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Abstract. The unitary representations of the three dimensional simple Lie groups are
reconsidered from the perspective of harmonic functions acting on certain manifolds related
to differential realisations of the groups themselves. By means of contractions of Lie groups,
the procedure is also applied to the group E2 of rotations-translations in two dimensions.

1. Introduction
Besides their fundamental importance in Analysis and Geometry, harmonic functions constitute
an indispensable tool for many branches of Classical Physics, specially in connection with
potential theory, providing an appropriate formalism to describe electrostatic, magnetic or
gravitational potentials, as well as in Quantum physics, where harmonic functions play a relevant
role in the operators techniques and the symmetry analysis of quantum systems, hence for the
representation theory of these groups [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Their generalisation to
higher dimensions is a natural consequence of these applications, particularly in the context
of relativistic systems [2, 11, 12, 13, 14]. As representative examples of this connection we
have the relationship between unitary representations of pseudo-orthogonal groups SO(p, q) and
harmonic functions, i.e. eigenfunctions of the Laplacian, on the (n − 1)−sphere Sn−1 or the
hyperboloids (see [15] for references). Harmonic functions have also been considered for other
types of simple Lie groups, as SU(3) in the context of elementary particles [16, 17] or the group
Sp(6,R) in the quantum mechanics of three bodies [18].

In this work we propose an alternative construction of the representations of the three
dimensional semisimple Lie groups (complex and real) from the point of view of harmonic
functions. To proceed, we identify SL(2,C) (resp. SL(2,R), SU(2)) with the complex unit
three-sphere S3C (resp. with the hyperboloid of signature (2, 2) H2,2 or with three-sphere S3)
that we describe by means of a specific system of coordinates. Removing appropriate regions
from these manifolds (either cylinders or circles), these systems of coordinates give rise to a
bijective correspondence. Using these systems of coordinates enables us to obtain differential
realisations of the Lie algebras sl(2,C), su(2) and sl(2,R) acting respectively on the spaces

S3C \
(
C2×C2

)
,H2,2 \ S1 or S3 \

(
S1× S1

)
, thus allowing to construct all unitary representations

in terms of harmonic functions.

In analogous way, we consider an alternative construction of unitary representations of the
group of rotations-translations in two dimensions E2 on the cone with one point removed
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C2,2 \ {0}, which can be seen as a singular limit of H2,2 \ S1 . It has to be emphasised that
all these constructions are related by natural operations such as taking real forms or considering
contractions of Lie algebras. We also observe that in the case of SL(2,Z) and E2, their first
homotopy group being isomorphic to Z, the representations are constructed in some special
cases (more precisely, when the eigenvalues of the semisimple element or the spin do not belong
to 1

2N) on a suitable covering space of the considered manifold. The proposed approach can be
sumarised in the following diagram:

Representations of SL(2,C)
as harmonics functions on

S3
C \
(
C2 × C2

)
real

formvv

real

form
((

Representations of SU(2) as
harmonics functions on

S3 \
(
S1 × S1

)
contraction

))

Representations of SL(2,R)
as harmonics functions on

H2,2 \ S1

contraction
uu

Representations of E2 on
C2,2 \ {0}

Alternative constructions of the representations considered in this paper can be found for example in
[19, 20, 21]. We also observe that in [22], a unified construction of the Lie groups SO(3), SO(1, 2) and
E2, was developed, however basing on a different Ansatz and techniques as those used in this work.

The contents of the paper is the following. In Section 2 we explicitly parameterise the Lie groups
SL(2,C), SL(2,R) and SU(2). Considering appropriate systems of coordinates a bijective correspondence
deduced from the paremeterisation is obtained after removal of some regions on the previous manifolds.
Section 3 is devoted to an explicit construction of a differential realisation of the Lie algebras sl(2,C),
sl(2,R) and su(2). In Section 4 we construct explicitly unitary representations of sl(2,C), sl(2,R) and
su(2) as harmonic functions on the corresponding manifold. A special emphasis on sl(2,R) is given.
Finally, Section 5 focuses on the extension of this approach for the description of unitary representations
of E2.

2. Parameterisation of the Lie groups
In this section we construct explicit systems of coordinates for the Lie groups SL(2,C), SU(2), SL(2,R).
It is shown that removing appropriate regions of the corresponding manifolds allows us to obtain
bijective parameterisations. These will be central for the construction of unitary representations of
the corresponding Lie groups.

The Lie group SL(2,C) is the set of two-by-two complex unimodular matrices

SL(2,C) =

{(
α β
γ δ

)
, α, β, γ, δ ∈ C , αδ − βγ = 1

}
,

∼= S3
C =

{
z1, z2, z3, z4 ∈ C, z2

1 + z2
2 + z2

3 + z2
4 = 1

}
⊂ C4,

with α = z1−iz2, δ = z1 +iz2, β = z4−iz3, γ = −z4−iz3. An adapted system of coordinates on S3
C can be

given as follows, writing z2
1 + z2

2 + z2
3 + z2

4 = z+z̄
′
+ + z−z̄

′
− We define Θ = ϑ0 + iϑ1 ,Φ± = ϕ±0 + iϕ±1 ∈ C
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and set

z+ = cos(Θ)eiΦ+ ,

z− = sin(Θ)eiΦ− ,

z′+ = cos(Θ̄)eiΦ̄+ , (1)

z′− = sin(Θ̄)eiΦ̄− ,

with

(ϑ0, ϕ+0, ϕ−0, ϑ1, ϕ+1, ϕ−1) ∈ [0,
π

2
]× [0, 2π[×[0, 2π[×R3 .

It can be shown that although (1) covers S3
C, the correspondence is not one-to-one. However, removing

the two cylinders C2

Θ = 0 , (ϕ+0, ϕ+1) ∈ [0, 2π[×R ,

Θ =
π

2
, (ϕ−0, ϕ−1) ∈ [0, 2π[×R .

and denoting I3
C =

{
(ϑ0, ϕ+0, ϕ−0, ϑ1, ϕ+1, ϕ−1) ∈ [0, π2 ] × [0, 2π[×[0, 2π[×R3 , s.t. (ϑ0, ϑ1) 6=

(0, 0), (π/2, 0)
}

, we have a bijection between I3
C and S3

C \
(
C2 × C2

)
[23].

The group SL(2,R) is the set of two-by-two real unimodular matrices

SL(2,R) =

{(
α β
γ δ

)
, α, β, γ, δ ∈ R , αδ − βγ = 1

}
,

∼= H2,2 =

{
x1, x2, x3, x4 ∈ R, x2

1 + x2
2 − x2

3 − x2
4 = 1

}
⊂ R4.

Since SL(2,R) is a real form on SL(2,C), we consider the real form of S3
C parameterised using

Θ = iϑ1 = iρ , Φ+ = ϕ+0 = ϕ+ ,Φ− = φ−0 = ϕ− , (2)

such that (1) reduces to

ζ+ = cosh ρeiϕ+ , ζ− = sinh ρeiϕ− , (3)

with (ρ, ϕ+, ϕ−) ∈ R+ × [0, 2π[×[0, 2π[ . We obviously have∣∣ζ+∣∣2 − ∣∣ζ−∣∣2 = 1 .

The variables ζ± clearly parameterise the hyperboloid H2,2. If we remove the circle

ρ = 0 , ϕ+ ∈ [0, 2π[ ,

that is |ζ+|2 = 1, from H2,2, we have a bijection between I2,2 = R∗+× [0, 2π[×[0, 2π[ and H2,2\S1. Further
it can be seen that the first homotopy group of H2,2 \ S1 is isomorphic to Z × Z [23]. Several coverings
of H2,2 \ S1 that will be relevant in the sequel can be defined (for other coverings see [23]):

- the (p, 1)−sheeted covering ˜H2,2 \ S1
(p,1)

with ρ ∈ R∗+, 0 ≤ ϕ+ < 2pπ, 0 ≤ ϕ− < 2π,

- the (∞, 1)−sheeted covering ˜H2,2 \ S1
(∞,1)

with ρ ∈ R∗+, ϕ+ ∈ R, 0 ≤ ϕ− < 2π.
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The Lie group SU(2) is the set of two-by-to unitary complex matrices of determinant one

SU(2) =

{
U =

(
α β
−β̄ ᾱ

)
, α, β ∈ C ,

∣∣α∣∣2 +
∣∣β∣∣2 = 1

}

∼= S3 =

{
x1, x2, x3, x4 ∈ R, x2

1 + x2
2 + x2

3 + x2
4 = 1

}
⊂ R4 .

Since SU(2) is a real form of SL(2,C) we consider the real form of S3
C parametrised by

Θ = ϑ0 = θ ,Φ+ = ϕ+0 = ϕ+ ,Φ− = ϕ−0 = ϕ− , (4)

which gives in (1)

w+ = cos θeiϕ+ , w− = sin θeiϕ− ,

leading to ∣∣w+

∣∣2 +
∣∣w−∣∣2 = 1 ,

with (θ, ϕ+, ϕ−) ∈ [0, π/2] × [0, 2π[×[0, 2π[. The variables w± clearly parameterise the sphere S3. Now,
removing two circles from S3

θ = 0 , ϕ+ ∈ [0, 2π[ ,

θ =
π

2
, ϕ− ∈ [0, 2π[ ,

that is, the circles |w+|2 = 1 and |w−|2 = 1, we have a bijection between I3 =]0, π/2[×[0, 2π[×[0, 2π[ and

S3 \
(
S1 × S1

)
[23].

Note finally that the manifolds S3\
(
S1×S1

)
and H2,2\S1 are real forms of the manifold S3

C\
(
C2×C2

)
[23]. The real manifolds can be endowed with a scalar product and a Laplacian related to a scalar product

and Laplacian on S3 \
(
S1 × S1

)
. In this note we only consider the case of SL(2,R). The Laplacian is

given by [23]

∆ = − 1

cosh ρ sinh ρ
∂ρ(cosh ρ sinh ρ∂ρ) +

1

cosh2 ρ
∂2
ϕ+
− 1

sinh2 ρ
∂2
ϕ− . (5)

The scalar product firstly defined on H2,2 \ S1 extends naturally to the covering considered above. On

˜H2,2 \ S1
(p,1)

we have

(f, g)(p,1) =
1

p

1

(2π)2

+∞∫
0

cosh ρ sinh ρ dρ

2pπ∫
0

dϕ+

2π∫
0

dϕ−f̄(ρ, ϕ+, ϕ−)g(ρ, ϕ+, ϕ−) , (6)

and on ˜H2,2 \ S1
(∞,1)

it reduces to

(f, g)(∞,1) =
1

(2π)2

+∞∫
0

cosh ρ sinh ρ dρ

+∞∫
−∞

dϕ+

2π∫
0

dϕ−f̄(ρ, ϕ+, ϕ−)g(ρ, ϕ+, ϕ−) . (7)
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3. Differential realisations of the Lie groups
The parameterisations of Section 2 enable us to obtain explicit differential realisations of the Lie algebras

sl(2,C), sl(2,R) and su(2) which define a left action respectively on S3
C \

(
C2 × C2

)
,H2,2 \ S1 and

S3 \
(
S1 × S1

)
.

For the Lie algebra sl(2,C) the realisation is explicitly given by

L+ =
1

4
ei(−ϕ−0−iϕ−1+ϕ+0+iϕ+1)

(
tan(ϑ0 + iϑ1)

(
− i∂ϕ+0

− ∂ϕ+1

)
+

∂ϑ0
− i∂ϑ1

+ cot(ϑ0 + iϑ1)
(
− i∂ϕ−0

− ∂ϕ−1

))
=

1

2
ei(Φ+−Φ−)

(
− i tan Θ∂Φ+

+ ∂Θ − i cot Θ∂Φ−

)
,

L− =
1

4
ei(ϕ−0+iϕ−1−ϕ+0−iϕ+1)

(
tan(ϑ0 + iϑ1)

(
− i∂ϕ+0

− ∂ϕ+1

)
+ (8)

−∂ϑ0
+ i∂ϑ1

+ cot(ϑ0 + iϑ1)
(
− i∂ϕ−0

− ∂ϕ−1

))
=

1

2
ei(Φ−−Φ+)

(
− i tan Θ∂Φ+

− ∂Θ − i cot Θ∂Φ−

)
,

L0 = − i
4

(
∂φ+0

− i∂ϕ+1
− ∂ϕ−0

+ i∂ϕ−1

)
= − i

2

(
∂Φ+
− ∂Φ−

)
,

and

L̄+ =
1

4
ei(−ϕ−0+iϕ−1+ϕ+0−iϕ+1)

(
tan(ϑ0 − iϑ1)

(
− i∂ϕ+0 + ∂ϕ+1

)
+

∂ϑ0
+ i∂ϑ1

+ cot(ϑ0 − iϑ1)
(
− i∂ϕ−0

+ ∂ϕ−1

))
=

1

2
ei(Φ̄+−Φ̄−)

(
− i tan Θ̄∂Φ̄+

+ ∂Θ̄ − i cot Θ̄∂Φ̄−

)
,

L̄− =
1

4
ei(ϕ−0−iϕ−1−ϕ+0+iϕ+1)

(
tan(ϑ0 − iϑ1)

(
− i∂ϕ+0

+ ∂ϕ+1

)
+ (9)

−∂ϑ0
− i∂ϑ1

+ cot(ϑ0 − iϑ1)
(
− i∂ϕ−0

+ ∂ϕ−1

))
=

1

2
ei(Φ̄−−Φ̄+)

(
− i tan Θ̄∂Φ̄+

− ∂Θ̄ − i cot Θ̄∂Φ̄−

)
,

L̄0 = − i
4

(
∂ϕ+0

+ i∂ϕ+1
− ∂ϕ−0

− i∂ϕ−1

)
= − i

2

(
∂Φ̄+
− ∂Φ̄−

)
,

such that we have the sl(2,C) commutation relations[
L0, L±

]
= ±L± ,

[
L+, L−

]
= 2L0 ,[

L̄0, L̄±
]

= ±L̄± ,
[
L̄+, L̄−

]
= 2L̄0 ,

[La, L̄b
]

= 0 .

The differential realisation of sl(2,R) is obtained using (8) and (9) through the real form (2)

J+ =
1

2
ei(ϕ+−ϕ−)

(
− i tanh(ρ)∂ϕ+

− ∂ρ + i coth ρ∂ϕ−

)
,

J− =
1

2
ei(ϕ−−ϕ+)

(
− i tanh(ρ)∂ϕ+

+ ∂ρ + i coth ρ∂ϕ−

)
, (10)

J0 = − i
2

(
∂ϕ+ − ∂ϕ−

)
,

and satisfies the sl(2,R) commutation relations[
J0, J±

]
= ±J± ,

[
J+, J−

]
= −2J0 .
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Finally, the differential realisation of su(2) is obtained using (8) and (9) through the real form (4) and
is given by

R+ =
1

2
ei(ϕ+−ϕ−)

(
− i tan θ∂ϕ+

+ ∂θ − i cot θ∂ϕ−

)
,

R− =
1

2
ei(ϕ−−ϕ+)

(
− i tan θ∂ϕ+

− ∂θ − i cot θ∂ϕ−

)
,

R0 = − i
2

(
∂ϕ+ − ∂ϕ−

)
,

and satisfies the su(2) commutations relations[
R0, R±

]
= ±R± ,

[
R+, R−

]
= 2R0 .

4. Representations as harmonic functions for the three dimensional simple Lie
groups
In this section we show that all unitary representations of the Lie groups SL(2,C), SL(2,R) and SU(2)
can be obtained from their spinor(s) representation(s). The case of SU(2) is trivial and it is not difficult

to see that all unitary representations can be defined as harmonic functions on S3 \
(
S1× S1

)
. This case

will not be considered here (see [23] for the details).
Irreducible representations of SL(2,C) have been studied by Gel’fand and can be given in terms of

homogenous functions in C2 [2, 24, 25, 26, 27] (see [28] for an English translation of [24]). Unitary
representations are characterised by two numbers `0 and `1 and correspond either to `0 ∈ 1

2N and
`1 = iσ, σ ∈ R for the principal series or to `0 = 0 and 0 < `1 ≤ 1 for the complementary series. We have
shown that we can extend the Gel’fand formulæ for all unitary representations such that they are living

on S3
C \
(
C2×C2

)
and are harmonic. Since the expressions are complicated and not very enlightening we

refer to [23] for explicit expressions.
Unitary representations of SL(2,R) have been studied by various authors [6, 8, 9, 29, 30] and divide into

two types: the discrete series (which is bounded either from below or above) and the continuous (principal
and supplementary) series, which are unbounded. We have shown that all unitary representations of
SL(2,R) can be defined as harmonic functions of H2,2 \ S1 (or one of his coverings), but in this note we
only consider the case of discrete series. The discrete series is characterised by s > 0. For the discrete
series bounded from below we have

D+
s =

{
Ψ+
s,n =

√
2Γ(n+ 2s)

Γ(−1 + 2s)Γ(n+ 1)
ζ̄+
−2s−nζ̄−

n

=

√
2Γ(n+ 2s)

Γ(−1 + 2s)Γ(n+ 1)
e−inϕ−+i(2s+n)ϕ+ cosh−2s−n ρ sinhn ρ , n ∈ N

}
,

while for discrete series bounded from above

D−s =

{
Ψ−s,n =

√
2Γ(n+ 2s)

Γ(−1 + 2s)Γ(n+ 1)
ζ−2s−n
+ ζn−

=

√
2Γ(n+ 2s)

Γ(−1 + 2s)Γ(n+ 1)
e−i(2s+n)ϕ++inϕ− cosh−2s−n ρ sinhn ρ , n ∈ N

}
,

which satisfy
J+Ψ+

s,n =
√

(n+ 1)(n+ 2s)Ψ+
s,n+1 ,

J−Ψ+
s,n =

√
n(n+ 2s− 1)Ψ+

s,n−1 ,
J0Ψ+

s,n = (n+ s)Ψ+
s,n ,


J+Ψ−s,n = −

√
n(n+ 2s− 1)Ψ−s,n−1

J−Ψ−s,n = −
√

(n+ 1)(n+ 2s)Ψ−s,n+1 ,
J0Ψ−s,n = −(n+ s)Ψ−s,n .
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Note that D+
s and D−s are isomorphic representations. In order that the expressions above are well defined

they have to be defined on some covering of H2,2\S1. In particular, when 2s = p/q ∈ Q, the representation

D±s is defined on ˜H2,2 \ S1
(q,1)

and corresponds to a representation of the q−sheeted covering of SL(2,R)

and when s ∈ R\Q the representation D±s is defined on ˜H2,2 \ S1
(∞,1)

and corresponds to a representation
of the universal covering of SL(2,R). Using (5), a direct computation gives

∆Ψ±s,m = −4s(s− 1)Ψ±s,m = −4QΨ±s,m ,

where Q = J2
0−1/2(J+J−+J−J+) is the Casimir operator of sl(2,R) and the functions Ψ±s,m are harmonic

functions defined on H2,2 \ S1 (or one of his coverings).
Now we check unitarity of the representations using the scalar product (6) or (7). In order to

proceed we have to check the convergence of the various integrals, since we are integrating on non-
compact manifolds. Using hypergeometric functions, a routine computation shows that in all cases, after
integration upon the angles and performing a change of variables, the integrals involving ρ reduce to

Is,n =

+∞∫
1

r−4s−2n+1(r2 − 1)ndr ,

with n ≥ 0. These integrals converge if s > 1/2 and give

Is,n =
1

2

Γ(n+ 1)Γ(2s− 1)

Γ(2s+ n)
.

In particular, this means that when 2s = p/q, 2s′ = p′/q′, introducing q′′ as the least common multiple
of q and q′ (6), provides the following identity when s, s′ > 1/2

(Ψε′

s′,n′ ,Ψ
ε
s,n)q′′ = δε

′εδs′sδn′n ,

and when either s or s′ is an irrational number, when s, s′ > 1/2 holds we have from (7) that

(Ψε′

s′,n′ ,Ψ
ε
s,n)q′′ = δε

′εδn′nδ(s− s′) .

Observe that when s ∈ R, the eigenvalues of the Casimir operator Q are continuous hence the
eigenfunctions Ψ±s,n cannot be normalised.

5. Extension of the formalism for the group of rotations-translations in two
dimensions
Interestingly all the formalism we have applied for simple Lie groups extends for the group E2 of rotation
translations in two-dimensions. This group can be, for instance, obtained by an Inönü-Wigner contraction
of the group SU(2) or SL(2,R). Studying a singular limit of the hyperboloid H2,2

∼= SL(2,R) enables us
to describe the cone C2,2 of equation

x2
1 + x2

2 − x2
3 − x2

4 = 0 ,

which is strongly related to E2 [23]. To have an explicit realisation of unitary representations of E2

we have to proceed in several steps. Firstly, considering a singular limit of (3) leads to a bijective
parameterisation of the cone with one point removed C \ {0}. Secondly, considering the same singular
limit for (10) leads to a differential realisation of e2 (the Lie algebra of E2) and an explicit realisation
of all unitary representations of e2 on C2,2 \ {0}. Next, to define an invariant scalar product we observe
that C2,2 \ {0} can be continuously deformed (is homeomorphic) to R× S1 × S1 and since S1 is the one-
point compactification of R, we have explicitly constructed unitary representations of e2 on S1× S1× S1,
parameterised by Ψ, ϕ+, ϕ− ∈ [0, 2π[. With this realisation the generators of e2 are given by

P+ = −1

2
ei(ϕ+−ϕ−)∂Ψ ,

P− =
1

2
ei(ϕ−−ϕ+)∂Ψ ,

J = − i
2

(∂ϕ+
− ∂ϕ−) ,
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with commutations relations

[J, P±] = ±P± , [P+, P−] = 0 .

Unitary representations of e2 are characterised by two numbers p ∈ R and −1/2 < s ≤ 1/2 and are given
by

Dp,s =

{
Λp,s,n = ei2pΨei(n+s)ϕ+−inϕ− , n ∈ Z

}
,

such that

P+Λp,s,n = −ipΛp,s,n+1 ,

P−Λp,s,n = ipΛp,s,n−1 ,

JΛp,s,n = (s+ n)Λp,s,n .

As for the SL(2,R) case, the functions Λ are defined on appropriate coverings. These coverings will be
given by their parameterisation. Two cases are considered. The first one corresponds to 2s = r/q with
Ψ ∈ R, ϕ+ ∈ [0, 2qπ[, ϕ− ∈ [0, 2π[, and second case to s ∈ R \Q with Ψ, ϕ+ ∈ R, ϕ− ∈ [0, 2π[.

Now, if f and g are two functions defined on an appropriate covering of S1 × S1 × S1, we define the
scalar product

(f, g)q =
1

q

1

(2π)2

+∞∫
−∞

dΨ

2qπ∫
0

dϕ+

2π∫
0

dϕ−f̄(Ψ, ϕ+, ϕ−)g(Ψ, ϕ+, ϕ−) ,

in the first case and

(f, g)∞ =
2

(2π)2

+∞∫
−∞

dΨ

+∞∫
−∞

dϕ+

2π∫
0

dϕ−f̄(Ψ, ϕ+, ϕ−)g(Ψ, ϕ+, ϕ−) ,

in the second case. It is then straightforward to check that for s, s′ ∈ Q, i.e., 2s = r/q, 2s′ = r′/q′ (q′′

being the least common multiple of q, q′), we have

(Λp′, r′
2q′ ,n

′ ,Λp, r
2q ,n

)q′′ = δnn′δ r
q

r′
q′
δ(p− p′) ,

while for s or s′ a real number (but not a rational), we get

(Λp′,s′,n′ ,Λp,s,n)∞ = δnn′δ(s
′ − s)δ(p− p′) .

The functions Λp,s,n are hence orthonormal, and the representations Dp,s are unitary.

6. Final remarks
Unitary representations of the three dimensional simple Lie groups have been constructed in terms of
generalised harmonic functions acting on appropriate smooth manifolds related to differential realisations.
Using the well known relation of these groups with the group of rotations-translations in two dimensions
via Inönü-Wigner contractions, the argument is extended to the construction of unitary multiplets of
the latter. This procedure provides an alternative perspective concerning the central role of spinor
representations. In principle, up to the restrictions expected in the integration on non-compact manifolds,
the method can be formally proposed for higher rank simple Lie groups. The corresponding analysis for
SU(3) in the context of the Elliott model or the pseudo-orthogonal groups SO(5 − p, p) in the frame of
kinematical groups constitute physically motivating situations to further enlarge the Ansatz to the case
of subduced representations or its application in reductions chains of symmetry groups.
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