.51 -1.56 +5.01
Obs−Rec (%) -1.37 -1.77 -1.13 +3.27
Cycle(yrs) — 13 27 13

Once the multidecadal variability of the Weibull parameters was analyzed, its degree

of coupling to the Po signal was explored. The analytical relationship of k and c with Po

of a certain site is defined as:

P (k, c) =
1

2
ρSc3Γ

[
1 +

3

k

]
(5.6)

where Γ stands for the Gamma function. If this expression is employed to compute

Po by considering the k and c values derived from the reconstructed annual PDFs, the

obtained Po values differ notably with respect to those observed at the simulation pre-

sented and analyzed before (RMSEs of 130 and 98 Kw for T1 and T3 resp.). Additionally,

the annual Po was estimated by employing the Weibull-fitted PDF and the turbine Power

Curve, and the error diminished to half at T3 (53 Kw) although it did not substantially

decreased at T1 (115 Kw).

In order to obtain a more efficient approach to Po by only considering c and k, a

multilinear fit was computed by regressing the 139 annual values of k and c on Po. First,

we computed linear regression coefficients between the Po series and the respective c and

k values. The contribution of c (r2 = 0.95 at both towers) was clearly higher than that

for k (r2 = 0.52 at T1, r2 = 0.18 at T3), which is consistent with Eq.5.6.
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Figure 5.8: Linear fitting for the ratio between the obtained annual Weibull paramenters
k (left) and c (right) and the annual Po, for tower T1 (up) and T3 (down).

Figure 5.8 shows the obtained linear fits. There is a clear differentiation between

remote (blue dots) and recent years (red dots), which are oppositely located in all cases,

in correspondence with c and k trends. Both c and k are positively related to wind speed

(and thus to wind power, Eq.5.6). However, the univariate linear correlation with wind

power shows a negative relationship for k at T3. This happens because the impact of k

is overshadowed by the high variability explained by c. Finally we computed a bivariate

fit. The obtained expressions for the annual Po were:

T1 : P1(k, c) = −989 + 256k + 113c(Kw) (5.7)

T3 : P2(k, c) = −757 + 281k + 103c(Kw) (5.8)

which denote a positive contribution of both parameters at both towers. This is

consistent with the definition at Eq.5.6. The fitted expression showed r2 values of 0.99

and 0.98 with the obtained Po previously computed for T1 and T3 respectively, reflecting

that this simple equation can describe the Po variability in terms of c and k only.

The values of the RMSE between the annual simulated power and that estimated

by these multilinear regressions (3.3 and 4.8 Kw for T1 and T3 resp.) was significantly

smaller than those obtained through Eq.5.6 or through the PDF curves fitted to Weibull.
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5.8. Impact of the k and c Weibull parameters on the Simulated Output
Power

For this reason, this multiple linear fit represents a simple and accurate way to correct the

estimations of the annual Po of an hypothetical wind turbine for periods where wind data

are available but wind power data are not. In addition, it can entail a useful solution at

those sites where c and k values have been computed for a few years, but the wind speed

PDF Weibull fitting is not a good approximation.
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Chapter 6

Conclusions

T
he lack of an exhaustive knowledge on the multidecadal behavior of the wind power

output has motivated the development of new techniques to reconstruct wind along

past decades, for certain points with a wind power interest. In this thesis a series of tools

for the classification and the statistical downscaling of wind has been built. The obtained

results contribute to a better understanding of the surface wind and its associated wind

power output variability from interannual to centennial scales. As case study the new

methods have been tested and applied over six meteorological towers at wind farms spread

over the Iberian Peninsula. The main conclusions raised in this work can be resumed in

the following issues:

• By employing the daily SLP field from different reanalyses, a new statistical down-

scaling methodology based on clustering the synoptic configuration of the atmos-

pheric circulation has been developed according to different geostrophic indices over

a certain point of wind energy interest. The clustering problem has been addressed

by employing different soft-computing algorithms (two different versions of a non-

deterministic, evolutionary algorithm and one a deterministic, greedy algorithm).

The introduced tools provided daily wind classifications from the synoptic circu-

lation over a specific region, with a statistically significant smaller pressure field

dispersion than that obtained by the Circulation Weather Types (Jenkinson and

Collison, 1977) (WT).
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• The three surface wind approaches downscaled from the introduced methods per-

formed better than approaches like WT and the NCEP/NCAR reanalysis (V.2)

wind in terms of daily wind speed uncertainty reduction, with average errors 18 and

26% lower. The same happened with the correlation coefficients, with values 0.09

and 0.23 higher than NCEP/NCAR and WT respectively. At monthly scales the

performance differences with the reference approaches (WT and reanalysis) became

even higher, providing Pearson Correlation values up to 0.92. The methodology in-

troduced shows an overall high performance compared to that shown by the existing

bibliography on statistically downscaling wind.

• The introduced methods resulted appropriate to describe in detail the daily sur-

face wind in terms of its associated large-scale circulation, providing a more clear

wind classification than WT. Although surface wind and its associated geostrophic

approach can present remarkable differences, these methods have demonstrated to

retain similar wind conditions among elements within a same Wind Type.

• The new methods allowed the reconstruction of surface daily wind, at the considered

locations throughout nearly 140 years (1871-2009). These obtained centennial wind

series led to the following results:

1. A negative significant trend from the second half of the 20th century is observed

for all towers at the Central Iberian Plateau (CIP), while this trend is positive

at the Gibraltar Strait Area (GSA). These evolutions are opposite at all towers

during the first part of the time series (1871-1945).

2. Statistically significant differences have been observed within the wind speed

PDF and wind rose morphologies at interannual and interdecadal scales, being

higher in GSA. The annual frequency of the most prevalent wind direction at

CIP (SW) showed a significant correlation with wind speed. Regarding the

Gibraltar Strait Area, the strong relationship between annual wind speed and

SE direction appears to have become non-stationary, having diminished its

correlation from 0.51 (until 1960) to 0.29 (non significant). This means that,

although GSA wind speed appears to be rising in the last decades, this increase

would be not associated to an increase of easterly winds.

• The wind speed statistical downscaling methods allowed to investigate the long-

term variability of wind power output at the two representative regions. The main

remarks on the annual variability of the wind power output for a market wind

turbine are summarized as follows:
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6. Conclusions

1. A wind speed significant periodicity in the 23-yr band was detected within

five of the six considered locations. Additionally, cycles of 46 and 69 years

(multiplicities of the 23-yr) were detected for GSA and in some CIP loca-

tions respectively. Similar results were obtained also for the annual series of

the Weibull scale parameter c, wind speed frequency beyond the wind tur-

bine technical operation limits (Cut-In and Cut-Out) and within the obtained

Wind Power Output simulations. Although the origin of this pattern of wind

variability is still unclear and subject of current research, interestingly a va-

riability period in the 25y band has also been detected in the observed wind

direction over the English Channel (Barriopedro et al., 2013), suggesting that

this multidecadal variability may not result from an artifact derived from the

reconstruction process.

2. The computed annual output power shows a different long-term variability

depending on the location. In this way, a significant long-term power output

decrease (increase) was observed in CIP (GSA). On a seasonal basis, although

DJF is typically the season with the highest contribution to power output (and

so occurs at CIP), no significant seasonality is detected at GSA.

3. CIP showed an overall higher and more non-stationary impact from telecon-

nection patterns than GSA. Wind power at CIP showed statistically significant

negative correlations with NAO at all seasons, although no signal was detected

at GSA. The opposite behavior of SCAND (positive at CIP, negative at GSA)

is consistent with its spatial structure over Iberia, where an anticyclonic (cy-

clonic) system in its negative (positive) mode is located over Spain. The high

variability in the relationship between the output power and large-scale climate

should be taken into account when downscaling models at seasonal and larger

time scales.

4. The reconstruction of the wind speed frequencies beyond the lower (Cut-In)

and upper (Cut-Out) wind turbine technical limits showed consistency with

the power output results. While in CIP the frequency is growing below cut-in

and decreasing above cut-out, GSA behaves opposite. Although both technical

limits are coupled to power output results, the variability of winds below Cut-In

is shown to be more strongly related with power output.

5. The availability of a 139 year PDFs series and output power values has al-

lowed the assessment of the empirical relationship between the annual gener-

ated Power and the Weibull parameters k and c, once the obtained annual
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PDFs where adjusted to that function. A multilinear regression between an-

nual power and Weibull parameters was computed for each tower, explaining

up to %98 of the variance. This approach improved the estimation of the sim-

ulated output power as compared with classical ways, resulting an appropriate

model for situations where k and c data are available but a an accurate fit of

the speed distribution to a Weibull function can not be guaranteed.
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Şahin, A. Z. and Aksakal, A. 1998. Wind power energy potential at the northeastern

region of saudi arabia. Renewable Energy, 14(1):435–440. p. 2, 23

Sailor, D., Hu, T., Li, X., and Rosen, J. 2000. A neural network approach to local

downscaling of gcm output for assessing wind power implications of climate change.

Renewable Energy, 19(3):359–378. p. 2, 12, 16, 20, 21, 23, 28, 37, 62

Salameh, T., Drobinski, P., Vrac, M., and Naveau, P. 2009. Statistical downscaling of near-

surface wind over complex terrain in southern france. Meteorology and Atmospheric

Physics, 103(1-4):253–265. p. 17, 20, 28, 33, 36, 61
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