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Scope and organization of this dissertation

During my Ph.D., we made small progress in the secular question on the nature of the
spin-glass system. However, we demonstrated the unique and powerful combination
of experiments, theory, and simulations addressing complex dynamics. On one hand,
the experimental progress on the sample preparation and the increased precision on
the measurements of key physical observables have opened new prospects in the spin-
glass investigation. On the other hand, the Janus II special-purpose supercomputer,
in combination with theory, is sufficient to extend simulation time and length scales to
values explored experimentally. The text is organized into four parts. In the following
paragraphs, we introduce briefly each of them.

Part I of this thesis provides an introduction to the physics of spin-glass systems.
In chapter 1 we take a historical view on the study of spin glasses. Only the main
theories on spin glasses will be discussed. In chapter 2 we detail the main observables
that will be analyzed in the rest of this dissertation. Next, in chapter 3 we recall the
application to spin glasses of important, general ideas from statistical physics (namely
universality and the renormalization group).

Part II is dedicated to the numerical investigation of thin glassy film covering all the
relevant time regimes, from picoseconds to equilibrium, at temperatures at and below
the 3D critical point. Before addressing our results, in chapter 4 we recall few crucial
facts about the very different dynamical behaviors of spin-glasses in spatial dimensions
D = 2 and D = 3. In addition, we remark on the experimental success achieved in the
investigation of glassy film. In chapter 5 we investigate through Parallel Tempering
simulations the equilibrium properties expressed by a glassy film at the critical bulk
temperature. The chapter contains unpublished results and unveils the landscape of a
glassy film at the bulk temperature. In chapter 6, that comes from [Fer19b] and some
unpublished results, we investigate, through Monte Carlo simulations, the dimensional
crossover that happens as soon as the correlation length is compatible with the thick-
ness, ξ ∝ Lz. We discover dynamics characterized by four aging regimes and through a
Renormalization group approach, we find a non-trivial temperature mapping between
a film and a 2D system.
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Part III examines in detail the dynamics of spin-glasses in the vicinity of and below
their condensation temperature Tg in the presence of an external magnetic field. The
synergy between experimental and numerical simulations, combined with theory, opens
up a new vista for spin-glass dynamics. A direct outgrowth is the introduction of a
new magnetization scaling law, which encompasses the full range of magnetic fields for
temperatures in the vicinity of the condensation temperature, Tg.

Part III is based on [Zha20b, Pag21]. Given the entangled nature of the experimen-
tal and numerical investigations in these papers, we shall cover both aspects in this
thesis.

In part IV we give our conclusions, resuming the main results chapter by chapter.
We also include several appendices. Appendix A is on Monte Carlo algorithms and

on parallel computing for spin-glass simulations, i.e. the Multispin coding technique.
Appendix B explains our estimation of errors. Appendix C provides details about the
measurement of connected propagators in a field. This is a heavy computation that
we accelerated using multispin coding techniques. Appendix D provides details about
the different techniques used overall Part III.
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Resumen en castellano

Esta tesis presenta nuestra modesta contribución a la comprensión y modelización
de los vidrios de esṕın. En particular, hemos mostrado que la combinación resulta-
dos teóricos, numéricos y experimentales permite revolucionar la comprensión de la
dinámica de estos sistemas complejos. Desde el punto de vista experimental, los pro-
gresos en la preparación de muestras se aĺıan con la alta precisión de las medidas para
abrir nuevas perspectivas previamente insospechadas. Por otro lado, el uso combinado
del superordenador Janus II y el análisis teórico ha permitido obtener (e interpretar)
simulaciones en una escala temporal comparable a la de los experimentos. Para ex-
plicar de manera coherente estos avances, hemos dividido el texto en cuatro partes
cuyo contenido describimos a continuación.

La Parte I de esta tesis contiene una introducción a la f́ısica de los vidrios de esṕın.
En el caṕıtulo 1 daremos una perspectiva histórica del estudio de los vidrios de esṕın,
tomando en cuenta sólo las teoŕıa más importantes. En el caṕıtulo 2 defininimos y
discutimos las principales cantidades f́ısicas que consideraremos en esta tesis. La Parte
I concluye con el cap. 3 donde adoptamos una perspectiva más amplia que cubre
desde las aplicaciones más importantes de la f́ısica de los vidŕıos de esṕın hasta las
peculiaridades de la f́ısica estad́ıstica de los sistemas de vitreos.

En la Parte II de la tesis abordaremos la investigación numéricas de los sistemas vit-
reos en geometŕıa de peĺıcula delgada. Explicaremos cómo hemos estudiado la dinámica
en una escala temporal que abarca desde los picosegundos hasta el equilibrio, para
varias temperaturas cercanas al punto cŕıtico del sistema tridimensional. Antes de
presentar nuestros resultados, en el caṕıtulo 4 explicamos algunos factores cruciales
sobre la dinámica de un sistema en D = 2 y D = 3. En el mismo caṕıtulo se comen-
tan los logros experimentales obtenidos en el estudio de vidrios de espn en geometŕıa
de peĺıcula delgada. A continuación, en el caṕıtulo 5 estudiamos las propiedades de
equilibrio de este tipo de sistemas por medio de simulaciones de parallel tempering que
alcanzan la temperatura cŕıtica del sistema tridimensional. Este caṕıtulo contiene re-
sultados inéditos y muestra las caracteŕısticas del paisaje de enerǵıa libre caracteŕıstico
de la temperatura cŕıtica del sistema 3D. El caṕıtulo 6, que se basa en referencia
la Ref. [Fer19b] aunque contiene también algunos resultados más recientes, presenta
nuestra investigación mediante simulaciones Montecarlo del crossover dimensional que
se produce cuando la longitud de correlación crece hasta hacerse comparable con el
espesor de la peĺıcula, ξ ∝ Lz. Hemos descubierto que la dinámica está caracterizada
por cuatro reǵımenes de aging. Utilizando la teoŕıa del grupo de renormalizaćıon hemos
encontrado una correspondencia inusual entre la temperatura de un sistema de peĺıcula
delgada y un sistema 2D.

La Parte III examina en detalle la dinámica de un sistema de esṕınes vidriosos
cerca y por debajo de la temperatura de condensación Tg en presencia de un campo
magnético externo. El uso combinado de un enfoque experimental, de las simulaciones
numéricas y el análisis teórico abre nuevas posibilidades para la comprensión de la
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dinámica de los vidrios de esṕın. Una demostración directa es la introducción de una
nueva ley de escala para la magnetización del sistema que es válida en todo el régimen
de campos magnéticos, al menos para temperaturas cercanas a Tg. Esta parte de la
tesis se basa en [Zha20b, Pag21]. Debido a la complejidad de las investigaciones exper-
imentales y numéricas presentadas en estos art́ıculos, ambos aspectos serán analizados
detalladamente en esta tesis.

La tesis termina en la Parte IV donde presentamos nuestras conclusiones y re-
sumimos los principales resultados de cada caṕıtulo. También se han incluido varios
apéndices. El Apéndice A trata sobre el algoritmo de Monte Carlo y las optimización
numéricas que hemos empleado (principalmente, multispin coding). El Apéndice B de-
scribe nuestro método de estimación de errores. En el Apéndice C se explica en detalle
el cálculo del propagador conexo en presencia de un campo magnético. También en este
caso un novedoso algoritmo multispin coding ha permitido reducir notablemente el es-
fuerzo computacional. Finalmente, el Apéndice D presenta detalles técnicos relevantes
para la parte III.
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CHAPTER I

Background

This chapter is dedicated to the presentation of the birth and evolution of the spin-glass
theory. This is a difficult goal given the bibliography and the scientific contributions
that are the pilasters of such a complex theory. We try to present the evolution of the
spin-glass knowledge historically; however, we insert an exhaustive bibliography for the
interested reader 1.

We remark that this introduction has the only purpose to present the origin of spin-
glass and we will only touch on those aspects of spin-glass theory that are useful to
expose the results of this thesis. Since it aims to get into the topic and set the bases for
further discussion, the introduction on spin-glass is left open, and recent developments
are left to the introduction of each chapter.

1.1

The glass transition

If one cools a liquid quickly enough and the sudden increase of the relaxation times and
viscosity is not followed by a proportional increase of the temperature, one can form a
glass. This implies that the liquid stops flowing and appears as solid, even if apparently
no phase transition takes place and no symmetry is broken. The famous plot by Angell
in Fig. 1.1, displays how the viscosity and the relaxation times grow in a very short
range of temperatures in a set of glass formers. With a factor 2 change in temperature,
the viscosity grows 8-11 orders of magnitude. This behavior explains why, if we cool a
liquid quickly enough, the sudden lack of thermal vibrations could arrest its dynamics
before crystallizing. On the other hand, the very fast increase in the relaxation time
suggests that somewhere a phase transition should exist. Unfortunately, a satisfying
theory is still missing. Many different scenario and approaches have been developed,

1 A great historical introduction on magnetism could be found in Ref.[Mat81]. Instead, for spin
glass system we advised Ref.[Myd93, Méz84b, You98, Nis01, Bin11, Dom06] for historical comments,
Ref. [She07] for the perspective and Ref. [Cas05] for the mathematical details.

3
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Figure 1.1: Plot is in log-scale and displays the viscosity η against the inverse of the
temperature T , normalized to a constant Tg. At Tg the viscosity is 1013 poise. Fig from
[Mar01].

but no one could explain this phenomenon.
The potentiality of amorphous solid states2 is given by the several applications

that glasses have in disparate systems. The most commonly known glasses are silica
compounds. They are fused at temperature where the viscosity is low and they are
malleable. The glassy phase is obtained by quickly taking them back to room tem-
perature. Their main properties are manufacturability, transparency, uncorrosiveness,
and low dilatancy. They can be found in many objects of our everyday life, such as
windows, bottles, optical fibers, beakers and touchscreens.

Next, we can mention the metallic glasses whose, thanks to their magnetic proper-
ties, are mainly used for high-efficiency transformers or alternative to silicon to make
molds for nanocomponets [Gre95]. Another example is the fiberglass which is the main
component in automobile bodies. The fiberglass is obtained by embedding extremely
fine fibers of glass in an organic polymer plastic, trapping air in order to make it a
good thermal insulator [May93, Mar06]. Still, one can exploit the glassy model for de-
scribing the preservation of insect life under extreme conditions of cold or dehydration
[Cro98], and in the protein folding [Web13]. Moreover, the glassy investigation is a
useful tool for optimization and combinatorial problems [Méz87]. On one hand, there
exist exact polynomial-time algorithms for ground-state calculations of 2D systems.
On the other hand, the ground state calculation on a three-dimensional spin-glass is

2In literature, the amorphous solid states are called structural glasses
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an NP-hard problem 3 for classical computers. A problem is called NP-hard if the
existence of a polynomial algorithm for its solution implies the existence of such an
algorithm for all the NP-complete problems [Bar82]. In conclusion, spin-glasses play a
very important role outside physics, e.g. for neural networks, optimization problems,
machine learning, social science and econophysics [Nis01, Har06, Méz09].

Spin glasses are characterized by an amorphous magnetic low-temperature state
and a very peculiar phenomenology [Nag79, Myd93, Vin97, Jon98, Hér02]. The spin
glasses have a very simple Hamiltonian. Their study gets an insight on the study of
the glass phase in a more general sense and on complexity, since

� experimental measurements are easier through the use of very sensitive magne-
tometers called SQUIDs (Superconducting QUantum Interference Devices). See
e.g. [Dru07, Kum14].

� The spin-glasses are a toy model which allows developing very advanced theoret-
ical tools that can be reused in other contexts [Méz87, Bia12, Cha14].

� The basic spin-flip Monte Carlo algorithm is easy to simulate. Interactions be-
tween first neighbors are fixed by a quenched disorder that does not change with
time.

� It is possible to construct dedicated hardware for more effective numerical studies
[Bel06, Bel08a, BJ12, BJ14b, BJ17a, BJ18, Zha20b].

The list could continue, but we will refer principally to the above ones. The main
topic of this dissertation is the comparison and the synergy between the numerical and
experimental results. In Part II, we numerically evaluate the equilibrium properties
and the dimensional crossover of a thin glassy film. Next, Part III is a synergy between
experiments, simulations, and theory. We and our experimental co-authors were been
able to draw out the physical scenario expressed by a spin glass system in presence of
an external magnetic field in finite dimensions.

1.2

The origins of spin glass theory

The peculiar properties of solutions of Mn in copper Cu have started puzzling the
condensed-matter community [Owe56, Nob59, Zim60] since the beginning of 1950s.
These systems have a cusp in the susceptibility at a temperature Tc roughly propor-
tional to the concentration of Mn. This temperature is the crossover between two
different phases. For temperature above this critical one, the system is in the param-
agnetic phase; instead, for temperature below it, no order was identified.

3The acronym NP stands for Non-deterministic polynomial-time.
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On one hand, the investigation of the low-temperature phase, T ≤ Tc, through the
application of a very large external magnetic field and the recovering of the magneti-
zation, unveils memory effects, i.e. the thermoremanent magnetization. On the other
hand, they observed that a solution of Mn in copper Cu was not described by the Curie
law:

� in the paramagnetic phase, the susceptibility, χ, was practically constant instead
of being inversely proportional to the temperature, χCurie ∝ 1/T ;

� in the low-temperature phase, the specific heat was linear in the temperature T
instead of being proportional to 1/T 2.

The peculiarity of the low-temperature phase was attributed to the s − d interaction
[Mar60], that couples electrons of unfilled inner shells and conduction electrons. This
interaction can lead to ferromagnetism or antiferromagnetism, depending on the metal.
It was supposed to be the dominant one in the low-temperature. Zener in 1951 was the
first to formalize this interaction s− d though a phenomenological model that did not
involve the possibility of antiferromagnetism [Zen51a, Zen51b, Zen51c]. A few years
later, Kasuya [Kas56] found that the s− d interaction can imply antiferromagnetism.
Next, the intuition of Yosida [Yos57] to relate the model from Ruderman and Kittel
[Rud54] to the s − d interaction, brought a great step forward in the description of
solution of Mn in copper Cu. Yosida noticed that the s − d interaction could be
explained through a coupling between two magnetic moments through their hyperfine
interaction with the conduction electrons.

This description is called RKKY and is characterized by a coupling J
(RKKY)
xy between

two Mn ions separated by r as

J (RKKY)
xy ∼ cos

(
k · r
|r|3

)
. (1.1)

Let us make some considerations:

� since the k is of the order of the Fermi vector, the oscillations of the cosine are
very quick.

� The cosine function, depending on the distance between two ions, can have pos-
itive (ferromagnetic) or negative (antiferromagnetic) couplings.

� Since the interactions of Cu substrate were negligible, the cusp of the suscep-
tibility was entirely attributed to the RKKY interaction between the Mn ions
[Mar60].

� The coupling J
(RKKY)
xy was treaded as a random variable since the positions in

the alloy of these ions are random [Bro59].

� The distance between ions, rxy, depends on the single realization of the alloy and
of its disorder.
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The birth of spin glass theory. Anderson in 1970, for the first time, used the term
spin glass in analogy with structural glasses. Assuming that the dominant interactions
were between the Mn ions 4, he introduced a very simple Hamiltonian [And70]

H =
1

2

∑

x 6=y

~sx · Jxy · ~sy , (1.2)

where the Jxy is a random matrix.

Anderson’s intuition was to replace the ”experimental” coupling J
(RKKY)
xy , Eq. (1.1), by

the random variables Jxy. Anderson treated the random matrix Jxy in the Hamiltonian
as the disorder. Since the disorder does not change with time, we define it quenched.
A single realization of the disorder identifies a sample.
The couplings Jxy are distributed through an unknown distribution that should re-
produce roughly the RKKY interaction. Being the couplings Jxy both negative and
positive, the energy along all the bonds can not be satisfied. When it happens, we
call the system frustated [Tou77]. An illustrative example of frustration is shown in
Fig. 1.2. Let us consider a 2D Edward-Anderson Ising model on a square lattice with
nearest-neighbor coupling Jxy = ±1. An elementary unit of a lattice is called plaquette.
If the number of negative bonds in a plaquette is odd, it will be impossible to satisfy
all the bonds simultaneously.

Figure 1.2: An elementary unit of a 2D Edward-Anderson Ising spin-glass characterized
by an odd number of negative bonds. With the arrangement shown in the figure, there
is no way of orienting the spins so that all of the bonds are satisfied.

However, Anderson did not average over the disorder and he only tried a mean-field
approach.

4The electrons transmit the interaction, but not influence significantly it



8 Background

The Edwards-Anderson model. The paternity of the SG as a branch of theoretical
physics is attributed to Edwards and Anderson. In 1975, they introduced a simple
model which qualitatively described the experimental observations [Edw75, Edw76].

In order to investigate the low-temperature phase and detect the random preferred
directions exhibited by the spins, they defined the local order parameter

q = lim
t→∞

1

N

N∑

x

〈~sx(0) · ~sx(t)〉t , (1.3)

where 〈O(t)〉 is the time average of a generic observable O, 〈O(t)〉t ≡ 1
t

∫ t
0
dt′O(t′).

They call the local order parameter in Eq. (1.3) overlap. The overlap measures
whether an alignment is taking place by examining if after a time t the single spins
sx(t) tend of pointing in the same direction or not.
If the system, at the equilibrium, is ergodic, one can rewrite Eq. (1.3) as

q =
1

N

N∑

x

〈~sx〉2 , (1.4)

where we replace the time average 〈. . .〉t with an ensemble average 〈. . .〉. If the overlap
q = 0, it means that there is no favored direction and the system is in the paramagnetic
phase. On the other side, in the low-temperature phase, which we can call it now spin
glass phase, each spin will align along a privileged direction and q 6= 0.

In Ref. [Edw75], Anderson and Edward defined an Hamiltonian with nearest neigh-
bor interactions on a regular lattice:

HEA =
1

2

∑

|x−y|=1

~sx · Jxy · ~sy , (1.5)

assuming a unitary distance between nearest neighbors and a Gaussian distribution
P (J) for the coupling matrix Jxy.

This model is called the Edward-Anderson model (EA) and, exploiting a mean-field
approach, predicts both a phase transition with q as order parameter and the cusp of
the susceptibility at the critical temperature Tc.

Each realization, i.e. sample, is characterized by a different coupling matrix, Jxy;
however, if one averages over the coupling distribution, P (J), each sample must ex-
hibit the same behavior in the thermodynamical limit. This assumption is called self
averageness.

Let us take into account the free energy, FJ , and the partition function, ZJ , of a
sample with a set J of couplings:

F =

∫
FJP (J)dJ = −kBT

∫
P (J) logZJdJ . (1.6)

Let us average the free energy over the disorder

F = −kBT logZJ (1.7)
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where (. . .) is the average over the disorder.
The average in Eq. (1.7) is called:

� quenched average if one has to handle with log(ZJ);

� annealed average if one can directly take the average of the partition function,
ZJ :

FAnn = −kBT logZJ (1.8)

where FAnn is the annealed free-energy. However, the annealed average brings
uncorrected results at low temperature (see e.g. [Méz87]).

In this dissertation, the average over the disorder is always a quenched average.
For solving Eq. (1.5), Edwards and Anderson proposed the replica trick, that con-

sists in using

log (x) = lim
n→0

xn − 1

n
(1.9)

to transform the annoying logarithm in a power law. The identity comes trivially from
a first order expansion of the exponential function: xn = en log (x) = 1+n log (x)+o(n2).
Substituting Eq. (1.9) in Eq. (1.7), one obtains

F = −kBT logZJ = −kBT lim
n→0

Zn − 1

n
. (1.10)

Assuming that n is an integer, one could treat Zn as the partition function of n inde-
pendent replicas of the same system, that share the same coupling matrix (disorder)
but are independent one from the other.

Let us define the order parameter, see Eq. (1.3), exploiting the replicas formalism
[Par83]

qab =
〈
~s(a)
x · ~s(b)

x

〉
, (1.11)

where (a) and (b) indicate different replicas. The replica trick, Eq. (1.9), was a huge
simplification, but the limit n→ 0 with n ∈ N introduced some mathematical forcings
that only nowadays were solved.

The Sherrington-Kirkpatrick model. Also in 1975, Sherrington and Kirkpatrick
proposed a mean-field approach to the EA model. They modified Eq. (1.5) by imposing
fully-connected interactions and Ising spins sx = ±1 [She75]

HSK =
1

2

∑

x,y

~sx · Jxy · ~sy , (1.12)

where the couplings Jxy are distributed as a normalized Gaussian 5.
Let us remark the difference between the defined Hamiltonians:

5 A normalized Gaussian has zero mean, Jxy = 0, and the variance is such that the energy is

extensive, J2 = 1/N
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� Anderson Hamiltonian:
∑

x 6=y is a sum over all the x and y, except x = y, see
Eq. (1.2);

� Edward-Anderson Hamiltonian:
∑
|x−y|=1 is a sum over all the nearest neighbor

x and y, see Eq. (1.5);

� Sherrington-Kirkpatrick Hamiltonian:
∑

x,y is a sum over all the choices of x and
y, see Eq. (1.12) .

For solving the quenched average of the free energy, Eq. (1.7), Sherrington and
Kirkpatrick used the replica trick, Eq. (1.9), and hypothesized that the system has a
replica symmetry (RS). This implies that the overlap defined in Eq. (1.11) is always
the same no matter which two replicas are chosen:

qab = q(1− δab) . (1.13)

This approach is called replica symmetry ansazt.
In 1978, de Almeda and Thouless, [Alm78b], demonstrated that the RS solution

of the SK model [She75] is stable only at high temperature and they generalized the
results to spins with any finite number m of components [Alm78a]. The instability of
the paramagnetic phase, at a temperature below a certain temperature (Tc), is due to
massless modes in the overlap correlation functions (replicon modes) [Bra79]. The RS
solution was shown to be unstable in presence of an external applied magnetic field at
low temperature and, so, at least in the SK modeling, there exists a spin glass phase
in a field, see Fig. 1.3. The critical line where the RS phase becomes unstable is called

Figure 1.3: Stability of the replica symmetry solution of the SK model. The dAT line
separates the zone of the phase diagram where the RS phase is stable from the one
where magnetic ordering appears. Figure from [Alm78b].

the dAT line and we will marginally investigate it in Part. III.
Sherrington and Kirkpatrick hypothesized that the unphysical features were due

by the violation of the commutativity between the limit n → 0 (see Eq. (1.9)) and
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the thermodynamical limit N → ∞ (N is the number of spins). Otherwise, in the
1978 it was demonstrated that the commutativity of the two limits holds [Hem79], and
so, the unphysical features, as the negative entropy, was due by the replica symmetry
ansatz [Alm78b, Bra78]. However, no theory could predict how to break the symmetry
between replicas to obtain a physically reasonable solution.

Given the initial failures of the replica approach, different theories were developed.
In particular, we want to mention the mean-field formulation based on expansions in
6 − ε dimension of space [Har76, You76, Che77, Sou77] and the Thouless-Anderson-
Palmer (TAP) approach . The main difference between the replica method and the TAP
one is that the replica method constructs a mean-field theory after having averaged
over the disorder, instead the TAP approach formed a mean-field theory first [Tho77].
Unfortunately, even the TAP was shown to be useful only at high-temperature [Méz87,
Kir78] without any validity in the spin glass phase.

Another instructive model for understanding the nature of the spin-glass phase and
the influence of an external magnetic field at finite temperature is the long-range 1D
spin glass [Kot83, Bra86, Kat03a, Kat03b, Kat05b, Kat05a, Kat05c, Leu08, Leu09].
Let us define the Hamiltonian:

H =
∑

i>j

εijSiSj
a|i− j|σ , (1.14)

where Si are Ising spins, Si = ±1, a is the lattice spacing, εij are identically distributed
Gaussian random variables, and σ is the interaction-range parameter. This model
exhibits an interaction-range parameter, σ, such that the model can be turned between
no-phase, simple phase and complex phase behavior, see Fig. 1.4.

The Parisi solution. The solution of the SK model could be found only relaxing
the replica symmetry ansatz. It was an hard task since the overlap, qab, is an n × n
matrix, where n → 0, according to the replica trick, see Eq. (1.9). This implies that
the overlap matrix could be parametrized in infinite ways. The breakthrough was done
by Parisi in 1979 when he showed that adding new order parameters to the SK model
shifted the negative zero-temperature entropy [Par79b]. In this way, each new order
parameter is equivalent to a breaking of the replica symmetry (RSB) and it unveils,
for the first time, the complexity of the spin glass phase. Parisi hypothesized that
the spin-glass phase, in the SK modeling, is characterized by infinite steps of Replica
Symmetry Breaking, ( ∞-RSBS ) [Par79a].

The Parisi ansatz for the matrix qab consisted in an iterative process starting from
the RS ansatz qab = q0(1− δab), see Fig. 1.5 [Par80b, Par80c, Par80a].

The first step of replica symmetry breaking (RSB) consists in divided the n × n
matrix in n/m1 blocks of size m1 × m1, see the second matrix in Fig. 1.5. The off-
diagonal blocks remain unchanged, instead the off-diagonal terms of the diagonal blocks
now assume the overlap value q1. The second step of RSB works in the same way, look
at the third matrix in Fig. 1.5. It iterates the symmetry breaking in each of the n/m1

diagonal blocks and, exactly as the 1-RSB, we subdivided each block in m1/m2 sub-
blocks of size m2 × m2. The off-diagonal sub-blocks remain unchanged, instead, the
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Figure 1.4: Sketch of the phase diagram in the d−σ plane of the long-range spin glass
with power-law interactions. The horizontal white arrow corresponds to d = 1 and we
focus only on it. By tuning the power-law exponent σ different universality classes can
be probed. For σ ≤ 1/2 the system is in the infinite-range SK universality class. For
1 < σ ≤ 2/3 the model exhibits a mean-field behavior corresponding to an effective
space dimension deff ≥ 6, where deff ∼ 2/(2σ− 1) for 1/2 ≤ σ ≤ 1. The thick (red) line
separates mean-field from non-mean-field behavior. For 2/3 < σ < 1 the model is a
long-range spin glass with a finite ordering temperature Tc, whereas for 1 ≤ σ < 2 the
long-range spin glass has Tc = 0. When σ ≥ 2 [σc(d)] the model is short-ranged with
zero transition temperature. Figure taken from Ref. [Kat08].

off-diagonal terms of the diagonal sub-blocks now assume the overlap value q2. One
can obtain the full RSB solution iterating this technique infinite times.

The overlap matrix constructed following the Parisi ansatz or the RS ansatz is
replica equivalent. As the reader can note in Fig. 1.5, the overlap matrix has any two
rows (or columns) identical up to permutations.

The paramagnetic phase, or equivalently the RS phase, is characterized by qab =
0 ∀a, b, so the probability distribution of the order parameter is simply

P (q) = δ(0) . (1.17)

On the other hand, the full RSB ansatz (solution of the SK model), implies that
the spin-glass phase has a not trivial probability distribution of the order parameter.
The order parameter, qab, can assume n(n−1) off-diagonal values and so its associated
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Figure 1.5: Sketch the first two steps of replica symmetry breaking. The first n × n
matrix corresponds to the RS ansatz. The matrix is completely symmetric under replica
exchange. The second matrix represents the first step of RSB. As we explain in the
main text, the matrix is divided into blocks, and the overlap qab can now assume two no-
zero values. The third matrix shows the 2-step RSB: each inner block is subsequently
divided into smaller blocks and the overlap qab can now assume three no-zero values.
The SK solution is obtained through infinite RSB steps.

distribution behaves as:

P (q) =
1

n(n− 1)

∑

a 6=b

δ
(
q − qab

)
=

=
n

n(n− 1)
[(n−m1)δ(q − q0) + (m1 −m2)δ(q − q1)+ (1.18)

+(m2 −m3)δ(q − q2) + . . .] .

According to the replica trick, see Eq. (1.9), one has to take the n→ 0 limit, so

P (q) = m1δ(q − q0) + (m2 −m1)δ(q − q1) + (m3 −m2)δ(q − q2) + . . . . (1.19)

Being a distribution positive, Eq. (1.19) implies the constrain 0 < m1 < m2 < . . . < 1.
Let us define the function q(x) such that

q(x) = qi if mi < x < mi+1 , (1.20)

where we are supposing that the qi constitute an increasing sequence which is infinite
in the full RSB case. After a k-step RSB, q(x) is a piecewise function that takes at
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most k+1 different values. In the limit of full RSB, k →∞, q(x) becomes a continuous
function in the interval [0,1] [Par80b].
Parisi also shows that

q(x) = qm for x ≤ xm , (1.21)

q(x) = qM for x ≥ xM . (1.22)

This means that the P (q) function can be rewritten as the sum of two delta functions
connected by a smooth function P̃ (q) which is no-zero only in the interval xm < x < xM

[see Fig. 1.6]

P (q) = xmδ(q − qm) + P̃ (q) + xMδ(q − qM) . (1.23)

In Fig. 1.6, we show the behavior of the overlap distribution in different cases for
reader simplicity.

Let us take two random states α and β, both with a P (q) distribution, with mutual
overlap qαβ. If the two states α and β have maximal overlap qαβ = qM, with probability
xM the two states are identical. If qαβ = qm, with probability xm the two states are as
different as it is possible. With probability 1−xm−xM the situation will be something
in between. The qm and xm depend on an external magnetic field as H2/3 [Asp04],
in contra position to q(x) and xM which are weakly depend on the field. When one
approaches the critical field from the SG phase, the distance between the two peaks in
the P (q) decreases until the P (q) becomes trivial δ(q − qEA) above the dAT line.

The Parisi ansatz implies that there is a hierarchical structure in the organization
of the states in the SG phase, see Eq. (1.19)[Méz84a, Méz85b, Ram86]. Let us explain
the ultrametricity of the overlap space exploiting a tree representation, see Fig. 1.7

The root of the ”tree” corresponds to the RS solution, where all the states have the
same overlap q0, see Eq. (1.13). The one-step symmetry breaking, 1-RSB, corresponds
to the first branches of our ”tree”. Replicas within the same group have the same
overlap q1 and it holds the overlap relation q0 < q1, see Eq. (1.19).
The reader can easily iterate this process for further steps of RSB. The overlap between
two replicas α and β can be identified by returning towards the root until the two states
belong to the same group. For example, the overlap between states α and β in Fig. 1.7
is qαβ = q1. The ultrametricity condition is easily verified by picking three generic
states.

The RSB ansatz implies that the spin-glass phase has a complex energy landscape
characterized by an infinitely large number of metastable states. Parisi himself [Par83]
explained such landscape in a very figurative way comparing the metastable states
to valleys separated by high mountains whose height goes to infinity in the infinite-
volume limit. The number of valleys is exponential in the number of spins N [Bra80,
Dom80, You81], and the dynamics in the spin-glass phase is so sluggish that, in the
thermodynamical limit, the ergodicity is broken [Mac82].

The Parisi solution of the SK model and his RSB ansatz were physically consistent;
however, more than 20 years were needed to confirm rigorously his solution [Gue02,
Gue03, Tal06].
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Figure 1.6: Different instances of P (q) in the SK model. Top left: at zero field, close
to Tc. Top right: at small magnetic field H in the spin-glass phase. Bottom left:
approaching the dAT line from the spin-glass phase, the difference qM − qm shrinks.
Bottom right: in the RS phase the P (q) is a delta function centered in qEA.

A still open question is to understand if and how the Parisi solution of the SK
model, is valid in infinite dimensions, is suitable or not for describing the EA model in
finite dimension.

The droplet picture. We conclude this short introduction by reporting the main
idea of the droplet model. This theory was proposed by Fisher and Huse in 1987 [Fis86]
and proves a new picture of the ordered phase in spin-glasses [Fis87, Hus87, Fis88b,
Fis88a]. The droplet model is exact in one dimension and describes the SG phase of
low-dimensional as a ”ferromagnet in disguise” with only two pure states, with an
order parameter q = ±qEA. The theory derives from a Migdal-Kadanoff approximation
[Mig75, Kad76] on the EA model [And78].

A pure state is formed by the coexistence of low energy droplet of spins. The
disorder affects the stability of the boundaries of these domains. Each domain tries,
exploiting unsatisfied links, to increase its size. The droplet boundaries scales as

Lds with d− 1 ≤ ds < d . (1.24)

The droplet ansatz hypothesizes that the free-energy cost of the lowest-energy ex-
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Figure 1.7: The RSB ansatz as a branching process. The overlap between two states
α and β can be treated as the first common level of RSB between the state α and β
(left). Another way to visualize this is to represent the RSB process as an iterative
subdivision in subsets (right), then the overlap between two states α and β is given
by the smallest set containing both α and β. Figure from [Myd93].

citations of linear size ` is

F` ∼ γ(T )`θ , (1.25)

where θ is the stiffness coefficient, 0 < θ < (d−1)/2 and γ is the stiffness modulus. Note
that the direct implication of Eq. (1.25) is that there are possible only small excita-
tions6. For D = 3 the situation concerning the spin-glass behavior is unclear. However,
for D = 2 the droplet pictures is well established, in particular by the application of
exact ground-state algorithms to obtain droplets for large system sizes [Har03].

In the droplet scenario, the correlation function decays as

C(|x− y|) = 〈sxsy〉2 − 〈sx〉2 〈sy〉2 ∼
1

|x− y|θ , (1.26)

where θ is the stiffness coefficient.
Still, the system can express only two pure states, so the overlap distribution is a delta
function,

P (q) = δ(q − qEA) . (1.27)

6 According to Eq. (1.25), a finite fraction, `, of the total number of spins needs infinite energy to
be excited.
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Let us brevity explain which is the prescription of the droplet model in presence of
an external magnetic field. The presence of an external magnetic field H modifies the
boundary scaling of Eq. (1.24) as:

Lθ −HLd/2 . (1.28)

Because of the bound θ < (d − 1)/2, the spin-glass phase is unstable to the presence
of any magnetic field.
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CHAPTER II

Observable quantities in numerical
simulations

In the last decades, numerical simulations have taken a central role in the investigation
of physics supporting analytic work and experiments. This success is motivated by the
advantage to measure directly the microscopical properties of systems only through
the Hamiltonian knowledge. This approach has opened new perspective in the physical
investigation since the analytic predictions are often not useful for the experimentalist.
In spin-glasses, the analytics tools are exact only in infinite dimension, a limit that, of
course, is not achievable in real samples. In this chapter we will introduce the main
observable quantities in numerical simulations and analyses.

Some notation. Numerical simulations are the core of the results presented in this
work. We carried on massive simulations on systems of N spins, both in regular d-
dimensional cubic lattices of size Ld = N (Part III), and in a film geometry, where
N = L2Lz and the thickness Lz � L (Part II).
Each spin ~sx occupies a position x on the nodes of the lattice and has m components,
~sx = (sx,1, sx,2, . . . , sx,m). If m = 1 we call them Ising spins and remove the vector
symbol, sx. If m = 3 they are Heisenberg spins. A configuration is constituted by the
set of all the spins ~sx, which we denoted with a ket, |~s〉.

A thermalized configuration, at the working temperature T , follows the Boltzmann
distribution

P (|s〉) ∼ e−βH(|s〉) , (2.1)

where H is the model’s Hamiltonian and β = 1/kBT = 1/T is the inverse temperature,
as we set to one the Boltzmann constant, kB = 1.

Once the system is thermalized, one can take thermal averages of any measurable
observable O and we denote it with 〈O〉. The averages over the disorder, instead, are
indicated with an overline O.

Let us define the scalar product between two configurations |s〉 and |s′〉 through a
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Dirac’s notation:

〈s|s′〉 =
N∑

x

~sx · ~s′x . (2.2)

Now that the notation is established, we proceed describing the set of observables
O that we measured in our simulations. Since in this dissertation we will present both
equilibrium and dynamical results, in the following of this Section, we do not indicate
the time dependence of the observable O.

2.1

Overlaps

A spin glass, in the cold phase, is characterized by a broken phase space, where a
configuration is constituted by a mixture of pure states [Cas05]:

|·〉 =
∑

α

wα 〈·〉α , (2.3)

where α is an index running over all the states, and wα is the statistical (Gibbs) weight
of state α.
For historical reason, we can identify these pure states as replicas of the system. We
indicate different replicas using the superscripts (a),(b),(c) and (d).

In a disordered system the order parameter is the overlap. This quantity can
measure the similarity between states and it has a gauge-invariance [Méz87].
The definition of overlap depends on the model we consider and on its symmetries.

Ising overlap For Ising spins sx = ±1 the local overlap is defined as

qx = s(a)
x s(b)

x , (2.4)

and we can create the global overlap

q =
1

N

N∑

x

qx =
1

N
〈s(a) |s(b)〉 , (2.5)

where we used notation (2.2).

Scalar overlap If the Hamiltonian is not invariant under a rotational transformation,
the overlap can be expressed straightforwardly through the scalar product between the
vector spins of different replicas. The site overlap would be

qx = ~s a
x · ~s b

x , (2.6)

and the global overlap

q =
1

N

N∑

x

qx . (2.7)
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2.2

Scalar correlators

The two-point correlation function C(x,y) = 〈qxqy〉 has a central role in the simula-
tion analysis. If it holds the translational invariance, one can express the two-point
correlation function as a function of the separation r = y − x:

C(x,y)→ C(r) =
1

N

N∑

x

qxqx+r . (2.8)

For any given wave vector k we can define the Fourier transformation of the correlation
function C(r) as

Ĉ(k) =
1

N

∑

r

C(r)eik·r , (2.9)

and C(r) can be obtained back as its anti Fourier transformation

C(r) =
1

L

L∑

k

Ĉ(k)e−ik·r . (2.10)

Let us calculate the wave-vector dependent susceptibilities:

χ(k) = N
[
q̂(k)q̂(k)∗

]
, (2.11)

where, the Fourier transform of the overlap field is:

q̂(k) =
1

N

N∑

x

qxe
ik·x . (2.12)

Substituting Eq. (2.12) in Eq. (2.11), one can relate the susceptibilities to the correla-
tion function:

χ(k) =
1

N

N∑

x

qxeik·x
N∑

y

qye−ik·y = (2.13)

=
1

N

N∑

x,y

C(x,y)eik·(x−y) = (2.14)

that in the presence of translational invariance and recalling equation ((2.9)) becomes

=
1

N

N∑

x

N∑

r

C(r)eik·(r) = Ĉ(k) . (2.15)

This implies that one can measure correlation functions both in the real and in the
Fourier space.
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The two-point correlation functions are computed from the Fourier transform of
the fields,

C(r) =
1

L

L−1∑

n=0

e−ir·knχ
(
kn
)
≡
∑

y,z

C(x = r, y, z) , (2.16)

where r is the modulus of the distance. Of course, we can align the lattice displacement
vector r along any of three coordinate axes, so we average over these three choices.

2.3

Four-replica Correlators

In part III we will present our investigation on a spin-glass system in presence of an
external magnetic field for temperature close to the critical temperature, T w Tg. An
Ising spin glass in presence of an external magnetic field is characterized by a no-zero
order parameter, qEA 6= 0 even in the paramagnetic phase. This implies that the two-
point correlation function C(r) decays to a non-zero value, and one can not extract the
correlation length value, ξ ( see below for details).

The most informative connected correlation function, that goes to zero at infinite
distance in presence of an external magnetic field, is the replicon GR(r) [Alm78b,
Dom06]

GR(r) =
1

N

∑

x

(〈sxsx+r〉 − 〈sx〉〈sx+r〉)2 . (2.17)

To compute GR we calculate the 4-replica field

Φ(ab;cd)
x =

1

2
(s(a)

x − s(b)
x )(s(c)

x − s(d)
x ) , (2.18)

where the indexes a, b, c, d indicate strictly different replicas. Notice that
〈
Φ(ab;cd)

x Φ(ab;cd)
y

〉
= (〈sxsx+r〉 − 〈sx〉〈sx+r〉)2 , (2.19)

so we obtain GR by taking also the average over the samples 1

E(Φ(ab;cd)
x Φ(ab;cd)

y ) = GR(x− y) . (2.20)

Here, and everywhere there is more than one possible permutation of the replica in-
dices, we average over a third of all the possible permutations to gain statistics (see
Appendix C for details). From this point on everything is formally like the two-replica
construction, using Φx instead of qx to construct the susceptibilities χ(k). For example

correlations in the Fourier space are defined by Fourier-transforming Φ
(ab;cd)
x , so the

wave-vector dependent replicon susceptibility is expressed as

χR(k) =
1

N
E(|Φ̂(ab;cd)

k |2) , Φ̂
(ab;cd)
k =

N∑

x

eik·xΦ(ab;cd)
x . (2.21)

1The average is over the disorder.
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2.4

Integral method for evaluating the correlation length

Historically, the determination of characteristic length scales was based on the eval-
uation of a particular functional form in the limit of very large distance. However,
this approach is limited by the precise knowledge of the functional form that describes
the interested phenomenon, which is very difficult, for example in the out-equilibrium
regime. A more convenient method to estimate the characteristic length is though the
Integral method [Bel08a, Bel09a]:

Ik =

∫ ∞

0

dr rkC(r) (2.22)

ξk,k+1 =
Ik+1(T, tw)

Ik(T, tw)
. (2.23)

This method introduces a huge simplification. However, as the reader can notice,
Eq. (2.22) holds only if the correlation function C(r) decays to zero. In Part II we
will use the two-point correlation function, C(r) in Eq. (2.22); instead in Part III, we
will exploit the replicon propagator GR(r), Eq. (2.17).
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CHAPTER III

Phase transitions with a diverging length
scale

In this Section, we address an introduction to the main successful topics used for
describing phase transitions. Our goal is not to give an extended treatment of the
consolidated analysis tools, that can be found elsewhere (see e.g. [Ma76, Bin86, Hua87,
Car96, Ami05]), but only to explain some concepts that we will be using throughout
this dissertation.

3.1

Second-order-like phase transitions

A spin glass system is characterized by a second-order phase transition given by a
divergence in the second derivative of the free energy as approaching the critical point,
Tc from above.

For simplicity, we will refer to Ising spins, but the treatment is analogous for m-
component spins. At the critical temperature, the relevant observables have a power-
law divergence. These exponents are called critical exponents and control the phase
transition. We can evaluate six critical exponents, α, β, γ, δ, η, ν. Each one identifies a
Universal class (see below for details).

The correlation length ξ can be defined through the long-distance decay of the
two-point correlation function,

〈sx+rsx〉
|r|→∞∼ e−|r|/ξ , (3.1)

and it has a power law divergence as approaching the critical temperature

ξ ∝ |τ |−ν , (3.2)

where τ is the reduced temperature τ = T−Tc

Tc
, and Tc is the critical temperature. The
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specific heat diverges as
Ch(τ) ∼ |τ |α . (3.3)

The case α = 0 can indicate a discontinuity or a logarithmic divergence. The magne-
tization m vanishes as

m̂(τ) ∼ (−τ)β (3.4)

when we approach the critical temperature from below. The susceptibility, which is
the system’s response to a small external field H , diverges like

χ(τ) ∼ |τ |γ . (3.5)

At exactly the critical point τ = 0, for small fields H the magnetization behaves as

m(τ = 0, h) ∼ |h|1/δ , (3.6)

and the two point correlation function decays with a power-law

〈sx+rsx〉
|r|→∞∼ |r|−(d−2+η) , (3.7)

where η is the anomalous dimension.
These critical exponents are constrained by a set of four independent scaling rela-

tions,
2β + γ = 2 + α ,

2βδ − γ = 2 + α ,

γ = ν(2− η) ,

νd = 2− α .

(3.8)

that reduce to two the number of independent exponents.
The four relations in Eq. (3.8) relate the exponents to the dimension of space and

they define the so-called hyperscaling relation. They are valid only under the upper
critical dimension du.
The universality class depends on the system dimension through the critical exponents,
see Eq. (3.8).

3.2

Real-space coarse graining

The coherence length ξ is the characteristic length scale and represents the size of
patches of correlated spins. If in ferromagnetic system this physical interpretation is
straightforward [Ma76, Hua87, Ami05], in disordered ones there are still controversy
[Har76, Dot87, Dot01, Ang13].

The microscopical interaction between correlated spins can be detected by perform-
ing a coarse-graining of size b on the system. To construct a block Hamiltonian, the
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domain of correlated spins needs to sensible larger than the coarse-graining step b,
ξ � b. Note that the block Hamiltonian is linked to the original one through the
extensive ownership only in the thermodynamical limit. The block variables σx can be
defined as the mean spin in the block

σx = b−d
bd∑

y∈x

sy , (3.9)

where the sum runs over all the spins sy that belong to the block σx. Notice that
there will be Ldb−d blocks, and each one includes exactly bd spins. The probability
distribution for the blocks of spins is

P ′[{σ}] =

〈∏

x

δ


σx − b−d

bd∑

y∈x

sy



〉

P

∝

∝
∫

e−H[{s}]/T
∏

x

δ


σx − b−d

bd∑

y∈x

sy


 ds1ds2...dsN ≡

≡ e−Hblock[{σ}]/T , (3.10)

where with 〈. . .〉P we indicate the average using the equilibrium distribution P of the
spins sy:

P ∝ e−H[{s}]/T (3.11)

and Hblock is the block Hamiltonian deriving from the coarsening we made. At the
critical temperature Tc the correlation length diverges, so our Hamiltonians, Hblock

and H, are always equivalent.

3.3

Scaling hypothesis and Widom scaling

Widom was the first to conjecture the scaling hypothesis [Wid65]:
”at the critical temperature, Tc, the singular behavior of the correlation length is due
to long-range interaction of spin fluctuations and ξ is the only relevant length.”

Let us formalize this setting. We assume that the coarse-graining procedure does
not change the free energy:

F = Fcoarse (3.12)

in the thermodynamical limit, L→∞.
We remark as this approach focus only on the long-range correlations that arise from
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being at criticality. Analogously to Eq. (3.9), we can write the renormalized tempera-
ture t̃ and field h̃ as {

τ̃ = τ b yτ

h̃ = h b yh ,
(3.13)

where yτ and yh are generic exponents that contains all the rescaling dependence. Using
Eq. (3.13) and (3.12), the intensive free energy scales as

f(τ, h) = b−df(τ̃ , h̃) = b−df(τ b yτ , h b yh) . (3.14)

In order to relate the yτ and yh to the critical exponents [ see Eq. (3.8)], we study the
behavior of the magnetization m [Par88]:

m(τ, h) =
∂f(τ, h)

∂h
= b−d

∂f(τ b yτ , h b yh)

∂h
= b yh−dm(τ b yτ , h b yh) . (3.15)

Since b is an arbitrary scaling parameter, we can set it to grow as any diverging function
of τ̃ or h̃. Let us take the zero-field limit h = 0 and choose b = (−τ)−1/yτ , so Eq. (3.15)
becomes

m(τ, 0) = (−τ) (d−yh)/yτm(−1, 0) . (3.16)

Comparing Eq. (3.4) to Eq. (3.16), we can relate the rescaled temperature τ̃ and field
h̃ to the critical exponent β, as follows:

β = (d− yh)/yτ . (3.17)

On the other hand, if we study the behavior of the magnetization, see Eq. (3.15),
along the critical curve τ = 0 with a helpful choice of b, b = h−1/yh , we obtain:

m(0, h) = (h) (d−yh)/yhm(0, 1) . (3.18)

For a small h value, the behavior of the magnetization m along the critical line is:

m(0, h) ∼ h1/δ (3.19)

and so, exploiting Eq. (3.6), we obtain a second relation between the yτ and yh and
the critical exponents:

δ = yh/(d− yh) . (3.20)

Using Eqs. (3.8) one can easily reconstruct all the other critical exponents.

3.4

Finite-size scaling

Finite-size scaling (FSS) is one of the most powerful technique for measuring the ther-
modynamical properties by using the lattice L as a scaling variable. The idea is the
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same as the one we have explained in the previous section for the coarse-grained pa-
rameter b.

FSS was proposed by Nightingale [Nig76] and developed by Binder [Bin82]. Its
success is visible to the amount of scientific papers whose exploited it to analyze second
order phase transitions in the field of spin glasses (see e.g. [Bin86, Bal96b, Bal98,
Bal00, Lee03, Cam06, Jör06, Leu08, Jör08, Has08, Fer09, Bn12b, BJ13, BJ14c, Lul16,
Fer19b]).

For any observable O that has, approaching the critical temperature, a power-law
divergence, O ∝ |τ |xO 1, one can always express its thermal average close to the critical
point through a Taylor expansion

〈O(L, T )〉 = LxO/ν
[
fO(L1/ν

(
τ)
)

+ L−ωgO
(
L1/ντ

)
(3.21)

+ L−2ωhO
(
L1/ντ

)
+ . . .

]
,

where fO, gO and hO are analytic scaling functions for observable O, while ν is the
critical exponent defined in Eq. (3.2). The exponent ω > 0 is universal, and it expresses
the finite size corrections to the dominant scaling. The lower dots, . . ., stand for
subleading corrections to scaling.

These topics will be vital for the analysis that we will address in Chapter 5. There,
we will construct several dimensionless quantities to evaluate the scaling behavior of a
thin glassy film.

3.5

Universality and RG flow

The Renormalization Group (RG) method has these assumptions:

� in the thermodynamical limit and close to the critical point (for spin glass system
the critical point is the critical temperature Tc), the coarse-graining transforma-
tion (Eq.(3.9)) does not significantly change the free energy [Eq. (3.12)].

� Since the rescaled parameter b is arbitrary, see Eq. (3.13), we can build a flow of
rescaled trajectories that converges to a fixed point in the space of the rescaled
parameters. In other words, a fixed point attracts the RG trajectories that start
in a finite region around it. Geometrically, this region is a hypersurface in the
space of the scaling variables.

� In the thermodynamical limit, the behavior of a system is controlled by its fixed
point. This implies the concept of universality. Two systems characterized by
different Hamiltonians, if they are dominated by the same fixed points, belong
to the same universality class.

1For notation clarity, τ is the reduced temperature τ = (T − Tc)/Tc.
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Let us be more precise taking as example the Ising model [Hua87] with d > 1
spatial dimensions and a zero external magnetic field, h = 0. The system has a second-
order phase transition at a temperature Tc and it has a single control parameter t (see
Eq. (3.13)). This implies that the critical hypersurface of the rescaled trajectories is
only a point. There are a zero-temperature and an infinite-temperature stable fixed
point, respectively governing the behavior of the ferromagnetic and of the paramagnetic
phases (see Fig. 3.1). The fixed points are classified as:

� stable if it is attractive: the RG trajectories, starting from a neighborhood of the
hypersurface, converge to the considered fixed point.

� Otherwise, the fixed point is unstable: the RG trajectories, starting from a neigh-
borhood of the hypersurface, go away from the considered fixed point.

The two fixed point of Fig. 3.1 are separated by a fixed point at Tc that represents
the critical point. On one hand, if the system is close to the critical temperature, but

T = 0 T = ∞T = T
c

Figure 3.1: RG flow in the Ising model in absence of an external magnetic field, h = 0.
The only control parameter is the temperature. There are two stable fixed points at
zero and infinite temperature, and one unstable fixed point at the critical temperature
Tc. The arrows represent the direction of the flow. Figure from [BJ15].

above it, T > Tc, the RG trajectory will converge to the T = ∞ fixed point after
a large enough number of coarse-graining steps. On the other hand, if the system is
close to the critical temperature, but below it, T < Tc, the system is described by the
zero-temperature fixed point after a large enough number of coarse-graining steps. In
Fig. 3.1, we represent the flow directions through arrows. Being the critical fixed point
unstable implies that a trajectory can converge to it only if it starts exactly at T = Tc.
As long as t ' 0, the behavior of a system will need a very large number of coarsening
steps before acting as the stable infinite-temperature (or zero-temperature) fixed point
prescribes.

This concept will be deeply developed in Chap. 6. Note that the fixed point de-
pends on the geometry of the system. We will use this concept in Part II in order to
demonstrate that a glassy film is governed by the 2D and 3D fixed points.



Part II

The Edward-Anderson model in
film geometry
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CHAPTER IV

Introduction

Historically, experiments and numerical simulations in the investigation of spin-glass
systems have been developed separately. The numerical simulations were not able to
approach experimental times, while the quality of experimental data was not yet high
enough. Moreover, the crucial physical quantities that one can measure in experiments
and simulations are not the same. In the simulations, one can easily access the mi-
croscopical configurations; instead, in the experiments, one can evaluate the response
functions. Hence, a fruitful comparison between these two approaches was impossible.

In the last decades, the experimental data has sensible increased quality and the
remarkable simulations of the dedicated supercomputer, Janus II, for the first time,
can measure numerically spin-glass correlations that approach experimental time and
length scales. The synergy between experiments and simulations have got several steps
forwards in the comprehension of the 3D spin-glass dynamics [BJ18, BJ17a, Zha20b].
In the lab, spin-glass samples are permanently out of equilibrium when studied at
temperatures below the critical one, Tg, implying that the equilibrium theory is not
always sufficient. A possible approach to overcome this difficulty is extracting from
the non-equilibrium dynamics crucial information about the (so difficult to reach)
equilibrium regime [Cug93, Fra99, AB10b, BJ17b]. However, custom-built comput-
ers [BJ14b] and other simulation advances [Man15a, Fer15] have made it possible to
study theoretically [Bel08b, Bel09a, Man15b, BJ17a, BJ18, Fer19b, Fer18a] the sim-
plest experimental protocol. In this protocol, see e.g. [Joh99], a spin-glass at some very
high-temperature is fastly quenched to the working temperature T < Tg and the ex-
cruciatingly slow growth of the spin-glass correlation length ξ is afterward studied as a
function of the time elapsed since the quench, t. Although simulations do not approach
yet the experimental time and length scales (t ∼ 1 hour and ξ ∼ 100 a0, where a0 is the
average distance between magnetic moments), the range covered is already significant:
from picoseconds to milliseconds [Man15a, Fer15] or even 0.1 seconds using dedicated
computers [Bel08b, BJ18] (or conventional ones in the case of two-dimensional spin
glasses [Fer19b, Fer18a]).

Yet, thanks to advances in sample preparation, a new and promising experimental
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protocol has appeared in the last five years. Indeed, single-crystal spin-glass samples
with a thin-film geometry (thickness of 4.5 − 20 nm) have been investigated [Guc14,
Guc17, Zha17b, Ken18]. These experiments are interpreted in terms of a correla-
tion length ξ saturating at a constant value after reaching a characteristic length
scale, namely the thickness of the film. The bounded growth of ξ along the lon-
gitudinal direction of the film is a direct experimental confirmation [Guc14] for a
lower critical dimension 2 < D` < 3, in agreement with the theoretical expectation
D` ∼ 2.5 [Bra86, Fra94, Mai18]. The film-geometry has allowed as well for extremely
accurate measurements [Zha17b] of the aging rate

z(T, ξ) =
d log t

d log ξ
, (4.1)

which gives access to the dominant free-energy barrier ∆, t ∼ τ0 exp[∆/(kBT )] 1

[τ0 = ~/(kBTg) is a time scale]. The increased accuracy has shown that, contrary
to previous expectations [Joh99, Bel08b, Bel09a, BJ17a], the aging rate depends on ξ
(see also [Ber04, BJ18]). Besides, the dependency of the barrier ∆ with the applied
magnetic field has been clarified 2 [Guc17, Zha20b]. However, a theoretical study of
these fascinating thin-film experiments was lacking.

This part is organized as follows. In Sec. 4.1 we summarize the spin-glass physics in
2D and 3D. In Sec. 4.2, we formalize all the observables that we will take into account
for evaluating glassy film systems. In Sec. 4.3, we report the numerical details of our
massive computer simulations. Finally, in Chap. 5 , we will report our investigation of
the equilibrium properties of a thin glass film at the critical 3D temperature. Next, in
Chap. 6 we unveil the out-equilibrium properties that are characterized by four aging
regimes and through the Renormalization Group (RG) approach we found a non-trivial
temperature mapping between a film and a 2D system.

4.1

2D and 3D spin-glass

Let us discuss a few crucial facts about the very different behavior of spin-glasses in
spatial dimensions D = 2 [Fer18a, Fer19b] and D = 3 [BJ18]

4.1.1 Glassy bulk system

A 3D spin-glass system has a phase transition at T = Tg that separates the high-
temperature paramagnetic phase from the spin-glass phase [Gun91, Pal99, Bal00,

1At the critical temperature Tg, the aging rate coincides with the so-called dynamic critical expo-
nent

2In part III, we will report the experimental behavior of the free energy barrier ∆ in presence of
an external magnetic field in a mono-cristal of CuMn 6at%.
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Har99a]. The correlation length, ξ(T, t), diverges as a power-law:

ξ(T, t) ∼ |T − Tg
Tg

|−ν3D , (4.2)

where ν3D = 2.56(4) and the critical temperature Tg = 1.1019(2) [BJ13].
In the out-equilibrium regime, the size of the glassy domains is seen to grow as:

ξ(t, T ) ∝ t1/z(T ) (4.3)

where the exponent z(T ) is the aging rate and t is the time. The aging rate is defined
as:

z(T, ξ) =
d log t

d log ξ
, (4.4)

which is expected to behaves, in first approximation, as [BJ18]:

z(T ) w z(Tg)
Tg
T
, z(Tg) = 6.69(6) . (4.5)

According to Ref. [BJ18], the aging rate, z(T ), is ξ-independent at exactly T = Tg.
Otherwise it has subleading corrections depending on the correlation length itself. At
T < Tg, but only once ξ grows large-enough [BJ18], the aging-rate grows with ξ. This
implies that the dynamics has a slows-down, and a power-law description is no longer
appropriate, see Eq. (4.3).
The aging rate, z(T ), is a key quantity since it is measurable both experimentally and
numerically. In particular, it is connected to the dominant free-energy barrier ∆

t ∼ τ0 exp

(
∆

kBT

)
(4.6)

where τ0 = ~/(kBTg) is a time scale.
A simplifying feature is that the renormalized aging-rage z(T, ξ)T/Tg turns out to be
roughly T -independent: when T < Tg, the dominant barrier ∆(ξ) depends little (or
not at all) on temperature.

4.1.2 Spin-glasses in D = 2

A 2D spin-glass system has been deeply studied both experimentally and numerically
[Har01, Amo03, Luk04, Luk06, J0̈6, Fer16b, Fer16a] but for decades its dynamics has
puzzled physicists.
On the experimental side, 2D spin-glasses were first analyzed in Ref. [Sch93] and the
authors assumed activated dynamics. Activated dynamics involves a faster divergence
of the characteristic time than a conventional power law. At low temperatures, the
typical barrier height of the free-energy is:

∆ ∼ ξψ 0 ≤ ψ ≤ d− 1 . (4.7)
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and, exploiting Eq. (4.6), one can connect the typical barrier height to the characteristic
time τ , which means that τ grows with ξ faster than any power law (quite a severe
dynamic slowdown, indeed).

On the other hand, pioneering simulations of the 2D Ising spin-glass dynamics could
not solve whether behaves as critical or activated [Rie94, Bar01]. The controversy was
solved recently in Ref. [Fer18a, Fer19b]. The authors clarified the dynamical behav-
ior of a 2D spin-glass using a large-scale numerical simulation of the out-equilibrium
dynamics of the D = 2 Ising spin-glass. They followed the microscopic spin-glass coher-
ence length ξ(tw, T ) from virtually zero to its equilibrium value ξeq(T ). In Ref. [Fer18a]
the authors demonstrated that the 2D dynamics has different dynamical regimes and
its dynamics could be classified as critical or activated.

A possible estimation for the lower critical dimension for spin-glass systems is
D` = 2.5. Evidences for the lower critical dimension D` value are supported by renor-
malization group studies [Fra94], by domain-wall calculations [Har99b, Boe05], and
by experiments [Guc14]. From this point of view, spin-glass systems with dimension
D ≥ D` are characterized by a finite critical temperature [Gun91, Pal99, Bal00]. In
D = 2 the Ising spin-glass remains paramagnetic for any temperature T > 0, but it
has a critical limit at T = 0. Very good evidence for this fact was obtained through
exact ground-state and domain-wall calculations for large systems sizes [Har01]. A
good proof of this was achieved by exact ground-state and domain-wall calculations
for large systems sizes [Har01]. In the T → 0 the physics of the system is dictated by
the low energy configurations and by the coupling interactions Jxy. If the Jxy are dis-
crete, binary coupling with 50% probability, an energy gap appears. Instead, the gap
disappears if the couplings Jxy have associated a probability distribution that allows
approaching with continuity the value J = 0 [Fer16b].

Depending on the nature of the coupling distribution, i.e. binary or gaussian,
several Renormalization Group (RG) fixed points appear at T = 0. However, most of
these fixed points are unstable even for the tiniest positive temperature [Amo03]. This
implies that, for infinite system and T > 0, only one of those fixed points dominates
and, so, the growth of the coherent correlation length ξ(t) is ruled by a single scaling
function [Fer18a].
Being in 2D, the system is always in the paramagnetic phase, and ξ(t, T ) eventually
reaches its equilibrium limit ξeq(T ), which we expect to have a critical point at T = 0:

ξeq(T ) ∼ T−ν2D + ...., (4.8)

where ν2D = 3.580(4) [Kho18] and the dots stand for subleading corrections to scaling
[Fer19b].
When a0 � ξ(t, T )� ξeq(T ) we have a power law:

ξ ∝ t1/z2D (4.9)

with z2D ≈ 7.14 irrespective of T [Fer19b]. This implies that the 2D dynamics may
be much faster than 3D dynamics (aging rates z ∼ 15 are not uncommon in 3D at
low T ). For times scale t � τ 2D

eq (T ), where τ 2D
eq (T ) is the equilibrium characteristic
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autocorrelation time, equilibrium is approached. A super-Arrhenius behavior is found
for

τ 2D
eq (T ) ∝ exp[∆2D(ξeq)/T ] , (4.10)

where the barrier ∆2D(ξeq) grows very mildly with ξeq [Fer19b].
Let us conclude this Section defining the 2D asymptotic equilibrium behavior of

the correlation function [Fer18a]:

Ceq(r) ∼ K0(r/ξexp)

log(ξexp)
, (4.11)

where K0(·) is the zero order modified Bessel function of the second kind [Olv10] and
ξexp is the ”exponential” correlation length3

4.2

Observables in a thin glassy film

In Chap. 2, we have introduced the main observables that we will take into account in
this dissertation. Here, we report the derivation of these observables in a film geometry.
We will address them in the out-equilibrium formulation, but the equilibrium one can
be obtained trivially by just dropping the time.

4.2.1 Longitudinal and transversal correlation length

The spatial autocorrelation function [Bel09b] is defined as:

C4(T,~r, t) = 〈q(a,b) (~x, t) q(a,b) (~x+ ~r, t)〉T . (4.12)

The overlap between two replicas is

q(a,b) (~x, t) ≡ σ(a) (~x, t)σ(b) (~x, t) (4.13)

where (a, b) are labels for different replicas, (· · · ) denotes the average over the disorder
and 〈·〉T stands for the average, over the thermal noise at temperature T .

The longitudinal correlation length ξ
‖
12(t) is defined on the longitudinal lattice displace-

ments ~r = (r, 0, 0) or ~r = (0, r, 0) as:

C4 (T,~r, t) ∼ f(u, v)

rθ
, u =

r

ξ‖(T, t)
, v =

ξ‖(T, t)

ξ
‖
eq(T )

, (4.14)

where f(u, v) is an unknown scaling function.
In equilibrium, the f(u, v= 1) decays for large u as exp(−u)/

√
u [Fer18a]. Moreover

v = 1 is reachable in a film at T < Tc only thanks to the 3D-to-2D crossover [Guc14].

3The accurate definition of ξexp is discussed in Chapter 5
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On the other hand, off-equilibrium, f(u, v<1) decays super-exponentially in u [Fer18a]
and a Renormalization Group (RG) argument implies that the scaling function f(u, v)
depends as well on the effective two-dimensional temperature Teff,2D, [see Sec.6.3 for
details]. Fortunately, we can study the dynamical growth of ξ‖ without parameterizing
f(u, v) through the integral estimators [Bel08b, Bel09a]:

Ik(T, t) =

∫ ∞

0

dr rkC4(T, r, t) (4.15)

and so
ξ
‖
k,k+1(T, t) ≡ Ik+1(T, t)/Ik(T, t) (4.16)

We shall specialize to ξ
‖
12(T, t) which has been roughly studied [BJ18, Fer19b, Fer18a].

As for correlations along the short transverse direction, we defined the transversal
correlation length ξ⊥12 through

ξ⊥12(T, t) =

Lz/2∑

r=0

r2C⊥4 (T, r, t)/

Lz/2∑

r=0

r C⊥4 (T, r, t) , (4.17)

where, for open boundary condition (OBC), one can extend the sum over Lz − 1.

4.2.2 Renormalization Group Transformation

Being at the critical temperature, Tg, we can study the system through a Renormal-
ization Group (RG) perspective [Ami05]. We decompose our system in boxes of size
L3
z and we rescale the overlap field as:

Q(a,b)(X, t) =
1

L3
z

Lz−1∑

r1,r2,r3=0

q(a,b)(r + LzX, t) , (4.18)

and we define the correlation function in the 2D renormalized lattice as:

CRG
4 (T ; R, t) = 〈Q(a,b)(X, t)Q(a,b)(X + R, t)〉T (4.19)

We gain statistics by averaging over all the L3
z possible starting position of the boxes and

all pairs of different replicas. Our analysis’s program exploits the last chips extension
SEE2 to minimize the computational effort 4.
The estimate of the correlation length was done as well through the integral estimators,
see Eq. 4.16:

IRG
k (T, t) =

∫ ∞

0

dR RkCRG
4 (T,R, t) , (4.20)

and we estimate the correlation length as

ξRG
k,k+1(T, t) = IRG

k+1(T, t)/IRG
k (T, t) . (4.21)

These RG-transformations will be used in the following for evaluating the dimen-
sional crossover, D = 3→ 2, that controls the dynamics of a spin-glass film.

4SEE2 stands for Streaming SIMD Extensions
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4.3

Simulations

Metropolis dynamics belongs to the universality class of physical evolution and is
straightforward to implement.
Our goal is to obtain data without finite-size effects and within the thermodynamic
limit. Rather than restoring to special hardware, we employed synchronous multispin
coding on standard CPUs. We implemented two multispin codings on a film geometry:
the MUlti SAmple (MUSA) and the MUlti SIte (MUSI) multispin coding.

The MUSA algorithm is based on the representation of many sample systems in
a single computer word (128 bits in our implementation), i.e. each bit represents a
different sample; instead, the MUSI one represents many spins of the same replica in a
single computer word (256 bits in our implementation). The code implementing MUSA
is much simpler than the MUSI one, and thus, it was adequate for the equilibrium
simulations and for the first set of the out-equilibrium ones 5. In particular, we used it
for carrying on the simulation with OBC along the Z direction. The MUSA efficiency
does not depend on the choice of boundary conditions. On the Intel(R) Xeon(R) E5-
2680v3 processors of the Cierzo cluster 6, our MUSA code simulates 24 replicas of the
same sample at a rate of 12 picoseconds per spin flip. The optimal number for NR is
given by the memory-consuming coupling matrix which is shared by the NR replica.

On the other hand, the MUSI code has longer development times but is signifi-
cantly faster than MUSA. MUSI codes update ∼ exp(4/T ) spins with a single random
number [Fer15] and it is faster as the decreasing of temperature.
At our highest temperature T = 1.1, on the E5-2680v3 processors, our MUSI code
simulates 24 replicas at an overall rate of 8 picoseconds per spin flip. Unfortunately,
the MUSI code is not completely general, it has some limitations:

� it supports only Periodic Boundary Condition (PBC). For open boundary con-
ditions, spins on the top (or bottom) layer have only 5 neighbors, which implies
that one can only update ∼ exp(2/T ) spins with a single random number.

� The lattice size can be only a multiple of 16 and the thickness can be pair.
In Appendix A, we will explain in detail the MUSI implementation in a film
geometry and how to manage the random number generator.

4.3.1 The optimal number of replica NR and samples NS

Our MUSA implementation simulates contemporaneity 128 independent samples and
the optimal number of NR is given by memory-sharing reason. On the other hand, the
speed-up of the MUSI code7 is given by the packing of the spins in the computer words.
Hence, the choice of the optimal number of replica NR and samples NS was chosen in

5 The first set of simulations is the one characterized by a short thickness, Lz ≤ 6.
6 The Cierzo cluster is at the BIFI supercomputing center
7The MUSI implementation was used only for the out-equilibrium simulations.
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Figure 4.1: Squared statistical error for ξ12(Tc, t=222, Lz=4), as computed from
a set of NS = 128 samples and NR replicas, versus NR. The dashed line is a fit to
Eq. (4.22). The relevant quantities extracted from the fit are σ2

R/σ
2
S ≈ 156 and x ≈ 0.65.

For reference, we show with continuous lines the two extremal behaviors, namely x = 1
(with ∆ ∝ 1/N2

R) and x = 0.5 (with ∆ ∝ 1/NR). Because σ2
R � σ2

S, ∆ shows an
intermediate behavior for small NR. However, when NR > 30 the contribution of
thermal fluctuations to the final error becomes comparable to the sample contribution
and there is little gain in further increasing NR.

order to minimize the final errors of the correlation length ξ
‖
12(t), [ see Eq. (2.23)], given

a fixed computer effort E = NSNR.
The variance, or the squared error, in ξ12 approximately follows this behavior in the
off-equilibrium regime [BJ18]:

∆(NS, NR) =

[
σ2

S + σ2
R

(
2

NR(NR − 1)

)x]
1

NS

, (4.22)

where the exponent x takes a value in the range 0.5 < x < 1, σ2
S and σ2

R are (respec-
tively) the sample and thermal contributions to the variance and NR(NR − 1)/2 is the
number of distinct pairs of replica indices for calculating C4(~r, t) 8.
Clearly, we are looking for a compromise by minimizing the (squared) error achievable
for a fixed numerical effort E = NRNS, which results into an optimal value

N∗R ≈
[
2x(2x− 1)

σ2
R

σ2
S

]1/(2x)

, (4.23)

where for algebra’s simplicity we approximate NR(NR − 1) ≈ N2
R. Now, we need to

estimate the ratio σ2
R/σ

2
S and the exponent x and we followed these steps.

We carried out short MUSI runs with t = 222 at Tc, for thickness Lz = 4, with N tot
R = 72

and NS = 128. We randomly extracted NR = 4, 8, 16, 24, 32, 48 and 64 replicas out of
the ensemble of N tot

R possibilities, and computed ξ12 and its squared error ∆(NS, NR)
with the jackknife method, see e.g. Ref. [Ami05] or Appendix B.1.
In order to stabilize the estimation of ∆ we averaged over 20 random extractions of the
NR replicas. The obtained ∆(NR, NS) are shown in Fig. 4.1 with our fit to Eq. (4.22).

8The exponent x depends on the dimension of the system.
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The resulting optimal value is N∗R ≈ 29.4 which is compatible with the approximated
value N∗R ≈ 27.3 in Eq. (4.23).
However, by plugging NS = E/NR in Eq. (4.22) and varying NR while keeping E fixed,
we observed that the minimum at N∗R is quite broad, which is fortunate because the
value that optimizes the performance of our MUSA code on the Cierzo processors is
NR = 24.
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CHAPTER V

Equilibrium properties of a thin glassy film
at the bulk temperature

In this chapter, we study the equilibrium properties of a thin glassy film at the 3D
critical temperature for several thickness and lattice values, Sec. 5.1. In Sec. 5.2 we
evaluate the correlation function in the film geometry and in the rescaled lattice after
a Renormalization Group (RG) transformation. Next, in Sec. 5.3 exploiting a Finite-
Size Scaling (FSS) approach, we confirm the existence of glassy behavior in the film
geometry as it was supposed in the experiments of the last generations, [Guc14, Guc17,
Zha17b, Ken18]. In Sec. 5.4 we calculate the universal coefficient of some dimensionless
observables.

5.1

Model and protocol

We considered the Edward-Anderson model [Edw75], defined on a three-dimensional
film geometry characterized by a lattice Lx = Ly = L and a width Lz on whose nodes
we placed spin σ = ±1 that interact with their first neighbors through:

H = −
∑

〈x,y〉

Jxyσxσx , (5.1)

where the quenched disordered couplings are {J~x~y} = ±1 with 50% probability.
We imposed open boundary conditions (OBC) along all the three Cartesian directions
1 and we simulated our system for different thickness and lattice values through a Par-
allel Tempering (PT) algorithm. For each case reported in Tab. 5.1, we performed two
independent replicas.
According to the PT prescription, we replicated each replica at NT different tempera-
tures, which are performed independently. In Appendix A.3 we discuss the details of

1We imposed open Boundary condition for evaluating the effect of the transversal saturation

43
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L Lz NT ∆T Tmin Tmax

150 2 48 0.009 1.088 1.511
150 4 48 0.009 1.088 1.511
150 6 56 0.007 1.1019 1.506
150 8 66 0.006 1.1019 1.516
200 4 48 0.009 1.088 1.511
200 6 56 0.007 1.1019 1.506
200 8 66 0.006 1.1019 1.516

Table 5.1: Information about the Parallel Tempering parameters.

the PT algorithm.
The temperature increment ∆T and the number of temperature NT were chosen for
optimizing the acceptance ratio of the temperature swaps, and they are reported in
Tab. 5.1. To check whether the samples were thermalized, we measured the exponential
self-correlation time of the PT random walk in temperature τ [AB10a]. We required
the simulations to last at least 10 τ . Equilibrium measurements were taken off-line
over the thermalized configurations. To speed up our algorithm we used the MUlti
Samples (MUSA) multispin coding technique, see Sec. 4.3. In Appendix A we address
the details of this packing technique.
The errors were estimated with the jackknife method 2.

5.2

Scaling function

The success of the experiments of Refs. [Guc14, Guc17] is based on the hypothesis that
a glassy film, at or below the bulk critical temperature, T ≤ Tg, acts as a bidimensional
system as soon as its correlation length is compatible with the thickness, ξ ∼ Lz. This
implies that, at the equilibrium, a glassy film should be described by the 2D propagator.
Recalling Eq. (4.11), in a 2D glassy system the asymptotic correlation function C4(~r, T )
behaves as [Fer18a]:

Ceq
2D(r) = A(ξexp)K0(r/ξexp) , (5.2)

where K0(·) is the zero order modified Bessel function of the second kind [Olv10], ξexp

is the exponential correlation length, and A(ξexp) is an amplitude depending on the
temperature through ξexp.

For each lattice value, we calculated the spacial autocorrelation function defined
in Eq. (4.12). Being at the equilibrium, we can just drop the time from the C4(T,~r)

2 The reader can found details in Appendix B.1 or in Ref.[You12] .
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definition:
C4(T,~r) = 〈q(a,b) (~x) q(a,b) (~x+ ~r, )〉T . (5.3)

Since we simulated systems with OBC, the correlation function C4(~r, T ), Eq. (5.2),
depends explicitly to the z-layer and the transversal invariance does not hold. We
computed the longitudinal correlation function C4(~r, T ) for the top layers and the
central ones, namely defined as:

CTop
4 (~r, T ) =

C4(~r, T, 0) + C4(~r, T, Lz − 1)

2
(5.4)

CMed
4 (~r, T ) =

C4(~r, T, Lz/2) + C4(~r, T, Lz/2 + 1)

2
. (5.5)

To evaluate the effect or not of the z-dependence on the longitudinal correlation func-
tion, CTop

4 (~r, T ) and CMed
4 (~r, T ), we fitted them, in the r >> ξexp, as

Ceq
4 (r, T ) = A(ξexp)

[
K0

(
r

ξexp(T )

)
+ K0

(
L− r
ξexp(T )

)]
, (5.6)

where we have included the first-image term, K0

[
(L−r)
ξexp(T )

]
(we use open boundary con-

ditions) as a further control of finite-size effects.
In Fig. 5.1 we report the comparison between CTop

4 (~r, T ) and CMed
4 (~r, T ) in the case

Lz = 8 and L = 200, as example. As one can observe, the z-dependence has no neg-

1
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Lz = 8, L = 200

C
‖ 4
(~r
,T

)

r

CTop
4 (~r, T )

CMed
4 (~r, T )

Figure 5.1: Comparison between the CTop
4 (~r, T ) and the CTop

4 (~r, T ). The plot is in semi-
log scale and the dashed line are fits through the Bessel function of order zero [Olv10]
with hyberbolic cosine corrections in the region r >> ξexp, f(x) = A(ξexp[K0[x/ξexp] +
K0[(L− x)/ξexp]] (see below for details).

ligible effect, the signal of CTop
4 (~r, T ) is smaller than the CMed

4 (~r, T ). Fortunately, the
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decay is exactly the same for both the reported cases and, hence, the physical scenario
emerges to be perfectly compatible. In the following of this chapter, we always refer
to the central correlation function C

‖
4(~r, T ) = CMed

4 (~r, T ), where the boundary effects
are minimized.

In Fig. 5.2 we report the behavior of the correlation function for different lattices
and thickness at the bulk critical temperature, Tg. As one can observe in Fig. 5.2:

� the correlation function C
‖
4(r) increases with film width Lz. According to the

experimental hypothesis of a dynamical arrest when ξ(t) ∝ Lz, the value of
ξ depends on the thickness value. This implies that a spin-glass film has two
characteristic lengths: the correlation length ξ and the thickness. In the next
chapter 6, we will develop this concept through out-equilibrium simulations.

� The open boundary conditions (OPB) introduce non-negligible finite-size effects
whose we took into account thanks to the first-image term of Eq. (5.6).

� For both lattices of size L, we are in the thermodynamical limit L >> ξexp. The
only discrepancy is given by the finite-size effects.

� The data are perfectly described by Eq. (5.6) in the large r region. In Tab. 5.2
we report the fitting parameters.

1
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Figure 5.2: The longitudinal correlation function C
‖
4(r) as a function of the distance

r at the bulk critical temperature Tg = 1.102(3) in semi-log scale. The dash lines,
grey for lattice value L = 200 and black for L = 150, are fits through the Bessel
function of order zero [Olv10] with hyberbolic cosine corrections in the region r >> ξexp,
f(x) = A[K0[x/ξexp] + K0[(L− x)/ξexp]].
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Lz A(ξexp) ξexp χ2/dof x-range

L = 150

2 0.2756(21) 4.287(25) 14.239/29 [4:36]
4 0.1998(22) 7.447(71) 19.649/49 [6:58]
6 0.1619(26) 10.82(14) 24.640/64 [8:75]
8 0.1350(25) 14.34(22) 21.899/61 [11:75]

L = 200
4 0.2001(15) 7.493(45) 20.553/51 [6:60]
6 0.1570(19) 11.07(10) 25.636/61 [8:79]
8 0.1380(26) 14.06(21) 25.480/70 [11:84]

Table 5.2: The fitting parameters of Eq. (5.6) for the longitudinal correlation function

C
‖
4(r, Tg).

Lz A(ξRG
exp) ξRG

exp χ2/dof x-range

L = 150

2 0.5666(38) 2.154(11) 6.642/13 [2:18]
4 0.6353(47) 1.902(17) 4.080/10 [1:14]
6 0.693(13) 1.801(24) 2.849/7 [2:12]
8 0.6853(85) 1.765(25) 1.945/5 [1:9]

L = 200
4 0.6621(55) 1.877(11) 4.17/10 [2:15]
6 0.661(12) 1.862(23) 2.877/8 [2:12]
8 0.6766(63) 1.787(19) 2.751/7 [1:11]

Table 5.3: The fitting parameters of Eq. (5.6) for the rescaled correlation function
CRG

4 (r).

5.2.1 Renormalization Group Trasformation

To study the equilibrium behavior of our film system, we performed a Renormalization
Group transformation. We decomposed our system in boxes of size of L3

z, and we
rescaled the overlap field and the correlation function, CRG

4 (r), according to Eq. (4.18)-
(4.19).
Analogously to Fig. 5.2, we investigate the decay of the rescaled correlation function
CRG

4 (r). We guess that, after the coarse-graining of Eq. (4.18), the system has the
same equilibrium propagator of a 2D system, see Eq. (4.11). In Fig. 5.3, we report the
behavior of CRG

4 (r). The fitting procedure is perfect for all the distance range and, in
Tab. 5.3 we address the fitting parameters. As one can observe from Fig. 5.3, there
emerges a scaling behavior for all the thickness except for the smallest one, Lz = 2.

Evaluating the CRG
4 (r), at a given distance r∗, [see the insert of Fig. 5.3], we unveils

a significant Lz-dependence. The analysis of this Lz-effect will be developed in the next
Sections.

In conclusion, we analyzed the longitudinal correlation function, C4(r), and its
rescaled one, CRG

4 (r), according to a 2D description, see Eq. (4.11). Notice that the
2D propagator fits perfectly to the film description only after the Renormalization
Group transformation, where the third dimension, namely the thickness, is absorbed.
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Figure 5.3: The renormalized correlation function CRG
4 (r) as a function of the distance

r at the bulk critical temperature Tg in semi-log scale. The dash lines, grey for lattice
value L = 200 and black for L = 150, are fits through the Bessel function of order
zero [Olv10] with hyberbolic cosine corrections in the region r > 1, f(x) = AK0[x/ξ] +
BK0[(L− x)/ξ](main). The insert is a zoom of the CRG

4 at the fixed distance r = 3
as a function of the thickness Lz.

5.3

Finite-Size Scaling

At equilibrium, simulations near the bulk critical temperature Tg in a lattice of linear
size L are usually far from the thermodynamic limit because of the extreme growth
of the correlation length. In a glassy film, instead, the thermodynamical limit holds,
see Fig. 5.2, since it achieves equilibrium with a finite correlation length. This section
is focused on the investigation of thin glassy film through a finite-size scaling (FSS)
approach, where the scaling variable is the thickness Lz and not the lattice L.

If an observable O diverges at the critical temperature as

O ∝
(
T − Tg
Tg

)−1/ν

, (5.7)

its thermal average close to the critical point can be expressed like:

〈O〉 = FO
[
(T − Tg) · L1/ν

z

]
+ L−ωz GO

[
(T − Tg) · L1/ν

z

]
+ ... (5.8)

where ν and ω are the bulk universal exponents, [BJ13], and FO[·] andGO[·] are analytic
scaling functions for observable O.
Notice that the ω critical exponent expresses the finite-size corrections to the dominant
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scaling. In first approximation, we neglected these second-order corrections. In this
Section, we analyze the behavior of three dimensionless observables:

1. A(ξexp)ξD−2+η
exp ,

2. ξ12/Lz, where ξ12 is the 2nd moment of the integral estimator of Eq. (2.23),

3. and the Binder parameter:

B =
〈Q4〉
〈Q2〉2

(5.9)

where Q is the renormalized spin defined in Eq. 4.18.

Let us recall Eq. (4.14), the scaling function f(u, v) has distinct behaviors in the large,
r >> ξexp, and in the small distance region, r < ξexp:

for r >> ξexp C
‖
4(r) ∼ A(ξexp)K0

(
r

ξexp

)
; (5.10)

for r << ξexp C
‖
4(r) ∼

(
1

r

)D−2+η

. (5.11)

Since the correlation length ξexp is well-defined and finite in a glassy film, the correlation

function C
‖
4(r) defined in Eq. 4.14 should be continuous and smooth between the two

asymptotic behaviors, r << ξexp and r >> ξexp. This implies that, at a distance

r ∼ ξexp, through the correlation function, C
‖
4(r), holds:

(
1

ξexp

)(D−2+η)

∼ A(ξexp) , (5.12)

where the Bessel Function of order zero K0 at ξexp is a constant.
Let us rewrite Eq. (5.12) in a more convenient way:

A(ξexp)ξD−2+η
exp ∼ const . (5.13)

According to Eq. (5.8), we study the behavior of the dimensionless observable in
Eq. (5.13), wherein first approximation, we neglected the Lz finite-size effects. Let us
explicitly write the numerical value of the exponent D − 2 + η :

D − 2 + η = 0.61 , (5.14)

where D = 3 and η = −0.39 [BJ13]. As one can observe from Fig. 5.4, there emerges
a scaling behavior for all the Lz and L values; however, there are Lz finite-size effects.

Next, we calculated through the integral estimators of Eq. (2.23) the second-order
momentum of the correlation length, ξ12, and we evaluated the dimensionless quantities
ξ12/Lz according to the (FSS) technique, see Eq. (5.7). As one can observe in Fig. 5.5,
a scaling behavior seems to emerge but this rescaled quantity, ξ12/Lz, is more sensitive
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than ξexp/Lz to the Lz-effects. Data with Lz = 2 show a clear departure from the other
thickness. This implies that a glassy film has at least two characteristic lengths: the
correlation length, ξ, and the thickness Lz.
If Lz is too small, a glassy film does not preserve the bulk critical landscape. This is
perfectly understandable. Let us explain it qualitatively. For a very large thickness
value, Lz = L → ∞, a glassy film is exactly a bulk system, which is characterized by
the well-known second-order divergence of the correlation length, ξ ∼ |τ |−ν , where τ is
the reduced temperature τ = (T −Tg)/Tg. On the other hand, for a thickness Lz = 1 a
film is a 2D system always in the paramagnetic phase. Hence, the thickness value, Lz,
needs to be large enough to preserve the bulk critical properties, as Fig. 5.5 indicates.
The same conclusion can be explained as follows: if a glassy film has a too short
thickness the dimensional crossover that happens as soon as the ξ ∼ Lz, is so fast that
the landscape does not have enough time to express its complexity.
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Figure 5.4: The product of the Zero-Bessel amplitude A(ξexp) and the correlation
length ξexp to the power D−2+η = 0.61 as a function of the scaling function (T−Tg)Lνz ,
where ν and η are the bulk critical exponents.

Finally, we studied the Binder parameter, see Eq. (5.9). In Fig. 5.6, we report
the evaluation of the Binder parameter, B, through the (FSS) approach. The scenario
is compatible with the one that emerges from the analogous analysis of the rescaled
correlation length, ξ12/Lz, see Fig. 5.5. The bulk properties are preserved only for large
enough thickness value. Moreover, the Lz finite-size effects are not negligible and we
address in the next Section a more sophisticated analysis.
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We do not report all the Lz = 2 values because they do not add any information to
the plot.
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5.4

Universal parameters

Our (FSS) analysis, see Figs. 5.4-5.6, indicated that we can not neglect the second term
of Eq. (5.8), which controls the finite-size effects. In this section, we will manipulate
Eq. (5.8) to include more terms in the expansion and we will calculate some universal
parameters of a thin glassy film.

Being at the critical point Tg, we expand Eq. (5.8) through a Taylor expansion:

〈O〉 = F [0] + xF ′[0] +
x2

2
F ′′[0] + L−ωz

(
G[0] + xG′[0] +

x2

2
G′′[0]

)
(5.15)

where, for notation simplicity, x = (T − Tg)L1/ν
z .

Let us rewrite Eq. (5.15) as:

〈O〉 = F [0] +G[0]L−ωz︸ ︷︷ ︸
M0

+x (F ′[0] +G′[0]L−ωz )︸ ︷︷ ︸
M1

+
x2

2
(F ′′[0] +G′′[0]L−ωz )︸ ︷︷ ︸

M2

(5.16)

where the quantities F [0], F ′[0] and F ′′[0] are universal parameters.
We study these parameters in the following way:

1. we calculate several dimensionless observable,i.e ξ12/Lz , ξexp/Lz , ξRG and the
Binder parameter B.

2. We fitted each of these observables through the function

O =M0 +M1x+M2x
2 (5.17)

and we estimated the different Mi coefficients, see Eq. (5.16).

3. We fit each found coefficient Mi through the function

gi(x̂) = Ai +Bix̂ , (5.18)

where x̂ ≡ L−ωz and the index i is referred to the coefficients Mi.

4. We calculate the universal parameters F (n)[0] thanks to the zero-extrapolation of
the fitted functions gi(x̂), namely the parameters Ai

According to Ref. [BJ13], the critical exponent ω is, ω = 1.12(10). We evaluate the
scaling corrections L−ωz for three different ω cases: ω = 1.12, ω = 1.11 and ω = 1.13.
In Tab. 5.4, we report the parameters Ai calculated for these three ω cases. We do not
see any significant discrepancy in the determination of the zero-extrapolated values Ai
using different ω values.
In Fig. 5.7 we show the behavior of theMi as a function of L−ωz and its fitting functions,
in the central case ω = 1.12. The inserts are enlargements of the zero extrapolations.
Some interesting observations arise:
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1. the universal factors Ai, see Eq. (5.18), clearly show that the dimensionless quan-
tities ξexp/Lz is compatible to the one of ξRG. This is consistent by construction
and it is further proof that the film, at the equilibrium, is acting as a 2D system.

2. The universal factor A0 is compatible in the errors for the ξ12/Lz and the Binder
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A0 A1 A2

ξ12/Lz 1.788(11) -3.62(12) 3.24(58)
L = 200 ξexp/Lz 1.672(12) -3.33(21) 3.05(1.12)

ξRG 1.683(7) -3.37(10) 3.23(56)
B 1.767(2) 0.714(4) 0.289(1)

ω = 1.11 ξ12/Lz 1.760(13) -3.78(1) 4.22(16)
L = 150 ξexp/Lz 1.653(8) -3.36(8) 3.79(17)

ξRG 1.660(8) -3.25(3) 3.51(27)
B 1.764(1) 0.68(1) 0.38(8)

ξ12/Lz 1.782(11) -3.73(12) 3.25(0.58)
L = 200 ξexp/Lz 1.675(12) -3.34(21) 3.07(1.12)

ξRG 1.686(7) -3.38(10) 3.24(56)
B 1.767(2) 0.714(4) 0.288(1)

ω = 1.12 ξ12/Lz 1.764(13) -3.79(8) 4.23(15)
L = 150 ξexp/Lz 1.663(8) -3.368(8) 3.80(17)

ξRG 1.764(8) -3.26(4) 3.52(27)
B 1.764(1) 0.68(1) 0.38(8)

ξ12/Lz 1.785(11) -3.73(13) 3.26(58)
L = 200 ξexp/Lz 1.677(13) -3.34(21) 3.09(1.11)

ξRG 1.688(7) -3.38(10) 3.26(56)
B 1.767(2) 0.713(4) 0.287(1)

ω = 1.13 ξ12/Lz 1.767(12) -3.79(8) 4.24(15)
L = 150 ξexp/Lz 1.658(7) -3.37(7) 3.82(17)

ξRG 1.665(8) -3.26(4) 3.53(27)
B 1.763(1) 0.687(12) 0.38(8)

Table 5.4: Values of the universal parameters for the dimensionless quantities and for
three different ω values.

parameter, B. This implies that the microscopical structure of a glassy film
preserves the critical bulk properties.

3. For the Binder parameter, the universal factors A1 and A2 are not correlated
to the other analyzed dimensionless quantities.The higher-order universal coeffi-
cients Ai contains information about the geometry of the system.

5.5

Remark

In this Chapter, we investigated equilibrium properties of thin glassy films through
massive Parallel Tempering simulations. Exploiting a Renormalization group approach,
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we have shown that, at equilibrium, it is possible to map a glassy film through the 2D
correlation propagator, see Fig.5.3. However, for large enough thickness value, Lz > 4,
Figs.5.4-5.6 unveil a scaling behavior controlled by the bulk critical exponents.These
results are important because they prove that, despite the shortness of the thickness
Lz << L, a glassy film feels the critical behavior of the 3D spin-glass system. This
is quantitatively described in the form of an avoided phase-transition, as specified by
Finite-Size Scaling.



56 Equilibrium properties of a thin glassy film at the bulk temperature



CHAPTER VI

The out-equilibrium regime of a thin
glassy film

This chapter is dedicated to the out-equilibrium regime of a thin glassy film. We will
report the results of Ref. [Fer19b] and some unpublished ones.
Motivated by recent experiments of exceptional accuracy, we study numerically the
spin-glass dynamics in a film geometry. We cover all the relevant time regimes, from
picoseconds to equilibrium, at temperatures at and below the 3D critical point. The
dimensional crossover from 3D to 2D dynamics, which starts when the correlation
length becomes comparable to the film thickness, consists of four dynamical regimes.
Our analysis, based on a Renormalization Group transformation, finds that the overall
physical picture employed by Orbach et al. is consistent with their interpretation of
experiments [Guc14, Guc17, Zha17b, Ken18]. This chapter is organized as follows.
In Sec. 6.1 we report the simulation details of our massive numerical simulations; in
Sec. 6.2 we address the numerical evaluation of the growth of the correlation lengths,
both in the longitudinal and transversal direction. Next, in Sec. 6.3, we unveil the
scaling properties of a thin glassy film for several thickness and temperature in the out-
equilibrium regime. Finally, in Sec. 6.4 we evaluate the dynamical inherent structure
of the film state.

6.1

Model and simulations

We study numerically the Edward-Anderson model in a cubic lattice with a film ge-
ometry. Our films have two long sides of length Lx = Ly = L, and thickness Lz << L.
We imposed periodic boundary conditions (PBC) along the two longitudinal directions
X and Y.
We have simulated systems of lattice size Lx = 256 and different thickness Lz = 4, 6, 8
and 16. We choose the lattice value Lx >> ξ such that the thermodynamic limit holds

57
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T Lz Boundary condition

4 PBC and OBC
T = 0.7 8 PBC and OBC

16 PBC and OBC
4 PBC and OBC

T = 0.98 8 PBC and OBC
16 PBC and OBC
4 PBC and OBC
6 PBC

T = 1.1 8 PBC and OBC
16 PBC and OBC

Table 6.1: Information about the simulations.

Lx →∞. We have considered both PBC and Open Boundary Condition (OBC) along
the transversal direction Z. Our numerical protocol is an instantaneous temperature
quenching. At the initial time t = 0, our spins are in a random configuration, that
corresponds to a very high temperature T = ∞, and then, the system is abruptly
quenched down to our working temperature T .
We have simulated the Metropolis dynamics and we have followed the evolution of the
system as t increases. The time unit is the Monte Carlo step ( a full lattice Metropolis
sweep. A sweep roughly corresponds to 1 picosecond [Myd93] ).
Our spins σx = ±1 interact with their lattice nearest-neighbors through the Hamilto-
nian:

HEA = −
∑

<~x,~y>

J~x~y σ~x σ~y , (6.1)

where the quenched disordered couplings are {J~x~y} = ±1 with 50% probability.
For each quenched realization of the coupling (a sample) we study NR real replicas.
We have already addressed all the numerical details in Sec. 4.3.

6.2

Longitudinal and transversal correlation length

In this section, we address the out-equilibrium analysis of the longitudinal and transver-
sal correlation length.

We simulated our film system both with OBC and PBC for several thickness and
for three different temperatures. We have listed all the cases in Tab. 6.1.
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6.2.1 Longitudinal correlation length ξ
‖
12

According to Eq. (4.16), we evaluate the growth of the longitudinal correlation length

ξ
‖
12(t), see Fig. 6.1. All the main points can be assessed by looking at the data at
T = 0.98; the data at the cold temperature T = 0.7 and at the critical temperature
Tg = 1.1. are useful to confirm the scenario that we will draw out.

We identified four different regimes in the time evolution of ξ
‖
12(t).

In the first regime, for small times, the growth of ξ
‖
12(t) is indistinguishable from what

happens in a regular 3D system 1. Eventually, the growth rate changes at a time
depending on both the thickness value and the temperature. Let us call t1 the time
where the growth of ξ

‖
12(t) is distinguishable from the bulk evolution. The time t1

increases proportional to the thickness value and decreases as the temperature goes
far from the critical one. This effect is completely expectable since the dynamics are
slower as the temperature is colder.
Hence, the system enters in a second regime where ξ

‖
12(t) grows faster than in a D = 3.

All the curves, in Fig. 6.1, are above the grey dashed lines that indicate the bulk
evolution. In this second regime, the aging rate zfilm(T ) of the growth of correlation
length is neither that of a regular bidimensional system nor that of a bulk one. This
regime is a transient between the bulk and the 2D dynamics.

Then, we identify a third regime where for a while the system grows exactly as
bidimensional. In Fig. 6.1, we reported with black dashed lines the 2D growth corre-
spondent for each case.
Finally, the fourth regime corresponds to the saturation of the ξ

‖
12(t) to its equilibrium

values. We could achieved the equilibrium for all the cases at T = 1.1, see Fig. 6.1,
and for the shortest thickness Lz = 4 at T = 0.98, see Fig. 6.1; instead, at T = 0.7 the
dynamics is so slow that we could only achieve the third regime, see Fig. 6.1.

Effects of the boundary conditions

We checked that the growth of ξ
‖
12(t) does not have any significant dependence on the

boundary condition.
The longitudinal correlation function is calculated layer by layer. In the PBC case,
we averaged over all the layers, as it is holding the transversal translation invariance,
and we calculated the ξ

‖
12(t) through the integral estimation, see Eq. 4.16, where the

correlation function C4(T, r, t) =
∑Lz

z=0C
z
4 (T, r, t).

On the other hand, for the OBC, the situation is more complex, since it does not hold
the translation invariance anymore. We distinguished between two cases 2

� the C4 averaged between the external layers:

CTOP
4 =

C4(z = 0) + C4(z = Lz − 1)

2
, (6.2)

1The bulk data are taken from Ref. [BJ18]
2We are omitting the explicit dependence on time t, temperature T and distance r of the correlation

function C4(T, r, t) for notation’s simplicity. As the reader can notice, these are exactly the same cases
considered in the equilibrium context.
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Figure 6.1: Plots show the time evolution of the correlation length ξ
‖
12(t) at three

different temperatures. The grey lines correspond to the regular 3D evolution [BJ18];

instead, the black dashed lines identify the 2D evolution. We fit ξ
‖
12(t) as f(x) =

A x1/z2D in order to understand when the system start to grow exactly as a 2D system.
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� and the C4 averaged between the internal layers:

CZMED
4 =

C4(z = Lz/2) + C4(z = Lz/2− 1)

2
. (6.3)

Hence, for the OBC we built two different estimations of the correlation length ξ
‖
12(t).

In Fig. 6.2 we compared the growth of ξ
‖
12(t) in PBC cases with the OBC ones. As one
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Figure 6.2: Growth of the longitudinal correlation length ξ
‖
12(T, t) as a function of the

time t as computed with periodic boundary conditions (PBC) or with open boundary
conditions (OBC) on the central layers (ZMED) or on the top layers (ZTOP). At each
temperature, the insert shows the data from the main panel in the full time-range of
our simulations.

can observe, the difference in the growth of ξ
‖
12(t) are not significant and the overall

scenario is not affected by the boundary conditions.
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6.2.2 Transversal correlation length

The experimental approach on the film investigation is based on the hypothesis that
the system has a dimensional crossover as soon as the transversal correlation length
saturates to the thickness value. The sum estimator ξ⊥12 defined in Eq. 4.17, for OBC
and computing the correlations from the bottom layer z = 0, we can extend the sum
up to Lz − 1.
In Fig. 6.3 we reported both the behavior of ξ⊥12 performed with OBC and PBC. One
can easily observe as ξ⊥12 converges to a constant value, and there are finite-size effects
due to the periodic boundary conditions. In conclusion, we checked that the decision
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Figure 6.3: Plots show the time evolution of the transversal correlation length ξ⊥12. The
dashed lines are the behavior of ξ⊥12 for OBC condition; instead the continuous ones
are for PBC ones. Moreover, for reader’s simplicity, we reported the relative errors of
ξ⊥12 through lines distance than the errorbars.

on using open or periodic boundary condition does not significantly affect the growth
of the correlation lengths both along the longitudinal, ξ

‖
12(t), and transversal direction,

ξ⊥12(t).



6.3 — Finite-Size Scaling approach 63

6.2.3 Comparison between the motions in the transversal plane and the
longitudinal one.

We compared the ξ
‖
12(t) and ξ⊥12(t) in Fig. 6.4. The dynamical behaviors of these two

quantities are very different.
As expected ξ⊥12 saturates. However, the ξ

‖
12 continues growing after ξ⊥12 saturates: in

no way the time where ξ
‖
12(t) and ξ⊥12(t) stop growing is the same.

As one can see in Fig. 6.4, ξ
‖
12 needs time to respond to the saturation of ξ⊥12; and

its dynamics is faster-than-3D growth. Saturation of ξ
‖
12 eventually happens at later

times. Although ξ
‖
12 saturates as well. These two-time scales are remarkably different.

Hence, the film dynamics is characterized by a fast motion (along the transversal
plane) and four aging regimes in the longitudinal plane. Moreover, as Fig. 6.4 shows,
the glassy film has more than one relevant scale variable. In a bulk system, the dy-
namics is controlled by the correlation length ξ(t); instead, in a film geometry, the
thickness has a central role in the process too. We will extend this concept in the next
section thanks to a Finite-Size Scaling (FSS) approach.

6.3

Finite-Size Scaling approach

The dynamics in the longitudinal plane depends on the thickness value; however, we are
going to identify a second characteristic length that controls the 3D-to-2D crossover:
the bulk correlation length ξ3D

12 (t).
Hence, exploiting a Finite-Size Scaling approach, we have studied the behavior of the
dimensionless ξ

‖
12(t)/ξ3D

12 (t) as a function of ξ3D
12 (t)/Lz. These dimensionless quanti-

ties have the advantage to study the film dynamics as a function of ξ3D
12 (t) instead of

time. As one can see in Fig. 6.5, a very good scaling behavior emerges. The ratio
ξfilm

12 (t)/ξ3D
12 (t) grows beyond 1, thus signaling a faster-than-3D dynamics as soon as

ξ3D
12 (t) ≈ Lz/4. At the cold temperature T = 0.7, the ratio ξfilm

12 (t)/ξ3D
12 (t) confirms as

the system is still very far from the equilibrium’s achievement.
The saturation regime observed in Figs. 6.3, where data are shown as a function

of the time, corresponds to the decrease behavior of Fig 6.5b-6.5c. When the system
covers its fourth regime, see Sec. 6.2, its dynamics arrests and so the rescaled quantity
ξfilm

12 (t)/ξ3D
12 (t) goes to zero in the limit t→∞.

Effects of the boundary conditions We have compared the behavior of the di-
mensionless ξ

‖
12(t)/ξ3D

12 (t) as a function of ξ3D
12 (t)/Lz for the OBC and the PBC cases,

see Tab. 6.1. The layer-dependence with OBC makes slightly more complicated the
analysis of scaling function, see Fig.6.6. Fortunately, the difference between the OBC
and PBC is tiny and the physical scenario which emerges is compatible.
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Figure 6.4: Growth of the longitudinal ξ
‖
12 (solid lines) and of the transversal ξ⊥12 (dashes

lines) correlation lengths with the waiting time t after a quench to temperature T . For
each temperature, the inset is a zoom of the saturation of ξ⊥12 and of the separation

between the ξ
‖
12 and the bulk correlation length.

6.3.1 Renormalization Group Transformation

The scale-invariance evinced in Fig. 6.5 prompts us to consider the film dynamics from
the Renormalization-Group perspective (see e.g. [Ami05]). Indeed, in equilibrium,
phenomenological renormalization [Nig76] maps our film at temperature T to a truly
2D spin glass at an effective temperature Teff,2D:

ξ
‖,eq
12 (T, Lz) = Lz ξ

eq,2D
12 (Teff,2D) , (6.4)

where the equilibrium correlation length ξeq,2D
12 is a smooth function of Teff,2D (provided

that Teff,2D > 0). For any fixed T > Tc, Teff,2D increases with Lz (Teff,2D → ∞ when
Lz → ∞). On the other hand, holding fixed T ≤ Tc while Lz grows, Teff,2D reaches a
limit. The limit is neither 0 nor ∞, because the whole spin-glass phase is critical in
3D [AB10b, Con09].
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Figure 6.5: Dynamical scale-invariance for the dimensionless quantity ξfilm
12 (t)/ξ3D

12 (t)
as a function of the rescaled bulk length ξ3D

12 (t)/Lz.

Two questions naturally appear:

1. Is the equilibrium mapping (6.4) meaningful for an aging, off-equilibrium film?

2. Is it sensible to assume Teff,2D ≈ T? (an assumption that, although not explictly,
underlies the experimental analysis [Guc14, Guc17, Zha17b, Ken18]).

In order to address the above two questions, we perform on our aging films a linear
Kadanoff-Wilson block spin transformation of size Lz [see (4.18)-(4.19)]: from L3

z of
our original spins at time t, we obtain a single renormalized spin in the renormalized
2D system. The correlation functions computed for the aging renormalized spins can
be compared with those of a truly 2D system at the temperature Teff,2D obtained from
Eq. (6.4). In particular, we have found it useful to compute the dimensionless ratio
ξRG

23 (t)/ξRG
12 (t) for both the renormalized spins and the truly 2D system [Eq. (4.14) tells

us that ξRG
23 (t)/ξRG

12 (t) is a smooth function of the ratio ξRG
12 (t)/ξRG,eq

12 ] 3.

3We use ξ12(t)/ξeq12 as a computable proxy for the unknown v in Eq. (4.14), see Fig. 6.7 and
Ref. [Fer18a].
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OBC external-layer (dots) at temperatures T = 0.98 (top) and T = 1.1 ( bottom).

As expected for a film at T ≤ Tc, the scaling function in Fig. 6.7 does not depends
on Lz. To be precise, for T = 0.98 we did not reach equilibrium in the Lz = 8 film.
However, by taking ξeq

12 from the block-spins formed from the Lz = 4 film, we find an
excellent scaling: corrections to scaling, if any, are not measurable within our statistical
accuracy for the films.

Now, the very same scaling function can be computed in a regular two 2D system
at temperature T2D. If one takes T2D = T (T is the film’s temperature), we find a clear
discrepancy in Fig. 6.7. On the other hand, if we take T2D = Teff,2D the matching with
the film’s scaling function is much better, although corrections to scaling for the 2D
system are suppressed only when T2D → 0. Hence, the answer to our first question
above is yes, Eq. (6.4) is meaningful in the off-equilibrium regime, as well.

As for our second question, Finite Size Scaling (see e.g. [Ami05]) implies dTeff,2D/dT ∝
L

1/ν
z at Tc. Hence, when Lz grows, the mapping T → Teff,2D becomes singular at T = Tc.

On the other hand, we do not see questions of principle implying a singular mapping
for T < Tc. Accordingly, we find Teff,2D ≈ 1.11T at T = Tc, but Teff,2D ≈ 1.04T
at T ≈ 0.9Tc. In other words, the assumption Teff,2D ≈ T is sensible, provided that
T < Tc.



6.4 — Equilibrium or almost equilibrium? 67

1

1.2

1.4

1.6

0.4 0.8

T = 1.1

0.4 0.8

T = 0.98

ξR
G

23
(t
)/
ξR

G
12

(t
)

ξRG12 (t)/ξRG,eq12

T2D = 1.1
T2D = 1.225
Lz = 4
Lz = 6
Lz = 8

T2D = 0.98
T2D = 1.024
Lz = 4
Lz = 8

Figure 6.7: The scale-invariant ratio ξRG
23 (T, t)/ξRG

12 (T, t), versus the ratio
ξRG

12 (t, T )/ξRG,eq
12 (T ). In our direct-quench protocol, ξ12(t, T ) grows monotonically to

its equilibrium value ξeq
12(T ). For T = 1.1 ≈ Tc and T = 0.98 ≈ 0.9Tc, we compare the

scaling function obtained from block-spins (as extracted from films of several thickness
Lz), with two analogous functions computed in 2D systems. If the 2D system is consid-
ered at the film’s temperature T2D = T , the scaling function ξ23(T, t)/ξ12(T, t) clearly
differs from the block-spin result. On the other hand, the film and the 2D scaling
function essentially coincide if the 2D system is considered at the effective temperature
Teff,2D defined by Eq. (6.4).

6.4

Equilibrium or almost equilibrium?

As we have shown in the previous sections, a glassy film has two motions: one in the
transversal plane (fast) and another in the longitudinal one (slow). However, the
equilibrium is achieved only if all the system is at equilibrium ( both the fast and slow

motions). This means that the complete saturation of ξ⊥12 could happen only when ξ
‖
12

does too.
In the transversal plane, the correlation length ξ⊥12 is really fast to achieve almost

its equilibrium value, 99%, and, then, it needs a life to fill the last gap 1% (see below
and Fig. 6.8). Hence, we hypothesized that: ”the saturation of ξ⊥12 happens as soon as
it achieves the 99% of its equilibrium value

ξ⊥12(tsaturation) = 0.99 ξ⊥12(t∞) ”. (6.5)

In the following, we will show how this definition of the saturation time along the
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transversal plane is consistent with the physical dynamics that we have explained in
the previous sections.

Thermal noise

The errors of ξ⊥12 were calculated exploiting the jackknife technique, see Appendix
B.1 for details. However, these estimations are dominated by sample-to-sample fluc-
tuations. Hence, we did a delicate computational technique to isolate the thermal
contribution to the error.

Being at the equilibrium, the time dependence in the overlap calculation of Eq. (4.13)
can be dropped off and we can average over different times in order to gain statics and
to have a very accurate measurement of the transversal correlation length ξ⊥eq. This
technique is called Cauchy condensation and we exploited it to average over the last
NT = 20 times, where we are certain to have achieved the equilibrium:

ξ⊥Cauchy(isample) =
1

NT

NT−1∑

it=0

ξ⊥12(tit , isample) ; (6.6)

where it is a time index, isamples indicates an independent sample, and ξ⊥Cauchy(isample) ≡
ξ⊥eq(isample)

4.
The estimator ξ⊥Cauchy(isample) is very accurate. For each time t, let us define a new

variable:
ξ⊥fluc(t, isample) =

[
ξ⊥Cauchy(isample)− ξ⊥12(t, isample)

]
. (6.7)

Then, we calculated the error of this quantity as:

ξ⊥fluc(t) =
1

NS

NS∑

isample=0

(
1

NT

NT∑

it=0

ξ⊥fluc(tit , isample)

)

[
ξ⊥fluc(t)

]2
=

1

NS

NS∑

isample=0

(
1

NT

NT∑

it=0

[
ξ⊥fluc(tit , isample)

]2
)

σ(t) =

√√√√
[
ξ⊥fluc(t)

]2 −
[
ξ⊥fluc(t)

]2

NT − 1
. (6.8)

This technique reduces drastically the errors of ξ⊥12(t). The built quantity ξ⊥fluc(t) absorbs
the sample-to-sample fluctuations and, hence, we obtained an error estimation of ξ⊥12(t)
that contains only thermal fluctuations. For the following analysis, we will use this error
estimation.

Now, let us define a time window τ ∈ [t1 : t2] where the time t1 and t2 are defined
as:

ξ⊥(t1) = 0.99 ξ⊥eq and ξ⊥(t2) ' ξ⊥eq . (6.9)

We focused on the case Lz = 4. In Fig. 6.8 we show the growth of both the correlation
lengths ξ⊥12(t) and ξ

‖
12(t) in the time window τ at two different temperatures.

4In simulations, we have stored configurations at times tn integer-part-of 2n/4.
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Figure 6.8: Evaluation of the growth of the correlation lengths, ξ⊥(t) and ξ‖(t), in the
time window, τ . On the left data at T = 0.98 and on the right data at T = 1.1.

As one can see from Fig. 6.8, when ξ⊥12 achieves almost its equilibrium values, its

joined ξ
‖
12 is far away from its equilibrium:

T = 1.1 ξ‖(t1) ∼ 0.257 ξ‖eq

T = 0.98 ξ‖(t1) ∼ 0.196 ξ‖eq . (6.10)

Moreover, when ξ⊥12 achieves its real equilibrium at the time t2, the longitudinal

correlation length ξ
‖
12(t2) is:

T = 1.1 ξ‖(t2) ∼ 0.934 ξ‖eq

T = 0.98 ξ‖(t2) ∼ 0.934 ξ‖eq . (6.11)

or in other words, ξ
‖
12 achieves its almost equilibrium.

Hence, our numerical definition of almost equilibrium is consistent for both film
motions.

6.5

The density distribution P (q)

According to Ref. [Guc14], they observed a saturation of the relaxation function,
S(t, tw, T,H), as soon as the transversal correlation length is compatible with the thick-
ness value ξ⊥12 ∝ Lz. One possible explanation for this behavior is that the occupancy
of the states created when ξ⊥12 ∝ Lz increases, as it must do because the number of

correlated spins is increasing with increasing the waiting time tw (ξ
‖
12(t) > ξ⊥12), but the

structure of those created states does not. Hence, we have investigated the behavior
of the density probability to infer the microscopical scenario.
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6.5.1 Growth of 〈Q2
a,b(t)〉

We perform a Kadanoff-Wilson transformation over our system and we define spins
over the renormalized system, see Eq. 4.18.
Then, we study the time evolution of the rescaled quantity:

〈Q2
a,b(t)〉 =

1

Nbox

Nbox∑

{box}

1

Ṽ

Ṽ∑

X

[
1

L3
z

Lz−1∑

r1,r2,r3=0

q(a,b)(r + LzX, t)

]2

, (6.12)

where we averaged over all the possible boxes, that we can build on our film system,
and over the renormalized lattice Ṽ = V/L3

z .

The rescaled quantity, 〈Q2
a,b(t)〉, is an indicator of the microscopical structure of the

states. In Fig. 6.9 we report the growth of 〈Q2
a,b(t)〉 as a function of time.

Analogously to Fig. 6.8, we studied the evolution of 〈Q2
a,b(t)〉 in the time window τ .
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Figure 6.9: Evaluation of the growth of the 〈Q2
a,b(t)〉 in the time window, τ . On the

left data at T = 0.098 and on the right data at T = 1.1.

At time t1, when the transversal correlation length ξ⊥12(t1) achieves its almost equi-

librium, we see that 〈Q2
a,b(t)〉 is still far away from its equilibrium:

T = 1.1 〈[Qa,b(t1)]2〉 ∼ 0.752 〈[Qa,b]2〉eq

T = 0.98 〈[Qa,b(t1)]2〉 ∼ 0.737 〈[Qa,b]2〉eq . (6.13)

Instead, at time t2, consistently to the previous results, the 〈Q2
a,b(t)〉 is close to the real

equilibrium:

T = 1.1 〈[Qa,b(t2)]2〉 ∼ 0.999 〈[Qa,b]2〉eq

T = 0.98 〈[Qa,b(t2)]2〉 ∼ 0.998 〈[Qa,b]2〉eq . (6.14)

Hence, the microscopical structure of the states does not arrest its evolution when
ξ⊥ saturates.
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6.5.2 Behavior of the density probability P (Q(t))

Hence, we studied the properties of the density distribution P (Q(t)) ,where, for nota-
tion simplicity, 〈Q2

a,b(t)〉 = Q(t).
The P (Q(t)) is the average over the disorder distribution P (J) 5

P (Q(t)) = PJ(Q(t)) , (6.15)

where, for each sample realization one can define the density distribution as

PJ(Q(t)) = 〈 1

V

V∑

i=0

δ(Q(t)−QJ
i (t))〉 . (6.16)

The definition of Eq. 6.16 holds only in the thermodynamical limit. Instead, in a
finite-size system the thermodynamical distribution P (Q(t)) is enlarged because the
delta functions became distributions with no-zero widths.

A simple way to take into account the spreading of the delta functions due to
finite-size effects is to introduce a symmetric convolution kernel

G
(k)
∆ (h− h′) ≡ C exp

[
−(|h− h′|/∆)k

]
, (6.17)

where C is a normalizing constant, the spreading parameter ∆ = 1/
√
V such that holds

the thermodynamic limit limL→∞∆ = 0 and k = 2 for having the Gaussian convolution
[Bn11]. As the time increases and, so, the correlation length ξ(t), the P (Q(t)) curves
have a spreading. This behavior is perfectly consistent with the increasing of the
inherent state of the system.

According to Ref. [Guc14], the saturation of the transversal correlation length ξ⊥12

is followed by a dynamical arrest and, so , ξ⊥12 is the characteristic value proportional
to the free-energy barrier ∆max. Hence, we studied the behavior of P (Q(t)) in the time
window τ ∈ [t1 : t2].
The behavior of P (Q(t)) clearly draws out a scenario where the system does not arrest
its dynamics, and its state structure evolves.

5We focused only in the binary distribution P (J) = ±1.
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Figure 6.10: Plots show the behavior of the density probability P (Q(t)) in the time
window τ . On the left we report data at T = 0.98; on the right data at T = 1.1.

6.6

Remark

We have studied in detail, for the first time, the dimensional crossover in the aging
dynamics of spin glasses in film geometry, uncovering rich and composed dynamics.
Several very different regimes and scaling laws emerge, and we have succeeded to
clarify with good precision the behavior of all of them. We hope and believe that
our findings will be a sound basis for analyzing experimental results on such systems.
Our analysis starts from the intuition about the presence of a dimensional crossover,
linking 2D and 3D physics through films: we find that the intuition is correct but
oversimplifies a reality that turns out to be more complex. Film physics is becoming
very relevant from an experimental point of view, but it is also becoming clear that it
can also become a powerful computational tool.
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CHAPTER VII

The Ising spin-glass in presence of an
external magnetic field

In this chapter, we will present the results that we have obtained in the evaluation of
the spin-glass dynamics in presence of an external magnetic field [Zha20b, Pag21]. We
examined in details the dynamics of the spin-glass system in the vicinity and below
its transition temperature Tg. The advent of realistic time and length scales on the
dedicated supercomputer, Janus II, enables a synergy between theory, experiment,
and simulations that encompasses a relatively complete examination of the dynamical
properties of spin-glass dynamics.
We believe that the experimental results are vital for a full comprehension of our
numerical and theoretical ones. Hence, we are going to present them in this chapter.
We want to underline that we carry out the numerical simulations and, in order to
describe the behavior of both experimental and numerical results, we unveil a new
powerful scaling law.

This chapter is organized as follows. Section 7.2 details the experimental measure-
ments of the non-linear magnetization of the CuMn spin-glass. Section 7.3 describes
the nature of the numerical simulations. Section 7.4 introduces the response function,
S(t, tw;H), and its extraction from experiment and simulations. Section 7.5 develops
the new scaling law, and applies it to both experimental and simulation results. Next,
in Sec. 7.6 we show how to connect the peak of the response function S(t, tw;H) to a
Hamming distance (HD). In addition, Section 7.7 exhibits the nature of the growth of
the numerical correlation length ξ in the presence of a magnetic field at temperatures
close to the critical temperature Tg. We observed interesting overshoot phenomena that
we prove to be general, as they are observed even in ferromagnetic systems. Section
7.8 investigates the de Almeida-Thouless (dAT) phase boundary in D = 3. Important
technical details are provided in the appendices. Finally, Section 7.9 summarizes our
results, and point to future opportunities exhibited from the synergy between theory,
experiment, and simulations.
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7.1

Introduction

We present an analysis of the zero field cooling magnetization, MZFC(t, tw;H), as a
function of t, tw and magnetic field H at prescribed temperatures T ≤ Tg. In this
protocol the ”sample” is quenched in zero magnetic field from a temperature T > Tg
to a measuring temperature T ≤ Tg. The word quench means different things experi-
mentally and in simulations. In the former, there is a finite cooling rate as the system
is cooled from above Tg to the measurement temperature T . It is typically of the order
of one to tens of second/degree of cooling. In the case of simulations, it can be instan-
taneous. Though on the surface this would seem a difficult issue, in fact temperature
chaos [Bra87, Ban87] (that we now know to be present in non-equilibrium dynamics as
well [BJ20]) makes the two approaches similar if not identical. Experimentally, though
the cooling rate is finite, lowering the temperature sufficiently (larger δT than milli-
Kelvins) creates new spin-glass states without knowledge of previous history (termed
rejuvenation [Jon98]). This is the reason that the magnetic susceptibility is repro-
ducible from one experiment to another without any dependence on the cooling rate.
Thus, the final state reached upon a temperature quench experimentally is as fresh as
the state arrived at in simulations upon an instantaneous temperature quench.

After the measurement temperature T is reached, the system is held for a time
tw, the waiting time, after which a magnetic field H is turned on. The subsequent
magnetization, MZFC(t, tw;H), is then measured over a time interval t. The response
consists of two terms: an instantaneous increase in magnetization (the so-called re-
versible magnetization), and a slowly increasing magnetization, the irreversible mag-
netization. The latter is found to depend upon all of the factors, t, tw, H. The rise of
the irreversible part is typically very slow, taking literally times of the order of the age
of the universe to reach equilibrium. For this reason, a spin-glass, once perturbed from
a quasi-equilibrium state, never reaches equilibrium, and one is always in a dynamical
or non-equilibrium regime.

The ”target” of the sum of the reversible and irreversible magnetizations is the so-
called field-cooled magnetization, MFC, for which the measuring protocol is the reverse
of the zero-field magnetization. Namely, at T > Tg, a magnetic field H is turned on, and
then the temperature is quenched to T ≤ Tg. Typically, MFC is relatively constant,
but not without its own dynamics. If the magnetic field is suddenly removed, the
magnetization immediately decays by its reversible part (the same as in the zero-field
case), followed by a slow decay termed the irreversible part or MTRM(t, tw;H), the
thermoremananet magnetization dependent upon the waiting time tw. In general, it is
found that,

MFC = MZFC(t, tw;H) +MTRM(t, tw;H) , (7.1)

the so-called extended principle of superposition [Nor97]. There is an immense litera-
ture covering both MZCF(t, tw;H) and MTRM(t, tw;H) measurements, and the physical
insights gained from them [Vin97, Nor97, Vin07].



7.1 — Introduction 77

Our approach is rather different, in that we choose to quantify the dynamics in
terms of the spin-glass correlation length ξ(t, tw;H). Experimentally, this approach
was introduced first in the work of Joh et al. [Joh99] who developed the following
protocol. They used the relaxation function, S(t, tw;H) defined by,

S(t, tw;H) = d

[
−MTRM(t, tw;H)

]/
d ln t . (7.2)

It is known that S(t, tw;H) peaks at was is termed an effective waiting time, teff
H which

is usually of the order of tw [Nor86]. It is a time characteristic of the decay of
MTRM(t, tw;H), or though Eq. (7.1), of the increase of MZFC(t, tw;H) with time t.
As noted by Hammann et al. [Led91, Ham92] for states distributed according to ul-
trametric symmetry, the dynamics are controlled by a largest free energy barrier height,
∆max associated with the state that has the smallest overlap with the initial state, qmin.
Thus, teff

H can be associated with ∆max through the usual Arrhenius law:

∆max = kBT
(

ln teff
H − ln τ0

)
, (7.3)

where τ0 is a characteristic exchange time, τ0 ∼ ~/kBTg.
In order to extract a correlation length, Joh et al. [Joh99] used the notion that

the free energy barrier heights were reduced in the presence of a magnetic field by the
Zeeman energy, EZ , [Joh99, Guc14, Bou92, Vin95, BJ17a] and that, for small magnetic
fields H,

EZ =
(
Vcorr/a

3
0

)
χFCH

2 , (7.4)

where χFC is the field-cooled magnetic susceptibility per spin, Vcorr is the correlated
volume, and a0 the average spatial separation of the magnetic ions, so that the number
of correlated spins Ncorr = Vcorr/a0. They took [Zha19, Zha20a],

Ncorr = Vcorr/a
3
0 =

4π

3
ξ3−(θ/2) ≡ b ξ3−(θ/2) , (7.5)

where b is a geometrical factor, θ is the ”replicon” exponent 1 [BJ17a], and ξ is in units
of a0. Using Eqs. (7.2) through (7.5), they exhibited the data shown in Fig. 7.1.
The data in the limit of small magnetic fields H were clearly linear in H2, allowing
Eqs. (7.4) through (7.5) to set a value for ξ. The deviation from linearity in H2 was
puzzling, leading to the authors stating: ”We do not have a satisfactory explanation
for this change in slope. A different description predicts a linear dependence of EZ
upon H, which can be made to fit the data...but with a significant deviation at small
field changes.” It is the purpose of this work to analyze the entirety of the data in terms
of non-linear terms in the spin-glass magnetization according to a new scaling law. In
addition to our analysis of new magnetization data contained in this work, we shall
also show that the data of Fig. 7.1, and subsequent experiments of Bert et al. [Ber04]
on the Ising spin-glass Fe0.5Mn0.5TiO3, fit the new scaling law well, obviating the need
for questioning Eq. (7.4), and putting to rest the controversy over the nature of the

1See Appendix D.2 for details.
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Figure 7.1: A plot of ln teff
H [equivalently EZ from Eq. (7.4)] vs H2 for Cu:Mn 6 at %

(T/Tg = 0.83, tw = 480 sec) at fixed tw and T . (Data taken from Ref. [Joh99])

Zeeman energy in spin-glasses. Our experimental co-workers bring together a complete
set of magnetization measurements of a single crystal of the prototypical spin-glass,
CuMn 6 at.%. As opposed to thin films where the correlated volume is of ”pancake”
geometry [Zha17a], the correlated volume is most certainly spherical and unlimited
by finite size crystallites separated by grain boundaries [Rod04, Rod13]. Accompany-
ing these experimental measurements are the simulations performed on the dedicated
supercomputer, Janus II, that, for the first time, exhibit spin-glass correlations that
approach experimental time and length scales.

A breakthrough for the comprehension of spin-glass system in the presence of a
magnetic field is given by the range of the correlation lengths that we are able to
achieve both experimentally and numerically. We were able to reports results up to
ξ ≈ 23.6 a0 (a0 is the typical Mn-Mn distance), which represents a step forward by a
factor of three than from previous work [BJ17a]. On the experimental side, we reach
a correlation length four times larger than in Ref. [Joh99].

Although our simulations were designed to that end, we attempt a preliminary
location of the dAT line in the phase diagram of the 3D spin-glass (sec. 7.8).

The synergy between these two approaches, combined with theory, opens up a new
vista for spin-glass dynamics. A direct outgrowth of this collaboration is the introduc-
tion of the new magnetization scaling law that encompasses the full range of magnetic
fields for temperatures in the vicinity of the condensation temperature Tg [Zha20b].
This scaling law successfully describes both experimental and simulation results, and
as noted above, will resolve a nearly three-decade-old controversy concerning the nature
of the magnetic state.

7.2
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Experimental details

The experimental measurements were made with a CuMn ∼ 6 at.% single crystal
sample, prepared using a Bridgman method. The Cu and Mn were arc melted several
times in an argon environment, and cast in a copper mold. The ingot was them
processed in a Bridgman furnace. Both x-ray fluorescence and optical observation
showed that the beginning of the growth is a single phase. More details can be found
in Appendix A of Ref. [Zha19]. The transition temperature, Tg = 31.5, was determined
from the temperature at which MZFC(T ) first began to depart from MFC(T ).

The magnetization measurements were made using a commercial DC SQUID. The
sample was quenched from 40 K at 10 K/min to the measuring temperature Tm in zero
magnetic field. After stabilization of the temperature, the system was aged for a waiting
time tw before a magnetic field was applied, and the magnetization MZFC(t, tw, Tm)
recorded as a function of time t. The temperatures Tm were chosen as 28.5 K, 28.75
K, and 29 K, so that Tm ≥ 0.9Tg. The magnetic fields ranged from 16 Oe to 59 Oe.
Table 7.1 displays the relevant experimental parameters, including the effective replicon
exponent θ(x̃).

Table 7.1: The values of the temperatures Tm and two waiting times tw for the four
experimental regimes, the respective correlation lengths at times tw (in units of the
average Mn-Mn spacing a0), and the effective replicon exponent θ(x̃) obtained from
Eqs. (7.41) and (7.42) below (see also Appendix D.2).

Tm (K) tw (s) ξ(tw)/a0 θ(x̃)

Exp. 1 28.50 10000 320.36 0.337
Exp. 2 28.75 10000 341.76 0.344
Exp. 3 28.75 20000 359.18 0.342
Exp. 4 29.00 10000 391.27 0.349

7.3

Some details of the simulations

We carried out massive simulations on the supercomputer Janus II [BJ13] studying
the Ising-Edwards-Anderson (IEA) model in a cubic lattice with periodic boundary
conditions and size L = 160 a0, where a0 is the average distance between magnetic
moments, see Tab. 7.2 for the simulation details. The N = LD Ising spins, sx = ±1,
interact with their lattice nearest neighbors though the Hamiltonian:

H = −
∑

〈x,y〉

Jxysxsx −H
∑

x

sx , (7.6)
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where the quenched disordered couplings are Jxy = ±1 with 50% probability. We name
a particular choice of the couplings a sample. In the absence of an external magnetic
field H = 0, this model undergoes a spin-glass transition at the critical temperature
Tg = 1.102(3) [BJ13].

As we explained in the Sec. 7.1 in order to mimic the experimental protocol of
the zero-field cooling (ZFC) in the simulation, we followed this procedure. The initial
random spin configuration was placed instantaneously at the working temperature T ,
and left to relax for a time tw, at H = 0. At time tw, the external magnetic field was
turned on and the magnetic density was recorded,

MZFC(t, tw;H) =
1

1603

∑

x

sx(t+ tw;H) (7.7)

as well as the correlation function,

C(t, tw;H) =
1

1603

∑

x

sx(tw;H = 0) sx(t+ tw;H) . (7.8)

The non-equilibrium dynamics was simulated according to a Metropolis algorithm; the
numerical time unit being the lattice sweep, roughly corresponding to one picosecond of
physical time [Myd93]. For each temperature and waiting time, see Tab. 7.2, several
magnetic fields were simulated. For computational reasons, one single independent
sample was performed for each case. However, we checked the robustness and the
sample-independence of our results in a single case, studied in detail in Appendix D.3.

According to Ref. [BJ17a], the value of the dimensionless magnetic field H used
in the numerical simulation can be matched to the physical one. This relation was
estimated from experimental Fe0.5Mn0.5TiO3 data [AK94]. We found for H = 1 in the
IEA model that it was corresponded to 5×104 Oe physically. Hence, our experimental
range (16 Oe to 59 Oe) corresponds to magnetic field 0.0003 . H . 0.0012 in the IEA
model. However, the signal-to-noise ratio, which scales linearly in H for small fields,
limited our simulation to H ≥ 0.005 [Méz87], equivalent to a physical H = 250 Oe.

In order to match the experimental and numerical scales, we exploited a dimensional
analysis [Fis85] to relate H and the reduced temperature t̂ = (Tg − T )/Tg through the
scaling,

t̂num ≈ t̂exp

(
Hnum

Hexp

) 4
ν(5−η)

, (7.9)

where ν = 2.56(4) and η = −0.39(4) are H = 0 critical exponents [BJ13], while the
subscript exp and num stand for experiment and simulation respectively. According to
Eq. (7.9), and signal-to-noise limitation, we can match the experimental and numerical
scales by increasing t̂num, resulting in 0.89 . Tnum . 0.99. Given our pre-existing
database of long simulations at H = 0 [BJ18], it has been convenient to work at
temperatures Tnum = 0.9 and Tnum = 1.0. Table 7.2 displays the relevant numerical
parameters, including the effective replicon exponent θ(x̃) and the Cpeak(tw) values that
will be introduced and explained in Sec. 7.4.2.
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T tw ξ(tw;H = 0) tmax θ(x̃) Cpeak

Run 1 0.9 222 8.294(7) 230 0.455 0.533(3)
Run 2 0.9 226.5 11.72(2) 230.5 0.436 0.515(2)
Run 3 0.9 231.25 16.63(5) 233 0.415 0.493(3)
Run 4 1.0 223.75 11.79(2) 228 0.512 0.422(2)
Run 5 1.0 227.625 16.56(5) 230 0.498 0.400(1)
Run 6 1.0 231.75 23.63(14) 235 0.484 0.386(4)

Table 7.2: Main parameters for each of our numerical simulations: T , tw, ξ(tw), the
longest simulation time tmax, the replicon exponent θ (see Appendix D.2) and the value
of Cpeak(tw) employed in Eq. (7.15).

7.4

Measurements and computations of the relaxation

rate

We address the relaxation function S(t, tw;H) in Sec. 7.4.1, and explain how teff
H is

extracted from simulations in Sec. 7.4.2.

7.4.1 Extracting the relaxation function S(t, tw; H)

The main quantity used in the experiment of [Joh99] is the relaxation function S(t, tw;H):

S(t, tw;H) =
dMZFC(t, tw;H)

d ln t
(7.10)

that exhibits a local maximum at time teff
H .

Experimentally, the magnetization measurements MZFC(t, tw;H) enable the evaluation
of the relaxation function S(t, tw;H) directly. A representative set of data for Tm = 28.5
K and tw = 104 sec is displayed in Fig. 7.2.

Numerically, the calculation of S(t, tw;H) is sensitive to the relative errors of the
magnetization density which increase as:

δMZFC(t, tw;H)

MZFC

∝ 1/H . (7.11)

We employ two tricks to extract the relaxation function S(t, tw;H) from simulations.
On the one hand, we perform a de-noising method to regularize the magnetization
densityMZFC(t, tw;H), exploiting the Fluctuation-Dissipation relations (FDR) [Cug93,
Cru03, Fra94, Fra98, Fra99]

T

H
MZFC(t, tw;H) = F(C;H) , (7.12)
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Figure 7.2: Example of S(t, tw;H) measurements for different magnetic fields. The
sample is a single crystal CuMn 6 at.%, and the measurements were taken at a waiting
time of 10 000 s and at a temperature T = 28.5 K. The time at which S(t, tw;H) peaks
is taken as teff

H , the effective response time. The shift to shorter times as H increases is
the measure of the reduction of ∆max with increasing Zeeman interaction, and is used
to extract the linear and non-linear terms in the magnetic susceptibility.

where F(C;H) behaves at large C(t, tw;H) as F(C;H) = 1− C(t, tw;H). We report
the details in Appendix D.1.1. On the other hand, we defined the S(t, tw;H) as a finite
time difference

S(t, tw, t
′;H) =

MZFC(t′, tw;H)−MZFC(t, tw;H)

ln
(
t′

t

) , (7.13)

In simulations, the time is discrete and we have stored configurations at times tn =
integer-part-of 2n/4, with n an integer. Let us write explicitly the integer dependence
of the time t and t′ as:

t ≡ tn t′ ≡ tn+k (7.14)

where k is an integer time parameter. The reader will note that there is a tradeoff in
the choice of k. On the one hand, the smaller k is the better the finite-difference in
Eq. (7.13) represents the derivative. On the other hand, when k grows the statistical
error in the evaluation of Eq. (7.13) decreases significantly. In this section we report
only the case for k = 8 (more details about time discretization are provided in Appendix
D.1.3). The numerical S(t, tw, t

′;H) are exhibited in Fig. 7.3. A local maximum in
the long-time region can be seen.
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Figure 7.3: Time evolution of the relaxation function S(t, tw, t
′;H) of Eq. (7.13)

for the six runs of Table 7.2.
All the plots have the time parameter k = 8 in Eq. (7.14).

7.4.2 A different approach for the computation of teff
H in the simulations

As explained in Sec 7.1, we are interested in the evaluation of the time when the
relaxation function S(t, tw, t

′;H) peaks, namely teff
H . Two problems arise:
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1. The reader will note two separate peaks in the S(t, tw;H) curves in Fig. 7.3:
namely the peak at microscopic times t ∼ 4, and the peak we are interested in
t ∼ tw. Unfortunately, the distinction between the two peaks is only clear at
small H. Previous numerical work [BJ17a] did not face this problem, probably
because of their smaller correlation length, ξ ≈ 8, (the nonlinear susceptibilities
grow very fast with ξ: see the next Section).

2. We are most interested in the limit H → 0, which is extremely noisy as we have
explained above.

An interesting possibility emerges when plotting the relaxation function S(t, tw, t
′;H)

in terms of the correlation function C(t, tw;H), rather than as function of time, (see
Fig. 7.4). The correlation function C(t, tw;H) is a decreasing function of time, the
long time region corresponding to small C(t, tw;H), and vice versa. Hence, the physical
peak in which we are interested is the peak that appears at small C(t, tw;H),(see Fig.
7.4). Analogously to Fig. 7.3, we report only the case for k = 8 in Fig. 7.4.

The simulation data strongly suggest that, when H → 0, the correlation function
C(t, tw;H) approaches a constant value Cpeak(tw) at the maximum of the relaxation
function. Hence, our proposal is to define teff

H in the simulations as the time when
C(t, tw;H) reaches the value Cpeak(tw)

C(teff
H , tw;H) = Cpeak(tw) . (7.15)

As the reader can see, Eq. (7.15) is solvable also at H = 0 [ instead of a finite magnetic
field as regained for magnetization data, Eq. (7.2)]. The crucial point for our new teff

H

definition, see Eq. (7.15), is the determination of the values of Cpeak(tw). Two problems
arise:

1. The constant value Cpeak(tw) is well defined only for small magnetic field H.

2. The relaxation function as a function of the correlation, S(C,H), is an implicit
function of a re-parametrized time,

tnew =
1

2
ln

(
tn+k

tn

)
, (7.16)

(see Appendix D.1.3 for details).

Our strategy is to study, for each run, the behavior of S(C,H) for the two smallest
magnetic fields H and for three different integer times k. We report in Fig. 7.5 an
enlargement of the peaks for S(C,H) used for the evaluation of Cpeak(tw). We report
our estimates for Cpeak(tw) in Tab. 7.2.

The relaxation function S(tnew, tw;H) depends on the correlation length ξ(tw), and
on the applied magnetic field H, Eq. (7.2). We observe, however, that S(tnew, tw;H)
has a temperature dependence, which we extract by comparing Runs 2 and 4 in Fig. 7.5.
These two cases are characterized by

1. A similar starting correlation length ξ(tw;H = 0) ≈ 11.7, (see Tab. 7.2);
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Figure 7.4: S(t, tw;H, k) as a function of C(t, tw;H).
The peak region is enlarged in Fig. 7.5. The physically relevant peak is the one for
small C, corresponding to long times. We consider the reparametrized tnew with k = 8
in Eq. (7.16).

2. The same applied magnetic field in each subfigure, respectively, namely H =
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Figure 7.5: Enlargement of the peak region of S(t, tw, t
′;H) as a function of C(t, tw;H)

for several values of time parameter k in Eq. (7.14).
The dashed black lines indicate the Cpeak(tw) positions.

0.005 and H = 0.01.

Yet, there appears to be two different scenarios in the data plotted in Fig. 7.5. In
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Run 2, the peak of S(C,H) is almost the same for all the rescaled time curves. In
Run 4, however, the peaks are separated for different k. As it will be explained in
Section 7.5.5, this difference in behavior is caused by increasing nonlinear effects of the
magnetization, MZFC(t, tw;H).

In conclusion, Eq. (7.15) solves our two problems at once. We no longer need to
resolve the short-time and the long-time peaks in Fig. 7.3, and it bypasses the problem
of the vanishing magnetization as H goes to zero.

7.5

Scaling law

We address here three different aspects of the scaling law. The assumptions that lead
us to our scaling law are given in Sec. 7.5.1. Next, in Sec. 7.5.2, we use the scaling
law in the analysis of our experimental data (previous data are also reanalyzed in
Sec. 7.5.3), with the corresponding analysis for our simulations given in Sec. 7.5.4.
Sec. 7.5.5 exhibits together our experimental and numerical results according to the
new scaling law. Next, in Sec. 7.6 we show how to connect the peak of the response
function S(t, tw;H) to a Hamming distance (HD). In Sec. 7.7 we address the nature
of the growth of the numerical correlation length ξ(tw) in presence of a magnetic field
at temperatures close to the condensation temperature Tg.

7.5.1 Nonlinear scaling law

Scaling laws for the spin-glass susceptibility in the vicinity of the condensation tem-
perature have been proposed and analyzed for decades. We first recall an important
early approach, and then develop the scaling law that we have employed to analyze
our experiments and simulations.

Nonlinear magnetization effects, and their scaling properties in spin-glasses were
first introduced by Malozemoff, Barbara, and Imry [Mal82a, Mal82b, Cha93]. They
introduced the relationship for the singular part of the magnetic susceptibility,

χs = H2/δf
(
tr/H

2/φ
)
, (7.17)

where f(x) is a constant for x → 0 ; f(x) = x−γ, forx → ∞ ; φ = γδ/(δ − 1) ≡ βδ,
and tr is the reduced temperature T/Tg. This form was used by Lévy and Ogielski
[L8́6] and by Lévy [Lév88] who measured the ac nonlinear susceptibilities of very dilute
AgMn alloys above and below Tg as a function of frequency, temperature, and magnetic
field. The critical exponents of Eq. (7.17) were evaluated as β = 0.9, γ = 2.3, δ =
3.3, ν = 1.3, z = 5.4. They differ substantially from Monte Carlo simulations for short
range Ising systems [BJ13] [e.g. β = 0.782(10), γ = 6.13(11), ν = 2.562(42)]. The
discrepancy for the value of γ is very large, and most probably arises from the lack of
the knowledge of an exact value of Tg in the experiments. This illustrates the value
and need of a different approach for scaling the nonlinear magnetization of spin-glasses
in the vicinity of Tg.
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Our approach is to express the non-linear components of the magnetic suscepti-
bility in terms of ξ(t, tw) 2, the spin-glass correlation length in a magnetic filed H.
This approach gives the nonlinear magnetization a direct connection to a measurable
quantity, and obviates the need for an accurate value of Tg.

The argument goes as follows. Let M(t, tw;H) be the magnetization per spin,
where explicit attention is paid to the waiting (aging) time, tw, in the preparation of
the spin-glass state. The generalized susceptibilities χ1, χ3 , χ5 ... are defined through
the Taylor expansion,

M(H) = χ1H +
χ3

3!
H3 +

χ5

5!
H5 +O(H7) . (7.18)

where, for brevity sake, we omit the arguments t and tw.
Under equilibrium conditions, and for a large enough correlation length, ξeq, there is

a scaling theory for the magnetic response to an external field H [Par88] [Ami05]. Our
main hypothesis in this work is that this scaling theory holds not only at equilibrium,
but even in the non-equilibrium regime for a spin-glass close to Tg, and in the presence
of a small external magnetic field H:

M(t, tw;H) = [ξ(t+ tw)]yH−DF
(
H[ξ(t+ tw)]yH ,

ξ(t+ tw)

ξ(tw)

)
. (7.19)

Because of the full-aging spin-glass dynamics (see, e.g. [Rod03]), Eq. (7.19) tell us that
ξ(t+ tw)/ξ(tw) will be approximately constant close to the maximum of the relaxation
rate, (see Fig. 7.2), so that we shall omit this dependence. Hence, combining Eq.
(7.18) and (7.19), one can express the generalized susceptibility χ1, χ3 , χ5 ... in terms
of the spin-glass correlation length ξ(t, tw;H)

χ2n−1 ∝ |ξ(tw)|2n yH−D , (7.20)

where we have omitted the arguments t,H for simplicity, and

2yH = D − θ

2
, (7.21)

with θ the ”replicon” exponent [BJ17a].
As the reader can notice, Eq. (7.20) predicts the paradoxical result:

χ1 ∝ ξ−θ/2 (7.22)

hence, χ1 goes to zero when ξ → ∞. In fact, Eq. (7.20) neglects the contribution of
the regular part of the free-energy. A better description for χ1 is [Zha20b]:

χ1 =
Ŝ

T
+
a1(T )

ξθ/2
, (7.23)

2The correlation length, ξ(t, tw) is of course a function of the temperature T also, but here we are
only interested in non-linearity of magnetization.
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where Ŝ is the function appearing in the Fluctuation-Dissipation relations [BJ17b], and
a1(T ) is some unknown (hopefully smoothly varying with temperature) constant.

The free-energy variation per spin in presence of a magnetic field can be obtained
by integrating the magnetic density, Eq.(7.18), with respect to the magnetic field:

∆F = −
[
χ1

2
H2 +

χ3

4!
H4 +

χ5

6!
H6 +O

(
H8
)]

. (7.24)

Substituting the scaling behavior from Eq. (7.20) and Eq. (7.23), the free-energy ∆F
can be written as,

∆F = −
[
Ŝ

2T
H2 +

a1(T )

ξθ/2
H2 + a3(T )ξD−θH4 + a5(T )ξ2D−(3θ/2)H6 +O

(
H8
)]

, (7.25)

where again the an(T ) are unknowns and (again, hopefully) smoothly varying functions
of temperature. We use the effective response time, teff

H , to reflect the total free energy
change at magnetic field H and H = 0+:

ln

[
teff
H

teff
H→0+

]
= Ncorr∆F , (7.26)

where Ncorr is the number of correlated spins, Ncorr = Vcorr

a3
0

, with Vcorr the correlated

spins volume, and a0 the lattice constant or average distance between magnetic mo-
ments. Combining Eq. (7.26) with Eqs. (7.5) and (7.24) leads to,

ln

[
teff
H

teff
H→0+

]
= −b

[(
Ŝ

2T
+
a1(T )

ξθ/2

)
ξD−(θ/2)H2

+ a3(T )ξ2D−(3θ/2)H4 + a5(T )ξ3D−2θH6 +O
(
H8
)]

,

(7.27)

where the coefficient b is a geometrical factor, see Eq. (7.5), and we have absorbed the
term kBT in the an(T ) coefficients, see Eq. (7.3). The correction term a1(T )/ξθ/2 is
small compared to Ŝ/T , and so will be dropped in subsequent expressions. Eq. (7.27)
shows that the higher order terms have the functional form,

χ2n−1
H2n

(2n)!
= a2n−1(T )ξ−θ/2

[
ξ2yHH2

]n
, (7.28)

where

2yH = D − θ

2
. (7.29)

This leads to the new scaling relation,

ln

[
teff
H

teff
H→0+

]
=

Ŝ

2T
ξD−(θ/2)H2 + ξ−θ/2G

(
T, ξD−(θ/2)H2

)
, (7.30)

where the geometrical factor b has been absorbed into the scaling function G. Compar-
ison with the previous, more classical relation, Eq. (7.17), displays the simplicity and
power of our approach to scaling the nonlinear magnetization in the vicinity of Tg.
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7.5.2 Experimental nonlinear magnetization

We extract the effective waiting time teff
H in Eq. (7.3) from the time at which S(t, tw;H)

is a maximum as before. Our results for all four conditions in Table 7.1 are exhibited
as a function of magnetic field in Fig. 7.6. The slope of the data in Fig. 7.6 at small
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Figure 7.6: A plot of the peak times, teff
H , for the crystal CuMn 6 at.% vs H2 for the

four values of Tm and tw listed in Table 7.1. The slope for small H2 is used to extract
ξ(tw) in Table 7.1, and the lines drawn are from fitting to the scaling law introduced
in Sec. 7.5.1.

values of the magnetic field H generates the spin-glass correlation length ξ(tw, Tm)
from Eqs. (7.4) and (??), using values for the replicon exponent θ(x̃) from Table 7.1.
The four values for ξ(tw, Tm) from our experiments are exhibited in Table 7.1 . These
results will allow us to express the non-linear susceptibility in terms of ξ(tw).

An example of the measured relaxation function, S(t, tw;H), is plotted for T =
28.5K and tw = 10000 s in Fig. 7.2 for five different magnetic fields, while the effective
response times, ln teff

H , are plotted in Fig. 7.6 for all four experiments listed in Table
7.1. Note the remarkable similarity in shape of the original experimental results for
ln teff

H in Fig. 7.1 with our results in Fig. 7.6. Also, note the fit of all four of our results
for ln teff

H in Fig. 7.6 to the scaling relationship for the nonlinear magnetization, Eq.
(7.27), as will be described in more detail below.

Because the scaling relationship, Eq. (7.30), depends upon the magnitude of the
waiting time in ξ(tw, t, T ), two different values of tw were used at the same intermediate
temperature T = 28.75 K, among the three temperatures (28.5 K, 28.75 K, and 29.0
K) listed in Sec. 7.2 and in Table 7.1, to test the scaling relation Eq. (7.30) at a given
temperature. This allow us to discriminate between the influence of temperature and
waiting time on ξ(tw, t, T ). In this way, we are able to demonstrate explicitly that
ξ(tw, t, T ) is the parameter of control.
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It is useful to display teff
H vs H2 individually for each of the four values of T and tw.

They are exhibited below in Fig. 7.7. The fitting technique is performed through the
function:

f(x) = c0 + c2 x+ c4 x
2 + c6 x

3 +O(x4) , (7.31)

where x ≡ H2 and the coefficients cn, according to Eq. (7.27), correspond to:

c0 = ln
(
teff
H→0+

)
(7.32)

c2 =

[
Ŝ

2Tm

]
ξD−θ/2 (7.33)

c4 = a3(Tm)ξ2D−3θ/2 (7.34)

c6 = a5(Tm)ξ3D−2θ . (7.35)

We have absorbed the geometrical prefactor b of Eq. (7.27), in the non-linear coeffi-
cients an(Tm) and in the linear coefficient Ŝ, and we neglect the sub-leading coefficient
a1(Tm)/ξθ(x)/2.
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Figure 7.7: Plots of the peak time, teff
H , for the crystal CuMn 6 at.% vs H2.

The straight line is an extrapolation of the linear term in the magnetization, and the
dashed line is a fit to the data from Eq. (7.27)
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Table 7.3: Parameters from our fits to Eq. (7.31) of our experimental data for ln teff
H ,

as a function of T and tw. The uninteresting fit parameter, c0, is not included in the
Table.

T (K) tw(s) coefficient numerical value

28.5 10000
c2 -1.5509 ×10−3 ± 1.0336 ×10−4

c4 3.9804 ×10−7 ±6.9927 ×10−8

c6 -4.3631×10−11 ±1.2940 ×10−11

28.75 10000
c2 -1.8157 ×10−3 ± 2.0032 ×10−4

c4 4.5651 ×10−7 ±1.32 ×10−7

c6 -4.5844×10−11 ±2.45×10−11

28.75 20000
c2 -2.1035 ×10−3 ± 1.1934 ×10−4

c4 5.8888 ×10−7 ±7.88 ×10−8

c6 -7.013×10−11 ±1.47×10−11

29 10000
c2 -2.6086 ×10−3 ± 1.28 ×10−4

c4 1.016 ×10−6 ±8.45×10−8

c6 -1.4913×10−10 ±1.57×10−11

The effect of increasing the temperature with waiting time held constant can be
seen in the difference between the measured teff

H and the extrapolated value of the
linear magnetization term (quadratic in H2) for the largest magnetic field (H = 143
Oe) in Exps. 1,2 and 4 in Fig. 7.7. Non-linear effects grow for larger tw, hence larger
ξ(t, tw;Tm) at the same temperature, which can be seen by comparing Exps. 2 and 3.
The linear and nonlinear coefficients of Eq. (7.27) can be extracted from the fit to the
data in Fig. 7.7 (dashed lines), whose resulting coefficients are listed in Table 7.3.

To test the scaling relationship, Eq. (7.30), we first consider the fit to the data at
T = 28.75 K for the two waiting times, tw = 2× 104 s and tw = 104 s. The linear term
is proportional to ξD−(θ/2). The ratio of the two correlation lengths from Table 7.3 is,
hence,

ξ(tw = 20 000)

ξ(tw = 10 000)
=

[
c2(tw = 20 000)

c2(tw = 10 000)

]1/[D−(θ/2)]

= 1.0535 .

(7.36)

Should scaling hold according to Eq. (7.30), then consistency requires that the ratios
of the correlation lengths from the nonlinear terms should be the same as that for the
linear term. They are:

ξ(tw = 20 000)

ξ(tw = 10 000)
=

[
c4(tw = 20 000)

c4(tw = 10 000)

]1/[2D−(3θ/2)]

= 1.0476 ,

(7.37)
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and

ξ(tw = 20 000)

ξ(tw = 10 000)
=

[
c6(tw = 20 000)

c6(tw = 10 000)

]1/[3D−2θ]

= 1.0526 .

(7.38)

The equality of the values that come out from Eqs.(7.36) - (7.38) is an impressive
experimental verification of the scaling relationship Eq. (7.30).

Another check is the growth of the correlation length itself. At the temperature
Tm = 28.75 K and for the two waiting times, it is possible to calculate directly the
ratio of the two values of the correlation length by using the power law growth rate
expression [Joh99, Kis96],

ξ(tw, Tm) = a0 Ĉ1

(
tw
τ0

)Ĉ2(Tm/Tg)

≡ a0 Ĉ1

(
tw
τ0

)Tm/(zcTg)

, (7.39)

where Ĉ1 and Ĉ2 are constants, by definition Ĉ2 ≡ 1/zc, and τ0 is a characteristic
exchange time, here taken as ~/kBTg.

Using the growth rate parameter zc = 12.37 [BJ18, Zha19], one finds,

ξ(tw = 20 000)

ξ(tw = 10 000)
=

(
2× 104

104

)Tm/(12.37Tg)

= 228.75/(12.37×31.5) = 1.0525 .

(7.40)

Comparing the ratio of ξ(tw, Tm) for the two different waiting times, Eq. (7.40), from
the growth law, Eq. (7.39), with the ratios from fitting to the scaling relationship,
Eqs. (7.36) - (7.38), is remarkable evidence for the consistency of our physical picture.
It demonstrates explicitly the power of using the spin-glass correlation length as the
primary factor for evaluating the spin-glass nonlinear magnetization in the vicinity of
the transition temperature Tg.

The lingering issue from Eqs. (7.5) and (7.30), according to Zhai et al. [Zha19], ”is
that the replicon exponent [θ(x̃)]...depends upon both the temperature and ξ through
the crossover variable [x̃],with

x̃ =
`J

ξ(tw, T )
.” (7.41)

From the notation of Table 7.3, and Eq. (7.5), the number of correlated spins is,

Ncorr =
kBTm c2

χFC

= ξD−[θ(x)/2] = ξD−[θ(`J/ξ)/2]. (7.42)

The left-hand side is a number, the right hand side is an implicit function of ξ and θ.
Using the definition of the Josephson length `J(x̃) and of the replicon θ(x̃), 3 one can
solve for ξ and θ at each of the four values of Tm and tw explored experimentally. The
results are displayed in Table 7.1.

3The reader will find all the necessary details in Appendix D.2.
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The aging rate zc varies as a function of ξ. Using the data at Tm = 28.75, the
approximate aging rate factor is zc = 12.37 ± 1.07 at ξ ∼ 200 lattice spacings a0

[Zha19]. Although the correlation length extracted at 28.75 K is larger than that at
28.5 K, the higher temperature sets the crossover variable x = `J(T )/ξ = 0.11 for
tw = 20000 s and 0.12 for tw = 10000 s, in the range of the crossover variable obtained
by us previously at Tm = 28.5 K [Zha20a]. Both measurements have witnessed the
slowing down of the spin-glass correlation growth rate near the critical temperature at
large correlation lengths.

Using the average value of θ from Table 7.1, θ = 0.343, and setting zc = 12.73, the
values exhibited in Eqs. (7.36)- (7.40) are altered to 1.053, 1.048, 1.052, and 1.051,
respectively. Using the values from Table 7.1, the temperature dependent coefficients
a3(Tm) and a5(Tm) of Eq. (7.27) can be calculated for each of the four values of Tm

and tw. They are displayed in Fig. 7.8.
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Figure 7.8: Plots shows the temperature dependence of nonlinear coefficients a3 and
a5 as defined in Eq. (7.27) calculated using the extracted values of ξ and θ for the
different temperatures Tm and waiting time tw.

From Fig. 7.8, one sees that the hope expressed after Eq. (7.25), that the temperature
dependence of the coefficients an(Tm) be weak, is realized in this set of experiments.
For a3(Tm), within the experimental error bars, there is little or no change with tem-
perature. The situation for a5(Tm) is not as nice, but there appears to be little change
with temperature at the two highest temperatures.

It is interesting to test the scaling relationship [Zha20b]

χ2n−1(tw, Tm) ∝ a2n−1 [ξ(tw, Tm)](n−1)D−nθ(x̂)/2 . (7.43)

Thus,

χ3 ∝ ξD−θ a3,

χ5 ∝ ξ2D− 3θ
2 a5.

(7.44)
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The measured non-linear susceptibilities are exhibited below for the three temperatures
28.5K, 28.74K and 29.0K. One can test the scaling relationships Eqs. (7.43) and (7.44)
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Figure 7.9: Plots show the nonlinear susceptibility χ3(tw, Tm) and χ5(tw, Tm), from
Eq. (7.42), plotted as a function of temperature for the four experimental regimes of
Tab. 7.1.

by using the measured values for the spin glass correlation length ξ and the replicon
exponent θ from Table 7.1 and the values of c2 and c4 from Table 7.3. Consider
χ3(T, tw) as an example for the temperatures 28.5 K and 29 K and tw = 10000 s. For
T = 28.5 K, we have ξ = 320.36 a0, θ = 0.337 (from Table 7.1), and c4 = 3.9804× 10−7

(from Table 7.3, note that we have ignored the error bars). Similarly, for T = 29.0 K
and tw = 10000 we have ξ = 391.27 a0, θ(T = 29.0) = 0.349, and c4 = 10.16 × 10−7.
Using Eqs. (7.31) and (7.34) and the just quoted values of c4(tw;Tm) one finds

χ3(tw = 10000, Tm = 28.5K)

χ3(tw = 10000, Tm = 29.0)
= 0.666 . (7.45)

This ratio is well within the error bars of the measured non-linear susceptibilities in
Fig. 7.9. A similar result is also found for χ5.

With these scaling observations in hand, it is interesting to ask about using them
to estimate the condensation temperature Tg. In principle, determination of Tg would
require an infinite tw because ξ(Tg) would be infinite. One expects that any experiment
at finite tw would yield a maximum for the non-linear susceptibility at a temperature
we shall call Tg(tw) because tw is finite.

In principle, then, by measuring Tg(tw) for ever larger tw, one could extrapolate to
the true ξ(tw → ∞) condensation temperature Tg. If nothing else, measurements at
large values of tw on laboratory time scales could establish a lower bound for Tg.
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The non-linear susceptibility χ3 diverges as,

χ3(tw →∞, Tm) = χ0
Tg(tw →∞)

|Tg(tw →∞)− Tm|γ
, (7.46)

where χ0 is a constant independent of temperature, and γ = 6.13(11) [BJ13]. For finite
tw, χ3(tw, T ) only has a maximum as a function of temperature. A way of arriving at
this maximum would be to fit the data to the function

χ3(tw, Tm) = χ0
Tg(tw)

|Tg(tw)− Tm|γ
, (7.47)

and then use the data points from just two or three temperatures to extract Tg(tw). For
larger and larger tw, one could in principle extrapolate to the true Tg. We emphasize
that though Eq. (7.47) suggests χ3(tw, Tm) diverges at T = Tg(tw), it does not, arriving
only at a maximum value for finite tw. Nevertheless, Eq. (7.47) is a way of estimating
Tg(tw) for use in an extrapolation procedure.

To test whether this trick has any validity, one can consider the data exhibited
in Fig. 7.9. Here, tw = 10 000 sec and, taking χ3(tw, Tm) at the center of the error
bars for the two temperatures 28.5K and 29. K, one finds Tg(tw = 10 000) = 32 K.
This value is too high as magnetization measurements suggest Tg(tw →∞) = 31.5 K.
More accurate determination of the parameters in Table 7.3 would diminish the error
in Tg(tw), but it does suggest a feasible process for taking laboratory data for finite tw,
and extrapolating to find Tg(tw →∞).

7.5.3 Reanalysis of older data

Given the above analysis of our recent data, it is convenient to revisit the work of Joh
et al. [Joh99] and Bert et al. [Ber04], to examine whether the Zeeman energy is
proportional to H2 or H; or, respectively, to the number of correlated spins or to the
square root of the total number of spins. We have already alluded to their results as
displaying the effect of magnetization nonlinearity. We now explore this assertion in
detail using the analysis contained above in subsection 7.5.2.

Fig. 1 of Joh et al., reproduced as Fig. 7.1 in this chapter, and Fig. 3 of Bert
et al., reproduced as Fig. 7.10. Both exhibit significant deviations away from an H2

dependence of the ln teff
H with increasing values of H. Bert et al. [Ber04] go on to assert

a linear dependence, as exhibited in their Fig. 3, reproduced here in Fig. 7.10 . Their
magnetic fields are quite large, and the scale of their plot does not cover the dependence
on H2 for small H. Nevertheless, they claim their data fits a linear dependence of ln teff

H

on H. A glance at the left panel of Fig. 7.10, suggests how they could rationalize their
conclusion.

Yet, as noted by the authors of experiments in Fig. 7.1 [Joh99], a linear dependence
upon H is a poor fit to the data at small H. Further, the argument behind the magne-
tization varying as

√
Nc is supposedly valid at small H [Bou01], where the dependence

on the number of correlated spins, Nc is argued to be proportional to
√
N c, rather than
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Figure 7.10: Left : Effective waiting times (in log scale) derived from the field-change
experiments on Ising sample (Fe0.5Mn0.5TiO3) as a function of the magnetic field H.
The plot reproduces from Fig. 3 of Bert et al. [Ber04] (solid lines are linear interpo-
lations to data with the same tw). Right : Same data plotted against H2. The dashed
lines are fits to Eq. (7.31), with fit parameters listed in Tab. 7.4.

as Nc, as from Eq. (7.4). On the other hand, the data exhibited in their Fig. 3 (Fig.
7.10) uses magnetic fields substantially larger than used in this study.

We assert that their observed departure from linearity in H2 as H increases is simply
the effect of nonlinearity. To prove this, we apply the scaling relation, Eq. (7.30), to
their Fig. 3 data [Ber04] reproduced in our Fig. 7.10, doing our best to extract their
measured values from their printed figure. Our fit to Eq. (7.31) is shown in the right
panel of Fig. 7.10, with the parameters cn listed in Table 7.4.

Although only 1-2 digits are significant in Table 7.4, we write more digits, for the
sake of reproducibility. The fitting quality for tw = 10 000 s and tw = 30 000 s is better
than for the other two waiting times. Note that the coefficients cn listed in Table 7.4

are considerably smaller than in our Table 7.3 for our current experiments on a CuMn
6 at. % single crystal. We believe this is because our measurements are for Tm ≈ 0.9Tg

whereas Bert et al. [Ber04] worked at 0.72Tg, where non-linear terms are expected to
be much smaller.

Using the fitting coefficients from Table 7.4 and θ(x̃) = 0.3, we obtain

ξ(tw = 30 000 s)

ξ(tw = 10 000 s)
=

[
c2(30 000 s)

c2(10 000 s)

]1/[D−θ(x̃)/2]

≈ 1.094, (7.48)

ξ(tw = 30 000 s)

ξ(tw = 10 000 s)
=

[
c4(30 000 s)

c4(10 000 s)

]1/[2D−3θ(x̃)/2]

≈ 1.054, (7.49)

ξ(tw = 30 000 s)

ξ(tw = 10 000 s)
=

[
c6(30 000 s)

c6(10 000 s)

]1/[3D−2θ(x̃)]

≈ 1.045. (7.50)

The three ratios, Eq. (7.48)–(7.50) do not agree with one another perfectly, but
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Table 7.4: We report, as a function of tw, the parameters from fits to Eq. (7.31) of the
data obtained by Bert et al. [Ber04] for lnteff

H . Their data correspond to Fe0.5Mn0.5TiO3

at T = 0.72 Tg (see Fig. 3 of Ref. [Ber04]). The fits are shown in our Fig. 7.10. The
uninteresting fit parameter, c0, is not included in the Table.

tw (s) coefficient value

1 000
c2 −6.23× 10−6

c4 7.23× 10−12

c6 −2.78× 10−18

3 000
c2 −4.57× 10−6

c4 1.40× 10−12

c6 1.26× 10−19

10 000
c2 −8.74× 10−6

c4 6.81× 10−12

c6 −1.99× 10−18

30 000
c2 −1.15× 10−5

c4 9.32× 10−12

c6 −2.95× 10−18

again, considering the rawness of the analysis, they are certainly suggestive. In sum-
mary, we believe that the assessment of Ref. [Ber04] that their data is evidence for
EZ ∝ H is in error. Rather, we believe the departure they observe from linearity in
H2 arises from non-linear terms in the magnetization as a result of the large magnetic
fields utilized in their study.

7.5.4 Numerical study of the ratio of the effective time at H and H = 0+.

We have extracted the effective times teff
H exploiting our proposed relation Eq. (7.15), as

explained in Appendix D.1.3. Our results are displayed in Fig. 7.11. In the subsequent
analysis in Sec. 7.5.5, we shall need the derivative of ln

(
teff
H /t

eff
H→0+

)
with respect to

H2, evaluated numerically at H2 = 0. Our main scope here will be evaluating this
derivative.

An obvious strategy is fitting the numerical data for ln
(
teff
H /t

eff
H→0+

)
as we did for

the experimental data in Eq. (7.31). Note that our sought derivative at H2 = 0 is just
the coefficient c2 in the fit. A welcome simplification in the analysis of the numerical
data is that we can explicitly put c0 = 0 in the fit to Eq. (7.31) [indeed, we are able to
carry out the fit for ln

(
teff
H /t

eff
H→0+

)
thanks to Eq. (7.15)]. Our fitting parameters are

reported in Table 7.5. Unfortunately, as the reader will note from Fig. 7.11, these fits
predict unphysically wild oscillations that are not observed in the numerical data. A
plausible explanation for these oscillations relies on the very large magnetic fields used
(recall that H = 1 for the IEA model roughly corresponds to 5 × 104 Oe in physical
units). These huge magnetic fields probably exceed the radius of convergence of the
Taylor expansion of Eq. (7.30). At any rate, the oscillations cast some doubts on the
determination of the derivative at H2 = 0. This is why we have turned to a different
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coefficient value H2-range

Run1

c2(tw;T ) -6.01(6) ×102

[0 : 0.025]
c4(tw;T ) 3.45(13) ×104

c6(tw;T ) -1.305(90) ×106

c8(tw;T ) 1.998(19)×107

Run2

c2(tw;T ) -1.589(19) ×103

[0 : 0.01]
c4(tw;T ) 1.976(55) ×105

c6(tw;T ) -1.4135(569)×107

c8(tw;T ) 3.86(18)×108

Run3

c2(tw;T ) -4.380(15) ×103

[0 : 0.008]
c4(tw;T ) 1.338(79) ×106

c6(tw;T ) -1.3328(966)×108

Run4

c2(tw;T ) -1.385(58) ×103

[0 : 0.008]
c4(tw;T ) 2.24(41) ×105

c6(tw;T ) -1.75(50)×107

Run5

c2(tw;T ) -3.355(90) ×103

[0 : 0.008]
c4(tw;T ) 9.41(63) ×105

c6(tw;T ) -9.12(77)×107

Run6

c2(tw;T ) -7.910(153)×103

[0 : 0.008]
c4(tw;T ) 3.276(106)×106

c6(tw;T ) -3.56(13)×108

Table 7.5: The outcome of the fits to Eq. (7.31) of the numerical data for the time
ratio ln(teff

H /t
eff
H→0+). In order to stabilize the fits we needed to include terms on r.h.s

of Eq. (7.31) for two cases.

strategy in order to validate our computation.
Our starting point, see Ref. [BJ18] and Eq. (7.27), is the expected scaling behavior

for the coefficient c2(tw, T ) listed in Table 7.5. The nonlinear coefficient c2(tw, T )
reported in Tab. 7.5 behaves as [Zha20b]

c2(tw, T ) = ξD−θ(x̃)/2

(
Ŝ

2T
+
a1(T )

ξθ(x̃)/2

)
, (7.51)

using the scaling of the susceptibility χ1 from Eq. (7.23). Here, Ŝ is the function ap-
pearing in the Fluctuation-Dissipation relation [BJ17b] and a1(T ) is a smooth function
of temperature, and we have absorbed the geometrical prefactor b of Eq. (7.27) in a1(T )
and Ŝ(T ). Notice that the term a1(T )ξ−θ(x)/2 is sub-leading compared to Ŝ/(2T ) and
it was neglected in the previous analysis.

We rewrite Eq. (7.51) as:

c2(T, tw)T

ξD−θ(x̃)/2
=
Ŝ

2
+ Ta1(T )ξ−θ(x̃)/2 . (7.52)
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Figure 7.11: The numerical time ratio ln(teff
H /t

eff
H→0+).

The data were fitted as a polynomial of H2 as reported in Table 7.5 in order to exhibit
the non-linear terms.
The continuous lines are fits for data at T = 1.0; the dashed lines correspond to the
data at T = 0.9.

and we study this quantity as a function of [ξ(tw)]−θ(x̃)/2 in Fig. 7.12. Note that,
in the above expression ξ was not obtained from the response to the magnetic field.
Instead, we computed ξ from the correlation functions at H = 0 (see Appendix C and
Ref. [Bel08b]). The data exhibit a constant value, a1(T ) = 0, except for the point
correspondent to tw = 231.75 at T = 1.0 (Run 6). Therefore, we shall accept the
numerical estimation of the derivative at H2 = 0 through the coefficient c2 for all cases
but for our Run 6. In order to clarify what is going on with Run 6, we report in the
right panel of Fig. 7.12 an enlargement of Fig. 7.11 in the small magnetic field regime
for this case. As it could be guessed from the left panel, the fitting procedure clearly
underestimates the slope of the curve at H2 = 0. Therefore, in order to estimate the
derivative for Run 6, we have rather relied on Eq. (7.52) by averaging the constant
value found in Fig. 7.12 over all Runs (excluding Run 6). We estimated the derivative
for Run 6 by multiplying this averaged constant value by [ξ(tw)]D−θ(x̃)/2 [see Eq. (7.52)].

7.5.5 Nonlinear scaling

In order to test the scaling form, Eq. (7.30), the data for all of the nonlinear contribu-
tions to the magnetization, experimental and numerical, are plotted according to the
functional form,

ξ−
θ
2G(T, ξD−

θ
2H2) (7.53)

in Fig. 7.13–7.14. The fit to our form for the scaling relationship, Eq. (7.30), is
remarkable, and testimony to the agreement for both the experimental and numerical
data.
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Right: An enlargement of Fig. 7.11 in the small-magnetic field regime, for the case
tw = 231.75 at T = 1.0 (Run 6 of Tab. 7.2) and its fit reported in Table 7.5.
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Figure 7.13: The nonlinear parts from the experimental response time data, [ln teff
H −

c2(tw;T )H2]ξθ(x̃)/2, plotted against (ξD−θ(x̃)/2H2)2. The deviations of the data at T =
29 K may be caused by a shift in Tg as the temperature begins to approach Tg(H).
The inset is a magnification of the small x-range.

Comparison between different nonlinear scaling laws

In order to underline the step forward introduced by Eq. (7.30), we show here that
the data do not collapse equally well if we use two different scaling laws, one from Ref.
[BJ17a] and the other a simple rational modification of Ref. [BJ17a]. Specifically, we
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Figure 7.14: The nonlinear parts from the numerical response time data,
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eff
H→0+)−c2(tw;T )H2]ξθ(x̃/2), plotted against (ξD−θ(x̃)/2H2)2. The abscissa of the

main panel is a linear scale and shows a closeup for small values of (ξD−θ(x̃)/2H2)2.
The abscissa of the inset is log scale in order to report all our numerical data.

reanalyze our data both through the scaling equation proposed in Ref. [BJ17a],

ln

(
teff
H

teff
H→0+

)
= F

[
ξD−

θ(x̃)
2 H2

]
, (7.54)

or by postulating that the data can be rationalized through a single scaling term,
[
ln

(
teff
H

teff
H→0+

)]
ξθ(x̃)/2 = F

(
ξD−

θ(x̃)
2 H2

)
. (7.55)

We report the non-linear scaling behaviors using Eqs. (7.54) and (7.55) in Figs. 7.15
(experimental data) and Fig. 7.16 (numerical data). To ease comparisons, we use the
same scaling variable and x-axis scale that we used in Fig. 7.13, where we collapsed
the data using Eq. (7.53). However, because the scalings are easier to interpret with
a linear y-axis scale, we also provide the same plots in a semi-log scale (Figs. 7.17

and 7.18).
The collapse of the experimental data with Eqs. (7.54) and (7.55) (Figs. 7.15 and
7.17) works well only at most x = (H2ξD−θ/2)2 = 6 × 1020 Oe, which is about half
of the validity range of the collapses in Fig. 7.13, which are accurate at least up to
x = 2× 1021 Oe.
The collapse of the numerical data with Eqs. (7.54) and (7.55) (Figs. 7.16 and 7.18) is
less accurate throughout the whole range of x.
We believe, therefore, that the scaling relationship represented by Eq. 7.53 is far
superior.
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Figure 7.15: Top The nonlinear part of the experimental response time data:
[ln(teff

H /t
eff
H→0+) plotted against the scaling variable [H2ξD−θ(x̃)/2]2, according to Ref.

[BJ17a], see Eq. (7.54). The plot is in linear scale. Bottom The non-linear part
of the response time data:[ln(teff

H /t
eff
H→0+)ξθ(x̃)/2 plotted against the scaling variable

[H2ξD−θ(x̃)/2]2, according to Eq. (7.55). The plot is in linear scale.
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Figure 7.18: Top The non-linear part of the numerical response time data:
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eff
H→0+) plotted against the scaling variable [H2ξD−θ(x̃)/2]2, according to Ref.

[BJ17a], see Eq. (7.54). Its main panel is in semi-log scale and its inset is a
zoom in the small x region. Bottom The non-linear part of the response time
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Figure 7.16: Top The non-linear part of the numerical response time data:
[ln(teff

H /t
eff
H→0+) plotted against the scaling variable [H2ξD−θ(x̃)/2]2, according to Ref.

[BJ17a], see Eq. (7.54). Its main panel is in linear scale, instead its inset is in semi-
log scale. Bottom The non-linear part of the response time data:[ln(teff

H /t
eff
H→0+)ξθ(x̃)/2

plotted against the scaling variable [H2ξD−θ(x̃)/2]2, according to Eq. (7.55). Its main
panel is in linear scale, instead its inset is in semi-log scale.

7.6

The connection between the Hamming Distance and

barrier heights

The analysis explained in Sec. 7.4.2 introduces the possibility to associate the peak of
the response function S(t, tw;H) to a Hamming distance (HD). This enables us to relate
teff
H to the maximum barrier height, ∆max, encountered at that time, thus connecting

explicitly the Hamming distance with its barrier height. This was first computed by
Vertechi and Virasoro [Ver89] and is directly relevant to experiments [Led91].
Let us define our numerical Hamming distance as:

HD(t, tw, H) =
1

2
[1− C(t, tw, H)] . (7.56)

From the definition of C(t, tw, H), see Eq. (7.8), this can be interpreted as a measure
of the loss of the single site amplitude after t when the magnetic field H is turned on
at tw.
In order to treat the dynamics of the spin system, we shall transition to, in a completely
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Figure 7.17: Top The non-linear part of the experimental response time data:
[ln(teff

H /t
eff
H→0+) plotted against the scaling variable [H2ξD−θ(x̃)/2]2, according to Ref.

[BJ17a], see Eq. (7.54). The plot is in semi-log scale. Bottom The non-linear part
of the response time data: [ln(teff

H /t
eff
H→0+)ξθ(x̃)/2 plotted against the scaling variable

[H2ξD−θ(x̃)/2]2, according to Eq. (7.55). The plot is in semi-log scale.

complementary fashion, the states of the spin system in overlap space. This can be
visualized according to an ultrametric distribution of metastable states [Méz84b].
The overlap between two states of spin-glass system α and β is defined by,

qαβ =
1

N

∑

i

sαi s
β
i . (7.57)

In this space, when the system is quenched to temperature T1 and the magnetic field
H is turned on after the waiting time tw, the spin system initially finds itself in the
state α, as displayed in Fig. 7.19. The state belongs to the lowest level of the tree
appropriate to the temperature T1. All these states are degenerate in energy and posses
the same magnetization M(t, tw, H) [Méz85a].

The occupancy of the initial spin state diminishes in amplitude with increasing
time t as the system diffuses along the tree, occupying successive states of diminishing
overlap.
This diffusion overcomes barriers whose heights increase as qαγ diminishes. Physically,
one can think of this as being related to the number of pairs of spins that flip as the
diffusion process develops, preserving the magnetization.
The point of this analysis will be to associate the height of the barriers with the
magnitude of the minimum overlap achieved within the time interval t.
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Figure 7.19: Ultrametric organization of metastable states at two temperatures T1 and
T2, (T1 > T2). At T1 ,α ,β and γ are metastable states (relative minima of the free
energy in configuration space). The mutual overlaps qαβ, qαγ, and qβγ are such that
qαγ = qβγ < qαβ.
As the temperature is lowered from T1 to T2 , state α gives birth to N α states which
are the new metastable states at T2. qEA(T ) denotes the maximum value of the overlap
function at temperature T .
Note how the number of degenerate states increases as the overlap with the initial state,
qαγ, diminishes. Though this picture is highly idealized, it does give a rationale to the
exponential increase of the number of states as the overlap qαβ diminishes. Figure from
Ref. [Ver89]

In this context, one can define the Hamming distance as:

(HD)αβ(t, tw, h) =
1

4N

∑

i

[sαi − sβi ]2 =
1

2
[qEA − qαβ] . (7.58)

Let us try to find a connection between the two definitions of HD, Eqs. (7.56) and
(7.58).
A glance at Fig. 7.19 shows the exponential increase of state occupancies as the
overlap qαβ diminishes. This is a simplified picture, but it is representative of what
we assume to be the (random) nature of the ultrametric tree representing spin-glass
dynamics. Hence, the two definitions are equal. That is, as the single site Hamming
distance represents the diminishing amplitude of occupancy, the final state with the
exponentially largest density is the one at qmin, and concomitantly with the largest
barrier height. In this context, that means the dominant decay path for the single
site occupancy can be projected onto the ultrametric tree ( going from physical space
to overlap space) as transitioning from the initial spin-glass state upon a temperature
quench, with self overlap qEA, predominantly to the state with minimum overlap , qmin.

This is precisely the reverse of the argument for the decay of the spin-glass magne-
tization upon a change of magnetic field. The decay is governed by the largest barrier
height. Hence, the decay of the magnetization is associated with the diminishing of
the occupancy of the state at qmin through qEA to the lower Zeeman energy manifold.
This is, because of the dominance of the number of states separated at qmin. If the
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decay works in this direction because of exponential occupancy, this is assumed to be
true in the reverse direction.

Let try to establish a relationship between the height of the largest barrier and the
HD. This idea was anticipated thirty years ago by Vertecchi and Virasoro [Ver89]. They
calculated the ”mean value of energy barriers versus normalized [Hamming] distance”,
exhibited in Fig. 7.20.

Figure 7.20: From Fig. 1 of Vertechi and Virasoro [Ver89].
Mean value of energy barriers versus normalized distance d/N for N = 48 (crosses),
N = 64 (diamonds),N = 96 (squares).

In Fig. 7.21 we show the ln(t/teff
H ) as a function of the Hamming distance, where we

use the Hamming distance associated to the Cpeak(tw), see Tab. 7.2. A scaling scenario
emerges from Fig. 7.21 and the numerical data suggest that:

� The determination of Cpeak(tw) is not crucial since the value Cpeak(tw) changes
ln teff

H (Cpeak) only by a constant. This implies that ln teff
H (Cpeak) does not depends

on H2, but it is sensible only to the zero-limit H2 → 0+.

ln
[
t/teff

H (Cpeak)
]

= F (C(t, tw;H)) . (7.59)

� The free energy barriers for spin glass dynamics are not fixed chemical barriers.
Rather, they are created by the growth of the correlation length, mirrored through
the growth of the HD.

� The hierarchical nature of overlap space is proven because the free energy barrier
heights increase in proportion to the HD.

� There is a quantitative relationship between the number of spin flip pairs and
the free energy barriers to get there from the initial state.

� The above relationships do not change with temperature.
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7.7

Overshoot phenomena

In this Sec. 7.7.0.1, we first address the dynamical scaling law for a system in presence
of a magnetic field at temperature close to the critical temperature Tg. Then, we
analyze, dynamical scaling for ferromagnetic systems, either Ising or Heisenberg, in
the presence of an external magnetic field.

Dynamical scaling close to Tg

We evaluate the growth of the correlation length ξ(t, tw;H) in simulations that mimic
the experimental field cooling protocol cooling (FC), where the temperature is lowered
from above to below Tg in the presence of a constant magnetic field, H.

We performed two independent simulations on Janus II at the critical temperature
Tg = 1.102(3) ( in Janus units) [BJ13] and at T = 1.05 for several external magnetic
fields and 16 samples. An equivalent protocol to FC, but convenient for simulations,
is to place a random spin configuration instantaneously at the working temperature T ,
while the external magnetic field is turned on at the same instant, so that tw = 0.

According to Eq. (7.19) at the critical temperature Tg, and for small external mag-
netic fields H, there exists a scaling behavior that connects ξ(t, tw;H) with the external
magnetic field H:

[ξ(tw, t;H) H2/yH ] ∝ const . (7.60)

The correlation length ξ(t, tw;H) grows as:

ξ(t, tw;H) ∝ t1/z(T ) , (7.61)

with an exponent that, in first approximation, is expected to behave near the critical
temperature as [BJ18]:

z(T ) ' zc
Tg
T
, where zc = z(Tg) = 6.69(6) . (7.62)

Hence, using Eqs. (7.61) and Eq. (7.62) in the scaling argument of Eq. (7.60), we have
equivalently,

[t ×H2z(T )/yH ] ∝ const . (7.63)

In Tab. 7.6 we list the aging rate factor z(T ) used in our analysis. We plot our rescaled
data in Fig. 7.22.

The agreement with the scaling prediction, exhibited in the collapsed data, is strik-
ing. They also exhibit an overshoot as evidence for the paramagnetic phase when the
magnetic field is turn on.

The reader could wonder why we have used Eq. (7.60) for the scaling analysis at
the cold temperature T = 1.05, and if this implies evidence of the absence of the de
Almeida-Thouless (dAT) line in finite dimension. We address these questions in the
next Section 7.8.
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T z(T )

1.1 6.60
1.05 7.00
1.0 7.30
0.9 8.12

Table 7.6: The aging rate factors z(T ) used in Figs. 7.22.
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Figure 7.22: Critical dynamical scaling. The log-log plots show the behavior of the
two dimensionless quantities [ξ(t)H2/yH ] and [tH2z/yH ] defined in Eq. (7.60) and (7.63).

Overshoot in a ferromagnetic system

By studying two ordered systems we can show that the overshoot phenomenon is, in
fact, general. To demonstrate generality, we have simulated the three-dimensional Ising
and Heisenberg model in a cubic lattice with periodic boundary conditions and size
L at the critical point Tc. The N = LD Heisenberg spins interact with their lattice
nearest neighbors through the Hamiltonian

H = −
∑

<r,r′>

Sr · Sr′ + H ·
∑

r

Sr . (7.64)
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L H Number of runs

Ising 256

0 2200
0.001 2600
0.003 1700
0.005 1200

Heisenberg
200

0 2660
0.003 1000
0.004 1600
0.005 2400

Table 7.7: Information about the Ising and Heisenberg simulations for ferromagnetic
system.

where Sr are unit vector spins and H is an external magnetic field. The connected
correlation function is

C(r, t) =
1

L3

∑

x

Sx(t) · Sr+x(t)− [m(t)]2 , (7.65)

with

m(t) =
1

L3

∑

x

Sx(t) . (7.66)

We only write equations for the Heisenberg model, Eqs. (7.64)-(7.66), but the Ising
analogues can be obtained trivially by just dropping the vector symbol in the spins.
Furthermore, the correlation function C(r, t) will be averaged over different initial
conditions (runs). We report the simulation details in Table 7.7.

The Ising and Heisenberg model have different symmetry properties, so they be-
long to two distinct universal classes. In other words, each model expresses a dis-
tinct value for the critical temperature and exponents. The Ising model has η =
0.0362978(20)[SD17], z = 2.0245(15)[Has20] and βc = 0.221654626(5)[Fer18b]. In-
stead, for the Heisenberg’s one η = 0.378(3)[Cam02, Has11], z = 2.033(5)[Ast19] and
βc = 0.693001(10)[Bal96a] (βc ≡ 1/Tc).

As explained in section 2.3, the correlation function, ξ(t, tw;H) can be calculated
exploiting the integral estimators [Bel08a, Bel09a],

Ik(T, tw) =

∫ ∞

0

dr rkC(T, r, tw) , ξk,k+1(T, tw) =
Ik+1(T, tw)

Ik(T, tw)
. (7.67)

In this Section, we evaluate the correlation length ξ23(t, tw;H). As the reader can
notice, the growth of ξ23(t) exhibits an overshoot before to reach equilibrium for any
external magnetic field for both the ferromagnetic models, see Fig. 7.23.

According to Eq. (7.19) at the critical temperature Tc, and for small external mag-
netic fields H, there exists a scaling behavior that connects ξ(t, tw;H) with the external
magnetic field H in ferromagnetic system:

[ξ(tw, t, H) H1/yH ] ∝ const . (7.68)
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Figure 7.23: The log-log plots show the behavior of ξ23 versus time for the Ising (left)
and Heisenberg models (right) for three magnetic fields. All the simulations were
performed at the critical temperature Tc proper of each model. The saturation of long
times exhibited by the Ising model is a finite size effect

As the reader can notice Eq. (7.68) differs from Eq. (7.60) in the power of the magnetic
field. In the ferromagnetic system, the relevant external variable is H and not H2 as
it would be for spin-glasses [Par88, Ami05]. Analogously to Eq. (7.63), we can rescale
the time as

[t ×Hz(T )/yH ] ∝ const . (7.69)

We plot our rescaled data in Fig. 7.24. The agreement with the scaling prediction,
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Figure 7.24: Critical dynamical scaling.
The data from Fig. 7.23 for the Ising (left) and Heisenberg model (right) for three
magnetic fields are rescaled following the predictions of the renormalization group [see
Eqs. (7.68)-(7.69)]. In this case the relevant variables are ξH1/yH and tHzc/yH , with
yH = (D + 2− η)/2 with D = 3.
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both for the Heisenberg and the Ising model, is remarkable.
In conclusion, the overshoot phenomenon is general and we have observed it both

in ferromagnetic systems, Figs. 7.23-7.24, and in disordered ones, Fig. 7.22.

7.8

Investigation of the dAT line in finite dimension D = 3.

The existence (or not) of the spin-glass condensation in the presence of a magnetic
field remains the subject of some controversy. In a mean field treatment, de Almeida
and Thouless [Alm78b] showed that, for the Sherrington-Kirkpatrick infinite range
mean field model [She78], there would be a phase transition according to the following
relationship for Ising spin-glasses,

(
1− Tg(H)

Tg(0)

)3

=
3

4
h2 , (7.70)

with,

h =
µH

kBTg(0)
, (7.71)

where µ is the spin magnetic moment. Conversely, the so-called “droplet model”
[Fis86, Bra86] would predict no phase transition except exactly at H = 0. This dispute
was addressed by Lefloch et al. [Lef94]. Their final conclusion bears repetition: ”Thus,
even if the spin-glass does not exist in a magnetic field, at least it looks the same as in
zero field, as far as we experimentalists can see.”

In finite dimension and for T very close to the critical temperature Tg(H = 0),
the de Almeida-Thouless (dAT) line, provided it exists, should be governed by the
Fisher-Sompolinsky [Fis85] relation:

(
1− Tg(H)

Tg(0)

)
∝ H4/ν(5−η) (7.72)

where we have specialized to D = 3 4. Rather than through Tg(H), we are interested in
describing geometrically the dAT line by the inverse function of Tg(H), namely Hc(T ).
Hence, we rewrite Eqs. (7.70) and (7.72) as

Mean− Field : Hc(T ) ∝
(

1− T

Tg

)aMF

aMF = 1.5 , (7.73)

3D : Hc(T ) ∝
(

1− T

Tg

)a3D

a3D =
ν(5− η)

4
→ a3D = 3.45(5) ,

(7.74)

where we have taken the 3D critical exponents ν and η from Ref. [BJ13]. The following
considerations, based on Eqs. (7.73)- (7.74), will be useful:

4Notice this is the same relation used for matching the numerical and experimental scales in Sec. 7.3
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� Hc(T ) is a decreasing function of the temperature T (remember T ≤ Tg) and
Hc(Tg) = 0. This means that, upon approaching Tg from below, one eventually
crosses the dAT line for any H > 0, no matter how small H is.

� When H > Hc(T ) the system is above the dAT line, in its paramagnetic phase:
the correlation length, ξ(t, tw;H), reaches asymptotically its equilibrium value
ξeq(H) for very large time t.

� When H < Hc(T ) we are in the spin-glass phase and one expects to observe a
power-law growth of the correlation length, see Eq. (7.61).

� The a3D exponent is much larger than the mean-field (MF) one, a3D w 2.3×aMF.
This implies that, in D = 3, the dAT line is very flat when one approaches the
critical temperature, T w Tg.

In particular, our last item above suggests an interpretation of the somewhat sur-
prising results in Fig. 7.22, where data for T = 1.05 were successfully scaled with the
scaling law appropriated for Tg [recall that 1.05 < Tg = 1.102(3) and that at T = Tg
we are in the paramagnetic phase for any H > 0]. Let us estimate the critical magnetic
field at T = 1.05 exploiting Eq. (7.74):

Hc(T = 1.05) ∼ 3× 10−5 . (7.75)

Considering, now, that the smallest magnetic field in Fig. 7.22, namely H = 0.02, is
larger than Hc(T = 1.05) by a factor of 1000 or so, there is little surprise in that an
scaling law assuming Hc(T = 1.05) = 0 works with our data.

Our focus in this section will be an exploration of growth of the spin-glass corre-
lation length, ξ(t, tw;H), under conditions that mimic the experimental protocol for
measurement of the zero-field cooled magnetization, MZFC(t, tw;H) for tw 6= 0, recall
Sec. 7.3.

In Fig. 7.25 we display the behavior of ξ(t, tw 6= 0;H) as a function of time for
different magnetic fields H. We compute ξ from the microscopic correlation function
C4(r) (see section 4.2), which requires that we compute error bars from the sample-
to-sample fluctuations. We have simulated different samples only for some values of
H and tw because of the enormous computational effort involved. Only in those cases
where they can be computed, we represent error bars in Fig. 7.25.

The time evolution of the spin-glass correlation time, ξ(t, tw;H), depends markedly
on the interplay between the waiting time tw and the value of the magnetic field H,
see Fig. 7.25. The system needs several time steps before responding to the switching
on of the magnetic field. Different scenarios appear.

For the largest magnetic fields, namely H > 0.04 both at T = 0.9 and T = 1.0,
the correlation length displays a non-monotonic time behavior, just as we found in
Sect. 7.7.0.1 for the dynamics in the paramagnetic phase (recall that tw = 0 in
Sect. 7.7.0.1). In particular, for those cases when the starting correlation length,
ξ(t = 0, tw;H), is larger than the equilibrium value ξeq(H), the correlation length
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decays. Otherwise, we observe an overshooting phenomenon reminiscent of our find-
ings in Sect. 7.7.0.1, see Fig. 7.25.

Here we must distinguish between the mean fieldHMF
c (T ) and the Fisher-Sompolinsky

scaling H3D
c (T ), i.e. between Eqs. (7.73) and (7.74). Using Eq. (7.70) for the former,

one finds,

HMF
c (T = 0.9) ∼ 0.0675 and HMF

c (T = 1.0) ∼ 0.02421 . (7.76)

Interestingly, the scaling result, Eq. (7.74), yields,

H3D
c (T = 0.9) ∼ 0.003 and H3D

c (T = 1.0) ∼ 0.0003 . (7.77)

Thus, for the magnetic fields used in our simulations, one is presumably in the con-
densed state for 0.005 ≤ H < 0.08 from the perspective of the mean field solu-
tion of the Sherrington Kirkpatrick model [She78], while from the perspective of
the Fisher-Sompolinsky scaling [Fis85], one is always in the paramagnetic state as
H > H3D

c (T = 0.9, 1.0). Though this latter region is not accessible experimentally
through magnetic measurements, one can argue that the simulation results should be
symmetric around Tc(H). This is the basis for our comparison between experiment
and simulations contained in Sec. 7.5 of this work.
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Figure 7.25: Growth of ξ(t, tw 6= 0;H) in simulations that mimic the experimental
protocol of the zero-field cooling (ZFC). Plots are in log-log scale.

Let us now attempt a scaling analysis similar to the one in Sect. 7.7.0.1 for those
magnetic field values for which the asymptotic ξeq(H) can be at least guessed from



116 The Ising spin-glass in presence of an external magnetic field

Fig. 7.25. We start by modifying the scaling relationship Eq. (7.60) to,

ξ(t, tw;H)|H2 −H2
c (T )|1/yH ∝ const. (7.78)

Next, using Eqs. (7.61) in the scaling argument of Eq. (7.78), we have equivalently,

(
t× |H2 −H2

c (T )|z(T )/yH
)
∝ const. (7.79)

We replot our rescaled data in Fig. 7.26 for the mean field values of HMF
c (T ), see Eq.

(7.76). As seen in Fig. 7.26b, there is nearly perfect scaling for H ≥ 0.08 but not for
H = 0.04, though the curves do seem to coalesce for the three different waiting times.

It is tempting to suggest that, for this value of magnetic field, one is in the condensed
phase. However, glancing at Fig. 7.25b, the growth of ξ(t, tw;H) for H = 0.04 breaks
away from the growth for the smaller values of magnetic field, so that it is very possible
that it would join the equilibrium curves (i.e. the paramagnetic regime) at times longer
than are accessible in our simulations. This ambiguity softens an interpretation that
we have broached the dAT line in our simulations as would be predicted from a mean
field approach.

However, if we replot our data using the scaling result, Eq. (7.77), as exhibited in
Fig. 7.27, for the values of H3D

c (T ) for T = 0.9, the data appear to collapse for all
of the magnetic fields, including H = 0.04 [H3D

c (T = 0.9) � 0.04]. This supports
the above conjecture that, at T = 0.9, our simulation results for H = 0.04 are in the
paramagnetic regime.

The rescaled data of Fig. 7.25a , appropriate to T = 1.0, are plotted in Figs. 7.26a
and 7.27a, for the mean field and 3D scaling, respectively. The data are of low quality,
limiting the magnetic fields to only relatively large values. For the three values (H =
0.04, 0.08, 0.16) for which it is feasible to rescale, all are above the HMF, 3D

c (T = 1.0)
values given by Eqs. (7.76) and (7.77). Hence, all are in the paramagnetic regime, as
can seen from the shape of the curves in both figures.

Thus, though the data of Fig. 7.25b suggests that, for the lowest magnetic fields
and T = 0.9, ξ(t, tw, T ) may be growing as a power law, and thus be in the condensed
phase, our limited time scale for the simulations is unable to conclude that we have,
in fact, straddled the dAT line. If one assumes Fisher-Sompolinsky scaling, Eq. (7.77),
all of our simulation results would be in the paramagnetic region. Until much longer
times scales became reachable (either at lower temperatures, or smaller magnetic field),
even our powerful Janus II simulations are unable to arrive at a definitive conclusion
regarding the existence, or non-existence of the dAT line for Ising spin-glasses.
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Figure 7.26: Evidence of the dAT line in finite dimension
Plots are in log-log scale and show the behavior of the rescaled quantities defined in
Eqs. (7.78)-(7.79) for the mean-field estimators Hc(T )MF (see Eq. (7.76).
We report the aging rate z(T ) used in this scaling in Tab. 7.6 to be found in Sec. 7.7.
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Figure 7.27: Evidence of the dAT line in finite dimension
Plots are in log-log scale and show the behavior of the rescaled quantities defined in
Eqs. (7.78)-(7.79) for the Fisher-Sompolinsky estimators Hc(T )3D (see Eq. (7.77).
We report the aging rate z(T ) used in this scaling in Tab. 7.6 to be found in Sec. 7.7.

7.9

Remark

This work displays the unique and powerful combination of experiment, theory, and
simulations addressing complex dynamics. The use of single crystals enables exper-
iments to exhibit the consequences of very large spin-glass correlation length. The
power of a special purpose computer, Janus II, in combination with theory, is sufficient
to extend simulation times and length scales to values explored experimentally. To-
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gether, these approaches unite to develop new and important insights into spin-glass
dynamics.

Previous work [Joh99, BJ17a] explored the reduction of the free energy barrier
heights responsible for aging in spin-glasses by the Zeeman (magnetic field H) energy.
The observations for small magnetic fields, proportional to H2, have been used to
extract a quantitative value for the spin-glass correlation length and its growth rate with
time. However, as the magnetic field was increased, departures from the proportionality
to H2 were observed. This work presents detailed experimental observations of this
behavior, and, together with theory [Zha20b], is able to demonstrate the applicability
of a new non-linear scaling law for the magnetization in the vicinity of the spin-glass
condensation temperature Tg. Remarkably, Janus II simulations were able to generate
comparable values for the magnetization dynamics, with the added value of direct
measurement of the characteristic response time.

The combination of these two approaches has put to rest a decades old controversy
concerning the nature of the Zeeman energy. It was shown that the departures from
proportionality to H2 was caused by non-linear terms in the magnetization, and not
by fluctuations of the magnetization that lead to a Zeeman energy proportional to H.
Further, the departure from an H2 behavior that was used to justify the proportionality
to H was shown to be a consequence of non-linear behavior of the magnetization in
H, and fully accounted for using the new scaling law. This is an important finding
because otherwise the extraction of the spin-glass correlation length from the Zeeman
energy reduction in the barrier height would have been in error.

One of the most interesting findings in this work was the extraction of the charac-
teristic response time for spin-glasses, teff

H , from simulations. This was made possible
by noting that the spin-glass correlation function reaches a peak at the response time.
That is,

C(teff
H , tw;H) = Cpeak(tw) (7.80)

Thus, by extracting Cpeak(tw) one can determine the characteristic response time teff
H .

It was this observation that enabled the simulations to give quantitative values for the
non-linear magnetic susceptibility that could be compared with the new scaling law.

In addition, we have explored the microscopic behavior of the magnetic states
through the growth of the correlation lengths under two experimental protocols: zero-
field cooling (ZFC) and field cooling (FC). We proved that in a system close enough to
the condensation temperature Tg, the Fisher-Sompolinsky scaling relation holds under
out-of-equilibrium conditions (see Sec. 7.5.5.) This will enable us in future simulations
to compare the magnitude and growth of the spin-glass correlation length under the
two dynamical protocols: zero-field cooled magnetization, and thermoremanent mag-
netization dynamics. The important point here is that this work displays that our
analysis will be valid under these non-equilibrium conditions.

We discovered an overshoot phenomenon that we showed to be general for both
ordered and disordered magnetic systems. And finally, we explored the nature of the
spin-glass condensation at Tg as a function of the external magnetic field, the so-
called de Almeida-Thouless line. Though our results are preliminary, we displayed
evidence for its existence as a true condensation transition, but this conclusion should
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be regarded as provisional.
In conclusion, this work has explored the nature of the spin-glass state in the

vicinity of its condensation temperature Tg. We displayed the power of combining
insights from both experiment and simulations, coupled together by theory. We look
forward to continued development of spin-glass dynamics using this relationship as
we examine the microscopic nature of such phenomena as rejuvenation and memory.
Finally, because spin-glass dynamics have applications is many diverse fields (ecology,
biology, optimization, and even social science), our work demonstrates that modeling
of complex systems is feasible in finite dimensions.
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CHAPTER VIII

Conclusion

8.1

General considerations

Spin glasses provide a toy model extensively used since the 1950s by both theorists and
experimentalists to research the glass transition. Unfortunately, in spite of continued
and significant efforts, we are still far from a full understanding of our toy model. This
is particularly true for spin glasses in a small spatial dimension (D = 3 is small in this
context).

One can make an amusing parallelism between the scientific endeavor and spin-
glass dynamics. In both cases we find sluggish dynamics, frustration and a hierarchical
organization of the states. Indeed, scientific progress is built on many small advance-
ments that (at some happy but rare moments) combine together to make a big step
forward. The analogue of scientific discovery in the world of a glassy system would
be equilibration, which is achieved only after many small barriers are overcome. Just
to make an example of this glassy evolution of scientific research, we can mention the
discovery of gravitational waves by the LIGO and VIRGO collaborations. Indeed, this
fantastic discovery was possible only after more than a century of continued efforts
after Einstein conjectured that gravitational waves could propagate.

Although my dissertation has not revolutionized our understanding of spin-glasses,
it can be hoped that this thesis provides a milestone for the combined study of spin
glasses through experimental, theoretical and computational means. This combined
strategy has been very rarely followed in the past but we have shown that it can solve
some difficult problems that have challenged physicists for decades.

In the following sections we briefly outline the main results in this thesis. The
interested reader will find a more extended exposition in the concluding paragraphs for
each chapter.
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8.2

The importance of state-of-the-art computation in

spin-glasses research

The core of this dissertation was the investigation of the glassy transition combining
experimental and numerical results. Without special hardware or sophisticated compu-
tational technique, [the synchronous multispin packing], we could not achieve realistic
time and length scale, and, so the synergy between theory, experiment, and simulations
could be impossible.

The data in part II were obtained on standard CPUs employing synchronous mul-
tispin coding. At the moment of the publication of [Fer19b], despite the experimental
success achieved in the investigation of film systems, no numerical works were present.
We posed the basis for further explorations of spin glass systems in a film geometry.

In part III we performed remarkable simulations on the dedicated super-computer
Janus II, an FPGA-based computer designed specifically for Ising spin glass simula-
tions. The success of an FPGA-based computer is remarked by the results obtained
since the 2008s.

8.3

The Ising spin glass in film geometry

We have unveiled the complex landscape of a thin glassy film at the bulk temperature.
In addition, we have studied in detail, for the first time, the dimensional crossover

in the aging dynamics of spin glasses in film geometry, uncovering rich and composed
dynamics. Several very different regimes and scaling laws emerge, and we have suc-
ceeded to clarify with good precision the behavior of all of them. Our analysis starts
from the intuition about the presence of a dimensional crossover, linking 2D and 3D
physics through films: we find that the intuition is correct but oversimplifies a reality
that turns out to be more complex. Film physics is becoming very relevant from an
experimental point of view, but it is also becoming clear that it can also become a
powerful computational tool.

8.4

The Ising Edward-Anderson model in presence of an

external magnetic field

We conduct a parallel study of non-equilibrium spin-glass dynamics both in an exper-
iment in a CuMn single crystal and in a large-scale simulation of the Ising-Edwards-
Anderson (IEA) model carried out on the Janus II custom-built supercomputer [BJ14b].
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We introduced a scaling law that describes the system’s response over its entire natural
range of variation. The observations for small magnetic fields, proportional to H2, have
been used to extract a quantitative value for the spin-glass correlation length and its
growth rate with time. However, as the magnetic field was increased, departures from
the proportionality to H2 were observed. This work presents detailed experimental ob-
servations of this behavior, and, together with theory [Zha20b], is able to demonstrate
the applicability of a new non-linear scaling law for the magnetization in the vicinity
of the spin-glass condensation temperature Tg.

The combination of these two approaches has put to rest a decades-old controversy
concerning the nature of the Zeeman energy. It was shown that the departures from
proportionality to H2 were caused by non-linear terms in the magnetization, and not
by fluctuations of the magnetization that lead to a Zeeman energy proportional to H.
Further, the departure from an H2 behavior that was used to justify the proportionality
to H was shown to be a consequence of non-linear behavior of the magnetization in H,
and fully accounted for using the new scaling law.

In addition, we have explored the microscopic behavior of the magnetic states
through the growth of the correlation lengths under two experimental protocols: zero-
field cooling (ZFC) and field cooling (FC). We proved that in a system close enough to
the condensation temperature Tg, the Fisher-Sompolinsky scaling relation holds under
out-of-equilibrium conditions (see Sec. 7.5.5.)

We discovered an overshoot phenomenon that we showed to be general for both
ordered and disordered magnetic systems. And finally, we explored the nature of the
spin-glass condensation at Tg as a function of the external magnetic field, the so-called
de Almeida-Thouless line.

8.5

Future challenges and opportunities

The advances exposed in this dissertation will represent a small step forward in the
full comprehension of the glass transition and its modeling. On the other hand, new
research opportunities have been unveiled in this thesis.

From a computational point of view, we implemented several packing techniques
to speed-up both simulations and analysis. This numerical approach allowed us to
simulate very large systems and to thermalize them even at cold temperatures. In
this dissertation, we have proven that the film geometry is a powerful tool for the
investigation of the spin-glass:

� the dimensional crossover that happens as soon as the correlation length, ξ, is
compatible with the thickness, speeds up the dynamics; so, the system can easily
achieve the equilibrium.

� The equilibrium is characterized by a finite correlation length;

� we can compare the numerical results to the experiments of the last generation.
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In addition, being part of the Janus Collaboration was a unique opportunity. A
breakthrough for the comprehension of a spin-glass system in the presence of a magnetic
field is given by the range of the correlation lengths that we were able to achieve both
experimentally and numerically. The results obtained through the super-computer
Janus II represented a step forward by a factor three in the length scales than previous
works. On the experimental side, our co-workers reached a correlation length four times
larger. The synergy between these two approaches allowed us to solve a three-decade-
old controversy concerning the nature of the magnetic state. As we have explained
in Part III, it was a tough task the calculation of the numerical relaxation rate which
represents the main quantity evaluated in the experiments. However, the discovery of
a coherent structure in the spin-glass response to a magnetic field arises new prospects.
The most direct ones are:

� the investigation of the microscopical nature of spin-glass dynamics as rejuvena-
tion and memory;

� the microscopical equivalence between the experimental protocols of the Ther-
moremanent and the zero-field cooling;

� the microscopical features of the Hamming distance.
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APPENDIX A

Multispin coding

A.1

Synchronous Multispin coding

Modern CPUs, both Intel and AMD, support 256-bit words in their streaming exten-
sions and perform synchronously independent Boolean operations for all the bits in a
computer word.

This means that one can exploit basic Boolean operations (AND, XOR, etc) in par-
allel for all the bits in a computer word. Hence, the Metropolis algorithm is perfect for
a straightforward implementation since a single spin-flip is possible using only Boolean
operations if the couplings are binary Jxy = ±1.
Starting from the innovative idea of Ref. [Fan14], we implement our algorithm to
speed-up the simulation of a single system. In their parallel tempering simulation,
each bit represents an independent system copy and all of them evolve under the same
couplings, but at different temperatures.
The multispin coding is fruitful for the reduction of step operations, but the real prob-
lem in the simulation speed-up is in the manager of the random number generator.
Each bit of the computer word obtained thanks to the SEE2 extensions, need an in-
dependent random number. However, it has been realized several times that most of
the effort in generating (pseudo) random numbers is wasted when simulating discrete
models at low temperatures [Gil77, Bor75].
At a given time the simulation may try to overcome an energy barrier ∆E. The as-
sociated probability in this energy jump is e−∆E/T . In other words, this means that
for each time we are wasting e∆E/T random numbers, which are associated to deny
overcoming the barrier until we generate one random number that really allows us to
walk uphill in energy.
In our model, the energy barrier could only be ∆E = 4, 8, or 12. So, at the critical
temperature Tc, in the best cases we use only one random number out of e4/1.1 ≈ 38.
Hence, one can recycle the random numbers that are associated with a deny spin-flip
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changing the perspective of the probability associated with each spin-flip. Let us regard
the random-number generator as a collection of flags: red for denying us the right to
increase the energy and green ones for allowing us to increase the energy. Now, most
of the flags are red and a diluted set is green. The trick is setting all flags to red by
default, and then caring only about placing green flags with the correct probability.

Let us assume that all the flags are red, for all the sites and all barriers ∆E = 4, 8,
and 12. Now, for each site in the physical lattice, we draw one 64-bits uniformly
distributed random numbers:

0 ≤ R4 < 1 . (a.1)

If R4 < e−4/T then we put a green flag for ∆E = 4 and draw a second uniform random
number:

0 ≤ R8 < 1 . (a.2)

Now, if R8 < e−4/T we put a green flag for ∆E = 8, and draw a third uniform random
number:

0 ≤ R12 < 1 . (a.3)

Finally, if R12 < e−12/T we put a green flag for ∆E = 12.
Of course ours is just an instance among many valid generators. This particular random
number generator was chosen because it is fairly easy to simulate.
Let us describe how we simulate the generator Ri. We generate an integer n4 ≥ 0,
with the following meaning: one performs ni unfruitful calls to the generator, but on
call 1 + ni we should put a green flag. The cumulative probability for ni is:

F (ni ≥ k) ≡ Prob(ni ≥ k) = 1− (1− e−4/T )k+1 . (a.4)

Hence, we just need to draw an uniform random number 0 < R ≤ 1 and select n4 = k,
where k is the non-negative integer that verifies

F (k − 1) ≤ R < F (k) [F (−1) ≡ −1] . (a.5)

Combining these ideas with the use of look-up tables, we have found that overall cost
of generating random numbers can be made quite bearable.
Let us now explain the geometry of the multispin coding.

A.1.1 MUlti SIte (MUSI) multispin coding implementation

We have simulated Metropolis dynamics through two different multispin codings:MUlti
SAmple multispin coding (MUSA) and MUlti SIte multispin coding (MUSI). The
MUSA algorithm is based on the representation of many samples in a single com-
puter word (128 in our implementation). In other words, each bit corresponds to a
different sample. This implementation does not have any computational constraints.
One can simulate a system with any lattice value and with any kind of boundary con-
ditions. Otherwise, the MUSI implementation, which has a better performance in the
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computational speed-up of a single sample, is more complex and needs some geometri-
cal constraints. The MUSI technique is efficient because it packs the physical spins in
a new computational lattice that exploits the memory access architecture of the last
generation chips.
Hence, the MUSI implementation can be used only for simulating a system with peri-
odic boundary conditions and with lattice values that are multiples of 2m with m ∈ N.
This technique is well-known in the 3D spin-glass simulation [Fer15].
Here, we shall explain the MUSI implementation for a spin-glass system with a film
geometry.
Let take an Ising glassy system in a cubic lattice with film geometry, which has two
long sides of lengths Lx = Ly = 256 and thickness Lz << Lx.
Physically, spins are sitting on the nodes of a lattice with periodic boundary conditions.
Euclidean coordinates then run as:

0 ≤ x < Lx ,

0 ≤ y < Ly ,

0 ≤ z < Lz .

Each physical spin is a binary variable to be coded in a single bit s(x,y,z) = ±1.
We pack 256 physical spins into one superspins. Our superspins sit in the nodes of a
different lattice.
The major requirement is that nearest-neighbors in the physical lattice should be as
well nearest neighbors in the superspin lattice.
Let us consider the system as Lz bidimensional layers with dimensions Lx = Ly = L/16.
Hence, let us place at the nodes of the layer surface for any given z value.
The relation between physical coordinates (x, y) and the coordinates in the superspin
lattice (ix, iy) is:

x = bxLx + ix , 0 ≤ ix < Lx , 0 ≤ bx < 16 ,

y = byLy + iy , 0 ≤ iy < Ly , 0 ≤ by < 16 , (a.6)

In this way, exactly 256 sites in the physical lattice are given the same superspin
coordinates (ix, iy).
We differentiate between them by means of the bit index:

ib = 16by + bx , 0 ≤ ib ≤ 255 . (a.7)

This layer-superspin construction does not preserve the parity of the original site.
Hence, we give at each layer-superspin a parity depending on the z value. In this way,
we can recover the parity of the physical system x + y + z and exploit the bipartite
representation.
It can be regarded as a two interleaved face-centered cubic lattice. A given site is said
to belong to the even or the odd sublattice according to the parity x+ y + z.
For a model with only first neighbors interactions, sites belonging to (say) the even
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sublattice interact only with the odd sites.
As consequence, the even-odd decomposition introduces a high parallelism level. In-
deed, we define the full lattice Metropolis sweep as the update of all the L2Lz/2 even
sites, followed by the update of all the L2Lz/2 odd sites. The bipartite nature of the
lattice makes irrelevant the updating order of sites of a given parity. Hence, several
updating threads may legitimately concur on the same lattice, provided that all of
them simultaneously access only sites of the same parity.

A.2

The Janus Super computer

Most of our Monte Carlo simulations have been carried out on the Janus special-purpose
machine1. Information about Janus’ hardware as well as some details of low-level pro-
gramming can be found in [Bel09b, BJ12, BJ14b]. Janus is built out of 256 computing
cores rocessors (Xilinx Virtex-7 XC7VX485T FPGA) arranged on 16 boards. The 16
FPGAs on a board communicate with a host PC via a 17th on-board control FPGA.
An exhaustive explanation is given in Ref. [BJ14b, BJ12].

A.3

Parallel Tempering

The Parallel Tempering (PT) algorithm is a global algorithm [Mar92, Gey91] and it
is commonly used for the equilibrium investigation of large systems or of very low
temperatures. For each sample we simulate NT different copies of the system, each of
them at one of the temperatures T1 < T2 < · · · < TNT . The PT update consists of
proposing a swap between configurations at neighboring temperatures.
The exchange is accepted with the Metropolis probability

P = min
[
1, e−β∆E

]
, (a.8)

where ∆E is the energy difference between the two configurations and β is the inverse
temperature. One of the two systems involved in the swap will decrease its energy,
so that change will be automatically accepted. On the other hand, the PT swap is
possible if both the configuration changes are accepted.
One can generalize that the swap is accepted with probability e−β|∆E|. To have an
acceptance rate reasonable, where the system copies NT are not stuck at a given tem-
perature, we carefully determinate the temperature range, ∆T .

1We carried on massive simulation of Janus II for the investigation of the Ising EA model in
presence of an external magnetic field, see Part III
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The temperature ranges of the NT are chosen for having an acceptance ratio of approx-
imately ∈ [20 : 30]%. Notice that exchanging configurations is equivalent to exchange
temperatures, so instead of swapping configurations, one can swap directly tempera-
tures, reducing the data transfer to a single number.
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APPENDIX B

Managing the statistical errors

The numerical observables O shown in this dissertation suffer at least from two noises,
one due to thermal fluctuations during a single run, and a second one deriving from the
disorder. In the MUSA implementation, there is a third error given by the no complete
independence of the samples, but we have checked that this error is sub-leading to the
other two.
In any case, we treat the measurements of our observable as independent identically
distributed (i.i.d) random variables with two independent noises.

Given a set of N measurements Oi, their expected value E(O) can be evaluated
through an estimator

Ẽ(O) =
1

N
N∑

i=1

Oi (b.1)

that for the central limit theorem is at o(N−1/2) distance from E(O).
Nonlinear functions of the observables, f(O), can be estimated by evaluating them

over the estimator. For notation’ simplicity, we write a nonlinear function of a single
observable, but our statements are valid for functions of many observables.
This estimation give us an estimator f(Ẽ(O)) which is a distance o(N−1) from the
actual expected value f(E(O)). However, we can neglect this bias because it is smaller
than the statistical errors.

We present in this appendix the jackknife method.

B.1

The Jackknife Method

The jackknife technique is a powerful resampling method that was used to calculate er-
ror bars throughout this dissertation. It is a well-known technique, and it has extended
literature, for example, [You12]. Hence, we will limit ourselves to a brief description of
it.
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The main idea of the Jackknife (JK) method is of packing the data in blocks that
suppress fluctuations and time correlations.
Let take a set A of measurements Oi ( i = 1, ...,N ) and let group them in n blocks aj
(j = 0, ..., n− 1) of size l, so nl = N . Hence, we get n per-block estimators

Ẽj(O) =
1

l

l∑

i∈aj

Oi (b.2)

of the expectation value E(O).
From those we construct JK estimators by creating new JK bins.
Each JK bins aJKj contains the full data except that regarding precisely aj, so aj =
A/aj. The JK estimators are

ẼJK
j (O) =

1

N − l
N−l∑

i/∈aj

=
1

N − l
∑

i∈aJKj

Oi , (b.3)

and over each of them, we evaluate the nonlinear function fJK
j = f

(
Ẽ(JK)(O)

)
.

The JK error estimate σf is then

σf =

√√√√√(n− 1)


 1

n

n−1∑

j=0

(fJK
j )2 −

(
1

n

n−1∑

j=0

fJK
j

)2

 . (b.4)



APPENDIX C

Four-Replica Correlators

In this Appendix, we give some details about the 4-replica correlators used in Part III.
We explain how to find the replicon and the longitudinal connected correlation func-
tions GR and GL. Then, we show how to implement the Fast-Fourier Transformation
(FTT) with the multispin coding technique.
In the presence of an external magnetic field, a spin-glass system, even in the param-
agnetic phase, has a no-zero overlap and a residual magnetization m 6= 0. Hence, the
correlation function C4(r, tw + t) does not go to zero for large distance.
We need therefore to explicitly construct correlators that go to zero, as these two
quantities that can be measured directly:

Γ1(x,y) = [〈sxsy〉 − 〈sx〉〈sy〉]2 , (c.1)

Γ2(x,y) = [〈sxsy〉2 − 〈sx〉2〈sy〉2] . (c.2)

C.0.1 The Replicon and/or Longitudinal correlation functions construction

For simplicity, we shall explain the equilibrium formulation, but the out-equilibrium
one is straightforward just by inserting the time dependence. Having at least 4 replica
we can construct three different correlators 1

G1(x,y) = 〈sxsy〉2 , (c.3)

G2(x,y) = 〈sxsy〉〈sx〉〈sy〉 , (c.4)

G3(x,y) = 〈sx〉2〈sy〉2 . (c.5)

These quantities doe not go to zero for large distances ‖ x−y ‖, but in the paramagnetic
phase, they all tend to the same value, qEA, when ‖ x−y ‖→ ∞. Hence, one can obtain
the basic connected propagators of the replicated field theory, namely the replicon GR

and the longitudinal GL one, [Dom98, Dom06] by a linear combinations of the previous

1In Part III we utilized this method.
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quantities:

GR = G1 − 2G2 +G3 , (c.6)

GL = G1 − 4G2 + 3G3 . (c.7)

Now, let us manipulate the Γi expressions for showing their connection to the GR

and GL expressions.

Γ1(x,y) = [〈sxsy〉 − 〈sx〉〈sy〉]2

= 〈sxsy〉2 − 2〈sxsy〉+ 〈sx〉〈sy〉 . (c.8)

As the reader can observe, this is exactly the expression of the replicon GR

Γ1(x,y) = GR(x,y) . (c.9)

To expand Γ2 we complete a square

Γ2(x,y) = [〈sxsy〉2 − 〈sx〉2〈sy〉2]

= (〈sxsy〉2 − 2〈sxsy〉〈sx〉〈sy〉+ 〈sx〉2〈sy〉2) +

+ 2
(
〈sxsy〉〈sx〉〈sy〉 − 〈sx〉2〈sy〉2

)

= GR(x,y) + 2 [G2(x,y)−G3(x,y)] . (c.10)

Let us rewrite Eq. (c.10) in the convenient form Γ2 − Γ1 = 2(G2 −G3) and with a bit
of algebra we find:

GL(x,y) = 2Γ1(x,y)− Γ2(x,y) . (c.11)

The definition of the two connected propagators, Eq. (c.6) and (c.7), are valid at the
equilibrium, but they were successfully used in the out-equilibrium context [BJ14b].

C.1

Measuring the propagators with MultiSpin Coding

Let us express the replicon correlator GR in a useful way for MSC implementation and,
then, we will show the clue for the analysis.

C.1.1 Correlators as simple functions of simple fields

Let us write the physical correlation functions in terms of field of differences that is a
simple way of constructing unbiased quantities in Monte Carlo computations.
With four replicas we can define

X1(x) = (sa
x − sb

x)(sc
x − sd

x) ,
X2(x) = sa

xs
b
x − sc

xs
d
x .

(c.12)
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Actually, these are the quantities we measure. We want to relate them with the corre-
lation functions GR and GL (Eqs. (c.6)-(c.7)).

Expanding the X1 field correlator, we get

〈X1(x)X1(y)〉 = 4〈sa
xs

c
xs

a
ys

c
y〉 − 8〈sa

xs
c
xs

a
ys

d
y〉+ 4〈sa

xs
c
xs

b
ys

d
y〉 . (c.13)

On the other side rewriting the replicon propagator GR as a function of four replica
yields

GR(x,y) = 〈sa
xs

a
ys

b
xs

b
y〉 − 2〈sa

xs
a
ys

b
xs

c
y〉+ 〈sa

xs
a
ys

c
xs

d
y〉 , (c.14)

so

GR(x,y) =
1

4
〈X1(x)X1(y)〉 . (c.15)

Equivalently, an expansion of the X2 field correlator returns

〈X2(x)X2(y)〉 = 〈sa
xs

b
xs

a
ys

b
y〉 − 〈sa

xs
b
xs

c
ys

d
y〉 − 〈sc

xs
d
xs

a
ys

b
y〉+ 〈sc

xs
d
xs

c
ys

d
y〉 =

= 2
(
〈sxsy〉2 − 〈sx〉2〈sy〉2

)
. (c.16)

By averaging it over the disorder we can relate it to the non-connected correlators of
Eq. (c.3)-(c.5),

1

2
〈X2(x)X2(y)〉 = G1(x,y)−G3(x,y) = (c.17)

= 2GR(x,y)−GL(x,y) , (c.18)

where for the second relation we used Eqs. (c.6)-(c.7). The expression of GL in terms
of the fields Xi becomes

GL(x,y) =
1

2
〈X1(x)X1(y)〉 − 1

2
〈X2(x)X2(y)〉 . (c.19)

Since it is possible to construct the fields Xi with three independent permutations of
the replicas (Xabcd

i , Xacbd
i and Xadbc

i ), we compute correlators starting from each of
those permutations and then average to reduce fluctuations.

C.1.2 Fourier transformation for managing the correlator distance r

The correlator functions GR and GL are averaged over the disorder, Jij, and one can
rewrite them as a function of the vector distance r.
In the following, we focused only on the calculation of the GR(r) because it carries the
most signal [BJ14a].
It is expressed as:

GR(r) =
1

4

∑

x

〈X1(x)X2(x + r)〉 (c.20)

where we averaged over the different replica, see below for details.
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For the convolution theorem, one can express it in the Fourier space:

ĜR(r) =
N

4
〈X̂1(k)X̂1(−k)〉 , (c.21)

where, for k = (k, 0, 0),

X̂1(k) =
1

N

L∑

n

eiknP (n) . (c.22)

The quantity P (n) is the field averaged over a plane with x1 = n

P (n) =
∑

y,z

X1(n, y, z) . (c.23)

There are infinite plane orientations, but we only focused on the ones that have the
easiest code implementation. In our analysis, we chose planes orthogonal to the vectors
of the euclidean basis and the diagonals of the lattice. These geometric operations are
fast, as they are of order L. The computational effort is in the replica permutations
that we need to perform to gain statistic.
In the next section, we show how to build a smart code variable to speed up the
analysis.

C.1.3 Multispin coding

We will present a smart way to code our spin variables and, so, to calculate the ele-
mentary bricks through which we can construct our correlators.

Let us take the directions (x, y, z) and the single planes are the L possible planes
one can construct along each direction.
According to Eq. (c.14), we need four distinct replicas to calculate GR for a given
distance r and, then, we can average over all the replica combinations.
Let rewrite Eq. (c.14) in a more convenient way:

GR(r) =
1

N4

∑

{a6=b6=c6=d}

(sa
x − sb

x)(sa
y − sb

y)(sc
x − sd

x)(sc
y − sd

y) (c.24)

=


 1

N4

∑

{a6=b6=c 6=d}

(sa
x − sb

x)(sa
y − sb

y)




 1

N4

∑

{a6=b 6=c 6=d}

(sc
x − sd

x)(sc
y − sd

y)


 (c.25)

=
[
N(qa

xy + qb
xy)− (Ma

xM
b
y +Ma

yM
b
x)
] [
N(qc

xy + qd
xy)− (M c

xM
d
y +M c

yM
d
x)
]

(c.26)

where

qαxy =
1

N

∑

α

sαxs
α
y (c.27)

Mα
x =

1

N

∑

α

sαx . (c.28)
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Let us remark all the sum are over different replica (a 6= b 6= c 6= d).
Hence, we can use the computer extension SEE2 to build large computer word and
parallelize the bitwise operations that we need for calculating the quantities in Eq.
(c.26).

In an Ising spin-glass, each spin has only two possible values, σ = ±1, and one can
store it in a single bit through the well-known transformation:

sx =
(1− σx)

2
. (c.29)

Hence, we can store in a single computer word the spin at a given lattice position x
for all the replica:

1 typedef __m256i MY_WORD;

MY_WORD replicas [2][V] // we have 512 replicas

This operation aligns 256 bits, exploiting SEE2 computer extension.
Now, we divided the NR replica in four sub-groups, which one corresponds to different
replica.

VectorUnion64 wx ,wx1 ,wy ,wy1;

NewVectorUnion64 ax ,ay ,bx ,by ,cx ,cy ,dx ,dy;

3

wx.sse=replicas [0][x];

wx1.sse=replicas [1][x];

wy.sse=replicas [0][y];

wy1.sse=replicas [1][y];

8

//This cicle gives us access to the bits of the macro -computer word

_m256i

for(iw=0;iw <2;iw++){

ax.vec[iw]=wx.vec[iw];

bx.vec[iw]=wx.vec[iw+2];

13 cx.vec[iw]=wx1.vec[iw];

dx.vec[iw]=wx1.vec[iw+2];

ay.vec[iw]=wy.vec[iw];

by.vec[iw]=wy.vec[iw+2];

18 cy.vec[iw]=wy1.vec[iw];

dy.vec[iw]=wy1.vec[iw+2];

}

//We built new computer words which have exactly 128 distinct

replicas at the position x,y

//(x,y) are arbitrary position points

23 SigmaAx=ax.sse;

SigmaBx=bx.sse;

SigmaCx=cx.sse;

SigmaDx=dx.sse;

SigmaAy=ay.sse;

28 SigmaBy=by.sse;

SigmaCy=cy.sse;

SigmaDy=dy.sse;

where the variable definitions are:
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typedef __m128i MY_WORD128;

typedef union {

4 __m256i sse;

unsigned long long vec [4];

} VectorUnion64; // This struct Union aligns 256 bits , divided into

four long long variables

typedef union {

9 __m256i sse;

unsigned vec [8];

} VectorUnion32; // This struct Union aligns 256 bits , divided in

eight unsigned variables

typedef union {

14 __m128i sse;

unsigned long long vec [2];

} NewVectorUnion64; // This struct Union aligns 128 bits , divided

into two long long variables.

19 VectorUnion64 wx ,wx1 ,wy,wy1;

NewVectorUnion64 ax ,ay ,bx ,by ,cx ,cy ,dx ,dy;

MY_WORD128 SigmaAx ,SigmaAy ,SigmaBx ,SigmaBy ,mi_QxyA ,mi_QxyB;

MY_WORD128 SigmaCx ,SigmaCy ,SigmaDx ,SigmaDy ,mi_QxyC ,mi_QxyD;

These computer words Sigma correspond to the spins of 128 replicas at the lattice
position x or y, which are completely arbitrary till now.
Hence, we directly calculate the overlap qαxy and the magnetization Mα

x in Eq. (c.26)
using bitwise operations.

1 mi_QxyA= SigmaAx ^ SigmaAy; //they are all variables of type

MY_WORD128

mi_QxyB= SigmaBx ^ SigmaBy;

mi_QxyC= SigmaCx ^ SigmaCy;

mi_QxyD= SigmaDx ^ SigmaDy;

Then, we used the popcount128() function2 to calculate how many zero and ones
we have in our super-overlap miQxyA and in the magnetization Mα

x associated to the
super-spin SigmaAx:

1 qa=128 -2* popcount128 (& mi_QxyA);

qb=128 -2* popcount128 (& mi_QxyB);

qc=128 -2* popcount128 (& mi_QxyC);

qd=128 -2* popcount128 (& mi_QxyD);

6 Mxa =128 -2* popcount128 (& SigmaAx);

Mya =128 -2* popcount128 (& SigmaAy);

Mxb =128 -2* popcount128 (& SigmaBx);

Myb =128 -2* popcount128 (& SigmaBy);

Mxc =128 -2* popcount128 (& SigmaCx);

2It is a simple implementation of the popcount() function for variable of 128 bits
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11 Myc =128 -2* popcount128 (& SigmaCy);

Mxd =128 -2* popcount128 (& SigmaDx);

Myd =128 -2* popcount128 (& SigmaDy);

The final contribution to the replicon correlator is:

g1_popAB= (qa+qb) - (Mxa*Myb + Mya*Mxb);

2 g1_popCD= (qc+qd) - (Mxc*Myd + Myc*Mxd);

g1_popAC= (qa+qc) - (Mxa*Myc + Mya*Mxc);

g1_popBD= (qb+qd) - (Mxb*Myd + Myb*Mxd);

7 g1_popAD= (qa+qd) - (Mxa*Myd + Mya*Mxd);

g1_popBC= (qb+qc) - (Mxb*Myc + Myb*Mxc);

Gamma1 += g1_popAB*g1_popCD + g1_popAC*g1_popBD + g1_popAD*g1_popBC

;

where we did three replica combinations, see Eq. (c.14).
We performed this code construction for all the Cartesian direction (x, y, z) and the L
possible planes that one can build along each direction

for (r=0;r<L/2+1;r++){

Gamma1 =0;

for (z=0,i=0;z<L;z++){

zz=mod160[z+r]; //where , for (i=0;i <=160+80;i++)

mod160[i]=i%160;

5 for (y=0;y<L;y++){

yy=mod160[y+r];

nx=z*L*L+y*L;

ny=z*L*L+yy*L;

nz=zz*L*L+y*L;

10 for (x=0;x<L;x++,i++){

xx=mod160[x+r];

gamma1(i,xx+nx); // gamma1(int ,int) is the

function that includes all the previous

code

gamma1(i,ny+x);

gamma1(i,nz+x);

15 }

}

}

GR[r]= (double)Gamma1/N4/(V*18LL*4); // where N4= pow (128 ,4)

This analysis was performed over the configurations generated by Janus II, and we
had NR = 512. Of course, we could not calculate all the possible replica permutations
3× 512!/(508!4!), but we were able to calculate a third of these enormous numbers in
a very fast way.
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APPENDIX D

The Ising spin-glass in presence of an
external magnetic field H

D.1

Technical details

D.1.1 Smoothing and interpolating the data

Our numerical data for the magnetization at small magnetic fields are rather noisy,
which complicates the process of taking its derivative with respect to log t. This deriva-
tive is the response function S(t, tw;H) [recall Eq. (7.10)]. This is why, before com-
puting the derivative, we have used a denoising method first proposed in Ref. [BJ17b].
However, because we work at larger correlation lengths (and closer to Tg) than it was
done in Ref. [BJ17b], we have found it preferable to change some technical details. We
explain below the precise denoising method that we have followed in this work.

Our starting observation is that the derivative of both MZFC(t, tw;H) and
TMZFC(t, tw;H)/H peak at exactly the same time teff

H . However, TMZFC(t, tw;H)/H
enjoys the advantage of being a very smooth function of the correlation C(t, tw;H).
This smooth function is named the Fluctuation-Dissipation relation [Cug93, Cru03,
Fra94, Fra98, Fra99]. The key point is that, at variance with the magnetization,
C(t, tw;H), can be computed with high accuracy for any field value H, including H = 0.
Thus, we follow a simple two-steps denoising algorithm:

1. We fit our data for TMZFC(t, tw;H)/H as a function of C(t, tw;H), see Eq. (d.1).

2. We replace our data for TMZFC(t, tw;H)/H by the just mentioned fitted function,
which is evaluated at C(t, tw;H).

Our chosen functional form is as follows. Let the quantity TMZFC(t, tw, H)/H
be approximated by f(x̂), where for notation simplicity we do not write its explicit
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dependence on t, tw and H,

f(x̂) = fL(x̂)
1 + tanh[Q(x̂)]

2
+ fs(x̂)

1− tanh[Q(x̂)]

2
(d.1)

with Q(x̂) = (x̂ − x∗)/w. The function f(x̂) has two distinct behaviors for large
and small x̂. The crossover between the two functional forms is smoothed by the
tanh[Q(x̂)] functional term, where x∗ is the crossover point and w is the crossover rate.
The functional form for small x̂ is:

fs(x̂) = a0 +
N∑

k=1

ak
(x̂− x̂min)k

k!
(d.2)

For the large x̂ region, we choose a polynomial expansion in terms of (1− x̂):

fL(x̂) = (1− x̂) +
N ′+1∑

k=2

bk
(1− x̂)k

k!
(d.3)

The polynomial expansion in (1 − x̂) is quite natural in the large x̂ region [BJ17b],
as a deviation from the Fluctuation-Dissipation Theorem. This Theorem, that holds
only under equilibrium conditions, predicts N ′ = 0 for Eq. (d.3) and x∗ = w = 0 for
Eq. (d.1) [so that, in equilibrium, one would have f(x̂) = (1− x̂) in Eq. (d.1)]. In the
small x̂ region, there is not any theoretical justification for this functional form for fs(x̂).
The quantity TMZFC(t, tw, H)/H is affected by strong nonlinear effects that increase
with increasing external magnetic field H and upon approaching the temperature, (see
Fig. d.1).
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Figure d.1: The behavior of the quantity TMZFC(t, tw, H)/H is exhibited as a function
of C(t, tw;H). The upper plot is for the case of T = 1.0 tw = 231.75. The bottom
pot is for the case of T = 0.9 tw = 231.25. We do not report all the magnetic values for
simplicity.
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As we will discuss in Appendix D.1.2, selecting the appropriate order for the poly-
nomials in Eqs. (d.1) and (d.3) and (d.2). Our preferred choices are given in Table
d.1.
Errors are computed using a jackknife procedure. We perform an independent fit for
each jack-knife block, and compute errors from the jack-knife fluctuations of the fitted
f(x̂). In Fig. d.2 we show a comparison between the original and smoothed data
for the case T = 1.0 and tw = 231.75. As expected, the de-noising technique is most
important for the smallest magnetic fields.
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Figure d.2: Comparison between the original and smoothed data at T = 1.0 and
waiting time tw = 231.75. One can clearly see the advantage of the de-noising method
for the lowest magnetic field.

D.1.2 Over-fitting problem

A difficulty in our fits to Eq. (d.1) is that we can use only the diagonal part of the covari-
ance matrix in the computation of the goodness-of-fit indicator χ2. This is the reason
underlying the very small values for χ2 that we show in Tab. d.1. As a consequence,
we cannot trust the χ2 test for selecting the appropriate order for the polynomial
expansions in Eqs. (d.2) and (d.3). Hence, we followed a different strategy.

Fortunately, we can also compare the statistical errors that we find for the denoised
TMZFC(t, tw;H)/H with different choices of the polynomial expansion (remember that
these errors are not computed from χ2, but from the jack-knife fluctuations). As an
example, take the case at T = 0.9 for a waiting time tw = 231.75 and H = 0.002, which
is considered in Fig. d.3. The figure compares the statistical errors of the original,
not-denoised data with the errors found with two possible choices for the polynomial
fits in Eqs. (d.2) and (d.3). Although both fits are indistinguishable from the point
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tw H N N′ x∗ w χ2/DOF

0.01 1 1 0.583(11) 0.128(1) 45.7206/110
0.02 1 1 0.604(6) 0.1264(6) 49.8735/110
0.04 3 2 0.589(4) 0.099(4) 27.9909/107

222 0.08 3 2 0.576(7) 0.164(11) 64.3442/107
0.1 3 2 0.681(12) 0.187(4) 33.1334/99
0.12 3 3 0.665(18) 0.0725(5) 31.7093/98
0.16 4 4 0.617(36) 0.052(1) 65.326/104
0.005 2 0 0.530(17) 0.100(7) 28.518/112
0.01 1 1 0.520(10) 0.115(4) 37.3434/112
0.02 2 0 0.535(3) 0.091(3) 35.5349/112

226.5 0.04 2 0 0.653(2) 0.033(2) 59.3249/112
T = 0.9 0.08 3 2 0.585(7) 0.161(11) 55.0056/109

0.1 3 2 0.674(12) 0.176(4) 32.874/103
0.12 3 3 0.683(64) 0.078(11) 42.7819/102
0.16 4 4 0.623(15) 0.0336(84) 77.2971/106
0.005 1 0 0.503(8) 0.074(7) 35.145/123
0.01 1 1 0.520(12) 0.139(2) 32.3306/118
0.02 1 2 0.550(7) 0.0335(3) 31.2191/121

231.25 0.04 2 0 0.554(16) 0.080(2) 75.7904/116
0.08 3 2 0.598(6) 0.152(8) 38.4391/115
0.10 3 2 0.688(10) 0.170(4) 29.9037/107
0.12 3 3 0.655(14) 0.062(4) 32.3955/98
0.16 4 4 0.549(22) 0.077(6) 67.2957/112
0.005 1 0 0.371(18) 0.178(12) 60.7092/103
0.01 1 0 0.411(4) 0.129(4) 46.7089/103
0.02 1 0 0.397(2) 0.138(2) 76.0089/103

223.75 0.04 2 0 0.457(2) 0.146(2) 49.4012/102
0.08 4 0 0.589(6) 0.066(1) 36.3845/100
0.16 4 3 0.639(12) 0.061(6) 48.3379/98
0.005 1 0 0.37(2) 0.157(1) 34.6242/101
0.01 1 0 0.400(8) 0.128(5) 45.1691/111
0.02 1 0 0.389(2) 0.132(2) 53.1209/111

T = 1.0 227.625 0.04 3 0 0.559(11) 0.049(4) 32.7385/109
0.08 3 1 0.638(8) 0.023(11) 491.701/108
0.16 3 1 0.667(2) 0.023(3) 140.853/108
0.005 2 0 0.357(9) 0.170(12) 41.854/127
0.01 1 0 0.114(10) 0.114(10) 39.2024/123
0.02 2 0 0.488(8) 0.116(7) 40.968/118

231.75 0.04 3 0 0.534(12) 0.070(4) 33.5791/109
0.08 3 1 0.631(4) 0.023(5) 271.914/108
0.16 4 0 0.686(9) 0.080(3) 160.49/108

Table d.1: For each of our fits to Eq. (d.1) we report: the order of the polynomial
in Eq. (d.2) N , the number of fitted parameters in Eq. (d.3) N ′, [N ′ = 0 means
fL(x̂) = (1 − x̂) ], the crossover parameters x∗ and w, and the fit’s figure of merit
χ2/DOF. Mind that we can only compute the so-called diagonal χ2, which takes into
account only the diagonal elements of the covariance matrix. Due to this limitation, for
many of our fits we find a value of χ2 significantly smaller than the number of degrees
of freedom.
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case N N′ x∗ w χ2/DOF

over-fitted 1 1 0.547(6) 0.132(1) 28.0591/122
our choice 2 0 0.550(7) 0.0335(3) 31.2191/121

Table d.2: Information about the two fits shown in Fig. d.3. We follow the same
notational conventions of Table d.1.

of view of the χ2 test, see Tab. d.2, the resulting errors are very different. In one case,
we find statistical errors that evolve rather smoothly with t. For the second choice, we
find wild oscillations in the size of errors as t varies. When in doubt, we have always
taken the choice providing the smoother t evolution for the errors. As we said above,
our final choices are reported in Tab. d.1.
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Figure d.3: Comparison between the original and the smoothed relative errors,
TδMZFC(t, tw, H)/H (with T = 0.9, tw = 231.75, and H = 0.002), for two different
fitting functions f(x̂) reported in Table d.2.

D.1.3 Time discretization and the calculation of the relaxation function
S(tw, t;H)

As it was explained in the main text, the quantity used in experiment [Joh99] to extract
teff(H) is the relaxation function S(t, tw;H) of Eq. (7.10). We calculate S(t, tw;H) as
a finite time difference:

S(t, tw, t
′;H) =

MZFC(t′, tw;H)−MZFC(t, tw;H)

log
(
t′

t

) . (d.4)
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In simulations, the time is discrete and we have stored configurations at times tn =
integerpartof 2n/4, with n an integer. Let us write explicitly the integer dependence of
the time t and t′ as:

t ≡ tn t′ ≡ tn+k

where k is an integer time parameter. Hence, we rescaled the time as:

tnew =
1

2
log

(
tn+k

tn

)
(d.5)

and, we expressed our observables as functions of the time tnew:

S(t, tw, t
′;H) → S(tnew, tw;H) (d.6)

C(t, tw;H) → C(tnew, tw;H) . (d.7)

The relaxation function S(tnew, tw;H) is trivial to construct, see Eq. (d.4). How-
ever, the correlation function C(tnew, tw;H) needs to be calculated using a linear inter-
polation. For any given value of tnew, we looked for our original discrete time tn such
that:

log(tn) < log(tnew) ≤ log(tn+1) . (d.8)

Using a linear interpolation, we obtain:

C(tnew) =
log(tnew)− log(tn+1)

log(tn)− log(tn+1)
C(tn)− log(tnew)− log(tn)

log(tn)− log(tn+1)
C(tn+1) . (d.9)

Finally, one can express the relaxation function, S(tnew, tw;H), as a function of the
correlation function, S(C,H), in much the same manner as Eq. (d.9)

D.1.4 The teff
H calculation

As explained in the main text, the extraction of the teff
H from Eq. (7.15) is delicate

because the Cpeak(tw) are implicit functions of the rescaled time tnew. In order to solve
Eq. (7.15), we calculate the teff

H values through a quadratic interpolation. First, we
calculate the original discrete time tn such that:

C(t+ tn+1; tw;H) < Cpeak ≤ C(t+ tn, tw;H) . (d.10)

Then, we solve the three equation system:

C(t+ tn−1) = α0 + α1xn−1 + α2x
2
n−1

C(t+ tn) = α0 + α1xn + α2x
2
n

C(t+ tn+1) = α0 + α1xn+1 + α2x
2
n+1 ,
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where xn = log tn and, for brevity’ sake, we omit the arguments tw and H. The solution
generates the coefficients αi:

α2 =
C(tw, tw + tn−1)− C(tw, tw + tn)

xn−1 − xn
− C(tw, tw + tn+1)− C(tw, tw + tn)

(xn−1 − xn+1)(xn+1 − xn)
,

α1 =
C(tw, tw + tn+1)− C(tw, tw + tn)

xn+1 − xn
− α2(xn + xn+1) ,

α0 = C(tw, tw + tn)− α1xn − α2x
2
n .

We can then calculate the teff
H solving the equation:

Cpeak = α0 + α1 log
(
teff
H

)
+ α2

[
log
(
teff
H

)]2
, (d.11)

where only the solution verifying tn ≤ teff
H < tn+1 is physical.

D.2

The Josephson length

For the readers convenience, we reproduce here the interpolation proposed in Ref. [Zha19]
of the data obtained in Ref. [BJ18] for the replicon exponent as a function of the Joseph-
son length and the correlation length.

The Josephson length, `J(T (J)), scales as

`J
(
T (J)

)
=
b0 + b1

(
T

(J)
c − T (J)

)ν
+ b2

(
T

(J)
c − T (J)

)ων
(
T

(J)
c − T (J)

)ν , (d.12)

where the T (J) is the temperature in Janus units,

T (J) =
T

Tc
T (J)
c T (J)

c = 1.102 (d.13)

and we have included analytic (b1) and confluent (b2) scaling corrections with ω =
1.12(10) and ν = 2.56(4) [BJ13]. The numerical coefficients are:

ω = 1.12(10),

ν = 2.56(4),

b0 = 0.1015,

b1 = 0.3725,

b2 = 0.1997.

(d.14)

From Ref. [BJ13], the replicon exponent θ
(
x(ξ, T )

)
can be well interpolated as,

θ(x) = θ0 + d1

(
x

1 + e1x

)2−θ0
+ d2

(
x

1 + e2x

)3−θ0
, (d.15)
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where,

θ0 = 0.303980,

e1 = 1.38179,

d1 = 2.72489,

e2 = 2.12634,

d2 = −9.98389.

(d.16)

Note, that the replicon exponent θ(x̃(ξ, T )) depends on both the temperature and the
correlation length ξ through the crossover variable

x̃ =
`J(T )

ξ(tw;T )
. (d.17)

D.3

Sample-dependence of the nonlinear scaling results.

We demonstrate that the nonlinear scaling results are sample-independent for the case
H = 0.005, tw = 231.25, at T = 0.9. We simulate four independent samples and, for
each one, we build the relaxation function S(C,H), see Sec. 7.4.2 and Appendix D.1.3.
We exhibit them in Fig. d.4 where we report only the case for k = 8. To compare peak
regions of the relaxation function, S(C,H), we shift the lowest curves, namely S0 and
S2, vertically. An amplification of the peak region is shown in Fig. d.4.
As one can observe from Fig. d.4, there is a sample dependence of the peak position.
We report the estimates of Cpeak(tw) for each sample in Tab. d.3. Note that the
sample S0 is the one analyzed in the main text. We extract the effective time teff

H

for each sample, according to Eq. (7.15). They are listed in Tab. d.3. The sample
dependence found for the Cpeak(tw, Si) values is seen in the teff

H values too. Accordingly,
we repeat the analysis addressed in Sec. 7.5.4 using, as input parameter for extracting
the teff

H , the Cpeak(tw, S2) value exhibithed in Tab. d.3. We analyze the effective time

ratio `n
teff
H

teff
H→0+

according to Eq. (7.30). We then compare the scaling behavior for

the two values of Cpeak(tw, Si). The two sets of data are statistically compatible, see
Fig. d.5. This implies that the physical scenario is not affected by the small uncertain
in the determination of Cpeak(tw). We therefore assert that the scaling results are
sample-independent.



D.3 — Sample-dependence of the nonlinear scaling results. 153

Sample log2

(
teff
H

)
Cpeak(tw)

S0 30.434(21) 0.493
S1 30.196(23) 0.493
S2 30.546(24) 0.505
S3 30.327(21) 0.505

Table d.3: Information about the teff
H and Cpeak(tw, Si) evaluations in the case H =

0.005, tw = 231.25 and T = 0.9.

0.012

0.016

0.02

0.024

0.5 0.6 0.7 0.8

0.02

0.021

0.022

0.023

0.48 0.5 0.52

S
(t

n
ew
,t

w
;H

)

C(tnew, tw;H)

S0

S1

S2

S3

Figure d.4: Plots show the behavior of S(C,H) for four independent samples for
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