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alumbrar el jard́ın mientras ellos se alumbran con las estrellas y la luna. Nosotros tenemos
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con el trino de los pájaros. Nosotros cocinamos en hornos microondas y ellos cocinan todo
con el sabor de la leña. Nosotros necesitamos muros y alarmas para protegernos y ellos
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Todo lo que ese niño descubrió en esa granja yo lo tuve desde pequeña, eso y más. Me
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wealth, giving me the reasons I needed to definitely return home, the support I needed

iii



these two years and the strength to face new things.
Thanks to Elvira, for everything you have guided and cared for me over these years.

Madrid has been more beautiful thanks to you. Thank you for understanding that,
although Madrid meant a great opportunity, coming home meant even more to me.

Thanks to the rest of the COSTA group, especially Samir, for guiding me during my
first steps in research. Thanks to all the co-authors of the papers included in this thesis.
Thanks to the staff of the Faculty of Computing, many of you have been teachers but
you have all been friends. Thanks to Pablo, Miguel and Jesús for welcoming me from the
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Resumen

Desde el comienzo de la computación automática a mediados del siglo pasado, el avance de
la informática ha ido ligado a una cada vez mayor importancia en todos los ámbitos de la
sociedad actual. La inclusión de procesos informáticos en la vida cotidiana y, en particular,
su inclusión en situaciones cŕıticas, no puede ir ligada solo a la generación del hardware y
el software, sino también al análisis y verificación de todos sus componentes. Mientras que
el análisis de hardware es crucial para la generación de la infraestructura informática y el
mantenimiento de la misma, detectando o prediciendo componentes que puedan funcionar
de manera errónea, el análisis de software se enfoca hacia el análisis del comportamiento
de los programas informáticos para abordar propiedades como la seguridad, la corrección o
la optimalidad. Dependiendo del tipo de análisis aplicado al software, podremos detectar
fragmentos de código potencialmente vulnerables, especificaciones incorrectas, aplicar
optimizaciones en base al coste máximo y mı́nimo de los programas, calcular el consumo
de recursos de un programa... Muchas veces este análisis es necesario para cumplir con
estándares de calidad de software y con estándares de seguridad, habiéndose desarrollado
en los últimos tiempos numerosas metodoloǵıas y herramientas para el análisis. Además,
la verificación y certificación del software durante el proceso de análisis ayuda a generar
programas que cumplan de manera eficiente los requisitos exigidos, comprobando la
credibilidad y precisión de los datos aportados y proporcionando certificados que pueden
usarse como pruebas formales de este comportamiento verificado.

El caṕıtulo dos de la tesis está dedicado a una generalización del análisis automático
de recursos en el ámbito de los programas abstractos, programas que contienen śımbolos
o marcadores para representar instrucciones o expresiones sin especificar. Estos śımbolos
aparecen habitualmente en reglas de transformación de programas usadas en refactorización,
compilación, optimización o paralelización de programas. Quantitative Abstract Execution
generaliza el análisis automático de recursos a un marco en el cual se manejan programas
abstractos para, de esta manera, poder realizar un análisis del efecto de las transformaciones
aplicadas a los programas. Este tipo de análisis se basa en componentes complejos que a
menudo son externos al análisis de coste, por lo que, además de realizar este análisis de
recursos, se añade al proceso de análisis la verificación y certificación de los resultados.
De esta manera, la precisión de las cotas es comprobada antes de generar los resultados
finales del análisis, generando además pruebas formales que pueden ser usadas en una
etapa de certificación de los resultados.

El análisis de recursos utilizado en Quantitative Abstract Execution está basado en la
inferencia de cotas superiores sobre el coste peor de los programas, ámbito al que se han
dedicado la mayoŕıa de los análisis de coste. Esto es debido a su amplia aplicación en el
análisis de propiedades de seguridad de los programas que impliquen requisitos de uso,
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análisis de aplicaciones de tiempo real donde los programas tienen un tiempo máximo
de ejecución, validación de aserciones de eficiencia... Sin embargo, hay otras dos cotas
importantes en el contexto del análisis de recursos: las cotas inferiores en el caso mejor
y las cotas inferiores en el caso peor. Sobre las cotas inferiores en el caso peor versa el
tercer caṕıtulo de esta tesis, en el cual se desarrolla un nuevo método para sintetizar cotas
inferiores en el caso peor de bucles enteros no deterministas. Esta técnica está basada en
la búsqueda de una función que acota por debajo el número de iteraciones que realiza un
bucle en el caso peor. La novedad más importante de esta técnica respecto a las anteriores
es la inclusión de especialización de los bucles mediante la adición de restricciones a
las posibles ejecuciones. Lo que se persigue con esta especialización es encontrar cotas
inferiores más precisas basándose en el hecho de que una cota inferior en el caso mejor
del bucle especializado es una cota inferior en el caso peor del bucle original, ya que las
restricciones añadidas a lo sumo reducen el espacio de posibles estados de ejecución del
programa. La efectividad de esta técnica ha sido comprobada en un amplio conjunto
de ejemplos, donde los resultados obtenidos han sido comparados con el sistema LoAT
[26, 27], referencia en la obtención de cotas inferiores en el caso peor. En la comparación

de los resultados se ha comprobado que esta técnica obtiene resultados iguales o incluso
mejores que los de LoAT.

La unificación de Quantitative Abstract Execution con la śıntesis de cotas inferiores
culmina los contenidos aportados por esta tesis en el caṕıtulo cuatro. Una de las aplicaciones
más importantes de las cotas inferiores en el caso peor es, junto con las cotas superiores,
la inferencia de cotas más exactas sobre el coste. Esto hace la combinación de ambas
cotas un resultado deseable, ya que en muchos casos no es posible calcular el coste exacto
de un programa pero śı una cota de este coste. La combinación de ambas cotas nos
da una información más ajustada sobre el coste exacto que puede tener el programa.
Quantitative Abstract Execution with Upper and Lower Bounds combina el análisis de
coste de cotas inferiores y superiores con la verificación y certificación de los resultados
obtenidos. El proceso de verificación da, de nuevo, la información necesaria para obtener
cotas e invariantes suficientemente precisos para la certificación de los resultados.

Dentro del marco de esta tesis, los resultados más importantes perseguidos han sido:

• Estudiar la inclusión del análisis de recursos en el contexto de programas abstractos.
Para ello, ha sido necesaria la extensión de los invariantes de los bucles para capturar
también el coste, llegando aśı al concepto de invariantes de coste, que recalan en
costes abstractos de programas y dan lugar a pos-condiciones sobre el coste.

• Desarrollo de un análisis de cotas inferiores del coste en el caso peor mediante
funciones que acotan por debajo el número de iteraciones de los bucles y la especialización
de los mismos.

• Unificación del análisis de coste de programas abstractos y de la inferencia de cotas
inferiores para la consecución de un análisis de programas abstractos más preciso.

Estos objetivos se han visto reflejados en las siguientes publicaciones:

• El trabajo publicado en FASE’21 [11] presenta la técnica de Quantitative Abstract
Execution, donde se parte del analizador de coste COSTA [7] y el sistema de
verificación KeY [43] para obtener y verificar el coste de programas abstractos,
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proporcionando los mecanismos para la certificación de los resultados. Este trabajo
fue nominado al “Best Paper” de EAPLS 2021 junto con otras tres publicaciones
del congreso de ETAPS 2021.

• El trabajo publicado en CAV’21 [9] contiene todos los resultados referentes a la
inferencia de cotas inferiores en el caso peor de bucles, mediante la especialización
de bucles y el uso de un resolutor Max-SMT.

• El trabajo enviado para su publicación en TOSEM (actualmente en proceso de
revisión) contiene los resultados más relevantes de la unificación de las dos publicaciones
anteriores [11, 9] para la inclusión en el análisis de coste de programas abstractos
no solo de cotas superiores sobre el coste sino también de cotas inferiores.
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Abstract

Since the beginning of automated computing in the middle of the last century, the
development of computer science has been linked to an increasing importance in all
areas of the current society. The inclusion of computer science processes in everyday
life and, in particular, its inclusion in critical situations, cannot go linked only to the
generation of hardware and software, but also to the analysis and verification of all its
components. While hardware analysis is crucial for the generation and maintenance of the
computation infrastructure, as it is able to detect or predict components that can have a
wrong behavior, software analysis focuses on analyzing the behavior of computer programs
to address properties such as security, correctness or optimality. Depending on the type
of analysis applied to the software, we can detect potential vulnerabilities in the code,
find incorrect specifications, apply optimizations based on the maximum and minimum
cost of the programs, calculate the resource consumption of a program... Frequently, this
analysis is necessary to fulfill software quality and security standards, which is reflected in
the big amount of methodologies and tools developed for analysis, especially in the past
years. In addition, the verification and certification of the software during the analysis
process helps to generate programs that efficiently fulfill the requirements, checking the
credibility and accuracy of the provided data and resulting on formal proofs that can be
used as certificates of this verified behavior.

The chapter two of the thesis is devoted to a generalization of automatic resource
analysis in the field of abstract programs, i.e. programs that contain placeholders to
represent unspecified statements or expressions. These placeholders usually appear in
program transformation rules used in refactoring, compilation, optimization or parallelization.
Quantitative Abstract Execution generalizes automatic resource analysis to a framework in
which abstract programs are analyzed in order to observe the effect of the transformations
applied to the programs. This type of analysis, however, requires very precise cost
estimations that are not always generated by a cost analysis, so in addition to performing
the resource analysis, the framework completes the process including verification and
certification. This way, the precision of the inferred bounds is checked before generating
the final results of the analysis, which include formal proofs that can be used in a
certification stage.

The resource analysis used in Quantitative Abstract Execution is based on the inference
of upper bounds on the worst-case cost of the programs; that are the bounds on which
most of the cost analysis have focused. This is due to its great application in the analysis
of security properties of programs that involve usage requirements, real-time application
analysis where programs have a maximum execution time, validation of efficiency assertions,
etc. However, there are two other important bounds in the context of resource analysis:
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lower bounds on the best-case cost and the lower bounds on the worst-case cost. The
chapter three of this thesis focuses on lower bounds on the worst-case cost, presenting
a new method that is able to synthesize these lower bounds in the case of integer non-
deterministic loops. This technique is based on finding a function that under-approximates
the number of iterations that a given loop performs at most. The most important novelty
of this technique, compared to the previous lower bounds analysis, is the inclusion of
specialization of the loops by adding constraints to the possible executions. What is
pursued with this specialization is to find more accurate lower bounds relying on that a
lower bound in the best-case cost of the specialized loop is a lower bound in the worst-case
cost of the original one. This comes from the fact that the specialization can reduce the
possible executions but never increase them. The effectiveness of this technique has been
proven in a wide set of examples, where the results obtained have been compared with the
LoAT system [27, 26], a system of reference for obtaining lower bounds in the worst-case
cost. While comparing the results, it has been found that the presented technique obtains
results that are equal to or even better than LoAT ones.

The combination of Quantitative Abstract Execution and Lower Bound Synthesis ends
the contributions of this thesis in Chapter four. One of the most important applications
of lower bounds on the worst-case cost is, together with upper bounds, to give a more
accurate cost estimation, as when both bounds match, then we have an exact cost. This
fact makes the combination of both bounds a desirable result, since in many cases in
cost analysis it is not is possible to calculate the exact cost but we can find a bound
on it. Quantitative Abstract Execution with Upper and Lower Bounds combines the cost
analysis of lower and upper bounds with the verification and certification of the obtained
results. The verification process gives, again, the necessary information to obtain bounds
and invariants precise enough for the certification of the results.

Within the framework of this thesis, the most important results have been:

• Study of the generalization of resource analysis to the context of abstract programs.
To achieve this, it has been necessary to extend the concept of loop invariant to
also capture the cost of the programs, which has given rise to the concept of cost
invariants. These cost invariants are based on abstract costs of programs, and they
give rise to cost postconditions that are used, later, when comparing the effect of
program transformations.

• Development of a lower bound on the worst-case cost analysis by means of specialization
of loops and functions that under-approximate their number of iterations.

• Combination of cost analysis of abstract programs and inference of lower bounds to
achieve a more precise abstract programs resource analysis.

The consecution of these objectives have given rise to the following publications:

• The work published in FASE’21 [11] presents the Quantitative Abstract Execution
technique, where the cost analyzer COSTA [7] and the KeY verification system [2]
are combined to obtain and verify the cost of abstract programs, providing the
mechanisms for the certification of the results. This work was proposed for the
“Best Paper” of EAPLS 2021 together with other three papers of ETAPS 2021.
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• The work published in CAV’21 [9] contains all the results concerning to the inference
of lower bounds on the worst-case cost of loops, by means of loop specialization and
the use of a Max-SMT solver.

• The work submitted for publication in TOSEM (currently under review) contains
the most relevant results of the combination of the two previous publications [9, 11],
where cost analysis of abstract programs is not only based on upper bounds but
also in lower bounds. This combination gives rise to Quantitative Abstract Execution
with Upper and Lower Bounds.
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Part I

Contents of the thesis
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Chapter 1

Introduction

1.1 Static Cost Analysis

Resource usage analysis, also known as cost analysis, aims at determining the number of
resources required to safely execute a given program. A resource can be any quantitative
aspect of the program, such as memory consumption, runtime, energy, execution steps...
We use the term cost model to denote any of these aspects. A cost model formally
describes how to measure the resource consumption, i.e., the cost that is associated with
each execution step.

Cost analysis techniques can be classified into dynamic and static. While dynamic
techniques consist in monitoring, testing and evaluating programs during runtime, static
techniques analyze the source code of the program without executing it. This difference in
the way the analysis is made leads also to a main difference in the results of both analysis:
while dynamic analysis results are only valid for a particular input (or set of inputs),
static analysis yields a result that is valid for infinite families of inputs, as it examines
all possible execution paths. Analyzing all possible paths makes that static analysis can
detect situations that might not be taken into account in a dynamic situation, when they
are not visible in the set of traces to be analyzed. On the other hand, performing a static
cost analysis requires relying on formal methods that mathematically prove the result for
all possible inputs, which can become undoable and/or inaccurate in some cases. This fact
leads dynamic analysis to be especially useful to detect situations which are too complex
to be discovered by static techniques. Both types of analysis can be used complementarily
to reach a stronger result. In what follows in this thesis, we will explore concepts related
to the field of static cost analysis.

1.1.1 Automated Cost Analysis

The first automated analysis was developed in the 70s [45] for a strict functional language
and, since then, a plethora of techniques has been introduced to handle the peculiarities
of the different programming languages (see, e.g., for Integer programs [17], for Java-like
languages [5, 38], for concurrent and distributed languages [32], for probabilistic programs
[37, 31], etc.) and to increase their accuracy (see, e.g., [29, 39, 24, 40]).

The outcome of a static analyzer is, typically, a function that maps input values to
the cost of executing the program on such inputs. However, rather than having an exact
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CHAPTER 1. INTRODUCTION

cost, we rely on bounds over the cost, as in most cases it is not possible to find an exact
solution but it is possible to find a bound.

In the seminal work of Wegbreit [45], cost analysis is based on establishing recurrence
relations that capture the cost of the program and then transforming them into closed-
form bounds without recurrences. In [4], it is introduced an automated cost analysis
based on cost relations, an extended form of standard recurrence relations, which can be
applied to more programs than recurrence relations. This analysis is composed of two
phases. First, given a program and a cost model, they first produce recursive equations
that capture the cost of the program in terms of the size of its input data; these recursive
equations are known as cost relations. Then, in a second phase, cost relation systems are
solved into closed-form formulas known as upper bounds on the worst-case cost, shortly
named upper bounds, that are upper bounds over the maximal cost of any execution.
Cost relations differ from traditional recurrence relations in three points: (1) they allow
non-determinism, permitting both non-determinism of the programming language and
non-determinism introduced by size abstractions (for example, when having input data
that is not numerical, where we could abstract an array to its size); (2) they may involve
not only equalities but inequalities; and (3) they can depend on multiple arguments rather
than in one. These features are what makes [4] applicable to more programs. To get an
upper bound from a cost relation system, the analysis is based on ranking functions,
loop invariants, and partial evaluation. This calculus is closely related to termination
analysis: given a loop, a ranking function f is a positive function that decreases in any
two consecutive calls of the cost relation system. The existence of a ranking function
is directly related to the existence of an upper bound and, by definition, guarantees the
absence of an infinite execution trace. However, finding an upper bound over the cost is
stronger than proving termination, e.g., to prove termination we only need to know that
a ranking function exists and, to get an upper bound, a concrete ranking function has to
be found.

Even if the vast majority of cost analysis techniques have focused on inferring upper
bounds on the worst-case cost, there exist two other important bounds in cost analysis:
lower bounds on the best-case cost, i.e., under-approximations of the minimal cost of any
execution, and lower bounds on the worst-case cost, i.e., under-approximations of the
maximal cost of any execution.

[10] presents a method to calculate lower bounds on the best-case cost. This method
is a dual process to the calculus of upper-bounds on the worst-case cost presented in [4].
Instead of finding a ranking function that decreases at least by one in each call of the
cost relation system, they generate a recurrence relation system and look for a function
lb that increases by one in each execution step. Finding a lower bound on the length of
any execution trace reduces then to finding a minimum value for lb so that the base-case
equation of the recurrence relation system is applicable.

Lower bounds on the worst-case cost have recently been studied as well. In [27, 26],
the concept of metering function was introduced as a tool for inferring a lower bound of
the number of iterations that a given loop can make. Its definition is analogue to that
of a ranking function: while a ranking function is expected to decrease at least by one in
each iteration, a metering function is required to decrease at most by one in each step.
In addition, while ranking functions are expected to be positive, metering functions are
required to be non-positive when leaving the loop. Finding a metering function leads us
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to a lower bound on the worst-case cost, which is closely related to non-termination, just
as ranking functions were linked to termination. A program is non-terminating if there
are infinite execution traces, or at least one, i.e. there is a non-empty subset of execution
states G such that for any state in G can only go to another state in G. This subset is
a witness of non-termination. An infinite lower bound on the worst-case cost is directly
linked to a witness G and an infinite execution trace.

1.1.2 Application Domains

Cost analysis has many applications in computer science, next we classify these applications
for each type of bound.

The most common bounds generated by automatic resource analysis are upper bounds
on the worst-case cost, since having the assurance that no execution of the program
will exceed the inferred amount of resources (e.g., time, memory, etc.) has crucial
applications in safety-critical contexts (see, for example, [6, 10]). Upper bounds are used
in real-time applications analysis, where programs are required to execute within a certain
maximum amount of time. They are used in resource bound certification, where security
properties can involve resource usage requirements. In the context of program synthesis
and optimization, such as partial evaluation, where many programs may be produced in
the process, upper bounds can be used to detect the most efficient ones. When dealing
with performance debugging and validation, upper bounds can also be used to check
assertions about efficiency included in the code of the programs.

In addition to their use in performance debugging, verification and optimization, lower
bounds on the best-case cost are useful in task parallelization (see, e.g., [23, 10, 24]). Basing
on these lower bounds, a task is not parallelized unless its best-case cost is large enough
to make it worth it. This is due to the fact that parallelizing a task involves an overhead
of performing this parallelization and, then, a lower bound on the best-case cost smaller
than the overhead could make the decision of parallelizing the task inefficient.

The third type of bounds that we have explained, lower bounds on the worst-case
cost, have a main application related to upper bounds: both types of bounds together
allow us to infer tighter worst-case cost bounds, as when they coincide it is ensured
that we have an exact estimation. For example, we would know precisely the runtime
or memory consumption of the most costly executions, which can be crucial in safety-
critical applications. Also, when the upper bound is equal to the lower bound, they have
been used to detect potential vulnerabilities such as denial-of-service attacks. In https:

//apps.dtic.mil/sti/pdfs/AD1097796.pdf, vulnerabilities are detected in situations in
which both bounds do not coincide. For instance, in password verification programs, if the
upper bound and the lower bound differ due to a difference in the delays associated with
how many characters are right in the guessed password, this is identified as a potential
attack. Lower bounds on the worst-case cost have also a clear application domain in smart
contracts, where cost amounts to monetary fees. This is the case for predicting the gas
usage [47] of executing smart contracts, where gas cost amounts to monetary fees. The
caller of a transaction needs to include a gas limit to run it. Giving a too low gas limit
can end in an “out of gas” exception and giving a too high gas limit can end in a “not
enough eth (money)” error. Therefore having a tighter prediction is needed to be safe on
both sides. Besides, lower bounds on the worst-case cost will give us families of inputs
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that lead to an expensive cost, which could be used to detect performance bugs such as
non-terminating programs, as an infinite lower bound on the worst-case cost is directly
related to an infinite execution trace.

1.2 Verification and Certification

At the start of the automatic inference of upper bounds, manually written soundness
proofs were used for the techniques used in the analysis [4, 7], typically based on the
theory of Abstract Interpretation [20]. However, it is hard to apply pencil-and-paper
proofs to real-size analyzers. Basically, the proofs guarantee that (theoretically) the results
are correct, that is, no execution of the program will ever exceed the inferred upper
bound. However, the implementation could be buggy, and hence using the inferred bounds
for safety critical purposes could be risky. Proof assistants allow us to automatically
specify and prove correct resource usage analysis. They provide formal verification of all
correctness proofs. In [8], the strengths of both the COSTA analyzer [7] and the KeY
verifier [2] were used to formally verify the soundness of the inferred bounds, that gave
formal guarantees that the results were correct.

Program proving, also known as deductive software verification, expresses the correctness
of a program by means of mathematical statements. These mathematical statements,
the verification conditions, consist of formal proofs of the property to be verified. This
requirement gives us another strength in the analysis: these proofs can be used as
certificates that can be checked independently, opening this way the possibility of having
a certified static analysis, that is, an analysis whose validity has been formally proved
correct by means of either automated or interactive theorem provers.

Among all possible applications of resource analysis, we find resource certification,
whereby programs are coupled with information about their resource usage. Adding this
information to a program allows deciding whether the program should or should not be
run, depending on the number of resources used in the program execution. Programs
that are not certified can consume more resources than was expected and, then, could
be potentially unsafe. Moreover, certification is crucial for the correctness of quantitative
relational properties when analyzing the effect of program transformations, an aspect of
big importance in this thesis. Without certification, the inferred bounds might not be
precise enough to establish, for example, that a program transformation does not increase
the cost. This is only established at the certification stage, where relational properties
are formally verified. This need of certification will be explained later in Chapter 2 of the
thesis.

1.3 Contributions and Structure

This thesis has a “publication format”. Publications, attached at the end of the work,
contain complete information about the proposed techniques. Two of these papers,
Certified Abstract Cost Analysis [11] and Lower Bound Synthesis using Loop Specialization
and Max-SMT [9] have been published in the proceedings of highly prestigious international
conferences. The work Certified Cost Bounds for Abstract Programs is under review in
ACM Transactions on Software Engineering and Methodology (TOSEM). The summary
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of the main contributions of this thesis is:

• Quantitative Abstract Execution. We present, to the best of our knowledge, the first
method to analyze the cost impact of program transformations.

In [11], we use COSTA [7] and the analysis presented in [4] to compute upper bounds
on the worst-case cost. The programs that are used in this paper are abstract
programs, i.e., programs containing placeholders for unspecified statements. To
verify the soundness of this work, in paper [11] we generate abstract cost relation
systems, a generalization of the cost relation systems that were introduced in [4].

Cost annotations inferred by abstract cost analysis, that is, cost invariants and
abstract cost bounds, are automatically certified by a deductive verification system,
extending the approach reported in [8] to abstract cost and abstract programs. This
is possible because the specification (the cost bound) and the loop (cost) invariants
are inferred by the cost analyzer—the verification system does not need to generate
them.

Arguing correctness of an abstract cost analysis is complex, because it relies on a
number of complex components (e.g. static analysis, inference of invariants...). For
this reason alone, it is useful to certify the abstract cost inferred for a given abstract
program: during development of the abstract cost analysis reported, several errors in
abstract cost computation were detected—analysis of the failed verification attempt
gave immediate feedback on the cause.

• Inference of lower bounds on the worst-case cost. In [9], we present a new technique
to infer lower bounds on the maximal cost of any execution. While the vast majority
of techniques have focused on inferring upper bounds on the worst-case cost, lower-
bounds on the worst-case cost have been less studied. We develop a framework to
obtain precise lower-bounds on the worst-case cost for different types of loops. This
work was motivated by the limitation of the state-of-the-art methods for obtaining
these bounds [27, 26], as the techniques introduced in these works suffer from an
important loss of information in multipath loops (loops with more than one way of
making progress while iterating). The technique is based, as in [26, 27], on finding
metering functions, functions that underestimate the number of iterations of a given
loop. To be able to deal also with these multipath loops, we base our approach
on transition systems and introduce several semantic specializations of loops that
enable the inference of metering functions for complex loops by (1) restricting the
input space of the programs, (2) narrowing the constraints of the transitions of the
loop (the guards) and (3) narrowing non-deterministic choices.

We propose a template-based method to automate our technique which is effectively
implemented by means of a Max-SMT encoding. Whereas the use of templates is
not new [19], our encoding has several novel aspects that are devised to produce
better lower-bounds, for example, the addition of conditions that force the solver to
look for larger lower-bound functions.

• Quantitative Abstract Execution for Upper and Lower Bounds unifies both concepts
of [11] and [9] to leverage the certified abstract cost analysis of [11] to a framework
that, in addition to dealing with upper bounds on the worst-case cost, is able to
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verify and certify also lower bounds. As it is explained in [9], our technique to
infer lower bounds on the worst-case cost for a loop is based on specializing the
loop and then finding a lower bound on the best-case cost for the specialized loop.
This characteristic of the tool gives us the possibility of having a lower bound on
the best-case cost if we disable the specializations. This lower bound, then, can be
used to assert between which bounds will be the cost of the analyzed program, as
all possible resource consumptions of the program will be between a lower bound
on the best-case cost and an upper bound on the worst-case cost, that is, between
a lower bound on the minimal cost of any execution and an upper bound on the
maximal cost of any execution.

To handle the verification of the properties, cost annotations inferred by abstract
cost analysis are extended to cover not only the upper bound case, but also the
lower bound: for each cost annotation we will have an upper annotation and a
lower annotation. All these specifications are automatically inferred by the cost
analyzer.

The remaining of this thesis is structured as follows:

• In Chapter 2, Quantitative Abstract Execution, we introduce the results of the paper
Certified Abstract Cost Analysis [11], in which Quantitative Abstract Execution was
presented. In this chapter, the main concepts are introduced in Section 2.1 by means
of a motivating example, while in Section 2.2 we explore how we produce the cost
annotations that are used to verify the analysis. In Section 2.3, we summarize the
results of the experiments.

• Chapter 3, Inference of Lower Bounds on the Worst-Case Cost, is based on paper
Lower Bound Synthesis using Loop Specialization and Max-SMT [9]. In this chapter,
a running example of a multipath loop is presented to show the deficiencies in
the state-of-the-art methods to compute lower bounds on the worst-case cost. In
Section 3.1, we introduce the program representation and introduce the concept
of lower bounds on the worst-case cost. In Section 3.2, we present the technique
used to infer local lower bounds (bounds for single loops) by means of (1) metering
functions, (2) specialization of the input states, (3) narrowing of guards and (4)
narrowing of non-deterministic choices. In Section 3.3 we briefly introduce how we
obtain these metering functions by means of a Max-SMT solver. In Section 3.4, we
explain the implementation and the main results of the experiments.

• In Chapter 4, Certified Abstract Cost Analysis with Upper and Lower Bounds, we
combine both results of [11] (Chapter 2) and [9] (Chapter 3) to present Certified
Cost Bounds for Abstract Programs, an article that is under revision in the journal
ACM Transactions on Software Engineering and Methodology (TOSEM). In Section 4.1
we introduce our approach informally by means of an example, and set up the
terminology that is going to be used. Section 4.2 is focused on the automatic
inference of cost invariants and, as the final step in the analysis, cost postconditions.
Section 4.3 contains the main novelties of the experimental evaluation compared
with Chapter 2.

• Chapter 5, Conclusions and Future Work, concludes and discusses future work.
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• Chapter 6, List of Publications, contains the papers that support this thesis. Here,
the technical details of the concepts explained in the thesis are contained.

At the end of the thesis, the publications on which the thesis is based are attached.

• Elvira Albert, Reiner Hähnle, Alicia Merayo, and Dominic Steinhöfel. Certified
Abstract Cost Analysis. In Esther Guerra and Mariëlle Stoelinga, editors, Fundamental
Approaches to Software Engineering - 24th International Conference, FASE 2021,
Proceedings, volume 12649 of Lecture Notes in Computer Science, pages 24–45.
Springer, 2021. Core B, class 2.

This work presents the Quantitative Abstract Execution technique. It was proposed
for the “Best Paper” of EAPLS 2021 together with other three papers of ETAPS
2021.

• Elvira Albert, Samir Genaim, Enrique Martin-Martin, Alicia Merayo, and Albert
Rubio. Lower-Bound Synthesis Using Loop Specialization and Max-SMT. Computer
Aided Verification- 33rd International Conference, CAV 2021. Proceedings, Part
II, volume 12760 of Lecture Notes in Computer Science, pages 863–886. Springer,
2021. Core A*, class 1.

This work, published in CAV’21, contains all the results concerning the inference of
lower bounds on the worst-case cost of loops.

• Elvira Albert, Reiner Hähnle, Alicia Merayo, and Dominic Steinhöfel. Certified Cost
Bounds for Abstract Programs. Under revision in ACM Transactions on Software
Engineering and Methodology (TOSEM).

This work contains the most relevant results of the combination of the two previous
publications. Here, cost analysis of abstract programs is not only based on upper
bounds but also in lower bounds.
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Chapter 2

Quantitative Abstract Execution

This chapter, whose complete information can be found in paper Certified Abstract Cost
Analysis [11] (Chapter 6, page 65), generalizes the Automated Cost Analysis of [4] to
an extended framework that can handle programs containing placeholders for unspecified
statements. Our work defines and implements an abstract cost analysis to infer abstract
cost bounds, such that the implementation consists of an automatic abstract cost analysis
tool and an automatic certifier for verifying the correctness of inferred abstract bounds.
Both steps are performed within an approach called Quantitative Abstract Execution.

As mentioned in the introduction, Automated Cost Analysis [4] is a static analysis that
consists of two phases. First, given a program and a cost model, the analysis produces
cost relation systems. These systems are made up of cost relations, recursive equations
that capture the cost of the program in terms of the size of its input data. In the second
phase, the recurrences that appear in the cost relation systems are resolved, giving rise to
closed-form formulas known as upper bounds. The solving process includes also bounding
the maximal number of applications of the recursive equations; this can be bounded by
means of ranking functions. Ranking functions, by definition, guarantee that the length of
any execution trace cannot exceed its value and, then, they are fundamental to compute
an upper bound over the cost.

Cost analysis occupies an interesting middle ground between termination checking and
full functional verification in the static program analysis portfolio. The main problem in
functional verification is that one has to come up with a functional specification of the
intended behavior, as well as with auxiliary specifications including loop invariants and
contracts [30]. In contrast, termination is a generic property and it is sufficient to come
up with a suitable term order or ranking function [13]. For many programs, termination
analysis is vastly easier to automate than verification. The issue is if verification of cost
analysis can be automatized.

Computation cost is not a generic property, but it is usually schematic: One fixes a
class of cost functions (for example, polynomial) that can be handled. A cost analysis then
must come up with parameters (degree, coefficients) that constitute a valid bound (lower,
upper, exact) for all inputs of a given program with respect to a cost model (number of
instructions, allocated memory, etc.). If this is performed bottom up with respect to a
program’s call graph, it is possible to infer a cost bound for the top-level function of a
program. Such a cost expression is often symbolic, because it depends on the program’s
input parameters.
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A central technique for inferring symbolic cost of a piece of code with high precision
is symbolic execution [15, 34]. The main difficulty is to render symbolic execution of
loops with symbolic bounds finite. This is achieved with loop invariants that generalize
the behavior of a loop body: an invariant is valid at the loop head after arbitrarily many
iterations. To infer sufficiently strong invariants automatically is generally an unsolved
problem in functional verification, but much easier in the context of cost analysis, because
invariants do not need to characterize functional behavior: it suffices that they permit to
infer schematic cost expressions.

Our work in Quantitative Abstract Execution introduces an important technical innovation:
the notion of cost invariant. In automated cost analysis, one infers cost bounds often
from loop invariants, ranking functions, and size relations computed during symbolic
execution [7, 25, 48, 18]. For abstract programs, we need a more general concept, namely a
loop invariant expressing a valid abstract cost bound at the beginning of any iteration. We
call this a cost invariant. This new concept, apart from being essential in our technique,
also increases the modularity of cost analysis, as each loop can be verified and certified
separately.

Another contribution of our work is that we have extended cost analysis to handle
programs with placeholders for unspecified statements that represent abstract pieces of
code. It remains to verify these results functionally, which is done by means of Abstract
Execution [44], a recent generalization of symbolic execution that allows specifying and
verifying relational program properties. Then, the information inferred by abstract cost
analysis, i.e. cost invariants and abstract cost bounds, is automatically certified by the
deductive verification system KeY [2], completing that way the cost analysis of abstract
programs.

Abstract programs occur in program transformation rules used in compilation, optimization,
parallelization, refactoring, etc.: Transformations are specified as rules over program
schemata which are nothing but abstract programs. If we can perform cost analysis
of abstract programs, we can analyze the cost effect of program transformations. Our
approach is the first method to analyze the cost impact of program transformations.

2.1 Quantitative Abstract Execution by Example

We introduce our approach and terminology informally by means of a motivating example:
Code Motion [1] is a compiler optimization technique moving a statement not affected by
a loop from the beginning of the loop body to before the loop. This code transformation
should preserve behavior provided the loop is executed at least once, but can be expected
to improve computation effort, i.e. quantitative properties of the program, such as execution
time and memory consumption: The moved code block is executed just once in the
transformed context, leading to less instructions (less energy consumed) and, in case it
allocates memory, less memory usage. In the following, we subsume any quantitative
aspect of a program under the term cost expressed in an unspecified cost model that
assigns cost values to programming language instructions with the understanding that it
can be instantiated to specific cost measures, such as number of instructions, number of
allocated bytes, energy consumed, etc.. To use a generic cost model allows us to work
with arbitrary quantitative properties.

To formalize code motion as a transformation rule, we describe in- and output of the
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int i = 0;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acP (t,w) + acQ (t, z) + 2) ;
//@ decreases t− i;
while (i < t) {
//@ assignable x;
//@ accessible t,w;
//@ cost footprint t,w;
\abstract statement P;
//@ assignable y;
//@ accessible i,t,y,z;
//@ cost footprint t,z;
\abstract statement Q;
i ++;
}
//@ assert \cost ==

2 + t · (acP (t,w) + acQ (t, z) + 2) ;

Program Before
int i = 0;
//@ assignable x;
//@ accessible t,w;
//@ cost footprint t,w;
\abstract statement P;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acQ (t, z) + 2) ;
//@ decreases t− i;
while (i < t) {
//@ assignable y;
//@ accessible i,t,y,z;
//@ cost footprint t,z;
\abstract statement Q;
i ++;
}
//@ assert \cost ==

2 + acP (t,w) + t · (acQ (t, z) + 2) ;

Program After

Inputs: t, w, x, y, z Precondition: t > 0 Postcondition: \cost 1 ≥ \cost 2

Preconditions and Postconditions

Figure 2.1: Motivating example on relational quantitative properties.

transformation schematically. Figure 2.1 depicts such a schema in a language based on
Java. An Abstract Statement with identifier Id , declared as

\abstract statement Id ;

represents an arbitrary concrete statement. It is obviously unsafe to extract arbitrary,
possibly non-invariant, code blocks from loops. For this reason, the abstract statement
P in question has a specification restricting the allowed behavior of its instances. For
compatibility with Java we base our specification language on the Java Modeling Language
(JML) [36]. Specifications are attached to code via structured comments that are marked
as JML by an “@” symbol. JML keyword “assignable” defines the memory locations that
may occur in the frame of an AS; similarly, “accessible” restricts the footprint.

Figure 2.1 contains further keywords explained below.
The input to Quantitative Abstract Execution is the abstract program to analyze,

including annotations (highlighted in light gray in Figure 2.1) that express restrictions
on the permitted instances of abstract statements. In addition to the frame and footprint,
the cost footprint of an abstract statement, denoted with the keyword “cost footprint”,
is a subset of its footprint listing the locations the cost expressions in abstract statement
instances may depend on. In Figure 2.1, the cost footprint of abstract statement Q
excludes accessible variables i and y. Annotations highlighted in dark gray are automatically
inferred by abstract cost analysis and are input for the certifier. As usual, loop invariants
(keyword “loop invariant”) are needed to describe the behavior of loops with symbolic
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bounds. The loop invariant in Figure 2.1 allows inferring the final value t of loop counter
i after loop termination. To prove termination, the loop variant (keyword “decreases”)
is inferred.

So far, this is standard automated cost analysis [7]. The ability to infer automatically
the remaining annotations represents our main contribution:

Abstract Execution [43, 44] extends symbolic execution by permitting abstract statements
to occur in programs. We extend the Abstract Execution framework to Quantitative
Abstract Execution by adding cost specifications that extend the specification of an
abstract statement with an annotated cost expression. An abstract cost expression is
a function whose value may depend on any memory location in the cost footprint of the
abstract statement it specifies. Each abstract statement P has an associated abstract
cost function parametric in the locations of its cost footprint, represented by an abstract
cost symbol acP. The symbol acp (t,w) in the “assert” statement in Figure 2.1 can be
instantiated with any concrete function parametric in t, w being a valid cost bound for
the instance of P. For example, for the instantiation “P ≡ x=t+1;” the constant function
acP (t,w) = 1 is the correct exact cost, while acP (t,w) = t with t ≥ 1 is a correct
upper bound cost. For simplicity, we only consider normally completing Java code as
instances in this work: an instance may not throw an exception, break from a loop, etc.
All occurrences of an abstract statement with the same identifier symbol have the same
legal instances.

In standard automated cost analysis, provided an initial state and an initial assignment
of the variables, a finite execution of the program is linked to a finite execution trace,
that is, a complete trace corresponds to a terminating execution. The cost of a program
can be computed based on execution traces, by summing up the costs of the executed
instructions with respect to the chosen cost model. The generalization to Quantitative
Abstract Execution, i.e., the cost of abstract programs, is defined similarly. While a
standard cost analysis generalizes over all initial stores, abstract cost analysis generalizes
also over all concrete instances of the abstract program.

To realize Quantitative Abstract Execution on top of the existing functional verification
layer provided by the Abstract Execution, we translate non-functional (cost) properties
to functional ones.

The translation consists of three elements: (1) A global “ghost” variable “cost”
(representing keyword “\cost”) for tracking accumulated cost; (2) explicit encoding
of a chosen cost model by suitable ghost setter methods that update this variable; (3)
functional loop invariants and method postconditions expressing cost invariants and cost
postconditions.

Regarding item (c), we support three kinds of cost specifications. These are, descending
in the order of their strength: exact, upper bound, and asymptotic cost. At the analysis
stage, it is usually impossible to determine the best match. For this reason, there is merely
one cost invariant keyword, not three. However, when translating cost to functional
properties, a decision has to be made. A natural strategy is to start with the strongest
kind of specification, then proceed towards the weaker ones when a proof fails.

An exact cost invariant has the shape “cost == expr”, an upper bound on the
invariant cost is specified by “cost <= expr”; asymptotic cost is expressed by the idiom
“asymptotic(cost) <= asymptotic(expr)”. The function “asymptotic” abstracts from constant
symbols in the argument. For example, the (exact) cost postcondition of the abstract
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1 //@ ghost int cost = 0;
2 int i = 0;
3 //@ set cost = cost + 1;
4 //@ assignable x, cost ;
5 //@ accessible t, w;
6 //@ ensures cost == \before(cost) +

acP (t,w);
7 \abstract statement P;
8

9 //@ ghost int iCost = 0;
10 //@ loop invariant i ≥ 0 && i ≤ t
11 //@ && iCost == i · (acQ (t, z) + 2) ;

13 //@ decreases t− i;
14 while (i < t) {
15 //@ set iCost = iCost + 1;
16 //@ \textbf{assignable} y, cost;
17 //@ \textbf{accessible} i, t , y, z;
18 //@ ensures cost == \before(cost)

+ acQ (t, z);
19 \abstract statement Q;
20 i ++;
21 //@ set iCost = iCost + 1;
22 }
23 //@ set cost = cost + 1;
24 //@ set cost = cost + iCost;

Listing 2.2: Translation of cost model and cost invariants to Abstract Execution.

program on the right in Figure 2.1 is:

2 + acP (t,w) + t · (acQ (t, z) + 2) (2.1)

Asymptotic cost would be expressed as asymptotic(cost) <= asymptotic(2 + acP (t,w) +
t · (acQ (t, z) + 2)) where the right-hand side of the equation is equivalent to

asymptotic(acP (t,w) + t · (acQ (t, z))).

Figure 2.2 shows the result of translating the cost invariant in Figure 2.1 to a functional
loop invariant (highlighted lines), using cost modelMinstr in ghost setters and postconditions
of abstract statement “ensures” clauses). Abstract statements P, Q must include the
ghost variable “cost” in their frame, because they update its value. The keyword before
in the postcondition of an abstract statement refers to the value a variable had just
before executing the abstract statement. In loops, we use “inner” cost variables “iCost”
tracking the cost inside the loop. When the loop terminates, we add the final value of
“iCost” to “cost”. After every evaluation of the guard of the loop, the cost is incremented
accordingly. Using the translation in Figure 2.2 of the inferred annotations in Figure 2.1,
the Abstract Execution system proves cost postcondition 2.1 automatically.

Apart from the translation of inferred quantitative annotations to functional AE
specifications, we implemented the axiomatization of the asymptotic function and extended
the AE system’s proof script language. This made it possible to define a highly automated
proof strategy for non-linear arithmetic problems generated by some cost analysis benchmarks.

As pointed out at the beginning of this chapter, we require cost invariants to capture
the cost of each loop iteration. They are declared by the keyword “cost invariant”. To
generate them, it is necessary to infer the cost growth of abstract programs that bounds
the number of loop iterations executed so far.

In Section 2.2 we describe the automated inference of cost invariants including the
generation of cost growth for all loops. Our technique is compositional and also works in
the presence of nested loops.
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CHAPTER 2. QUANTITATIVE ABSTRACT EXECUTION

2.2 Abstract Cost Analysis

We need to infer annotations for abstract cost invariants and cost postconditions. To
achieve this, we leverage a cost analysis framework for concrete programs to the abstract
setting.

As mentioned previously, the automated cost analysis in [4] performs the analysis in
two phases: it first generates a cost relation system and, then, it eliminates recurrences to
get a closed-form formula. In this section, we follow a similar procedure: in Section 2.2.1
we first define the notion of an abstract cost relation system (ACRS) used in cost analysis
for the abstract setting. Then, the automatic generation of inductive cost invariants for
abstract programs from ACRSs is defined in Section 2.2.2. Finally, Section 2.2.3 presents
how to generate the cost postconditions used to prove relational properties and required
to handle nested loops.

2.2.1 Inference of Abstract Cost Relations

There are two main cost analysis approaches: those using recurrence equations in the style
of Wegbreit [46], and those based on type systems [22, 33]. Our formalization is based
on the first kind, but the main ideas for extending the framework to abstract programs
would be also applicable to the second. The key issue when extending a recurrences-based
framework to the abstract setting is the notion of abstract cost relation for loops which
generalizes the concept of cost recurrence equations for a loop to an abstract setting. We
start with notation for loops and technical details on assumed size relations.

while (G) {
//@ accessible r1,1, . . . , r1,hr1
//@ assignable w1,1, . . . , w1,hw1

//@ cost footprint c1,1, . . . , c1,hc1
\abstract statement A1;
non abstract statement N1;
.. .
}

Loops. In our formalization we consider
while-loops containing n abstract statements
and m non-abstract statements. Non-
abstract statements include any concrete
instruction of the target language (arithmetic
instructions, conditionals, method calls,
. . . ). We assume loops L have the general outline displayed on the right. Each abstract
statement has a frame specification, abstract and non-abstract statements may appear in
any order, either might be empty.

Size relations. We assume that for each loop sets of size constraints have been computed.
These sets capture the size relation among the variables in the loop upon exit (called
base case, denoted ϕB), and when moving from one iteration to the next (denoted ϕI).
Abstract statements are ignored by the size analysis. While this would be unsound in
general, it will be correct under the requirements we impose in Definition 2 and with the
handling of abstract statements in Definition 1. Size relations are available from any cost
analyzer by means of a static analysis [21] that records the effect of concrete program
statements on variables and propagates it through each loop iteration. In our examples,
since we work on integer data, size analysis corresponds to a value analysis [16] tracking
the value of the integer variables.1

1For complex data structures, one would need heap analyses [41] to infer size relations.
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2.2. ABSTRACT COST ANALYSIS

Example 1. The size relations for the loop on the left in 2.1 are ϕB = {i ≥ t} and
ϕI = {i < t, i′ = i + 1}. ϕB is inferred from the loop guard and ϕI from the guard and the
increment of i (primed variables refer to the value of the variable after the loop execution).

Based on pre-computed size relations, we define the cost of executing a loop by means
of an abstract cost relation system (ACRS). This is a set of cost equations characterizing
the abstract cost of executing a loop for any input with respect to a given cost model
M. Cost equations consist of a cost expression governed by size constraints containing
applicability conditions for the equation (like i < t in ϕI above) and size relations between
loop variables (like i′ = i + 1 in ϕI).

Definition 1 (Abstract Cost Relation System). Let L be a loop as above with n abstract
and m non-abstract statements. Let x be the set of variables accessed in L. Let ϕI , ϕB
be sound size relations for L, and M a cost model. The ACRS for L is defined as the
following set of cost equations:

C(x) = CB , ϕB
C(x) =

∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi + C(x′), ϕI
where:

1. CB ≥ 0 is the cost of exiting the loop (executing the base case) w.r.t. M.

2. Each acj (·) ≥ 0 represents the abstract cost for the abstract statement Aj in L
w.r.t. to M. Each acj is parameterized with the variables in the cost footprint of
the corresponding Aj, as it may depend on any of them.

3. Each CNi ≥ 0 is the cost of the non-abstract statement Ni w.r.t. to M.

4. C is a recursive call.

5. x′ are variables x when renamed after executing the loop.

6. The assignable variables wj,∗ in the acj get an unknown value in x′ (denoted with
“ ” in the examples below).

Ignoring the abstract statements, one can apply a complete algorithm for cost relation
systems [13] to an ACRS to obtain automatically a linear ranking function f for loop L:
f is a linear, non-negative function over x that decreases strictly at every loop iteration.
Function f yields directly the “//@ decreases f ;” annotation required for Quantitative
Abstract Execution.

As in Section 2.1, the definition of ACRS assumes a generic cost model M and uses
C to refer in a generic way to cost according to M. For example, to infer the number of
executed steps, C is 1 per instruction, while for memory usage C refers to the amount of
memory allocated by an instruction.

Example 2. The ACRSs of the programs in 2.1 are (left program above line, right program
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CHAPTER 2. QUANTITATIVE ABSTRACT EXECUTION

below):

Cbefore(t, x,w, y, z) = cbefore + Cw0(i, t, x,w, y, z), {i = 0}
Cw0(i, t, x,w, y, z) = cBw0

, {i ≥ t}
Cw0(i, t, x,w, y, z) = cw0 + acP (t,w) + acQ (t, z) + Cw0(i′, t, ,w, , z), {i′ = i + 1, i < t}
Cafter(t, x,w, y, z) = cafter + acP (t,w) + Cw1(i, t, ,w, y, z), {i = 0}
Cw1(i, t, x,w, y, z) = cBw1

, {i ≥ t}
Cw1(i, t, x,w, y, z) = cw1 + acQ (t, z) + Cw1(i′, t, x,w, , z), {i′ = i + 1, i < t}

Notation c refers to the generic cost that can be instantiated to a chosen cost model M.
Cost equation Cbefore for the first program is composed of the instructions appearing before
the loop is cbefore plus the cost of executing the while loop Cw0. The size constraint fixes
the initial value of i. Following Definition 1, there are two equations corresponding to the
base case of the loop and executing one iteration, respectively. Observe that assignable
variables in abstract statements have unknown values in the ACRS (according to 6 in
Definition 1). Program after has a similar structure. A ranking function for both loops is
t − i which is used to generate the annotation “//@ decreases t−i;” inserted just before
each loop in 2.1.

To guarantee soundness of abstract cost analysis, it is mandatory that

1. no abstract statement in the loop modifies any of the variables that influence loop
cost, i.e., they do not interfere with cost, and

2. the cost of the abstract statement in the loop is independent of the variables modified
in the loop. We call the latter abstract statements cost neutral.

The first requirement is guaranteed by item 6 in Definition 1, because the value of
assignable variables is “forgotten” in the equations. It is implemented, as usual in static
analysis, by using a name generator for fresh variables. If cost depends on assignable
variables in an abstract statement, then the ACRS will not be solvable (i.e., the analysis
returns “unbound cost”). The ACRS in the example contains “ ” in equations that do
not prevent solvability of the system nor its evaluation, because they do not interfere
with cost. However, if we had “forgotten” a cost-relevant variable (such as t), we would
be unable to solve or evaluate the equations: without knowing t the equation guard is
not evaluable. Requirement 2 is ensured by the following definition that guarantees that
variables in the cost footprint are not modified by other statements in the loop.

Definition 2 (Cost neutral abstract statement). Given a loop L, where

• W (L) is the set of variables written by the non-abstract statements of L.

• Abstr(L) is the set of all abstract statements in loop L.

• Frame(Abstr(L)) is the set of variables assigned by any abstract statement A ∈
Abstr(L).

• CostFootprint(A) is the set of variables which the cost of an A depends on.

L is a loop with cost neutral abstract statements if, for all A ∈ Abstr(L), we have that
(W (L) ∪ Frame(Abstr(L))) ∩ CostFootprint(A) = ∅.
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2.2. ABSTRACT COST ANALYSIS

Example 3. It is easy to check that both loops in 2.1 have cost neutral ASs. On the left:
W (L) = {i}, Frame({P,Q}) = {x, y}, CostFootprint(P ) = {t,w}, and CostFootprint(Q) =
{t, z}, so (W (L)∪Frame({P,Q}))∩CostFootprint(P ) = ∅, and (W (L)∪Frame({P,Q}))∩
CostFootprint(Q) = ∅. The program on the right is checked analogously.

2.2.2 From Abstract Cost Relation Systems to Abstract Cost Invariants

To enable automated Quantitative Abstract Execution, we need to obtain from them
closed-form cost invariants and postconditions, i.e., non-recursive expressions. We introduce
the novel concept of abstract cost invariant that enables automated, inductive proofs
over cost in a deductive verification system. The crucial difference to (non-inductive)
cost postconditions as inferred by existing cost analyzers is that abstract cost invariants
can be proven inductively for each loop iteration. Hence, they integrate naturally into
deductive verification systems that use loop invariants [30].

In contrast to abstract cost invariants, postconditions provide a bound for the cost
after execution of the whole loop they refer to. Typically, a postcondition bound for a loop
has the form max iter ∗max cost+max base, where max iter is the maximal number of
iterations of the loop, max cost is the maximal cost of any loop iteration, and max base
is the maximal cost of executing the loop with no iterations. Instead, an abstract cost
invariant has the form growth ∗ max cost + max base, where growth counts how many
times the loop has been executed and hence provides a bound after each loop iteration.
The challenge is to design an automated technique that infers growth. We propose to
obtain it from the ranking function:

Definition 3 (Growth). Given a loop with ranking function F = c +
∑

i ai · vi, where c
and vi are the constant and variable parts of the function, respectively, and ai are constant
coefficients. If we denote with v0i the initial value of variable vi before entering the loop,
then growth =

∑
i ai ·

(
v0i − vi

)
.

Example 4. We look at four simple loops with ranking function decreases and the growth
inferred automatically by applying 3:

int i = 0;
while (i < t)

i ++;

int i = t;
while (i > 0)

i−−;

int i = 0;
while (i < t)

i += 2;

int i = t;
while (i > 0)

i −= 2;

decreases t− i
growth i

decreases i
growth t− i

decreases t−i+1
2

growth i
2

decreases i+1
2

growth t−i
2

We can now define the concept of abstract cost invariant that relies on abstract cost
relations defined in 2.2.1 and growth as defined above.

Definition 4 (Abstract Cost Invariant). Given an ACRS as in Definition 1 and its growth
as in Definition 3, an abstract cost invariant is defined as follows: cinv(x) = CB

max +

growth ·
(∑n

j=1 acj
(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
max
)

where CB
max stands for the maximal

value that the expression CB can take under the constraints ϕB, and CNi
max the maximal

value of CNi under ϕI . We generate the annotation
“//@ cost invariant cinv(x);”.
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CHAPTER 2. QUANTITATIVE ABSTRACT EXECUTION

To obtain the maximal cost of a cost expression under a set of constraints, we use
existing maximization procedures [12].

From Definition 4 we obtain abstract cost invariants as closed-form abstract cost
expressions of the form abexpr = cexpr | ac | abexpr1+abexpr2 | abexpr1∗abexpr2 where
ac represents an abstract cost function as defined in Section 2.1 and cexpr is a concrete
cost expression. The definition above yields linear bounds, however, the extension to infer
postconditions in the subsequent section leads to polynomial expressions (of arbitrary
degree).2

Example 5 (Abstract Cost Invariant). Consider the first loop in Example 4 (where
growth = i) with the following frame and footprint:

//@ assignable j;
//@ accessible i,t,j,k;
//@ cost footprint k;

UsingMinstr, the evaluation of the loop guard and the increase of i both have unit cost,
so the ACRS is:

C(i, t, j, k) = 1 {i ≥ t}
C(i, t, j, k) = acP (k) + 2 + C(i′, t, , k) {i′ = i + 1, i < t}

The value of the assignable variable j in the recursive call is “forgotten” (item 6 in
Definition 1), but this information loss does not affect solvability of the ACRS. We obtain
the following abstract cost invariant: “//@ cost invariant 1 + i ∗ (2 + acP(k));”.

Example 6 (Upper Bound Abstract Cost
Invariant). Sometimes an Abstract Cost
Invariant is over-approximating cost, resulting
in an upper bound Abstract Cost Invariant.
To illustrate this, we add an instruction that
creates an array of non-constant size “i” to the
program in the previous example and measure
memory consumption instead of instruction
count.

while (i < t) {
a = new int[i];
//@ assignable j;
//@ accessible i,t,j,a,k;
//@ cost footprint k;
\abstract statement P;
i ++;

}

The resulting ACRS thus accumulates cost “i” at each iteration, plus the memory
consumed by the abstract statement:

C(i, t, j, k) = 0, {i ≥ t}
C(i, t, j, k) = acP (k) + i + C(i′, t, , k), {i′ = i + 1, i < t}

Now, maximizing the expression CN1 = i under {i′ = i + 1, i < t} results in CN1
max = t−1

and upper bound abstract cost invariant

“//@ cost invariant i ∗ (t − 1 + acP(k));”.

2As our approach is based on a recurrences-based framework [46] that works for exponential and
logarithmic expressions, the results in this section generalize to these expressions. However, the Abstract
Execution deductive verification system is not able to deal with them automatically at the moment, so
we skip these expressions in our account.
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2.2.3 From Cost Invariants to Postconditions

To handle programs with nested loops and to prove relational properties it is necessary to
infer cost postconditions for abstract programs. For nested loops, the cost postcondition
states the abstract cost after complete execution of the inner loop and it is used to compute
the invariant of the outer loop. For relational properties, the cost postconditions of two
abstract programs are compared. Cost postconditions for concrete programs are obtained
by upper bound solvers (e.g., COSTA [7], CoFloCo [25], AProVE [28]) that compute
max iter , an upper bound on the number of iterations that a loop performs. To do so,
one relies on ranking functions. We do this as well, but generalize the computation of
postconditions to abstract programs. The cost postcondition is obtained by substituting
growth by max iter in the formula of cinv(x) in 4 as follows.

Definition 5 (Cost Postcondition). Let L be a loop, max iter be an upper bound on the
number of iterations of L. Given the ACRS for L in 1, we infer the cost postcondition
for L as

post(x) = CB
max + max iter(x) ·




n∑

j=1

acj
(
cj,1, . . . , cj,hcj

)
+

m∑

i=1

CNi
max




and generate the annotation “ //@ assert cost == post(x);”.

To infer the postcondition for a complete abstract program, we take the sum of all
cost postconditions of its top-level loops plus the cost of the non-iterative fragments.
2.1 shows the cost postconditions for our running example obtained by replacing in the
abstract cost invariant the growth i of the invariant with the bound t on the loop iterations
and requiring t ≥ 0. The generation of inductive abstract cost invariants for nested loops
uses the cost postcondition of inner loops to compute the invariants of the outer ones.

2.3 Experimental Evaluation

The implemented prototype is a command-line implementation backed by an existing
cost analysis library for (non-abstract) Java bytecode as well as the deductive verification
system KeY [2] including the Abstract Execution framework [37, 38]. Our implementation
consists of three components: (1) An extension of a cost analyzer (written in Python)
to handle abstract Java programs, (2) a conversion tool (written in Java) translating the
output of the analyzer to a set of input files for KeY, (3) a bash script orchestrating
the whole toolchain, specifically, the interplay between item (1), item (2) and the two
libraries. In case of a failed certification attempt, the script offers the choice to open the
generated proof in KeY for further debugging.

To assess effectiveness and efficiency of our approach, we used the Quantitative Abstract
Execution implementation to analyze seven typical code optimization rules. The set of
experiments is composed by: (1) A loop unrolling transformation duplicating the body
of a loop, where each copy of the body is put inside a conditional guarded by the loop
guard. In this example it was needed to switch to asymptotic analysis: the cost analyzer
over-approximates the number of iterations of the unrolled loop, since there are different
possible control flows in the body. This was automatically detected by the certifier
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which failed to find a proof when exact cost invariants are conjectured and succeeds
with asymptotic ones. (2) The CodeMotion example from Section 2.1 where the gain in
efficiency is proven. The result reflects the cost decrease in the sense that less instructions
need to be executed by the transformed program (3) A loop tiling optimization at compiler
level in which a single loop with n · m iterations is transformed into two nested loops,
an outer one looping until n and an inner one until m. Since our cost analyzer only
handles linear size expressions, the first program is written using an auxiliary parameter
t that is then instantiated to value n ·m (4) A transformation splitting a loop with two
independent parts into two separate loops. We prove that this transformation does not
affect the cost up to a constant factor. (5) A combination of two loops with the same
body structure into one loop. (6) A three loops example, with a nested and a simple
one, that are combined into on nested loop. (7) An array optimization, where an array
declaration is moved in front of a loop, initializing it with an auxiliary parameter that is
the sum of all the initial sizes.

To compute these results, two different cost models were used: number of instructions
and memory consumption. Even if there are more possible cost models, such as the
number of calls, we opted by performing the analysis using always the cost model of
number of instructions as it is the most used in practice. However, in the array example,
as the transformation is an optimization in terms of heap, the cost model of memory
consumption was used to better understand the effect of the transformation. In the
complete data table, that is available in Experimental Evaluation Section of paper Certified
Abstract Cost Analysis (Chapter 6, page 65), there is information about the type of bound
yield by the analysis (exact, upper or asymptotic), the growths and cost postconditions
that were inferred for each example, and different metrics about the analysis execution
times and the size of the generated proof.

Even though the time needed for certification is significantly higher than for cost
analysis (which is to be expected), each analysis can be performed within one minute.
The time to check a proof certificate amounts to approximately one fourth to one third
of the time needed to generate it. We stress that all analyses are fully automatic.

22



Chapter 3

Inference of Lower Bounds on the
Worst-Case Cost

The vast majority of cost analysis approaches have focused on inferring upper bounds on
the worst-case cost, which bound the worst-case from above. Chapter 2 is indeed developed
for upper bounds on the worst-case cost. In this chapter of the thesis, whose complete
information can be found in paper Lower Bound Synthesis using Loop Specialization and
Max-SMT [9] (Chapter 6, page 87), we focus on inferring another type of important
bounds: lower bounds on the worst-case cost, which bound the worst-case cost from
below.

In lower bounds analysis, apart from the worst-case cost bounds, we find another type
of bounds: lower bounds on the best-case cost, that characterize the minimal cost of any
program execution. An important difference between lower bounds on the worst-case
cost and lower bounds on the best-case cost is that, while the best-case must consider all
program runs, the worst-case holds for (usually infinite) families of the most expensive
program executions. This is why the techniques applicable to the best-case inference
(e.g., [23, 10, 24]) are not useful for the worst-case in general, since they would provide
too inaccurate (low) results. The state-of-the-art in lower bounds on the worst-case
inference is [27, 26] (implemented in the LoAT system) which introduces a variation of
ranking functions, called metering functions, to under-estimate the number of iterations
of simple loops, i.e., loops without branching nor nested loops. The core of this method is
a simplification technique that allows treating general loops (with branchings and nested
loops) by using the so-called acceleration: that replaces a transition representing one
loop iteration by another rule that collects the effect of applying several consecutive loop
iterations using the original rule. Asymptotic lower bounds are then deduced from the
resulting simplified programs using a special-purpose calculus and an SMT encoding.

This work is motivated by the limitation of state-of-the-art methods when, by treating
each simple loop separately, a lower bound on the worst-case cannot be found or it
is too imprecise. For example, consider the interleaved loop in Figure 3.1, which is a
simplification of the benchmark SimpleMultiple. koat from the Termination and Complexity
competition. Its transition system appears to the right (the transition system is like a
control-flow graph in which the transitions τ are labelled with the applicability conditions
and with the updates for the variables, primed variables denote the updated values). In
every iteration x or y can decrease by one, and these behaviors can interleave. The worst
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while (x >= 0 && y > 0) {
if (∗) {
x = x − 1;
} else {
y = y − 1;
}
}

`0

`1

`e

τ0 :

{
x′ = x,
y′ = y

τ1 :





x ≥ 0,
y > 0,
x′ = x− 1,
y′ = y

τ4 :





x ≥ 0,
y > 0,
x′ = x,
y′ = y − 1

τ3 :





y ≤ 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

Figure 3.1: Interleaved loop (left) and its representation as a transition system (right)

case is obtained for instance when x is decreased to 0 (x iterations) and then y is decreased
to 0 (y iterations), resulting in x+ y iterations, or when y is first decreased to 1 and then
x to −1, etc. The approach in [27, 26] accelerates independently both τ1 and τ4, resulting
in accelerated versions

τa1 :





x ≥ −1,
y > 0,
x′ = −1,
y′ = y

with cost x+ 1

τa4 :





x ≥ 0,
y ≥ 0,
x′ = x,
y′ = 0

with cost y

Applying one accelerated version results in that the other accelerated version cannot be
applied because of the final values of the variables. Thus, the overall knowledge extracted
from the loop is that it can iterate x+ 1 or y times, whereas the precise worst-case lower
bound is x+ y iterations.

Our challenge for inferring more precise lower bounds on the worst-case is to devise a
method that can handle all loop transitions simultaneously, as disconnecting them leads
to a semantics loss that cannot be recovered by acceleration.

This work is inspired by [35], which introduces the powerful concept of quasi-invariant
to find witnesses for non-termination. A quasi-invariant is an invariant which does not
necessarily hold on initialization, and can be found as in template-based verification [42].
Intuitively, when there is a loop in the program that can be mapped to a quasi-invariant
that forbids executing any of the outgoing transitions of the loop, then the program is non-
terminating. This work leverages such powerful use of quasi-invariants and Max-SMT in
non-termination analysis to the more difficult problem of lower bounds on the worst-case
inference. Non-termination and worst-case lower bounds are indeed related properties: in
both cases we need to find witnesses, respectively, for non-terminating the loop and for
executing at least a certain number of iterations. For lower bounds on the worst-case,
we additionally need to provide such under-estimation for the number of iterations and
search for lower bounds on the worst-case behaviors that occur for a class of inputs rather
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than for a single input instantiation, since the worst-case lower bound for a single input
is a concrete (constant) cost, rather than a parametric lower bound on the worst-case
cost function as we are searching for. Instead, for non-termination, it is enough to find a
non-terminating input instantiation.

A fundamental idea of our approach is to specialize loops in order to guide the search
of the metering functions of complex loops, in an analogous way as it guides the search
of a non-termination witness in [35], avoiding the inaccuracy introduced by disconnecting
them into simple loops. The idea is that a lower bound on the best-case of the specialized
loop is a lower bound on the worst-case of the general loop. To this purpose, we propose
specializing loops by combining the addition of constraints to their transitions with the
restriction of the valid states by means of quasi-invariants. For instance, for the loop in
Figure 3.1, our approach automatically infers templates to narrow τ1 by adding x > 0
(so that x is decreased until x = 0) and τ4 by adding x ≤ 0 (so that τ4 can only be
applied when x = 0). This specialized loop has lost many of the possible interleavings of
the original loop but keeps the worst-case execution of x+ y iterations. These specialized
guards do not guarantee that the loop executes x + y iterations in every possible state,
as the loop will finish immediately for x < 0 or y ≤ 0, thus our approach also infers the
quasi-invariant x ≥ 0∧ x ≤ y. Combining the specialized guards and the quasi-invariant,
we can assure that when reaching the loop in a valid state according to the quasi-invariant,
x+ y is a lower bound on the number of iterations of the loop, that is, its cost.

3.1 Background

This section introduces some notation on the program representation and recalls the
notion of lower bound on the worst-case cost that we aim at inferring.

3.1.1 Program Representation

Our technique is applicable to sequential non-deterministic programs with integer variables
and commands whose updates can be expressed in linear (integer) arithmetic. We assume
that the non-determinism originates from non-deterministic assignments of the form
“x:=nondet();”, where x is a program variable and nondet() can be represented by a fresh
non-deterministic variable u. This assumption allows us to also cover non-deterministic
branching, for example, “if (*){..} else {..}” as it can be expressed by introducing a non-
deterministic variable u and rewriting the code as “u:=nondet(); if (u≥0){..} else {..}”.

Our programs are represented using transition systems, in particular using the formalization
of [35] that simplifies the presentation of some formal aspects of our work. Throughout
this chapter, we represent a transition system as a control flow graph, and analyze its
strongly connected components one by one.

In what follows, we formalize the rules of our technique using the notation: (1) x̄ is a
tuple of n integer program variables, (2) ū is a tuple of integer non-deterministic variables,
(3) L is the set of locations (nodes) in the transition system (control flow graph), (4) a
transition is of the form (`, `′,R) such that `, `′ ∈ L are locations in the transition system
and R is a formula over x̄, ū and x̄′, where x̄′ represents the values of the unprimed
corresponding variables after the transition. We use R(x̄) to refer to the constraints that
involve only variables x̄ (the guard of the transition), and use R(x̄, ū) to refer to the
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constraints that involve only non-deterministic variables ū and (possibly) x̄. In addition,
we assume that all coefficients and free constants, in all linear constraints, are integer;
and that there is a single initial location `0 ∈ L with no incoming transitions, and a single
final location `e with no outgoing transitions.

Example 7. The set of transitions of the control flow graph in Figure 3.1 is:

{(`0, `1, x′ = x ∧ y′ = y),
(`1, `1, x ≥ 0 ∧ y > 0 ∧ x′ = x− 1 ∧ y′ = y),
(`1, `e, x < 0 ∧ x′ = x ∧ y′ = y),
(`1, `e, y ≤ 0 ∧ x′ = x ∧ y′ = y),
(`1, `1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)}

A requirement to handle non-determinism is that for any state x̄ satisfying the guard,
there are values for the non-deterministic variables ū such that we can make progress. A
transition that holds (respectively does not hold) this condition is called a valid transition
(respectively invalid transition).

A configuration C is a pair (`, σ) where ` ∈ L and σ : x̄ 7→ Z is a mapping representing
a state. We abuse notation and use σ to refer to σ(x), and also write σ′ for the assignment
obtained from σ by renaming the variables to primed variables. There is a transition from
(`, σ1) to (`′, σ2) iff there is (`, `′,R) such that there exists an assignment u for the non-
deterministic variables so that the constraints of R are fulfilled by the values of u, σ1 and
σ′2 (σ2 with the prime variables defined in R).

A valid trace t is a possibly infinite sequence of configurations (`0, σ0), (`1, σ1), . . . such
that for each i there is a transition from (`i, σi) to (`i+1, σi+1). Traces that are infinite or
end in a configuration with location `e are called complete. A configuration (`, σ), where
` 6= `e, is blocking iff we reach a state where no outgoing transition can be executed, that
is, where no guard of the outgoing transitions is fulfilled by the values defined in σ.

A transition system is non-blocking if no trace includes a blocking configuration. We
assume that the transition system under consideration is non-blocking, and thus any trace
is a prefix of a complete one.

3.1.2 Lower Bounds

For simplicity, we assume that an execution step (a transition) costs 1. Under this
assumption, the cost of a trace t is simply its length, where the length of an infinite
trace is ∞. In what follows, the set of all configurations is denoted by C, and the set of
all valid complete traces (using a transition system S) when starting from configuration
C ∈ C is denoted by TracesS(C). The worst-case cost of an initial configuration C is the
cost of the most expensive complete trace starting from C and the best-case cost is the
cost of the less expensive complete trace.

Definition 6 (worst- and best-case cost). Let S be a transition system. For an initial
configuration C, its worst-case cost function wcS(C) is the least upper bound of the length
of all complete traces beginning with configuration C, and its best-case cost function bcS(C)
is the greatest lower bound of the length of all these complete traces beginning at C.

Clearly, wcS and bcS are not computable. Our goal is to automatically find a lower-
bound function ρ : Zn → R≥0 such that for any initial configuration C = (`0, σ) we have
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wcS(C) ≥ ρ(σ(x̄)), that is, it is a lower bound on the worst-case cost. A lower bound on
the best-case cost would be a function ρ : Zn → R≥0 that ensures that bcS(C) ≥ ρ(σ(x̄))
for any initial configuration C = (`0, σ). In what follows, for a function ρ(x̄), we let
‖ρ(x̄)‖ = dmax(0, ρ(x))e to map all negative valuations of ρ to zero.

Example 8. Consider the transition system

`0 `1 `e

τ1 :





x ≥ 0,
x′ = x,
y′ = y

τ2 :





x > 0,
x′ = x− u,
u ≥ 1,
u ≤ 2

τ3 :

{
x ≤ 0,
x′ = x

This transition system contains a loop at `1 where variable x is non-deterministically
decreased by 1 or 2. From any initial configuration C0 = (`0, σ0), the longest possible
complete trace decreases x by 1 in every iteration with τ2, therefore wcS(C0) = ‖σ0(x)‖+2
because of the ‖σ0(x)‖ iterations in `1 plus the cost of τ1 and τ3. The most precise
lower bound for wcS is ρ(x) = ‖x‖ + 2, although ρ(x) = ‖x‖ or ρ(x) = ‖x − 2‖ are
also valid lower bounds.The shortest complete trace from C0 decreases x by 2 in every
iteration, so bcS(C0) = ‖σ0(x)2 ‖+ 2. There are several valid lower bounds for bcS(C0) like
ρ(x) = ‖x2‖+ 2, ρ(x) = ‖x2‖, or ρ(x) = 2, although the first one is the most precise one.

3.2 Local Lower-Bound Functions

Existing techniques and tools for cost analysis (for example, [26, 3]) work by inferring local
(iteration) bounds for those parts of the transition system that correspond to loops, and
then combining these bounds by propagating them “backwards” to the entry point in order
to obtain a global bound. They can infer global bounds for nested-loops as well, given
the iteration bounds of each loop. In Chapter 2 we have seen already this composition
in its motivating example (Figure 2.1). Thus, we focus on inferring local lower bounds
on the number of iterations that non-nested loops (more precisely, parts of the transition
system that correspond to loops) can make, and assume that they can be rewritten to
global bounds by adopting the existing techniques of [26, 3] (our implementation indeed
could be used as a black-box which provides local lower bounds to these tools). Namely,
we aim at inferring, for each non-nested loop, a function ‖ρ(x̄)‖ that is a (local) lower
bound on the worst-case cost on its number of iterations, that is, whenever the loop is
reached with values v̄ for the variables x̄, it is possible to make at least ‖ρ(v̄)‖ iterations.

For ease of presentation, we consider a special case of transition systems in which all
locations, except the initial and exit ones, define loops. In paper [9] (Chapter 6, page 87),
there is complete information about how the techniques can be used for the general case.
In particular, we consider that each non-trivial strongly connected component consists of
a single location ` and at least one transition, and we call it loop `. Transitions from ` to
` are called loop transitions and their guards are called loop guards, and transitions from
` to `′ 6= ` are called exit transitions. The number of iterations of a loop ` in a trace t
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is defined as the number of transitions from ` to `, which we refer to as the cost of loop
` as well, since we are assuming that the cost of transitions is always 1, as mentioned
in Section 3.1.2. The notions of best-case and worst-case cost in Definition 6 naturally
extend to the cost of a loop `, that is, we can ask what is the best-case and worst-case
number of iterations of a given loop.

The overall idea of this approach is to specialize each loop `, by restricting the initial
values and/or adding constraints to its transitions, such that it becomes possible to obtain
a metering function for the specialized loop. A function that is a lower bound on the best-
case cost of the specialized loop is by definition a lower bound on the worst-case cost of
loop `, as it does not necessarily hold for all execution traces but rather for the class of
restricted ones. Technically, inferring a lower bound on the best-case of a specialized loop
is done by inferring a metering function ρ [27], such that whenever the specialized loop
is reached with a state σ, it is guaranteed to make at least ‖ρ(σ(x̄))‖ iterations. Besides,
specialization is done in such a way that the transition system obtained by putting all
specialized loops together is non-blocking, that is, there is an execution that is either non-
terminating or reaches the exit location, and thus the cost of this execution is, roughly,
the sum of the costs of all (specialized) loops that are traversed.

Through this section, we generalize the basic definition of metering function for simple
loops from [26] to general types of loops and explore its limitations (Section 3.2.1), and we
explain how to overcome these limitations by means of the following specializations: using
quasi-invariants to narrow the set of input values (Section 3.2.2); narrowing loop guards
to make loop transitions mutually exclusive and force some execution order between
them (Section 3.2.3); and narrowing the space of non-deterministic choices to force longer
executions (Section 3.2.4).

3.2.1 Metering Functions

Metering functions were introduced by [27], as a tool for inferring a lower bound on the
number of iterations that a given loop can make. The definition is analogue to that
of linear ranking function which is often used to infer upper-bounds on the number of
iterations. The definition as given in [27] considers a loop with a single transition, and
assumes that the exit condition is the negation of its guard. We start by generalizing it
to our notion of loop.

Definition 7 (Metering function). We say that a function ρ` is a metering function for
a loop ` ∈ L if the two following conditions hold:

1. Decreases at most by one. The function decreases at most by one in each
iteration of the loop.

2. Non-positive on exit. The metering is lower than or equal to zero when leaving
the loop.

Assuming (`, σ) is a reachable configuration in the transition system, it is easy to see
that loop ` will make at least ‖ρ`(σ(x̄))‖ iterations when starting from (`, σ). We require
(`, σ) to be reachable in the transition system since we are interested only in non-blocking
executions. Typically, we are interested in linear metering functions, since they are easier
to infer and cover most loops in practice.
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Example 9 (Metering function). Consider the following loop on location `1 that decreases
x (τ1) until it takes non-positive values and exits to `2 (τ2):

`1

`2

τ1 :

{
x ≥ 0,
x′ = x− 1

τ2 :

{
x < 0,
x′ = x

The function ρ`1(x) = x+1 is a valid metering function because it decreases by exactly
one in τ1 and becomes non-positive when τ2 is applicable (x < 0→ x+ 1 ≤ 0, so it holds
both conditions of Definition 7). The function ρ′`1(x) = x

2 is also metering because its

value decreases by less than 1 when applying τ1 (x2 − x−1
2 = 1

2 ≤ 1) and becomes non-
positive in τ2. Even a function as ρ′′`1(x) = 0 is trivially metering, as it satisfies (1) and
(2). Although all of them are valid metering functions, ρ`1(x) is preferable as it is more
accurate (larger) and thus captures more precisely the number of iterations of the loop.

3.2.2 Narrowing the Set of Input Values Using Quasi-Invariants

Metering functions typically exist for loops with simple loop guards. However, when
guards involve more than one inequality they usually do not exist in a simple (linear)
form. This is because such loops often include several exit transitions with unrelated
conditions, where each one corresponds to the negation of an inequality of the guard. It is
unlikely then that a non-trivial (linear) function satisfies the condition of non-positiveness
of the metering when leaving the loop for all exit transitions. This is illustrated in the
next example.

Example 10. Consider the following loop that iterates on `1 if x ≥ 0 ∧ y > 0, and exits
when x < 0 or y ≤ 0:

`1 `2τ1 :





x ≥ 0,
y > 0,
x′ = x− 1,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

τ3 :





y ≤ 0,
x′ = x,
y′ = y

Intuitively, this loop executes x + 1 transitions, but ρ`1(x, y) = x + 1 is not a valid
metering function because it does not satisfy the condition of being non-positive for τ3, as
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y ≤ 0 6→ x+ 1 ≤ 0. Moreover, no other function depending on x (for example, x
2 , x− 2,

etc.) will be a valid metering function, as it will be impossible to prove non-positiveness
condition for τ3 only from the information y ≤ 0 on its guard. The only valid metering
function for this loop will be the trivial one ρ`1(x, y) = c with c ≤ 0, which does not
provide any information about the number of iterations of the loop.

Our proposal to overcome the imprecision discussed above is to consider only a subset
of the input values such that conditions of the metering function (Definition 7) hold in the
context of the corresponding reachable states. For example, the reachable states might
exclude some of the exit transitions.If these transitions are guaranteed to never be used,
then the condition of the non-positiveness of the metering is not required to hold for them.
A metering function in this context is a lower bound on the best-case cost of the loop
when starting from that specific input, and thus it is a lower bound on the worst-case
cost (but not necessarily best-case) of the loop when the input values are not restricted.

Technically, our analysis materializes the above idea by relying on quasi-invariants [35].

Definition 8 (Quasi-invariant). A quasi-invariant for a loop ` is a formula Q` over x̄
that restricts the valid states of `. It fulfills that:

1. Once Q` holds, it will hold during all subsequent visits to `.

2. There is an assignment of the variables that makes the quasi-invariant true.

Intuitively, Q` is similar to an inductive invariant but without requiring it to hold on
the initial states. The second condition ensures that the subset of states induced by the
quasi-invariant is not empty.

Given a quasi-invariant Q` for `, we say that ρ` is a metering function for ` if both
conditions of Definition 7 hold in the context of the states induced by Q`.

Example 11. Recall that the loop in Example 10 only admitted trivial metering functions
because of the exit transition τ3. It is easy to see that Q`1 ≡ x < y satisfies the conditions
to be a quasi-invariant in the states induced by Q`, because y is not modified in τ1 and x
decreases. In the context of Q`1, function ρ`1(x, y) = x+1 is metering because when taking
τ3 the value of x is guaranteed to be negative, that is, τ3 satisfies the non-positiveness when
leaving the loop because x < y ∧ y ≤ 0→ x+ 1 ≤ 0.

3.2.3 Narrowing Guards

The loops that we have considered so far consist of a single loop transition, which makes
easier to find a metering function. This is because there is only one way to modify the
program variables (with some degree of non-determinism induced by the non-deterministic
variables). However, when we allow several loop transitions, we can have loops for which a
non-trivial metering function does not exist even when narrowing the set of input values.

Example 12. Consider the loop in Example 10 with a new transition τ4 that decrements
y (it corresponds to the loop of the example in Figure 3.1):
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`1

`e

τ1 :





x ≥ 0,
y > 0,
x′ = x− 1,
y′ = y

τ4 :





x ≥ 0,
y > 0,
x′ = x,
y′ = y − 1

τ3 :





y ≤ 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

The most precise lower bound on the worst-case of this loop is ‖ρ`1(x, y)‖ where ρ`1(x, y) =
x + y. As mentioned, this corresponds, for example, to an execution that uses τ1 until
x = 0, that is, x times, and then τ4 until y = 0, that is, y times. It is easy to see
that if we start from a state that satisfies x ≥ 0 ∧ x ≤ y, then it will be satisfied during
the particular execution that we just described. Moreover, assuming that Q`1 ≡ x ≥
0∧ x ≤ y is a quasi-invariant, it is easy to show that together with ρ`1 we can verify both
conditions of Definition 7 in the states induced by Q`, and thus ρ`1 will be a metering
function. However, unfortunately, Q`1 is not a quasi-invariant since the above loop can
make executions other than the one described above (e.g., decreasing y to 1 first and then
x to 0).

Our idea to overcome this imprecision is to narrow the set of states for which loop
transitions are enabled, i.e., strengthening loop guards by additional inequalities. This,
in principle, reduces the number of possible executions, and thus it is more likely to find a
metering function (or a better quasi-invariant), because now they have to be valid for fewer
executions. For example, this might force an execution order between the different paths,
or even disable some transitions by narrowing their guard to false. Again, a metering
function for the specialized loop is not a valid lower bound on the best-case of the original
loop, but rather it is a valid lower bound on the worst-case, that is what we are interested
in.

A guard narrowing for a loop transition τ ∈ T is a formula Gτ (x̄), over variables x̄. A
specialization of a loop is obtained simply by adding these formulas to the corresponding
transitions.

Metering function and quasi-invariant conditions can be specialized to hold only for
executions that use the specialized loop. Suppose that for a loop ` ∈ L we are given
a narrowing Gτ for each loop transition τ , then ρ` and Q` are metering function and
quasi-invariant respectively for the corresponding specialized loop if the next conditions
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hold.

Metering function

Decreases at most by one. The function decreases at most by one in each
iteration of the specialized loop.

∀x̄, ū, x̄′. Q`(x̄) ∧ Gτ (x̄) ∧R → ρ`(x̄)− ρ`(x̄′) ≤ 1 for each (`, `,R) ∈ T (3.1)

Non-positiveness on exit. The metering is lower than or equal to zero when
leaving the loop from the states induced by the quasi-invariant.

∀x̄. Q`(x̄) ∧R(x̄)→ ρ`(x̄) ≤ 0 for each (`, `′,R) ∈ T (3.2)

Quasi-invariant

Quasi-invariance. Once the quasi-invariant holds for the specialized loop, it will
always hold.

∀x̄, ū, x̄′. Q`(x̄) ∧ Gτ (x̄) ∧R → Q`(x̄′) for each (`, `,R) ∈ T (3.3)

Non-empty quasi-invariant. There is an assignment of the variables that
satisfies the constraints of the quasi-invariant.

∃x̄. Q`(x̄) (3.4)

Conditions (3.3,3.4) guarantee thatQ` is a non-empty quasi-invariant for the specialized
loop, and conditions (3.1,3.2) guarantee that ρ` is a metering function for the specialized
loop in the context of Q`. However, in this case, function ρ` induces a lower bound on
the number of iterations only if the specialized loop is non-blocking for states in Q`. This
is illustrated in the following example.

Example 13. Consider the loop from Example 9 where we have specialized the guard of
τ1 by adding x ≥ 5:

`1

`2

τ1 :





x ≥ 0,
x ≥ 5,
x′ = x− 1

τ2 :

{
x < 0,
x′ = x

With this specialized guard and considering Q`1 ≡ true, the metering function ρ`1(x) =
x+ 1 and Q`1 satisfy their conditions. However, ρ`1 is not a valid measure of the number
of transitions executed because the loop gets blocked whenever x takes values 0 ≤ x ≤ 5,
and thus it will never execute x+ 1 transitions.
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To guarantee that the specialized loop is non-blocking for states in Q`, it is enough to
require the guard narrowing to hold that, from any state defined by the quasi-invariant,
we can make progress, either by making a loop iteration with the guard narrowing or
exiting the loop.

Example 14. In Example 12, we have seen that if Q`1 ≡ x ≤ y ∧ x ≥ 0 was a quasi-
invariant, then function ρ`1(x, y) = x + y becomes metering. We can make Q`1 a quasi-
invariant by specializing the guards of the loop in transitions τ1 and τ4 to force the following
execution with x+y iterations: first use τ1 until x = 0 (x iterations) and then use τ4 until
y = 0 (y iterations). This behavior can be forced by taking Gτ1 ≡ x > 0 and Gτ4 ≡ x ≤ 0.

`1

`e

τ1 :





x ≥ 0,
y > 0,
x > 0,
x′ = x− 1,
y′ = y

τ4 :





x ≥ 0,
y > 0,
x ≤ 0,
x′ = x,
y′ = y − 1

τ3 :





y ≤ 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

With Gτ1 we assure that x stops decreasing when x = 0, and with Gτ4 we assure that τ4 is
used only when x = 0. Now, Q`1 ≡ x ≤ y ∧ x ≥ 0 and ρ`1(x, y) = x + y are valid quasi-
invariant and metering, respectively. Function ρ`1 decreases by exactly 1 in τ1 and τ4, is
trivially non-positive in τ2 because that transition is indeed disabled (x ≥ 0 from Q`1 and
x < 0 from the guard) and is non-positive in τ3 (x ≤ y ∧ y ≤ 0→ x+ y ≤ 0). Regarding
the quasi-invariant Q`, it verifies its conditions (3.3,3.4), and more importantly, the loop
in `1 is non-blocking w.r.t Q`1, Gτ1, and Gτ4, that is, the condition of being non-blocking
holds.

3.2.4 Narrowing Non-deterministic Choices

Loop transitions that involve non-deterministic variables, might give rise to executions
of different lengths when starting from the same input values. Since we are interested in
lower bounds on the worst-case, we are clearly searching for longer executions. However,
since our approach is based on inferring lower bounds on the best-case, we have to take
all executions into account which might result in less precise, or even trivial, lower bounds
on the worst-case.

Example 15. Consider a modification of the loop in Example 12 in which the variable x
in τ1 is decreased by a non-deterministic positive quantity u:
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`1

`e

τ1 :





x ≥ 0,
y > 0,
x′ = x− u,
y′ = y,
u ≥ 1

τ4 :





x ≥ 0,
y > 0,
x′ = x,
y′ = y − 1

τ3 :





y ≤ 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

The effect of this non-deterministic variable u is that τ1 can be applied x times if we
always take u = 1, dx2 e times if we always take u = 2 or even only once if we take u > x.
As a consequence, ρ`1(x, y) = x+ y is no longer a valid metering function because x can
decrease by more than 1 in τ1. Moreover, Q`1 ≡ x ≤ y ∧ x ≥ 0 is not a quasi-invariant
anymore since x′ = x − u ∧ u ≥ 1 does not entail x′ ≥ 0. In fact, no metering function
involving x will be valid in τ1 because x can decrease by any positive amount.

To handle this complex situation, we also narrow the space of non-deterministic
choices. This way, metering functions should be valid with respect to fewer executions
and more likely be found and be more precise.

A non-deterministic variables narrowing for a loop transition τ ∈ T is a formula
Uτ (x̄, ū), over variables x̄ and ū, that is added to τ to restrict the choices for variables
ū. A specialized loop is now obtained by adding both Gτ and Uτ to the corresponding
transitions. Suppose that for loop ` ∈ L, in addition to Gτ , we are also given Uτ for
each of its loop transitions τ . For Q` and ρ` to be quasi-invariant and metering function
for the specialized loop `, we require conditions (3.1)-(3.4) to hold but after adding Uτ
to the left-hand side of the implications in (3.3) and (3.1). We also have to require
the system to be non-blocking after guards specialization, as explained at the end of
Section 3.2.3. Besides, unlike narrowing of guards, narrowing of non-deterministic choices
might make a transition invalid, that is, not satisfying the definition of valid transition
from Section 3.1.1. The solution comes from modifying this definition to take into account
the conditions introduced by the corresponding narrowings.

Example 16. To solve the problems shown in Example 15 we need to narrow the non-
deterministic variable u to take bounded values that reflect the worst-case execution of the
loop. Concretely, we need to take Uτ1 ≡ u ≤ 1, which combined with u ≥ 1 entails u = 1
so x decreases by exactly 1 in τ1.
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`1

`e

τ1 :





x ≥ 0,
y > 0,
x′ = x− u,
y′ = y,
u ≥ 1,
u ≤ 1

τ4 :





x ≥ 0,
y > 0,
x′ = x,
y′ = y − 1

τ3 :





y ≤ 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

Considering the narrowing Uτ1, the resulting loop is equivalent to the one presented in
Example 14 so we could obtain the precise metering function ρ`1(x, y) = x + y with the
quasi-invariant Q`1 ≡ x ≤ y ∧ x ≥ 0.

3.3 Inference Using Max-SMT

Metering functions and narrowings can be inferred automatically using Max-SMT. The
template-based approach of [19, 35] can be used to find Gτ , Uτ , and Q` by representing
them as template constraint systems, that is, each is a conjunction of linear constraints
where coefficients and constants are unknowns.

Since there might be many metering functions that satisfy the conditions explained
in this work, we are interested in narrowing the search space of the SMT solver in order
to find more accurate ones, that is, leading to longer executions. We have proposed the
next techniques for this purpose:

• Enabling more loop transitions. We are interested in guard narrowings that
keep as many loop transitions as possible, since such narrowings are more likely to
generate longer executions.

• Larger metering functions. We are interested in metering functions that lead
to longer executions. One way to achieve this is to require metering functions to be
ranking as well, when possible.

• Unbounded metric functions. We are interested in metering functions that do
not have an upper bound, since otherwise they will lead to constant lower-bound
functions. For example, for a loop with a transition x ≥ 0 ∧ x′ = x − 1, we want
to avoid quasi-invariants like x ≤ 5 which would make the metering function x
bounded by 5.

3.4 Implementation and Experimental Evaluation

We have implemented a LOwer-Bound synthesizER, named LOBER, that can be used
from an online web interface at http://costa.fdi.ucm.es/lober. To empirically evaluate
the results of our approach, we have used benchmarks from the Termination Problem
Data Base (TPDB), namely those from the category Complexity ITS that contains Integer
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Transition Systems. We have removed non-terminating transition systems and terminating
transition systems whose cost is unbounded (that is, the cost depends on some non-
deterministic variables and can be arbitrarily high) or non-linear, because they are outside
the scope of our approach. In total, we have considered a set of 473 multi-path loops from
which we have excluded 13 that were non-linear. Analyzing these 473 programs took 199
min, an average of 25 sec by program, approximately. For 255 of them, it took less than
1 sec.

We compare the obtained results to those obtained by the LoAT [27, 26] system, which
also outputs a pair (ρ,Q) of a lower-bound function ρ and initial conditions Q on the input
for which ρ is a valid lower bound.

Globally, both tools behave the same in 412 programs, obtaining equivalent linear
lower bounds in 376 of them and a constant lower bound in the remaining ones. Our
tool LOBER achieves a better accuracy in 37 programs, while LoAT is more precise in
11 programs. Let us discuss the two sets of programs in which both tools differ. As
regards the 37 examples for which we get better results, we have that LoAT crashes in
four cases and it can only find a constant lower bound in one example while our tool is
able to find a path of linear length by introducing the necessary quasi-invariants. For the
remaining 32 loops, both tools get a linear bound, but LOBER finds one that leads to an
unboundedly longer execution: 18 of these loops correspond to cases that have implicit
relations between the different execution paths (like our running examples) and require
semantic reasoning; for the remaining 14, we get a better set of quasi-invariants. The
following techniques have been needed to get such results in these 37 better cases (note
that (i) is not mutually exclusive with the others):

(i) 1 needs narrowing non-deterministic choices,

(ii) 5 do not need quasi-invariants nor guard narrowing,

(iii) 14 need quasi-invariants only,

(iv) 18 need both quasi-invariants and guard narrowing (in 3 of them this is only used
to disable transitions).

Therefore, this shows experimentally the relevance of all components within our framework
and its practical applicability thanks to the good performance of the Max-SMT solver on
non-linear arithmetic problems [14]. In general, for all the set of programs, we can solve
308 examples without quasi-invariants and 444 without guard-narrowing. The intersection
of these two sets is: 298 examples (63% of the programs), which leaves 175 programs that
need the use of some of the proposed techniques to be solved.

As regards the 11 examples for which we get worse results than LoAT, we have two
situations: (1) In six cases, the SMT-solver is not able to find a solution. We noticed that
too many quasi-invariants were required, what made the SMT problem too hard. (2) In
the other five cases, our tool finds a linear bound but with a worse set of quasi-invariants,
which makes the LoAT bound provide unboundedly longer executions.

All in all, we argue that our experimental results are promising: we triple LoAT in
the number of benchmarks for which we get more accurate results and, besides, many of
those examples correspond to complex loops that lead to worse results when disconnecting
transitions. Besides, we see room for further improvement, as most examples for which
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LoAT outperforms us could be handled as accurately as them with better quasi-invariants
(that is somehow a black-box component in our framework).
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Chapter 4

Certified Abstract Cost Analysis
with Upper and Lower Bounds

In Chapter 2, we presented a generalization of Automated Cost Analysis for abstract
programs, where the cost was bounded from above by means of upper bounds on the
worst-case cost. In Chapter 3, the presented technique is focused on inferring lower bounds
on the worst-case cost by means of loop specialization. In this chapter, whose complete
information can be found in Certified Cost Bounds for Abstract Programs (Chapter 6,
page 111), we extend the framework presented in Chapter 2 with the tool developed in
Chapter 3, so we can exploit the power of both Quantitative Abstract Execution and the
synthesis of lower bounds together within the verification framework for inferring the cost
of abstract programs.

As explained in Chapter 3, LOBER [9] bases the search of lower bounds on the worst-
case cost on the specialization of loops. The basic idea is that a lower bound on the
best-case cost of the specialized loop is a lower bound on the worst-case cost of the
original one. While this system was initially designed to compute lower bounds on the
worst-case cost, it allows disabling loop specialization, so as to provide lower bounds on
the best-case cost instead. We use the system in that way to compute lower bounds on
the best-case cost. This capability of LOBER of controlling the specializations of loops
in order to obtain accurate lower bounds on the best-case cost is essential to extend
Quantitative Abstract Execution to lower bounds.

The aim of using lower bounds on the best-case cost instead of lower bounds on the
worst-case cost is to capture the result of all possible executions of the analyzed program.
Let costw be the worst cost of the program, costb the best cost, ubw the upper bound on
the worst-case cost, and lbb the lower bound on the best-case cost, it holds that

lbb ≤ costb ≤ cost ≤ costw ≤ ubw

Given a lower bound on the best-case cost and an upper bound on the worst-case cost,
all possible costs will be bounded independently from the execution.

As mentioned in Chapter 2, arguing correctness of an abstract cost analysis is complex,
because it must be valid for an infinite set of concrete programs and it contains several
complex components, so it is useful to verify and certify the inferred abstract cost, as
the analysis of the failed verification attempt gives immediate feedback on the cause.
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Moreover, in Chapter 2, we relied on the certification stage to determine whether an
inferred cost was exact or an upper bound. Including also lower bounds in the cost
analysis gives us now the possibility of knowing before verification if the inferred cost will
be exact, as if both lower bound on the best-case cost and upper bound on the worst-case
cost match, then we will have an exact estimation of the cost. This fact stands out in the
optimization of Quantitative Abstract Execution, as we can avoid testing exact cases if
both bounds do not match.

In automated cost analysis, one infers cost bounds often from loop invariants, ranking
functions, metering functions, and size relations computed during Symbolic Execution [7,
25, 48, 18]. However, as explained in Chapter 2, for abstract programs, we need a more
general concept: a cost invariant. While previously we used only one cost invariant for
each loop verification, now we have to differentiate between lower bounds and upper
bounds, giving rise to lower cost invariants and upper cost invariants. Cost invariants
of Chapter 2 correspond to the latter, as previously we worked only with upper bounds.
Similarly, we have to extend the concept of cost post-conditions to handle also lower
bounds.

4.1 Cost Annotations by Example

We introduce the new terminology of cost annotations informally by means of the motivating
example used in Chapter 2 (Figure 2.1). We subsume any quantitative aspect of a program
under the term cost expressed in an unspecified cost model with the understanding that
it can be instantiated to specific cost measures.

Input to QAE is the abstract program to analyze, including annotations (highlighted in
light gray in Figure 4.1) that express restrictions on the permitted instances of abstract
statements. Annotations highlighted in dark gray are automatically inferred by abstract
cost analysis and are input for the certifier. Each abstract statement P has an associated
abstract cost function parametric in the locations of its footprint, represented by an
abstract cost symbol acP. As our framework works for both upper and lower bounds,
we distinguish the upper and lower bounds of the abstract cost of an abstract statement
P using the cost symbols aclP(t, w) and acuP(t, w), respectively. These symbols can be
instantiated with any concrete function parametric in t, w being a valid cost bound for
the instance of P. For example, for the instance “P ≡ x=t+1;” the constant function 1
is the correct exact cost, while t with t ≥ 1 is a correct upper bound cost. On the other
hand, for the instance

k = 0;
while (k<t){
k++;
}

the exact cost is t, while correct (but not tight) upper and lower bound costs are t2 and
1, respectively. The most accurate upper and lower bounds, in this case, are t. As both
bounds match, the inferred cost is exactly t.

As pointed out at the beginning of the chapter, we need cost invariants to capture the
cost of each loop iteration. They are declared by the keywords “cost invariant upper” and
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int i = 0;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant upper
i ·
(
acuP (t,w) + acuQ (t, z) + 2

)
;

//@ cost invariant lower

i ·
(
aclP (t,w) + aclQ (t, z) + 2

)
;

//@ decreases t− i;
while (i < t) {
//@ assignable x;
//@ accessible t,w;
//@ cost footprint t,w;
\abstract statement P;
//@ assignable y;
//@ accessible i,t,y,z;
//@ cost footprint t,z;
\abstract statement Q;
i ++;
}
//@ assert 2 + t · (aclP (t,w) +

aclQ (t, z) + 2) <=\cost;
//@ assert \cost<= 2 + t·

(acuP (t,w) + acuQ (t, z) + 2);

Program Before
int i = 0;
//@ assignable x;
//@ accessible t,w;
//@ cost footprint t,w;
\abstract statement P;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant upper
i ·
(
acuQ (t, z) + 2

)
;

//@ cost invariant lower

i ·
(
aclQ (t, z) + 2

)
;

//@ decreases t− i;
while (i < t) {
//@ assignable y;
//@ accessible i,t,y,z;
//@ cost footprint t,z;
\abstract statement Q;
i ++;
}
//@ assert 2 + aclP (t,w) +

t ·
(
aclQ (t, z) + 2

)
<= \cost

//@ assert \cost <= 2+

acuP (t,w) + t ·
(
acuQ (t, z) + 2

)
;

Program After

Inputs: t, w, x, y, z Precondition: t > 0 Postcondition: \cost 1 ≥ \cost 2

Preconditions and Postconditions

Figure 4.1: Motivating example.

“cost invariant lower”. To generate them, it is necessary to infer the cost growth (upper
and lower) of abstract programs, that bounds the number of loop iterations executed so
far.

In Figure 2.1 the number of loop iterations is determined exactly by the increase of
variable i until it reaches t. However, we can handle more general programs, where the
number of performed iterations might not be precisely inferred. For example, consider the
following program, where “∗” randomly returns true or false, causing a different increase
of i in each case:
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while (i < t){
if (∗)

i ++;
else

i +=2;
}

Now the most precise information obtainable on the number of loop iterations is that
they are between t

2 and t. The lower bound inference is reflected in the growth and cost
invariants. In Section 4.2 we describe the automated inference of cost invariants including
the generation of cost growth for all loops.

The framework can express and prove quantitative relational properties. The assertions
in the last lines in Figure 4.1 use the expression \cost referring to the total accumulated
cost of the program, i.e., the quantitative postconditions. We support quantitative relational
postconditions such as \cost 1 ≥ \cost 2 , where \cost 1, \cost 2 refer to the total cost
of the original (on the left) and transformed (on the right) program, respectively. To
prove relational properties, it is necessary to infer matching upper and lower bounds
for the number of loop iterations. Only then the comparison of the invariants allows
concluding that the programs from which they derive satisfy the stipulated relational
property. Otherwise, over- and under-approximation introduced by the cost analysis
can make the relation hold for the postconditions, but the relational property does not
necessarily hold for the programs. Now, we support three kinds of cost specifications.
These are: exact, upper bound, and lower and upper bound cost.

Abstract
Program

Transformed
Abstract
Program

Ð
Cost
Analyzer

Ð
Cost
Analyzer

Cost-
specified
Abstract
Program

Relational
Cost
Property

Same
loop
bound

Cost-
specified
Transformed
Abstract
Program

Ð
Cost
Verifier

certified

failed

Figure 4.2: Schema of tool chain for cost certification of abstract programs

In Figure 4.2, we present a schema of the toolchain for proving relational properties.
Given two abstract programs (the original and the transformed one), we obtain the
corresponding cost-specified programs by means of the cost analyzer. If both upper and
lower bounds of the loop match, then the tool verifies that the relational property holds. If

42



4.2. ABSTRACT COST ANALYSIS

the property does not hold, the tool performs a relaxation on the property and re-executes
the verification step.

4.2 Abstract Cost Analysis

While the initial approach of Chapter 2 was focused on the generation and verification
of upper bounds on the cost of abstract programs, now we extended it to generate and
certify also lower bounds on the abstract cost. We have also relaxed the conditions to
guarantee soundness of the abstract cost analysis framework. In particular, the concept
of cost neutral abstract statement is less restrictive than in Chapter 2.

This section is structured as follows: Subsection 4.2.1 strengthens the notion of
cost neutral abstract statements when including lower bounds as well, Subsection 4.2.2
generalizes the automatic inference of inductive cost invariants for abstract programs
from abstract cost relation systems. Subsection 4.2.3 describes how to generate cost
postconditions used to prove relational properties and required to handle nested loops.

4.2.1 Soundness of Abstract Cost Relations

For soundness of abstract cost analysis it is essential that

1. no abstract statement in the loop modifies any of the variables that influence loop
cost, i.e., they do not interfere with cost, and

2. the cost of the abstract statement in the loop is independent of the variables modified
in the loop. We call the latter cost neutral abstract statements.

To fulfill requirement 2 we introduce the new notion of a cost neutral AS to ensure
that variables in the cost footprint are not modified by other statements in the loop that
decrease the cost.

Due to the number of involved components of cost specifications, the following definition
is a little long-winded, but conceptually straightforward.

Definition 9 (Cost Neutral Abstract Statement). Given a loop L, where:

• W (L) is the set of variables written to by the non-abstract statements of L;

• Abstr(L) is the set of all abstract statements in loop L;

• Frame(Abstr(L)) is the set of variables assigned by any abstract statement A ∈
Abstr(L);

• CostFootprint(A) is the set of variables on which the cost of an A depends;

• CostFootprint(Abstr(L)) is the set of variables which the cost of any abstract statement
A of L depends on;

• Conditions(Abstr(L)) is the set of conditions defined in the cost footprint of any
abstract statement A ∈ Abstr(L);

• Vars(Conditions(Abstr(L))) is the set of variables involved in Conditions(Abstr(L));
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• R(L) is the ranking function of loop L;

• m(L) is the metering function of loop L;

• acuP and aclP are the upper and lower bounds, respectively, on the abstract cost of
abstract statement P .

L is a loop with cost neutral abstract statements if, for any of its abstract statements A
either

1. any variable not occurring in conditions of the cost footprint and that is assigned in
the loop does not occur in the cost footprint; or

2. if a variable occurs in a cost footprint condition, then the changes in the cost
referring to that variable are safe. That is, changes in the abstract statement costs
preserve upper and lower bounds of the corresponding costs and guarantee that the
upper and lower bounds on the iterations remain valid.

�

Example 17. Both loops in Figure 4.1 have cost neutral abstract statements. No conditions
are declared in the cost footprint, so Definition 9 applies. In the left program

Frame({P,Q}) ∪W (L) = {x, y, i} ,
CostFootprint(P ) = {t,w} ,
CostFootprint(Q) = {t, z} ,

so the condition is fulfilled. Similar for the program on the right. �

Given a program P with variables x and Abstract Cost Relation System following
Definition 1 with initial equation Cini(x). We denote by eval(Cini(x), σ0) the evaluation
of the abstract cost relation system for a given initial assignment σ0 of the variables.
This is a standard evaluation of recurrence equations performed by instantiating the
right-hand side of the equations with the values of the variables in σ0 and checking
the satisfiability of the size constraints (if the expression being checked or accumulated
contains “ ”, the evaluation returns “unbound”). As usual, the process is repeated until an
equation without calls is reached. Moreover, we denote by eval(Cini(x), σ0)

u the upper-
bound of the evaluation of the abstract cost relation system, obtained by substituting
each abstract statement acP in eval(Cini(x), σ0) by its upper bound acuP. Similarly, we
define the lower bound of the evaluation eval(Cini(x), σ0)

l by substituting each abstract
statement acP by its lower bound aclP. It is trivial to see that eval(Cini(x), σ0)

l ≤
eval(Cini(x), σ0) ≤ eval(Cini(x), σ0)

u.

Example 18. Consider the abstract cost relation system of the left program in Figure
4.1 with variables x = (t, x,w, y, z), initial state σ0 = (2, 0, 0, 0, 0), and cost model Minst

(i.e., cbefore, cBw0
, and cw0 assume values 1, 1, and 2, respectively). The evaluation

of the ACRS is eval(Cini(x), σ0) = 6 + 2 · acP(2, 0) + 2 · acQ(2, 0). Its upper bound is
eval(Cini(x), σ0)

u = 6 + 2 · acuP(2, 0) + 2 · acuQ(2, 0), its lower bound is eval(Cini(x), σ0)
l =

6 + 2 · aclP(2, 0) + 2 · aclQ(2, 0). �
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The following theorem states the soundness of the abstract cost relation system.

Theorem 1 (Soundness of the Abstract Cost Relation System). Let M be a cost model
and P an abstract program with cost neutral abstract statements in loops (Definition 9),
cP the abstract cost of P, and Cini the initial equation for the ACRS obtained by Definition
1. Then, for any initial state of the variables σ0 ∈ Znm, it holds that eval(Cini(x), σ0)

l ≤
cP(σ0) ≤ eval(Cini(x), σ0)

u.

4.2.2 From Abstract Cost Relation Systems to Abstract Cost Invariants

Example 18 shows that abstract cost relation systems are evaluable for concrete instances.
However, to enable automated Quantitative Abstract Execution, we need to obtain from
them closed-form cost invariants and postconditions, i.e., non-recursive expressions. In
Chapter 2, we introduced the concept of abstract cost invariant, that we have to extend
now to upper cost invariants and lower cost invariants.

In contrast to abstract cost invariants, postconditions provide a bound for the cost
after execution of the whole loop they refer to. Typically, an upper bound postcondition
for a loop has the form max iter ∗max cost+max base, where max iter is the maximal
number of iterations of the loop, max cost is the maximal cost of any loop iteration,
and max base is the maximal cost of executing the loop with no iterations. A lower
bound post condition is defined similarly by using the lower bound on the number of
iterations, the lower bounds on the abstract costs and the minimal concrete costs (i.e.,
min iter ∗min cost+min base).

An upper bound abstract cost invariant has the form growthu ∗max cost+max base,
where growthu counts how many times the loop has been executed at most and hence
provides an upper bound after each loop iteration. Similarly, a lower bound abstract cost
invariant has the form growth l ∗min cost + min base , where growth l counts how many
times the loop has been executed at least and provides a lower bound after each loop
iteration. The challenge is to design automated techniques that infer upper and lower
bounds growthu, growth l.

Definition 10 (Upper and lower growth). Given a loop with ranking function R = c +∑
i ai · vi, metering function m = d +

∑
i bi · vi, where c, d are the constant parts of the

functions, vi are the variable parts, and ai, bi are constant coefficients. If we denote with
v0i the initial value of variable vi before entering the loop, then the upper growth and the
lower growth are

growthu =
∑

i

ai ·
(
v0i − vi

)
growth l =

∑

i

bi ·
(
v0i − vi

)

For any loop execution, growth l ≤ growth ≤ growthu, where growth is the exact number
of performed iterations.

Example 19. Let the following loop, that we introduced in Section 4.1.
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`1

`e

τ1 :

{
i < t,
i′ = i+ 1

τ2 :

{
i < t,
i = i+ 2

τ3 :

{
i ≥ t,
i′ = i

Let i0 be the initial value of i. We have that a ranking function is R = t − i and a
metering function is m = t−i

2 . Then, both growths are

growthu = i− i0 growth l =
i− i0

2

�

We can now define the concept of abstract cost invariant that relies on abstract cost
relations and growths as defined above.

Definition 11 (Abstract Cost Invariant). Given an abstract cost relation system as in
Definition 1 with growth as in Definition 10, its upper and lower abstract cost invariants
are defined as follows:

• cinvu(x) = CB
max + growthu ·

(∑n
j=1 ac

u
j

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
max
)

• cinvl(x) = CB
min + growth l ·

(∑n
j=1 ac

l
j

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
min
)

where CB
max and CB

min stand for the maximal and minimal value, respectively, the expression
CB can take under the constraints ϕB; CNi

max and CNi
min are the maximal and minimal

value, respectively, of CNi under ϕI .

The maximal and minimal can be provided by cost analyzers and they give rise to
automatically generated annotations

“//@ cost invariant upper cinvu(x);” and “//@ cost invariant lower cinvl(x);”.

Example 20. Consider the Example 19 (where growthu = i− i0 and growthl = i−i0
2 ) with

the following abstract statement specification:

//@ assignable w;
//@ accessible i , t , w;
//@ cost footprint t;
\abstract statement P;

Under Minstr, the evaluation of the loop guard and the increasing of i both have unit
cost, so the abstract cost relation system is:
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C(i, t,w) = 1 {i ≥ t}
C(i, t,w) = acP (t) + 2 + C(i′, t, ) {i′ = i + 1, i < t}
C(i, t,w) = acP (t) + 2 + C(i′, t, ) {i′ = i + 2, i < t}

The value of the assignable variable w in the recursive call is “forgotten” (item 6 in
Definition 1), but this information loss does not affect the solvability of the abstract cost
relation system. We obtain the following abstract cost invariants:

“//@ cost invariant upper 1 + (i−i0)· (2 + acP(k));”
“//@ cost invariant lower 1 + i−i0

2 · (2 + acP(k));”

�

Example 21.
Sometimes the cost of a single iteration cannot
be computed exactly by cost analyzers, resulting
in maximized and minimized cost expressions
for concrete instructions. To illustrate this
phenomenon, we go over Example 6 again,
which creates an array of non-constant size “i”
in each iteration of a loop and measure memory
consumption instead of instruction count.

while (i < t) {
a = new int[i];
//@ assignable j;
//@ accessible i,t,j,a,k;
//@ cost footprint k;
\abstract statement P;
i ++;
}

The resulting ACRS accumulates cost “i” at each iteration, plus the memory consumed
by the abstract statement:

C(i, t, j, k) = 0, {i ≥ t}
C(i, t, j, k) = acP (k) + i + C(i′, t, , k), {i′ = i + 1, i < t}

Now, maximizing the expression CN1 = i under {i′ = i + 1, i < t} results in CN1
max = 4 ·

(t − 1) and minimizing it results in CN1
min = 4, as we are working with 32 bit integers.1

Accordingly, we obtain the following cost invariants:

//@ cost invariant upper i ∗ (4∗(t − 1) + acP(k));
//@ cost invariant lower i ∗ (4 + acP(k));.

While the maximized expression is computed automatically, the minimized expression
was manually calculated, because LOBER [9] computes lower bounds on the number of
iterations of a given loop, but it does not minimize the cost of single iterations (by default
it assumes each iteration has unit cost). For this reason, in the current implementation,
the tool only infers upper bounds for the heap cost model.

�

Let cL denote the abstract cost of executing a loop L. We denote by cI the portion
of the cost in cL up to the execution of iteration I.

Proposition 1. Let L be a cost neutral loop, and cI the abstract cost of L in iteration
I, cinvu(x) and cinvl(x) its abstract cost invariants, and σI ∈ Znm be the store after
performing iteration I of L. Then the following holds:

1Better maximization and minimization results can with techniques such as in [10].
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1. cinvu(x) and cinvl(x) are true on entering the loop;

2. cinvl(σI) ≤ cI(σI) ≤ cinvu(σI).

4.2.3 From Cost Invariants to Postconditions

To handle programs with nested loops and to prove relational properties it is necessary
to infer cost postconditions for abstract programs. Cost postconditions for concrete
programs are obtained by upper and lower bound solvers (e.g., COSTA [7], CoFloCo [25],
AProVE [28], LoAT [26], Lober [9]) that compute max iter , an upper bound on the
number of iterations and min iter , a lower bound on the number of iterations that a
loop performs, by relying on ranking and metering functions. The cost postcondition is
obtained by substituting growthu by max iter and growthl by min iter in the formula
of cinvu(x) and cinvl(x) in Definition 11 as follows.

Definition 12 (Cost Postcondition). Let L be a loop, max iter be an upper bound, and
min iter a lower bound on the number of iterations of L. From the abstract cost relation
system for L (Definition 1) we infer the cost postconditions for L:

• post l(x) = CB
min + min iter(x) ·

(∑n
j=1 ac

l
j

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
min
)

• postu(x) = CB
max + max iter(x) ·

(∑n
j=1 ac

u
j

(
cj,1, . . . , cj,hcj

)
+
∑m

i=1 CNi
max
)

and generate the annotations

//@ assert post l (x) ≤ cost
//@ assert cost ≤ post u(x)

To infer the postcondition for a complete abstract program, we take the sum of all cost
postconditions of its top-level loops plus the cost of the non-iterative fragments. Figure 4.1
shows the cost postconditions for our running example obtained by replacing the growth
i of the invariant with the bound t on the loop iterations and requiring t ≥ 0.

The following theorem states soundness of cost postconditions:

Theorem 2. Let L be a loop over variables x satisfying Definition 9, and cL the abstract
cost of L. Let σL ∈ Zmn be the state when L terminates. Then post l(σL) ≤ cL(σL) ≤
postu(σL).

4.3 Experimental Evaluation

The implemented prototype of [11] has been extended to include lower bounds in the
analysis. The seven transformation examples of Section 2.3 have been processed in the
updated tool. From these examples, five of them have now information about lower
bounds included in their final analysis. The two examples that do not have lower
bounds are the loop unrolling transformation, due to over-approximations, and the array
optimization example, as LOBER is able to automatically infer lower bounds on the
number of iterations, but not on the cost of a single iteration, as explained in Example 21.
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In addition, we have studied two lower bound examples in which lower bounds on the best-
case cost are not equal to lower bounds on the worst-case cost. One of them corresponds
to a loop with the behaviour of Example 19 and the other example corresponds to the
running example of Chapter 3. All the results obtained in these analyses satisfy the results
that were expected by using the techniques explained in this chapter.
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Chapter 5

Conclusions and Future Work

In Chapter 2, we have presented the first approach to analyze the cost of schematic
programs with placeholders. We can infer and verify cost bounds for a potentially infinite
class of programs once and for all. In particular, for the first time, it is possible to
analyze and prove changes in efficiency caused by program transformations — valid for
all input programs. Quantitative Abstract Execution supports exact, upper-bound and
asymptotic cost and a configurable cost model. The toolchain is based on a cost analyzer
and a program verifier which analyzes and formally certifies abstract cost bounds in a
fully automated manner. Certification is essential, because when handling solely upper
bounds, only the verifier can determine whether the bounds inferred by the cost analyzer
are exact.

This work required the new concept of an abstract cost invariant. This is interesting
in itself, because

1. it renders the analysis of nested loops modular and

2. provides an interface to backends (such as verifiers) that characterizes the cost of
code in iterations.

The future work in Quantitative Abstract Execution mentioned issues that have been
already approached in the journal article on which Chapter 4 is based, such as the
improvement of the analysis to get exact bounds, that has been achieved by including
also the calculus of lower bounds. A new definition of cost neutral loops was also added
to this chapter, in order to make the definition of the cost of an abstract program more
general.

In Chapter 3, we have proposed a novel approach to synthesize precise lower-bounds
from integer non-deterministic programs. The main novelties are on the use of loop
specialization to facilitate the task of finding a (precise) metering function and on the
Max-SMT encoding to find larger (better) solutions. Our work is related to two lines of
research: non-termination analysis and lower bound inference.

In both kinds of analysis, one aims at finding classes of inputs for which the program
features a non-terminating behavior or a cost-expensive behavior. Therefore, techniques
developed for non-termination might provide a good basis for developing a lower bound
analysis. In this sense, our work exploits ideas from the Max-SMT approach to non-
termination in [35]. The main idea borrowed from [35] has been the use of quasi-
invariants to specialize loops towards the desired behavior: in our case towards the search
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of a metering function, while in theirs towards the search of a non-termination proof.
However, there are fundamental differences since we have proposed other new forms of
loop specialization and have been able to adapt the use of Max-SMT to accurately solve
our problem (i.e., find larger bounds). Our loop specialization technique can be used to
gain precision in non-termination analysis [35]. For instance, in this loop:

`1

`e

τ1 :





x ≥ 0,
y ≥ 0,
x′ = x+ 1,
y′ = y − 1

τ4 :





x ≥ 0,
y ≥ 0,
x′ = x− 1,
y′ = y + 1

τ3 :





y < 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

no sub strongly connected component (considering only one of the transitions) is non-
terminating and no quasi-invariant can be found to ensure we will stay in the loop (when
considering both transitions), hence cannot be handled by [35]. Instead, if we narrow the
transitions as

`1

`e

τ1 :





x ≥ 0,
y ≥ 0,
y ≥ x,
x′ = x+ 1,
y′ = y − 1

τ4 :





x ≥ 0,
y ≥ 0,
x > y,
x′ = x− 1,
y′ = y + 1

τ3 :





y < 0,
x′ = x,
y′ = y

τ2 :





x < 0,
x′ = x,
y′ = y

we can prove that x ≥ 0 ∧ y ≥ 0 ∧ x+ y = 1 is quasi-invariant, which allows us to prove
non-termination in the way of [35] (as we will stay in the loop forever).

As regards lower bound inference, the current state-of-the-art is the work by Frohn et
al. [27, 26] that introduces the notion of metering function and acceleration. Our work
indeed tries to recover the semantic loss in [27, 26] due to defining metering functions for
simple loops and combining them in a later stage using acceleration. Technically, we only
share with this work the basic definition of metering function. Indeed, the conditions of
the definition of metering function from Chapter 3 already generalize the one in [27, 26]
since it is not restricted to simple loops. This definition is improved with several loop
specializations. While [27, 26] relies on pure SMT to solve the problem, we propose
to gain precision using Max-SMT. Due to the different technical approaches underlying
both frameworks, their accuracy and efficiency must be compared experimentally with
the LoAT system that implements the ideas in [27, 26]. The results in the experimental
section of the paper in which Chapter 3 is based justify the important gains of using
our new framework and prove experimentally that, the fact that we do not lose semantic
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relations in the search of metering functions is key to infer lower bounds for challenging
cases in which LoAT fails.

In Chapter 4, Quantitative Abstract Execution and lower bound synthesis are unified.
The abstract cost analysis framework, first based only on the COSTA analyzer [7] is
extended in this chapter to use also LOBER [9] in order to include lower bounds in the
analysis tool. This improvement of the analysis allows including the exact cost decision in
the cost analysis stage and not leave it only to the verification. Previously, it was needed
to verify the results to decide whether the inferred cost was exact or it was needed to use
upper bounds. This was made in an incremental way: first trying the exact results and,
then, the upper bounds. However, now a match between lower and upper bounds gives
the assurance, in an early step, of the exactitude of the inferred results. The inclusion
of lower bounds in this analysis turns our approach, that was to our knowledge the first
approach to infer upper bounds on the cost of schematic programs with placeholders, also
the first approach to infer lower bounds on the cost of abstract programs. In addition,
the inclusion of verification in the process of the analysis gives an extra warranty on
the correctness of the lower bound results and produces the needed formal proofs for a
certification stage.

The future work of these techniques includes:

• In Quantitative Abstract Execution, the future work involves extending the analyzed
target language. Cost analysis and deductive verification are already possible for
a large Java fragment [7, 43]. More interesting—and more challenging—is the
analysis of program transformations that parallelize code. The extension to larger
classes of cost functions, such as logarithmic or exponential, could be realized by
integrating more advanced cost analyzers into the toolchain.

• In Lower Bound Synthesis, when comparing the obtained results with LoAT we
noticed that too many quasi-invariants were required, which made the SMT problem
too hard. To improve these results, we could start, as a preprocessing step, from
a quasi-invariant that includes all invariant inequalities that syntactically appear
in the loop transitions. This is something similar to what is done by LoAT when
inferring what they call conditional metering function.

Moreover, the Max-SMT encoding is based on the use of soft constraints to obtain
more accurate results. Adding soft conditions to the system is a field to be explored,
as the inclusion of new requirements cannot only gain in precision of the results but
also in the efficiency of the tool.

In addition, the framework of lower bounds is now only applied to simple loops.
A work to be done is to extend the implementation to handle also more complex
programs, including nested loops.
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Abstract. A program containing placeholders for unspecified statements
or expressions is called an abstract (or schematic) program. Placeholder
symbols occur naturally in program transformation rules, as used in
refactoring, compilation, optimization, or parallelization. We present a
generalization of automated cost analysis that can handle abstract pro-
grams and, hence, can analyze the impact on the cost of program trans-
formations. This kind of relational property requires provably precise
cost bounds which are not always produced by cost analysis. There-
fore, we certify by deductive verification that the inferred abstract cost
bounds are correct and sufficiently precise. It is the first approach solving
this problem. Both, abstract cost analysis and certification, are based on
quantitative abstract execution (QAE) which in turn is a variation of
abstract execution, a recently developed symbolic execution technique
for abstract programs. To realize QAE the new concept of a cost invari-
ant is introduced. QAE is implemented and runs fully automatically on
a benchmark set consisting of representative optimization rules.

1 Introduction

We present a generalization of automated cost analysis that can handle pro-
grams containing placeholders for unspecified statements. Consider the program
Q ≡ “i =0; while (i < t) {P; i ++;}”, where P is any statement not modifying
i or t. We call P an abstract statement ; a program like Q containing abstract
statements is called abstract program. The (exact or upper bound) cost of execut-
ing P is described by a function acP(x) depending on the variables x occurring
in P. We call this function the abstract cost of P. Assuming that executing any
statement has unit cost and that t ≥ 0, one can compute the (abstract) cost of
Q as 2+ t · (acP(x)+2) depending on acP and t. For any concrete instance of P,
we can derive its concrete cost as usual and then obtain the concrete cost of Q
simply by instantiating acP. In this paper, we define and implement an abstract
cost analysis to infer abstract cost bounds. Our implementation consists of an
automatic abstract cost analysis tool and an automatic certifier for the correct-
ness of inferred abstract bounds. Both steps are performed with an approach
called Quantitative Abstract Execution (QAE).

Fine, but what is this good for? Abstract programs occur in program trans-
formation rules used in compilation, optimization, parallelization, refactoring,
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etc.: Transformations are specified as rules over program schemata which are
nothing but abstract programs. If we can perform cost analysis of abstract pro-
grams, we can analyze the cost effect of program transformations. Our approach
is the first method to analyze the cost impact of program transformations.

Automated Cost Analysis. Cost analysis occupies an interesting middle ground
between termination checking and full functional verification in the static pro-
gram analysis portfolio. The main problem in functional verification is that one
has to come up with a functional specification of the intended behavior, as well
as with auxiliary specifications including loop invariants and contracts [21]. In
contrast, termination is a generic property and it is sufficient to come up with
a suitable term order or ranking function [6]. For many programs, termination
analysis is vastly easier to automate than verification.1

Computation cost is not a generic property, but it is usually schematic: One
fixes a class of cost functions (for example, polynomial) that can be handled.
A cost analysis then must come up with parameters (degree, coefficients) that
constitute a valid bound (lower, upper, exact) for all inputs of a given program
with respect to a cost model (# of instructions, allocated memory, etc.). If this
is performed bottom up with respect to a program’s call graph, it is possible to
infer a cost bound for the top-level function of a program. Such a cost expression
is often symbolic, because it depends on the program’s input parameters.

A central technique for inferring symbolic cost of a piece of code with high
precision is symbolic execution (SE) [9, 25]. The main difficulty is to render SE
of loops with symbolic bounds finite. This is achieved with loop invariants that
generalize the behavior of a loop body: an invariant is valid at the loop head after
arbitrarily many iterations. To infer sufficiently strong invariants automatically
is generally an unsolved problem in functional verification, but much easier in the
context of cost analysis, because invariants do not need to characterize functional
behavior: it suffices that they permit to infer schematic cost expressions.

Abstract Execution. To infer the cost of program transformation schemata re-
quires the capability of analyzing abstract programs. This is not possible with
standard SE, because abstract statements have no operational semantics. One
way to reason about abstract programs is to perform structural induction over
the syntactic definition of statements and expressions whenever an abstract sym-
bol is encountered. Structural induction is done in interactive theorem prov-
ing [7, 31] to verify, e.g., compilers. It is labor-intensive and not automatic. In-
stead, here we perform cost analysis of abstract programs via a recent generaliza-
tion of SE called abstract execution (AE) [37,38]. The idea of AE is, quite simply,
to symbolically execute a program containing abstract placeholder symbols for
expressions and statements, just as if it were a concrete program. It might seem

1 In theory, of course, proving termination is as difficult as functional verification.
It is hard to imagine, for example, to find a termination argument for the Collatz
function without a deep understanding of what it does. But automated termination
checking works very well for many programs in practice.
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counterintuitive that this is possible: after all, nothing is known about an ab-
stract symbol. But this is not quite true: one can equip an abstract symbol with
an abstract description of the behavior of its instances: a set of memory loca-
tions its behavior may depend on, commonly called footprint and a (possibly
different) set of memory locations it can change, commonly called frame [21].

Cost Invariants. In automated cost analysis, one infers cost bounds often from
loop invariants, ranking functions, and size relations computed during SE [3,11,
16, 40]. For abstract programs, we need a more general concept, namely a loop
invariant expressing a valid abstract cost bound at the beginning of any iteration
(e.g., 2 + i ∗ (acP(x) + 2) for the program Q above). We call this a cost invariant.
This is an important technical innovation of this paper, increasing the modularity
of cost analysis, because each loop can be verified and certified separately.

Relational Cost Analysis. AE allows specifying and verifying relational program
properties [37], because one can express rule schemata. This extends to QAE
and makes it possible, for the first time, to infer and to prove (automatically!),
for example, the impact of program transformation on performance.

Certification. Cost annotations inferred by abstract cost analysis, i.e., cost in-
variants and abstract cost bounds, are automatically certified by a deductive ver-
ification system, extending the approach reported in [4] to abstract cost and ab-
stract programs. This is possible because the specification (i.e., the cost bound)
and the loop (cost) invariants are inferred by the cost analyzer—the verification
system does not need to generate them.

To argue correctness of an abstract cost analysis is complex, because it must
be valid for an infinite set of concrete programs. For this reason alone, it is
useful to certify the abstract cost inferred for a given abstract program: during
development of the abstract cost analysis reported here, several errors in abstract
cost computation were detected—analysis of the failed verification attempt gave
immediate feedback on the cause. We built a test suite of problems so that any
change in the cost analyzer can be validated in the future.

Certification is crucial for the correctness of quantitative relational prop-
erties: The inferred cost invariants might not be precise enough to establish,
e.g., that a program transformation does not increase cost for any possible pro-
gram instance and run. This is only established at the certification stage, where
relational properties are formally verified. A relational setting requires provably
precise cost bounds. This feature is not offered by existing cost analysis methods.

2 QAE by Example

We introduce our approach and terminology informally by means of a motivat-
ing example: Code Motion [1] is a compiler optimization technique moving a
statement not affected by a loop from the beginning of the loop body to before
the loop. This code transformation should preserve behavior provided the loop
is executed at least once, but can be expected to improve computation effort,
i.e. quantitative properties of the program, such as execution time and memory
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int i = 0;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acP (t, w) + acQ (t, z) + 2) ;
//@ decreases t − i;
while (i < t) {

//@ assignable x;
//@ accessible t, w;
//@ cost footprint t, w;
\abstract statement P;
//@ assignable y;
//@ accessible i , t , y, z;
//@ cost footprint t, z;
\abstract statement Q;
i ++;

}
//@ assert \cost == 2 +

t · (acP (t, w) + acQ (t, z) + 2) ;

Program Before

int i = 0;
//@ assignable x;
//@ accessible t, w;
//@ cost footprint t, w;
\abstract statement P;
//@ loop invariant i ≥ 0 && i ≤ t;
//@ cost invariant

i · (acQ (t, z) + 2) ;
//@ decreases t − i;
while (i < t) {

//@ assignable y;
//@ accessible i , t , y, z;
//@ cost footprint t, z;
\abstract statement Q;
i ++;

}
//@ assert \cost == 2 +

acP (t, w) + t · (acQ (t, z) + 2) ;

Program After

Inputs: t, w, x, y, z Precondition: t > 0 Postcondition: \cost 1 ≥ \cost 2

Preconditions and Postconditions

Fig. 1: Motivating example on relational quantitative properties.

consumption: The moved code block is executed just once in the transformed
context, leading to less instructions (less energy consumed) and, in case it allo-
cates memory, less memory usage. In the following we subsume any quantitative
aspect of a program under the term cost expressed in an unspecified cost model
with the understanding that it can be instantiated to specific cost measures, such
as number of instructions, number of allocated bytes, energy consumed, etc.

To formalize code motion as a transformation rule, we describe in- and out-
put of the transformation schematically. Fig. 1 depicts such a schema in a lan-
guage based on Java. An Abstract Statement (AS) with identifier Id , declared
as “\abstract statement Id ;”, represents an arbitrary concrete statement. It is
obviously unsafe to extract arbitrary, possibly non-invariant, code blocks from
loops. For this reason, the AS P in question has a specification restricting the
allowed behavior of its instances. For compatibility with Java we base our spec-
ification language on the Java Modeling Language (JML) [27]. Specifications are
attached to code via structured comments that are marked as JML by an “@”
symbol. JML keyword “assignable” defines the memory locations that may oc-
cur in the frame of an AS; similarly, “accessible” restricts the footprint. Fig. 1
contains further keywords explained below.

Input to QAE is the abstract program to analyze, including annotations
(highlighted in light gray in Fig. 1) that express restrictions on the permitted
instances of ASs. In addition to the frame and footprint, the cost footprint of an
AS, denoted with the keyword “cost footprint”, is a subset of its footprint listing
locations the cost expressions in AS instances may depend on. In Fig. 1, the cost
footprint of AS Q excludes accessible variables i and y. Annotations highlighted
in dark gray are automatically inferred by abstract cost analysis and are input
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for the certifier. As usual, loop invariants (keyword “loop invariant”) are needed
to describe the behavior of loops with symbolic bounds. The loop invariant in
Fig. 1 allows inferring the final value t of loop counter i after loop termination.
To prove termination, the loop variant (keyword “decreases”) is inferred.

So far, this is standard automated cost analysis [3]. The ability to infer
automatically the remaining annotations represents our main contribution: Each
AS P has an associated abstract cost function parametric in the locations of its
footprint, represented by an abstract cost symbol acP. The symbol acp (t, w) in
the “assert” statement in Fig. 1 can be instantiated with any concrete function
parametric in t, w being a valid cost bound for the instance of P. For example,
for the instantiation “P ≡ x=t+1;” the constant function acP (t, w) = 1 is the
correct exact cost, while acP (t, w) = t with t ≥ 1 is a correct upper bound cost.

As pointed out in Sect. 1 we require cost invariants to capture the cost of each
loop iteration. They are declared by the keyword “cost invariant”. To generate
them, it is necessary to infer the cost growth of abstract programs that bounds
the number of loop iterations executed so far. In Sect. 4 we describe automated
inference of cost invariants including the generation of cost growth for all loops.
Our technique is compositional and also works in the presence of nested loops.

The QAE framework can express and prove quantitative relational properties.
The assertions in the last lines in Fig. 1 use the expression \cost referring to the
total accumulated cost of the program, i.e., the quantitative postcondition. We
support quantitative relational postconditions such as \cost 1 ≥ \cost 2, where
\cost 1, \cost 2 refer to the total cost of the original (on the left) and trans-
formed (on the right) program, respectively. To prove relational properties, one
must be able to deduce exact cost invariants for loops such that the comparison
of the invariants allows concluding that the programs from which the invariants
are obtained fulfill the proven relational property. Otherwise, over-approximation
introduced by cost analysis could make the relation for the postconditions hold,
while the relational property does not necessarily hold for the programs.

To obtain a formal account of QAE with correctness guarantees we require a
mathematically rigorous semantic foundation of abstract cost. This is provided
in the following section.

3 (Quantitative) Abstract Execution

Abstract Execution [37, 38] extends symbolic execution by permitting abstract
statements to occur in programs. Thus AE reasons about an infinite set of
concrete programs. An abstract program contains at least one AS. The semantics
of an AS is given by the set of concrete programs it represents, its set of legal
instances. To simplify presentation, we only consider normally completing Java
code as instances: an instance may not throw an exception, break from a loop,
etc. Each AS has an identifier and a specification consisting of its frame and
footprint. Semantically, instances of an AS with identifier P may at most write
to memory locations specified in P’s frame and may only read the values of
locations in its footprint. All occurrences of an AS with the same identifier
symbol have the same legal instances (possibly modulo renaming of variables,
if variable names in frame and footprint specifications differ). For example, by
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//@ assignable x,y;
//@ accessible y, z;
\abstract statement P;

we declare an AS with identifier “P”, which can be instantiated by programs
that write at most to variables x and y, while only depending on variables y
and z. The program “x=y; y=17;” is a legal instance of it, but not “x=y; y=w;”,
which accesses the value of variable w not contained in the footprint.

We use the shorthand P(x, y :≈ y, z) for the AS declaration above. The left-
hand side of “:≈” is the frame, the right-hand side the footprint. Abstract pro-
grams allow expressing a second-order property such as “all programs assigning
at most x, y while reading at most y, z leave the value of i unchanged”. In Hoare
triple format (where i0 is a fresh constant not occurring in P):

{i .
= i0}P(x, y :≈ y, z); {i .

= i0} (∗)
3.1 Abstract Execution with Abstract Cost

We extend the AE framework [37,38] to QAE by adding cost specifications that
extend the specification of an AS with an annotated cost expression. An abstract
cost expression is a function whose value may depend on any memory location in
the footprint of the AS it specifies. This location set is called the cost footprint,
specified via the cost footprint keyword (see Fig. 1), and must be a subset of the
footprint of the specified AS. The cost footprint for the program in (∗) might be
declared as “{z}”. It implicitly declares the abstract function acP (z ) that could
be instantiated to, say, quadratic cost “z2”.

Definition 1 (Abstract Program). A pair P = (abstrStmts , pabstr ) of a set
of AS declarations abstrStmts �= ∅ and a program fragment pabstr containing
exactly those ASs is called abstract program. Each AS declaration in abstrStmts
is a pair (P(frame :≈ footprint), acP (costFootprint)), where P is an identifier;
frame, footprint, and costFootprint ⊆ footprint are location sets.

A concrete program fragment p is a legal instance of P if it arises from sub-
stituting concrete cost functions for all acP in abstrStmts, and concrete state-
ments for all P in abstrStmts, where (i) all ASs are instantiated legally, i.e., by
statements respecting their frame, footprint, and cost function, and (ii) all ASs
with the same identifier are instantiated with the same concrete program. The
semantics �P� consists of all its legal instances.

The abstract program consisting of only AS P in (∗) with cost footprint “{z}”
is formally defined as:

(
{(P(x, y :≈ y, z), acP (z))} , P;

)
. The program “P0 ≡

i =0; while (i <z) {x = z; i ++;}” with cost function “acP (z) = 3 · z + 2” is a
legal instance: it respects frame, footprint, and cost footprint, as well as the cost
function, that (assuming z ≥ 0) can be obtained by static cost analysis of P0.

By encoding the semantics of abstract programs in a program logic [38, Sect.
4.2] one can statically verify whether an instance is legal. It may require auxiliary
specifications (invariants, contracts) of the concrete code. The property is unde-
cidable, but can be proven automatically in many cases, see [38] for a discussion.
A first implementation of such a check is part of the REFINITY tool (see [36],
also https://www.key-project.org/REFINITY/).
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3.2 Cost of Abstract Programs

Finitely executing a concrete program p starting in a state s0 = (p, σ0) with an
initial assignment σ0 of p’s program variables results in a finite trace of the form
t ≡ s0

c1−→ . . .
cn−→ sn. Each state si = (pi, σi) consists of a program counter pi

(the remaining program to execute) and a store σi (the current variable assign-

ment); each transition si
ci+1−−−→ si+1 updates si to si+1 according to the effect of

executing command ci+1 defined in the semantics of the programming language.
A complete trace corresponds to a terminating execution, i.e., sn = (ε, σn), where
ε is the empty program and σn the resulting final variable assignment.

The cost of a program can be computed based on execution traces. To al-
low arbitrary quantitative properties, we work on a generic cost model M that
assigns cost values to programming language instructions. We will compute the
cost of a trace t, denoted M(t), by summing up the costs of the executed in-
structions. A straightforward measure is the number of executed instructions
Minstr: In this cost model, instructions like “x=1;”, the evaluation of the loop
guard, etc., all are assigned cost 1. For example, the cost of the complete trace
of “while (i >0) i−−;” when started with an initial store assigning the value 3
to i is 7, because “i −−;” is executed three times and the guard is evaluated four
times. This can be generalized to symbolic execution: Executing the same pro-
gram with a symbolic store assigning to i a symbolic initial value i0 ≥ 0 produces
traces of cost 2 · i0 + 1. The cost of abstract programs, i.e., the generalization to
QAE, is defined similarly: By generalizing not merely over all initial stores, but
also over all concrete instances of the abstract program.

Definition 2 (Abstract Program Cost). Let M be a cost model. Let an
integer-valued expression cP consist of scalar constants, program variables, and
abstract cost symbols applied to constants and variables. Expression cP is the
cost of an abstract program P w.r.t.M if for all concrete stores σ and instances
p ∈ �P� such that p terminates with a complete trace t of cost M(t) when
executed in σ, cP evaluates to M(t) when interpreting variables according to σ,
and abstract cost functions according to the instantiation step leading to p. The
instance of cP using the concrete store σ is denoted cP(σ).

Example 1. We test the cost assertion in the last lines of the left program in
Fig. 1 by computing the cost of a trace obtained from a fixed initial store and
instances of P, Q. We use the cost modelMinstr and an initial store that assigns
2 to t and 0 to all other variables. We instantiate P with “x=2∗t;” and Q with
“y=i; y++;”. Consequently, the abstract cost functions acP (t, w) and acQ (t, z)
are instantiated with 1 and 2, respectively. Evaluating the postulated abstract
program cost 2 + t · (2 + acP (t, w) + acQ (t, z)) for the concrete store and AS
instantiations results in 2+2 ·(2+1+2) = 12. Consequently, the execution trace
should contain 12 transitions, which is the case.

3.3 Proving Quantitative Properties with QAE

There are two ways to realize QAE on top of the existing functional verification
layer provided by the AE framework [37, 38]: (i) provide a “cost” extension
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to the program logic and calculus underlying AE; (ii) translate non-functional
(cost) properties to functional ones. We opt for the second, as it is less prone to
introduce soundness issues stemming from the addition of new concepts to the
existing framework. It is also faster to realize and allows early testing.

The translation consists of three elements: (a) A global “ghost” variable
“cost” (representing keyword “\cost”) for tracking accumulated cost; (b) explicit
encoding of a chosen cost model by suitable ghost setter methods that update this
variable; (c) functional loop invariants and method postconditions expressing
cost invariants and cost postconditions.

Regarding item (c), we support three kinds of cost specification. These are,
descending in the order of their strength: exact, upper bound, and asymptotic
cost. At the analysis stage, it is usually impossible to determine the best match.
For this reason, there is merely one cost invariant keyword, not three. However,
when translating cost to functional properties, a decision has to be made. A
natural strategy is to start with the strongest kind of specification, then proceed
towards the weaker ones when a proof fails.

An exact cost invariant has the shape “cost == expr”, an upper bound
on the invariant cost is specified by “cost <= expr”; asymptotic cost is ex-
pressed by the idiom “asymptotic(cost) <= asymptotic(expr)”. The function
“asymptotic” abstracts from constant symbols in the argument. For example,
the (exact) cost postcondition of the abstract program on the right in Fig. 1 is:

cost == 2 + acP (t, w) + t · (acQ (t, z) + 2) (†)
Asymptotic cost would be expressed as asymptotic(cost) <= asymptotic(2 +
acP (t, w)+ t · (acQ (t, z)+2)) where the right-hand side of the equation is equiv-
alent to asymptotic(acP (t, w) + t · (acQ (t, z))).

Listing 2 shows the result of translating the cost invariant in Fig. 1 to a
functional loop invariant (highlighted lines), using cost model Minstr in ghost
setters and postconditions of AS (“ensures” clauses). ASs P, Q must include
the ghost variable “cost” in their frame, because they update its value. The
keyword \before in the postcondition of an AS refers to the value a variable
had just before executing the AS. In loops we use “inner” cost variables “iCost”
tracking the cost inside the loop. When the loop terminates, we add the final
value of “iCost” to “cost”. After every evaluation of the guard of the loop, the
cost is incremented accordingly. Using the translation in Listing 2 of the inferred
annotations in Fig. 1, the AE system proves cost postcondition (†) automatically.

Apart from the translation of inferred quantitative annotations to functional
AE specifications, we implemented the axiomatization of the asymptotic function
and extended the AE system’s proof script language. This made it possible to
define a highly automated proof strategy for non-linear arithmetic problems
generated by some cost analysis benchmarks.

4 Abstract Cost Analysis

Recall from Sect. 2 that for automatic cost certification we need to infer anno-
tations for abstract cost invariants and cost postconditions. To achieve this, we
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1 //@ ghost int cost = 0;
2 int i = 0;
3 //@ set cost = cost + 1;
4

5 //@ assignable x, cost ;
6 //@ accessible t, w;
7 //@ ensures cost == \before(cost)
8 //@ + acP (t, w);
9 \abstract statement P;

10

11 //@ ghost int iCost = 0;
12 //@ loop invariant i ≥ 0 && i ≤ t
13 //@ && iCost == i · (acQ (t, z) + 2) ;

13 //@ decreases t − i;
14 while (i < t) {
15 //@ set iCost = iCost + 1;
16 //@ assignable y, cost ;
17 //@ accessible i , t , y, z;
18 //@ ensures cost ==
19 //@ \before(cost) + acQ (t, z);
20 \abstract statement Q;
21 i ++;
22 //@ set iCost = iCost + 1;
23 }
24 //@ set cost = cost + 1;
25 //@ set cost = cost + iCost;

Listing 2: Translation of cost model and cost invariants to AE.

leverage a cost analysis framework for concrete programs to the abstract setting.
The presentation is structured as follows: Sect. 4.1 defines the notion of an ab-
stract cost relation system (ACRS) used in cost analysis for the abstract setting.
Sect. 4.2 details how to generate automatically inductive cost invariants for ab-
stract programs from ACRSs. Sect. 4.3 tells how to generate cost postconditions
used to prove relational properties and required to handle nested loops.

4.1 Inference of Abstract Cost Relations

There are two main cost analysis approaches: those using recurrence equations
in the style of Wegbreit [39], and those based on type systems [14, 24]. Our
formalization is based on the first kind, but the main ideas for extending the
framework to abstract programs would be also applicable to the second. The key
issue when extending a recurrences-based framework to the abstract setting is
the notion of abstract cost relation for loops which generalizes the concept of cost
recurrence equations for a loop to an abstract setting. We start with notation
for loops and technical details on assumed size relations.

while (G) {
//@ accessible r1,1, . . . , r1,hr1

//@ assignable w1,1, . . . , w1,hw1

//@ cost footprint c1,1, . . . , c1,hc1

\abstract statement A1;
non abstract statement N1;
...
}

Loops. In our formalization we consider
while-loops containing n abstract state-
ments and m non-abstract statements.
Non-abstract statements include any
concrete instruction of the target lan-
guage (arithmetic instructions, condi-
tionals, method calls, . . . ). We assume
loops L have the general outline dis-
played on the right. Each abstract statement has a frame specification, abstract
and non-abstract statements may appear in any order, either might be empty.

Size relations. We assume that for each loop sets of size constraints have been
computed. These sets capture the size relation among the variables in the loop
upon exit (called base case, denoted ϕB), and when moving from one iteration to
the next (denoted ϕI). ASs are ignored by the size analysis. While this would be
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unsound in general, it will be correct under the requirements we impose in Def. 4
and with the handling of ASs in Def. 3. Size relations are available from any cost
analyzer by means of a static analysis [13] that records the effect of concrete
program statements on variables and propagates it through each loop iteration.
In our examples, since we work on integer data, size analysis corresponds to a
value analysis [10] tracking the value of the integer variables.2

Example 2. The size relations for the loop on the left in Fig. 1 are ϕB = {i ≥ t}
and ϕI = {i < t, i′ = i + 1}. ϕB is inferred from the loop guard and ϕI from the
guard and the increment of i (primed variables refer to the value of the variable
after the loop execution).

Based on pre-computed size relations, we define the cost of executing a loop by
means of an abstract cost relation system (ACRS). This is a set of cost equations
characterizing the abstract cost of executing a loop for any input with respect
to a given cost model M. Cost equations consist of a cost expression governed
by size constraints containing applicability conditions for the equation (like i < t
in ϕI above) and size relations between loop variables (like i′ = i + 1 in ϕI).

Definition 3 (Abstract Cost Relation System). Let L be a loop as above
with n abstract and m non-abstract statements. Let x be the set of variables
accessed in L. Let ϕI , ϕB be sound size relations for L, and M a cost model.
The ACRS for L is defined as the following set of cost equations:

C(x) = CB , ϕB

C(x) =
∑n

j=1 acj

(
cj,1, . . . , cj,hcj

)
+

∑m
i=1 CNi + C(x′), ϕI

where:

(1) CB ≥ 0 is the cost of exiting the loop (executing the base case) w.r.t. M.
(2) Each acj (·) ≥ 0 represents the abstract cost for the abstract statement Aj

in L w.r.t. to M. Each acj is parameterized with the variables in the cost
footprint of the corresponding Aj, as it may depend on any of them.

(3) Each CNi ≥ 0 is the cost of the non-abstract statement Ni w.r.t. to M.
(4) C is a recursive call.
(5) x′ are variables x when renamed after executing the loop.
(6) The assignable variables wj,∗ in the acj get an unknown value in x′ (denoted

with “ ” in the examples below).

Ignoring the abstract statements, one can apply a complete algorithm for cost re-
lation systems [6] to an ACRS to obtain automatically a linear3 ranking function
f for loop L: f is a linear, non-negative function over x that decreases strictly
at every loop iteration. Function f yields directly the “//@ decreases f ;” anno-
tation required for QAE.

As in Sect. 3, the definition of ACRS assumes a generic cost model M and
uses C to refer in a generic way to cost according to M. For example, to infer
the number of executed steps, C is set to 1 per instruction, while for memory
usage C records the amount of memory allocated by an instruction.

2 For complex data structures, one would need heap analyses [35] to infer size relations.
3 There exist (more expensive) algorithms to obtain also polynomial ranking func-

tions [5] but for the sake of efficiency we are not using them in our system.
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General Case of ACRS. The definition of ACRS was simplified for presenta-
tion. The following generalizations, not requiring any new concept, are possible:
(1) We assume an ACRS for a loop has only two equations, one for the base case
(the guard G does not hold) and one for the iterative case (G holds). In general,
there might be more than one equation for the base case, e.g., if the guard in-
volves multiple conditions and the cost varies depending on the condition that
holds on the exit. Similarly, there might be multiple equations in the iterative
case, e.g., if the loop body contains conditional statements and each iteration
has different cost depending on the taken branch. This issue is orthogonal to
the extension to abstract cost. (2) A loop might contain method calls that in
turn contain ASs. In absence of recursion, such calls can be inlined. For recur-
sive methods, it is possible to compute the call graph and solve the equations
in reverse topological order such that the abstract cost of the (inner) method
calls is obtained first and then inserted into the surrounding equations. (3) The
cost of code fragments not part of any loop (before, after, and in between loops)
is defined as well by abstract cost equations accumulating the cost of all in-
structions these fragments include, just as for concrete programs. This aspect
does not require changes to the framework for concrete programs, so we do not
formalize it, but just illustrate it in the next example.

Example 3. The ACRSs of the programs in Fig. 1 are (left program above line,
right program below):

Cbefore(t, x, w, y, z) = cbefore + Cw0(i, t, x, w, y, z), {i = 0}
Cw0(i, t, x, w, y, z) = cBw0

, {i ≥ t}
Cw0(i, t, x, w, y, z) = cw0 + acP (t, w) + acQ (t, z) + Cw0(i

′, t, , w, , z), {i′ = i + 1, i < t}
Cafter(t, x, w, y, z) = cafter + acP (t, w) + Cw1(i, t, , w, y, z), {i = 0}
Cw1(i, t, x, w, y, z) = cBw1

, {i ≥ t}
Cw1(i, t, x, w, y, z) = cw1 + acQ (t, z) + Cw1(i

′, t, x, w, , z), {i′ = i + 1, i < t}

Notation c refers to the generic cost that can be instantiated to a chosen cost
modelM. Cost equation Cbefore for the first program is composed of the instruc-
tions appearing before the loop is cbefore plus the cost of executing the while loop
Cw0

. The size constraint fixes the initial value of i. Following Def. 3, there are two
equations corresponding to the base case of the loop and executing one iteration,
respectively. Observe that assignable variables in ASs have unknown values in
the ACRS (according to item (6) in Def. 3). Program after has a similar struc-
ture. A ranking function for both loops is t − i which is used to generate the
annotation “//@ decreases t−i;” inserted just before each loop in Fig. 1.

To guarantee soundness of abstract cost analysis, it is mandatory that (i) no
AS in the loop modifies any of the variables that influence loop cost, i.e., they
do not interfere with cost, and (ii) the cost of the AS in the loop is indepen-
dent of the variables modified in the loop. We call the latter ASs cost neutral.
The first requirement is guaranteed by item (6) in Def. 3, because the value of
assignable variables is “forgotten” in the equations. It is implemented, as usual in
static analysis, by using a name generator for fresh variables. If cost depends on
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assignable variables in an AS, then the ACRS will not be solvable (i.e., the analy-
sis returns “unbound cost”). The ACRS in the example contains “ ” in equations
that do not prevent solvability of the system nor its evaluation, because they
do not interfere with cost. However, if we had “forgotten” a cost-relevant vari-
able (such as t), we would be unable to solve or evaluate the equations: without
knowing t the equation guard is not evaluable. Requirement (ii) is ensured by the
following definition ensuring that variables in the cost footprint are not modified
by other statements in the loop.

Definition 4 (Cost neutral AS). Given a loop L, where

– W (L) is the set of variables written by the non-abstract statements of L.
– Abstr(L) is the set of all ASs in loop L.
– Frame(Abstr(L)) is the set of variables assigned by any AS A ∈ Abstr(L).
– CostFootprint(A) is the set of variables which the cost of an A depends on.

L is a loop with cost neutral ASs if, for all A ∈ Abstr(L), it is the case that
(W (L) ∪ Frame(Abstr(L))) ∩ CostFootprint(A) = ∅.
The definition above constitutes a sufficient, but not necessary criterion that
could be tightened by a more expensive analysis. For instance, our framework
easily extends to allow conditions in the cost footprint that the concretizations
of the AS must fulfill. In our example, the cost footprint might include condition
i′ ≥ i, where i′ is the value of i after executing the AS. This permits the abstract
statement to modify i provided it does not decrease its value. Thus, the AS is
not cost neutral, but the upper bound remains sound. The formalization of this
generalization is left to future work.

Example 4. It is easy to check that both loops in Fig. 1 have cost neutral ASs. On
the left: W (L) = {i}, Frame({P,Q}) = {x, y}, CostFootprint(P ) = {t, w}, and
CostFootprint(Q) = {t, z}, so (W (L)∪ Frame({P,Q}))∩CostFootprint(P ) = ∅,
and (W (L)∪Frame({P,Q}))∩CostFootprint(Q) = ∅. The program on the right
is checked analogously.

Given a program P with variables x and ACRS with initial equation Cini(x).
We denote by eval(Cini(x), σ0) the evaluation of the ACRS for a given initial
assignment σ0 of the variables. This is a standard evaluation of recurrence equa-
tions performed by instantiating the right-hand side of the equations with the
values of the variables in σ0 and checking the satisfiability of the size constraints
(if the expression being checked or accumulated contains “ ”, the evaluation re-
turns “unbound”). As usual, the process is repeated until an equation without
calls is reached.

Example 5. Consider the ACRS of the left program in Fig. 1 with variables
(t, x, w, y, z), initial state σ0 = (2, 0, 0, 0, 0), and cost model Minst (thus cbefore,
cBw0

and cw0
take values 1, 1 and 2 respectively). The evaluation of the ACRS

results in eval(Cini(t, x, w, y, z), (2, 0, 0, 0, 0)) = 6 + 2 · acP(2, 0) + 2 · acQ(2, 0).

The following theorem states soundness of the ACRS obtained by applying Def. 3
provided that all loops satisfy Def. 4.
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Theorem 1 (Soundness of ACRS). Let M be a cost model and P an ab-
stract program whose loops satisfy Def. 4. Let cP be the abstract cost of P
defined as in Definition 2. Let Cini be the initial equation for the ACRS ob-
tained by Def. 3. For any initial state of the variables σ0 ∈ Znm , it holds that
cP(σ0) ≤ eval(Cini(x), σ0).

4.2 From ACRS to Abstract Cost Invariants

Example 5 shows that ACRSs are evaluable for concrete instances. However,
to enable automated QAE, we need to obtain from them closed-form cost in-
variants and postconditions, i.e., non-recursive expressions. We introduce the
novel concept of abstract cost invariant (ACI) that enables automated, induc-
tive proofs over cost in a deductive verification system. The crucial difference to
(non-inductive) cost postconditions as inferred by existing cost analyzers is that
ACIs can be proven inductively for each loop iteration. Hence, they integrate
naturally into deductive verification systems that use loop invariants [21].

In contrast to ACIs, postconditions provide a bound for the cost after exe-
cution of the whole loop they refer to. Typically, a postcondition bound for a
loop has the form max iter ∗max cost+max base, where max iter is the max-
imal number of iterations of the loop, max cost is the maximal cost of any loop
iteration, and max base is the maximal cost of executing the loop with no itera-
tions. Instead, an ACI has the form growth ∗max cost+max base, where growth
counts how many times the loop has been executed and hence provides a bound
after each loop iteration. The challenge is to design an automated technique that
infers growth. We propose to obtain it from the ranking function:

Definition 5 (Growth). Given a loop with ranking function F = c+
∑

i ai ·vi,
where c and vi are the constant and variable parts of the function, respectively,
and ai are constant coefficients. If we denote with v0

i the initial value of variable
vi before entering the loop, then growth =

∑
i ai ·

(
v0

i − vi

)
.

Example 6. We look at four simple loops with ranking function decreases and
the growth inferred automatically by applying Def. 5:

int i = 0;
while (i < t)

i ++;

int i = t;
while (i > 0)

i −−;

int i = 0;
while (i < t)

i += 2;

int i = t;
while (i > 0)

i −= 2;

decreases t− i
growth i

decreases i
growth t− i

decreases t−i+1
2

growth i
2

decreases i+1
2

growth t−i
2

We can now define the concept of ACI that relies on abstract cost relations
defined in Sect. 4.1 and growth as defined above.

Definition 6 (Abstract Cost Invariant). Given an ACRS as in Def. 3
and its growth as in Def. 5, an abstract cost invariant is defined as follows:

cinv(x) = CB
max+growth ·

(∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+

∑m
i=1 CNi

max
)

where CB
max

stands for the maximal value that the expression CB can take under the constraints
ϕB, and CNi

max the maximal value of CNi under ϕI . We generate the annotation
“//@ cost invariant cinv(x);”.
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To obtain the maximal cost of a cost expression under a set of constraints,
we use existing maximization procedures [5].

From Def. 6 we obtain ACIs as closed-form abstract cost expressions of the
form abexpr = cexpr | ac | abexpr1 + abexpr2 | abexpr1 ∗ abexpr2 where
ac represents an abstract cost function as defined in Sect. 3.1 and cexpr is a
concrete cost expression. The definition above yields linear bounds, however, the
extension to infer postconditions in the subsequent section leads to polynomial
expressions (of arbitrary degree).4

Example 7 (Abstract Cost Invariant). Consider the first loop in Example 6
(where growth = i) with the following frame and footprint:

//@ assignable j; accessible i , t , j , k; cost footprint k;

UsingMinstr, the evaluation of the loop guard and the increase of i both have
unit cost, so the ACRS is:

C(i, t, j, k) = 1 {i ≥ t}
C(i, t, j, k) = acP (k) + 2 + C(i′, t, , k) {i′ = i + 1, i < t}

The value of the assignable variable j in the recursive call is “forgotten” (item (6)
in Def. 3), but this information loss does not affect solvability of the ACRS. We
obtain the following ACI: “//@ cost invariant 1 + i ∗ (2 + acP(k));”.

Example 8 (Upper Bound Abstract Cost
Invariant). Sometimes an ACI is over-
approximating cost, resulting in an upper
bound ACI. To illustrate this, we add an
instruction that creates an array of non-
constant size “i” to the program in Exam-
ple 7 and measure memory consumption
instead of instruction count.

while (i < t) {
a = new int[i];
//@ assignable j;
//@ accessible i , t , j , a, k;
//@ cost footprint k;
\abstract statement P;
i ++;

}
The resulting ACRS thus accumulates cost “i” at each iteration, plus the

memory consumed by the abstract statement:

C(i, t, j, k) = 0, {i ≥ t}
C(i, t, j, k) = acP (k) + i + C(i′, t, , k), {i′ = i + 1, i < t}

Now, maximizing the expression CN1 = i under {i′ = i + 1, i < t} results in
CN1

max = t−1 and upper bound ACI “//@ cost invariant i ∗ (t − 1 + acP(k));”.

Let cL denote the abstract cost of executing a loop L (in analogy to cP in
Def. 2, but considering only loop L rather than the whole program P). We denote
by cI the portion of the cost in cL up to the execution of iteration I.

Proposition 1. Let L be a loop with variables x satisfying Def. 4, cinv(x) its
ACI, and σI ∈ Znm be the store after performing iteration I of L. Then the
following holds: (1) cinv(x) is true on entering the loop; (2) cI(σI) ≤ cinv(σI).

4 As our approach is based on a recurrences-based framework [39] that works for
exponential and logarithmic expressions, the results in this section generalize to
these expressions. However, the AE deductive verification system is not able to deal
with them automatically at the moment, so we skip these expressions in our account.
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4.3 From Cost Invariants to Postconditions

To handle programs with nested loops and to prove relational properties it is
necessary to infer cost postconditions for abstract programs. For nested loops the
cost postcondition states the abstract cost after complete execution of the inner
loop and it is used to compute the invariant of the outer loop. For relational
properties, the cost postconditions of two abstract programs are compared. Cost
postconditions for concrete programs are obtained by upper bound solvers (e.g.,
COSTA [3], CoFloCo [16], AProVE [17]) that compute max iter , an upper bound
on the number of iterations that a loop performs. To do so, one relies on ranking
functions. We do this as well, but generalize the computation of postconditions
to abstract programs. The cost postcondition is obtained by substituting growth

by max iter in the formula of cinv(x) in Def. 6 as follows.

Definition 7 (Cost Postcondition). Let L be a loop, max iter be an upper
bound on the number of iterations of L. Given the ACRS for L in Def. 3, we
infer the cost postcondition for L as

post(x) = CB
max + max iter(x) ·

(∑n
j=1 acj

(
cj,1, . . . , cj,hcj

)
+

∑m
i=1 CNi

max
)

and generate the annotation “ //@ assert cost == post(x);”.

To infer the postcondition for a complete abstract program, we take the sum
of all cost postconditions of its top-level loops plus the cost of the non-iterative
fragments. Fig. 1 shows the cost postconditions for our running example obtained
by replacing the growth i of the invariant with the bound t on the loop iterations
and requiring t ≥ 0. The generation of inductive ACIs for nested loops uses the
cost postcondition of inner loops to compute the invariants of the outer ones.
The following theorem states soundness of cost postconditions:

Theorem 2. Let L be a loop over variables x satisfying Def. 4 and post(x) its
cost postcondition. Let σL ∈ Zmn be the store upon termination of L. Then
cL(σL) ≤ post(σL).

5 Experimental Evaluation

We implemented a prototype of our approach downloadable from https://tinyurl.
com/qae-impl (including required libraries). The archive contains the bench-
marks of this section and additional examples as well as build and usage instruc-
tions. The prototype is a command-line implementation backed by an existing
cost analysis library for (non-abstract) Java bytecode as well as the deductive
verification system KeY [2] including the AE framework [37,38]. Our implemen-
tation consists of three components: (1) An extension of a cost analyzer (written
in Python) to handle abstract Java programs, (2) a conversion tool (written
in Java) translating the output of the analyzer to a set of input files for KeY,
(3) a bash script orchestrating the whole tool chain, specifically, the interplay
between item (1), item (2) and the two libraries. In case of a failed certification
attempt, our script offers the choice to open the generated proof in KeY for fur-
ther debugging. In total, our implementation (excluding the libraries) consists
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of 1,802 lines of Python, 703 lines of Java, and 389 lines of bash code (without
blank lines and comments).

To assess effectiveness and efficiency of our approach, we used our QAE im-
plementation to analyze seven typical code optimization rules using cost models
Minstr (rows “1∗”–“6∗” in Table 1) andMheap (rows “7∗”). WhileMinstr counts
the number of instructions,Mheap measures heap consumption. The first column
identifies the benchmark (“a” refers to the original program, “b” to the trans-
formed one), the second P refers to the kind of proven cost result (asymptotic
“a”, exact “e”, upper “u”), column three shows the inferred growth function for
each loop in the program (separated by “,” if there are two or more loops), in
the fourth column we list the cost postcondition obtained by the analysis (ex-
pressions indicating the number of loop iterations are highlighted), and columns
five to eight display performance metrics. Time tcost, given in milliseconds, is
the time needed to perform the cost analysis. The proof generation time tproof
is given in seconds. We also display the time tcheck needed for checking integrity
of an already generated proof certificate. Finally, sproof is the size of the gener-
ated KeY proof in terms of number of proof steps. Even though the time needed
for certification is significantly higher than for cost analysis (which is to be ex-
pected), each analysis can be performed within one minute. The time to check
a proof certificate amounts to approximately one fourth to one third of the time
needed to generate it. We stress that all analyses are fully automatic.

We briefly describe the nature of each experiment: 1 is a loop unrolling trans-
formation duplicating the body of a loop: each copy of the body is put inside an
if -statement conditioned by the loop guard. Here, we had to switch to asymptotic
cost invariants: The cost analyzer over-approximates the number of iterations
of the unrolled loop, since there are different possible control flows in the body.
This was automatically detected by the certifier which failed to find a proof when
exact cost invariants are conjectured and succeeds with asymptotic ones. 2 is the
CodeMotion example from Sect. 2. The result reflects the cost decrease in the
sense that less instructions need to be executed by the transformed program. 3
implements a LoopTiling optimization at compiler level in which a single loop
with n ·m iterations is transformed into two nested loops, an outer one looping
until n and an inner one until m. Since our cost analyzer only handles linear
size expressions, the first program is written using an auxiliary parameter t that
is then instantiated to value n · m. 4 is a SplitLoop transformation splitting a
loop with two independent parts into two separate loops. We prove that this
transformation does not affect the cost up to a constant factor. 5 is an opti-
mization combining two loops with the same body structure into one loop. 6 is
a three loops example, one nested and one simple. The optimization combines
the bodies of the outer loop in the nested structure and the simple loop. 7 is
an array optimization, where an array declaration is moved in front of a loop,
initializing it with an auxiliary parameter that is the sum of all the initial sizes.
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P
Cost analysis results tcost tproof tcheck sproof

Growth Postcondition [ms] [s] [s] #nodes

1a a i t·acP(x) 45.0 12.9 4.3 1,784

1b a i t·acP(x) 53.4 23.8 5.0 3,472

2a e i 2+t·(7 + acP(t, w) + acQ(t, z)) 50.0 23.3 5.7 3,692

2b e i 3 + acP(t, w)+t·(6 + acQ(t, z)) 42.0 19.7 5.7 3,243

3a e i 2+t·(6 + acP(k)) 49.1 18.7 5.1 2,821

3b e i , j 6+n · m·(6 + acP(k)) 49.5 23.3 5.7 3,794

4a e i + 1 2+(l + 1)·(7 + acQ1(t, w) + acQ2(t, z)) 49.5 23.8 5.7 3,933

4b e i + 1 , i + 1 2+(l + 1)·(12 + acQ1(t, w) + acQ2(t, z)) 48.5 29.4 7.3 5,137

5a e i , j 2+n·(6 + acP(y))+m·(6 + acP(y)) 55.1 25.3 7.1 4,795

5b e i 2+(n + m)·(8 + acP(y)) 48.2 14.1 4.7 2,492

6a e k , j , n − i 6+n·(m·(6 + acP(y))+n·(5 + acQ(y)) 49.8 32.0 8.1 7,078

6b e k , j 7+n·(m·(6 + acP(y)) + acQ(y)) 49.6 24.9 6.4 4,995

7a u i − 1 (t − 1)·(4 · (t − 1) + acP(y)) 51.2 15.6 5.3 2,578

7b u i − 1 4 · m+(t − 1)·acP(y) 43.3 13.0 4.2 1,793

Table 1: Results of the experiments.

6 Related Work

The present paper builds on the original AE framework [37,38], which we extend
to Quantitative AE. At the moment no other approach or tool is able to analyze
and certify the cost of schematic programs, specifically relational properties, so
a direct comparison is impossible.

Cost Analysis. There are many resource analysis tools, including: [20], based
on introducing counters and inferring loop invariants; [23], based on an analysis
over the depth of functional programs formalized by means of type systems.
Approaches that bound the number of execution steps include [19,29], working at
the level of compilers. Systems such as AProVE [17] analyze the complexity of
Java programs by transforming them to integer transition systems; COSTA [3]
and CoFloCo [16] are based on the generation of cost recurrence equations
from which upper bounds can be inferred. That is also the basis of the approach
we pursue to infer abstract upper bounds in Sect. 4.1, hence our technique can be
viewed as a generalization of these systems. Approaches based on type systems
could also be generalized to work on abstract programs by introducing abstract
cost as in Sect. 4.1.

For our work it is crucial to use ranking functions to infer growth of cost
invariants. Ranking functions were used to generate bounds on the number of
loop iterations in several systems, but none used them to define growth: [10]
obtain runtime complexity bounds via symbolic representation from ranking
functions, likewise PUBS [3], Loopus [40], and ABC [8]. PUBS analyses all
loop transitions at once, Loopus uses an iterative procedure where bounds are
propagated from inner to outer loops, ABC deals with nested, but not sequential
loops. In our work, when inferring upper bounds, we solve all transitions at once
and handle nested as well as sequential loops.
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Certification. Several general-purpose deductive software verification [21] tools
exist, including VeryFast [34], Why [15], Dafny [28], KIV [33], and KeY [2].
We use KeY, the currently only system to implement AE. Interactive proof as-
sistants like Isabelle [31] or Coq [7] also support more or less expressive abstract
program fragments, but lack full automation. There are dedicated approaches in-
volving schematic programs for specific contexts, like regression verification [18],
compilation [22,26,30] or derived symbolic execution rules [12].

Regarding the combination of deductive verification and cost analysis, the
closest approach to ours is the integration of COSTA and KeY [4] which was
realized for concrete, not abstract programs. They verify upper bounds on the
cost of concrete programs by decomposing them into ranking functions and size
relations which are then verified separately. Here we use the novel concept of
cost invariant that allows verification of quantitative properties without decom-
position. Paper [4] deals only with the global number of iterations as is common
in worst-case cost analysis. Our cost invariants are designed to be inductive and
propagate cost through all loop iterations. Radiček et al. [32] devise a formal
framework for analyzing the relative cost of different programs (or the same pro-
gram with different inputs). Compared to our approach, they target purely func-
tional programs extended with monads representing cost, while we work with an
industrial programming language. Moreover, we generally reason about the cost
of transformations, not of a transformation applied to one particular program.

7 Conclusion and Future Work

We presented the first approach to analyze the cost of schematic programs with
placeholders. We can infer and verify cost bounds for a potentially infinite class
of programs once and for all. In particular, for the first time, it is possible to
analyze and prove changes in efficiency caused by program transformations—for
all input programs. Our approach supports exact and asymptotic cost and a
configurable cost model. We implemented a tool chain based on a cost analyzer
and a program verifier which analyzes and formally certifies abstract cost bounds
in a fully automated manner. Certification is essential, because only the verifier
can determine whether the bounds inferred by the cost analyzer are exact.

Our work required the new concept of an (abstract) cost invariant. This is
interesting in itself, because (i) it renders the analysis of nested loops modular
and (ii) provides an interface to backends (such as verifiers) that characterizes
the cost of code in iterations.

Obvious future work involves extending the analyzed target language. Cost
analysis and deductive verification (including AE) are already possible for a large
Java fragment [3, 37]. More interesting—and more challenging—is the analysis
of program transformations that parallelize code. The extension to larger classes
of cost functions, such as logarithmic or exponential, could be realized by inte-
grating non-linear SMT solvers into the tool chain.
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Guillermo Román-Dı́ez. A formal verification framework for static analysis - as
well as its instantiation to the resource analyzer COSTA and formal verification
tool KeY. Software and Systems Modeling, 15(4):987–1012, 2016.

5. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma polyhedra
library: Toward a complete set of numerical abstractions for the analysis and ver-
ification of hardware and software systems. Sci. Comput. Program., 72(1-2):3–21,
2008.

6. Roberto Bagnara, Fred Mesnard, Andrea Pescetti, and Enea Zaffanella. A new look
at the automatic synthesis of linear ranking functions. Inf. Comput., 215:47–67,
2012.
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Abstract. This paper presents a new framework to synthesize lower-
bounds on the worst-case cost for non-deterministic integer loops. As
in previous approaches, the analysis searches for a metering function
that under-approximates the number of loop iterations. The key novelty
of our framework is the specialization of loops, which is achieved by
restricting their enabled transitions to a subset of the inputs combined
with the narrowing of their transition scopes. Specialization allows us
to find metering functions for complex loops that could not be handled
before or be more precise than previous approaches. Technically, it is
performed (1) by using quasi-invariants while searching for the metering
function, (2) by strengthening the loop guards, and (3) by narrowing the
space of non-deterministic choices. We also propose a Max-SMT encoding
that takes advantage of the use of soft constraints to force the solver look
for more accurate solutions. We show our accuracy gains on benchmarks
extracted from the 2020 Termination and Complexity Competition by
comparing our results to those obtained by the LoAT system.

1 Introduction

One of the most important problems in program analysis is to automatically –and
accurately– bound the cost of program’s executions. The first automated analy-
sis was developed in the 70s [24] for a strict functional language and, since then,
a plethora of techniques has been introduced to handle the peculiarities of the
different programming languages (see, e.g., for Integer programs [5], for Java-like
languages [2,19], for concurrent and distributed languages [16], for probabilistic
programs [15,18], etc.) and to increase their accuracy (see, e.g., [10,14,21,22]).
The vast majority of these techniques have focused on inferring upper bounds on
the worst-case cost, since having the assurance that none execution of the pro-
gram will exceed the inferred amount of resources (e.g., time, memory, etc.) has
crucial applications in safety-critical contexts. On the other hand, lower bounds
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on the best-case cost characterize the minimal cost of any program execution
and are useful in task parallelization (see, e.g., [3,9,10]). There are a third type
of important bounds which are the focus of this work: lower bounds on the worst-
case cost, they bound the worst-case cost from below. Their main application
is that, together with the upper bounds on worst-case, allow us to infer tighter
worst-case cost bounds (when they coincide ensuring that the inferred cost is
exact) what can be crucial in safety-critical contexts. Besides, lower bounds on
the worst-case cost will give us families of inputs that lead to an expensive cost,
what could be used to detect performance bugs. In what follows, we use the
acronyms LBw and LBb to refer to worst-case and best-case lower-bounds, resp.

State-of-the-Art in LBw. An important difference between LBw and LBb is
that, while the best-case must consider all program runs, LBw holds for (usually
infinite) families of the most expensive program executions. This is why the
techniques applicable to LBb inference (e.g., [3,9,10]) are not useful for LBw

in general, since they would provide too inaccurate (low) results. The state-of-
the-art in LBw inference is [12,13] (implemented in the LoAT system) which
introduces a variation of ranking functions, called metering functions, to under-
estimate the number of iterations of simple loops, i.e., loops without branching
nor nested loops. The core of this method is a simplification technique that allows
treating general loops (with branchings and nested loops) by using the so-called
acceleration: that replaces a transition representing one loop iteration by another
rule that collects the effect of applying several consecutive loop iterations using
the original rule. Asymptotic lower bounds are then deduced from the resulting
simplified programs using a special-purpose calculus and an SMT encoding.

Motivation. Our work is motivated by the limitation of state-of-the-art methods
when, by treating each simple loop separately, a LBw bound cannot be found
or it is too imprecise. For example, consider the interleaved loop in Fig. 1, that
is a simplification of the benchmark SimpleMultiple .koat from the Termination
and Complexity competition. Its transition system appears to the right (the
transition system is like a control-flow graph (CFG) in which the transitions τ
are labeled with the applicability conditions and with the updates for the vari-
ables, primed variables denote the updated values). In every iteration x or y can
decrease by one, and these behaviors can interleave. The worst case is obtained
for instance when x is decreased to 0 (x iterations) and then y is decreased to 0
(y iterations), resulting in x + y iterations, or when y is first decreased to 1 and
then x to −1, etc. The approach in [12,13] accelerates independently both τ1

and τ4, resulting in accelerated versions τa
1 = x ≥ −1 ∧ y > 0 ∧ x′ = −1 ∧ y′ = y

with cost x + 1 and τa
4 = x ≥ 0 ∧ y ≥ 0 ∧ x′ = x ∧ y′ = 0 with cost y. Applying

one accelerated version results in that the other accelerated version cannot be
applied because of the final values of the variables. Thus, the overall knowledge
extracted from the loop is that it can iterate x+1 or y times, whereas the precise
LBw is x+y iterations. Our challenge for inferring more precise LBw is to devise
a method that can handle all loop transitions simultaneously, as disconnecting
them leads to a semantics loss that cannot be recovered by acceleration.
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wh i l e ( x >= 0 && y > 0) {
i f (∗ ) {

x = x − 1 ;
} e l s e {

y = y − 1 ;
}

}

�0

�1

�e

τ0 : x′ = x ∧ y′ = y

τ1 : x ≥ 0 ∧ y > 0
∧ x′ = x − 1
∧ y′ = y

τ4 : x ≥ 0 ∧ y > 0
∧ x′ = x
∧ y′ = y − 1

τ3 : y ≤ 0
∧ x′ = x
∧ y′ = y

τ2 : x < 0
∧ x′ = x
∧ y′ = y

Fig. 1. Interleaved loop (left) and its representation as a transition system (right)

Non-Termination and LBw. Our work is inspired by [17], which introduces the
powerful concept of quasi-invariant to find witnesses for non-termination. A
quasi-invariant is an invariant which does not necessarily hold on initialization,
and can be found as in template-based verification [23]. Intuitively, when there
is a loop in the program that can be mapped to a quasi-invariant that forbids
executing any of the outgoing transitions of the loop, then the program is non-
terminating. This paper leverages such powerful use of quasi-invariants and Max-
SMT in non-termination analysis to the more difficult problem of LBw inference.
Non-termination and LBw are indeed related properties: in both cases we need
to find witnesses, resp., for non-terminating the loop and for executing at least
a certain number of iterations. For LBw, we additionally need to provide such
under-estimation for the number of iterations and search for LBw behaviors that
occur for a class of inputs rather than for a single input instantiation (since the
LBw for a single input is a concrete (i.e., constant) cost, rather than a parametric
LBw function as we are searching for). Instead, for non-termination, it is enough
to find a non-terminating input instantiation.

Our Approach. A fundamental idea of our approach is to specialize loops in
order to guide the search of the metering functions of complex loops, avoiding the
inaccuracy introduced by disconnecting them into simple loops. To this purpose,
we propose specializing loops by combining the addition of constraints to their
transitions with the restriction of the valid states by means of quasi-invariants.
For instance, for the loop in Fig. 1, our approach automatically narrows τ1 by
adding x > 0 (so that x is decreased until x = 0) and τ4 by adding x ≤ 0 (so that
τ4 can only be applied when x = 0). This specialized loop has lost many of the
possible interleavings of the original loop but keeps the worst case execution of
x+y iterations. These specialized guards do not guarantee that the loop executes
x + y iterations in every possible state, as the loop will finish immediately for
x < 0 or y ≤ 0, thus our approach also infers the quasi-invariant x ≥ 0 ∧ x ≤ y.
Combining the specialized guards and the quasi-invariant, we can assure that
when reaching the loop in a valid state according to the quasi-invariant, x + y
is a lower bound on the number of iterations of the loop, i.e., its cost. Using
quasi-invariants that include all (invariant) inequalities syntactically appearing
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in loop transitions might work for the case of loops with single path. However, for
the general case, the specialized guards usually lead to essential quasi-invariants
that do not appear in the original loop. The specialization achieved by adding
constraints could be also applied in the context of non-termination to increase
the accuracy of [17], as only quasi-invariants were used. Therefore, we argue that
our work avoids the precision loss caused by the simplification in [12,13] and,
besides, introduces a loop specialization technique that can also be applied to
gain precision in non-termination analysis [17].

Contributions. Briefly, our main theoretical and practical contributions are:

1. In Sect. 3 we introduce several semantic specializations of loops that enable
the inference of local metering functions for complex loops by: (1) restricting
the input space by means of automatically generated quasi-invariants, (2)
narrowing transition guards and (3) narrowing non-deterministic choices.

2. We propose a template-based method in Sect. 4 to automate our technique
which is effectively implemented by means of a Max-SMT encoding. Whereas
the use of templates is not new [6], our encoding has several novel aspects
that are devised to produce better lower-bounds, e.g., the addition of (soft)
constraints that force the solver look for larger lower-bound functions.

3. We implement our approach in the LOBER system and evaluate it on bench-
marks from the Integer Transition Systems category of the 2020 Termination
and Complexity Competition (see Sect. 5). Our experimental results when
compared to the existing system LoAT [12] are promising: they show further
accuracy of LOBER in challenging examples that contain complex loops.

2 Background

This section introduces some notation on the program representation and recalls
the notion of LBw we aim at inferring.

2.1 Program Representation

Our technique is applicable to sequential non-deterministic programs with inte-
ger variables and commands whose updates can be expressed in linear (inte-
ger) arithmetic. We assume that the non-determinism originates from non-
deterministic assignments of the form “x:=nondet();”, where x is a program
variable and nondet() can be represented by a fresh non-deterministic variable
u. This assumption allows us to also cover non-deterministic branching, e.g.,
“if (*){..} else {..}” as it can be expressed by introducing a non-deterministic
variable u and rewriting the code as “u:=nondet(); if (u≥0){..} else {..}”.

Our programs are represented using transition systems, in particular using
the formalization of [17] that simplifies the presentation of some formal aspects
of our work. A transition system (abbrev. TS) is a tuple S = 〈x̄, ū,L, T , Θ〉,
where x̄ is a tuple of n integer program variables, ū is a tuple of integer (non-
deterministic) variables, L is a set of locations, T is a set of transitions, and Θ is
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a formula that defines the valid input and is specified by a conjunction of linear
constraints of the form ā·x̄+b�0 where � ∈ {>,<,=,≥,≤}. A transition is of the
form (�, �′,R) ∈ T such that �, �′ ∈ L, and R is a formula over x̄, ū and x̄′ that is
specified by a conjunction of linear constraints of the form ā · x̄+ b̄ · ū+ c̄ · x̄′ +d�0
where � ∈ {>,<,=,≥,≤}, and primed variables x̄′ represent the values of the
unprimed corresponding variables after the transition. We sometimes write R as
R(x̄, ū, x̄′), use R(x̄) to refer to the constraints that involve only variables x̄ (i.e.,
the guard), and use R(x̄, ū) to refer to the constraints that involve only variables
ū and (possibly) x̄. W.l.o.g., we may assume that constraints involving primed
variables are of the form x′

i = ā · x̄ + b̄ · ū + c. This is because non-determinism
can be moved to R(x̄, ū) – if a primed variable x′

i appears in any expression that
is not of this form, we replace x′

i by a fresh non-deterministic variable ui in such
expressions and add the equality x′

i = ui. We require that for any x̄ satisfying
R(x̄), there are ū satisfying R(x̄, ū), formally

∀x̄.∃ū. R(x̄) → R(x̄, ū) (1)

This guarantees that for any state x̄ satisfying the condition, there are values for
the non-deterministic variables ū such that we can make progress. A transition
that does not satisfy this condition is called invalid. Note that (1) does not refer
to x̄′ since they are set in a deterministic way, once the values of x̄ and ū are
fixed. W.l.o.g., we assume that all coefficients and free constants, in all linear
constraints, are integer; and that there is a single initial location �0 ∈ L with no
incoming transitions, and a single final location �e with no outgoing transitions.

Example 1. The TS graphically presented in Fig. 1 is expressed as follows, con-
sidering that all inputs are valid (Θ = true):

S ≡ 〈 {x, y}, ∅, {�0, �1, �e},
{(�0, �1, x

′ = x ∧ y′ = y),
(�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y),
(�1, �e, x < 0 ∧ x′ = x ∧ y′ = y),
(�1, �e, y ≤ 0 ∧ x′ = x ∧ y′ = y),
(�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)}, true〉

A configuration C is a pair (�, σ) where � ∈ L and σ : x̄ �→ Z is a mapping
representing a state. We abuse notation and use σ to refer to ∧n

i=1xi = σ(xi),
and also write σ′ for the assignment obtained from σ by renaming the variables
to primed variables. There is a transition from (�, σ1) to (�′, σ2) iff there is
(�, �′,R) ∈ T such that ∃ū.σ1 ∧ σ′

2 |= R. A (valid) trace t is a (possibly infinite)
sequence of configurations (�0, σ0), (�1, σ1), . . . such that σ0 |= Θ, and for each i
there is a transition from (�i, σi) to (�i+1, σi+1). Traces that are infinite or end
in a configuration with location �e are called complete. A configuration (�, σ),
where � �= �e, is blocking iff

σ �|=
∨

(�,�′,R)∈T
R(x̄) (2)
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A TS is non-blocking if no trace includes a blocking configuration. We assume
that the TS under consideration is non-blocking, and thus any trace is a prefix
of a complete one. Throughout the paper, we represent a TS as a CFG, and
analyze its strongly connected components (SCC) one by one. An SCC is said
to be trivial if it has no edge.

2.2 Lower-Bounds

For simplicity, we assume that an execution step (a transition) costs 1. Under
this assumption, the cost of a trace t is simply its length len(t) where the length
of an infinite trace is ∞. In what follows, the set of all configurations is denoted
by C, the set of all valid complete traces (using a transition system S) when
starting from configuration C ∈ C is denoted by TracesS(C), and R≥0 = {k ∈
R | k ≥ 0} ∪ {∞}. For a non-empty set M ⊆ R≥0, sup M is the least upper
bound of M and inf M is the greatest lower bound of M . The worst-case cost
of an initial configuration C is the cost of the most expensive complete trace
starting from C and the best-case cost is the less expensive complete trace.

Definition 1 (worst- and best-case cost). Let S be a TS. Its worst-case
cost function wcS : C → R≥0 is wcS(C) = sup {len(t) | t ∈ TracesS(C)} and its
best-case cost function bcS : C → R≥0 is bcS(C) = inf {len(t) | t ∈ TracesS(C)}.

Clearly, wcS and bcS are not computable. Our goal in this paper is to auto-
matically find a lower-bound function ρ : Zn → R≥0 such that for any initial
configuration C = (�0, σ) we have wcS(C) ≥ ρ(σ(x̄)), i.e., it is an LBw. An LBb

would be a function ρ : Zn → R≥0 that ensures that bcS(C) ≥ ρ(x̄) for any
initial configuration C = (�0, σ). In what follows, for a function ρ(x̄), we let
‖ρ(x̄)‖ = �max(0, ρ(x))� to map all negative valuations of ρ to zero.

Example 2. Consider the TS S = 〈{x}, {u}, {�0, �1, �e}, T , true〉 with transitions:

T ≡ { τ1 = (�0, �1, x ≥ 0),
τ2 = (�1, �1, x > 0 ∧ x′ = x − u ∧ u ≥ 1 ∧ u ≤ 2),
τ3 = (�1, �e, x ≤ 0 ∧ x′ = x) }

S contains a loop at �1 where variable x is non-deterministically decreased by 1
or 2. From any initial configuration C0 = (�0, σ0), the longest possible complete
trace decreases x by 1 in every iteration with τ2, therefore wcS(C0) = ‖σ0(x)‖+2
because of the ‖σ0(x)‖ iterations in �1 plus the cost of τ1 and τ3. The most precise
lower bound for wcS is ρ(x) = ‖x‖ + 2, although ρ(x) = ‖x‖ or ρ(x) = ‖x − 2‖
are also valid lower bounds. The shortest complete trace from C0 decreases x

by 2 in every iteration, so bcS(C0) = ‖σ0(x)
2 ‖ + 2. There are several valid lower

bounds for bcS(C0) like ρ(x) = ‖x
2‖ + 2, ρ(x) = ‖x

2‖, or ρ(x) = 2.

3 Local Lower-Bound Functions

Focus on Local Bounds. Existing techniques and tools for cost analysis (e.g., [1,
12]) work by inferring local (iteration) bounds for those parts of the TS that
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correspond to loops, and then combining these bounds by propagating them
“backwards” to the entry point in order to obtain a global bound. For example,
suppose that our program consists of the following two loops:

a s s e r t ( x>0 && z >0);
wh i l e ( z > 0) { x=x+z ; z−−; }
wh i l e ( x > 0) x−−;

where the second loop makes x iterations (when considering the value of x just
before executing the loop), and the first loop makes z iterations and increments
x by z in each iteration. We are interested in inferring a global function that
describes the total number of iterations of both loops, in terms of the input values
x0 and z0. While both loops have linear complexity locally, i.e., iteration bounds
z and x, the second one has quadratic complexity w.r.t the initial values. This
can be inferred automatically from the local bounds z and x by inferring how the
value of x changes in the first loop, and then rewriting x in terms of the initial

values to e = x0 + z0·(z0−1)
2 (e.g., by solving corresponding recurrence relations).

Now the global cost would be e plus the cost of the first loop z0. Rewriting the
loop bound x as above is done by propagating it backwards to the entry point,
and there are several techniques in the literature for this purpose that can be
directly adopted in our setting to produce global bounds. These techniques can
infer global bounds for nested-loops as well, given the iteration bounds of each
loop. Thus, we focus on inferring local lower-bounds on the number of iterations
that non-nested loops (more precisely, parts of the TS that correspond to loops)
can make, and assume that they can be rewritten to global bounds by adopting
the existing techniques of [1,12] (our implementation indeed could be used as a
black-box which provides local lower-bounds to these tools). Namely, we aim at
inferring, for each non-nested loop, a function ‖ρ(x̄)‖ = �max(0, ρ(x))� that is a
(local) LBw on its number of iterations, i.e., whenever the loop is reached with
values v̄ for the variables x̄, it is possible to make at least ‖ρ(v̄)‖ iterations.

Loops and TSs. For ease of presentation, we first consider a special case of TSs
in which all locations, except the initial and exit ones define loops, and Sect. 3.6
explains how the techniques can be used for the general case. In particular, we
consider that each non-trivial SCC consists of a single location � and at least one
transition, and we call it loop �. Transitions from � to � are called loop transitions
and their guards are called loop guards, and transitions from � to �′ �= � are called
exit transitions. The number of iterations of a loop � in a trace t is defined as the
number of transitions from � to �, which we refer to as the cost of loop � as well
(since we are assuming that the cost of transitions is always 1, see Sect. 2.2).
The notions of best-case and worst-case cost in Definition 1 naturally extend to
the cost of a loop �, i.e., we can ask what is the best-case and worst-case number
of iterations of a given loop.

Overview of the Section. The overall idea of our approach is to specialize each
loop �, by restricting the initial values and/or adding constraints to its tran-
sitions, such that it becomes possible to obtain a metering function for the
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specialized loop. A function that is a LBb of the specialized loop is by definition
a LBw of loop �, as it does not necessarily hold for all execution traces but rather
for the class of restricted ones. Technically, inferring a LBb of a (specialized) loop
is done by inferring a metering function ρ [13], such that whenever the (special-
ized) loop is reached with a state σ, it is guaranteed to make at least ‖ρ(σ(x̄))‖
iterations. Besides, specialization is done in such away that the TS obtained by
putting all specialized loops together is non-blocking, i.e., there is an execution
that is either non-terminating or reaches the exit location, and thus the cost of
this execution is, roughly, the sum of the costs of all (specialized) loops that are
traversed. The rest of this section is organized as follows. In Sect. 3.1 we general-
ize the basic definition of metering function for simple loops from [12] to general
types of loops and explore its limitations. Then, in the following 3 sections, we
explain how to overcome these limitations by means of the following special-
izations: using quasi-invariants to narrow the set of input values (Sect. 3.2);
narrowing loop guards to make loop transitions mutually exclusive and force
some execution order between them (Sect. 3.3); and narrowing the space of non-
deterministic choices to force longer executions (Sect. 3.4). Sect. 3.5 states the
conditions, to be satisfied when specializing loops, in order to guarantee that the
TS obtained by putting all specialized loops together is non-blocking.

3.1 Metering Functions

Metering functions were introduced by [13], as a tool for inferring a lower-bound
on the number of iterations that a given loop can make. The definition is analogue
to that of (linear) ranking function which is often used to infer upper-bounds on
the number of iterations. The definition as given in [13] considers a loop with
a single transition, and assumes that the exit condition is the negation of its
guard. We start by generalizing it to our notion of loop.

Definition 2 (Metering function). We say that a function ρ� is a metering
function for a loop � ∈ L, if the following conditions are satisfied

∀x̄, ū, x̄′. R → ρ�(x̄) − ρ�(x̄
′) ≤ 1 for each (�, �,R) ∈ T (3)

∀x̄, ū, x̄′. R → ρ�(x̄) ≤ 0 for each (�, �′,R) ∈ T (4)

Intuitively, Condition (3) requires ρ� to decrease at most by 1 in each iteration,
and Condition (4) requires ρ� to be non-positive when leaving the loop.

Assuming (�, σ) is a reachable configuration in S, it is easy to see that loop
� will make at least ‖ρ�(σ(x̄))‖ iterations when starting from (�, σ). We require
(�, σ) to be reachable in S since we are interested only in non-blocking executions.
Typically, we are interested in linear metering functions, i.e., of the form ρ�(x̄) =
ā · x̄ + a0, since they are easier to infer and cover most loops in practice. Non-
linear lower-bound functions will be obtained when rewriting these local linear
lower-bounds in terms of the initial input at location �0 (see beginning of Sect. 3)
and by composing nested loops (see Sect. 3.6).
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Example 3 (Metering function). Consider the following loop on location �1 that
decreases x (τ1) until it takes non-positive values and exits to �2 (τ2):

τ1 = (�1, �1, x ≥ 0 ∧ x′ = x − 1) τ2 = (�1, �2, x < 0 ∧ x′ = x)

The function ρ�1(x) = x + 1 is a valid metering function because it decreases by
exactly 1 in τ1 and becomes non-positive when τ2 is applicable (x < 0 → x+1 ≤
0, Condition (3) of Definition 2). The function ρ′

�1
(x) = x

2 is also metering

because its value decreases by less than 1 when applying τ1 (x
2 − x−1

2 = 1
2 ≤ 1)

and becomes non-positive in τ2. Even a function as ρ′′
�1

(x) = 0 is trivially meter-
ing, as it satisfies (3) and (4). Although all of them are valid metering func-
tions, ρ�1(x) is preferable as it is more accurate (i.e., larger) and thus captures
more precisely the number of iterations of the loop. Note that functions like
ρ∗

�1
(x) = 2x or ρ∗∗

�1
(x) = x + 5 are not metering because they do not verify (3)

(because 2x − 2(x − 1) = 2 �≤ 1 for ρ∗
�1

) or (4) (because x < 0 �→ x + 5 ≤ 0 for
ρ∗∗

�1
).

3.2 Narrowing the Set of Input Values Using Quasi-Invariants

Metering functions typically exist for loops with simple loop guards. However,
when guards involve more than one inequality they usually do not exist in a
simple (linear) form. This is because such loops often include several exit transi-
tions with unrelated conditions, where each one corresponds to the negation of
an inequality of the guard. It is unlikely then that a non-trivial (linear) function
satisfies (4) for all exit transitions. This is illustrated in the next example.

Example 4. Consider the following loop that iterates on �1 if x ≥ 0 ∧ y > 0, and
exits when x < 0 or y ≤ 0:

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y)
τ2 = (�1, �2, x < 0 ∧ x′ = x ∧ y′ = y)
τ3 = (�1, �2, y ≤ 0 ∧ x′ = x ∧ y′ = y)

Intuitively, this loop executes x + 1 transitions, but ρ�1(x, y) = x + 1 is not a
valid metering function because it does not satisfy (4) for τ3: y ≤ 0 �→ x+1 ≤ 0.
Moreover, no other function depending on x (e.g., x

2 , x − 2, etc.) will be a valid
metering function, as it will be impossible to prove (4) for τ3 only from the
information y ≤ 0 on its guard. The only valid metering function for this loop
will be the trivial one ρ�1(x, y) = c with c ≤ 0, which does not provide any
information about the number of iterations of the loop.

Our proposal to overcome the imprecision discussed above is to consider
only a subset of the input values s.t. conditions (3,4) hold in the context of the
corresponding reachable states. For example, the reachable states might exclude
some of the exit transitions, i.e., it is guaranteed that they are never used, and
then (4) is not required to hold for them. A metering function in this context is a
LBb of the loop when starting from that specific input, and thus it is a LBw (i.e.,
not necessarily best-case) of the loop when the input values are not restricted.
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Technically, our analysis materializes the above idea by relying on quasi-
invariants [17]. A quasi-invariant for a loop � is a formula Q� over x̄ such that

∀x̄, ū, x̄′. Q�(x̄) ∧ R → Q�(x̄
′) for each (�, �,R) ∈ T (5)

∃x̄. Q�(x̄) (6)

Intuitively, Q� is similar to an inductive invariant but without requiring it to
hold on the initial states, i.e., once Q� holds it will hold during all subsequent
visits to �. This also means that for executions that start in states within Q�, it
is guaranteed that Q� is an over-approximation of the reachable states. Condi-
tion (6) is used to avoid quasi-invariants that are false. Given a quasi-invariant
Q� for �, we say that ρ� is a metering function for � if the following holds

∀x̄, ū, x̄′. Q�(x̄) ∧ R → ρ�(x̄) − ρ�(x̄
′) ≤ 1 for each (�, �,R) ∈ T (7)

∀x̄, ū, x̄′. Q�(x̄) ∧ R → ρ�(x̄) ≤ 0 for each (�, �′,R) ∈ T (8)

Intuitively, these conditions state that (3,4) hold in the context of the states
induced by Q�. Assuming that (�, σ) is reachable in S and that σ |= Q�, loop �
will make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 5. Recall that the loop in Example 4 only admitted trivial metering
functions because of the exit transition τ3. It is easy to see that Q�1 ≡ x < y
verifies (5,6), because y is not modified in τ1 and x decreases, and thus it is a
quasi-invariant. In the context of Q�1 , function ρ�1(x, y) = x + 1 is metering
because when taking τ3 the value of x is guaranteed to be negative, i.e., τ3

satisfies (8) because x < y ∧ y ≤ 0 → x + 1 ≤ 0. Notice that ρ�1(x, y) = x + 1
will still be a valid metering function considering other quasi-invariants of the
form Q′

�1
≡ y > c with c ≥ 0, as they would completely disable transition τ3.

3.3 Narrowing Guards

The loops that we have considered so far consist of a single loop transition,
what makes easier to find a metering function. This is because there is only
one way to modify the program variables (with some degree of non-determinism
induced by the non-deterministic variables). However, when we allow several
loop transitions, we can have loops for which a non-trivial metering function
does not exist even when narrowing the set of input values.

Example 6. Consider the extension of the loop in Example 4 with a new transi-
tion τ4 that decrements y (it corresponds to the example in Sect. 1):

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − 1 ∧ y′ = y)
τ4 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1)
τ2 = (�1, �2, x < 0 ∧ x′ = x ∧ y′ = y)
τ3 = (�1, �2, y ≤ 0 ∧ x′ = x ∧ y′ = y)

The most precise LBw of this loop is ‖ρ�1(x, y)‖ where ρ�1(x, y) = x + y. As
mentioned, this corresponds, e.g., to an execution that uses τ1 until x = 0, i.e., x
times, and then τ4 until y = 0, i.e., y times. It is easy to see that if we start from
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a state that satisfies x ≥ 0∧x ≤ y, then it will be satisfied during the particular
execution that we just described. Moreover, assuming that Q�1 ≡ x ≥ 0 ∧ x ≤ y
is a quasi-invariant, it is easy to show that together with ρ�1 we can verify (7,8),
and thus ρ�1 will be a metering function. However, unfortunately, Q�1 is not
a quasi-invariant since the above loop can make executions other than the one
described above (e.g., decreasing y to 1 first and then x to 0).

Our idea to overcome this imprecision is to narrow the set of states for
which loop transitions are enabled, i.e., strengthening loop guards by additional
inequalities. This, in principle, reduces the number of possible executions, and
thus it is more likely to find a metering function (or a better quasi-invariant),
because now they have to be valid for fewer executions. For example, this might
force an execution order between the different paths, or even disable some tran-
sitions by narrowing their guard to false. Again, a metering function for the
specialized loop is not a valid LBb of the original loop, but rather its a valid
LBw that is what we are interested in. Next, we state the requirements that
such narrowing should satisfy. The choice of a narrowing that leads to longer
executions is discussed in Sect. 4.

A guard narrowing for a loop transition τ ∈ T is a formula Gτ (x̄), over
variables x̄. A specialization of a loop is obtained simply by adding these formulas
to the corresponding transitions. Conditions (5)-(8) can be specialized to hold
only for executions that use the specialized loop as follows. Suppose that for a
loop � ∈ L we are given a narrowing Gτ for each loop transition τ , then Q� and ρ�

are quasi-invariant and metering function resp. for the corresponding specialized
loop if the following conditions hold

∀x̄, ū, x̄′. Q�(x̄) ∧ Gτ (x̄) ∧ R → Q�(x̄
′) for each (�, �, R) ∈ T (9)

∃x̄. Q�(x̄) (10)

∀x̄, ū, x̄′. Q�(x̄) ∧ Gτ (x̄) ∧ R → ρ�(x̄) − ρ�(x̄
′) ≤ 1 for each (�, �, R) ∈ T (11)

∀x̄. Q�(x̄) ∧ R(x̄) → ρ�(x̄) ≤ 0 for each (�, �′, R) ∈ T (12)

Conditions (9,10) guarantee that Q� is a non-empty quasi-invariant for the spe-
cialized loop, and conditions (11,12) guarantee that ρ� is a metering function
for the specialized loop in the context of Q�. However, in this case, function ρ�

induces a lower-bound on the number of iterations only if the specialized loop is
non-blocking for states in Q�. This is illustrated in the following example.

Example 7. Consider the loop from Example 3 where we have specialized the
guard of τ1 by adding x ≥ 5:

τ1 = (�1, �1, x ≥ 0 ∧ x ≥ 5 ∧ x′ = x − 1) τ2 = (�1, �2, x < 0 ∧ x′ = x)

With this specialized guard and considering Q�1 ≡ true, the metering function
ρ�1(x) = x + 1 still satisfies (11,12), and Q�1 trivially satisfies (9,10). However,
ρ�1 is not a valid measure of the number of transitions executed because the loop
gets blocked whenever x takes values 0 ≤ x ≤ 5, and thus it will never execute
x + 1 transitions.
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To guarantee that the specialized loop is non-blocking for states in Q�, it is
enough to require the following condition to hold

∀x̄. Q�(x̄) →
∨

τ=(�,�,R)∈T
(R(x̄) ∧ Gτ (x̄))

∨

τ=(�,�′,R)∈T
R(x̄) (13)

Intuitively, it states that from any state in Q� we can make progress, either by
making a loop iteration or exiting the loop. Assuming that (�, σ) is reachable in
S and that σ |= Q�, the specialized loop � will make at least ‖ρ�(σ(x̄))‖ iterations
in any execution that starts in (�, σ). This also means that the original loop can
make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 8. In Example 6, we have seen that if Q�1 ≡ x ≤ y ∧ x ≥ 0 was a
quasi-invariant, then function ρ�1(x, y) = x+ y becomes metering. We can make
Q�1 a quasi-invariant by specializing the guards of the loop in transitions τ1 and
τ4 to force the following execution with x + y iterations: first use τ1 until x = 0
(x iterations) and then use τ4 until y = 0 (y iterations). This behavior can be
forced by taking Gτ1

≡ x > 0 and Gτ4
≡ x ≤ 0. With Gτ1

we assure that x
stops decreasing when x = 0, and with Gτ4

we assure that τ4 is used only when
x = 0. Now, Q�1 ≡ x ≤ y ∧ x ≥ 0 and ρ�1(x, y) = x + y are valid quasi-invariant
and metering, resp. Function ρ�1 decreases by exactly 1 in τ1 and τ4, is trivially
non-positive in τ2 because that transition is indeed disabled (x ≥ 0 from Q�1

and x < 0 from the guard) and is non-positive in τ3 (x ≤ y∧y ≤ 0 → x+y ≤ 0).
Regarding Q�1 , it verifies (9,10), and more importantly, the loop in �1 is non-
blocking w.r.t Q�1 , Gτ1

, and Gτ4
, i.e., Condition (13) holds.

3.4 Narrowing Non-deterministic Choices

Loop transitions that involve non-deterministic variables, might give rise to exe-
cutions of different lengths when starting from the same input values. Since we
are interested in LBw, we are clearly searching for longer executions. However,
since our approach is based on inferring LBb, we have to take all executions into
account which might result in less precise, or even trivial, LBw.

Example 9. Consider a modification of the loop in Example 6 in which the vari-
able x in τ1 is decreased by a non-deterministic positive quantity u:

τ1 = (�1, �1, x ≥ 0 ∧ y > 0 ∧ x′ = x − u ∧ u ≥ 1 ∧ y′ = y)

The effect of this non-deterministic variable u is that τ1 can be applied x times
if we always take u = 1, �x

2 � times if we always take u = 2 or even only once if
we take u > x. As a consequence, ρ�1(x, y) = x + y is no longer a valid metering
function because x can decrease by more than 1 in τ1. Moreover, Q�1 ≡ x ≤
y ∧ x ≥ 0 is not a quasi-invariant anymore since x′ = x − u ∧ u ≥ 1 does not
entail x′ ≥ 0. In fact, no metering function involving x will be valid in τ1 because
x can decrease by any positive amount.

To handle this complex situation, we propose narrowing the space of non-
deterministic choices, and thus metering functions should be valid wrt. fewer
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executions and more likely be found and be more precise. Next we state the
requirements that such narrowing should satisfy. The choice of a narrowing that
leads to longer executions is discussed in Sect. 4.

A non-deterministic variables narrowing for a loop transition τ ∈ T is a
formula Uτ (x̄, ū), over variables x̄ and ū, that is added to τ to restrict the choices
for variables ū. A specialized loop is now obtained by adding both Gτ and Uτ

to the corresponding transitions. Suppose that for loop � ∈ L, in addition to
Gτ , we are also given Uτ for each of its loop transitions τ . For Q� and ρ� to
be quasi-invariant and metering function for the specialized loop �, we require
conditions (9)-(13) to hold but after adding Uτ to the left-hand side of the
implications in (9) and (11). Besides, unlike narrowing of guards, narrowing of
non-deterministic choices might make a transition invalid, i.e., not satisfying
Condition (1), and thus ‖ρ�(x̄)‖ cannot be used as a lower-bound on the number
of iterations. To guarantee that specialized transitions are valid we require, in
addition, the following condition to hold

∀x̄∃ū. Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄) → R(x̄, ū) ∧ Uτ (x̄, ū) for each (�, �, R) ∈ T (14)

This condition is basically (1) taking into account the inequalities introduced by
the corresponding narrowings. Assuming that (�, σ) is reachable in S and that
σ |= Q�, the specialized loop � will make at least ‖ρ�(σ(x̄))‖ iterations in any
execution that starts in (�, σ), which also means, as before, that the original loop
can make at least ‖ρ�(σ(x̄))‖ iterations in any execution that starts in (�, σ).

Example 10. To solve the problems shown in Example 9 we need to narrow
the non-deterministic variable u to take bounded values that reflect the worst-
case execution of the loop. Concretely, we need to take Uτ1

≡ u ≤ 1, which
combined with u ≥ 1 entails u = 1 so x decreases by exactly 1 in τ1. Consider-
ing the narrowing Uτ1

, the resulting loop is equivalent to the one presented in
Example 8 so we could obtain the precise metering function ρ�1(x, y) = x + y
with the quasi-invariant Q�1 ≡ x ≤ y ∧ x ≥ 0. Note that (14) holds for
τ1 because u = 1 makes the consequent true for every value of x and y:
∀x̄∃ū. (x ≤ y ∧ x ≥ 0) ∧ (x ≥ 0 ∧ y > 0) ∧ x > 0 → u ≥ 1 ∧ u ≤ 1

3.5 Ensuring the Feasibility of the Specialized Loops

In order to enable the propagation of the local lower-bounds back to the input
location (as we have discussed at the beginning of Sect. 3), we have to ensure that
there is actually an execution that starts in �0 and passes through the specialized
loop. In other words, we have to guarantee that when putting all specialized loops
together, they still form a non-blocking TS for some set of input values. We
achieve this by requiring that the quasi-invariants of the preceding loops ensure
that the considered quasi-invariant for this loop also holds on initialization (i.e.,
it is an invariant for the considered context). Technically, we require, in addition
to (9)-(14), the following conditions to hold for each loop �:

∀x̄, ū, x̄′. Q�′(x̄) ∧ R → Q�(x̄
′) for each (�′, �,R) ∈ T (15)

∀x̄. Q�0 → Θ (16)
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Condition (15) means that transitions entering loop �, strengthened with the
quasi-invariant of the preceding location �′, must lead to states within the quasi-
invariant Q�. Condition (16) guarantees that Q�0 defines valid input values, i.e.,
within the initial condition Θ.

Theorem 1 (soundness). Given Q� for each non-exit location � ∈ L, nar-
rowings Gτ and Uτ for each loop transition τ ∈ T , and function ρ� for each loop
location �, such that (9)-(16) are satisfied, it holds:

1. The TS S ′ obtained from S by adding Gτ and Uτ to the corresponding tran-
sitions, and changing the initial condition to Q�0 , is non-blocking.

2. For any complete trace t of S ′, if C = (�, σ) is a configuration in t, then t
includes at least ‖ρ�(σ(x̄))‖ visits to � after C (i.e., ‖ρ�(x̄)‖ is a lower-bound
function on the number of iterations of the loop defined by location �).

The proof of this soundness result is straightforward: it follows as a sequence of
facts using the definitions of the conditions (9)-(16) given in this section.

We note that when there is an unbounded overlap between the guards of the
loop transitions and the guards of exit transitions, it is likely that a non-trivial
metering function does not exist because it must be non-positive on the over-
lapping states. To overcome this limitation, instead of using the exit transitions
in (12), we can use ones that correspond to the negation of the guards of loop
transitions, and thus it is ensured that they do not overlap. However, we should
require (13) to hold for the original exit transitions as well in order to ensure
that the non-blocking property holds. Another way to overcome this limitation
is to simply strengthen the exit transitions by the negation of the guards.

As a final comment, we note that it is not needed to assume that the TS S
that we start with is non-blocking (even though we have done so in Sect. 2.1
for clarity). This is because our formalization above finds a subset of S (S ′ in
Theorem 1) that is non-blocking, which is enough to ensure the feasibility of the
local lower-bounds. This is useful not only for enlarging the set of TSs that we
accept as input, but also allows us to start the analysis from any subset of S
that includes a path from �0 to the exit location. For example, it can be used to
remove trivial execution paths from S, or concentrate on ones that include more
sequences of loops (since we are interested in LBw).

3.6 Handling General TSs

So far we have considered a special case of TSs in which all locations, except
the entry and exit ones, are multi-path loops. Next we explain how to handle
the general case. It is easy to see that we can allow locations that correspond to
trivial SCCs. These correspond to paths that connect loops and might include
branching as well. For such locations, there is no need to infer metering functions
or apply any specialization, we only need to assign them quasi-invariants that
satisfy (15) to guarantee that the overall specialized TS is non-blocking.

The more elaborated case is when the TS includes non-trivial SCCs that do
not form a multi-path loop. In such case, if a SCC has a single cut-point, we
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can unfold its edges and transform it into a multi-path following the techniques
of [1]. It is important to note that when merging two transitions, the cost of the
new one is the sum of their costs. In this case the number of iterations is still
a lower-bound on the cost of the loop, however, we might get a better one by
multiplying it by the minimal cost of its transitions.

If a SCC cannot be transformed into a multi-path loop by unfolding its
transitions, then it might correspond to a nested loop, and, in such case, we
can recover the nesting structure and consider them as separated TSs that are
“called” from the outer one using loop extraction techniques [25]. Each inner-loop
is then analyzed separately, and replaced (in the original TS, where is “called”)
by a single edge with its lower-bound as cost for that edge, and then the outer is
analyzed taking that cost into account. Besides, to guarantee that the specialized
program corresponds to a valid execution, we require the quasi-invariant of the
inner loop to hold in the context of the quasi-invariant of the outer loop. This
approach is rather standard in cost analysis of structured programs [1,3,12].

Another issue is how to compose the (local) lower-bounds of the specialized
loops into a global-lower bound. For this, we can rely on the techniques [1,3]
that rewrite the local lower-bounds in terms of the input values by relying on
invariant generation and recurrence relations solving.

4 Inference Using Max-SMT

This section presents how metering functions and narrowings can be inferred
automatically using Max-SMT, namely how to automatically infer all Gτ , Uτ ,
Q�, and ρ� such that (9)-(16) are satisfied. We do it in a modular way, i.e., we
seek Gτ , Uτ , Q�, and ρ� for one loop at a time following a (reversed) topological
order of the SCCs, as we describe next. Recall that (16) is required only for loops
connected directly to �0, and w.l.o.g. we assume there is only one such loop.

4.1 A Template-Based Verification Approach

We first show how the template-based approach of [6,17] can be used to find Gτ ,
Uτ , and Q� by representing them as template constraint systems, i.e., each is a
conjunction of linear constraints where coefficients and constants are unknowns.
Also, ρ� is represented as a linear template function ā · x̄ + a0 where (a0, ā) are
unknowns. Then, the problem is to find concrete values for the unknowns such
that all formulas generated by (9)-(16) are satisfied:

– Each ∀-formula generated by (9)-(16), except those of (14) that we handle
below, can be viewed as an ∃∀ problem where the ∃ is over the unknowns of the
templates and the ∀ is over (some of) the program variables. It is well-known
that solving such an ∃∀ problem, i.e., finding values for the unknowns, can be
done by translating it into a corresponding ∃ problem over the existentially
quantified variables (i.e., the unknowns) using Farkas’ lemma [20], which can
then be solved using an off-the-shelf SMT solver.
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– To handle (14) we follow [17], and eliminate ∃ū using the skolemization
ui = ā · x̄ + a0 where (a0, ā) are fresh unknowns (different for each ui).
This allows handling it using Farkas’ lemma as well. However, in addition,
when solving the corresponding ∃ problem we require all (a0, ā) to be integer.
This is because the domain of program variables is the integers, and picking
integer values for all (a0, ā) guarantees that the values of any x′

i that depends
on ū will be integer as well1.

The size of templates for Gτ , Uτ , and Q�, i.e., the number of inequalities, is
crucial for precision and performance. The larger the size is, the more likely
that we get a solution if one exists, but also the worse the performance is (as
the corresponding SMT problem will include more constraints and variables). In
practice, one typically starts with templates of size 1, and iteratively increases
it by 1 when failing to find values for the unknowns, until a solution is found or
the bound on the size is reached.

Alternatively, we can use the approach of [17] to construct Gτ , Uτ , and Q�

incrementally. This starts with templates of size 1, but instead of requiring all (9)-
(16) to hold, the conditions generated by (12) are marked as soft constraints
(i.e., we accept solutions in which they do not hold) and use Max-SMT to get
a solution that satisfies as many of such soft conditions as possible. If all are
satisfied, we are done, if not, we use the current solution to instantiate the
templates, and then add another template inequality to each of them and repeat
the process again. This means that at any given moment, each template will
include at most one inequality with unknowns. Finally, to guarantee progress
from one iteration to another, soft conditions that hold at some iteration are
required to hold at the next one, i.e., they become hard.

The use of (12) as soft constraint is based on the observation [12] that when
seeking a metering function, the problematic part is often to guarantee that
it is negative on exit transitions, which is normally achieved by adding quasi-
invariants that are incrementally inferred. By requiring (12) to be soft we handle
more exit transitions as the quasi-invariant gets stronger until all are covered.

4.2 Better Quality Solutions

The precision can also be affected by the quality of the solution picked by the
SMT solver for the corresponding ∃ problem. Since there might be many meter-
ing functions that satisfy (9)-(16), we are interested in narrowing the search
space of the SMT solver in order to find more accurate ones, i.e., lead to longer
executions. Next we present some techniques for this purpose.

Enabling More Loop Transitions. We are interested in guard narrowings that
keep as many loop transitions as possible, since such narrowings are more likely

1 Because we assumed that constraints involving primed variables are of the form
x′

i = ā · x̄ + b̄ · ū + c.
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to generate longer executions. This can be done by requiring the following to
hold

∃x̄.
∨

τ=(�,�,R)∈T
(Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄)) (17)

We also use Max-SMT to require a solution that satisfies as many disjuncts as
possible and thus eliminating less loop transitions (if Q�(x̄) ∧ R(x̄) ∧ Gτ (x̄) is
false for a transition τ , then it is actually disabled). Note that this condition
can be used instead of (10) that requires the quasi-invariant to be non-empty.

Larger Metering Functions. We are interested in metering functions that lead
to longer executions. One way to achieve this is to require metering functions to
be ranking as well, i.e., in addition to (11) we require the following to hold

∀x̄, ū, x̄′.Q�(x̄)∧Gτ (x̄)∧Uτ (x̄, ū)∧R→ρ�(x̄)−ρ�(x̄
′) ≥ 1 for each (�, �, R) ∈ T (18)

∀x̄, ū.Q�(x̄) ∧ Gτ (x̄) ∧ R(x̄) → ρ�(x̄) ≥ 0 for each (�, �, R) ∈ T (19)

These new conditions are added as soft constraints, and we use Max-SMT to
ask for a solution that satisfies as many conditions as possible.

Unbounded Metric Functions. We are interested in metering functions that do
not have an upper bound, since otherwise they will lead to constant lower-bound
functions. For example, for a loop with a transition x ≥ 0 ∧ x′ = x − 1, we want
to avoid quasi-invariants like x ≤ 5 which would make the metering function x
bounded by 5. For this, we rely on the following lemma.

Lemma 1. A function ρ(x̄) = ā · x̄ + a0 is unbounded over a polyhedron P, iff
ā · ȳ is positive on at least one ray ȳ of the recession cone of P.

It is known that for a polyhedron P given in constraints representation, its
recession cone cone(P) is the set specified by the constraints of P after removing
all free constants. Now we can use the above lemma to require that the metering
function ρ�(x̄) = ā · x̄ + ā0 is unbounded in the quasi-invariant Q� by requiring
the following condition to hold

∃x̄. cone(Q�) ∧ ā · x̄ > 0 (20)

where cone(Q�) is obtained from the template of Q� by removing all (unknowns
corresponding to) free constants, i.e., it is the recession cone of Q�.

Note that all encodings discussed in this section generate non-linear SMT
problems, because they either correspond to ∃∀ problems that include templates
on the left-hand side of implications, or to ∃ problems over templates that include
both program variables and unknowns.

Finally, it is important to note that the optimizations described provide the-
oretical guarantees to get better lower bounds: the one that adds (18,19) leads to
a bound that corresponds exactly to the worst-case execution (of the specialized
program), and the one that uses (20) is essential to avoid constant bounds.
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5 Implementation and Experimental Evaluation

We have implemented a LOwer-Bound synthesizER, named LOBER, that can
be used from an online web interface at http://costa.fdi.ucm.es/lober. LOBER is
built as a pipeline with the following processes: (1) it first reads a KoAT file [5]
and generates a corresponding set of multi-path loops, by extracting parts of the
TS that correspond to loops [25], applying unfolding, and inferring loop sum-
maries to be used in the calling context of nested loops, as explained in Sect. 3.6;
(2) it then encodes in SMT the conditions (9)–(13) defined through the paper, for
each loop separately, by using template generation, a process that involves sev-
eral non-trivial implementations using Farkas’ lemma (this part is implemented
in Java and uses Z3 [8] for simple (linear) satisfiability checks when produc-
ing the Max-SMT encoding); (3) the problem is solved using the SMT solver
Barcelogic [4], as it allows us to use non-linear arithmetic and Max-SMT capa-
bilities in order to assert soft conditions and implement the solutions described
in Sect. 4; (4) in order to guarantee the correctness of our system results, we
have added to the pipeline an additional checker that proves that the obtained
metering function and quasi-invariants verify conditions (9)–(13) by using Z3. To
empirically evaluate the results of our approach, we have used benchmarks from
the Termination Problem Data Base (TPDB), namely those from the category
Complexity ITS that contains Integer Transition Systems. We have removed
non-terminating TSs and terminating TSs whose cost is unbounded (i.e., the
cost depends on some non-deterministic variables and can be arbitrarily high)
or non-linear, because they are outside the scope of our approach. In total, we
have considered a set of 473 multi-path loops from which we have excluded 13
that were non-linear. Analyzing these 473 programs took 199 min, an average of
25 sec by program, approximately. For 255 of them, it took less than 1 s.

Table 1 illustrates our results and compares them to those obtained by the
LoAT [12,13] system, which also outputs a pair (ρ,Q) of a lower-bound function
ρ and initial conditions Q on the input for which ρ is a valid lower-bound.
In order to automatically compare the results obtained by the two systems,
we have implemented a comparator that first expresses costs as functions f :
N → R≥0 over a single variable n and then checks which function is greater. To
obtain this unary cost function from the results (ρ, Q), we use convex polyhedra
manipulation libraries to maximize the obtained cost ρ wrt. Q ∧ −n ≤ xi ≤ n,
where xi are the TS variables, and express that maximized expressions in terms of
n. Therefore, f(n) represents the maximum cost when the variables are bounded
by |xi| ≤ n and satisfy the corresponding initial condition Q, a notion very
similar to the runtime complexity used in [12,13]. Once we have both unary
linear costs f1(n) = k1n + d1 and f2(n) = k2n + d2, we compare them in n ≥ 0
by inspecting k1 and k2.

Each row of the table contains the number of loops for which both tools
obtain the same result (=), the number of loops where LOBER is better than
LoAT (>) and the number of loops where LoAT is better than LOBER (<). The
subcategories are obtained directly from the name of the innermost folder, except
for the cases in which this folder contains too few examples that we merge them
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Table 1. Results of the experiments.

Benchmark set Total = > < Benchmark set Total = > <

Brockschmidt 16 FGPSF09/Misc 20 16 3 1

c-examples/ABC 33 33 0 0 KoAT-2013 10 10 0 0

c-examples/SPEED 29 25 4 0 KoAT-2014 14 14 0 0

c-examples/WTC 45 39 4 2 SAS10 46 40 1 5

c-examples/Misc 9 9 0 0 Flores-Montoya 16 176 158 16 2

costa 6 5 1 0 Hark 20

FGPSF09/Beerendonk 28 24 4 0 Ben Amram Genaim 10 7 2 1

FGPSF09/patrs 18 16 2 0 Nils 2019 16 16 0 0

all in a Misc folder in the parent directory. The total number of loops that are
considered in each subcategory appears in column Total. Brockschmidt 16
and Hark 20 have their first row empty as all their results are contained in their
subcategories. Globally, both tools behave the same in 412 programs (column
“=”), obtaining equivalent linear lower bounds in 376 of them and a constant
lower bound in the remaining ones. Our tool LOBER achieves a better accuracy in
37 programs (column “>”), while LoAT is more precise in 11 programs (column
“<”). Let us discuss the two sets of programs in which both tools differ. As
regards the 37 examples for which we get better results, we have that LoAT
crashes in 4 cases and it can only find a constant lower bound in 1 example
while our tool is able to find a path of linear length by introducing the necessary
quasi-invariants. For the remaining 32 loops, both tools get a linear bound,
but LOBER finds one that leads to an unboundedly longer execution: 18 of
these loops correspond to cases that have implicit relations between the different
execution paths (like our running examples) and require semantic reasoning; for
the remaining 14, we get a better set of quasi-invariants. The following techniques
have been needed to get such results in these 37 better cases (note that (i) is
not mutually exclusive with the others):

(i) 1 needs narrowing non-deterministic choices,
(ii) 5 do not need quasi-invariants nor guard narrowing,
(iii) 14 need quasi-invariants only,
(iv) 18 need both quasi-invariants and guard narrowing (in 3 of them this is

only used to disable transitions).

Therefore, this shows experimentally the relevance of all components within our
framework and its practical applicability thanks to the good performance of the
Max-SMT solver on non-linear arithmetic problems. In general, for all the set of
programs, we can solve 308 examples without quasi-invariants and 444 without
guard-narrowing. The intersection of these two sets is: 298 examples (63% of the
programs), that leaves 175 programs that need the use of some of the proposed
techniques to be solved.

As regards the 11 examples for which we get worse results than LoAT, we
have two situations: (1) In 6 cases, the SMT-solver is not able to find a solution.
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We noticed that too many quasi-invariants were required, what made the SMT
problem too hard. To improve our results, we could start, as a preprocessing step,
from a quasi-invariant that includes all invariant inequalities that syntactically
appear in the loop transitions, something similar to what is done by LoAT when
inferring what they call conditional metering function [12]. This is left for future
experimentation. (2) In the other 5 cases, our tool finds a linear bound but with a
worse set of quasi-invariants, which makes the LoAT bound provide unboundedly
longer executions. We are investigating whether this can be improved by adding
new soft constraints that guide the solver to find these better solutions. Finally,
let us mention that, for the 13 problems that LoAT gives a non-linear bound
and have been excluded from our benchmarks as justified above, we get a linear
bound for the 12 that have a polynomial bound (of degree 2 or more), and a
constant bound for the additional one that has a logarithmic lower bound. This
is the best we can obtain as our approach focuses on the inference of precise
local linear bounds, as they constitute the most common type of loops.

All in all, we argue that our experimental results are promising: we triple
LoAT in the number of benchmarks for which we get more accurate results
and, besides, many of those examples correspond to complex loops that lead to
worse results when disconnecting transitions. Besides, we see room for further
improvement, as most examples for which LoAT outperforms us could be handled
as accurately as them with better quasi-invariants (that is somehow a black-box
component in our framework). Syntactic strategies that use invariant inequalities
that appear in the transitions, like those used in LoAT, would help, as well as
further improvements in SMT non-linear arithmetic.

Application Domains. The accuracy gains obtained by LOBER have applications
in several domains in which knowing the precise cost can be fundamental. This is
the case for predicting the gas usage [26] of executing smart contracts, where gas
cost amounts to monetary fees. The caller of a transaction needs to include a gas
limit to run it. Giving a too low gas limit can end in an “out of gas” exception
and giving a too high gas limit can end in a “not enough eth (money)” error.
Therefore having a tighter prediction is needed to be safe on both sides. Also,
when the UB is equal to the LB, we have an exact estimation, e.g., we would know
precisely the runtime or memory consumption of the most costly executions. This
can be crucial in safety-critical applications and has been used as well to detect
potential vulnerabilities such as denial-of-service attacks. In https://apps.dtic.
mil/sti/pdfs/AD1097796.pdf, vulnerabilities are detected in situations in which
both bounds do not coincide. For instance, in password verification programs, if
the UB and LB differ due to a difference on the delays associated to how many
characters are right in the guessed password, this is identified as a potential
attack.

6 Related Work and Conclusions

We have proposed a novel approach to synthesize precise lower-bounds from
integer non-deterministic programs. The main novelties are on the use of loop
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specialization to facilitate the task of finding a (precise) metering function and
on the Max-SMT encoding to find larger (better) solutions. Our work is related
to two lines of research: (1) non-termination analysis and (2) LB inference.
In both kinds of analysis, one aims at finding classes of inputs for which the
program features a non-terminating behavior (1) or a cost-expensive behavior
(2). Therefore, techniques developed for non-termination might provide a good
basis for developing a LB analysis. In this sense, our work exploits ideas from
the Max-SMT approach to non-termination in [17]. The main idea borrowed
from [17] has been the use of quasi-invariants to specialize loops towards the
desired behavior: in our case towards the search of a metering function, while
in theirs towards the search of a non-termination proof. However, there are
fundamental differences since we have proposed other new forms of loop spe-
cialization (see a more detailed comparison in Sect. 1) and have been able to
adapt the use of Max-SMT to accurately solve our problem (i.e., find larger
bounds). As mentioned in Sect. 1, our loop specialization technique can be
used to gain precision in non-termination analysis [17]. For instance, in this
loop: “while (x>=0 and y>=0) {if (∗) {x++; y−−;} else {x−−;y++;}}” no sub
SCC (considering only one of the transitions) is non-terminating and no quasi-
invariant can be found to ensure we will stay in the loop (when considering both
transitions), hence cannot be handled by [17]. Instead if we narrow the transi-
tions by adding y >= x in the if-condition (and hence x > y in the else), we can
prove that x >= 0 ∧ y >= 0 ∧ x + y = 1 is quasi-invariant, which allow us to
prove non-termination in the way of [17] (as we will stay in the loop forever).

As regards LB inference, the current state-of-the-art is the work by Frohn et
al. [12,13] that introduces the notion of metering function and acceleration. Our
work indeed tries to recover the semantic loss in [12,13] due to defining metering
functions for simple loops and combining them in a later stage using accelera-
tion. Technically, we only share with this work the basic definition of metering
function in Sect. 3.1. Indeed, the definition in conditions (3) and (4) already
generalizes the one in [12,13] since it is not restricted to simple loops. This
definition is improved in the following sections with several loop specializations.
While [12,13] relies on pure SMT to solve the problem, we propose to gain preci-
sion using Max-SMT. We believe that similar ideas could be adapted by [12,13].
Due to the different technical approaches underlying both frameworks, their
accuracy and efficiency must be compared experimentally wrt. the LoAT system
that implements the ideas in [12,13]. We argue that the results in Sect. 5 justify
the important gains of using our new framework and prove experimentally that,
the fact that we do not lose semantic relations in the search of metering func-
tions is key to infer LB for challenging cases in which [12,13] fails. Originally,
the LoAT [12,13] system only accelerated simple loops by using metering func-
tions, so the overall precision of the lower bound relied on obtaining valid and
precise metering functions. However, the framework in [12,13] is independent of
the accelerating technique applied. In order to increase the number of simple
loops that can be accelerated, Frohn [11] proposes a calculus to combine differ-
ent conditional acceleration techniques (monotonic increase/decrease, eventual



884 E. Albert et al.

increase/decrease, and metering functions). These conditional acceleration tech-
niques assume that all the iterations of the loop verify some condition ϕ, and
the calculus applies the techniques in order and extract those conditions ϕ from
fragments of the loop guard. Although more precise and powerful, the combined
acceleration calculus considers only simple loops, so it does not solve the preci-
sion loss when the loop cost involves several interleaved transitions. Moreover,
the techniques in [11] are integrated into LoAT, so the experimental evaluation
in Sect. 5 compares our approach to the framework in [12,13] extended with
several techniques to accelerate loops (not only metering functions).

Finally, our approach presents similarities to the CTL* verification for ITS
in [7] as both extend transition guards of the original ITS. The difference is
that in [7] the added constraints only contain newly created prophecy vari-
ables and the transitions to modify are detected directly using graph algorithms;
whereas our SMT-based approach adds constraints only over existing variables
to satisfy the properties that characterize a good metering function. Addition-
ally, both approaches differ both in the goal (CTL* verification vs. inference of
lower-bounds) and the technologies applied (CTL model checkers vs. Max-SMT
solvers).
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A program containing placeholders for unspecified statements or expressions is called an abstract (or schematic) program. Placeholder
symbols occur naturally in program transformation rules, as used in refactoring, compilation, optimization, or parallelization. Static
cost analysis derives the precise cost –or upper and lower bounds for it– of executing programs, as functions in terms of the program’s
input data size. We present a generalization of automated cost analysis that can handle abstract programs and, hence, can analyze the
impact on the cost effect of program transformations. This kind of relational property requires provably precise cost bounds which
are not always produced by cost analysis. Therefore, we certify by deductive verification that the inferred abstract cost bounds are
correct and sufficiently precise. It is the first approach solving this problem. Both, abstract cost analysis and certification, are based on
quantitative abstract execution (QAE) which in turn is a variation of abstract execution, a recently developed symbolic execution
technique for abstract programs. To realize QAE the new concept of a cost invariant is introduced. QAE is implemented and runs fully
automatically on a benchmark set consisting of representative optimization rules.
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1 INTRODUCTION

We present a generalization of automated cost analysis that can handle programs containing placeholders for unspecified
statements. Consider the program𝑄 ≡ “i =0; while (i < t ) { P; i ++;} ”, where P is any statement not modifying i or t.
We call P an abstract statement; a program like 𝑄 containing abstract statements is called abstract program. The (exact
or upper/lower bound) cost of executing P is described by a function acP(𝑥) depending on the variables 𝑥 occurring in
P. We call this function the abstract cost of P. Assuming that executing any statement has unit cost and that 𝑡 ≥ 0, one
can compute the (abstract) cost of 𝑄 as 2 + 𝑡 · (acP(𝑥) + 2) depending on acP and t. For any concrete instance of P, we
can derive its concrete cost as usual and then obtain the concrete cost of 𝑄 simply by instantiating acP. In this article,
we define and implement an abstract cost analysis to infer abstract cost bounds. Our implementation consists of an
automatic abstract cost analysis tool and an automatic certifier for the correctness of inferred abstract bounds. Both
steps are performed with an approach called Quantitative Abstract Execution (QAE).
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Fine, but what is this good for? Abstract programs occur in program transformation rules used in compilation,
optimization, parallelization, refactoring, etc. [29, 31, 45]: Transformations are specified as rules over program schemata

which are nothing but abstract programs. If we can perform cost analysis of abstract programs, we can analyze the cost

effect of program transformations. Our approach is the first method to analyze the cost impact of program transformations.

Automated Cost Analysis. Cost analysis occupies an interesting middle ground between termination checking and
full functional verification in the static program analysis portfolio. The main problem in functional verification is that
one has to come up with a functional specification of the intended behavior, as well as with auxiliary specifications
including loop invariants and contracts [30]. In contrast, termination is a generic property and it is sufficient to come
up with a suitable term order or ranking function [10]. For many programs, termination analysis is vastly easier to
automate than verification.1

Computation cost is not a generic property, but it is usually schematic: One fixes a class of cost functions (for
example, polynomial) that can be handled. A cost analysis then must come up with parameters (degree, coefficients)
that constitute a valid bound (lower, upper, exact) for all inputs of a given program with respect to a cost model (# of
instructions, allocated memory, etc.). If this is performed bottom up with respect to a program’s call graph, it is possible
to infer a cost bound for the top-level function of a program. Such a cost expression is often symbolic, because it depends
on the program’s input parameters.

A central technique for inferring symbolic cost of a piece of code with high precision is symbolic execution (SE) [13, 34].
The main difficulty is to render SE of loops with symbolic bounds finite. This is achieved with loop invariants that
generalize the behavior of a loop body: an invariant is valid at the loop head after arbitrarily many iterations. To infer
sufficiently strong invariants automatically is generally an unsolved problem in functional verification, but much easier
in the context of cost analysis, because invariants do not need to characterize functional behavior: it suffices that they
permit to infer schematic cost expressions.

Upper and Lower Bounds. Cost analysis techniques traditionally focused on three types of bounds: (1) The vast
majority concentrated on inferring upper bounds on the worst-case cost, because the assurance that no execution of a
program will exceed the inferred amount of resources has important applications in safety-critical contexts. (2) Lower
bounds on the best-case cost [7, 19, 21] characterize the minimal cost of any program execution and are useful in task
parallelization, where a task is not parallelized unless its best-case cost is larger than the overhead from parallelization.
Moreover, such bounds are used in performance debugging, verification and optimization. (3) Lower bounds on the

worst-case cost that bound the worst-case cost from below. Their main usage is, when combined with upper bounds
on the worst-case, to infer tighter worst-case cost bounds. Further applications include: the gain on accuracy on the
analysis of smart contracts, detection of performance bugs such as non-termination and of safety-critical vulnerabilities
such as denial-of-service, see [24] for details on applications.

Lower bounds were studied less often than upper bounds, yet there are recent papers on lower bounds on the
worst-case cost [6, 24]. The present paper adopts the approach of [6]: By means of specializing the loops of a program,
it is able to obtain lower bounds on the worst-case cost, using techniques developed for lower bounds on the best-case
cost. In our implementation, we use the LOBER tool [6]. While that system was initially designed to compute lower
bounds on the worst-case cost, it allows to disable loop specialization, so as to provide lower bounds on the best-case

1In theory, of course, proving termination is as difficult as functional verification. It is hard to imagine, for example, to find a termination argument for
the Collatz function without a deep understanding of what it does. But automated termination checking works very well for many programs in practice.
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cost instead. We use the system in that way to compute lower bounds on the best-case cost. Combined with upper
bounds on the worst-case cost this bounds the cost of any execution from both, above and below.

Abstract Execution. To infer the cost of program transformation schemata requires the capability of analyzing abstract
programs. This is not possible with standard SE, because abstract statements have no operational semantics. One way
to reason about abstract programs is to perform structural induction over the syntactic definition of statements and
expressions whenever an abstract symbol is encountered. Structural induction is routinely used in interactive theorem
proving [11, 40] to verify, e.g., compilers. It is labor-intensive and not automatic. Instead, here we perform cost analysis
of abstract programs via a generalization of SE called abstract execution (AE) [46, 47]. The idea of AE is, quite simply,
to symbolically execute a program containing abstract placeholder symbols for expressions and statements, just as
if it were a concrete program. It might seem counterintuitive that this is possible: after all, nothing is known about
an abstract symbol. But this is not quite true: one can equip an abstract symbol with an abstract description of the
behavior of its instances: a set of memory locations its behavior may depend on, commonly called footprint and a
(possibly different) set of memory locations it can change, commonly called frame [30].

Cost Invariants. In automated cost analysis, one infers cost bounds frequently from loop invariants, ranking functions,
metering functions, and size relations computed during SE [4, 15, 22, 49]. In particular, ranking functions are used to
bound the worst-case execution cost from above (upper bound on worst-case cost) and metering functions [24] are
used to bound the cost from below (lower bounds on worst and best-case cost). To deal with loops containing abstract

programs, we need a more general concept: loop invariants that express a valid abstract cost bound at the beginning of
any loop iteration (e.g., 2 + 𝑖 ∗ (acP(𝑥) + 2) for program 𝑄 above). We call this a cost invariant. This is an important
technical innovation of our paper. Cost invariants increase modularity of a cost analysis, because each loop can be
analyzed and certified in isolation.

Relational Cost Analysis. AE allows specifying and verifying relational program properties [46], because one can
express rule schemata. This extends to quantified AE and makes it possible, for the first time, to infer and to prove
(automatically!), for example, the impact of program transformations on performance.

Certification. Cost annotations inferred by abstract cost analysis, i.e., cost invariants and abstract cost bounds, are
automatically certified in our approach by a deductive verification system. This constitutes an extension of earlier
work on cost certification [5] to abstract cost and abstract programs. As before, the division of labor is as follows: the
specification (i.e., the cost bound) and the loop (cost) invariants are inferred by the cost analyzer, while the verification
system formally proves that the bounds are correct. This ensures that the overall process is fully automatic, because the
verification system obtains complete specifications from the cost analyzer.

To argue for correctness of an abstract cost analysis is complex, because it must be valid for an infinite set of concrete
programs. For this reason alone, it is useful to certify the abstract cost inferred for a given abstract program: during
development of the abstract cost analysis reported here, several errors in abstract cost computation were detected—
analysis of the failed verification attempt gave immediate feedback on the cause. We built a regression test suite of
problems so that any change in the cost analyzer can be validated in the future.

Certification is crucial for the correctness of quantitative relational properties: The inferred cost invariants might
not be precise enough to establish, e.g., that a program transformation does not increase cost for any possible program
instance and run. This is only established at the certification stage, where relational properties are formally verified. A
relational setting requires provably precise cost bounds. This feature is not offered by existing cost analysis methods.

Manuscript submitted to ACM
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Summary of Contributions

This article makes the following main contributions:

(1) We extend the abstract execution framework [46, 47] to quantitative abstract execution by adding cost specifications
that extend the standard specification of an abstract statement with an annotated cost expression.

(2) We leverage a cost analysis framework [4] for concrete programs to the abstract setting by means of the key
notions of inductive cost invariant and cost postcondition for abstract programs.

(3) We report on an implementation of our approach that is publicly available and assess its effectiveness and
efficiency on representative code optimization patterns.

This work extends and improves on a conference paper published in the proceedings of FASE 2021 [8]. Relative to
that paper the present article contains the following further contributions:

(4) The initial approach was focused on the generation and verification of upper bounds on the cost of abstract
programs. We extended it to generate and certify also lower bounds on the abstract cost.

(5) We relaxed the conditions to guarantee soundness of the abstract cost analysis framework. In particular, the
concept of cost neutral abstract statement in Section 4 is less restrictive than in [8]. This allows to handle a larger
class of programs.

(6) We extended the implementation and evaluation to include the two novel features.

Organization of the Article

This article is organized as follows.

• Section 2 introduces our approach informally by means of an example, and sets up the terminology that is going
to be used.

• Section 3 introduces quantitative abstract execution. We begin by introducing the idea of abstract execution
and the semantics of abstract statements. Then, we add to this basic notion of AE the new concept of a cost
specification that leads to the QAE framework based on the concept of abstract cost for an abstract statement.

• Section 4 is focused on the automatic inference of cost invariants. This is achieved by extending an existing cost
analysis framework for concrete programs [4] to abstract ones. We first define the notion of an abstract cost

relation system (ACRS) that extends the well-known concept of a cost relation system [7]. Then, ACRS are used
to obtain abstract cost invariants and, as the final step in the analysis, cost postconditions. Soundness is proven
at the end of each subsection.

• Section 5 contains the experimental evaluation. Representative program transformation examples are considered,
for which we summarize the most important results.

• Section 6 describes the state-of-art in our field, comparing the novel aspects of our work to existing results.
• Section 7 concludes this article, highlighting our most important achievements.

2 QAE BY EXAMPLE

We introduce our approach and terminology informally by means of a motivating example: Code Motion [1] is a compiler
optimization technique moving a statement not affected by a loop from the beginning of the loop body in front of
the loop. This code transformation should preserve behavior provided that the loop is executed at least once, but it
can be expected to improve computation effort, i.e. quantitative properties of the program, such as execution time
and memory consumption: The moved code block is executed exactly once, independently of the number of loop
Manuscript submitted to ACM
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int i = 0;
// @ loop_invariant i ≥ 0 && i ≤ t;
// @ cost_invariant_upper

i ·
(
ac𝑢P (t,w) + ac𝑢Q (t, z) + 2

)
;

// @ cost_invariant_lower
i ·

(
ac𝑙P (t,w) + ac𝑙Q (t, z) + 2

)
;

// @ decreases t − i;
while (i < t ) {

// @ assignable x;
// @ accessible t, w;
// @ cost_footprint t, w;
\abstract_statement P;
// @ assignable y;
// @ accessible i , t , y, z;
// @ cost_footprint t, z;
\abstract_statement Q;
i ++;

}

// @ assert t ·
(
ac𝑙P (t,w) + ac𝑙Q (t, z) + 2

)
<=\cost

// @ assert \cost <=

2 + t ·
(
ac𝑢P (t,w) + ac𝑢Q (t, z) + 2

)
;

Program Before
int i = 0;
// @ assignable x;
// @ accessible t, w;
// @ cost_footprint t, w;
\abstract_statement P;
// @ loop_invariant i ≥ 0 && i ≤ t;
// @ cost_invariant_upper

i ·
(
ac𝑢Q (t, z) + 2

)
;

// @ cost_invariant_lower
i ·

(
ac𝑙Q (t, z) + 2

)
;

// @ decreases t − i;
while (i < t ) {

// @ assignable y;
// @ accessible i , t , y, z;
// @ cost_footprint t, z;
\abstract_statement Q;
i ++;

}

// @ assert 2 + ac𝑙P (t,w) + t ·
(
ac𝑙Q (t, z) + 2

)
<=\cost

// @ assert \cost <=

2 + ac𝑢P (t,w) + t ·
(
ac𝑢Q (t, z) + 2

)
;

Program After

Inputs: t, w, x, y, z Precondition: t > 0 Postcondition: \cost_1 ≥ \cost_2

Preconditions and Postconditions

Fig. 1. Motivating example on relational quantitative properties.

iterations, in the transformed context, leading to less executed instructions (less energy consumed) and, in case it
allocates memory, reduced memory usage. In the following we subsume any quantitative aspect of a program under
the term cost expressed in a parametric cost model, with the understanding that it can be instantiated to specific cost
measures, such as number of instructions, number of allocated bytes, energy consumed, etc.

To formalize code motion as a transformation rule, we describe in- and output of the transformation schematically.
Figure 1 depicts such a schema in a simple language based on Java. An abstract statement (AS) with identifier Id, declared
as “\abstract_statement Id;”, represents an arbitrary concrete statement. It is obviously unsafe to move arbitrary,
possibly non-invariant, code blocks out of a loop. For this reason, the AS P to be moved, has a specification restricting
the permitted behavior of its instances. For compatibility with Java we base our specification language on the Java
Modeling Language (JML) [36]. Specifications are attached to code via structured comments marked as JML by an “@”
symbol. JML keyword “assignable” defines the memory locations that may occur in the frame of an AS; similarly,
“accessible” restricts the footprint. Figure 1 contains further keywords explained below.

Input to QAE is the abstract program to analyze, including annotations (highlighted in light gray in Figure 1) that
express restrictions on the permitted instances of ASs. In addition to the frame and footprint, the cost footprint of an
AS, denoted with the keyword “cost_footprint”, is a subset of its footprint listing locations the cost expressions in
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AS instances may depend on. It can also involve conditions on the variables. In Figure 1, the cost footprint of AS Q

excludes accessible variables i and y. Annotations highlighted in dark gray are automatically inferred by abstract cost
analysis and are input for the certifier. As usual, loop invariants (keyword “loop_invariant”) are needed to describe
the behavior of loops with symbolic bounds. The loop invariant in Figure 1 permits to determine the final value t of
loop counter i after loop termination. To prove termination, the loop variant (keyword “decreases”) is inferred. This
keyword keeps information of an upper bound over the number of iterations of the loop.

So far, this is standard automated cost analysis [4]. The ability to infer automatically the remaining annotations
represents our main contribution: Each AS P has an associated abstract cost function parametric in the locations of its
footprint, represented by an abstract cost symbol acP. As our framework works for both upper and lower bounds, we
distinguish the upper and lower bounds of the abstract cost of an abstract statement 𝑃 using the cost symbols ac𝑙P(𝑡,𝑤)
and ac𝑢P(𝑡,𝑤), respectively. These symbols can be instantiated with any concrete function parametric in t,w being a valid
cost bound for the instance of P. For example, for the instance “P ≡ x=t+1; ” the constant function 1 is the correct exact
cost, and t with t ≥ 1 is a correct upper bound cost. On the other hand, for the instance “P ≡ k=0; while (k<t) k++;”
the exact cost is 𝑡 , while correct (but not tight) upper and lower bound costs are 𝑡2 and 1, respectively.

As pointed out in Section 1, we need cost invariants to capture the cost of each loop iteration. These are declared
with the keywords “cost_invariant_upper” and “cost_invariant_lower”. To generate them, it is necessary to infer
the cost growth of abstract programs that bounds the number of loop iterations executed so far. In the program of
Figure 1 the number of loop iterations is determined exactly by the increase of variable 𝑖 until it reaches 𝑡 , but we can
handle more general programs, where the number of performed iterations is not deterministic. For example, consider
the following program, where “∗” randomly returns true or false, causing a different increase of i in each case:

while (i < t ) {
if ( ∗ ) i ++; else i +=2;

}
Now the most precise information obtainable on the number of loop iterations is that they are between 𝑡

2 and 𝑡 . The
lower bound inference is reflected in the growth and cost invariants. In Section 4 we describe automated inference
of cost invariants including the generation of cost growth for all loops. Our technique is compositional and works in
presence of nested loops.

The QAE framework can express and prove quantitative relational properties. The assertions in the last lines in
Figure 1 contain the expression \cost referring to the total accumulated cost of a program: its quantitative postcondition.
We support quantitative relational postconditions such as \cost_1 ≥ \cost_2, where \cost_1, \cost_2 refer to the total
cost of the original (on the left) and transformed (on the right) program, respectively. To prove relational properties, it
is necessary to infer matching upper and lower bounds for the number of loop iterations. Only then the comparison
of the invariants allows to conclude that the programs from which they derive satisfy the stipulated relational prop-
erty. Otherwise, over- and under-approximation introduced by the cost analysis can make the relation hold for the
postconditions, but the relational property does not necessarily hold for the programs.

Figure 2 shows a schema of our toolchain for proving relational properties. Given two abstract programs (the original
and the transformed one), we obtain the corresponding cost-specified programs by means of the cost analyzer. If both
upper and lower bounds of the loop match, then the tool verifies that the relational property holds. Proving quantitative
properties is explained further in Section 3.4.
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Fig. 2. Schema of tool chain for cost certification of abstract programs

3 FROM ABSTRACT EXECUTION TO QUANTITATIVE ABSTRACT EXECUTION

To obtain a formal account of QAE with correctness guarantees we require a mathematically rigorous semantic
foundation of abstract cost. This is provided in the following.

3.1 Abstract Execution

Abstract Execution [46, 47] extends symbolic execution by permitting abstract statements to occur in programs. Thus
AE reasons about an infinite set of concrete programs. An abstract program contains at least one AS. The semantics
of an AS is given by the set of concrete programs it represents, its set of legal instances. To simplify the presentation,
we only consider normally completing Java code as instances: an instance may not throw an exception, break from a
loop, etc.2 Each AS has an identifier and a specification consisting of its frame and footprint. Semantically, instances of
an AS with identifier P may at most write to memory locations specified in P’s frame and may only read the values
of locations in its footprint. All occurrences of an AS with the same identifier symbol have the same legal instances
(possibly modulo renaming of variables, if variable names in frame and footprint specifications differ). For example, by

// @ assignable x,y;
// @ accessible y,z;
\abstract_statement P;

we declare an AS with identifier “P”, which can be instantiated by programs that write at most to variables x and y,
while only depending on variables y and z. The program “x=y; y=17;” is a legal instance of it, but not “x=y; y=w;”,
which accesses the value of variable w not contained in the footprint.

We use the shorthand P(x, y :≈ y, z) for the AS declaration above. The left-hand side of “:≈” is the frame, the
right-hand side the footprint. Abstract programs allow to express certain second-order properties such as “all programs
assigning at most x, y while reading at most y, z leave the value of i unchanged”. In Hoare triple format (where 𝑖0 is a
fresh constant not occurring in P):

{i � 𝑖0} P(x, y :≈ y, z); {i � 𝑖0} (∗)

2The AE framework [47] can also deal with exceptional and abrupt termination.
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3.2 Abstract Execution with Abstract Cost

We extend the AE framework [46, 47] to QAE by adding cost specifications that extend the specification of an AS with an
annotated cost expression. An abstract cost expression is a function whose value may depend on any memory location
in the footprint of the AS it specifies. This location set is called the cost footprint, specified via the cost_footprint
keyword (see Figure 1), and must be a subset of the footprint of the specified AS. If the cost footprint for the program in
(∗) is defined to be “{z}” then this implicitly declares abstract functions ac𝑙P (z) , ac𝑢P (z) that might be instantiated to,
for example, quadratic cost “z2”.

Definition 3.1 (Abstract Program). A pair P = (abstrStmts, 𝑝abstr ) of a set of AS declarations abstrStmts ≠ ∅ and a
program fragment 𝑝abstr containing exactly those ASs is called abstract program. Each AS declaration in abstrStmts is
a triple

(
P(frame :≈ footprint), ac𝑙P (costFootprint) , ac𝑢P (costFootprint)

)
, where P is an identifier; frame, footprint, and

costFootprint ⊆ footprint are location sets.
A concrete program fragment 𝑝 is a legal instance of P if it arises from substituting concrete cost functions for

all acP in abstrStmts, and concrete statements for all P in abstrStmts, where (i) all ASs are instantiated legally, i.e., by
statements respecting their frame, footprint, and cost function, and (ii) all ASs with the same identifier are instantiated
with the same concrete program. The semantics JPK consists of all its legal instances.

The abstract program consisting of only AS P in (∗) with cost footprint “{z}” is formally defined as:( {(
P(x, y :≈ y, z), ac𝑙P (z) , ac𝑢P (z)

)}
, P;

)
The program “P0 ≡ i =0; while (i <z) { x = z; i ++;} ” with cost functions “ac𝑙P (z) = ac𝑢P (z) = 3 · 𝑧 + 2” is a legal
instance: it respects frame, footprint, and cost footprint, as well as the cost functions, that (assuming z ≥ 0) can be
obtained by static cost analysis of P0.

By encoding the semantics of abstract programs in a program logic [47, Sect. 4.2] one can statically verify whether
an instance is legal. It may require auxiliary specifications (invariants, contracts) of the concrete code. The property is
undecidable, but can be proven automatically in many cases, see [47] for a discussion. A first implementation of such a
check is part of the REFINITY tool (see [45], also https://www.key-project.org/REFINITY/).

In the following we will write acP instead of ac𝑙P, ac
𝑢
P to mean either, whenever appropriate.

3.3 Cost of Abstract Programs

Finitely executing a concrete program 𝑝 starting in a state 𝑠0 = (𝑝, 𝜎0) with an initial assignment 𝜎0 of 𝑝’s program
variables results in a finite trace of the form 𝑡 ≡ 𝑠0

𝑐1−−→ . . .
𝑐𝑛−−→ 𝑠𝑛 . Each state 𝑠𝑖 = (𝑝𝑖 , 𝜎𝑖 ) consists of a program

counter 𝑝𝑖 (the remaining program to execute) and a store 𝜎𝑖 (the current variable assignment); each transition
𝑠𝑖

𝑐𝑖+1−−−→ 𝑠𝑖+1 updates 𝑠𝑖 to 𝑠𝑖+1 according to the effect of executing command 𝑐𝑖+1 defined in the semantics of the
programming language. A complete trace corresponds to a terminating execution, i.e., 𝑠𝑛 = (𝜖, 𝜎𝑛), where 𝜖 is the empty
program and 𝜎𝑛 the resulting final variable assignment.

The cost of a program can be computed based on execution traces. To allow arbitrary quantitative properties, we
work on a generic cost model M that assigns cost values to programming language instructions. We compute the cost of
a trace 𝑡 , denoted M(𝑡), by summing up the cost of the individual instructions. A straightforward measure is the total
number of executed instructions Minstr: In this cost model, instructions like “x=1; ”, the evaluation of a loop guard, etc.,
all are assigned cost 1. For example, the cost of the complete trace of “while (i >0) i−−;” when started with an initial
store assigning the value 3 to i is 7, because “i−−;” is executed three times and the guard is evaluated four times. This
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can be generalized to symbolic execution: Executing the same program with a symbolic store assigning to i a symbolic
initial value 𝑖0 ≥ 0 produces traces of cost 2 · 𝑖0 + 1. The cost of abstract programs, i.e., the generalization to QAE, is
defined similarly: By generalizing not merely over all initial stores, but also over all concrete instances of the abstract
program.

Definition 3.2 (Abstract Program Cost). Let M be a cost model. Let an integer-valued expression 𝑐P consist of scalar
constants, program variables, and abstract cost symbols applied to constants and variables. Expression 𝑐P is the cost of
an abstract program P w.r.t.M if for all concrete stores 𝜎 and instances 𝑝 ∈ JPK such that 𝑝 terminates with a complete
trace 𝑡 of costM(𝑡) when executed in 𝜎 , 𝑐P evaluates toM(𝑡) when interpreting variables according to 𝜎 , and abstract
cost functions according to the instantiation step leading to 𝑝 . The instance of 𝑐P using the concrete store 𝜎 is denoted
𝑐P (𝜎).

Example 3.3. We test the cost assertion in the last lines of the left program in Figure 1 by computing the cost of a trace
obtained from a fixed initial store and instances of P, Q. We use the cost model Minstr and an initial store that assigns
2 to t and 0 to all other variables. We instantiate P with “x=2∗t ; ” and Q with “y=i; y++;”. Consequently, the abstract
cost functions acP (t,w) and acQ (t, z) are instantiated with 1 and 2, respectively. Evaluating the postulated abstract
program cost 2+ t · (2 + acP (t,w) + acQ (t, z)) for the concrete store and AS instantiation results in 2+ 2 · (2+ 1+ 2) = 12.
Consequently, the execution trace should contain 12 transitions, which is the case.

3.4 ProvingQuantitative Properties with QAE

There are two ways to realize QAE on top of the existing functional verification layer provided by the AE framework [46,
47]: (i) provide a “cost” extension to the program logic and calculus underlying AE; (ii) translate non-functional (cost)
properties to functional ones. We opt for the second, as it is less prone to introduce soundness issues stemming from
the addition of new concepts to the existing framework. It is also faster to realize and allows early testing.

The translation consists of three elements: (a) A global “ghost” variable “cost” (representing keyword “\cost ”) for
tracking accumulated cost; (b) explicit encoding of a chosen cost model by suitable ghost setter methods that update this
variable; (c) functional loop invariants and method postconditions expressing cost invariants and cost postconditions.

Regarding item (c), we support three types of cost specifications. These are, in descending order of strictness: exact,
upper and lower bound, and upper bound cost. During the analysis stage, it is usually impossible to determine which of
them is applicable. For this reason, there are merely two cost_invariant keywords, not three, referring only to the cost
invariants related to the upper and lower bounds, respectively. However, when translating cost to functional properties,
a decision has to be made. A natural strategy is to start with the strictest type, then proceed towards the more liberal
ones whenever a proof fails.

An exact cost invariant has the shape “cost == expr”, an upper bound is specified by “cost <= expr”, a lower bound
on the invariant cost is specified by “expr <= cost”. For example, the (exact) cost postcondition of the abstract program
on the right in Figure 1 is:

cost == 2 + acP (t,w) + t · (acQ (t, z) + 2) (†)

Figure 3 shows the result of translating the cost invariant in Figure 1 to a functional loop invariant (highlighted
lines), using cost model Minstr in ghost setters and postconditions of AS (“ensures” clauses). Recall that an expression
such as “cost == \before(cost ) + acP (t,w);” is a shorthand for two equations, one with ac𝑙P and one with ac𝑢P. ASs P,
Q must include the ghost variable “cost” in their frame, because they update its value. The keyword \before in the

Manuscript submitted to ACM



10 Elvira Albert, Reiner Hähnle, Alicia Merayo, and Dominic Steinhöfel

1 // @ ghost int cost = 0;
2 int i = 0;
3 // @ set cost = cost + 1;
4

5 // @ assignable x, cost ;
6 // @ accessible t, w;
7 // @ ensures cost == \before(cost ) + acP (t,w);
8 \abstract_statement P;
9

10 // @ ghost int iCost = 0;
11 // @ loop_invariant i ≥ 0 && i ≤ t
12 // @ && iCost == i · (acQ (t, z) + 2

)
;

13 // @ decreases t − i;
14 while (i < t ) {
15 // @ set iCost = iCost + 1;
16 // @ assignable y, cost ;
17 // @ accessible i , t , y, z;
18 // @ ensures cost == \before(cost ) + acQ (t, z);
19 \abstract_statement Q;
20 i ++;
21 // @ set iCost = iCost + 1;
22 }
23 // @ set cost = cost + 1;
24 // @ set cost = cost + iCost;

Fig. 3. Translation of cost model and cost invariants to AE.

postcondition of an AS refers to the value a variable had just before executing the AS. In loops we use “inner” cost
variables “iCost” tracking the cost inside the loop. When the loop terminates, we add the final value of “iCost” to “cost”.
After every evaluation of the guard of the loop, the cost is incremented accordingly. Using the translation in Figure 3 of
the inferred annotations in Figure 1, the AE system proves cost postcondition (†) automatically.

Apart from the translation of inferred quantitative annotations to functional AE specifications, we extended the
AE system’s proof script language. This made it possible to define a highly automated proof strategy for non-linear
arithmetic problems generated by some cost analysis benchmarks.

4 ABSTRACT COST ANALYSIS

Recall from Section 2 that for automatic cost certification we need to infer annotations for abstract cost invariants
and cost postconditions. To achieve this, we leverage a cost analysis framework for concrete programs to the abstract
setting. The presentation is structured as follows: Section 4.1 defines the notion of an abstract cost relation system
(ACRS) used in cost analysis for the abstract setting. Section 4.2 defines the concept of cost neutral ASs that ensure
independence of ASs in a loop from variables modified in the loop. Section 4.3 details how to generate automatically
inductive cost invariants for abstract programs from ACRSs. Section 4.4 tells how to generate cost postconditions used
to prove relational properties and required to handle nested loops.

4.1 Inference of Abstract Cost Relations

There are two major cost analysis approaches: those using recurrence equations in the style of Wegbreit [48], and
those based on type systems [18, 33]. Our formalization is based on the first kind, but the main ideas for extending the
framework to abstract programs are as well applicable to the second. The key issue when extending a recurrences-based
framework to the abstract setting is the notion of abstract cost relation for loops which generalizes the concept of cost
recurrence equations for a loop to an abstract setting. We start with notation for loops and technical details on assumed
size relations.

Loops. In our formalization, we consider while-loops containing 𝑛 abstract statements and𝑚 non-abstract statements.
Non-abstract statements include any concrete instruction of the target language (arithmetic instructions, conditionals,
method calls, . . . ).We assume loops 𝐿 have the general outline displayed below. Each abstract statement has a specification
as shown, abstract and non-abstract statements may appear in any order, either might be empty.
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while (G) {
// @ accessible 𝑟1,1, . . . , 𝑟1,ℎ𝑟1
// @ assignable𝑤1,1, . . . ,𝑤1,ℎ𝑤1
// @ cost_footprint 𝑐1,1, . . . , 𝑐1,ℎ𝑐1 , cond1,1, ...
\abstract_statement 𝐴1;
non_abstract_statement 𝑁1;
...

}

Size relations. We assume that for each loop sets of size constraints have been computed. These sets capture the
size relation among the variables in the loop upon exit (called base case, denoted 𝜑𝐵 ), and when moving from one
iteration to the next (denoted 𝜑𝐼 ). ASs are ignored by the size analysis. While this would be unsound in general, it
will be correct under the requirements we impose in Definition 4.5 and with the handling of ASs in Definition 4.2.
Size relations are available from any cost analyzer by means of a static analysis [17] that records the effect of concrete
program statements on variables and propagates it through each loop iteration. In our examples, since we work on
integer data, size analysis corresponds to a value analysis [14] tracking the value of the integer variables.3

Example 4.1. The size relations for the loop on the left in Figure 1 are 𝜑𝐵 = {i ≥ t} and 𝜑𝐼 = {i < t, i′ = i + 1}. 𝜑𝐵 is
inferred from the loop guard and 𝜑𝐼 from the guard and the increment of 𝑖 (primed variables refer to the value of the
variable after the loop execution). 2

Based on pre-computed size relations, we define the cost of executing a loop by means of an abstract cost relation

system (ACRS). This is a set of cost equations characterizing the abstract cost of executing a loop for any input with
respect to a given cost modelM. Cost equations consist of a cost expression governed by size constraints containing
applicability conditions for the equation (like i < t in 𝜑𝐼 above) and size relations between loop variables (like i′ = i + 1
in 𝜑𝐼 ).

Definition 4.2 (Abstract Cost Relation System). Let 𝐿 be a loop as above with 𝑛 abstract and𝑚 non-abstract statements.
Let 𝑥 be the set of variables accessed in 𝐿. Let 𝜑𝐼 , 𝜑𝐵 be sound size relations for 𝐿, andM a cost model. The ACRS for 𝐿
is defined as the following set of cost equations:

𝐶 (𝑥) = CB , 𝜑𝐵

𝐶 (𝑥) = ∑𝑛
𝑗=1 acj

(
𝑐 𝑗,1, . . . , 𝑐 𝑗,ℎ𝑐 𝑗

)
+∑𝑚

𝑖=1 CNi +𝐶 (𝑥 ′), 𝜑𝐼
where:

(1) CB ≥ 0 is the cost of exiting the loop (executing the base case) w.r.t.M.
(2) Each acj (·) ≥ 0 represents the abstract cost for abstract statement 𝐴 𝑗 in 𝐿 w.r.t. to M. Each acj is parameterized

with the variables in the cost footprint of the corresponding 𝐴 𝑗 , as it may depend on any of them.
(3) Each CNi ≥ 0 is the cost of the non-abstract statement 𝑁𝑖 w.r.t. toM.
(4) 𝐶 on the right-hand side is a recursive call.
(5) 𝑥 ′ are variables 𝑥 when renamed after executing the loop.
(6) The assignable variables𝑤 𝑗,∗ in the acj get an unknown value in 𝑥 ′ (denoted with “_” in the examples below).

Ignoring the abstract statements, one can apply a complete algorithm for cost relation systems [10] to an ACRS to
obtain automatically a linear4 ranking function 𝑓 for loop 𝐿: 𝑓 is a linear, non-negative function over 𝑥 that decreases
3For complex data structures, one would need heap analyses [44] to infer size relations.
4There exist (more expensive) algorithms to obtain also polynomial ranking functions [9] but for the sake of efficiency we are not using them.
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strictly at every loop iteration. Function 𝑓 yields directly the “// @ decreases 𝑓 ;” annotation required for QAE. It gives
us an upper bound on the number of iterations of loop 𝐿. In analogy to ranking functions, we use metering functions to
obtain lower bounds: a metering function is a function that decreases at most by one in each iteration and that, when
exiting the loop, is zero or negative. It provides a lower bound on the number of iterations of loop 𝐿.

As in Section 3, the definition of ACRS assumes a generic cost model M and uses C to refer in a generic way to cost
according to M. For example, to infer the number of executed steps, C is set to 1 per instruction, while for memory
usage C records the amount of memory allocated by an instruction.

General Case of an ACRS. The definition of ACRS was simplified for presentation. The following generalizations, not
requiring any new concept, are possible: (1) We assume an ACRS for a loop has only two equations, one for the base
case (the guard G does not hold) and one for the iterative case (G holds). In general, there might be more than one
equation for the base case, e.g., if the guard involves multiple conditions and the cost varies depending on the condition
that holds on the exit. Similarly, there might be multiple equations in the iterative case, e.g., if the loop body contains
conditional statements and each iteration has different cost depending on the taken branch. This issue is orthogonal to
the extension to abstract cost. (2) A loop might contain method calls that in turn contain ASs. In absence of recursion,
such calls can be inlined. For recursive methods, it is possible to compute the call graph and solve the equations in
reverse topological order such that the abstract cost of the (inner) method calls is obtained first and then inserted into
the surrounding equations. (3) The cost of code fragments not part of any loop (before, after, and in between loops) is
defined as well by abstract cost equations accumulating the cost of all instructions these fragments include, just as
for concrete programs. This aspect does not require changes to the framework for concrete programs, so we do not
formalize it, but just illustrate it in the next example.

Example 4.3. The ACRSs of the programs in Figure 1 are (left program above line, right program below):

𝐶before (t, x,w, y, z) = 𝑐before +𝐶𝑤0 (i, t, x,w, y, z), {i = 0}
𝐶𝑤0 (i, t, x,w, y, z) = 𝑐𝐵𝑤0

, {i ≥ t}
𝐶𝑤0 (i, t, x,w, y, z) = 𝑐𝑤0 + acP (t,w) + acQ (t, z) +𝐶𝑤0 (i′, t, _,w, _, z), {i′ = i + 1, i < t}
𝐶after (t, x,w, y, z) = 𝑐after + acP (t,w) +𝐶𝑤1 (i, t, _,w, y, z), {i = 0}
𝐶𝑤1 (i, t, x,w, y, z) = 𝑐𝐵𝑤1

, {i ≥ t}
𝐶𝑤1 (i, t, x,w, y, z) = 𝑐𝑤1 + acQ (t, z) +𝐶𝑤1 (i′, t, x,w, _, z), {i′ = i + 1, i < t}

Notation 𝑐 refers to the generic cost that can be instantiated to a chosen cost modelM. Cost equation 𝐶before for the
first program is composed of the cost of the instructions appearing in front of the loop as 𝑐before plus the cost 𝐶𝑤0 of
executing the loop. The size constraint fixes the initial value of i. Following Definition 4.2, there are two equations
corresponding to the base case of the loop and executing one iteration, respectively. Observe that assignable variables
in ASs have unknown values in the ACRS (according to item (6) in Definition 4.2). Program after has a similar structure.
A ranking and a metering function for each loop is t − i, which leads to an exact cost estimation as the bounds match.
The ranking function is used to generate annotation “// @ decreases t−i;” inserted before each loop in Figure 1. 2

Example 4.4. In the following example, a tight ranking function is 𝑡 , while a tight metering function is 𝑡
2 :

while (t > 0) {
if ( ∗) t = t−2; else t = t−1;

}
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2

For soundness of abstract cost analysis it is essential that (i) no AS in the loop modifies any of the variables that
influence loop cost, i.e., they do not interfere with cost, and (ii) the cost of the AS in the loop is independent of the
variables modified in the loop. We call the latter ASs cost neutral. The first requirement is guaranteed by item (6) in
Definition 4.2, because the value of assignable variables is “forgotten” in the equations. It is implemented, as usual in
static analysis, by using a name generator for fresh variables. If cost depends on assignable variables in an AS, then the
ACRS will not be solvable (i.e., the analysis returns “unbound cost”). The ACRS in the example contains “_” in equations
that do not prevent solvability of the system nor its evaluation, because they do not interfere with cost. However, if we
had “forgotten” a cost-relevant variable (such as t), we would be unable to solve or evaluate the equations: without
knowing t the equation guard is not evaluable. To fulfill requirement (ii) we introduce the new notion of a cost neutral
AS to ensure that variables in the cost footprint are not modified by other statements in the loop that decrease the cost.

4.2 Cost Neutral Abstract Statements

Due to the number of involved components of cost specifications, the following definition is a little long-winded, but
conceptually straightforward.

Definition 4.5 (Cost Neutral Abstract Statement). Given a loop 𝐿, where:

• 𝑊 (𝐿) is the set of variables written to by the non-abstract statements of 𝐿;
• Abstr(𝐿) is the set of all ASs in loop 𝐿;
• Frame(Abstr(𝐿)) is the set of variables assigned by any AS 𝐴 ∈ Abstr(𝐿);
• CostFootprint (𝐴) is the set of variables on which the cost of an 𝐴 depends;
• CostFootprint (Abstr(𝐿)) is the set of variables on which the cost of any AS 𝐴 of 𝐿 depends;
• Conditions(Abstr(𝐿)) is the set of conditions defined in the cost footprint of any AS 𝐴 ∈ Abstr(𝐿);
• Vars(Conditions(Abstr(𝐿))) is the set of variables occurring in Conditions(Abstr(𝐿));
• 𝑅(𝐿) is the ranking function of loop 𝐿;
• 𝑚(𝐿) is the metering function of loop 𝐿;
• ac𝑢P and ac𝑙P are the upper and lower bounds, respectively, on the abstract cost of abstract statement 𝑃 .

𝐿 is a loop with cost neutral ASs if, for any of its ASs 𝐴 either (1) any variable not occurring in conditions of the cost
footprint and that is assigned in the loop does not occur in the cost footprint; or (2) if a variable occurs in a cost footprint
condition, then the changes in the cost referring to that variable are safe. Formally:

(1) (Unconditioned) For all 𝑥 ∉ Vars(Conditions(Abstr(𝐿))), it holds that

𝑥 ∈ Frame(Abstr(𝐿)) ∪𝑊 (𝐿) =⇒ 𝑥 ∉ CostFootprint (A)

(2) (Safe) For all 𝑥 ∈ Vars(Conditions(Abstr(𝐿))) the following conditions must hold. Let 𝑥 ′ refer to the update
of variable 𝑥 .

(a) (SafeAS) If 𝑥 ∈ Frame(Abstr(𝐿)) ∪ CostFootprint (Abstr(𝐿)), then

Conditions(Abstr(𝐿)) =⇒ ac𝑙A[𝑥 ′/𝑥] ≤ ac𝑙A ∧ ac𝑢A ≤ ac𝑢A[𝑥 ′/𝑥]

(b) If 𝑥 ∈𝑊 (𝐿) ∪ Frame(Abstr(𝐿)), then
(b)-(i) (SafeRanking)

Conditions(Abstr(𝐿)) =⇒ 𝑅(𝐿) [𝑥 ′/𝑥] ≤ 𝑅(𝐿)
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(b)-(ii) (SafeMetering) If 𝑅(𝐿) ≠𝑚(𝐿), it holds that

Conditions(Abstr(𝐿)) =⇒ 𝑚(𝐿) ≤ 𝑚(𝐿) [𝑥 ′/𝑥]

2

Condition (2)(a) ensures that changes in the abstract statement costs preserve upper and lower bounds of the
corresponding costs. Conditions (2)(b)-(i), (2)(b)-(ii) guarantee that the upper and lower bounds on the iterations remain
valid. Metering needs merely to be checked if it does not coincide with the ranking function.

Example 4.6. Both loops in Figure 1 have cost neutral ASs. No conditions are declared in the cost footprint,
so Definition 4.5(1) applies. In the left program Frame({𝑃,𝑄}) ∪𝑊 (𝐿) = {x, y} , i, CostFootprint (𝑃) = {t,w}, and
CostFootprint (𝑄) = {t, z}, so the condition is fulfilled. Similar for the program on the right. 2

int i = 0;
while (i < t ) {
// @ assignable x,w;
// @ accessible t, w;
// @ cost_footprint t, w,

acP(𝑡,𝑤 ′) ≥ acP(𝑡,𝑤);
\abstract_statement P;

// @ assignable y;
// @ accessible i , t , y, z;
// @ cost_footprint t, z;
\abstract_statement Q;

i ++;
}

int i = 0;
while (i < t ) {
// @ assignable x;
// @ accessible t, w;
// @ cost_footprint t, w;
\abstract_statement P;

// @ assignable y,i;
// @ accessible i , t , y, z;
// @ cost_footprint t, z, 𝑖 ′ ≥ 𝑖 ;
\abstract_statement Q;

i ++;
}

int i = 0;
while (i < t ) {
// @ assignable x;
// @ accessible t, w;
// @ cost_footprint t, w;
\abstract_statement P;

// @ assignable y,t;
// @ accessible i , t , y, z;
// @ cost_footprint t, z, 𝑡 ′ ≥ 𝑡 ;
\abstract_statement Q;

i ++;
}

(2)(a) holds, because
acP(𝑡,𝑤 ′) ≥ acP(𝑡,𝑤).

Ranking and metering functions are
both 𝑡 − 𝑖 . (2)(b)-(i) holds, because
𝑖 ′ ≥ 𝑖 =⇒ 𝑡 − 𝑖 ′ ≤ 𝑡 − 𝑖 .

Ranking function is 𝑡 − 𝑖 .
(2)(b)-(i) does not hold, because
𝑡 ′ ≥ 𝑡 ���=⇒ 𝑡 ′ − 𝑖 ≤ 𝑡 − 𝑖 .

Fig. 4. Loops illustrating Definition 4.5.

Example 4.7. Figure 4 contains further examples and their justification. We only discuss conditions that need to be
checked. For example, in the first loop, (2)(b)-(i) and (2)(b)-(ii) trivially hold, because their conditions do not contain
variables that occur in the ranking function, so the only condition that needs to be checked is (2)(a). 2

Given a program P with variables 𝑥 and ACRS with initial equation 𝐶𝑖𝑛𝑖 (𝑥). We denote by 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0) the
evaluation of the ACRS for a given initial store 𝜎0. This is a standard evaluation of recurrence equations performed by
instantiating the right-hand side of the equations with the values of the variables in 𝜎0 and checking the satisfiability of
the size constraints (if the expression being checked or accumulated contains “_”, the evaluation returns “unbound”). As
usual, the process is repeated until an equation without calls is reached. Moreover, we denote by 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑢 the
upper bound of the evaluation of the ACRS, obtained by substituting each abstract statement acP in 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0) by
its upper bound ac𝑢P. Similarly, we define the lower bound of the evaluation 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑙 by substituting each abstract
statement acPby its lower bound ac𝑙P. It is trivial to see that 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑙 ≤ 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0) ≤ 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑢 .
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Example 4.8. Consider the ACRS of the left program in Figure 1 with variables x = (t, x,w, y, z), initial state 𝜎0 =

(2, 0, 0, 0, 0), and cost modelMinst (i.e., 𝑐before, 𝑐𝐵𝑤0
, and 𝑐𝑤0 assume values 1, 1, and 2, respectively). The evaluation of the

ACRS is 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (x), 𝜎0) = 6+2·acP(2, 0)+2·acQ(2, 0). Its upper bound is 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (x), 𝜎0)𝑢 = 6+2·ac𝑢P(2, 0)+2·ac𝑢Q(2, 0),
its lower bound is 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (x), 𝜎0)𝑙 = 6 + 2 · ac𝑙P(2, 0) + 2 · ac𝑙Q(2, 0). 2

Theorem 4.9 (Soundness of ACRS). Let M be a cost model and P an abstract program with cost neutral ASs in loops

(Definition 4.5), 𝑐P the abstract cost ofP as in Definition 3.2, and𝐶𝑖𝑛𝑖 the initial equation for the ACRS obtained by Definition

4.2. Then, for any initial state of the variables 𝜎0 ∈ Z𝑛𝑚 , it holds that 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑙 ≤ 𝑐P (𝜎0) ≤ 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑢 .

Proof. First we prove 𝑐P (𝜎0) ≤ 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑢 . As 𝑐P satisfies Definition 3.2, in particular, for the concrete
store 𝜎0 it is the case that 𝑐P (𝜎0) evaluates to M(𝑡) for any complete trace 𝑡 beginning in 𝜎0. Hence, it is sufficient
to check thatM(𝑡) ≤ 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑢 . We focus on soundness for the abstract statements—soundness of concrete
statements is covered by previous results [4]: Definition 4.5(2)(b)-(i) ensures that in case the variables that affect the
cost of the loop are updated, the resulting ranking function does not become greater than the one used in the evaluation
of the ACRS, that is, the ranking function inferred at the beginning remains a valid upper bound.

Turning to abstract cost, let𝐴 be an abstract statement of P and 𝜎1 the store in 𝑡 when𝐴 is executed. It is sufficient to
check that cost ac𝑢A(𝜎1) inM(𝑡) contributes at least the same to 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑢 as𝐴. If the abstract cost is unchanged
by the abstract statement, by definition of upper bound, we obtain ac𝑢A(𝜎1) ≥ acA(𝜎1). If the abstract cost is changed,
then by Definition 4.5(2)(a) we have that the new abstract cost is greater than the previous upper bound on the abstract
cost. If ac𝑢′

A (𝜎1) is the new abstract cost upper bound then ac𝑢
′

A (𝜎1) ≥ ac𝑢A(𝜎1) ≥ acA(𝜎1).
Proving 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑙 ≤ 𝑐P (𝜎0) is similar, but we need to check 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑙 ≤ M(𝑡) and take into account

4.5(2)(b)-(ii), This ensures that in case variables that affect the cost of the loop are updated, the resulting metering
function does not become lower than the one used to underestimate the length of the trace of the abstract cost. As
before, it is sufficient to show that the cost ac𝑙A(𝜎1) in M(𝑡) contributes at most the same to 𝑒𝑣𝑎𝑙 (𝐶𝑖𝑛𝑖 (𝑥), 𝜎0)𝑙 as 𝐴.
This holds, because Definition 4.5(1) enforces that variables affecting the cost of 𝐴 are unmodified by other statements
inside the loop, hence ac𝑙A(𝜎1) ≤ acA(𝜎1) or else, in case of being modified, 4.5(2)(a) ensures that the cost when updating
the variables according to conditions defined in the cost footprint remains the same or becomes a lower bound. That is,
if ac𝑙 ′A(𝜎1) is the new abstract cost lower bound, then ac𝑙

′
A(𝜎1) ≤ ac𝑙A(𝜎1) ≤ acA(𝜎1). □

4.3 From ACRS to Abstract Cost Invariants

Example 4.8 shows that ACRSs are evaluable for concrete instances. However, to enable automated QAE, we need to
obtain from them closed-form cost invariants and postconditions, i.e., non-recursive expressions. We introduce the novel
concept of abstract cost invariant (ACI) that enables automated, inductive proofs over cost in a deductive verification
system. The crucial difference to (non-inductive) cost postconditions as inferred by existing cost analyzers is that ACIs
can be proven inductively for each loop iteration. Hence, they integrate naturally into deductive verification systems
that use loop invariants [30].

In contrast to ACIs, postconditions provide a bound for the cost after execution of the whole loop they refer to.
Typically, an upper bound postcondition for a loop has the form𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 ∗𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 +𝑚𝑎𝑥_𝑏𝑎𝑠𝑒 , where𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
is the maximal number of iterations of the loop,𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 is the maximal cost of any loop iteration, and𝑚𝑎𝑥_𝑏𝑎𝑠𝑒 is
the maximal cost of executing the loop with no iterations. A lower bound postcondition is defined similarly, using
a lower bound on the number of iterations, lower bounds on the abstract cost and the minimal concrete cost (i.e.,
𝑚𝑖𝑛_𝑖𝑡𝑒𝑟 ∗𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 +𝑚𝑖𝑛_𝑏𝑎𝑠𝑒).
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An upper bound ACI has the form growth𝑢 ∗𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 +𝑚𝑎𝑥_𝑏𝑎𝑠𝑒 , where growth𝑢 counts how many times the loop
has been executed at most and hence provides an upper bound after each loop iteration. Similarly, a lower bound ACI
has the form growth𝑙 ∗𝑚𝑖𝑛_𝑐𝑜𝑠𝑡 +𝑚𝑖𝑛_𝑏𝑎𝑠𝑒 , where growth𝑙 counts how many times the loop has been executed at
least and provides a lower bound after each loop iteration. The challenge is to design automated techniques that infer
upper and lower bounds growth𝑢 , growth𝑙 .

Definition 4.10 (Upper and Lower Growth). Given a loop with ranking function 𝑅 = 𝑐 +∑
𝑖 𝑎𝑖 · 𝑣𝑖 , metering function

𝑚 = 𝑑 +∑
𝑖 𝑏𝑖 · 𝑣𝑖 , where 𝑐 , 𝑑 are the constant parts, 𝑣𝑖 the variable parts, and 𝑎𝑖 , 𝑏𝑖 constant coefficients. If we denote

with 𝑣0𝑖 the initial value of variable 𝑣𝑖 before entering the loop, then the upper growth and the lower growth are defined
as

growth𝑢 =
∑
𝑖

𝑎𝑖 ·
(
𝑣0𝑖 − 𝑣𝑖

)
growth𝑙 =

∑
𝑖

𝑏𝑖 ·
(
𝑣0𝑖 − 𝑣𝑖

)

For any loop execution, growth𝑙 ≤ growth ≤ growth𝑢 , where growth is the exact number of performed iterations.

Example 4.11. In Example 4.4, let 𝑡0 be the initial value of 𝑡 . Recall that a ranking function was 𝑡 and a metering
function was 𝑡

2 . Then upper and lower growths are

growth𝑢 = 𝑡0 − 𝑡 growth𝑙 =
𝑡0 − 𝑡

2
2

Example 4.12. We look at four simple loops, where ranking and metering functions coincide. Functions growth𝑢 ,
growth𝑙 are inferred automatically by applying Definition 4.10. They coincide as well and thus provide exact growth.

int i = 0;
while (i < t )

i ++;

ranking/metering t − i

growth i

int i = t ;
while (i > 0)

i−−;
ranking/metering i

growth t − i

int i = 0;
while (i < t )

i += 2;

ranking/metering t−i+1
2

growth i
2

int i = t ;
while (i > 0)

i −= 2;

ranking/metering i+1
2

growth t−i
2

We can now define the concept of an ACI that relies on abstract cost relations as defined in Section 4.1 and growth
as defined above.

Definition 4.13 (Abstract Cost Invariant). Given an ACRS as in Definition 4.2 with growth as in Definition 4.10, its
upper and lower abstract cost invariants are defined as follows:

• cinv𝑢 (𝑥) = CB
max + growth𝑢 ·

(∑𝑛
𝑗=1 ac

𝑢
j

(
𝑐 𝑗,1, . . . , 𝑐 𝑗,ℎ𝑐 𝑗

)
+∑𝑚

𝑖=1 CNi
max

)
• cinv𝑙 (𝑥) = CB

min + growth𝑙 ·
(∑𝑛

𝑗=1 ac
𝑙
j

(
𝑐 𝑗,1, . . . , 𝑐 𝑗,ℎ𝑐 𝑗

)
+∑𝑚

𝑖=1 CNi
min

)
where CBmax and CB

min stand for the maximal and minimal value, respectively, the expression CB can assume under the
constraints 𝜑𝐵 ; CNimax and CNi

min are the maximal and minimal value, respectively, of CNi under 𝜑𝐼 .

The maxima and minima can be provided by cost analyzers and they give rise to the automatically generated
annotations “// @ cost_invariant_upper cinv𝑢 (𝑥);” and “// @ cost_invariant_lower cinv𝑙 (𝑥);”.

Example 4.14. Consider the first loop in Example 4.12, where growth𝑢 = growth𝑙 = i, with the abstract statement:
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// @ assignable j;
// @ accessible i , t , j , k;
// @ cost_footprint k;
\abstract_statement P;

UnderMinstr the evaluation of the loop guard and the increase of i both have unit cost, so the ACRS is:

𝐶 (i, t, j, k) = 1 {i ≥ t}
𝐶 (i, t, j, k) = acP (k) + 2 +𝐶 (i′, t, _, k) {i′ = i + 1, i < t}

As usual, the value of the assignable variable j in the recursive call is “forgotten”. We obtain the following ACIs:
“// @ cost_invariant_upper 1 + i ∗ (2 + acP(k));” and “// @ cost_invariant_lower 1 + i ∗ (2 + acP(k));”. 2

Example 4.15. Consider Example 4.11, where growthu = 𝑡0 − 𝑡 and growthl =
𝑡0−𝑡
2 , with the abstract statement:

// @ assignable w;
// @ accessible y, t , w;
// @ cost_footprint t;
\abstract_statement P;

UnderMinstr the evaluation of the loop guard and the decreasing of y both have unit cost, so the ACRS is:

𝐶 (y, t,w) = 1 {y ≤ 0}
𝐶 (y, t,w) = acP (t) + 2 +𝐶 (y′, t, _) {y′ = y − 1, y > 0}
𝐶 (y, t,w) = acP (t) + 2 +𝐶 (y′, t, _) {y′ = y − 2, y > 0}

Again, the value of assignable variable w is “forgotten”, but it does not affect ACRS solvability. We obtain the ACIs:
“// @ cost_invariant_upper 1 + (𝑡0 − 𝑡) ∗ (2 + acP (𝑘));”, “// @ cost_invariant_lower 1 + 𝑡0−𝑡

2 ∗ (2 + acP (𝑘));”. 2

To obtain the maximal and minimal cost of a cost expression under a set of constraints, we use existing maximization
procedures [9] and lower bound techniques [6], respectively.

From Definition 4.13 we obtain ACIs as closed form abstract cost expressions of the shape

abexpr = cexpr | ac | abexpr1 + abexpr2 | abexpr1 ∗ abexpr2 ,

where ac represents an abstract cost function as defined in Section 3.2 and cexpr is a concrete cost expression. The
definition above yields linear bounds, however, the extension to infer postconditions in the subsequent section leads to
polynomial expressions (of arbitrary degree).5

Example 4.16. Sometimes the cost of a single iteration cannot be computed exactly by cost analyzers, resulting
in maximized and minimized cost expressions for concrete instructions. To illustrate this phenomenon, we add an
instruction that creates an array of non-constant size “i” to the program in Example 4.14 and measure memory
consumption instead of instruction count:

5Our approach being based on a recurrences-based framework [48], it works for exponential and logarithmic expressions. The results in this section
generalize accordingly. However, the AE deductive verification system is not able to deal with them automatically at the moment, so we exclude them.
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while (i < t ) {
a = new int[i];
// @ assignable j;
// @ accessible i , t , j , a, k;
// @ cost_footprint k;
\abstract_statement P;
i ++;

}

The resulting ACRS accumulates cost “i” at each iteration, plus the memory consumed by the abstract statement:

𝐶 (i, t, j, k) = 0, {i ≥ t}
𝐶 (i, t, j, k) = acP (k) + i +𝐶 (i′, t, _, k), {i′ = i + 1, i < t}

Now, maximizing the expression CN1 = i under {i′ = i + 1, i < t} results in CN1
max = 4 · (t − 1) and minimizing it

results in CN1
min = 4, as we are working with 32 bit integers.6 Accordingly, we obtain the following cost invariants:

“// @ cost_invariant_upper 𝑖 ∗ (4 ∗ (𝑡 − 1) + acP (𝑘));” and “// @ cost_invariant_lower 𝑖 ∗ (4 + acP (𝑘));”. 2

While the maximized expression is computed automatically, the minimized expression was manually calculated,
because LOBER [6] computes lower bounds on the number of iterations of a given loop, but it does not minimize the cost
of single iterations (by default it assumes each iteration has unit cost). For this reason, in the current implementation,
the tool only infers upper bounds for the heap cost model.

Let 𝑐𝐿 denote the abstract cost of executing a loop 𝐿 (in analogy to 𝑐P in Definition 3.2, but considering only loop 𝐿
rather than the whole program P). We denote by 𝑐𝐼 the portion of the cost in 𝑐𝐿 up to the execution of iteration 𝐼 .

Proposition 4.17. Let 𝐿 be a loop with variables 𝑥 satisfying Definition 4.5, and 𝑐𝐼 the abstract cost of 𝐿 in iteration 𝐼 ,

cinv𝑢 (𝑥) and cinv𝑙 (𝑥) its ACIs, and 𝜎𝐼 ∈ Z𝑛𝑚 the store after performing iteration 𝐼 of 𝐿. Then the following holds:

(1) cinv𝑢 (𝑥) and cinv𝑙 (𝑥) are true on entering the loop;

(2) cinv𝑙 (𝜎𝐼 ) ≤ 𝑐𝐼 (𝜎𝐼 ) ≤ cinv𝑢 (𝜎𝐼 ).

Proof Sketch. By a straightforward induction, relying on the soundness of the ACRS of 𝐿 (Theorem 4.9) and
assuming soundness of the ranking function, metering function and maximization and minimization procedures used
in Definitions 4.10, 4.13. □

4.4 From Cost Invariants to Postconditions

To handle programs with nested loops and to prove relational properties it is necessary to infer cost postconditions for
abstract programs. For nested loops the cost postcondition states the abstract cost after complete execution of the inner
loop and it is used to compute the invariant of the outer loop. For relational properties, the cost postconditions of two
abstract programs are compared. Cost postconditions for concrete programs are obtained by upper and lower bound
solvers (e.g., COSTA [4], CoFloCo [22], AProVE [25], LoAT [24], Lober [6]) that compute max_iter , an upper bound on
the number of iterations and min_iter , a lower bound on the number of iterations that a loop performs, by relying on
ranking and metering functions. The cost postcondition is obtained by replacing growth𝑢 with max_iter and growth𝑙

with min_iter in the formulas of cinv𝑢 (𝑥) and cinv𝑙 (𝑥) in Definition 4.13:

6Better maximization and minimization results can with techniques such as in [7].
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Definition 4.18 (Cost Postcondition). Let 𝐿 be a loop,max_iter an upper bound,min_iter a lower bound on the number
of iterations of 𝐿. From the ACRS for 𝐿 (Definition 4.2) we infer the cost postconditions for 𝐿:

• post𝑙 (𝑥) = CB
min +min_iter (𝑥) ·

(∑𝑛
𝑗=1 acj

𝑙
(
𝑐 𝑗,1, . . . , 𝑐 𝑗,ℎ𝑐 𝑗

)
+∑𝑚

𝑖=1 CNi
min

)
• post𝑢 (𝑥) = CB

max +max_iter (𝑥) ·
(∑𝑛

𝑗=1 acj
𝑢
(
𝑐 𝑗,1, . . . , 𝑐 𝑗,ℎ𝑐 𝑗

)
+∑𝑚

𝑖=1 CNi
max

)
and generate the annotations

// @ assert post𝑙 (𝑥) ≤ cost
// @ assert cost ≤ post𝑢 (𝑥)

To infer the postcondition for a complete abstract program, we take the sum of all cost postconditions of its top-level
loops plus the cost of the non-iterative fragments. Figure 1 shows the cost postconditions for our running example
obtained by replacing the growth i of the invariant with the bound t on the loop iterations and requiring t ≥ 0. The
generation of inductive ACIs for nested loops uses the cost postcondition of inner loops to compute the invariants of
the outer ones.

Theorem 4.19 (Soundness of Cost Postconditions). Let 𝐿 be a loop over variables 𝑥 satisfying Definition 4.5, and

𝑐𝐿 the abstract cost of 𝐿. Let 𝜎𝐿 ∈ Z𝑚𝑛 be the state when 𝐿 terminates. Then post𝑙 (𝜎𝐿) ≤ 𝑐𝐿 (𝜎𝐿) ≤ post𝑢 (𝜎𝐿).
Proof Sketch. Analogous to Proposition 4.17. □

5 EXPERIMENTAL EVALUATION

5.1 Threats to Validity

Concerning internal threats to validity, there is the question of whether our results for a small, abstract programming
language generalize to realistic languages. This is the case, because (i) the cost model is completely parametric and
can be instantiated as required, and (ii) both the used cost analyzers as well as the AE framework are implemented for
large subsets of Java (although to extend the QAE framework is future work). Checking correctness of experimental
outcomes and their interpretation is straightforward. Also the outcome, up to minor variations in observed user time, is
deterministic.

The main external threat is the relatively small number and size of the performed experiments. However, this threat
is mitigated for methodological reasons: (i) Since we analyze abstract programs, each experiment covers infinitely
many concrete instances that can be arbitrarily complex; (ii) because our approach is compositional, there is no need to
analyze large programs, rather small code fragments containing loops can be analyzed in isolation. In consequence,
we only need to make sure that the experiments contain a representative selection of the phenomena encountered in
program transformation. We ensured this by using typical examples from optimization [1, 31], parallelization [29], and
refactoring [23, 45]

In addition, we need to ensure that our analysis is indeed automatic, as claimed.

5.2 Experiments

We implemented our approach downloadable and provide the code at https://tinyurl.com/qae-impl (including required
libraries). The archive contains the benchmarks of this section, additional examples, as well as build and usage
instructions. The tool is command-line and built on top of an existing cost analysis library for (non-abstract) Java
bytecode as well as the deductive verification system KeY [2] including the AE framework [46, 47]. Our implementation
consists of three components:
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(1) An extension of a cost analyzer (written in Python) to handle abstract Java programs, ;
(2) a conversion tool (written in Java) translating the output of the analyzer to a set of input files for KeY, and
(3) a bash script orchestrating the toolchain, specifically, the interplay between items (1), (2) and the two libraries.

In case of a failed certification attempt, our script offers the choice to open the generated proof in KeY for further
debugging. In total, our implementation (excluding the libraries) consists of 1,802 lines of Python, 703 lines of Java,
and 389 lines of bash code (without blank lines and comments).

To assess effectiveness and efficiency of our approach, we used our QAE implementation to analyze seven repre-
sentative code optimization rules using cost modelsMinstr (rows “1∗”–“6∗” in Table 1) and Mheap (rows “7∗”). While
Minstr counts the number of instructions,Mheap measures heap consumption. Rows 8–9 show two examples where
the lower and upper bound on the number of iterations of the analyzed loops do not coincide, so the estimation of the
number of iterations is not exact. The cost model used in these last two examples isMinstr.

The first column identifies the benchmark (“a” refers to the original program, “b” to the transformed one after
application of an optimization rule), the second column named P refers to the type of cost result that was proven
(exact “e”, upper “u”, upper-lower “ul”). Column three contains the type of bound (lower or upper) for which results are
displayed in the row. Column four shows the inferred growth function for each loop in the program (separated by “,” if
there is more than one loop), in the fifth column we list the cost postconditions obtained by the analysis (expressions
indicating the number of loop iterations are highlighted), and columns six to nine display performance metrics. Time
𝑡cost, given in milliseconds, is the time needed to perform the cost analysis. The proof generation time 𝑡proof is given in
seconds. We also display the time 𝑡check needed for checking integrity of an already generated proof certificate. Finally,
𝑠proof is the size of the generated KeY proof in terms of number of proof steps.

Even though the time needed for certification is significantly higher than for cost analysis (which is to be expected),
each analysis can be performed within one minute. The time to check a proof certificate amounts to approximately one
fourth to one third of the time needed to generate it. We stress that all analyses are fully automatic. We briefly describe
the nature of each experiment:

1 is a loop unrolling transformation duplicating the body of a loop: each copy of the body is put inside an if -
statement conditioned by the loop guard. In (1b), the cost analyzer over-approximates the number of iterations
of the unrolled loop, since there are different possible control flows in the body. This was automatically detected
by the certifier which failed to find a proof when exact cost invariants are conjectured. Performing an asymptotic
abstraction over both bounds [3] would lead us to the same asymptotic function in both examples. The automation
of a sound asymptotic technique is left for future work.

2 is the CodeMotion example from Section 2. The result reflects a cost decrease in the sense that less instructions
need to be executed by the transformed program.

3 implements a LoopTiling optimization at compiler level, where a single loop with 𝑛 ·𝑚 iterations is transformed
into two nested loops, an outer one counting to 𝑛 and an inner one to𝑚. Since our cost analyzer handles only
linear size expressions, the first program uses an auxiliary parameter 𝑡 , which is then instantiated to value 𝑛 ·𝑚.

4 is a SplitLoop transformation that splits a loop with two independent parts into two separate loops. We prove
that this transformation does not affect the cost up to a constant factor.

5 is an optimization combining two loops with the same body structure into one loop.
6 is a three loops example, one nested and one simple. The optimization combines the bodies of the outer loop in
the nested structure and the simple loop.
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P Cost analysis results 𝑡cost 𝑡proof 𝑡check 𝑠proof
Bound Growth Bound [ms] [s] [s] #nodes

1a e Lower 𝑖 2+𝑡 ·(6 + acP
𝑙 (𝑥)) 88.1 22.3 6.6 2,815Upper 𝑖 2+𝑡 ·(6 + acP
𝑢 (𝑥))

1b u Upper 𝑖 2+𝑡 ·(14 + 2 · acP𝑢 (𝑥)) 113.7 36.9 5.0 4,990

2a e Lower 𝑖 2+𝑡 ·(7 + acP
𝑙 (𝑡,𝑤) + acQ

𝑙 (𝑡, 𝑧)) 138.4 30.3 7.5 4,037Upper 𝑖 2+𝑡 ·(7 + acP
𝑢 (𝑡,𝑤) + acQ

𝑢 (𝑡, 𝑧))
2b e Lower 𝑖 3 + acP

𝑙 (𝑡,𝑤)+𝑡 ·(6 + acQ
𝑙 (𝑡, 𝑧)) 87.4 26.9 7.1 3,711Upper 𝑖 3 + acP

𝑢 (𝑡,𝑤)+𝑡 ·(6 + acQ
𝑢 (𝑡, 𝑧))

3a e Lower 𝑖 2+𝑡 ·(6 + acP
𝑙 (𝑘)) 82.8 23.2 6.6 2,994Upper 𝑖 2+𝑡 ·(6 + acP
𝑢 (𝑘))

3b e Lower 𝑖 , 𝑗 6+𝑛 ·𝑚·(6 + acP
𝑙 (𝑘)) 148.5 30.5 4.0 3,998Upper 𝑖 , 𝑗 6+𝑛 ·𝑚·(6 + acP
𝑢 (𝑘))

4a e Lower 𝑖 + 1 2+(𝑙 + 1)·(7 + acQ1
𝑙 (𝑡,𝑤) + acQ2

𝑙 (𝑡, 𝑧)) 90.3 32.1 7.7 4,439Upper 𝑖 + 1 2+(𝑙 + 1)·(7 + acQ1
𝑢 (𝑡,𝑤) + acQ2

𝑢 (𝑡, 𝑧))
4b e Lower 𝑖 + 1 , 𝑖 + 1 2+(𝑙 + 1)·(12 + acQ1

𝑙 (𝑡,𝑤) + acQ2
𝑙 (𝑡, 𝑧)) 140.6 42.5 10.0 5,943Upper 𝑖 + 1 , 𝑖 + 1 2+(𝑙 + 1)·(12 + acQ1

𝑢 (𝑡,𝑤) + acQ2
𝑢 (𝑡, 𝑧))

5a e Lower 𝑖 , 𝑗 2+𝑛·(6 + acP
𝑙 (𝑦))+m·(6 + acP

𝑙 (𝑦)) 146.2 32.0 8.5 4,827Upper 𝑖 , 𝑗 2+𝑛·(6 + acP
𝑢 (𝑦))+m·(6 + acP

𝑢 (𝑦))
5b e Lower 𝑖 2+(𝑛 +𝑚)·(8 + acP

𝑙 (𝑦)) 91.6 19.8 6.8 2,759Upper 𝑖 2+(𝑛 +𝑚)·(8 + acP
𝑢 (𝑦))

6a e Lower 𝑘 , 𝑗 , 𝑛 − 𝑖 6+𝑛·(𝑚·(6 + acP
𝑙 (𝑦))+𝑛·(5 + acQ

𝑙 (𝑦)) 187.0 39.7 10.1 6,081Upper 𝑘 , 𝑗 , 𝑛 − 𝑖 6+𝑛·(𝑚·(6 + acP
𝑢 (𝑦))+𝑛·(5 + acQ

𝑢 (𝑦))
6b e Lower 𝑘 , 𝑗 7+𝑛·(𝑚·(6 + acP

𝑙 (𝑦)) + acQ
𝑙 (𝑦)) 143.7 30.9 8.6 4,534Upper 𝑘 , 𝑗 7+𝑛·(𝑚·(6 + acP

𝑢 (𝑦)) + acQ
𝑢 (𝑦))

7a u Upper 𝑖 − 1 (𝑡 − 1)·(4 · (𝑡 − 1) + acP
𝑢 (𝑦)) 92.4 21.2 7.0 2,597

7b u Upper 𝑖 − 1 4 ·𝑚+(𝑡 − 1)·acP𝑢 (𝑦) 97.0 18.2 6.2 2,097

8 ul Lower 𝑡−𝑦
2 3+ 𝑡

2 ·(16 + acP
𝑙 (𝑡,𝑤)) 119.0 46.6 9.8 6,802Upper 𝑡 − 𝑦 3+𝑡 ·(16 + acP
𝑢 (𝑡,𝑤))

9 ul Lower 𝑧 − 𝑥 5+𝑧·(15 + acP
𝑙 (𝑡)) 200.0 53.6 11.2 8,574Upper 𝑡 − 𝑦 + 𝑧 − 𝑥 5+𝑡 + 𝑧 − 1·(15 + acP

𝑢 (𝑡))
Table 1. Results of the experiments.

7 is an array optimization, where an array declaration is moved in front of a loop, initializing it with an auxiliary
parameter that is the sum of all the initial sizes.

8 corresponds to Example 4.4, where the loop is executed between 𝑡
2 and 𝑡 times.

9 is a loop example with two variables 𝑥 and 𝑦 with initial values 𝑧 and 𝑡 . In each loop iteration, 𝑥 or 𝑦 is decreased
by one, and the loop exits when one of them becomes negative. In this case, given that 𝑧 < 𝑡 , 𝑧 is a lower bound
while 𝑧 + 𝑡 − 1 is an upper bound on the number of iterations.

6 RELATED WORK

The present article builds on the AE framework [46, 47], which we extend to Quantitative AE. At the moment no other
approach or tool is able to analyze and certify the cost of schematic programs, specifically relational properties, so a
direct comparison is impossible.
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Cost Analysis. There are many resource analysis tools, including: [28], based on introducing counters and inferring
loop invariants; [32], based on an analysis over the depth of functional programs formalized by means of type systems.
Approaches that bound the number of execution steps include [27, 38], working at the level of compilers. Systems
such as AProVE [25] analyze the complexity of Java programs by transforming them to integer transition systems;
COSTA [4] and CoFloCo [22] are based on the generation of cost recurrence equations from which upper bounds can
be inferred. This is also the basis of the approach we pursue to infer abstract upper bounds in Section 4.1, hence our
technique can be viewed as a generalization of the latter systems. Approaches based on type systems could also be
generalized to work on abstract programs by introducing abstract cost as in Section 4.1.

For our work it is crucial to use ranking and metering functions to infer growth of cost invariants. Ranking functions
were used to generate bounds on the number of loop iterations in several systems, but none used them to define
growth: [14] obtain runtime complexity bounds via symbolic representation from ranking functions, likewise PUBS [4],
Loopus [49], andABC [12]. PUBS analyses all loop transitions at once, Loopus uses an iterative procedure where bounds
are propagated from inner to outer loops, ABC deals with nested, but not sequential loops. In our work, when inferring
upper bounds, we solve all transitions at once and handle nested as well as sequential loops. Metering functions [6, 24]
have been less used than ranking functions and hitherto were never applied to growth computation.

Certification. A variety of general purpose deductive software verification tools [30] exist, including VeryFast [43],
Why [20], Dafny [37], KIV [42], and KeY [2]. We use KeY, the currently only system to implement AE. Interactive
proof assistants like Isabelle [40] or Coq [11] also support more or less expressive abstract program fragments, but lack
full automation. There are dedicated approaches involving schematic programs for specific contexts, like regression
verification [26], compilation [31, 35, 39] or derived symbolic execution rules [16].

Regarding the combination of deductive verification and cost analysis, the closest approach to ours is the integra-
tion [5] of COSTA [4] and KeY [2] which was realized for concrete, not abstract programs. They verify upper bounds on
the cost of concrete programs by decomposing them into ranking functions and size relations which are then verified
separately. Here we use the novel concept of cost invariant that allows verification of quantitative properties without
decomposition. Paper [5] deals only with the global number of iterations as is common in worst-case cost analysis. Our
cost invariants are designed to be inductive and propagate cost through all loop iterations. Radiček et al. [41] devise a
formal framework for analyzing the relative cost of different programs (or the same program with different inputs).
Compared to our approach, they target purely functional programs extended with monads representing cost, while we
work with an industrial programming language. Moreover, we generally reason about the cost of transformations, not
of a transformation applied to one particular program.

7 CONCLUSION AND FUTUREWORK

We presented the first approach to analyze the cost of schematic programs with placeholders. We can infer and verify
cost bounds for a potentially infinite class of programs once and for all. In particular, for the first time, it is possible to
analyze and prove changes in efficiency caused by program transformations—for all input programs. Our approach
supports upper/lower and exact cost and a configurable cost model. We implemented a toolchain based on a cost
analyzer and a program verifier which analyzes and formally certifies abstract cost bounds in a fully automated manner.
Certification is essential, because only the verifier can determine whether the bounds inferred by the cost analyzer
are exact.
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Our work required the new concept of an (abstract) cost invariant. This is interesting in itself, because (i) it renders
the analysis of nested loops modular and (ii) provides an interface to backends (such as verifiers) that characterizes the
cost of code in iterations.

Obvious future work involves extending the analyzed target language. Cost analysis and deductive verification
(including AE) are already possible for a large Java fragment [4, 46]. More interesting—and more challenging—is
the analysis of program transformations that parallelize code. The extension to larger classes of cost functions, such
as logarithmic or exponential, could be realized by integrating non-linear SMT solvers into the toolchain. Finally,
sound abstraction of cost bounds to asymptotic bounds would allow to compare the asymptotic behavior of program
transformations in cases when lower and upper bounds differ.

Acknowledgments. This work was funded partially by the Spanish MCIU, AEI and FEDER(EU) project RTI2018-094403-B-C31, by
the CM project S2018/TCS-4314 co-funded by EIE Funds of the EU and by the UCM CT42/18-CT43/18 grant.
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