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Abstract

In the context of modified and gauge invariant Electrodynamics theories minimally coupled
with gravitation we look for the U(1) Lagrangian densities supporting electric and magnetic
monopoles which provide static, spherically symmetric and constant curvature Reissner-
Nordstrom black-hole solutions. We achieve a sufficient condition for general Lagrangian
densities supporting this kind of solutions, and we propose a simple model which can be
interpreted as a small correction to the usual Electrodynamics theory, which is proven to be
correct in the asymptotic limit » — oco. For these models we obtain their correspondent
metrics, and then by employing the Euclidean Action approach we perform a thermodynam-
ics analysis and study the existing phases depending on the sign of the heat capacity and the
Helmholtz free energy. Thus, we obtain that modified Electrodynamics theories lead to very
different thermodynamics properties and, in some particular cases, to a new phase which
does not appear in the usual theory.

Resumen

En el marco de las teorfas de electrodinamica modificada, invariantes gauge y minima-
mente acopladas a la gravedad, buscamos las densidades lagrangianes con simetria U(1)
que admiten monopolos eléctricos y magnéticos en soluciones de agujero negro de Reissner-
Nordstrom estaticas, esféricamente simétricas y de curvatura constante. En este trabajo
obtenemos una condicién suficiente para que las densidades Lagrangianas posean este tipo
de soluciones, y proponemos un modelo simple que puede ser interpretado como una pequena
correccién a la teoria electrodinamica usual, la cual sabemos que es correcta en el limite
asintético r — oo. Para dichos modelos obtenemos las correspondientes métricas, y em-
pleando el método de la accion euclidea realizamos un anélisis termodindmico y estudiamos
las fases de estabilidad presentes, en funcién del signo de la capacidad calorifica y de la
energia libre de Helmholtz. Asi, obtenemos que las teorias de electrodindmica modificada
conllevan propiedades termodinamicas muy diferentes para las soluciones y, en algunos casos
particulares, una nueva fase de estabilidad que no aparece en la teoria usual.



Chapter 1

Introduction

General Relativity has been the most successful gravitational theory of the 20th century,
and in this frame, Einstein’s field equations provide how the spacetime is curved in presence
of matter or energy. In this work we are interested in a particular family of solutions of the
Einstein’s equations: the black-hole (BH) solutions. The concept of BH was introduced for
the first time in the second half of the 18th century, when John Michell and Pierre-Simon
Laplace proposed in a classical frame the existence of stars massive enough that the escape
velocity from their surface was bigger than the speed light, so they would be “invisible” [1].
However, for such intense gravity forces the classical Newtonian gravity theory is not valid,
and we have to use the previously appointed General Relativity. In 1916, Karl Schwarzschild
found a solution of Einstein’s equations for a point mass in a flat space [2]. This solution
has a singularity in its center and an horizon surface at » = 2M | such that any light beam
which traverses the horizon cannot escape from the BH. Depending on the parameters which
characterize the solutions we define different kinds of BH as for example Schwarzschild BH
[2] for a spherically symmetric, static, non rotating and uncharged massive body, Kerr BH
[3] for rotating bodies, Reissner-Nordstréom BH [4, 5] (in which we shall focus) for charged
objects and Kerr-Newman BH [6] for rotating and charged bodies.

In the standard theory, with an Electrodynamics Lagrangian density proportional to
F,, F*" coupled with gravity, the Reissner-Nordstrom BH solution has been widely studied
(see, for example, Refs. [7, 8, 9]). Nevertheless, other modified Electrodynamics theories have
been suggested, mainly due to the divergence of self-energy of point charges (like electrons)
in the standard Electrodynamics theory. Some important examples of this kind of theories
are the Born-Infeld models [10] and the Euler-Heisenberg models [11]. Born-Infeld models
lead to electromagnetic fields which in the asymptotic limit behave as usual, but for which
the divergence of the origin is avoided, whereas Euler and Heisenberg obtained a similar
result when they studied QED vacuum polarizations in the constant background field limit
[12]. These models are really important since some Born-Infeld-like models arise, together
with the gravitational field, in the low-energy limit of string theory [13, 14, 15]. Moreover,
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2 CHAPTER 1. INTRODUCTION

in the last years some works studied general modified Electrodynamics models coupled with
gravity which provide static and spherically symmetric metrics for electrostatic spherically
symmetric fields (see, for example, [16, 17]).

In this project we shall obtain sufficient conditions for the modified Electrodynamics
Lagrangian densities in order to provide Reissner-Nordstrom-like solutions (i.e., spherically
symmetric and with constant scalar of curvature) by assuming static and spherically sym-
metric electric and magnetic fields. Once we get it, we shall propose a simple model of
Lagrangian density in order to study its solution. Finally, we shall perform a thermodynam-
ics analysis of the obtained solutions.

The study of BH’s thermodynamics started in 1970’s with the attainment of the four
laws of BH’s dynamics [18], which can be summarized in the following way:

e Zeroth Law: the surface gravity x is constant for a stationary BH over the horizon.

e First Law: the perturbations of mass M , area A, angular momentum .J and charge
@ of a stationary BH are fixed by the relation

AM = SEdA +QdJ + ®dQ
T

being 2 the angular velocity of the BH and & the electrostatic potential.

e Second Law: the area of the horizon of each BH does not decrease with time provided
that the null energy condition holds on [19] ( (7, — R.w)k*k” > 0, being k* an
arbitrary null vector oriented to the future, R,, the Ricci tensor and 7}, the energy-
momentum tensor).

e Third Law: it is impossible by any procedure to reduce the surface gravity to zero by
a finite sequence of steps.

These mechanics laws seem very similar to the four laws of Thermodynamics, where the
mass of BH’s, the area of the horizon and the surface gravity play the roles of the energy,
the entropy and the temperature, respectively. However, in a classical frame there is no way
to get this relation. First of all, with the classical universal constants (gravitational constant
G, speed of light ¢, Boltzmann constant kp ) it is not possible to relate these quantities
due to dimensional problems. On the other hand, if the BH’s had an associated non zero
temperature, they would emit radiation. However, Hawking [20] found that due to quantum
particle creation effects BH’s emit radiation as a black body of temperature 7' = hx /47 .

In order to obtain the thermodynamical quantities of our BH solutions, we shall use the
Euclidean Action Method [21, 22]. This method consists in change the real time coordinate
to an imaginary time, so the BH metric becomes Euclidean. Then we can perform a path
integral approach in an Euclidean section which avoids the singularity at the origin (since
the Euclidean metric corresponds only to the region r > r,, being r, the external horizon



of the BH) . This Euclidean approach presents some difficulties when is applied to General
Relativity. Except in specials cases it is generally impossible to represent an analytic space-
time as a Lorentzian section of a four-complex-dimensional manifold with a complex metric
which possesses a Euclidean section. So there is not a general prescription for analytically
continuing Lorentzian signature metrics to Riemannian metrics. However, in static metrics
in which we shall focus we can do it, so we have not this problem. Nevertheless, even if one
did, there are not any theorems which guarantee the analyticity of the obtained quantities
(for further details, see Ref. [19]). We shall employ this method, and once we obtain the
thermodynamics quantities, as the heat capacity, the free energy and the entropy, we shall
discuss their admissibility. Moreover, with these thermodynamics quantities we shall study
the stability of the solutions, and accordingly we shall define the existing different phases.

The work is divided as follows: in Section 2 we shall show some general results of modified
Electrodynamics models coupled with gravity, and we shall obtain a sufficient condition of
these models supporting Reissner-Nordstrom-like solutions, with constant curvature. In
Section 3 we shall propose a simple example of these models, and we shall achieve some
general results of them. In Section 4 we apply the Euclidean Method in order to distinguish
the different thermodynamics phases of the solutions, defined in terms of their stability, and
we shall compare the phase diagrams for different Electrodynamics models. On the other
hand, in Section 5 we perform a classification of the BH configurations depending on the
phase transitions that they present. Finally, in Section 6 we summarize the main conclusions
of the work.
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Chapter 2

General Results

In this section, we shall show some general results of static and spherically symmetric so-
lutions from general relativity and modified Electrodynamics models. We shall follow the
Ref. [16], and we shall generalize their results to the case they exist both electric and magnetic
fields.

First of all, we have to remark that in all this project we have chosen Planck units,
G =c=kp = h =4mey = 1. With this election, the mass shall be expressed in Planck
mass (1M, ~ 2.18 - 10%kg), the charges in Planck charge (1q, ~ 1.9 - 107 C), the
temperature in Planck temperature (17, ~ 1.4 -10%?K) and the length in Planck length
(11, ~1.6-10"%m).

Let start from the action:
S =5,+ Svqy, (2.1)

where S, and Sy(;) are the gravitational and matter terms of the action, respectively. The
usual gravitational action term takes the form:

1

5= Ton

d*z+/|g| (R —2A) , (2.2)

being ¢ the determinant of the metric g, (p,v =0, 1,2, 3), R the scalar curvature and
A a cosmological constant.

On the other hand, we shall assume that the matter term of the action Sy) depends
on a Lagrangian density ¢(X,Y’) which is an arbitrary function of the Maxwell’s invariants
X and Y, with:

1 1
X = SEu ", Y=~ F P, (2.3)
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where F,, = 0J,A, —0,A, is the usual electromagnetic tensor and F** = %\/ 9l€wasFP .
In terms of the Lagrangian density ¢(X,Y"), the matter term of (2.1) takes the form:

Su = — / d'ar/glo(X,Y). (2.4)

In this work we shall focus on static and spherically symmetric solution. Thus, for
the metric tensor we consider the most general ansatz for static and spherically symmetric
scenarios:

1
ds* = \(r)dt* — ﬂdr2 — 7% (d6® + sin® 0d¢?) (2.5)
w(r

where the functions A(r) and pu(r) depend solely on 7 in order to ensure staticity and
spherical symmetry. On the other hand, with this metric (2.5) we consider an ansatz for the
electromagnetic tensor:

Foo=—Fy=E(r), Fy3s=—Fy = —B(r)r’sinf, (2.6)

being identically null the other components, and FE(r) and B(r) are functions on r. In
Minkowski space, with A(r) and u(r) equal to 1, (2.6) is the electromagnetic tensor for
radial electric and magnetic fields E(r) and B(r), respectively [23]. For this reason, we
shall refer to these functions as “electric” and “magnetic” fields.

With the metric (2.5), we can raise or lower the index in (2.6), and then we can rewrite
the gauge invariants (2.3) in terms of the electric and magnetic fields:

X = %E(W — B(r)?, Y =2 ME(r) - B(r). (2.7)

Furthermore, with (2.5) we get the scalar curvature R as function on the coefficients A(r)
and p(r):

R(r) = : 5z [N () (A = 2u(r) X (n)A(r)r®

2X(r)
FN ()2 ur? — drp(r)N (P (r) — drp! (1) A (r)?
HAN(r)? = AN(r)?p(r)] (2.8)

where prime denotes derivative with respect to r.

From (2.4), we define the energy-momentum tensor as:

2 08
T v

v gl e

= 2F,0 (oxFS + oy F)®) — 0, (2.9)




where we denote @y = g—f( and py = g—gﬁ . By replacing (2.6) and (2.5), we obtain the non
null components of (2.9):
,
10 = TH) = oY + 20X B0 — (2.10)
Ti(r)=T3(r) = @yY —2pxB(r)> —¢. (2.11)

By performing variations of (2.1) with respect to the metric tensor, we achieve the Ein-
stein field equations in metric formalism:

1
R, — §ng, + Agy + 87T, =0, (2.12)

where R, holds for the Ricci Tensor. By taking the trace in the previous expression, we
obtain:

R =4A+ 87T, (2.13)
where
T=TH =4(pxX +pyY —p) . (2.14)

Besides, in terms of ¢(X,Y’) and its derivatives, the associated Euler field equations, to-
gether with the Bianchi identities for the electromagnetic field, take the form (see Ref. [17]):

V,(pxF*" + oy F**) =0, V, ™" =0, (2.15)
where we denote ¢px = g—f( and @y = g—;ﬁ .

By replacing the metric tensor (2.5) and the only non-zero components of the energy-
momentum tensor (2.10) and (2.11) in the equations (2.12), and defining the quantity ((r) =
A(r)/u(r) , we get that the field equation obtained by subtraction of equations with p=v =t
and pu =v =r yields:

((r)=0, (2.16)

i.e., the quantity A(r)/u(r) is a constant, which can be fixed to one by performing a time
reparametrization. In others words, equation (2.16) is equivalent to

A(r) = p(r). (2.17)

With this expression, we could simplify the expressions of the gauge invariants (2.7), which
read as follows:

X =E(r)*—B(r)*, Y =2E(r)-B(r), (2.18)
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Moreover, we can replace (2.17) in the rest of field equations (2.12), and we obtain:

—r N (1) = A1) + 1+ 87T (r)r* =0, (2.19)
— 16715 (r)r + 2N (r) +rX'(r) =0, (2.20)

where (2.19) is obtained from the equation (2.12) with © = v = r and, on the other hand,
equation (2.20) is proportional to (2.12) with u=v =60 or u=rv = ¢ (both equations are
in fact equivalent). Additionally, by replacing (2.17) in (2.10) and (2.11), the non-vanishing
components of the energy-momentum tensor can be rewritten as:

T5(r) = Ti(r) = 2px E(r)’ + 20y E(r) B(r) — ¢, (2.21)
T3(r) = T35 (r) = =20x B(r)* + 2oy E(r)B(r) — ¢. (2.22)

The general solution of this field equations system (2.19, 2.20) reads:

e 1

Ar)=1——— —/ 2T (x)dx + = Ar? (2.23)
r r o, 3

where M is an integration constant, that can be identified as the BH’s mass. The metric

function (2.23) can be rewritten in terms of an “external energy function”, which is defined

as:

&Aﬂ:~4w/mx%§@mx. (2.24)

This external energy represents the energy provided by the U(1) fields E(r) and B(r)
outside a sphere of radius r (see Ref. [16]).

In this project we shall focus in constant curvature solutions, i.e., Reissner-Nordstom-
like solutions. From (2.13) we see that in order to obtain constant curvature solutions, the
trace of the energy momentum tensor (2.14) cannot depend on r. By assuming that the
energy-momentum tensor has null trace (i.e., by assuming that the scalar of curvature is fully
determined by A ), we obtain that in order to verify (2.14) equal to zero the Electrodynamics
Lagrangian density has to take the form:

ﬂXJj:XU®(§>, (2.25)

where & (%) is an arbitrary function on X/Y which in the standard Electrodynamics
theory is equal to @ (£) =b= —1/8r.

On the other hand, Maxwell’s equations (2.15) can be expressed for static and spherically
symmetric solutions as

Qm

r2’

r290XE<T) = _SOYQm + er P (227)



with @,, and (). integration constants of the Maxwell’s equations, which shall be referred
to as “magnetic charge” and “electric charge”, respectively.

As a summary of this section, by assuming the scalar of curvature is fully determined by a
cosmological constant A we have obtained that the most general modified Electrodynamics
Lagrangian density providing a static, spherically symmetric and constant curvature metric
(2.5) is (2.25) for which both metric functions A(r) and pu(r) takes the form (2.23); and the
Maxwell’s equations in this kind of solutions read as (2.26) and (2.27).
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Chapter 3

General Results in our proposed
model

In this section we shall propose a model supporting Reissner-Nordstom-like solution. Let us
propose an ansatz for the Electrodynamics Lagrangian density:

n+1

- (3.1)

o(X,)Y)=bX +a

This ansatz satisfies the sufficient condition (2.25) to get a constant curvature solution, and
can be seen as a perturbation of the standard Electrodynamics theory ¢(X,Y) ~ X for
a small enough. Moreover, (3.1) represents the unique non trivially null terms of a Taylor
series of a general modified Electrodynamics theory with constant curvature solutions.

By replacing this ansatz in the Maxwell’s equation (2.26), we can rewrite it as:

g%\
b+aln+1) <_E2(E)(7‘)Q; TZ)

E 2 % n+1
=an (&#r2> Qm +0Q. . (3.2)

E(r)

7,2

It is easy to see that Maxwell’s equation (3.2) possesses solutions for electric fields that
2. Thus, provided that we impose E(r) = ©/r?, we obtain a equation for

decrease as r~°.
this parameter O :
@2 _ Q2 n
b 1) | ————*
@[ T an+ >( o ) }

@2 N2\ ntl
=an (TQQWL) Qm + Q. . (3.3)

11



12 CHAPTER 3. GENERAL RESULTS IN OUR PROPOSED MODEL

From this equation, one can obtain the parameter © as function of b, a and the charges
Q. and @, , and it coincides with ). in the standard Electrodynamics theory a = 0. The
relation between these coefficients for general n is not trivial, but for small enough a (3.3)
can be expressed as:

2 2 2
o o 2FM@EnQ,
QI
(Q2—@2)" +0(a?). (3.4)
In the following, instead of using as charges {Q., @} we choose {©,Q,,}. This election

has the important advantage that the electric and magnetic fields read directly as E = ©/r?
and B = Q,,/r? and it simplifies the next results.

On the other hand, we can obtain the non-vanishing components of the energy-momentum
tensor by replacing our model of Lagrangian density (3.1) and the form of the fields FE(r)
and B(r) in equations (2.21) and (2.22):

To(r) =Ty (r)

= L et (g ) | @+ (35)
i) = TS0 o
= —%4 {b +a(n+1) (@22@;62@,?) } (©0*+Q2) . (3.6)

We can now replace the component of the energy-momentum tensor (3.5) in (2.24),
obtaining the external energy:

alr) = =T (€24 Q2) b
ta(n +1) (@;@;fjn)n} . (3.7)

We can observe that the external energy diverges at the origin, i.e., the total energy
from the U(1) fields is divergent. However, this divergence also occurs in the standard
case (a = 0), so this is not such a big problem. Furthermore, we can replace (3.7) in the
expression (2.23), and we achieve the form of the metric parameter \(r):

AMr)=1—"—+ =+ -Ar?, (3.8)
where:

K =8 [b +a(n+1) (MY] (0*+ Q7). (3.9)
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The obtained metric is a Reissner-Nordstrom-like with a scalar of curvature R = 4A, and a
modified charge term equal to K(©,Q,,) which in the standard case (a =0, b= —1/87)
recovers the well known sum of squares of charges Q* + Q2.

In order to obtain the radii of the horizons, we can follow two equivalent approaches.
The first and most usual one is to calculate the roots of A(r). The second one, is to obtain
the intersection points between the curves

M- Lae ). (3.10)

2 6

As we appointed, both approaches are equivalent, and we can obtain only two real roots:
the external horizon 7, (event horizon) and an internal horizon, which could be positive or
negative depending on the sign of the external energy (or, equivalently, on the sign of K ).
We are just interested in the anti-de Sitter (AdS) case A > 0, since as we shall mention in
the Section 4 there is a normalization problem of the Killing vector 9; if A < 0. Thus, the
value of the external horizon can be represented as (see Ref. [24]):

1 6 12M
r, = §<ﬁ+\/—x—$+/\\/§>, (311)

1+ 4AKY 2 3.[y 2
_ 2, 3.0y 2 12
! ( A >\/;+A 32 A (3.12)

y = 2+36AM? — 24AK
+\/(2 +36AM?2 — 24AK)? — 4 (1 +4AK)® . (3.13)

with

and

Moreover, with (3.10) we can write the BH mass as a function of the external horizon
radius ry, , the charge term K (0O, Q,,) and the cosmological constant A (when at least one
horizon is presented):

K m 1
M(rp) = h (1 + M + —Ar%) : (3.14)
2 T 3
If we assume both K(©,Q,,) and A positive (as in the standard AdS case), the function
M (ry) has a minimum at ry, i, = \/A <\/1 +4K(0,Q.,) /A% — 1) /2. This means that

provided the mass of the configuration is small enough, there is not any horizon and then
such configuration would not be a BH solutions. However, if K(©,Q,,) takes a negative
value and A is non negative, the ranges of values of M(ry) covers entirely the interval
[0,00), and then for any mass value it is possible a BH solution.
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Chapter 4

Thermodynamics analysis in AdS
space

In this section, we shall apply the so-called Euclidean Action method [21] in order to obtain a
thermodynamics analysis of our solution. We shall focus in the AdS space case (A > 0), since
otherwise some problems of normalization of the temporal Killing 0, arise (see Ref. [25]).
With this method, we shall obtain the thermodynamics properties of the BH solutions, in
terms of which their stability could be discussed.

First of all, we shall obtain the BH temperature. It can be defined in terms of the horizon
gravity k as [26]:

T=— 4.1
= (1)

where the horizon gravity is defined as:

. argtt
k= lim .
T Th |9tt9w’

(4.2)

This expression can be simplified by replacing (3.8), so we can express the temperature as:

ro ! (1—M+Ar,i). (4.3)

4mry, r?

For large BH’s with 7, — oo the temperature goes to infinity. On the other hand, near to
rn, ~ 0 this temperature diverges, being its sign the opposite of the sign of K(0,Q,,). It is
important to remark that, by imposing the positivity of the temperature (4.3), we achieve
the condition:

K(©,Qnm) < (1—Ar}) . (4.4)

15
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Once we have obtained the temperature, we can compute the other thermodynamics
quantities. The action takes the form (2.1) where the matter term is given by the proposed
Lagrangian density (3.1). If in the action we change the time coordinate to an imaginary time
t — 47 the action becomes Euclidean and the metric becomes periodical in this imaginary
time 7, with a period B which coincides with the inverse of the temperature (4.3). Let
us remember that this change to an imaginary time is not trivial: when we perform the
coordinate change, we must add a global sign to the action and, since the magnetic field is
a pseudo-vector, the magnetic charge becomes imaginary ( B — iB) in the action, so:

_ @2 2

X=F-pB* & X:EM&#:—iﬁﬁ, (4.5)

r
Y =2EB — Y =2iEB = 2i0Q,,. (4.6)

So after performing the corresponding changes, the Euclidean action reads:

1 L

ASp = ——— [ d'z+/[g] [R A - 16w(x,yﬂ . (4.7)
™

Then, we just need to evaluate the integral in the difference of four-volume of two metrics:
the first volume, when there is solely an AdS metric (M =0, © =0 and @,, = 0); and
second one, when there is our metric solution (3.8) (see Ref. [27]). Then, we obtain:

e

\ soaumiod) s
with
_ @2 + Q?ﬂ " 2 2

Thus, from (4.8) we can obtain the different thermodynamics parameters. The Helmholtz
free energy is just the quotient between the Euclidean Action and the inverse of temperature:

F = ASg/B . Therefore:

A 3 K(©,Qm) +2h(0, Q)
F=——|(r-= ’ ’ : 4.1
12 (rh 1\Th> * ir) (4.10)
On the other hand, the total energy is defined as:
dAS,
0AS, o
E = = -T2k (4.11)
op 6?77;

being T the temperature of the BH solution (4.3). Then the total energy can be expressed
as:

E:{mvwhv¢—3ﬁ+6mQQmm¢
13K(0,0,,) (K(0,Qm) + 2h(0,0,)) (4.12)
16K (O, Qm)rz] / [mh (12 — 3K (0, Q) — Arb)



17

Moreover, the entropy of the BH is defined as:
S=p6FE—pF, (4.13)
so we can express the entropy as:
Art =12 + K(0,Qm) +20(0,Q,)
Al =24 3K(0,Qm) M

In general, the entropy of the BH is not proportional to the horizon area A = 4mr:. For
small a, we can express this entropy as:

S =

(4.14)

S = lA 26_nﬂ-3 (Qg—i_Q%n)A(l_'—n_ln)
T 17 3845 (Q2 + Q2) + 4mA — AA?
(3;%%)+0Wy (4.15)

We can see from (4.15) that in the limit a — 0 (standard case) we recover the usual result

S = %LA, as we could expect.

Finally, the heat capacity C' can be defined as

05
C=Tor (4.16)

so we can replace in this expression (4.14) and (4.3) and we finally obtain

C =2mr} [ + Ary, — K(©,Q,)] { — 2Ar),

—6K(0,Qu)r7 +8AK (0, Qs + A*rf + 17

+3K(0,Qm) [K(0,Qn) + 21(0, Q)]
—21(0, Q) Ar}} ) [Arf — 12 + 3K(0,Q)]" . (4.17)

Once we obtained these quantities, it is possible to discuss the BH stability regions in
terms of the sign of the heat capacity (4.17) and the Helmholtz free energy (4.10). BH
solutions with F' > 0 are more energetic than pure radiation, so they will decay to radiation
by tunneling; whereas BH solutions with ' < 0 will not decay to radiation since they are
less energetic. Furthermore, if the solution has C' < 0 it is unstable under acquiring mass,
and solutions with C' > 0 are stable. For further details, see Ref. [28].

In the following, we discuss the stability regions in the standard Electrodynamics theory,
and in modified theories with the n parameter even (which are parity invariant, since the non
parity invariant term Y is raised to an even power in the Lagrangian density (3.1)) and odd
(which are non parity invariant, for the same reason). It is important to remark that provided
the parameter n is odd, then we get complex quantities for the thermodynamics variables
(4.10), (4.14) and (4.17). Thus, in our proposed model solely the models invariant under
parity shall provide real Helmholtz energy, heat capacity and entropy using the Euclidean
Action Method.
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4.1 Standard case: a =0

In this first case, we shall show the thermodynamics phase regions of the solution in the
standard Electrodynamics theory, i.e., taking a = 0 in our proposal Lagrangian density
(3.1). As we commented in the previous section, in the standard theory © coincides with
Q). . Moreover, in this case the defined quantities K(Q., @,,) and h(Q.,Q,,) coincide, being
their expression:

WQe, Q) = K(Qe, Qm) = —87b (Q7 + Q) - (4.18)

Using this fact, we can simplify the free Helmholtz energy (4.10) and the Heat capacity
(4.17) of the BH solution, and express them as

A 3 Q> + Q2

F = _E (rgzt - Krext) - 67Tb Tt 3 (419)

O = omp2 Arew e + 8T (Q2 + Q1)
ext A pd r2. — 247h (Q% + Q32))

ext

(4.20)

In the Figure 4.1 the phase diagram of a BH solution in the flat limit A — 0 is repre-
sented. We see that there are just two different phases: the phase with C' < 0 and F' > 0
(green) and the phase with C' > 0 and F > 0 (blue); the white region is avoided since the
temperature is negative there. Models with A > 7, have not any allowed region, since for
all charges values they present negative temperature. Finally, in Figure 4.2 we represented
again the existing phases of our solution in the electrostatic case @), — 0 for different values
of electric charge and non-null cosmological constant.

Finally, let us remember that in this standard case the BH entropy (4.14) coincides with
a quarter of the horizon area, as expected.

4.2 (General case

In a general Electrodynamics Lagrangian density, the phase diagram can be more compli-
cated. Provided an odd parameter n, we get complex quantities for the thermodynamics
variables (4.10), (4.14) and (4.17). Thus, in non-parity invariant models the thermodynam-
ics quantities obtained in the Fuclidean approach are not well defined, and assuming the
method is valid we conclude these models lead to unstable solutions.

On the other hand, provided n even (parity invariant models) the thermodynamics quan-
tities are well defined and we can discuss the stability regions of the solutions. Depending
on the parameters a and n and the cosmological constant A two new phases may ap-
pear, corresponding to {C' < 0,F <0} (in the following figures, represented in red) and
{C >0,F <0} (represented in yellow).
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Figure 4.1: Phase diagram of BH solutions with b = —1/87 and a = 0 (usual Electrodynamics La-
grangian) in the flat limit A — 0 corresponding to rp = 100. We can see two different phases in the
diagram: the blue one corresponds to both C' and F' positive, while the green one corresponds to C < 0
and F > 0. We avoid the region with negative temperature, coloured in white. The diagram is represented
solely for positive values of the charges; however, the diagram is completely symmetric under the change
O— -0 or Qn——Qn-
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log(A)

Figure 4.2: Phase diagram of BH solutions with b = —1/87 and a = 0 (usual Electrodynamics La-
grangian) in the electrostatic limit @,, — 0 corresponding to 7, = 100. The common logarithm of A is
denoted as log(A). We can see two phases in the diagram: the blue one corresponds to both C' and F
positive, and the green one corresponds to C' < 0 and F > 0. As in the previous figures, we just colour
the regions with positive temperature. The diagram is represented solely for positive values of the charge;
however, the diagram is completely symmetric under the change © — —0.
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Figure 4.3: Different phase diagrams corresponding with b= —1/87, | a |=1/80r, n =2 and r, = 100
in the flat limit A — 0 are represented. In the left panel, it is represented the phase diagram for positive a ,
and they exist three different phases: One with C' < 0 and F > 0 (green), other with C' >0 and F >0
(blue) and a new phase with C' < 0 and F < 0 (red). The right panel corresponds to negative a, and
they appear just the phases which are also present in the standard Electrodynamics theory: {C' < 0,F > 0}
(green) and {C > 0,F > 0} (blue).

In Figure 4.3 we represented different phase diagrams corresponding to n = 2 for different
sign of the parameter a in flat space A — 0. Moreover, in Figure 4.4 we show the phase
diagram for n =2, @, = 50 and a = 1/807 . In this plot we see all the stability phases are
present. On the other hand, it is easy to prove that in the electrostatic case (Q,, — 0), if
n is even and positive there is solely one stability region for a > 0, {C' < 0, F < 0}, which
fully covers the plane A — ©, whereas for a < 0 there is not any stability region since in
this case the temperature is always negative.

Finally, we highlight that in these modified theories the entropy (4.14) is not proportional
to the horizon area (A = 47ry, ). In fact, the entropy may decrease with the area, as we
shown in Figure 4.5 in the flat case A = 0 with K(0,Q,,) = 100 and h(©,Q,,)=-1000.
Thus, provided the second law of the BH dynamics is valid, the BH entropy could decrease
in some physical process. It does not occur for small corrections to the standard theory,
since as we can see from (4.15) the dominant term is still A/4.
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log(A)

Figure 4.4: Phase diagram corresponding with b = —1/87, a = 1/807, n =2, r, = 100 and Q,, =
50. We denote the common logarithm of A as log(A). In this case,all the stability regions are present:
{C >0,F >0} (blue), {C <0,F >0} (green), {C >0,F <0} (yellow) and {C > 0,F > 0} (red). Asin
the rest of figures, we only represented the regions with positive temperature.

40000
30000
20000

10000

Figure 4.5: In red solid line, BH entropy for A =0, K(©,Qm) = 100 and h(0,Q,,) = —1000 as function
of the horizon area. For a range of A, the entropy is a decreasing function of A. In dashed black line, it is
represented the usual result S = A/4.



Chapter 5

Classification of BH solutions in terms
of the number of phase transitions

In this section we shall perform a classification of BH solutions based on the number of phase
transitions that they present. These phase transitions occur at a set of values of A, ©, Q,,
and M for which the denominator of the heat capacity (4.17) goes to zero, i.e., the heat
capacity goes through an infinite discontinuity [29]. Thus we have to obtain the parameters
for which the derivative of the temperature (4.3) with respect to the external horizon radius

is null, g—qf’; = 0, or equivalently, find the parameters for which the relation:
AB,Qm
1
= ox (1 + /1 12K(6, Qm)A> , (5.1)

is satisfied. Trying to solve this equation, we can distinguish three different classes of BH
solutions:

e Fast BH’s. If K(©,Qm) > ﬁ, the radicand in (5.1) is negative, so there is not any
ry, for which the expression is satisfied. It means that for these BH configurations there
is not any phase transition. We shall refer to this kind of solutions as “fast BH’s”. If
we are in the flat limit A — 0, this kind of solution does not hold on.

e Slow BH’s. If 0 < K(O,Qm) < ﬁ, equation (5.1) can be satisfied for both plus or
minus sign, since then for both possibilities we get 72 > 0. It means that for these BH
configurations there are present two horizon radii for which a phase transition occurs,
i.e., there are two different phase transitions. We shall refer to this kind of solutions

as “slow BH’s”.

e New BH’s. If K(©,Qm) < 0, equation (5.1) can be satisfied for plus sign but no for
minus sign, since then we would get r7 < 0. It means that there is solely one phase

23
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—-10000
0
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Figure 5.1: Behaviour of the heat capacity for different classes of BH. We can see that slow BH’s present
two phase transitions (for two horizon radii the heat capacity diverges), new BH’s present a unique phase
transition and and fast BH’s has not any phase transitions.

transition. We shall refer to this kind of solutions as “new BH’s”, since they do not
appear in the standard case.

In Figure 5.1 it is represented the heat capacity for different classes of BH’s, from which
we check that slow, new and fast BH’s present two, one or none phase transitions respectively.
In Figure 5.2 we plotted the values of the charge term K (O, Q,,) and cosmological constant
A for which each BH class is present. As in the previous section, we just take into account
the regions with positive temperature (4.3). On the other hand, in Figure 5.3 we depicted
the domain of each class in the case n = 2, b = —1/87 and a = 1/80w. For this set
of parameters they are present all the classes of BH. However, for other values of these
parameters some classes may not appear.
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log(A)

Figure 5.2: Classification of BH solutions with an outer horizon radius of 7, = 5 depending on the
number of phase transitions which the solution support for a cosmological constant A and a charge term
K(0©,Q.,) . The common logarithm of A is denoted as log(A). The slow BH’s, with two phase transitions,
are represented in red; the fast BH’s, with no phase transition, in blue; new BH’s, with a unique phase
transition, in yellow. The white colored region corresponds to negative temperature. Note that new BH’s
require K(©,Q.,) < 0, so not all the the Electrodynamics Lagrangian densities of the form (2.25) support
this kind of BH’s (for example, the standard case does not support new BH’s).
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Figure 5.3:  Classification of BH’s solutions as function of the charges © and Q,, for b = —1/87,
a=1/80r, n=2, r, =100 and A =5-10"°. The colour code is: fast BH’s in blue, slow BH’s in red
and new BH’s in yellow. As we can see, they are present all the three classes



Chapter 6

Conclusions

In this work we have derived a sufficient condition of modified and gauge invariant Elec-
trodynamics Lagrangian densities for obtaining static and spherically symmetric solutions
assuming static and spherically symmetric U(1) fields.

Once we have obtained this condition, we have proposed one model of Electrodynamics
Lagrangian density that could be seen as a perturbation of the standard theory. With this
effective Lagrangian model we have derived the metric of the space-time. The obtained result
is a Reissner-Nordstom-like metric with a modified charge term that could be either positive
or negative.

After obtaining the metric for our proposed model, we have performed a thermodynamics
analysis of the solutions by employing the Euclidean Action approach. Using this method,
we have found three important results. The first one is that in our proposed model, just
parity-invariant models provide real thermodynamics quantities, whereas in the non-parity-
invariant models these quantities are complex. Thus, assuming the Euclidean Action Method
is valid we find our non-parity invariant models are unstable.

The second one is related to the phase diagram of the solutions. As we have seen through-
out this work, when we represent a phase diagram of the solutions depending on the sign of
the heat capacity and the free Helmholtz energy, for some set of values of the parameters of
our model new phases which does not appear in the standard electrodynamics theory arise.
It means that our modified model could explain the existence of stability phases in the black
holes which do not hold on in the usual Electrodynamics theory.

The final result is that in the general case the black-hole entropy is not proportional to
the horizon area. Thus, if the second law of the black-hole dynamics is still true (dA > 0 in
any physical process provided the null energy condition holds), for some sets of parameters
the black-hole entropy will decrease.

27
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Experimental tests of modified Electrodynamics models might be done studying astro-
physical black holes and, furthermore, micro black holes which would be produced in LHC
(30, 31]. The thermodynamics properties and the stability of these produced micro black
holes could check our proposed modified model, since as we have seen the thermodynamical
quantities of black holes depends on the model we work.

On the other hand, in this work we have studied black holes with both electric and
magnetic charges, and for some models the thermodynamics quantities of non-magnetically-
charged black holes diverge. The magnetic monopoles have not been observed, so it is a
problem if we want to compare the thermodynamics properties of hypothetically observed
black holes with the properties of our proposed solutions. Nevertheless, studying the sign of
these quantities in the limit @),, — 0 we can compare the thermodynamics phases diagrams

of our solutions, which are well defined, with the corresponding of these hypothetically
observed black holes.
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