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Abstract. We address the existence of non-trivial closed invariant ideals for positive operators
defined on Banach lattices whose order is induced by an unconditional basis. In particular, for band-
diagonal positive operators such existence is characterized whenever their matrix representations
meet a positiveness criteria. For more general classes of positive operators, sufficient conditions are
derived proving, particularly, the sharpness of such results from the standpoint of view of the matrix
representations. The whole approach is based on studying the behavior of the dynamics of infinite
matrices and the localization of the non-zero entries. Finally, we generalize a theorem of Grivaux
regarding the existence of non-trivial closed invariant subspaces for positive tridiagonal operators to
a more general class of band-diagonal operators showing, in particular, that a large subclass of them
have non-trivial closed invariant subspaces but lack non-trivial closed invariant ideals.

1. Introduction

Understanding linear operators acting on finite-dimensional complex Banach spaces by means
of their restrictions to their invariant subspaces may be considered as an initial approach to the
more general framework of Banach spaces of infinite dimension. For a long time, it was an open
problem whether the classical Perron-Frobenius Theorem for irreducible non-negative matrices had a
natural extension of the form that irreducible positive compact operators on Banach lattices possess
a positive spectral radius (i.e., possess a positive eigenvalue) and thus they are not quasinilpotent.
In 1986, B. de Pagter [8] finally answered the question in the affirmative, where “irreducible” has to
be taken in the sense of ideal irreducibility, namely, the operator does not leave any non-trivial ideal
invariant.

Recall that if X is a Banach lattice, a closed subspace M of X is a sublattice if it is closed
under the lattice operations. A closed subspace M of X is an ideal if x ∈ M and |y| ≤ |x| imply
y ∈ M . It is easy to see that every invariant ideal is an invariant sublattice, and that every invariant
sublattice is an invariant subspace. Hence, de Pagter theorem establishes that every positive compact
quasinilpotent operator on a Banach lattice has a non-trivial closed invariant ideal.

In fact, that every positive compact operator on a Banach lattice has a non-trivial closed invariant
sublattice traces back to a pioneering work of Krĕın and Rutman [11]. In 2006, A. K. Kitover and
A. W. Wickstead [12] presented several examples of positive operators on Banach lattices with no
invariant sublattices. In [14], the authors exhibit a few examples of positive operators on Banach
lattices with no invariant sublattices. Moreover, the authors prove that there is a positive tridiagonal
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operator (even positive compact operators on �p, 1 ≤ p < ∞) with no invariant closed ideals and
exactly one closed invariant sublattice.

In this framework, a complete understanding of the invariant subspaces of positive operators on
Banach lattices seems to be far from reaching. Indeed, in the series of papers [2, 3, 4] Abramovich,
Aliprantis and Burkinshaw undertook this problem establishing sufficient conditions which implied
the existence of non-trivial closed invariant subspaces (indeed, non-trivial closed invariant ideals)
for positive operators conjecturing that every positive operator on a Banach lattice has non-trivial
closed invariant subspaces (see also the related works by Troitsky and coauthors [6], [13] or [15]).

On the other hand, a different perspective by means of moment sequences allowed Grivaux [10]
to prove the existence of non-trivial closed invariant subspaces for positive tridiagonal operators
on the classical Banach lattices �p, 1 ≤ p < ∞ or c0. More recently, in [9] the authors studied
positive operators on Banach lattices whose order is induced by unconditional basis showing, in
particular, that every lattice homomorphism on such spaces has non-trivial closed invariant ideals
(and hence invariant subspaces). Likewise, they characterized when positive tridiagonal operators
have non-trivial closed invariant ideals.

At this regard, it is worthy to remark that even in the classical Banach lattices �p, 1 ≤ p < ∞, or
c0, it is still unknown whether every positive operator with a pentadiagonal matrix representation or,
more generally, a band-diagonal matrix representation, has non-trivial closed invariant subspaces.
This will be the driving motivation of this work.
In particular, we will study positive operators T acting on Banach lattices whose order is induced
by an unconditional basis and such that the matrix representation of T respect to such a basis is
band-diagonal. Our approach in order to provide non-trivial closed invariant subspaces (even ideals)
will rely on studying the behavior of the dynamics of the associated infinite matrices.

In order to state some of the results obtained regarding band-diagonal matrices, it turns out
simpler if we consider an alternative notation for matrices based on the sequences defining the
corresponding non-zero diagonals instead of the classical one based on rows and columns. More
precisely, let A = (aj,k)j,k∈N be an infinite matrix and for every i ∈ Z and n ∈ N let us denote{

din = an,n+i if i ≥ 0

din = an−i,n if i < 0,

For each i ∈ Z, let di be the sequence in the i-th diagonal of A counted from the diagonal, that is,
di = (din)n≥1. Note that d0 denotes the sequence in the principal diagonal of A, while d1 or d−1

denote the sequences defining the first superdiagonal and the first subdiagonal of A, respectively.
Accordingly, we will say that the matrix A is in diagonal notation when it is expressed by A = (di)i∈Z.
With this notation at hands, we introduce band-diagonal matrices as follows.

Definition. An infinite matrix in diagonal notation A = (di)i∈Z is band-diagonal if there exists
k ∈ N∪ {0} such that di = 0 if |i| > k. The number k is called the bandwidth of the matrix. In this
case, the matrix is said to be (2k+1)-diagonal.

Observe that if k = 0 we obtain a diagonal matrix, if k = 1 we have a tridiagonal matrix while for
k = 2 it is a pentadiagonal matrix. This definition leads naturally to the concept of band-diagonal
operator. Particularly, if X is a Banach lattice whose order is induced by an unconditional basis
E = (en)n∈N, a linear bounded operator T is a band-diagonal operator if its associated matrix with
respect to E is band-diagonal. Likewise, we say T is a (2k+1)-diagonal operator for k ≥ 0 if its
associated matrix is (2k+1)-diagonal.
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Motivated by the study of positive operators T acting on Banach lattices whose order is induced by
an unconditional basis, we will focus on studying the dynamics of infinite matrices with non-negative
entries, in short, non-negative infinite matrices. For this purpose, we introduce the following class
of matrices:

Definition (Class D). A non-negative infinite matrix A belongs to the class D if for every N ∈ N

the power matrix AN is well defined, that is, every entry of AN is finite.

For instance, every infinite band-diagonal matrix belongs to D, since every row and column has a
finite number of non-zero entries.

Note that not every matrix in the class D represents necessary the action of a positive linear
operator on Banach lattices with an unconditional basis (it suffices to take an infinite diagonal
matrix with unbounded diagonal positive sequence d0 acting on �p, 1 ≤ p < ∞).

In order to relate the dynamics of non-negative infinite matrices to the existence of non-trivial
closed invariant ideals of positive linear operators on Banach lattices, we introduce the following
concept which will play a role throughout the rest of the manuscript.

Definition 1.1. Let A = (di)i∈Z be an infinite matrix in diagonal notation. Assume A ∈ D and
write AN as AN = (d(N)i)i∈Z for each N ∈ N. We say that A has dynamics with zeros if there exist
i0 ∈ Z \ {0} and n0 ∈ N such that d(N)i0n0

= 0 for every N ∈ N. Otherwise, we will say that A has
strictly positive dynamics.

Non-negative matrices exhibiting dynamics with zeros are related to positive operator T acting on
a Banach lattice whose order is induced by unconditional basis having non-trivial closed invariant
ideals. Indeed, restating a result of Radjavi and Troitsky it follows that such operators T have non-
trivial closed invariant ideals if and only if their matrix representations have dynamics with zeros
(see [14, Proposition 1.2]). Though this latter result was originally proved for �p with 1 ≤ p < ∞
and c0, it also holds in the setting of Banach lattices with unconditional basis.

Consequently, obtaining characterizations ensuring that such dynamics phenomenon happen pro-
vide results regarding the existence of non-trivial closed invariant ideals for positive operators whose
order is induced by unconditional basis. In this setting, the authors of [9] characterized the existence
of non-trivial closed invariant ideals for positive tridiagonal operators showing, in particular, that
a non-negative infinite matrix A being tridiagonal has dynamics with zeros if and only if there are
zeros on the subdiagonal or on the superdiagonal of A.

The rest of paper is organized as follows: in Section 2 we will characterize the existence of non-
trivial closed invariant ideals for T whenever its matrix representation meets a positiveness criteria,
generalizing the previous results in this context. For the sake of clarity, we will begin by providing
the characterization for pentadiagonal operators. These results will follow directly upon applying
the characterization of the dynamics of the associated matrices which turns out to be the core of
our analysis. The main result in this direction reads as follows (see Theorem 2.4):

Theorem. Let A = (di)i∈Z be a (2k+1)−diagonal non-negative infinite matrix (k ≥ 2) belonging to
the class D. Assume that din > 0 for every −k+1 ≤ i ≤ −1 and n ∈ N. Then, A has dynamics with
zeros if and only if there exists n0 ∈ N such that for every i ∈ {1, · · · , k} the element din is equal to
zero for all n ∈ {n0 + 1− i, · · · , n0} ∩ N.

It is worthy to remark that while in the statement of the previous theorem k ≥ 2, the cases k = 0, 1
are also characterized. Indeed, if k = 0, the matrix A is diagonal and clearly it has dynamics with
zeros since An is diagonal for every n ∈ N. Likewise, if k = 1, A is a tridiagonal matrix and A has
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dynamics with zeros if and only if it has a zero entry either in the superdiagonal or in the subdiagonal
(see [9, Corollary 4.3]).

Accordingly, if T is a band-diagonal positive operator acting on a Banach lattice X whose order
is induced by an unconditional basis E and A denotes its associated matrix with respect to E , T
has non-trivial closed invariant ideals if and only if A has dynamics with zeros. So, the existence
of non-trivial closed invariant ideals is characterized for (2k + 1)-diagonal operators with matrix
representation A = (di)i∈Z satisfying din > 0 for every −k + 1 ≤ i ≤ −1 and n ∈ N whenever k ≥ 2
or having a zero entry either in the superdiagonal or in the subdiagonal when k = 1.

In Section 3 we deal with a subclass of positive operators that are not necessarily band-diagonal
introducing the concept of honeycomb matrices and showing that positive operators whose matrix
representation is honeycomb do have non-trivial closed invariant ideals (see Theorem 3.2). Likewise,
we discuss the sharpness of our results and derive, within this class, a characterization of the exis-
tence of non-trivial closed invariant ideals for pentadiagonal operators and heptadiagonal operators
whenever the outer subdiagonal and the outer superdiagonal of its matrix representation consist of
strictly positive entries (see Theorem 3.8 and Theorem 3.13).

Finally, in Section 4, we extend a theorem of Grivaux regarding the existence of non-trivial closed
invariant subspaces for positive tridiagonal operators to a more general class of band-diagonal ope-
rators exhibiting, in particular, a large class of positive band-diagonal operators having non-trivial
closed invariant subspaces but lacking non-trivial closed invariant ideals.

We close this introductory section with some preliminaries which will be of interest throughout
the rest of the manuscript.

1.1. Preliminaries. Let X be an infinite dimensional (real or complex) Banach space and denote
by E = (en)n∈N an unconditional basis in X. Clearly, for every x ∈ X there exists a unique sequence
of scalars (xn)n∈N such that

x =
∞∑
n=1

xnen.

Every unconditional basis gives rise to a natural closed cone

CE :=

{
∞∑
n=1

xnen : xn ≥ 0 for all n ∈ N

}
,

which defines a partial order in X as follows: x ≤ y if and only if y − x ∈ CE . In addition, it is
well known that every cone C in a Banach space X determines a partial order ≤ by letting x ≤ y
whenever y − x ∈ C. The elements of C are known as positive vectors and the pair (X, C) is an
ordered Banach space.

Following the standard lattice notation, the supremum (least upper bound) and the infimum
(greatest lower bound) of a pair of vectors x, y ∈ X will be denoted by x∧ y and x∨ y respectively,
namely

x ∨ y = sup{x, y} and x ∧ y = inf{x, y}.

For x in a vector lattice, its positive part, its negative part and its absolute value are defined by:

x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| = x ∨ (−x),

respectively.
A sublattice of a vector lattice is a subspace which is also closed under the lattice operations (that

is, for each x, y in a sublattice, x ∨ y and x ∧ y also belong to the sublattice). An ideal M in a
vector lattice is a subspace such that for every x, y such that if |x| ≤ |y| and y ∈ M then x ∈ M .
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Recall that a norm in a vector lattice is a lattice norm if it satisfies ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|.
Thus, a Banach lattice is a complete vector lattice equipped with a lattice norm. Throughout the
rest of the manuscript, we restrict ourselves to Banach lattices whose orders have been induced by
an unconditional basis.

It is worthy to point out that for such Banach lattices, every closed ideal is of the form{
∞∑
n=1

xnen ∈ X : xn = 0 for every n ∈ N

}
,

where N ⊂ N.

As it is standard, L(X) will denote the Banach algebra consisting of bounded linear operators
defined on X. We say that T ∈ L(X) is positive respect to the basis E = (en)n∈N if T (CE) ⊂ CE ,
or equivalently, Tx ≥ 0 for each x ≥ 0. Observe that if E is unconditional, the linear functionals e∗n
defined on X as

e∗n

(
∞∑

m=1

xmem

)
= xn

satisfy that (e∗n)n∈N is an unconditional sequence in the dual space X∗ but not necessarily a basis.

Note that every operator T ∈ L(X) has an associated matrix given by

A = (e∗i (Tej))i,j∈N .

In particular, identifying T with the infinite matrix A, it holds that T is a positive operator (respect
to E) if and only if e∗i (Tej) ≥ 0 for every pair (i, j). Moreover, since E is unconditional, every
positive operator is automatically continuous; see [1, Theorem 1.31]. Clearly, if T ∈ L(X) is a
positive operator, then its associated matrix belongs to the class D.

2. Invariant closed ideals for band-diagonal operators

As we have just pointed out, every positive linear operator on a Banach lattice whose order is
induced by an unconditional basis is automatically bounded. Next lemma establishes that positive
band-diagonal operators acting on c0 and �p spaces, 1 ≤ p < ∞, have indeed bounded upper and
lower diagonals.

Lemma 2.1. Let A = (di)−k≤i≤k be a non-negative band-diagonal matrix in diagonal notation and
T the positive linear operator induced by A acting or �p, 1 ≤ p < ∞, or c0. Then, each sequence di

is bounded.

Proof. We argue by contradiction. Assume there exists 0 ≤ i ≤ k such that di is not a bounded
sequence. The case −k ≤ i ≤ 0 is analogous. Then, there exists a subsequence such that dink

→ ∞.

For the sake of simplicity, let us suppose that din → ∞ when n → ∞. Consider the sequence of basis
vectors (en+i)n≥1. Observe that

Ten+i ≥ dinen,

so ‖Ten+i‖ ≥ din. Having in mind that T is bounded and letting n → ∞, we deduce that ‖Ten+i‖ →
∞, which yield a contradiction. �

Note that the converse of Lemma 2.1 holds in a straightforward manner in c0 or �p spaces.
Likewise, it extends naturally to more general Banach spaces, the next remark being the key to
such an extension.
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Remark 2.2. If X is a Banach space with an unconditional basis E = (en)n∈N, S and B denote the
shift and the backward shift operator on X, respectively

Sen = en+1 n ≥ 1

Ben =

{
0 n = 1,
en−1 n ≥ 2,

and for −k ≤ i ≤ k, Di is the diagonal operator with coefficients (din)n

Dien = dinen,

then

(1) T =

−1∑
i=−k

SiDi +

k∑
i=0

DiB
i

is a linear operator whose matrix representation respect to E is band-diagonal. The converse is also
clear. Needless to say that if S, B and each Di act boundedly on X, so does T .

In order to study the dynamics of non-negative infinite matrices, we first observe that the zero
entries in the main diagonal do not affect the behavior of its dynamics in the sense of Definition 1.1.

Lemma 2.3. Let A = (ai,j)i,j∈N ∈ D and d = (dn)n∈N a bounded sequence of strictly positive
numbers. Let B = (bi,j)i,j∈N defined by

bi,j =

{
di if i = j
ai,j if i = j.

Then, A has dynamics with zeros if and only if B has.

Proof. For each n ∈ N, let us denote by Bn = (b
(n)
i,j )i,j∈N and An = (a

(n)
i,j )i,j∈N. First, let us assume

that A has dynamics with zeros. Our goal is proving that for each i, j ∈ N with i = j such that

a
(n)
i,j = 0 for every n ∈ N, then b

(n)
i,j = 0 for every n ∈ N. Since A has dynamics with zeros, this

argument will imply that B has dynamics with zeros as well.
We argue by induction in n ∈ N. If n = 1, it is obvious that bi,j = 0 whenever ai,j = 0 with

i, j ∈ N and i = j, by the construction of B.

Now, let n0 ∈ N and assume that for 1 ≤ k ≤ n0 and each i, j ∈ N such that i = j and a
(k)
i,j = 0

we have b
(k)
i,j = 0. Arguing by contradiction, suppose that there exist i0, j0 ∈ N with i0 = j0 such

that a
(k)
i0,j0

> 0 for every 1 ≤ k ≤ n0 + 1 and b
(n0+1)
i0,j0

> 0. We have

b
(n0+1)
i0,j0

=
∞∑

m=1

b
(n0)
i0,m

bm,j0 .

Then, there exists m0 ∈ N such that b
(n0)
i0,m0

bm0,j0 > 0. Let us show that m0 = i0, j0. If m0 = i0,
observe that bi0,j0 = ai0,j0 = 0, which would be a contradiction. On the other hand, if m = j0, then

b
(n0)
i0,j0

= 0 by the induction hypothesis, since a
(n0)
i0,j0

= 0. Now, for each 1 ≤ k ≤ n0, the equality

0 = a
(k+1)
i0,j0

=
∞∑

m=1

a
(k)
i0,m

am,j0

yields to deduce that a
(k)
i0,m0

= 0 for each 1 ≤ k ≤ n0, since am0,j0 = bm0,j0 > 0. Then, the induction

hypothesis implies that b
(n0)
i0,m0

= 0, which is also a contradiction.
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Accordingly, the induction argument is proved and B has dynamics with zeros.

For the converse, assume that B has dynamics with zeros and let us show that A has as well. For
such a task, observe that if bi,j = 0 for some i, j ∈ N, then ai,j = 0. In particular, this implies that

if b
(n)
i,j = 0 for some i, j ∈ N and every n ∈ N, then a

(n)
i,j = 0 as well. Consequently, A has dynamics

with zeros, as claimed. This concludes the proof of the lemma. �

As announced in the Introduction, our main result in this section reads as follows:

Theorem 2.4. Let A = (di)i∈Z be a (2k+1)−diagonal non-negative infinite matrix (k ≥ 2) belonging
to the class D. Assume that din > 0 for every −k+1 ≤ i ≤ −1 and n ∈ N. The matrix A has dynamics
with zeros if and only if the following condition

(∗) there exists n0 ∈ N such that for every i ∈ {1, · · · , k}, din = 0 for all n ∈ {n0+1−i, · · · , n0}∩N

holds. Consequently, if T is a band-diagonal positive operator acting on a Banach lattice X whose
order is induced by an unconditional basis E being its associated matrix A, T has non-trivial closed
invariant ideals if and only if A satisfies (∗).

It may be illustrative to show the expression of a band-diagonal matrix satisfying the hypothesis
of Theorem 2.4.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
∗ ∗ ∗ 0 0 0 · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ ∗ ∗ ∗ ∗ · · ·
0 0 ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes a strictly positive real number. In such a case, if each diagonal is a bounded
sequence, the matrix A defines a linear bounded positive operator in �p spaces, for instance.

Observe that A is a heptadiagonal matrix satisfying the hypotheses of Theorem 2.4 with n0 = 3.
Roughly speaking, we are asking the matrix to have a rectangle of zeros with infinite length and
width n0, starting in the n0 + 1-th column.

A word about notation. In order to simplify notation throughout this section, given a matrix in
diagonal notation A = (di)i∈Z, we will adopt that din = 0 whenever n ≤ 0.

2.1. A first step: the pentadiagonal case. Before proceeding with the proof of Theorem 2.4, and
for the sake of clarity, we will first show the particular instance of k = 2, namely, the pentadiagonal
case. We state it for the sake of completeness.

Theorem 2.5. Let A = (di)i∈Z be a pentadiagonal non-negative infinite matrix such that d−1n > 0
for every n ∈ N. The matrix A has dynamics with zeros if and only if there exists n0 ∈ N such that
d1n0

= d2n0−1
= d2n0

= 0.

Observe that, because of the convention, if n0 = 1 then d20 = 0.
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Proof. As a consequence of Lemma 2.3, we may assume without loss of generality that d0n = 0 for
every n ∈ N. Assume A has dynamics with zeros, and let us show the existence of n0 ∈ N such that
d1n0

= d2n0−1
= d2n0

= 0.

Denote A2 by A2 = (bi)i∈Z. Observe that for every n ∈ N

(2) b1n ≥ d−1n−1d
2
n−1 + d2nd

−1
n+1.

Obviously, A2 has dynamics with zeros as well. Define B̃ = (b̃i)i∈Z the matrix in diagonal notation
given by {

b̃in = bin if |i| < 2,

b̃in = 0 otherwise

for n ∈ N. Obviously, B̃ has dynamics with zeros as well and is a tridiagonal non-negative matrix, so
by [9, Corollary 4.3], there exists n0 ∈ N such that b̃1n0

= 0 or b̃−1n0
= 0. Recall that we are assuming

d−1n > 0 for every n ∈ N, so b1n0
> 0 as well. It yields that b̃1n0

= 0.

Now, since d0n = 1 for every n ∈ N, it follows that b̃in ≥ din for every |i| < 2 and n ∈ N. Hence,
d1n0

= 0.

Let us show that, in addition, d2n0−1
= d2n0

= 0. Using (2), we deduce that

d−1n0−1
d2n0−1 + d2n0

d−1n0+1 = 0.

Observe that if n0 ≥ 2, both d−1n0+1 and d−1n0−1
are strictly positive by hypothesis. Moreover, since

d2n0−1
and d2n0

are non-negative, we deduce that d2n0−1
= d2n0

= 0.

Likewise, if n0 = 1 we automatically have d20 = 0 and hence, the same argument works in order
to show that d21 = 0, as wished.

For the reverse implication, we will make use of the standard matrix notation A = (ai,j)i,j∈N, since
it simplifies the presentation of the rest of the proof. Accordingly, reformulating the statement, we
will show that if there exists n0 ∈ N such that an0,n0+1 = an0−1,n0+1 = an0,n0+2 = 0 then A has
dynamics with zeros.

Assume then the existence of such n0 ∈ N and denote An = (a
(n)
i,j )i,j∈N for every n ∈ N. By

induction on k ∈ N, we are showing that for every pair (i, j) ∈ {1, · · · , n0} × {n0 + 1, n0 + 2, · · · } it
holds

a
(k)
i,j = 0.

Observe that by hypothesis, the induction case for k = 1 holds. Assume the induction hypothesis
for k ∈ N and consider Ak+1. Let i ∈ {1, ..., n0} and j ≥ n0 + 1.

Clearly Ak+1 = AAk and the (i, j) element of the matrix Ak+1 is the product of the i-th row of
A by the j-th column of Ak. Observe that all the positive elements of the i-th row of A are in the
first n0 coordinates. Moreover, by induction, the first n0 coordinates of the j-th column of Ak are
null. Hence, the corresponding product of the i-th row of A and the j-th column of Ak is zero, and
therefore the element (i, j) of Ak+1 is zero, as wished to show. This completes the proof. �

2.2. The General Case. Now we proceed with the proof of Theorem 2.4 and derive some conse-
quences.

Proof of Theorem 2.4. As in the proof of Theorem 2.5, we can assume without loss of generality
that d0n = 1 for every n ∈ N.
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We argue by induction in k ≥ 2 showing that every (2k+1)−diagonal non-negative infinite matrix
satisfying condition (∗) has dynamics with zeros. If k = 2, the conclusion follows from Theorem 2.5.

For the general induction step, assume that every (2k− 1)−diagonal non-negative infinite matrix
satisfies the statement of the Theorem 2.4. We will show it holds for every (2k + 1)−diagonal
operator.

Let A = (di)i∈Z be a (2k + 1)−diagonal non-negative infinite matrix in diagonal notation, and
denote A2 by A2 = (bi)i∈Z. Observe that for every n ∈ N and l ∈ {1, · · · , k − 1}

(3) bk−ln ≥ d−ln−ld
k
n−l + dknd

−l
n+k−l.

Analogously as in the proof of Theorem 2.5, let B̃ = (b̃i)i∈Z be the matrix in diagonal notation given
by {

b̃in = bin if |i| < k,

b̃in = 0 otherwise,

for n ∈ N. Once again, B̃ has dynamics with zeros, but B̃ is a (2k − 1)−diagonal non-negative

infinite matrix which satisfies by contruction that b̃in ≥ din > 0 for every n ∈ N and −k+2 ≤ i ≤ −1.
Thus, there exists N ∈ N such that for every i ∈ {1, · · · , k}

b̃in = 0 for every n ∈ {N + 1− i, · · · N}.

Again, since d0n = 1 we have that b̃in ≥ din for every |i| < k and n ∈ N. So, for each i ∈ {1, · · · , k−1}

din = 0 for every n ∈ {N + 1− i, · · · N}.

Let us show that dkn = 0 for every n ∈ {N +1− k, · · · , N}, in order to prove that the implication
is necessary.

If n ≥ k, observe that, by hypothesis, d−ln−l > 0 for every l ∈ {1, · · · , k − 1}. This property, with

the inequality (3) and along with the fact that bk−ln = 0 for every l ∈ {1, · · · , k − 1}, imply

dkn = 0 for every n ∈ {N + 1− k, · · · , N},

as claimed.
If n ∈ {1, · · · , k − 1}, the desired statement follows by recalling that din = 0 for every i ∈ Z and

n ≤ 0.

For the converse implication, by means of standard matrix notation A = (ai,j)i,j∈N as in Theorem
2.5, we are required to show that A has dynamics with zeros whether there exists n0 ∈ N such that
ai,j = 0 for every (i, j) ∈ {1, · · · , n0} × {n0 + 1, n0 + 2, · · · }.

The proof runs as that of Theorem 2.5 showing, by induction on k ∈ N, that for every (i, j) ∈
{1, · · · , n0} × {n0 + 1, n0 + 2, · · · }

a
(k)
i,j = 0,

where An = (a
(n)
i,j )i,j∈N for every n ∈ N. This completes the proof of Theorem 2.4.

As an immediate corollary, we observe that the statement of Theorem 2.4 follows if we assume
that the upper diagonals consist of strictly positive entries instead of the lower ones:

Corollary 2.6. Let A = (di)i∈Z be a (2k + 1)−diagonal non-negative infinite matrix in diagonal
notation (k ≥ 2) and assume that din > 0 for every 1 ≤ i ≤ k − 1 and n ∈ N. The matrix A has
dynamics with zeros if and only if the following condition
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(∗′) there exists n0 ∈ N such that for every i ∈ {−k, · · · ,−1}, din = 0 for all n ∈ {n0 + 1 +
i, · · · , n0} ∩ N

holds. Consequently, if T is a band-diagonal positive operator acting on a Banach lattice X whose
order is induced by an unconditional basis E being its associated matrix A, T has non-trivial closed
invariant ideals if and only if A verifies (∗′).

Remark 2.7. It its worth pointing out that Theorem 2.4 provides a sufficient condition for a positive
operator T to have a non-trivial closed invariant ideal, namely the existence of n0 ∈ N such that
din = 0 for every i ∈ {1, · · · , k} and every n ∈ {n0 + 1− i, · · · , n0} ∩N. Indeed, the assumption that
T is band-diagonal is not required in this implication.

2.3. A class of positive operators not meeting Theorem 2.4. Having in mind Theorem 2.4,
the existence of zero entries in the upper or lower diagonals of a band-diagonal non-negative infinite
matrix characterizes the dynamics of the matrix in the sense of Definition 1.1, which turns out to
be equivalent to the existence of non-trivial closed invariant ideals for positive operators induced by
such a matrix. In this sense, Theorem 2.4 leads to the following natural question: if A = (di)i∈Z
is a (2k + 1)−diagonal non-negative infinite matrix in diagonal notation and the sequences di for
−k + 1 ≤ i ≤ −1 contain null elements, does the matrix A have dynamics with zeros?

At this regard, we introduce a class of non-negative matrices which will not meet Theorem 2.4
but have dynamics with zeros.

Definition 2.8. For k ∈ N, let Ck be the class consisting of non-negative infinite matrices in diagonal
notation A = (di)i∈Z belonging to D such that

Ck = {A = (di)i∈Z ∈ D : din = 0 for every i ∈ Z \ kZ and n ∈ N}.

For instance, the class C3 consists of matrices of the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 ∗ 0 0 · · ·
0 ∗ 0 0 ∗ 0 · · ·
0 0 ∗ 0 0 ∗ · · ·
∗ 0 0 ∗ 0 0 · · ·
0 ∗ 0 0 ∗ 0 · · ·
0 0 ∗ 0 0 ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes any non-negative real number.

Next lemma establishes that each class Ck is closed under matrix multiplication.

Lemma 2.9. Let k ∈ N and A,B ∈ Ck. Then, AB ∈ Ck.

Proof. We make use of the standard matrix notation. Let A = (an,m)n,m∈N and B = (bn,m)n,m∈N be
matrices in Ck . The assumption on A and B implies that

an,n+j = bn,n+j = 0 (j ∈ Z \ kZ, n ∈ N, n+ j ∈ N)

and
an+j,n = bn+j,n = 0 (j ∈ Z \ kZ, n ∈ N, n+ j ∈ N).

Denote AB = (tn,m)n,m∈N. In order to show that AB ∈ Ck, let n ∈ N and j ∈ Z \ kZ such that
n+ j ∈ N. Let us prove that tn,n+j = 0 (the proof for tn+j,n = 0 is analogous).
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Observe that

tn,n+j =
∞∑

m=1

an,mbm,n+j ,

so the sum is zero if every summand is zero. Let m ∈ N and let us prove that an,mbm,n+j = 0, which
will yield the proof.

Observe that if an,m = 0, then n −m ∈ kZ. Hence, n −m + j /∈ kZ since j /∈ kZ. Accordingly,
bm,n+j = 0 and therefore an,mbm,n+j = 0 as claimed. �

As a consequence, we are in position to state a result regarding operators with matrix represen-
tation in Ck.

Theorem 2.10. For k ≥ 2, every infinite matrix belonging to Ck has dynamics with zeros. As
a consequence, every positive operator acting on a Banach lattice X whose order is induced by an
unconditional basis such that its associated matrix belongs to Ck for some k ≥ 2 has non-trivial closed
invariant ideals.

A direct consequence of Theorem 2.10 allows us to ensure the existence of non-trivial closed
invariant ideals for combinations of powers of shifts, backward shifts and diagonal operators in the
classical Banach spaces �p,1 ≤ p < ∞, or c0.

Corollary 2.11. Let X = c0 or X = �p for some 1 ≤ p < ∞. Let S,B ∈ L(X) denote the
shift operator and backward shift operator, respectively, and (Dn)n∈Z ⊂ L(X) a sequence of positive
diagonal operators. Assume that there exists k ≥ 2 such that

T = D0 +
∞∑
n=1

Sk nDn +
∞∑
n=1

Bk nD−n

is bounded. Then, T ∈ L(X) has non-trivial closed invariant ideals.

Observe that the associated matrix of T is a non-negative matrix that belongs to Ck, so Theorem
2.10 guarantees the existence of a non-trivial invariant closed ideal for T .

As particular instance of Corollary 2.11, taking Dn = anI with an ≥ 0 for every n ∈ Z, every
linear combination of powers of S and B of the kind

T = a0I +

∞∑
n=1

anS
k n +

∞∑
n=1

a−nB
k n,

where k ≥ 2 and T is bounded in X has a non-trivial closed invariant ideal.

A remark. We close Section 2 with a brief discussion regarding both Theorem 2.4 and Theorem
2.10 in the context of positive band-diagonal operators.

Assume that T ∈ L(X) is a positive band-diagonal operator and that there exists k ≥ 2 such that
the matrix representation of T belongs to the class Ck. Further, suppose that the upper superdiagonal
consists of strictly positive entries. Clearly, while Theorem 2.10 assures the existence of non-trivial
closed invariant ideals for T , Theorem 2.4 does not apply. Moreover, T no longer satisfies the
condition stating the existence of n0 ∈ N such that for every i ∈ {1, · · · , k} the entries din are equal
to zero for every n ∈ {n0 + 1− i, · · · , n0} ∩ N.

Accordingly, a characterization based just on this latter property does not hold for every positive
band-diagonal operator and therefore, the assumption din > 0 for n ∈ N and i ∈ {−k+1, · · · ,−1} is
not superfluous in Theorem 2.4.
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As an example, consider

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ 0 ∗ 0 0 · · ·
0 ∗ 0 ∗ 0 ∗ 0 · · ·
∗ 0 ∗ 0 ∗ 0 ∗ · · ·
0 ∗ 0 ∗ 0 ∗ 0 · · ·
∗ 0 ∗ 0 ∗ 0 ∗ · · ·
0 ∗ 0 ∗ 0 ∗ 0 · · ·
0 0 ∗ 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes any strictly positive real number. If the diagonals are bounded, this hepta-
diagonal matrix induces a positive, bounded operator T on Banach lattices like �p with 1 ≤ p < ∞
or c0 and has non-trivial closed invariant ideals.

3. Honeycomb matrices

Some of the previous ideas may be further generalize in order to study how zero entries in some
of the upper or lower diagonals may provide the existence of non-trivial closed invariant ideals for
operators not covered by Theorem 2.4.

In this context, we introduce the concept of k-honeycomb matrices. For the sake of clarity, let us
first introduce honeycomb matrices (which will correspond to k = 2) and discuss the general case
later on.

Definition 3.1. An infinite matrix A = (an,m)n,m∈N is said to be a honeycomb matrix if one of
the following conditions is satisfied:

(i) a2n,2m−1 = 0 for every n,m ∈ N.
(ii) a2n−1,2m = 0 for every n,m ∈ N.

An example of a honeycomb matrix is the following:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
∗ ∗ ∗ ∗ ∗ ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes a non-zero real number. Observe that a honeycomb matrix with positive en-
tries can be understood as a matrix of the class C2 where non-zero elements have been “added” in
the alternate entries of each zero upper and lower diagonals.

Next result shows that every non-negative honeycomb infinite matrix behaves well with respect
the dynamics:

Theorem 3.2. Every non-negative honeycomb infinite matrix A ∈ D has dynamics with zeros. As
a consequence, every positive operator acting on a Banach lattice X whose order is induced by an
unconditional basis such that its matrix representation is honeycomb has non-trivial closed invariant
subspaces.
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Proof. Let A = (an,m)n,m∈N be a non-negative honeycomb matrix in A = (an,m)n,m∈N ∈ D. Let us
assume A satisfies condition (i) of Definition 3.1 (if A satisfies (ii), the argument is similar).

For each k ∈ N, denote by Ak = (a
(k)
n,m)n,m∈N. Let us show that Ak also satisfies condition (i) of

Definition 3.1, which will show that A has dynamics with zeros. We argue by induction.
By hypothesis, a2n,2m−1 = 0 for every n,m ∈ N. Assume this is true for k − 1 ∈ N, and let

n,m ∈ N. Note that

a
(k)
2n,2m−1 =

∞∑
j=1

a
(k−1)
2n,j aj,2m−1.

We are showing that every summand of the previous series is zero.

Let j ∈ N. If a
(k−1)
2n,j = 0, then clearly a

(k−1)
2n,j aj,2m−1 = 0. Assume, hence, that a

(k−1)
2n,j = 0. Then j

must be an even number, so a
(k−1)
j,2m−1 = 0. Accordingly, a2n,2m−1 = 0 for every n,m ∈ N since A is

honeycomb. This completes the proof. �

Next result illustrates that modifying a honeycomb matrix changing just one zero entry by a
strictly positive number yields non-negative infinite matrices with strictly positive dynamics. In
this sense, the concept of honeycomb matrix seems to be a threshold from the standpoint of the
existence of non-trivial closed invariant ideals for those positive operators with honeycomb matrix
representation.

Theorem 3.3. Let A = (ai,j)i,j∈N ∈ D. Assume

(1) a1,2 a2,3 > 0, and
(2) ai,i+2 ai+2,i > 0 for every i ∈ N.

Then, A has strictly positive dynamics. As a consequence, every positive operator acting on a Banach
lattice X whose order is induced by an unconditional basis whose matrix representation satisfies both
(1) and (2) is irreducible, namely, it lacks non-trivial closed invariant ideals.

Proof. Denote by An = (a
(n)
i,j )i,j∈N for each n ∈ N. We may assume without loss of generality that

ai,i = 1 by Lemma 2.3. As a consequence, if a
(k)
i,j > 0 for some i, j ∈ N and k ∈ N, then a

(n)
i,j > 0 for

every n ≥ k.
By contradiction, assume that A has dynamics with zeros. In particular, if we denote by Ã

the tridiagonal non-negative matrix that coincides with A in the three main diagonals, then Ã =
(ãi,j)i,j∈N has dynamics with zeros as well. This follows since ãi,j ≤ ai,j for every i, j ∈ N: note that

if Ãn = (ã
(n)
i,j )i,j∈N for each n ∈ N, then ã

(n)
i,j ≤ a

(n)
i,j for every i, j ∈ N and n ∈ N.

Hence, by Theorem 2.4 there exists N0 ∈ N such that a
(n)
N0,N0+1 = 0 for every n ∈ N or a

(n)
N0,N0−1

= 0

for every n ∈ N. Without loss of generality, we may assume that a
(n)
N0,N0+1 = 0 for every n ∈ N, the

second case is equivalent.
Now, we claim the following

Claim. For each n ∈ N

(4) a
(2n−1)
1+2(n−1),2+2(n−1) a

(2n−1)
2+2(n−1),3+2(n−1) > 0,

and

(5) a
(2n)
1+2(n−1),2+2n a

(2n)
2+2(n−1),3+2n > 0.
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Observe that (4) together with the fact that ai,i > 0 implies that there exists n0 ∈ N such that

a
(n0)
N0,N0+1 > 0, which will yield the contradiction.

Proof of Claim. We proceed with an induction argument.
For n = 1, we have a1,2 a2,3 > 0 by assumption (1). Hence, we are just required to show that

a
(2)
1,4 a

(2)
2,5 > 0.

Observe that, for each j ∈ {1, 2}

a
(2)
j,(j+1)+2 =

∞∑
m=1

aj,mam,(j+1)+2 ≥ aj,j+1a(j+1),(j+1)+2 > 0,

since ai,i+2 > 0 for every i ∈ N. This proves the case n = 1.

Now, assume the induction hypothesis for n − 1 ∈ N and let us show that both (4) and (5) hold
for n.

A little computation shows that for every j ∈ {1, 2}
(6)

a
(2n−1)
j+2(n−1),(j+1)+2(n−1) =

∞∑
m=1

aj+2(n−1),ma
(2n−2)
m,(j+1)+2(n−1) ≥ aj+2(n−1),j+2(n−2)a

(2n−2)
j+2(n−2),(j+1)+2(n−1).

By induction hypothesis

a
(2n−2)
j+2(n−2),(j+1)+2(n−1) > 0.

Likewise, assumption (2) gives that

aj+2(n−1),j+2(n−2) > 0.

So, replacing in (6),

a
(2n−1)
j+2(n−1),(j+1)+2(n−1) > 0

which shows that (4) holds for n.
In order to show that (5) also holds for n, observe that

(7) a
(2n)
j+2(n−1),(j+1)+2n =

∞∑
m=1

a
(2n−1)
j+2(n−1),mam,(j+1)+2n ≥ a

(2n−1)
j+2(n−1),(j+1)+2(n−1)a(j+1)+2(n−1),(j+1)+2n.

Since we have just shown that

a
(2n−1)
j+2(n−1),(j+1)+2(n−1) > 0,

having in mind (2)and (7), it follows that

a(j+1)+2(n−1),(j+1)+2n > 0.

Accordingly, (5) also holds for n. This completes the induction argument and so, the proof of the
Claim.

As a consequence, as we previously pointed out, we obtain a contradiction and deduce that A has
strictly positive dynamics, as we wanted to show.

�

Indeed, the conclusion of Theorem 3.3 also follows if assumption (1) is replaced by a more general
one, namely, the existence of m > 1 such that am,m+1 am+1,m+2 > 0.

Corollary 3.4. Let A = (ai,j)i,j∈N ∈ D. Assume that
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(1) there exists m ∈ N such that am,m+1 am+1,m+2 > 0, and
(2) ai,i+2ai+2,i > 0 for every i ∈ N.

Then, A has strictly positive dynamics. As a consequence, every positive operator acting on a Banach
lattice X whose order is induced by an unconditional basis whose matrix representation satisfies both
(1) and (2) is irreducible.

In order to prove Corollary 3.4, we show a lemma that describes the dynamics of certain positive
elements in an infinite matrix.

Lemma 3.5. Let A = (ai,j)i,j∈N ∈ D and assume that there exists k ≥ 2 such that ai,i+kai+k,i > 0

for every i ∈ N. For each n ∈ N denote An = (a
(n)
i,j )i,j∈N. If ai0,i0+j0 > 0 for i0 ≥ k + 1 and

j0 ∈ {0, · · · , k}, then

a
(3)
i0−k,i0+j0−k

> 0.

Proof. First, we show that a
(2)
i0−k,i0+j0

> 0. Note that

(8) a
(2)
i0−k,i0+j0

=
∞∑

m=1

ai0−k,mam,i0+j0 ≥ ai0−k,i0ai0,i0+j0 > 0

since ai0,i0+j0 and ai0−k,i0 are strictly positive by hypotheses (note that in this latter case i0−k ≥ 1).
Finally, we have

a
(3)
i0−k,i0+j0−k

=
∞∑

m=1

a
(2)
i0−k,m

am,i0+j0−k ≥ a
(2)
i0−k,i0+j0

ai0+j0,i0+j0−k > 0,

since a
(2)
i0−k,i0+j0

> 0 by (8) and ai0+j0,i0+j0−k > 0 because ai+k,i > 0 for every i ∈ N by hypotheses

(note that i0 + j0 ≥ k + 1). �

Proof of Corollary 3.4. We apply Theorem 3.3 to deduce the result. As usual, we may assume
without loss of generality, that ai,i = 1.

Let us show that there exists n ∈ N such that An satisfies the hypotheses of Theorem 3.3 what
would yield that An and, in particular, A, has strictly positive dynamics.

Since ai,i > 0 for every i ∈ N, it follows that a
(n)
i,i+2a

(n)
i+2,i > 0 for every n, i ∈ N so condition (2)

in Theorem 3.3 is fulfilled for any power of A. Likewise, upon applying Lemma 3.5 reiteratively, it
follows that there exists N ∈ N such that

a
(N)
1,2 a

(N)
2,3 > 0.

Thus, condition (1) in Theorem 3.3 is also satisfied and the proof is complete.

Observe that assumption (1) in Corollary 3.4 might have been also stated for two consecutive
positive entries in the corresponding lower diagonal of the matrix A.
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Example 3.6. Let A be the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ 0 0 0 · · ·
0 ∗ 0 ∗ 0 0 · · ·
∗ 0 ∗ ∗ ∗ 0 · · ·
0 ∗ 0 ∗ ∗ ∗ · · ·
0 0 ∗ 0 ∗ 0 · · ·
0 0 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes a strictly positive real number. If the diagonals are bounded, this matrix induces
a positive, bounded operator T on �p for 1 ≤ p < ∞ or c0.

Observe that A is a pentadiagonal matrix that fails to be honeycomb and verifies the hypotheses
of Corollary 3.4, since a3,4a4,5 > 0. Then, A has strictly positive dynamics and therefore T is

irreducible. Nevertheless, the matrix defined Ã = (ãi,j)i,j∈N defined as:{
ãi,j = ai,j if (i, j) = (3, 4)
ãi,j = 0 if (i, j) = (3, 4)

does have dynamics with zeros by Theorem 3.2, since Ã is a honeycomb matrix. As a consequence,
the induced operator T̃ has non-trivial closed invariant ideals.

Remark 3.7. Note that Example 3.6 shows the sharpness of Theorem 3.2 regarding the existence of
zeros of matrices in D in order to characterize the dynamics of such matrices and the existence of
non-trivial closed invariant ideals for the induced operators.

Finally, for pentadiagonal matrices, while Theorem 2.5 provided a characterization about the
existence of non-trivial closed invariant ideals assuming the positiveness of the elements of one
subdiagonal, next theorem considers honeycomb matrices.

Theorem 3.8. Let A = (ai,j)i,j∈N ∈ D. Assume A is pentadiagonal and ai,i+2 ai+2,i > 0 for every
i ∈ N. Then, A has dynamics with zeros if and only if is honeycomb. Consequently, every operator T
acting on a Banach lattice X whose order is induced by an unconditional basis such that its matrix
representation A is pentadiagonal and satisfies ai,i+2 ai+2,i > 0 for every i ∈ N has non-trivial closed
invariant ideals if and only if A is honeycomb.

Proof. By means of Theorem 3.2, it suffices to prove that if A has dynamics with zeros, A is a
honeycomb matrix.

We may assume, without loss of generality, that ai,i > 0 for every i ∈ N. We argue by contradiction
assuming that A is not a honeycomb matrix. Accordingly, there exists n,m ∈ N such that a2n,2m−1 >
0 and N,M ∈ N with a2N−1,2M > 0.

Now, A is a pentadiagonal matrix, so writing A = (di)−2≤i≤2 in diagonal notation, we note that

both entries must belong to d1 = (d1� )�∈N or d−1 = (d−1� )�∈N. We distinguish two possibilities.

(i) Suppose that both entries a2n,2m−1 and a2N−1,2M belong to d1 or both belong to d−1. Hence,

upon applying Lemma 3.5, it follows that there exists k ∈ N such that Ak satisfies the
hypotheses of Corollary 3.4. Thus, A has strictly positive dynamics, which yields to a
contradiction.

(ii) Assume that one of {a2n,2m−1, a2N−1,2M} belongs to d1 and the other one to d−1.
Without loss of generality, we may suppose that the entries a2n,2n+1 and a2N−1,2N−2 are

strictly positive (if, instead, a2n,2n−1 > 0 and a2N−1,2N > 0, the argument is analogous).
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We claim that, in such a case, a
(2)
2n,2n+1a

(2)
2N−3,2N−2 > 0. Observe that a

(2)
2n,2n+1 > 0 follows

by the hypotheses on the main diagonal of A. Likewise,

a
(2)
2N−3,2N−2 ≥ a2N−3,2N−1a2N−1,2N−2 > 0,

so the claim follows. Now, arguing as in case (i), it follows that A has strictly positive
dynamics, a contradiction.

Hence, in either case we arrive a contradiction, and therefore, the proof of Theorem 3.8 is complete.
�

3.1. k-honeycomb matrices. As mentioned at the beginning of this section, the concept of honey-
comb matrix is a particular instance of k-honeycomb matrices defined below. This latter concept will
allow to draw results for positive operators T ∈ L(X) whose associated matrices are k-honeycomb
regarding the absence of non-trivial closed invariant ideals (see Theorem 3.11).

Definition 3.9. Let k ≥ 2 be an integer. An infinite matrix A = (an,m)n,m∈N is said to be k-
honeycomb if there exists j ∈ {0, · · · , k − 1} such that one of the following conditions is satisfied:

(i) an,m = 0 for every n ∈ kN− j and m ∈ N \ (kN− j).
(ii) an,m = 0 for every n ∈ N \ (kN− j) and m ∈ kN− j.

Note that k = 2 corresponds to a honeycomb matrix. Next result is the analogous of Theorem
3.2 when k > 2.

Theorem 3.10. For every k ≥ 2, every positive k-honeycomb matrix A ∈ D has dynamics with zeros.
As a consequence, every positive operator acting on a Banach lattice X whose order is induced by
an unconditional basis such that its matrix representation is k−honeycomb has non-trivial closed
invariant ideals.

The proof runs as the one of Theorem 3.2 and we omit it.

Next result generalizes Theorem 3.3 to the context of positive operators with matrix representation
being k−honeycomb.

Theorem 3.11. Let A = (ai,j)i,j∈N ∈ D. Assume that there exists k ∈ N such that

(1) aj,j+1 > 0 for every j ∈ {1, · · · , k} and
(2) ai,i+kai+k,i > 0 for every i ∈ N.

Then A has strictly positive dynamics. As a consequence, every positive operator acting on a Banach
lattice X whose order is induced by an unconditional basis whose matrix representation satisfies both
(1) and (2) is irreducible.

Though the proof follows the same ideas of that of Theorem 3.3, it requires a bit of care with the
indexes due to the assumptions. We sketch it, for the sake of completeness.

Proof. Denote by An = (a
(n)
i,j )i,j∈N for each n ∈ N. As in Theorem 3.3, we assume that ai,i = 1

for every i ∈ N and assume that A has dynamics with zeros. Thus, there exists N0 ∈ N such that

a
(n)
N0,N0+1 = 0 for every n ∈ N.

We claim the following

Claim. For each n ∈ N and j ∈ {1, · · · , k}

(9) a
(2n−1)
j+k(n−1),(j+1)+k(n−1) > 0,
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and

(10) a
(2n)
j+k(n−1),(j+1)+kn

> 0.

Observe that (9) yields, together with the fact that ai,i = 0 for every i ∈ N, that there exists n0 ∈ N

such that a
(n0)
N0,N0+1 > 0, which yields the desired contradiction. Finally, as the corresponding claim

in the proof of Theorem 3.3, the Claim is proved by an equivalent induction argument in n and we
omit it, so th proof is done.

�

Note that Theorem 3.11 establishes a threshold for k-honeycomb matrices in order to have dynam-
ics with zeros. Namely, if we ask that any of the coefficients involve in assumption (1) of Theorem
3.11 is zero, it is always possible to construct a k−honeycomb matrix A, that will have dynamics
with zeros, satisfying assumption (2).

Roughly speaking, replacing one of the strictly positive entries in assumption (1) of Theorem
3.11 by zero sets up the limit in order to have dynamics with zeros, and therefore, also provides a
threshold of existence of non-trivial closed invariant ideals for the induced operators.

Analogously to Corollary 3.4, assumption (1) of Theorem 3.11 may be replaced by a more general
one as the next result states.

Corollary 3.12. Let A = (ai,j)i,j∈N ∈ D. Assume that there exists k ≥ 2 such that

(1) there exists m ∈ N such that am+j,m+j+1 > 0 for every j ∈ {1, · · · , k} and
(2) ai,i+kai+k,i > 0 for every i ∈ N.

Then, A has strictly positive dynamics. As a consequence, every positive operator acting on a Banach
lattice X whose order is induced by an unconditional basis whose matrix representation satisfies both
(1) and (2) is irreducible.

The proof of Corollary 3.12 runs as that of Corollary 3.4, so we omit it.

We conclude this subsection by showing a result for heptadiagonal operators (k = 3) in the spirit
of Theorem 3.8 and exhibiting an example that illustrates that an analogous result does not hold
for k ≥ 4.

Theorem 3.13. Let A = (ai,j)i,j∈N ∈ D. Suppose A is heptadiagonal and ai,i+3ai+3,i > 0 for every
i ∈ N. Then, A has dynamics with zeros if and only if A is a 3-honeycomb matrix. Consequently,
every operator T acting on a Banach lattice X whose order is induced by an unconditional basis such
that its matrix representation A is heptadiagonal and ai,i+3ai+3,i > 0 for every i ∈ N has non-trivial
closed invariant ideals if and only if A is 3-honeycomb.

In order to prove Theorem 3.13, we require the following lemma in the sense of Lemma 3.5.

Lemma 3.14. Let A = (ai,j)i,j∈N ∈ D and assume that there exists k ≥ 2 such that ai,i+kai+k,i > 0

for every i ∈ N. For each n ∈ N denote An = (a
(n)
i,j )i,j∈N.

(1) If ai0,i0+j0 > 0 for i0 ∈ N and j0 ∈ {0, · · · , k}, then a
(2)
i0+k,i0+j0

> 0.

(2) If ai0+j0,i0 > 0 for i0 ∈ N and j0 ∈ {0, · · · , k} then a
(2)
i0+j0,i0+k > 0.
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For the proof of Lemma 3.14 note that, in particular,

a
(2)
i0+k,i0+j0

=

∞∑
m=1

ai0+k,m am,i0+j0 ≥ ai0+k,i0 ai0,i0+j0 ,

and ai0+k,i0 > 0 by hypotheses. This along with assumption of (1) yields a
(2)
i0+k,i0+j0

> 0 as stated.

The assertion in (2) is similar.

Proof of Theorem 3.13. Without loss of generality, we may assume that ai,i > 0 for every i ∈ N. Note
that this along with the fact that A has non-negative entries implies, in particular, that if ai,j > 0

for some i, j ∈ N, then a
(n)
i,j > 0 for every n ∈ N.

Because of Theorem 3.10, it suffices to prove that A is 3-honeycomb whenever A has dynamics
with zeros. So, let us suppose that A has dynamics with zeros and argue by contradiction assuming
A is not a 3-honeycomb matrix.

Hence, for each j ∈ {0, 1, 2} there exist nj ∈ 3N− j and mj ∈ N \ (3N− j) such that

(11) anj ,mj
> 0,

and Nj ∈ N \ (3N− j) and Mj ∈ 3N− j such that

(12) aNj ,Mj
> 0.

Since A is a heptadiagonal matrix it follows that 1 ≤ |nj − mj | ≤ 2 and 1 ≤ |Nj − Mj | ≤ 2.
Equivalently, if A = (di)i∈Z in diagonal notation, the entries in (11) and (12) belong to the sequence
Δ = d−2 ∪ d−1 ∪ d1 ∪ d2. Denote by

S := {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}.

We claim the following

Claim 1. There exists k0 ∈ N such that for each j ∈ {0, 1, 2} there exist �j ∈ 3N − j and λj ∈
N \ (3N− j) with (�j , λj) ∈ S such that

(13) a
(k0)
�j ,λj

> 0,

and, similarly, there exist Lj ∈ N \ (3N− j) and Λj ∈ 3N− j with (Lj ,Λj) ∈ S such that

(14) a
(k0)
Lj ,Λj

> 0.

Roughly speaking, the claim states that there exists a power of the matrix Ak0 such that the
corresponding conditions (11) and (12) are satisfied with entries whose indexes belong to the set S.

Proof of Claim 1. For j ∈ {0, 1, 2} let anj ,mj
> 0 be given by (11). For each of the j ∈ {0, 1, 2}, we

show the existence of a positive integer k0,j and a pair (�j , λj) ∈ S such that

(15) a
(k0,j)
�j ,λj

> 0.

Let j ∈ {0, 1, 2} be fixed. We distinguish two possibilities:

(i) The entry anj ,mj
∈ d1 ∪ d2. If (nj ,mj) ∈ S, take �j = nj ∈ 3N, λj = mj ∈ N � (3N− j) and

k0,j = 1.
On the contrary, if (nj ,mj) /∈ S, Lemma 3.5 yields that

a
(3)
nj−3,mj−3

> 0.
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If (nj − 3,mj − 3) ∈ S, take �j = nj − 3 ∈ 3N, λj = mj − 3N � (3N − j) and k0,j = 3.
If not, upon applying Lemma 3.5 a finite number of times, there exists i ∈ N such that
(nj − 3i,mj − 3i) ∈ S and

a
(3i)
nj−3i,mj−3i

> 0.

Thus, consider �j = nj −3i ∈ 3N, λj = mj −3i ∈ N� (3N− j) and k0,j = 3i and (15) follows.

(ii) The entry anj ,mj
∈ d−1 ∪ d−2. Upon applying Lemma 3.14 we have a

(2)
nj+3,mj

> 0. Observe

that nj + 3 ∈ 3N − j. Accordingly, case (i) applies to A2 and hence, there exist k0,j and a
pair (�j , λj) such that (15) holds.

A similar reasoning yields the existence of k̃0,j and a pair (Lj ,Λj) ∈ S such that

(16) a
(k̃0,j)
Lj ,Λj

> 0.

Now, taking k0 = max{k0,j , k̃0,j : j = 0, 1, 2} and having in mind that ai,i > 0 for every i ∈ N,

the entries of the power of the matrix Ak0 whose indexes belong to the set S satisfy (13) and (14).
Accordingly, the statement of Claim 1 is proved.

Now, simplifying the notation, let us denote by B = (bi,j)i,j∈N the matrix Ak0 , namely, bi,j = a
(k0)
i,j

for i, j ∈ N. Likewise, let B = (δi)i∈Z be in diagonal notation. In order to finish the proof, we claim
the following

Claim 2. There exists N ∈ N such that either

b
(N)
1,2 b

(N)
2,3 b

(N)
3,4 > 0

or

b
(N)
2,1 b

(N)
3,2 b

(N)
4,3 > 0.

In order to prove Claim 2, we distinguish four cases depending on the number of positive entries
bi,j satisfying (13) and (14) and lying on δ1.

Proof of Claim 2.

(a) Assume that there exist three positive entries bi,j satisfying (13) and (14) lying on δ1. Then
b1,2, b2,3, b3,4 > 0, and Claim 2 holds for N = 1.

(b) Assume that there exist only two positive entries bi,j satisfying (13) and (14) lying on δ1.
In other words, there are only two positive elements belonging to {b1,2, b2,3, b3,4}. We may
assume that b1,2b2,3 > 0 and b3,4 = 0, since an analogous argument works for the rest of the
cases.

Observe that, in such a case, b3,5 > 0 (since (13) and (14) holds). Moreover, there must
exist i ∈ {2, 3}, such that the entry bi,4 is strictly positive. Since b3,4 = 0 by assumption, we
deduce that b2,4 > 0.

Upon applying Lemma 3.14, we deduce that

b
(2)
6,5 > 0

since b3,5 > 0. Now, by Lemma 3.5, it follows that

b
(6)
3,2 > 0.
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Hence,

b
(7)
3,4 ≥ b

(6)
3,2b2,4 > 0.

Finally, having in mind that ai,i > 0 for every i ∈ N which, in particular, implies that bi,i > 0
for every i ∈ N, yields that

b
(7)
1,2b

(7)
2,3 > 0.

Accordingly,

b
(7)
1,2b

(7)
2,3b

(7)
3,4 > 0,

and Claim 2 holds.

(c) Assume that there exist only one positive entry bi,j satisfying (13) and (14) lying on δ1. In
other words, there is only one positive element in the set {b1,2, b2,3, b3,4}. Then, there must be
at least two positive entries belonging to {b1,3, b2,4, b3,5}. Note that, upon applying Lemmas
3.5 and 3.14 this case is reduced to have two positive elements on δ−1. Then, considering
the transpose matrix of B and arguing as in item (b), the statement of Claim 2 also follows.

(d) Last, assume that there do not exist positive entries bi,j satisfying (13) and (14) lying on δ1.
Then b1,3b2,4b3,5 > 0, and again, as a byproduct of Lemmas 3.5 and 3.14, there exists N ∈ N

such that
b
(N)
2,1 b

(N)
3,2 b

(N)
4,3 > 0,

which ends up the proof of Claim 2.

Note that Claim 2 completes the proof of Theorem 3.13: indeed, by Proposition 3.11 the matrix
Ak0N would have strictly positive dynamics, which would contradict that A has dynamics with zeros.
Accordingly, the matrix A is 3-honeycomb and the theorem is proved.

Finally, we state an example that illustrates that a similar statement to that of Theorem 3.13
does not hold for k ≥ 4.

Example 3.15. Let A = (ai,j)i,j∈N ∈ D such that:

(i) ai,i > 0 for every i ∈ N.
(ii) ai,i+4ai+4,i > 0 for every i ∈ N.
(iii) a1,3a1,4a2,3a3,2a4,5 > 0.
(iv) Every other entry is zero.

Observe that A is a band-diagonal matrix with bandwidth k = 4 :

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ ∗ ∗ 0 · · ·
0 ∗ ∗ 0 0 ∗ · · ·
0 ∗ ∗ 0 0 0 · · ·
0 0 0 ∗ ∗ 0 · · ·
∗ 0 0 0 ∗ 0 · · ·
0 ∗ 0 0 0 ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that A is not a 2-honeycomb matrix because a2,3a1,4 > 0. Likewise, A is neither a
4-honeycomb matrix because of the election of the positive entries in (iii). Accordingly, A is not
k-honeycomb for any k.

Nevertheless, let us prove that if A has dynamics with zeros.
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If An = (a
(n)
i,j )i,j∈N we assert that

a
(n)
2+4i,4j = a

(n)
2+4i,1+4j = 0 i, j ≥ 0,

and
a
(n)
3+4i,4j = a

(n)
3+4i,1+4j = 0, i, j ≥ 0

for every n ∈ N.
Note that, indeed, this is the case for n = 1. To prove the assertion for n > 1, let B = (bi,j)i,j∈N

and C = (ci,j)i,j∈N be two non-negative matrices satisfying

b2+4i,4j = c2+4i,1+4j = 0 i, j ≥ 0,

b2+4i,4j = c2+4i,1+4j = 0 i, j ≥ 0,

b3+4i,4j = c3+4i,1+4j = 0 i, j ≥ 0,

and
b3+4i,4j = c3+4i,1+4j = 0 i, j ≥ 0.

Then, the matrix product D = BC = (di,j)i,j∈N also satisfies all the previous identities. Let us show
the first one, since the other three are analogous.

Let i, j ≥ 0. Clearly,

d2+4i,4j =
∞∑

m=1

b2+4i,m cm,4j .

The goal will be to show that every summand in the previous series is zero. Let m ∈ N and assume
b2+4i,m > 0 (otherwise there is nothing to show). Then, m = 4l, 1 + 4l for any l ∈ N. Accordingly,
there exists l0 such that m = 2 + 4l0 or m = 3 + 4l0. Observe that, in both cases, cm,1+4j = 0, so
b2+4i,m cm,4j = 0, as claimed.

Observe that Example 3.15 shows a distribution of zeros in the matrix A that makes A have
dynamics with zeros though A is not k-honeycomb for any k. Nevertheless, in a broader sense, the
“geometric distribution” of the zeros is similar: the matrix A has equal spaced 2×2 squares of zeros
while honeycomb matrices have equal spaced rows or columns of zeros. At this regard, in the spirit
of Theorems 3.8 and 3.13, we ask the following

Question. Let A = (ai,j)i,j∈N ∈ D. Suppose that A is a (2k + 1)−diagonal matrix for k ≥ 4 and
ai,i+kai+k,i > 0 for every i ∈ N. Does there exist a characterization involving a description of the
zero entries of A ensuring that A has dynamics with zeros?

4. A generalization of a theorem of Grivaux
for band-diagonal operators

In this last section, we obtain a generalization of a theorem of Grivaux [10] regarding the existence
of non-trivial closed invariant subspaces for positive tridiagonal operators.

Recall that if X is a separable Banach space and T ∈ L(X), it is said that T has a moment
sequence if there exists x ∈ X \ {0}, x∗ ∈ X∗ \ {0} and a non-negative Borel measure μ on R such
that

x∗ (Tnx) =

∫
R

tndμ(t)

for every n ≥ 0. The pair (x, x∗) is usually called a moment pair for T . Moment sequences for
operators play a role regarding the existence of non-trivial closed invariant subspaces (see [7, Chapter
9] for instance). In particular, the following proposition holds.
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Proposition 4.1. Let X be a real Banach lattice whose order is induced by an unconditional basis
and denote by XC = X + iX its complexification. Assume T ∈ L(XC) is an operator that leaves X
invariant. The following conditions are equivalent:

(i) T has a non-trivial closed invariant subspace on XC.
(ii) T |X has a non-trivial closed invariant subspace on X.
(iii) T |X has a moment sequence.

In the context of this work, if X is a complex Banach lattice whose order is induced by an
unconditional basis E = (en)n∈N, then X is the complexification of the real Banach space{

∞∑
n=1

xnen ∈ X : xn ∈ R for every n ∈ N

}
.

In what follows, let us denote by X0 the (non-closed) subspace consisting of vectors with finite
support respect to E on X. Observe that X0 is invariant under every band-diagonal operator. The
following proposition stated in [10] for Banach spaces of real or complex sequences indexed by N will
be relevant later on.

Proposition 4.2 ([10]). Let X be a Banach lattice whose order is induced by an unconditional basis
E = (en)n∈N, and let T : X → X be a bounded operator that leaves invariant X0. Assume that there
exists

(i) A symmetric matrix S with S(X0) ⊆ X0.
(ii) A matrix L such that L(X0) ⊆ X0, L is invertible on X0, and its adjoint Lt also satisfies

Lt(X0) ⊂ X0.
(iii) Either LT = SL or TL = LS on X0.

Then, there exists a moment pair for T and hence, T has non-trivial closed invariant subspaces.

It is important to note that both matrices S and L are not required to induce bounded operators
on X.

In order to extend the theorem of Grivaux [10, Theorem 3.2] to a larger class of positive operators,
we introduce the following definition.

Definition 4.3. An infinite matrix in diagonal notation A = (di)i∈Z satisfies condition (G) if for
every n ∈ N there exists kn ∈ N such that

dknn d−knn > 0

and

dmn = 0 for every m ∈ N \ {−kn, 0, kn}.

In particular, if A is a positive band-diagonal matrix satisfying (G), there exists k ∈ N such that
kn ≤ k for every n ∈ N. We present some examples within this class of matrices.

Examples 4.4.

(i) Every tridiagonal matrix with strictly positive entries in the subdiagonal and the superdiagonal
satisfies condition (G).
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(ii) Every pentadiagonal matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 ∗ 0 0 0 · · ·
0 ∗ 0 ∗ 0 0 · · ·
∗ 0 ∗ 0 ∗ 0 · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
0 0 ∗ 0 ∗ 0 · · ·
0 0 0 ∗ 0 ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes a strictly positive real number satisfies condition (G).
(iii) More general band-diagonal matrices can be constructed to satisfy condition (G):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 · · ·
∗ ∗ 0 ∗ 0 0 · · ·
0 0 ∗ 0 0 ∗ · · ·
0 ∗ 0 ∗ 0 ∗ · · ·
0 0 0 0 ∗ ∗ · · ·
0 0 ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes a strictly positive real number. In this example, we have k1 = 1, k2 = 2,
k3 = 3, k4 = 2, k5 = 1, · · ·

Note that each matrix A = (di)i∈Z above induces a bounded operator on Banach lattices like �p

(1 ≤ p < ∞) or c0 whenever every diagonal sequence di is bounded for every i ∈ Z.

Our main result in this section provides non-trivial closed invariant subspaces (non necessarily
ideals) for positive band diagonal operators whose associated matrix satisfies condition (G).

Theorem 4.5. Let X be a Banach lattice whose order is induced by an unconditional basis E and let
T ∈ L(X) be a positive band-diagonal operator such that its associated matrix A = (din)i∈Z respect to
E in diagonal notation satisfies condition (G). Then, T has a non-trivial closed invariant subspace.

Proof. Since T is a positive operator, it leaves invariant the real part of X. Hence, by Proposition
4.1, we may assume that X is a real Banach lattice and prove that T has non-trivial closed invariant
subspaces in X. Moreover, it suffices to construct a moment pair for T .

We proceed by constructing two matrices L, S satisfying Proposition 4.2. Let us define the se-
quence of positive numbers (αn)n≥1 as follows:

Step 1 Set α1 = 1. Since A satisfies condition (G), let k1 ∈ N be the first non-negative integer given
by such a condition and write m1 = 1 and m2 = 1 + k1. We define

αm2
= α1

√
dk11
d−k11

.

A recursive argument allows us to construct a strictly increasing subsequence of natural
numbers (mn)n≥1 and a sequence of positive real numbers (αmn)n≥1 by defining

mn = mn−1 + kmn−1
(n ≥ 2),
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and

αmn = αmn−1

√√√√ d
kmn−1
mn−1

d
−kmn−1
mn−1

.

Note that if the sequence of natural numbers (mn)n≥1 coincides with the set of natural numbers N,
Step 1 provides the desired sequence (αn)n≥1. Otherwise, we proceed to Step 2.

Step 2 Assume (mn)n∈N � N and let N be the smallest positive integer not belonging to (mn)n∈N.
Let M1 = N and define

Mn = Mn−1 + kMn−1
(n ≥ 2).

There are two possibilities:
(a) Either the sequence (Mn)n≥1 does not intersect (mn)n≥1: in such a case we define αMn

as in Step 1, namely,

αM1
= 1

and

αMn = αMn−1
·

√√√√√ d
kMn−1

Mn−1

d
−kMn−1

Mn−1

, (n ≥ 2).

(b) Or, there exist n1, n2 ∈ N such that Mn1
= mn2

. In such a case, we define

αMn1+j
= αmn2+j

for j ≥ 0,

and for those j ∈ {−n1 + 1, · · · ,−1} we define the backward steps until we reach M1:

αMn1+j
= αMn1+j+1

√√√√√√d
−kMn1+j

Mn1+j

d
kMn1+j

Mn1+j

.

If the sequence of natural numbers (Mn)n≥N ∪ (mn)n∈N = N, steps 1 and 2 provide the desired
sequence (αn)n≥1. Otherwise, we consider Step 2 with the sequence (Mn)n∈N ∪ (mn)n∈N.

Note that for each N ∈ N, the element αN is well defined after reiterating previous steps a finite
number of times (which generally depends on N). Indeed, since in each reiteration it is chosen the
smallest positive integer not previously covered by Step 2, the element αN is well defined after at
most N steps.

Accordingly, the sequence (αn)n∈N is defined.

Now, let L be the diagonal matrix with diagonal sequence (αn)n∈N. Observe that Lt = L. If we
compute S := LAL−1 and S = (si)i∈Z in diagonal notation we obtain that for every n ∈ N we have

smn =
αn

αn+m

dmn m ≥ 0

and

smn =
αn−m

αn

dmn m < 0.

As a consequence:

(i) The main diagonals of S and A coincide, that is, s0 = d0.
(ii) For every n ∈ N we have smn = 0 for every m /∈ {−kn, 0, kn}.
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(iii) For every n ∈ N we have

sknn =
αn

αn+kn

dknn

and

s−knn =
αn+kn

αn

d−knn .

Observe that S is a band-diagonal matrix because |kn| is bounded since A is band-diagonal. In
particular, S leaves invariant X0. Moreover, by the construction of the sequence (αn)n∈N, S is a
symmetric matrix: we have sknn = s−knn for every n ∈ N and smn = 0 for every m /∈ {−kn, 0, kn} by
(ii). Note that this latter property follows since dmn = 0 for m /∈ {−kn, 0, kn}. Observe that the
required symmetry would not longer hold in this construction if such assumption is dropped.

Finally, note that both matrices L and S satisfy the hypotheses of Proposition 4.2 and indeed
LT = SL. Accordingly, there exists a moment pair for T , and hence, non-trivial closed invariant
subspaces. �

Remark 4.6. Theorem 4.5 answers, partially, to the question posed by Grivaux in [10] if every
positive, pentadiagonal operator has a finitely supported moment pair. We have shown that every
positive, pentadiagonal operator satisfying condition (G) does have a finitely supported moment pair
but the general question remains still open.

We close this section by exhibiting an example of a positive band-diagonal operator T such that
its associated matrix satisfies condition (G), T lacks non-trivial closed invariant ideals and does
have non-trivial invariant subspaces. This concrete example illustrates that Theorem 4.5 provides
non-trivial closed invariant subspaces for operators not necessarily covered by those results in Section
2.

Example 4.7. Let A = (di)i∈Z be a matrix in diagonal notation where

(i) d0n > 0 for every n ∈ N.
(ii) d12n−1d

−1
2n−1 > 0 for every n ∈ N.

(iii) d22nd
−2
2n

> 0 for every n ∈ N.
(iv) Every other entry is zero.

In particular, A is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 · · ·
∗ ∗ 0 ∗ 0 0 0 · · ·
0 0 ∗ ∗ 0 0 0 · · ·
0 ∗ ∗ ∗ 0 ∗ 0 · · ·
0 0 0 0 ∗ ∗ 0 · · ·
0 0 0 ∗ ∗ ∗ 0 · · ·
0 0 0 0 0 0 ∗ · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where each ∗ denotes a strictly positive real number.
Note that the matrix A clearly satisfies condition (G) with k2n−1 = 1 and k2n = 2 for every n ∈ N.
Let X be a Banach lattice whose order is induced by an unconditional basis such that A induces a

bounded operator T on X. For instance, X = c0 or X = �p with 1 ≤ p < ∞ whenever the sequences
di are bounded. By Theorem 4.5, it follows that T has non-trivial closed invariant subspaces.

Indeed, it is possible to show explicitly the construction of the sequence (αn)n∈N addressed in the
proof of Theorem 4.5. Start with Step 1 by setting α1 = 1. Hence, by definition, k1 = 1, and write
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m1 = 1 and m2 = 1 + 1 = 2. Thereby, define

α2 = α1

√
d11
d−11

.

Now, since k2n = 2 for every n ∈ N, we obtain

mn+1 = 2n

for n ∈ N. Accordingly, define

α2n = α2n−2

√
d22n−2
d−22n−2

for every n ≥ 2. This ends this first iteration of Step 1. At this point, we have defined α1 and α2n

for every n ∈ N. It remains to define α2n+1 for n ∈ N applying the Step 2.
We choose the smallest integer not covered yet in the indexed sequence, namely 3. By writing

M1 = 3, we obtain M2 = 4, a number that is already covered, so case (b) of Step 2 applies. Set

α3 = α4

√
d−13

d13
.

Hence, we have defined so far α1, α3 and α2n for every n ∈ N.
In order to define αn for the rest of uncovered indexes n, we are required to apply Step 2 again.
Observe that in the next iteration of the process α5 is defined applying Step 2 once again. In

general, in each iteration of the process that follows the entry α2n+1 for n ≥ 2 is obtained where the
entry α2n−1 was defined in the previous step. Each α2n+1 is defined as follows:

α2n+1 = α2n+2

√
d−12n+1

d12n+1

.

Note that the sequence (αn)n∈N is defined for every n ∈ N and, as we observed, defining each αn

requires only a finite number of steps which, in turn, depends on n ∈ N.
Finally, in order to show that T lacks non-trivial closed invariant ideals, let us prove that if

A2 = (bi)i∈Z in diagonal notation, then

(17) b1n b
−1
n > 0

for every n ∈ N. Hence, by Theorem 2.4, T 2 does not have non-trivial closed invariant ideals and
neither does T .

Since d0n > 0 for every n ∈ N, we deduce that b12n−1b
−1
2n−1 > 0 for every n ∈ N. Now, observe that

b12n ≥ d22nd
−1
2n+1 > 0.

Equivalently, it follows that b−12n > 0. Hence, (17) holds as we wished to show.
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References

[1] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol.
50, American Mathematical Society, Providence, RI, 2002.

[2] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces of operators on �
p-spaces, J. Funct.

Anal. 115 (1993), no. 2, 418–424.
[3] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspace theorems for positive operators, J.

Funct. Anal. 124 (1994), no. 1, 95–111.
[4] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw, Invariant subspaces for positive operators acting on a

Banach space with basis, Proc. Amer. Math. Soc. 123, (1995), no. 6, 1773–1777.
[5] C. D. Aliprantis and O. Burkinshaw, Positive operators, Academic Press, New York and London, 1985.
[6] R. Anisca and V. G. Troitsky, Minimal vectors of positive operators, Indiana Univ. Math. J. 54 (2005), no. 3,

861–872.
[7] I. Chalendar, J. Partington, Modern approaches to the invariant-subspace problem. Cambridge Tracts in Math-

ematics, 188. Cambridge University Press, Cambridge, 2011. xii+285 pp.
[8] B. De Pagter, Irreducible compact operators Math. Z. 192 (1986), no. 1, 149–153.
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