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Abstract 

We consider   school choice problems where school priorities depend on 

transferable student characteristics. Fair Pareto improvements can alleviate the 

trade-off between efficiency and stability in this framework. A group of students 

may improve their outcomes by exchanging their seats and transferable 

characteristics at the schools they are initially assigned   without generating justified 

envy among the remaining students. We define the student exchange with 

transferable characteristics (SETC) class of algorithms. Every algorithm in the SETC 

class starts from an initial matching of students to schools and an initial allocation of 

transferable characteristics. The algorithms then propose a sequence of fair Pareto 

improvements until the point at which any additional efficiency gain implies a 

violation of the school priorities that cannot be solved with a reallocation of the 

transferable characteristics.   
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able student characteristics. Fair Pareto improvements can alleviate the trade-off

between efficiency and stability in this framework. A group of students may im-

prove their outcomes by exchanging their seats and transferable characteristics at

the schools they are initially assigned without generating justified envy among the

remaining students. We define the student exchange with transferable character-

istics (SETC) class of algorithms. Every algorithm in the SETC class starts from

an initial matching of students to schools and an initial allocation of transferable
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1 Introduction

Studies on the school choice problem address the mechanisms that many school districts

employ to assign students to public schools (see Balinski and Sönmez, 1999; Abdulka-

diroğlu and Sönmez, 2003). The problem considers a set of students, a set of schools,

and the schools’ quotas, which represent the capacity of each school. Each student sub-

mits a list of preferences to a central placement authority such as a school district. Each

school has a priority ranking that determines who receives a seat if a school is over-

demanded. The school district decides which students attend each school using an algo-

rithm that matches students to schools considering the students’ reported preferences and

the schools’ priorities. A major concern regarding the design of school choice programs

has been the ability to match students to schools fairly. A matching is fair if all students

who obtain a seat at a given school have a higher priority than those who preferred that

school over the one to which they are matched and therefore no student has justified envy.

In recent years, most school districts have implemented school choice algorithms based

on Gale and Shapley’s deferred acceptance (DA) algorithm (see Gale and Shapley, 1962;

Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005; Pathak, 2016). Apply-

ing student-proposing DA algorithm to prospective students always results in a stable

matching, that is, a fair, individually rational, and non-wasteful matching.1 However,

the matching can be Pareto dominated by another matching that does not respect school

priorities.

In this paper, we add structure to the definition of school priorities. In the canonical

school choice problem, priorities are a primitive aspect of the model. However, school

districts use several criteria to determine school priority orders, such as different char-

acteristics of potential students or tie-breaker lotteries (see Abdulkadiroğlu et al., 2005).

Our model relies on student characteristics as primitives. Students are endowed with

characteristics specific to individual schools. Each school ranks students according to

priorities defined by the individual characteristics of each student and the transferable

characteristic of the student at that school. Students can exchange the characteristics of

different schools and thus affect their positions in the priority rankings of those schools.

In this context, a matching that Pareto improves the initial matching but that may not

respect fairness may become fair after the relevant characteristics among students are

exchanged. We introduce the concept of extended matching, which is a matching of

students to schools and an allocation of transferable characteristics among the students.

We explore the efficiency gains with respect to arbitrary initial assignments of students

to schools that can be justified under schools’ priority rankings after the exchanges of

1A matching is individually rational if no student is assigned to a school that she would rather not

attend. A matching is non-wasteful if every school that a student prefers to the school to which she is

assigned has filled all its available seats.
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characteristics among the students involved in the exchange of seats (fair Pareto improve-

ments). As far as we know, we are the first to consider this extension of the canonical

school choice model formally.2

We propose a class of school choice algorithms: the student exchange with transfer-

able characteristics (SETC) algorithms. Each algorithm in this class proposes a sequence

of fair Pareto improvements of an initial extended matching. Suppose that the initial

extended matching is individually rational and non-wasteful. Each algorithm in the class

stops at an extended matching such that no further fair Pareto improvement can be ob-

tained (Theorem 1). If the initial matching is stable, the final matching is also stable,

and any possible Pareto improvement implies generating instances of justified envy, even

after the exchange of transferable characteristics. We dub such an extended matching

a constrained efficient extended matching. We obtain a partial version of the converse

result by imposing a neutrality condition on the structure of school priorities. For every

extended matching obtained as a sequence of fair Pareto improvements of a stable ex-

tended matching, an SETC algorithm selects essentially the same extended matching at

some step of the algorithm (Theorem 2).

We can think of several situations where the transferability of student characteristics

can improve an allocation by solving a market design problem. For example, the lottery

number can be a natural transferable characteristic when schools use different tie-breaking

lotteries.3 This issue was at the heart of Amsterdam’s high school assignment procedure

reform in 2014. Under this reform, a system based on immediate acceptance with multi-

ple tie-breaking and the possibility of exchanging assignments was replaced with a system

based on DA with multiple tie-breaking without the possibility of exchanging assign-

ments. In 2015, families who wished to exchange school seats unsuccessfully challenged

the new allocation procedure in court. Our framework allows us to design a procedure

with the lottery number as the unique exchangeable characteristic. This allows Pareto

improvements that respect all but the priorities based on the tie-breaking lottery.4

Additionally, our model can be helpful in situations of walk-zone redistricting (see

Dur et al., 2018; Casalmiglia et al., 2020). For example, for the case of Madrid, where

2A similar formulation was independently proposed in Duddy (2019), which discusses the informa-

tional shortcomings of the current priority-based model and proposes a formulation based on a priority

matrix.
3The use of multiple tie-breaking criteria can be justified since it reduces the chance that over-

demanded schools will systematically reject a student with an unfavorable lottery draw (see Arnosti,

2016).
4For further reference, see Ashlagi et al. (2019); Ruijs and Oosterbeek (2019), and

https://www.nemokennislink.nl/publicaties/schoolstrijd-in-amsterdam/(Schoolstrijd in Amsterdam)

(Arnout Jaspers, Kennislink, July 1, 2015, accessed July 31, 2022).
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the walk-zone priority was abolished, generating winners and losers, we could design an

allocation procedure that respects the walk-zone priority but allows exchange of the walk-

zone characteristic when it generates Pareto improvements (see Górtazar et al., 2023).

In general, our approach can help improve efficiency in situations where we can differ-

entiate between allocative criteria (such as tie-breaking lotteries) and fairness constraints

(such as the need for siblings to attend the same school) in the formation of priorities.

An example could be the integration of transplantation programs.5 Different programs

might have different priorities or criteria on desensitization or resort to cadaveric donation.

Therefore, depending on her characteristics, a patient might receive different treatments

in different programs. The interaction between different programs might mean that a

member will lose in favor of an outsider. A within-program assignment followed by an

exchange of characteristics where the transplantation program is the only transferable

characteristic allows for Pareto-improving reassignment of patients seeking treatment.

Finally, the algorithms in the SETC class allow Pareto-improving exchanges in any

extended matching that is individually rational and non-wasteful. As the initial allocation

does not have to be stable, an SETC algorithm can be used as a post-allocation scramble

reducing instances of justified envy.

1.1 Related Literature

The school choice problem was first presented by Balinski and Sönmez (1999). This paper

introduces the idea of fairness in allocating school seats to students. Abdulkadiroğlu

and Sönmez (2003) analyzes this problem from a mechanism design perspective. The

paper shows that a student-proposing DA algorithm always selects a stable match and is

strategy-proof.6 Abdulkadiroğlu and Sönmez (2003) also presents an adaptation of Gale’s

top trading cycle mechanism (TTC) mechanism by Shapley and Scarf (1974) and shows

that the TTC mechanism always selects Pareto efficient matchings and is strategy-proof.

Unfortunately, stable matchings are inefficient and can have severe levels of inefficiency

(see Abdulkadiroğlu et al., 2009; Kesten, 2010; Dur and Morrill, 2017).

There have been attempts to alleviate the trade-off between stability and efficiency by

weakening the notion of fairness. Kesten (2010) proposes the efficiency adjusted deferred

acceptance algorithm (EADA) algorithm. The EADA algorithm finds a constrained ef-

ficient matching by incorporating the possibility that students may consent to renounce

their priorities in schools where they cannot obtain a seat under the student-proposing

5See Van der Spiegel et al. (2020) for details on the integration of national transplant programs in the

European Union.
6A mechanism is strategy-proof if students have incentives to report their true preferences.
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DA algorithm.7 Alcalde and Romero-Medina (2017) proposes an alternative weakening of

fairness dubbed α-equitability. Ehlers and Morrill (2020) relaxes the fairness constraint

and proposes a stable set of legal matchings that are not dominated in terms of fairness

by any other legal matching. In the same spirit, Alva and Manjunath (2019) presents

the concept of stable domination, Troyan et al. (2020) proposes the concept of essentially

stable, and Tang and Zhang (2021) considers the concept of weak stability.

A different approach compares the instances of justified envy generated by different

mechanisms. Hakimov and Kesten (2018) proposes a Pareto efficient and strategy-proof

mechanism that eliminates justified envy due to pairwise exchanges. Abdulkadiroğlu et al.

(2020) shows that TTC minimizes justified envy among all Pareto efficient and strategy-

proof mechanisms in one-to-one matching. Doğan and Ehlers (2021) investigates efficient

and minimally unstable Pareto improvements over the DA mechanism. Finally, Doğan

and Ehlers (2022) formulates methods to compare assignments in terms of their stability

in the context of priority-based allocation of objects.

With the same objective of alleviating the trade-off between stability and efficiency,

other papers explore the interaction between agents’ characteristics and the solution con-

cept of the allocation problem. For example, Klaus and Klijn (2021) presents a classical

school choice problem with access rights. In general, minimal access rights (for siblings,

walk-zone residents, etc.) are incorporated into priorities to give students with minimal

access higher priority than non-minimal access students. Klaus and Klijn (2021) weak-

ens stability to minimal access stability, a concept that guarantees access to at most one

school that guarantees the student a minimal access right. Combe (2022) studies the

idea of matching with ownership in situations where ownership of an object restricts the

objections of agents who are not owners. In this setting, Combe (2022) defines a notion

of stability with two different ownership structures and shows that stable matchings exist

in both cases.

The closest paper to ours is Dur et al. (2019), which proposes an alternative weakening

of stability called partial stability. Under partial stability, specific priorities of certain stu-

dents at certain schools are ignored. Then, the welfare gains can be captured by applying

the improvement cycles approach proposed by Erdil and Ergin (2008) for school choice

problems with weak priorities and arbitrary tie-breakers. Kitahara and Okumura (2021)

modifies the stable improvement cycles algorithm introduced by Erdil and Ergin (2008)

and considers a school choice problem where partial orders represent school priorities.

Like Dur et al. (2019), our paper uses improvement cycles. However, beyond this

point, the two papers have considerable differences. First, the primitives in our model are

7See also Tang and Yu (2014).
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not school priorities but the individual student characteristics on which those priorities

are based. Second, in our case, the resulting extended matching allocates both school

seats and student characteristics. Third, the possible welfare gains that we capture are

derived from the exchange of characteristics. That is, the final allocation of transferable

characteristics justifies the resulting extended matching of our model. Fourth, the SETC

algorithms consider exchanges of characteristics; in contrast to the mechanism under

the stable improvement cycle algorithm in Erdil and Ergin (2008), some students who

participate in the cycles only exchange characteristics and facilitate other exchanges, and

they are weakly better off. Finally, there is a technical difference. Our framework does

not require additional conditions on the set of priorities that may be ignored, as in Dur

et al. (2019).8 Our results only require that school priorities are complete and neutral

(monotonic) in terms of student characteristics.

The remainder of the paper is organized as follows. In Section 2, we introduce the

model and notation utilized. In Section 3, we present our main results. In Section 4, we

consider incentive issues and relate our framework of transferable characteristics to that

of school choice with consent proposed by Kesten (2010). In Section 5, we conclude this

paper. In Section 6, we prove our results.

2 Notation and Definitions

We present the canonical school choice problem elements and introduce a school choice

problem with school priorities that depend on transferable characteristics.

Let I be a finite set of students and S be a finite set of schools to which the students

must be allocated. Each student i has a strict preference Pi over S ∪ {∅}, where a strict

preference is a complete, transitive, and antisymmetric binary relation, and ∅ refers to the

option of being unassigned. We use Ri to signify the weak preference relation associated

with Pi, which is defined in the standard way. We denote by R a profile of student

preferences that specifies a preference for each student, R = (Ri)i∈I . Each school s has

a quota qs of available seats (qs ∈ N). We denote by q the vector of school quotas,

q = (qs)s∈S.

A matching is a function µ : I → S ∪ {∅} such that

i) for each i ∈ I, µ(i) ∈ S ∪ {∅}.

ii) for each s ∈ S, #{i ∈ I : µ(i) = s} ≤ qs.
9

8See Assumption 1 in Dur et al. (2019).
9For any set A, #A stands for the cardinality of set A.
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Abusing notation, for each s ∈ S, we write µ−1(s) = {i ∈ I : µ(i) = s} and represent

arbitrary matchings by the list of student-school pairs:

µ = [(i, µ(i))]i∈I .

A matching µ′ Pareto dominates the matching µ if for each i ∈ I, µ′(i) Ri µ(i) and,

for some j ∈ I, µ′(j) Pj µ(j).

The canonical school choice problem’s last component is the school priorities profile.

Schools rank their prospective students according to priority rankings. We consider that

school priorities may depend on different student characteristics. Some of these charac-

teristics are intrinsic to individual students, but others can be exchanged among students.

The relevant priorities for schools depend on the allocation of such characteristics.

For each student i and each school s, ωs(i) is the initial endowment of the transferable

characteristic of i at s. We assume that ωs(i) is a singleton. Let ω(i) = (ωs(i))s∈S be the

initial endowment vector of the transferable characteristics that determine the position of

student i at each school s. For each school s, let Ωs = {ωs(i) : i ∈ I}. A permutation of

the transferable characteristics for school s, λs : I → Ωs, is a bijection from I to Ωs and

λs(i) is the transferable characteristic of i at school s. Note that for each i ∈ I and s ∈ S,

there is j ∈ I with λs(i) = ωs(j) and, for each j, j′ ∈ I such that j 6= j′, λs(j) 6= λs(j′).

We call λ = (λs)s∈S an allocation of transferable characteristics . For each student

i and each allocation λ, λ(i) = (λs(i))s∈S. We denote by ω the initial allocation of

transferable characteristics. Finally, for each allocation of transferable characteristics λ

and each set of students N ⊆ I, λ |N is the restriction of λ to the students in N .

When characteristics are transferable, their allocation is relevant to define school pri-

orities. An extended matching is a pair (µ, λ) where µ is a matching and λ is an al-

location of transferable characteristics. We say that the extended matching (µ, λ) Pareto

dominates the extended matching (µ′, λ′) if µ Pareto dominates µ′.

In a school choice problem with transferable characteristics, school priorities rank com-

binations of students and transferable characteristics that students present to the school

choice process. Hence, school s’s priority is a complete, transitive, and antisymmetric bi-

nary relation �s over I×Ωs. We use the notation %s to refer to the weak priority relation

associated with �s defined in the usual way. We denote by % the school priorities profile

%= (%s)s∈S.

Neutral Priorities For each i, j ∈ I, s ∈ S, and each l, l′ ∈ Ωs, (i, l) �s (i, l′) if and

only if (j, l) �s (j, l′).
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Under neutral priorities, for each s, the set Ωs is naturally ordered; for each L ⊆ Ωs,

we can define

max{L} = {l ∈ L : for each i ∈ I, for each l′ ∈ L, (i, l) %s (i, l′)}.

Throughout this paper, we assume that, for each school s, the set Ωs is an ordered

set and the transferable characteristics affect all students neutrally. This assumption

seems natural in most applications. For instance, we might assume that the transferable

characteristic corresponds to tie-breaker lotteries and that each school assigns a different

tie-breaker lottery number to each student ex-ante.

A school choice problem with transferable characteristics is a 6-tuple defined

by the set of students, the set of schools, student preferences over schools, the number

of seats available at each school, the initial allocation of transferable characteristics, and

school priorities (I, S,R, q, ω,%).

We now present a notion of stability for extended matchings. This notion reflects the

idea that stable extended matchings should not generate justified complaints with respect

to school priorities from students who want to change their assigned school.

Given an extended matching (µ, λ), student i has justified envy of student j if

µ(j) Pi µ(i) and (i, λµ(j)(i)) �µ(j) (j, λµ(j)(j)).

An extended matching (µ, λ) is stable if it is

i) fair : no student has justified envy of any other student,

ii) individually rational : for each i ∈ I, µ(i) Ri ∅, and

iii) non-wasteful : for no i ∈ I or s ∈ S, s Pi µ(i) and #{i ∈ I : µ(i) = s} = µ−1(s) <

qs.

If an extended matching is fair, no student has a greater right (according to school pri-

orities) to attend a particular school that she prefers to the school to which she is assigned

than another student assigned to that school. If an extended matching is individually ra-

tional, no student has incentives to leave the enrollment system since she prefers to remain

unassigned. Finally, if an extended matching is non-wasteful, no student prefers to be

reassigned to a school that has not fulfilled its quota.

We analyze the possibility of improvements of an initial extended matching in terms

of Pareto efficiency and stability. Starting from an arbitrary initial extended matching,
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(µ, ω), we seek a new extended matching that Pareto dominates the initial extended

matching without generating new instances of justified envy thanks to the exchange of

transferable characteristics.

The extended matching (µ′, λ̄) is a fair Pareto improvement of (µ, λ) if

i) µ′ Pareto dominates µ,

ii) for each i such that (µ′(i), λ̄(i)) 6= (µ(i), λ(i)) there is no j with justified envy of i at

(µ′, λ̄),

iii) for each i ∈ I and for each s /∈ {µ(i), µ′(i)}, λs(i) = λ̄s(i).

By items i) and ii), we require a fair Pareto improvement to generate a new matching

that all students consider at least as good as the initial matching (with some strict pref-

erence). The changes in the matching and the allocation of transferable characteristics

must not generate instances of justified envy. By item iii), we consider new extended

matchings such that the reallocation of transferable characteristics is restricted to stu-

dents and schools involved in the new assignment. Specifically, we exclude the possibility

of a student abandoning her transferable characteristic at some school to which she is not

assigned to accommodate the priority of another student at that school.10

In the following definition, we sequentially apply the notion of fair Pareto improve-

ment and consider the possibility of obtaining extended matchings resulting from a finite

sequence of fair Pareto improvements.

The extended matching (µ′, λ′) is a justifiable Pareto improvement of (µ, λ) if

there is a sequence of extended matchings {(µ0, λ0), (µ1, λ1), . . . , (µn, λn)} with (µ0, λ0) =

(µ, λ), (µn, λn) = (µ′, λ′), such that for each t ∈ {1, . . . , n}, (µt, λt) is a fair Pareto

improvement of (µt−1, λt−1).

When the initial transferable characteristics cannot be reallocated, the student-proposing

DA algorithm selects a matching that, together with the initial allocation of transferable

characteristics, is stable. For each allocation of transferable characteristics λ, we de-

fine µSOλ as the matching obtained by the student-proposing DA algorithm for λ. We

call (µSOω , ω) the student optimal stable extended matching (SOSEM). Gale and

Shapley (1962) proves that the matching selected by student-proposing DA algorithm

10With this modeling option, we prevent a student from influencing the allocation of students to schools

other than the one to which she was initially assigned. In Example 2, we show the implications of allowing

students to distribute characteristics of schools that are not involved in direct exchanges. Furthermore,

allowing such trades would add complexity to the framework
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Pareto dominates all other fair, individually rational, and non-wasteful matchings under

the initial allocation of transferable characteristics ω. However, it is possible to find alter-

native matchings that Pareto dominate the SOSEM by generating instances of justified

envy.

We explore the possibility of exhausting the generation of fair Pareto improvements.

Given an initial extended matching, we seek extended matchings that improve both effi-

ciency and stability and are justified by bidirectional exchanges of seats and transferable

characteristics such that further Pareto improvements necessarily generate justified envy.

We focus on finding fair Pareto improvements of individually rational and non-wasteful

extended matchings and specifically for stable extended matchings and the SOSEM, that

is, stable extended matchings that are not Pareto dominated by other stable extended

matchings. Therefore, any Pareto improvement will imply a violation of fairness. This

notion is captured with the following definition.

An extended matching (µ, λ) is constrained efficient if it is stable and there is no

fair Pareto improvement (µ′, λ′) of (µ, λ).

2.1 Examples

We start the analysis by providing some examples that show the possibility of finding fair

Pareto improvements for the solutions to the classical school choice problem.

Example 1 provides an instance of a fair Pareto improvement above the SOSEM (and a

constrained efficient extended matching) by the direct swap of transferable characteristics

at different schools between two students.

Example 1. Let I = {i1, i2, i3}, S = {s1, s2, s3}, and qsx = 1 for x = 1, 2, 3. Student

preferences over schools are:

Pi1 Pi2 Pi3
s2 s1 s1

s1 s2 s2

s3 s3 s3

∅ ∅ ∅

School priorities regard non-transferable characteristics intrinsic to each student and

students’ tie-breaker lotteries as transferable characteristics. The tie-breaking lottery de-

termines the school priorities of s1 and s2. Student i1 has the highest priority for s1,

student i2 has the highest priority for s2, and student i3 has the second-highest priority in

10



both schools. Hence, the initial allocation of transferable characteristics and the relevant

school priorities are:11

ωs(i) i1 i2 i3
s1 2s1 0s1 1s1

s2 0s2 2s2 1s2

s3 0s3 1s3 2s3

�s1 �s2 �s3
(i1,2

s1) (i2,2
s2) (i3, ·)

(i2,2
s1) (i1,2

s2) . . .

(i3,1
s1) (i3,1

s2)

(i2,0
s1) (i1,0

s2)

where (i, ·) at the description of the priority of school s, �s, denotes that student i holds

this priority for any possible transferable characteristic λs ∈ Ωs.

Note that µSOω is defined by

µSOω = [(i1, s1), (i2, s2), (i3, s3)] .

The extended matching (µSOω , ω) is stable but µSOω is Pareto dominated by the matching µ′

such that:

µ′ = [(i1, s2), (i2, s1), (i3, s3)] .

However, since (i3,1
s1) �s1 (i2,0

s1), i3 has justified envy of i1, and (µ′, ω) is not a fair

extended matching.

When students i1 and i2 swap their transferable characteristics at schools s1 and s2,

we obtain an allocation of transferable characteristics λ such that: λs1(i1) = ωs1(i2),

λs1(i2) = ωs1(i1), λs2(i1) = ωs2(i2), λs2(i2) = ωs2(i1), and λs3 = ωs3.

λs(i) i1 i2 i3
s1 0s1 2s1 1s1

s2 2s2 0s2 1s2

s3 0s3 1s3 2s3

Note that µ′ = µSOλ . The extended matching (µ′, λ) is stable and a fair Pareto im-

provement for the SOSEM (µSOω , ω). Since µSOλ Pareto dominates µSOω , (µSOω , ω) is not

constrained efficient. Since there is no matching µ′′ that Pareto dominates µ′, and (µ′, λ)

is stable, (µ′, λ) is constrained efficient.

Example 2 presents the constraint that the focus on fair Pareto improvements intro-

duces in our framework.

11We do not present the complete school priority orders over students and transferable characteristics

pairs, only the relevant comparisons.
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Example 2. Let I = {i1, i2, i3, i4}, S = {s1, s2, s3, s4}, and qsx = 1 for x = 1, 2, 3, 4.

Student preferences over schools that are at least as good as the remaining unassigned

option are:

Pi1 Pi2 Pi3 P4

s2 s1 s1 s4

s1 s2 s2 ∅
s3 s3 s3

∅ ∅ ∅

The relevant initial allocation of transferable characteristics for schools ω and the

relevant school priorities are:

ωs(i) i1 i2 i3 i4
s1 0s1 1s1 2s1 3s1

s2 1s2 0s2 2s2 3s2

s3 . . . . . . . . . . . .

s4 . . . . . . . . . . . .

�s1 �s2 �s3 �s4
(i1,0

s1) (i2,0
s2) (i3, ·) (i4, ·)

(i4,3
s1) (i4,3

s2) . . . . . .

(i2,3
s1) (i1,3

s2)

(i3,2
s1) (i3,2

s2)

(i2,1
s1) (i1,1

s2)

This school choice problem modifies Example 1 by adding a student with the highest

ticket number from the tie-breaking lottery for schools s1 and s2 and school priorities such

that i1 and i2 initially have the highest priorities at schools s2 and s1, respectively, but

they do not have valuable lottery tickets to exchange.

The matching µSOω is defined by

µSOω = [(i1, s1, ), (i2, s2), (i3, s3), (i4, s4)] .

Note that µSOω is Pareto dominated by

µ′ = [(i1, s2), (i2, s1)(i3, s3), (i4, s4)] .

Consider the allocation of transferable characteristics λ̄ such that λ̄s = ωs for s ∈ {s3, s4}
and

λ̄s(i) i1 i2 i3 i4
s1 0s1 3s1 2s1 1s1

s2 3s2 0s2 2s2 1s2

s3 . . . . . . . . . . . .

s4 . . . . . . . . . . . .
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According to the allocation λ̄ students i1 and i2 obtain i4’s transferable characteristics

at schools s1 and s2 respectively, although student i4 is assigned to a seat in s4. Hence,

(µ′, λ̄) is not a fair Pareto improvement of (µSOω , ω). It turns out that (µSOω , ω) is con-

strained efficient.

Example 3 shows the possibility of different (incompatible) fair Pareto improvements

over an initial extended matching, and the possibility of Pareto improvements where

students willing to exchange seats need the transferable characteristic of a third student.

Example 3. Let I = {i1, i2, i3, i4, i5, i6}, S = {s1, s2, s3, s4, s5}, for all s ∈ S \ {s2},
qs = 1, and qs2 = 2. Student preferences over schools that are at least as good as the

remaining unassigned option are:

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6
s2 s1 s1 s1 s5 s5

s4 s2 s2 s4 s2 s2

s1 s3 s4 ∅ ∅ ∅
s3 ∅ s3

∅ ∅

The relevant initial allocation of transferable characteristics and the relevant school

priorities are:12

ωs(i) i1 i2 i3 i4 i5 i6
s1 5s1 3s1 4s1 2s1 1s1 0s1

s2 2s2 3s2 4s2 1s2 0s2 5s2

s3 . . . . . . . . . . . . . . . . . .

s4 5s4 2s4 4s4 3s4 1s4 0s4

s5 . . . . . . . . . . . . . . . . . .

�s1 �s2 �s3 �s4 �s5
(i1,5

s1) (i5,0
s2) (i3, ·) (i4,3

s4) (i5, ·)
(i2,5

s1) (i6,5
s2) (i1,5

s4) (i6, ·)
(i4,5

s1) (i6,3
s2) (i3,4

s4)

(i3,4
s1) (i2,3

s2) (i1,3
s4)

(i2,3
s1) (i1,5

s2)

(i4,2
s1) (i3,4

s2)

(i1,3
s2)

(i1,2
s2)

12It is worth noting that the school priorities in Example 3 are consistent with the interpretation of

priorities based on weak orders over students and transferable characteristics as tie-breaking lotteries.

We can interpret that student i1 always has the highest priority at school s1. School s1’s ranking of

students i2, i3, and i4 depends on the respective transferable characteristics (with an irrelevant arbitrary

criterion to define complete and strict priorities over all pairs of students and transferable characteristics).

Similarly, student i5 always has the highest priority and students i6 and i2 the second- and third-highest

priority at school s2, and the transferable characteristic determines the priority of students i1 and i3 at

school s2.

13



The SOSEM is the matching:

µSOω = [(i1, s1), (i2, s2), (i3, s3), (i4, s4), (i5, s5), (i6, s2)] ,

and the extended matching (µSOω , ω) is stable. The matching µSOω is Pareto dominated by

two alternative matchings µ′ and µ′′:

µ′ = [(i1, s2), (i2, s1), (i3, s3), (i4, s4), (i5, s5), (i6, s2)] ,

µ′′ = [(i1, s4), (i2, s2), (i3, s3), (i4, s1), (i5, s5), (i6, s2)] .

The extended matchings (µ′, ω) and (µ′′, ω) are not stable. Note that at (µ′, ω), i2 has

justified envy of i1 at school s2. At (µ′′, ω), i2 has justified envy of i4 at school s1.

Considering the matching µ′; every fair Pareto improvement involving a swap of trans-

ferable characteristics involving only students i1 and i2 does not generate a stable extended

matching because ωs2(i2) = 3s2 and (i3,4
s2) �s2 (i1,3

s2). However, if student i6 partic-

ipates in the swap of transferable characteristics, we can define the allocation of trans-

ferable characteristics λ such that for each s ∈ {s3, s4, s5} λs = ωs and the allocation of

transferable characteristics at schools s1 and s2 is:

λs(i) i1 i2 i3 i4 i5 i6
s1 3s1 5s1 4s1 2s1 1s1 0s1

s2 5s2 2s2 4s2 1s2 0s2 3s2

s3 . . . . . . . . . . . . . . . . . .

s4 . . . . . . . . . . . . . . . . . .

s5 . . . . . . . . . . . . . . . . . .

The extended matching (µ′, λ) is stable and a fair Pareto improvement over (µ, ω).

On the other hand, with respect to the matching µ′′, under the initial allocation of

transferable characteristics, student i1 cannot obtain a seat at school s4 because i4 has a

higher priority at that school. In this case, student i4 needs i1’s transferable character-

istic at school s1 to avoid generating justified envy by i2, but i1 does not need i4’s at s4.

Hence, we can define the allocation of transferable characteristics λ̄ such that for each

s ∈ {s2, s3, s4, s5}, λ̄s = ωs, and the allocation of transferable characteristics at schools s1

and s4 is:

λ̄s(i) i1 i2 i3 i4 i5 i6
s1 2s1 3s1 4s1 5s1 1s1 0s1

s2 . . . . . . . . . . . . . . . . . .

s3 . . . . . . . . . . . . . . . . . .

s4 5s4 2s4 4s4 3s4 1s4 0s4

s5 . . . . . . . . . . . . . . . . . .
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The extended matching (µ′′, λ̄) is stable, and (µ′′, λ̄) is a fair Pareto improvement over

(µ, ω). In fact, both (µ′, λ) and (µ′′, λ̄) are constrained efficient extended matchings.

We conclude this section with Example 4 which complements Example 3. With Exam-

ple 4 we show that the existence of students willing to exchange seats at different schools

does not suffice to yield a fair Pareto improvement if they cannot involve additional stu-

dents in a transferable characteristics exchange cycle.

Example 4. Consider a variation of the school choice problem defined in Example 3 with

an alternative profile of student preferences. Let P ′ such that for each i 6= i5, Pi = P ′i ,

and s2 P
′
i5
s5 P

′
i5
∅. The matching associated with the SOSEM for the problem with the

new profile of preferences is:

µ̂ = [(i1, s1), (i2, s2), (i3, s3), (i4, s4), (i5, s2), (i6, s5)] ,

which, together with the initial allocation of transferable characteristics, forms a stable

extended matching (µ̂, ω). Consider the matching µ̂′:

µ̂′ = [(i1, s2), (i2, s1), (i3, s3), (i4, s4), (i5, s2), (i6, s5)] .

Note that µ̂′ Pareto dominates µ̂, but there is no allocation of transferable characteristics

λ such that (µ̂, λ) is a fair Pareto improvement for (µ̂, ω) because

(i3, ω
s2(i3)) �s2 (i1,max{ωs2(i1), ωs2(i2), ωs2(i5)}).

Example 4 shows that the transferable characteristics of every student assigned to each

school determine the possibility of finding fair Pareto improvements. This characteristic of

our framework contrasts with the notion of partial fairness proposed by Dur et al. (2019).

To Dur et al. (2019), an initial set of priority violations (instances of justified envy) is

admitted. In their framework, the possibility of a swap of seats between students that

generates admissible instances of justified envy does not depend on the sets of students

with their transferable characteristics assigned to the same school.

3 Improvement Cycles for Extended Matchings

This section presents a systematic method to obtain fair Pareto improvements starting

from individually rational and non-wasteful extended matchings. We study the possible

improvements in efficiency and fairness by allowing exchanges of transferable character-

istics. If the initial extended matching is stable, the objective is to obtain constrained

efficient extended matchings. Our approach follows Erdil and Ergin (2008) and Dur et al.

(2019). Those papers propose a method for finding fair Pareto-improving matchings
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through exchange cycles. Erdil and Ergin (2008) improves the outcome of the student-

proposing DA algorithm applied to priorities with indifferences with an arbitrary tie-

breaker. In contrast, Dur et al. (2019) allows for similar improvements based on partially

unenforceable priorities. The logic behind the fair Pareto improvement cycles in both

papers relates to the idea of vacancy chains introduced by Blum et al. (1997). Suppose

that a student abandons the school to which she has been matched. In this situation, her

seat and transferable characteristics may be used by another student. We have a Pareto

improvement only if the vacant seat is filled either by a student in the same school or by

a student who prefers that seat to the school to which she has been matched. Suppose

that our objective is to obtain an extended matching that improves upon the initial one

in terms of both efficiency and fairness. In this case, the seat must be assigned to a stu-

dent with a higher priority than the students who prefer the vacant seat to their current

match. This higher priority can be the product of either using the transferable charac-

teristic of the leaving candidate or keeping her characteristics at that school. This paper

considers cycles of student exchanges of seats at schools and the associated transferable

characteristics instead of vacancy chains.

The following concepts extend the graph-theoretical approach presented by Dur et al.

(2019) to the framework of school choice with transferable characteristics. Unlike in the

setup of Dur et al. (2019), students may be willing to move to a seat at a desirable school

in our model. but an instance of justified envy may appear depending on the student

who exchanges the transferable characteristics.13 Moreover, fair Pareto improvements

involving two students may require the participation of additional students who exchange

transferable characteristics but do not change the school to which they are assigned.

We introduce notation for students interested in occupying another student’s seat and

those who may finally be assigned to a school without generating justified envy.

Given an individually rational and non-wasteful extended matching (µ, λ), for each

student j ∈ I, let the set D(µ,λ)(j) consist of the students who consider µ(j) at least as

good as their current matches. Formally,

D(µ,λ)(j) = {i ∈ I \ {j} : µ(j) Ri µ(i)},

Next, the set D̃(µ,λ)(j) contains all the students who strictly prefer the match of student

j over their current matches. That is,

D̃(µ,λ)(j) = {i ∈ I : µ(j) Pi µ(i)}.

Clearly, D̃(µ,λ)(j) ⊆ D(µ,λ)(j). The students in D(µ,λ)(j) are willing to occupy a seat at

µ(j).

13See Examples 3 and 4.
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The set Y(µ,λ)(j) contains every student i assigned to µ(j) such that no student in

D̃(µ,λ)(j) has justified envy of i if i stays at µ(j) with the transferable characteristic of j

at µ(j).

Y(µ,λ)(j) =
{
i ∈ µ−1 (µ(j)) \ {j} : for each k ∈ D̃(µ,λ)(j), (i, λ

µ(j)(j)) %µ(j) (k, λµ(j)(k))
}
.

Analogously, the set Ỹ(µ,λ)(j) contains all the students who would enjoy an improvement

by being assigned to µ(j) and who would have the highest priority among the students

in D̃(µ,λ)(j) either with their own or with j’s transferable characteristic at µ(j) .

Ỹ(µ,λ)(j) =

{
i ∈ D̃(µ,λ)(j) : for each k ∈ D̃(µ,λ)(j) \ {i},
(i,max{λµ(j)(i), λµ(j)(j)}) %µ(j) (k, λµ(j)(k))

}
.

Finally, the set X(µ,λ)(j) consists of all the students who would be willing to occupy j’s

seat at µ(j) without generating any additional instance of justified envy because, after

a possible exchange of the transferable characteristic at µ(j), they would have higher

priority than the remaining students in D̃(µ,λ)(j) for j’s seat.

X(µ,λ)(j) = Y(µ,λ)(j) ∪ Ỹ(µ,λ)(j).

Let G = (V ;E) be a directed application graph with the set of vertices V and the

set of directed edges E, which is a set of ordered pairs of elements of V . We consider

graphs with V = I and directed edges consisting of ordered pairs of distinct students

ij ∈ I × I with i 6= j. With slight abuse of notation, since the set of edges completely

defines the graph, we write ij ∈ G when edge ij belongs to the set of edges of G. For any

directed application graph G, a set of edges {i1i2, i2i3, . . . , inin+1} is a path if the related

edges i1i2, i2i3, . . . , inin+1 are distinct, and it is a cycle if the edges i1i2, i2i3, . . . , inin+1 are

distinct and i1 = in+1. We generically denote an arbitrary cycle in a graph by φ. Student

i is involved in the cycle φ if there is a student j such that ij ∈ φ. For each cycle φ, N(φ)

denotes the students involved in φ.

For each extended matching (µ, λ), G(µ, λ) is the directed application graph as-

sociated with (µ, λ) where I is the set of vertices, and the set of directed edges is defined

by ij ∈ G(µ, λ) if and only i ∈ X(µ,λ)(j).

For an arbitrary (µ, λ), let φ be an arbitrary cycle of G(µ, λ). A pair formed by a cycle

φ of G(µ, λ) and an allocation of transferable characteristics for the students involved in

the cycle λ̂ |N(φ), γ = (φ, λ̂ |N(φ)), is an improvement cycle of G(µ, λ) if:

i) for some ij ∈ φ, µ(i) 6= µ(j), and
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ii) for each i, j ∈ N(φ) with ij ∈ φ,

- for each s /∈ {µ(i), µ(j)}, λ̂s(i) = λs(i),

- if µ(i) = µ(j), then λ̂µ(j)(i) = λµ(j)(j),

- if µ(i) 6= µ(j) then:

λ̂µ(j)(i) ∈ {l ∈ {λµ(j)(i), λµ(j)(j)} : for each k ∈ D̃(µ,λ)(j)\{i}, (i, l) %µ(j) (k, λµ(j)(k))}.

An improvement cycle γ = (φ, λ̂ |N(φ)) is solved when for each ij ∈ φ, student i is

assigned to µ(j) with her transferable characteristics reassigned according to λ̂ |N(φ) to

yield a new extended matching. Formally, we denote the solution of a cycle by the operator

◦, that is, (ν, λ̄) = γ ◦ (µ, λ) if and only if for each i ∈ N(φ) and ij ∈ φ, ν(i) = µ(j) and

λ̄(i) = λ̂(i), and for each i′ /∈ N(φ), ν(i′) = µ(i′) and λ̄(i′) = λ(i′).

Note that for each cycle φ of G(µ, λ) that involves students initially assigned to dif-

ferent schools, it is possible to define at least one improvement cycle of G(µ, λ). Suppose

that a cycle of G(µ, λ) generates more than one improvement cycle. In this case, solving

any improvement cycle leads to an extended matching with the same matching but a

different allocation of transferable characteristics.

The following algorithm is built on an extended matching and is defined by solving im-

provement cycles and proposing new allocations of transferable characteristics iteratively.

We focus on individually rational and non-wasteful extended matching as starting points

of the algorithm. Solving for individually rational and non-wasteful Pareto improvements

would be trivial by assigning students to their outside option and empty seats according

to the priority.

Student Exchange with Transferable Characteristics (SETC) Algorithm:

Step 0: Let (µ0, λ0) be an individually rational and non-wasteful extended matching.

Step t ≥ 1: Given the extended matching (µt−1, λt−1),

- if there is at least one improvement cycle in G(µt−1, λt−1), solve any one of such cycles,

for example, γt, and let (µt, λt) = γt ◦ (µt−1, λt−1). Next, move to Step t+ 1.

- if there is no improvement cycle inG(µt−1, λt−1), then the algorithm stops and (µt−1, λt−1)

is the selected extended matching.
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Note that the definition of the SETC algorithm entails a class of algorithms, as there

may be several incompatible improvement cycles, and the order in which improvement

cycles are solved may lead to different outcomes.

Regarding the computational efficiency of SETC algorithms, since the sets of schools

and students are finite, the algorithm stops after a finite number of steps. Using the same

arguments as Erdil and Ergin (2008) to compute the running time for finding stable Pareto

improvements, the running time to find a fair Pareto improvement cycle is O(#I#S),

and at most, there are 1
2
#I(#I − 1) possible Pareto improvements. Thus, the running

time to solve this problem entirely is O
(

1
2
#S#I3

)
. Hence, the SETC algorithms are

computationally efficient.

Next, we return to Example 3 to illustrate the algorithm. Example 3 shows the

relevance of constructing improvement cycles for students who do not strictly benefit

from exchanging their transferable characteristics.

Example 5. (Example 3 continued). Consider the school choice problem with trans-

ferable characteristics introduced in Example 3 and the corresponding SOSEM (µSOω , ω)

and the extended matchings (µ′, λ) and (µ′′, λ̄) defined there to clarify the workings of

the SETC algorithm. We construct the direct application graph associated with (µSOω , ω).

Figure 1(a) represents the possibilities of improvement for the different students. Each

student points to all the students who occupy a seat at a school at least as good as the one

that they have in µSOω .

Figure 1(b) represents the associated graph G(µSOω , ω). We observe that there are two

cycles, φ = {i1i6, i6i2, i2i1} and φ′ = {i1i4, i4i1}, that generate two associated improvement

cycles, γ = (φ, λ |{1,2,6}) and γ′ = (φ′, λ̄ |{1,4}). Student i1 is involved in both cycles, and

only one associated improvement cycle can be solved.

The extended matching (µ′, λ) is the outcome of solving the improvement cycle γ,

(µ′, λ) = γ ◦ (µSOω , ω). Figure 1(c) presents the graph G(µ′, λ). No students point to

the students assigned to schools s3 and s4. The students in s2 are pointed to only by the

student in s3. Finally, the students in s1 and s5 do not point to any students. Hence, graph

G(µ′, λ) has no cycle. In fact, (µ′, λ) is constrained efficient. Analogously, (µ′′, λ̄) = γ′ ◦
(µSOω , ω). Figure 1(d) presents the graph G(µ′′, λ̄), which does not present any additional

cycles.

Example 5 illustrates how the algorithms in the SETC class obtain fair Pareto im-

provements by seeking cycles in the directed application graph associated with an initial

individually rational and non-wasteful extended matching. Our first result shows that by
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i1 i3

i6

i5

(a) Start. Student ix points to student iy if

ix ∈ D(µ,ω)(iy). Dashed lines: ix points to iy if

ix ∈ D̃(µ,ω)(iy) Dotted lines: ix points to iy if

ix ∈ D(µ,ω)(iy) and µ(ix) = µ(iy).

s2

s1 s3

s4

s5

+ +

++

i4

i2

i1 i3

i6

i5

(b) G(µ, ω). Student ix points to student iy if

ix ∈ X(µ,ω)(iy). Two improvement cycles with

cycles φ = {i1i6, i6i2, i2i1} and φ′ = {i1i4, i4i1}

s2

s1 s3

s4

s5

+ +

++

i4

i6

i2 i3

i1

i5

(c) G(µ′, λ) with (µ′, λ) = γ ◦ (µ, ω). Student

ix points to student iy if ix ∈ X(µ′,λ)(iy).

s2

s1 s3

s4

s5

+ +

++

i1

i2

i4 i3

i6

i5

(d) G(µ′′, λ̄) with (µ′′, λ̄) = γ′ ◦ (µ, ω). Student

ix points to student iy if ix ∈ X(µ′′,λ̄)(iy).

Figure 1: Example 5. Construction of G(µ, ω) and application of the SETC algorithms.
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iteratively applying the same logic, the algorithm yields a justifiable Pareto improvement

of the initial extended matching. Moreover, the SETC algorithms exhaust the possibilities

of finding additional fair Pareto improvements.

Theorem 1. Let (µ, ω) be an individually rational and non-wasteful extended matching

and (µ′, λ) be the outcome obtained by an SETC algorithm starting with (µ, ω). Then,

the extended matching (µ′, λ) is a justifiable Pareto improvement of (µ, ω) and does not

admit any fair Pareto improvement.

The proof of Theorem 1 relies on showing that if an individually rational and non-

wasteful extended matching admits a fair Pareto improvement, then the directed appli-

cation graph has at least one improvement cycle. The arguments in the proof are similar

to Dur et al. (2019, Theorem 1), but in our framework only transferable characteristic

exchanges involving specific students at each school may be mutually viable. Moreover,

improvement cycles may include students who do not strictly benefit from these exchanges

but are needed to facilitate reassignment through transferable characteristic trades. Our

assumption of neutral priorities is not crucial to obtain the result. For non-neutral priori-

ties, we can construct the direct application graph G(µ, λ) and run the SETC algorithms

once we account for the fact that the transferable characteristics that imply a higher

priority at each school may be different for different students.14

Next, we analyze the extended matchings obtained by applying an SETC algorithm

starting at stable extended matchings. Since the application of the SETC algorithm yields

a fair Pareto improvement at each step of the algorithm, the algorithm’s outcome is a

justifiable Pareto improvement of the initial extended matching. If the initial extended

matching is stable, then any outcome of an SETC algorithm is also stable. Theorem 1

implies that any extended matching resulting from applying an SETC algorithm to a sta-

ble extended matching is constrained efficient. Since for every allocation of transferable

characteristics λ, and every stable extended matching under λ, (µ, λ), the matching ob-

tained by student-proposing DA algorithm Pareto dominates µ, every extended matching

obtained by an SETC algorithm is the SOSEM associated with the final allocation of

transferable characteristics. We formalize both implications in Corollaries 1 and 2 below.

Corollary 1. Let (µ, ω) be a stable extended matching. If (µ′, λ) is the outcome of an

algorithm in the SETC class starting with (µ, ω), then (µ′, λ) is constrained efficient.

Corollary 2. Let (µ, ω) be a stable extended matching. If (µ′, λ) is the outcome of an

algorithm in the SETC class starting with (µ, ω), then (µ′, λ) = (µSOλ , λ).

14Specifically, we should define a student-specific operator max to order the transferable characteristics

at each school to provide a consistent definition of the set Ỹ(µ,λ)(j).
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Considering Corollary 1, a natural question is whether SETC algorithms can yield

all the constrained efficient extended matching that Pareto dominate an initial stable

extended matching, such as the SOSEM. Note that any SETC algorithm is restricted to

selecting justifiable Pareto improvements from an initial extended matching. Hence, there

are school choice problems with a constrained efficient extended matching that Pareto

dominates the initial extended matching (µ, ω) that cannot be obtained by applying an

instance of an SETC algorithm (see Example 2). Even if we restrict our attention to

constrained efficient justifiable Pareto improvements over the initial extended matching,

there is an additional issue to address. At each step of any instance of an SETC algorithm,

the algorithm proposes an extended matching with a specific allocation of transferable

characteristics. However, an extended matching with the same matching and a different

allocation of transferable characteristics could also be a fair Pareto improvement. This

situation can occur when the students who initially have justified envy of other students

occupying a seat at a school no longer desire that seat after being involved in cycles solved

in previous steps of the SETC algorithm. In this case, the transferable characteristic of

the student in that school becomes irrelevant. We define the concept of a characteristic-

wise extended matching to compare different extended matchings regarding the fairness

binding constraints.

Let (µ, λ) and (µ, λ̄) be an extended matching such that (µ, λ) is stable. The extended

matching (µ, λ̄) is characteristic-wise equivalent to (µ, λ) if for each i ∈ I, for each

s ∈ S such that s Ri µ(i), if there is a j ∈ I with s Rj µ(j) (j, λs(j)) %s (i, λs(i)) implies

(j, λ̄s(j)) %s (i, λ̄s(i)).

Remark 1. Let (µ, λ) be a stable extended matching, if λ̄ is such that for each i ∈
I, λ̄µ(i)(i) ≥ λµ(i)(i) and, for each s ∈ S with s Pi µ(i), λ̄s(i) = λs(i), then (µ.λ̄) is

characteristic-wise equivalent to (µ, λ).

Example 6 illustrates the concept of characteristic-wise equivalent extended matchings.

Example 6. Let I = {i1, i2, i3, i4, i5, i6}, S = {s1, s2, s3, s4, s5, s6}, and qsx = 1 for x =

1, 2, 3, 4, 5, 6. The relevant student preferences are as follows:

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6
s2 s3 s1 s2 s4 s2

s1 s4 s3 s3 s2 s5

∅ s1 ∅ s5 s5 s6

s2 s4 ∅ ∅
∅ ∅

22



The initial allocation of transferable characteristics ω and the relevant school priorities

are:

ωs(i) i1 i2 i3 i4 i5 i6
s1 0s1 5s1 4s1 3s1 2s1 1s1

s2 2s2 4s2 1s2 3s2 0s2 5s2

s3 1s3 3s3 5s3 4s3 1s3 0s3

s4 2s4 3s4 4s4 5s4 1s4 0s4

s5 2s5 4s5 3s5 1s5 5s5 0s5

s6 5s6 4s6 3s6 2s6 1s6 0s6

and

�s1 �s2 �s3 �s4 �s5 �s6
(i1,0

s1) (i2,4
s2) (i3,5

s3) (i4,5
s4) (i5,5

s5) (i6, ·)
(i2,5

s1) (i1,4
s2) (i2,5

s3) (i4,0
s4) (i6,5

s5) . . .

(i3,4
s1) (i6,5

s2) (i4,5
s3) (i2,3

s4) (i4,5
s5)

(i3,0
s1) (i5,5

s2) (i4,4
s3) (i5,5

s4) (i6,0
s5)

(i4,5
s2) (i2,3

s3) (i5,1
s4) (i4,1

s5)

(i5,1
s2)

(i4,3
s2)

(i1,2
s2)

(i5,0
s2)

Note that for each j ∈ {1, . . . , 6}, µSOω (ij) = sj. That is,

µSOω = [(i1, s1), (i2, s2), (i3, s3), (i4, s4), (i5, s5), (i6, s6)] .

Consider now the extended matching (µ′, λ) with

µ′ = [(i1, s2), (i2, s3), (i3, s1), (i4, s5), (i5, s4), (i6, s6)] .

and λ such that:

λs(i) i1 i2 i3 i4 i5 i6
s1 4s1 5s1 0s1 3s1 2s1 1s1

s2 4s2 2s2 1s2 3s2 0s2 5s2

s3 1s3 5s3 3s3 4s3 1s3 0s3

s4 2s4 3s4 4s4 1s4 5s4 0s4

s5 2s5 4s5 3s5 5s5 1s5 0s5

s6 5s6 4s6 3s6 2s6 1s6 0s6
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The extended matching (µ′, λ) is a fair Pareto improvement of (µSOω , ω), and it is a

constrained efficient extended matching. However, (µ′, λ) cannot be obtained by applying

the SETC algorithm. Note that in the first stage of SETC algorithm there is only one

improvement cycle {i1i2, i2i1} with allocation of transferable characteristics λ̄ such that

λ̄s1(i2) = ωs1(i2) = 5s1 and λ̄s2(i1) = ωs2(i2) = 4s2. In the next stage of SETC algorithm,

there are two cycles {i2i3, i3i2} and {i2i4, i4i3, i3i2}.15

Solving the improvement cycle {i2i3, i3i2} with allocation of transferable characteristics

λ̃ such that λ̃s1(i3) = ωs1(i2) = 5s1 and λ̃s3(i2) = ωs3(i3) = 5s3 allows for an additional

improvement cycle {i4i5, i5, i4} with allocation of transferable characteristics λ̂ such that

λ̂s4(i5) = ωs4(i4) = 5s4 and λ̂s5(i4) = ωs5(i5) = 5s5:

λ̂s(i) i1 i2 i3 i4 i5 i6
s1 0s1 4s1 5s1 3s1 2s1 1s1

s2 4s2 2s2 1s2 3s2 0s2 5s2

s3 1s3 5s3 3s3 4s3 1s3 0s3

s4 2s4 3s4 4s4 1s4 5s4 0s4

s5 2s5 4s5 3s5 5s5 1s5 0s5

s6 5s6 4s6 3s6 2s6 1s6 0s6

Note that according to extended matching (µ′, λ), D̃(µ′,λ)(i3) = ∅. Once all the students

are assigned to a school according to µ′, allocating the transferable characteristic to i3 at

s1 is irrelevant since no student may have justified envy of i3. Hence, we can obtain a fair

Pareto improvement of the initial extended matching (µSOω , ω) that an SETC algorithm

cannot yield. This fact notwithstanding, there is an SETC algorithm yielding an extended

matching that is characteristic-wise equivalent to (µ′, λ).

Example 6 shows that it is impossible to characterize the set of constrained efficient ex-

tended matching that are justifiable Pareto improvements of an initial extended matching

as the set of outcomes of the SETC algorithm starting at that initial extended matching.

However, Theorem 2 shows that for every extended matching that can be obtained by

a sequence of fair Pareto improvements from an initial stable extended matching, an in-

stance of the SETC algorithm yields either an extended matching with the same matching

or an extended matching that Pareto dominates the extended matching resulting from

the sequence of fair Pareto improvements.

15Solving the improvement cycle with {i2i4, i4i3, i3i2} does not allow further improvement cycles and

stops the SETC algorithm with an extended matching (µ∗, λ∗) such that

µ∗ = [(i1, s2), (i2, s4), (i3, s1), (i4, s3), (i5, s5), (i6, s6)] .
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Theorem 2. For each stable extended matching (µ, ω) and each (µ′, λ) justifiable Pareto

improvement of (µ, ω), there is a stable extended matching (ν, λ̄) obtained with an algo-

rithm of the SETC class starting at (µ, ω) such that, for each i ∈ I, ν(i) Ri µ
′(i).

Theorem 2 follows from an intermediate result Proposition 4. If an extended matching

(µ′, λ) is a justifiable Pareto improvement of (µ, ω), then the outcome of an application of

the SETC algorithm after t steps yields an extended matching (µt, λt) such that µt = µ′

and (µt, λt) is characteristic-wise equivalent to (µ′, λ). To prove this result, we check that

the matching involved in any fair Pareto improvement of a stable extended matching can

be obtained by an SETC algorithm after a finite number of steps (Lemma 9). However,

improving students may receive an allocation of transferable characteristics such that

their priority at the assigned school is higher than that prescribed by (µ′, λ). Thus, it

may be the case that (µ′, λ) is constrained efficient but (µt, λt) is not constrained efficient

and admits further fair Pareto improvement, and the outcome of the SETC algorithm

may Pareto dominate (µ′, λ). This is because constrained efficiency is a property of the

extended matching and not of the matching.16

Theorem 2 applies to a stable extended matching and not to any initial non-wasteful

extended matching as in Theorem 1. In this case, the restriction to fair Pareto improve-

ments implies that no student may generate justified envy. This is an unnecessarily strong

requirement. It is possible to define a weaker notion of fair Pareto improvement. For ex-

ample, we can require that the set of students with justified envy of a student occupying a

particular seat at a school must belong to the initial group of students with justified envy

of her. With this alternative notion of fair Pareto improvements in mind, we can define

an alternative class of algorithms that will be analogous to those in the SETC class and

would uncover more justifiable Pareto improvements than the SETC algorithm. Finally,

our assumption of neutral priorities plays a relevant role in the proof of Theorem 2. Un-

der neutral priorities, we can construct the allocations of transferable characteristics that

allow every fair Pareto improvement to be generated as a sequence of solved improvement

cycles by an algorithm in the SETC class.

4 Discussion

In this section, we focus on issues related to the possibility of finding a justifiable Pareto

improvement for the SOSEM. Specifically, we consider the incentives of the students to

16To obtain an example of a constrained efficient extended matching that is Pareto dominated by the

outcome of the SETC algorithm, it suffices to consider a school choice problem with two independent

replicas of the school choice problem in Example 6 and an additional student, where the students in the

role of i3 would like to exchange their seats at the replicas of s1. However, the additional student may

have higher priority and generate justified envy unless they exchange the relevant characteristic at s1.
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reveal their true preferences to a centralized planner and a particular class of school

priorities that allows us to compare our framework with previous works.

4.1 Incentives and Student Transferable Characteristics

We first analyze the students’ incentives to reveal their true preferences when an SETC

algorithm determines the allocation of school seats. For this purpose, we need to introduce

further notation.

Let P denote the set of all student preference profiles andM be a set of all extended

matchings. A mechanism is a mapping Ψ : P →M.

We can construct mechanisms by the application of algorithms in the SETC class. We

call the class of mechanisms defined by applying an SETC algorithm starting from the

SOSEM of each preference profile the student optimal transferable characteristics

(SOTC) class. Of course, for each profile of preferences, each mechanism in the SOTC

class selects a stable and constrained efficient extended matching.

Strategy-proofness A mechanism Ψ satisfies strategy-proofness if for each i ∈ N ,

each P, P ′ ∈ P , such that for each j 6= i, Pj = P ′j , Ψ(P ) = (µ, λ) and Ψ(P ′) = (µ′, λ′),

µ(i) Ri µ
′(i).

Strategy-proofness implies that no student has the capacity and the incentives to ma-

nipulate the outcome of a mechanism by misreporting her preferences regarding schools.

The mechanism that selects the SOSEM for each student preference profile satisfies

strategy-proofness but may select a Pareto dominated extended matching. According to

the results in Abdulkadiroğlu et al. (2009); Kesten (2010); Alva and Manjunath (2019);

Kesten and Kurino (2019), since the matching selected by any SETC algorithm that starts

with the SOSEM Pareto dominates the SOSEM for the initial allocation of characteristics

ω and is not Pareto dominated by any other extended matching, each mechanism in the

SOTC class is manipulable for some profile of student preferences.

Proposition 1. No mechanism in the SOTC class satisfies strategy-proofness.

4.2 Fully Transferable Priorities

In the previous sections, we analyzed a new setting where trade-offs between stability and

efficiency can be attenuated. In a school choice problem with transferable characteristics,

some violations of initial priorities can be justified after exchanges of transferable char-

acteristics. We now compare our framework with previous works that consider efficiency

26



gains with respect to the SOSEM matching by dropping stability constraints when some

students do not benefit from exercising their priority rights. In particular, the concepts

of α-stability in Alcalde and Romero-Medina (2017) and of students consenting to drop

their initial priorities in Kesten (2010) imply the existence of matchings that satisfy the

relaxed fairness constraints and Pareto dominate the SOSEM matching.

The proposals of Alcalde and Romero-Medina (2017) and Kesten (2010) are presented

in terms of the canonical school choice problem. This prevents an immediate comparison

with our results because we justify the relaxation of the fairness constraints by introduc-

ing a new component of the school choice problem, student transferable characteristics.

However, an extreme class of school priorities allows us to view both proposals as cases of

extended matchings obtained by SETC algorithms. This is the case in the domain of fully

transferable extended priorities, referring to situations where transferable characteristics

entirely determine school priorities.

Fully Transferable Priorities. For each i, i′, j, j′ ∈ I, s ∈ S, and each l, l′ ∈ Ωs with

l 6= l′, if (i, l) �s (i′, l′) then (j, l) �s (j′, l′).

In the context of fully transferable priorities, analyzing the SETC algorithms is rela-

tively straightforward. Every student who desires another student’s school can obtain it

with an exchange of the transferable characteristics.

Lemma 1. Let school priorities be fully transferable, let (µ, λ) be a stable extended match-

ing and let G(µ, λ) be the directed application graph associated with (µ, λ). If µ(j) Pi µ(i),

then ij ∈ G(µ, λ).

Lemma 1 implies that under fully transferable priorities, students who exchange their

characteristics but remain assigned to the same school do not need to participate in im-

provement cycles. Moreover, the possibility of justifying an exchange of seats that involves

a violation of school priorities under the initial allocation of transferable characteristics

does not depend on the students (and their transferable characteristics) initially assigned

to each school. Hence, the framework under fully transferable characteristics is equivalent

to the setup in Dur et al. (2019) when all potential exchange cycles are admitted under

partial stability.17 In this context, since any fair Pareto improvement of a matching can

be achieved by forming disjoint cycles among students and because such cycles correspond

to an improvement cycle in directed application graph G(µSOω , ω), we immediately derive

the following result.

17In the terms of Dur et al. (2019) this corresponds to the case where the correspondence that defines the

admitted priority violations satisfies the all-or-nothing property, specifically, item i) of the all-or-nothing

property for all schools.
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Proposition 2. Let school priorities be fully transferable. If µ is a matching that Pareto

dominates µSOω and µ is not Pareto dominated by any matching ν, then there is an allo-

cation of transferable characteristics λ such that (µ, λ) is the result of applying an SETC

algorithm that starts with the SOSEM.

Alcalde and Romero-Medina (2017, Theorem 1) proves that the Pareto efficient match-

ings that are Pareto improvements over the initial optimal student matching coincide with

a set of matchings such that under the initial priorities, no student can pose a so-called

admissible objection. Hence, the set of matchings produced by an SETC algorithm coin-

cides with the set of α-fair matchings produced under the assumption of fully transferable

priorities.

Corollary 3. Let school priorities be fully transferable. A matching µ is an α-fair match-

ing if and only if there is an allocation of transferable characteristics λ such that the

extended matching (µ, λ) is the result of the application of an SETC algorithm that starts

with the SOSEM

Kesten (2010) occupies a central position in analyzing Pareto efficient matching in

school choice and introduces the idea of consent. Students can consent to withdraw their

claims to seats they will not accept. This idea leads to a version of the student-proposing

DA algorithm that yields a Pareto efficient matching with “minimal” violations of initial

priorities, the EADA algorithm. Tang and Yu (2014) presents a simpler algorithm with

the same outcome.18 Under fully transferable priorities, the matching obtained by the

EADA belongs to the extended matching outcome of a specific algorithm in the SETC

class.

Proposition 3. Let school priorities be fully transferable. There is an algorithm in the

SETC class that, for each problem of school choice with transferable characteristics, the

outcome of the algorithm starting in the SOSEM selects an extended matching (µ, λ) such

that µ coincides with the EADA outcome.

5 Conclusion

In this paper, we generalize the school choice problem by defining school priorities in

terms of (possibly transferable) student characteristics. We define a class of algorithms,

18Reny (2022) characterizes the matching selected by the EADA algorithm as the unique priority-

efficient matching. That is, given the initial allocation of transferable characteristics ω and the school

priorities, the EADA algorithm selects the unique matching µ∗ that is not Pareto dominated by any other

matching, and for each matching ν such that some student with justified envy at (µ∗, ω) prefers ν to µ∗,

there is another student who prefers µ∗ to ν and has justified envy at (ν, ω).
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the SETC class. Each algorithm in this class begins with an individually rational and

non-wasteful extended matching and produces an extended matching such that any ex-

tended matching that Pareto dominates it generates additional instances of justified envy.

Moreover, for each constrained efficient extended matching obtained by a sequence of

fair Pareto improvements from an initial stable extended matching, an algorithm in the

SETC class obtains an extended matching that either is characteristic-wise equivalent to

or Pareto dominates the constrained efficient extended matching.

We motivate our analysis of the allocation of objects under priorities based on indi-

vidual characteristics in the school choice problem. In this framework, the tie-breaking

lottery is a natural transferable characteristic when schools use multiple tie-breaking lot-

teries. However, the algorithms in the SETC class can be used for improving efficiency in

situations where we can differentiate between allocative criteria and fairness constraints

in the characteristics that define the priorities. For instance, we can avoid welfare losses

by integrating different markets (walk-zone). We can study changes in the priority struc-

ture due to the redefinition of the characteristics or because of different valuations of the

existing characteristics. Finally, we can use the SETC algorithms to propose an ex-post

assignment scramble under mechanisms that generate instances of justified envy.

Our analysis is based on characteristics that are specific to individual schools. This

is the situation in the case of the multiple tie-breaking lotteries, priorities for siblings

attending the school, or legacy awarded priorities. However, other characteristics are not

generally school specific, such as the walk-zone priority or all priorities associated with

family circumstances, such as income or the total number of siblings. In these cases, we

could adjust the algorithms in the SETC class to allow the characteristics to be valid in

several schools. Still, this adjustment must be precisely defined, and it will complicate

our results.

Another potential generalization of the framework would be to consider potential fair

Pareto improvements when some students are initially assigned to several schools while

others do not obtain any initial admission. This approach would allow for procedures

such as the school choice top trade cycle mechanism proposed by Abdulkadiroğlu and

Sönmez (2003). By assuming fully transferable priorities and defining an appropriate in-

heritance rule for admissions when students accept a school and leave the market, solving

the Pareto improvement cycles corresponding to top trade cycles would result in a con-

strained efficient extended matching. The general case for non-specific characteristics and

the analysis of fair Pareto improvements starting at assignments that are not extended

matchings remain open for further research.
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6 Proofs

6.1 Proof of Theorem 1

Let (I, S,R, q, ω,%) be a school choice problem with transferable characteristics and let

(µ, ω) be an individually rational and non-wasteful extended matching. Consider the

application of an arbitrary SETC algorithm with initial extended matching (µ0, λ0) =

(µ, ω). Let T be the last step of the SETC algorithm starting by (µ0, λ0). For each

t ∈ {1, . . . , T}, let γt = (φt, λt |N(φt)) be the improvement cycle solved at step t of the

algorithm, and let (µt, λt) = γt ◦ (µt−1, λt−1) be the extended matching selected at step t.

Note that, the students involved in the improvement cycle are better off, some of them

are strictly better off, and the students not involved in the cycle are not worse off at the

extended matching obtained by solving the improvement cycle γt. Thus, for each for each

t ∈ {1, . . . , T}, µt Pareto dominates µt−1.

Remark 2. Let γt = (φt, λt |N(φt)) be the improvement cycle solved at step t of the

application of SETC algorithm, and let i, j /∈ N(φt).

i) D̃(µt,λt)(j) ⊆ D̃(µt−1,λt−1)(j).

ii) If ij ∈ G(µt−1, λt−1) then ij ∈ G(µt, λt).

Lemma 2. The extended matching (µT , λT ) is individually rational and non-wasteful.

Proof. Let t ∈ {0, . . . , T − 1} and let (µt, λt) be the extended matching obtained at step

t of the algorithm. We prove the result by induction on t. The initial extended matching

(µ0, λ0) is individually rational and non-wasteful.

First, we check that (µT , λT ) is an individual rationality extended matching. Since

(µ0, λ0) is individually rational, and each student is never worse off after each step of the

algorithm, then (µT , λT ) is individually rational.

We conclude by checking that (µT , λT ) is non-wasteful. The initial match (µ0, λ0) is

non-wasteful. At each step, students are assigned to better schools swapping their seats

at schools, hence #µ−1
t (s) remains constant at each step of the algorithm. Therefore, if

school s has an empty slot at step t, then school s has an empty slot at step 0. Since µ0

is individually rational and non-wasteful, for each student i with µ0(i) 6= s, µ0(i) Pi s.

Since for each i, µt(i) Ri µ0(i), we have that µt(i) Ri s. Thus, (µt, λt) is non-wasteful.

Our next result, Lemma 3 shows that the outcome of the SETC algorithm reduces the

instances of justified envy.

Lemma 3. For each t ∈ {1, . . . , T}, if student i does not have justified envy of j at

(µt−1, λt−1), then student i does not have justified envy of j at (µt, λt).
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Proof. Let i, j ∈ I such that i does not have justified envy of j at (µt−1, λt−1). If µt(i) Ri

µt(j), then i has not justified envy of j at (µt, λt). Hence, we assume that µt(j) Pi µt(i).

Let γt = (φt, λt |N(φ)) be the improvement cycle of G(µt−1, λt−1) solved at step t. Since

(µt, λt) is the result of solving the cycle γt, for each student k, µt(k) Rk µt−1(k), and

µt(j) Pi µt−1(i). Since µt(j) Pi µt−1(i) and µt(j) Pi µt(i), µt(i) 6= µt(j) and µt−1(i) 6=
µt(j) imply that λ

µt(j)
t (i) = λ

µt(j)
t−1 (i). We consider two cases. Assume first that j /∈

N(φt). In this case, µt(j) = µt−1(j) and λ
µt(j)
t (j) = λ

µt(j)
t−1 (j). Since i has not justified

envy of j at (µt−1, λt−1), (j, λ
µt−1(j)
t−1 (j)) %µt−1(j) (i, λ

µt−1(j)
t−1 (i)). Consider the second case,

j ∈ N(φ). Let k be the student such that jk ∈ φt. Note that µt(j) = µt−1(k), j ∈
X(µt−1,λt−1)(k), and i ∈ D̃(µt−1,λt−1)(k). Since j ∈ X(µt−1,λt−1)(k) and λ

µ(j)
t (i) = λ

µ(j)
t−1 (i), we

have (j, λ
µt(j)
t (j)) %µt(j) (i, λ

µt(j)
t−1 (i)) = (i, λ

µ(j)
t (i)). Since the two cases are exhaustive and

imply that (j, λ
µt(j)
t (j)) %µt(j) (i, λ

µt(j)
t (i)), we conclude that i has not justified envy of j

at (µt, λt).

From Lemma 3 and since students may only improve at each step of the algorithm,

we immediately obtain Corollaries 4 and 5.

Corollary 4. For each i ∈ I:

i) If for some t ∈ {1, . . . , T}, i ∈ N(φt); then no student has justified envy of i at

(µT , λT ).

ii) If i is not involved in any improvement cycle solved to obtain (µT , λT ) and there is a

student j with justified envy of i at (µT , λT ), then j has justified envy of i at (µ0, λ0).

Corollary 5. For each t ∈ {1, . . . , T}, (µt, λt) is a fair Pareto improvement of (µt−1, λt−1).

Lemma 4. For each individually rational and non-wasteful extended matching (µ, λ) and

j ∈ I, X(µ,λ)(j) ∩ D̃(µ,λ)(j) = ∅ if and only if D̃(µ,λ)(j) = ∅.

Proof. If D̃(µ,λ)(j) = ∅, then D(µ,λ)(j) = {i ∈ I : µ(i) = µ(j)}. Since X(µ,λ)(j) ⊆
D(µ,λ)(j), the result is immediate. If D̃(µ,λ)(j) 6= ∅, then by completeness and transitivity

of school priorities, there is i ∈ D̃(µ,λ)(j) such that for each i′ ∈ D̃(µ,λ)(j), (i, λµ(j)(i)) %µ(j)

(i′, λµ(j)(i′)). Therefore, i ∈ X(µ,λ)(j).

From Lemma 4 and the definition of the set D̃(µ,λ)(j) we obtain Remark 3.

Remark 3. For each individually rational and non-wasteful extended matching (µ, λ) and

j ∈ I, if D̃(µ,λ)(j) = ∅, then for each j′ ∈ I with µ(j) = µ(j′), D̃(µ,λ)(j
′) = ∅.

Lemma 5. Let (µ, λ) and (ν, λ′) be individually rational and non-wasteful extended match-

ings such that (ν, λ′) Pareto dominates (µ, λ). For each s ∈ S, #µ−1(s) = #ν−1(s).
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Proof. Let N = {i ∈ I : ν(i) Pi µ(i)}. Since (ν, λ′) Pareto dominates (µ, λ) and student

preferences are strict, for each j ∈ I \ N , µ(j) = ν(j). Consider an arbitrary school

s ∈ S and assume to the contrary that #(N ∩ ν−1(s)) > #(N ∩ µ−1(s)). This implies

that #µ−1(s) < qs. For each i ∈ (N ∩ ν−1(s)), ν(i) = s Pi µ(i), which contradicts that

(µ, λ) is non-wasteful. Hence, #(N ∩ ν−1(s)) ≤ #(N ∩ µ−1(s)). Finally, there is s such

that the strict inequality holds. Summing up the inequalities across schools, the number

of students in N assigned to some school in matching µ is larger than the number of

students in N assigned to some school in matching ν. Thus, there is a student i ∈ N such

that µ(i) ∈ S, and ν(i) = ∅. Since µ is an individually rational matching, we have that

µ(i) Pi ν(i), which contradicts the definition of N .

Lemma 6. Let (µ, λ) be an individually rational and non-wasteful extended matching, if

(ν, λ′) Pareto dominates (µ, λ), then (ν, λ′) is individually rational and non-wasteful.

Proof. Since (µ, λ) is individually rational and for each i ∈ I, ν(i) Ri µ(i), (ν, λ′) is an

individually rational extended matching. Let i ∈ I such that ν(i) Pi µ(i). Since (µ, λ) is

non-wasteful, there is j ∈ I such that ν(j) 6= µ(j) = ν(i). Since (ν, λ′) Pareto dominates

(µ, λ) and ν(j) 6= µ(j), we have ν(j) Pj µ(j). By Lemma 5, there is k ∈ I such that

ν(k) 6= µ(k) = ν(j). As S is finite, for each i with ν(i) Pi µ(i) there is a finite sequence of

students i1, i2, i3, . . . , in such that µ(ii) = ν(ii+1) and i1 = in. Since (µ, λ) is non-wasteful,

for each i ∈ I for each s ∈ S such that s Pi µ(i), we have #µ−1(s) = #ν−1(s) = qs.

Finally, as s Pi ν(i) implies s Pi µ(i), and for each s such that s Pi µ(i), #µ−1(s) = qs,

we have that for each s such that s Pi ν(i), #ν−1(s) = qs, which suffices to prove that

(ν, λ′) is non-wasteful.

Lemma 7 provides the final step in the proof of Theorem 1.

Lemma 7. The extended matching (µT , λT ) does not admit any additional fair Pareto

improvement.

Proof. Let (µ, λ) = (µT , λT ) and assume to the contrary, that (ν, λ′) is a fair Pareto

improvement of (µ, λ). By Lemma 6, the extended matching (ν, λ′) is individually rational

and non-wasteful. By the definition of the SETC algorithm, there is no improvement cycle

in graph G(µ, λ). There are two cases:

Case 1. For each i ∈ I, D̃(µ,λ)(i) = ∅. Then, by Lemma 4 and Remark 3 for each i ∈ I,

X(µ,λ)(i) ⊆ {i′ ∈ I : µ(i) = µ(i′)}. This implies that each student is assigned to her

best school at µ, there is no improvement cycle, and ν does not Pareto dominate µ.

Case 2. There are paths in G(µ, λ) involving students who would like to change her

assigned school, but there is no improvement cycle. This implies that some students

are only pointed to by students assigned to the same school.
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Assume we are in Case 2. Since there is no improvement cycle, there is a set of students

not pointed to by any other student in G(µ, λ). Let I1 = {i ∈ I : D̃(µ,λ)(i) = ∅}. Let

i1 ∈ I1 and s1 = µ(i1). By Remark 3, for each j with µ(j) = s1, D̃(µ,λ)(j) = ∅ and j ∈ I1.

Since ν Pareto dominates µ, there is no j′ ∈ I, such that µ(j′) 6= s1 and ν(j′) = s1. Thus

ν−1(s1) ⊆ µ−1(s1). By Lemma 5, #ν−1(s1) = #µ−1(s1) and we get ν−1(s1) = µ−1(s1).

Since i1 was arbitrary, this holds for each s such that µ−1(s) ∩ I1 6= ∅.

Next, since there is no improvement cycle in G(µ, λ), there is at least one student in

I\I1 such that only students in I1 point to her. Otherwise, there would be an improvement

cycle or no path (Case 1). Let I2 = {i ∈ I : D̃(µ,λ)(i) ⊆ I1}\I1 Let i2 ∈ I2 and s2 = µ(i2).

We first show that there is no j with µ(j) 6= s2 and ν(j) = s2. Assume to the contrary

and since ν Pareto dominates µ, s2 Pj µ(j) and thus, j ∈ D̃(µ,λ)(i2). Nevertheless, by

definition, i2 is only pointed to by students in I1. By the arguments in the previous

paragraph, for each j ∈ I1, µ(j) = ν(j). Hence, ν−1(s2) ⊆ µ−1(s2). By Lemma 5,

#µ−1(s2) = #ν−1(s2), and therefore µ−1(s2) = ν−1(s2).

We can apply the same argument iteratively to conclude that all students in any path

in G(µ, λ) have the same match under µ and ν. The students who are not in a path in

G(µ, λ), are contained in I1 and have the same match in both µ and ν. We conclude that

µ = ν and ν does not Pareto dominate µ.

To conclude the proof of Theorem 1, by Corollary 5, {(µ0, λ0), (µ1, λ1), . . . , (µT , λT )}
is a sequence of extended matching such that (µt, λt) is a fair Pareto improvement of

(µt−1, λt−1). Therefore, (µT , λT ) is a justifiable Pareto improvement of (µ, ω). By Lemma

7, (µT , λT ) does not admit further fair Pareto improvement.

6.2 Proof of Theorem 2.

Theorem 2 states that for every justifiable Pareto improvement of an initial stable ex-

tended matching, there is a specific SETC algorithm that obtains an extended matching

with the same matching after a finite number of steps. The proof follows from the follow-

ing intermediate result.

Proposition 4. Let (µ, λ) be a stable extended matching and (µ′, λ′) a justifiable Pareto

improvement of (µ, λ). There exist a natural number t ∈ N and an extended matching

(µt, λt) such that (µt, λt) is the extended matching selected at step t of an application of

an SETC algorithm, µt = µ′, and (µt, λt) is characteristic-wise equivalent to (µ′, λ′).

The key step in the proof of Proposition 4 is checking that for each fair Pareto improve-

ment from an arbitrary stable extended matching (µ, λ), the application of an algorithm

in the SETC class yields an extended matching with the same matching µ. Lemma 8
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presents the structure of fair Pareto improvements and is a crucial first step for con-

structing improvement cycles of G(µ, λ).

Lemma 8. Let (µ, λ) be a stable extended matching and (ν, λ̄) a fair Pareto improvement

of (µ, λ). There exists a finite set of disjoint cycles of students Φ = {φ1, . . . , φm} such

that for each i /∈ ∪φ∈ΦN(φ), ν(i) = µ(i), and for each j ∈ ∪φ∈ΦN(φ), there are j′ and

m′ ≤ m with jj′ ∈ φm′ and ν(j) = µ(j′).

Proof. Let N ⊆ I be the set of students who either strictly prefer their match under ν

to the match under µ or λ(i) 6= λ̄(i). Let us partition the set N in three disjointed sets

N1, N2, N3 defined by:

N1 = {i ∈ N : µ(i) = ν(i) & λ̄ν(i)(i) 6= λν(i)(i)},
N2 = {i ∈ N : µ(i) 6= ν(i) & λ̄ν(i)(i) 6= λν(i)(i)},
N3 = {i ∈ N : µ(i) 6= ν(i) & λ̄ν(i)(i) = λν(i)(i)},

Let n = #N . Index the students in N in such that for each x, x′, x′′ ∈ {1, . . . , n}, if

ix ∈ N1, ix′ ∈ N2, and ix′′ ∈ N3 then x < x′ < x′′. Moreover, for each x, y ∈ {1, . . . , n}
such that ix, iy ∈ N3 and ν(ix) = ν(iy), if x < y then (ix, λ̄

ν(ix)(ix)) �ν(ix) (iy, λ̄
ν(ix)(iy)).

Let G̃[(µ, λ), (ν, λ̄′]) be a directed graph with vertices i ∈ I and such that its edges are

constructed sequentially in the following way. For each x ∈ {1, . . . , n}:

i) If ix ∈ N1, ix points to student j if and only if i 6= j and λ̄ν(ix)(ix) = λν(ix)(j).

ii) If ix ∈ N2, ix points to student j if and only if i 6= j and λ̄ν(ix)(ix) = λν(ix)(j).

iii) If ix ∈ N3, ix points to student j ∈ N such that µ(j) = ν(ix), and j has not been

pointed to by any iy with y < x. 19

Students that do not belong to N do not point to any other student. Note that for each

i ∈ N , i always points to a student in N .

In the graph G̃[(µ, λ), (ν, λ̄)], each student is pointed to by a unique student and

points to a unique student in N . Since N is finite, there is at least a cycle in the graph

G̃[(µ, λ), (ν, λ̄)]. Moreover, each student in N is in a cycle and no two cycles intersect.

By construction, the matching ν is obtained by assigning each student to the school to

which the student she points to is initially assigned.

Lemma 8 implies that any fair Pareto improvement (ν, λ̄) of a stable extended match-

ing (µ, λ) can be defined by a set of cycles. Without loss of generality, we can assume

19Note that since (ν, λ̄) is a fair Pareto improvement of (µ, λ) such a student j exists for each ix ∈ N3.
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that none of those cycles exclusively involves students assigned to the same school ac-

cording to the matching µ.20 However, Lemma 8 does not imply that those cycles form

improvement cycles of G(µ, λ). We show that for every fair Pareto improvement of (µ, λ),

there is an improvement cycle of G(µ, λ) only involving agents that are in one of the

cycles defined in Lemma 8. Applying this observation, Lemma 9 shows that using the

SETC algorithms starting at the initial stable extended matching (µ, λ), we can obtain

an extended matching that is characteristic-wise equivalent to (ν, λ̄).

Lemma 9. Let (µ, λ) be a stable extended matching. If (ν, λ̄) is a fair Pareto improvement

of (µ, λ), then there exist a finite sequence of improvement cycles {γ1, . . . , γt∗} and an

allocation of transferable characteristics λ̃ such that:

- γ1 is an improvement cycle of G(µ, λ).

- For each t ∈ {2, . . . , t∗}, γt is an improvement cycle of G(γt−1 ◦ . . . ◦ γ1 ◦ (µ, λ)).

- (ν, λ̃) = γt∗ ◦ . . . ◦ γ1 ◦ (µ, λ).

- (ν, λ̃) is characteristic-wise equivalent to (ν, λ̄).

Proof. Let (ν, λ̄) be a fair Pareto improvement of (µ, λ) and Φ∗ = {φ∗1, . . . , φ∗m} be the

set of cycles of students defined in Lemma 8. Since (ν, λ̄) is a fair Pareto improvement

of (µ, λ), by Lemma 8, we can construct a set of pairs consisting of disjoint cycles and

allocations of transferable characteristics restricted to the students involved in the cycle,

Π∗ =
{

(φ∗1, λ̄ |N(φ∗1)), . . . , (φ
∗
M , λ̄ |N(φ∗M ))

}
. The result is trivial when all the pairs in Π∗

are improvement cycles of the graph G(µ, λ). Hence, we focus on the case where some

pairs in the set Π∗ are not improvement cycles of G(µ, λ). Let N∗ = ∪φ∈Φ∗N(φ) be the

set of students involved in cycles in Φ∗. We proceed through a series of claims that can

be applied iteratively:

- In Claim 1, we prove that for each j ∈ N∗ there is k ∈ N∗ such that k ∈ X(µ,λ)(j).

Therefore, each student in N∗ is pointed to by a member of N∗ at a link of G(µ, λ) .

- In Claim 2, we construct an auxiliary graph Ḡ(µ, λ) ⊆ G(µ, λ) containing a cycle that

defines an improvement cycle γ1 of G(µ, λ).

- In Claim 3, we show that there is no student preferring the matching obtained solving

γ1 to ν.

20It may be the case that some of the cycles defined in the proof of Lemma 8 involve students assigned

to the same school according to the initial extended matching (µ, λ). Such a cycle would never be solved

at any stage of an algorithm in the SETC class. However, we could construct a extended matching (ν, λ′)

that is characteristic-wise equivalent to (ν, λ̄) by setting λ′(i) = λ(i) for each student involved in the

non-improving cycle.
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- Finally, in Claim 4, we define the allocation of transferable characteristics λ̃ such that

(ν, λ̃) is a fair Pareto improvement over γ1 ◦ (µ, λ).

Claim 1. For each φ ∈ Φ∗ and each ij ∈ φ, there exists k ∈ I such that kj ∈ G(µ, λ)

and k′k ∈ φ′ for some k′ ∈ I and φ′ ∈ Φ∗.

Consider an arbitrary φ ∈ Φ∗ and ij ∈ φ. There are two cases:

Case 1. If i ∈ X(µ,λ)(j), then ij ∈ G(µ, λ) by construction. Moreover, i is involved in

cycle φ, which implies there exists k′ ∈ I with k′i ∈ φ′ ∈ Φ∗.

Case 2. If i /∈ X(µ,λ)(j), there exists a student i′ such that i′ ∈ D̃(µ,λ)(j) and

(i′, λµ(j)(i′)) �µ(j) (i,max{λµ(j)(i), λµ(j)(j)}) %µ(j) (i, λµ(j)(i)).

Let k ∈ D̃(µ,λ)(j) be such that for each i′ ∈ D̃(µ,λ)(j),

(k,max{λµ(j)(k), λµ(j)(j)}) %µ(j) (i′,max{λµ(j)(i′), λµ(j)(j)}).

Note that this student k exists because school priorities are complete and transitive.

Note also that k ∈ X(µ,λ)(j), and therefore kj ∈ G(µ, λ). Finally, we check that k is

in a cycle in Φ∗. That is, there is φ′ ∈ Φ such that k′k ∈ φ′ for some k′ ∈ I. Assume

to the contrary that µ(k) = ν(k), λµ(k)(k) = λ̄µ(k)(k), and µ(j) Pk µ(k) = ν(k).

Since ij ∈ φ, by Lemma 8, ν(i) = µ(j) and λ̄µ(j)(i) ∈ {λµ(j)(i), λµ(j)(j)}. Since

k ∈ X(µ,λ)(j), i /∈ X(µ,λ)(j), then (k, λµ(j)(k)) �µ(j) (i,max{λµ(j)(i), λµ(j)(j)}), which

is a contradiction, since (ν, λ̄) is a fair Pareto improvement of (µ, λ), and (ν, λ̄) is

stable. Thus, ν(k) Pk µ(k), which implies that k is in a cycle in Φ∗.

Claim 2. There is an improvement cycle γ1 = (φ1, λ1) in G(µ, λ) such that N(φ1) ⊆ N∗.

Construct the directed graph Ḡ(µ, λ) with set of vertices N∗ in the following way.

For each j ∈ N∗ there is only one link pointing to j in Ḡ(µ, λ). Note that by Claim 1,

N∗∩X(µ,λ)(j) 6= {∅}. Let i ∈ N∗ be the unique student such that ij ∈ φ for some φ ∈ Φ∗.

i) If ij ∈ G(µ, λ), then ij ∈ Ḡ(µ, λ).

ii) If ij /∈ G(µ, λ), let i∗ ∈ N∗ ∩ D̃(µ,λ)(j) be the student such that for each i′ ∈
N∗ ∩ D̃(µ,λ)(j), (i∗, λµ(j)(i∗)) %µ(j) (i′, λµ(j)(i′)); and i∗j ∈ Ḡ(µ, λ).
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That is, each student j ∈ N∗ is pointed to by the student i such that ij ∈ φ for some

φ ∈ Φ∗ whenever ij ∈ G(µ, λ). Otherwise, j is pointed to by the student in N∗∩ D̃(µ,λ)(j)

with the highest priority at µ(j).

By Claim 1, for each kj ∈ Ḡ(µ, λ), k ∈ X(µ,λ)(j), and kj ∈ G(µ, λ). Since N∗ is finite

and each student in N∗ is pointed to by only one other student in N∗, Ḡ(µ, λ) has at least

one cycle. If the cycle of Ḡ(µ, λ) belongs to Φ∗, then by definition, it is an improvement

cycle of G(µ, λ). If the cycle of Ḡ(µ, λ) does not belong to Φ∗, then there is a pair kj in

the cycle such for no φ′ ∈ Φ∗, kj ∈ φ′. Since k ∈ D̃(µ,λ)(j), µ(k) 6= µ(j) and the cycle of

Ḡ(µ, λ) is an improvement cycle of G(µ, λ). Let γ1 = (φ1, λ1 |N(φ∗)) be such that φ1 is a

cycle of Ḡ(µ, λ) and λ1 |N(φ1) is such that for each i ∈ N(φ1),

- if ij ∈ φ1 and µ1(i) = µ(j) 6= µ(i) then λ
µ(j)
1 (i) = max{λµ(j)(j), λµ(j)(i)},

- if ij ∈ φ1 and µ1(i) = µ(j) = µ(i), then λ
µ(j)
1 (i) = λµ(j)(j).

By the definition of Ḡ(µ, λ) and since school priorities are neutral, γ1 is an improvement

cycle of (µ, λ).

Let (µ1, λ1) = γ1 ◦ (µ, λ). Since (µ1, λ1) is the outcome of solving an improvement

cycle of G(µ, λ), by Corollary 5, (µ1, λ1) Pareto dominates (µ, λ). Hence, we focus on

proving that no student prefers the school she is assigned to at µ1 to ν(i).

Claim 3. For each i ∈ I, ν(i) Ri µ1(i) Ri µ(i).

Let γ1 = (φ1, λ1 |N(φ∗)). If i /∈ N(φ1), µ1(i) = µ(i), since (ν, λ̄) Pareto dominates

(µ, λ), then ν(i) Ri µ1(i) Ri µ(i). Hence, assume i ∈ N(φ1) and let j ∈ N(φ1) be such

that ij ∈ φ1. Note that µ1(i) = µ(j). We consider two cases

Case 1. If ij ∈ φ for some φ ∈ Φ, then ν(i) = µ1(i) = µ(j).

Case 2. If ij /∈ φ for each φ ∈ Φ, we claim that ν(i) Ri µ(j). Suppose that µ1(i) =

µ(j) Pi ν(i). That is, i ∈ D̃(ν,λ̄)(j). Since (µ, λ) is stable, and (ν, λ̄) is a fair Pareto

improvement of (µ, λ), we have that (ν, λ̄) is stable. Consider the student k ∈ I such

that kj ∈ φ′ for some φ′ ∈ Φ, so ν(k) = µ(j). By the definition of γ1 and Ḡ(µ, λ),

since ij ∈ φ1, ij ∈ Ḡ(µ, λ), and kj ∈ φ′, then k /∈ X(µ,λ)(j), and also kj /∈ Ḡ(µ, λ).

Hence, by the definition of Ḡ(µ, λ), (i, λµ(j)(i)) �µ(j) (k,max{λµ(j)(j), λµ(j)(k)}),
which is a contradiction because λ̄µ(j)(i) ∈ {λµ(j)(j), λµ(j)(k)}, and (ν, λ̄) is stable.

Thus, each student j involved in γ1 weakly prefers ν(j) to µ1(j) to µ(j). Each remain-

ing student is assigned to the same school to which she is assigned under µ which implies

that the matching (µ1, λ1) Pareto dominates (µ, λ) and either µ1 = ν, or (ν, λ̄) Pareto

dominates (µ1, λ1).
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Claim 4. There is an extended matching (ν, λ̃) that is a fair Pareto improvement of

(µ1, λ1) and (ν, λ̃) is a characteristic-wise equivalent to (ν, λ̄).

The result is immediate if γ1 ∈ Π∗. Hence assume that γ1 /∈ Π∗. Construct an

allocation of transferable characteristics λ̃ in such a way that

- For each i /∈ N∗, λ̃(i) = λ̄(i).

- Let i ∈ N∗ and ij ∈ φ for some φ ∈ Φ∗.

- If there is k ∈ N∗ such that kj ∈ φ1, then λ̃µ(j)(i) = max{λµ(j)(i), λ
µ(j)
1 (k)} and

λ̃µ(j)(k) = {λµ(j)(i), λ
µ(j)
1 (k)} \max{λµ(j)(i), λ

µ(j)
1 (k)}.

- Otherwise, λ̃s(i) = λ̄s(i) = λs1(i).

Note that for each i ∈ I and s ∈ S, if s Pi ν(i), λs(i) = λ̄s(i) = λ̃s(i). Additionally, since

priorities are neutral, for each i ∈ I (i, λ̃ν(i)(i)) %ν(i) (i, λ̄ν(i)(i)). Hence, for each student

i the differences between λ̄(i) and λ̃(i) are restricted to the transferable characteristics

of schools that are worse than i’s final match, and to obtain a transferable characteristic

that raises i’s priority at her final match. Thus, (ν, λ̃) is characteristic-wise equivalent to

(ν, λ̄).

By Claim 3, (ν, λ̃) Pareto dominates (µ1, λ1). Since (ν, λ̄) is stable and (ν, λ̃) is

characteristic-wise equivalent to (ν, λ̄), (ν, λ̃) is stable. By definition of λ̃ for each i ∈ I
and s /∈ {µ1(i), ν(i)}, λs1(i) = λ̃s(i). Thus, (ν, λ̃) is a fair Pareto improvement of (µ1, λ1).

We now conclude the proof of Lemma 9. The result is immediate if all the elements of

Π∗ appear in G(µ, λ). In that case, the elements of Π∗ are improvement cycles of G(µ, λ)

that involve disjoint sets of students. Solving the improvement cycle in an arbitrary order

yields (ν, λ̄). Hence, assume to the contrary that no pair in Π∗ is an improvement cycle of

G(µ, λ). This assumption is without loss of generality because of the following observation.

If a pair (φ, λ̄ |N(φ)) ∈ Π∗ is an improvement cycle of G(µ, λ), then this improvement cycle

is solved first. Since all the pairs in Π∗ involve disjoint sets of students and whenever two

students are forming a link in G(µ, λ), and those students are not involved in the cycle

φ ∈ Φ∗, then the link also appears in G((φ, λ̄ |N(φ))◦(µ, λ)). Following this logic, whenever

a subset of cycles Φ∗ appear in G(µ, λ), these cycles are solved first, until no improvement

cycle of G(µ, λ) remains. In that case, by Claim 2, we can find an improvement cycle

in G(µ, λ) involving only students in N∗. By Claim 3, the extended matching obtained

solving any such improvement cycle, (µ1, λ1), is not Pareto dominated by (ν, λ̄). By Claim

4, (µ1, λ1) admits a fair Pareto improvement (ν, λ̃) that is characteristic-wise equivalent

to (ν, λ̄). We can repeat the argument solving improvement cycles until we obtain an

extended matching that is characteristic-wise equivalent to (ν, λ̄).
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Lemma 10. Let (µ, λ) be a stable extended matching, and let φ be a cycle of G(µ, λ)

and let
(
φ, λ1 |N(φ)

)
, (φ, λ̂1 |N(φ)) be two improvement cycles of G(µ, λ) such that for each

i ∈ I, (i, λ
µ1(i)
1 (i)) %µ1(i) (i, λ̂

µ1(i)
1 (i)). Let (µ1, λ1) =

(
φ, λ1 |N(φ)

)
◦ (µ, λ) and (µ1, λ̂1) =

(φ, λ̂1 |N(φ)) ◦ (µ, λ). If there is a cycle φ′ in G(µ1, λ̂1); then φ′ is a cycle of G(µ1, λ1).

Proof. Note that for each i ∈ I with λ̂
µ1(i)
1 (i) ∈ {λµ1(i)(i), λµ1(i)(j)} for some j with

µ1(i) = µ(j), For each i and each j′ such that µ1(j′) Pi µ1(i), λ̂
µ1(j′)
1 (i) = λ

µ1(j′)
1 (i). If

a student j′′ ∈ X(µ1,λ̂)(i), then also j′′ ∈ X(µ1,λ1)(i). Since priorities are neutral and k ∈
X(µ1,λ̂)(i) \ {j′}, (j′, λ

µ1(i)
1 (i)) %µ1(i) (j′, λ̂

µ1(i)
1 (i)) %µ1(i) (k, λ

µ1(i)
1 (k)). Hence, if there is an

improvement cycle involving a cycle φ in G(µ1, λ̂1), then G(µ1, λ1) admits an improvement

cycle involving the cycle φ.

Proof of Proposition 4. Let (ν, λ̄) be a justifiable Pareto improvement of (µ, ω). There is a

sequence of extended matchings, {(µ′0, λ′0), (µ′1, λ
′
1), . . . , (µ′t∗, λ

′
t∗)} such that improvements

that (µ′0, λ
′
0) = (µ, λ), (µ′t∗ , λ

′
t∗) = (µ′, λ′) and for each t ∈ {1, . . . , t∗}, (µ′t, λ

′
t) is a fair

Pareto Improvement of (µ′t−1, λ
′
t−1). By Lemma 9, the application of an SETC algorithm

starting at (µ, λ) yields after a finite number of steps an extended matching (µ′1, λ
∗
1) that

is characteristic-wise equivalent to (µ′1, λ
′
1). By the argument of Claim 4, in Lemma 9, we

can construct an extended matching characteristic-wise equivalent to (µ′2, λ
′
2) such that

is a fair Pareto improvement of (µ′1, λ
∗
1). By Lemma 10, if there is an improvement cycle

in G(µ′1, λ1), then there is an improvement cycle in G(µ′1, λ
∗
1) involving the same cycle of

students. Repeating the argument, we obtain the result.

Proof of Theorem 2. Let (µt, λt) be the extended matching obtained after a series of t

steps of the application of an SETC algorithm such that (µt, λt) is characteristic-wise

equivalent to (µ′, λ′). Either the algorithm stops at step t and the (µt, λt) is constrained

efficient, or (µt, λt) admits a fair Pareto improvement and the outcome of the SETC

algorithm Pareto dominates (µ′, λ′).

6.3 Proof of the Remaining Results

Proof of Proposition 1. Let A be an algorithm in the SETC class. Define the SOTC

mechanism Ψ that for each profile of students’ preferences selects the matching obtained

through the application of A at that preference profile. By Corollary 1, the extended

matching selected by Ψ is stable and constrained efficient for each preference profile. For

each P ∈ P , if Ψ(P ) = (µ, λ) then either Ψ(P ) is the SOSEM or Ψ(P ) Pareto dominates

the SOSEM. Hence, by Abdulkadiroğlu et al. (2009, Theorem 1), Ψ violates strategy-

proofness.

Proof of Lemma 1. Let s = µ(j). Since i ∈ D̃(µ,λ)(j), we have that s Pi µ(i). Since

(µ, λ) is stable, for each j′ 6= i such that s Pj′ µ(j′), (j, λs(j)) �s (j′, λs(j′)). Therefore,
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since priorities are fully transferable, we have (i,max{λs(i), λs(j)}) �s (j′, λs(j′)) and

i ∈ X(µ,λ)(j).

Proof of Proposition 3. We start the proof by describing an algorithm that yields the

EADA matching in problems without transferable characteristics and the SETC algorithm

that translates it to the extended matching framework

(Simplified) Efficiency Adjusted Deferred Acceptance Algorithm (EADA).

Tang and Yu (2014):

Given a matching µ, a school s is underdemanded at µ if no student prefers s to

the school to which they are assigned by µ. The simplified EADA algorithm executes

the student-proposing DA algorithm iteratively after sequentially altering the preferences

of students assigned to underdemanded schools. Starting with the SOSEM, as a first

step, the student-proposing DA algorithm is executed a second time with the students

previously assigned to underdemanded schools listing those schools as their top choices.

Therefore, in this second stage, students at underdemanded schools retain their seats, and

their potential priorities at schools where they cannot obtain seats become ineffective.

This process is repeated until there are no underdemanded schools.

Next, we propose the EADA-SETC algorithm, a specific SETC algorithm that under

transferable priorities selects the matching obtained by the (simplified) EADA algorithm.

The successive selection of cycles utilized by this EADA-SETC algorithm requires: iden-

tifying the students assigned to underdemanded schools, dropping the potential cycles

involving those students, and of the remaining cycles, solving those that would satisfy

the school priorities under the initial allocation of transferable characteristics for the stu-

dents who are not assigned to underdemanded schools first. This process is equivalent to

running the student-proposing DA algorithm when students assigned to underdemanded

schools report that those underdemanded schools are their preferred alternative. Running

this process as many times as necessary yields a constrained efficient extended matching

with the matching selected by the EADA algorithm.

EADA-SETC Algorithm:

Step 0. Let (µ0, λ0) = (µSOω , ω), I0 = I, and let U0 = {s ∈ S : for each j ∈ I, µ0(j) Rj s},
be the set of underdemanded schools at µ0.

Step t≥1. Given (µt−1, λt−1):

Stage t.0. If ∪t−1
τ=0 Uτ = S, the algorithm stops and (µt−1, λt−1) is the outcome. If

∪t−1
τ=0 Uτ 6= S, let (µ0

t , λ
0
t ) = (µt−1, λt−1), It = I \

{
i ∈ I : µt−1(i) ∈

(
∪t−1
τ=0Uτ

)
∪∅

}
,

and move to stage t.1.
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Stage t.t’ (t’≥1 ). For each extended matching (µ, λ), let the graph Gt(µ, λ) be such

that for each i, j ∈ I, ij ∈ Gt(µ, λ) if and only if i, j ∈ It, µ(j) Pi µ(i), and for each

i′ ∈ D̃(µ, λ)(j) ∩ It, (i, λµ(j)(i)) %µ(j) (i′, λµ(j)(i′)).

- If there is one or more cycles at Gt(µ
t′−1
t , λt

′−1
t ), solve one of the cycles at

Gt(µ
t′−1
t , λt

′−1
t ), for example, γ; let (µt

′
t , λ

t′
t ) = γ ◦ (µt

′−1
t , λt

′−1
t ) and move to

Stage t.(t′ + 1).

- If there is no cycle at Gt(µ
t′−1
t , λt

′−1
t ), let (µt, λt) = (µt

′−1
t , λt

′−1
t ), and let

Ut =
{
s ∈ S \

(
∪t−1
τ=0Uτ

)
: for each i ∈ It−1, µt(j) Rj s

}
,

and move to step t+ 1.

Note that for each step t ≥ 1, ∪t−1
τ=0Uτ is the set of underdemanded schools at µt−1,

and It are the set of students who are not assigned to underdemanded schools at µt−1.

We now check that for each school choice problem with transferable characteristics

and fully transferable priorities the extended matching obtained by the EADA-SETC

algorithm selects the EADA matching.

Note first that by Lemma 1, for each i, j ∈ I, and for each natural number t ∈ N,

ij ∈ Gt(µ, λ) implies ij ∈ G(µ, λ). Thus, since (µ0, λ0) is stable, by Corollary 1, (µt
′
t , λ

t′
t )

is also stable. Since for each t, t′, and j ∈ It, there is at most another student i such

that ij ∈ Gt(µ
t′
t , λ

t′
t ). This fact implies that for each t, t′, all the cycles in Gt(µ

t′
t , λ

t′
t ) are

disjoint, that is, iff φ and φ′ are cycles in Gt(µ
t′
t , λ

t′
t ), then φ ∩ φ′ = ∅.

Moreover, if at some t, ∪t−1
τ=0Uτ = S, by an argument similar to those in the proof

of Lemma 7 and since priorities are fully transferable, then (µt−1, λt−1) does not admit

any improvement cycle, and no extended matching (µ′, λ′) Pareto dominates (µt−1, λt−1).

Hence, the algorithm selects a constrained efficient extended matching.

If U0 = S, then every student is assigned to her best preferred school, and the algorithm

stops immediately, (µSOω , ω) is constrained efficient, and µSOω coincides with the outcome

of the EADA algorithm.

If U0 6= S, note that (µ0, λ0) is stable but not necessarily constrained efficient. We

prove the result by comparing the graph G1(µ0.λ0) defined at step 1 of the EADA-SETC

algorithm with the directed application graph associated with (µ0, λ0) obtained for an

alternative school choice problem for particular student preferences and school priorities.

Consider the school choice problem with transferable characteristics (I, S,R∗, q, ω,%∗),
such that for each i ∈ I1, R∗i = Ri and for each j /∈ I1 R∗j is such that for each
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s ∈ S \ {µ0(j)}, µ0(j) P ∗j s. and for each i, j ∈ I and each allocation of transferable

characteristics λ, (i, λs(i)) %∗s (j, λs(j)) if and only if (i, ωs(i)) %∗s (j, ωs(j)). That is,

students assigned to underdemanded schools under µ0 consider that school as the best

possible alternative, and school priorities are defined on the initial allocation of trans-

ferable characteristics. For each extended matching (µ, λ), let us denote by G∗(µ, λ) the

directed application graph associated with (µ, λ) for the problem (I, S,R∗, q, ω,%∗) Note

that G∗(µ0, λ0) coincides with G1(µ0, λ0). By Theorem 1 and Corollary 1, starting with

a stable extended matching, the EADA-SETC algorithm yields a constrained efficient

extended matching. Note that under the new student preferences and school priorities,

since the transferable characteristics are irrelevant, the student-proposing DA algorithm

yields the unique constrained efficient matching (see Gale and Shapley, 1962). This fact

also implies that the order in which the cycles are solved at any stage 1.t is irrelevant and

a unique extended matching (µ1, λ1) is obtained, and µ1 coincides with the matching of

the SOSEM for the school choice problem with student preference profile R∗.

We can iteratively repeat the argument as many times as necessary for each t ≥ 1,

and G∗(µt, λt) coincides with Gt(µt, λt), until for some t ≥ 0, Ut = ∪t−1
τ=0Uτ = S, which

completes the proof.
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Appendix A. Obtaining Individually Rational and Non-

wasteful Extended Matchings. (Not for Publication).

In this appendix we consider the possibility of obtaining fair Pareto improvements over

extended matchings that are neither individually rational nor non-wasteful.

It is immediate to obtain a fair Pareto improvement of an extended matching that is

not individually rational. Simply, let (µ, ω) be such that for some i ∈ I, ∅ �i µ(i). The

extended matching (µ′, ω) such that for each i ∈ I µ′(i) = ∅ if ∅ Pi µ(i) and µ′(i) = µ(i)

otherwise is an individually rational extended matching and a fair Pareto improvement

over (µ, ω).

Next we present an algorithm that for every individually rational extended matching,

obtains a non-wasteful extended matching that is a fair Pareto improvement of the initial

extended matching.

For each extended matching (µ, λ) let

F (µ, λ) =
{
s ∈ S : #µ−1(s) < qs and there is i ∈ I with s Pi µ(i)

}
.

That is, F (µ, λ) is the set of demanded schools with available seats at the extended

matching (µ, λ).

Student Fair Refilling Algorithm

Step 0: Let (µ0, λ) be an individually rational extended matching.

Step t ≥ 1: Given the extended matching (µt−1, λ),

- If F (µt−1, λ) = ∅, then the algorithm stops and (µt−1, λ) is the obtained ex-

tended matching.

- If F (µt−1, λ) 6= ∅, then pick an arbitrary school ŝ ∈ F (µt−1, λ), let ı̂t be

the student such that ŝ Pı̂t µt−1(̂ıt) and for each j ∈ I with ŝ Pj µt−1(j),

(̂ıt, λ
ŝ(̂ıt)) %ŝ (j, λŝ(j)), and let let µt be defined by

i) µt(̂ıt) = ŝ, and

ii) for each i ∈ I \ {ı̂t}, µk(i) = µk−1(i),

and move to step t+ 1.
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This algorithm fills an empty seat at a time but a new vacant may open. Since the

students that obtain a new seat strictly improve, the algorithm eventually stops after

a finite number of steps and yields an individually rational and non-wasteful extended

matching. Note that, since the algorithm does not perform any change in the allocation of

transferable characteristics, at each step the algorithm yields a fair Pareto improvement

of the initial extended matching.

Remark 4. Let (µ, ω) be an individually rational extended matching. Then any outcome

of the student fair refilling algorithm with (µ0, ω) = (µ, ω) is an individually rational and

non-wasteful extended matching and a fair Pareto improvement over (µ, λ).

Appendix B. On Constrained Efficient Extended Match-

ings and SETC Outcomes. (Not for Publication)

In this appendix, we provide the complete description of the example of a constrained

efficient extended matching that is Pareto dominated by the outcome of the application

of an SETC algorithm (see footnote 16).

Example 7. Let I = {i1, i2, i3, i4, i5, i6, i′1, i′2, i′3, i4, i′5, i′6, j}, S = {s1, s2, s3, s4, s5, s
′
1, s
′
2, s
′
3, s
′
4, s
′
5, σ},

and qs = 1 for s ∈ S. The relevant student preferences are as follows:

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pj
s2 s3 s1 s2 s4 s2 s1

s1 s4 s3 s3 s2 s5 s′1
∅ s1 ∅ s5 s5 s6 σ

s2 s4 ∅ ∅ ∅
∅ ∅

Pi′1 Pi′2 Pi′3 Pi′4 Pi′5 Pi′6
s′2 s′3 s′1 s′2 s′4 s′2
s′1 s′4 s′3 s′3 s′2 s′5
∅ s′1 ∅ s′5 s′5 s′6

s′2 s′4 ∅ ∅
∅ ∅

The relevant initial allocation of transferable characteristics and relevant school prior-

ities are:
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ωs(i) i1 i2 i3 i4 i5 i6 j

s1 0s1 5s1 4s1 3s1 2s1 1s1 6s1

s2 2s2 4s2 1s2 3s2 0s2 5s2

s3 1s3 3s3 5s3 4s3 1s3 0s3

s4 2s4 3s4 4s4 5s4 1s4 0s4

s5 2s5 4s5 3s5 1s5 5s5 0s5

s6 5s6 4s6 3s6 2s6 1s6 0s6

s′1 −1s
′
1 6σ

ωs
′
(i) i′1 i′2 i′3 i′4 i′5 i′6
s′1 0s

′
1 5s

′
1 4s

′
1 3s

′
1 2s

′
1 1s

′
1

s′2 2s
′
2 4s

′
2 1s

′
2 3s

′
2 0s

′
2 5s

′
2

s′3 1s
′
3 3s

′
3 5s

′
3 4s

′
3 1s

′
3 0s

′
3

s′4 2s
′
4 3s

′
4 4s

′
4 5s

′
4 1s

′
4 0s

′
4

s′5 2s
′
5 4s

′
5 3s

′
5 1s

′
5 5s

′
5 0s

′
5

s′6 5s
′
6 4s

′
6 3s

′
6 2s

′
6 1s

′
6 0s

′
6

s1 −1s1

�s1 �s2 �s3 �s4 �s5 �s6 �σ
(i1,0

s1) (i2,4
s2) (i3,5

s3) (i4,0
s4) (i5,5

s5) (i6, ·) (j, ·)
(i2,5

s1) (i1,4
s2) (i2,5

s3) (i2,3
s4) (i6,5

s5) . . . . . .

(i3,4
s1) (i6,5

s2) (i4,5
s3) (i5,5

s4) (i4,5
s5)

(i′3,4
s1) (i5,5

s2) (i4,4
s3) (i5,1

s4) (i6,0
s5)

(j,6s1) (i4,5
s2) (i2,3

s3) (i4,1
s5)

(i′3,0
s1) (i5,1

s2)

(i′3,−1s1) (i4,3
s2)

(i1,2
s2)

�s′1 �s′2 �s′3 �s′4 �s′5 �s′6
(i′1,0

s′1) (i′2,4
s′2) (i′3,5

s′3) (i′4,0
s′4) (i′5,5

s′5) (i′6, ·)
(i′2,5

s′1) (i′1,4
s′2) (i′2,5

s′3) (i′2,3
s′4) (i′6,5

s′5) . . .

(i′3,4
s′1) (i′6,5

s′2) (i′4,5
s′3) (i′5,5

s′4) (i′4,5
s′5)

(i3,4
s′1) (i′5,5

s′2) (i′4,4
s′3) (i′5,1

s′4) (i′6,0
s′5)

(j,6s
′
1) (i′4,5

s′2) (i′2,3
s′3) (i′4,1

s′5)

(i3,0
s′1) (i′5,1

s′2)

(i3,−1s
′
1) (i′4,3

s′2)

(i′1,2
s′2)

The SOSEM (µSOω , ω) is defined by

µSOω =

[
(i1, s1), (i2, s2), (i3, s3), (i4, s4), (i5, s5), (i6, s6),

(i′1, s
′
1), (i′2, s

′
2), (i′3, s

′
3), (i′4, s

′
4), (i′5, s

′
5), (i′6, s

′
6), (j, σ)

]
.
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Consider now the extended matching (µ′, λ) with

µ′ =

[
(i1, s2), (i2, s3), (i3, s1), (i4, s5), (i5, s4), (i6, s6),

(i′1, s
′
2), (i′2, s

′
3), (i′3, s

′
1), (i′4, s

′
5), (i′5, s

′
4), (i′6, s

′
6), (j, σ)

]
.

and λ be such that λ(j) = ω(j) and:

λs(i) i1 i2 i3 i4 i5 i6
s1 4s1 5s1 0s1 3s1 2s1 1s1

s2 4s2 2s2 1s2 3s2 0s2 5s2

s3 1s3 5s3 3s3 4s3 1s3 0s3

s4 2s4 3s4 4s4 1s4 5s4 0s4

s5 2s5 4s5 3s5 5s5 1s5 0s5

s6 5s6 4s6 3s6 2s6 1s6 0s6

s′1 −1s
′
1

λs(i) i′1 i′2 i′3 i′4 i′5 i′6
s′1 4s

′
1 5s

′
1 0s

′
1 3s

′
1 2s

′
1 1s

′
1

s′2 4s
′
2 2s

′
2 1s

′
2 3s

′
2 0s

′
2 5s

′
2

s′3 1s
′
3 5s

′
3 3s

′
3 4s

′
3 1s

′
3 0s

′
3

s′4 2s
′
4 3s

′
4 4s

′
4 1s

′
4 5s

′
4 0s

′
4

s′5 2s
′
5 4s

′
5 3s

′
5 5s

′
5 1s

′
5 0s

′
5

s′6 5s
′
6 4s

′
6 3s

′
6 2s

′
6 1s

′
6 0s

′
6

s1 −1s1

The extended matching (µ′, λ) is a fair Pareto improvement of (µSOω , ω), and it is

a constrained efficient extended matching. However, (µ′, λ) cannot be obtained by the

application of the SETC algorithm. With the arguments of Example 6, after a series of

steps, an application of the SETC algorithm may yield the extended matching (µ′, λ̄) that

is characteristic-wise equivalent to (µ′, λ), with λ̄ being defined by λ̄(j) = ω(j) and

λ̄s(i) i1 i2 i3 i4 i5 i6
s1 0s1 4s1 5s1 3s1 2s1 1s1

s2 4s2 2s2 1s2 3s2 0s2 5s2

s3 1s3 5s3 3s3 4s3 1s3 0s3

s4 2s4 3s4 4s4 1s4 5s4 0s4

s5 2s5 4s5 3s5 5s5 1s5 0s5

s6 5s6 4s6 3s6 2s6 1s6 0s6

s′1 −1s
′
1
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λ̄s(i) i′1 i′2 i′3 i′4 i′5 i′6
s′1 0s

′
1 4s

′
1 5s

′
1 3s

′
1 2s

′
1 1s

′
1

s′2 4s
′
2 2s

′
2 1s

′
2 3s

′
2 0s

′
2 5s

′
2

s′3 1s
′
3 5s

′
3 3s

′
3 4s

′
3 1s

′
3 0s

′
3

s′4 2s
′
4 3s

′
4 4s

′
4 1s

′
4 5s

′
4 0s

′
4

s′5 2s
′
5 4s

′
5 3s

′
5 5s

′
5 1s

′
5 0s

′
5

s′6 5s
′
6 4s

′
6 3s

′
6 2s

′
6 1s

′
6 0s

′
6

s1 −1s1

The extended matching (µ′, λ) is not constrained efficient because an additional ex-

change between students i3 and i′3 is possible. In fact ,the extended matching (µ′′, λ̂)

defined by

µ′′ =

[
(i1, s2), (i2, s3), (i3, s

′
1), (i4, s5), (i5, s4), (i6, s6),

(i′1, s
′
2), (i′2, s

′
3), (i′3, s1), (i′4, s

′
5), (i′5, s

′
4), (j, σ)

]
,

and λ̂(i) = λ̄(i) for each i /∈ {i3, i′3} and λ̂s1(i′3) = λ̄s1(i′3) = 5s1 and λ̂s
′
1(i3) = λ̄s

′
1(i′3) =

5s
′
1, is the outcome of an application of the SETC algorithm starting at the SOSEM. The

extended matching (µ′′, λ̂) Pareto dominates the constrained efficient extended matching

(µ′, λ).

Appendix C. On Transferable Characteristics for Mul-

tiple Schools. (Not for Publication).

Example 8 illustrates the difficulties that may arise when characteristics are not school-

specific. It can be the case that some students could swap seats at their initially assigned

and transferable characteristics, all the remaining students priorities at those schools

are respected. However, if transferable characteristics are not school-specific, the new

allocation of transferable characteristics may trigger a sequence of violations of fairness

in other schools.

Example 8. Let I = {i1, i2, i3, i4, i5}, S = {s1, s2, s3, s4, s5}, qsx = 1 for x = 1, . . . , 5.

The students’ relevant preferences are:

Pi1 Pi2 Pi3 Pi4 Pi5
s4 s1 s1 s4 s5

s2 s2 s2 s5 s4

s1 s3 s3 ∅ ∅
∅ ∅ ∅

The transferable characteristics for school s2 determine the priorities of school l s4.

Hence, the relevant initial allocation of transferable characteristics and the relevant school

priorities are:
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ωs(i) i1 i2 i3 i4 i5
s1 4s1 0s1 3s1 2s1 1s1

s2 0s2 4s2 3s2 2s2 1s2

s3 · · · 0s3 4s3 · · · · · ·
s4 · · · · · · · · · · · · · · ·
s5 · · · · · · · · · · · · · · ·

�s1 �s2 �s3 �s4 �s5
(i1,4

s1) (i1,4
s2) (i2,0

s3) (i5,1
s2) (i4,0

s5)

(i4,1
s1) (i2,4

s2) (i3,4
s3) (i1,4

s2) (i5,4
s5)

(i2,4
s1) (i3,3

s2) (i4,2
s2)

(i3,3
s1) (i1,0

s2) (i1,0
s2)

(i2,0
s1)

and µSOω = [(i1, s1), (i2, s2), (i3, s3), (i4, s4), (i5, s5)].

When students i1 and i2 exchange their transferable characteristics, the allocation of

exchangeable characteristics is λ′.

λs(i) i1 i2 i3 i4 i5
s1 0s1 4s1 3s1 2s1 1s1

s2 4s2 0s2 3s2 2s2 1s2

· · · · · · · · · · · · · · · · · ·

With the exchange of transferable characteristics, students i1 and i2 could improve by

exchanging their respective seats at s1 and s2. The extended matching (µ′, λ) with

µ′ = [(i1, s2), (i2, s1), (i3, s3), (i4, s4), (i5, s5)] ,

is a fair Pareto improvement of the SOSEM. However, the extended matching (µ′, λ′) is

not stable. After obtaining 4s2, student i1 would have justified envy of i4 at s4. In fact,

µSOλ′ = [(i1, s1), (i2, s3), (i3, s2), (i4, s5), (i5, s4)]. That is, the initial Pareto improvement

generated by the exchange of transferable characteristics initiates a chain reaction that

leads to an extended matching where the students initiating the exchange are not better

off.
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