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Abstract

The main objective of this dissertation consists in analyzing the di�usive Lotka�Volterra
competition model by studying the uniqueness, multiplicity and stability of its component-
wise positive steady states, preferably, when the di�usion rates of the species in the in-
habiting territory are su�ciently small, though some of our results do not require that.
To accomplish this task, it is imperative to go down one step and analyze �rst the logistic
equations obtained by uncoupling the system. As a consequence, this PhD Thesis has been
distributed into two parts, the �rst one dealing with the equation and the second one with
the di�usive competition system, which have been built as a selection of the most signif-
icant results found in the research papers [42, 39, 38, 41, 40], authored by the candidate
together with his adviser.

Part I consists of Chapters 2 and 3 and covers both the analysis of the sublinear logistic
equation and the associated superlinear inde�nite problem. More precisely, Chapter 2,
which polishes the theory developed in [41], begins providing us with a characterization of
the regularity of ∂Ω, for an open bounded set Ω ⊂ RN , N ≥ 1, through the regularity of the
distance function along an outward vector �eld, or by means of the fact ∂Ω = Ψ−1(0) for
some smooth non-degenerate function, Ψ, de�ned on a neighborhood of ∂Ω. This result is
crucial to deal with non-classical mixed boundary conditions, as well as to adapt a technical
device of López-Gómez [87], for constructing certain supersolutions, to our general setting
here. Then, Chapter 2 establishes the existence, uniqueness and monotonicity properties
of the sublinear di�usive logistic equation{

dLu = uh(u, x) in Ω,
Bu = 0 on ∂Ω,

(1)

where Ω ⊂ RN , N ≥ 1, is a domain of class C2, d > 0 is the di�usion rate, L is a uniformly
elliptic di�erential operator in divergence form, i.e.,

L = −div(A∇·) +B∇+ C,

for some A ∈ Msym
N (C1(Ω̄)), B ∈ M1×N (C(Ω̄)) and C ∈ C(Ω̄), and B is a boundary

operator of non-classical mixed type. It is mixed in the sense that B can be either of
Dirichlet or Robin type at any component of ∂Ω, and non-classical since the function
β ∈ C(∂Ω) taking part in the Robin boundary operator,

Ru = ∂νu+ βu

can change sign. In the problem (1), h(u, x) is a non-linear continuous function in x ∈ Ω̄,
of class C1 in u ∈ R, strictly decreasing in u ≥ 0, among some other technical assumptions.
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The main aim of this chapter is to ascertain the limiting pro�le of the positive solu-
tions of (1) as d > 0 decays to zero, generalizing the already classical results of Cantrell
and Cosner [18], Furter and López-Gómez [48], and Hutson, López-Gómez, Mischaikow
and Vickers [63]. The singular perturbation result for the equation, established through
Theorem 2.21, is necessary to obtain its counterpart for the di�usion-competition system,
which is a central result of this dissertation.

Regarding Chapter 3, it consists of Sections 1�4 of [40]. Throughout this chapter, a
new generalized Picone identity is used systematically to study the superlinear inde�nite
problem {

Lu = λu− a(x)f(u) in Ω,
Bu = 0 on ∂Ω,

where the function f ∈ Cr(R), r ≥ 2, satis�es f(0) = 0 and f 6≡ 0, and a ∈ C(Ω̄) may
change sign. As usual in this dissertation, λ ∈ R is regarded as a bifurcation parameter.
In particular, Chapter 3 not only adapts the results of Gómez-Reñasco and López-Gómez
[51, 52], and López-Gómez [89], obtained for the choice f(u) = uq for some q ≥ 2, to
cover the case of non-classical mixed boundary conditions, but it also provides us with
their optimality, as we were able to complement the previous results by establishing that
they cannot hold even when f is the sum of two monomials which is an arbitrarily small
perturbation of uq, q ≥ 2.

Part II is made up of the remaining chapters, and deals with the di�usive Lotka�Volterra
competition two species model

∂u
∂t + d1L1u = λ(x)u− a(x)u2 − b(x)uv in Ω× (0,+∞),
∂v
∂t + d2L2v = µ(x)v − d(x)v2 − c(x)uv in Ω× (0,+∞),

B1u = B2v = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(2)

with general uniformly elliptic operators and boundary operators of mixed non-classical
type, much like in the equation. The associated non-di�usive model, obtained by switching
o� to zero the di�usion coe�cients d1 and d2, goes back to the seminal works of Lotka [78]
and Volterra [114, 115], and hence, the coe�cient functions, λ, µ ∈ C(Ω̄) and a, b, c, d ∈
C(Ω̄; (0,+∞)), acquire a special meaning from the point of view of population dynamics: λ
and µ are growth rates of the species (in the absence of competition), a and d measure the
intraspeci�c competition among the individuals of the same species, and b and c measure
the interspeci�c competition among the individuals of u and v.

Chapter 4 consists of Section 4 of [38], which generalizes the main result of [42] and those
of Sections 3 and 5 of [39]. It studies the singular perturbation problem for the di�usive
competition model, providing us with the limiting pro�le of the coexistence steady states
in those regions of Ω where the non-di�usive counterpart of the model (2) exhibits global
attractivity, i.e., the region where both species become extinct, Ωext, or both species are
permanent, Ωper, or one species dominates the other, Ωu

do and Ωv
do. According to this

result, the limiting pro�le of the singular perturbation problem for the system may not
be determined in the region Ωbi, where the non-di�usive model exhibits founder control
competition (two linearly stable semitrivial steady states). Thus, the singular perturbation
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result established in this dissertation improves substantially Theorem 4.1 of Hutson, López-
Gómez, Mischaikow and Vickers [63], Theorem 5.2(iii) of He and Ni [53], and Lemma 3.3
and Theorem 1.2 of Hutson, Lou and Mischaikow [65], where L1 = L2 = −∆, B1 = B2

are non-�ux boundary operators, and either the competition coe�cients are assumed to be
constant or the behavior of the species is considered to be homogeneous in Ω. Although
the main technical device to get these singular perturbation results is a monotone scheme
introduced by López-Gómez and Sabina in Section 3.3 of [77] to estimate the region of
extinction of the species, adapting it to a spatially heterogeneous setting is much more
intricate and technically sophisticated.

Chapter 5 consists of Sections 5, 6 and 7 of [38] and provides us with the Induced
Instability Principle, which establishes that the local instability of a steady state of the non-
di�usive model in a region arbitrarily small of Ω is induced, globally, to any family of steady
states of the di�usive model perturbing from it therein. This result is completely new and,
among its main consequences, it provides us with a generalized version of Theorem 2.1(i)
of Furter and López-Gómez [48]. Furthermore, the Induced Instability Principle allows
us to obtain the �rst general multiplicity result for (2) based, exclusively, on the spatial
heterogeneities of the domain, whatever its geometry is. Indeed, in the symmetric case, if
there are regions of Ω where the underlying non-di�usive model exhibits permanence, i.e.,
Ωper 6= ∅, and other regions where it exhibits founder control competition, i.e., Ωbi 6= ∅,
then the di�usive model admits at least three coexistence steady states, two of them stable
and the other unstable, for su�ciently small di�usion rates, regardless the sizes of Ωper

and Ωbi. As a by-product, this explains why the limiting pro�le of a family of coexistence
steady states of the di�usive model is not determined by our singular perturbation result
in Ωbi.

To conclude, Chapter 6 tidies up, polishes and rearranges Sections 8 and 9 of [38] and
Sections 5 and 6 of [40], providing us with two situations under which, for su�ciently small
di�usion rates, the model (2) exhibits a unique coexistence steady state, which is actually
globally asymptotically stable. First, this dissertation establishes that this phenomenology
occurs if Ω̄ = Ωper. The result found here is a substantial generalization of Theorem 1.1 of
Hutson, Lou and Mischaikow [65] that uses a completely di�erent, much simpler and more
versatile proof, which allows us to deal with uniformly elliptic di�erential operators other
than −∆, and boundary conditions other than non-�ux (Robin ones of non-classical type).
Finally, uniqueness is also achieved in the heterogeneous di�usion-competition model when
low competition occurs, i.e., bc � ad (and so Ωbi = ∅), which provides us with a substantial
extension of Theorem 3.4 of He and Ni [55], obtained for constant competition coe�cients,
with L1 = L2 = −∆ under non-�ux boundary conditions.





Resumen

El objetivo principal de esta tesis es analizar el modelo difusivo de tipo Lotka�Volterra
competitivo mediante el estudio de la unicidad, multiplicidad y estabilidad de sus soluciones
estacionarias no negativas, preferiblemente cuando la difusión de las especies en el medio es
su�cientemente pequeña, aunque algunos de los resultados presentados aquí no requieren
esta hipótesis. Para llevar a cabo esta tarea, es imperativo descender un escalón y analizar
primero las ecuaciones logísticas obtenidas al desacoplar el sistema. Como consecuencia,
la tesis se ha dividido en dos partes, la primera dedicada a la ecuación y la segunda al
sistema difusivo-competitivo, construidas a partir de una selección de los resultados más
signi�cativos de los artículos de investigación [42, 39, 38, 41, 40], que han sido realizados
por el candidato a doctor junto con su tutor.

La Parte I consta de los Capítulos 2 y 3, y cubre tanto el análisis de la ecuación logística
sublinear, como el problema superlinear inde�nido asociado. De forma más precisa, el
Capítulo 2, que re�na la teoría desarrollada en [41], comienza caracterizando la regularidad
de ∂Ω, para un conjunto abierto y acotado Ω ⊂ RN , N ≥ 1, a través de la regularidad de
la función distancia en la dirección de un campo vectorial exterior a Ω, así como por medio
del hecho de que ∂Ω = Ψ−1(0) para alguna función suave no degenerada, Ψ, de�nida
en un entorno de ∂Ω. Este resultado es crucial para poder lidiar con condiciones de
frontera mixtas no clásicas, así como para adaptar a este marco un recurso de carácter
técnico introducido por López-Gómez [87], que permite construir ciertas supersoluciones.
A raíz de este resultado, el Capítulo 2 establece la existencia, unicidad, y propiedades de
monotonía, de soluciones positivas para la ecuación difusiva de tipo logístico sublineal{

dLu = uh(u, x) in Ω,
Bu = 0 on ∂Ω,

(3)

donde Ω ⊂ RN , N ≥ 1, es un dominio de clase C2, d > 0 es la tasa de difusión, L es un
operador diferencial uniformemente elíptico en forma de divergencia, esto es,

L = −div(A∇·) +B∇+ C,

con A ∈ Msym
N (C1(Ω̄)), B ∈ M1×N (C(Ω̄)) y C ∈ C(Ω̄), mientras que B es un operador de

frontera de tipo mixto no clásico. B es mixto en tanto que, en cada componente de ∂Ω,
puede ser o bien de tipo Dirichlet o de tipo Robin, y es no clásico en el sentido de que la
función β ∈ C(∂Ω) que aparece en el operador de frontera de tipo Robin,

Ru = ∂νu+ βu

xiii
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puede cambiar de signo. Por otra parte, en el problema (3), h(u, x) es una función no
lineal continua en x ∈ Ω̄, de clase C1 en u ∈ R, y estrictamente decreciente en u ≥ 0, entre
otras hipótesis de carácter técnico.

El objetivo principal de este capítulo es proporcionar el per�l límite de las soluciones
positivas de (3) cuando d > 0 converge a cero, lo cual generaliza los resultados más recientes
desarrollados para este tipo de ecuaciones, esto es, los de Cantrell y Cosner [18], Furter
y López-Gómez [48] y Hutson, López-Gómez, Mischaikow y Vickers [63]. El resultado
de perturbación singular para la ecuación, establecido en el Teorema 2.21, es crucial para
poder obtener su análogo para el sistema difusivo de tipo competitivo, uno de los resultados
centrales de esta tesis.

En cuanto al Capítulo 3, este consiste en las Secciones 1�4 de [40]. A lo largo de
este capítulo, se usa sistemáticamente una nueva identidad de Picone generalizada para
estudiar el problema superlineal inde�nido{

Lu = λu− a(x)f(u) in Ω,
Bu = 0 on ∂Ω,

donde la función f ∈ Cr(R), r ≥ 2, satisface f(0) = 0 y f 6≡ 0, y a ∈ C(Ω̄) puede cambiar de
signo. Por otra parte, λ ∈ R es considerado como parámetro de bifurcación. En particular,
el Capítulo 3 no solo adapta los resultados de Gómez-Reñasco y López-Gómez [51, 52], y
López-Gómez [89], obtenidos para la elección f(u) = uq para algún q ≥ 2, para que sigan
siendo válidos en el caso de condiciones de frontera mixtas no clásicas, sino que también
los complementa estableciendo su optimalidad, probando que dejan de ser ciertos incluso
cuando la función f es una perturbación arbitrariamente pequeña de uq, q ≥ 2, de�nida
como la suma de dos monomios.

La Parte II engloba los restantes capítulos, y centra su análisis en el modelo difusivo
de tipo Lotka�Volterra competitivo para dos especies

∂u
∂t + d1L1u = λ(x)u− a(x)u2 − b(x)uv in Ω× (0,+∞),
∂v
∂t + d2L2v = µ(x)v − d(x)v2 − c(x)uv in Ω× (0,+∞),

B1u = B2v = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(4)

con L1 y L2 operadores uniformemente elípticos, y B1 y B2 operadores de frontera mixtos
no clásicos, como los de la ecuación. El modelo no difusivo asociado, esto es, el obtenido
al hacer cero los coe�cientes de difusión d1 y d2, se remonta a los trabajos de Lotka [78]
y Volterra [114, 115], y por tanto las funciones λ, µ ∈ C(Ω̄) y a, b, c, d ∈ C(Ω̄; (0,+∞)),
adquieren su propio signi�cado desde el punto de vista de la dinámica de poblaciones: λ
y µ son tasas de crecimiento de las especies (en ausencia de competición), a y d miden
la competición intraespecí�ca entre los individuos de la misma especie, y b y c miden la
competición interespecí�ca entre los individuos de u y v.

El Capítulo 4 recopila la teoría desarrollada en la Sección 4 de [38], que generaliza el
resultado principal de [42] y los de las Secciones 3 y 5 de [39]. Este capítulo estudia el
problema de perturbación singular en el modelo difusivo de competición, proporcionando
el per�l límite de los estados estacionarios de coexistencia, esto es, aquellos con ambas
componentes positivas, en las regiones de Ω donde el modelo no difusivo asociado a (4)
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exhibe un atractor global, esto es, la región donde ambas especies se extinguen, Ωext,
la región donde ambas especies son permanentes, Ωper, o las regiones donde una especie
domina a la otra, Ωu

do y Ωv
do. De acuerdo con este resultado, el per�l límite para el

problema de perturbación para el sistema puede no quedar determinado en la región Ωbi,
donde el modelo no difusivo exhibe `founder control competition' (dos estados estacionarios
semitriviales linealmente estables). Por lo tanto, el resultado de perturbación singular
obtenido en esta tesis mejora sustancialmente el Teorema 4.1 de Hutson, López-Gómez,
Mischaikow y Vickers [63], el Teorema 5.2 (iii) de He y Ni [53], y el Lema 3.3 y el Teorema
1.2 de Hutson, Lou y Mischaikow [65], en los que L1 = L2 = −∆, B1 = B2 son operadores
de frontera de tipo Neumann, y o bien los coe�cientes de competición, a, b, c, y d, se
suponen constantes, o el comportamiento de las especies se considera homogéneo en Ω.
Aunque el principal recurso técnico usado para obtener estos resultados de perturbación
singular es un esquema monótono introducido por López-Gómez y Sabina en la Sección
3.3 de [77] para estimar la región de extinción de las especies, adaptarlo para lidiar con un
contexto espacialmente heterogéneo es mucho más intrincado y so�sticado técnicamente.

El Capítulo 5, por su parte, consiste en las Secciones 5, 6 y 7 of [38]. En él se establece
el Principio de Inestabilidad Inducida, según el cual la inestabilidad local de un estado
estacionario (u∗, v∗) del modelo no difusivo en una región arbitrariamente pequeña de Ω
es inducida, globalmente, a una familia de estados estacionarios del modelo difusivo (4)
que perturben desde (u∗, v∗) en dicha región. Este resultado es completamente nuevo y,
entre sus principales consecuencias, está el hecho de que proporciona el Teorema 2.1(i) de
Furter y López-Gómez [48]. Además, el Principio de Inestabilidad Inducida nos permite
obtener el primer resultado general de multiplicidad para (4) basado exclusivamente en
las heterogeneidades espaciales del dominio, sea cual sea su geometría. En efecto, en el
caso simétrico, si hay regiones de Ω donde el modelo no difusivo asociado a (4) exhibe
permanencia, es decir, Ωper 6= ∅, y regiones donde exhibe `founder control competition',
esto es, Ωbi 6= ∅, entonces el modelo difusivo admite al menos tres estados estacionarios de
coexistencia, dos de ellos estables y el otro inestable, para coe�cientes de difusión su�cien-
temente pequeños, independientemente de los tamaños de Ωper y Ωbi. Como consecuencia,
esto explica por qué el per�l límite de una familia arbitraria de estados estacionarios de co-
existencia del modelo difusivo no queda determinado por nuestro resultado de perturbación
singular en Ωbi.

Para concluir, el Capítulo 6 limpia, pule y reorganiza las Secciones 8 y 9 de [38] y las
Secciones 5 y 6 de [40], proporcionando dos situaciones en las que, si los coe�cientes de
difusión son su�cientemente pequeños, el modelo (4) exhibe un único estado estacionario
de coexistencia, que es, de hecho, un atractor global para las soluciones de (4) con ambas
componentes positivas. En primer lugar, se prueba la unicidad en el caso Ω̄ = Ωper. El
resultado obtenido aquí supone una generalización sustancial del Teorema 1.1 de Hutson,
Lou y Mischaikow [65], y usa una prueba completamente diferente, mucho más simple
y más versátil, lo que nos permite tratar con operadores elípticos uniformes distintos de
−∆, y condiciones de contorno distintas a las de tipo Neumann (Robin de tipo no clásico).
Finalmente, la unicidad también se consigue en el modelo difusivo-competitivo heterogéneo
cuando hay baja competición, esto es, bc � ad (luego Ωbi = ∅), lo que supone una extensión
sustancial del Teorema 3.4 de He y Ni [55], obtenido para coe�cientes de competición
constantes, L1 = L2 = −∆ y condiciones de frontera de tipo Neumann.
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Chapter 1

Introduction

The main objective of this dissertation consists in analyzing the di�usive Lotka�Volterra
competition model by studying the uniqueness, multiplicity and stability of its component-
wise positive solutions, as well as their limiting pro�les, when the di�usions of the species
in the inhabiting territory are su�ciently small, which is a situation rather realistic from
the point of view of the applications in Population Dynamics. To accomplish this task it
is necessary to go down one step and analyze �rst the logistic equation, because a sharp
analysis of this equation is imperative to treat the system.

The mathematical theory of di�usive competing species, as we know it today, grew from
the pioneering papers of Casten and Holland [21], Matano and Mimura [99], Kishimoto
and Weinberger [69], Dancer [27, 28, 29], Blat and Brown [12, 13], Cosner and Lazer [23],
Ahmad and Lazer [1], Hess and Lazer [57], López-Gómez and Pardo [93, 95], Eilbeck,
Furter and López-Gómez [33], Furter and López-Gómez [47, 48], López-Gómez and Sabina
[77], Hutson, López-Gómez, Mischaikow and Vickers [63], and Hsu, Smith and Waltman
[62], where the foundations of the theory of competing species developed in this dissertation
were settled. The pioneering work of Hsu, Hubbell and Waltman [61] had been formulated
through a system of Ordinary Di�erential Equations.

Among the most astonishing e�ects of the spatial dispersion through random di�usion,
Eilbeck, Furter and López-Gómez [33] were able to show, answering to a clever question of
C. Cosner, that, under homogeneous Dirichlet boundary conditions, the species can be per-
manent even when the non-spatial associated model exhibits founder control competition.
The related question of C. Cosner raised in a personal letter to J. C. Eilbeck short time after
the Conference on Reaction-Di�usion Equations organized by K. J. Brown and A. Lacey in
Heriot-Watt University (Edinburgh) was held on May 1988. Since then, it became apparent
the crucial role played by the spatial dispersion in the biological problem of the perma-
nence of competing species. The result of Eilbeck, Furter and López-Gómez [33] contrasts,
very strongly, with a previous �nding of Kishimoto and Weinberger [69], who established
that, under non-�ux boundary conditions, permanence cannot occur in the homogeneous
competition model if its non-spatial counterpart exhibits founder control competition and
the territory is convex. Some time later, Cano-Casanova and López-Gómez [17] established
that permanence is possible, regardless of the level of the aggression between the competi-
tors, as soon as each of them can refuge on some spatial protection zone, su�ciently large,
where it can stay free from the aggression of the others.

1
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This thesis studies, with much more generality, the role played by the spatial het-
erogeneities of the model on its dynamics. It has been built as a selection of the most
signi�cant results found in the next research papers:

[38] S. Fernández-Rincón and J. López-Gómez. Spatially heterogeneous Lotka�
Volterra competition. Nonlinear Analysis, 165:33�79, 2017.

[39] S. Fernández-Rincón and J. López-Gómez. Spatial versus non-spatial dy-
namics for di�usive Lotka�Volterra competing species models. Calculus of
Variations and Partial Di�erential Equations, 56(71):1�37, 2017.

[40] S. Fernández-Rincón and J. López-Gómez. The Picone identity: A de-
vice to get optimal uniqueness results and global dynamics in Population
Dynamics. arXiv:1911.05066, pages 1�48, 2019.

[41] S. Fernández-Rincón and J. López-Gómez. The singular perturbation prob-
lem for a class of generalized logistic equations under non-classical mixed
boundary conditions. Advanced Nonlinear Studies, 19:1�27, 2019.

[42] S. Fernández-Rincón and J. López-Gómez. A singular perturbation result
in competition theory. Journal of Mathematical Analysis and Applications,
445:280�296, 2017.

This dissertation has been distributed in two parts: the �rst one dealing with the single
equation, the second one with the competition model itself. Part I consists of Chapter 2,
which polishes the theory developed in [41] for the logistic equation, and Chapter 3, which
consists of Sections 1�4 of [40] and is focussed on the study of the superlinear inde�nite
problem. Part II consists of the remaining chapters and deals with the di�usive Lotka�
Volterra competition system. In particular, Chapter 4 consists of Section 4 of [38], which
generalizes the main result of [42] and those of Sections 3 and 5 of [39]. Precisely, it
studies the singular perturbation problem in the competition model. Chapter 5 consists of
Sections 5, 6 and 7 of [38] and establishes the Induced Instability Principle and some of its
consequences. To conclude, Chapter 6 rearranges and adapts Sections 8 and 9 of [38] and
Sections 5 and 6 of [40], providing two new situations where the di�usive Lotka�Volterra
competition model exhibits a unique coexistence steady state. It should be emphasized
that [40] also provides one of the �rst uniqueness results for di�usive Lotka�Volterra models
of symbiotic type, though it has been left outside the scope of this dissertation, focused on
the competition model.

Next, we provide an overview on the main results established in the thesis, highlight-
ing their strengths while comparing them with those existing in the literature associated
with problems of similar nature. As it will become apparent soon, they answer to many
challenges of the research teams of W. M. Ni, one of the leading experts in PDE's.

1.1 Characterizing the regularity of the boundary

As soon as the di�usive competition problem studied in this thesis requires a place to be set,
an habitat for the species to perform such a competition, the �rst result in this dissertation
is focused on providing di�erent ways to describe its regularity. More precisely, it provides
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us with a number of equivalent characterizations of the regularity of a subdomain, Ω ⊂ RN ,
N ≥ 1, whose boundary, the edges of the inhabiting area, is assumed to be a topological
(N − 1)-manifold. For the adequate statement of this result, it is appropriate to introduce
notation related to what it is understood by projection onto the boundary of Ω, ∂Ω, and
distance with respect to ∂Ω. Although these de�nitions are easily understood when the
projection and the distance are taken along the normal vector �eld, and coincide with the
usual ones in RN , we need to generalize these concepts to cover arbitrary vector �elds as
those considered in this dissertation.

According to De�nition 2.2, given ν : ∂Ω → RN a vector �eld on ∂Ω, and U ⊂ RN ,
with ∂Ω ⊂ U , a neighborhood of ∂Ω, it is said that a function Πν : U → ∂Ω is a projection
onto ∂Ω along ν if it satis�es the next assumptions:

(i) (Identity on ∂Ω) Πν(x) = x for all x ∈ ∂Ω. This implies that Π2
ν = Πν .

(ii) (Constant along the vector �eld) Πν is constant along the ray x + λν(x) for every
x ∈ ∂Ω and λ ∈ R such that x+ λν(x) ∈ U . Analogously,

∂Πν

∂ν(Πν(x))
(x) = 0 for all x ∈ U .

It should be noted that every projection function onto ∂Ω admits an associated distance
function. Indeed, the distance to ∂Ω along ν can be de�ned through

distν(x, ∂Ω) :=
|x−Πν(x)|
|ν(Πν(x))|

for every x ∈ U ,

where | · | stands for the euclidean norm in RN . However, this distance function is not
smooth on ∂Ω, as it behaves much like the absolute value function, and hence, in practice,
one needs to consider the regularized distance function dν : U → R de�ned by

dν(x) :=

{
distν(x, ∂Ω) if x ∈ U ∩ Ω,
−distν(x, ∂Ω) if x ∈ U \ Ω.

As shown by Theorem 2.3 stated below, the regularity of the boundary can be char-
acterized in terms of the regularity of the projection and regularized distance function (in
(b)), or in terms of the existence and regularity of a function whose zeros describe ∂Ω (in
(d) and (f)).

Excerpt from Theorem 2.3 (Characterization of the regularity of ∂Ω).

Assume that Ω is an open subdomain of RN such that ∂Ω is a topological (N−1)-
manifold. Then, for every integer r ≥ 2, the next assertions are equivalent:

(a) ∂Ω is of class Cr.

(b) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) and, for every out-
ward vector �eld ν ∈ Cr−1(∂Ω;RN ), there exist an open subset U of RN ,
with ∂Ω ⊂ U , and a projection onto ∂Ω along ν, Πν : U → ∂Ω, of class
Cr−1. Moreover, the associated regularized distance function dν : U → R is
of class Cr.
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(d) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) and, for every out-
ward vector �eld ν ∈ Cr−1(∂Ω;RN ), there exist an open subset U of RN
with ∂Ω ⊂ U , and a function ψ ∈ Cr(U ;R) such that ψ(x) < 0 for all
x ∈ Ω ∩ U , ψ(x) > 0 for all x ∈ U \ Ω̄, and

min
x∈∂Ω

∂ψ

∂ν
(x) > 0.

In particular, ψ(x) = 0 for all x ∈ ∂Ω, by the continuity of ψ on U .

(f) There exist an open subset U of RN with ∂Ω ⊂ U and a function Ψ ∈
Cr(U ;R) such that Ω = {x ∈ U : Ψ(x) < 0}, ∂Ω = Ψ−1(0), and |∇Ψ(x)| =
1 for all x ∈ ∂Ω.

Theorem 2.3 seems to be the �rst result in the literature establishing the equivalence
between the regularity of ∂Ω by means of the de�nition using charts, and the regularity of
the distance function, or the fact ∂Ω = Ψ−1(0) for some smooth function, Ψ, de�ned on a
neighborhood of ∂Ω, such that Ψ(x) = 0 if and only if x ∈ ∂Ω. However, the problem of
determining the regularity of the standard distance function

dist(x, ∂Ω) := min
y∈∂Ω

|x− y|, x ∈ RN ,

from the regularity of Ω, is not new, as it received a great attention during the 20th century.
Indeed, Serrin [110, Le. 1 in Sec. 3] showed that if S is an N − 1 dimensional surface of
class C3, then the distance function is of class C2 in a neighborhood of S controled by the
normal curvature of S. So, a degree of regularity is lost. This result was later improved by
Gilbarg and Trudinger [50], who proved that the regularity is preserved for classes greater
or equal than C2. Precisely, their result reads as follows

Lemma 14.16 of [50]. Let Ω be bounded and ∂Ω ∈ Ck for k ≥ 2. Then, there
exists a positive constant µ depending on Ω such that dist(·, ∂Ω) ∈ Ck(Γµ), where

Γµ := {x ∈ Ω̄ |dist(x, ∂Ω) < µ}.

Some time later, Krantz and Parks [71, Ex. 4] showed that C2 is actually the minimal
regularity condition on ∂Ω so that dist(x, ∂Ω) is guaranteed to be well de�ned. Moreover,
they proved in the same paper that the regularity result can be extended to the case C1 if
there exits a neighborhood of ∂Ω where every point admits a unique nearest point in ∂Ω.

Theorem 1 of [71]. If M ⊂ RN , is a compact manifold of class C1 with dimen-
sion N − 1, and there exists µ > 0 such that every

x ∈ Uµ := {x ∈ RN |dist(x, ∂Ω) < µ}

admits a unique `nearest point' in M , then there exists an open neighborhood U
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of M such that the function

δ(x) :=

{
dist(x, ∂Ω) if x ∈ Ω,
−dist(x, ∂Ω) if x ∈ RN \ Ω,

restricted to U is of class C1.

To conclude this discussion on the di�erent approaches available to the problem of
determining the regularity of the distance function, we should highlight the work of Foote
[45], who provided free-coordinate proofs of Theorems 1 and 2 of Krantz and Parks [71],
as well as the contributions of Li and Nirenberg [76], who established that if Ω is a domain
in a smooth complete Finsler manifold with ∂Ω ∈ Ck,a, for some 0 < a ≤ 1 and k ≥ 2, and
G is the largest open subset of Ω such that, for every x ∈ G, there exists a unique `closest
point' from ∂Ω to x (measured in the Finsler metric), then the distance function from ∂Ω

is in Ck,aloc (G ∪ ∂Ω).

Besides providing us with the �rst characterization of the regularity of ∂Ω through the
regularity of the distance functions, Theorem 2.3 also seems to incorporate the conormal

vector �eld into the regularity problem for the �rst time. But �rst, let us introduce the
concept of conormal vector �eld associated to an operator in Ω. Assume that Ω is of
class C2 and denote by n its normal vector �eld. Then, any uniformly elliptic operator in
divergence form, namely

L := −div(A∇·) + b∇+ c

with A ∈ Msym
N (C1(Ω̄)), b ∈ M1×N (C(Ω̄)) and c ∈ C(Ω̄), admits an associated conormal

vector �eld

ν := An,

which is the most appropriate one to use when introducing the Robin boundary conditions.
According to Theorem 2.3, since ∂Ω is of class C2, there exists an associated conormal

projection, of class C1, and a conormal distance, of class C2, along the outward vector
�eld ν. Despide the intuitiveness of these notations, a search in the Web of Science Core

Collection shows no results for the terms `conormal distance' and `conormal projection' ,
except for [41], though it shows 149 entries when combining `conormal' and `boundary'.
Hence, there is no doubt that the concepts of conormal projection and conormal distance,
as well as the problem of their regularities, are introduced and analyzed for the �rst time
in Theorem 2.3, which was established in [41].

Before enunciating some of the most important implications of Theorem 2.3, we should
remark that, as far as concerns the use of the di�erent characterizations of the regularity of
∂Ω in the literature, although (a) is the most extended condition in di�erential geometry to
discuss the regularity of a manifold, (f) is the condition used in some classical PDE papers,
like in the works of Howes [58, 59, 60], De Santi [30], or Cantrell and Cosner [18]. Actually,
condition (f), or equivalently (e), are crucial in the PDE framework when dealing with
non-classical boundary conditions, as well as in constructing some special supersolutions,
as it will become apparent below. However, it is quite surprising that its systematic use
has not been yet popularized in the existing literature.
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Besides the interest that Theorem 2.3 may deserve in di�erential geometry, as pointed
out in the previous comments, it plays a crucial role when dealing with problems in partial
di�erential equations. In particular, with those subject to non-classical Robin boundary
conditions, i.e., those whose boundary operator has the form

R :=
∂

∂ν
+ β = 〈A∇·,n〉+ β = 〈∇·, An〉+ β on ∂Ω,

where the function β ∈ C(Ω̄) can change sign (non-classical), and ν := An is the conormal
vector �eld associated to the operator L. One may think of problems of the form{

(L+ ω)u = f in Ω,
Ru = 0 on ∂Ω,

or

{
Lu = uh(u, x) in Ω,
Ru = 0 on ∂Ω,

with appropriate functions f ∈ L2(Ω) and h ∈ C1(R × Ω) such that h decreases in u uni-
formly in Ω̄. In these settings, the constant functions do not provide us with supersolutions
anymore, as they used to do in the classical case when β ≥ 0. This is a serious shortage, as
they are very common to prove the existence of solutions through the method of sub and
supersolutions. However, Lemma 2.7, by means of the characterization provided by Theo-
rem 2.3, allows us to solve this problem by constructing the supersolutions as multiples of
a function of the form

Eµ(·) := exp(−µ dν(·)),

for some µ ≥ 0 depending on the norm of the outward vector �eld ν and the minimum of
β. The function Eµ is of class C2 in a neighborhood of ∂Ω as soon as ∂Ω is of class C2,
and it can be easily extended to the interior of Ω with the required regularity by means of
cut-o� functions.

Another application of Theorem 2.3 consists on transforming a non-classical problem,
where β changes of sign, into a classical one, with the associated β non-negative, in such
a way that the equation preserves its structure and main properties. As suggested by the
previous example with the supersolution, and has already been established by Theorem
2.6, this can be achieved in a logistic type equation through a change of variables of the
type

u = Eµw.

In the setting of this dissertation, such a change transforms the problem{
dLu = uh(u, x) in Ω,
Bu = 0 on ∂Ω,

into

{
dLEµw = w hEµ(w, x) in Ω,
BEµw = 0 on ∂Ω,

with both L and LEµ being uniformly elliptic di�erential operators in divergence form, h
and hEµ satisfying nearly the same substantial hypothesis, and B and BEµ being boundary
operators of non-classical and classical type, respectively.

The previous trick of considering a function like Eµ to prove the existence and unique-
ness of weak solutions for linear BVP's goes back to Theorem 3.3 of López-Gómez [87],
which reads as follows.
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Adapted from Theorem 3.3 of [87]. Suppose that Ω is a subdomain of RN ,
N ≥ 1, of class C1, L is a uniformly elliptic operator in divergence form, and
let B stand for a non-classical boundary operator of mixed type. Assume that a
function ψ ∈ C2(Ω̄) exists such that

min
x∈∂Ω

∂ψ

∂ν
(x) > 0. (1.1)

Then, then there exists ω0 ∈ R such that, for every ω > ω0 and f ∈ L2(Ω) the
problem {

(L+ ω)u = f in Ω,

Bu = 0 on ∂Ω,
(1.2)

possesses a unique weak solution

u := (L+ ω)−1f ∈W 1,2
ΓD

(Ω).

Here ΓD stands for those components of ∂Ω where the boundary operator B is of
Dirichlet type.

As a �rst step towards the proof of this result, Lemma 3.1 of [87] establishes the existence of
the function ψ satisfying (1.1) if Ω is of class C2, which corresponds to the step (a) implies
(d) of Theorem 2.3 for the C2-case. Immediately after Lemma 3.1 of [87], the change of
variable

u = Eµv := exp(µψ) v,

is performed, for certain µ > 0, so that problem (1.2), which was of non-classical type, can
be transformed into the equivalent classical problem{

(LEµ + ω)v = f
Eµ

in Ω,

BEµv = 0 on ∂Ω,
(1.3)

where BEµ has the (classical) coe�cient βEµ ≥ 0. As a consequence, the celebrated theorem
of Lax and Milgram [75], which lies on Theorem 2.1 of Gårding [49], can be applied to
(1.3), hence providing us with the existence result for (1.2).

Although the original idea of considering a supersolution of exponential type, E, of the
linear problem goes back to López-Gómez [87], using the change of variable v = u/H for
some positive function H such that LH ≥ 0 in Ω, for transforming an elliptic operator L
with a coe�cient c changing of sign into another one,

LH = −div(A∇·) + bH∇+ cH

with cH = LH/H ≥ 0, had been already used by Protter and Weinberger [107] to prove
their generalized maximum principle from the Hopf's maximum principle; López-Gómez
adapted that idea to transform, simultaneously, the boundary operator, and, at the end
of the day, to characterize, whether or not the function H exists, which remained an open
enigma in the celebrated book of Protter and Weinberger [107] (see López-Gómez [86]).

The last, but not less important, application of Theorem 2.3 consists in providing ap-
propriate approximations of continuous functions through functions satisfying a certain
boundary estimate related to the Robin boundary operator R. Indeed, Lemma 2.9 estab-
lishes that, given a function f ∈ C(Ω̄), for every ε > 0 there are functions Ψ1,Ψ2 ∈ C2(Ω̄)
such that
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f(x)− ε ≤ Ψ1(x),Ψ2(x) ≤ f(x) + ε for every x ∈ Ω̄,

with
RΨ1(x) > 0 and RΨ2(x) < 0 for all x ∈ ∂Ω.

This technical tool plays a pivotal role in the proof of the singular perturbation problem
for the logistic equation which is introduced below.

1.2 Singular perturbations for sublinear logistic equations

Another main result of this thesis ascertains the limiting pro�le, as d > 0 decreases to zero,
of the maximal non-negative solution of the di�usive logistic problem{

dLu = uh(u, x) in Ω,
Bu = 0 on ∂Ω,

(1.4)

where h(u, x) is a non-linear continuous function in x ∈ Ω̄, of class C1 in u ∈ R, strictly
decreasing in u ≥ 0, among some other technical assumptions detailed at the beginning
of Chapter 2. In (1.4), L is an uniformly elliptic di�erential operator in Ω in divergence
form, i.e.,

L := −div(A∇·) + b∇+ c (1.5)

with A ∈Msym
N (C1(Ω̄)), b ∈M1×N (C(Ω̄)) and c ∈ C(Ω̄).

Throughout this dissertation, Ω ⊂ RN , N ≥ 1, is assumed to be of class C2, and the
boundary operator, B, is allowed to be of non-classical mixed type, i.e., the components of
∂Ω are assumed to be distributed in two disjoint sets, ΓD and ΓR, so that B is the Dirichlet
boundary operator on ΓD, i.e.,

Bu := Du = u = 0 on ΓD for every u ∈W 2,p(Ω), p > N, (1.6)

whereas B as a non-classical Robin-type boundary operator on ΓR, i.e.,

Bu := Ru = 〈∇u,An〉+ βu = 0 on ΓR, (1.7)

where β ∈ C(ΓR) and n stands for the outward unit normal vector �eld along ∂Ω. The
boundary operator B is non-classical in the sense that β can change sign.

Figure 1.1: Plot of of the inhabiting territory distinguishing between the several compo-
nents of ∂Ω where B acts as a Dirichlet or Robin boundary operator, i.e., Γ1

D and Γ2
D, and

Γ1
R and Γ2

R, respectively. Here ΓD = Γ1
D ∪ Γ2

D and ΓR = Γ1
R ∪ Γ2

R.

The main perturbation result for the di�usive logistic equation, stated in Theorem 2.21,
establishes that the maximal non-negative solution of (1.4) converges, as d decays to zero,
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to the maximal non-negative solution of the equation obtained by switching o� to zero the
di�usion rate, d, i.e.,

uh(u, x) = 0, x ∈ Ω̄.

It is worth-mentioning that, for every x ∈ Ω̄, the maximal non-negative solution of this
algebraic equation is the unique linearly stable, or linearly neutrally stable, non-negative
steady state of the kinetic counterpart of (1.4), i.e.,

u′(t) = u(t)h(u(t), x), t ∈ (0,+∞),

which actually is a global attractor with respect to its component-wise positive solutions.
For the sake of simplicity in stating our theorem, in order to clarify as much as possible

the challenges that we had to overcome to get it, as well as its main advantages and
improvements with respect to the previous existing results, we will focus our attention into
the simplest paradigmatic prototype equation{

dLu = λ(x)u− a(x)uq in Ω,
Bu = 0 on ∂Ω,

(1.8)

where q ≥ 2, d > 0, λ ∈ C(Ω̄), and a ∈ C(Ω̄, (0,+∞)), which holds for the special choice

h(u, x) = λ(x)− a(x)uq−1.

Under certain circumstances, in particular when maxΩ̄ λ > 0, the model admits a unique
positive solution for su�ciently small d > 0. Subsequently, we denote by θ{d,λ,a} the
maximal non-negative solution of (1.8). When switched o� to zero the di�usion rate, d, in
(1.8), we are lead to a family of ordinary di�erential equations parameterized by x ∈ Ω̄.
These are the kinetic/non-di�usive problems associated to (1.8), which are explicitly given
by {

u′(t) = λ(x)u(t)− a(x)uq(t) t ∈ (0,+∞),
u(0) = u0 ≥ 0,

(1.9)

whose steady states are u = 0, and

u = q−1

√
λ(x)

a(x)
as soon as λ(x) > 0.

Thus, the maximal non-negative steady state of (1.9), which is actually the unique linearly
stable one if λ(x) 6= 0, is provided by

u = q−1

√
λ+(x)

a(x)
,

where λ+ denotes the positive part of λ, i.e.,

λ+ := max{λ, 0}.

Note that u = 0 is linearly neutrally stable if λ(x) = 0. In this setting, the next result
follows as a very special case of Theorem 2.21, which is not only of interest in its own,
but it plays a crucial role to prove the main singular perturbation result for the di�usive
competition model.
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Corollary of Theorem 2.21 (Singular perturbation for the equation).

Given a compact subset, K, of Ω ∪ Γ+
R ∪ λ

−1
+ (0), we have that

lim
d↓0

θ{d,λ,a} =
q−1

√
λ+

a
uniformly in K.

Here, Γ+
R denotes the union of the components of ΓR where λ is everywhere

positive.

Next, let us provide an overview on the perturbation problem for the di�usive logistic
equation. To the best of our knowledge, the �rst singular perturbation result dealing with
this kind of equations goes back to Result (A) of Berger and Fraenkel [10], which analyzes
the problem {

ε2∆u+ u− g2(x)u3 = 0 in Ω,
u = 0 on ∂Ω,

(1.10)

where Ω ⊂ RN , N ≤ 3, is of class C∞, and g ∈ C∞ is strictly positive in Ω̄. The
precise result, which is proved in Sections 3 and 4 in [10] through the method of matched
asymptotic expansions, reads as follows.

Result (A) of [10]. For su�ciently small values of ε, the problem (1.10) has a
unique smooth positive solution u(x, ε) which tends to 1/g(x) as ε→ 0, outside a
narrow boundary layer of width O(ε) concentrated near Ω.

It should be noted that this result deals for the �rst time with the boundary layer that arises
when considering the singular perturbation result under Dirichlet boundary conditions in
the logistic equation, estimating the width of that layer in terms of the di�usion coe�cient.
However, it does not allows the kinetic counterpart of (1.10) to exhibit di�erent linearly
stable steady states in di�erent regions of Ω̄, which would imply that there is a region
in Ω where the kinetic model exhibits a linearly neutraly stable steady state. Actually,
even though shortly later De Villiers [31], Fife [43], and Fife and Greenlee [44] sharpened
the result of Berger and Fraenkel [10] by allowing more general non-linearities, the kinetic
counterpart of the di�usion problem was still assumed to posses a unique steady state
being linearly stable in the whole Ω̄. For instance, De Villiers [31] obtained the singular
perturbation result for {

ε2∆u+ g(x, u) = 0 in Ω,
u = 0 on ∂Ω,

with N ≥ 1 and g ∈ C∞(Ω̄×R) admitting a strictly positive function T ∈ C(Ω̄) (the steady
state) such that

g(x, T (x)) = 0 and ∂ug(x, T (x)) < 0 for all x ∈ Ω̄,

and, for every s ∈ ∂Ω and ξ ∈ [0, T (s)),∫ T (s)

ξ
g(s, y) dy > 0.
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On the other hand, Fife [43] established the singular perturbation result for{
ε2div(A(x, ε)∇u)u− g(x, u, ε) = 0 in Ω,
u = ϕ on ∂Ω,

(1.11)

where Ω, A(x, ε), ϕ and g(x, u, ε) are of class C∞ and such that, for every x ∈ Ω̄, there
exists u0(x) for which

g(x, u0(x), 0) = 0 and ∂ug(x, u0(x), 0) > 0 for all x ∈ Ω̄,

and, for every x ∈ ∂Ω and k 6= ∅ in between u0(x) and ϕ(x),∫ k

u0(x)
g(x, u, 0) du > 0. (1.12)

Finally, Fife and Greenlee [44] established that an interior transition occurs for (1.11) if
there are two functions, u0,1 and u0,2, of class C∞ with u0,1(x) 6= u0,2(x), such that

g(x, u0,i(x), 0) = 0 and ∂ug(x, u0,i(x), 0) < 0 for all x ∈ Ω̄, i = 1, 2,

and an integral condition of the type of (1.12) holds. In particular the transition between
these solutions occurs in the curve originated by the zeros of the function

J(x) :=

∫ u0,2(x)

u0,1(x)
g(x, u, 0) du.

It should be remarked that the singular perturbation problem studied by Fife and Greenlee
[44] is rather di�erent from the one analyzed in this dissertation since the non-linearity is
assumed to exhibit two separate linearly stable curves of solutions instead of two curves of
steady states crossing each other and inter-exchanging their stability character. It deserves
a special attention the fact that the non-linearity in the works of Fife [43] and Fife and
Greenlee [44] depends smoothly on the di�usion parameter ε2. Although Theorem 2.21
does not take into consideration this type of behavior, the main singular perturbation
result for the di�usive competition Lotka�Volterra model established in this dissertation
through Theorem 4.4 requires from that kind of results. Some additional light will be shed
on this issue later in this introduction.

Continuing this review on the previous approaches to the singular perturbation problem
for the di�usive logistic equation, we should mention the work of Howes [59, 58, 60] who
studied the problem under Robin boundary conditions by using, among other techniques,
the method of sub and supersolutions. Precisely, Howes considers, in the �rst part of [58],
the problem {

ε∆u = g(x, u) in Ω,
∇F (x)∇u(x) + µ(x)u(x) = ϕ(x) on ∂Ω,

(1.13)

where
Ω := {x ∈ RN : F (x) < 0}, N ≥ 2,

and ∂Ω := F−1(0) for some function F ∈ C2,α(RN ), with 0 < α < 1, such that

‖∇F (x)‖ = 1 for all x ∈ ∂Ω, and max
Ω̄
‖∇F (x)‖2 = K ∈ R.
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Moreover, the author also assumes that µ, ϕ ∈ C2,α(∂Ω), with µ ≥ 0. Note that thanks
to our characterization of the regularity of the boundary established in Theorem 2.3, the
hypothesis on F can be equivalently stated by saying, simply, that ∂Ω is of C2; ∇F being
the normal vector �eld on ∂Ω.

In particular, Howes proves, through Theorem 2.1 of [58], that if g is smooth enough,
say of class C0,α in x and of class C1 in u, and there exists u0 ∈ C2,α(Ω̄) such that

g(x, u0(x)) = 0 for all x ∈ Ω̄ and ∂ug(x, u0(x)) > 0 for all x ∈ Ω̄,

i.e., u0 is (I0)-stable using the notation of the author, then (1.13) admits a solution u(x, ε)
converging to u0(x) as ε→ 0 for every x ∈ Ω̄. Hence, the perturbation result holds for the
choice

g(x, u) := −λ(x)u+ a(x)uq, with q ≥ 2, λ, a ∈ C2,α(Ω̄, (0,+∞)),

providing uniform convergence to q−1

√
λ
a in Ω̄, but also for the choice

g(x, u) := u3 − u,

providing, in this case, the existence of two solutions converging to 1 and −1 uniformly
in Ω̄, respectively, as ε → 0. This last result, stated in Example 2.2 of [58], lies closer to
the type of results of Fife and Greenlee [44], and remains outside the general scope of this
dissertation.

It should be noted that Howes [59, 58] also analyzes the singular perturbation problem
when the perturbation parameter only a�ects the highest order derivatives of the di�eren-
tial operator, so that a partial di�erential equation is still obtained at ε = 0. Such study
is carried over both for Dirichlet [59, 60] and Robin [58] boundary conditions. However,
this kind of results remain outside the general scope of this dissertation.

On the subsequent few years all these �ndings were improved by Angenent [6], De
Santi [30], Clément and Sweers [22], and Kelley and Ko [68], among others, but either
these authors still considered the situation of a smooth curve u∗(x) that is a linearly stable
solution of

u′(t) = g(x, u(t)), t ∈ (0,+∞),

for every x ∈ Ω̄, or they studied interior layers (much like in the work of Fife and Greenlee
[44]), or they assumed that the perturbation parameter was only a�ecting the highest order
derivatives like in the work of Howes [59, 58]. In the later case, one might think about the
concept of viscosity solution.

It was not until the work of Cantrell and Cosner [18] (see Theorems 4.7 and 4.8 therein,
as well as the comments in between them), that a change of stability between intersecting
solutions of g(x, u) = 0 happening inside Ω was taken in consideration. Shortly later, these
results were improved substantially by Furter and López-Gómez [48]. Their main singular
perturbation result, established for the equation{

−d∆u = λ(x)u− a(x)u2 in Ω,
u = 0 on ∂Ω,

(1.14)

can be stated as follows:
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Theorem 3.6 of [48]. Assume that λ, a ∈ L∞(Ω̄) with supΩ λ > 0 and a ≥ k >
0. Let Ωc ⊂ Ω be an open set such that λ and a are continuous in Ωc. Then

lim
d↓0

θd =
λ+

a

uniformly on compact subsets of Ωc.

Finally, the singular perturbation result was proved, almost simultaneously, for (1.14)
under non-�ux boundary conditions, through Lemma 2.4 of Hutson, López-Gómez, Mis-
chaikow and Vickers [63]. As under Neumann boundary conditions there is no boundary
layer, the uniform convergence in Ω̄ is guaranteed.

As noticed from the previous general overview on the singular perturbation problem
for the di�usive logistic equation, one of the main di�erences observed between the re-
sult provided herein and those established previously in the literature has to do with the
generality of the di�erential operator and the non-classical mixed boundary conditions im-
posed through this dissertation. Considering a uniformly elliptic operator, L, instead of
−∆, makes more di�cult to control the exact point where the maximum of the associated
principal eigenfunctions is attained. This di�culty in�uences, strongly, the construction
of appropriate subsolutions, and is solved herein by means of a technical device introduced
in the proof of Theorem 4.1 of López-Gómez [83].

Moreover, this dissertation deals with non-classical mixed boundary conditions, where
the coe�cient β can take negative values. As already pointed out when presenting Theorem
2.3, this technical trouble can be overcome through a technical device introduced in Lemma
3.1 of López-Gómez [87]. In particular, the regularity of ∂Ω allows us to transform the
problem (1.4), or (1.8), into another (classical) problem of identical nature with β ≥ 0.

It should be emphasized that dealing with mixed non-classical boundary conditions
introduces the combined di�culties inherent to both problems, Robin and Dirichlet, into
our setting. So, the underlying problem becomes substantially more intricate. Not to
mention the extremely delicate issue related to the greatest generality of the non-linearity,
uh(x, u). The fact that both curves of steady states of the associated kinetic problem
u′ = uh(x, u) intersect each other, inter-exchanging their stabilities characters, increases
substantially the di�culty of constructing a global supersolution satisfying the appropriate
boundary conditions.

To conclude the analysis of the singular perturbation problem, like in the works of
Fife [43], and Fife and Greenlee [44], this dissertation also deals with the problem of
ascertaining the limiting pro�le of the di�usive logistic equation when the non-linearity
depends appropriately on the di�usion parameter. In particular, the following results are
obtained for the problem{

δLu = γ(δ,η)(x)u−m(δ,η)(x)u2 in Ω,

Bu = 0 on ∂Ω,

and play a crucial role in the proof of the singular perturbation problem for the di�usive
Lotka�Volterra model. The �rst of them reads as follows.
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Theorem 4.2 (Singular perturbation for the di�usive logistic equation
with di�usion dependent coe�cients I).

Consider γ,m ∈ C(Ω̄), and families γ(δ,η),m(δ,η) ∈ C(Ω̄) such that

lim
(δ,η)→(0,0)

γ(δ,η) = γ and lim
(δ,η)→(0,0)

m(δ,η) = m uniformly in Ω̄.

Then,

lim
(δ,η)→(0,0)

θ{δ,γ(δ,η),m(δ,η)} =
γ+

m

uniformly on compact subsets of Ω ∪ Γ+
R ∪ (γ+)−1(0).

This result assumes the most natural, and actually most demanding, condition for
the family of function coe�cients. Namely, uniform convergence in Ω̄. However, such
convergence cannot be returned in those components of ΓD where B is a Dirichlet boundary
operator, because of the formation of boundary layers in all those components of the
boundary. Thus, one may want to get rid of this assumption.

The next result, whose proof is much more subtle, changes the uniform convergence in
the closure of the whole domain, Ω̄, by the uniform convergence on compact subsets of an
appropriate (not too restrictive) set

O ⊂ Ω ∪ Γ+
R ∪ (γ+)−1(0)

obtaining identical convergence in return. However, it does require to impose uniform
bounds for the coe�cients in Ω̄.

Theorem 4.3 (Singular perturbation for the di�usive logistic equation
with di�usion dependent coe�cients II).

Consider γ,m ∈ C(Ω̄), two families γ(δ,η),m(δ,η) ∈ C(Ω̄), and O ⊂ Ω∪Γ+
R∪γ

−1
+ (0),

an open subset, with respect to the induced topology, such that either Ō ∩Γ+
R = ∅,

or Ō∩Γ+
R consists of components of Γ+

R, each one contained in either O or RN \O.
Assume that

lim
(δ,η)→(0,0)

γ(δ,η) = γ and lim
(δ,η)→(0,0)

m(δ,η) = m

uniformly on compact subsets of O, and there exist k > 0 and M > 0 such that,
for every x ∈ Ω̄,

m(δ,η)(x) ≥ k and
γ(δ,η)(x)

m(δ,η)(x)
≤M for su�ciently small δ, η > 0.

Then,

lim
(δ,η)→(0,0)

θ{δ,γ(δ,η),m(δ,η)} =
γ+

m

uniformly on compact subsets of O.
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1.3 The superlinear inde�nite problem

As it has just been pointed out before the statement of the previous two singular per-
turbation results, the analysis on the perturbation problem for the sublinear equation,
besides its evident interest on its own, it is imperative to deal with the di�usive spatially
heterogeneous competing species model.

The analysis performed in Chapter 3 follows a quite di�erent direction. Instead of
providing us with the necessary intermediate results to be used in the context of the
system, it focuses attention in establishing a series of non-trivial consequences from the
Picone identity, a variational identity going back to Picone [106] which has shown to be a
astonishingly powerful tool in analyzing the existence and stability of the positive solutions,
not only for the equation, but, rather crucially, for competitive and cooperative systems.

The Picone identity has been extended to di�erent settings by Kreith [72], Berestycki,
Capuzzo-Dolcetta and Nirenberg [9], and López-Gómez [84], among other authors. In
particular, a generalized version of the Picone identity is stated in this dissertation through
Theorem 3.1, which establishes that if u, v ∈ W 2,p(Ω), p > N , with v

u ∈ C(Ω̄), L is self-
adjoint, and g ∈ C1(R), then∫

Ω
g
(v
u

)
[uLv − vLu] =

∫
Ω
u2g′

(v
u

)
〈∇v

u
,A∇v

u
〉 −

∫
∂Ω
g
(v
u

)
[DuRv −DvRu]. (1.15)

In particular, (1.15) is used in Chapter 3 to study the existence and uniqueness of stable
positive solutions for the superlinear inde�nite problem{

Lu = λu− a(x)f(u) in Ω,
Bu = 0 on ∂Ω,

(1.16)

where f ∈ Cr(R), r ≥ 2, with f(0) = 0 and f 6≡ 0, a ∈ C(Ω̄) may change sign, and λ ∈ R
is regarded as a bifurcation parameter. As our results invoke the Picone identity, L is
required to be a uniformly elliptic self-adjoint operator in divergence form

L := −div(A∇·) + c,

i.e., L is de�ned as in (1.5) with b = 0. On the positive side, B is assumed to be a
general non-classical boundary operator of mixed type, i.e., the boundary operator B and
the associated components of ∂Ω, ΓD and ΓR, are de�ned much like in (1.6) and (1.7).

Theorem 3.6 is the �rst result of this dissertation using Picone identity to provide some
necessary conditions for the existence of positive solutions for the superlinear inde�nite
problem (1.16). It extends Proposition 2.2 of Gómez-Reñasco and López-Gómez [51, 52],
and Proposition 9.2 of López-Gómez [89] to cover the case of non-classical mixed boundary
conditions. To formulate this result we need to introduce the notation

σ0 := σ1[L;B,Ω]

for the principal eigenvalue of the triple [L;B,Ω], i.e., the lowest one associated to the
linear eigenvalue problem {

Lw = σw in Ω,
Bw = 0 on ∂Ω.
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By Theorem 7.7 of López-Gómez [88], σ0 is algebraically simple, strictly dominant, and it
is the unique eigenvalue associated with it there is a positive eigenfunction, ϕ, often called
principal. Actually, ϕ� 0 in the sense that

ϕ(x) > 0 for all x ∈ Ω ∪ ΓR and
∂ϕ

∂n
(x) < 0 for all x ∈ ΓD.

Throughout this dissertation, we denote by ϕ0 > 0 the unique principal eigenfunction
associated to σ0 normalized so that ‖ϕ0‖2 = 1. Using these notations, Theorem 3.6 can
be stated as follows.

Theorem 3.6 (Non-existence for λ ≥ 0 under subcritical bifurcation).

Assume that q > 1 exists such that f(u) := uq for every u ≥ 0 and

Sq =

∫
Ω

a(x)ϕq+1
0 (x) dx ≤ 0.

Then, λ < σ0 if (1.16) admits a positive solution, (λ, u).

By Theorem 3.2 and Proposition 3.3, the hypothesis on the sign of Sq determines the
nature of the local bifurcation of the curve of positive solutions from the trivial branch,
u ≡ 0, at λ = σ0, as a straightforward application of the main theorem of Crandall and
Rabinowitz [24]. According to them, if f ∈ Cr(R), r ≥ 2, satis�es f(0) = f ′(0) = 0, and
there exists q ≥ 1 such that

Sq := lim
s→0+

f(s)

sq

∫
Ω
a(x)ϕq+1

0 (x) dx

is �nite, then a Cr−1 curve of positive solutions of (1.16) bifurcates from the trivial branch
u ≡ 0 at λ = σ0. Moreover, the bifurcation is supercritical if Sq > 0, and subcritical if
Sq < 0. Thus, Theorem 3.6 establishes that if the function f is of monomial type and
the bifurcation at λ = σ0 is subcritical, then (1.16) does not admits positive solutions for
λ ≥ σ0, as illustrated by Figure 1.2(a) below.

(a) f(u) = uq for some q ≥ 2 and Sq < 0. (b) f arbitrary and Sq > 0 for some q > 1.

Figure 1.2: Plot of the bifurcation diagram for (1.16), showing that if f(u) = uq for some
q ≥ 2, and the bifurcation is subcritical, then (1.16) does not admits positive solutions for
λ ≥ σ0 as a consequence of Theorem 3.6.
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The second important application of our generalized Picone identity is closely related
to the problem of analyzing the shape of the curve of positive solutions and its relation
with the linear stability character of the positive solutions �lling it. The linear stability
character of a solution (λ0, u0) of (1.16) is determined by the sign of the principal eigenvalue
of the linearization of (1.16) at (λ0, u0), which is given through

σ1[L − λ0 − a(x)f ′(u0)u0;B,Ω], (1.17)

with associated principal eigenfunction ψ0 ∈ W 2,p(Ω), for p > N , normalized so that
‖ψ0‖2 = 1. Indeed,

(i) (λ0, u0) is linearly neutrally stable if σ1[L − λ0 − a(x)f ′(u0)u0;B,Ω] = 0,

(ii) (λ0, u0) is linearly stable if σ1[L − λ0 − a(x)f ′(u0)u0;B,Ω] > 0,

(iii) (λ0, u0) is linearly unstable if σ1[L − λ0 − a(x)f ′(u0)u0;B,Ω] < 0.

Actually, by the principle of linearized stability of Lyapunov, (λ0, u0) is exponentially
asymptotically stable if it is linearly stable, while it is unstable if it is linearly unstable.
The local character of (λ0, u0) when it is linearly neutrally stable depends on the particular
nature of the nonlinearities in the setting of the di�erential equation.

For an arbitrary function f , if a positive solution, (λ0, u0), is linearly stable, by the
implicit function theorem, the curve of positive solutions through (λ0, u0) is always strictly
increasing in u as λ increases (see Figure 1.3(a)). However, the behavior of the component
on linearly unstable and linearly neutrally stable solutions is more subtle. In particular,
Theorem 3.7, provides us with the local structure and the shape of the component of
positive solutions through any linearly neutrally stable positive solution of (1.16), (λ0, u0),
when f is of monomial type, establishing that (λ0, u0) is a quadratic subcritical turning
point as illustrated in Figure 1.3(b).

(a) f arbitrary and (λ0, u0) linearly stable. (b) f(u) = uq for some q ≥ 2 and (λ0, u0)
linearly neutrally stable.

Figure 1.3: Plot of the curve of positive solutions of (1.16) near a point (λ0, u0) depending
on its linear stability character.

Theorem 3.7 extends Proposition 3.2 of Gómez-Reñasco and López-Gómez [51, 52],
and Proposition 9.7 of López-Gómez [89], to cover the general case of non-classical mixed
boundary conditions, and it can be stated as follows.
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Excerpt from Theorem 3.7 (Subcritical turning point character).

Assume that q ≥ 2 exists such that f(u) = uq for every u ≥ 0. Let (λ0, u0) be a
linearly neutrally stable positive solution of (1.16). Then, there exist ε > 0 and
two functions of class C2,

λ : (−ε, ε)→ R, and u : (−ε, ε)→W 2,p
B (Ω)

such that

(λ(0), u(0)) = (λ0, u0), (λ′(0), u′(0)) = (0, ψ0), λ′′(0) < 0,

for which the curve (λ(s), u(s)) provides us with the set of solutions of (1.16) in
a neighborhood of (λ0, u0). Moreover, shortening ε, if necessary, u(s) is linearly
stable if s ∈ (−ε, 0) and linearly unstable if s ∈ (0, ε).

For applying the Picone identity in the proof of Theorems 3.6 and 3.7 above, the
hypothesis that the function f is a monomial is crucial. However, a priori, this should
not entail that these results should not possess some variants for more general functions
f . Surprisingly, one of the main novelties of this dissertation establishes that Theorems
3.6 and 3.7 are optimal as they are stated, in the sense that even in the very special case
when f is a small perturbation of a monomial function by another monomial function, the
inde�nite problem (1.16) can admit, simultaneously, the following types of solutions:

(i) Positive solutions for λ > σ0, even if the bifurcation from u = 0 is subcritical.

(ii) Neutrally stable solutions that are supercritical turning points.

The precise optimality result reads as follows.

Corollary of Theorem 3.8 (Optimality of Theorems 3.6 and 3.7).

Assume that, for some 0 ≤ q1 < q2, the next estimate holds∫
Ω

a(x)ϕq1+1
0 (x) dx < 0 <

∫
Ω

a(x)ϕq2+1
0 (x) dx.

Then, there exists ν0 > 0 such that, for every ν ∈ (0, ν0), the problem{
Lu = λu− a(x)(νuq1 + uq2) in Ω,
Bu = 0 on ∂Ω,

admits positive solutions for values of the parameter λ at both sides of σ0.

Figure 1.4 shows an sketch of the proof of Theorem 3.8. If equation (1.16) is considered
only with f1(u) = νuq1 , then the bifurcation is subcritical, because∫

Ω
a(x)ϕq1+1

0 (x) dx < 0,

and Theorem 3.6 applies, regardless of the value of ν > 0!
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(a) Case f(x) = νuq1 with sub-
critical bifurcation and nonex-
istence of positive solutions for
λ ≥ σ0.

(b) Case f(x) = uq2 with su-
percritical bifurcation, where lin-
early neutrally stable positive so-
lutions are quadratic subcritical
folds.

(c) Case f(x) = νuq1 + uq2

with subcritical bifurcation, pos-
itive solutions for values λ >
σ0, and linearly neutrally stable
solutions that are supercritical
folds.

Figure 1.4: Plot of bifurcation diagrams sketching the construction of the example of
Theorem 3.8, which reveals the optimality of Theorems 3.6 and 3.7.

The bifurcation is still subcritical if we add a polinomial term of higher degree to f ,
i.e.,

f1,2(u) = νuq1 + uq2

with q2 > q1, for any value of ν > 0. On the other hand, if (1.16) is considered only with
f2(u) = uq2 , then the bifurcation is supercritical to a linearly stable curve, because∫

Ω
a(x)ϕq2+1

0 (x) dx > 0.

As a consequence the bifurcation curve associated to f1,2 bifurcates subcritically and, for
su�ciently small values of ν > 0, it perturbs from the curve associated to f2 at the right
side of σ0, as illustrated by Figure 1.4(c).

As for as concerns the feasibility of the hypothesis of Theorem 3.8, it is easily seen that
they are ful�lled even for the simplest choice q1 = 2 and q2 = 3, as shown by the next
example. Let us consider the one-dimensional problem with

Ω =
(
− π

2
,
π

2

)
, L = − d2

dx2
and B = D in ∂Ω (i.e., ΓR = ∅),

and
a(x) := cosx− 0.9 for every x ∈ Ω̄.

Under these assumptions we have that

σ0 = 1 and ϕ0(x) =
√

2
π cosx.

Thus, ∫
Ω
a(x)ϕ3

0(x) dx = 3
√

2
32 π

5/2 − 0.9
√

2
3 π

3/2 ' −0.04312 < 0

and ∫
Ω
a(x)ϕ4

0(x) dx = 4
15π

2 − 0.9 3
32π

3 ' 0.0157399 > 0.
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Hence, for every ν > 0,

S2 = lim
s→0+

νs2 + s3

s2

∫
Ω
a(x)ϕ3

0(x) dx = ν

∫
Ω
a(x)ϕ3

0(x) dx < 0.

Therefore, the curve of positive solutions bifurcates subcritically from the trivial branch
at λ = 1 and, according to Theorem 3.8, it possesses some points (λ, u) with λ > σ0 = 1.
As a consequence, such a curve must exhibit a supercritical turning point on a linearly
neutrally stable solution.

To conclude this study of the superlinear inde�nite logistic equation (1.16) with f(u) =
uq, u ≥ 2, we should remark that, as a consequence of Theorems 3.6 and 3.7, Theorem
3.11 establishes the existence and uniqueness of the linearly stable solution of (1.16). This
result adapts for non-classical boundary conditions of mixed type Theorem 3.4, Corollary
3.5 and Theorem 3.6 of Gómez-Reñasco and López-Gómez [51], Corollary 3.2, Theorem 3.3
and Theorem 4.1 of [52], and Theorem 9.9, Corollary 9.10, Theorem 9.11, Theorem 9.12
and Proposition 9.14 of [89], which were originally established for homogeneous Dirich-
let boundary conditions. In particular, our Theorem 3.11 establishes that the following
assertions hold:

(i) Any positive solution, (λ0, u0), of (1.16) with λ0 ≤ σ0 must be linearly unstable.

(ii) The problem (1.16) admits some linearly stable positive solution, (λ0, u0), if, and
only if, Sq > 0. Moreover, in such a case, λ0 > σ0.

(iii) If Sq > 0 and λ > σ0, then the unique positive linearly stable, or linearly neutrally
stable solution, of (1.16) is the minimal one.

(iv) If (1.16) admits a positive solution (λ0, u0) for some λ0 > σ0, then it admits a
minimal solution (λ0, umin).

Theorem 3.11 ultimately provides us with the global structure of the stable positive
solutions of (1.16) if f(u) = uq, for some q ≥ 2, through Theorem 3.12, which goes back to
Theorem 3.7 of Gómez-Reñasco and López-Gómez [51], Theorem 5.1 of [52] and Theorem
9.16 of [89]. It can be stated as follows.

Theorem 3.12 (Global structure of stable positive solutions).

Suppose that a(x) changes sign in Ω, q ≥ 2 exists such that f(u) = uq for all
u ≥ 0, and Sq > 0. Then, the supremum of the set of µ > σ0 for which (1.16)
possesses a positive solution for each λ ∈ (σ0, µ), λ∗, satis�es λ∗ ∈ (σ0,+∞).
Moreover, the set of linearly stable positive solutions of (1.16) consists of a C1

strictly increasing curve

C+ := {(λ, u(λ)) : λ ∈ (σ0, λ∗)}.

Furthermore, some of the next excluding options occurs:
(i) {u(λ)}λ∈(σ0,λ∗) is bounded in C(Ω̄), and then

u∗ := lim
λ↑λ∗

u(λ)



1.4. The singular perturbation problem for the competition system 21

is a linearly neutrally stable positive solution of (1.16) at λ = λ∗.

(ii) limλ↑λ∗ ‖u(λ)‖C(Ω̄) = +∞.
In both cases, (1.16) cannot admit any further positive solution for λ > λ∗.

Figure 1.5 shows an admissible plot of the two alternatives for the global structure of
the stable positive solutions of (1.16) when f is of monomial type and the bifurcation from
the trivial branch is supercritical, as a consequence of the previous result.

(a) Case (i): the problem (1.16) admits a
positive solution at λ = λ∗, which is linearly
neutrally stable.

(b) Case (ii): the problem (1.16) does not
admit any positive solution at λ = λ∗.

Figure 1.5: Plot of the global structure of the curve of positive solutions of (1.16) if
f(u) = uq for some q ≥ 2.

It should be noted that the example provided by Theorem 3.8 also shows the optimality
of Theorem 3.12, strengthening the value of the Picone identity as well as the accuracy of
the estimates that it provides. Actually, not surprisingly by the quasi-cooperative internal
structure of the model, in Chapter 6 the Picone identity also proves to be a useful tech-
nical tool to study the uniqueness of the coexistence state in the di�usive Lotka�Volterra
competition model.

1.4 The singular perturbation problem for the competition

system

Once the main singular perturbation result has been established for the single equation in
Chapter 2, this dissertation focuses attention in ascertaining the behavior of the solutions
of the Reaction-Di�usion model

∂u
∂t + d1L1u = λ(x)u− a(x)u2 − b(x)uv in Ω× (0,+∞),
∂v
∂t + d2L2v = µ(x)v − d(x)v2 − c(x)uv in Ω× (0,+∞),

B1u = B2v = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(1.18)

for su�ciently small di�usion rates, d1, d2 > 0. Note that, as soon as the model (1.18)
deals with biological or chemical species, we are only interested in those solutions with
u ≥ 0 and v ≥ 0.
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The uniformly elliptic operators L1 and L2 taking part in the setting of the model
(1.18) are assumed to be in divergence form, i.e., for i = 1, 2,

Li = −div(Ai∇·) +Bi∇+ Ci,

where Ai ∈ Msym
N (C1(Ω̄)), Bi ∈ M1×N (C(Ω̄)) and Ci ∈ C(Ω̄). Moreover, B1 and B2 are

allowed to be boundary operators of non-classical mixed type, i.e., for i = 1, 2,

Bi :=

{
Diu := u = 0 on ΓiD,
Riu := 〈∇u,Ain〉+ βiu = 0 on ΓiR,

for every u ∈W 2,p(Ω), p > N,

with βi ∈ C(ΓR). As illustrated by Figure 1.6, according to the type of the boundary
operator acting on each component of ∂Ω, one can split out ∂Ω into two ways:

∂Ω = Γ1
D ∪ Γ1

R and ∂Ω = Γ2
D ∪ Γ2

R,

where, for every i = 1, 2, ΓiD consists of the components of ∂Ω where the species i is subject
to homogeneous Dirichlet boundary conditions,

ΓiD =

niD⋃
j=1

Γi,jD , niD ≥ 1,

while ΓiR is made of the components of ∂Ω where the species i is subject to non-�ux
boundary conditions,

ΓiR =

niR⋃
j=1

Γi,jR , niR ≥ 1.

Note that, for every i = 1, 2, ΓiD and ΓiR are two disjoint subsets of ∂Ω, simultaneously
open and closed in the induced topology. Moreover, any of them could be empty. In such
a case, we take niD = 0, or niR = 0, respectively.

(a) The several components of ∂Ω for the
species u according to the behavior of the
boundary operator B1

(b) The several components of ∂Ω for the
species v according to the behavior of the
boundary operator B2

Figure 1.6: An admissible ∂Ω where each of its components has been classi�ed according
to the behavior of the boundary operators associated to the species u and v.

When the di�usion coe�cients, d1 and d2, are switched o� to zero, we come up with a
family (parameterized by x ∈ Ω̄) of classical competition models for two species

∂u
∂t = λ(x)u− a(x)u2 − b(x)uv in (0,+∞),
∂v
∂t = µ(x)v − d(x)v2 − c(x)uv in (0,+∞),

u(0) = u0, v(0) = v0,

(1.19)
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which where introduced by Lotka [78] and Volterra [114, 115] in their seminal works. Here,
the parameters λ, µ ∈ C(Ω̄) play the role of the growth rates of the species u and v,
respectively, if they are positive, whereas they stand for their death rates if λ(x) < 0
or µ(x) < 0. Moreover, the function coe�cients a, d ∈ C(Ω̄, (0,+∞)) measure the intra-
speci�c competition of each of the species, i.e., the competition among the individuals
of the same species. Finally, the coupling functions, b, c ∈ C(Ω, (0,+∞)), stand for the
inter-speci�c competition rates, as they measure the competition among the individuals of
the species u and v.

At every location point in the inhabiting territory, x ∈ Ω̄, the non-spatial, or non-

di�usive, or kinetic, model (1.19) may admit three di�erent types of steady states:

(i) One trivial steady state with both components vanishing, (u, v) = (0, 0),

(ii) Up to two semitrivial steady states, with only one positive component, which are
given by

(u, v) =

(
λ(x)

a(x)
, 0

)
if λ(x) > 0, and (u, v) =

(
0,
µ(x)

d(x)

)
if µ(x) > 0.

(iii) Coexistence steady states, which are those steady-state solutions, (u, v), with u > 0
and v > 0. The model (1.19) admits only one coexistence steady state, given by

(u, v) =

(
λ(x)d(x)− µ(x)b(x)

a(x)d(x)− b(x)c(x)
,
µ(x)a(x)− λ(x)c(x)

a(x)d(x)− b(x)c(x)

)
if the numerators and the denominator have the same sign, whereas (1.19) admits a
continuum of coexistence steady states

(uη, vη) =

(
η
λ(x)

a(x)
, (1− η)

µ(x)

d(x)

)
for η ∈ (0, 1),

if the numerators and the denominator vanish. In any other case the model (1.19)
cannot admit coexistence steady states.

The precise dynamics of the kinetic model (1.19) depends on the existence and linear
stability character of the semitrivial steady states, and, thus, on the values of the coef-
�cients λ(x), µ(x), a(x), b(x), c(x) and d(x). For example, if the model (1.19) does not
admits neither semitrivial nor coexistence steady states, i.e., if

λ(x) ≤ 0 and µ(x) ≤ 0.

then (0, 0) is a global attractor with respect to the component-wise non-negative solutions,
and hence, both species become extinct as time goes to in�nity. Figure 1.7(a) plots an
admissible phase portrait for this case.

On the contrary, none of the species become extinct, and thus the model is said to
exhibit permanence of both species, if both semitrivial steady states exist and they are
linearly unstable. In such a case there exists a unique coexistence steady state which is a
global attractor for the component-wise positive solutions of (1.19). This occurs when

λ(x) > 0, µ(x) > 0, λ(x)d(x) > µ(x)b(x) and µ(x)a(x) > λ(x)c(x).
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A paradigmatic plot of the phase portrait when permanence occurs is shown in Figure
1.7(b). Note that if the previous estimates hold, then

b(x)c(x) < a(x)d(x).

When this condition occurs, it is said that u and v compite with a low competition regime.

(a) Extinction of both species.
Choice: λ = µ = −1, a = b = 1, c = 5, d = 7

(b) Permanence of both species.
Choice: λ = µ = 1, a = d = 2, c = d = 1

Figure 1.7: Plot of the phase portraits for the Lotka�Volterra non-spatial model (1.19) for
(a) x ∈ Ωext and (b) x ∈ Ωper.

When both semitrivial steady states are linearly stable, then the model exhibits a
unique coexistence steady state, which is a saddle point. In such a case, it is said that the
model exhibits founder control competition, because the result of the competition depends
on the precise location of the initial values, (u0, v0). Indeed, the species u becomes extinct
if (u0, v0) is placed within the basin of attraction of (0, µ(x)/d(x)) (the upper half-quadrant
with respect to the stable manifold, W s, of the coexistence state), whereas the species v
is driven to extinction by u if (u0, v0) lies within the basin of attraction of (λ(x)/a(x), 0)
(the lower half-quadrant with respect to W s). In such a case, the coe�cients satisfy

λ(x) > 0, µ(x) > 0, λ(x)d(x) < µ(x)b(x) and µ(x)a(x) < λ(x)c(x).

Note that these estimates imply that

b(x)c(x) > a(x)d(x).

In this case, it is said that u and v compite with a high competition regime. Figure 1.8(a)
shows a prototypical plot of the phase space under founder control competition.

Finally, if one semitrivial steady state is linearly stable and either the other one does not
exist, or it is linearly unstable, then the model does not admit any coexistence steady state,
and the stable semitrivial steady state actually is a global attractor for the component-wise
positive solutions. Thus, in this case one of the competitors is driven to extinction by the
other. The one that prevails is said that dominates the dynamics. In particular, the species
u prevails if

λ(x) > 0, λ(x)d(x) > µ(x)b(x) and µ(x)a(x) < λ(x)c(x),
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whereas v prevails and u becomes extinct if

µ(x) > 0, λ(x)d(x) < µ(x)b(x) and µ(x)a(x) > λ(x)c(x).

A genuine example where the later occurs has been plotted in Figure 1.8(b).

(a) Founder control competition.
Choice: λ = µ = 1, a = d = 1, b = c = 2

(b) Dominance of the species v.
Choice: λ = µ = 1, a = b = 2, c = d = 1

Figure 1.8: Plot of the phase spaces for the Lotka�Volterra non-spatial model (1.19) for
(a) x ∈ Ωbi and (b) x ∈ Ωv

do.

Adopting the methodology of Furter and López-Gomez [48], one can divide the inhab-
iting territory Ω into the following regions according to the dynamics of the associated
non-spatial model (1.19):

Ωext := {x ∈ Ω̄ : λ(x), µ(x) ≤ 0},
Ωper := {x ∈ Ω̄ : λ(x), µ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) > λ(x)c(x)},
Ωbi := {x ∈ Ω̄ : λ(x), µ(x) > 0, λ(x)d(x) < µ(x)b(x), µ(x)a(x) < λ(x)c(x)},
Ωu

do := {x ∈ Ω̄ : λ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) < λ(x)c(x)},
Ωv

do := {x ∈ Ω̄ : µ(x) > 0, λ(x)d(x) < µ(x)b(x), µ(x)a(x) > λ(x)c(x)},
Ωjunk := Ω̄ \ (Ωext ∪ Ωper ∪ Ωbi ∪ Ωu

do ∪ Ωv
do).

Note that the degenerate situation of having a continuum of coexistence steady states may
occur in Ωjunk, which can be considered as a limiting area between the other regions. This
dissertation does not focus any attention into this sort of marginal region of the inhabiting
territory.

Going back to the di�usive model (1.18), it turns out that, similarly, its dynamics (in
the �rst quadrant) are determined by the existence and linear stability character of its
steady states, i.e, the component-wise non-negative solutions of the semilinear boundary
value problem 

d1L1u = λ(x)u− a(x)u2 − b(x)uv in Ω,

d2L2v = µ(x)v − d(x)v2 − c(x)uv in Ω,

B1u = B2v = 0 on ∂Ω.

(1.20)

Precisely, (1.18) admits three types of steady states:
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(i) The trivial steady state,

(u, v) = (0, 0).

(ii) Up to two semitrivial steady states with only one positive component, given by

(u, v) = (θ{d1,λ,a}, 0) and (u, v) = (0, θ{d2,µ,d}),

where θ{d1,λ,a} and θ{d2,µ,d} are the respective positive solutions of the di�usive lo-
gistic elliptic problems{

d1L1u = λ(x)u− a(x)u2 in Ω,

B1u = 0 on ∂Ω,
and

{
d2L2v = µ(x)v − d(x)v2 in Ω,

B2v = 0 on ∂Ω.

(iii) Coexistence steady states, which are those with both components positive.

Although the existence of coexistence steady states is guaranteed under certain circum-
stances, determining their uniqueness and providing exact multiplicity results is a far more
intricate mathematical problem. In particular, if (1.18) admits both semitrivial steady
states and they are linearly unstable, i.e.,

σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] < 0 and σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] < 0,

then (1.18) exhibits a stable coexistence steady state. Moreover, if it is unique, then it is
a global attractor with respect to the component-wise positive solutions of (1.18). This
result follows in our setting by adapting the proofs of Theorem 4.1 of Cosner and Lazer
[23], Theorem 1 of Dancer [27], Remark 33.2 and Theorem 33.3 of Hess [56], Theorem 2.1
of Cantrell and Cosner [19], and Theorem 4.1 of López-Gómez and Sabina [77].

On the other hand, if (1.18) admits both semitrivial steady states and they are linearly
stable, i.e.,

σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] > 0 and σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] > 0,

then (1.18) exhibits an unstable coexistence steady state. The proof of this result follows
from Theorem 35.1 of Hess [56], Theorem 4.1 of López-Gómez [79], Theorem 5.3 of López-
Gómez and Sabina [77] and Theorem 2.4 of Furter and López-Gómez [47].

The next result is the �rst one developed in this dissertation providing a relation
between the dynamics of the di�usive and non-di�usive competition models. It establishes
that the limiting pro�le of the coexistence steady states of the di�usive model (1.18) is
provided by the global attractor of the non-di�usive model (1.19) in those regions of Ω̄
where it exists. More precisely, it can be stated as follows.
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Excerpt from Theorem 4.4 (Singular perturbation for the system).

Let {(u(d1,d2), v(d1,d2))} be a family of coexistence states of (1.20). Then,

lim
(d1,d2)→(0,0)

(u(d1,d2), v(d1,d2)) =


(0, 0) if x ∈ Ωext,(
λd−µb
ad−bc (x), µa−λcad−bc (x)

)
if x ∈ Ωper,(

λ
a (x), 0

)
if x ∈ Ωudo

∗,(
0, µd (x)

)
if x ∈ Ωvdo

∗,

uniformly on compact subsets of

(Ωext ∪ Ωper ∪ Ωudo
∗ ∪ Ωvdo

∗) ∩ (Ω ∪ Γper
R ),

where Γper
R stand for the union of components of Γ1

R ∩ Γ2
R contained in Ωper.

The regions Ωu
do
∗ and Ωv

do
∗ in the statement of the previous result are extensions of

Ωu
do and Ωv

do to cover the limiting regions in between Ωu
do and Ωper, and in between Ωv

do

and Ωper. Thus,

Ωu
do
∗ := {x ∈ Ω̄ : λ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) ≤ λ(x)c(x)},

Ωv
do
∗ := {x ∈ Ω̄ : µ(x) > 0, λ(x)d(x) ≤ µ(x)b(x), µ(x)a(x) > λ(x)c(x)}.

Incorporating into the discussion these limiting regions, the global attractor of (1.19) is
allowed to vary continuously between the semitrivial steady state and the coexistence
steady state.

Regarding previous approaches to the singular perturbation problem in the context of
competing species, to the best of our knowledge, the �rst perturbation result for a di�usive
Lotka�Volterra competition model goes back to the 90's and, in particular, to Theorem 4.1
of Hutson, López-Gómez, Mischaikow and Vickers [63], where the next degenerate model
was introduced for analyzing competition between mutant species

∂u
∂t = µ∆u+ u(α(x)− u− v) in Ω× (0,+∞),
∂v
∂t = µ∆v + v(β(x)− u− v) in Ω× (0,+∞),
∂u
∂n = ∂v

∂n = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

(1.21)

In this model the di�usion rates are assumed to be equal to each other, µ := d1 = d2,
whereas the growth rates, denoted by α := λ and β := µ are assumed to be `su�ciently
smooth'. Finally, the competition coe�cients are assumed to be constant and equal to
1. The model is highly degenerate in the sense that we do not have neither high nor low
competition. Precisely, the main singular perturbation result of [63] reads as follows.
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Theorem 4.1 of [63]. Let (uµ, vµ) be a family of coexistence states of the system
(1.21). Set

u0(x) =

{
0 if α(x) ≤ 0 or β(x) > α(x) > 0,
α(x) if α(x) > β(x) and α(x) > 0,

and

v0(x) =

{
0 if β(x) ≤ 0 or α(x) > β(x) > 0,
β(x) if β(x) > α(x) and β(x) > 0.

Then,
lim
µ→0

(uµ, vµ) = (u0, v0)

uniformly on compact subsets of

Ω̄ \ {x ∈ Ω̄ : α(x) = β(x)}.

The proof of [63, Th. 4.1] follows by computing the limiting pro�le of a monotone
scheme made of sub and supersolutions associated to (1.21). Such a monotone scheme
had been introduced by López-Gómez and Sabina [77], as earlier as in 1992, to try to
characterize the existence of coexistence states in competition systems, and, later, it has
been intensively used when dealing with singular parturbation problems (see, e.g, Theorem
1.2 of [39], Theorem 1 of [42], Theorem 4.1 of [38], which is Theorem 4.4 in this dissertation,
Theorem 1.2 and Lemma 3.3 of Hutson, Lou and Mischaikow [65], and Theorem 5.4(iii) of
He and Ni [53], where the authors remarked that Theorem 4.1 of Hutson, López-Gómez,
Mischaikow and Vickers [63] also holds for di�erent di�usion rates).

Besides the fact that the model (1.21) only considers constant competition coe�cients,
one of the main di�erences between the models (1.18), the one considered in this disserta-
tion, and (1.21) lies in the admissible spatial con�gurations of Ω̄ according to the associated
non-spatial dynamics as pointed out in Figure 1.9. Indeed, the semitrivial steady states of
the kinetic counterpart of (1.21),

∂u
∂t = λ(x)u− u2 − uv in (0,+∞),
∂v
∂t = µ(x)v − v2 − uv in (0,+∞),

u(0) = u0, v(0) = v0,

are given by
(α(x), 0) if α(x) > 0 and (0, β(x)) if β(x) > 0.

Thus,
Ωper = ∅ and Ωbi = ∅,

and the only admissible regions of Ω̄ in the setting of Theorem 4.1 of [63] are

Ωext := {x ∈ Ω̄ : α(x), β(x) ≤ 0},

Ωu
do
∗ = {x ∈ Ω̄ : α(x) > 0 and α(x) > β(x)}

and
Ωv

do
∗ = {x ∈ Ω̄ : β(x) > 0 and β(x) > α(x)}
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Note that, if α(x) = β(x) > 0, then the kinetic model associated to (1.21) exhibits a
continuum of coexistence steady states. Thus, x ∈ Ωjunk.

(a) An admissible con�gura-
tion of Ω̄ in the context of
Theorem 4.4

(b) An admissible con�gura-
tion of Ω̄ in the context of
Theorem 4.1 of [63] and The-
orem 5.2(iii) of [53]

(c) Three admissible con�gu-
rations of Ω̄ in the context of
Lemma 3.3 and Theorem 1.2
of [65]

Figure 1.9: Plot of the most general admissible con�guration of Ω̄ in (a) this dissertation,
(b) the works of Hutson, López-Gómez, Mischaikow and Vickers [63], and He and Ni [53],
and (c) the work of Hutson, Lou and Mischaikow [65].

Therefore, the main singular perturbation theorem of this dissertation, Theorem 4.4,
is the �rst existing result dealing with general spatially heterogeneous competing species
systems.

The second di�erence between models (1.18) and (1.21) is related to the di�erential
and boundary operators. Whereas our Theorem 4.4 allows L1 and L2 to be di�erential
elliptic operators in divergence form, and B1 and B2 to be non-classical mixed boundary
operators, [63, Th. 4.1] assumes that L1 = L2 = −∆ and that B1 = B2 are non-�ux
boundary conditions. Allowing B1 and B2 to be of Dirichlet type in some component of ∂Ω
makes the family (u(d1,d2), v(d1,d2)) generate a boundary layer in that component. Thus,
the uniform convergence around that component is lost. As a consequence, it is di�cult
to control the singular limit. So, this dissertation deals with a truly singular perturbation
problem.

The next signi�cant contribution to the theory of singular perturbations in the context
of competing species systems goes back to the beginning of the 21st century, with the work
of Hutson, Lou and Mischaikow [65], who considered the singular perturbation problem
for the following generalized competition model of Lotka�Volterra type

ut = µ∆u+ uf(u, v, x) in Ω× (0,+∞),

vt = ν∆v + vg(u, v, x) in Ω× (0,+∞),
∂u
∂n = ∂v

∂n = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(1.22)

under the following assumptions:

(H1) (Smoothness) f, g : C1 × C1 × C1 → R.

(H2) (Species limitation) There exists a positive constantM such that, for every
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x ∈ Ω̄, f(M, 0, x) < 0, f(0,M, x) < 0, g(M, 0, x) < 0 and g(0,M, x) < 0.

(H3) (Inter and intra-speci�c competition) For every x ∈ Ω̄, u ≥ 0, v ≥ 0,
fu(u, v, x) < 0, fv(u, v, x) < 0, gu(M, 0, x) < 0 and gv(u, v, x) < 0.

Note that these initial hypothesis provide us with a more general reaction di�usion
competition model than (1.18) from the point of view of the nonlinearities. Indeed, the
genuine classical choice

f(u, v, x) := λ(x)− a(x)u− b(x)v and g(u, v, x) := µ(x)− c(x)u− d(x)v,

going back to Lotka�Volterra, satis�es (H1)�(H3). Incidentally, these general competitive
kinetics had been previously introduced, at least, by López-Gómez in [80] and in Chapter
7 of [85].

Despite their initial generality, the authors of [65] carry out the singular perturbation
analysis in two speci�c situations where the associated kinetic model

∂u
∂t = u f(u, v, x) in (0,+∞),
∂v
∂t = v g(u, v, x) in (0,+∞),

u(0) = u0, v(0) = v0,

(1.23)

is assumed to exhibit a global attractor, of the same type, for every x ∈ Ω̄. Depending
on whether this attractor is a coexistence state, or a semitrivial steady state of (1.23), the
authors di�erentiate between the interior case and the boundary case. Figure 1.10 shows
an admissible plot of the isoclines fx = 0 and gx = 0, i.e., the curves,

{(u, v) ∈ R2 : f(u, v, x) = 0} and {(u, v) ∈ R2 : g(u, v, x) = 0}

for any x ∈ Ω̄ in each of these situations.

(a) Plot of the isoclines fx = 0 and gx = 0
in the interior case, i.e., under (H1)�(H5)

(b) Plot of the isoclines fx = 0 and gx = 0
in the boundary case, i.e., under (H1)�(H3)
and (H6)�(H7)

Figure 1.10: Prototypical plot of the isoclines fx = 0 and gx = 0 for the generalized
non-spatial model (1.23), i.e., for the choices fx := f(u, v, x) and gx := g(u, v, x), under
di�erent assumptions.

More precisely, the `interior case' consists in assuming the following hypothesis, in
addition to (H1)�(H3):
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(H4) (Unique solution in non-negative cone) For every x ∈ Ω̄, f(u, v, x) =
g(u, v, x) = 0 has a unique solution, denoted by (u∗(x), v∗(x)) in {(u, v) ∈
R2 : u ≥ 0, v ≥ 0}. Moreover u∗(x) > 0 and v∗(x) > 0 for every x ∈ Ω̄.

(H5) (Hyperbolicity and local attractivity) For every x ∈ Ω̄, the following holds:

(fugv − fvgu)
(u,v,x)=(u∗(x),v∗(x),x)

> 0.

It easily follow from (H1)�(H5) that, for every x ∈ Ω̄, the associated kinetic model
(1.23) exhibits both semitrivial steady states, which are linearly stable, and a unique
coexistence steady state, which is linearly stable and actually it is a global attractor for
the component-wise positive solutions of (1.23). Therefore,

Ω̄ = Ωper.

So, essentially, the dynamic of the non-spatial model (1.23) is uniform in the entire inhabit-
ing territory. Consequently, this model cannot be considered to be spatially heterogeneous
in a wide sense.

For the sake of simplicity, Figure 1.11 shows a plot of the isoclines in the Lotka�Volterra
model according to the kinetic dynamics at each location x ∈ Ω̄, helping us to compare
the generalized competition model, whose isoclines have been plotted in Figure 1.10, and
the Lotka�Volterra one.

(a) Ωext (b) Ωper (c) Ωvdo (d) Ωbi

Figure 1.11: Prototypical plot of the isoclines fx = 0 and gx = 0 for the Lotka�Volterra
non-spatial model (1.19), i.e., for the choices fx := λ(x)− a(x)u− b(x)v and gx := µ(x)−
c(x)u− d(x)v, depending on the region of Ω̄.

The precise singular perturbation result delivered by Hutson, Lou and Mischaikow [65]
in the interior case is stated as follows.

Lemma 3.3 of [65]. Assume that (H1)�(H5) hold. Let (u, v) denote any coexis-
tence state of (1.22). Then, lim(µ,ν)→(0,0)(u, v) = (u∗, v∗) uniformly in Ω̄.

As expected, like in Theorem 4.4, in such a context the coexistence steady states of
the di�usive model (1.22) converge as (µ, ν) → (0, 0) to the unique coexistence steady
state of the kinetic model (1.23). Under non-�ux boundary conditions, this convergence is
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uniform even on the boundary of Ω. Under Dirichlet boundary conditions, the solutions
must exhibit boundary layers. In such a case, one can only expect convergence on compact
subsets of Ω, as stated in Theorem 4.4.

As far as concerns the boundary case, it holds by assuming the next two hypothesis, in
addition to (H1)�(H3):

(H6) For every x ∈ Ω̄, f(u, v, x) = g(u, v, x) = 0 has no solution in {(u, v) ∈
R2 : u ≥ 0, v ≥ 0}.

(H7) For every x ∈ Ω̄, f(0, 0, x) > 0 and g(0, 0, x) > 0.

As a consequence of imposing (H1)�(H3) and (H6)�(H7), the kinetic model (1.23)
admits both semitrivial steady states, and one of them is linearly stable whereas the other
is linearly unstable. Moreover, (1.23) cannot admit coexistence steady states. Thus, the
linearly stable semitrivial steady state is a global attractor for the component-wise positive
solutions of (1.23). As a by-product, either

Ω̄ = Ωu
do, or Ω̄ = Ωv

do.

Again, much like in the interior case, the dynamics of the non-spatial model (1.23) are
assumed to be uniform in Ω̄. Therefore, no spatial heterogeneities are really taken into
account by Hutson, Lou and Mischaikow in [65] as all the situations dealt with are uniform
all over Ω̄.

To conclude, in the boundary case the singular perturbation result lies hidden in the
proof of Theorem 1.2 of Hutson, Lou and Mischaikow [65]. Indeed, the authors prove
that under (H1)�(H3) and (H6)�(H7), if (0, v̄∗) is the global attracting equilibrium of the
non-spatial system (1.23) for every x ∈ Ω̄, then

lim
(µ,ν)→(0,0)

(u, v) = (0, v̄∗)

uniformly in Ω̄. Moreover, they show that, in such a situation, with L1 = L2 = −∆, under
non-�ux boundary conditions, the di�usive model (1.22) does not admit coexistence steady
states through a contradiction argument involving the divergence theorem.

Summing up, at the light of the previous discussion on the �ndings of Hutson, Lou
and Mischaikow [65], despite the fact that the admissible nonlinearities in the statement of
Theorems 1.2 and Lemma 3.3 of [65] look more complex than the classical Lotka-Volterra
kinetics of model (1.18), at the end of the day, the admissible con�gurations of the inhab-
iting territory, Ω̄, in the setting of Theorem 4.4 are far more rich (see Figure 1.9) than
those treated by Hutson, Lou and Mischaikow [65].

Furthermore, our Theorem 4.4 not only provides us with the limiting pro�les of the
coexistence steady states of (1.18) in the regions Ωext, Ωper, Ωu

do, Ωv
do, as well as in the

regions between them, through the use of the monotone scheme introduced by Hutson,
López-Gómez, Mischaikow and Vickers [63], but it also reveals that the limit may not be
determined in the region Ωbi. One may conjecture that this occurs because Ωbi 6= ∅ implies
the existence of multiple coexistence steady states which might converge to di�erent steady
states of (1.19) in that region. In order to prove this conjecture, we need to establish the
Induced Instability Principle, which is the next goal of this dissertation.
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1.5 The Induced Instability Principle

The Induced Instability Principle is one of the main novelties, and most fruitful tools,
developed in this dissertation, since it provides us with a connection between the linear
stability character of the steady states of the spatial model (1.18) and that of the steady
states of the non-spatial model (1.19).

Precisely, it establishes that if the non-spatial model (1.19) exhibits a linearly unstable
steady state,

(u∗(x), v∗(x)) for every x ∈ Ωun,

for some open subset Ωun ⊂ Ω, which might be arbitrarily small, and the spatial model
(1.18) exhibits a family of steady states,

(
u(d1,d2), v(d1,d2)

)
perturbing from (u∗, v∗) uni-

formly in Ωun as d1, d2 ↓ 0, then (u(d1,d2), v(d1,d2)) is linearly unstable for su�ciently small
d1, d2 > 0. Therefore, the local instability of (u∗, v∗) in Ωun turns into global instability of
(u(d1,d2), v(d1,d2)) in Ω for su�ciently small d1 and d2. The Induced Instability Principle
follows from Theorem 5.9 and Proposition 5.11 and can be stated as follows.

Induced Instability Principle (IIP).

Suppose that L := L1 = L2 and B := B1 = B2. Let {(u(d1,d2), v(d1,d2))} be a
family of steady states of (1.18) such that, for some open subset Ωun ⊂ Ω,

lim
(d1,d2)→(0,0)

(
u(d1,d2), v(d1,d2)

)
= (u∗, v∗) uniformly in Ωun

with (u∗(x), v∗(x)) linearly unstable for all x ∈ Ωun, as a steady-state solution of
(1.19). Then, δ > 0 exists such that (u(d1,d2), v(d1,d2)) is linearly unstable for all
d1, d2 < δ.

The proof of this principle when the family {(u(d1,d2), v(d1,d2))} consists of coexistence
steady states (Theorem 5.9) is mainly based on the monotonicity, with respect to the
domain, of the principal eigenvalue of the linearized system, which is of quasi-cooperative
type,

L(d1,d2) :=

(
d1L 0
0 d2L

)
+H with H ∈M2(C(Ω̄)), i, j = 1, 2,

and the fact that, when H is made up of constant coe�cients, the principal eigenvalue of
L(d1,d2) converges to the lowest eigenvalue of H, as a 2× 2 real valued matrix.

Proposition 5.11 establishes the previous principle when {(u(d1,d2), v(d1,d2))} consists of
semitrivial steady states. In such a case, the proof follows di�erent patterns where the
assumptions L1 = L2 and B1 = B2 are unnecessary.

The �rst consequence of the Induced Instability Principle is Theorem 2.1(i) of Furter
and López-Gómez [48]. Since it depends on Proposition 5.11, it allows L1 and L2, as well
as B1 and B2, to be di�erent. Such a result can be stated as follows.
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Corollary 5.12 (Permanence when Ωper 6= ∅, or Ωudo
∗ 6= ∅ and Ωvdo

∗ 6= ∅).

Suppose that either Ωper 6= ∅, or Ωudo
∗ 6= ∅ and Ωvdo

∗ 6= ∅. Then, δ > 0 exists
such that the parabolic problem (1.18) is permanent for all d1, d2 < δ (the trivial
and semitrivial steady states are linearly unstable). Therefore, it admits a stable
coexistence steady state for these di�usion rates.

This result is an extension of Theorem 2.1(i) of [48] for arbitrary di�erential and bound-
ary operators. As established by this result, and illustrated by Figure 1.12, the introduction
of the di�usion through the elliptic operators in the Lotka�Volterra competition model fa-
cilitates the permanence of the species. For example, in each of the con�gurations of Ω
considered in Figure 1.12 the species u and v are originally supported in hostile regions
from the point of view of the kinetic model. Indeed, in cases (a) and (b) we have that

supp u0 ⊂ Ωext and supp v0 ⊂ Ωext,

whereas in (c),
supp u0 ⊂ Ωv

do and supp v0 ⊂ Ωu
do.

Thus, according to the non-di�usive model (1.19), both species should become extinct.
However, in the di�usive model (1.18), with small di�usion rates none of the species be-
comes extinct because the di�usion term allows the individuals of both species to reach a
favorable area to maintain its population.

(a) Ωper 6= ∅ (b) Ωudo 6= ∅ and Ωvdo 6= ∅ (c) Ω made of Ωudo and Ωvdo

Figure 1.12: Di�erent con�gurations of Ω for which the reaction-di�usion model (1.18)
exhibits permanence for su�ciently small di�usion rates. Ωper, Ωu

do and Ωv
do may be sur-

rounded by Ωext.

The second consequence of the Induced Instability Principle, and one of the main
novelties of this dissertation, provides us with an astonishing example of multiplicity of
coexistence steady states in the heterogeneous Lotka�Volterra reaction�di�usion model. It
turns out that the non-emptiness of the region Ωbi gives rise to multiple coexistence steady
states, at least, for the symmetric competition model.

∂u
∂t + d1Lu = λ(x)u− a(x)u2 − b(x)uv in Ω× (0,+∞),
∂v
∂t + d1Lv = λ(x)v − a(x)v2 − b(x)uv in Ω× (0,+∞),

Bu = Bv = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

(1.24)

Note that the special choice λ = µ, a = d and b = c, made in (1.24), produces

Ωu
do
∗ = ∅ and Ωv

do
∗ = ∅.
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Thus, the inhabiting territory, Ω, is made, essentially, of Ωext, Ωper and Ωbi, providing us
with the perfect setting to study the e�ect of inserting a region Ωbi in an habitat consisting
of regions where the limit of the coexistence steady states is determined by Theorem 4.4.
The multiplicity result delivered in this dissertation reads as follows.

Theorem 5.16 (Multiplicity when Ωbi 6= ∅).

Assume that Ωper 6= ∅ and Ωbi 6= ∅. Then δm > 0 exists such that, for every
δ ∈ (0, δm), (1.24) admits at least three coexistence steady states; two of them
linearly stable and another one linearly unstable. Moreover, such a linearly un-
stable coexistence steady state perturbs from the coexistence steady state of the
associated non-spatial problem in the region Ωbi ∪ Ωper.

The fact that Theorem 5.16 only requires Ω to be of class C2, contrasts with the semi-
nal work of Matano and Mimura [99], where the multiplicity result was a consequence of
breaking down the convexity of the territory. Indeed, Theorem A of Matano and Mimura
[99, Sec. 3] establishes that whenever Ω̄ = Ωbi, the spatially homogeneous di�usive
competition model of Lotka-Volterra, with L1 = L2 = −∆ and non-�ux boundary con-
ditions, exhibits multiple coexistence steady states if Ω is made of two convex domains
connected by a su�ciently narrow corridor (dumbbell shape). Actually, this is a rather
genuine phenomenology inherent to the superlinear internal character of the competition
model. Astonishingly, our multiplicity result does not depend on the geometry of the in-
habiting territory, but rather on the spatial heterogeneities themselves, regardless the size
of the permanence and bistability zones.

In order to extract all the information provided by Theorem 5.16, and for being able to
analyze the e�ect of inserting Ωbi in Ω, we should �rst go back to Theorem 1.1 of Hutson,
Lou and Mischaikow [65]. According to it, in the interior case (see Figure 1.10(a)), i.e., un-
der (H1)�(H5), the di�usive competition system (1.22) admits a unique coexistence steady
state, which is a global attractor with respect to its component-wise positive solutions. In
this dissertation, we provide a completely di�erent, much simpler and more versatile proof
of the result of Hutson, Lou and Mischaikow in the setting of (1.18), under non-classical
Robin boundary conditions, which is valid for general second order elliptic operators, L1

and L2, not necessarily of Neumann type. The precise statement of our generalized version
of Theorem 1.1 of [65] can be stated as follows.

Theorem 6.9 (Uniqueness when Ω̄ = Ωper).

Assume that Ω̄ = Ωper and Γ1
D = Γ2

D = ∅. Then, δ > 0 exists such that, for every
d1, d2 ∈ (0, δ), the reaction-di�usion model (1.18) exhibits a unique coexistence
steady state which is a global attractor with respect to the component-wise positive
solutions.

Let us assume that we are in the di�usive symmetric context of the model (1.24) under
Robin boundary conditions with Ω̄ = Ωper, i.e.,

λ(x) > 0 and b(x) < a(x) for all x ∈ Ω̄.

Then, thanks to Theorem 6.9, (1.24) admits a unique coexistence steady state, which is
linearly stable and a global attractor with respect to the component-wise positive solutions,
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at least for su�cienly small di�usion rates. Moreover, it approximates the coexistence
steady state of the associated kinetic model (1.19),

(u∗, v∗) =

(
λ

a+ b
,

λ

a+ b

)
.

Therefore, the di�usive model mimics the dynamics of the its non-di�usive counterpart for
su�ciently small di�usion rates.

Now, we can perturb the function b(x) until there exists a unique x0 ∈ Ω such that
b(x0) = a(x0). During such homotopy the di�usive model still exhibits uniqueness for
su�ciently small di�usion rates. If we further increase b at x0, so creating a bi-stability
region, Ωbi, surrounding x0, then, by Theorem 5.16, the number of coexistence steady
states of the di�usive model will increase, at least, to three. Therefore, the emergence of
Ωbi generates multiplicity in the di�usive competition model, regardless of its geometry
and size.

It is remarkable that the Induced Instability Principle also explains the reasons for
which one may not be able to determine the limiting pro�le of the coexistence steady
states in the region Ωbi in the context of the main singular perturbation result for the
di�usive system. Indeed, in the previous example, one of the three coexistence steady
states of (1.24), the unstable one, converges to the coexistence steady state of the asso-
ciated kinetic model in Ωbi, ( λ

a+b ,
λ
a+b), which is linearly unstable therein. On the other

hand, Theorem 5.16 ensures us the existence of two more coexistence steady states for the
di�usive model (1.24), which are linearly stable. If the limits as d1, d2 ↓ 0 of all these
coexistence steady states of (1.24) were uniformly determined in any zone of Ωbi, then
they should equal ( λ

a+b ,
λ
a+b), which is linearly unstable therein. Therefore, according to

the Induced Instability Principle, these coexistence steady states should also be linearly
unstable, leading to a contradiction.

(a) d1 = d2 = 0.5 (b) d1 = d2 = 0.12662 (c) d1 = d2 = 0.027291 (d) d1 = d2 = 0.0013329

Figure 1.13: Plot of the components u(d1,d2) (up) and v(d1,d2) (down) of a coexistence
steady state of the di�usive competition system (1.18), for di�erent di�usion rates, in the
symmetric case with Ω = (0, 2), L1 = L2 = −∆, a = d = 2 − 1

3x, b = c = 1 + 2
3x, under

Dirichlet boundary conditions. Note that Ωper = [0, 1) and Ωbi = (1, 2].
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As a consequence of the previous analysis, one may conjecture that the two stable coex-
istence steady states exhibited by the symmetric reaction-di�usion model (1.24) converge
to the stable semitrivial steady states of the non-di�usive/kinetic counterpart in Ωbi. This
conjecture is supported by Figure 1.13, which shows the behavior of one of those stable
steady states when the di�usion rates go to zero.

1.6 Uniqueness under low competition

Once proven that perturbing an habitat made of Ωper by inserting on it a region Ωbi can
provoke multiple coexistence steady states as d1, d2 ↓ 0, so destroying the former uniqueness
of the coexistence state, one may wonder if the same happens when, instead of Ωbi, the
regions Ωext, Ωu

do and Ωv
do are non-empty. It should be remembered that, unlike Ωbi, in

these regions the limiting pro�le of the coexistence steady states of (1.18) is uniquely
determined by Theorem 4.4, so one may expect that uniqueness still holds.

The uniqueness result established in this dissertation provides us with the �rst one
in the literature for a Lotka�Volterra competition model with completely heterogeneous
competition coe�cients. It lies over three assumptions. First, it assumes that the model
exhibits low competition in the habitat, i.e.,

bc � ad in Ω̄ (1.25)

Although the regions Ωext, Ωu
do and Ωv

do can admit areas where high competition occurs,
the condition (1.25) is imperative because the previous multiplicity result established that
combining a high competition region, Ωbi, with a low competition one, Ωper, can provoke
multiple coexistence steady states. Moreover, in the presence of low competition, the
assumption Ω̄ = Ωper produces uniqueness.

The remaining two assumptions come from the fact that our proof of the uniqueness
result makes an intensive use of the Picone identity, which is needed to show that any
coexistence steady state of (1.18) is linearly stable. By an additional argument involving
the �xed point index in cones, this feature guarantees the uniqueness. Since the Picone
identity needs the operator to be self-adjoint, L1 and L2 must be of the type

Li = −div(Ai∇·) + Ci,

with Ai ∈Msym
N (C1(Ω̄)) and Ci ∈ C(Ω̄). On the other hand, once Picone identity is applied,

one needs to determine whether, or not, an integral is positive. The least constraining
assumption to obtain such positivity consists on supposing that the next estimate holds:

max
Ω̄

(
ad2

c3
F−

( bc
ad

))
≤ min

Ω̄

(
ad2

c3
F+

( bc
ad

))
, (1.26)

with F± : [0, 1]→ R de�ned as

F±(k) :=
1

8

(
27− 18k − k2 ± (9− k)3/2(1− k)1/2

)
, k ∈ [0, 1].

Figure 1.14 plots F±, as well as the functions k 7→ 1, k 7→ k, k 7→ k2 and k 7→ k3, to
show that

F−(k) ≤ k3 ≤ k2 ≤ k ≤ 1 ≤ F+(k) for all k ∈ [0, 1].
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(a) Plot for k ∈ [0, 1] (b) Zoom in [0, 1]× [0, 1.2]

Figure 1.14: Plot of the functions F− and F+ in [0, 1], and comparison with the functions
k 7→ 1, k, k2, k3.

Thus, particularizing at k = bc
ad and multiplying by ad2

c3
we have that

ad2

c3
F−

( bc
ad

)
≤ b3

a2d
≤ b2

ac
≤ bd

c2
≤ ad2

c3
≤ ad2

c3
F+

( bc
ad

)
in Ω.

Hence, the assumption (1.26) holds if

b3

a2d
, or

b2

ac
, or

bd

c2
, or

ad2

c3
, is constant all over Ω, (1.27)

providing us with a far more friendly condition than (1.26).
The main uniqueness result established in this dissertation in the low competition

regime reads as follows.

Theorem 6.13 (Uniqueness under low competition. Global dynamics).

Assume that L1 and L2 are self-adjoint, bc � ad in Ω, and the estimate (1.26)
holds. Then:
(a) If both semitrivial solutions exist and are linearly unstable, (1.20) admits a

unique coexistence state. Moreover, it is a global attractor with respect to
the component-wise positive solutions of (1.18).

(b) In any other case, (1.20) cannot admit any coexistence state.

(c) Both semitrivial solutions of (1.20) cannot be linearly stable simultaneously.

(d) If a semitrivial solution of (1.20) is linearly stable, then it is a global at-
tractor with respect to the component-wise positive solutions of (1.18).

(e) If the trivial solution of (1.20) is linearly stable, then it is a global attractor
with respect to the component-wise positive solutions of (1.18).

In particular, if either Ωper 6= ∅, or Ωudo 6= ∅ and Ωvdo 6= ∅, then (a) holds for
su�ciently small d1, d2 > 0.

Let us discuss this result. First, note that there are no constrains neither on the size
of the di�usion rates, nor on the growth rates of the species. Thus, as soon as a, b, c
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and d satisfy (1.25) and (1.26) (or (1.27)), then the statements of Theorem 6.13 hold,
regardless of the sizes of λ and µ. As a consequence, for any given smooth con�guration
of Ω consisting of patches of type Ωext, Ωper, Ωu

do and Ωv
do, we can choose a, b, c, and d, to

be under the assumptions of Theorem 6.13, and then choose λ and µ so that the spatial
model induces that particular given con�guration.

As far as concerns the condition (1.27), note that it allows us to choose, freely, three
coe�cients, among a, b, c and d, while the remaining one depends on them. For example,
if we pick the condition of

b3

a2d
being constant in Ω,

then we are free to �x, arbitrarily, the values of the functions a, b, c ∈ C(Ω̄; (0,+∞)),
whereas the function d needs to be of the form

d := ξ
b3

a2
, with ξ ∈ R, ξ > max

Ω̄

ca

b2
.

The latter estimate follows by imposing bc < ad in Ω, so that (1.25) holds. Hence, as-
sumption (1.27) provides us with a wide range of competition models for which Theorem
6.13 holds. It is unnecessary in the presence of constant coe�cients, of course!

Furthermore, Theorem 6.13 is a result structurally stable in the sense that if the model
(1.18) satis�es the conditions (1.25) and (1.26) with strict inequalities, so that it exhibits
uniqueness for small di�usion rates by Theorem 6.13, then such uniqueness is still preserved
under small perturbations of the coe�cients λ, µ, a, b, c, and d.

Finally, Theorem 6.13 establishes that the curves of change of stability of the semi-
trivial positive solutions divide the (λ, µ) plane into several regions according to the global
dynamics that (1.18) can exhibit. Indeed, in the special case when λ and µ are assumed to
be constant, then, as illustrated by Figure 1.15, the (λ, µ)-plane consists of the following
complementary regions:

• The region Λext, consisting of the pairs (λ, µ) such that

λ < σ1[d1L1;B1,Ω] and µ < σ1[d2L2;B2,Ω].

These estimates corresponds to Theorem 6.13(e), i.e., (0, 0) is a global attractor with
respect to the component-wise positive solution of (1.18). Thus, both species become
extinct in the di�usive model.

• The region Λvdo, integrated by the pairs (λ, µ) such that

µ > σ1[d2L2;B2,Ω] and λ < σ1[d1L1 + bθ{d2,µ,d};B1,Ω].

As these estimates �t the case (d) of Theorem 6.13, it becomes apparent that
(0, θ{d2,µ,d}) is a global attractor with respect to the component-wise positive so-
lution of (1.18). Therefore, the species v dominates the dynamics.

• The region Λudo, consisting of the pairs (λ, µ) such that

λ > σ1[d1L1;B1,Ω] and µ < σ1[d2L2 + cθ{d1,λ,a};B1,Ω].
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Here, (θ{d1,λ,a}, 0) is a global attractor with respect to the component-wise positive
solutions of (1.18). Thus, the species u dominates the dynamics, and hence, the
species v is driven to extinction.

• The region Λper, made of the pairs (λ, µ) such that

λ > σ1[d1L1;B1,Ω], µ > σ1[d2L2;B2,Ω],

λ > σ1[d1L1 + bθ{d2,µ,d};B1,Ω] and µ > σ1[d2L2 + cθ{d1,λ,a};B1,Ω].

As a consequence of Theorem 6.13(a), in this region (1.20) admits a unique coexis-
tence steady state, which is a global attractor with respect to the component-wise
positive solution of (1.18). Therefore, the species are permanent.

It should be noted that, as illustrated by Figure 1.15, the curves of change of stability
of the semitrivial positive solutions cannot cross each other by Theorem 6.13(c), because in
such a case they would enclose a region where both semitrivial steady states of (1.18) are
linearly stable. Moreover, as pointed out at the end of Theorem 6.13, if either Ωper 6= ∅,
or Ωu

do 6= ∅ and Ωv
do 6= ∅, then (λ, µ) ∈ Λper for su�ciently small d1, d2 > 0.

Figure 1.15: Plot of an admissible (λ, µ)-plane for (1.18), with λ and µ regarded as constant
parameters varying in R.

To conclude this general introduction, it should be remarked that Theorem 6.13 gener-
alizes substantially Theorem 3.4(iii) of He and Ni [55], which dealt with (1.18) in the very
special case when L1 = L2 = −∆, a = d = 1, and b, c are positive constants satisfying
bc < 1, under non-�ux boundary conditions, i.e.,

∂u
∂t = d1∆u+ u(m1(x)− u− bv) in Ω× (0,+∞),
∂v
∂t = d2∆v + v(m2(x)− cu− v) in Ω× (0,+∞),

∂nu = ∂nv = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

(1.28)

with d1, d2 > 0, b, c > 0, and

mi ∈ Cα(Ω̄) (α ∈ (0, 1)),

∫
Ω
mi ≥ 0 and mi 6≡ 0 (i = 1, 2).

Note that the integral condition above implies that

σ1[−d1∆−m1; ∂n,Ω] < 0, and σ1[−d2∆−m2; ∂n,Ω] < 0,
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(see He and Ni [55, Pr. 2.2(i)], and compare with the discussion of López-Gómez in Section
9.5 of [88]) and thus, (1.28) admits both semitrivial steady states,

(θ{d1,m1,1}, 0) and (0, θ{d2,m2,1}).

According to He and Ni [55], who clearly adopted the methodology of Furter and López-
Gómez [48], we may distinguish between the following regions in the �rst quadrant of the
(d1, d2)-plane, depending on the linear stability character of the semitrivial steady states
of (1.28):

Σ− :=

{
(d1, d2) ∈ (0,+∞)2 :

(θ{d1,m1,1}, 0) and (0, θ{d2,m2,1})
are linearly unstable

}
ΣU,∗ :=

{
(d1, d2) ∈ (0,+∞)2 :

(θ{d1,m1,1}, 0) is linearly stable
or linearly neutrally stable

}
ΣV,∗ :=

{
(d1, d2) ∈ (0,+∞)2 :

(0, θ{d2,m2,1}) is linearly stable
or linearly neutrally stable

}
Π :=

{
(d1, d2) ∈ (0,+∞)2 :

(θ{d1,m1,1}, 0) and (0, θ{d2,m2,1})
are linearly neutrally stable

}

Moreover, He and Ni focused their study on those b and c in the following region

Ξ = {(b, c) : b, c > 0, bc ≤ 1} ∪ {(b, c) : 0 < c ≤ 1/SU} ∪ {(b, c) : 0 < b ≤ 1/SV }

with

SU := sup
d1>0

sup
Ω̄

m2

θ{d1,m1,1}
and SV := sup

d2>0
sup

Ω̄

m1

θ{d2,m2,1}
.

Under all these assumptions, the main result of He and Ni [55], concerning uniqueness in
the low competition regime, reads as follows.

Theorem 3.4 of [55]. Assume that (b, c) ∈ Ξ. Then, the following mutually
disjoint decomposition of (0,+∞)2 holds:

(0,+∞)2 = (ΣU,∗ \Π) ∪ (ΣV,∗ \Π) ∪ Σ− ∪Π.

Moreover, the following assertions are true for (1.28):
(i) For every (d1, d2) ∈ ΣU,∗\Π, (θ{d1,m1,1}, 0) is globally asymptotically stable.

(ii) For every (d1, d2) ∈ ΣV,∗\Π, (0, θ{d2,m2,1}) is globally asymptotically stable.

(iii) For every (d1, d2) ∈ Σ−, (1.28) has a unique coexistence steady state which
is globally asymptotically stable.

(iv) For every (d1, d2) ∈ Π, θ{d1,m1,1} = cθ{d2,m2,1} and (1.28) has a compact
global attractor consisting of a continuum of steady states

{(ξθ{d1,m1,1}, (1− ξ)θ{d1,m1,1}/c) : ξ ∈ [0, 1]}

connecting the two semitrivial steady states.
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Let us compare Theorem 3.4 of He and Ni [55] with our Theorem 6.13. Although the
structure of both results looks quite similar, one remarkable di�erence between them relies
on the fact that He and Ni allow the model to exhibit high competition globally in Ω, by
letting the pair (b, c) to be included in the sets

ΞU := {(b, c) : 0 < c ≤ 1/SU and b ≥ SU}

and
ΞV := {(b, c) : 0 < b ≤ 1/SV and c ≥ SV } .

However, as shown by Theorem 3.1 of He and Ni [55], these sets are not problematic since

ΣU,∗ = (0,+∞)2 for all (b, c) ∈ ΞU

and
ΣV,∗ = (0,+∞)2 for all (b, c) ∈ ΞV .

Thus, the model (1.28) cannot exhibit uniqueness if

(b, c) ∈ ΞU ∪ ΞV .

Actually, the regions ΞU and ΞV receive a special treatment in the proof of Theorem 3.4
of [55] to show that this actually occurs.

Furthermore, one cannot expect a result of the type of part (iv) of Theorem 3.4 of [55]
in the general setting covered by Theorem 6.13 of this dissertation. Firstly, because the
boundary conditions for the species might be di�erent. Secondly, because having a closer
look at the proof of He and Ni reveals that b and c must be positive constants satisfying
bc = 1 for the existence of a continuum of coexistence steady states (the coexistence steady
states are degenerate).

Summarizing, this dissertation has succeeded in solving positively the singular pertur-
bation problem and in deriving some very sharp uniqueness and multiplicity results for
the di�usive competition model, as well as in incorporating to the usual scenario of the
theory arbitrary second order elliptic operators, instead of −∆, general non-classical mixed
boundary conditions, instead of homogeneous Neumann or Dirichlet boundary conditions,
and truly spatially heterogeneous models, instead of models where Ω equals, simply, Ωper

or Ωbi.
The techniques developed here can be adapted, almost mutatis mutandis, to cover a

huge variety of competitive kinetics, like those introduced by López-Gómez in [80] and [85,
Ch. 7], though we have refrained ourselves of delivering these novelties with the greatest
generality possible by the sake of highlighting and emphasizing the true novelties of this
dissertation, reducing the more sophisticated technicalities as much as possible. Even
dealing with the most classical Lotka�Volterra kinetics, our �ndings enjoy a great interest
in the �eld and have sharpened, very substantially, some very recent �ndings by some of
the top leading experts in PDE's.
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The Generalized Logistic Equation





Chapter 2

The singular perturbation problem

for the generalized logistic equation

Introduction

This chapter analyzes the limiting behavior as d ↓ 0 of the positive solutions of{
dLu = uh(u, x) in Ω,
Bu = 0 on ∂Ω,

(2.1)

where Ω is a bounded domain of RN , N ≥ 1, d > 0 is a positive constant, and the
di�erential operator L is uniformly elliptic in Ω and has the form

L = −div(A∇·) + b∇+ c, (2.2)

with A ∈Msym
N (C1(Ω̄)), b ∈M1×N (C(Ω̄)) and c ∈ C(Ω̄). Given any Banach space, X, and

two integers, n,m ≥ 1,Mn×m(X) stands for the vector space of the matrices with n rows
and m columns with entries in X. Naturally, we setMn(X) :=Mn×n(X), andMsym

n (X)
denotes the subset of the symmetric matrices.

Except in Section 2.1, ∂Ω is assumed to be an (N − 1)-dimensional manifold of class
C2 consisting of �nitely many (connected) components

ΓjD, 1 ≤ j ≤ nD, ΓkR, 1 ≤ k ≤ nR,

for some integers nD, nR ≥ 1, and we denote by

ΓD :=

nD⋃
j=1

ΓjD, ΓR :=

nR⋃
j=1

ΓjR,

the Dirichlet and Robin portions of ∂Ω = ΓD ∪ ΓR. It should be noted that either ΓD, or
ΓR, might be empty. Associated with this decomposition of ∂Ω, arises in a rather natural
way the boundary operator B de�ned by

Bu =

{
Du := u on ΓD,

Ru := ∂u
∂ν + βu on ΓR,

for every u ∈W 2,p(Ω), p > N, (2.3)

45
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where β ∈ C(∂Ω), n stands for the outward normal vector �eld along ∂Ω, ν := An is
the conormal vector �eld associated to L, and ∂

∂ν (which equals 〈∇·,ν〉 under su�cient
regularity) represents the derivative in the direction of the vector �eld ν.

As far as the function h(u, x) concerns, it is assumed to satisfy some of the next
hypothesis.

Hypothesis on the nonlinearity h(u, x)

(H1) h : R× Ω̄→ R is of class C1 in u ≥ 0 and continuous in x ∈ Ω̄.

(H2) ∂uh(u, x) < 0 for all u > 0 and x ∈ Ω̄.

In addition, through this chapter, it is imposed that, for some d > 0, the following
hypothesis holds for a pair (L, h):

(H3) There exists a constant M > 0 such that h(M,x) < dc(x) for all x ∈ Ω̄.

In particular, we eventually can assume (H3) with d = 0, i.e., that

(H4) There exists a constant M > 0 such that h(M,x) < 0 for all x ∈ Ω̄.

Note that (H4) implies (H3) for su�ciently small d > 0, regardless the sign of c(x).
A prototypical example of admissible h, for which (2.1) becomes closer to the classical
di�usive logistic equation, is given by

h(u, x) = `(x)− a(x)f(u), u ∈ R, x ∈ Ω̄,

where ` ∈ C(Ω̄) can change of sign, a ∈ C(Ω̄) and f ∈ C1(R) satisfy minΩ̄ a > 0, f(0) = 0,
f ′(u) > 0 for all u > 0, and limu↑∞ f(u) = +∞. For this choice, it is easily seen that (H1)
and (H2) hold. As far as concerns (H3), note that, for every d > 0,

h(M,x) = `(x)− a(x)f(M) ≤ max
Ω̄

`− f(M) min
Ω̄
a < dmin

Ω̄
c, x ∈ Ω̄,

provided M = M(d) > 0 is su�ciently large, because f(M) ↑ ∞ as M ↑ ∞. Thus, (H3)
holds for all d > 0. Moreover, by taking a su�ciently large M > 0 so that

f(M) >
maxΩ̄ `

minΩ̄ a
,

it is clear that (H4) also holds.
Under the general conditions (H1), (H2) and (H4), it is easily seen that the maximal

non-negative solution of the non-spatial equation uh(u, x) = 0,

Θh(x) :=

{
0 if h(ξ, x) < 0 for all ξ > 0,
ξ if ξ > 0 exists such that h(ξ, x) = 0,

is continuous in Ω̄. Actually, for every x ∈ Ω̄, Θh(x) is the unique non-negative linearly
stable, or linearly neutrally stable, steady state of the kinetic model (2.23), associated to
(2.1), i.e., the ordinary di�erential equation

u′(t) = u(t)h(u(t), x), t ≥ 0.
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According to Theorem 2.15 stated in Section 2.4, which is the main existence result
of this chapter, for su�ciently small d > 0, (2.1) admits, at most, one positive solution.
Let us denote by θ{d,h} the maximal non-negative solution of (2.1), and by Γ+

R the union
of the components of ΓR where Θh is everywhere positive. The main goal of this chapter
is to provide with a singular perturbation result for (2.1), as stated in Theorem 2.21.
Speci�cally, it establishes that the maximal non-negative solution of (2.1) approximates
Θh as d ↓ 0 uniformly on compact subsets of Ω ∪ Γ+

R ∪Θ−1
h (0).

To the best of our knowledge, the most pioneering version of our convergence result,
Theorem 2.21, goes back to [10], where the singular perturbation problem{

−d∆u = u(1− a(x)u2) in Ω,
u = 0, on ∂Ω,

(2.4)

with Ω and a(x) of class C∞ and minΩ̄ a > 0, was analyzed in dimension N ≤ 3. Precisely,
in [10], Berger and Fraenkel established that, for su�ciently small d > 0, problem (2.4)
possesses a unique smooth positive solution, ud(x), which converges to 1/

√
a(x) as d ↓ 0,

outside a boundary layer of width O(
√
d). Moreover, a global continuation of ud in d was

performed up to the critical value of the di�usion where ud bifurcates from u = 0. The
main technical tool of [10] relies on the method of matched asymptotic expansions applied
to approximate the positive solution. The global existence of the positive solution was
derived from some classical results in critical point theory. An abstract version of this
singular perturbation result for autonomous equations was given by the same authors in
[11]. Two years later, De Villiers [31] sharpened these �ndings up to cover a general class
of C∞ functions, g(u, x), instead of u− a(x)u3. Almost simultaneously, Fife [43] and Fife
and Greenlee [44] extended these results to a general class of nonhomogeneous Dirichlet
boundary value problems including{

−ddiv (A(x, d)∇u) = g(u, x, d) in Ω,
u = 0, on ∂Ω,

(2.5)

with Ω, A(x, d) and g(u, x, d) of class C∞ and such that, for every x ∈ Ω̄, the equation
g(u, x, 0) = 0 has a solution, u0(x), for which ∂ug(u0(x), x, 0) < 0. This negativity entails
the linearized stability of the equilibrium solution u0(x) of the associated kinetic model

u′(t) = g(u(t), x, 0), t ≥ 0, (2.6)

for all x ∈ Ω̄. Much like in [10], the singular perturbations results of [43, 44] are based
on a bound for the inverse of the linearization about the formal solution constructed with
the matched asymptotic expansion. Fife and Greenlee [44] also analyzed the more general
case when g(u, x, 0) = 0 possesses two C∞-curves of solutions, u0,1(x) and u0,2(x), x ∈ Ω̄,
which are linearly stable as steady-state solutions of (2.6) and separated away from each
other.

Essentially, all these monographs adapted the former asymptotic expansion methods
developed in the context of ODE's by the Russian School (e.g., see [15, 113]) to a PDE's
framework. Naturally, working with ODE's many of the underlying technicalities can be
easily overcome.

The �rst papers where some intrinsic techniques of the theory of PDE's, like the method
of sub and supersolutions, were used to obtain singular perturbation results were those of
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Howes [59, 58, 60]. As a result, the previous restrictive regularity assumptions were relaxed.
Precisely, Howes [59] considered a general class of problems including (2.5) with A = I
and g(u, x, d) = g(u, x) of class Cm for su�ciently large m ≥ 1. Essentially, assuming that
Ω is su�ciently smooth and that, for every x ∈ Ω̄, g(u0(x), x) = 0 for some smooth u0(x)
which is linearly stable as an equilibrium of (2.6), Howes found some su�cient conditions
for the existence of a classical solution ud of (2.5) such that

lim
d↓0

ud = u0 uniformly on compact subsets of Ω.

Almost simultaneously, Howes [58] extended these results to cover the following special
class of Robin problems {

−d∆u = g(u, x) in Ω,

∂u
∂ν (x) + β(x)u(x) = 0 on ∂Ω,

(2.7)

where β ≥ 0 on ∂Ω and β ∈ C2,µ(∂Ω) for some µ ∈ (0, 1). As a consequence, e.g., of [58,
Th 2.1], Howes could infer in [58, Ex. 2.2] that in the special case when g(u) = u − u3,
u0,± ≡ ±1 are I0-stable zeroes of g(u, x) = 0, because g′(±1) = −2 < 0, and therefore,
(2.7) has two solutions, ud,±(x), such that

lim
d↓0

ud,±(x) = ±1 uniformly in Ω̄.

In these papers, the regularity of the support domain Ω is imposed through the existence
of a function F ∈ C2,µ(RN ;R) such that |∇F (x)| = 1 for all x ∈ ∂Ω and

Ω = {x ∈ RN : F (x) < 0}, ∂Ω = F−1(0). (2.8)

Incidentally, in the papers of Howes the problem of ascertaining whether, or not, a function
F satisfying (2.8) exists, with the required regularity, remained open. Except for some
pioneering results of Ole�inik [103, 104, 105], for linear problems with transport terms,
[58] seems to be the �rst paper dealing with the singular perturbation problem for a
semilinear equation under Neumann or (classical) Robin boundary conditions with β ≥ 0.
The singular perturbation results of Howes for essential nonlinearities involving transport
terms, like those of [58, Sec. 3 & 4] and [60], remain outside the general scope of this
dissertation.

Some time later, these pioneering �ndings were slightly, and occasionally substantially,
improved by Angenent [6], De Santi [30], Clément and Sweers [22] and Kelley and Ko [68],
among many others, who dealt with the singular perturbation problem under Dirichlet
boundary conditions through some comparison techniques based on the synthesis of Amann
[2, 3], Sattinger [108] and Matano [98].

As shown by the simplest examples of truly spatially heterogeneous semilinear elliptic
equations in the context of Population Dynamics, the most serious shortcoming of the
classical singular perturbation theory is caused by the fact that the curves, u0,j(x), 1 ≤
j ≤ q, q = 1, 2, solving the equation g(u, x) = 0 must preserve their stability character for
all x ∈ Ω̄, regarded as steady-state solutions of (2.6). For example, even in the simplest
case situation when g(u, x) inherits a logistic structure,

g(u, x) = `(x)u− a(x)u2
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for some functions `, a ∈ C(Ω̄) such that `(x) changes sign in Ω and minΩ̄ a > 0, most of the
assumptions imposed in the previous references fail to be true. Indeed, although u0,1(x) ≡ 0
and u0,2(x) := `(x)/a(x), x ∈ Ω̄, might provide us with two smooth curves of g(u, x) = 0
for su�ciently smooth `(x) and a(x), it becomes apparent from ∂ug(u, x) = `(x)− 2a(x)u
that

• u0,1(x) = 0 is linearly stable, as an steady-state solution of (2.6), if, and only if,
`(x) < 0,

• u0,2(x) = `(x)/a(x) is linearly stable if, and only if, `(x) > 0.

Figure 2.1: Plots of u 7→ g(u, xi) := `(xi)u− a(xi)u
2, i ∈ {1, 2, 3}, for a function ` ∈ C(Ω̄)

that changes sign in Ω with `(x1) > 0, `(x2) = 0 and `(x3) < 0. In the central case, (B),
u = 0 must be a double zero of g(·, x2). In each of these plots we have superimposed the
1-dimensional dynamics of (2.6) on the horizontal axis.

Therefore, the curves u0,i(x), i = 1, 2, cannot satisfy the requirements of the previous
references, because they have a di�erent stability character if `(x) 6= 0. Even considering
the `mixed interlaced branches' constructed from u0,1(x) and u0,2(x) through

ũ0,1(x) := max {u0,1(x), u0,2(x)}, ũ0,2(x) := min {u0,1(x), u0,2(x)}, x ∈ Ω̄,

it is apparent that ũ0,1(x) is linearly stable if and only if `(x) 6= 0, and hence, the classical
theory cannot be applied neither, because the linearized stability fails at `−1(0) and, in
general, these curves are far from smooth. In these degenerate situations, not previously
considered in the specialized literature, Furter and López-Gómez [48] established that the
unique positive solution, ud, of{

−d∆u = u(`(x)− a(x)u) in Ω,

u = 0 on ∂Ω,

satis�es

lim
d↓0

ud = `+/a = max{0, `/a} = ũ0,1 uniformly on compact subsets of Ω

(see [48, Th. 3.5]), which suggests the validity of the next general principle in the context
of (2.1):

Singular Perturbation Principle (SPP). If for every x ∈ Ω̄ the as-
sociated kinetic problem possesses a unique linearly stable, or linearly neutrally
stable, non-negative steady-state solution, Θ(x), which is somewhere positive in
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Ω, then, for su�ciently small d > 0, the associated parabolic problem possesses
a unique positive steady-state solution, θd. Moreover, limd↓0 θd = Θ uniformly
on any compact subset of Ω where Θ(x) is continuous.

This is widely con�rmed by Theorems 2.15 and 2.21. Later, the same principle was shown
to hold under homogeneous Neumann boundary conditions by Hutson, López-Gómez, Mis-
chaikow and Vickers [63, Le. 2.4], as well as in the context of competitive systems (see [63,
Th. 4.1] and [42, Th. 1], [39, Th. 1.2], [38, Th. 4.1] for some special cases when L = −∆,
or b = 0).

A problem of a di�erent nature was studied by Nakashima, Ni and Su [102] in the special
case when L = −∆ and g(u, x) = a(x)f(u), for the appropriate choices of the functions a(x)
and f(u), under Neumann boundary conditions. In such case, the steady-state solutions
of (2.6) are spatially homogeneous, though their linearized stabilities, viewed as equilibria
of (2.6), vary with the location of x in Ω̄ according to the sign of a(x). In spite of these
di�erences, it turns out that this model also satis�es the Singular Perturbation Principle

formulated above (see [102, Th. 1.3]).
Theorem 2.21 provides us with an extremely general version of all previous existing

singular perturbation results for Kolmogorov nonlinearities of the form g(u, x) = uh(u, x),
where h(u, x) satis�es (H1), (H2) and (H4). Actually, it is the �rst general result available
for second order uniformly elliptic operators, L, under general mixed boundary conditions
of non-classical type. As the general linear existence theory developed in [88, Sect. 4.6] is
only available for operators of the form (2.2), in this dissertation the principal part of L is
required to be in divergence form. Nevertheless, even imposing this restriction, Theorem
2.21 is substantially sharper than most of the previous singular perturbation results for
the generalized logistic equation.

The proof of Theorem 2.21 is based on the method of sub and supersolutions, which
relies on the theorem of characterization of the Strong Maximum Principle of López-Gómez
and Molina-Meyer [90, 82], and Amann and López-Gómez [5]. A comparison argument
provides us with a global uniform supersolution of (2.1) on Ω̄, while the construction of
the appropriate local subsolutions combined with a compactness argument, provides us
with the necessary lower estimates to get Theorem 2.21. The main technical di�culties
that must be overcome in the proof of Theorem 2.21 come from the following facts:

(I) The principal eigenfunctions associated to L in interior balls do not enjoy the nice
symmetry properties of the principal eigenfunctions of −∆, which take the maxi-
mum on the center of these balls. This di�culty is overcome through a technical
device introduced by López-Gómez in [83], which facilitates the construction of local
subsolutions in the general non-autonomous case.

(II) A more subtle di�culty relies on the construction of a global supersolution of (2.1)
su�ciently close to Θh, which is far from obvious when dealing with general mixed
boundary conditions. As no previous singular perturbation result is available under
mixed boundary conditions, these di�culties have been overcome for the �rst time
in this dissertation.

(III) In our general setting, the coe�cient function β(x) can change sign. Thus, we must
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perform a preliminary change of variables for transforming (2.1) into an equivalent
problem of the same nature with β ≥ 0.

The resolution of the technical di�culties sketched in (II) and (III) relies on Theorem
2.3, which might be of independent interest in di�erential geometry. In particular, The-
orem 2.3 establishes the equivalence between the following assertions, extracted from the
statement of that result:

(a) ∂Ω is of class Cr.

(b) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) and, for every outward vector
�eld ν ∈ Cr−1(∂Ω;RN ), there exist an open subset U of RN , with ∂Ω ⊂ U , and
a projection onto ∂Ω along ν, Πν : U → ∂Ω, of class Cr−1 (conormal projection).
Moreover, the function dν : U → R de�ned by dν(x) := distν(x, ∂Ω) if x ∈ U ∩ Ω,
and by dν(x) := −distν(x, ∂Ω) if x ∈ U \Ω, is of class Cr (conormal distance). Here,
distν(·, ∂Ω) stands for the distance to ∂Ω along ν.

(f) There exist an open subset U of RN with ∂Ω ⊂ U and a function Ψ ∈ Cr(U ;R) such
that

Ω = {x ∈ U : Ψ(x) < 0}, ∂Ω = Ψ−1(0),

and |∇Ψ(x)| = 1 for all x ∈ ∂Ω.

It should be noted that (f) is the condition used in some of the classical papers discussed
above, with F := Ψ. It is astonishing that, in spite of the equivalence between (a) and
(f), yet the existence of Ψ of class Cr satisfying (f) is far from adopted in the specialized
literature as the most natural, and simple, de�nition for a bounded domain of class Cr.
Indeed, the usual de�nition in the most paradigmatic textbooks, like those of Gilbarg and
Trudinger [50] and Evans [34], involves local charts at any point of the boundary, instead
of the minimal requirements of (f).

On the other hand, to the best of our knowledge, the existence of the conormal pro-

jection and the conormal distance constructed in Theorem 2.3, as well as the proof of the
fact that they inherit the regularity of ∂Ω, seem completely new �ndings. Astonishingly,
the Math. Sci. Net. of the Amer. Math. Soc. was unable to capture any entry with
the words conormal distance, or conormal projection, though a huge list was given with
conormal. Thus, Theorem 2.3 might be introducing these concepts into the debate of the
characterization of the regularity of ∂Ω in terms of the regularity of the associated distance
function, as pointed out by (b). Note that C2 is the minimal regularity of ∂Ω required to
guarantee that the distance function through the `nearest point' is well de�ned (see the
paper of Krantz and Parks [71, Ex. 4]).

Actually, although Gilbarg and Trudinger [50, Le. 14.16] show that the distance func-
tion to the boundary, dist (x, ∂Ω), is of class Cr, r ≥ 2, if ∂Ω is of class Cr, and this result
was later sharpened up to cover the case r = 1 by Krantz and Parks [71], even the prob-
lem of establishing the regularity of ∂Ω from the regularity of dist (x, ∂Ω) remains open.
These results actually sharpened a pioneering �nding of Serrin [110] which established the
Cr−1-regularity of dist (x, ∂Ω) from the Cr-regularity of ∂Ω. Some time later, Foote [45]
generalized some of the results of [71] by establishing that, for every compact submanifold
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M of class Ck, k ≥ 2, there exists a neighborhood, U , such that the distance function,
d(x,M), is Ck in U \M . Under these assumptions, the fact that M has a neighborhood,
U , with the unique nearest point property, as well as the fact that the projection map
Π : U →M is Ck−1, relies on the tubular neighborhood theorem with the added observation
that Π factors through the map that creates the neighborhood. More recently, almost
twenty years later, Li and Nirenberg [76] established that if Ω is a domain in a smooth
complete Finsler manifold, and G stands for the largest open subset of Ω with the nearest
point property in the Finsler metric, then the distance function from ∂Ω is in Ck,aloc (G∪∂Ω),
k ≥ 2 and 0 < a ≤ 1, if ∂Ω is of class Ck,a. But no converse result, within the vain of the
characterization provided by Theorem 2.3, seems to be available in the literature.

This chapter is distributed as follows. Section 2.1 states and proves Theorem 2.3, which,
in particular, provides us with a characterization of the regularity of ∂Ω in terms of the
regularity of distance functions. Section 2.2 uses Theorem 2.3 to reduce the general case
(β changes sign) to the classical case (β ≥ 0). This simpli�es substantially the underlying
analysis and the construction of the supersolutions. As a �nal consequence of Theorem 2.3,
Subsection 2.2.3 provides with the approximation of continuous functions in Ω̄ by C2(Ω̄)-
functions with constant sign in ΓR, which is crutial in the proof the the perturbation result.
Section 2.3 establishes some important monotonicity properties of the associated principal
eigenvalues with respect to the domain and the potential. Section 2.4 proves Theorem
2.15, i.e., the main existence and uniqueness result, and derives from it some important
monotonicity properties. Section 2.5 states the main perturbation result (see Theorem
2.21) and delivers its proof through a series of lemmas.

2.1 Regularity of the distance to the boundary function

Throughout this section we assume that Ω is an open subdomain of RN , N ≥ 1, such that
its boundary, ∂Ω, is a topological (N − 1)-manifold. Let us introduce some notation for
the appropriate statement of Theorem 2.3.

De�nition 2.1. Let ν : ∂Ω → RN be a vector �eld on ∂Ω. We will say that ν is an
outward vector �eld when the following conditions are satis�ed:

(i) There exists ε0 > 0 such that

x+ εν(x) ∈ RN \ Ω̄ and x− εν(x) ∈ Ω

for all x ∈ ∂Ω and 0 < ε < ε0.

(ii) For every x ∈ ∂Ω there exist εx > 0 and α ∈ (0, 1) such that

x+ εv ∈ RN \ Ω̄ for all ε ∈ (0, εx) and v ∈ SN−1 with 〈v,ν〉 ∈ (0, α|ν|).

Here, SN−1 stands for the (N − 1)-dimensional sphere.

It should be noted that assumption (ii) imposes that for each x ∈ ∂Ω there is a small
cone with vertex in x and axis in the direction of the vector ν that lies outside Ω̄. It is easy
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to check that, under condition (i), when ∂Ω is of class C1, assumption (ii) is equivalent to
the fact that, for every x ∈ ∂Ω, ν(x) is not tangent to ∂Ω. Moreover, under such regularity,
∂Ω admits an outward normal vector �eld, n, and every outward vector �eld, ν, satis�es
〈ν,n〉 > 0.

De�nition 2.2. Let ν : ∂Ω → RN be a vector �eld on ∂Ω and let U ⊂ RN be an open
set such that ∂Ω ⊂ U . We will say that a function Πν : U → ∂Ω is the projection onto ∂Ω
along ν if

(i) Πν(x) = x for all x ∈ ∂Ω,

(ii) Πν(x−λν(Πν(x))) = Πν(x) for every x ∈ U and λ ∈ R such that x−λν(Πν(x)) ∈ U .
In particular,

∂Πν

∂ν(Πν(x))
(x) = 0 for all x ∈ U .

Naturally, given a projection onto ∂Ω along ν, the function distance to the boundary along

ν is de�ned through

distν(x, ∂Ω) :=
|x−Πν(x)|
|ν(Πν(x))|

, x ∈ U ,

where | · | stands for the euclidean norm in RN . In particular, when ν = An, i.e., when
ν is the conormal vector �eld, it is simply said that Πν is a conormal projection and that
distν(·, ∂Ω) is the conormal distance.

The next result provides us with the characterization of the regularity of ∂Ω in terms
of the regularity of the distance to the boundary function. Speci�cally, ∂Ω is of class Cr
if, and only if, for some outward vector �eld ν ∈ Cr−1 the function distν is of class Cr in
U \ ∂Ω.

Theorem 2.3. Assume that Ω is an open subdomain of RN such that ∂Ω is a topological

(N − 1)-manifold. Then, for every integer r ≥ 2, the next assertions are equivalent:

(a) ∂Ω is of class Cr.

(b) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) and, for every outward vector

�eld ν ∈ Cr−1(∂Ω;RN ), there exist an open subset U of RN , with ∂Ω ⊂ U , and a

projection onto ∂Ω along ν, Πν : U → ∂Ω, of class Cr−1. Moreover, the function

dν : U → R de�ned by

dν(x) :=

{
distν(x, ∂Ω) if x ∈ U ∩ Ω,
−distν(x, ∂Ω) if x ∈ U \ Ω,

(2.9)

is of class Cr.

(c) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) for which the property stated

in (b) holds.
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(d) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) and, for every outward vector

�eld ν ∈ Cr−1(∂Ω;RN ), there exist an open subset U of RN with ∂Ω ⊂ U and a

function ψ ∈ Cr(U ;R) such that ψ(x) < 0 for all x ∈ Ω ∩ U , ψ(x) > 0 for all

x ∈ U \ Ω̄ and

min
x∈∂Ω

∂ψ

∂ν
(x) > 0.

In particular, ψ(x) = 0 for all x ∈ ∂Ω by the continuity of ψ on U .

(e) ∂Ω admits an outward vector �eld ν0 ∈ Cr−1(∂Ω;RN ) for which the property stated

in (d) holds.

(f) There exist an open subset U of RN with ∂Ω ⊂ U and a function Ψ ∈ Cr(U ;R) such

that

Ω = {x ∈ U : Ψ(x) < 0}, ∂Ω = Ψ−1(0),

and |∇Ψ(x)| = 1 for all x ∈ ∂Ω.

Proof. It su�ces to prove the following implications: (a) implies (b), (b) implies (c), (d)
and (f), (c), or (d), or (f), implies (e), and (e) implies (a). First, we will prove that (a)
implies (b). Note that the normal vector �eld is of class Cr−1 as soon as ∂Ω is of class
Cr. Now, consider a �eld ν satisfying the requirements of Part (b). For each ε > 0, let us
denote by Qν ∈ Cr−1((−ε, ε)× ∂Ω;RN ) the function de�ned by

Qν : (−ε, ε)× ∂Ω→ Uε := ImQν ⊂ RN

(s, x) 7→ x− sν(x)

which establishes a bijection over its image for su�ciently small ε > 0. Moreover, short-
ening ε > 0, if necessary, Q−1

ν also is of class Cr−1-regularity. Indeed, the proof of the
injectivity proceeds by contradiction.
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Figure 2.2: Scheme for the realization of Qν and Q−1
ν and their relationships with the

projection Πν and the distance function dν .

Suppose that Qν is not injective for su�ciently small ε > 0. Then, there exist
{s1
n}n≥1, {s2

n}n≥1 ⊂ R, with s1
n → 0 and s2

n → 0, as n ↑ ∞, and {x1
n}n≥1, {x2

n}n≥1 ⊂ ∂Ω
such that

(s1
n, x

1
n) 6= (s2

n, x
2
n) and Qν(s1

n, x
1
n) = Qν(s2

n, x
2
n) for all n ≥ 1.
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In other words,
x1
n − s1

nν(x1
n) = x2

n − s2
nν(x2

n) for all n ≥ 1. (2.10)

Moreover, without lost of generality, we can assume that s1
ns

2
n > 0 for all n ≥ 1. Otherwise,

since ν is an outward vector �eld, for su�ciently large n ≥ 1, we have that

x1
n − s1

nν(x1
n) = x2

n − s2
nν(x2

n)

should lie, simultaneously, in Ω and in RN \ Ω̄, which is impossible.
Suppose x1

n = x2
n for some n ≥ 1. Then, since ν(x1

n) 6= 0, (2.10) implies that s1
n = s2

n,
which cannot hold. Hence, x1

n 6= x2
n for all n ≥ 1. Since ∂Ω is compact, along some

subsequences of {x1
n} and {x2

n}, relabeled by n, we have that

lim
n→∞

xjn = xj∞, j = 1, 2,

for some x1
∞, x

2
∞ ∈ ∂Ω. Subsequently, we are renaming by {s1

n}n≥1, {s2
n}n≥1, {x1

n}n≥1 and
{x2

n}n≥1 the new subsequences. Letting n ↑ ∞ in (2.10) yields

x1
∞ = x2

∞ =: x∞.

Now, for each j = 1, 2, we consider the sequence {ςjn}n≥1 de�ned through

ςjn := sin|ν(xjn)|, n ≥ 1.

Then, by the continuity of ν, the new sequences still satisfy

lim
n→∞

ς1
n = lim

n→∞
ς2
n = 0, (2.11)

and, setting ξ := ν/|ν| for the unitary outward vector �eld, (2.10) can be equivalently
expressed as

x1
n − x2

n = ς1
nξ(x

1
n)− ς2

nξ(x
2
n) = (ς1

n − ς2
n)ξ(x1

n) + ς2
n

(
ξ(x1

n)− ξ(x2
n)
)

(2.12)

for all n ≥ 1. On the other hand, since x1
n 6= x2

n, we have that

x1
n − x2

n

|x1
n − x2

n|
∈ SN−1 ⊂ RN for all n ≥ 1,

where SN−1 stands for the (N − 1)-dimensional sphere. As the sphere is compact, we can
extract subsequences of {ς1

n}n≥1, {ς2
n}n≥1, {x1

n}n≥1 and {x2
n}n≥1, again labeled by n, such

that

τ∞ := lim
n→∞

x1
n − x2

n

|x1
n − x2

n|
∈ Tx∞∂Ω,

where Tx∞∂Ω stands for the tangent hyperplane of ∂Ω at x∞. Note that |τ∞| = 1.
Moreover, by construction, we have that

|ςjn| = |xjn −Qν(sjn, x
j
n)|, Qν(s1

n, x
1
n) = Qν(s2

n, x
2
n), j = 1, 2, n ≥ 1.
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Thus, since s1
ns

2
n > 0 for all n ≥ 1, the triangular inequality yields

|ς1
n − ς2

n| =
∣∣|ς1
n| − |ς2

n|
∣∣ =

∣∣|x1
n −Qν(s1

n, x
1
n)| − |x2

n −Qν(s2
n, x

2
n)|
∣∣ ≤ |x1

n − x2
n|

for all n ≥ 1. Consequently, by the Bolzano�Weierstrass theorem, there exist η ∈ [−1, 1]
and subsequences of {ς1

n}n≥1, {ς2
n}n≥1, {x1

n}n≥1 and {x2
n}n≥1, relabeled by n, such that

lim
n→∞

ς1
n − ς2

n

|x1
n − x2

n|
= η. (2.13)

Now we will show that, as a consequence of the regularity of ξ, the limit

lim
n→∞

ξ(x1
n)− ξ(x2

n)

|x1
n − x2

n|

is well de�ned in RN . Indeed, since ∂Ω is a Cr-manifold, there exist δ > 0 and a local
chart of ∂Ω on a neighborhood of x∞, Φ ∈ Cr(Bδ(0);RN ) with Φ(0) = x∞. Subsequently,
we set

yjn := Φ−1(xjn)

for j = 1, 2 and su�ciently large n ≥ 1. By the continuity of Φ−1,

lim
n→∞

yjn = 0, j = 1, 2.

Since x1
n 6= x2

n and Φ is a local di�eomorphism, y1
n 6= y2

n and hence,

y1
n − y2

n

|y1
n − y2

n|
∈ SN−2, n ≥ n0.

Thus, by compactness, we can extract subsequences, relabeled by n, such that

τ̃∞ := lim
n→∞

y1
n − y2

n

|y1
n − y2

n|
∈ SN−2. (2.14)

Then, for every ϕ ∈ C1(Bδ(0);RN ), we have that

lim
n→∞

ϕ(y1
n)− ϕ(y2

n)

|y1
n − y2

n|
= Dϕ(0)τ̃∞ =

∂ϕ

∂τ̃∞
(0).

Indeed, ∣∣∣∣ϕ(y1
n)− ϕ(y2

n)

|y1
n − y2

n|
−Dϕ(0)τ̃∞

∣∣∣∣ =

∣∣∣∣ϕ(y2
n + (y1

n − y2
n))− ϕ(y2

n)

|y1
n − y2

n|
−Dϕ(0)τ̃∞

∣∣∣∣
=

∣∣∣∣ 1

|y1
n − y2

n|

∫ 1

0
Dϕ(y2

n + t(y1
n − y2

n))(y1
n − y2

n)dt−
∫ 1

0
Dϕ(0)τ̃∞dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

(
Dϕ(y2

n + t(y1
n − y2

n))
y1
n − y2

n

|y1
n − y2

n|
−Dϕ(0)τ̃∞

)
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣Dϕ(y2
n + t(y1

n − y2
n))

(
y1
n − y2

n

|y1
n − y2

n|
− τ̃∞

)∣∣∣∣ dt
+

∫ 1

0

∣∣(Dϕ(y2
n + t(y1

n − y2
n))−Dϕ(0)

)
τ̃∞
∣∣ dt
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which, thanks to (2.14) and the uniform continuity of Dϕ in Bδ/2(0), converges to 0 as
n ↑ ∞. Hence, by the regularity of ν, and so of ξ, we have that

lim
n→∞

ξ(x1
n)− ξ(x2

n)

|x1
n − x2

n|
= lim

n→∞

(ξ ◦ Φ)(y1
n)− (ξ ◦ Φ)(y2

n)

|Φ(y1
n)− Φ(y2

n)|

= lim
n→∞

|y1
n − y2

n|
|Φ(y1

n)− Φ(y2
n)|

(ξ ◦ Φ)(y1
n)− (ξ ◦ Φ)(y2

n)

|y1
n − y2

n|

=
1

|DΦ(0)τ̃∞|
D(ξ ◦ Φ)(0)τ̃∞ ∈ RN .

(2.15)

Therefore, thanks to (2.11), (2.13) and (2.15), dividing by |x1
n − x2

n| in (2.12) and letting
n ↑ +∞ yields

τ∞ = ηξ(x∞) = η
ν(x∞)

|ν(x∞)|
.

Since τ∞ ∈ SN−1, taking norms in both sides provides us with |η| = 1. However, since
τ∞ ∈ Tx∞∂Ω and ξ is an outward unit vector �eld along ∂Ω, we have that

〈τ∞,n(x∞)〉 = 0 and 〈ξ(x∞),n(x∞)〉 > 0,

respectively, which implies η = 0, driving to a contradiction. Thus, there exists ε > 0 such
that Qν : (−ε, ε) → Uε is bijective. Note that Qν inherits the regularity of ν. So, it is of
class Cr−1((−ε, ε)× ∂Ω;Uε), and Qν(0, x) = x for all x ∈ ∂Ω.

It remains to show the regularity of

Q−1
ν : Uε → (−ε, ε)× ∂Ω

for su�ciently small ε > 0. This is a consequence of the inverse function theorem. By
continuity and compactness, it su�ces to establish that DQν is non-degenerate on {0} ×
∂Ω. Indeed, since ∂Ω is a class Cr manifold, for each x ∈ ∂Ω there exist δx > 0 and
a homeomorphism onto its image, Φx ∈ Cr(Bδx(0) ⊂ RN−1;RN ), with Φx(0) = x and
Φx(Bδx(0)) ⊂ ∂Ω. Actually, Φx parameterizes ∂Ω in a neighborhood of x. Consider the
function Q̃ν : (−ε, ε)×Bδx(0)→ Uε de�ned by

Q̃ν(s, y) := Qν(s,Φx(y)) = Φx(y)− sν(Φx(y)).

Then, for every s ∈ (−ε, ε) and y ∈ Bδx(0), DQν(s,Φx(y)) is represented by

DQ̃ν(s, y) = [−ν(Φx(y)), DΦx(y)− sD(ν ◦ Φx)(y)].

In particular,
DQ̃ν(0, y) = [−ν(Φx(y)), DΦx(y)].

Since Φx is a local chart of a Cr (N − 1)-dimensional manifold, rank DΦx(y) = N − 1 for
all y ∈ Bδx(0) and hence, it generates the tangent space at Φx(y). Thus, since ν(Φx(y)) is
a non-tangential vector �eld, it becomes apparent that

rank DQ̃ν(0, y) = N.
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Consequently, DQ̃ν(0, y) is an isomorphism. Therefore, Qν establishes a di�eomorphism
of class Cr−1 onto its image for su�ciently small ε > 0. In order to complete the proof of
(a) implies (b) it remains to construct the projection Πν and show that the function dν
de�ned in (2.9) is of class Cr. Let P1 : R × ∂Ω → R and P2 : R × ∂Ω → ∂Ω denote the
projections on the �rst and the second component, respectively, i.e.,

P1 : R× ∂Ω → R,
(s, x) 7→ s

P2 : R× ∂Ω → ∂Ω,
(s, x) 7→ x

respectively. Obviously, P1 and P2 are of class C∞ and, by construction, it is easily seen
that the map

Πν := P2 ◦Q−1
ν : Uε → ∂Ω ⊂ RN

satis�es all the requirements of Part (b). Indeed, Πν also is of class Cr−1, as Q−1
ν and P2.

Moreover, for every x ∈ ∂Ω, we have that

Πν(x) = P2 ◦Q−1
ν (x) = P2(0, x) = x.

Since Qν is a di�eomorphism, for every x ∈ Uε there exists s ∈ (−ε, ε) such that

x = Qν(s,Πν(x)) = Πν(x)− sν(Πν(x)).

Hence, if λ ∈ R satis�es x− λν(Πν(x)) ∈ Uε, we �nd that

Πν(x− λν(Πν(x))) = Πν

(
Πν(x)− sν(Πν(x))− λν(Πν(x))

)
= P2 ◦Q−1

ν (Qν(s+ λ,Πν(x))) = Πν(x).

In particular, this entails that

∂Πν

∂ν(Πν(x))
(x) = 0 for all x ∈ Uε.

By the de�nition of Qν , dν = P1 ◦Q−1
ν , and so it is of class Cr−1(Uε). Moreover, for every

x ∈ Uε,

x = Πν(x)− dν(x)ν(Πν(x)).

Thus,

dν(x) =
1

|ν(Πν(x))|2
〈Πν(x)− x,ν(Πν(x))〉

and hence, combining the Leibniz rule with the properties of the projection Πν , we �nd
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that, for every x ∈ Uε,

Ddν(x) = −2〈ν(Πν(x)),D(ν ◦Πν)(x))〉
|ν(Πν(x))|4

〈Πν(x)− x,ν(Πν(x))〉

+
1

|ν(Πν(x))|2
(
〈DΠν(x)− Id,ν(Πν(x))〉+ 〈Πν(x)− x,D(ν ◦Πν)(x))〉

)
=

1

|ν(Πν(x))|2
(
〈DΠν(x),ν(Πν(x))〉 − dν(x)〈ν(Πν(x)),D(ν ◦Πν)(x))〉

− 〈Id,ν(Πν(x))〉
)

=
1

|ν(Πν(x))|2
( ∂Πν

∂ν(Πν(x))
(x)− dν(x)

∂(ν ◦Πν)

∂ν(Πν(x))
(x)− ν(Πν(x))

)
= − ν(Πν(x))

|ν(Πν(x))|2
.

because Πν and ν◦Πν are constant along each direction ν(Πν(x)). Therefore, Ddν ∈ Cr−1,
which entails dν ∈ Cr and ends the proof of (a) implies (b).

The fact that Part (b) implies Part (c) is immediate. Next, we will prove that (b)
implies (d) and (f). Suppose (b) and consider any outward vector �eld, ν ∈ Cr−1. Then,

ν̃ := ν/|ν| ∈ Cr−1.

Let U , Πν̃ and dν̃ denote, respectively, the open set, the projection and the `regularized
distance' (2.9) provided by Part (b). Then, the function ψν : U → R de�ned by ψν := −dν̃
satis�es

∇ψν(x) = Dψν(x) = −Ddν̃ = ν̃(Πν̃(x))

for all x ∈ U . In particular, ∇ψν(x) = ν̃(x) for every x ∈ ∂Ω, and hence,

∂ψν

∂ν
(x) = 〈∇ψν(x),ν(x)〉 = 〈ν̃(x),ν(x)〉 = |ν(x)| > 0,

which ends the proof of (b) implies (d). Actually, since

|∇ψν(x)| = |ν̃(x)| = 1

for all x ∈ ∂Ω, Ψ := ψν satis�es the requirements of Part (f).
The fact that (d) implies (e) is trivial, and the proof of (c) implies (e) follows the same

patterns as the proof of (b) implies (d). The fact that (f) implies (e) follows from the fact
that ν(x) := ∇Ψ(x) is an outward vector �eld of class Cr−1 satisfying

∂Ψ

∂ν
(x) = |∇Ψ(x)|2 = 1 > 0

for all x ∈ ∂Ω. Thus, Part (e) holds by choosing ψ := Ψ.
It remains to prove that (e) implies (a). By the properties of the function ψ guaranteed

by Part (e), it is apparent that ∂Ω := ψ−1(0). Let us consider x0 ∈ ∂Ω and ν(x0), and let
{ej}N−1

j=1 be an orthonormal basis of span [ν(x0)]⊥ in RN . Subsequently, for every δ > 0,
we denote by

Fδ : (−δ, δ)× (−δ, δ)N−1 → RN
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the C∞ map de�ned through

Fδ(z,y) := x0 + zν(x0) +
N−1∑
j=1

yjej , y = (y1, ..., yN−1).

This map establishes a di�eomorphism onto its image, which is an open neighborhood of
x0 denoted by Wδ. Note that Fδ(0, 0) = x0. Choose δ > 0 such that Wδ ⊂ U , where U is
the open neighborhood of ∂Ω guaranteed by Part (c). Lastly, consider the function

Gδ := ψ ◦ Fδ ∈ Cr((−δ, δ)N ;R).

Obviously, Gδ(0, 0) = 0. Moreover,

∂Gδ
∂z

(0, 0) = [Dψ(x0)]
(∂Fδ
∂z

(0, 0)
)

= Dψ(x0)(ν(x0)) =
∂ψ

∂ν
(x0) > 0.

Thus, according to the implicit function theorem, there exists δ0 > 0 and a function
ζ ∈ Cr((−δ0, δ0)N−1;R) such that

G−1
δ0

(0) = {(ζ(y),y) ∈ RN : y ∈ (−δ0, δ0)N−1}.

In particular, the function

(−δ0, δ0)N−1 3 y 7→ Fδ0(ζ(y),y)

provides us with a class Cr parametrization of ∂Ω∩Wδ0 . Since x0 was arbitrary, ∂Ω is an
(N − 1)−manifold of class Cr. This ends the proof of Theorem 2.3

Remark 2.4. According to López-Gómez [88, Lem. 2.1], using a partition of the unity of
class Cr, or a cut-o� function, the function ψ(x) in Part (d), as well as Ψ in Part (f), can
be assumed to be globally de�ned in a neighborhood of Ω̄, or even in RN , and in such case
ψ(x) < 0 (resp. Ψ(x) < 0) for all x ∈ Ω and ψ(x) > 0 (resp. Ψ(x) > 0) for all x ∈ RN \ Ω̄.

A further (deeper) analysis of the role played by the regularity of the outward vector
�eld reveals the validity of the next result.

Corollary 2.5. If ∂Ω is an (N − 1)-dimensional manifold of class Cr, r ≥ 1, and ν ∈
Ck(∂Ω;RN ), k ≥ 1, is an outward vector �eld, then there exist an open subset U of RN ,
with ∂Ω ⊂ U , and a function Πν ∈ Cmin{r,k}(U ; ∂Ω) which is a projection onto ∂Ω along

ν. In particular, the function dν : U → R de�ned in (2.9) is of class Cmin{r,k+1}.

2.2 Consequences of the theorem of characterization of the

regularity of the boundary

This section collects a series of consequences of Theorem 2.3 if ∂Ω is assumed to be of
class C2, when applying such regularity characterization in the context of problem (2.1). It
should be remembered that this assumption will be maintained in the forthcoming sections.
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2.2.1 A canonical transformation

The next result allows to transform the original problem into a problem with β ≥ 0
preserving the properties (H1), (H2), and (H4) of the nonlinearity. Hence, in general, one
can assume that β ≥ 0.

Theorem 2.6. Assume that ∂Ω is of class C2. Then, there exits E ∈ C2(Ω̄), with E(x) > 0
for all x ∈ Ω̄, such that (2.1) can be equivalently expressed as{

dLEw = whE(w, x) in Ω,
BEw = 0 in ∂Ω,

(2.16)

where

(i) hE(w, x) = h(E(x)w, x) for all w ≥ 0 and x ∈ Ω̄.

(ii) LE = −div(A∇·) + bE∇+ cE, with

bE := b− 2A
∇E
E
∈M1×N (C(Ω̄)), cE :=

LE
E
∈ C(Ω̄).

(iii) BE = D on ΓD and BE = ∂
∂ν + βE on ΓR, with βE(x) := BE

E (x) > 0 for all x ∈ ΓR.

Moreover, hE satis�es (H1), (H2) and (H4) if h does too.

Proof. First, let us consider an arbitrary E ∈ C2(Ω̄) such that E(x) > 0 for all x ∈ Ω̄.
Suppose that u is a non-negative solution of (2.1). Then, w := u/E satis�es

Lu = L(Ew) = −div (A∇(Ew)) + b∇(Ew) + cEw

= −div (EA∇w)− div (wA∇E) + Eb∇w + wb∇E + wcE

= −∇EA∇w − Ediv (A∇w)−∇wA∇E − wdiv (A∇E)

+ Eb∇w + wb∇E + wcE

= −Ediv (A∇w) + Eb∇w −∇EA∇w −∇wA∇E
+ w(−div (A∇E) + b∇E + cE).

By the symmetry of A, we have that

∇wA∇E = ∇EA∇w,

and thus

Lu = E

(
−div (A∇w) +

(
b− 2A

∇E
E

)
∇w +

LE
E
w

)
= ELEw, in Ω.

Hence,

dLEw =
1

E
dLu =

1

E
uh(u, ·) =

1

E
Ewh(Ew, ·) = whE(w, ·) in Ω.

As for the boundary, we �nd that

BEw(x) = w(x) = u(x)/E(x) = 0
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for all x ∈ ΓD, whereas

0 = Bu(x) = B(Ew)(x) =
∂(Ew)

∂ν
(x) + β(x)E(x)w(x)

= E(x)
∂w

∂ν
(x) +

(
∂E

∂ν
(x) + β(x)E(x)

)
w(x) = E(x)BEw(x)

for all x ∈ ΓR. In order to choose E such that βE > 0, note that, according to Theorem
2.3 and Remark 2.1, there exist an open set U , Ω̄ ⊂ U ⊂ RN , and a function ψ ∈ C2(U)
such that ψ(x) < 0 for all x ∈ Ω, ψ(x) = 0 for all x ∈ ∂Ω and minΓR

∂ψ
∂ν > 0. Consider

E := exp(µψ)

with µ > 0 to be determined. Then, for each x ∈ ΓR, E(x) = 1 and, hence,

βE(x) =
BE(x)

E(x)
= β(x) +

1

E(x)

∂E

∂ν
(x) = β(x) + µ

∂E

∂ν
(x).

Thus, since minΓR
∂ψ
∂ν > 0, it becomes apparent that βE(x) > 0 for all x ∈ ΓR for

su�ciently large µ > 0.
Now, let us analyze the properties of hE . The regularity required for (H1) is a byproduct

of the regularity of both h and E. On the other hand, for every u > 0 and x ∈ Ω̄ we have
that

∂hE
∂w

=
∂

∂w
(h(E(x)w, x)) = E(x)

∂h

∂u
(E(x)w, x) < 0.

Hence hE satis�es (H2). To conclude, since h satis�es (H4) there exists M > 0 such that
maxΩ̄ h(M, ·) < 0. Therefore, setting

ME :=
M

minΩ̄E
> 0

and taking into account that h is decreasing in u by (H2), we conclude that, for every
x ∈ Ω̄,

hE(ME , x) = h(MEE(x), x) = h
(
E(x) M

minΩ̄ E
, x
)
≤ h(M,x) < 0,

which ends the proof.

2.2.2 Existence of su�ciently large supersolutions

The next results will allow us to prove the existence of solutions of (2.1) in Section 2.4.

Lemma 2.7. Assume that problem (2.16) derived in Theorem 2.6 satis�es (H2) and (H3)

for some d > 0. Then, for such d > 0 and for every M > 0, the problem (2.1) possesses a
supersolution greater than M in Ω̄.

Proof. Consider the function E ∈ C2(Ω̄) as derived in Theorem 2.6, and denote ū := κE
for some constant κ > 0 to be determined. Applying the boundary operator to ū we obtain

Bū = κ > 0 in ΓD
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and, by the analysis carried out in Theorem 2.6,

Bū =
∂

∂ν
κ+ βEκ ≥ 0, in ΓR.

Moreover,
ūh(ū, ·) = κEh(κE, ·) = κEhE(κ, ·)

and
dLū = dELEκ = dEcEκ.

Hence, ū is a strict supersolution of (2.1) if

dcE(x) ≥ hE(κ, x) for all x ∈ Ω̄.

Therefore, because problem (2.16) is assumed to satisfy (H2) and (H3), it su�ces to choose
κ > M

minΩ̄
greater than the value provided by hypothesis (H3).

As an immediate consequence of Lemma 2.7 and the fact that properties (H2) and (H4)
are preserved by the transformation carried out in Theorem 2.6, the next result holds.

Lemma 2.8. Assume that (2.1) satis�es (H2) and (H4). Then, d0 > 0 exists such that

for every M > 0 and d ∈ (0, d0), the problem (2.1) possesses a supersolution greater than

M in Ω̄.

2.2.3 Approximation by functions of class C2 with a �xed sign on ΓR

The next result will play a crucial role in the proof of Theorem 2.21.

Lemma 2.9. Let ξ1, ξ2 ∈ C(Ω̄) be such that ξ1(x) < ξ2(x) for all x ∈ Ω̄. Then the following

hold:

(a) There exists Φ ∈ C2(Ω̄) such that ξ1 ≤ Φ ≤ ξ2 in Ω̄ and RΦ(x) > 0 for all x ∈ ΓR.

(b) There exists Φ ∈ C2(Ω̄) such that ξ1 ≤ Φ ≤ ξ2 in Ω̄ and RΦ(x) < 0 for all x ∈ ΓR.

Proof. By Theorem 2.3 applied to the conormal vector �eld, there exist an open neighbor-
hood U ⊂ RN of ∂Ω, a function ψ ∈ C2(U ;R) and a constant τ > 0 such that ψ(x) < 0 for
all x ∈ U ∩ Ω, ψ(x) = 0 for each x ∈ ∂Ω and

∂ψ

∂ν
(x) ≥ τ for all x ∈ ∂Ω. (2.17)

Let ε > 0 be such that
ε < min

Ω̄
(ξ2 − ξ1).

Then,

ξ1(x) +
ε

2
< ξ2(x)− ε

2
for all x ∈ Ω̄,

and, hence, there exists φ ∈ C∞(Ω̄) such that

ξ1(x) +
ε

2
< φ(x) < ξ2(x)− ε

2
for all x ∈ Ω̄.
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Consider, for each M ∈ R, the map φM ∈ C2(U ∩ Ω̄) de�ned by

φM (x) := φ(x)− 1 + eMψ(x), x ∈ U ∩ Ω̄.

By the continuity of φM , and the fact that φM (x) = φ(x) for all x ∈ ∂Ω, we can reduce U
to some open set UM , with ∂Ω ⊂ UM ⊂ U , so that

ξ1(x) +
ε

2
< φM (x) < ξ2(x)− ε

2
for all x ∈ UM ∩ Ω̄.

On the other hand, since ψ(x) = 0 for all x ∈ ∂Ω, it becomes apparent that, for every
x ∈ ΓR,

RφM (x) = Rφ(x) +R(eMψ(x) − 1)

= Rφ(x) +MeMψ(x)∂ψ

∂ν
(x) + β(x)(eMψ(x) − 1)

= Rφ(x) +M
∂ψ

∂ν
(x).

According to (2.17), for su�ciently large M > 0, one can get RφM (x) > 0 for all x ∈ ΓR.
So, in order to get Part (a), it su�ces to choose Φ equal to φM in a neighborhood of ∂Ω.
Similarly, by choosing M < 0 su�ciently large, Part (b) can be easily accomplished.

In each of these cases, once we have �xed the appropriate M , it remains to take Φ as
any smooth extension of φM from a neighborhood V of ∂Ω, with V ⊂ UM , to Ω̄ in such a
way that

ξ1(x) < Φ(x) < ξ2(x) for all x ∈ Ω̄.

This can be accomplished through an appropriate cuto� function of class C∞.

Remark 2.10. Note that if ξ1 ≥ 0 in Ω̄, then the function Φ provided by Lemma 2.9(a)
satis�es BΦ ≥ 0 on ∂Ω, whereas if ξ2 ≤ 0 in Ω̄ then the function Φ provided by Lemma
2.9(b) veri�es BΦ ≤ 0 on ∂Ω.

As an immediate consequence of Lemma 2.9, continuous function in Ω̄ can be approx-
imated by class C2(Ω̄)-functions, Ψ, with either RΨ > 0, or RΨ < 0, in ΓR.

Corollary 2.11. Consider ξ ∈ C(Ω̄). Then, for every ε > 0 there exist Ψ1,Ψ2 ∈ C2(Ω̄)
such that

(a) Ψi(x) ∈ (ξ(x)− ε, ξ(x) + ε) for all x ∈ Ω̄ and i = 1, 2.

(b) RΨ1(x) > 0 > RΨ2(x) for all x ∈ ΓR.

2.3 Monotonicity properties of the principal eigenvalue

Throughout the remaining of this dissertation, for any given V ∈ C(Ω̄), we will denote
by σ1[dL + V ;B,Ω] the principal eigenvalue, i.e., the lowest real eigenvalue, of the linear
eigenvalue problem {

dLϕ+ V (x)ϕ = σϕ in Ω,
Bϕ = 0 on ∂Ω.
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According to López-Gómez [88, Th. 7.7], the principal eigenvalue is algebraically simple
and strictly dominant and it provides us with the unique eigenvalue that is associated with
a positive (principal) eigenfunction, say ϕ0. In such a case, ϕ0 � 0 in the sense that

ϕ0(x) > 0 for all x ∈ Ω ∪ ΓR and
∂ϕ0

∂n
(x) < 0 for all x ∈ ΓD. (2.18)

Moreover, according to [88, Ch. 5], ϕ0 ∈W 2,∞
B (Ω), where

W 2,∞
B (Ω) :=

⋂
p>N

W 2,p
B (Ω), W 2,p

B (Ω) := {u ∈W 2,p(Ω) : Bu = 0 on ∂Ω}. (2.19)

Thus, ϕ0 ∈ C1
B(Ω̄) ∩ C1,ν(Ω) for all ν < 1 and it is almost everywhere twice di�erentiable

in Ω, much like the weak positive solutions of (2.1).
The next result, which slightly extends [41, Th. 4.1], collects the main properties of

the function Σ : (0,+∞)× C(Ω̄)→ R de�ned by

Σ(d, V ) := σ1[dL+ V ;B,Ω].

It extends [38, Th. 2.1] to deal with general di�erential operators, L, not necessarily self-
adjoint. In particular, Parts (a) and (b) provide us with the monotonicity and continuity
of the principal eigenvalue with respect to the potential, respectively.

Theorem 2.12. Σ(d, V ) has the following properties:

(a) For every d > 0, the map Σ(d, ·) : C(Ω̄) → R is strictly increasing, i.e., Σ(d, V1) <
Σ(d, V2) if V1, V2 ∈ C(Ω̄) with V1 � V2.

(b) For every d > 0, the map Σ(d, ·) : C(Ω̄)→ R is Lipschitz continuous.

(c) For every V ∈ C(Ω̄)

Σ(0, V ) := lim
d→0

Σ(d, V ) = min
Ω̄
V.

Proof. Let ϕ1 � 0 denote the (unique) principal eigenfunction associated to σ1[dL +
V1;B,Ω] such that ‖ϕ1‖∞ = 1. Then,{

(dL+V2−σ1[dL+V1;B,Ω])ϕ1 
 (dL+V1−σ1[dL+V1;B,Ω])ϕ1 = 0 in Ω,
Bϕ1 = 0 on ∂Ω.

Therefore, the function ϕ1 provides us with a positive strict supersolution of the di�erential
operator

dL+ V2 − σ1[dL+ V1;B,Ω]

subject to the boundary operator B on ∂Ω and hence, thanks to the theorem of character-
ization of López-Gómez [88, Th. 7.10], its principal eigenvalue must be positive. Thus,

σ1[dL+ V2;B,Ω]− σ1[dL+ V1;B,Ω] = σ1[dL+ V2 − σ1[dL+ V1;B,Ω];B,Ω] > 0,

which ends the proof of Part (a).
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The Lipschitz continuity stated in Part (b) is an immediate consequence of the mono-
tonicity. Indeed, by Part (a), for any given V1, V2 ∈ C(Ω̄), we have that

Σ(d, V1) = Σ(d, V1 − V2 + V2) ≤ Σ(d, ‖V1 − V2‖∞ + V2) = ‖V1 − V2‖∞ + Σ(d, V2),

and, thus,
Σ(d, V1)− Σ(d, V2) ≤ ‖V1 − V2‖∞.

Changing V1 by V2 provides us with

|Σ(d, V1)− Σ(d, V2)| ≤ ‖V1 − V2‖∞.

For the convergence in Part (c), we �rst note that, thanks to Part (a),

σ1[dL+ V ;B,Ω] ≥ dσ1[L;B,Ω] + min
Ω̄
V.

Thus,
lim inf
d→0

σ1[dL+ V ;B,Ω] ≥ min
Ω̄
V.

Now, arguing by contradiction, suppose that

lim sup
d→0

σ1[dL+ V ;B,Ω] > min
Ω̄
V.

Then, there exist ε > 0 and a sequence {dn}n≥1 ⊂ (0,+∞) with

lim
n→∞

dn = 0,

such that, for every n ≥ 1,

σ1[dnL+ V ;B,Ω] > min
Ω̄
V + ε.

Equivalently,
σ1[dnL+ V −min

Ω̄
V − ε;B,Ω] > 0,

and hence, by López-Gómez [88, Th. 7.10], for every n ≥ 1 the problem{
(dnL+ V −minΩ̄ V − ε)u = 0 in Ω,
Bu = 0 on ∂Ω,

admits a strict supersolution, ϕn � 0. So, ϕn satis�es{
(dnL+ V −minΩ̄ V − ε)ϕn ≥ 0 in Ω,
Bϕn ≥ 0 on ∂Ω,

with some of these inequalities strict. Let x0 ∈ Ω̄ be such that

V (x0) = min
Ω̄
V.
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By continuity, there exists ρ > 0 such that

V (x) < min
Ω̄
V +

ε

2

for all x ∈ Bρ(x0) ∩ Ω̄. In particular, this estimate holds in an open ball B ⊂ Bρ(x0) ∩ Ω.
Thus, for every n ≥ 1 we have that{

(dnL − ε
2)ϕn 
 0 in B,

ϕn > 0 on ∂B.

Consequently, thanks again to [88, Th. 7.10], we �nd that

σ1[dnL − ε
2 ;D, B] > 0,

which contradicts the fact that

lim
n→∞

σ1[dnL − ε
2 ;D, B] = lim

n→∞
dnσ1[L;D,Ω]− ε

2 = − ε
2 .

This contradiction ends the proof.

For establishing the monotonicity of the principal eigenvalue with respect to the un-
derlying domain, we need to introduce some notations.

De�nition 2.13. Let Ω0 be a subdomain of class C2 of Ω and B0 a boundary operator on
∂Ω0. We will say that (B0,Ω0) is comparable with (B,Ω), and write

(B0,Ω0) � (B,Ω),

when the following conditions are satis�ed:

(i) Each component, Γ, of ∂Ω0 is either a component of ∂Ω, or Γ ⊂ Ω.

(ii) The boundary operator B0 satis�es

B0 :=

{
D on ∂Ω0 ∩ Ω,

B̃ on ∂Ω0 ∩ ∂Ω,

where, for every component, Γ, of ∂Ω0 ∩ ∂Ω, either B̃ = D on Γ, or Γ ⊂ ΓR and
there is β0 ∈ C(∂Ω0) with β0 ≥ β such that

B̃ =
∂

∂ν
+ β0 on Γ.

We will write
(B0,Ω0) ≺ (B,Ω)

if, in addition, (B0,Ω0) 6= (B,Ω).

It should be noted that, according to [16, Th. 9.1], the Dirichlet boundary operator on
each component of ∂Ω can be approximated by letting minΓ β ↑ ∞. Thus, the larger β0,
the closer are B0 and D.
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Lemma 2.14. Let Ω0 be a subdomain of class C2 of Ω and B0 a boundary operator on

∂Ω0. If (B0,Ω0) ≺ (B,Ω), then

σ1[dL+ V ;B,Ω] < σ1[dL+ V ;B0,Ω0], for every d > 0 and V ∈ C(Ω̄).

Proof. Let ϕ� 0 be the principal eigenfunction associated to σ1[dL+V ;B,Ω] normalized
so that ‖ϕ‖∞ = 1. Then, according to De�nition 2.13, as long as (B0,Ω0) ≺ (B,Ω), there
exist a component, Γ 6= ∅, of ∂Ω for which some of the following alternatives hold

• Γ ⊂ Ω and B0ϕ = ϕ > 0 on Γ. Actually, this occurs if Ω0 is a proper subdomain of
Ω.

• Γ ⊂ ΓR and B0ϕ = ϕ on Γ. Then, since ϕ(x) > 0 for all x ∈ ΓR, we have that
B0ϕ > 0 on Γ.

• Γ ⊂ ΓR and B0 = ∂
∂ν + β0 with β0 
 β on Γ. Then, since ϕ(x) > 0 for all x ∈ ΓR,

we �nd that

B0ϕ =
∂ϕ

∂ν
+ β0ϕ 


∂ϕ

∂ν
+ βϕ = Bϕ = 0 on Γ.

Hence, ϕ satis�es {
(dL+ V − σ1[dL+ V ;B,Ω])ϕ = 0 in Ω0,
B0ϕ 
 0 on ∂Ω0.

In particular, ϕ is a positive strict supersolution of{
(dL+ V − σ1[dL+ V ;B,Ω])u = 0 in Ω0,
B0u = 0 on ∂Ω0.

Therefore, we can conclude from [88, Th 7.10] that

σ1[dL+ V ;B0,Ω0]− σ1[dL+ V ;B,Ω] = σ1[dL+ V − σ1[dL+ V ;B,Ω];B0,Ω0] > 0,

which ends the proof.

2.4 Existence and uniqueness of positive solutions

The main result of this section, Theorem 2.15, characterizes the existence and establishes
the uniqueness of the positive solution of (2.1) in terms of the linearized instability of u = 0
as a steady-state solution of its parabolic counterpart. Note that this result complements
Lemma 3.4 of Fraile, Koch, López-Gómez and Merino [46].

Theorem 2.15. Assume that problem (2.16) derived in Theorem 2.6 satis�es (H1), (H2)

and (H3) for some d > 0. Then, for such d > 0, problem (2.1) has a positive solution

u ∈
⋂
p>N W

2,p(Ω) if and only if

σ1[dL − h(0, ·);B,Ω] < 0.

Moreover, it is unique if it exists.
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Proof. As a consequence of Lemma 2.7, ū := κE > 0 is a supersolution of (2.1) for any
su�ciently large κ > 0, with E ∈ C2(Ω̄) being the function constructed in the proof of
Theorem 2.6. Now, suppose that

σ1[dL − h(0, ·);B,Ω] < 0

and let φ� 0 be any associated eigenfunction. We claim that
¯
u := εφ is a subsolution of

(2.1) for su�ciently small ε > 0. Since

B(εφ) = εBφ = 0 on ∂Ω,

it su�ces to show that
dL(εφ) ≤ εφh(εφ, ·) in Ω.

By the choice of φ, we have that

dL(εφ) = ε
(
σ1[dL − h(0, ·);B,Ω]φ+ h(0, ·)φ

)
in Ω.

Hence, dividing by εφ we should make sure that

σ1[dL − h(0, ·);B,Ω] ≤ h(εφ, ·)− h(0, ·) in Ω. (2.20)

Since h is uniformly continuous on [0, 1]× Ω̄ and εφ converges to 0 uniformly in Ω̄ as ε ↓ 0,
we �nd that

lim
ε→0
‖h(εφ, ·)− h(0, ·)‖∞ = 0.

Thus, condition (2.20) holds for su�ciently small ε and, hence,
¯
u := εφ is a subsolution

of (2.1). Since ε can be shortened up to get εφ ≤ κ, (2.1) possesses a (strong) positive
solution, u, such that εφ ≤ u ≤ κ.

Next, we will show that
σ1[dL − h(0, ·);B,Ω] < 0

is necessary for the existence of a positive solutions. Indeed, if (2.1) admits a positive
solution, u, then

σ1[dL − h(u, ·);B,Ω] = 0,

by the uniqueness of the principal eigenvalue. Thus, by (H2), it follows from Theorem
2.12(a) that

σ1[dL − h(0, ·);B,Ω] < σ1[dL − h(u, ·);B,Ω] = 0.

As for establishing the uniqueness, assume that

u1, u2 ∈
⋂
p>N

W 2,p(Ω)

are two positive solutions of (2.1). In particular, u1, u2 � 0. Thanks to the �rst part of
the proof, we already know that (2.1) admits a subsolution,

¯
u = εφ, and a supersolution,

ū = κ > M , such that

¯
u ≤ u1, u2 ≤ ū.
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This can be easily obtained by shortening ε > 0 and enlarging κ as much as necessary.
For these choices, thanks to Theorem 3 of Amann [2], problem (2.1) admits two strong
solutions,

u∗, u
∗ ∈

⋂
p>N

W 2,p(Ω),

which are the minimal and maximal solutions of (2.1), respectively, in the order interval
[
¯
u, ū]. In particular, we have that

¯
u ≤ u∗ ≤ u1, u2 ≤ u∗ ≤ ū

and, since u1 6= u2, necessarily u∗ < u∗. Since they are solutions of (2.1), we already know
that

σ1[dL − h(u∗, ·);B,Ω] = σ1[dL − h(u∗, ·);B,Ω] = 0. (2.21)

and, thanks to (H2),
h(u∗, ·) 
 h(u∗, ·) in Ω.

Thus, by Theorem 2.12(a),

σ1[dL − h(u∗, ·);B,Ω] < σ1[dL − h(u∗, ·);B,Ω],

which contradicts (2.21). Therefore, u1 = u2. This ends the proof.

As a byproduct of Lemma 2.8 and Theorem 2.15 the next result holds.

Corollary 2.16. Assume that h(u, v) satis�es (H1), (H2) and (H4). Then, for every

su�ciently small d > 0, problem (2.1) has a positive solution

u ∈
⋂
p>N

W 2,p(Ω)

if and only if

σ1[dL − h(0, ·);B,Ω] < 0.

Moreover, it is unique if it exists.

By linearizing (2.1) at u = 0 it is easily seen that u = 0 is linearly unstable if, and only
if,

σ1[dL − h(0, ·);B,Ω] < 0,

while it is linearly stable, or linearly neutrally stable, in any other case.
Throughout the rest of this dissertation, we will denote by θL,B,Ω{d,h} the maximal non-

negative solution of (2.1). By Theorem 2.15,

θL,B,Ω{d,h} = 0 if σ1[dL − h(0, ·);B,Ω] ≥ 0,

while
θL,B,Ω{d,h} � 0 if σ1[dL − h(0, ·);B,Ω] < 0.

Should not exist any ambiguity, we will simply set

θ{d,h} := θL,B,Ω{d,h} ,
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or, alternatively, omit some of these indexes. As a byproduct of Theorems 2.12(c) and
2.15, the positiveness of θ{d,h} can be characterized for small d > 0 in terms of the sign of
maxΩ̄ h(0, ·) as established by the next result.

Corollary 2.17. Assume that problem (2.16) derived in Theorem 2.6 satis�es (H1), (H2)

and (H3) for su�ciently small d > 0. Then, the following properties hold:

(a) If maxΩ̄ h(0, ·) < 0, then a maximal d0 ∈ (0,+∞] exists such that θ{d,h} = 0 for

d ∈ (0, d0).

(b) If maxΩ̄ h(0, ·) > 0, then a maximal d0 ∈ (0,+∞] exists such that θ{d,h} � 0 for

d ∈ (0, d0).

In the intermediate case when

max
Ω̄

h(0, ·) = 0,

Theorem 2.12(c) implies that

lim
d↓0

σ1[dL − h(0, ·);B,Ω] = min
Ω̄

(−h(0, ·)) = −max
Ω̄

h(0, ·) = 0.

Thus, the sign of the principal eigenvalue σ1[dL − h(0, ·);B,Ω] for su�ciently small d > 0
might depend on the nature of the coe�cients of L as well as on the boundary operator
B, or even the geometry and the size of Ω. Indeed, if L = −∆ is the Laplace operator and
we assume that ΓR = ∅, i.e., B is the Dirichlet operator, D, and h(0, ·) = 0, then

σ1[−d∆;D,Ω] = dσ1[−∆;D,Ω] > 0

for all d > 0 and hence, by Theorem 2.15, θ{d,h} = 0 for all d > 0. But if we assume that
L = −∆− 1, h(0, ·) = 0, ΓD = ∅ and β ≡ 0 on ΓR = ∂Ω, i.e., B is the Neumann operator,
R0, then

σ1[d(−∆− 1);R0,Ω] = dσ1[−∆;R0,Ω]− d = −d < 0

for all d > 0. Therefore, due to Theorem 2.15, θ{d,h} � 0 for all d > 0. Finally, note that,
according to a celebrated variational inequality of Faber [35] and Krahn [70] (see, e.g., [88,
Prop. 8.6]), the sign of

σ1[d(−∆− 1);D,Ω] = d (σ1[−∆;D,Ω]− 1)

depends on the Lebesgue measure of Ω. Indeed, for su�ciently small |Ω|,

σ1[−∆;D,Ω] > 1,

and hence, θ{d,h} = 0 for all d > 0, while, for su�ciently large |Ω|,

σ1[−∆;D,Ω] < 1

and therefore, θ{d,h} � 0 for all d > 0.
The following result provides us with the monotonicity of the maximal non-negative

solution of (2.1) with respect to the non-linearity, domain and boundary operator.
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Lemma 2.18. Assume that problem (2.16) derived in Theorem 2.6 satis�es (H1), (H2) and

(H3) for some d > 0. Let Ω0 be a subdomain of class C2 of Ω, B0 a boundary operator on

∂Ω0 such that, according to De�nition 2.13, (B0,Ω0) � (B,Ω), and suppose h0 ∈ C(R×Ω̄0)
satis�es (H1), (H2) and h0 ≤ h in [0,+∞)× Ω̄0. Then,

θL,B0,Ω0

{d,h0} ≤ θ
L,B,Ω
{d,h} in Ω0.

If, in addition, (B0,Ω0) ≺ (B,Ω), or h0(u, ·) 6= h(u, ·) in Ω0 for all u ≥ 0, then

θL,B0,Ω0

{d,h0} � θL,B,Ω{d,h} in Ω0

provided θL,B,Ω{d,h} > 0.

Proof. For the sake of simplicity, throughout this proof we will denote

θ := θL,B,Ω{ν,h} , θ0 := θL,B0,Ω0

{ν,h0} .

By Theorem 2.12(a) and Lemma 2.14 we have that

σ1[dL − h(0, ·);B,Ω] ≤ σ1[dL − h0(0, ·);B0,Ω0].

Thus, due to Theorem 2.15,

θ = θ0 = 0 if σ1[dL − h(0, ·);B,Ω] ≥ 0,
θ � θ0 = 0 if σ1[dL − h(0, ·);B,Ω] < 0 ≤ σ1[dL − h0(0, ·);B0,Ω0].

Hence, it remains to study the case when

σ1[dL − h0(0, ·);B0,Ω0] ≤ σ1[dL − h(0, ·);B,Ω] < 0.

Then, by Theorem 2.15, θ, θ0 � 0. Subsequently, we will consider the function f ∈ C(Ω̄0)
de�ned, for each x ∈ Ω̄0, by

f(x) :=

{
θ(x)h0(θ(x),x)−θ0(x)h0(θ0(x),x)

θ(x)−θ0(x) if θ(x) 6= θ0(x),

h0(θ0(x), x) + θ0(x) ∂
∂uh0(θ0(x), x) if θ(x) = θ0(x).

By de�nition, θ − θ0 satis�es

dL(θ − θ0) = θh(θ, ·)− θ0h0(θ0, ·) ≥ θh0(θ, ·)− θ0h0(θ0, ·) = (θ − θ0)f in Ω0,

with strict inequality if h(u, ·) 
 h0(u, ·) in Ω0 for every u > 0. Moreover, since (B0,Ω0) �
(B,Ω), we have that

B0(θ − θ0) = B0θ ≥ 0 on ∂Ω0,

with strict inequality if (B0,Ω0) ≺ (B,Ω). Thus, θ − θ0 is a supersolution of{
(dL − f)u = 0 in Ω0,
B0u = 0 on ∂Ω0,

and, actually, it is a strict supersolution if (B0,Ω0) ≺ (B,Ω), or h0(u, ·) 6= h(u, ·) in Ω0 for
all u ≥ 0. We claim that σ1[dL− f ;B0,Ω0] > 0. Thanks to Theorem 7.10 of López-Gómez
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[88], this entails that θ − θ0 ≥ 0 in Ω0 and that, actually, θ � θ0 if it is strict, and so
concluding the proof.

To prove
σ1[dL − f ;B0,Ω0] > 0,

we can argue as follows. Let x ∈ Ω̄0 be such that θ(x) = θ0(x). Then, by de�nition, and
thanks to (H2),

f(x) = h0(θ0(x), x) + θ0(x)
∂h0

∂u
(θ0(x), x) ≤ h0(θ0(x), x),

with strict inequality if θ0(x) > 0, while if x ∈ Ω̄0 with θ(x) 6= θ0(x), then

f(x) =
θ(x)h0(θ(x), x)− θ0(x)h0(θ0(x), x)

θ(x)− θ0(x)

= h0(θ0(x), x) + θ(x)
h0(θ(x), x)− h0(θ0(x), x)

θ(x)− θ0(x)
≤ h0(θ0(x), x)

with strict inequality if θ(x) > 0. Note that θ(x) > 0 and θ0(x) > 0 for all x ∈ Ω0 and
hence, both inequalities are strict for all x ∈ Ω0. Therefore,

f � h0(θ0, ·) in Ω̄0

and, hence, owing to Theorem 2.12(a),

σ1[dL − f ;B0,Ω0] > σ1[dL − h0(θ0, ·);B0,Ω0] = 0,

which ends the proof.

2.5 The singular perturbation problem

Throughout this section, we assume that h satis�es (H1), (H2), and (H4). Thus, by
Theorem 2.6, the same hypothesis hold for problem (2.16). In particular, (2.16) satis�es
(H3) for su�ciently small d > 0 and hence, the results of Section 2.4 can be applied. The
precise range of d where this occurs is unimportant for the proof of the perturbation results
and, so, it is not speci�ed. It should be remembered that under the previous hypothesis
the function

Θh(x) :=

{
0 if h(ξ, x) < 0 for all ξ > 0,
ξ if there exists ξ > 0 such that h(ξ, x) = 0,

(2.22)

is well de�ned for all x ∈ Ω̄ and is continuous in Ω̄. Let Γ+
R denote the union of the

components of ΓR where Θh is everywhere positive.

Remark 2.19. For every x ∈ Ω̄, Θh(x) provides us with the unique non-negative linearly
stable, or linearly neutrally stable, steady-state solution of the associated kinetic model{

u′(t) = u(t)h(u(t), x) t ∈ [0,+∞),
u(0) = u0 ≥ 0.

(2.23)
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Note that Θh(x) = 0 if h−1(·, x)(0) = ∅ and that

Θh(x) = max{0, h−1(·, x)(0)} if h−1(·, x)(0) 6= ∅.

Moreover, Θh is monotonically increasing with respect to h, i.e., if h1 and h2 are two
functions satisfying (H1), (H2), and (H4), with h1(u, x) ≤ h2(u, x) for all u ≥ 0 and x ∈ Ω̄,
then Θh1 ≤ Θh2 in Ω̄. Indeed, if, for some x ∈ Ω̄, Θh1(x) = 0 then the result is trivial. If
Θh1(x) > 0 then

h2(Θh1(x), x) ≥ h1(Θh1(x), x) = 0.

By (H4),
h2(Θh2(x), x) = 0.

Moreover, thanks to (H2), h2 is strictly decreasing in the �rst variable. Therefore, Θh1 ≤
Θh2 . In particular, if h1 � h2 in Ω̄, then Θh1 � Θh2 in Ω̄.

Remark 2.20. The condition (H4) is necessary for the continuity of Θh on Ω̄, as the following
simple example shows{

d(−∆u+ u) = u(−x2 + e−u) in Ω = (−1, 1),
Bu = 0 on ∂Ω = {−1, 1},

where h(u, x) = −x2 + e−u for all x ∈ (−1, 1) and u ∈ R. According to (2.22), it becomes
apparent that

Θh(x) = − log x2, x ∈ [−1, 1] \ {0},

which is discontinuous, and unbounded, at x = 0. It turns out that in this example the
function h(u, x) satis�es (H1), (H2) and (H3) for su�ciently small d > 0, however it does
not satis�es (H4). Therefore, condition (H4) is the minimal necessary condition required
to guarantee the continuity of Θh(x).

Next theorem is the main perturbation result in Chapter 2. It provides us with the
limiting pro�le of the maximal non negative solution of (2.1) when the di�usion rate goes
to zero.

Theorem 2.21. Assume that h satis�es (H1), (H2) and (H4), and let Γ+
R denote the union

of the components of ΓR where Θh is everywhere positive. Then, for any compact subset,

K, of Ω ∪ Γ+
R ∪Θ−1

h (0),

lim
d↓0

θ{d,h} = Θh uniformly in K.

The proof of Theorem 2.21 follows after a series of technical results. The next one
provides us with a global uniform estimate in Ω̄, when d ∼ 0, for the non-negative solutions
of (2.1).

Lemma 2.22. For every ε > 0, there exists d0 = d0(ε) > 0 such that

θ{d,h} ≤ Θh + ε in Ω̄

for all d ∈ (0, d0).
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Proof. Subsequently, we suppose that d has been chosen su�ciently small so that (H3)
holds for (2.16). For a given ε > 0, set

ξ1 := Θh +
ε

2
> 0, ξ2 := Θh + ε.

By Lemma 2.9(a) and Remark 2.10, there exists Φ ∈ C2(Ω̄) such that

0 < Θh +
ε

2
≤ Φ ≤ Θh + ε in Ω̄, and BΦ ≥ 0 on ∂Ω.

In particular, Φ(x) > Θh(x) for all x ∈ Ω̄. Thus, since h(Θh(x), x) ≤ 0 for all x ∈ Ω̄ and,
owing to (H2), it is strictly decreasing in the �rst variable, we �nd that

h(Φ(x), x) < 0 for all x ∈ Ω̄.

Hence, setting

d0 :=
maxx∈Ω̄(Φ(x)h(Φ(x), x))

min{0,minx∈Ω̄ LΦ(x)}
∈ (0,+∞],

it becomes apparent that, for every d < d0,

Φ(x)h(Φ(x), x) ≤ max
x∈Ω̄

(Φ(x)h(Φ(x), x)) ≤ dmin
x∈Ω̄
LΦ(x) ≤ dLΦ(x) in Ω̄.

Note that this estimate holds true for all d > 0 if

min
x∈Ω̄
LΦ(x) ≥ 0,

because, by construction,
Φh(Φ, ·) < 0 in Ω̄.

This explains why we are setting d0 = +∞ when minx∈Ω̄ LΦ(x) ≥ 0. On the other hand,
when

min
x∈Ω̄
LΦ(x) < 0,

then the value of d0 becomes

d0 :=
maxx∈Ω̄(Φ(x)h(Φ(x), x))

minx∈Ω̄ LΦ(x)
=
−maxx∈Ω̄(Φ(x)h(Φ(x), x))

−minx∈Ω̄ LΦ(x)
> 0.

Thus,
−dmin

x∈Ω̄
LΦ(x) < −max

x∈Ω̄
(Φ(x)h(Φ(x), x))

for all d < d0, or, equivalently,

max
x∈Ω̄

(Φ(x)h(Φ(x), x)) < dmin
x∈Ω̄
LΦ(x),

which also shows the previous estimate in this case.
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Consequently, Φ provides us with a positive supersolution of (2.1). Consider the func-
tion f ∈ C(Ω̄) de�ned, for each x ∈ Ω̄, by

f(x) :=


Φ(x)h(Φ(x), x)− θ{d,h}(x)h(θ{d,h}(x), x)

Φ(x)− θ{d,h}(x)
if Φ(x) 6= θ{d,h}(x),

h(Φ(x), x) + Φ(x)∂h∂u(Φ(x), x) if Φ(x) = θ{d,h}(x).

Therefore, the function Φ− θ{d,h} is a supersolution of{
(dL − f)u = 0 in Ω,
Bu = 0 on ∂Ω.

Now, either θ{d,h} ≡ 0, which ends the proof, or

θ{d,h} � 0, σ1[dL − h(θ{d,h}, ·);B,Ω] = 0.

In the latter case, it is easily seen that (H2) implies

f � h(θ{d,h}, ·) in Ω̄.

Thus, for every d ∈ (0, d0), it follows from Theorem 2.12(a) that

σ1[dL − f ;B,Ω] > σ1[dL − h(θ{d,h}, ·);B,Ω] = 0.

By Theorem 7.10 of López-Gómez [88], we may infer that, for every 0 < d < d0,

θ{d,h}(x) ≤ Φ(x) ≤ Θh(x) + ε for all x ∈ Ω̄.

The proof is complete.

The following result provides us with Theorem 2.21 in the special case when ΓR = ∅.

Proposition 2.23. For any compact subset, K, of Ω ∪Θ−1
h (0), we have that

lim
d↓0

θΩ
{d,h} = Θh uniformly in K.

Proof. Fix ε > 0. By Lemma 2.22, there exists d0 = d0(ε) > 0 such that

θ{d,h} ≤ Θh + ε for all x ∈ K ⊂ Ω̄, d ∈ (0, d0).

In order to get a lower estimate, we will �rst assume h(u, x) to be autonomous, i.e.,

h(u, x) = h(u) for all (u, x) ∈ R× Ω̄.

In such a case, Θh is a non-negative constant. Since θ{d,h} is non negative, it is obvious
that

θ{d,h} > Θh − ε in Ω̄

for all d > 0 if Θh = 0. Thus, the following estimate holds:

Θh − ε ≤ θ{d,h} ≤ Θh + ε for all x ∈ K ⊂ Ω̄, d ∈ (0, d0).
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In order to get the lower estimate when Θh is a positive constant (necessarily, h(0) > 0,
h(Θh) = 0 and K ⊂ Ω, because Θ−1

h (0) = ∅), we consider ε̃ ∈ (0,min{2Θh, ε}), x0 ∈ K,
and ρ > 0 be such that ρ < dist(K, ∂Ω). For these choices, B̄ρ(x0) ⊂ Ω. Let ϕ � 0 be
the principal eigenfunction associated to σ1[L;D, Bρ(x0)] normalized so that ‖ϕ‖∞ = 1/2,
and de�ne the function φ ∈ ∩p>NW 2,p(Bρ(x0)) through

φ :=

{
ϕ in B̄ρ(x0) \ B̄ρ/2(x0),

ϕ̃ in B̄ρ/2(x0),

where ϕ̃ is any su�ciently smooth function chosen so that φ(x) > 0 for all x ∈ Bρ(x0),
φ(x0) = 1 and ‖φ‖∞ = 1. Set

Φ :=

(
Θh −

ε̃

2

)
φ in B̄ρ(x0).

Then, by construction, DΦ = 0 on ∂Bρ(x0) and

0 < Φ(x) ≤ Θh −
ε̃

2
for all x ∈ Bρ(x0),

since Θh is a constant greater than ε̃/2 and ‖φ‖∞ = 1. Thus, taking into account that,
owing to (H2), h(u) is strictly decreasing in u > 0, it is apparent that

h(Φ(x)) ≥ h(Θh − ε̃
2) > h(Θh) = 0 for all x ∈ B̄ρ(x0),

and hence,
min

x∈B̄ρ(x0)
h(Φ(x)) ≥ h(Θh − ε̃

2) > 0.

On the other hand, the function LΦ/Φ is continuous in B̄ρ(x0) because Φ(x) > 0 for all
x ∈ Bρ(x0) and

LΦ(x)/Φ(x) = σ1[L;D, Bρ(x0)] ∈ R for all x ∈ ∂Bρ(x0).

Although unnecessary, ρ(x0) can be shortened so that

σ1[L;D, Bρ(x0)] > 0,

because, due to the Faber�Krahn inequality [35, 70],

lim
ρ→0

σ1[L;D, Bρ(x0)] = +∞

(see, e.g., Proposition 8.6 of López-Gómez [88]). Thus, setting

0 < dx0 <
minB̄ρ(x0) h(Φ)

maxB̄ρ(x0) |LΦ/Φ|
,

we have that, for every d ∈ (0, dx0),

d max
B̄ρ(x0)

|LΦ/Φ| � h(Φ) in B̄ρ(x0)
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and so
dLΦ = dΦLΦ/Φ ≤ dΦ max

B̄ρ(x0)
|LΦ/Φ| � Φh(Φ) in B̄ρ(x0).

Therefore, Φ provides us with a strict subsolution of{
dLu = uh(u) in Bρ(x0),
u = 0 on ∂Bρ(x0).

Equivalently, θD,Bρ(x0)
{d,h} − Φ is a strict supersolution of{

(dL − f)u = 0 in Bρ(x0),
u = 0 on ∂Bρ(x0),

where f ∈ C(B̄ρ(x0)) stands for the function de�ned, for every x ∈ B̄ρ(x0), by

f(x) :=


θ
D,Bρ(x0)
{d,h} (x)h

(
θ
D,Bρ(x0)
{d,h} (x)

)
− Φ(x)h(Φ(x))

θ
D,Bρ(x0)
{d,h} (x)− Φ(x)

if Φ(x) 6= θ
D,Bρ(x0)
{d,h} (x),

h(Φ(x)) + Φ(x)h′(Φ(x)) if Φ(x) = θ
D,Bρ(x0)
{d,h} (x).

Moreover, thanks to (H2),

f � h
(
θ
D,Bρ(x0)
{d,h}

)
in B̄ρ(x0)

and thus, by the monotonicity of the principal eigenvalue with respect to the potential
established by Theorem 2.12(a), it becomes apparent that

σ1[dL − f ;D, Bρ(x0)] > σ1

[
dL − h

(
θ
D,Bρ(x0)
{d,h}

)
;D, Bρ(x0)

]
= 0.

Note that h(0) > 0 and hence, owing to Corollary 2.17(b), θD,Bρ(x0)
{d,h} � 0 for su�ciently

small d > 0. Consequently, by [88, Th. 7.10], we �nd that, for every d ∈ (0, dx0),

Φ(x) < θ
D,Bρ(x0)
{d,h} (x) for all x ∈ Bρ(x0). (2.24)

Moreover, by Lemma 2.18,

θ
D,Bρ(x0)
{d,h} ≤ θB,Ω{d,h} in Bρ(x0). (2.25)

On the other hand, since Φ ∈ C(B̄ρ(x0)) and

Φ(x0) = Θh −
ε̃

2
,

there exist ρx0 ∈ (0, ρ) such that

Φ(x) ≥ Θh − ε̃ > Θh − ε for all x ∈ Bρx0
(x0). (2.26)

According to (2.24), (2.25), and (2.26), we �nd that

θB,Ω{d,h} > Θh − ε in Bρx0
(x0) for all d ∈ (0, dx0).
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As K is compact, we can extract x1, ..., xn ∈ K such that

K ⊂
n⋃
i=1

Bρxi (xi)

and, hence, for every d < mini dxi , d > 0, the estimate

θB,Ω{d,h} ≥ Θh − ε

holds in K. This ends the proof when h is independent of x.
Subsequently, we will assume that h(u, x) is a general function satisfying (H1), (H2)

and (H4). Then, for su�ciently small d > 0, it is obvious that

θB,Ω{d,h}(x) ≥ 0 ≥ Θh(x)− ε for all x ∈ Θ−1
h ([0, ε]).

As this provides us with a satisfactory lower estimate in K∩Θ−1
h ([0, ε]), in order to extend

it to K, it remains to show that there exists d1 > 0 such that, for every d ∈ (0, d1),

θB,Ω{d,h}(x) ≥ Θh(x)− ε for all x ∈ K0 := K ∩Θ−1
h ([ε,maxΩ̄Θh]) ⊂ Ω.

Should K0 be empty, the proof is complete. So, suppose that K0 is nonempty and pick
x0 ∈ K0 and ρ > 0 such that

B̄ρ(x0) ⊂ Ω ∩Θ−1
h ( ε2 ,+∞).

By construction,

Θh(x) >
ε

2
> 0 for all x ∈ B̄ρ(x0)

and hence, owing to (H2),

min
B̄ρ(x0)

h(0, ·) > 0 and min
B̄ρ(x0)

Θh >
ε

2
> 0.

Actually, by continuity, ρ > 0 can be shortened, if necessary, so that

min
B̄ρ(x0)

Θh ≥ Θh(x)− ε

2
for all x ∈ B̄ρ(x0). (2.27)

The rest of the proof consists in reducing the problem to the previous case, by establishing
the existence of an autonomous function, H(u), satisfying (H1), (H2), (H4), and such that

H(u) ≤ h(u, x) for all u ≥ 0, x ∈ B̄ρ(x0), (2.28)

and
min

x∈B̄ρ(x0)
Θh(x)− ε

4
≤ ΘH ≤ min

x∈B̄ρ(x0)
Θh(x). (2.29)

The most natural candidate function for a (globally de�ned in R) H(u) is

hmin(u) :=

{
minx∈B̄ρ(x0) h(u, x) if u ≥ 0,

minx∈B̄ρ(x0) h(0, x)− u if u < 0.
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Obviously, hmin ∈ C(R) and it is strictly decreasing, though, in general, it is not of class
C1(R). Thus, in order to construct H(u) satisfying (2.28), (2.29), (H1), (H2) and (H4) we
begin by considering the function

G(u) := min

{
−δ, 4

ε
hmin

(
u+

ε

4

)}
< 0, u ∈ R,

with su�ciently small δ > 0, to be chosen later, and then we take, for every u ∈ R,

H(u) :=

∫ u

Θmin− ε4
G(s) ds, where Θmin ≡ min

x∈B̄ρ(x0)
Θh(x).

Since G is a continuous function, H is a function of class C1(R) and hence, (H1) holds.
Moreover, by de�nition,

H ′(u) = G(u) < 0 for all u ∈ R.

Thus, (H2) holds. Furthermore, since

H
(

Θmin −
ε

4

)
= 0,

(H4) also holds, because H(u) < 0 for all u > Θmin − ε
4 . Actually, (2.29) holds too, since

ΘH = Θmin− ε
4 , by de�nition (see (2.22) if necessary). It remains to shorten δ, if necessary,

to get (2.28). Suppose u ≤ Θmin − ε
4 . Then, u + ε

4 ≤ Θmin and hence, hmin

(
u+ ε

4

)
≥ 0

and G(u) = −δ, which implies

H(u) = −δ
(
u−Θmin +

ε

4

)
.

Thus, for su�ciently small δ,

H(0) = δ
(

Θmin −
ε

4

)
< hmin

(
Θmin −

ε

4

)
and therefore,

H(u) ≤ H(0) < hmin

(
Θmin −

ε

4

)
≤ hmin(u)

for all u ∈ [0,Θmin − ε
4 ]. So, (2.28) holds in this interval. When

u ∈
(

Θmin −
ε

4
,Θmin

)
,

by construction,

H(u) =

∫ u

Θmin− ε4
G(s) ds < 0 < hmin(u)

and hence, (2.28) holds in [0,Θmin). Finally, when u ≥ Θmin, we �nd that

G(u) = min

{
−δ, 4

ε
hmin

(
u+

ε

4

)}
≤ 4

ε
hmin

(
u+

ε

4

)
< 0
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and, consequently,

H(u) =

∫ u

Θmin− ε4
G(s) ds ≤ 4

ε

∫ u

Θmin− ε4
hmin

(
s+

ε

4

)
ds =

4

ε

∫ u+ ε
4

Θmin

hmin(t) dt

≤ 4

ε

∫ u+ ε
4

u
hmin(t) dt <

4

ε

∫ u+ ε
4

u
hmin(u) dt = hmin(u),

which shows (2.28).
By Lemma 2.18, for su�ciently small d > 0, the following estimate holds:

θ
D,Bρ(x0)
{d,H} ≤ θB,Ω{d,h} in Bρ(x0). (2.30)

By the �rst part of the proof, since H(u) does not depend on x ∈ Ω, there exists dx0,ε > 0
such that

ΘH −
ε

4
≤ θD,Bρ(x0)
{d,H} in B̄ρ/2(x0) for all d ∈ (0, dx0,ε), (2.31)

Combining (2.27), (2.29), (2.30) and (2.31) yields

Θh − ε ≤ min
B̄ρ(x0)

Θh −
ε

2
≤ ΘH −

ε

4
≤ θD,Bρ(x0)
{d,H} ≤ θB,Ω{d,h} in Bρ/2(x0)

for all d ∈ (0, dx0,ε). Lastly, since K0 is compact, there exist x1, ..., xn ∈ K0 such that

K0 ⊂
n⋃
i=1

Bρi/2(xi).

Therefore,
Θh − ε ≤ θB,Ω{d,h} in K0 for all d < d0 := min

1≤i≤n
dxi,ε,

which ends the proof.

We already have all the necessary tools to complete the proof of Theorem 2.21.

Proof of Theorem 2.21. Since h satis�es (H2),

Θh ≡ 0 if max
Ω̄

h(0, ·) ≤ 0.

Should it be the case, the result is a direct consequence from Proposition 2.23. So, subse-
quently, we assume that

max
Ω̄

h(0, ·) > 0.

Then, by Corollary 2.17(b), θ{d,h} � 0 for su�ciently small d > 0.

Thanks to Proposition 2.23, Theorem 2.21 holds on any compact subset of Ω∪Θ−1
h (0).

Hence, it remains to prove the theorem on a neighborhood of Γ+
R. Let γ be a component

of Γ+
R. By the de�nition of Γ+

R, we have that

Θh(x) > 0 for all x ∈ γ.
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By the continuity of Θh, there exists ρ > 0 such that

ε0 := min
Ω̄γ,ρ

Θh > 0, where Ωγ,ρ ≡ {x ∈ Ω : dist (x, γ) < ρ}.

Pick ε ∈ (0, ε0). By the proof of Theorem 2.3, we can shorten ρ, if necessary, so that

{x ∈ Ω : dist (x, γ) = ρ} = ∂Ωγ,ρ ∩ Ω

is di�eomorphic to γ, and so of class C2. Hence, Ωγ,ρ is an open subdomain of Ω with
boundary of class C2, consisting of two components, ∂Ωγ,ρ ∩Ω and γ, for su�ciently small
ρ > 0.

Subsequently, we consider the compact subset of Ω,

Kγ,ρ := {x ∈ Ω : ρ/2 ≤ dist (x, γ) ≤ ρ}.

By Proposition 2.23, there exists dρ > 0 such that

Θh −
ε

2
≤ θ{d,h} in Kγ,ρ for all d < dρ. (2.32)

By applying Lemma 2.9(a) and Remark 2.10 with the choices

ξ1(x) := Θh(x)− ε (≥ ε0 − ε > 0)

and

ξ2(x) := Θh(x)− 3ε

4
< Θh(x), x ∈ Ω̄γ,ρ/2,

there exists Φ ∈ C2(Ω̄γ,ρ/2) such that

Θh − ε ≤ Φ ≤ Θh −
3ε

4
in Ωγ,ρ/2 and RΦ ≤ 0 on γ. (2.33)

In particular, since ∂Ωγ,ρ/2 ∩ Ω ⊂ Kγ,ρ, we may infer from (2.32) and (2.33) that

θ{d,h} ≥ Θh −
ε

2
= Θh −

3ε

4
+
ε

4
≥ Φ +

ε

4
on ∂Ωγ,ρ/2 ∩ Ω for all d < dρ. (2.34)

Moreover, by (H2), since

Φ(x) < Θh(x) for all x ∈ Ω̄γ,ρ/2,

we have that
min

x∈Ω̄γ,ρ/2

h(Φ(x), x) > min
x∈Ω̄γ,ρ/2

h(Θh(x), x) = 0.

Thus, shortening dρ, if necessary, so that

dρ <
minx∈Ω̄γ,ρ/2

Φ(x)h(Φ(x), x)

max{0,maxΩ̄γ,ρ/2
LΦ}

,

we are driven to
dLΦ ≤ Φh(Φ, ·) in Ωγ,ρ/2 for all d < dρ.
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Let denote by f ∈ C(Ω̄γ,ρ/2) the function de�ned, for every x ∈ Ω̄γ,ρ/2, through

f(x) :=


θ{d,h}(x)h(θ{d,h}(x), x)− Φ(x)h(Φ(x), x)

θ{d,h}(x)− Φ(x)
if θ{d,h}(x) 6= Φ(x),

h(Φ(x), x) + Φ(x)∂h∂u(Φ(x), x) if θ{d,h}(x) 6= Φ(x).

Then, for every d < dρ, taking into account (2.34), the function

w := θ{d,h} − Φ

satis�es 
(dL − f)w ≥ 0 in Ωγ,ρ/2,

Bw = Rw > 0 on γ,
w ≥ ε

4 > 0 on ∂Ωγ,ρ/2 ∩ Ω.

Therefore, w provides us with a strict supersolution of{
(dL − f)u = 0 in Ωγ,ρ/2,

B0u = 0 on ∂Ωγ,ρ/2,

where

B0 :=

{
B on γ,
D on ∂Ωγ,ρ/2 \ γ.

Since, owing to (H2), h is strictly decreasing in the �rst variable,

f � h(θ{d,h}, ·) in Ωγ,ρ/2.

Moreover, we already know that θ{d,h} � 0 for su�ciently small d > 0. Thus, it follows
from Theorem 2.12(a) and Lemma 2.14 that

σ1[dL − f ;B0,Ωγ,ρ/2] > σ1[dL − h(θ{d,h}, ·);B0,Ωγ,ρ/2]

> σ1[dL − h(θ{d,h}, ·);B,Ω] = 0

for su�ciently small d > 0. Therefore, due to [88, Th. 7.10], and taking into account
(2.33), we conclude that

θ{d,h} � Φ ≥ Θh − ε in Ωγ,ρ/2 for su�ciently small d > 0.

The proof is complete.





Chapter 3

A general class of superlinear

inde�nite problems

Introduction

In this chapter, the generalized version of Picone's identity, as stated in Theorem 3.1, is
used to study the existence and global dynamics of the positive solutions of the superlinear
inde�nite problem {

Lu = λu− a(x)f(u) in Ω,
Bu = 0 on ∂Ω,

(3.1)

where Ω is an open bounded subset of RN , N ≥ 1, with boundary, ∂Ω, of class C2, a ∈ C(Ω̄)
is allowed to change sign, λ ∈ R is a parameter, f ∈ C(R)\{0} with f(0) = 0, and L is the
operator de�ned in (2.2) with b = 0, i.e., L is the uniformly elliptic self-adjoint operator
in divergence form

L := −div(A∇·) + c (3.2)

with A ∈Msym
N (C1(Ω̄)) and c ∈ C(Ω̄). As far as concerns the boundary of Ω, much like in

Chapter 2, it is assumed that
∂Ω = ΓD ∪ ΓR,

where ΓD and ΓR are two disjoint closed and open subsets of ∂Ω associated with the mixed
boundary operator de�ned in (2.3), which can equivalently written as

B :=

{
D = Id on ΓD,
R = 〈∇·, An〉+ β on ΓR,

for some β ∈ C(ΓR). Here, n stands for the outward unit normal vector �eld along ∂Ω.
It should be noted that, as β might change of sign, this boundary operator is of general
mixed non-classical type.

The problem (3.1) is a generalized version of the simple prototype analyzed by Gómez-
Reñasco and López-Gómez [51, 52], where L = −∆, B = D is the Dirichlet operator on
∂Ω, and

f(u) = uq for some q ≥ 2.

85
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As a by-product of our generalized Picone identity, in the special case when f(u) = uq,
we can extend the results of [51, 52] characterizing whether, or not, (3.1) admits a linearly
stable positive solution, as well as establishing its uniqueness if it exists. This is a rather
intriguing uniqueness result as it is folklore that some simple prototypes of (3.1) possess
an arbitrarily large number of positive solutions for the appropriate parameter ranges
(see Gómez-Reñasco and López-Gómez [51], López-Gómez, Molina-Meyer and Tellini [92],
López-Gómez, Tellini and Zanolin [97], López-Gómez and Tellini [96], Sovrano and Zanolin
[112], Boscaggin, Feltrin and Zanolin [14], Sovrano [111], Feltrin and Sovrano [37], as well
as the recent monograph of Feltrin [36]). This striking uniqueness theorem relies on the fact
that, for the special choice f(u) = uq, q ≥ 2, any linearly neutrally stable positive solution
of (3.1) must be a quadratic subcritical turning point in the entire set of positive solutions,
(λ, u), of the problem (3.1). Two of the main novelties of this chapter, Theorems 3.8 and
3.11, establish that there are arbitrarily small perturbations of the function f(u) = uq

for which the previous uniqueness result fails to be true. Therefore, our extension of the
pioneering �ndings of [51, 52] seems optimal.

Chapter 3 is distributed as follows. Section 3.1 delivers, through Theorem 3.1, a gen-
eralized identity of Picone type valid for arbitrary boundary conditions of mixed type,
classical and non-classical, which generalizes, substantially, the previous ones of Picone
[106], Kreith [72], Berestycki, Capuzzo-Dolcetta and Nirenberg [9], López-Gómez [84], and
[38], as it works out under general boundary conditions of non-classical mixed type. In
Section 3.2 several bifurcation results are collected. The main goal of this chapter is to
infer, from this generalized Picone identity, the nonexistence of solutions at the right side
of the principal eigenvalue of L in Ω under B in Section 3.3, and the fact that neutrally
stable solutions are quadratic subcritical turning points in Section 3.4. These results hold,
exclusively, in the case f(u) = uq, q ≥ 2, as shown in Section 3.5. In particular, Theorem
3.8 states that polynomial perturbations on f makes the previous properties disappear.
In Section 3.6 the existence and uniqueness of the stable positive solution of (3.1) when
f(u) = uq, q ≥ 2, is proved. Section 3.7 and, in particular, Theorem 3.12, provides us the
global structure of the set of stable positive solutions of (3.1) if f(u) = uq, q ≥ 2, and if
an appropriate inequality holds.

3.1 A generalized Picone identity

The next result provides us with a generalized version of a celebrated identity of Picone
[106]. In this result, the symmetric matrix A(x) is not required to be positive de�nite, i.e.,
the second order di�erential operator L de�ned in (3.2) might not be of elliptic type.

This identity will play a crucial role in the forthcoming sections of this chapter, but
also in Chapter 6, where the dynamics of the competition Lotka�Volterra di�usive model
are analyzed.

Theorem 3.1. Suppose that Ω is a bounded open subdomain of RN , N ≥ 1, of class C2, n
stands for the outward unit normal vector �eld along ∂Ω, and let u, v ∈ W 2,p(Ω), p > N ,

be such that v
u ∈ C

1(Ω̄) and Lu,Lv ∈ C(Ω̄), with L the self-adjoint operator in divergence
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form (3.2). Consider β ∈ C(∂Ω) and let D, R be boundary operators on ∂Ω de�ned by{
Dw = w,

Rw = 〈∇w,An〉+ βw,
w ∈W 2,p(Ω).

Then, for every g ∈ C1(R) the next identity holds∫
Ω
g
(v
u

)
[uLv − vLu] =

∫
Ω
u2g′

(v
u

)
〈∇v

u
,A∇v

u
〉 −

∫
∂Ω
g
(v
u

)
[DuRv −DvRu]. (3.3)

Proof. Expanding the integrand on the left hand side and using the symmetry of A yields

g
(v
u

)
[uLv − vLu] = g

(v
u

)
[v div(A∇u)− udiv(A∇v)]

= g
(v
u

)
div(vA∇u− uA∇v)

= div
[
g
(v
u

)
(vA∇u− uA∇v)

]
− 〈∇g

(v
u

)
, vA∇u− uA∇v〉

= div
[
g
(v
u

)
(vA∇u− uA∇v)

]
− g′

(v
u

)
〈∇v

u
,A(v∇u− u∇v)〉

= div
[
g
(v
u

)
(vA∇u− uA∇v)

]
+ u2g′

(v
u

)
〈∇v

u
,A∇v

u
〉.

Thus, integrating in Ω, we �nd that∫
Ω
g
(v
u

)
[uLv − vLu] =

∫
Ω

div
[
g
(v
u

)
(vA∇u− uA∇v)

]
+

∫
Ω
u2g′

(v
u

)
〈∇v

u
,A∇v

u
〉.

As integrating by parts shows that∫
Ω

div
[
g
(v
u

)
(vA∇u− uA∇v)

]
=

∫
∂Ω
g
(v
u

)
〈vA∇u− uA∇v,n〉

=

∫
∂Ω
g
(v
u

)
[v (〈A∇u,n〉+ βu)− u (〈A∇v,n〉+ βv)]

= −
∫
∂Ω
g
(v
u

)
[DuRv −DvRu],

the identity (3.3) holds.

3.2 Positive solutions bifurcating from the trivial branch

Throughout this chapter, and according to Theorem 7.7 of López-Gómez [88, Th. 7.7], we
will denote by σ0 the (unique) principal eigenvalue associated to the eigenvalue problem{

Lϕ = σϕ in Ω,
Bϕ = 0 on ∂Ω,

(3.4)

which is algebraically simple and strictly dominant. Moreover, we will keep the notations
stated in Chapter 2, Section 2.3, for the principal eigevalues. Hence, we set

σ0 := σ1[L;B,Ω].
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It should be remembered that the principal eigenvalue is algebraically simple and it is the
unique eigenvalue associated with a positive eigenfunction, ϕ0. Actually, ϕ0 � 0 in the
sense of (2.18) and ϕ0 ∈W 2,∞

B (Ω), as de�ned in (2.19). Hence,

ϕ0 ∈ C1
B(Ω̄) ∩ C1,ν(Ω) for all ν < 1

and it is almost everywhere twice di�erentiable in Ω, like the weak positive solutions of
(3.1).

The following result establishes the existence of a curve of positive solutions, (λ, u), of
(3.1) emanating from u = 0 as λ crosses σ0. It is a straightforward application of the main
theorem of Crandall and Rabinowitz [24] based on the fact that σ0 is algebraically simple.

Theorem 3.2. Assume that f is of class Cr, r ≥ 2, in a neighborhood of zero and f(0) =
f ′(0) = 0. Let ϕ0 ∈ W 2,p

B (Ω), p > N , be the principal eigenfunction associated with σ0

normalized so that ∫
Ω
ϕ2

0(x) dx = 1.

Then, there exist ε > 0 and two maps of class Cr−1,

µ : (−ε, ε)→ R, y : (−ε, ε)→W 2,p
B (Ω),

such that µ(0) = 0, y(0) = 0,
∫

Ω y(s)ϕ0 = 0 for all s ∈ (−ε, ε), and

(λ(s), u(s)) := (σ0 + µ(s), s(ϕ0 + y(s))) (3.5)

solves (3.1) for every s ∈ (−ε, ε). Moreover, there exists a neighborhood of (σ0, 0) in

R ×W 2,p
B (Ω), U , such that, for any solution (λ, u) ∈ U of (3.1), either u = 0, or there

exists s ∈ (−ε, ε) such that (λ, u) = (λ(s), u(s)).

Proof. Let ω > 0 be such that ω > −σ0. Then,

σ1[L+ ω;B,Ω] = σ0 + ω > 0.

Hence, the solutions of (3.1) are given by the zeroes of the operator

F(λ, u) := u− (L+ ω)−1[(λ+ ω)u− a(x)f(u)], (λ, u) ∈ R× Lp(Ω),

which is a compact perturbation of the identity map of class Cr; in particular, it is Fredholm
of index zero. We have that F(λ, 0) = 0 for all λ ∈ R. Moreover, the Fréchèt di�erential
L(λ) := DuF(λ, 0) is given by

DuF(λ, 0)u = u− (L+ ω)−1[(λ+ ω)u].

Thus, it is apparent that L(λ) is an isomorphism if λ is not an eigenvalue of (3.4). Fur-
thermore,

KerDuF(σ0, 0) = span [ϕ0]

and the next transversality condition holds

L′(σ0)ϕ0 = −(L+ ω)−1ϕ0 /∈ ImL(σ0).
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On the contrary, assume that, for some u ∈W 2,p
B (Ω),

u− (L+ ω)−1[(σ0 + ω)u] = −(L+ ω)−1ϕ0.

Then, {
(L − σ0)u = −ϕ0 in Ω,
Bu = 0 on ∂Ω,

which contradicts the simplicity established by Theorem 7.8 of López-Gómez [88]. There-
fore, the desired result follows by applying the main theorem of Crandall and Rabinowitz
[24], with

Y :=

{
y ∈W 2,p

B (Ω) :

∫
Ω
ϕ0(x)y(x) dx = 0

}
.

The proof is complete.

As a consequence of the de�nition of u(s), we have that u′(0) = ϕ0 � 0. Hence, ε can
be shortened, if necessary, so that

u′(s) :=
du

ds
(s)� 0 for all s ∈ (−ε, ε).

Moreover, u(s)� 0 if s ∈ (0, ε), while u(s)� 0 if s ∈ (−ε, 0), and the next result holds.

Proposition 3.3. Under the same assumptions of Theorem 3.2, the following assertions

are true:

(i) For every q ≥ 1,

lim
s→0±

λ(s)− σ0

|s|q−1
= lim

s→0±

f(s)

s|s|q−1

∫
Ω
a(x)ϕq+1

0 (x) dx (3.6)

if the limit on the right hand side exists.

(ii) If λ′(s)u(s) > 0 for some s ∈ (−ε, ε), then u(s) is linearly stable as a steady-state

solution of the parabolic problem
∂u
∂t + Lu = λu− a(x)f(u) (x, t) ∈ Ω× (0,+∞),
Bu = 0 (x, t) ∈ ∂Ω× (0,+∞),
u(x, 0) = u0(x) ≥ 0 x ∈ Ω.

(3.7)

In other words,

σ1[L+ a(x)f ′(u(s))− λ(s);B,Ω] > 0. (3.8)

Proof. Substituting (3.5) in (3.1) we are driven to

sL(ϕ0 + y(s)) = s(σ0 + µ(s))(ϕ0 + y(s))− af(s(ϕ0 + y(s))).

Thus,
s(L − σ0)y(s) = sµ(s)(ϕ0 + y(s))− af(s(ϕ0 + y(s))).
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Hence, for any given q ≥ 1, multiplying both sides of this identity by ϕ0

s|s|q−1 , s 6= 0, it is
apparent that

1

|s|q−1
ϕ0(L − σ0)y(s) =

µ(s)

|s|q−1
ϕ0(ϕ0 + y(s))− aϕ0

f(s(ϕ0 + y(s)))

s|s|q−1
.

Therefore, since ∫
Ω
ϕ0(L − σ0)y(s) =

∫
Ω
y(s)(L − σ0)ϕ0 = 0,

we �nd that

0 =
µ(s)

|s|q−1

∫
Ω
ϕ0(ϕ0 + y(s))−

∫
Ω
aϕ0(ϕ0 + y(s))q

f(s(ϕ0 + y(s)))

s|s|q−1(ϕ0 + y(s))q
. (3.9)

The identity (3.6) follows from Lebesgue's dominated convergence theorem by letting s→ 0
in (3.9) provided q ≥ 1 satisfy

lim
s→0±

f(s)

s|s|q−1
∈ R.

Finally, di�erentiating with respect to s the identity

F(λ(s), u(s)) = 0, s ∈ (−ε, ε),

inverting (L+ ω)−1 and rearranging terms, it becomes apparent that

(L − λ(s) + af ′(u(s)))u′(s) = λ′(s)u(s), s ∈ (−ε, ε).

Since shortening ε, we can assume that u′(s) � 0 for all s ∈ (−ε, ε), it follows from
Theorem 7.10 of López-Gómez [88] that λ′(s)u(s) > 0 implies (3.8), ending the proof.

It should be noted that (3.6) provides us with the sign of µ(s) = λ(s)− σ0 and hence,
the bifurcation direction of the curve of positive solutions, (λ(s), u(s)), s > 0, in terms of
the behavior of f(u) at u = 0 and the sign of the integral∫

Ω
a(x)ϕq+1

0 (x) dx.

However, as we are applying Theorem 3.2, f is required to be of class C2 regularity. In
particular, the next result holds.

Corollary 3.4. Under the same assumptions of Theorem 3.2, suppose that in addition

f(u) := u|u|q−1 for some q ≥ 2. Then,

lim
s→0±

λ(s)− σ0

|s|r−1
= 0 for all r ∈ [1, q) and lim

s→0±

λ(s)− σ0

|s|q−1
=

∫
Ω
a(x)ϕq+1

0 (x) dx.

Thus, the bifurcation to positive solutions is supercritical if

S :=

∫
Ω
a(x)ϕq+1

0 (x) dx > 0,

while it is subcritical, if S < 0.

In the general case when f is merely continuous, one can still use the unilateral global
bifurcation theorem of López-Gómez [88, Th. 6.2.4] to infer that the set of solutions of
(3.1) possesses a (connected) component, C+, of positive solutions which is unbounded
in R × C(Ω̄) and satis�es (σ0, 0) ∈ C̄

+. But, in this general case, the sharp information
provided by Theorem 3.2 in a neighborhood of (σ0, 0) is lost.
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3.3 Nonexistence of small positive solutions for λ ≥ σ0.

In this section we provide the �rst consequences of Picone's identity delivered in Theorem
3.1: the nonexistence of positive solutions at the right side of σ0. In particular, the next
result provides us with a su�cient condition so that (3.1) cannot admit positive small
solutions for λ ≥ σ0 even in the general case when f is continuous.

Remember that σ0 = σ1[L;B,Ω] is associated with the L2-normalized positive principal
eigenfunction ϕ0.

Theorem 3.5. Assume that, for some q ≥ 1,

lim
s↓0

f(s)

sq

∫
Ω
a(x)ϕq+1

0 (x) dx < 0. (3.10)

Then, there exists ε > 0 such that λ < σ0 if (3.1) admits a solution, (λ, u), with u 
 0
and ‖u‖∞ < ε. In other words, (3.1) cannot admit small positive solutions if λ ≥ σ0.

Proof. Let (λ, u) be a positive solution of (3.1). Then, since q ≥ 1, it is easily seen that
u � 0 in Ω, in the sense of (2.18). Thus, since ϕ0 � 0, the quotient ϕ0

u preserves its
regularity even on the Dirichlet components of ∂Ω. Thus, applying Theorem 3.1 with
g(t) = t|t|q−1, t ∈ R, to the functions u and ϕ0 and taking into account that A(x) is
positive de�nite yields the estimate∫

Ω

(ϕ0

u

)q
(uLϕ0 − ϕ0Lu) = p

∫
Ω

ϕq−1
0

uq−3
〈∇ϕ0

u
,A∇ϕ0

u
〉 ≥ 0,

since Bu = Bϕ0 = 0 on ∂Ω and, so, either Du = Dϕ0 = 0, or Ru = Rϕ0 = 0, on each
component of ∂Ω. On the other hand, using the fact that u solves (3.1) it follows from the
de�nition of ϕ0 that

uLϕ0 − ϕ0Lu = (σ0 − λ)uϕ0 + a(x)f(u)ϕ0.

Hence, multiplying this identity by ϕq0
uq and integrating in Ω we obtain that

(σ0 − λ)

∫
Ω

ϕq+1
0

uq−1
+

∫
Ω
aϕq+1

0

f(u)

uq
=

∫
Ω

(ϕ0

u

)q
(uLϕ0 − ϕ0Lu) ≥ 0. (3.11)

Therefore, by the Lebesgue's dominated convergence theorem, it follows from (3.10) that

(σ0 − λ)

∫
Ω

ϕq+1
0

uq−1
≥ −

∫
Ω
aϕq+1

0

f(u)

uq
‖u‖∞→0, u≥0−−−−−−−−−→ − lim

s→0+

f(s)

sq

∫
Ω
aϕq+1

0 > 0.

Consequently, since ∫
Ω

ϕq+1
0

uq−1
> 0,

it is apparent that σ0 > λ. This ends the proof.
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Note that, in Theorem 3.5, the size of ε > 0 only depends on how∫
Ω
aϕq+1

0

f(u)

uq
approximates lim

s↓0

f(s)

sq

∫
Ω
aϕq+1

0 as ‖u‖∞ → 0. (3.12)

In particular, the next result shows that when the approximation (3.12) occurs suddenly,
i.e., when f(u) = u|u|q−1, u ∈ R, for some q > 1, then ε = +∞, i.e., (3.1) cannot admit
a positive solution if λ ≥ σ0. It is a substantial extension of Theorem 2 of Berestycki,
Capuzzo-Dolcetta and Nirenberg [9] and Theorem 4.2 of López-Gómez [84]. Later, in
Theorem 3.8, the optimality of this result will be established.

Theorem 3.6. Assume that q > 1 exists such that f(s) := sq for every s ≥ 0 and∫
Ω
a(x)ϕq+1

0 (x) dx ≤ 0. (3.13)

Then, λ < σ0 if (3.1) admits a positive solution, (λ, u).

Proof. The proof can be easily adapted from the proof of Theorem 3.5. First, assume that
ϕ0

u is not constant. Then, by (3.11) and Theorem 3.1,

(σ0 − λ)

∫
Ω

ϕq+1
0

uq−1
+

∫
Ω
aϕq+1

0 = p

∫
Ω

ϕq−1
0

uq−3
〈∇ϕ0

u
,A∇ϕ0

u
〉 > 0.

Hence,

(σ0 − λ)

∫
Ω

ϕq+1
0

uq−1
> −

∫
Ω
aϕq+1

0 ≥ 0,

and so λ < σ0. On the other hand, if ϕ0

u is a (positive) constant, then u satis�es

λu− a(x)uq = Lu = σ0u

and hence,
a(x)uq−1(x) = λ− σ0 for all x ∈ Ω.

Thus, a cannot change sign, which contradicts (3.13). Therefore, λ < σ0. This ends the
proof.

3.4 Quadratic subcritical turning point character of neutrally

stable solutions

The main result of this section, which is based on Theorem 3.1, provides us with the
local structure of the set of solutions of (3.1) around any neutrally stable positive solution,
(λ0, u0), i.e., any positive solution of (3.1), such that

σ1[L − λ0 + a(x)f ′(u0);B,Ω] = 0. (3.14)

Theorem 3.7 is a signi�cative generalization of Proposition 3.2 of Gómez-Reñasco and
López-Gómez [51]. Based on this result, we will establish in Section 3.6 the uniqueness of
the linearly stable positive solution of (3.1) if it exists. This uniqueness result generalize,
very substantially, the corresponding uniqueness theorems of Gómez-Reñasco and López-
Gómez [51, 52], slightly polished by López-Gómez [89, Ch. 9].
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Theorem 3.7. Assume that one of the following three condition holds:

(i) ΓD = ∅ and f(u) = u log u for every u ≥ 0,

(ii) ΓD = ∅ and f(u) = uq for every u ≥ 0 with q ∈ (0, 1) ∪ (1, 2),

(iii) f(u) = uq for every u ≥ 0 with q ≥ 2.

Let (λ0, u0) be a neutrally stable positive solution of (3.1) such that u0 ≥ 1 in case (i) and
u0 ≥ τ > 0 in case (ii). Let ψ0 ∈ W 2,p(Ω), p > N , denote the principal eigenfunction

associated with (3.14) normalized so that
∫

Ω ψ
2
0 = 1. Then, there exist ε > 0 and two

functions of class C2,

λ : (−ε, ε)→ R, and u : (−ε, ε)→W 2,p
B (Ω)

such that

(λ(0), u(0)) = (λ0, u0), (λ′(0), u′(0)) = (0, ψ0), λ′′(0) < 0,

for which the curve (λ(s), u(s)) provides us with the set of solutions of (3.1) in a neighbor-

hood of (λ0, u0). Moreover, shortening ε, if necessary, u(s) is linearly stable if s ∈ (−ε, 0)
and linearly unstable if s ∈ (0, ε).

Proof. The existence of a real analytic curve of solutions is an immediate consequence of
Proposition 20.7 of Amann [3]. A more recent approach, where the underlying analysis
has been considerably tidied up, can be found in Proposition 9.7 of López-Gómez [89]. In
these references the existence of the curve follows from the implicit function theorem after
a Lyapunov�Schmidt decomposition. The fact that

(λ(0), u(0)) = (λ0, u0), u′(0) = ψ0,

follows easily from these previous constructions. Di�erentiating with respect to s in

Lu(s) = λ(s)u(s)− a(x)f(u(s))

yields
Lu′(s) = λ′(s)u(s) + λ(s)u′(s)− a(x)f ′(u(s))u′(s). (3.15)

Thus, particularizing at s = 0, multiplying the resulting identity by ψ0 and integrating by
parts in Ω yields

λ′(0) =

∫
Ω ψ0[L − λ0 + a(x)f ′(u0)]ψ0∫

Ω u0ψ0
= 0.

Similarly, by di�erentiating (3.15) with respect to s, it follows that

Lu′′(s) = λ′′(s)u(s) + 2λ′(s)u′(s) + λ(s)u′′(s)

− a(x)f ′′(u(s))(u′(s))2 − a(x)f ′(u(s))u′′(s).

Thus, since λ′(0) = 0, particularizing at s = 0 shows that

Lu′′(0) = λ′′(0)u0 + λ0u
′′(0)− a(x)f ′′(u0)ψ2

0 − a(x)f ′(u0)u′′(0).
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Hence, multiplying by ψ0 and integrating by parts in Ω yields

λ′′(0) =

∫
Ω u
′′(0)[L − λ0 + af ′(u0)]ψ0 +

∫
Ω aψ

3
0f
′′(u0)∫

Ω u0ψ0
=

∫
Ω aψ

3
0f
′′(u0)∫

Ω u0ϕ0
.

To prove that λ′′(0) < 0 one can argue as follows. By the de�nition of u0 and ψ0, we have
that (

ψ0

u0

)2

(u0Lψ0 − ψ0Lu0) =
ψ2

0

u0
Lψ0 −

ψ3
0

u2
0

Lu0

=
ψ2

0

u0

(
λ0ψ0 − af ′(u0)ψ0

)
− ψ3

0

u2
0

(λ0u0 − af(u0))

= −aψ3
0

f ′(u0)u0 − f(u0)

u2
0

= −aψ3
0

(
f(u)

u

)′ ∣∣∣
u=u0

.

(3.16)

Thus, integrating in Ω, we �nd that∫
Ω

(
ψ0

u0

)2

(u0Lψ0 − ψ0Lu0) = −
∫

Ω
aψ3

0

(
f(u)

u

)′ ∣∣∣
u=u0

.

As it turns out that the functions f(u) = uq, q ∈ (0,+∞) \ {1}, and f(u) = u log u, are
the unique ones satisfying(

f(u)

u

)′
=

1

q
f ′′(u) and

(
f(u)

u

)′
= f ′′(u),

respectively, it becomes apparent that, for these functions,

sgnλ′′(0) = sgn

∫
Ω
aψ3

0f
′′(u0) = −sgn

∫
Ω

(
ψ0

u0

)2

(u0Lψ0 − ψ0Lu0).

Consequently, the fact that λ′′(0) < 0 follows easily from Theorem 3.1, which provides us
with the identity∫

Ω

(
ψ0

u0

)2

(u0Lψ0 − ψ0Lu0) = 2

∫
Ω
ψ0u0〈∇

ψ0

u0
,∇ψ0

u0
〉 > 0,

because u0 cannot be a multiple of ψ0. Indeed, on the contrary case, ψ0 = κu0 for some
κ > 0 and hence, it follows from (3.16) that

a
(
f(u0)− u0f

′(u0)
)

= 0 in Ω.

Thus, since we are assuming that a ∈ C(Ω̄) satis�es a 6= 0, there exists x0 ∈ Ω such that

f(u0(x0)) = u0(x0)f ′(u0(x0)).

However, for the special choices f(u) = u log u, and f(u) = uq, q ∈ (0,+∞) \ {1}, this
identity entails u0(x0) = 0. Therefore, we are in case (iii) and necessarily x0 ∈ ∂Ω, which
contradicts x0 ∈ Ω.
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For the stability of the positive solution (λ(s), u(s)) for su�ciently small s ∼ 0, we
have to ascertain the sign of the principal eigenvalue

Σ(s) := σ1[L − λ(s) + a(x)f ′(u(s));B,Ω].

In particular, since Σ(0) = 0, it su�ces to show that Σ′(0) < 0. As Σ(s) is a simple
eigenvalue of class C1 in s, it follows from the abstract theory of Kato [67] that ψ0 admits
a C1 perturbation, ψ(s), s ∼ 0, such that ψ(0) = ψ0 and

∫
Ω ψ

2(s) = 1 for su�ciently small
s (see also Lemma 2.2.1 of López-Gómez [85]). Thus, di�erentiating with respect to s the
identity

Lψ(s)− λ(s)ψ(s) + af ′(u(s))ψ(s) = Σ(s)ψ(s),

we are driven to the identity

[L − λ(s) + af ′(u(s))]ψ′(s)− λ′(s)ψ(s) + af ′′(u(s))u′(s)ψ(s) = Σ(s)ψ′(s) + Σ′(s)ψ(s).

So, particularizing at s = 0, we have that

[L − λ0 + af ′(u0)]ψ′(0) + af ′′(u0)ψ2
0 = Σ′(0)ψ0.

Therefore, multiplying by ψ0 this identity and integrating by parts in Ω the next identity
holds

Σ′(0) =

∫
Ω
af ′′(u0)ψ3

0 = λ′′(0)

∫
Ω
u0ψ0 < 0,

which ends the proof.

Figure 3.1 represents a genuine quadratic subcritical turning point. Theorem 3.7 es-
tablishes that this is the bifurcation diagram of (3.1) in a neighborhood of any linearly
neutrally stable positive solution, (λ0, u0). The half low branch, plotted with a continuous
line, is �lled in by linearly stable positive solutions, while the upper one, plotted with
a discontinuous line, consists of linearly unstable positive solutions with one-dimensional
unstable manifold.

Figure 3.1: Local bifurcation diagram at a linearly neutrally stable positive solution,
(λ0, u0).
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3.5 Optimality of Theorems 3.6 and 3.7

This section is devoted to show the optimality of the results stated in Sections 3.3 and
3.4. In particular, the next result shows the optimality of Theorem 3.6, in the sense that
it fails to be true when f(u) does not have the required form. Again, remember that
ϕ0 � 0 stands for the principal eigenfunction associated with σ0 := σ1[L;B,Ω] normalized
in L2(Ω).

Theorem 3.8. Assume that there exist 0 < q1 < q2 and F , G ∈ Cr([0,+∞);R), r ≥ 2,
such that

F (0) = G(0) = 0, F ′(0) = G′(0) = 0

and

lim
s→0

F (s)

s|s|q1−1

∫
Ω
aϕq1+1

0 < 0 < lim
s→0

G(s)

s|s|q2−1

∫
Ω
aϕq2+1

0 .

Then, there exists ν0 > 0 such that, for every ν ∈ (0, ν0), the problem{
Lu = λu− a(x)(νF (u) +G(u)) in Ω,
Bu = 0 on ∂Ω,

(3.17)

admits positive solutions for values of the parameter λ at both sides of σ0.

Proof. Suppose ν ≥ 0 and p > N . Then, owing to Theorem 3.2, there exist s0 = s0(ν) > 0
and two maps of class Cr−1

λ(s) : [0, s0)→ R, u(s) : [0, s0)→W 2,p
B (Ω),

such that
(λ(0), u(0)) = (σ0, 0), u′(0) = ϕ0,

and (λ(s), u(s)) solves (3.1) for all s ∈ (−s0, s0). Moreover, by Proposition 3.3, for every
ν > 0,

lim
s↓0

λ(s)− σ0

sq1−1
= lim

s↓0

νF (s) +G(s)

sq1

∫
Ω
aϕq1+1

0

= ν lim
s↓0

F (s)

sq1

∫
Ω
aϕq1+1

0 + lim
s↓0

(
sq2−q1

G(s)

sq2

)∫
Ω
aϕq1+1

0

= ν lim
s↓0

F (s)

sq1

∫
Ω
aϕq1+1

0 < 0,

whereas, for ν = 0,

lim
s↓0

λ(s)− σ0

sq2−1
= lim

s↓0

G(s)

sq2

∫
Ω
aϕq2+1

0 > 0.

Thus, when ν = 0, the bifurcation of the curve of positive solutions (λ(s), u(s)) from the
trivial branch is supercritical. In such case, by Proposition 3.3, we also have that u(s),
as an steady-state solution of (3.7), is linearly stable for su�ciently small s ∈ (0, s0).
Subsequently, we shorten s0, if necessary, so that u(s) is linearly stable for all s ∈ (0, s0).
Then, λ′(s) > 0 for each s ∈ (0, s0). Thus, there exists ε > 0 such that the curve of positive
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solutions (λ(s), u(s)), s ∼ 0, can be parameterized by λ, (λ, u(λ)), with λ ∈ (σ0, σ0 + ε),
in a neighborhood of the bifurcation point (σ0, 0). In particular,

σ1[L − λ+ aG′(u(λ));B,Ω] > 0, λ ∈ (σ0, σ0 + ε). (3.18)

Pick ω > −σ0 arbitrary and two values λ1, λ2 ∈ (σ0, σ0 + ε), with λ1 < λ2. Then, setting

F(ν, λ, u) := u− (L+ ω)−1[(λ+ ω)u− a(νF (u) +G(u))],

we have that, for every λ ∈ [λ1, λ2],

DuF(0, λ, u(λ))u = u− (L+ ω)−1
[
(λ+ ω)u+ aG′(u(λ))u

]
.

Since it is a compact perturbation of the identity map, DuF(0, λ, u(λ)) is Fredholm of index
zero in Lp(Ω) for all p > N . Moreover, owing to (3.18), it is a topological isomorphism.
Therefore, by the implicit function theorem and the compactness of [λ1, λ2], u(λ) can be
regarded as a function of class Cr-regularity of λ and ν, u(λ, ν), in [λ1, λ2] × [0, ν0] for
su�ciently small ν0 > 0. Furthermore, by (3.18), it becomes apparent that (λ, u(λ, ν)) is
linearly asymptotically stable for all λ ∈ [λ1, λ2] and ν ∈ [0, ν0].

On the other hand, as soon as ν > 0, we have that

lim
s↓0

λ(s)− σ0

sq1−1
= lim

s↓0

νF (s) +G(s)

sq1

∫
Ω
aϕq1+1

0 = ν lim
s↓0

F (s)

sq1

∫
Ω
aϕq1+1

0 < 0.

Thus, the bifurcation of (λ(s), u(s)) from (λ, 0) is subcritical. Consequently, for every
ν ∈ (0, ν0), (3.1) admits positive solutions at both sides of σ0, which ends the proof of the
theorem.

Remark 3.9. It should be noted that the hypothesis of Theorem 3.8 can be ful�lled even
with polynomials. For example, the choices

Ω =
(
−π

2
,
π

2

)
, L = − d2

dx2
, ΓR = ∅,

and
a(x) = cosx− 0.9, F (u) = u2, G(u) = u3,

satisfy all its assumptions with q1 = 2 and q2 = 3. Indeed, in this case

σ0 = 1, ϕ0(x) =
√

2
π cosx,

and

lim
s→0

F (s)

s|s|

∫
Ω

(cosx− 0.9) cos3 x dx = −0.0219028 < 0,

lim
s→0

G(s)

s|s|2

∫
Ω

(cosx− 0.9) cos4 x dx = 0.00637915 > 0.

Therefore, all the requirements of Theorem 3.8 hold.
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Remark 3.10. With a little bit more of e�ort, much like in the proof of Theorem 1.7 of
Crandall and Rabinowitz [24], one can also de�ne the auxiliary operator

G(s, ν, λ, y) :=

{
s−1F(ν, λ, s(ϕ0 + y)), if s 6= 0,

DuF(ν, λ, 0)(ϕ0 + y), if s = 0,

and apply the implicit function theorem to it at (0, 0, σ0, 0) to infer that, actually, the
local bifurcation diagram of positive solutions of (3.17) for su�ciently small ν > 0 looks
like shows Figure 3.2. This is a direct consequence from the uniqueness, uniform in ν, of
the smooth curve of positive solutions of (3.17) bifurcating from (σ0, 0). Therefore, the
example after the statement of Theorem 3.8 also shows the optimality of Theorem 3.7 in the
sense that if condition (iii) of Theorem 3.7 fails, then the problem can admit supercritical
turning points at linearly neutrally stable positive solutions, like the one shown on the
right plot of Figure 3.2.

Figure 3.2: Bifurcation diagrams of (3.17) when ν = 0 and ν > 0.

3.6 Uniqueness of the stable positive solution when f(u) = uq,

q ≥ 2

The next result relies on Theorem 3.7. It is a substantial extension of the previous results
of Gómez-Reñasco and López-Gómez [51, 52], for as here we are dealing with general
boundary operators of mixed type.

Theorem 3.11. Suppose that f(u) = uq for all u ≥ 0 with q ≥ 2. Then:

(i) Any positive solution, (λ0, u0) of (3.1) with λ0 ≤ σ0 must be linearly unstable, as an

steady state of (3.7), i.e.,

σ1[L − λ0 + af ′(u0);B,Ω] = σ1[L − λ0 + qauq−1
0 ;B,Ω] < 0.

(ii) The problem (3.1) admits some linearly stable positive solution, (λ0, u0), if, and only

if,

S :=

∫
Ω
a(x)ϕq+1

0 (x) dx > 0. (3.19)

Moreover, in such case, λ0 > σ0.

(iii) Suppose (3.19) and λ > σ0. Then, the unique positive linearly stable or linearly

neutrally stable solution of (3.1) is the minimal one.
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(iv) Suppose that (3.1) admits a positive solution (λ0, u0) for some λ0 > σ0. Then, it

admits a minimal solution (λ0, umin).

Proof. First we will prove Part (i). Let (λ0, u0) be a positive solution of (3.1) with λ0 ≤ σ0.
Then, by the uniqueness of the principal eigenvalue, it follows from (3.1) that

λ0 = σ1[L+ auq−1
0 ;B,Ω]. (3.20)

Thus, when a � 0, it follows from the monotonicity of the principal eigenvalue with respect
to the potential that

σ1[L+ qauq−1
0 − λ0;B,Ω] < σ1[L+ auq−1

0 − λ0;B,Ω] = 0.

This monotonicity, in the general setting covered in this chapter, was established by Cano-
Casanova and López-Gómez [16, Pr. 3.3]. Moreover, in this case, it also follows from (3.20)
that

λ0 = σ1[L+ auq−1
0 ;B,Ω] < σ1[L;B,Ω] = σ0.

Thus, (3.1) cannot admit a positive solution if λ ≥ σ0.
The proof of Part (i) in the general case when a(x) changes of sign is far more subtle than

in the special case when a � 0. Our proof here is an adaptation of the proof of Theorem
9.9 of López-Gómez [89]. It proceeds by contradiction. Suppose that (3.1) possesses a
positive solution, (λ0, u0), such that

λ0 ≤ σ0, σ1[L − λ0 + qauq−1
0 ;B,Ω] ≥ 0.

According to Theorem 3.7, this entails the existence of some positive solution, (λ1, u1), of
(3.1) such that

λ1 ≤ λ0 ≤ σ0, σ1[L − λ1 + qauq−1
1 ;B,Ω] > 0.

By the implicit function theorem applied to the operator F(λ, u) de�ned in the proof of
Theorem 3.2, it becomes apparent that (λ1, u1) lies on a smooth curve of positive solutions,
(λ, u(λ)), λ ∼ λ1, such that

σ1[L − λ+ qauq−1(λ);B,Ω] > 0 for λ ∼ λ1.

By global continuation of the curve (λ, u(λ)) for λ < λ1, one of the following options
occurs:

(a) u(λ)� 0 and

σ1[L − λ+ qauq−1(λ);B,Ω] > 0 for all λ < λ1.

(b) There exists λ2 < λ1 such that u(λ)� 0 and

σ1[L − λ+ qauq−1(λ);B,Ω] > 0 for all λ < λ2,

though u(λ2) = 0.
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(c) There exists λ3 < λ1 such that u(λ)� 0 and

σ1[L − λ+ qauq−1(λ);B,Ω] > 0 for all λ < λ3,

though u(λ3)� 0 and

σ1[L − λ3 + qauq−1
1 (λ3);B,Ω] = 0.

The option (b) cannot occur, because λ2 < λ0 and (λ0, 0) is the unique bifurcation point
from (λ, 0) to positive solutions of (3.1). By Theorem 3.7, the option (c) cannot occur
neither. Therefore, (a) occurs. By di�erentiating

F(λ, u(λ)) = 0

with respect to λ it becomes apparent that(
L − λ+ qauq−1(λ)

)
u′(λ) = u(λ)

for all λ ≤ λ1 and hence,

u′(λ) =
(
L − λ+ qauq−1(λ)

)−1
u(λ)� 0.

Therefore, the map λ 7→ u(λ) is point-wise increasing. In particular, there exists a constant
τ > 0 such that

‖u(λ)‖C(Ω̄) ≤ τ for all λ ≤ λ1. (3.21)

Now, consider the change of variables given by

u(λ) = |λ|
1
q−1 v(λ), for all λ ≤ λ2 := min{0, λ1}.

Then, owing to (3.21), we have that

(v(λ))q−1 ≤ τ q−1

|λ|
for all λ ≤ λ2. (3.22)

Moreover, for every λ < λ2, v(λ) is a positive solution of

1

|λ|
Lv = −v − a(x)v|v|q−1 in Ω. (3.23)

Let us denote by ϕ0 � 0 the principal eigenfunction associated with σ0 = σ1[L;B,Ω]
normalized so that

∫
Ω ϕ

2
0 = 1. Then, multiplying (3.23) by ϕ0 and integrating in Ω yields

σ0

|λ|

∫
Ω
ϕ0v(λ) = −

∫
Ω
v(λ)ϕ0 −

∫
Ω
aϕ0(v(λ))q.

Thus, thanks to (3.22), we �nd that(
σ0

|λ|
+ 1

)∫
Ω
ϕ0v(λ) ≤ 1

|λ|
‖a‖∞τ q−1

∫
Ω
ϕ0v(λ).
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Hence, for every λ < λ2,
σ0

|λ|
+ 1 ≤ 1

|λ|
‖a(x)‖∞τ q−1,

which is impossible. This contradiction ends the proof of Part (i).
Part (ii) is an immediate consequence of Proposition 3.3, Theorem 3.6 and Part (i).

Indeed, if S > 0 then Proposition 3.3 provides us with a supercritical bifurcation, from
the trivial branch, of a curve of linearly stable positive solutions, whereas, if S ≤ 0, then
Theorem 3.6 restricts to λ ∈ (−∞, σ0) the values of the parameter for which the problem
(3.1) admits positive solutions. By Part (i), these solutions are linearly unstable. Therefore,
(3.1) cannot admit a linearly stable positive solution if S ≤ 0.

To prove the uniqueness in Part (iii), let λ0 > σ0 be the value of λ for which (3.1) has
two linearly stable positive solutions of (3.1), u0 and v0, u0 6= v0. As a consequence of
the implicit function theorem, much like in the proof of Part (i), we can get two di�erent
curves of solutions, u0(λ) and v0(λ), for every λ in a neighborhood of λ0. By a rather
standard global continuation argument, each of these curves should satisfy some of the
alternatives, (a), (b) or (c), as in the proof of Part (i). Moreover, as all these solutions
are non-degenerate, u0(λ) 6= v0(λ), as soon as some of these solutions is linearly stable.
As a consequence of Part (i), option (a) cannot occur. Similarly, by Theorem 3.7, these
curves cannot satisfy the option (c) neither. Therefore, u0(λ) and v0(λ) should bifurcate
supercritically from the trivial branch at (λ, u) = (σ0, 0), which contradicts the local
uniqueness at (σ0, 0) obtained as an application of Theorem 3.2.

The fact that the minimal positive solution of (3.1) is linearly stable, or linearly neu-
trally stable, for any λ > σ0 where it admits a positive solution can be easily inferred by
adapting the argument given in the proof of Theorem 9.12 of López-Gómez [89], which was
adapted from López-Gómez, Molina-Meyer and Tellini [92] and Amann [3].

The proof of Part (iv) follows similar patterns as the proof of [89, Th. 9.13]. Fix
λ = λ0 > σ0. Under this assumption, uε := εϕ0, where ϕ0 � 0 stands for the normalized
principal eigenfunction associated to σ0, is a subsolution of (3.1) for su�ciently small ε > 0.
Let wε denote the unique solution of

∂w
∂t + Lw = λ0w − a(x)wq in Ω× (0,+∞),
Bw = 0 on ∂Ω× (0 +∞),
w(·, 0) = uε in Ω.

Since this equation preserves the ordering, we �nd that

wε(t) ≤ u0 in Ω for all t > 0.

Moreover, thanks to the abstract theory of Sattinger [109], wε(t) is increasing and globally
de�ned in time. Actually, owing to the main theorem of Langlais and Phillips [74], the
limit

w∗ε := lim
t→+∞

wε(t)

is well de�ned and provides us with a positive solution of (3.1) for λ = λ0. Moreover, by
construction,

w∗ε1 ≤ w
∗
ε2 ≤ u0 if 0 < ε1 < ε2.
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Thus, since ε can be chosen su�ciently small so that uε lies below any given positive
solution of (3.1), the limit

w∗min := min
ε>0

w∗ε

is the minimal positive solution of (3.1), because we are assuming that λ0 > σ0 and σ0 is
the unique bifurcation point to positive solutions from u = 0. Note that w∗min stays below
any positive solution of (3.1), by construction.

It remains to prove that the minimal positive solution, w∗min, is either linearly stable
or neutrally stable. To show it we will argue by contradiction assuming that

σmin := σ1[L − λ0 + a(x)q(w∗min)q−1;B,Ω] < 0.

Let ϕmin � 0 be a positive eigenfunction associated with σmin. Then, for su�ciently small
ε > 0,

uε := w∗min − εϕmin

provides us with a supersolution of (3.1) such that

uε � w∗min.

Indeed, as ε ↓ 0, we �nd that

Luε = λ0w
∗
min − a(x)(w∗min)q − εLϕmin

= λ0w
∗
min − a(x)(w∗min)q − ε

(
σminϕmin + λ0ϕmin − a(x)q(w∗min)q−1ϕmin

)
= λ0uε − a(x)

(
(w∗min)q + εq(w∗min)q−1ϕmin

)
− εσminϕmin

= λ0uε − a(x)uqε − a(x)
(
(w∗min)q + εq(w∗min)q−1ϕmin − (w∗min − εϕmin)q

)
− εσminϕmin

= λ0uε − a(x)uqε − a(x)o(ε)− εσminϕmin.

Therefore, since σmin < 0, for su�ciently small ε > 0,

Luε > λ0uε − a(x)uqε in Ω.

Since (3.1) admits arbitrarily small positive subsolutions, it becomes apparent that (3.1)
possesses a positive solution below uε and, hence, below w∗min, which is impossible. This
ends the proof.

3.7 Global structure of the set of stable positive solutions

when f(u) = uq, q ≥ 2

The next result provides us with the global structure of the set of linearly stable and
linearly neutrally stable positive solutions of (3.1) in the special case when f(u) = uq for
some q ≥ 2.

Theorem 3.12. Suppose that a(x) changes sign in Ω, f(u) = uq, u ≥ 0, with q ≥ 2, and
that (3.19) holds. Then, the supremum of the set of µ > σ0 for which (3.1) possesses a
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positive solution for each λ ∈ (σ0, µ), λ∗, satis�es λ∗ ∈ (σ0,+∞). Moreover, the set of

linearly stable positive solutions of (3.1) consists of a C1 strictly increasing curve

C+ := {(λ, u(λ)) : λ ∈ (σ0, λ∗)}.

Furthermore, some of the next excluding options occurs:

(i) {u(λ)}λ∈(σ0,λ∗) is bounded in C(Ω̄), and then

u∗ := lim
λ↑λ∗

u(λ)

is a linearly neutrally stable positive solution of (3.1) at λ = λ∗.

(ii) limλ↑λ∗ ‖u(λ)‖C(Ω̄) = +∞.

In both cases, (3.1) cannot admit any further positive solution for λ > λ∗.

Proof. The existence of λ∗, as well as the fact that λ∗ ∈ (σ0,+∞], is a direct consequence of
Theorem 3.2 and Proposition 3.3. The fact that λ∗ is �nite follows with the next argument.
Let (λ, u) be a positive solution of (3.1). Then,

λ = σ1[L+ a(x)uq−1;B,Ω].

Moreover, since a(x) changes sign, there exists a ball, B ⊂ Ω, such that a(x) < 0 for all
x ∈ B. Thus, thanks to Corollary 3.6 of Cano-Casanova and López-Gómez [16],

λ = σ1[L+ a(x)uq−1;B,Ω] < σ1[L+ a(x)uq−1;D, B] < σ1[L;D, B].

Therefore, λ∗ ≤ σ1[L;D, B]. In particular, λ∗ ∈ (σ0,∞).
Thanks to Proposition 3.3, the solutions bifurcating from u = 0 at σ0 are linearly stable.

Therefore, thanks to implicit function theorem applied to the integral equation associated
to (3.1), they consist of a C1 curve parameterized by λ which is strictly increasing. By a
global continuation argument involving the implicit function theorem, this curve can be
globally parameterized by λ in the form (λ, u(λ)), with λ ∈ (σ0, λmax), for some maximal
λmax ∈ (σ0,+∞). Necessarily, λmax ≤ λ∗. Moreover, thanks to their linearized stability,
u′(λ)� 0 for all λ ∈ (σ0, λmax). By construction, the curve

C+ := {(λ, u(λ)) : λ ∈ (σ0, λmax)},

provides us with the maximal set of linearly stable positive solutions of (3.1) that bifurcates
from u = 0. By the monotonicity of the solution on this curve, either

lim
λ↑λmax

‖u(λ)‖C(Ω̄) = +∞,

much like illustrated in the right picture of Figure 3.3, or {u(λ)}λ∈(σ0,λmax) stays bounded.
In the latest case, by a rather standard compactness argument, it is easily seen that

umax := lim
λ↑λmax

u(λ)
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is a solution of (3.1) for λ = λmax. By the continuity of the principal eigenvalue with
respect to the potential, umax is either linearly stable or neutrally stable. In the former
case, the implicit function theorem would allow us to continue the curve C+ beyond λmax,
which contradicts the maximality of λmax. Thus, umax is neutrally stable and, due to
Theorem 3.7, the set of solutions surrounding it consists of a subcritical quadratic turning
point, as illustrated by the left picture of Figure 3.3.

Lastly, the proof that λmax = λ∗ proceeds by contradiction. Suppose λmax < λ∗.
Then, (3.1) admits a positive solution for some λ1 > λmax. By Theorem 3.11(iv), (3.1)
also admits a minimal positive solution, which is either linearly stable, and hence part
of an increasing curve of solutions, or neutrally stable, and hence a subcritical quadratic
turning point. By a backwards global continuation argument in λ starting at λ1, one can
construct an analytic curve of linearly stable positive solutions up to reach (λ, u) = (σ0, 0),
which contradicts the de�nition of λmax and ends the proof.

Figure 3.3 shows two admissible global bifurcation diagrams for each of the cases (i)
and (ii) discussed by Theorem 3.12. Some general conditions ensuring that the option (i)
of Theorem 3.12 occurs can be formulated from the a priori bounds of Amann and López-
Gómez [5]. The problem of ascertaining whether or not each of these options can occur
has not been solved yet.

Figure 3.3: Two admissible global bifurcation diagrams of linearly stable positive solutions.
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Chapter 4

The singular perturbation problem

Introduction

In the second part of this dissertation we consider the Lotka�Volterra competition reaction-
di�usion heterogeneous system

∂u
∂t + d1L1u = λ(x)u− a(x)u2 − b(x)uv
∂v
∂t + d2L2v = µ(x)v − d(x)v2 − c(x)uv

in Ω× (0,+∞),

B1u = B2v = 0 on ∂Ω× (0,+∞),
u(·, 0) = u0 > 0, v(·, 0) = v0 > 0 in Ω,

(4.1)

as well as its associated elliptic counterpart
d1L1u = λ(x)u− a(x)u2 − b(x)uv
d2L2v = µ(x)v − d(x)v2 − c(x)uv

in Ω,

B1u = B2v = 0 on ∂Ω,
(4.2)

whose solutions are the steady states of the evolutionary model (4.1). In this model, Ω is a
bounded domain of RN with boundary, ∂Ω, of class C2, and Li, i = 1, 2, are two uniformly
elliptic operators in Ω of the type

Li = −div(Ai∇·) + Bi∇+ Ci, i = 1, 2, (4.3)

with Ai ∈ Msym
N (C2(Ω̄)), Bi ∈ M1×N (C(Ω̄)) and Ci ∈ C(Ω̄). As far as concerns ∂Ω, it is

throughout assumed to be a (N − 1)-dimensional manifold of class C2 consisting, for each
i ∈ {1, 2}, of �nitely many connected components of class C2

Γi,jD , Γi,kR , 1 ≤ j ≤ niD, 1 ≤ k ≤ niR,

for some integers niD, n
i
R ≥ 0. By the de�nition of component, they must be disjoint (see,

e.g., Munkres [101]) and each of them must be, simultaneously, a relatively open and closed
subset of ∂Ω, because ∂Ω is a compact manifold without boundary. Some, or several, of
these components might be empty, of course. We denote by

ΓiD =

niD⋃
j=1

Γi,jD , ΓiR =

niR⋃
j=1

Γi,jR , i = 1, 2,
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the Dirichlet and Robin portions of

∂Ω = ΓiD ∪ ΓiR, i = 1, 2.

Associated with these decompositions of ∂Ω, there are two boundary operators Bi, i = 1, 2,
de�ned by

Bih =

{
Dih := h in ΓiD,

Rih := 〈n, Ai∇h〉+ βih in ΓiR,
for every h ∈W 2,p(Ω), p > N, (4.4)

where βi ∈ C(∂Ω) and n stands for the outward normal vector �eld along ∂Ω. Thus, for
each i = 1, 2, ΓiD and ΓiR are the portions of the edges of the inhabiting territory, ∂Ω,
where the corresponding species, u, or v, obeys a boundary condition of Dirichlet (D) or
Robin (R) type, respectively. In particular, we may denote Bi = D when ΓiD = ∂Ω.

For the coe�cients in the setting of (4.1), d1, d2 > 0 measure the strength of the dif-
fusivities of the species u and v, λ, µ ∈ C(Ω̄) stand for the growth, or decay, rates of the
species, a, d ∈ C(Ω̄; (0,+∞)) are the intra-speci�c competition rates of u and v, respec-
tively, and b, c ∈ C(Ω̄; (0,+∞)) represent the competition e�ects between both populations.
Subsequently, we are assuming that λ, µ, a, b, c, d ∈ C(Ω̄) satisfy

b(x) > 0 and c(x) > 0 for all x ∈ Ω, min
Ω̄
a > 0, min

Ω̄
d > 0,

though in this chapter the hypothesis on b and c can be relaxed to b, c ≥ 0 in Ω̄.
Throughout this chapter, for any given function h ∈ C(Ω), we denote

h+ := max{h, 0}.

It is said that h is positive, h > 0 or h 
 0 (in Ω), if h ≥ 0 with h 6= 0. Also, for any given
h ∈ C1(Ω̄), it is said that h is strongly positive (in Ω), h� 0, if it satis�es

h(x) > 0 for all x ∈ Ω and
∂h

∂n
(x) := 〈n(x),∇h(x)〉 < 0 for all x ∈ h−1(0) ∩ ∂Ω.

Except for the general existence results of Chapter 7 of López-Gómez [85], most of
the available literature on Lotka�Volterra competing species models dealt with the very
special cases when either Γ1

R = Γ2
R = ∅, or the species are subject to non-�ux boundary

conditions, where Γ1
D = Γ2

D = ∅ and β1 = β2 = 0; in particular, those of Blat and Brown
[12, 13], Dancer [29], Eilbeck, Furter and López-Gómez [33], López-Gómez [80, 81], López-
Gómez and Sabina [77], Hutson, López-Gómez, Mischaikow and Vickers [63], Furter and
López-Gómez [48], Dockery, Hutson, Mischaikow and Pernarowski [32], Hutson, Lou and
Mischaikow [65], Cantrell and Cosner [20], He and Ni [55, 54], as well as [42, 39] and most
of the references therein. Consequently, as the results of this thesis are valid for general
boundary conditions of mixed type, our �ndings are substantially more general than all
previous existing results.

As in most of the applications to Ecology, Environmental Sciences, Biology and Medical
Sciences, the di�usion rates of the species, measured by d1 and d2, are very small in
comparison with the relative size of the remaining coe�cients involved in the setting of the
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model, our attention in the second part of the thesis is mainly focused into the problem of
characterizing the dynamics of (4.1) for su�ciently small d1 and d2, which is an important
mathematical challenge, as we are dealing with a singular perturbation problem for a
parabolic system in the presence of spatial heterogeneities. The reader should be aware
that no previous singular perturbation result under mixed boundary conditions is available,
even for the single di�usive logistic equation!

Much like in [48, 42, 39], also under general mixed boundary conditions the dynamics
of (4.1) for small di�usion rates is based on the nature of the dynamics of the associated
non-spatial model{

u′(t) = λ(x)u(t)− a(x)u2(t)− b(x)u(t)v(t)

v′(t) = µ(x)v(t)− d(x)v2(t)− c(x)u(t)v(t)
t > 0, (4.5)

where x ∈ Ω is regarded as a parameter, though our new results here provide with some
new �ndings that are extremely important from the point of view of the applications, as
it will become apparent soon. Adopting the methodology of Furter and López-Gómez [48]
and, according to the nature of the dynamics of (4.5), the inhabiting territory, Ω̄, consists
of the following regions:

Ωext := {x ∈ Ω̄ : λ(x), µ(x) ≤ 0},
Ωper := {x ∈ Ω̄ : λ(x), µ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) > λ(x)c(x)},
Ωbi := {x ∈ Ω̄ : λ(x), µ(x) > 0, λ(x)d(x) < µ(x)b(x), µ(x)a(x) < λ(x)c(x)},
Ωu

do := {x ∈ Ω̄ : λ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) < λ(x)c(x)},
Ωv

do := {x ∈ Ω̄ : µ(x) > 0, λ(x)d(x) < µ(x)b(x), µ(x)a(x) > λ(x)c(x)},
Ωjunk := Ω̄ \ (Ωext ∪ Ωper ∪ Ωbi ∪ Ωu

do ∪ Ωv
do).

(4.6)

As already suggested by the names given to each of these zones, Ωext consists of the set of
x ∈ Ω̄ where (0, 0) is a global attractor with respect to the positive solutions of (4.5); Ωper

stands for the set of x ∈ Ω̄ where the semi-trivial positive steady-state solutions, (λ(x)
a(x) , 0)

and (0, µ(x)
d(x) ), are linearly unstable � and so, the model (4.5) is permanent �, Ωbi consists

of the set of x ∈ Ω̄ where (λ(x)
a(x) , 0) and (0, µ(x)

d(x) ) are linearly stable, where (4.5) exhibits
a genuine founder control competition, and the portions Ωu

do and Ωv
do stand for the zones

of Ω̄ where one of the semi-trivial steady states is positive and linearly stable, while the
other one is non-positive, or it is positive but linearly unstable. Should it be the case, the
linearly stable positive semi-trivial solution is a global attractor for the component-wise
positive solutions of (4.5). Finally, we are denoting by Ωjunk the supplement in Ω̄ of the
union of the previous regions. It is folklore that in Ωper the non-spatial model possesses a
unique coexistence steady state which is a global attractor for the component-wise positive
solutions of (4.5), whereas in Ωbi there is a unique coexistence state which is a saddle point,
whose stable manifold, linking (0, 0) to the coexistence state, divides the �rst quadrant,
u > 0, v > 0, in two regions, each of them being the attraction source of one of the
semi-trivial positive solutions.

The main result of this chapter is a substantial generalization of Theorem 4.1 of Hutson,
López-Gómez, Mischaikow and Vickers [63] that provides us with a sharp relation between
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the dynamics of (4.1) and the dynamics of the associated kinetic problem (4.5). As [63,
Th. 4.1] had shown to be a milestone for the generation of new results in the theory of
competing species in the presence of spatial heterogeneities, our result should deserve a
huge amount of attention over the next years. In terms of attractivity our main result,
precisely stated in Theorem 4.4, establishes that the coexistence steady-state solutions of
(4.1) (component-wise positive steady states) approximate, for small di�usion rates, d1 > 0
and d2 > 0, the global attractor of the non-spatial model (4.5) in the regions of Ω where
such global attractor exists, i.e., in particular, Ωext, Ωper, Ωu

do and Ωv
do.

Our main result in this chapter, Theorem 4.4, also sharpens the main theorem of
Hutson, Lou and Mischaikow [64] as well as Theorem 4.2 (iii) of He and Ni [53], where
the following (very degenerate) problem, introduced by Hutson, López-Gómez, Mischaikow
and Vickers in [63], which later generated a huge literature in the �eld, was analyzed

∂u
∂t − d1∆u = λ(x)u− u2 − uv in Ω× (0,+∞),
∂v
∂t − d2∆v = µ(x)v − uv − v2 in Ω× (0,+∞),
∂u
∂ν = ∂v

∂ν = 0 in ∂Ω× (0,+∞),

u(·, 0) = u0 > 0, v(·, 0) = v0 > 0, in Ω.

All these precursors of our main theorem, imposed some very strong structural conditions
on each of the regions, Ωper, Ωu

do, Ωv
do, Ωbi, Ωext and Ωjunk. Indeed, while Hutson, López-

Gómez, Mischaikow and Vickers [63] and He and Ni [53] required that

Ωper = ∅ = Ωbi,

the singular perturbation theorem of Hutson, Lou and Mischaikow [64] imposed the very
strong restriction that either Ω̄ = Ωper, or Ω̄ = Ωu

do, or Ω̄ = Ωv
do, all of them extremely

severe, as they do not allow us to deal with truly spatially heterogeneous landscapes as
those considered by Theorem 4.4, where each of the (dynamical) patches Ωper, Ωu

do, Ωv
do,

Ωbi, Ωext and Ωjunk can exhibit an arbitrary structure and, in particular, can be either
empty, or non-empty; not requiring any additional restriction for applying our result.

Theorem 4.4 cannot be improved up to provide us with the asymptotic limit of the
coexistence states as di�usion rates tend to zero in the bi-stability region Ωbi, because
(4.1) may possess three coexistence states for su�ciently small di�usion rates if Ωbi 6= ∅:
two of them might perturb from the stable semitrivial solutions and the third one from the
unstable coexistence state of the non-spatial model, as it is shown in the next chapter, in
Section 5.4. As a bi-product, the limit of an arbitrary family of coexistence steady states
of (4.1) when the di�usion rates, d1, d2 > 0, go to zero cannot be uniquely determined in
the bi-stability region Ωbi. Therefore, Theorem 4.1 is optimal, in the sense that it cannot
admit any further substantial generalization, though it might be generalized to consider
arbitrary kinetics of competitive type, of course!

Although the proof of Theorem 4.4 relies upon the monotone scheme introduced by
Hutson, López-Gómez, Mischaikow and Vickers [63], which later inspired most of the
existing singular perturbation results in competing species models (see, e.g., Hutson, Lou
and Mischaikow [64, 65], Hutson, Lou, Mischaikow and Polácik [66], and He and Ni [53]),
the proof given here is substantially sharper than all previous existing ones. It requires an
extremely deep analysis of the monotone scheme introduced in [63], and a sharp study of
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the limiting pro�le of the solution of the logistic equation to deal with the mixed boundary
conditions.

Monotone scheme techniques in the context of reaction di�usion equations go back,
at least, to the in�uential works of Amann [2] and Sattinger [108] and have shown to be
extremely useful in studying a huge variety of di�usive Lotka�Volterra systems of predator-
prey type (see, e.g., López-Gómez and Pardo [94]), or competition type (see, e.g., López-
Gómez and Sabina [77], Hutson, López-Gómez, Mischaikow and Vickers [63], as well as
the references therein), or symbiotic type (see, e.g., Lam and Lou [73]), as well as the
seminal work of Molina-Meyer [100], where some rather pioneering results within the same
vain as those of Lam and Lou [73] where found through the theorem of characterization
of López-Gómez and Molina-Meyer [90], later sharpened by Amann and López-Gómez [5]
and Amann [4]).

This chapter is structured as follows. Section 4.1 is devoted to ascertain the limiting
pro�le of a family of the solution of the di�usive logistic equation, under general mixed
boundary conditions of non-classical type, when the coe�cients also depend on the di�u-
sion rate. The result provided herein relies on the theory developed in Chapter 2. Section
4.2 uses the singular perturbation result of Section 4.1 to derive a general singular per-
turbation theorem for the elliptic system (4.2) as (d1, d2) → (0, 0) from the monotone
scheme introduced by Hutson, López-Gómez, Mischaikow and Vickers in [63], later re�ned
by the author in [42, 39]. Our singular perturbation result is substantially sharper than
the previous ones because it is valid for general mixed boundary conditions and general
di�erential operators in divergence form. All the previous ones were given for the −∆ in
both equations under Dirichlet or Neumann boundary conditions, and some of them, like
those of Hutson, López-Gómez, Mischaikow and Vickers [63, Th. 4.1], or He and Ni [53,
Th. 4.2(iii)], with constant competition rates.

4.1 Singular perturbation results for a family of logistic equa-

tions

This section focuses attention in the problem of ascertaining the limiting pro�le (as δ ↓ 0)
of the maximal non-negative solution of the semilinear elliptic boundary value problem{

δLu = γ(x)u−m(x)u2 in Ω,
Bu = 0 on ∂Ω,

(4.7)

where γ,m ∈ C(Ω̄), minΩ̄m > 0, L is a uniformly elliptic di�erential operator of the type
(4.3), and B is a boundary operator of mixed non-classical type, much like the one de�ned
in (4.4). Note that (4.7) is equation (2.1) for the choice

h(u, x) := γ(x)−m(x)u

and d := δ. Moreover, this nonlinearity satis�es hypothesis (H3) for all d > 0 and thus,
the results developed in Chapter 2 hold for all δ > 0. Note that according to (2.22), and
Remark 2.19,

Θh =
γ+

m
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is the unique non-negative linearly stable, or neutrally stable, steady state of the associated
kinetic model {

u′(t) = γ(x)u(t)−m(x)u2(t) t ∈ [0,+∞),
u(0) = u0 > 0.

On the other hand, following Theorem 2.15, we denote by θ{δ,γ,m} the maximal non-
negative solution of (4.7). Note that

θ{δ,γ,m} = 0 if σ1[δL − γ;B,Ω] ≥ 0,

and that
θ{δ,γ,m} � 0 if σ1[δL − γ;B,Ω] < 0.

Concerning the perturbation problem, the next result is a immediate consequence of
Theorem 2.21. Here, much like in Section 2.5, we will denote by Γ+

R the union of the set
of components of ΓR where the function γ is everywhere positive. Note that

γ−1
+ (0) = {x ∈ Ω̄ : γ+(x) = 0}.

Theorem 4.1. Let K be a compact subset of Ω ∪ Γ+
R ∪ γ

−1
+ (0). Then,

lim
δ↓0

θ{δ,γ,m} =
γ+

m
uniformly in K,

where θ{δ,γ,m} stands for the maximal non-negative solution of (4.7).

Note that this theorem is a substantial generalization of Theorem 3.5 of Furter and
López-Gómez [48] and of Theorem 3.3 of [39], which were established for the very special
case when L = −η and ΓR = ∅, as well as of Lemma 2.5 of Hutson, López-Gómez,
Mischaikow and Vickers [63], which was found for the very special case when L = −∆,
ΓD = ∅ and β ≡ 0 on ∂Ω. Astonishingly, Theorem 4.1 seems to be the �rst singular
perturbation result for semilinear elliptic equations under mixed boundary conditions. It
is optimal from two di�erent points of view. First, because the boundary conditions are
completely general; in particular, substantially more general than the ones of Nakashima,
Ni and Su [102]. Secondly, because in general the convergence cannot be expected to be
uniform on Ω̄, as B might be of Dirichlet type on some, or several, of the components of
∂Ω, where the positive solution must develop boundary layers. The available techniques
do not work out to deal with our more general setting. Actually, our proofs are based on
some rather sophisticated technical devices developed from Lemma 2.1 and Theorem 1.9
of López-Gómez [88], though the overall proof relies on a clever use of the method of sub
and supersolutions, like in the available, less general, results. Naturally, from a technical
point of view, it is much more intricate constructing these sub and supersolutions under
arbitrary mixed boundary conditions.

The main aim of this section is to provide with the limiting pro�le of the maximal
non-negative solution of (4.7) as δ ↓ 0 in the general case when the coe�cients of the
model also depend on the di�usion, δ, in a controlled way. In particular, we consider the
problem {

δLu = γ(δ,η)(x)u−m(δ,η)(x)u2 in Ω,

Bu = 0 on ∂Ω,
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for δ, η > 0 decreasing to zero. The next results provide us with some variants of Theorem
4.1 for `�oating' coe�cients, depending on δ. The second one, is a key ingredient in the
proof of the singular perturbation result for the system.

Theorem 4.2. Consider γ,m ∈ C(Ω̄), J ⊂ (0,+∞)2 with (0, 0) ∈ J̄ , and families

{γ(δ,η)}(δ,η)∈J , {m(δ,η)}(δ,η)∈J ⊂ C(Ω̄) such that

lim
(δ,η)→(0,0)

γ(δ,η) = γ and lim
(δ,η)→(0,0)

m(δ,η) = m uniformly in Ω̄. (4.8)

Then,

lim
(δ,η)→(0,0)

θ{δ,γ(δ,η),m(δ,η)} =
γ+

m

uniformly on compact subsets of Ω ∪ Γ+
R ∪ (γ+)−1(0).

Proof. Let ε > 0 be such that ε < minΩ̄m. Then, by (4.8), δε > 0 exists such that

γ − ε ≤ γ(δ,η) ≤ γ + ε and 0 < m− ε ≤ m(δ,η) ≤ m+ ε in Ω

for all δ, η < δε, (δ, η) ∈ J . Thanks to Lemma 2.18, for such range of δ and η we have that

θ{δ,γ−ε,m+ε} ≤ θ{δ,γ(δ,η),m(δ,η)} ≤ θ{δ,γ+ε,m−ε} in Ω. (4.9)

Let K be a compact subset of Ω ∪ Γ+
R ∪ γ

−1
+ (0). By Theorem 4.1, letting (δ, η) ∈ J

approximate (0, 0) in the restriction of the estimate (4.9) to K yields

(γ − ε)+

m+ ε
≤ lim

(δ,η)→(0,0)

θ{δ,γ(δ,η),m(δ,η)} ≤ lim
(δ,η)→(0,0)

θ{δ,γ(δ,η),m(δ,η)} =
(γ + ε)+

m− ε

uniformly in K. Letting ε→ 0 ends the proof.

Essentially, the next result sharpens Theorem 4.2 by relaxing the uniform convergence
in Ω̄ to a uniform convergence on compact subsets of Ω ∪ Γ+

R ∪ γ
−1
+ (0).

Theorem 4.3. Consider γ,m ∈ C(Ω̄), J ⊂ (0,+∞)2 with (0, 0) ∈ J̄ , and

O ⊂ Ω ∪ Γ+
R ∪ γ

−1
+ (0),

an open subset, with respect to the induced topology, such that either Ō∩Γ+
R = ∅, or Ō∩Γ+

R
consists of components of Γ+

R, each one contained in either O or RN \ O. Let

{γ(δ,η)}(δ,η)∈J ⊂ C(Ω̄) and {m(δ,η)}(δ,η)∈J ⊂ C(Ω̄)

be such that

lim
(δ,η)→(0,0)

γ(δ,η) = γ and lim
(δ,η)→(0,0)

m(δ,η) = m (4.10)

uniformly on compact subsets of O. Assume that there exists k > 0 and M > 0 such that

m(δ,η)(x) ≥ k and
γ(δ,η)(x)

m(δ,η)(x)
≤M for all (δ, η) ∈ J, x ∈ Ω̄. (4.11)
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Then,

lim
(δ,η)→(0,0)

θ{δ,γ(δ,η),m(δ,η)} =
γ+

m

uniformly on compact subsets of O. Moreover, for every ε > 0 there exists δε > 0 such

that, for every (δ, η) ∈ J with δ, η < δε,

θ{δ,γ(δ,η),m(δ,η)} ≤M + ε in Ω.

The assumption (4.11) was unnecessary in the statement of Theorem 4.2 as it is a direct
consequence of (4.8).

Proof. To prove the convergence, we will obtain �rst the upper limit. Fix ε > 0 and
consider a compact subset, K, of O. Subsequently, for each r > 0, we will denote by

Kr := {x ∈ Ω̄ : dist(x,K) ≤ r}

the compact r-neighborhood of K. By construction, for su�ciently small r > 0,

K ⊂ Kr ⊂ O.

According to (4.10), the quotients
γ(δ,η)

m(δ,η)
converge uniformly to γ

m in Kr as (δ, η)→ (0, 0),

(δ, η) ∈ J . Thus, there exists δε,1 > 0 such that

γ(δ,η)

m(δ,η)
≤ γ

m
+
ε

2
≤ γ+

m
+
ε

2
in Kr for δ, η < δε,1, (δ, η) ∈ J. (4.12)

On the other hand, by Urysohn's Lemma, a function ξ ∈ C(Ω̄) exists such that ξ(x) ∈ [0, 1]
for all x ∈ Ω̄, ξ = 0 in K, and ξ = 1 on Ω̄ \Kr. Thanks to (4.10) and (4.11), we have that
γ
m ≤M in Kr. Thus,

γ+

m
≤M in Kr,

because M > 0 and so,
γ+

m
= 0 ≤M if γ < 0.

Hence, for the previous choice of ξ, the auxiliary non-negative function

ψ :=
γ+

m
(1− ξ) +Mξ +

ε

2
∈ C(Ω̄)

satis�es

ψ ≤M(1− ξ) +Mξ +
ε

2
= M +

ε

2
in Ω̄ and ψ


= γ+

m + ε
2 in K,

≥ γ+

m + ε
2 in Kr \K,

= M + ε
2 in Ω̄ \Kr.

Consequently, by (4.11) and (4.12), we �nd that

ψ ≥
γ(δ,η)

m(δ,η)
in Ω for δ, η < δε,1, (δ, η) ∈ J. (4.13)
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By Lemma 2.9(a) and Remark 2.10, there exists Ψ ∈ C2(Ω̄) such that BΨ ≥ 0 on ∂Ω and

ψ +
ε

4
≤ Ψ ≤ ψ +

ε

2
in Ω̄.

Since ψ > 0, we have that Ψ ≥ ε
4 > 0, and, owing to (4.13),

Ψ ≤ γ+

m
+ ε in K, and Ψ ≥

γ(δ,η)

m(δ,η)
+
ε

4
in Ω, (4.14)

for every δ, η < δε,1 with (δ, η) ∈ J . If necessary, δε,1 > 0 can be shortened so that

δε,1 <
(ε

4

)2 k

‖LΨ‖∞
.

Then, for every δ, η < δε,1, (δ, η) ∈ J , taking into account (4.14) and the hypothesis
m(δ,η) ≥ k in Ω̄, we obtain that

γ(δ,η)Ψ−m(δ,η)Ψ
2 = m(δ,η)Ψ

(
γ(δ,η)

m(δ,η)
−Ψ

)
≤ −kΨ

ε

4

≤ −k
(ε

4

)2
< −δ‖LΨ‖∞ ≤ δLΨ in Ω.

Therefore, for such range of values of the parameters, Ψ is a strict supersolution of{
δLu = γ(δ,η)u−m(δ,η)u

2 in Ω,

Bu = 0 on ∂Ω,

and hence, by the maximum principle,

θ{δ,γ(δ,η),m(δ,η)} ≤ Ψ in Ω̄

for all δ, η < δε,1 with (δ, η) ∈ J . Consequently, thanks to (4.14), we also have that

θ{δ,γ(δ,η),m(δ,η)} ≤
γ+

m
+ ε in K

and
θ{δ,γ(δ,η),m(δ,η)} ≤ ψ +

ε

2
≤M + ε in Ω̄,

for these values of the parameters, which provides us with the upper estimate and the
global bound of the last assertion of the theorem. Note that, since

θ{δ,γ(δ,η),m(δ,η)} ≥ 0 ≥ γ+

m
− ε in K ∩

(γ+

m

)−1
[0, ε],

the lower estimate of the theorem holds in K ∩ (γ+

m )−1[0, ε] for every δ, η < δε,1 with
(δ, η) ∈ ∩J . So, it remains to get this estimate on the compact set

K0 := K ∩ (
γ+

m
)−1
[ε

2
,+∞

)
.
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To apply the available comparison results in a regular open neighborhood of K0, O0,
with Ō0 ⊂ O, a little bit more of technical work is needed. Since

K ⊂ O ⊂ Ω ∪ Γ+
R ∪ γ

−1
+ (0),

it becomes apparent that
K0 ⊂ O \ γ−1

+ (0) ⊂ Ω ∪ Γ+
R

and hence, for su�ciently small r > 0, the open set

Or := {x ∈ O : dist
(
x, ∂O \ (O ∩ Γ+

R)
)
> r} \ (O ∩ Γ+

R)

satis�es
K0 ⊂ Or ∪ (O ∩ Γ+

R)

and ∂Or consists of two types of components, O ∩ Γ+
R and ∂Or ∩ Ω. Note that if ∂O ⊂

O ∩ Γ+
R, then ∂O \ (O ∩ Γ+

R) = ∅ and hence, Or = O \ ∂O is an open set of class C2.
Should this be the case, then we can de�ne O0 := O \ ∂O. Otherwise, let n ≥ 1 denote
the number of components of ∂Or \ (O ∩ Γ+

R). Note that, for su�ciently small r > 0, ∂Or
and ∂O have the same number of components. In such case, Or/2 \Or consists of n (open
connected) components, Oj , 1 ≤ j ≤ n. Next, for every j ∈ {1, ..., n}, let Mj be any
(N − 1)-dimensional compact manifold without boundary of class C∞ such that

Mj ⊂ Oj , Or ⊂ intMj , RN \ Or/2 ⊂ extMj ,

where intMj and extMj stand for the two components of RN \Mj . Lastly, in this case,
we consider

O0 := ∩nj=1intMj ∩ Or/2.

Then, O0 is an open subset of RN of class C2 with

K0 ⊂ O0 ∪ (O ∩ Γ+
R)

and ∂O0 consists of two types of components. Namely, those of O ∩ Γ+
R and those of

∂O0 ∩ Ω = ∪nj=1Mj ⊂ Or/2.

Thus, Ō0 is a compact subset of O and hence, due to (4.10), γ(δ,η) and m(δ,η) converge
uniformly to γ and m, respectively, in Ō0 as (δ, η) → (0, 0) in J . Consequently, applying
Theorem 4.2 in O0 provides us with a δε,2 > 0, δε,2 ≤ δε,1, such that, for every δ, η < δε,2
with (δ, η) ∈ J ,

θB0,O0

{δ,γ(δ,η),m(δ,η)}
≥ γ+

m
− ε in K0,

where B0 stands for the boundary operator on ∂O0 de�ned by B0 := B on O ∩ Γ+
R and by

B0 := D on ∂O0 ∩ Ω. On the other hand, owing to Lemma 2.18,

θB0,O0

{δ,γ(δ,η),m(δ,η)}
≤ θB,Ω{δ,γ(δ,η),m(δ,η)}

in O0 for all (δ, η) ∈ J.

Therefore, for this range of values of the parameters,

θB,Ω{δ,γ(δ,η),m(δ,η)}
≥ γ+

m
− ε in K0,

which ends the proof.
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4.2 A singular perturbation theorem for competing species

models

The main result of this section establishes that, given any family of coexistence states
of (4.2), they must approximate as d1, d2 → 0 the global hyperbolic attractor of the
non-spatial model on every patch of the inhabiting territory where it exists. As in this
section we are dealing with general boundary conditions of mixed type, its main result is
completely new in its greatest generality. Since the proof uses the singular perturbation
results established in Section 4.1 for the scalar equation, which go back to Section 2.5, it
is far from immediate. Actually, it is rather elaborated.

Besides the regions Ωext, Ωper, Ωbi, Ωu
do, Ωv

do and Ωjunk already de�ned in (4.6), in order
to state the main result of this section it is imperative to di�erentiate some important areas
within Ωjunk. Precisely, we will denote by Ωper,u

junk the set of points for which the non-spatial
model can be perturbed to exhibit either permanence or dominance of the species u, i.e.,

Ωper,u
junk := {x ∈ Ω̄ : λ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) = λ(x)c(x)}.

By symmetry, we also de�ne

Ωper,v
junk := {x ∈ Ω̄ : µ(x) > 0, λ(x)d(x) = µ(x)b(x), µ(x)a(x) > λ(x)c(x)}.

Finally, the remaining part of Ωjunk is added to Ωbi by considering

Ω?
bi := Ωbi ∪ Ωjunk \

(
Ωper,u

junk ∪ Ωper,v
junk

)
= Ω̄ \

(
Ωext ∪ Ωper ∪ Ωu

do ∪ Ωper,u
junk ∪ Ωv

do ∪ Ωper,v
junk

)
= {x ∈ Ω̄ : λ(x), µ(x) > 0, λ(x)d(x) ≤ µ(x)b(x), µ(x)a(x) ≤ λ(x)c(x)},

which consists of the set of values of Ω̄ \ Ωext such that the non-spatial model can be
perturbed to exhibit founder control competition. Using these notations, it is easily seen
that, for every

x ∈ Ωmax := Ω̄ \ Ω?
bi = Ωext ∪ Ωper ∪ Ωu

do ∪ Ωper,u
junk ∪ Ωv

do ∪ Ωper,v
junk ,

the non-spatial model possesses a steady state which is a global attractor with respect to
the component-wise positive solutions. It is worth-emphasizing that such a steady state
might not be of hyperbolic type, and that, for every x ∈ Ωmax, is given by

(u∗(x), v∗(x)) =



(0, 0) if x ∈ Ωext,(
λ(x)d(x)−µ(x)b(x)
a(x)d(x)−b(x)c(x) ,

µ(x)a(x)−λ(x)c(x)
a(x)d(x)−b(x)c(x)

)
if x ∈ Ωper,(

λ(x)
a(x) , 0

)
if x ∈ Ωu

do ∪ Ωper,u
junk ,(

0, µ(x)
d(x)

)
if x ∈ Ωv

do ∪ Ωper,v
junk .

In agreement with the notations introduced in Section 2.5 and Section 4.1, we will denote
by Γ1,+

R the union of the components of Γ1
R where λ > 0 everywhere, while Γ2,+

R stands for
the union of the components of Γ2

R such that µ > 0 in the whole component. Similarly,
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we will denote by Γper
R the union of the components of Γ1

R ∩ Γ2
R for which the non-spatial

model exhibits permanence everywhere. In particular,

Γper
R ⊂ Γ1,+

R ∩ Γ2,+
R ∩ Ωper.

We are ready to state the main result of this section.

Theorem 4.4. Consider a family of coexistence states of (4.2), {(u(d1,d2), v(d1,d2))}(d1,d2)∈J ,
with J ⊂ (0,+∞)2 such that (0, 0) ∈ J̄ . Then,

lim
(d1,d2)→(0,0)

(u(d1,d2), v(d1,d2)) = (u∗, v∗)

uniformly on compact subsets of

Ωmax ∩ (Ω ∪ Γper
R ) = (Ω \ Ω?

bi) ∪ Γper
R .

In particular, if Ωper = Ω̄ and Γ1
D = Γ2

D = ∅, i.e., Γper
R = ∂Ω, then

lim
(d1,d2)→(0,0)

(u(d1,d2), v(d1,d2)) = (u∗, v∗) uniformly in Ω̄.

The proof of this result follows from a series of technical lemmas. The monotone scheme
introduced by the next result goes back to Hutson, López-Gómez, Mischaikow and Vickers
[63], thought it had been previously introduced by López-Gómez and Sabina [77] in another
context.

Lemma 4.5. Fix d1, d2 > 0 and consider the families

{ū(d1,d2,n)}n≥0, {
¯
u(d1,d2,n)}n≥0, {v̄(d1,d2,n)}n≥0 and {

¯
v(d1,d2,n)}n≥0,

de�ned recursively by{
¯
v(d1,d2,0) := 0,

¯
v(d1,d2,n) := θ{d2,µ−cū(d1,d2,n−1),d},

ū(d1,d2,0) := θ{d1,λ,a}, ū(d1,d2,n) := θ{d1,λ−b
¯
v(d1,d2,n),a},

n ≥ 1,

and {
¯
u(d1,d2,0) := 0,

¯
u(d1,d2,n) := θ{d1,λ−bv̄(d1,d2,n−1),a},

v̄(d1,d2,0) := θ{d2,µ,d}, v̄(d1,d2,n) := θ{d2,µ−c
¯
u(d1,d2,n),d},

n ≥ 1.

Then,

¯
u(d1,d2,n) ≤ ¯

u(d1,d2,n+1) ≤ ū(d1,d2,n+1) ≤ ū(d1,d2,n)

¯
v(d1,d2,n) ≤ ¯

v(d1,d2,n+1) ≤ v̄(d1,d2,n+1) ≤ v̄(d1,d2,n)
for every n ≥ 0.

Moreover, if the elliptic model (4.2) admits a coexistence state, (u(d1,d2), v(d1,d2)), then

¯
u(d1,d2,n) ≤ u(d1,d2) ≤ ū(d1,d2,n) and

¯
v(d1,d2,n) ≤ v(d1,d2) ≤ v̄(d1,d2,n) for all n ≥ 0.

Proof. We will only prove the estimates for the �rst component, u, as those of v follow the
same patterns. By Lemma 2.18, the maps

C(Ω̄) 3 h 7→ θ{d1,λ−bh,a} and C(Ω̄) 3 h 7→ θ{d2,µ−ch,d}
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are non-increasing. Thus,

F(d1,d2) : C(Ω̄)→ C(Ω̄)

h 7→ θ{d1,λ−bθ{d2,µ−ch,d},a}

is a non-decreasing, or order preserving, operator such that

¯
u(d1,d2,0) = 0 ≤ F(d1,d2)[h] ≤ θ{d1,λ,a} = ū(d1,d2,0) for all h ∈ C(Ω̄). (4.15)

The last estimate follows from Lemma 2.18, while the �rst one holds by de�nition. Hence,
for any n ≥ 1, applying n times the operator F(d1,d2) produces

0 ≤ Fn(d1,d2)[¯
u(d1,d2,0)] ≤ Fn+1

(d1,d2)[¯
u(d1,d2,0)]

≤ Fn+1
(d1,d2)[ū(d1,d2,0)] ≤ Fn(d1,d2)[ū(d1,d2,0)] ≤ ū(d1,d2,0).

On the other hand, the iterates {ū(d1,d2,n)}n≥0 and {
¯
u(d1,d2,n)}n≥0 can be recursively de�ned

in terms of F(d1,d2) by

¯
u(d1,d2,0) = 0,

¯
u(d1,d2,n) = F(d1,d2)[¯

u(d1,d2,n−1)], n ≥ 1,

ū(d1,d2,0) = θ{d1,λ,a}, ū(d1,d2,n) = F(d1,d2)[ū(d1,d2,n−1)], n ≥ 1.

The last assertion follows from (4.15) taking into account that u(d1,d2) is a �xed point of
F(d1,d2). This ends the proof.

Lemma 4.6. Fix J ⊂ (0,+∞)2 with (0, 0) ∈ J̄ . For every (d1, d2) ∈ J let

{ū(d1,d2,n)}n≥1, {
¯
u(d1,d2,n)}n≥1, {v̄(d1,d2,n)}n≥1 and {

¯
v(d1,d2,n)}n≥1

be the sequences introduced in Lemma 4.5. Then, the sequences

{Ūn}n≥1, {
¯
Un}n≥1, {V̄n}n≥1, {

¯
Vn}n≥1 ⊂ C(Ω̄),

de�ned by

¯
U0 := 0, Ū0 :=

λ+

a
,

¯
Ūn :=

1

a

(
λ− b

d
(µ− c

¯
Ūn−1)+

)
+

, n ≥ 1,

¯
V0 := 0, V̄0 :=

µ+

d
,

¯
V̄n :=

1

d

(
µ− c

a
(λ− b

¯
V̄n−1)+

)
+
, n ≥ 1,

satisfy

lim
(d1,d2)→(0,0)

(ū(d1,d2,n), ¯
u(d1,d2,n), v̄(d1,d2,n),¯

v(d1,d2,n)) = (Ūn,
¯
Un, V̄n,

¯
Vn)

uniformly on compact subsets of Ω ∪ Γper
R .

Proof. We will restrict ourselves to prove the assertions for ū(d1,d2,n) by induction. The
limiting behaviors of

¯
u(d1,d2,n), v̄(d1,d2,n) and ¯

v(d1,d2,n) can be obtained similarly. By de�ni-
tion,

Γper
R ⊂ Γ1,+

R ∩ Γ2,+
R
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and

λ(x)d(x)− µ(x)b(x) > 0 and µ(x)a(x)− λ(x)c(x) > 0 for all x ∈ Γper
R .

Moreover,

0 ≤ Ūn ≤
λ+

a
in Ω̄ for all n ≥ 0.

Thus, since λ(x) > 0 for each x ∈ Γper
R , we �nd that, for every n ≥ 0,

µ(x)− c(x)Ūn(x) ≥ µ(x)− c(x)
λ(x)

a(x)
> 0 for all x ∈ Γper

R , (4.16)

and hence,

λ(x)− b(x)

d(x)

(
µ(x)− c(x)Ūn(x)

)
+
≥ λ(x)− b(x)

d(x)
µ(x) > 0 for all x ∈ Γper

R . (4.17)

In the case n = 0, according to Theorem 4.1,

lim
(d1,d2)→(0,0)

ū(d1,d2,0) = lim
(d1,d2)→(0,0)

θ{d1,λ,a} =
λ+

a
= Ū0

uniformly on compact subsets of Ω ∪ Γ1,+
R ∪ λ−1

+ (0). In particular, this limit holds on
compact subsets of Ω∪Γper

R . So, we are done in this case. As induction hypothesis, assume
that, for some n ≥ 0,

lim
(d1,d2)→(0,0)

ū(d1,d2,n) = Ūn uniformly on compact subsets of Ω ∪ Γper
R . (4.18)

Then, by (4.16), Ω ∪ Γper
R is an open subset of

Ω ∪ Γ2,∗
R ∪ (µ− cŪn)−1

+ (0),

where Γ2,∗
R stands for the union of the components of Γ2

R such that µ−cŪn > 0 everywhere.
Note that Γper

R consists of �nitely many components of Γ2,∗
R . Moreover, by de�nition,

ū(d1,d2,n) ≥ 0 for all (d1, d2) ∈ J.

Thus,
µ− cū(d1,d2,n) ≤ max

Ω̄
µ in Ω̄

and hence, it follows from (4.18) and Theorem 4.3 that

lim
(d1,d2)→(0,0)¯

v(d1,d2,n+1) = lim
(d1,d2)→(0,0)

θ{d2,µ−cū(d1,d2,n),d} =
1

d
(µ− cŪn)+

uniformly on compact subsets of Ω ∪ Γper
R . Similarly, thanks to (4.17), Ω ∪ Γper

R is an open
subset of

Ω ∪ Γ1,∗
R ∪

(
λ− b

d
(µ− cŪn)+

)−1

+
(0),
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where Γ1,∗
R stands for the union of the components of Γ1

R such that

λ− b

d

(
µ− cŪn

)
+
> 0

everywhere. As above, Γper
R consists of �nitely many components of Γ1,∗

R . Since

λ− b
¯
v(d1,d2,n+1) ≤ max

Ω̄
λ in Ω̄, (d1, d2) ∈ J,

it follows from Theorem 4.3 that

lim
(d1,d2)→(0,0)

ū(d1,d2,n+1) = lim
(d1,d2)→(0,0)

θ{d1,λ−b
¯
v(d1,d2,n+1),a}

=
1

a

(
λ− b

d
(µ− cŪn)+

)
+

= Ūn+1

uniformly on compact subsets of Ω ∪ Γper
R . This ends the proof.

The next result is Lemma 11 of [42].

Lemma 4.7. Setting

Sn :=
n∑
j=0

(
bc

ad

)j
in Ω, for every n ≥ 0,

the continuous functions de�ned in Lemma 4.6 are given by

Ūn(x) =



0 if λ(x) ≤ 0,

λ(x)
a(x) if λ(x) > 0 and µ(x) ≤ c(x)

a(x)λ(x),

1
a(x)

(
λ(x)Sn(x)− b(x)

d(x)µ(x)Sn−1(x)
)

if λ(x) > 0, µ(x) > c(x)
a(x)λ(x) and

λ(x)Sn(x) > b(x)
d(x)µ(x)Sn−1(x),

0 if λ(x) > 0, µ(x) > c(x)
a(x)λ(x) and

λ(x)Sn(x) ≤ b(x)
d(x)µ(x)Sn−1(x),

¯
Un+1(x) =



λ+(x)
a(x) if µ(x) ≤ 0,

0 if µ(x) > 0 and λ(x) ≤ b(x)
d(x)µ(x),

1
a(x)

(
λ(x)− b(x)

d(x)µ(x)
)
Sn(x) if µ(x) > 0, λ(x) > b(x)

d(x)µ(x) and

µ(x)Sn(x) > c(x)
a(x)λ(x)Sn−1(x),

λ(x)
a(x) if µ(x) > 0, λ(x) > b(x)

d(x)µ(x) and

µ(x)Sn(x) ≤ c(x)
a(x)λ(x)Sn−1(x),
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V̄n(x) =



0 if µ(x) ≤ 0,

µ(x)
d(x) if µ(x) > 0 and λ(x) ≤ b(x)

d(x)µ(x),

1
d(x)

(
µ(x)Sn(x)− c(x)

a(x)λ(x)Sn−1(x)
)

if µ(x) > 0, λ(x) > b(x)
d(x)µ(x) and

µ(x)Sn(x) > c(x)
a(x)λ(x)Sn−1(x),

0 if µ(x) > 0, λ(x) > b(x)
d(x)µ(x) and

µ(x)Sn(x) ≤ c(x)
a(x)λ(x)Sn−1(x),

¯
Vn+1(x) =



µ+(x)
d(x) if λ(x) ≤ 0,

0 if λ(x) > 0 and µ ≤ c(x)
a(x)λ(x),

1
d(x)

(
µ(x)− c(x)

a(x)λ(x)
)
Sn(x) if λ(x) > 0, µ(x) > c(x)

a(x)λ(x) and

λ(x)Sn(x) > b(x)
d(x)µ(x)Sn−1(x),

µ(x)
d(x) if λ(x) > 0, µ(x) > c(x)

a(x)λ(x) and

λ(x)Sn(x) ≤ b(x)
d(x)µ(x)Sn−1(x).

for every x ∈ Ω̄ and n ≥ 1.

By the monotone character of these sequences of iterates, they must have a point-wise
limit. The next result characterizes it.

Lemma 4.8. For every x ∈ Ω̄,the sequence (Ūn(x),
¯
Vn(x)) converges to

(Ū∗(x),
¯
V∗(x)) :=



(0, 0) if x ∈ Ωext,(
0, µ(x)

d(x)

)
if x ∈ Ωv

do ∪ Ωper,v
junk ,(

λ(x)
a(x) , 0

)
if x ∈ Ωu

do ∪ Ωper,u
junk ∪ Ω?

bi,(
λ(x)d(x)−µ(x)b(x)
a(x)d(x)−b(x)c(x) ,

µ(x)a(x)−λ(x)c(x)
a(x)d(x)−b(x)c(x)

)
if x ∈ Ωper,

whereas the sequence (
¯
Un(x), V̄n(x)) converges to

(
¯
U∗(x), V̄∗(x)) :=



(0, 0) if x ∈ Ωext(
0, µ(x)

d(x)

)
if x ∈ Ωv

do ∪ Ωper,v
junk ∪ Ω?

bi,(
λ(x)
a(x) , 0

)
if x ∈ Ωu

do ∪ Ωper,u
junk ,(

λ(x)d(x)−µ(x)b(x)
a(x)d(x)−b(x)c(x) ,

µ(x)a(x)−λ(x)c(x)
a(x)d(x)−b(x)c(x)

)
if x ∈ Ωper,

Moreover, these limits are uniform on any compact subset of Ωmax = Ω̄ \ Ω?
bi.

Proof. Fix x ∈ Ω̄. Note that Sn(x) = 1 for all n ≥ 1 if b(x)c(x) = 0. If b(x)c(x) > 0, then
Sn(x) is increasing and

lim
n→∞

Sn(x) =

{
+∞ if a(x)d(x) ≤ b(x)c(x),

a(x)d(x)
a(x)d(x)−b(x)c(x) if a(x)d(x) > b(x)c(x).
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Moreover,

Sn =
bc

ad
Sn−1 + 1, for all n ≥ 1,

and hence, Sn(x)
Sn−1(x) is decreasing, with

lim
n→∞

Sn(x)

Sn−1(x)
= max

{
1,
b(x)c(x)

a(x)d(x)

}
=

{
b(x)c(x)
a(x)d(x) if a(x)d(x) ≤ b(x)c(x),

1 if a(x)d(x) > b(x)c(x).
(4.19)

To ascertain the limiting pro�le of (Ūn,
¯
Vn) as n→∞, we will di�erentiate several di�erent

cases. First, suppose that x ∈ Ωext. Then, λ(x), µ(x) ≤ 0 and hence, by Lemma 4.7,

(Ūn(x),
¯
Vn(x)) = (0, 0) for every n ≥ 2.

Now, suppose that x ∈ Ωv
do ∪ Ωper,v

junk . Then,

µ(x) > 0, λ(x)d(x) ≤ µ(x)b(x), and µ(x)a(x) > λ(x)c(x).

When, in addition, λ(x) ≤ 0, then the �rst rows of the developments given by Lemma 4.7
provide us with

(Ūn(x),
¯
Vn(x)) =

(
0,
µ

d

)
, for every n ≥ 2.

So, assume that λ(x) > 0. If
λ(x)d(x) = µ(x)b(x),

then

a(x)d(x) = a(x)
b(x)µ(x)

λ(x)
> b(x)c(x)

and hence, Sn/Sn−1 decreases towards 1, or equals 1, and consequently,

b(x)
µ(x)

d(x)
= λ(x) ≤ Sn(x)

Sn−1(x)
λ(x) for all n ≥ 1.

Thus, by Lemma 4.7,

Ūn(x) =
1

a(x)

(
λ(x)Sn(x)− b(x)

d(x)
µ(x)Sn−1(x)

)
and

¯
Vn(x) =

1

d(x)

(
µ(x)− c(x)

a(x)
λ(x)

)
Sn−1(x)

for all n ≥ 2 and therefore,

lim
n→∞

(Ūn(x),
¯
Vn(x)) =

(
λ(x)d(x)− µ(x)b(x)

a(x)d(x)− b(x)c(x)
,
µ(x)a(x)− λ(x)c(x)

a(x)d(x)− b(x)c(x)

)
=

(
0,
µ(x)

d(x)

)
.

In the case when
λ(x)d(x) < µ(x)b(x),

since
λ(x)c(x) < µ(x)a(x),
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we have that

λ(x) <
b(x)

d(x)
µ(x) and

b(x)c(x)

a(x)d(x)
λ(x) <

b(x)a(x)

a(x)d(x)
µ(x) =

b(x)

d(x)
µ(x).

Thus,

max

{
1,
b(x)c(x)

a(x)d(x)

}
λ(x) <

b(x)

d(x)
µ(x).

Therefore, thanks to (4.19), there exists n0 ≥ 1 such that

λ(x) ≤ max

{
1,
b(x)c(x)

a(x)d(x)

}
λ(x) ≤ λ(x)

Sn(x)

Sn−1(x)
<
b(x)

d(x)
µ(x) for all n ≥ n0.

Consequently, owing to Lemma 4.7, it becomes apparent that

(Ūn(x),
¯
Vn(x)) =

(
0,
µ(x)

d(x)

)
for all n > n0.

If x ∈ Ωu
do ∪ Ωper,u

junk ∪ Ω?
bi, then

λ(x) > 0 and µ(x)a(x) ≤ λ(x)c(x),

and so, thanks to the second line of the developments in the statement of Lemma 4.7,

(Ūn(x),
¯
Vn(x)) =

(
λ(x)

a(x)
, 0

)
for all n ≥ 2.

Finally, suppose that x ∈ Ωper. Then,

a(x)d(x) > b(x)c(x)

and
λ(x), µ(x) > 0, λ(x)d(x) > µ(x)b(x), µ(x)a(x) > λ(x)c(x).

Thus,

b(x)
µ(x)

d(x)
< λ(x) ≤ Sn(x)

Sn−1(x)
λ(x) for all n ≥ 1.

Therefore, by the third row of the developments of Lemma 4.7, it is apparent that

Ūn(x) =
1

a(x)

(
λ(x)Sn(x)− b(x)

d(x)
µ(x)Sn−1(x)

)
and

¯
Vn(x) =

1

d(x)

(
µ(x)− c(x)

a(x)
λ(x)

)
Sn−1(x).

for all n ≥ 2. Letting n → ∞ in this identity, provides us with (Ū∗,
¯
V∗). The uniform

convergence is an easy consequence from Dini's criterion, because the point-wise limits,
Ū∗,

¯
V∗ are continuous in Ωmax. The convergence of (

¯
Un, V̄n) follows similarly. The proof is

complete.
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We are ready to prove the singular perturbation result for the system.

Proof of Theorem 4.4. We will only obtain the limit of the �rst component, as the limit of
the second one follows similarly. Thanks to Lemmas 4.5 and 4.6, for every n ≥ 0, we have
that

¯
Un = lim

(d1,d2)→(0,0) ¯
u(d1,d2,n) ≤ lim inf

(d1,d2)→(0,0)
u(d1,d2)

≤ lim sup
(d1,d2)→(0,0)

u(d1,d2) ≤ lim
(d1,d2)→(0,0)

ū(d1,d2,n) = Ūn

uniformly on compact subsets Ω ∪ Γper
R . Hence, by Lemma 4.8, letting n→∞ yields

¯
U∗ ≤ lim inf

(d1,d2)→(0,0)
u(d1,d2) ≤ lim sup

(d1,d2)→(0,0)
u(d1,d2) ≤ Ū∗

uniformly on compact subsets of Ωmax∩
(
Ω ∪ Γper

R
)
. Since

¯
U∗ = Ū∗, this ends the proof.





Chapter 5

The Induced Instability Principle.

Some consequences

Introduction

The main goal of this chapter is establishing a new principle in the theory of competing
species models, which may be formulated as follows:

Induced Instability Principle (IIP): As soon as any steady-state solution
of the non-spatial model (4.5) is linearly unstable somewhere in Ω, any steady
state of the spatial model (4.1) perturbing uniformly from it therein � as
(d1, d2) moves away from (0, 0) � must be linearly unstable with respect to
the associated parabolic model (4.1).

Therefore, any localized instability of a non-spatial steady-state solution has a global e�ect
on the dynamics of the spatial parabolic model (4.1) for su�ciently small d1 > 0 and d2 > 0.
This result has some astonishing consequences. For example, when Ωper 6= ∅, then the non-

spatial semi-trivial solutions (λ(x)
a(x) , 0) and (0, µ(x)

d(x) ) are linearly unstable for all x ∈ Ωper.
Thus, according to the IIP, rigorously established by Theorem 5.9 and Proposition 5.11,
each of the semi-trivial positive solutions of the spatial model, which perturb from those
of (4.5) by Theorem 4.1, must be linearly unstable with respect to (4.1) for su�ciently
small d1 and d2. Therefore, (4.1) must be permanent, which provides us with Theorem 2.1
of Furter and López-Gómez [48] and Corollary 4.6 of [39]. The most intriguing feature of
this fact is that Ωper might be Bε(x0), for some x0 ∈ Ω, ε being the inverse of the universe
radius measured in Angstroms, while simultaneously Ωbi = Ω̄ \ Ω̄per! Under this special
patch con�guration, the smaller ε the smaller the values of d1 and d2 are so that (4.1) can
be permanent.

Naturally, the same conclusion holds as soon as Ωu
do and Ωv

do are non-empty. Indeed, if

Ωu
do 6= ∅, then, for every x ∈ Ωu

do with µ(x) > 0, the semi-trivial positive solution (0, µ(x)
d(x) )

must be unstable for all x ∈ Ωu
do. Thus, according to Proposition 5.11, the semi-trivial

positive steady-state solution of (4.1) perturbing from it, (0, v), must be linearly unstable.
By symmetry, since Ωv

do 6= ∅, also the semi-trivial positive steady state of the form (u, 0)
must be linearly unstable for su�ciently small di�usion rates. Therefore, as in the previous

127
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case when Ωper 6= ∅, also when Ωu
do and Ωv

do are non-empty, the problem (4.1) is permanent
for su�ciently small d1 and d2. The striking fact that these permanence results do not
depend on the sizes of the patches Ωper, Ωu

do and Ωv
do reveals the strength of our Induced

Instability Principle. Actually, this might explain why in most of empirical studies on
competing species permanence is much more usual than expected in heterogeneous envi-
ronments (see, e.g., López-Gómez and Molina-Meyer [91], Belovsky, Mellison, Larson and
Van Zandt [8], and the references there in). Going beyond it was shown in López-Gómez
and Molina-Meyer [91] how �Most of �eld experiments and paleontology data corroborate
that in the presence of refuge areas, the species persist during long periods of time, even
under drastic changes in competition patterns as a result of sudden environmental `dis-
asters', so con�rming that in many circumstances the competitive exclusion principle is
false.�

The second goal of this chapter consists in establishing, as an important consequence
of the Induced Instability Principle, the multiplicity of coexistence steady states for su�-
ciently small di�usion rates when Ωbi 6= ∅ in the symmetric model where

d1 = d2, L1 = L2, B1 = B2, λ = µ, a = d and b = c.

For the validity of this result we need to assume (4.1) to be permanent for small di�usion
rates in order to guarantee the existence of a stable coexistence steady state. We already
know that the permanence for su�ciently small d1 and d2 can be reached by simply im-
posing that Ωper 6= ∅, or Ωu

do 6= ∅ and Ωv
do 6= ∅. Although we were unable to establish the

multiplicity result in the general non-symmetric case, we do make the following conjecture:

Conjecture: If (4.1) is permanent for su�ciently small di�usion rates and
Ωbi 6= ∅, then (4.1) possesses at least three coexistence steady-state solutions for
su�ciently small d1 and d2. Two among them linearly stable and perturbing
from each of the semi-trivial steady states in Ωbi and another one linearly
unstable perturbing from the coexistence steady state of the associated non-
spatial model in Ωbi as d1 and d2 move away from 0.

Besides this result should not depend on the size of Ωbi, the number of coexistence steady-
state solutions for su�ciently small d1 and d2 might depend on the number of components
of Ωbi.

This chapter is distributed as follows. Section 5.1 contains a version of the theorem of
characterization of the maximum principle for quasi-cooperative two species systems, as
well as some important monotonicity properties of the underlying principal eigenvalues.
Our results are re�nements of some previous �ndings of [77], based on [90]. Section 5.2
uses most of the previous results to prove the Induced Instability Principle stated above.
Section 5.3 provides us with Theorem 2.1 of Furter and López-Gómez [48] as a byproduct of
the IIP. Section 5.4 establishes the multiplicity of coexistence steady-state solutions when
Ωbi 6= ∅ provided (4.1) is permanent for su�ciently small d1 and d2. So, corroborating the
validity of the Conjecture above.
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5.1 The strong maximum principle for quasi-cooperative sys-

tems

Throughout this section, for every d1, d2 > 0, we denote

L1,2
(d1,d2) :=

(
d1L1 0
0 d2L2

)
and L(d1,d2) :=

(
d1L 0
0 d2L

)
if L := L1 = L2.

The next result establishes the existence of the principal eigenvalue for any operator of
quasi-cooperative type. The proof of Theorem 6.5 of López-Gómez and Sabina [77] can be
easily adapted to get the �rst part. The strict dominance can be obtained arguing as in
the proof of Theorem 7.9 of López-Gómez [88]. So, we will omit the technical details here.

Theorem 5.1. Let M ∈M2(C(Ω̄)) be such that m12(x) > 0 and m21(x) > 0 for all x ∈ Ω.
Then, the boundary value problem

(
L1,2

(d1,d2) +M
)( φ

ψ

)
= σ

(
φ
ψ

)
in Ω,

B1φ = B2ψ = 0 on ∂Ω,

has a unique eigenvalue, denoted by

σ0 := σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]
,

associated to an eigenfunction, (φ, ψ), such that φ � 0 and ψ � 0. Moreover, it is real

and algebraically simple. Furthermore, it is strictly dominant in the sense that any other

eigenvalue σ satis�es Reσ > σ0.

In order to state the remaining results of this section, the next concepts are needed.
They slightly generalize De�nitions 6.1 and 6.2 of López-Gómez and Sabina [77].

De�nition 5.2. Let M ∈ M2(C(Ω̄)) be such that m12(x) > 0 and m21(x) > 0 for all
x ∈ Ω. A pair (φ, ψ) ∈ W 2,p(Ω) × W 2,p(Ω), p > N , is said to be a supersolution of
[L1,2

(d1,d2) +M ; (B1,B2),Ω] if
(
L1,2

(d1,d2) +M
)( φ

ψ

)
≥ 0
≤ 0

in Ω,

B1φ ≥ 0, B2ψ ≤ 0 on ∂Ω.

If any of these inequalities is strict, then (φ, ψ) is said to be a strict supersolution.

De�nition 5.3. Let M ∈ M2(C(Ω̄)) be such that m12(x) > 0 and m21(x) > 0 for all
x ∈ Ω. Then:

(i) The tern [L1,2
(d1,d2) +M ; (B1,B2),Ω] is said to satisfy the maximum principle if φ ≥ 0

and ψ ≤ 0 for every supersolution, (φ, ψ).

(ii) The tern [L1,2
(d1,d2) +M ; (B1,B2),Ω] is said to satisfy the strong maximum principle if

φ� 0 and ψ � 0 for every supersolution, (φ, ψ) 6= (0, 0), and, in particular, for any
strict supersolution.
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The next result slightly sharpens Theorem 6.3 of López-Gómez and Sabina [77]; it
goes back to López-Gómez and Molina-Meyer [90] for general cooperative systems. It is
necessary for the proof of Lemma 5.7.

Theorem 5.4. Let M ∈M2(C(Ω̄)) be such that m12(x) > 0 and m21(x) > 0 for all x ∈ Ω.
Then, the following conditions are equivalent:

(i) The principal eigenvalue σ0 := σ1[L1,2
(d1,d2) +M ; (B1,B2),Ω] is positive,

(ii) [L1,2
(d1,d2) +M ; (B1,B2),Ω] admits a strict supersolution, (φ, ψ), with φ 
 0 and ψ � 0,

(iii) [L1,2
(d1,d2) +M ; (B1,B2),Ω] satis�es the strong maximum principle,

(iv) [L1,2
(d1,d2) +M ; (B1,B2),Ω] satis�es the maximum principle.

Proof. For (i) implies (ii), let (φ, ψ) be a principal eigenfunction associated to σ0 > 0.
Then φ� 0, ψ � 0 and, since σ0 > 0, we have that

(
d1L1 0
0 d2L2

)(
φ
ψ

)
+M

(
φ
ψ

)
= σ1

(
φ
ψ

)
> 0
< 0

in Ω,

B1φ = B2ψ = 0 on ∂Ω.

Hence, (φ, ψ) is a strict supersolution with φ� 0 and ψ � 0.
Next, we will show that (ii) implies (iii). Let (φ, ψ) be a strict supersolution with φ 
 0

and ψ � 0. Then, {
(d1L1 +m11)φ ≥ −m12ψ 
 0 in Ω,

B1φ ≥ 0 on ∂Ω,

and {
(d2L2 +m22)(−ψ) ≥ m21φ 
 0 in Ω,

B2(−ψ) ≥ 0 on ∂Ω.

Hence, φ and −ψ are positive strict supersolutions of the terns

[d1L1 +m11;B1,Ω] and [d2L2 +m22;B2,Ω],

respectively, according to De�nition 7.3 of López-Gómez [88]. Thus, by [88, Th. 7.10],

σ1[d1L1 +m11;B1,Ω] > 0 and σ1[d2L1 +m22;B2,Ω] > 0,

φ � 0, ψ � 0, and the resolvents, (d1L1 + m11)−1 and (d2L2 + m22)−1, subject to
the boundary operators B1 and B2, are strongly positive and compact. Subsequently, we
consider

φ̃ := (d1L1 +m11)−1(−m12ψ)� 0 and ψ̃ := −(d2L2 +m22)−1(m21φ)� 0.

Then, φ− φ̃ and (−ψ)− (−ψ̃) are supersolutions of{
(d1L1 +m11)w = 0 in Ω,

B1w = 0 on ∂Ω,
and

{
(d2L2 +m22)w = 0 in Ω,

B2w = 0 on ∂Ω,
(5.1)



5.1. The strong maximum principle for quasi-cooperative systems 131

respectively, one of them being strict. Thus, Theorem 7.10 of López-Gómez [88] yields
φ ≥ φ̃, ψ ≤ ψ̃. Moreover, since one of them is strict, either φ� φ̃ or ψ � ψ̃. Hence,

φ̃ = (d1L1 +m11)−1(−m12ψ) ≥ (d1L1 +m11)−1(−m12ψ̃)

= (d1L1 +m11)−1
(
m12 (d2L2 +m22)−1 (m21φ)

)
≥ (d1L1 +m11)−1

(
m12 (d2L2 +m22)−1 (m21φ̃)

)
,

(5.2)

with one of these inequalities being strict. Similarly,

−ψ̃ = (d2L2 +m22)−1(m21φ) ≥ (d2L2 +m22)−1(m21φ̃)

= (d2L2 +m22)−1
(
m21 (d1L1 +m11)−1 (−m12ψ)

)
≥ (d2L2 +m22)−1

(
m21 (d1L1 +m11)−1 (−m12ψ̃)

)
,

(5.3)

with one of these inequalities strict. Now, we introduce the strongly positive compact
operators de�ned by

T1 := (d1L1 +m11)−1
[
m12 (d2L2 +m22)−1 (m21 · )

]
,

T2 := (d2L2 +m22)−1
[
m21 (d1L1 +m11)−1 (m12 · )

]
.

subject to the boundary operators B1 and B2. We already know that φ̃ > 0, −ψ̃ > 0,

φ̃− T1(φ̃) > 0 and (−ψ̃)− T2(−ψ̃) > 0 in Ω,

and
B1(φ̃) = B2(−ψ̃) = 0 on ∂Ω.

Hence, by Theorem 3.2(iv) of Amann [3],

sprT1 < 1 and sprT2 < 1.

Now, consider a supersolution, (u, v) 6= (0, 0). Then,{
(d1L1 +m11)u ≥ −m12v in Ω,

B1u ≥ 0 on ∂Ω,
and

{
(d2L2 +m22)(−v) ≥ m21u in Ω,

B2(−v) ≥ 0 on ∂Ω,

and setting

ũ := (d1L1 +m11)−1(−m12v), ṽ := −(d2L2 +m22)−1(m21u),

we have that u− ũ and −v − (−ṽ) are respective supersolutions of (5.1). Thus, since the
respective principal eigenvalues are positive, it follows from Theorem 7.10 of López-Gómez
[88] that either u � ũ or u = ũ, and either v � ṽ or v = ṽ in Ω. Reasoning as in (5.2)
and (5.3), the estimates ũ ≥ T1(ũ) and (−ṽ) ≥ T2(−ṽ) hold in Ω. Since sprT1, sprT2 < 1,
by Theorem 6.3(d) of López-Gómez [88], the resolvent operators (I − Ti)−1, i = 1, 2, are
strongly positive. Hence, either ũ� 0 or ũ = 0, and either ṽ � 0 or ṽ = 0. Consequently,
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either u � 0 or u = 0, and either v � 0 or v = 0. It remains to show that neither u = 0
nor v = 0. If, for example, u = 0, then 0 ≥ −m12v in Ω and so v ≥ 0. Hence v = 0, which
contradicts (u, v) 6= (0, 0). This shows that (ii) implies (iii).

The fact that (iii) implies (iv) is immediate. For the proof of (iv) implies (i), let (φ, ψ)
be an eigenfunction associated to the principal eigenvalue σ0 and suppose that σ0 ≤ 0.
Then, since φ� 0 and ψ � 0, we obtain that

(
d1L1 0
0 d2L2

)(
φ
ψ

)
+M

(
φ
ψ

)
= σ0

(
φ
ψ

)
≤ 0
≥ 0

in Ω,

B1φ = B2ψ = 0 on ∂Ω.

Multiplying by −1, we have that (−φ,−ψ) is a supersolution of the tern[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]
.

Since the tern [
L1,2

(d1,d2) +M ; (B1,B2),Ω
]

satis�es the maximum principle, −φ ≥ 0 and −ψ ≤ 0, which contradicts the assumption.
Therefore σ0 > 0.

Next, we will derive from Theorem 5.4 some of the main monotonicity properties of
the principal eigenvalue

σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]
.

These results extend the monotonicity properties established in Theorem 2.12 and Lemma
2.14 to cover the case of quasi-cooperative systems. To state them, it is convenient to
introduce the following ordering.

De�nition 5.5. Let F,G ∈M2(C(Ω̄)) be two matrices with continuous coe�cients. Then,
F is said to be greater than G in Ω, F � G in Ω, if F 6= G and

fii ≥ gii in Ω for all i ∈ {1, 2} and fij ≤ gij in Ω for all i, j ∈ {1, 2}, i 6= j.

Then, the next comparison result holds.

Lemma 5.6. Let F,G ∈ M2(C(Ω̄)) be such that F � G in Ω and f12(x), f21(x) > 0 for

all x ∈ Ω. Then,

σ1

[
L1,2

(d1,d2) + F ; (B1,B2),Ω
]
> σ1

[
L1,2

(d1,d2) +G; (B1,B2),Ω
]
.

Proof. Since F � G in Ω we have that

0 < f12(x) ≤ g12(x) and 0 < f21(x) ≤ g21(x) for all x ∈ Ω.

Thus, thanks to Theorem 5.1, the principal eigenvalues

σ0,F := σ1

[
L1,2

(d1,d2) + F ; (B1,B2),Ω
]

and σ0,G := σ1

[
L1,2

(d1,d2) +G; (B1,B2),Ω
]
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are well de�ned. Then, any principal eigenfunction, (φ, ψ), associated to σ0,G, satis�es
φ� 0, ψ � 0, and 

d1L1φ+ g11φ+ g12ψ − σ0,Gφ = 0

d2L2ψ + g21φ+ g22ψ − σ0,Gψ = 0
in Ω,

B1φ = B2ψ = 0 on ∂Ω.

Since F � G in Ω, we �nd from φ� 0 and ψ � 0 that

0 = d1L1φ+ g11φ+ g12ψ − σ0,Gφ ≤ d1L1φ+ f11φ+ f12ψ − σ0,Gφ,

and
0 = d2L2ψ + g21φ+ g22ψ − σ0,Gψ ≥ d2L2ψ + f21φ+ f22ψ − σ0,Gψ,

with some of these inequalities strict. Thus,
d1L1φ+ f11φ+ f12ψ − σ0,Gφ ≥ 0

d2L2ψ + f21φ+ f22ψ − σ0,Gψ ≤ 0
in Ω,

B1φ = B2ψ = 0 on ∂Ω,

with some of these inequalities strict. Therefore, by Theorem 5.4, we conclude that

0 < σ1

[
L1,2

(d1,d2) + F − σ0,G; (B1,B2),Ω
]

= σ0,F − σ0,G,

which ends the proof.

Lemma 5.7. Let Ω0 be a subdomain of class C2 of Ω such that ∂Ω0∩∂Ω consists of �nitely

many components of ∂Ω, if it is non-empty. For each i ∈ {1, 2}, let Bi,0 be any boundary

operator of the type

Bi,0h :=

{
h on ∂Ω0 ∩ Ω,

B̃ih on ∂Ω0 ∩ ∂Ω,
for every h ∈W 2,p(Ω), p > N,

where, on each component of ∂Ω0 ∩ ∂Ω, either B̃ih = h, or B̃ih = Bih. If

(B1,B2,Ω) 6= (B1,0,B2,0,Ω0),

then, for every d1, d2 > 0 and M ∈M2(C(Ω̄)), such that

m12(x),m21(x) > 0 for all x ∈ Ω,

we have that

σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]
< σ1

[
L1,2

(d1,d2) +M ; (B1,0,B2,0),Ω0

]
.

Proof. Let (φ, ψ) be a principal eigenfunction associated to

σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]
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such that φ� 0, ψ � 0. Then,

B1,0φ =


φ > 0 on ∂Ω0 ∩ Ω,

B̃1φ = φ > 0 on ∂Ω0 ∩ ∂Ω if B̃1 6= B1,

B̃1φ = B1φ = 0 on ∂Ω0 ∩ ∂Ω if B̃1 = B1,

and

B2,0ψ =


ψ < 0 on ∂Ω0 ∩ Ω,

B̃2ψ = ψ < 0 on ∂Ω0 ∩ ∂Ω if B̃2 6= B2,

B̃2ψ = B2ψ = 0 on ∂Ω0 ∩ ∂Ω if B̃2 = B2.

Since
(B1,B2,Ω) 6= (B1,0,B2,0,Ω0),

either B1,0φ ≥ 0 or B2,0ψ ≤ 0 on ∂Ω0, with some of these inequalities strict. Thus,
(
L1,2

(d1,d2) +M − σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
])( φ|Ω0

ψ|Ω0

)
=

(
0
0

)
in Ω0,

B1,0φ|Ω0
≥ 0, B2,0ψ|Ω0

= 0 on ∂Ω0,

with some of the boundary inequalities strict. Thus, (φ|Ω0
, ψ|Ω0

) is a strict supersolution
of the tern [

L1,2
(d1,d2) +M − σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]

; (B1,0,B2,0),Ω0

]
with φ|Ω0

> 0 and ψ|Ω0
< 0. Therefore, by Theorem 5.4,

σ1

[
L1,2

(d1,d2) +M − σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]

; (B1,0,B2,0),Ω0

]
> 0,

and so,

σ1

[
L1,2

(d1,d2) +M ; (B1,0,B2,0),Ω0

]
− σ1

[
L1,2

(d1,d2) +M ; (B1,B2),Ω
]
> 0.

5.2 Perturbation from a kinetic equilibrium which is some-

where unstable in Ω

The main result of this section establishes the Induced Instability Principle, according with
it any family of non-trivial states of (4.2) perturbing (uniformly) from any steady state,
(u∗(x), v∗(x)), of the non-spatial model (4.5), with x varying on some open subset, Ωun,
of Ω, must be linearly unstable provided (u∗(x), v∗(x)) is linearly unstable for all x ∈ Ωun.
Note that for every x ∈ Ωun, such equilibria, (u∗(x), v∗(x)), satisfy{

[λ(x)− a(x)u∗(x)− b(x)v∗(x)]u∗(x) = 0,

[µ(x)− d(x)v∗(x)− c(x)u∗(x)]v∗(x) = 0,

and hence, one of the following alternatives hold:
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(i) (u∗(x), v∗(x)) = (0, 0),

(ii) (u∗(x), v∗(x)) =
(
λ(x)
a(x) , 0

)
if λ(x) > 0,

(iii) (u∗(x), v∗(x)) =
(

0, µ(x)
d(x)

)
if µ(x) > 0,

(iv) (u∗(x), v∗(x)) =
(
λ(x)d(x)−µ(x)b(x)
a(x)d(x)−b(x)c(x) ,

µ(x)a(x)−λ(x)c(x)
a(x)d(x)−b(x)c(x)

)
if both components are well de-

�ned and positive.

The fact that this `general principle' holds independently of the size of the instability region
Ωun is a rather astonishing feature. The next lemma is the main technical tool to prove
such result, together with the monotonicity of the principal eigenvalue with respect to the
domain. Remember that we are assuming that b(x) > 0 and c(x) > 0 for all x ∈ Ω.

Lemma 5.8. Assume that L := L1 = L2 and B := B1 = B2. Let J ∈ (0,+∞)2 be with

(0, 0) ∈ J̄ , and consider a family of matrices, {H(d1,d2)}(d1,d2)∈J ⊂M2(R), such that

(i) the o�-diagonal entries of H(d1,d2) are positive for every (d1, d2) ∈ J ,

(ii) H(d1,d2) converges to some matrix H∗ ∈M2(R) as J 3 (d1, d2)→ (0, 0).

If σlow[H∗] stands for the lower eigenvalue of H∗, then

lim
(d1,d2)→(0,0)

σ1[L(d1,d2) +H(d1,d2); (B,B),Ω] = σlow[H∗].

Proof. Note that any matrix
H = (hij) ∈M2(R)

with h12h21 ≥ 0 has real eigenvalues. Indeed, they are given by

σ±[H] =
h11 + h22 ±

√
(h11 + h22)2 − 4(h11h22 − h12h21)

2

=
h11 + h22 ±

√
(h11 − h22)2 + 4h12h21

2
.

Hence, such a property holds for every H(d1,d2), (d1, d2) ∈ J , and, by the assumptions,
also for H∗. On the other hand, by (i), Theorem 5.1 provides us with the existence and
uniqueness of the principal eigenvalue

σ(d1,d2) := σ1[L(d1,d2) +H(d1,d2); (B,B),Ω],

associated with it there is an eigenfunction, (φ(d1,d2), ψ(d1,d2)), with components φ(d1,d2) �
0 and ψ(d1,d2) � 0, unique up to a multiplicative nontrivial constant. Let σ0 and ϕ0 � 0
denote the principal eigenpair of L in Ω, with ϕ0 normalized so that ‖ϕ0‖∞ = 1. Now, let
us show that (ξ(d1,d2)ϕ0, ζ(d1,d2)ϕ0) provides us with a principal eigenfunction associated
to σ(d1,d2) for appropriate values of ξ(d1,d2) > 0 and ζ(d1,d2) < 0. By de�nition,(

d1ξ(d1,d2)Lϕ0

d2ζ(d1,d2)Lϕ0

)
+H(d1,d2)

(
ξ(d1,d2)ϕ0

ζ(d1,d2)ϕ0

)
= σ(d1,d2)

(
ξ(d1,d2)ϕ0

ζ(d1,d2)ϕ0

)
,
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which can be equivalently expressed as

φ0

[(
d1ξ(d1,d2)σ0

d2ζ(d1,d2)σ0

)
+H(d1,d2)

(
ξ(d1,d2)

ζ(d1,d2)

)]
= ϕ0σ(d1,d2)

(
ξ(d1,d2)

ζ(d1,d2)

)
.

Thus, dividing by ϕ0 � 0, it becomes apparent that (ξ(d1,d2), ζ(d1,d2)) must satisfy[
σ0

(
d1 0
0 d2

)
+H(d1,d2)

](
ξ(d1,d2)

ζ(d1,d2)

)
= σ(d1,d2)

(
ξ(d1,d2)

ζ(d1,d2)

)
,

i.e., (ξ(d1,d2), ζ(d1,d2)) is an eigenvector of the matrix

H̃(d1,d2) := σ0

(
d1 0
0 d2

)
+H(d1,d2)

associated with the eigenvalue σ(d1,d2). It remains to show that the lower eigenvalue of

H̃(d1,d2) admits an eigenvector with components of opposite sign. But this is also a conse-

quence from the fact that the o�-diagonal entries of H(d1,d2), and so of H̃(d1,d2), are positive.
Indeed, for any matrix H ∈M2(R) with h12, h21 > 0

σlow[H] =
h11 + h22 −

√
(h11 − h22)2 + 4h12h21

2

and any associated eigenvector, (ξ, ζ), satis�es

(h11 − σlow[H]) ξ = −h12ζ and (h22 − σlow[H]) ζ = −h21ξ.

Thus, ξζ < 0 if and only if h11, h22 > σlow[H]. But, since h12h21 > 0, we have that

σlow[H] <
h11 + h22 − |h11 − h22|

2
= min{h11, h22}.

Therefore, H̃(d1,d2) admits an eigenfunction with components of opposite sign associated
to its lower eigenvalue. By the uniqueness of the principal eigenvalue, σ(d1,d2), necessarily

σ1[L(d1,d2) +H(d1,d2); (B,B),Ω] = σ(d1,d2) = σlow[H̃(d1,d2)].

Finally, thanks to (ii), the entries of H̃(d1,d2) converge to those of H∗. So, it does the lower
eigenvalue of these matrices.

The next result establishes the Induced Instability Principle when the perturbed steady
states are coexistence states.

Theorem 5.9. Suppose that L := L1 = L2 and B := B1 = B2. Consider a sequence of

coexistence states of (4.2), {(u(d1,d2), v(d1,d2))}(d1,d2)∈J , with J ⊂ (0,+∞)2 and (0, 0) ∈ J̄ ,
such that, for some open subset Ωun ⊂ Ω,

lim
(d1,d2)→(0,0)

(
u(d1,d2), v(d1,d2)

)
= (u∗, v∗) uniformly in Ωun

with (u∗(x), v∗(x)) linearly unstable for all x ∈ Ωun, as a nontrivial steady-state solution of

(4.5). Then, δ > 0 exists such that (u(d1,d2), v(d1,d2)) is linearly unstable for all d1, d2 < δ,
(d1, d2) ∈ J .
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Proof. The linear instability follows from the negativity of the principal eigenvalue of the
linearization of (4.2) at the coexistence state, i.e., σ1[L(d1,d2); (B,B),Ω] < 0, where

L(d1,d2) := L(d1,d2)+

(
−λ+ 2au(d1,d2) + bv(d1,d2) bu(d1,d2)

cv(d1,d2) −µ+ 2dv(d1,d2) + cu(d1,d2)

)
. (5.4)

Since the o�-diagonal entries of L(d1,d2), bu(d1,d2) and cv(d1,d2), are positive, the existence
of σ1[L(d1,d2); (B,B),Ω] follows from Theorem 5.1. Consider x0 ∈ Ωun and ε > 0 such that
B̄ε(x0) ( Ωun. Then, by Lemma 5.7,

σ1[L(d1,d2); (B,B),Ω] < σ1[L(d1,d2); (D,D), Bε(x0)]. (5.5)

Subsequently, we set

α(ε,d1,d2) := max
B̄ε(x0)

{
−λ+ 2au(d1,d2) + bv(d1,d2)

}
,

β(ε,d1,d2) := min
B̄ε(x0)

{
bu(d1,d2)

}
,

γ(ε,d1,d2) := min
B̄ε(x0)

{
cv(d1,d2)

}
,

ρ(ε,d1,d2) := max
B̄ε(x0)

{
−µ+ 2dv(d1,d2) + cu(d1,d2)

}
.

Then, according to Lemma 5.6, the next estimate holds

σ1[L(d1,d2); (D,D), Bε(x0)] ≤ σ1

[
L(d1,d2) +

(
α(ε,d1,d2) β(ε,d1,d2)

γ(ε,d1,d2) ρ(ε,d1,d2)

)
; (D,D), Bε(x0)

]
(5.6)

for every d1, d2 > 0, (d1, d2) ∈ J . Since u(d1,d2) and v(d1,d2) converge to u∗ and v∗,
respectively, uniformly in Ωun as (d1, d2)→ (0, 0), the following limits are well de�ned

α(ε,∗) := lim
(d1,d2)→(0,0)

α(ε,d1,d2), β(ε,∗) := lim
(d1,d2)→(0,0)

β(ε,d1,d2),

γ(ε,∗) := lim
(d1,d2)→(0,0)

γ(ε,d1,d2), ρ(ε,∗) := lim
(d1,d2)→(0,0)

ρ(ε,d1,d2).

Moreover, letting ε ↓ 0 yields

lim
ε↓0

α(ε,∗) = −λ(x0) + 2a(x0)u∗(x0) + b(x0)v∗(x0),

lim
ε↓0

β(ε,∗) = b(x0)u∗(x0),

lim
ε↓0

γ(ε,∗) = c(x0)v∗(x0),

lim
ε↓0

ρ(ε,∗) = −µ(x0) + c(x0)u∗(x0) + 2d(x0)v∗(x0).

Note that

−
(
−λ(x0) + 2a(x0)u∗(x0) + b(x0)v∗(x0) b(x0)u∗(x0)

c(x0)v∗(x0) −µ(x0) + c(x0)u∗(x0) + 2d(x0)v∗(x0)

)
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provides us with the linearization of the non-spatial model at (u∗(x0), v∗(x0)), which is
linearly unstable because x0 ∈ Ωun. Thus, this matrix has a positive eigenvalue, and
hence, for su�ciently small ε > 0, the matrix(

α(ε,∗) β(ε,∗)
γ(ε,∗) ρ(ε,∗)

)
possesses a negative eigenvalue. Therefore, owing to Lemma 5.8, for su�ciently small ε > 0
and d1, d2 > 0, with (d1, d2) ∈ J , we obtain that

σ1

[
L(d1,d2) +

(
α(ε,d1,d2) β(ε,d1,d2)

γ(ε,d1,d2) ρ(ε,d1,d2)

)
; (D,D), Bε(x0)

]
< 0.

Consequently, according to (5.5) and (5.6), we �nd that σ1[L(d1,d2); (B,B),Ω] < 0 for every
su�ciently small d1, d2 > 0, with (d1, d2) ∈ J . This ends the proof.

Although in Theorem 5.9 the steady state (u∗, v∗) might have some component van-
ishing, or both, the next result shows that actually the coexistence steady states of (4.1)
cannot perturb from (0, 0) uniformly in some open subset Ω0 ⊂ Ω as d1, d2 → 0 if (0, 0) is
linearly unstable in Ω0 as a steady state of (4.5).

Proposition 5.10. Assume that {(u(d1,d2), v(d1,d2))}(d1,d2)∈J , with J ⊂ (0,+∞)2 and

(0, 0) ∈ J̄ , is a sequence of coexistence states of (4.2) such that

lim
(d1,d2)→(0,0)

(
u(d1,d2), v(d1,d2)

)
= (0, 0) uniformly in Ω0

for some subdomain Ω0 b Ω of class C2. Then, (0, 0) cannot be linearly unstable at any

x ∈ Ω0 as a steady state of (4.5).

Proof. On the contrary, suppose that (0, 0) is linearly unstable with respect to (4.5) at
some x0 ∈ Ω0. Then, the linearization at (0, 0) of (4.5) for x = x0, which is given by(

λ(x0) 0
0 µ(x0)

)
,

has a positive eigenvalue. Thus, either

max
Ω̄0

λ ≥ λ(x0) > 0

or
max

Ω̄0

µ ≥ µ(x0) > 0.

Suppose maxΩ̄0
λ > 0. Then, the monotonicity with respect to the domain established in

Lemma 2.14 yields

σ1[d1L1− λ+ au(d1,d2) + bv(d1,d2);B1,Ω] < σ1[d1L1− λ+ au(d1,d2) + bv(d1,d2);D,Ω0] (5.7)

for all (d1, d2) ∈ J , while, thanks to Theorem 2.12, the uniform convergence in Ω0 provides
us with

lim
(d1,d2)→(0,0)

σ1[d1L1 − λ+ au(d1,d2) + bv(d1,d2);D,Ω0] = min
Ω̄0

(−λ) = −max
Ω̄0

λ < 0. (5.8)
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But, since (u(d1,d2), v(d1,d2)) is a coexistence state,

σ1[d1L1 − λ+ au(d1,d2) + bv(d1,d2);B1,Ω] = 0 for all (d1, d2) ∈ J,

which contradicts (5.7) y (5.8) and ends the proof.

Theorem 5.9 admits the next counterpart for semitrivial solutions of (4.2). So, the
Induced Instability Principle holds.

It should be remembered that, thanks to Theorem 4.1, which goes back to Theorem
2.21, i.e., the singular perturbation result for the single equation, the family of semitrivial
solutions of (4.2), (θ{d1,λ,a}, 0), with d1 > 0, converges to (λ+

a , 0) uniformly in compact
subsets of Ω as d1 ↓ 0. Similarly, (0, θ{d2,µ,d}) converges to (0, µ+

d ) uniformly in compact
subsets of Ω as d2 ↓ 0.

Proposition 5.11. The following assertions hold:

(i) Suppose that there exists an open subset Ωun b Ω of class C2 such that, for every

x ∈ Ω̄un, (λ+(x)
a(x) , 0) is linearly unstable as a steady-state solution of (4.5). Then,

δ > 0 exists such that (θ{d1,λ,a}, 0) is linearly unstable for every d1, d2 < δ.

(ii) Assume that there exists an open subset Ωun b Ω of class C2 such that, for every

x ∈ Ω̄un, (0, µ+(x)
d(x) ) is linearly unstable as a steady-state solution of (4.5). Then,

δ > 0 exists such that (0, θ{d2,µ,d}) is linearly unstable for every d1, d2 < δ.

Proof. As (ii) follows by symmetry, we will only prove (i). The linearization of (4.2)
at (θ{d1,λ,a}, 0) can be easily determined from (5.4) and provides us with the eigenvalue
problem

(d1L1 − λ+ 2aθ{d1,λ,a})φ(d1,d2) + bθ{d1,λ,a}ψ(d1,d2) = σφ(d1,d2) in Ω,

(d2L2 − µ+ cθ{d1,λ,a})ψ(d1,d2) = σψ(d1,d2) in Ω,

B1φ(d1,d2) = B2ψ(d1,d2) = 0 on ∂Ω.

(5.9)

It su�ces to establish the existence and negativity of one eigenvalue, σ(d1,d2), associated
to an eigenfunction (φ(d1,d2), ψ(d1,d2)), with φ(d1,d2) � 0 and ψ(d1,d2) � 0. Actually, this
eigenvalue must be the principal one of d2L2−µ+cθ{d1,λ,a}. Let ψ(d1,d2) � 0 be a principal
eigenfunction associated to

Σ(d1,d2) := σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω].

Then, the monotonicity with respect to the domain established by Lemma 2.14 provides
us with the estimate

Σ(d1,d2) = σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] < σ1[d2L2 − µ+ cθ{d1,λ,a};D,Ωun].

By the uniform convergence of θ{d1,λ,a} to
λ+

a in Ω̄un as d1 → 0, it follows from Theorem
2.12 that

lim
(d1,d2)→(0,0)

σ1[d2L2 − µ+ cθ{d1,λ,a};D,Ωun] = min
Ω̄un

(
−µ+ c

λ+

a

)
< 0,
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because
(
λ+

a , 0
)
is linearly unstable in Ω̄un. Therefore, δ > 0 exists such that

Σ(d1,d2) < 0 for all d1, d2 < δ.

It remains to solve the �rst equation of (5.9), i.e.,

(d1L1 − λ+ 2aθ{d1,λ,a} − Σ(d1,d2))φ(d1,d2) = −bθ{d1,λ,a}ψ(d1,d2) in Ω,

subject to
B1φ(d1,d2) = 0 on ∂Ω.

By the monotonicity with respect to the potential established by Theorem 2.12,

σ1[d1L1 − λ+ 2aθ{d1,λ,a} − Σ(d1,d2);B1,Ω] > σ1[d1L1 − λ+ aθ{d1,λ,a};B1,Ω] = 0.

Thus, the operator (
d1L1 − λ+ 2aθ{δ1,λ,a} − Σ(d1,d2)

)−1

is strongly positive. Therefore, the previous equation has a unique solution, φ(d1,d2) � 0,
because −bθ{d1,λ,a}ψ(d1,d2) > 0. This ends the proof.

5.3 Permanence for small di�usion rates when Ωper 6= ∅, or
Ωu

do 6= ∅ and Ωv
do 6= ∅

As a direct consequence from Proposition 5.11, the following substantial extension of The-
orem 2.1 of Furter and López-Gómez [48] holds. Note that it also re�nes [39, Co. 4.6]
as we are dealing with a general class of linear second order self-adjoint elliptic operators
under general non-classical mixed boundary conditions, where the weight functions βi of
the boundary operators Bi are allowed to change sign. Therefore, the result should be
considered new in its greatest generality.

Subsequently, the model (4.1), or (4.5), is said to be permanent if its trivial and
semitrivial steady states are linearly unstable. In this case the theory of Hess [56] and
López-Gómez [79] and, in particular, Theorems 3.1 and 4.1 of López-Gómez and Sabina
[77], show that the model possesses a stable coexistence steady state, which is a global at-
tractor with respect to the component-wise positive solutions of the model if it is unique.
Note that the results in all those references can be easily adapted to cover our general
framework here in.

Corollary 5.12. Suppose that either Ωper 6= ∅, or Ωu
do ∪ Ωper,u

junk 6= ∅ and Ωv
do ∪ Ωper,v

junk 6= ∅.
Then, δ > 0 exists such that the parabolic problem (4.1) is permanent for all d1, d2 < δ.
Therefore, it admits a stable coexistence steady state for these di�usion rates.

Proof. Suppose Ωper 6= ∅. Then, the semitrivial solutions of (4.5),(
λ(x)

a(x)
, 0

)
and

(
0,
µ(x)

d(x)

)
,
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are linearly unstable for all x ∈ Ωper. Thus, thanks to Proposition 5.11, δ > 0 exists
such that (θ{d1,λ,a}, 0) and (0, θ{d2,µ,d}) are linearly unstable for all d1 < δ and d2 < δ,
respectively. Therefore, (4.1) is permanent.

Now, suppose
Ωu

do ∪ Ωper,u
junk 6= ∅ and Ωv

do ∪ Ωper,v
junk 6= ∅.

Then,
(
λ+(x)
a(x) , 0

)
is linearly unstable for all x ∈ Ωv

do ∪ Ωper,v
junk , while

(
0, µ+(x)

d(x)

)
is linearly

unstable for all x ∈ Ωu
do ∪ Ωper,u

junk . Proposition 5.11 ends the proof as in the previous
case.

Note that Corollary 5.12 holds independently of the size and the shape of Ωper, Ωu
do ∪

Ωper,u
junk and Ωv

do ∪ Ωper,v
junk . Essentially, this entails that (4.1) is permanent for su�ciently

small di�usivities for many non-spatial kinetic patterns. This is an extremely surprising
feature at the light shared by the following simple examples. Suppose Ω = Ωext, and, in
particular, that λ(x) < 0 and µ(x) < 0 for all x ∈ Ω. Then, not only the non-spatial
model (4.5) exhibits extinction, but also the spatial model (4.1) for small di�usion rates.
Suppose, in addition, that we perturb λ and mu until λ(x0) = 0, µ(y0) = 0, λ(y0) < 0
and µ(x0) < 0 for some x0, y0 ∈ Ω, x0 6= y0. Then, by slightly perturbing λ and µ, for
instance taking λ + ε and µ + ε, for su�ciently small ε > 0, we can get λ > 0 and µ < 0
on some small ball around x0, and µ > 0 and λ < 0 on some small ball around y0. In
these balls we have that Ωu

do 6= ∅, respectively Ωv
do 6= ∅. Therefore, by Corollary 5.12,

(4.1) is permanent for su�ciently small d1 and d2. Similarly, if λ(x0) = µ(x0) = 0 and
a(x0)d(x0) > b(x0)c(x0) for some x0 ∈ Ω, we can perturb λ and µ nearby x0 in such a way
that Ωper 6= ∅ around x0. This simple example tells us how a very small perturbation of
the coe�cients can provoke dramatic changes on the dynamics of the di�usive model, at
least for small di�usion rates. The independence of these permanence results on the size of
the regions where the non-spatial model (4.5) is permanent, and on the sizes of the regions
where there is dominance of u and v, is utterly attributable to the Induced Instability
Principle established by Proposition 5.11, according with it the semitrivial solutions of
the spatial model are linearly unstable for small di�usion rates as soon as the semitrivial
steady-state solutions of the non-spatial model are linearly unstable somewhere in Ω.

5.4 Multiplicity for small di�usion rates when Ωbi 6= ∅

This section is devoted to establish the existence of multiple coexistence steady states of
(4.1) when a region of bi-stability, Ωbi, arises in Ω. In particular, the next multiplicity
result follows as an immediate consequence of the Induced Instability Principle derived in
Theorem 5.9.

Corollary 5.13. Suppose (4.1) is permanent for su�ciently small di�usion rates, d1, d2 >
0, Ωbi 6= ∅ and the non-spatial coexistence steady-state solution of (4.5), (u∗(x), v∗(x)), x ∈
Ωbi, admits a perturbed coexistence steady state of (4.1), (u(d1,d2), v(d1,d2)), for su�ciently

small d1, d2 > 0, in the sense that

lim
(d1,d2)→(0,0)

(u(d1,d2), v(d1,d2)) = (u∗, v∗) uniformly on compact subsets of Ωbi.
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Then, δ > 0 exists such that (4.1) possesses at least two coexistence states for each d1, d2 <
δ.

Proof. By Theorem 5.9, the perturbation (u(d1,d2), v(d1,d2)) must be linearly unstable for
small di�usion rates. According to Theorem 3.1 of López-Gómez and Sabina [77], (4.1)
possesses a stable coexistence state for su�ciently small d1, d2 > 0, because it is permanent.
This ends the proof.

It remains an open problem to ascertain whether or not such a perturbation from
(u∗, v∗) exists. However, the next section provides us with an example exhibiting this
behavior.

5.4.1 The symmetric model

Subsequently, we consider the symmetric Lotka�Volterra reaction-di�usion symmetric com-
petition model, i.e., (4.1) under the assumptions

L := L1 = L2, B := B1 = B2, δ := d1 = d2 > 0, λ = µ,

with maxΩ̄ λ > 0,

a = d with min
Ω̄
a > 0,

and b = c with b(x) > 0 for all x ∈ Ω. Hence, its elliptic counterpart is given by
δLu = λ(x)u− a(x)u2 − b(x)uv in Ω,

δLv = λ(x)v − a(x)v2 − b(x)uv in Ω,

Bu = Bv = 0 on ∂Ω.

(5.10)

Note that, under the previous assumptions, Ωu
do = Ωv

do = ∅ and hence,

Ω̄ = Ωper ∪ Ωbi ∪ Ωext ∪ Ωjunk,

which allows Ωper and Ωbi to be nonempty. Moreover, thanks to the symmetry of the
problem, for every solution of (5.10), (u, v), with u 6= v, we have that (v, u) also is a
solution. Furthermore, (5.10) admits a solution with u = v, as shown by the next result.

The main aim of this section is to derive Theorem 5.16, which establishes the existence
of at least three coexistence states of (5.10) for small di�usion rates, two of them stable and
the remaining one linearly unstable. In particular, Theorem 5.16 follows from Corollary
5.12 and a series of lemmas.

Lemma 5.14. Assume that maxΩ̄ λ > 0. Then, there exists δ0 > 0 such that for every

δ ∈ (0, δ0) the problem (5.10) admits a unique coexistence state, (u, v), with u = v, given by

(wδ, wδ) with wδ := θ{δ,λ,a+b}. Moreover, it converges to
(
λ+

a+b ,
λ+

a+b

)
uniformly on compact

subsets of Ω ∪ Γ+
R ∪ (λ+)−1(0) as δ ↓ 0.
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Proof. The pair (w,w) is a component-wise positive solution of (5.10) if and only if w
satis�es {

δLw = λ(x)w − (a(x) + b(x))w2 in Ω,
Bw = 0 on ∂Ω.

(5.11)

By Corollary 2.17(b), δ0 > 0 exists such that, for every δ ∈ (0, δ0), (5.11) admits a unique
positive solution, wδ := θ{δ,λ,a+b}. Its limiting behavior as δ ↓ 0 follows from Theorem
2.21.

Note that the coexistence state whose existence has been established by Lemma 5.14
actually exists if and only if σ1[δL−λ;B,Ω] < 0, which is the same condition guaranteeing
the existence of the semitrivial states. By a rather standard comparison argument, it
readily follows that, in general, the existence of the semitrivial states is necessary for the
existence of coexistence states.

On the other hand, Theorem 5.16 requires the analysis of the attractivity properties
of the coexistence states. The next result provides us with the instability of (wδ, wδ) for
su�ciently small δ > 0 when Ωbi 6= ∅.

Lemma 5.15. If Ωbi 6= ∅, then there exists δun > 0 such that (wδ, wδ) is linearly unstable

for all δ ∈ (0, δun).

Proof. Since Ωbi 6= ∅, maxΩ̄ λ > 0. Thus, Lemma 5.14 can be applied to infer that
(wδ, wδ) is a coexistence state for δ < δ0 that converges uniformly on compact subsets of
Ω to ( λ+

a+b ,
λ+

a+b) as δ → 0. As there is a smooth open subset of Ω ∩ Ωbi, D, with D̄ ⊂ Ω,
such that, for every x ∈ D̄, the coexistence state(

λ+(x)

a(x) + b(x)
,

λ+(x)

a(x) + b(x)

)
is linearly unstable as a coexistence state of the non-spatial model, it follows from Theorem
5.9 that (wδ, wδ) must be linearly unstable for su�ciently small δ > 0. This ends the
proof.

Combining this result with Corollary 5.12 provides us with the multiplicity result.

Theorem 5.16. Assume that

Ωper 6= ∅ and Ωbi 6= ∅.

Then δm > 0 exists such that, for every δ ∈ (0, δm), (5.10) admits at least three coexistence

states; two of them linearly stable and another one linearly unstable. Moreover, such lin-

early unstable coexistence state perturbs from the coexistence steady state of the non-spatial

problem in the region Ωbi ∪ Ωper.

Proof. Since Ωper 6= ∅, by Corollary 5.12, the problem (5.10) is permanent for su�ciently
small δ > 0. Thus, it admits a linearly stable coexistence state, (uδ, vδ). Moreover, since
Ωbi 6= ∅, according to Lemma 5.15, for su�ciently small δ, the coexistence state (wδ, wδ)
is linearly unstable. Hence, (uδ, vδ) 6= (wδ, wδ). Since (wδ, wδ) provides us with the unique
coexistence state, (u, v), such that u = v, we �nd that uδ 6= vδ and therefore, (vδ, uδ)
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provides us with a third coexistence state with the same stability character. Note that,
by similar reasons, the remaining coexistence states must appear by pairs. Thus, either
the spatial model (5.10) exhibits a continuum of coexistence states, or it admits an odd
number of them.

In the context of Theorem 5.16, Theorem 4.4 provides us with the limiting pro�les of
all the coexistence steady states of (5.10) in

Ωmax ∩ (Ω ∪ Γper
R ) = (Ωper ∪ Ωext) ∩ (Ω ∪ Γper

R )

as δ ↓ 0, where the three coexistence states constructed in Theorem 5.16 approximate(
λ+

a+b ,
λ+

a+b

)
as δ ↓ 0. Note that

(
λ+

a+b ,
λ+

a+b

)
is a coexistence state (if λ(x) > 0), or the trivial

solution (if λ(x) ≤ 0), of the non-spatial model. The analysis of the precise behavior of
the stable coexistence states constructed in Theorem 5.16 in the region Ωbi remains open,
though it seems apparent that they should perturb from each of the semi-trivial steady
state solutions in the region Ωbi as δ > 0 perturbs from zero. Nevertheless, according to
Theorem 5.9 and Proposition 5.10, they cannot perturb uniformly from the trivial solution
or the coexistence steady state of the non-spatial model.



Chapter 6

Uniqueness of the coexistence state.

Global dynamics

Introduction

Our multiplicity result in Section 5.4 allows us to establish the optimality of a substan-
tial extension of the main uniqueness theorem of Hutson, Lou and Mischaikow [65] (see
Theorem 1.1 and Proposition 3.5 therein) that establishes the uniqueness of a coexistence
steady-state solution of (4.1) for su�ciently small d1 and d2 under the rather natural
assumption that

Ωper = Ω̄.

In such case, the unique coexistence steady state must be a global attractor with respect to
the component-wise positive solutions of (4.1). Particularly, the multiplicity result when
Ωbi is non-empty shows that Ωper = Ω̄ is optimal for the uniqueness in the following sense.
If we replace b(x) and c(x) by ρb(x) and ρc(x), where ρ > 0 is regarded as a real parameter,
then there are choices of b(x) and c(x) for which condition Ωper = Ω̄ holds for all ρ ∈ (0, 1),
but it fails at the single point x0 ∈ Ω when ρ = 1. So, Ωper = Ω̄\{x0} if ρ = 1. As there are
examples of b(x) and c(x) with non-empty Ωbi for ρ > 1 su�ciently close to 1, such that
Ωbi shrinks to x0 as ρ ↓ 1, our multiplicity theorem shows that if Ωper = Ω̄ fails at a single
point x0 ∈ Ω̄, then the problem (4.1) might exhibit a bifurcation to multiple coexistence
steady-steady solutions.

In addition to the fact that our extension of the uniqueness theorem of Hutson, Lou
and Mischaikow [65], collected in Theorems 6.9 and 6.10 of Section 6.2, is new in its
greatest generality, because it is valid for a general class of di�erential operators subject to
general mixed boundary conditions, the proof given in this chapter overcomes the highly
sophisticated technicalities of the proof of Proposition 3.5 of Hutson, Lou and Mischaikow
[65] by means of a quasi-cooperative version for mixed boundary conditions of Theorem
2.1 of López-Gómez and Molina-Meyer [90], Theorem 6.3 of López-Gómez and Sabina
[77] and Theorem 2.4 of Amann and López-Gómez [5]. Indeed, our proof is a rather
direct, very elegant, application of the theorem of characterization of the strong maximum
principle through the construction of an appropriate supersolution. It should be noted that
Proposition 3.5 of Hutson, Lou and Mischaikow [65] was found for Neumann boundary
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conditions.
The last goal of this thesis is establishing a general, rather astonishing, uniqueness

result covering the general case when Ωper is a proper subset of Ω̄. Naturally, according
to our main multiplicity result, established in Chapter 5, in order to get uniqueness one
should assume that Ωbi = ∅. The simplest way to get it is imposing that

bc � ad in Ω. (6.1)

Under (6.1), our general uniqueness theorem precisely stated in Theorem 6.13, establishes
that, if

max
Ω̄

(
ad2

c3
F−(κ)

)
≤ min

Ω̄

(
ad2

c3
F+(κ)

)
, (6.2)

with

F±(k) :=
1

8

[
27− 18k − k2 ± (9− k)3/2(1− k)1/2

]
, k ∈ [0, 1],

then any coexistence state of (4.2) must be linearly stable and hence, unique, if it exists.
In particular, we obtain (6.2) if either b2

ac , or
b3

a2d
, or c2

db , or
c3

ad2 , is a positive constant in Ω
(see Corollary 6.12). Naturally, these conditions hold when a(x), b(x), c(x) and d(x) are
positive constants such that a = d = 1 and bc < 1, as it was recently imposed by He and
Ni [55]. Consequently, our result, Theorem 6.13, provides us with an extremely sharp and
substantial extension of Theorem 3.4(iii) of He and Ni [55], because it is valid for general
spatially heterogeneous systems subject to mixed boundary conditions.

As a byproduct of Theorem 6.13, under the previous assumptions, as soon as the
model possesses two non-degenerate semi-trivial positive steady states, (4.1) exhibits three
di�erent types of behavior. Namely, either both semi-trivial positive solutions are linearly
unstable, and then the problem has a unique coexistence steady state which is a global
attractor with respect to the component-wise positive solutions of (4.1), or one of the semi-
trivial positive solutions is linearly stable, while the other one is linearly unstable, and in
such case the stable one must be a global attractor, much like in the non-spatial model.

As far as concerns the restrictions imposed on the function coe�cients a(x), b(x), c(x)
and d(x) in Theorem 6.13, and more speci�cally in Corollary 6.12, it should be noted that
each of them involves three of these four coe�cients: either a, b, c in the assumption that b2

ac

is constant in Ω, or a, b, d if we impose that b3

a2d
is constant, or a, c, d when c3

ad2 is constant,

or b, c, d if, instead, c
2

db is constant in Ω. Thus, in either cases we have complete freedom to
chose, arbitrarily, three of the coe�cients, while the fourth one is uniquely determined by
the remaining ones, up to a positive multiplicative constant chosen to satisfy (6.1). Rather
astonishingly, in this uniqueness theorem λ(x) and µ(x) can be chosen arbitrarily.

This chapter has been organized as follows. Section 6.1 is devoted to the calculation
of the �xed point index of the steady states of (4.1) in order to derive the uniqueness
of coexistence steady states when all of them are linearly stable. Section 6.2 proves the
uniqueness result in the special case when Ωper = Ω̄. Finally, Section 6.3 derives the general
uniqueness result when Ωper is a proper subset of Ω̄ through Picone's identity by assuming
that the di�erential operators are selfadjoint.
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6.1 Towards a characterization of the global dynamics

The uniqueness results to be delivered in this chapter will follow from the fact that if all
coexistence steady states in the competition model (4.1) are linearly stable, then there
exists, at most, only one of them. Much like in López-Gómez [79] and López-Gómez and
Sabina [77], this section is devoted to provide such auxiliary result by applying the �xed
point index to a certain integral operator associated to the problem

d1L1u = λu− au2 − γbuv in Ω,

d2L2v = µv − dv2 − γcuv in Ω,

B1u = B2v = 0 on ∂Ω,

(6.3)

where γ ∈ [0, 1] is regarded as an homotopy parameter to uncouple (4.2). Subsequently,
we will set

W 2,∞
Bi :=

⋂
p>N

W 2,p
Bi (Ω) and P

W 2,∞
Bi

= {w ∈W 2,∞
Bi : w ≥ 0 in Ω}, i = 1, 2,

which shares the notation introduced in (2.19). Then, w ∈ intP
W 2,∞
Bi

, for some i = 1, 2, if

w ∈W 2,∞
Bi and satis�es (2.18) with (ΓR,ΓD) = (ΓiR,Γ

i
D).

The next result provides us with a bounded open set independent of b, c > 0 containing
all the non-negative solutions of (4.2). In particular, it contains all the non-negative
solutions of (6.3) uniformly in γ ∈ [0, 1]. This is crucial in order to apply the �xed point
index in cones.

Lemma 6.1. There exits a bounded set

U × V ⊂W 2,∞
B1
×W 2,∞

B2
,

independent of b and c, such that (u, v) ∈ int (U × V) if (u, v) is a solution of (4.2) with

(u, v) ∈ P
W 2,∞
B1

× P
W 2,∞
B2

. (6.4)

Proof. It su�ces to note that, if (u, v) is a solution of (4.2) satisfying (6.4), then{
d1L1u = λu− au2 − buv ≤ λu− au2 in Ω,

B1u = 0 on ∂Ω,

and {
d2L2v = µv − dv2 − cuv ≤ µv − dv2 in Ω,

B2v = 0 on ∂Ω.

Thus, u and v are subsolutions of the associated logistic boundary value problems. To
construct the appropriate supersolutions to these problems we will proceed much like in
Section 2.2.2. Consider E de�ned by

E(x) := exp (−M dist∂Ω(x)) with M > max
∂Ω

{
0,

−β1

〈n, A1n〉
,
−β2

〈n, A2n〉

}
,
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on a su�ciently narrow neighborhood of ∂Ω. According to Theorem 2.3, this function is of
class C2, and can be extended to the entire Ω̄ with smoothness and positiveness by mean
of cut-o� functions, as sugested in Remark 2.4. Furthermore, E satis�es

BiE > 0 on ΓiD,

whereas, on ΓiR,

BiE = 〈n, Ai∇E〉+ βiE = −EM〈n, Ai∇dist∂Ω(·)〉+ βiE = E (M〈n, Ain〉+ βi) > 0

Note that, in the de�nition of E(x), the function−dist∂Ω(·) can be changed by any function,
ψ, of class C2, like those derived in Theorem 2.3(d), i.e., such that ψ(x) < 0 for all x ∈ Ω,
ψ(x) = 0 for all x ∈ ∂Ω and

min
ΓR
〈n, Ai∇ψ〉 > 0, i = 1, 2.

Hence, if κ > 0 is a constant such that

κ > max

{
max

Ω̄

λ− d1
L1E
E

aE
,max

Ω̄

µ− d2
L2E
E

dE

}
,

then κE provides us with a supersolution for both problems. Therefore, by the uniqueness
of solution to these problems, it follows from Theorem 7.10 of López-Gómez [88], or Lemma
3.4 of Fraile, Koch, López-Gómez and Merino [46], that

0 ≤ u ≤ θ{d1,λ,a} ≤ κE and 0 ≤ v ≤ θ{d2,µ,d} ≤ κE in Ω.

This ends the proof.

Remark 6.2. As an immediate, but important, by-product of Lemma 6.1, we have that the
existence of semitrivial solutions is a necessary condition for the existence of coexistence
solutions of (4.2). Moreover, according to Theorem 2.15, model 4.2 admits semitrivial
solutions, given by (θ{d1,λ,a}, 0) and (0, θ{d2,µ,d}), if, and only if, σ1[d1L1 − λ;B1,Ω] < 0
and σ1[d2L2 − µ;B2,Ω] < 0, respectively.

6.1.1 Fixed point index calculations

Subsequently, let us consider U × V, the bounded set provided by Lemma 6.1. Let m > 0
be large enough so that

σ1[d1L1 +m;B1,Ω] > 1, σ1[d2L2 +m;B2,Ω] > 1, (6.5)

and
λ− au− γbv +m > 0 and µ− dv − γcu+m > 0 in Ω̄

for all (γ, u, v) ∈ [0, 1]× U × V. Note that, in particular,

λ+m > 0 and µ+m > 0 in Ω, (6.6)
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because (0, 0) ∈ U × V, by construction.
Consider the family of operators I : [0, 1]× U × V →W 2,∞

B1
×W 2,∞

B2
de�ned through

I(γ, u, v) :=

(
(d1L1 +m)−1[(λ− au− γbv +m)u]
(d2L2 +m)−1[(µ− dv − γcu+m)v]

)
,

which are compact order preserving operators, by our assumptions on m. Moreover, their
�xed points are the solutions of (6.3) in P

W 2,∞
B1

× P
W 2,∞
B2

, for each γ ∈ [0, 1], respectively.

The following results provide us with the �xed point indices of the trivial, semitrivial and
coexistence states of (4.2) as �xed points of I for γ = 1.

Lemma 6.3. The total �xed point index of I(1, ·, ·) in int (U × V) is given by

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), int (U × V)) = 1.

Proof. By the homotopy invariance property of the �xed point index (see Theorem 1.11(iii)
of Amann [3]),

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), int (U × V)) = iP
W

2,∞
B1

×P
W

2,∞
B2

(I(0, ·, ·), int (U × V)).

Thus, owing to the product formula, we �nd that

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), int (U × V)) = iP
W

2,∞
B1

(I1(·), intU) · iP
W

2,∞
B1

(I2(·), intV),

where I1 : U →W 2,∞
B1

and I2 : V →W 2,∞
B2

are the operators de�ned by

I1(u) := (d1L1 +m)−1[(λ− au+m)u] and I2(v) := (d2L2 +m)−1[(µ− dv +m)v].

Now, consider the homotopies

G1(γ, u) := (d1L1 +m)−1 [(m+ σ1[d1L1;B1,Ω]− 1 + γ(λ− σ1[d1L1;B1,Ω] + 1− au))u] ,

G2(γ, v) := (d2L2 +m)−1 [(m+ σ1[d2L2;B2,Ω]− 1 + γ(µ− σ1[d2L2;B2,Ω] + 1− dv)) v] .

By the homotopy invariance property,

iP
W

2,∞
B1

(I1(·), intU) = iP
W

2,∞
B1

(G1(1, ·), intU) = iP
W

2,∞
B1

(G1(0, ·), intU),

iP
W

2,∞
B2

(I2(·), intV) = iP
W

2,∞
B2

(G2(1, ·), intV) = iP
W

2,∞
B2

(G2(0, ·), intV).

On the other hand, 0 is the unique �xed point of G1(0, ·) in intU and G2(0, ·) in intV.
Moreover, the spectral radio of Gj(0, ·), j = 1, 2, is

%(Gj(0, ·)) =
m+ σ1[djLj ;Bj ,Ω]− 1

m+ σ1[djLj ;Bj ,Ω]
< 1.

Thus, thanks to Theorem 13.1 of Amann [3], we can infer that

iP
W

2,∞
B1

(G1(0, ·), intU) = iP
W

2,∞
B2

(G2(0, ·), intV) = 1.

This ends the proof.
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The next result provides us with the �xed point index of (0, 0) when it is non-degenerate.

Lemma 6.4. Assume that

σ1[d1L1 − λ;B1,Ω] · σ1[d2L2 − µ;B2,Ω] 6= 0.

Then, the following statements hold:

(a) If σ1[d1L1 − λ;B1,Ω] > 0 and σ1[d2L2 − µ;B2,Ω] > 0, then

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, 0)) = 1.

(b) If σ1[d1L1 − λ;B1,Ω] < 0, or σ1[d2L2 − µ;B2,Ω] < 0, then

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, 0)) = 0.

Proof. Di�erentiating I(1, ·, ·) with respect to (u, v) and particularizing at (0, 0) yields

D(u,v)I(1, 0, 0)(u, v) =

(
(d1L1 +m)−1[(λ+m)u]
(d2L2 +m)−1[(µ+m)v]

)
.

Suppose that

σ1[d1L1 − λ;B1,Ω] > 0 and σ1[d2L2 − µ;B2,Ω] > 0, (6.7)

which entails the linearized stability of (0, 0) and the non-existence of semitrivial solutions
of (6.3).

Let r0 ∈ R be an eigenvalue of D(u,v)I(1, 0, 0) to a component-wise non-negative eigen-
vector, (ϕ,ψ) 6= (0, 0). Without loss of generality, we can assume that ϕ > 0. Then,

σ1

[
d1L1 +m− m+ λ

r0
;B1,Ω

]
= 0.

Moreover, thanks to (6.6), by the strict monotonicity and continuity of the principal eigen-
value with respect to the potential delivered in Theorem 2.12, it becomes apparent that
the map

r 7→ σ1

[
d1L1 +m− m+ λ

r
;B1,Ω

]
is strictly increasing and, in addition, is continuous in (0,+∞). Taking into account (6.5),

lim
r→ξ

σ1

[
d1L1 +m− m+ λ

r
;B1,Ω

]
=


σ1[d1L1 +m;B1,Ω] > 1 if ξ = +∞,
σ1[d1L1 − λ;B1,Ω] if ξ = 1,

−∞ if ξ = 0.

(6.8)

By (6.7) and (6.8), we have that r0 < 1. Thus, D(u,v)H(1, 0, 0) cannot admit a positive
eigenvector to an eigenvalue greater or equal than one. Therefore, owing to Theorem 13.1
of Amann [3], we �nd that

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, 0)) = 1.
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Now, assume that some of the principal eigenvalues in (6.7) is negative, instead of positive.
Without loss of generality, suppose that

σ1[d1L1 − λ;B1,Ω] < 0.

Then, by (6.8), there is a unique r0 > 1 such that

σ1

[
d1L1 +m− m+ λ

r0
;B1,Ω

]
= 0.

Let ϕ > 0 be any principal eigenfunction associated to this eigenvalue. Then, (ϕ, 0)
provides us with a positive eigenvector of D(u,v)I(1, 0, 0) to an eigenvalue greater than
one. Therefore, thanks to Theorem 13.1 of Amann [3],

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, 0)) = 0.

This ends the proof.

To calculate the indices of the semitrivial solutions we will make an intensive use of
Lemma 4.1 of López-Gómez [79], which goes back to Lemmas 2 and 4 of Dancer [26]. In
our setting, it can be stated as follows. An analogous version holds true for (0, θ{d2,µ,d}).
Subsequently, we will denote by

Proj2 : W 2,∞
B1
×W 2,∞

B2
→ {0} ×W 2,∞

B2

the projection on the second component, i.e., Proj2(u, v) := (0, v).

Lemma 6.5. Assume that σ1[d1L1 − λ;B1,Ω] < 0. So, θ{d1,λ,a} 6= 0. Then, the following

assertions hold:

(a) If the operator I−D(u,v)I(1, θ{d1,λ,a}, 0) is injective in W 2,∞
B1
×W 2,∞

B2
and the spectral

radius of the operator

Proj2D(u,v)I(1, θ{d1,λ,a}, 0)
{0}×W 2,∞

B2

is greater than one, then

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) = 0.

(b) If the operator I−D(u,v)I(1, θ{d1,λ,a}, 0) is injective in W 2,∞
B1
×W 2,∞

B2
and the spectral

radius of the operator

Proj2D(u,v)I(1, θ{d1,λ,a}, 0)
{0}×W 2,∞

B2

is less than one, then

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) = (−1)χ,

where χ stands for the sum of the algebraic multiplicities of the eigenvalues of the

operator D(u,v)I(1, θ{d1,λ,a}, 0) greater than one.
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(c) If I−D(u,v)I(1, θ{d1,λ,a}, 0) is injective in W 2,∞
B1
×P

W 2,∞
B2

, instead of in W 2,∞
B1
×W 2,∞

B2
,

and there exists w ∈W 2,∞
B1
× P

W 2,∞
B2

such that the equation

(I −D(u,v)I(1, θ{d1,λ,a}, 0))y = w

has no solution y ∈W 2,∞
B1
× P

W 2,∞
B2

, then

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) = 0.

As a direct consequence of Lemma 6.5, the next result establishes that the �xed point
index of each semitrivial solution is determined by its linear stability as a steady-state
solution of(4.1), as soon as it is a non-degenerate steady state.

Lemma 6.6. The following statements hold:

(a) Assume that σ1[d1L1 − λ;B1,Ω] < 0. Then θ{d1,λ,a} � 0 and

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) =

{
0 if σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] < 0,

1 if σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] > 0,
(6.9)

(b) Assume that σ1[d2L2 − µ;B2,Ω] < 0. Then θ{d2,µ,d} � 0 and

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, θ{d2,µ,d})) =

{
0 if σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] < 0,

1 if σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] > 0.
(6.10)

Proof. We will only prove (6.9), because (6.10) follows by symmetry. Since

σ1[d1L1 − λ;B1,Ω] < 0,

by Theorem 2.15 and Corollary 2.16, θ{d1,λ,a} � 0. On the other hand, di�erentiating
I(1, ·, ·) at this semitrivial solution yields

D(u,v)I(1, θ{d1,λ,a}, 0)(u, v) =

(
(d1L1 +m)−1

[
(λ− 2aθ{d1,λ,a} +m)u− bθ{d1,λ,a}v

]
(d2L2 +m)−1[(µ− cθ{d1,λ,a} +m)v]

)
.

Moreover, thanks to (6.5) and (6.6), D(u,v)I(1, θ{d1,λ,a}, 0) maps W 2,∞
B1
×P

W 2,∞
B2

into itself.

Assume that
σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] > 0. (6.11)

Then, we claim that I − D(u,v)I(1, θ{d1,λ,a}, 0) is injective on W 2,∞
B1
×W 2,∞

B2
. Indeed, if

there exists (u, v) ∈W 2,∞
B1
×W 2,∞

B2
such that

D(u,v)I(1, θ{d1,λ,a}, 0)(u, v) = (u, v),

then (
d1L1 − λ+ 2aθ{d1,λ,a}

)
u = −bθ{d1,λ,a}v (6.12)
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and (
d2L2 − µ+ cθ{d1,λ,a}

)
v = 0. (6.13)

If v 6= 0, then 0 is an eigenvalue of the tern[
d2L2 − µ− cθ{d1,λ,a};B2,Ω

]
.

Thus,
σ1[d2L2 − µ− cθ{d1,λ,a};B2,Ω] ≤ 0,

which contradicts (6.11). Hence, v = 0 and (6.12) becomes(
d1L1 − λ+ 2aθ{d1,λ,a}

)
u = 0.

If u 6= 0, then 0 is an eigenvalue of d1L1 − λ+ 2aθ{d1,λ,a} in Ω under B1. Thus,

σ1[d1L1 − λ+ 2aθ{d1,λ,a};B1,Ω] ≤ 0. (6.14)

Consequently, by the monotonicity of the principal eigenvalue with respect to the potential
established in Theorem 2.12, we have that

σ1[d1L1 − λ+ aθ{d1,λ,a};B1,Ω] < σ1[d1L1 − λ+ 2aθ{d1,λ,a};B1,Ω] ≤ 0. (6.15)

This contradicts the fact that

(d1L1 − λ+ aθ{d1,λ,a})θ{d1,λ,a} = 0

because this entails that

σ1[d1L1 − λ+ aθ{d1,λ,a};B1,Ω] = 0. (6.16)

Therefore, (u, v) = (0, 0) and, hence,

I −D(u,v)I(1, θ{d1,λ,a}, 0)

is injective. For applying Lemma 6.5, it remains to estimate the spectral radio of the
operator

Proj2D(u,v)I(1, θ{d1,λ,a}, 0)v := (d2L2 +m)−1[(µ+ cθ{d1,λ,a} +m)v], v ∈W 2,∞
B2

.

A direct calculation shows that the spectral radius, r0, of this operator satis�es

σ1

[
d2L2 +m−

µ− cθ{d1,λ,a} +m

r0
;B2,Ω

]
= 0.

Arguing as in the proof of Lemma 6.4, since

µ− cθ{d1,λ,a} +m > 0 in Ω̄

by the hypothesis on m, it is apparent that the map S : (0,+∞)→ R de�ned through

S(r) := σ1

[
d2L2 +m−

µ− cθ{d1,λ,a} +m

r
;B2,Ω

]



154 Chapter 6. Uniqueness of the coexistence state. Global dynamics

is continuous, strictly increasing and, owing to (6.11), satis�es

lim
r→ξ

S(r) =


σ1[d2L2 +m;B2,Ω] > 1 if ξ = +∞,
σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] > 0 if ξ = 1,

−∞ if ξ = 0.

Hence, r0 < 1 because S(r0) = 0. Therefore, due to Lemma 6.5(b),

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) = (−1)χ,

where χ is the sum of the multiplicities of the eigenvalues of D(u,v)I(1, θ{d1,λ,a}, 0) greater
than one. Now, assume that τ > 1 is an eigenvalue of D(u,v)I(1, θ{d1,λ,a}, 0) with associated
eigenvector (u, v) 6= (0, 0), i.e.,

D(u,v)I(1, θ{d1,λ,a}, 0)(u, v) = τ(u, v). (6.17)

If v 6= 0, then, using the v-equation of (6.17), we have that 0 is an eigenvalue of the tern[
d2L2 +m−

µ− cθ{d1,λ,a} +m

τ
;B2,Ω

]
.

Hence, by the dominance of the principal eigenvalue,

σ1

[
d2L2 +m−

µ− cθ{d1,λ,a} +m

τ
;B2,Ω

]
≤ 0, (6.18)

However, by the strict monotonicity of the principal eigenvalue with respect to the potential
delivered in Theorem 2.12, it follows from (6.11) that

σ1

[
d2L2 +m−

µ− cθ{d1,λ,a} +m

τ
;B2,Ω

]
> σ1

[
d2L2 − µ+ cθ{d1,λ,a};B2,Ω

]
> 0,

which contradicts (6.18). Consequently, v = 0. Hence, u 6= 0. Thus, it follows from the
u-equation of (6.17) that

σ1

[
d1L1 +m−

λ− 2aθ{d1,λ,a} +m

τ
;B1,Ω

]
≤ 0.

Moreover, by Theorem 2.12 and (6.16),

σ1

[
d1L1 +m−

λ− 2aθ{d1,λ,a} +m

τ
;B1,Ω

]
> σ1

[
d1L1 +m−

λ− aθ{d1,λ,a} +m

τ
;B1,Ω

]
> σ1

[
d1L1 − λ+ aθ{d1,λ,a};B1,Ω

]
= 0,

which again leads to a contradiction. Therefore, χ = 0 and

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) = 1.

This ends the proof of the second identity of (6.9).
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Next, suppose that

σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] < 0, (6.19)

instead of (6.11). We claim that

I −D(u,v)I(1, θ{d1,λ,a}, 0)

is an injective operator on W 2,∞
B1
× P

W 2,∞
B2

. Indeed, if there is a

(u, v) ∈W 2,∞
B1
× P

W 2,∞
B2

such that
D(u,v)I(1, θ{d1,λ,a}, 0)(u, v) = (u, v),

then the identities (6.12) and (6.13) hold. Since v ∈ P
W 2,∞
B2

, if v 6= 0, then

σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] = 0,

which contradicts (6.19). Thus, v = 0. Similarly, arguing as in the previous case, by (6.14)
and (6.15), one can easily infer that u = 0. Hence,

I −D(u,v)I(1, θ{d1,λ,a}, 0)

is injective on W 2,∞
B1
×P

W 2,∞
B2

. According to Lemma 6.5(c), to complete the proof of (6.9),

it su�ces to show that
I −D(u,v)I(1, θ{d1,λ,a}, 0)

is not surjective on W 2,∞
B1
× P

W 2,∞
B2

. To prove this, we proceed by contradiction. Assume

that, for every (w1, w2) ∈W 2,∞
B1
× P

W 2,∞
B2

there exists (u, v) ∈W 2,∞
B1
× P

W 2,∞
B2

such that

[I −D(u,v)I(1, θ{d1,λ,a}, 0)](u, v) = (w1, w2),

i.e.,
u− (d1L1 +m)−1

[
(λ− 2aθ{d1,λ,a} +m)u− bθ{d1,λ,a}v

]
= w1

and
v − (d2L2 +m)−1[(µ− cθ{d1,λ,a} +m)v] = w2. (6.20)

In particular, since we are assuming that

σ1[d2L2 +m;B2,Ω] > 1 > 0,

for every w ∈ P
W 2,∞
B2

\ {0}, the function w2 de�ned by

w2 := (d2L2 +m)−1ω

is strongly positive. For this choice, (6.20) becomes

(d2L2 − µ+ cθ{d1,λ,a})v = ω > 0.

This implies that v > 0 and hence, thanks to [88, Th.7.10],

σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] > 0,

which contradicts (6.19). This ends the proof.
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Finally, the next result provides us with the �xed point index of the linearly stable
coexistence steady states.

Lemma 6.7. Assume that (u, v) is a linearly stable coexistence steady state of (4.1). Then

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (u, v)) = 1

Proof. This is an immediate consequence of the dominance of the principal eigenvalue of
the linearization of (4.2) at (u, v), and the de�nition of the �xed point index (see Theorem
11.4 of Amann [3]).

6.1.2 Linear stability of coexistence steady states induces uniqueness

The following result characterizes the existence and uniqueness of coexistence solutions in
terms of the existence and linearized stability of the semitrivial solutions, (θ{d1,λ,a}, 0) and
(0, θ{d2,µ,d}) when every coexistence steady states of (4.1) is linearly stable. It constitutes
one of the the main tools of this chapter.

Theorem 6.8. Assume that Ωper 6= ∅ or Ωu
do ∪ Ωper,u

junk 6= ∅ and Ωv
do ∪ Ωper,v

junk 6= ∅. Suppose
that every coexistence steady state of (4.1) is linearly stable. Then, there exists δ > 0 such

that for every d1, d2 ∈ (0, δ) the model (4.1) exhibits a unique coexistence steady state.

Moreover, it is a global attractor for the component-wise positive solutions of (4.1).

Proof. By Corollary 5.12 we have that (4.1) exhibits stable coexistence steady states for
small di�usion rates because both semitrivial steady states exist and they are linearly
unstable. On the other hand, let us denote by Υ the set of coexistence states of (4.2). By
construction, we have that Υ lies in the interior of U ×V. Then, by the additivity property
of the �xed point index (see Theorem 11.1 of Amann [3]), we obtain that

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), int (U × V)) = iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, 0))

+ iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0))

+ iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, θ{d2,µ,d}))

+
∑

(u,v)∈Υ

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (u, v))

(6.21)

Moreover, by Lemmas 6.3, 6.4, 6.6, and 6.7, we have that

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), int (U × V)) = 1, iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, 0)) = 0,

iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (θ{d1,λ,a}, 0)) = 0, iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (0, θ{d2,µ,d})) = 0,

and
iP
W

2,∞
B1

×P
W

2,∞
B2

(I(1, ·, ·), (u, v)) = 1 for every (u, v) ∈ Υ.

Hence, for that range of di�usion rates, the system (4.2) admits a unique coexistence state
(linearly stable). The fact that it is a global attractor for the component-wise positive
solutions of (4.1) is an immediate consequence of the uniqueness and the fact that the
system is compressive as pointed out in Remark 33.2 and Theorem 33.3 of Hess [56].
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6.2 Uniqueness under permanence

This section shows that under Robin boundary conditions the problem (4.2) admits a
unique coexistence state for su�ciently small di�usion coe�cients, d1 > 0 and d2 > 0,
if Ω̄ = Ωper. In particular, this uniqueness result applies to the next competition Lotka�
Volterra reaction-di�usion prototype model under Robin boundary conditions

d1L1u = λu− au2 − buv in Ω,

d2L2v = µv − dv2 − cuv in Ω,

R1u = R2v = 0 on ∂Ω.

(6.22)

Here, d1, d2 > 0 and λ, µ, a, b, c, d ∈ C(Ω̄) with

ad− bc > 0, λd− µb > 0 and µa− λc > 0 inΩ̄,

which entails Ω̄ = Ωper. Moreover, in contrast to Section 6.3, in this section, for every
i = 1, 2,

Li = −div(Ai∇·) + Bi∇+ Ci, i = 1, 2,

with Ai ∈ Msym
N (C2(Ω̄)), Bi ∈ M1×N (C(Ω̄)) and Ci ∈ C(Ω̄), and Ri := ∂

∂Ain
+ βi is the

robin boundary operator, where βi ∈ C(ΓiR) and ∂
∂Ain

stands for the directional derivative
with respect to the conormal vector �eld νi := Ain.

Although the �rst version of Theorems 6.9 and 6.10 below was given in Hutson, Lou
and Mischaikow [65], the proof here is substantially simpler than the original one of [65],
which established for the −∆ operator under non-�ux boundary conditions. Furthermore,
as a result of its simplicity, it can be easily adapted to get the result for wider classes
of di�erential operators in divergence form subject to Robin boundary conditions. Once
established one of the main uniqueness results of this thesis, its optimality is discussed in
Section 6.2.1 at the light of the multiplicity result established in Chapter 5.

Note that the condition Γ1
D = Γ2

D = ∅ must be imposed since in the proof of Theorems
6.9 and 6.10 we are using the uniform convergence of the coexistence states as (d1, d2)→
(0, 0) established by Theorem 4.4.

Theorem 6.9. Assume that Ω̄ = Ωper and Γ1
D = Γ2

D = ∅. Then, δ > 0 exists such that

for all d1, d2 ∈ (0, δ) the di�usive model (6.22) exhibits a unique coexistence state which is

a global attractor with respect to the component-wise positive solutions.

Proof. By Corollary 5.12, δ > 0 exists such that (4.1) is permanent for d1, d2 ∈ (0, δ). As it
was mentioned in Section 5.3, in such a case, the existence of at least a stable coexistence
state is ensured by previous results (see, e.g, Hess [56], López-Gómez [79], and López-
Gómez and Sabina [77]), which are easily adaptable to cover the case of general operators
subject to general boundary conditions of mixed type. Furthermore, such a coexistence
state is a global attractor if it is unique.

Thus, it su�ces to establish the uniqueness of the coexistence state for small di�usion
rates. According to the theory developed in the previous section (see Theorem 6.8), which
goes back to [79, 77], this is a consequence from the fact that all the coexistence states are
linearly stable.
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Let (u(d1,d2), v(d1,d2)) be a coexistence steady state of (6.22) for di�usion rates d1, d2 > 0.
Then, its linear stability follows from the positivity of the principal eigenvalue, σ0, of the
associated eigenvalue problem

[
d1L1 − λ+ 2au(d1,d2) + bv(d1,d2)

]
φ+ bu(d1,d2)ψ = σφ[

d2L2 − µ+ 2dv(d1,d2) + cu(d1,d2)

]
ψ + cv(d1,d2)φ = σψ

in Ω,

R1u = R2v = 0 on ∂Ω,

(6.23)

obtained by linearizing (6.22) at the given coexistence state. Since b(x)u(d1,d2)(x) > 0 and
c(x)v(d1,d2)(x) > 0 for all x ∈ Ω, (6.23) is a problem of quasi-cooperative type as those
analyzed in Section 5.1. Thus, the existence of the principal eigenvalue, σ0, follows from
Theorem 5.1. As a consequence of Theorem 5.4, σ0 > 0 if, and only if,

L(d1,d2) :=

(
d1L1 − λ+ 2au(d1,d2) + bv(d1,d2) bu(d1,d2)

cv(d1,d2) d2L2 − µ+ 2dv(d1,d2) + cu(d1,d2)

)
,

subject to the boundary operator (R1,R2), admits a strict supersolution, (φ(d1,d2), ψ(d1,d2)),
with φ(d1,d2), ψ(d1,d2) ∈W 2,p(Ω), for all p > N , and φ(d1,d2) 
 0, ψ(d1,d2) � 0 in Ω.

Since Ω̄ = Ωper, we have that

b(x)c(x) < a(x)d(x) for all x ∈ Ω̄.

Thus, τ ∈ C(Ω̄) exists such that

b(x)

a(x)
< τ(x) <

d(x)

c(x)
for all x ∈ Ω̄.

Indeed, we can take

τ :=
b+ ξ

a

for some ξ > 0 small enough. Now, for su�ciently small η > 0, according to Corollary
2.17, let us denote by θ1

η,τ and θ2
η,1 the (unique) solutions of{

ηL1θ = τθ − θ2 in Ω,

R1θ = 0 on ∂Ω,
and

{
ηL2θ = θ − θ2 in Ω,

R2θ = 0 on ∂Ω,

respectively, which, according to Theorem 4.1, which goes back to Theorem 2.21, converge
to τ and 1 uniformly in Ω̄ as η ↓ 0. Hence, η0 > 0 exists such that

b(x)

a(x)
<
θ1
η0,τ (x)

θ2
η0,1

(x)
<
d(x)

c(x)
for all x ∈ Ω̄,

and so, ε > 0 exists such that

a(x)θ1
η0,τ (x)− b(x)θ2

η0,1(x) > ε > 0

and
d(x)θ2

η0,1(x)− c(x)θ1
η0,τ (x) > ε > 0
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for all x ∈ Ω̄. Next, we will show that, for su�ciently small d1, d2 > 0, the pair

(φ(d1,d2), ψ(d1,d2)) := (θ1
η0,τ ,−θ

2
η0,1)

provides us with the desired supersolution of [L(d1,d2); (R1,R2),Ω]. Indeed, thanks to
Theorem 4.4,

lim
(d1,d2)→(0,0)

(u(d1,d2), v(d1,d2)) = (u∗, v∗) =
(
λd−µb
ad−bc ,

µa−λc
ad−bc

)
uniformly in Ω̄,

and hence, applying L(d1,d2) yields

(d1L1 − λ+ 2au(d1,d2) + bv(d1,d2))θ
1
η0,τ − bu(d1,d2)θ

2
η0,1

= d1L1θ
1
η0,τ − (λ− au(d1,d2) − bv(d1,d2))θ

1
η0,τ + (aθ1

η0,τ − bθ
2
η0,1)u(d1,d2)

> d1L1θ
1
η0,τ − (λ− au(d1,d2) − bv(d1,d2))θ

1
η0,τ + εu(d1,d2)

d1,d2→0−−−−−→ −(λ− au∗ − bv∗)θ1
η0,τ + εu∗ = εu∗ > 0

and, similarly,

cv(d1,d2)θ
1
η0,τ − (d2L2 − µ+ 2dv(d1,d2) + cu(d1,d2))θ

2
η0,1

= −d2L2θ
2
η0,1 + (µ− dv(d1,d2) − cu(d1,d2))θ

2
η0,1 − (dθ2

η0,1 − cθ
1
η0,τ,)v(d1,d2)

< −d2L2θ
2
η0,1 + (µ− dv(d1,d2) − cu(d1,d2))θ

2
η0,1 − εv(d1,d2)

d1,d2→0−−−−−→ (µ− dv∗ − cu∗)θ2
η0,1 − εv∗ = −εv∗ < 0,

with uniform convergence in Ω̄. By the choice of φ(d1,d2) and ψ(d1,d2), they are independent
of (d1, d2) and satisfy

R1φ(d1,d2) = R2ψ(d1,d2) = 0 on ∂Ω.

This ends the proof.

Naturally, the technical device introduced in the proof of Theorem 6.9 can be also
adapted to derive a substantial generalization of Theorem 1.1 of Hutson, Lou and Mis-
chaikow [65], which was established for the −∆ operator under non-�ux boundary con-
ditions. Note that here we are dealing with a more general class of di�erential operators
under mixed boundary conditions of Robin type. Precisely, Theorem 6.9 can be extended
to cover the next class of reaction-di�usion systems

∂u
∂t + d1L1u = uf(u, v, x)
∂v
∂t + d2L2v = vg(u, v, x)

in Ω× (0,+∞),

R1u = R2v = 0 on ∂Ω× (0,+∞),

u(·, 0) = u0 > 0, v(·, 0) = v0 > 0, in Ω,

(6.24)

under the following general assumptions on f and g emphasizing the fact that the system
must be of competitive type:

(H1) f, g : R× R× Ω̄→ R are of class C1 in each variable.
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(H2) For every u, v ≥ 0 and x ∈ Ω̄, ∂wf(u, v, x) < 0 and ∂wg(u, v, x) < 0 where w ∈ {u, v}.

(H3) There exists a positive constant M such that f(M, 0, x) < 0, f(0,M, x) < 0,
g(M, 0, x) < 0 and g(0,M, x) < 0 for every x ∈ Ω̄.

(H4) For every x ∈ Ω̄, there exists a unique (u∗(x), v∗(x)) in the non-negative cone
{(u, v) ∈ R2 : u, v ≥ 0} such that f(u, v, x) = 0 and g(u, v, x) = 0. Moreover,
u∗(x) > 0 and v∗(x) > 0 for all x ∈ Ω̄.

(H5) For every x ∈ Ω̄, (∂uf∂vg − ∂vf∂ug)|(u∗(x),v∗(x),x) > 0.

According to (H2) and (H5), for every x ∈ Ω̄, the linearization of the non-spatial model at
(u∗(x), v∗(x)), (

u∗(x)∂uf(u∗(x), v∗(x), x) u∗(x)∂vf(u∗(x), v∗(x), x)
v∗(x)∂ug(u∗(x), v∗(x), x) v∗(x)∂vg(u∗(x), v∗(x), x)

)
,

has two negative eigenvalues. In addition, by (H3), the remaining steady states of the non-
spatial model are linearly unstable. This entails (u∗(x), v∗(x)) to be a global hyperbolic
attractor for the non-spatial model with respect to the positive cone. Consequently, the
previous conditions are actually imposing that Ωper = Ω̄.

Theorem 6.10. Suppose (H1)-(H5). Then, δ > 0 exists such that, for every d1, d2 < δ,
the reaction-di�usion system (6.24) possesses a unique coexistence steady state, which is a

global attractor with respect to the positive solutions.

Proof. The proof follows the same patterns as the proof of Theorem 6.9. Let us consider
(u(d1,d2), v(d1,d2)), a coexistence steady state of (6.24). Its linear stability is a consequence of
the positivity of the principal eigenvalue of the linearization of (6.24) at (u(d1,d2), v(d1,d2)),
i.e., the principal eigenvalue of the operator L(d1,d2) de�ned through

L(d1,d2)

(
φ
ψ

)
=



[
d1L1 − f(u(d1,d2), v(d1,d2), ·)− u(d1,d2)∂uf(u(d1,d2), v(d1,d2), ·)

]
φ

−u(d1,d2)∂vf(u(d1,d2), v(d1,d2), ·)ψ[
d2L2 − g(u(d1,d2), v(d1,d2), ·)− v(d1,d2)∂vg(u(d1,d2), v(d1,d2), ·)

]
ψ

−v(d1,d2)∂ug(u(d1,d2), v(d1,d2), ·)φ


subject to the boundary conditions (R1,R2). Since ∂vf and ∂ug are negative in [0,+∞)2×
Ω̄ (see (H2)), the o�-diagonal entries of L(d1,d2),

−u(d1,d2)∂vf(u(d1,d2), v(d1,d2), ·) and − v(d1,d2)∂ug(u(d1,d2), v(d1,d2), ·)

are positive functions in Ω̄. Thus, L(d1,d2) is of quasi-cooperative type and hence satis�es
the hypothesis of Theorems 5.1 and 5.4. Therefore, its principal eigenvalue is positive if it
admits a strict supersolution, (φ, ψ), with φ > 0 and ψ < 0. In particular, it su�ces that
these functions satisfy R1φ = R2ψ = 0 on ∂Ω, whereas in Ω

[d1L1 − f(u(d1,d2), v(d1,d2), ·)− u(d1,d2)∂uf(u(d1,d2), v(d1,d2), ·)]φ
− u(d1,d2)∂vf(u(d1,d2), v(d1,d2), ·)ψ > 0

(6.25)
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and

[d2L2 − g(u(d1,d2), v(d1,d2), ·)− v(d1,d2)∂vg(u(d1,d2), v(d1,d2), ·)]ψ
− v(d1,d2)∂ug(u(d1,d2), v(d1,d2), ·)φ < 0.

(6.26)

In the special case covered by this theorem, i.e., when Ωper = Ω̄ and ∂Ω = Γ1
R = Γ2

R,
the singular perturbation results of Section 2.5 and Chapter 4 can be adapted to cover
the slightly more general Kolmogorov system of competitive type (6.24) in order to obtain
that

lim
(d1,d2)→(0,0)

(
u(d1,d2), v(d1,d2)

)
= (u∗, v∗) uniformly in Ω̄.

As the corresponding proofs follow mutatis mutandis the general patterns of the proofs of
Section 2.5 and Chapter 4, and a version is provided in Lemma 3.3 of Hutson, Lou and
Mischaikow [65], its technical details are omitted here.

Thus, thanks to (H5), it follows that(
∂uf∂vg − ∂vf∂ug

)
(u(d1,d2)(x), v(d1,d2)(x), x) > 0

for every x ∈ Ω̄ and su�ciently small d1, d2 > 0. Hence, by (H2), there exists a function
τ ∈ C(Ω̄) such that(

∂vf

∂uf

)
(u(d1,d2)(x), v(d1,d2)(x), x) < τ(x) <

(
∂vg

∂ug

)
(u(d1,d2)(x), v(d1,d2)(x), x).

Subsequently, we consider the same positive solutions, θ1
η0,τ and θ2

η0,1
, as in the proof of

Theorem 6.9, with η0 small enough so that(
∂vf

∂uf

)
(u(d1,d2)(x), v(d1,d2)(x), x) <

θ1
η0,τ

θ2
η0,1

(x) <

(
∂vg

∂ug

)
(u(d1,d2)(x), v(d1,d2)(x), x)

for all x ∈ Ω̄ and su�ciently small d1, d2 > 0. Therefore, owing to (H2), ε > 0 exists such
that

∂vf(u(d1,d2)(x), v(d1,d2)(x), x)θ2
η0,1(x)− ∂uf(u(d1,d2)(x), v(d1,d2)(x), x)θ1

η0,τ (x) > ε > 0

and

∂ug(u(d1,d2)(x), v(d1,d2)(x), x)θ1
η0,τ (x)− ∂vg(u(d1,d2)(x), v(d1,d2)(x), x)θ2

η0,1(x) > ε > 0.

It remains to show that, for su�ciently small d1, d2 > 0, the vectorial function(
φ(d1,d2), ψ(d1,d2)

)
:=
(
θ1
η0,τ ,−θ

2
η0,1

)
,

satis�es (6.25) and (6.26). Indeed, by substituting, we �nd that[
d1L1 − f(u(d1,d2), v(d1,d2), ·)− u(d1,d2)∂uf(u(d1,d2), v(d1,d2), ·)

]
θ1
η0,τ

+ u(d1,d2)∂vf(u(d1,d2), v(d1,d2), ·)θ2
η0,1

= d1L1θ
1
η0,τ − f(u(d1,d2), v(d1,d2), ·)θ1

η0,τ

+ u(d1,d2)

[
∂vf(u(d1,d2), v(d1,d2), ·)θ2

η0,1 − ∂uf(u(d1,d2), v(d1,d2), ·)θ1
η0,τ

]
> d1L1θ

1
η0,τ − f(u(d1,d2), v(d1,d2), ·)θ1

η0,τ + εu(d1,d2)



162 Chapter 6. Uniqueness of the coexistence state. Global dynamics

and

lim
d1,d2→0

d1L1θ
1
η0,τ − f(u(d1,d2), v(d1,d2), ·)θ1

η0,τ + εu(d1,d2)

= −f(u∗, v∗, ·)θ1
η0,τ + εu∗ = εu∗ > 0

uniformly in Ω̄. Similarly,

−
[
d2L2 − g(u(d1,d2), v(d1,d2), ·)− v(d1,d2)∂vg(u(d1,d2), v(d1,d2), ·)

]
θ2
η0,1

− v(d1,d2)∂ug(u(d1,d2), v(d1,d2), ·)θ1
η0,τ

= −d2L2θ
2
η0,1 + g(u(d1,d2), v(d1,d2), ·)θ2

η0,1

− v(d1,d2)

[
∂ug(u(d1,d2), v(d1,d2), ·)θ1

η0,τ − ∂vg(u(d1,d2), v(d1,d2), ·)θ2
η0,1

]
< −d2L2θ

2
η0,1 + g(u(d1,d2), v(d1,d2), ·)θ2

η0,1 − εv(d1,d2)

and

lim
d1,d2→0

−d2L2θ
2
η0,1 + g(u(d1,d2), v(d1,d2), ·)θ2

η0,1 − εv(d1,d2)

= g(u∗, v∗, ·)θ2
η0,1 − εv∗ = −εv∗ < 0

uniformly in Ω̄. Note that, by (H4), u∗ and v∗ are positive and separated away from zero
on Ω̄. This ends the proof.

6.2.1 Optimality of the uniqueness result

Theorem 6.9 is optimal in the sense that if condition Ωper = Ω̄ fails to be true in an
arbitrarily small ball, Bε(x0), centered at some x0 ∈ Ω with radius ε > 0, where the non-
spatial model exhibits a founder control competition (in other words, Bε(x0) ⊂ Ωbi), then,
owing to Theorem 5.16, (6.22) might admit at least three coexistence states for su�ciently
small di�usion rates. A possible strategy to realize what is going on consists in modeling
this change of behavior through some additional parameter incorporated to the setting of
the model, in order to mimic such transition in a continuous way. Let a(x), d(x), b(x) and
c(x) be four positive continuous functions on Ω̄ such that for some x0 ∈ Ω

a(x0)

c(x0)
=
λ(x0)

µ(x0)
=

b(x0)

d(x0)
, (6.27)

while
a(x)

c(x)
>
λ(x)

µ(x)
>

b(x)

d(x)
for all x ∈ Ω̄ \ {x0}. (6.28)

For instance, the one-dimensional choices in Ω = (−1, 1) given by

a(x) = d(x) = 2, λ(x) = µ(x) = 1, b(x) = c(x) = 2− x2, x ∈ [−1, 1], (6.29)

satisfy (6.27) and (6.28) with x0 = 0. Next, we consider (6.22) for these choices of λ(x),
µ(x), a(x), d(x), and (b, c) := (bρ, cρ), where

bρ(x) := ρb(x), cρ(x) := ρc(x), x ∈ Ω̄, ρ > 0,
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where ρ is regarded as a parameter measuring the intensity of the aggressions between the
antagonist species, u and v. According to (6.27) and (6.28), it becomes apparent that, for
every ρ ∈ (0, 1),

a(x)

ρc(x)
=
a(x)

c(x)
>
λ(x)

µ(x)
>
b(x)

d(x)
=
ρb(x)

d(x)
for all x ∈ Ω̄.

Consequently, in such range of values of ρ, Ωper = Ω̄ and, owing to Theorem 6.9, (6.22)
possesses a unique (linearly stable) coexistence state, which is a global attractor with
respect to the positive solutions of (4.1) for su�ciently small d1 and d2. By construction,
the condition Ωper = Ω̄ fails to be true at ρ = 1, where Ωper = Ω̄ \ {x0}, as well as for
ρ > 1 su�ciently close to 1, where there are a maximal ε1 := ε1(ρ) > 0 and a minimal
ε2 := ε2(ρ) > ε1 such that

Bε1(x0) ⊂ Ωbi and Ω̄ \Bε2(x0) ⊂ Ωper.

Actually, ε2(ρ) can be taken arbitrarily small by choosing ρ > 1 su�ciently close to 1, i.e.,
limρ↓1 ε2(ρ) = 0. In other words, for ρ > 1 su�ciently close to 1, the main assumption of
Theorem 6.9 is `almost' satis�ed, except for a small ball centered at x0, Bε2(x0), where
Ωbi 6= ∅. Thus, thanks to the multiplicity result delivered in Theorem 5.16, at least for
the symmetric choice (6.29) with d1 = d2, the problem (6.22) might exhibit, in general,
at least three coexistence states for su�ciently small di�usion rates. Figure 6.1 shows an
admissible bifurcation diagram of coexistence states in terms of the parameter ρ.

Figure 6.1: An admissible bifurcation diagram of u(d1,d2,ρ) versus ρ.

As one cannot represent the entire functions on the ordinate axis, Figure 6.1 plots,
for small �xed values of d1 and d2, the components u(d1,d2,ρ) of the coexistence states
(u(d1,d2,ρ), v(d1,d2,ρ)) of (6.22) versus the continuation parameter ρ using a continuous line,
together with the u-components of the unique coexistence state and the semitrivial positive
solutions of the associated non-spatial model with dashed lines, i.e.,(

λd− µb
ad− bc

,
µa− λc
ad− bc

)
=

(
λd− µρb
ad− ρ2bc

,
µa− λρc
ad− ρ2bc

)
,

(
λ

a
, 0

)
and

(
0,
µ

d

)
.

As ρ < 1, the assumptions of Theorem 6.9 hold and the unique coexistence state of
(6.22) is a global attractor for the component-wise positive solutions of (4.1). Similarly, the
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coexistence steady state of the non-spatial model is a global attractor for its component-
wise positive solutions, and each of the semitrivial positive steady states is linearly unstable.
Note that, according to Theorem 4.4, u(d1,d2,ρ) can be taken as close as we wish to λd−µb

ad−bc by
choosing d1 and d2 su�ciently small. According to Theorem 5.16, as ρ crosses some critical
value, ρ0(d1, d2) ∼ 1, the principal eigenvalue, say σ1(d1, d2, ρ), of the linearized system
at the coexistence state that perturbs from the coexistence steady state of the non-spatial
model crosses zero and becomes negative, provoking a pitchfork bifurcation to, at least, two
additional coexistence states of (6.22), which, according to the linearized stability principle,
[25], should be linearly stable. As d1, d2 → 0 we conjecture that these stable coexistence
states approximate each of the (linearly stable) semitrivial positive steady states of the
non-spatial model, and that

lim
d1,d2→0

ρ0(d1, d2) = 1.

From a technical point of view, the fact that σ1(d1, d2, ρ) changes sign as ρ crosses ρ0(d1, d2)
for su�ciently small d1 and d2 shows how the proof of Theorem 6.9 works out exclusively
when Ωper = Ω̄.

Summarizing, when the coe�cients of the model move away from their original values
where Ωper = Ω̄ to any other situation case such that Ωper is a proper subset of Ω̄ and Ωbi

is non-empty, the principal eigenvalue of the global attractor looses positivity crossing zero
just when Ωbi becomes non-empty. Since the fact that

lim
d1,d2→0
ρ↑1

σ1(d1, d2, ρ) = 0

is exclusively based on the values of the coe�cients of the model for ρ ≤ 1, it becomes
apparent that actually this is the main technical di�culty for getting general uniqueness
results in truly spatially heterogeneous landscapes, where permanence and dominance re-
gions, i.e., Ωper, Ωu

do and Ωv
do, can coexist within the same habitat, in the sense that the

proof Theorem 6.9 cannot be adapted to treat these general situations. However, this
di�culties are overcome for a wide family of models in the next section through the use of
Picone's Identity.

6.3 Global uniqueness under low competition

This section derives from Picone's identity, as stated in Theorem 3.1, a general su�cient
condition so that every coexistence state of a general class of di�usive Lotka�Volterra low
competition systems is linearly stable, which entails their uniqueness. Note that it is said
that low competition occur whenever

bc � ad in Ω.

Unlike previous sections, here we assume that, for every i = 1, 2, Li is an uniformly
elliptic second order self-adjoint operator of the form

Li := −div(Ai∇·) + Ci,

where Ai ∈Msym
N (C1(Ω̄)) is de�nite positive, and Ci ∈ C(Ω̄).
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More precisely, throughout this section the linear stability of the coexistence steady
states of (4.1) is established under low competition if the estimate (6.31), involving the
coe�cients a, b, c, and d, and the functions

F±(k) :=
1

8

(
27− 18k − k2 ± (9− k)3/2(1− k)1/2

)
, k ∈ [0, 1], (6.30)

holds. The precise pro�le of both F+ and F− is plotted in Figure 6.2. In particular, it shows
that strict low competition in the whole Ω̄ facilitates the linear stability of all coexistence
steady states, with independence of the values of the di�usion rates, d1 and d2, and the
growth rates, λ and µ.
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Figure 6.2: Plots of the functions F− and F+ with respect to k.

The main result of this section can be stated as follows.

Theorem 6.11. Suppose that κ := bc
ad � 1 in Ω, and that

max
Ω̄

(
ad2

c3
F−(κ)

)
≤ min

Ω̄

(
ad2

c3
F+(κ)

)
, (6.31)

with F± de�ned as in (6.30).Then, every coexistence state of (4.2) is linearly stable.

Proof. Let (u, v) be a coexistence state of (4.2). Then, the linearized stability of (u, v)
as an steady-state solution of (4.1) is given by the signs of the eigenvalues of the linear
eigenvalue problem 

[d1L1 − λ+ 2au+ bv]ϕ+ buψ = σϕ in Ω,

[d2L2 − µ+ 2dv + cu]ψ + cvϕ = σψ in Ω,

B1ϕ = B2ψ = 0 on ∂Ω.

(6.32)

Since b(x)u(x) > 0 and c(x)v(x) > 0 for all x ∈ Ω, it follows from Theorem 5.1, which
goes back to [7, Th. 1.3], among other references, that (6.32) possesses a unique principal
eigenvalue, σ0, associated with it there is an eigenfunction (ϕ,ψ) with ϕ� 0 and ψ � 0.
Note that [7, Th. 1.3] extends the �ndings of [90] to cover our general setting even in the
context of periodic-parabolic problems.

Particularizing (6.32) at σ = σ0, multiplying the �rst equation of (6.32) by u and using
the u-equation of (4.2) yields

σ0uϕ = ud1L1ϕ− ϕu(λ− au− bv) + u2(aϕ+ bψ)

= d1(uL1ϕ− ϕL1u) + u2(aϕ+ bψ).
(6.33)
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Similarly, multiplying the second equation of (6.32) by v and using the v-equation of (4.2),
it is easily seen that

σ0vψ = vd2L2ψ − ψv(µ− dv − cu) + v2(dψ + cϕ)

= d2(vL2ψ − ψL2v) + v2(dψ + cϕ).
(6.34)

Multiplying (6.33) and (6.34) by ϕ2

u2 and ψ2

v2 , respectively, and integrating in Ω it becomes
apparent that

σ0

∫
Ω

ϕ3

u
= d1

∫
Ω

(ϕ
u

)2
(uL1ϕ− ϕL1u) +

∫
Ω
ϕ2(aϕ+ bψ),

σ0

∫
Ω

ψ3

v
= d2

∫
Ω

(
ψ

v

)2

(vL2ψ − ψL2v) +

∫
Ω
ψ2(dψ + cϕ).

On the other hand, applying Theorem 3.1 with g(t) = t2 and using the uniform ellipticity
of L1 and L2 provides us with the estimates∫

Ω

(ϕ
u

)2
(uL1ϕ− ϕL1u) =

∫
Ω

2uϕ〈∇ϕ
u
,A1∇

ϕ

u
〉 −

∫
∂Ω

(ϕ
u

)2
[DuRϕ−DϕRu]

=

∫
Ω

2uϕ〈∇ϕ
u
,A1∇

ϕ

u
〉 ≥ 0,

(6.35)

and ∫
Ω

(
ψ

v

)2

(vL2ψ − ψL2v) =

∫
Ω

2vψ〈∇ψ
v
,A2∇

ψ

v
〉 −

∫
∂Ω

[DvRψ −DψRv]

=

∫
Ω

2vψ〈∇ψ
v
,A2∇

ψ

v
〉 ≤ 0,

(6.36)

where we have used that

Du = Dϕ = 0 on Γ1
D, Ru = Rϕ = 0 on Γ1

R,

Dv = Dψ = 0 on Γ2
D, Rv = Rψ = 0 on Γ2

R,

as well as the fact that u, v, φ � 0 and ψ � 0 in Ω. Hence, the inequalities derived in
(6.35) and (6.36) yield the estimates

σ0

∫
Ω

ϕ3

u
≥
∫

Ω
ϕ2(aϕ+ bψ) and − σ0

∫
Ω

ψ3

v
≥ −

∫
Ω
ψ2(cϕ+ dψ).

Therefore, for every positive constant ξ > 0, we �nd that

σ0

(∫
Ω

ϕ3

u
− ξ

∫
Ω

ψ3

v

)
≥
∫

Ω

[
ϕ2(aϕ+ bψ)− ξψ2(cϕ+ dψ)

]
. (6.37)

Next, we will ascertain the values of ξ > 0 for which

ϕ2(aϕ+ bψ)− ξψ2(cϕ+ dψ) ≥ 0 in Ω.
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Dividing by −ψ3 and setting y := −ϕ/ψ, it su�ces to show that, for every y ≥ 0, ξ satis�es

y2(ay − b)− ξ(cy − d) ≥ 0 in Ω.

Further, setting z = c
dy ≥ 0 and dividing by d yields

ad2

c3
z2

(
z − bc

ad

)
≥ ξ(z − 1) in Ω. (6.38)

Note that, since κ = bc
ad � 1 in Ω̄, (6.38) holds if z ∈ {0, 1} for every ξ > 0. Hence, the

inequality (6.38) can be split into

ad2

c3
z2 z − κ
z − 1

≥ ξ in Ω for all z > 1,

and
ad2

c3
z2 z − κ
z − 1

≤ ξ in Ω for all z ∈ (0, 1).

Therefore, in order to get (6.38) for all z ≥ 0 and x ∈ Ω it su�ces to make sure that the
constant ξ satis�es

ad2

c3
sup

0<z<1

(
z2 z − κ
z − 1

)
≤ ξ ≤ ad2

c3
inf
z>1

(
z2 z − κ
z − 1

)
in Ω. (6.39)

Subsequently we consider the function

F (z; k) := z2 z − k
z − 1

, z > 0, z 6= 1, k ∈ (0, 1].

Note that here k is a constant, not a function, like κ := κ(x). By di�erentiating with
respect to z yields

dF

dz
(z; k) =

(3z2 − 2kz)(z − 1)− (z3 − kz2)

(z − 1)2
=

2z3 − (3 + k)z2 + 2kz

(z − 1)2
.

Thus, the critical points of F (·, k) are given by the roots of

(2z2 − (3 + k)z + 2k)z = 0,

which are z = 0 plus

z±(k) :=
3 + k ±

√
(3 + k)2 − 16k

4
=

3 + k ±
√

(9− k)(1− k)

4
.

It is straightforward to check that if k < 1, then F (·, k) has local minimum at z+(k) ∈
(1,+∞), which is global in z ∈ (1 +∞), and it has a local maximum at z−(k) ∈ (0, 1),
which is global in z ∈ [0, 1). Moreover,

F±(k) := F (z±(k); k) = z2
±(k)

z±(k)− k
z±(k)− 1

=

(
(3 + k)2 − 8k ± (3 + k)

√
(9− k)(1− k)

)(
3− 3k ±

√
(9− k)(1− k)

)
8
(
−1 + k ±

√
(9− k)(1− k)

)

=

(
(3 + k)2 − 8k ± (3 + k)

√
(9− k)(1− k)

) (
3
√

1− k ±
√

9− k
)

8
(
−
√

1− k ±
√

9− k
)
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Figure 6.3: Plot of the function F for k = 0.8, together with its relative minimum and
maximum.

and, rationalizing and simplifying, we �nd that

F±(k) =

(
(3 + k)2 − 8k ± (3 + k)

√
(9− k)(1− k)

)(
3− k ±

√
(9− k)(1− k)

)
16

=
1

8

[
−k2 − 18k + 27± (9− k)

√
(9− k)(1− k)

]
.

Hence, the condition (6.39) can be rewritten, equivalently, as

ad2

c3
F−(κ) ≤ ξ ≤ ad2

c3
F+(κ) in Ω. (6.40)

Therefore, if there exists a constant ξ > 0 satisfying (6.40), then (6.37) yields σ0 ≥ 0.
Naturally, the condition (6.31) guarantees the existence of ξ > 0 such that (6.40) holds.
Let us check that actually σ0 > 0. Indeed, arguing by contradiction, assume that σ0 = 0.
We claim that, in such case,∫

Ω
2uϕ〈∇ϕ

u
,A1∇

ϕ

u
〉 =

∫
Ω

2vψ〈∇ψ
v
,A2∇

ψ

v
〉 = 0.

Indeed, if either ∫
Ω

2uϕ〈∇ϕ
u
,A1∇

ϕ

u
〉 > 0, or

∫
Ω

2vψ〈∇ψ
v
,A2∇

ψ

v
〉 < 0,

then,

σ0

∫
Ω

ϕ3

u
>

∫
Ω
ϕ2(aϕ+ bψ), or − σ0

∫
Ω

ψ3

v
> −

∫
Ω
ψ2(cϕ+ dψ),

respectively and, hence, by the choice of ξ, we �nd that

0 = σ0

(∫
Ω

ϕ3

u
− ξ

∫
Ω

ψ3

v

)
>

∫
Ω

[
ϕ2(aϕ+ bψ)− ξψ2(cϕ+ dψ)

]
≥ 0,

which is a contradiction. Thus, since A1 and A2 are de�nite positive, it becomes apparent
that ϕ and ψ are proportional to u and v, respectively. Consequently, going back to (6.33)
and (6.34), we �nd that

0 = ϕ2(aϕ+ bψ) and 0 = ψ2(dψ + cϕ) in Ω,
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or, equivalently,

0 = aϕ+ bψ = dψ + cϕ in Ω,

which implies ad = bc in Ω and contradicts our assumption that

κ =
bc

ad
� 1 in Ω.

This contradiction shows that σ0 > 0 and ends the proof.

The next result provides us with easy-to-check conditions on the coe�cients a, b, c and
d, so that Theorem 6.11 holds. It is [38, Th. 9.1].

Corollary 6.12. Assume that bc � ad in Ω and that ad2

c3
, or bd

c2
, or b2

ac , or
b3

a2d
, is constant

on Ω. Then, every coexistence state of (4.2) is linearly stable.

Proof. It su�ces to show that, under the assumptions, (6.31) holds. On the one hand,
setting κ := bc

ad , we have that

bd

c2
= κ

ad2

c3
,

b2

ac
= κ2ad

2

c3
,

b3

a2d
= κ3ad

2

c3
,

On the other hand, for every k ∈ [0, 1],

F+(k)− 1 =
1

8

[
−k2 − 18k + 19 + (9− k)

√
(9− k)(1− k)

]
=

1

8

[
(19 + k)(1− k) + (9− k)

√
(9− k)(1− k)

]
≥ 0

and

k3 − F−(k) =
1

8

[
8k3 + k2 + 18k − 27 + (9− k)

√
(9− k)(1− k)

]
=

1

8

[
−(8k2 + 9k + 27)(1− k) + (9− k)

√
(9− k)(1− k)

]
=

1

8

16k3(1− k)(4k2 + 5k + 23)

(8k2 + 9k + 27)(1− k) + (9− k)
√

(9− k)(1− k)
≥ 0.

Thus,

F−(k) ≤ k3 ≤ k2 ≤ k ≤ 1 ≤ F+(k) for all k ∈ [0, 1],

which can be appreciated on Figure 6.2. Hence,

ad2

c3
F−

( bc
ad

)
≤ b3

a2d
≤ b2

ac
≤ bd

c2
≤ ad2

c3
≤ ad2

c3
F+

( bc
ad

)
in Ω̄.
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Note that, in particular, Corollary 6.12, and thus Theorem 6.11, always applies when
a, b, c and d are positive constants such that κ = bc/ad < 1, situation studied by He and
Ni [55, Th. 3.4 (iii)] for the choice

L1 = L2 = −∆

under non-�ux boundary conditions. However, Theorem 6.11 provides us with the linear
stability of the coexistence states of (4.2) not only in the case of constant coe�cients,
but also in a wide range of situations where two among the coe�cients a, b, c and d are
arbitrary while the remaining ones are chosen so that all assumptions of Theorem 6.11 are
ful�lled. For example, choose c and d arbitrary and pick η > 0, take

a :=
ηc3

d2
,

and �nally choose any function b such that

b �
ad

c
=
ηc2

d
.

Note that b can be arbitrary by choosing η su�ciently large. Another advantage of Theorem
6.11 is that it provides us with a method that guarantees the linearized stability of any
coexistence state though an easily computable condition.

It is worth-emphasizing that the growth rates of the species, λ and µ, do not play any
role in Theorem 6.11. However, they are ultimately responsible of the dynamics of the
associated non-spatial model (d1 = d2 = 0). Thus, for any given domain Ω and functions
a, b, c and d satisfying the hypothesis of Theorem 6.11, λ and µ can be chosen so that, for
every x ∈ Ω, the non-spatial model (4.5) can exhibit any desired low-competition dynamics,
as soon as it respects the continuity of λ and µ. This feature reveals the huge versatility
of Theorem 6.11, for as it can be applied independently of the underlying non-spatial
dynamics of (4.5).

Furthermore, Theorem 6.11 is optimal in the sense that it is not true in its greatest
generality (non-dependence on d1, d2), if κ(x) ≥ 1 for some x ∈ Ω, as shown by the
multiplicity result for the symmetric model delivered in Theorem 5.16.

To conclude, the next result characterizes the existence and uniqueness of coexistence
solutions in terms of the existence and linearized stability of the semitrivial solutions,
(θ{d1,λ,a}, 0) and (0, θ{d2,µ,d}). Such characterization constitute the main result of this
chapter, which can be stated as follows.

Theorem 6.13. Assume that κ = bc
ad � 1 in Ω. If

max
Ω̄

(
ad2

c3
F−(κ)

)
≤ min

Ω̄

(
ad2

c3
F+(κ)

)
,

with F± de�ned as in (6.30), then:

(a) If both semitrivial solutions exist and are linearly unstable, then (4.2) admits a unique

coexistence state. Moreover, it is a global attractor for the component-wise positive

solutions of (4.1).
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(b) In any other case the system (4.2) does not admit any coexistence state.

(c) Both semitrivial solutions of (4.2) cannot be linearly stable simultaneously.

(d) If a semitrivial solution of (4.2) is linearly stable, then it is a global attractor for the

component-wise positive solutions of (4.1).

(e) If the trivial solution of (4.2) is linearly stable, then it is a global attractor for the

component-wise positive solutions of (4.1).

In particular, if Ωper 6= ∅, or Ωu
do 6= ∅ and Ωv

do 6= ∅, then (a) holds for su�ciently small

d1, d2 > 0 by Corollary 5.12.

Proof. Much like in the proof of Theorem 6.8, the equality (6.21) holds by the additivity
property of the �xed point index (see Theorem 11.1 of Amann [3]), provided both semitriv-
ial states exist. Thus, as a straightforward consequence of Lemmas 6.3, 6.4, 6.6, and 6.7,
the system (4.2) admits a unique coexistence state in the next case

(A) If σ1[d1L1 − λ, ;B1,Ω] < 0, σ1[d2L2 − µ;B2,Ω] < 0, and

σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] < 0, σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] < 0,

i.e., if both semitrivial states do exist and are linearly unstable.

On the other hand, (4.2) cannot admit a coexistence state in each of the following cases:

(B) If σ1[d1L1 − λ;B1,Ω] < 0, σ1[d2L2 − µ;B2,Ω] < 0, and

σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] < 0, σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] > 0.

(C) If σ1[d1L1 − λ;B1,Ω] > 0 and σ1[d2L2 − µ;B2,Ω] < 0, which implies σ1[d1L1 − λ+
bθ{d2,µ,d};B1,Ω] > 0.

(D) If σ1[d1L1−λ;B1,Ω] > 0, σ1[d2L2−µ;B2,Ω] > 0, i.e., there are no semitrivial states.

(E) If σ1[d1L1 − λ;B1,Ω] < 0 and σ1[d2L2 − µ;B2,Ω] > 0, which implies σ1[d2L2 − µ+
cθ{d1,λ,a};B2,Ω] > 0.

(F) If σ1[d1L1 − λ;B1,Ω] < 0, σ1[d2L2 − µ;B2,Ω] < 0, and

σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] > 0, σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] < 0.

By the additivity property of the �xed point index, should they exist, the semitrivial
solutions cannot be simultaneously linearly stable. All these regions have been represented
in Figure 6.4 in the special case when λ and µ are positive constants.

It remains to make sure that there are no coexistence states on each of the following
limiting cases:

(I) σ1[d1L1 − λ;B1,Ω] < 0 and σ1[d2L2 − µ;B2,Ω] = 0, or σ1[d1L1 − λ;B1,Ω] = 0 and
σ1[d2L2 − µ;B2,Ω] < 0.
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(II) σ1[d1L1 − λ;B1,Ω] ≥ 0 and σ1[d2L2 − µ;B2,Ω] = 0, or σ1[d1L1 − λ;B1,Ω] = 0 and
σ1[d2L2 − µ;B2,Ω] ≥ 0.

(III) σ1[d1L1−λ;B1,Ω] < 0 and σ1[d2L2−µ+cθ{d1,λ,a};B2,Ω] = 0, or σ1[d2L2−µ;B2,Ω] <
0 and σ1[d1L1 − λ+ bθ{d2,µ,d};B1,Ω] = 0.

Figure 6.4: Plot of an admissible (λ, µ)-plane for a problem whose coe�cients satisfy the
hypothesis of Theorem 6.13.

The non-existence in Cases (I) and (II) follows from the fact that the existence of both
semitrivial steady states is necessary for the existence of coexistence steady states. Indeed,
if there exists a coexistence steady state, (u0, v0), then, by the monotonicity of the principal
eigenvalue with respect to the potential established in Theorem 2.12(a), we have that

0 = σ1[d1L1 − λ+ au0 + bv0;B1,Ω] > σ1[d1L1 − λ;B1,Ω]

and
0 = σ1[d2L2 − µ+ cu0 + dv0;B2,Ω] > σ1[d1L1 − µ;B2,Ω].

It should be noted that this argument also provides us with the non-existence in situations
(C), (D) and (E)

On the other hand, the non-existence in Case (III) will be proved through an argument
involving the implicit function theorem. Such argument reads as follows. Suppose that
(4.2) admits a coexistence state, (u0, v0), and, for every ε1, ε2 ∈ R, consider the problem

d1L1u = (λ+ ε1)u− au2 − buv in Ω,

d2L2v = (µ+ ε2)v − dv2 − cuv in Ω,

B1u = B2v = 0 on ∂Ω.

(6.41)

Note that (6.41) satis�es the hypothesis of Theorem 6.13 as soon as (4.2) does. Now,
the coexistence state (u0, v0) solves (6.41) for the choice (ε1, ε2) = (0, 0). Moreover, the
linearization of (6.41) with respect to (u, v), particularized at (ε1, ε2) = (0, 0), evaluated
at (u0, v0), is invertible, because, due to Theorem 6.11, its principal eigenvalue is positive.
Then, the implicit function theorem provides us with a smooth surface of coexistence
states for su�ciently small ε1, ε2. In particular, there exists ε0 such that (6.41) admits
a coexistence state for all ε1, ε2 ∈ [−ε0, ε0]. Furthermore, due to Theorem 6.11, these
coexistence states are linearly stable.
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Now, suppose that we are under the assumptions of the �rst part of Case (III), i.e.,

σ1[d1L1 − λ;B1,Ω] < 0 and σ1[d2L2 − µ+ cθ{d1,λ,a};B2,Ω] = 0,

and that (4.2) admits a coexistence state. Then, by the implicit function theorem, (6.41)
also admits a coexistence state with ε1 = 0 and ε2 = −ε0 for su�ciently small ε0 > 0.
Moreover,

σ1[d2L2 − (µ− ε0) + cθ{d1,λ,a};B2,Ω] > 0,

which �ts the situation (F) provided ε0 is chosen so that

σ1[d2L2 − (µ− ε0);B2,Ω] < 0.

This is impossible, as we already know that the problem cannot admit a coexistence state
in that situation.

To conclude the proof of Theorem 6.13, it su�ces to note that if (4.1) admits a unique
linearly stable steady state, and the remaining steady states are linearly unstable, or lin-
early neutrally stable, then the model (4.1) is compressive. Therefore, by Remark 33.2,
Theorem 33.3 and Theorem 34.1 of Hess [56], such a linearly stable steady state is a global
attractor for the component-wise positive solutions of (4.1).

Going back to Figure 6.4, and according to Theorem 6.13, we have that when (λ, µ) ∈
R2 is located in the shaded region of Figure 6.4, i.e., region (A), then (4.2) admits a unique
coexistence state which is a global attractor for the component-wise positive solutions.
Moreover, if (λ, µ) belongs to either regions (B), (C), (E) or (F), and the semi-axis between
them, then the stable semitrivial solution ((θ{d2,µ,d}) in (B) and (C), and (θ{d1,λ,a}, 0) in (E)
and (F)) is actually a global attractor for the component-wise positive solutions because
in those situations there are no coexistence states and the system is compressive towards
the appropriate semitrivial steady state (see Theorem 34.1 of Hess [56]). Finally, in region
(D) the trivial solution must be a global attractor with respect to the positive solutions of
(4.1).
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