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English version
Introduction. Cataclysmic Variables (CVs) are interacting binary systems com-
prised of a white dwarf (WD) and a secondary star, typically a red dwarf
(RD). The secondary is transferring material through the inner Lagrangian
point (L1) which, in absence of strong magnetic fields, forms an accretion
disc surrounding the central WD. The evolution of CVs is driven by angular
momentum loss, moving from long orbital periods and high mass transfer
rates to short orbital periods and low mass trasnfer rates. Their evolution
proceeds in this way until reaching the period minimum at ∼ 78 min. In
addition, there is an abrupt drop in the number of systems with periods be-
tween 2 h and 3 h, the period gap. Below the gap, the main mechanism of
angular momentum loss is governed by gravitational radiation while above
it, the stronger magnetic braking dominates.

Objectives. Nonetheless, discrepancies between theory and observations
exist, and a larger and well known population of CVs becomes necessary.
This work intends to enlarge the CV sample to help solving these disagree-
ments and, in this journey, several analyses related to the evolution of these
systems and the properties of their different subtypes are also discussed.

Methodology. In this thesis, an analysis of the absolute magnitudes and
colours of CVs is provided to give continuity to the understanding of the
evolution of these systems. Several methodologies to find new CVs, using
a combination of public wide field surveys are presented. The Javalambre-
Photometric Local Universe Survey, J-PLUS, is the base-line source of data,
which is combined with the Wide-field Infrared Survey Explorer (WISE) and
the Global Astrometric Interferometer for Astrophysics survey (Gaia). The
methodologies make use of classical techniques such as colour-colour and
Hertzsprung–Russell diagrams. They shed light about the complications re-
lated to the discovery of these objects as well as about the limitations of the
said techniques. Therefore, subsequently more recent techniques in the field
of Machine learning (ML) are tested. Colour-colour and colour-magnitude
diagrams do not fit well with missing data, usually bringing loss of informa-
tion and decrease of completeness. Moreover, cutting criteria do not usually
capture the more subtle patterns and conversely, ML techniques can provide
objective results by capturing less noticeable patterns. A comparison of dif-
ferent ML techniques to predict missing values (data imputation technique),
result from cross-matching data between different surveys, is exhibited. This
new generated dataset is used to train a fully connected neural network in
charge of finding new CV systems.
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Results. The color-color methodologies fail to define a sample of CVs with
a satisfactory purity coefficient, including numerous contaminants. How-
ever, the resulting set of data from imputed values fed into the neural net-
work allows a wider parametric space to be explored, yielding a complete-
ness of 87% and a purity of 59%.
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Versión en español
Introducción. Las Variables Cataclísmicas (CV por sus siglas en inglés) son

sistemas binarios que interactúan entre sí, compuestos por una enana blanca
y una estrella secundaria, típicamente una enana roja. La secundaria trans-
fiere material a través del punto interno de Lagrange (L1) que, en ausencia de
fuertes campos magnéticos, forma un disco de acreción que rodea a la enana
blanca central. La evolución de las CVs está impulsada por la pérdida de
momento angular, pasando de largos períodos orbitales y altas transferencias
de masa a períodos orbitales cortos y bajas transferencias de masa. Su evolu-
ción prosigue de esta manera hasta alcanzar el período mínimo de ∼ 78 min.
Además, hay un descenso abrupto en el número de sistemas con períodos
entre 2 h y 3 h, el ’period gap’. Por debajo del gap, el principal mecanismo de
pérdida de momento angular se rige por la radiación gravitatoria, mientras
que por encima de él, domina el frenado magnético más fuerte.

Objetivos. Sin embargo, existen discrepancias entre teoría y observaciones,
y por tanto, contar con una mayor y bien conocida población de CVs se hace
necesaria. Este trabajo pretende ampliar la muestra de CVs para ayudar a
resolver estos desacuerdos y de camino, también se discuten varios análi-
sis relacionados con la evolución de estos sistemas y las propiedades de sus
diferentes subtipos.

Metodología. En esta tesis, se proporciona un análisis de las magnitudes
absolutas y los colores de las CVs para dar continuidad a la comprensión de
la evolución de estos sistemas. Se presentan varias metodologías para en-
contrar nuevas CVs, utilizando una combinación de cartografíados de gran
campo públicos. El cartografiado Javalambre-Photometric Local Universe
Survey, J-PLUS, es la fuente de datos base, que se combina con el Wide-field
Infrared Survey Explorer (WISE) y el Global Astrometric Interferometer for
Astrophysics survey (Gaia). Las metodologías utilizan técnicas clásicas como
los diagramas color-color y Hertzsprung-Russell. Esta metodologías arro-
jan luz sobre las complicaciones relacionadas con el descubrimiento de estos
objetos, así como las limitaciones de dichas técnicas. Por tanto, posterior-
mente se prueban técnicas más recientes en el campo del Machine learning
(ML). Los diagramas color-color y color-magnitud no encajan bien con datos
ausentes, lo que suele traer la pérdida de información y la disminución de
completitud. Además, los criterios de corte no suelen captar los patrones más
sutiles y, en cambio, las técnicas de ML pueden dar resultados objetivos al
captar los patrones menos perceptibles. Se exhibe una comparación de difer-
entes técnicas de ML para predecir valores ausentes (técnicas de imputación
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de datos), resultado del cruce de datos entre diferentes cartografiados. Este
nuevo conjunto de datos generados se utiliza para entrenar una red neural
totalmente conectada encargada de encontrar nuevas CVs.

Resultados. Las metodologías de color-color no logran definir una mues-
tra de CVs con un coeficiente de pureza satisfactorio, incluyendo numerosos
contaminantes. Sin embargo, el conjunto de datos resultante de los valores
imputados introducidos en la red neuronal permite explorar un espacio de
parámetros más amplio, dando una completitud del 87% y una pureza del
59%.
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Chapter 1

Overview

1.1 Introduction

Cataclysmic Variables (CVs) are interacting binaries comprising a white dwarf
(WD) which is accreting mass from a less evolved companion, the secondary
star, which typically is a low-mass late-type main sequence star. The trans-
ferred material, depending on the magnetic activity of the WD, either forms
an accretion disc surrounding the central WD or its trajectory is interrupted
by the magnetic field, forcing the accreting material to fall along the field
lines (see e.g., Warner 1995, Hellier 2001 and Knigge, Baraffe, and Patterson
2011 for comprehensive reviews).

The evolution of these binaries is driven by angular momentum loss,
which controls the mass transfer rate and the corresponding change of or-
bital period (Townsley and Gänsicke, 2009). As a consequence of the an-
gular momentum loss and the mechanisms driving it, CVs move from long
orbital periods and high mass transfer rates to short orbital periods and low
mass transfer rates (Paczynski and Sienkiewicz 1983; Townsley and Gänsicke
2009; Pala et al. 2017). In the standard model of CV evolution (Howell, Nel-
son, and Rappaport 2001; Goliasch and Nelson 2015) this is explained by the
presence of different mechanisms of angular momentum loss characterized
by different efficiencies together with changes in the internal structure of the
secondary (Knigge, Baraffe, and Patterson, 2011). The evolution of CVs pro-
ceeds in this way until the system reaches the period minimum at ∼ 76–80
minutes (Knigge 2006; Gänsicke et al. 2009; Kalomeni et al. 2016) in which
the donor mass has become so low that core H-burning ceases, and the star
turns into a brown dwarf (BD). Consequently, the orbital separation and pe-
riod now increases as the mass-transfer continues becoming in the so-called
period bouncers. Theory predicts that 70% of the CVs (Kolb, 1993) should be
period bouncers, faint systems with BD donors in the period range ∼ 76 min
≤ Porb ≤ 2 h.
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On their way to the period minimum, observations show an abrupt drop
in the number of systems with periods between 2 h and 3 h, referred to as the
period gap. Below this range (Porb < 2 h), systems have low mass-transfer
rates mainly governed by gravitational radiation (GR) while the higher mass-
transfer rates above the gap (Porb > 3 h) are a consequence of the stronger
magnetic braking (MB), see Rappaport, Joss, and Verbunt (1983); Spruit and
Ritter (1983); Hameury et al. (1988); Davis et al. (2008). The standard ex-
planation for the gap suggests that MB switches off or is greatly reduced
when the secondary becomes fully convective, quenching/weakening the
magnetic dynamo (observational evidence of this can be found in Zorotovic
and Schreiber 2017 and Schreiber et al. 2010). As a consequence, the sec-
ondary contracts to its thermal equilibrium and detaches from its Roche lobe.
This occurs at an orbital period of ∼ 3 h. The continuing angular momentum
loss by GR shrinks the orbit until it reaches a period of about 2 h, when the
Roche lobe makes contact with the stellar surface and mass-transfer is re-
established, albeit, at a lower level.

Some discrepancy from this general picture come from magnetic CVs
which show no evidence of a period gap (Townsley and Gänsicke 2009).
Some CV sub-types unexpectedly overabundant in specific period ranges,
e.g. the group of SW Sex stars, peak just above the period gap at periods
between 3 and 4 h (Schmidtobreick 2017 or Schmidtobreick, Rodríguez-Gil,
and Gänsicke 2012). Moreover, in disparity with the expected 70% CV pop-
ulation, only a selected few period bouncers have been identified (e.g. Pala
et al. 2018). It is not clear yet whether these differences are intrinsic or due to
observational biases of the overall CV population.

Since the structure of both components is relatively simple, CVs are one of
the best sources to test our understanding of many astrophysical phenomena
involving evolution of compact, interacting binaries and accretion phenom-
ena. Their study helps to resolve standing discrepancies between current
population models and observations in many present and complex topics in-
cluding black hole binaries, short gamma-ray bursts, X-ray transients, milli-
second pulsars and Supernovae Ia.

1.2 The White Dwarf

White Dwarfs are compact objects with low luminosity and radius on the or-
der of that of the Earth. It is a faint star at the end-stage of the evolution of
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intermediate and low-mass stars. WDs evolve from stars with an initial mass
of up to four solar masses. As the hydrogen fuel runs out in the entire core,
the star becomes a red giant. If the red giant does not have enough temper-
ature to fuse carbon and oxygen, the gravitational forces compress its core
and the envelope is expelled, thus producing a planetary nebula. The star
loses a major fraction of its original mass through stellar winds and through
its ejected envelope. The hot planetary-nebula nucleus left behind will even-
tually cool down to become a WD. Following the complete exhaustion of its
reservoir of thermal energy, the WD reaches the final stage of its evolution
and becomes a cold and inert stellar remnant known as black dwarf.

Unlike most other stars, WDs are not supported against their own gravi-
tation by thermal gas pressure but by the degeneration pressure of the elec-
tron gas in their core. This electron gas1 at high densities adopts a particular
configuration that obeys Fermi-Dirac statistics (Fermi 1926 and Dirac 1926).
WDs reach densities up to 106 g cm−3 or even higher, only exceeded by neu-
tron stars and black holes. At these densities come into play Heisenberg’s
principle of indetermination and Pauli’s exclusion principle for the electrons, gen-
erating such electronic degeneration pressure which opposes the collapse of
the star. The application of the Fermi-Dirac statistics and of special relativity
to the study of the equilibrium structure of a WD yields to a mass-radius ra-
tio constraint where a unique radius is assigned to a given mass; the larger
the mass, the smaller the radius. Moreover, it is also derived a limiting mass
for WDs, the Chandrasekhar limit, ∼ 1.4 M�. If a WD reaches that limit, the
gravitational pressure would either force the electrons to combine with the
protons to form a neutron star or explode as a type Ia Supernova.

Typical masses of WDs are in the range 0.5− 0.6 M�, however, measure-
ments of WDs in CVs are in the range 0.8− 1.2 M� (e.g., Warner 1973, Warner
1976b; Ritter 1976; Robinson 1976). This discrepancy has been explained as a
selection effect where more massive WDs release more energy and hence, are
easier to discover (Ritter and Burkert, 1986). However, Littlefair et al. (2008)
and Savoury et al. (2011) measured WD masses for faint CVs yielding a mean
value of ∼ 0.8 M� while Zorotovic, Schreiber, and Gänsicke (2011) showed
that the mass distribution of such systems should be biased towards low-
mass WDs. Further studies of the WD mass distribution in CVs are needed
to disentangle these disagreements.

1More generally, a gas comprised of Fermions, subatomic particles with half-integer in-
trinsic angular momentum.
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1.2.1 The Spectral Energy Distribution of a White Dwarf

A WD is a close approximation to a black body. Being usually a hot object, its
flux in bluer wavelengths is high and differences with a black body are due
to a layer of hydrogen and/or helium atoms2 on its surface.

When a photon emerges from the nucleus of a WD, it may have the right
energy to move an electron from its quantum state to another. The energy
of the photon is absorbed and therefore causes a deficit in the wavelength
that corresponds to that energy, visible in the resulting spectrum. Thus, the
Spectral Energy Distribution (SED) of a WD shows the Balmer lines caused
by the hydrogen atoms (Hα, Hβ, Hγ and Hδ in Figure 1.1), and the more
energetic Lyman lines in the ultraviolet and not in the range of the figure.
The SED of a WD is also characterised by the width of the spectral lines.
This is a product of the intense pressure to which the atmosphere of a WD is
exposed, which causes perturbations in the energy of the electron orbits ac-
cording to the Heisenberg uncertainty principle. These perturbations extend the
wavelength range of the photons, making easier finding an atom to absorb
them.

1.3 The Red Dwarf

The most common type of secondary in a CV is a red dwarf (RD). This is a
small star, although much larger than the WD, and relatively cold, belonging
to the main sequence, either of the late K or M spectral type. Most stars
belong to these types, with mass and diameter values less than half of those
of the Sun (down to 0.08 solar masses, when it becomes a BD) and a surface
temperature of less than 4000 K. However, the part of the surface of the RD
facing the WD can be heated up to 7500 K (Hellier, 2001). This causes the
reflection effect, the RD absorbs the radiation from the WD and re-emits it.
This can be seen from studying eclipsing CVs: near the eclipse, the heated
face of the RD is not visible and the visible face is too weak causing an abrupt
drop in flux. As the RD emerges from the eclipse, the heated surface becomes
more visible by increasing its brightness, until it reaches its maximum when
the entire heated surface is visible (see Figure 1.2).

2It usually contains other elements previously accreted.
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FIGURE 1.1: Spectral energy distribution of a White Dwarf.
Source, SDSS-III

1.3.1 The SED of a Red Dwarf

The spectrum of the RD (Figure 1.3) has its maximum emission at red and
infrared wavelengths. Because the surface of the RD is much larger than
that of the WD, it is visible and even dominates the WD towards the red
when it starts emitting. The low-energy bonds that bind atoms to molecules
can survive in the low-temperature atmosphere of a RD. These molecules re-
absorb the photons that emerge from the core, producing strong molecular
lines in the spectrum. However, because molecules can rotate and vibrate in
many more ways than the electrons in the atoms, the characteristics in the
resulting spectrum are a complex set of broad dips.

1.4 The Roche geometry

Binary stars that are sufficiently separated from each other, as well as lone
stars, tend to be spherical due to gravity. With a radius ∼ 1/50 times the
separation of both stars, this effect applies to the WD in CVs. However, the
much larger but less massive RD is increasingly distorted by the gravity of its
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FIGURE 1.2: Orbital phases of the eclipsing CV
SDSS J150722.30+523039.8 in SDSS u’-, g’- and r’-bands,
respectively from top to bottom. Image reference: Littlefair

et al. 2007

companion as the binary separation shrinks due to angular momentum loss
during its evolution (discussed in Sections 1.1 and 2.1), to the point where
the gravitational pull of the WD removes the outer layers of the RD (Roche
lobe overflow).

The Roche geometry, which was first studied by Edourard Roche (from
whom takes its name) in the nineteenth century, is a mathematical descrip-
tion of the interactions of stars and, where appropriate, as in the case of CVs,
of the exchange of matter between the components of the binary. The Roche
approach is simplified by assuming the orbits to be circular3 and, for dynam-
ical purposes, that the mass of the stars are concentrated at their centers. The
surfaces over which the gravitational potential is constant, the equipoten-
tials, when near the stellar centers, are circular, but at distances comparable
to the binary separation are distorted towards the companion due to tidal
forces (see Figure 1.4).

The gravitational potential Φ at a specific point given by the vector r, with
stellar masses M1 and M2 located at r1 and r2 respectively, is given by

3This is accepted as a good approach since tidal effects tend to circularize the orbits on
short timescales compared to the duration of mass transfer processes.
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FIGURE 1.3: Spectral energy distribution of a RD. Source, SDSS-
III

Φ = − G M1

|r− r1|
− G M2

|r− r2|
− 1

2
(ω ∧ r)2 (1.1)

where ω is the angular frequency of the orbit and 1
2 (ω ∧ r)2 accounts for

the centrifugal force. Figure 1.4 shows the equipotentials for several values
of Φ and the equipotential represented by the thickest line, number 3 in the
figure, defines the Roche lobe of each star. The shape of the equipotentials
depends on the mass ratio q = M2

M1
and on the binary separation a obtained

from Kepler’s law (see Equation 1.4 in next section). The equilibrium points
of the Roche potential are called the Lagrangian points L1 − L5. The inner
Lagrangian point, L1, connects the regions dominated by the potential of the
two components, the easiest path by which material can be transferred be-
tween the stars.

In addition, apart from q and a, the sizes of the Roche lobes and the dis-
tances from the L1 point to the stars are needed to define the Roche geometry.
Eggleton (1983) used the radius of a sphere with the same volume as the lobe
as an approximation for the Roche lobe sizes, yielding a radius for the sec-
ondary Roche lobe of
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FIGURE 1.4: Contours of equal gravitational potencial, equipo-
tentials, for a binary system with mass ratio q = M2/M1 =
0.25. Shown are the centre of mass (CM), the Lagrange points
L1 − L5 and the equipotentials are labelled 1− 7 in order of in-

creasing Φ. Figure taken from Frank, King, and Raine 2002.

R2 =
a 0.49 q2/3

0.6 q2/3 + ln (1 + q1/3)
(1.2)

and a circularization radius of

rcirc = a 0.0859 q−0.464 (1.3)

for 0.05 < q < 1. Which is the minimum radius of the disc’s outer edge.
It is assumed that the rotation of each star is synchrounous with the or-

bital motion4. In this case, the surfaces of the stars will lie on one of the
4Synchronism is usually a good approximation as tidal forces bring it on similar

timescales to that for circularization of the orbit.
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equipotentials. If the surface of the star fills its Roche lobe, mass transfer
is triggered and the material then flows between the two stars. This is the
case for the RD in CVs, which results in the formation of an accretion disc
surrounding the WD, the most distinguishable feature of a CV.

1.5 Mass transfer

The secondary star fills its Roche lobe letting a thin stream of material flow
into the WD through L1. In turn, the pressure of the stellar atmosphere
pushes this material into the Roche lobe of the WD. Due to the angular mo-
mentum from the orbit that this material has, it does not fall directly on the
primary star, but instead comes out in jets which are orbiting perpendicular
to the direction of the material, at more than 100 km/s. Therefore, the cur-
rent rotates in an orbit around the WD instead of flowing directly towards it.
At this point the gravitational attraction of the secondary becomes negligible
and the movement of the stream of material is directed by the gravitational
attraction of the primary and the material’s own speed.

In this phase, the stream of material follows an apparently disordered
flow, which after dissipating energy in the produced shocks, ends up adopt-
ing a circular orbit, minimizing the energy used. In order to ensure the same
angular momentum as the outgoing material of L1, it orbits at the radius nec-
essary for it, the circularisation radius. However, within this formed ring of
material, the parts closer to the primary star must orbit slightly faster and the
external parts slightly slower. It can be inferred from Kepler’s law

P2
orb =

4 π2 a3

G (M + m)
(1.4)

For the circumference of the orbit, the orbital period is Porb = (2πr)/v.
Substituting on Equation 1.4, yields the Keplerian velocity

v =

√
G M

r
(1.5)

and therefore, the Keplerian velocity decreases as the radius of the orbit r is
increased and vice-versa.

This causes friction that heats the gas causing irradiation of the energy
outwards and the consequent displacement of some of the material into shorter
orbits. The angular momentum is given by J = mrv, and substituting v for
Equation 1.5
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J =
√

GM m
√

r (1.6)

which shows that angular momentum decreases as r increases. In order to
preserve the angular momentum, some of the material must also be moved
towards more distant orbits, spreading out all the material in the form of a
disc. The disc continues to expand until its inner part either makes contact
with the WD or is disrupted by the magnetic field of the WD if sufficiently
strong.

The material moving through the disc towards larger radius transports
angular momentum flows outwards, allowing the flow of material inwards.
Thus, it accumulates onto the WD resulting in the consequent release of en-
ergy. At the outer edge of the disc, tidal interactions with the secondary star
absorb the angular momentum and return it to the orbit of the secondary
star, limiting the outward propagation of the disc. The disc is replaced by the
mass transfer current of the secondary, which provides both fresh material
and more angular momentum. As long as it flows, the disc is maintained.

1.5.1 The accretion disc

Accretion discs play an important role in various branches of astronomy. As
in CVs, accretion discs form by redistributing angular momentum to allow
gas clouds to collapse into stars or planets and are the material from which
black holes are fed. The accretion discs around black holes at the center of
Quasars (QSOs) are extremely bright and the furthest sources of light that we
can see today. However, QSOs are too far away and star formation is often
covered by the star-dust from which they are formed, making them difficult
to study. The CVs are in a remarkable position because they are binaries,
so masses can be derived and allow us to study accretion discs more clearly
than with other objects, allowing to apply the acquired knowledge obtained
in other phenomena.

The SED of an acretion disc

The spectra of accretion discs are more difficult to study and understand than
the stellar spectra. In a CV, the temperature gradient ranges from ∼ 5000 K
in the outer parts to ∼ 30000 K in their inner regions, and therefore, it is
not appropriate to treat them as a single entity. Instead, the disc is divided
into annuli, interpreted as individual black bodies at the corresponding tem-
perature and then added together by weighting them by their surface. The
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resulting spectrum is an approximation of the continuum but that cannot re-
produce the spectral lines. An alternative is to assume that each annulus
emits the spectrum corresponding to a star of the same temperature and add
them up (Chromospherically Active Binary Stars 1994) as in the previous ap-
proach. Although this approach adds spectral lines, these are in absorption
while those of the discs are usually in emission.

Emission and absorption lines

When an atom absorbs a photon and causes an electron to jump to another
level of energy, it is very likely to return to its previous level by emitting an
exact replica of the incoming photon. If a photon tries to pass through an op-
tically thick material, it will travel a short distance before interacting with the
surrounding atoms. This distance is known as the mean free path. When this
distance is short, the photon needs many interactions before escaping from
the material. The mean free path determines the optical depth, i.e. the dis-
tance (on average) that a photon penetrates before it is absorbed. Similarly,
the photons emerging from the optically thick material come from a depth
equal to their mean free path. At uniform temperature (in local thermody-
namic equilibrium), the depth from which they emerge is the same as the
depth of penetration. The number of absorptions is equal to the number of
emissions, they cancel each other out and no spectral lines are seen, therefore
the spectrum emitted is that of a black body.

However, photons at wavelengths of a spectral line are more likely to
interact with the surrounding atoms. Therefore their mean free path and
hence their optical depth are shorter. In the case of stars and discs there is no
thermodynamic equilibrium because they are hotter in their inner layers and
colder in their outer ones. Photons with shorter main free path emerge from
colder areas, while the rest emerge from hotter parts and their radiations are
therefore brighter. The radiation on the lines, which comes from the colder
surface, is weaker and they appear as absorption lines.

In optically thin conditions, the emitted photons emerge without inter-
actions. However, there are still two processes that can cause alterations in
the energetic orbits. The collisions of atoms and the photo-ionisation due to
the radiation on the material and which expels the electrons from the atoms.
These processes produce photon emission which, in the absence of absorp-
tion, register spectral emission lines.
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Accretion discs show emission lines on some occasions and absorption
lines on others, indicating changes of state between optically thick and op-
tically thin conditions. Sometimes they even show absorption and emission
characteristics simultaneously. This can occur if an optically thick disc is sur-
rounded by a hot, optically thin corona. Therefore, due to all these variables,
it is difficult to model accretion discs and, in any case, a model of the accre-
tion disc must take into consideration the pressure and density in the differ-
ent parts of the disc, which in turn depends on the gravity of the WD, the
generation of radiation by viscous processes, the propagation of radiation
through the disc material and other additional complications such as gas tur-
bulence and energy transport by convection.

1.5.2 The bright spot

Once the disc is formed, the stream of material from the secondary star hits
it, forming the bright spot. The stream of material encounters the disc mov-
ing in its circular orbit. The consequences of this impact are very complex
and not completely understood but some simulations suggest that the stream
makes a hole in the disc that is slowly absorbed by it (Armitage and Livio
1996, Speith and Kunze 2002). The irradiation caused by the bright spot can
reach 30% of the total brightness of the system.

Through the study of light-curves of eclipsing systems, we can determine
the size of the bright spot (see Figure 1.5). The eclipses of the WD and the
bright spot are comparable or even larger for the bright spot. This indicates
that the bright spot is similar in size or even larger than the WD. In addition,
the radius of the disc can be determined using the phase in which the bright
spot eclipse occurs. Thus, the smaller discs fill about half of the WD’s Roche
lobe and the larger discs fill ∼ 80− 90% of its Roche lobe.

1.6 Doppler effect

The Doppler effect is caused by the movement of the emitter with respect to
our point of view. When a source of photons moves towards us, the wave-
length is shortened because the distance travelled in that interval has to be
subtracted from the distance between the wavelength peaks5. This produces

5For waves which do not require a medium, such as electromagnetic waves or gravita-
tional waves, Doppler effect considers time dilation effect of special relativity and do not
involve the medium of propagation as is the case for waves that propagate in a medium,
such as sound waves.
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FIGURE 1.5: The light-curve of Z Cha, an eclipsing accretion
disc binary. At the bottom of the figure, the orbital phases are
shown and in different colours the contributions of its compo-
nents. The WD eclipse causes a very abrupt drop in brightness,
the one of the disc is smoother. The bright spot however is out
of phase with the latter two and also forms a hump before its

eclipse itself.

apparent wavelength shifts towards more energetic frequencies or towards
the blue. The redshift is the equivalent of the photon emitter moving away
from us. Both effects are perceptible in an accretion disc with a certain incli-
nation, the part of the disc which moves away from us suffers a redshift and
the part which approaches, a blueshift. The amount of redshift or blueshift
is directly proportional to the velocity at which the material moves along the
line of sight

1 + z = (1 +
v
c
) γ (1.7)

where z is the redshift, v the velocity, c the speed of light and γ the Lorentz
factor.

Depending on the phase of a CV, its different parts will cause a red or blue
shift. Thus, if we measure the Doppler effect caused by one of its parts dur-
ing the whole orbital cycle, the result will be a sinusoid for circular orbits, the
S-wave. All emission sources moving with the system form an S-wave but
the maximum red or blue shift of an S-wave occurs with the bright spot at
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one extreme from our viewpoint. This instant reflects the total velocity of the
material for an edge-on system. More generally, for systems with an incli-
nation i, the movement v in the binary plane can be resolved into a v · sin(i)
along our line of sight and a component perpendicular to it. The amplitude
of the S-wave from a bright spot does not reflect the speed of the accretion
current in free fall, nor the Keplerian speed of the disc material it has hit, but
a speed halfway between the two.

A disc can be considered as a collection of small regions that emit S-waves
of the same radial velocity amplitude and the profile, a sum of them weighted
by the area they are comprised of. The result is a double peak profile dis-
placed from the center of the line by a typical velocity of the outer disc (see
Figure 1.6). The disc is centered on the WD, and thus follows its movement
around the common center of mass. This means that the whole double-peak
profile of the disc executes an S-wave in synchrony with the WD.
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FIGURE 1.6: At the top, a map of a CV as seen from above, in
plane view (inclination = 0); At the bottom, a double-peaked
spectral line, the height of which is the light intensity and the
horizontal axis shows velocity of the material emitting the cor-
responding part of the line. The shaded regions on the spectral
line correspond to the shaded regions of the disc. The higher
velocities are seen in the innermost regions of the disc, which
equate to the wings of the spectral line, when that part of the
disc is moving along our line of sight. Negative velocities indi-
cate motion away from the observer, positive velocities towards
the observer. Although the inner parts of the disc are hotter and
brighter, the outer regions have a much larger surface area and
so contribute more to the brightness of the whole image. Thus,
the faster moving inner regions emits lower total light intensi-
ties and so the intensity drops off at the wings of the line. Figure

taken from Hellier (2001).
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Chapter 2

CV evolution

Stars form from clouds of interstellar dust and gas that collapse under their
own gravity. Depending on the mass contained in these clouds, gravitation-
ally bound young stars will form in binaries, triples, binary pairs or other
combinations, and only in a low percentage, single stars. In this context, the
stars most likely to become CVs are binary systems in which one component
has a lower mass than the Sun (which will become the secondary star), while
the other one is more massive (later becoming the primary or DW). In addi-
tion, they must be separated by a few hundred solar radii and orbital periods
∼ 10 years. The higher mass in the core of the future WD translates into more
energetic nuclear reactions due to its higher pressure and temperature. It re-
sults in a faster evolution with respect to its companion and will eventually
expand to become a red giant. As explained in section 1.2, WDs form as the
core of this red giant, whose outer layers extend to ∼ 100 solar radii. At this
stage, the red giant fills its Roche lobe, transferring its outer layers to its less
evolved and less massive companion. This configuration is the opposite of a
CV, where the less massive star fills its Roche lobe and is the one transfering
mass to the more massive WD.

This situation is not stable. The more massive star, which is nearer to the
binary center of mass, is the one transferring the material. Therefore, the
material transferred to its companion is now at a larger distance from the
center of mass. This increases the angular momentum of that material, and
to preserve the angular momentum of the whole system, the stellar distance
must be decreased. This decrease in stellar separation causes a decrease in
both Roche lobes volumes which get even more overloaded and therefore,
mass transfer increases. This can be derived from the basic formula J = mrv
where the velocity v is perpendicular to the lever arm r, and using Kepler’s
law (Equation 1.4) we obtain

J = M1 M2 (
Ga
M

)1/2 (2.1)
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where M = M1 + M2. If the total mass is conserved (Ṁ = 0) and taking
natural logs and differntiating with respect to time then gives

ȧ
a
= 2

J̇
J
+ 2
−Ṁ2

M2
− (1− M2

M1
) (2.2)

Therefore, if angular momentum is also conserved ( J̇ = 0), transfer from
the secondary (Ṁ2 < 0) leads to increasing a, provided M2 < M1.

Thus, both stars end up with their overloaded Roche lobes resulting in a
’common envelope’ surrounding the two stars. The nascent CV is effectively
orbiting inside a red giant.

The drag of the orbiting stars drains their orbital energy, causing them
to spiral inwards. Their separation is reduced from ∼ 100 R� to ∼ 1 R�
in about 1000 years. The energy extracted from the binary orbit pushes the
envelope into interstellar space, forming a ’planetary nebula’.

The end result is a WD-RD binary that continue to get closer due to grav-
itational and magnetic braking. The period in which the binary becomes a
CV depends on the size of the secondary when it emerges from the com-
mon envelope. In the case that it does not fill its Roche lobe, there is no
mass transfer and so it will not yet be a CV. These systems are known as
pre-Cataclysmic Variable1. Nonetheless, magnetic braking will continue to
function as a mechanism for angular momentum loss until the RD makes
contact with its Roche lobe and initiates mass transfer, a scenario that will
likely occur at shorter orbital periods.

2.1 Mass transfer mechanisms

Differently from the Pre-CV phase explained in the previous Section 2, the
mass transfer in CVs occurs from the less evolved and less massive secondary
to the primary WD. Assuming that the angular momentum of the system is
maintained, the transferred material goes from the secondary to the more
massive primary and therefore, from a larger distance to the center of masses
to a shorter one. This causes a loss in angular momentum which is offset
by widening the binary separation and, in turn, causes the secondary to sep-
arate from its Roche lobe, halting the mass transfer. To keep mass transfer
stable, the system must lose angular momentum progressively by another
mechanism. This would shrink the orbit and the Roche lobe of the secondary,
allowing the resulting excess of material to be transferred (see Equations 2.1

1If they can reach contact within Hubble time.
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and 2.2). There are two main mechanisms by which CVs lose angular mo-
mentum: gravitational radiation and magnetic braking.

2.1.1 Gravitational radiation

The repetitive orbit of two stars causes a systematic deformation of space
that ripples outwards in a periodic wave. This wave is called gravitational
radiation. The energy to generate this wave is extracted from the binary orbit,
which causes a loss of angular momentum of the system and a slow spiral
inwards.

In most binaries, the effects of this gravitational radiation are negligi-
ble because they have wide orbits and long orbital periods compared to the
masses involved. However, as the binaries orbit closely, their orbital period
speeds up and the gravitational radiation increases. From the theory of gen-
eral relativity, the gravitational radiation of a CV and in turn, the mass trans-
fer rate, can be computed. For a CV with a period of 2 h, the gravitational
radiation causes a mass transfer rate of ∼ 1013 kg s−1 (∼ 10−10 M� yr−1,
Iben, Fujimoto, and MacDonald 1992).

2.1.2 Magnetic braking

The combination of the stellar wind caused by the secondary with its own
magnetic field forms the theory of magnetic braking. The stellar wind is
plasma expelled from a star, and is expected to be expelled by the secondary
in the CVs. Being a late-type star, it is also expected to have a magnetic
field. Moreover, it seems that the rotation speed of a star is proportional to
the strength of such magnetic field. Therefore, RDs in CVs should have very
strong magnetic fields since they have rotation periods equal to their orbital
periods, that is, a few hours. The magnetic braking theory says that electri-
cally charged stellar wind particles cannot cross the magnetic field and in-
stead flow along the magnetic field lines. Therefore, such particles co-rotate
with the RD and are accelerated until they get ejected into interstellar space
at high speeds. These particles take with them part of the angular momen-
tum of the system, which, not being able to be transferred to the rotational
slowdown of the secondary one since it is tidally locked, is transferred to the
orbital period, which is reduced accordingly.

Knowing the distance to the system and the mass of the WD, it is possi-
ble to deduce the speed at which the material accumulates into the WD (and
therefore the mass transfer rate) from the increase in luminosity with respect
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to that corresponding to such a system. In many cases, the distances are un-
certain and, in addition, much of this luminosity occurs in ranges of the ul-
traviolet spectrum that are very difficult to measure, so these measurements
can lead to large errors. However, some estimates determine a mass trans-
fer rate Ṁ ∼ 1014 kg s−1 ∼ 10−9 M� yr−1 (Iben, Fujimoto, and MacDonald,
1992).

2.2 The orbital period

By studying the population of CVs, we can try to understand their evolution.
As CV lifecycles are several tens of millions of years long, we study the pop-
ulation of CVs in the hope of finding distributed systems in all their stages.
Figure 2.1 shows a compilation of CVs from Downes et al. (2001) and Ritter
and Kolb (2003) catalogues, for which their orbital period is known, 1544 CVs
in total.
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FIGURE 2.1: The distribution of Cataclysmic Variable orbital
periods.
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2.2.1 The upper limit of the orbital period

Figure 2.1 shows a decrease in systems at orbital periods longer than 6 – 7 h.
The upper limit of the orbital period is marked by the mass of the Secondary.
A CV is constituted by a WD whose mass limit is the Chandrasekhar limit,
1.4 M� and, as mentioned at the beginning of this chapter, 2, the secondary
must be less massive than the WD, therefore its mass limit is the same. As the
orbital period gets longer, the secondary must be larger and therefore more
massive in order to fill its Roche lobe. For a secondary mass equal to the
Chandrasekhar limit, the period corresponds to ∼ 12 h. Nonetheless, a de-
crease of systems is noticeable from ∼ 6 h upwards. Some systems, however,
have longer orbital periods. These are explained because they are evolved
from the Main Sequence, making them larger (although not more massive)
and filling their Roche lobe at longer periods.

2.2.2 The period gap

From the birth of a CV, magnetic braking progressively shrinks the orbit at
mass transfer rates Ṁ ∼ 10−9 − 10−8 M� yr−1. However, when arriving at
orbital periods ∼ 3 h, an abrupt fall in the number of systems is observed
which lasts up to ∼ 2 h, the period gap. Below 2 h, the mass transfer rates are
reduced considerably to those of gravitational radiation Ṁ ∼ 10−10 M� yr−1.

Standard theory suggests that magnetic braking is switched off when a
CV has evolved down to 3 h. At periods about 3 h, the RD reaches the ap-
propriate mass at which convective motions in a RD circulate all over the
star, removing the non-convective core present at higher masses, thus result-
ing in the shutdown of the magnetic dynamo. The secondary is also out of
equilibrium due to the mass transfer processes.

As the RD loses its outer layers, the pressure on the core and thermonu-
clear reactions decrease. Gravity is now stronger than thermonuclear reac-
tions and the star therefore contracts. But it does so at the thermal timescale,
if this timescale is longer than the mass transfer rate, it does not have time to
contract and finds itself with a very large radius for its mass. When the mag-
netic braking is turned off, the mass transfer is halted and the star adjusts to
its equilibrium size and detaches from its Roche lobe. To make contact with
its Roche lobe again, the orbit must decrease. Gravitational radiation comes
into play by reducing the orbit up until a period of ∼ 2 h, the RD makes con-
tact with its Roche lobe and the mass transfer is re-established, albeit at a
lower rate.
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Some systems, however, are found in the period gap. This might occur
if a CV is born at a period of 2 – 3 h. In these cases the secondary has not
been taken out of its equilibrium because there has been no mass transfer. It
is large enough to make contact with its Roche lobe allowing mass transfer.
The period gap is also populated by magnetic CVs, whose WDs’ magnetic
fields alter their evolution.

2.2.3 The period minimum

The CV emerges from the period gap and its secondary continues to transfer
mass to the WD. When the mass of the RD is low enough, a degenerative
process begins, as with WDs. At this stage, the gravitational force is com-
pensated by the Fermi gas pressure. This produces that as the secondary
continues to lose mass, it increases in size. In normal conditions, RD trans-
fers mass, the orbital distance increases and the Roche lobe separates conse-
quently while the size of the secondary is slightly reduced. But simultane-
ously the angular momentum loss reduces the binary separation, allowing it
to maintain contact with its Roche lobe, mass transfer continues steadily and
the system evolves to shorter periods. The process is similar with a degener-
ated secondary, but instead of reducing the size of the RD, it increases with-
out losing contact with its Roche lobe. The period will be slightly longer and
appropriate to the new size of the RD, and so the system evolves to longer
periods. Simulations that take into account the mass-radius ratio of the sec-
ondary as it degenerates show that the CVs evolve from longer periods to
the minimum period around ∼ 72 min. and then evolve to longer ones.

After going through the period minimum, the mass of the secondary is
∼ 0.06M� (Knigge, 2006) and continues to decrease as the orbital separation
continues to increase.

There is one group that reaches periods below the period minimum, AM
CVn stars. These systems have secondary systems comprised mainly of he-
lium. Helium is heavier than hydrogen (dominant in standard CVs), these
stars are more compact and need shorter orbital periods to make contact
with their Roche lobe. The reduced orbits of these systems enhance gravi-
tational radiation causing greater mass transfer. As with hydrogen CVs, the
secondary ones lose mass and degenerate to a (different) period minimum.
The existence of AM CVn requires very particular conditions and are quite
rare.
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Chapter 3

CV classification

The most characteristic phenomenon of many of the CVs and from which
they get their name is the outburst. The most energetic ones are nova out-
bursts, their intensity increases up to 19 magnitudes in the interval of days,
to gradually fade away later during months or years. There is no known re-
currence for novas although, there are theoretical reasons to think that these
outbursts repeat in the lapse of 104 − 105 years.

Less dramatic are those known as Dwarf Novae outbursts, the intensity
of many CVs increases by several magnitudes in time frames of the order of
1 day, to progressively fade away in the time-space of a few weeks. These
outbursts, produced by thermally unstable accretion discs, do show a recur-
rence in which, after several months of quiescence, the outburst is repeated1.
In contrast, Nova-like stars are high mass transfer systems with stable accre-
tion discs which has never shown an outburst.

Another class consists of systems whose white dwarfs possess a magnetic
field, these are known as magnetic CVs. These systems do not allow the for-
mation of the accretion disc because the material coming from the secondary
is intercepted by this magnetic field of the WD. A type of intermediate sys-
tems, whose WD’s magnetic fields are not sufficient to override the accretion
disc completely, are the so-called intermediate polar systems.

CVs have historically been classified according to the long-term optical
light curves features which, in turn, are defined by the intensity and fre-
quency of their outbursts, by its magnetic activity and other properties of
its components. In this chapter we will go through the main types of CVs
and their distinctive properties.

1Depends on the system, some have outbursts every few days.
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3.1 Novae. Classical and recurrent novae

A CV that has shown only one outburst is known as a classical nova2, and
systems that have shown multiple outbursts are known as recurrent novas
(RNe). These systems show outburst of 7 – 11 magnitudes.

The amplitude of the outburst of a classical novae is the largest of all CVs.
These outbursts are caused by a nuclear fusion of hydrogen-rich material
accumulated on the surface of the WD. This material, coming from the sec-
ondary, is subject to high pressures due to the gravitational field of the WD
and its temperature also increases as it accumulates. When pressure and
temperature reach the critical level of the hydrogen nuclear fusion, a ther-
monuclear runaway explosion occurs, expelling at least, a big proportion of
this material into the interstellar space.

RNe, which have larger mass transfer rates, harbour a very massive WD,
hence the thermonuclear explosion can be triggered with the accretion of less
material and, therefore, on a shorter time scale. Despite being very few, there
are 3 subgroups within the RNe (Anupama, 2008).

• Oph, T. This group is comprised of systems with long orbital periods
(> 100 days) with red giants as secondaries and whose eruptions are
the result of interactions with the wind of the red giant.

• U Sco. With orbital periods of around ∼ 1 day and evolved secondary,
they have rapid eruptions of up to 2 magnitudes which decrease rapidly
within a few days.

• T Pyx. Systems with short periods (Porb < 3 h) with high mass transfer
rates. T Pyx and IM Nor are the references of this group.

Novas concentrate at orbital periods typical of high mass transfer rates
(Figure 3.1). Nonetheless, several systems are found within the period gap
and below it.

3.2 Dwarf Novae

Dwarf Novae (DNe) outbursts increase the brightness of the system between
2 and 6 magnitudes. They are more or less regular, but their duration and

2Strictly speaking, Classical novae is not a CV subtype, but since they show different
characteristics from the other CV subtypes is treated separately.
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FIGURE 3.1: Orbital period distribution of Novae. Although
there is an accumulation just above the period gap, a non-
negligible amount of novas are found withing and below the

period gap.

recurrence are variable3. The theory proposed by Osaki (1974) and widely
accepted, says that these outbursts are caused by instabilities in the accre-
tion disc. It proposes that if the material is transferred from the secondary
during quiescence at a constant rate and if this rate is higher than the one
that can be carried across the disc by viscous interactions, then the material
is stored in the outer parts of the disc. If this material exceeds some critical
point, it causes instabilities and boosts viscosity. Initially, the gas flowing
from the secondary forms a thin accretion disc around the WD. As more gas
is accreted, viscous drag will cause frictional heating of the material until it
reaches the hydrogen photo-ionisation point. The increase in viscosity sig-
nificantly increases the angular momentum transfer by spreading the excess
material to the WD and outwards. The increase in accretion onto the WD
causes an increase in brightness as the material drains the disc and allows it
to return to a quiescence, low-viscosity state and start a new cycle.

3Different from system to system but quite regular for a given binary.
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In general terms, DNe outbursts have very sharp rises and slower de-
clines. However, some are longer than others and sometimes the outburst
shape is more symmetrical with slower rises, see Figure 3.2. The reasons for
such irregularities are related with the radius at which the outburst is trig-
gered and the distribution of the remaining material left by the previous one.

FIGURE 3.2: SS Cyg’s lightcurve showing different outburst
shapes. The duration of some of them is longer (∼ 10 days),
they showing a plateau at the top. The outburst rises are either
rapid (∼ 2 days) or slow (∼ 8 days); but the declines all take ∼

8 days. Data compilation by the AAVSO.

Dwarf Novae are concentrated below the period gap (Figure 3.3). Gravi-
tational radiation is the main mechanism driving angular momentum loss in
Dwarf Novae which are also the most populated CV subtype.
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FIGURE 3.3: Orbital period distribution of Dwarf Novae. With
orbital periods in the action range of gravitational radiation

they are accumulated below the period gap.

3.3 Nova-like

The Nova-like variables (NLs) are CVs that do not exhibit any outbursts. In-
stability in the disc occurs when the mass accumulated reaches a certain tem-
perature. If the flow is low enough to ionise the hydrogen, the disc would
remain stable and there would be no outburst. No such system is known,
perhaps because they are too weak objects to be detected. On the other hand,
if the mass transfer rate is so high that it constantly maintains the instabilities
in the disc, the disc will always be in an outburst state. These types of CVs
are known as Novalikes (NL), CVs that have never shown any outburst and
with a sufficient mass transfer rate to keep the disc on the hot side of instabil-
ity. The higher mass transfer rate in NLs releases greater amounts of energy
when accumulated in the WD and therefore, NLs are inherently brighter than
DNe discs in quiescence.

Nova-likes are dominated by a high mass-transfer accretion disc, that
usually outshines the WD and the secondary star. Thus, as expected from
high mass transfer rates driven by magnetic braking mechanisms, Novalikes
appear mainly above the period gap in the CV orbital period distribution,



Chapter 3. CV classification 27

Figure 3.4.

0 1 2 3 4 5 6 7 8 9 10
Period(h)

0

5

10

15

20

N

Period
Gap

Period 
Min.

Novalike

FIGURE 3.4: Nova-likes orbital period distribution. Most of
them above the period gap, in accordance with their typical

high mass trasnfer rates.

3.4 Magnetic CVs

When WDs in CVs have a sufficiently strong magnetic field (>10 MG), they
are classified as Polar, magnetic or AM Her stars. A magnetic field alters the
motion of charged particles, and in turn, charged particles in motion gener-
ate magnetic fields. Therefore, the interactions between the magnetic field of
a WD and the ionised gas of the matter transferred by the secondary cause
a complex field structure. Initially, matter is far from the magnetic field of
the WD and its kinetic energy is dominant, therefore the field does not cause
significant alterations in matter. As matter approaches the magnetic field,
the interaction matter-field is much stronger, the field lines remain firm and
the particles have no choice but to flow along them finally accreting directly
onto the magnetic poles of the WD. That is, the behaviour of a magnetic CV
can be broken down into two parts, a zone outside the range of the mag-
netic field that behaves as if it did not exist, and the zone dominated by the
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magnetic field (magnetosphere) where the behaviour of the magnetic CV is
almost entirely determined by it.

Just before the material enters the magnetosphere, where it will be forced
to corrotate with the WD, the material is governed by a circular Keplerian
motion. The WD tends to readjust so that the circular motion inside the mag-
netosphere is equal to that of the material just outside it. This adjustment oc-
curs in relatively long timescales so changes in mass transfer rates may alter
the whole behaviour. Assuming stable mass transfer rates, it causes a slow-
ing down of the WD rotation. Therefore, WDs with weak magnetic fields
rotate faster than those with a larger magnetic field. Thus, the magnetic field
strength, spin rate and mass transfer rate determine the subclass of magnetic
cataclysmic variables.

Magnetic CVs are mainly located below the period gap as seen in Figure
3.5. Magnetic CVs need a strong magnetic field or relatively short orbital
period to not forming a disc which is in accordance with their location in the
orbital period distribution histogram.
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FIGURE 3.5: Orbital period distribution for Magnetic CVs.
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3.5 Intermediate Polars

At an intermediate point between the systems whose magnetic fields are so
weak that they can be ignored and those of the magnetic CVs are the inter-
mediate polars (IPs) or DQ Her stars. Systems with magnetic fields between
1 – 10 MG. With an intermediate field strength, the IPs combine the features
of the non-magnetic systems in their outermost regions forming a disc, with
those of the magnetic systems in areas close to the WD, disrupting the disc
and re-routing the material to the magnetic poles.

When the magnetic field of the WD is not sufficiently strong as in the case
of intermediate poles, it can interact with the secondary magnetic field at the
point where they meet, thus forming a drag force that is eventually trans-
ferred to slower rotation periods. The system can become completely out of
synchronism, ending with periods of rotation of one tenth of its orbital pe-
riod.

The orbital period distribution of IPs, although more dominant above the
period gap, are quite spread (Figure 3.6). To form a disc they need either a
relatively weak magnetic field or large orbital periods.
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FIGURE 3.6: Period distribution for IPs. Most of them accumu-
lated above the gap.
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Chapter 4

Wide field survyes and ancillary
data

4.1 Wide field surveys

It is difficult to find a definition for a survey. One can attempt by saying that
an astronomical survey is an observational systematic study of a class of objects or
a region of the sky. On the basis of the adopted technique, one can roughly di-
vide surveys in “photometric” and “spectroscopic”. As their name suggests,
“photometric” surveys are observations in one or more bands and they will
be the main topic discussed further. “Spectroscopic” surveys employ spec-
troscopic observations to characterise an object or a class of objects. Depend-
ing on the adopted field of view, we can also speak about “pencil beam”
surveys and “wide field surveys”. A “pencil beam” survey is an observation
of a small region of sky. Normally, this is done in different filters and it is
carried out at very big depths to identify very faint objects (typically, very far
away galaxies). Conversely, a “wide field survey” is, as its name suggests, an
observation of a large region of sky.

One can also be tempted to refer as “survey” as the study of one specific
object at multiple wavelengths. This would certainly be the case of relevant
objects like η Carinae.

In this section, we will refer to a series of surveys, recall their main char-
acteristics and their impact on astronomy.

4.1.1 The Hubble Deep Field

It is hard to speak about surveys without mentioning the Hubble Deep Field,
perhaps the most iconic observation ever done with the Hubble Space Tele-
scope (HST). The HDF was a cosmological survey using the unique capabil-
ity of the Wide Field / Planetary Camera 2 (WFPC2) on board the HST to
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reach unprecedented limiting magnitudes. Together with the extraordinary
quality of this unique dataset, the key feature of the HST is that the data were
immediately made public, so that the whole community could use them.

Several surveys have built on the experience of this project. It is per-
haps worth remembering the OSIRIS Tunable Emission Line Object (OTELO)
project, the deepest emission line survey ever made, carried out with the Op-
tical System for Imaging and low-Intermediate-Resolution Integrated Spec-
troscopy (OSIRIS) instrument on the Gran Telescopio Canarias, the largest
fully-steerable telescope of the world.

4.1.2 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) defines a before and after with respect
to the planning, execution and data distribution of a survey. The project has
been designed to study the cosmological large scale structure using quasars.
The filter set developed for the photometry of this project has soon become a
largely used standard in several observatories. The more rectangular shape
with respect to, for example, the Johnsons-Cousins filters makes the SDSS fil-
ters ideally suited for separating population of objects. The project also ben-
efited from a multi-object spectrograph which is still providing high quality
data. Of course, the availability of a dedicated wide field telescope has been
key to the success of the project which could be performed without having
to share telescope time with anyone else.

Arguably, the main reason for the success of SDSS is that the access to the
science-ready data is comparatively easy. The use of multiple filters and re-
peated (incremental, both in amount and quality) data releases, has allowed
the project to be successful well beyond its original idea thus making it a
reference for surveys to come.

4.1.3 Surveys beyond the optical regime

As briefly commented for SDSS, a crucial aspect for a survey is the avail-
ability fo a dedicated telescope. In the case of the Two Micron All-Sky Sur-
vey (2MASS), these have been two telescopes located in the two hemispheres
providing a unique and uniform all sky coverage in near-infrared in broad
band J, H and KS filters. Considering the wavelength coverage and the fil-
ters adopted, it is clear that this project has been particularly successful in
the study of cool stellar objects (cold stars and BDs) and distant (yet bright)
QSOs.
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In some cases, the dedicated telescope needs to be placed in space, like it
has been the case of the Galaxy Explorer (GALEX) or the Wide-field Infrared
Survey Explorer (WISE). GALEX is an ultraviolet spacecraft which carried
out a survey of the extra-galactic sky in ultraviolet. This represents the largest
ultraviolet dataset available. Despite missing the Galactic plane, this project
has given large contribution to stellar astronomy, in particular in the study of
very hot objects, like white dwarfs.

WISE is an infrared satellite observing the whole sky in 4 custom broad-
band filters. The success of this mission can be measured in the fact that it
has been revived several times already, every time with a different scope and
that multiple catalogues have been produced.

4.1.4 Time-domain Surveys

Over the last few years, several projects have started taking repeated obser-
vations of the sky to obtain time-domain information. This requires some
trade off between the field of view of the telescope, the image quality, the
cadence of the observations and the filters to be used. The main science cases
for these projects tend to be Solar System objects (in particular the surveil-
lance for potentially hazardous objects) and supernovae.

The Catalina Real Time Survey (CTRS) and the All-Sky Automated Sur-
vey for SuperNovae (ASAS-SN) are two surveys based on an array of multi-
ple telescopes spread all around the world providing nearly continuous cov-
erage to the sky observation. The size of the telescopes is modest and only
one or two filters are used. Over the last few years, these projects have pro-
vided exquisite light curves of virtually any type of variable object.

The Panchromatic Survey Telescope And Rapid Response System (Pan-
STARRS) is a project based in Hawaii. Originally featuring four 2-m telescopes,
only two have been built. It observes in 5 photometric bands (g, r, i, z, and
y) and its repeated observations have resulted in very deep images of the
Northern sky which are now the photometric reference in that region.

The Palomar Transient Facility (PTF) and the Zwicky Transient Facility
(ZTF) are also being carried out with a single telescope, located at Palomar
Observatory. ZTF, being currently observed, provides an almost continuous
stream of discoveries which is being a critical factor in preparation for the
Vera Rubin Observatory (VRO, formly known as Large Survey of Space and
Time, LSST) which will be carried out with a dedicated wide field 8-m tele-
scope. VRO will last ten years and it is expected to revolutionise astrophysics
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providing a time-domain multi-filter view of the sky and impacting virtually
all branches of astrophysics thanks to its filters, the excellent image quality
and the repeated observations of a telescope with such a vast collecting area.

In summary, surveys (and in particular wide-field surveys) have largely
impacted most fields of astrophysics. They are critical in the discovery and
study of rare phenomena as well as in the possibility to provide large samples
for statistical studies.

Arguably, the success of a survey can be measured in the number of works
which use the data of a project by people who were not involved in the defi-
nition, construction and execution of it.

As it has been shown, the quality of the data is only one important aspect
that leads to the success of a survey. Easy data access and clear documenta-
tion are crucial.

4.2 Ancillary Data

In this section all the data used in later chapters is explained, as well as a
brief description of the underlying sources they come from.

As a general guide, the data obtained from the Javalambre Photometric
Local Universe Survey (J-PLUS, Section 4.2.1), is the reference data, and de-
pending on the methodology used (explained in 6.3 and 7.1), they are cross-
matched with WISE (Section 4.2.3) and/or with the Global Astrometric In-
terferometer for Astrophysics survey (Gaia, Section 4.2.4). The SDSS survey
spectroscopic database (Section 4.2.2) is used to extract the CV synthetic pho-
tometry for objects which are not within the J-PLUS DR1 footprint, expand-
ing our CV sample. We also use the available spectra of our CV candidates
to obtain an estimate of the purity of the methodology employed.

Since some of the J-PLUS bands are coincident with those of SDSS, to
differentiate them, we refer to those of J-PLUS as uJAVA, g, r, i and z, and to
those of SDSS as u′, g′, r′, i′ and z′.

4.2.1 The J-PLUS survey

J-PLUS (Cenarro et al., 2019) is a survey of 8,500 deg2 of the northern sky. It is
carried out with the 0.83-m Javalambre Auxiliary Survey Telescope (JAST/T80)
at the Observatorio Astrofísico de Javalambre1, equipped with the panoramic

1http://oaj.cefca.es
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camera T80Cam, which has a field of view of 2 deg2, a pixel scale of 0.55 arcsec pixel−1

and 12 filters: 4 broad (g, r, i and z, coincident with those in the SDSS), 2 in-
termediate (J0861 and uJAVA) and 6 narrow band ones (J0378, J0395, J0410,
J0430, J0515 and J0660)2. See Figure 4.1 and Table 4.1 for their properties.

FIGURE 4.1: Efficency curves measured for the set of 12 J-PLUS
filters, including the effect of the entire system (sky, mirrors,

lenses and CCD). Source, Cenarro et al. (2019)

These filters are located at key stellar spectral features that allow to re-
trieve accurate spectral energy distributions for more than 5 millions of stars
in our Galaxy. Given this unique set of filters, J-PLUS is in a remarkably good
position to identify CVs which have gone unnoticed so far.

Photometric Search

We make use of the J-PLUS Data Release DR1 in the J-PLUS archive3 through
the Virtual Observatory (VO) Asynchronous Queries option, which allows to
search the database by different criteria using Astronomical Data Query Lan-
guage (ADQL). The J-PLUS archive contains several tables for different pur-
poses, including cross-matches with other large surveys such as SDSS DR12,
Gaia DR2 or AllWISE. For our search, we use the jplus.CalibratedMagABDualObj
catalogue, which contains the main parameters of the astronomical objects.
The object detection and aperture definition is performed in a reference band
(r) and the measurements are done in each filter using SExtractor (Dual Mode).

2For further information on the J-PLUS photometric system, visit:
http://svo2.cab.inta-csic.es/theory/fps/index.php?mode=browse&gname=OAJ

3http://archive.cefca.es/catalogues/jplus-dr1
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Filter Central Wavelength
[Å] FWHM [Å] Comments

uJAVA 3485 508
J0378 3785 168 [OII]
J0395 3950 100 Ca H+K
J0410 4100 200 Hδ
J0430 4300 200 G-band

g 4803 1409 (a)
J0515 5150 200 Mgb Triplet

r 6254 1388 (a)
J0660 6600 138 Hα

i 7668 1535 (a)
J0861 8610 400 Ca Triplet

z 9114 1409 (a)

TABLE 4.1: The J-PLUS filter system. Comments: (a) In com-
mon with SDSS.

In order to obtain quality data from the J-PLUS archive, some constraints
are placed. We restrict our query to objects with photometry errors lower
than 0.2 (err_filter < 0.2), with data in most of the exposures comprised by
a tile in which the source appears (Norm_wmap_val_filter > 0.8), not contami-
nated by external effects such as reflections or by other sources (mask_flag_filter
= 0), detected in all filters (single_detect_filter > 0), not saturated objects in r
but including those flagged as ’variable’ (Flag_r < 4 or 2047 < Flag_r < 2052)
and classified as point sources (CLASS_STAR > 0.8). Appendix A shows an
example of data cleansing through the VO Asynchronous Queries using the
ADQL language.

4.2.2 SDSS DR15 spectroscopic database

The SDSS is a multi-colour imaging and spectroscopic survey carried out
with a 2.5-m wide-angle optical telescope at Apache Point Observatory in
New Mexico, United States. Its DR15 spectroscopic database comprises spec-
tra for more than 4 millions objects. The SDSS spectra is limited by the optical
range (∼ 4000 – 9500 Å).

The spectroscopic data is accessible through the SkyServer webpage4 and
it provides a set of tools to make queries by position, spectral classification,

4http://skyserver.sdss.org/dr15/en/home.aspx
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redshift and other constraints as well as SQL (Structured Query Language)
searches and access to the catalogues, images and spectra downloads. We
use this dataset and the tools provided by the SkyServer to simulate J-PLUS
observations of our CV sample (see section 6.1) and also as a first testing
bench of our CV candidates by checking the nature of the available ones.

4.2.3 WISE

WISE is an infrared-wavelength all-sky survey using a 40-cm infrared space
telescope. It has mapped the sky at 3.4, 4.6, 12, and 22 µm corresponding with
the so-called filter bands WISE1, WISE2, WISE3 and WISE4 respectively.

The WISE All-Sky data can be accessed through the on-line and machine-
friendly services of the NASA/IPAC Infrared Science Archive (IRSA)5 and is
VO compatible. WISE allows us to check for infrared excesses from the CV
companion, especially for cold secondaries, low mass-transfer CVs where the
spectra are not dominated by the disc and the secondary is visible. A similar
approach has already been carried out by Scaringi et al. (2013).

4.2.4 Gaia

Gaia is a space observatory whose mission is to make the largest, most precise
three-dimensional map of the Milky Way to-date by detecting and measuring
the motion of each star in its orbit around the center of the Galaxy.

The second data release (GDR2 hereafter) is based on 22 months of obser-
vations and provides positions, parallaxes and proper motions for 1.3 billion
sources up to G ∼ 20 magnitudes. This kind of data allows the derivation of
distances and absolute magnitudes among others, offering a global overview
of our Galaxy.

Deriving absolute magnitudes

One of the aims of this work is finding the CV locus in the H-R diagram and
we make use of GDR2 data to compute their absolute magnitude M through

M = m + 5− 5 log(d) + A, (4.1)

where m is the apparent magnitude, A is the interstellar absorption and
d, the distance to the source which can be obtained by the GDR2 data.

5https://irsa.ipac.caltech.edu/Missions/wise.html
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However, inferring the distance from the Gaia DR2 parallax is not a triv-
ial issue (Luri et al. 2018). The most direct way to estimate distances is by
inverting its parallax (v−1) but the uncertainty on the parallaxes, the non-
linearity of the transformation, and the positive constraint of distance (but
not of parallax) would lead to unrealistic results for most of the sources.
Only those objects with positive parallax and a small fractional parallax error
( fobs = σv v−1 < 0.2), are suitable for computing their distance by v−1. Be-
yond this value of fobs, the probability distribution function (PDF) of the de-
rived distance (d) given v and σv becomes non-gaussian, looking asymmet-
rical and presenting a long tail towards large values of d and consequently,
the mode of the PDF (the most probable value) does not coincide with the
true distance.

FIGURE 4.2: The left and middle panels are the probability
p(v|d, σv) as a function of v and of d respectively for an ob-
ject with fobs = 0.2. The right panel is as the middle one but for
fobs = 0.5. The shaded areas indicate the 2σ credible interval
about d−1 and the corresponding transformed credible interval.

Figure is taken from Astraatmadja and Bailer-Jones (2016)

One could discard all these sources with negative parallaxes and fobs >

0.2, but by doing so, we would be missing ∼ 80% of the objects. Since our
final goal is to build a catalog of CVs, limited but complete in magnitude,
we need a different approach to obtain relatively precise estimates of d for all
objects with available parallaxes.

In order to do so, we adopt the approach of Bailer-Jones et al. (2018). They
infer distances and their uncertainties through a probabilistic analysis based
on the Bayes theorem. In this context, the aim is obtaining the most probable
distance given a parallax and its uncertainty. It is represented as p(d|v, σv),
it is called “the posterior” and is computed by the well known Bayes theorem

p(d|v, σv) =
p(d, v, σv)

p(v, σv)
=

p(v|d, σv) p(d)
p(v, σv)

, (4.2)
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where p(v, σv) is the evidence and can be understood as the normaliza-
tion parameter. The term p(v, |d, σv) is the so-called likelihood and repre-
sents the PDF of the measured v. Indeed, given any distance and due to
the linearity of the model (unlike the model based on d), this likelihood is
theoretically of Gaussian shape which has also been confirmed empirically
(Lindegren et al., 2018). p(d) is the prior and it describes the assumptions or
previous knowledge about the distribution of the distances.

Bailer-Jones et al. (2018) adopted an exponentially decreasing space den-
sity (EDSD) prior to compute the distances6 for the 1.33 billion sources from
GDR2. These are available using ADQL7 and we here use them to derive the
absolute magnitudes through Equation 4.1 and also as a delimiter for galactic
and extra-galactic objects.

P(r|L) =


1

2L3 r2e−r/L if r>0

0 otherwise

(4.3)

where L > 0 is a length scale. L varies as a function of Galactic longitude
and latitude(`, b) according to a model which reflects the expected variation
in the distribution of stellar distances.

By substituting the Gaussian likelihood with mean v and standard devi-
ation σv and the EDSD prior in Equation 4.3, the unnormalized posterior is
obtained by

P∗(r|v, σv, L(l, b)) =

P∗ =


r2exp

[
− r

L(l,b) −
1

2σ2
v

(
v−vzp − 1

r

)2
]

if r>0

0 otherwise

(4.4)

vzp = −0.029 mas is the global estimate of the zero point parallax ob-
tained from Gaia’s observations of QSOs. `, b, v and σv are taken directly
from the GDR2 catalog. The normalization term is achieved by equating the

6For a detailed explanation of this approach and an analysis of applying this technique
refer to Bailer-Jones et al. (2018). For a discussion of the use of different priors, see Bailer-
Jones et al. (2018),Luri et al. (2018),Igoshev, Verbunt, and Cator (2016),Astraatmadja and
Bailer-Jones (2016))

7http://gaia.ari.uni-heidelberg.de/tap.html
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integral of this posterior to 1.

We use these distances to derive the absolute magnitudes through Equa-
tion 4.1 and also as a delimiter for galactic and extra-galactic objects.
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Chapter 5

Disentangling cataclysmic
variables in Gaia’s HR diagram

The text of this chapter is based on Abril et al. (2020)

During the evolution of a CV, the system goes through different states
and configurations (see Chapter 2), therefore it will change appearance: The
relative contribution of the WD, the secondary star and the accretion disc or
stream makes for unique colours (e.g. Szkody et al., 2002). The systems thus
occupy distinct locations in colour-colour diagrams with respect to single
stars. Due to the relatively small sample of CVs and the inherent difficulty of
any source in obtaining its distance, it has not been possible so far to perform
an analysis of the CV absolute magnitude distribution. With the arrival of
Gaia, this has changed. Already Pala et al., 2019 show the advances that Gaia
parallaxes bring to the understanding of CVs, and we now have the data to
study CVs in the HR-diagram.

5.1 The Catalogue of Gaia DR2 and the cross-match

with CV catalogue

As stated in Section 4.2.4, by measuring the motion and parallax of each star
in its orbit, Gaia’s mission is to obtain a precise three-dimensional map of the
Milky Way. To this means, the three filters G, GBP and GRP are observed at
several epochs over a period of about 670 days of mission operations (for
details, see Gaia Collaboration et al., 2018), which, depending on the nature
of the source, might have some implications to consider.
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5.1.1 The impact of Gaia data on CVs

GDR2 provides weighted mean fluxes1 and, as CVs are variable stars, this
procedure has an effect on their G, GBP and GRP values. The degree of impact
might be determined by comparing the 670-days length of the Gaia-mission
and the cycle of variation length for every CV subtype. The highest impact is
on DNe systems as they can have outbursts even on a weekly base (Sterken
and Jaschek 2005 and references therein). The low recurrence in Novae, NLs
and Magnetic CVs should have no significant impact on the overall sample.

5.1.2 The CV sample

The Catalog and Atlas of Cataclysmic Variables (Downes et al., 2001) includes
all objects which have been classified as a CV at some point in time. Although
it was frozen on February 1st, 2006, it is one of the main references among
the community, providing coordinates, proper motion, type, chart, spectral
and period references for all 1830 sources when available. In order to obtain
the purest sample, we discarded from this catalogue the objects designated
as “NON-CV”, which are stars that have been previously identified as CVs
but later confuted, and those with the extensions “:” and “::” because their
classification is not conclusive.

The Catalog of Cataclysmic Binaries, Low-Mass X-Ray Binaries and Re-
lated Objects (Ritter and Kolb, 2003) which only contains objects with a mea-
sured period, is updated up to December 31st, 2015 and it provides coor-
dinates, apparent magnitudes, orbital parameters, stellar parameters of the
components and other characteristic properties for 1429 CVs. In this case
uncertain values are followed by only one “:” and have been discarded as
well.

Both catalogues have been merged into a final sample of 1920 CVs, out
of which 1187 are contained in the GDR2 footprint. The density studies of
CVs in the HR-diagram were done using this full sample. For 839 of these
systems, the orbital period is known, and for 1130 systems, the subtype is
unambiguously known (see Table 5.1).

1Weighted means are used because flux errors on different epochs may vary depending
on the configuration of each observation. See Carrasco et al., 2016 and Riello et al., 2018 for
detailed information.
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TABLE 5.1: Distribution of the CV sample utilised by subtype.

CV subtype Periods Main Centroid position in HRD
sample sample GBP − GRP Gabs

Novalike 76 119 0.37 5.63
Dwarf Novae 484 688 0.64 9.49
Classical novae 77 119 0.79 5.58
Polar 75 135 0.83 9.67
Intermediate Polar 51 69 0.59 5.61
Total Sample 839 1130

5.2 CVs in the HR-diagram

5.2.1 The impact of the orbital period

Left panel of Figure 5.1 displays the CV locus in the HR-diagram of all CVs
for which an orbital period is known (839 systems). The orbital period of
each system is represented by the colour of the symbol as defined in the aux-
iliary axis. The CVs lie on average between the main sequence stars and the
WDs. A clear trend is seen on their position with the orbital period: CVs
with longer periods fall close to the main sequence path, while, as the or-
bital period decreases, they approach the WDs region. This behaviour can
be understood from the contribution of the secondary star. On average, a
Roche-lobe filling secondary star is larger and brighter for longer orbital pe-
riods, while the WD does not change much during the secular CV evolu-
tion. Hence, the contribution of the secondary should be more dominant for
longer orbital periods. Systems below the period gap, are instead dominated
by their WD, as the secondary becomes only visible in the near infrared and
does not contribute to the Gaia colour. The contribution of the accretion disc
should change colour and magnitude depending on the sub-type and will be
discussed in the next subsection.

The right panel of Figure 5.1 shows the locus of all CVs of our sample
defined in Section 5.1.2 within Gaia’s HR-diagram. On the x- and y-axis, the
respective projected density is plotted. A high density area is well distin-
guishable at GBP − GRP ∼ 0.56 and Gabs ∼ 10.15 (values obtained from the
mode of the marginal distributions) which corresponds to the population be-
low the period gap.
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FIGURE 5.1: In grey, all stars from Gaia’s 2nd data release are
plotted in the HR-diagrams. On the left side, the CVs period
distribution, the CVs from our sample with known orbital pe-
riods (see Section 5.1.2) are plotted in larger dots. The colour
of each dot refers to the orbital period as given in the bar at
the right of the panel. CVs with larger periods lie close to
the main sequence path getting shorter while approaching the
white dwarfs area. On the right, the density distribution of
our whole sample of CVs (brown dots), surfaces with differ-
ent tones of blue represent areas of equal density. On the x- and
y-axis the marginal distributions are shown. CVs lie on aver-
age between the MS path and the WDs with a high density area
peaking at GBP−GRP ∼ 0.56 and Gabs ∼ 10.15. Such area corre-
sponds to the overpopulation below the period gap as reflected
in the left panel by black dots, CVs with orbital period below

2 h.
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5.2.2 The locus depending on the subtype

Figure 5.2 exhibits the distribution of every CV subtype on the HR-diagram.
Bivariate Gaussian distributions are computed for 1 and 3 σ given by

p(x, y|µx, µy, σx, σy, σxy) =
1

2πσxσy
√

1− ρ2
exp

(
−z2

2(1− ρ2)

)
, (5.1)

where

z2 =
(x− µx)2

σ2
x

+
(y− µy)2

σ2
y

− 2ρ
(x− µx)(y− µy)

σxσy
, (5.2)

and

ρ =
σxy

σxσy
, (5.3)

using the median instead of the mean and the interquartile range to esti-
mate variances in order to avoid the impact of outliers. The results are given
in Table 5.1.

NLs are dominated by a high mass-transfer accretion disc, that usually
overshines the WD and the secondary star at optical and even infrared wave-
lengths. Their colour and final absolute magnitude mainly depends on the
inclination with respect to the line of sight. In the HR-diagram, they concen-
trate around Gabs = 5.63 and GBP − GRP = 0.37, i.e. on the blue and bright
corner of all CVs. A similar locus but with a much higher scatter is occupied
by the classical novae and by IPs. This can be explained by the eclectic com-
position of these two sub-groups which also contain a large fraction of NL
stars.

In contrast, polars which do not accrete mass through a disc, are much
fainter and their colour and magnitude will depend on the nature of the sec-
ondary. In the HR-diagram they scatter around Gabs = 9.67 and GBP−GRP =

0.83 representing the reddest and faintest of all the CV subgroups.
DNe occupy the whole region between MS stars and WDs with the cen-

troid being at Gabs = 9.49 and GBP − GRP = 0.64. Since the secondary star in
these systems can be anything from an early K-type star down to a BD, the
range in colours and magnitude is not surprising. In addition, these sources
are characterised by undergoing regular outbursts increasing their brightness
and blueness. As discussed in Section 5.1, the given magnitude is a weighted
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FIGURE 5.2: The distribution of CV subtypes in the HR-
diagram. Top-left panel shows all subtypes together, after that
every subtype separately. The dashed ellipses represent 1 and
3 σ of each subtype bivariate Gaussian distribution. The sam-
ple utilized here is composed by all CVs in the Ritter and Kolb
(2003) and Downes et al. (2001) catalogues (see Section 5.1.2)
whose subtype is unambiguously known and are included in
the Gaia footprint; 119 NLs, 688 DNe, 119 Novae, 135 Polars
and 69 IPs. On the bottom, the period histograms for each sub-

type.
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mean of several epochs and thus also increases the spread of this distribu-
tion. A detailed study of the DNe locus depending on their subtype and
outburst state can be done following the next Gaia release when individual
measurements and epochs become available.

WZ Sge-type objects deserve a separate mention, a class of DNe charac-
terised by great outburst amplitudes, slow declines and long intervals be-
tween outbursts compared with ordinary DNe. These kind of systems have
been considered to be period bouncer candidates (Patterson, 2011), some of
them extensively investigated in this regard (QZ Lib, Pala et al. 2018; J122221
Neustroev et al. 2017 and Kato et al. 2013; J184228 Kato et al. 2013; J075418
and J230425 Nakata et al. 2014). We have plotted a sample of 71 of such sys-
tems in the upper-right panel of Figure 5.2, along with the rest of DNe, and it
can be seen that they concentrate near the WDs area. This is consistent with
them being period bouncers or similar systems, as these are the CVs with the
lowest mass transfer and faintest secondary stars. The disc is only visible in
some emission lines, the secondary does not contribute to the optical range
at all.

5.2.3 Detached CVs

Another question we can address is finding the locus occupied by the so-
called detached Cataclysmic Variables (dCVs) crossing the orbital period gap.
A first approach could be made by finding the area with boundaries in 2 and
3 h in the left panel of Figure 5.1 using regression techniques. However, since
dCVs no longer contain an accretion disc, they should appear fainter than
regular CVs of the same period.

Due to the continuous mass loss, the donor is being driven out of equilib-
rium and secondaries in CVs just above the period gap are bloated up to 30%
with respect to regular MS stars (Knigge, Baraffe, and Patterson, 2011). When
the mass transfer stops, the secondary shrinks towards its thermal equilib-
rium radius to nearly its equivalent for MS stars (Howell, Nelson, and Rap-
paport, 2001) and hence we expect secondaries in dCVs to be comparable to
single MS stars of the same type.

Since the mass transfer ceases, the mass and spectral type of the donor star
stays constant during the interval in which the binary is detached. In regular
CVs this happens at Msec = 0.2± 0.02 M� (Knigge, 2006) and spectral type∼
M6 (Rebassa-Mansergas et al., 2007), though variations occur depending on
the moment in which the CV started the mass transfer and the time passed
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as CV until the secondary becomes fully convective. In the extreme case of
a CV starting the mass transfer within the period gap range, the donor star
type will be that of a fully convective isolated M star, which, according to
Chabrier and Baraffe (1997), occurs at Msec ∼ 0.35 M� and spectral type M4.
We thus assume that the secondary of dCVs is in the range M4–M6.

So far the only observational evidence for the existence of dCVs come
from Zorotovic et al. (2016), who show that the orbital period distribution
of detached close binaries consisting of a WD and an M4–M6 secondary star
cannot be produced by Post Common Envelope Binaries (PCEBs) alone, but
a contribution of dCVs is needed to explain the peak between 2 and 3 h. They
also show that the systems inside this peak have a higher average mass than
would be expected for normal WDMS systems. Still, with only 52 such sys-
tems known in total (WDMS systems with secondary spectral types in the
range M4–6 and orbital periods below 10 h) and 12 between 2 and 3 h, the
significance is not very high.

We distinguish two groups, the sources with orbital periods correspond-
ing to those of the period gap (2–3 h) and therefore, more likely to be dCVs,
and the rest with periods outside this range. In Figure 5.3 they are plotted in
the HR-diagram, the former appear fainter compared to the latter. This can
be explained by the higher WD masses in CVs, and consequently in dCVs,
than in PCEBs, making them smaller in size and surface and contributing in
a lesser extent on the brightness of the whole system.

In summary, we have analyzed the evolutionary cycle of CVs from a sta-
tistical perspective using Gaia DR2 data in conjunction with the HR-diagram
tool. We have reported the discovery of a trend of the period and mass ac-
cretion with colour and absolute magnitude. We have also investigated their
density distribution as a whole population, peaking at GBP−GRP ∼ 0.56 and
Gabs ∼ 10.15, and the contribution of the main CV subtypes to this regard,
highlighting the location of WZ Sge systems, which are period bouncer can-
didates. Finally, we have identified the location and a trend among systems
comprised of a WD and secondary in the range M4–M6, which correspond
with dCVs, CVs going through the orbital period gap.

Acknowledgements. This research has made use of the VizieR catalogue access tool,
CDS, Strasbourg, France (DOI: 10.26093/cds/vizier). The original description of the VizieR
service was published in 2000, A&AS 143, 23.
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Chapter 6

Identification of CVs through
J-PLUS colours

As already mentioned in the introduction of this thesis, Section 1.1, CVs are
one of the best sources to test our understanding of many astrophysical phe-
nomena involving evolution of compact, interacting binaries. However, in
spite of more than 1100 systems known (see Ritter and Kolb, 2003), no large
sample with the completenes and observational bias known and understood
could be established so far and this yields problems with the interpretation
of the period distribution of CVs.

It is fundamental to resolve these disagreements in order to validate the
application of these models to many other present and complex systems and
a larger and well known population of them becomes necessary. The aim of
this chapter is to provide the necessary enlargement of the sample of well
characterized CVs in order to carry out in a future work a stringent test on
the present models of CV evolution.

In this context, we aim at searching for CVs in J-PLUS. We also make use
of the SDSS , WISE and Gaia. In this chapter, three methodologies using
colour-colour diagrams are presented while the next one covers a different
approach by using machine learning techniques. Both are based on the first
data release of J-PLUS DR1 catalog which covers 1022 deg2.

6.1 CVs Synthetic Photometry

At the date of this thesis, J-PLUS DR1 has released the data from the obser-
vations of 1022 deg2. Since the CV population is characterized by a relatively
low space density (de Kool, 1992; Kolb, 1993) , the J-PLUS DR1 has only ob-
served 32 known CVs. This number is not statistically meaningful, but it will
be useful as a test set.
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We take the sample of 1920 CVs described in Section 5.1.2 and retrieved
the spectra of all of them included in the spectroscopic database of SDSS
DR15, resulting in 343 CVs which were revised one by one by eye in order to
validate their CV nature. This sample contains several CVs of the different
CV subtypes as well as high and low mass-transfer rate systems and there-
fore, we consider the sample to be representative of the CV population. We
then computed the corresponding J-PLUS synthetic magnitudes by convolv-
ing the SDSS spectra with the J-PLUS filter transfer functions (see Figure 6.1).
Since SDSS spectroscopy is limited to the range ∼ 4000− 9500 Å, it includes
the i passband, but does not fully cover the range of the z filter. This compli-
cates our intended use of the i− z colour as a diagnostic method. In principle,
we could take the z′ value from the SDSS photometric data, while deriving
i via the above outlined method. However, CVs are known to undergo pe-
riodic brightenings with amplitudes of up to 9 mag (Mattei, 1990) that arise
from thermal instabilities in the accretion disc. Thus, in order to calculate
colours, it is important that the individual magnitudes were obtained in the
same brightness state. Because the SDSS photometric and spectroscopic data
were taken during different epochs, it is possible that they correspond to dif-
ferent brightness states of the CV. To account for that possibility, we decided
to take both the i′ and the z′ values from the SDSS photometry, so that it
yields a consistent colour.

6.2 Background in the search of CVs

As already mentioned, the SED of a CV is the combination of spectra of a
WD, the secondary star and, depending on the accretion rate and the mag-
netic field of the WD, an accretion disc. Therefore the SED of a CV will be
very different from the SED of isolated non-accreting stars. Given their na-
ture, CVs have been discovered in very diverse ways. Due to their variable
nature, the search for CVs greatly benefited from serendipity findings based
on their variability properties, mainly large-amplitude variables including
DNe or classical novae. Such property has been exploited both in the past,
e.g. U Geminorum (Hind, 1856), and also in recent times, for example, the
CRTS has reported one thousand CVs (Breedt et al., 2014).

However, the ratio of discovered CVs was relatively slow until Warner
(1976a), who gave great impetus to the search for CVs and their understand-
ing by discussing the properties of 27 systems with known orbital periods,
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revealing two of their most important features: a high density population at
shorter orbital closely related to sharp cut-off at ∼ 78 min periods (the pe-
riod minimum), and an absence of systems in the 2 – 3 h orbital period range.
These findings led to the study of CVs in subsequent years, e.g. Eggleton
(1976), relating the distribution of orbital period CVs to their angular mo-
mentum loss ratios, Whyte and Eggleton (1980) published for the first time
the histogram of orbital periods with a sample of 33 CVs clearly showing
the absence of systems between 2 – 3 h, the period gap. This gave rise to
the standard theory of CV evolution, the disrupted magnetic braking (Rap-
paport, Joss, and Verbunt 1983; Paczynski and Sienkiewicz 1983; Spruit and
Ritter 1983).

More recently, with the arrival of large field surveys like the Two-degree-
Field Galaxy Redshift Survey (2dFGRS) or the SDSS, CVs were found as by-
product of QSO searches since they tend to cover the same locus in colour-
colour diagrams based on broad-band, optical filters. In the last years, some
attempts have been made to identify CVs based on Hα excess and WISE
colours (Scaringi et al., 2013) or SDSS colours and proper motions (Gentile
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Fusillo, Gänsicke, and Greiss, 2015).

6.2.1 Classification of CVs according to the search criteria

Depending on the mass-transfer rate, the magnetic activity of the WD and the
inclination of the system, CVs can display a variety of observational proper-
ties. In general terms, the SED of a CV is defined by the effective temperature
of the WD, the accretion disc, and the companion star. Typical temperatures
of CV WDs are within the range of 10 000 K to 50 000 K (Pala et al., 2017)
and, therefore, its contribution dominates the blue part of the spectrum. On
the other hand, the colder companion emits mainly at red and infrared wave-
lengths. Furthermore, a CV spectrum usually shows Balmer lines in emission
originating from the accretion disc, which, for high mass-transfer rate CVs,
can be the dominant continuum source over the whole optical range.

Therefore, the search criteria seeking for different CV properties leads to
an interesting classification. Four techniques have been the dominant ones
in the search for CVs: variability, with a bias towards dwarf/classical no-
vae; X-ray emission techniques for magnetics; colour cuts methods, suitable
for NLs systems and those selected via spectroscopic techniques having no
preference for any CV subtype.

FIGURE 6.2: Distribution of CVs according to their discovery
technique. Figure taken from Gänsicke (2004).
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It is noteworthy that the four groups respect the above-mentioned fea-
tures, the period gap and the period minimum (see Figure 6.2).

6.2.2 QSO as contaminants and the era of surveys

Roughly speaking, a CV spectrum can be blue and/or red depending on the
mass transfer rate and, usually shows Hα in emission due to the presence of
the accretion disc. High mass transfer CVs spectra tend to be dominated by
the disc contribution so they often show higher Hα emission lines along with
flatter continuum where the secondary is rarely visible.

However, since QSO spectral energy distributions are redshifted, they can
display a variety of observational properties. Moreover, their much higher
density compared to CVs makes them the main contaminants in CVs searches
and their distinction more convoluted.

In broad band filters, QSOs at low redshifts appear mostly blue while they
become redder as their redshifts increases. According to the redshift of the
QSO, some line may be located at the same wavelength of Hα at rest frame
(e.g. [O III] and Hβ at z ∼ 0.35, Mg II at z ∼ 1.35, C III at z ∼ 2.4 or C IV at z
∼ 3.25, see Figure 6.3).

This difficulty in distinguishing QSOs from CVs, added to the surge of
large surveys in recent decades, has led to the discovery of an increasing
number of CVs as byproduct of QSO searches. As compiled in Gänsicke
(2004), the identification of 31 new CVs (Ringwald 1993, Ringwald 1996) re-
sulted from the photographic U and B Palomar-Green survey. The ROSAT
mission, the first imaging survey in soft X-rays, had great impact on the dis-
covery of magnetics CVs (Haberl and Motch 1995, Beuermann 1998, Thomas
and Beuermann 1998) but also providing new non-magnetic CVs and reach-
ing over a hundred of new discoveries. The Edinburgh-Cape survey, another
imaging U and B survey carried out by a 1.2-m telescope, found 15 new sys-
tems (Chen et al., 2001). The 2dFGRS Quasar Survey contributed with 21
new discoveries from a set of 48000 QSO colour-selected candidates.

The Hamburg Quasar Survey (HQS), an objective prism Schmidt survey
carried out with the 80-cm Schmidt telescope at Calar Alto (Spain) led to the
identification of 53 new CVs (see Gänsicke, Hagen, and Engels 2002) by the
detection of Balmer lines in emission, blue colours and variability. The used
criteria was able to detect ∼ 90% of the known short-period systems (Porb <

2 h) dropping to ∼ 40% above the gap due to the weak or lack of Balmer
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FIGURE 6.3: Comparative spectra of four QSOs at different red-
shifts at the top and two CVs at the bottom at high and low
mass transfer rates. The QSO redshifts are selected so that an
emission line lies in the Hα restframe. The filters of the J-PLUS

survey are superimposed.

lines in such systems. Also interesting the HQS discovery of HS 2237+8154, a
detached WD-RD whose orbital period is at the upper edge of the period gap
(178 min) and donor is almost filling its Roche-lobe, (Gänsicke et al., 2004)
suggest three evolutionary states, a pre-CV almost starting mass transfer, a
CV entering the period gap which stopped the mass transfer recently or a
hibernating nova.

The SDSS alonediscovered more than 400 new CVs (Szkody et al., 2002).
This survey was designed to obtain a large photometric and spectroscopic
data-base of galaxies and QSO. Notable are Szkody’s CV discoveries based
on colour methods (Papers I-VIII, Szkody et al. 2002, Szkody et al. 2003,
Szkody et al. 2004, Szkody et al. 2005, Szkody et al. 2006, Szkody et al. 2007,
Szkody et al. 2009, Szkody et al. 2011) who first used the bands u′ and g′ to
separate CVs from main-sequence stars which, however, largely overlap with
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QSO and WDs. Then they tried simultaneous blue and red criteria ending up
with the following colour cuts:

• u′ − g′ < 0.45

• g′ − r′ < 0.7

• r′ − i′ > 0.30

• i′ − z′ > 0.4

FIGURE 6.4: SDSS colour-colour plots for 22 objects. The filled
circles are the CVs, while the dots are stars defining the stellar

locus. Figure taken from Szkody et al. (2002)

Such criteria is able to select mostly non-interacting WD+M binaries and
a few CVs, which used among the QSO candidates (primarily on candidates
having near 0 redshift and broad hydrogen Balmer and helium emission
lines) resulted in good performance with over 400 new discoveries. How-
ever and in spite of its success, the purity and completeness of the method
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are not known but expected to be low since such findings are biased towards
broad hydrogen Balmer and helium emission lines. Moreover, it also implies
a lot of manual work on the final discrimination, making a systematic search
difficult to carry out.

Often, broad-band filters such as those from SDSS do not provide the nec-
essary information to discriminate CVs efficiently and systematically but in
contrast, recent surveys such as J-PLUS, provides information of a filter set
comprised by narrow- and broad-bands which have been designed for stellar
classification by situating some of them at key stellar spectral features.

6.3 Discriminating CVs from QSOs

6.3.1 Early data release

We first investigated the possibility to improve the method proposed by Scaringi
et al. (2013), involving Hα excess and WISE colors. The idea is to develop a
methodology to efficiently distinguish CVs from their main contaminants,
QSO, in order to apply it to the whole population of punctual sources ex-
tracted from the J-PLUS survey and understand the biases produced to bear
in mind in following steps.

Since the Hα emission line is usually the strongest spectroscopic feature
in a CV, the relation between the J0660 narrow band filter and the r filter is
our starting point for their identification, particularly by high mass transfer
rates CVs and whose spectral appearance is hence dominated by emission
lines from the accretion disc.

As stated in the previous section, it is possible that, depending on the
redshift, some QSOs will show emission lines in the J0660 filter, for exam-
ple Hβ and HeI at redshifts z ∼ 0.35 or CIV at z ∼ 3.25 and therefore, a
colour to measure the blueness of the object (i.e. uJAVA− r) allows us to get
rid of QSOs at high redshifts and other hot objects showing emission in the
Hα wavelength range. Low-mass transfer rate CVs let see the secondary in
the infrared so combining the J-PLUS data with the WISE survey allow to
discriminate them, mainly from QSO whose slope in the infrared should be
negative (see also Scaringi et al. 2013). On the other hand, quasars at z ∼ 0.35
can be confused with high mass transfer rate CVs. They shift Hα at around
8600Å and we use the i and J0861 bands located in this part of the spectrum
(see Figure 6.3) for their discrimination.
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FIGURE 6.5: Three color-cuts devised to disentangle CVs from
Quasars, the red dots are the CVs and the green crosses are
the Quasars. Top-left panel shows the colour-colour diagram
J0660− rSDSS vs uJAVA − rSDSS. The objects from the un-
shaded part are collected in the top right panel comparing
WISE1−WISE2 to iSDSS − J0861. Sources from the shaded

part go to the bottom-left panel.

Top-left panel of Figure 6.5 shows the colour-colour diagram J0660 − r
vs uJAVA − r. Most of the CVs lie within the black borders due to the Hα

emission combined with low uJAVA− r, but there are also two well-defined
regions inside. The unshaded part contains low-mass transfer CVs and a big
amount of QSOs of different redshifts. Top-right panel collects all these ob-
jects from the unshaded part on top left panel and compares WISE1−WISE2
to i − J0861, all with the aim of detecting the secondary of the CVs whose
spectra is not dominated by the disc, and nonexistent on QSOs, thus re-
covering the CVs. High-mass transfer CVs and some QSOs at very specific
redshifts are located on the shaded part and bottom-left panel takes them.
Since the higher the redshift the redder the spectrum, the contribution in the
uJAVA filter is small compared to redder regions of the spectrum and there-
fore, quasars at z ∼ 2.4 and z ∼ 3.25 are distinguishable using the uJAVA− i
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colour (there are no synthetic QSOs at these values but there are some exam-
ples in Figure 6.6). Low redshift QSOs as z ∼ 0.35 display higher i− z colour
than CVs since those have Hα redshifted to the z band.

To test the validity of this methodology, first we applied it to 9255 QSOs,
selected as being classified as point-like sources, and 121 CVs whose spec-
troscopy was available from SDSS. After convolving them with the J-PLUS
filter system and apply this methodology, we could recover 109 of the CVs,
therefore obtaining a completeness of 90 %, and only 4 QSO contaminants.

Later, we checked the goodness of our method with real J-PLUS data, con-
cretely with a first internal release of 150 deg2 and more than 18000 objects
cataloged as punctual sources, and with restrictions in magnitude and S/N,
Figure 6.6. This time we recovered the 100% of the known CVs in it (7/7) and
had 20 candidates/contaminants, 4 cataloged as QSOs, 3 as galaxies and 13
as stars.

It is noteworthy that several of these contaminant stars are binary systems
composed by a WD and a MS star (period gap CV candidates) or a white
dwarf and a brown dwarf (WD-BD, period bouncer CV candidates) and it
seems we have strong candidates to help solving the still CV evolution dis-
crepancies. The figure 6.7 shows two examples of period gap candidates, our
methodology classifies them as CVs and the lack of emission lines, meaning
they don’t have accretion, makes them strong period gap candidates.

6.3.2 J-PLUS Data release 1

After the J-PLUS DR1 covering 1022 deg2 of sky, we try to extend the colour-
colour technique to a larger sample. Moreover, we also count with a larger
and more heterogeneous CV sample observed in J-PLUS DR1 which was not
available in the internal data release to test and understand our results. At
this stage we develop three different methods, one only makes use of J-PLUS
data so we can test the capabilities of J-PLUS alone to find new CVs. Its main
advantage is the consistency of data since they all come from the same source.
Also, missing data is very rare and in any case not comparable with combi-
nations of two or more different surveys. In the other hand, this method ob-
tains no information from the companion beyond the J-PLUS spectral range
limit. Secondly, we try to improve the methodology from the previous sec-
tion, which in turn tries to improve the method proposed by Scaringi et al.
(2013) using infrared information from the WISE survey. Lastly, we add Gaia
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FIGURE 6.6: The three color cuts applied to the first 150 deg2

of J-PLUS. The different symbols refer to the classification given
by SDSS for objects with J-PLUS photometry. The objects falling
in the shaded area in the left panel are evaluated again in the
bottom-left one. The objects out of the shaded area but within
the cuts are evaluated in the upper-right panel. The bottom-
right panel shows the distribution in magnitude of the known
CVs and candidates/contaminants, in total there are 20 CV can-
didates in green and 7 known CVs in blue, with magnitudes in

the range between 15 and 22.

information deriving absolute magnitudes and finding the CV locus in the
H-R diagram.

The J0660-r vs J0395-g colour-colour diagram acts as a base-line in the
three methodologies we present here, allowing us to differentiate CVs from
QSOs at a wide range of redshifts and most of the others point sources. Un-
like in the previous section, we use J0395-g instead of uJAVA-r as the blue
identifier due to several empirical experiments showing a better performance
for the former. The broader uJAVA band is more prone to larger errors and
in addition, more difficult to simulate for our synthetic sample. For the more
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FIGURE 6.7: The figure shows two examples of period gap can-
didates, our methodology classifies them as CVs and the lack of
emission lines, meaning they don’t have accretion, makes them

strong period gap candidates.

troublesome QSOs and other contaminants such as WD-MS binaries or hot
stars, we use different approaches. The first one involves only J-PLUS data,
the second one combines J-PLUS and WISE data, and the last one adds Gaia
and the H-R diagram.

The strategy followed is the computation of a set of colour-colour dia-
grams to distinguish CVs from QSOs and then apply it to the entire J-PLUS
DR1.

Method A: J-PLUS only

The presented methodology here only makes use of J-PLUS simulations and
real data. For such purpose we use the 343 CV sample and a collection of 9376
QSOs. These QSOs are a sub-sample from SDSS-III (Alam et al., 2015) and are
comprised by the sources that were observed spectroscopically and marked
as point-sources by SDSS. They are representative of the whole population
as they are distributed along a wide range of redshifts. Both the CV and the
QSO spectra are convolved with the J-PLUS filter response curves.

However, as mentioned in section 6.1, we cannot compute the z synthetic
photometry from SDSS spectra. The i-z colour is quite relevant to distin-
guish CVs from quasars using J-PLUS only, therefore in this case we use i’ -
z’ instead, both from the SDSS survey, in order to keep consistency. The two
bands, i’ and z’ are coincident with i and z from J-PLUS, see Table 4.1, and act
as a good approximation.

The first diagram to be applied is the one displayed in Figure 6.8, it shows
the J0660-r against J0395-g colour-colour diagram, the CVs are represented in
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green, QSO at redshifts between 0.3 and 0.4 in blue and the rest of QSO in
gray. Negative values of J0660-r indicate the presence of Hα emission and the
colour J0395-g is a measure of the blue slope of the SED, both being diagnostic
features of CVs.
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FIGURE 6.8: CVs in green, QSOs with redshifts between 0.3 and
0.4 in blue, rest of QSOs in gray. Most of the QSO contaminats
are those within the redshift range 0.3-0.4 while a majority of
the rest of QSO are well discriminated. The cuts applied are
x = −0.2− 0.05y + 0.2y2; y = −0.35 + 0.2x− 0.5x2; y = 1.35 +

0.85x− 0.5x2 and y = 0.5.

Most of the QSOs lie outside the cuts, however a number of them (mainly
those with redshifts between 0.3 and 0.4) still fall among most of the CVs. A
portion of the CVs, 94 out of 343, also lie out of the bounds of the cuts. At
this stage we focused on discarding most of QSOs with no emission in Hα

and no big effort was invested in CV completeness.
Among the QSOs, our main contaminants are those at redshifts ∼0.35,

∼1.35, ∼2.45 and ∼3.25 whose emission lines fall into the J0660 band (see
Figure 6.3). The colour J0395-g discriminates well QSOs at redshifts ∼2.45
and ∼3.25 whose peak has been shifted beyond 4000 Å and a majority of
QSO at redshifts ∼1.35, however it is not valid for redshifts ∼0.35. In order
to get rid of these QSOs, and bearing in mind the QSO shape at this value of
redshift from Figure 6.3, we see that Hα is shifted to the z-band making the
colour i’-z’ suitable to discriminate them as shown in Figure 6.9.

The i’-z’ colour is compared against J0410-J0395 with the aim of detecting
the Hδ and Hε emission lines located there which are quite common among
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FIGURE 6.9: This diagram aims at discriminating QSO with
redshifts within the range 0.3 and 0.4. These objects have Hα
shifted to the z band making them distinguishable using the
colour i’-z’. As opposed to QSO, the presence of Balmer lines in
J0410 and J0395 for CVs make their distinction cleaner. A hand-
ful of QSO in gray (those around i’-z’=0 and J0410-J0395=0) re-
main as contaminants, they are QSO at z ∼ 1.35. The cuts ap-
plied are y = −0.36 + 2x − 2x2 for x < 0.5 and y = 0.14 for

x > 0.5.

CVs and make their distinction cleaner. Table 6.1 summarizes the selection
criteria results.

Subsequently, we apply these cuts to the whole J-PLUS DR1 after enforc-
ing the quality constrains explained in Section 4.2.1 and we identify 630 CV
candidates. From them, 133 have spectra in SDSS of which only 14 are CVs.
Moreover, only 10 out of the 32 known CVs already observed in J-PLUS DR1
are recovered which yields a completeness of 43.5% and a purity of 10.5%,
see table 6.2.

Investigating in more detail, we see that most of the contaminants are
QSOs at redshifts around 1.35, where the magnesium spectral line is shifted
to be detected in the J0660 filter. There is no straightforward way to dis-
criminate this kind of QSO since it does not show other recognizable features
located in the J-PLUS filter set.

This methodology has the advantage of using only J-PLUS data. No cross-
correlation with other catalogues is needed that might result in losing sources
along the way. Thus, the data consistency is guaranteed, as well as the fact
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Total number of initial QSOs 9256
of which z < 0.3 or z > 0.4 6712
of which 0.3 < z < 0.4 2544
Total number of initial CVs 343
QSOs after first cut 1142

of which z < 0.3 or z > 0.4 36
of which 0.3 < z < 0.4 1106
CVs after first cut 229
QSOs after second cut 56

of which z < 0.3 or z > 0.4 21
of which 0.3 < z < 0.4 35
CVs after second cut 215

TABLE 6.1: Summary table of method A using J-PLUS only for
QSO-CV classification.
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FIGURE 6.10: Method A. CVs in green, other sources in gray.
Same diagrams and cuts computed for QSOs but applied to all
J-PLUS DR1. Left panel is the equivalent of Figure 6.8 and the

right one of Figure 6.9.

that the data for each source have been observed almost at the same time,
which is important for variable objects. On the other hand, there is no clear
way to get rid of a big majority of the contaminants. Although the colour-
colour diagram i’-z’ vs J0410-J0395 is a good discriminator of QSOs at partic-
ular redshifts, it is not efficient for other QSOs and other point sources with
emission at the Hα restframe. This weakness is quite evident when com-
paring Figure 6.9 showing the cut for QSOs and the right panel of Figure 6.10
where all J-PLUS DR1 sources are evaluated and the cuts barely separate CVs
from other sources.
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Total number of sources in J-PLUS DR1 ∼ 13.4 mill.
Sources after quality filtering 958665
Sources after first colour-colour diagram 922
Sources after second colour-colour diagram 630
of which with SDSS spectra available 133
of which catalogued as CVs by SDSS 14
Observed CVs from Ritter&Kolb / Downes 32

after quality filter 23
after first colour-colour diagram 12
after second colour-colour diagram 10

Completeness of the method 43.5%
Purity of the method 10.5%

TABLE 6.2: Summary table of method A using J-PLUS only and
applied to all J-PLUS DR1.

Method B: J-PLUS and WISE

In this section we approach the QSOs distinction by crossing our J-PLUS data
with WISE, thus investigating the possibility to improve the method pro-
posed by Scaringi et al. (2013). The purpose of using WISE is due to the
presence of dust in QSOs which should appear as an excess of flux in the in-
frared. In this case therefore, we can afford enlarging our boundaries in the
J0660-r vs J0395-g diagram (Figure 6.8) including a larger sample of CVs. This
is particularly useful for those CVs with weak Hα emission that are mixed up
with the QSOs in this part of the diagram (J0660-r ∼ 0.0).

Therefore, we substitute the second diagram in the previous methodology
for one based on WISE. For that purpose, we cross the objects passing our
first selection criteria with WISE, and compute the diagram WISE1-WISE2 vs
i-WISE1 which has already been successful discriminating WD-MS stars from
QSO (Rebassa-Mansergas et al., 2013), also, a similar combination of colours
has been used to distinguish D-type Symbiotic stars and PNe which are also
Hα emitters and posses a WD, YSO, and TTauri stars, or hot stars like Be
and Wolf-Rayet stars (Akras, Guzman-Ramirez, and Gonçalves, 2019). It is
represented in Figure 6.11, for QSOs only (top) and all J-PLUS DR1 (bottom).

The diagram based on WISE discriminates QSOs quite well, including
those with redshifts around 1.35 that could not be discarded by the first
method. As shown in table 6.3, we obtain 927 candidates, of which 133 have
spectra in SDSS and 23 are catalogued as CVs. We also recover 15 CVs from
those already observed with J-PLUS yielding a completeness of 65% and a
purity of 17%. Therefore, even at the cost of losing 18% of the sources due to
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FIGURE 6.11: Method B. At the top the cuts applied to the QSO
sample and at the bottom applied to all J-PLUS. The J0660-r vs
J0395-g diagrams include an extra region with respect to the
first methodology where CVs with little Hα emission are ex-
pected to lie, the cuts applied are y = −0.35 + 0.2x − 0.5x2;
y = 1.35 + 0.85x− 0.5x2; y = −0.03− 2x and y = 0.5. WISE1-
WISE2 vs i-WISE1 diagrams are designed to discriminate QSO
by detecting their surrounding dust. The cut used in this case

is y = 6.4− 4.8x .

the cross-match with WISE, we improve our completeness and purity with
respect to the method presented above.

Unlike with the previous methodology, among our contaminants very
few are QSOs. Instead, they mainly comprise WD-MS and hot stars.

Method C: J-PLUS, WISE and Gaia

In this case, Gaia and its derived estimated distances (rest) from Bailer-Jones
(see section 5.1.1), serve as a delimiter for Galactic and non Galactic objects
and, for our work purpose, as a good discriminator for QSOs. Therefore, we
filter our sample by rest < 1200pc, this value has been chosen in order to
minimise the CV loss while maximising the QSO discrimination. As shown
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Total number of sources in J-PLUS DR1 ∼ 13.4 mill.
Sources after quality filtering 958665
Sources after first colour-colour diagram 4392
Sources after crossing with WISE 3601
Sources after second colour-colour diagram 927
of which with SDSS spectra available 133
of which catalogued as CV by SDSS 23

Observed CVs from Ritter&Kolb / Downes 32
after quality filter 23

after first colour-colour diagram 18
after crossing with WISE 16

after second colour-colour diagram 15
Completeness of the method 65%
Purity of the method 17%

TABLE 6.3: Summary table of method B using J-PLUS and
WISE photometry and applied to all J-PLUS DR1.

in Figure 6.12, 79% of the CVs have rest < 1200 pc and only 6% of objects
classified as QSOs are below this threshold.

Furthermore, as stated several times, CVs are composed of a WD and a
MS star. Hence, CVs are expected to lie somewhere in between the WDs
locus and the MS path in the well known H-R diagram, depending on the
temperature and size of both WD and MS star. However, in many systems
also the accretion disc contributes to, or even dominates, the brightness of
binaries. In these cases, the mass-transfer rate, the magnetic activity of the
WD, and the inclination of the system will influence their position in the
diagram (Warner, 1986).

In this methodology we also use what was learnt from the previous one
and we implement the WISE based colour-colour diagram, however we only
apply it to the "triangle" at the right of the dashed line within the cuts (what
we refer to, in Figure 6.13, as area B) as a middle step towards the H-R dia-
gram using Gaia. We do not apply it to the whole area due to the large loss of
sources at the junction with WISE. However, it is efficient for CVs with weak
Hα emission (which are expected to lie in this small area) where the higher
recovery ratio offsets the loss of sources due to the cross-match with WISE.

This scenario is represented in Figure 6.13. First we test our base-line dia-
gram J0660-r vs J0395-g, including this added area from the previous method-
ology which, due to the application of the cut in distance (estimated distance
< 1200 pc) is less contaminated. We evaluate only this added area with the



Chapter 6. Identification of CVs through J-PLUS colours 67

100 200 500 1000 2000 5000 10000
Logarithmic estimated distance (Bailer-Jones)

0.0

0.2

0.4

0.6

0.8

1.0
N

CVs
QSO
1200pc

FIGURE 6.12: Histogram showing the proportion of objects
classified as QSO and CVs by their estimated distances. The
dashed line is at 1200 pc. 79% of the CVs have rest < 1200 pc

and only 6% of QSOs are below this threshold.

WISE1-WISE2 vs i-WISE1 diagram. Finally, we verify that our remaining ob-
jects lie in the CV locus on the H-R diagram. Obtaining a final sample of 146
candidates, of which 42 already have available spectra in SDSS yielding 104
objects as candidates. As can be seen from Table 6.4, this last methodology
has a completeness of 74% and a purity of 31%, representing a significant im-
provement over the previous exercises.

Follow-up spetroscopic observations of the candidates obtained by this
methodology has been done using OSIRIS in the GTC telescope. Appendix B
shows the reduced spectra of 12 of the observed sources (those with enough
quality).
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Total number of sources in J-PLUS DR1 ∼ 13.4 mill.
Sources after quality filtering 958665
Sources after first colour-colour diagram 4386

of which in the area A 1123
of which in the area B 3263

Sources from A after crossing with Gaia 1113
with estimated distance < 1200 pc 95

Sources from B after crossing with WISE 2519
after second colour-colour diagram 657
after crossed with Gaia 648

with estimated distance < 1200 pc 69
Total sources within cuts in H-R diagram 146
of which with SDSS spectra available 42
of which catalogued as CV by SDSS 13

Observed CVs from Ritter&Kolb / Downes 32
after quality filter 23

after first colour-colour diagram 18
of which in the area A 13
of which in the area B 5

Total known CVs recovered 17
Completeness of the method 74%
Purity of the method 31%

TABLE 6.4: Summary table of method C using J-PLUS and
WISE photometry plus Gaia parallaxes and applied to all J-
PLUS DR1. Area A refers to the left side of the dashed line
within the cuts on the left panel of Figure 6.13 and area B to the

right one.
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FIGURE 6.13: The methodology C applied to the 1022 deg2 DR1
of J-PLUS. CVs in green, rest of objects in gray. In the top-left
panel the cuts are the same as the equivalent diagrams from the
previous methodology (see Figure 6.11) plus the dashed line
(x = −0.2− 0.05y + 0.2y2) that delimits two regions, area A at
the left and area B at its right. Here, we look for Hα excesses
(J0660-r) combined with bluer shapes (J0395-g). Those objects
with not so strong Hα excess lie in the area B and are evalu-
ated in the top-right panel making use of WISE. The presence
of dust in QSO mainly, but also in other objects make them ap-
pear with stronger excesses in this range of wavelength com-
pared with CVs. Finally, all objects from area A in the left panel
as well as those above the cut (y > 1.9 + 1.7x) in the middle
one are evaluated in the H-R diagram at the right of the figure.
The region within the cuts corresponds to the CV locus, located
between the main sequence path and the WDs. The bound-
aries applied in the H-R diagram are x = −0.4+ 0.12y− 0.01y2;

y = 3.6− 0.9x + 1.25x2 and y = 14− x.
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Chapter 7

Machine learning techniques and
data imputation

In this chapter we try to solve the problems associated with the more clas-
sic methodologies presented in the previous one by using machine learning
(ML) techniques. ML algorithms are built based on sample data, known as
"the training dataset". It aims at making predictions, classifications or deci-
sions without being explicitly programmed to do so. The training dataset is
usually labelled (supervised learning)1, the algorithm is presented therefore
with the sample inputs and their desired outputs, and the goal is to learn a
general rule that maps inputs to the outputs to apply on the unlabelled sam-
ples to predict or classify.

The colour-colour and colour-magnitude diagrams from previous chap-
ters are not easy to deal with missing data and the typical approach is to
discard such data from the trainning, with the consequent loss of informa-
tion and decrease of completeness. In addition, cutting criteria tend to be
subjective and do not usually capture the more subtle patterns that other less
obvious colour combinations may provide.

Conversely, if there are no intrinsic biases in the data used, ML techniques
can provide objective results by capturing less noticeable patterns. A com-
parison of different ML techniques to predict missing values mainly derived
from cross-matching data between different surveys is presented. Subse-
quently, this new dataset with the imputed data is used to retrieve CVs from
J-PLUS, WISE and Gaia data.

1There are two more branches of ML techniques; Unsupervised learning, which makes
use of an unlabelled training dataset and groups samples in clusters with common prop-
erties previously unknown, and Reinforcement learning, a decision making-oriented set of
techniques, which finds patterns through feedback in the form of rewards.
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7.1 Imputation of missing values

Dealing with missing values is a field of extensive research in ML. Data in real
world are rarely homogeneous and they tend to be incomplete. This is also
the case in astronomy where very often different surveys are crossmatched,
one containing information of a given source while the other does not, or also
within a single survey which lacks values for some of the variables.

Besides, many ML algorithm implementations do not support missing
data and a broad approach is ignoring such missing values and only consider
observations where all variables are observed. However it comes at the cost
of having less data which may be valuable, leading to poorer performance
and, depending on the underlying mechanism that generates missing data
(see Section 7.1.1), to biased results.

7.1.1 Underlying missing data mechanisms

There are three typical mechanisms causing missing data and deciding how
to handle missing data on a particular data-set is highly dependant on the
mechanism that generates such missingness.

• Missingness completely at random (MCAR). This mechanism occurs when
there is no relationship between the missing data and any values. All
values have the same probability of missingness. In this case, discard-
ing cases with missing data does not cause biases since the remaining
are representative of the entire data-set.

• Missingness at random (MAR). There is a systematic relationship between
the missing values and the observed data, but has no relationship with
unobserved variables.

• Missingness not at random (MNAR). In this situation missingness is not
only dependant on other observed variables but also on unobserved
ones.

MAR and MNAR are typical cases in astronomy where the missingness
depends on the faintness of a source which is highly related with other recorded
variables such as the flux of observed bands. However, it could also be re-
lated with other typically unrecorded variables such as the variability of a
source, its type or its state at a given moment. For example, in our case of
study we intend to find CVs using the J-PLUS photometry as the base-line
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where we do not have missing values. Nonetheless, we also make use of
WISE and Gaia’s photometries which contain missing values. Since Gaia’s
data is derived from its bands that overlap with J-PLUS’s ones, we can as-
sume that missingness is related with faint fluxes in the J-PLUS bands and
therefore follow MAR mechanisms. This logic also applies to WISE, how-
ever, and since these are infrared observations that do not overlap with J-
PLUS, missingness may also be related to the type of source that might be
bright enough for J-PLUS but not enough to be observed in the infrared and
thus, following a MNAR mechanism.

7.1.2 Data imputation methods

Although there are countless ways to approach missing data, we here only
describe and after compare performances in our data-set for a subset of them:

• Discarding data. This is the most common method when using ML al-
gorithm implementations that does not allow missing data, however
is only acceptable when the number of observations is large enough
so performance is not compromised and missingness is MCAR, other-
wise these approaches lead to biased estimates. Main discarding data
methods are list-wise deletion; where all observation with missing data
are removed completely, pairwise deletion; only the missing values are
ignored, this case is less biased and sometimes can be used for MAR
mechanisms, however many ML implementations does not support it,
dropping variables; when there are too many data missing for a given
variable.

• Univariate imputation. The imputed values are deduced using only non-
missing values of that variable. Examples of univariate methods re-
place the missing values with the mean, the median or the mode of
that variable. For non-MCAR mechanisms, these methods also lead to
inconsistent biases, especially in the presence of great inequality miss-
ingness among the variables.

• Multivariate imputation. Multivariate imputation algorithms use the en-
tire set of variables to estimate the missing values. They often get better
guesses if there is a correlation between the missing values and other
variables. Besides, several multivariate imputation methods, such as
Multiple Imputation and Maximum Likelihood, although assuming MAR
mechanisms, are often unbiased with MNAR.
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Among the multivariate imputation methods there exist two different ap-
proaches, multiple imputation (MI) and single imputation (SI). MI involves
filling in the missing values multiple times creating “m complete” data-sets
whose missing values estimates differ from each other. Such differences, usu-
ally coming from the randomness introduced by the estimator used, allows
to account for uncertainties in the imputations whereas SI do not account
for the uncertainty in the imputations, leading to overly accurate results and
potential incorrect conclusions. In this work we apply MI technique since
understanding uncertainties is crucial in order to evaluate its implications
and goodness.

7.1.3 Evaluating imputation techniques

Evaluating imputation techniques is not straightforward because very often
it is difficult to understand what mechanism controls the absence of data and
even knowing it, due to the fact that we do not have such data, it is difficult
to know how well they fit the reality.

Our data-set described in section 4.2 has been selected to contain all data
in the J-PLUS bands, however their cross-match with Gaia and WISE, yields a
considerable amount of missingness on these latter surveys. Table 7.1 shows
the amount of missing values on each band2, pair of bands and the three of
them. When a value is missing in WISE2 almost always is missing as well on
WISE1, however there is little overlap between Abs. mag.(r) and the WISE
ones, which could mean that the variables related to the missingness mecha-
nism are different and/or are the missingness mechanisms themselves.

The approach we use is selecting a subset containing 200000 random in-
stances where there are no missing values in none of the surveys used. Sub-
sequently, we remove a set of values maintaining the missingness ratio of the
complete dataset from Table 7.1. We carried out this process twice, first at
random to simulate a MCAR mechanism and then we use the original full
data-set to train a Gaussian Naïve Bayes algorithm to predict and after re-
move the instances which are most likely to contain missing values in one or
more variables (in our case WISE1, WISE2 and Abs. mag.(r)), thus keeping
the missingness correlation among variables as in the original data-set and
therefore simulating a MAR mechanism.

2Unlike the datasets used in 5.2 and 6.3.2 where we computed the absolute magnitude
for the Gaia G band, in this chapter the J-PLUS r band is computed and used instead, which
we refer to as Abs. mag. (r). The variables in our dataset with missing values are WISE1,
WISE2 and Abs. mag. (r) itself.
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Band(s) Total missing values Proportion from the total (%)
Abs. mag.(r) 8678 0.91
WISE1 90664 9.46
WISE2 162879 16.99
Abs. mag.(r), WISE1 744 0.08
Abs. mag.(r), WISE2 1257 0.13
WISE1, WISE2 90039 9.39
Abs. mag.(r), WISE1, WISE2 741 0.08

TABLE 7.1: Amount of missing data on each band, each pair of
bands and the three of them. The numbers shown are absolute
values, it means, if an object has missing data in Abs. mag.(r)
and WISE1 but not in WISE2, it counts for Abs. mag.(r) and
WISE1 individually but also for the pair Abs. mag. (r), WISE1.

We then present the obtained errors with respect to the real values in a
comparison of 2 SI estimators, Bayesian Ridge (BR)3 and K Nearest Neigh-
bors (KNN)4 and 3 MI estimators with 10 iterations each, K Neighbors Re-
gressor (KNR), Random Forest Regressor (RFR)5 and Extra Trees Regressor
(ETR)6 for both the MCAR and MAR approaches, and for reference, we also
compare the MAR mechanism with an Univariate Imputation method using
the mean.

The purpose of applying these two simulations (MCAR and MAR) is to
obtain an error estimate to illustrate the importance of choosing the appro-
priate underlying missingness mechanism and also show the tendency of the
errors.

Figures 7.1 and 7.2 show the error distribution of the predictions for each
estimator with respect to their magnitudes, both for the MCAR and MAR
mechanisms. The former MCAR mechanism simulation shows a uniform
distribution of missing data along the magnitude axis, which is expected
since the missing values were chosen randomly, whose errors increase as the
magnitude gets higher for all estimators used.

In contrast, the latter MAR mechanism simulation whose missing values
were predicted by a Gaussian Naïve Bayes algorithm7 trained in the whole
dataset, concentrate the missing values at higher magnitudes for WISE1 and

3BR estimates a probabilistic model of the regression problem. The prior for the coeffi-
cient is given by a spherical Gaussian.

4A non-parametric method used for classification and regression. In both cases, the input
consists of the k closest training examples in the feature space.

5A meta estimator that fits a number of classifying decision trees on various sub-samples
of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

6Similar to RFR but it uses tree-cuts randomly to improve variance.
7Naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying

Bayes’ theorem with strong (naïve) independence assumptions between the features.
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WISE2. This scenario is more realistic since a higher missingness ratio for
fainter objects is expected. The errors are centered around Abs. mag. r ∼
4, one magnitude brighter than for the MCAR simulation. This can be ex-
plained by the fact that such intrinsically brighter objects with high apparent
magnitudes are more distant objects, therefore producing larger parallax er-
rors and higher probability of missingness.

Figure 7.3 shows the errors simulating a MCAR mechanism. This can be
the case for some sources whose missingness is not related with the source
itself or related with a technical issue, for example, the non-overlap between
surveys. In other words, that a source was placed within one survey coverage
but not in the other can be considered as completely at random. RFR is the al-
gorithm yielding the best results comparing the imputed values with respect
to the real, previously extracted ones. Its probability distribution function
(PDF) is quite symmetrical with mean errors of -0.00111 mags. (σ = 0.1434),
0.00091 mags. (σ = 0.0765) and 0.00281 mags. (σ = 0.1049) for Abs. mag. r,
WISE1 and WISE2 respectively.

Figure 7.4 shows the errors simulating a MAR mechanism. It is assumed
that most of the missing values are caused by this mechanism, which, for
example, implies missingness due to their intrinsic brightness or its over-
lap with other sources. In this case ETR provides the more accurate results.
WISE1 and WISE2 PDFs are quite symmetrical, Abs. mag.(r) PDF has posi-
tive skewness and their errors much larger than for MCAR. They have mean
errors of 0.14341 mag. (σ = 0.2759), 0.01982 mag. (σ = 0.2134) and -0.04955
mag. (σ = 0.2909) for Abs. mag.(r), WISE1 and WISE2 respectively. Since
this last mechanism is the one closer to the real scenario, the ETR is the algo-
rithm applied to the whole dataset which will be used to find CVs by apply-
ing ML techniques, more concretely, a Neural Network.

Furthermore, for the MI approaches, further analysis can be run. Rubin’s
rule (Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York:
John Wiley and Sons; 2004.) combines each imputed dataset into an overall
MI estimate and associated Standard Error (SE). After obtaining the mean
over all the imputations as the overall MI estimate, Q̄ = 1

m ∑m
i=1 Q̂, the over-

all variance of the point estimate is a combination of within-imputation and
between-imputation variances (Marshall et al. 2009). The associated total
variance for this overall MI estimate is

T = Ū + (1 +
1
m
)B (7.1)
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FIGURE 7.1: The error distribution with respect to the magni-
tude. Errors (predictions substracted from the real values) and
their standard deviation for the MCAR mechanism simulation.
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FIGURE 7.2: The error distribution with respect to the magni-
tude. Errors (predictions substracted from the real values) and
their standard deviation for the MAR mechanism simulation.
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ues) and their standard deviation for the MCAR mechanism

simulation.
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FIGURE 7.4: Errors (predictions substracted from the real val-
ues) and their standard deviation for the MAR mechanism sim-

ulation.
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Abs. mag. (r)
Estimator Variance Std. deviation Ū B
Extra Trees Regressor 0.01701 0.13041 0.01699 2e-05
Random Forest Regressor 0.0098 0.09899 0.0098 0.0

WISE1
Extra Trees Regressor 0.01968 0.14027 0.01967 0.0
Random Forest Regressor 0.03994 0.19984 0.03993 1e-05

WISE2
Extra Trees Regressor 0.02562 0.16005 0.0256 1e-05
Random Forest Regressor 0.05048 0.22467 0.05047 1e-05

TABLE 7.2: Variance, Standard deviation, the between imputa-
tion variance B and the within imputation variance Ū estima-
tions using Rubin’s rule for the ETR and RFR estimators and for
the three variables with missing values, Abs. mag. (r), WISE1

and WISE2 in the 200000 subset.

where

Ū =
1
m

m

∑
i=1

Ui (7.2)

is the estimated within imputation variance and

B =
1

m− 1

m

∑
i=1

(Q̂− Q̄)2 (7.3)

is the between imputation variance. When B dominates Ū, greater ef-
ficiency, hence more accurate estimates, can be obtained by increasing m.
Conversely, when Ū dominates B, little is gained from increasing m. Table
7.2 shows Variance, Standard deviation, the between imputation variance B
and the within imputation variance Ū for the two best estimators, ETR and
RFR, using Rubin’s rule. For all the Abs. mag.(r), WISE1 and WISE2, Ū
dominates B over Ū so increasing m beyond the 10 current iterations does
not provide higher accuracy.

Standard deviations from Rubin’s rule are comparable but lower than
those computed from Figure 7.4. It might be explained by the contribution of
MNAR mechanisms in the underlying missingness which could be captured
by our simulations but not by Rubin’s rule.

As stated previously, all these evaluations are carried out on a 200000 sub-
set whose real values are known and with two main objectives; understand-
ing the errors produced by the different Imputation techniques and selecting



Chapter 7. Machine learning techniques and data imputation 81

Abs. mag. (r)
Estimator Variance Std. deviation Ū B
ETR 0.01834 0.13543 0.01825 1e-05

WISE1
ETR 0.01873 0.13686 0.01872 0.0

WISE2
ETR 0.02376 0.15414 0.02365 1e-05

TABLE 7.3: Same as 7.2 but only for the ETR and applied to the
whole dataset.

the best estimator. Both ETR and RFR work the best, but due to a balance
between errors and variances among the three variables, the ETR is chosen.
Therefore a MI using this estimator is applied to the whole dataset to predict
its missing values. A similar error study to this from Figure 7.4 is not possible
since their real values are not known. Therefore, only Rubin’s rule, which is
shown in Table 7.3, can be used. It shows comparable results to those applied
to the 200000-sources dataset. Although these missing values should be more
error-prone as they are real rather than simulated missing values, this effect
is at least partially offset by the increased number of sources (∼ 960000) used
to train the imputations.

7.2 Classification algorithm

The resulting imputed dataset contains 958665 samples and no missing val-
ues. The purpose now is to train a ML algorithm to identify CVs as the J-
PLUS survey progresses. There are several ML algorithms for classification
problems, including some adaptations of those used for imputations in the
previous section. However, when entering the range of several hundreds of
thousands of samples for training, the most appropriate group of algorithms
are those belonging to the artificial neural networks (ANNs) family, in this
case, a Dense Neural network is trained.

7.2.1 Multilayer Perceptron

ANNs were first proposed in the form of Perceptrons in 1944 by Warren Mc-
Cullough and Walter Pitts. They were after developed in the 1950s and 1960s
by Frank Rosenblatt. Today, it’s more common to use more complex models
within the Multilayer Perceptron (MLP) theory.
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FIGURE 7.5: Multilayer Perceptron representation. This ANN
is a generic case for multiclass classification with an input layer,
3 hidden layers and an output layer. The ouput layer is com-
prised of a number of neurons equal to the number of classes.
For the binary classification case, one neuron in the last layer is
enough and the choice of a threshold will discriminate between

classes.

A MLP is comprised of elemental units called neurons (Haykin 1994) and
corresponds to an ANN whose neurons or units are structured in layers. All
neurons belonging to a given layer receive the same input vector and each
unit processes this vector independently according to its own parameters.
The outputs of each neuron in the same layer are grouped to form the input
vector for the next layer. This process continues in this way until reaching the
output layer. For binary classification tasks, the output layer is ususally a sin-
gle neuron with a sigmoid activation function, which returns predictions in
the form of probabilities that a given sample belongs to the class tested. The
choice of a threshold will determine the class of the object and can be used as
a tool to obtain a trade-off between purity and completeness depending on
the task.

7.2.2 More considerations

In the common classification problems with ML, usually there is a well la-
belled training dataset and a set of observations to be classified. The train-
ing dataset is divided into ’training set’, ’validation set’ and ’test set’ (with
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usual proportions of 70-15-15%, 80-10-10% or similar, depending on the to-
tal number of samples). The algorithm is trained with the training set and,
simultaneously, the hyperparameters are configured (in the case of an ANN,
the learning rate, optimizers, loss function, number of layers and units per
layer, dropout etc...), the configuration that gives the best results applied in
the validation set is selected and the errors obtained from applying it in the
test set are those to consider. Finally, the algorithm obtained is applied in
the set of observations to be classified, obtaining the desired class for each of
them.

In this case we have a training dataset in which is assumed that there are
misclassified CVs and we want to detect them, that is, we do not have a set
of observations to classify, but the samples in our training dataset are our ob-
servations to be classified. This is a great disadvantage because we want to
obtain an algorithm from this dataset and apply it to the same. This process
would lead to overfitting, it learns the training samples very well but is not
able to generalize correctly and obtains poor results in unknown samples. To
solve the problem of overfitting, the approach followed is to split our dataset
into 10 parts, each with 10% of the observations in the dataset. Each of these
parts will be the sample to be classified. The remaining 90% of the dataset
in each case will be used as training, validation and test sets (with the pro-
portion 80-10-10%) to generate 10 independent algorithms. Therefore, after
applying each of the algorithms to the corresponding sample to be classified,
we will obtain a probability of being CV for each of the objects in our initial
dataset. Finally we select a threshold from which we will consider an object
classified as CV and all the resulting ’mistakes’ or contaminants will be our
CV candidates.

Nonetheless, the architecture used is the same for all the 10 algorithms
(see Figure 7.6) as several preliminary tests changing the number of layers
and neurons per layer showed to work notably well. The Keras API provided
by the Python version of TensorFlow 2.08 was used.

As explained in Section 6.1, from our 958665 samples dataset, only 343
are known CVs. In order to deal with the high imbalance, we computed
the class weights using the compute_class_weight function9 provided by the
sklearn Python package.

8https://www.tensorflow.org
9https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_

weight.compute_class_weight.html

https://www.tensorflow.org
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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FIGURE 7.6: The ANN architecture used. It is comprised of 7
hidden layers with 2048, 1024, 512, 256, 128, 64 and 32 neurons
respectively. A normalization of the data is applied on each
layer, as well as a dropout of 0.2. RELU is used as activation
function in all hidden layers and a sigmoid one in the output
one. Other hyperparameters; Learning rate of 0.01, batch size
of 128, ADAM optimizer and binary cross entropy as the loss

function.



Chapter 7. Machine learning techniques and data imputation 85

Also, the data first are manipulated to feed them in the most suitable form
into the network. For each sample, the data point before any manipulation
contains its coordinates (R.A. and Dec), Abs.mag.(r) obtained from Gaia, the
bands from J-PLUS, J0395, J0410, J0430, g, J0515, r, J0660, i, J0861, those
from WISE, WISE1 and WISE2 and the class of the source, 1 for CVs, 0 oth-
erwise. The coordinates are not used for the training since they do not add
relevant information and the class is the target to predict. Instead of using
the photometry directly, and leaving aside the Abs. mag.(r), the bands are
transformed to colours, and all possible combinations of colours are com-
puted10. Subsequently all the data are re-scaled in the range (-1, 1). In theory,
if the input variables are combined linearly, as in an MLP, then it is rarely
strictly necessary to standardize the inputs. The reason is that any re-scaling
of an input vector can be effectively undone by changing the corresponding
weights and biases, leaving the exact same outputs as if no re-scaling were
done. However, there are a variety of practical reasons why standardizing
the inputs can make training faster and reduce the chances of getting stuck
in local optima.

7.2.3 The candidates and final results

Due to the imbalance in the number of CVs with respect to the total number
of observations in the dataset, a metric is needed to measure the performance
of the algorithm capable of taking this into consideration. A metric of general
accuracy may lead to undesirable results since an algorithm that classified all
objects as non-CVs would obtain an amazing accuracy of 99.964% but would
not be an acceptable result since it would not detect any CVs. To measure
the performance of the algorithm, in this work we use the measures of purity
and completeness.

The result after applying the model obtained on the imputed dataset, re-
turns the probability of an object of being a CV. The selection of a probability
threshold above which an object is classified as a CV allows us to control the

10The final features are: Abs.mag.(r), J0395 − J0410, J0395 − J0430, J0395 − g, J0395 −
J0515, J0395 − r, J0395 − J0660, J0395 − i, J0395 − J0861, J0395 − WISE1, J0395 −
WISE2, J0410 − J0430, J0410 − g, J0410 − J0515, J0410 − r, J0410 − J0660, J0410 −
i, J0410 − J0861, J0410 − WISE1, J0410 − WISE2, J0430 − g, J0430 − J0515, J0430 −
r, J0430 − J0660, J0430 − i, J0430 − J0861, J0430 − WISE1, J0430 − WISE2, g − J0515, g −
r, g − J0660, g − i, g − J0861, g − WISE1, g − WISE2, J0515 − r, J0515 − J0660, J0515 −
i, J0515 − J0861, J0515 −WISE1, J0515 −WISE2, r − J0660, r − i, r − J0861, r −WISE1, r −
WISE2, J0660 − i, J0660 − J0861, J0660 −WISE1, J0660 −WISE2, i − J0861, i −WISE1, i −
WISE2, J0861−WISE1, J0861−WISE2, WISE1−WISE2
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purity-completeness trade-off. A very low threshold obtains very high com-
pleteness (all CVs are retrieved) at the cost of very low purity (among the
candidates, there will be a large majority of contaminants). On the contrary,
a too high threshold will have hardly any contaminants and therefore a high
purity, but will miss a high percentage of the CVs, leading to low complete-
ness.

• True positive (tp): CVs correctly identified as CVs.

• False positive (fp): Non-CVs incorrectly identified as CVs.

• True negative (tn): Non-CVs correctly identified as Non-CVs

• False negative (fn): CVs incorrectly identified as Non-CVs

• Purity or True Positive Rate (tpr):
tp

tp + fp

• False Positive Rate (fpr):
fp

fp + tn

• Completeness or Sensitivity :
tp

tp + fn
The threshold has been chosen by analyzing the tpr and fpr. Figure 7.7

shows the evolution of tpr and fpr with respect to the threshold. A slightly
different way of understanding it is that the tpr determines the amount of
CVs recovered and the fpr, the amount of contaminants. Since the number
of potential contaminants is enourmous compared with the number of CVs,
the threshold is adjusted to maximize the discarding of contaminants with
no substantial loss in CVs.

Another tool that allows visualization of the performance of an algorithm
is the confusion matrix. Each row of the matrix represents the instances in an
actual class while each column represents a predicted class. Figure 7.8 shows
the confusion matrix with absolute numbers and standardized.

Results

The algorithm is able to retrieve 299 out of the 343 CVs included in the
dataset. 624 more objects which were not classified as CV, are classified by the
algorithm as such. Those are our candidates. A full list of these candidates
is shown in Appendix D. Table 7.4 shows the general results in the same for-
mat as in the colour-colour and colour-magnitude methodologies presented
in Section 6.3.2 for comparative purposes.
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FIGURE 7.7: The evolution of tpr and fpr with respect to the
threshold. At the top, the whole picture, at the bottom, zooms-
in of the same figure to make it legible. The selected threshold
is located just before the big drop in true positive rates taking

advantage of part of the drop in fpr.

Figure 7.9 shows the location of the 624 candidates in the H-R diagram.
It uses the same format and axis than those from Chapter 5. The candidates
are mainly located below the main sequence path. A considerable amount of
them are within the WDs locus, which either means there are WDs contami-
nants among our candidates or some CVs share their locus with them11.

Appendix C shows a sample of the candidates contained within the SDSS
spectral database. Main contaminants are WDs as stated previously. There
are also a considerable amount of M4 – 5 systems and hot stars.

11From Figure 5.2 in Section 5.2.2, WZ Sge systems got into the WDs locus. Objects with
great outburst amplitudes, slow declines and long intervals between outbursts which have
been considered as period bouncer candidates
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FIGURE 7.8: On the left, the confusion matrix with absolute val-
ues, on the right, the same confusion matrix but standardized.

1 stands for CVs and 0 for non-CVs.

Total number of sources in J-PLUS DR1 ∼ 13.4 mill.
Sources after quality filtering 958665
Sources classified as CV 923
of which with SDSS spectra available 477
of which catalogued as CV by SDSS 283

Total known CVs in the dataset 343
Total known CVs recovered 299
Completeness of the method 87.17%
Purity of the method 59.33%

TABLE 7.4: Summary table of the Machine learning methodol-
ogy applied to all J-PLUS DR1.
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FIGURE 7.9: Distribution of the 624 CV candidates in the H-R
diagram.
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Chapter 8

Conclusions and future work

With the increase in detector efficiency and power of computing, wide-field
surveys are increasing in number, multiplying the data generated. Such large
datasets of different nature allow synergies that can lead to a better under-
standing of the study carried out. The main challenge we are currently facing
is how to handle, process, standardize and analyze this continuous increas-
ing information. The combination presented here of the J-PLUS, SDSS, WISE
and Gaia surveys, and the different techniques to find CVs are good exam-
ples of this.

8.1 Conclusions

In this thesis I have set out the results of my research into two main aspects;
the study of the CV evolutionary cycle, both as a whole group and by their
CV subtype, using Gaia DR2 data and the identification of CVs using differ-
ent techniques and data surveys combinations.

8.1.1 CV evolutionary cycle in Gaia’s HR-Diagram

Some deductions have been made from the distribution of CVs in the H-R
diagram. The Gaia space mission has allowed, for the first time, the analysis
of the distribution of these objects with respect to their absolute magnitudes.
Through the statistical study of these data, it has been reported the discov-
ery of a trend of the orbital period and mass accretion based on their colours
and absolute magnitudes. The CV population density has also been stud-
ied with respect to their absolute magnitudes, with a peak in Gabs ∼ 10.15.
The contribution of the different subtypes of CVs has been described, includ-
ing the WZ Sge systems among the DNe, well placed candidates for period
bouncers. The respective distributions occupy different positions in the H-R
diagram, and thus serve as an approximate diagnostic for the orbital periods
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and the CV subtype parameters. To conclude this section, this work has also
identified the location of the dCVs, CVs across the period gap, and composed
of a WD and secondaries in the range M4 – M6. Due to the small number of
dCVs, there is great uncertainty in the behaviour of these systems and the
evolution of the CVs in this phase, therefore, this result allows to narrow the
search for dCVs important for the understanding of CV evolution as a whole.

8.1.2 Identification of CVs

Historically, CVs have been found as byproducts of other searches, mainly
for QSOs. In the last years several attempts focused on their search have been
made (Gentile Fusillo, Gänsicke, and Greiss 2015, Scaringi et al. 2013, Szkody
et al. 2002). Still, with relative success, the biases of these searches are not
well understood and their values of purity and completeness are relatively
low. It shows the difficulties in identifying these systems.

Based on data from J-PLUS, a wide-field, narrow-band survey that allows
the location of specific features, this document shows the process and obsta-
cles encountered in detecting CVs in the attempt to overcome the limitations
of previous searches.

Applying a methodolgy based exclusively on the J-PLUS survey, in spite
of its diverse filter set, is not successful in defining a CV sample with a satis-
factory purity coefficient, there is a strong contamination by QSOs at particu-
lar redshifts. In a second phase, we added WISE photometry which, although
improving the previous results on QSOs, does not provide an effective way
to exclude hot stars and non-CV WD-MS stars. The inclusion of Gaia paral-
laxes determining the CV locus in the H-R diagram and the cut in the derived
distances refines the search removing a substantial amount of QSO, hot stars
and other point sources with Hα emission, yielding a set of 104 candidates in
the first 1022 deg2 of J-PLUS. However, GTC spectroscopic observations have
shown a larger amount of contaminants. Along with this, the low amount of
candidates demonstrates that completeness is still far from being achieved.

Several data imputation techniques, a tool that has permitted the use
of all available observations with no loss of consistency, have subsequently
been presented in order to fill all missing data derived from the cross-match
among surveys. And finally, the resulting dataset has fed a neural network
to separate CVs from other objects allowing to probe an even broader param-
eter space. Comparison with SDSS spectra yields a completeness of 87% and
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a purity of 59%, although, from past experiences, these numbers should be
taken with caution until follow-up observations are made.

In general terms and awaiting follow-up observations, J-PLUS data are
able to improve results of previous searches based on other surveys. How-
ever, the J-PLUS filter set has some limitations regarding CV searches and
would benefit from a wider range of narrow filters as those from the J-PAS
project.

8.2 Future work

The resulting candidates of the Artificial Neural Network methodology will
be the targets of a spectroscopic follow-up in order to confirm them as CVs. It
is expected therefore, to enlarge the existent CV sample. It will facilitate the
application of similar methodologies as those presented in this work using
the J-PAS filter set. Thus, likely will find further correlations and patterns that
will allow a more successful identification of CVs and a better understanding
of the completeness. Also, this work is the base to find WD-M(4 – 6) binary
systems or binaries with fainter companions such as WD-BDs, which could
potentially be period gap and period bouncer CVs respectively.
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Appendix A

ADQL Query

This is the ADQL query used for data cleansing as indicated in Section 4.2.1
through the VO Asynchronous Queries for J-PLUS data. It is the one applied
for the initial data of the ML methodology presented in Section 7.2 and for
methodologies B and C presented in Section 6.3.2. For method A, it is exactly
the same query but excluding the i-band as it is not utilized.

SELECT

jplus_.TILE_ID, jplus_.NUMBER, jplus_.ALPHA_J2000,

jplus_.DELTA_J2000, jplus_.FWHM_WORLD as FWHM, jplus_.MAG_AUTO,

jplus_.MAG_ERR_AUTO, jplus_.FLAGS, jplus_.NORM_WMAP_VAL,

jplus_.MASK_FLAGS, jplus_.SINGLE_DETECT, jplus_.CLASS_STAR

FROM

jplus.CalibratedMagABDualObj as jplus_

WHERE

jplus_.MAG_ERR_AUTO[jplus::J0395] < 0.2 AND

jplus_.NORM_WMAP_VAL[jplus::J0395] > 0.8 AND

jplus_.MASK_FLAGS[jplus::J0395] = 0 AND

jplus_.SINGLE_DETECT[jplus::J0395] > 0 AND

jplus_.MAG_ERR_AUTO[jplus::gSDSS] < 0.2 AND

jplus_.NORM_WMAP_VAL[jplus::gSDSS] > 0.8 AND

jplus_.MASK_FLAGS[jplus::gSDSS] = 0 AND

jplus_.SINGLE_DETECT[jplus::gSDSS] > 0 AND

jplus_.MAG_ERR_AUTO[jplus::rSDSS] < 0.2 AND

jplus_.NORM_WMAP_VAL[jplus::rSDSS] > 0.8 AND

jplus_.MASK_FLAGS[jplus::rSDSS] = 0 AND

jplus_.SINGLE_DETECT[jplus::rSDSS] > 0 AND

jplus_.MAG_ERR_AUTO[jplus::J0660] < 0.2 AND

jplus_.NORM_WMAP_VAL[jplus::J0660] > 0.8 AND
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jplus_.MASK_FLAGS[jplus::J0660] = 0 AND

jplus_.SINGLE_DETECT[jplus::J0660] > 0 AND

jplus_.MAG_ERR_AUTO[jplus::iSDSS] < 0.2 AND

jplus_.NORM_WMAP_VAL[jplus::iSDSS] > 0.8 AND

jplus_.MASK_FLAGS[jplus::iSDSS] = 0 AND

jplus_.SINGLE_DETECT[jplus::iSDSS] > 0 AND

(jplus_.FLAGS[jplus::rSDSS] < 4 OR (jplus_.FLAGS[jplus::rSDSS] >

2047 AND jplus_.FLAGS[jplus::rSDSS] < 2052)) AND

jplus_.CLASS_STAR > 0.8
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Appendix B

GTC spectroscopic follow-up
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Appendix C

ANN candidates spectra

A sample of the candidates from the Artificial Neural Network algorithm
contained in the SDSS spectral database. The first three are catalogued as CV
by SDSS.
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Appendix D

Full list of candidates

The full list of candidates obtained from the Neural Network. For legibil-
ity, only a subset of J-PLUS bands are shown. In order to give an idea of
how many objects would be missing if no imputation was applied, the WISE
bands and Abs. Magnitude (r) are in the original form and ’nan’ is shown
when missing.

R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
238.89 50.43 13.95 17.18 16.37 16.39 16.27 nan nan
28.8 1.84 6.42 16.86 17.69 17.91 18.1 nan nan

215.14 53.27 13.27 19.47 19.33 19.34 19.3 nan nan
142.68 30.73 11.58 18.51 18.41 18.52 18.86 nan nan
134.29 41.83 14.05 18.94 18.73 18.75 18.74 nan nan
35.35 29.61 11.57 17.07 17.22 17.55 17.52 nan nan

279.18 41.51 4.32 15.56 15.68 15.76 15.74 14.71 14.87
1.07 2.19 12.86 18.62 18.74 18.74 18.93 nan nan

263.81 57.5 11.61 16.84 16.68 16.97 16.93 16.89 nan
244.44 53.05 9.55 19.32 17.65 17.36 16.46 13.48 13.37
207.43 27.92 13.94 16.92 16.33 16.4 16.32 nan nan
187.64 55.19 9.57 18.34 16.89 16.59 16.0 13.34 13.23
28.96 4.53 11.44 16.95 16.9 17.22 17.14 16.93 nan

340.49 13.54 14.37 17.97 17.13 17.1 17.01 nan nan
280.25 39.83 11.45 15.62 15.49 15.84 15.73 15.86 15.76
222.32 56.58 9.39 19.7 19.3 19.08 18.5 nan nan
109.17 39.75 11.23 19.62 18.41 18.07 17.38 14.6 14.38
130.76 33.21 10.64 17.3 17.19 17.35 17.22 nan nan
124.49 31.8 10.02 17.74 18.47 18.73 18.75 nan nan
332.74 29.97 11.41 18.4 18.63 18.95 19.07 nan nan
202.91 55.9 6.87 19.42 19.13 18.75 18.78 nan nan
139.76 30.65 9.36 19.21 17.72 17.36 16.7 14.1 13.99
22.44 41.28 11.51 19.36 19.43 19.44 18.86 15.79 15.68
23.06 5.44 11.38 16.5 16.41 16.72 16.68 nan nan

282.31 41.54 5.72 17.74 18.35 18.55 18.62 17.95 nan
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
20.5 5.17 13.44 18.18 17.95 18.11 18.07 nan nan

241.33 55.95 12.72 18.12 17.49 17.54 17.24 nan nan
280.98 40.44 8.49 17.98 16.48 16.17 15.52 12.81 12.73
39.58 29.42 13.64 19.31 19.02 19.18 19.07 nan nan

137.72 39.53 12.69 18.81 18.55 18.69 18.7 nan nan
130.19 37.24 14.14 19.16 18.51 18.48 18.43 nan nan
140.65 40.35 11.8 18.22 18.48 18.67 18.83 nan nan
273.82 40.9 14.26 18.41 17.58 17.55 17.44 nan nan
121.49 31.95 2.47 12.85 13.05 13.2 13.26 12.99 13.02
10.8 5.68 7.79 19.14 19.16 18.76 19.07 15.84 14.6

26.81 2.63 4.8 15.57 15.79 15.85 15.88 15.0 15.0
128.44 29.96 10.45 18.09 18.8 18.95 18.84 nan nan
8.61 5.12 11.02 17.92 18.09 18.38 18.33 nan nan

236.12 54.93 13.53 19.19 19.06 19.13 19.14 nan nan
337.24 9.62 4.3 13.97 14.03 14.04 14.04 12.83 12.89
123.24 30.34 8.02 19.39 19.27 19.11 19.09 15.89 14.84
278.89 39.61 10.01 17.73 17.88 18.03 18.25 nan nan
130.9 34.2 12.01 17.32 17.07 17.25 17.12 nan nan

285.08 40.78 5.58 19.17 17.2 17.18 17.02 15.38 15.73
106.48 38.28 10.21 18.23 18.06 18.03 17.48 14.92 14.82
150.03 39.5 13.95 19.55 18.67 18.63 18.58 nan nan
129.14 37.72 13.08 19.0 18.69 18.75 18.57 16.76 nan
332.14 9.56 8.32 17.35 17.84 17.93 17.97 nan nan
347.92 23.45 11.52 18.79 19.28 19.31 19.51 nan nan
331.97 34.48 12.25 15.43 15.24 15.46 15.39 15.07 15.15
332.69 34.03 6.5 19.13 19.03 18.94 18.87 nan nan
228.66 53.49 3.51 16.62 16.71 16.84 16.88 16.3 16.67
182.8 56.81 8.01 18.98 19.13 18.68 18.8 nan nan

239.18 50.26 3.65 15.52 16.36 16.53 16.74 17.2 nan
35.5 44.45 2.83 15.39 15.7 15.81 15.94 15.93 15.99

123.71 40.99 11.9 19.09 19.25 19.45 19.1 16.32 16.06
258.7 56.32 10.59 18.16 18.59 18.78 18.76 nan nan

150.06 30.73 10.79 19.64 18.91 18.66 17.79 14.4 14.29
336.69 11.18 11.69 17.89 17.28 17.14 16.38 13.19 13.06
182.59 56.58 11.01 18.22 18.59 18.84 18.9 nan nan
28.43 4.42 10.79 17.13 17.2 17.42 17.38 nan nan

138.43 41.55 9.19 19.48 17.95 17.55 16.79 14.0 13.93
153.94 40.04 11.19 18.56 18.87 18.95 19.1 nan nan
224.92 53.32 10.31 19.51 17.95 17.61 16.87 14.04 13.92
133.13 32.16 14.08 18.76 17.99 17.97 17.85 nan nan
256.05 26.83 11.47 19.23 19.6 19.76 19.83 nan nan
127.2 31.53 14.09 18.76 18.2 18.19 18.04 16.92 nan

168.06 39.73 13.24 18.73 18.72 18.67 18.83 nan nan
243.6 53.23 3.89 16.87 17.36 17.48 17.64 18.04 nan
256.2 24.41 3.06 16.12 16.25 16.37 16.46 16.04 16.14

134.05 30.58 10.75 18.32 17.75 17.6 17.01 14.21 13.94
3.69 7.04 10.33 19.0 19.62 19.53 19.59 16.48 15.66
7.29 4.94 4.87 14.5 15.21 15.35 15.52 15.61 15.63

276.29 43.11 13.4 19.41 19.02 19.09 18.95 nan nan
1.61 3.69 12.65 18.87 18.55 18.61 18.59 nan nan
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
338.22 32.09 13.68 18.29 17.79 17.75 17.65 nan nan
273.7 40.9 8.26 18.98 19.58 19.78 20.09 nan nan
37.53 29.38 8.35 17.07 17.86 17.96 18.2 nan nan

182.88 57.4 14.08 16.46 15.58 15.57 15.44 nan nan
241.16 49.14 13.22 17.94 17.88 17.96 18.01 17.74 nan
204.41 55.91 8.17 18.92 19.03 18.88 18.92 17.4 nan
40.39 45.2 4.84 16.44 17.04 17.01 16.86 15.65 15.64

130.58 37.82 11.27 16.25 16.46 16.74 16.74 nan nan
130.96 36.24 10.95 16.96 17.44 17.52 17.67 nan nan
151.77 32.5 12.82 18.05 17.8 17.93 17.97 nan nan
268.15 31.56 10.91 18.71 18.81 18.98 18.94 nan nan
120.64 40.84 11.61 17.69 18.07 18.21 18.28 nan nan
127.45 31.65 2.66 15.08 15.24 15.39 15.46 15.2 15.4
0.18 1.54 12.15 16.54 16.28 16.53 16.42 nan nan

133.96 37.0 13.88 18.64 17.48 17.5 17.28 nan nan
275.87 30.05 6.24 18.25 18.91 18.79 19.02 nan nan
236.11 54.83 nan 18.21 17.7 17.51 16.82 14.1 13.91
1.41 37.02 11.84 18.03 17.97 18.19 18.31 nan nan

37.07 32.4 8.56 19.16 17.5 17.15 16.62 13.98 13.93
126.03 33.71 6.79 18.22 17.83 17.34 17.83 13.97 13.04
8.37 5.68 13.53 18.42 17.92 17.94 17.85 nan nan

121.12 42.22 12.55 17.16 16.9 17.03 16.94 nan nan
273.17 30.61 9.26 17.47 18.15 18.23 18.47 nan nan
148.55 30.77 14.16 19.61 19.1 19.01 19.1 nan nan
117.16 38.69 14.03 19.42 18.67 18.64 18.47 nan nan
128.23 31.65 14.16 18.42 17.7 17.6 17.45 nan nan
238.3 56.64 12.22 18.64 18.74 18.94 18.94 nan nan
124.9 35.49 11.33 19.81 19.21 18.95 18.56 15.72 15.58

330.93 34.12 7.95 19.33 18.68 18.52 18.23 15.6 15.51
151.92 40.69 10.6 18.75 17.6 17.36 16.64 14.01 13.83
135.94 55.28 0.75 13.4 13.91 14.07 14.22 14.18 14.12
140.53 41.42 13.71 19.2 18.62 18.59 18.5 nan nan
38.13 45.17 7.0 19.64 17.04 16.95 16.67 14.73 14.92

215.03 53.38 12.8 17.21 16.8 16.89 16.8 16.1 16.18
330.22 32.3 10.62 18.8 16.96 16.64 16.03 13.25 13.18
334.38 13.55 8.49 18.83 19.6 19.3 19.48 nan nan
200.27 56.17 7.75 17.53 17.27 17.46 17.41 16.62 nan
335.46 32.4 13.38 19.57 19.5 19.5 19.6 nan nan
222.29 56.62 10.81 20.07 19.85 19.46 19.27 nan nan
158.81 39.8 8.92 19.76 18.71 18.66 18.2 14.99 14.96
2.23 1.4 nan 18.47 18.12 17.96 17.24 14.31 14.2

119.83 39.98 8.65 18.78 19.69 19.76 19.56 16.23 15.85
3.58 1.2 9.12 19.09 19.7 19.38 19.46 16.59 15.81

242.42 47.59 11.63 16.8 16.67 16.95 16.87 nan nan
37.96 29.09 10.62 18.55 18.56 18.58 18.62 nan nan

331.36 30.87 10.9 17.38 17.51 17.74 17.73 nan nan
337.29 11.31 9.75 17.55 18.14 18.24 18.46 nan nan
239.18 48.38 9.65 19.45 17.98 17.62 16.93 14.22 14.04
12.11 7.99 10.37 19.59 19.43 19.42 18.86 15.85 15.71

338.95 11.84 5.85 16.67 16.99 17.06 17.12 16.73 nan
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
14.71 6.65 12.67 18.0 17.65 17.71 17.62 nan nan

113.43 39.17 12.85 17.98 17.86 18.04 18.05 nan nan
120.99 33.92 13.65 19.53 18.5 18.35 18.26 nan nan
334.62 31.86 7.33 18.48 17.53 17.36 17.07 14.76 14.72
216.27 54.61 8.83 18.23 18.7 18.89 18.95 nan nan
28.88 4.74 9.0 19.49 18.07 17.81 17.08 14.25 14.08

120.97 32.23 12.65 18.83 18.57 18.72 18.69 nan nan
116.81 79.34 9.06 19.27 17.55 17.21 16.48 13.65 13.5
243.37 54.34 11.45 19.65 19.62 19.75 19.28 16.84 16.92
344.07 32.22 2.59 14.62 14.96 15.09 15.23 15.09 15.07
237.76 47.46 4.53 15.66 16.18 16.33 16.48 nan nan
339.75 11.57 9.51 18.54 16.77 16.4 15.82 13.15 12.98
139.04 54.63 10.19 16.84 17.43 17.69 17.81 17.75 nan
237.31 44.36 10.16 17.55 18.09 18.35 18.35 nan nan
108.79 38.11 9.15 18.3 18.83 18.72 18.38 16.43 nan
36.41 33.31 11.21 18.38 17.37 17.13 16.26 13.09 12.9

169.38 39.58 8.88 18.67 19.5 19.53 19.19 16.44 15.71
28.37 5.76 9.69 15.79 16.41 16.6 16.78 17.39 nan
13.7 6.09 4.63 15.97 16.15 16.23 16.27 15.31 15.39
1.49 34.86 12.35 17.0 17.12 17.16 17.33 17.47 nan

258.16 56.42 4.26 15.63 16.24 16.37 16.48 15.96 15.98
39.06 30.72 12.58 19.06 18.91 19.06 19.04 nan nan

134.74 30.21 11.25 17.83 17.97 18.14 18.17 nan nan
7.18 5.99 13.46 18.72 18.43 18.38 18.34 nan nan

237.59 56.83 4.02 17.18 17.12 17.06 17.19 16.36 16.5
138.6 29.86 7.97 19.41 19.04 18.82 18.8 16.11 15.25

135.83 53.63 nan 19.5 18.63 18.43 17.72 14.97 14.8
11.05 3.31 13.49 18.21 17.66 17.64 17.6 nan nan

343.59 10.53 5.83 17.45 18.19 18.43 18.65 nan nan
36.71 30.65 10.61 18.47 18.21 18.16 17.7 14.93 14.81

238.61 46.29 11.97 16.43 16.65 16.75 16.85 17.01 nan
333.7 30.93 8.31 17.22 17.79 17.9 18.22 nan nan
330.4 32.39 11.05 16.93 16.93 17.2 17.2 nan nan

227.21 53.03 12.7 18.14 17.85 18.01 17.85 nan nan
352.08 33.32 10.32 15.84 14.96 14.73 13.99 nan nan
144.69 31.36 5.09 16.9 16.95 16.63 17.02 16.25 15.98
223.57 55.2 10.91 15.73 16.23 16.46 16.58 17.11 nan
16.7 1.81 12.29 17.58 17.25 17.4 17.31 nan nan

121.04 31.98 9.14 19.4 17.93 17.57 17.04 14.36 14.3
114.06 79.68 11.04 15.76 16.01 16.26 16.3 16.44 16.73
160.05 39.72 12.96 17.94 17.7 17.82 17.71 17.14 nan
8.16 7.79 11.88 18.53 18.74 18.86 18.87 nan nan

186.9 56.0 8.39 19.11 18.0 17.67 17.13 14.58 14.24
138.49 40.79 13.45 17.7 17.18 17.17 17.08 nan nan
39.64 7.14 12.06 16.71 16.55 16.82 16.75 nan nan
245.0 49.65 10.9 18.51 18.95 18.95 19.29 nan nan

143.62 32.18 11.98 18.62 18.42 18.5 18.36 nan nan
244.25 53.71 12.82 19.22 19.24 19.34 19.48 nan nan
258.6 57.42 11.54 19.1 17.6 17.2 16.17 12.93 12.73

241.69 43.62 10.63 19.37 18.54 18.33 17.46 14.43 14.29
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
233.27 50.55 12.15 18.88 19.04 19.06 19.14 nan nan
233.37 52.11 5.33 13.57 14.22 14.4 14.57 15.01 15.07
339.06 31.99 9.24 19.07 19.52 19.48 19.72 nan nan
339.82 33.7 14.07 18.76 18.38 18.33 18.32 nan nan
22.87 40.35 9.02 19.14 18.97 18.9 18.59 15.9 16.04

154.19 32.08 13.61 19.23 18.93 18.99 18.91 nan nan
29.42 7.2 10.45 15.1 15.44 15.71 15.8 15.91 nan

227.86 53.44 11.63 16.12 16.09 16.41 16.37 nan nan
352.39 33.78 4.77 15.62 16.18 16.31 16.49 16.82 nan
236.54 49.19 13.7 18.55 18.06 18.1 18.0 nan nan
150.59 32.42 nan 19.61 18.64 18.4 17.87 15.27 15.08
37.56 35.74 5.26 18.33 17.12 17.14 18.7 15.77 15.9

135.72 32.22 6.74 17.71 18.34 18.52 18.83 nan nan
1.32 7.22 11.07 17.89 18.33 18.39 18.53 nan nan

241.75 42.29 7.93 18.39 18.62 18.52 17.97 15.3 15.06
188.41 55.86 7.03 19.48 19.15 18.8 19.18 15.88 15.17
111.78 30.28 4.38 16.89 17.07 17.09 17.2 16.58 nan
333.78 31.98 13.46 17.48 16.98 17.02 16.96 nan nan
129.96 39.22 10.69 18.83 17.8 17.61 17.43 15.48 15.77
134.05 36.98 9.62 19.25 17.75 17.39 16.47 13.45 13.27
148.7 31.5 13.47 18.65 18.29 18.15 18.1 nan nan

226.57 54.09 14.35 19.48 18.87 18.69 18.71 nan nan
132.21 35.82 13.41 18.45 18.16 18.21 18.19 nan nan
25.47 7.72 12.21 18.43 18.68 18.79 18.92 nan nan
19.34 6.27 11.64 18.29 18.63 18.75 18.85 nan nan

145.17 30.36 11.9 17.7 17.62 17.78 17.84 nan nan
273.59 41.86 4.77 14.97 15.1 15.01 15.26 14.37 14.25
245.4 50.14 6.14 17.06 17.58 17.7 17.81 nan nan
15.32 1.19 3.86 16.22 16.44 16.55 16.62 16.31 nan

105.99 78.08 14.36 17.46 16.26 16.19 16.05 14.61 14.58
215.36 53.08 13.18 19.19 18.87 18.77 18.73 nan nan
35.84 29.38 12.23 18.09 17.8 17.86 17.86 nan nan

123.06 36.61 8.67 18.56 17.22 16.9 16.34 13.72 13.61
129.69 33.83 11.17 17.43 17.91 18.1 18.17 nan nan
239.37 48.84 4.78 16.01 16.74 16.91 17.13 nan nan
127.14 34.87 13.6 19.17 18.99 19.12 19.21 nan nan
123.49 32.32 11.14 16.93 17.09 17.33 17.35 nan nan
0.27 35.46 10.92 18.72 18.08 17.93 17.16 14.08 13.85

28.56 2.02 11.69 15.3 15.09 15.4 15.3 nan nan
234.07 50.23 11.65 16.16 15.83 15.98 15.9 nan nan
345.99 33.99 3.24 15.72 15.52 15.23 15.4 14.17 14.25
132.12 52.24 13.05 18.48 18.17 18.24 18.22 nan nan
197.4 55.96 13.59 19.1 18.92 19.1 19.0 nan nan

138.35 32.04 6.82 17.18 18.29 18.25 18.07 15.16 14.37
24.74 6.09 9.21 19.24 18.47 18.21 17.61 14.88 14.8
12.06 5.08 9.56 17.37 17.98 18.13 18.22 nan nan

283.88 38.68 6.01 16.17 16.12 16.06 16.23 14.92 14.81
339.75 32.86 9.31 19.55 18.06 17.74 17.23 14.62 14.61
38.13 35.48 nan 16.95 16.92 16.9 17.25 nan nan
23.62 2.07 11.45 14.89 14.76 15.09 15.01 14.82 14.72
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
245.42 48.21 13.51 18.94 18.7 18.79 18.71 nan nan
133.04 33.6 7.71 19.3 19.01 18.64 19.13 nan nan
183.6 55.04 5.7 16.31 17.13 17.3 17.63 nan nan
37.82 28.99 12.91 15.44 14.98 15.03 14.96 14.15 14.13

121.22 30.27 5.99 17.06 17.81 17.95 18.1 nan nan
25.01 6.66 8.53 19.77 19.02 18.88 18.86 16.0 15.99

114.28 41.21 11.99 16.07 15.89 16.15 16.06 nan nan
222.92 46.63 12.08 19.09 19.19 19.11 19.03 nan nan
109.14 39.6 11.72 18.5 18.65 18.78 19.11 nan nan
341.13 13.58 11.53 18.67 18.75 18.89 19.15 nan nan
333.33 29.43 14.38 18.74 18.16 18.15 18.1 nan nan
331.09 32.64 7.8 16.57 17.28 17.45 17.58 nan nan
112.37 39.17 11.62 16.11 15.96 16.27 16.2 16.23 16.21
339.41 32.11 14.11 19.28 18.66 18.68 18.69 nan nan
342.4 33.62 11.47 20.34 19.11 18.78 17.85 14.59 14.4

238.81 56.79 8.51 16.83 17.47 17.61 17.63 nan nan
244.44 42.97 8.43 19.61 18.93 18.69 18.52 nan nan
31.67 7.1 6.74 17.53 18.17 18.24 18.55 nan nan
5.68 6.17 6.65 17.26 17.55 17.56 17.65 nan nan

131.48 39.25 2.72 15.16 15.81 15.47 16.13 14.89 14.84
112.43 39.44 8.81 17.93 18.57 18.73 18.96 nan nan
136.0 37.67 9.29 17.03 17.73 17.98 18.07 nan nan

340.97 33.82 2.39 15.24 15.6 15.74 15.86 15.8 16.0
117.18 38.71 10.76 19.61 17.8 17.33 16.49 13.43 13.24
109.38 41.85 9.76 19.77 18.09 17.8 17.12 14.3 14.24
123.97 32.81 6.94 17.64 17.92 17.88 17.74 16.29 nan
1.43 36.83 7.03 17.79 18.08 18.15 18.33 nan nan

22.75 40.09 nan 16.46 16.98 16.98 16.88 15.81 15.71
256.47 26.1 14.12 17.87 16.82 16.74 16.53 nan nan
130.08 40.46 10.14 17.71 18.27 18.52 18.69 nan nan
282.74 39.49 12.37 19.26 19.27 19.32 19.59 nan nan
23.3 5.65 12.11 19.43 18.73 18.67 17.95 15.02 14.82

284.43 39.52 3.71 15.13 15.77 15.92 16.13 nan nan
31.65 34.3 8.09 15.85 16.57 16.67 16.9 17.02 nan

123.48 33.28 11.14 17.36 17.42 17.65 17.73 nan nan
1.31 2.86 12.45 18.12 18.27 18.42 18.39 nan nan

223.84 56.93 11.39 14.98 14.97 15.29 15.23 15.34 15.26
236.53 56.85 12.0 18.33 18.36 18.4 18.55 nan nan
120.39 36.3 13.25 18.19 17.85 17.82 17.59 nan nan
122.46 31.11 11.82 18.43 18.62 18.8 18.97 nan nan
39.28 6.92 12.98 18.89 16.65 15.98 14.77 11.2 10.99

255.32 24.06 5.56 17.48 18.11 18.25 18.4 nan nan
31.89 33.52 14.28 18.62 17.52 17.49 17.39 nan nan

277.41 42.25 12.41 18.75 18.66 18.76 18.81 nan nan
332.2 12.36 7.55 17.77 17.12 16.94 16.69 14.44 14.37
16.35 1.44 11.0 17.57 17.98 18.07 18.28 nan nan

331.17 9.9 11.25 17.32 17.41 17.62 17.56 nan nan
229.93 53.46 9.85 18.5 17.45 17.1 16.47 13.77 13.6

5.9 6.72 13.28 18.95 18.54 18.54 18.55 nan nan
119.76 31.01 8.98 18.56 19.03 18.81 19.01 nan nan
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
116.93 40.02 13.0 18.99 18.89 18.91 19.06 nan nan
239.68 49.67 6.31 19.03 18.82 18.64 18.91 nan nan
116.1 78.61 13.21 18.74 18.79 18.83 18.92 nan nan
1.52 7.92 13.04 18.09 17.99 17.99 18.07 nan nan

122.41 31.27 7.66 19.06 18.54 18.27 17.45 14.2 14.11
14.43 4.6 11.03 18.16 17.2 17.01 16.22 13.24 13.06

125.07 32.03 9.45 19.8 19.36 19.18 19.16 15.95 15.8
206.84 27.12 10.02 17.89 16.62 16.35 15.93 13.4 13.29
256.41 24.33 11.34 17.89 18.26 18.36 18.55 nan nan
127.37 30.32 12.57 18.63 18.83 18.83 19.03 nan nan
274.77 42.26 11.6 18.96 19.22 19.33 19.35 nan nan
152.77 30.26 8.51 18.8 18.66 18.44 18.61 nan nan
128.09 33.27 13.33 19.32 19.04 18.97 19.06 nan nan
349.04 23.13 7.07 18.14 18.89 18.99 19.25 nan nan
280.1 29.88 11.39 18.67 19.03 19.25 19.32 nan nan

278.22 42.26 11.04 17.62 18.15 18.28 18.32 nan nan
236.18 52.12 10.0 19.28 18.26 17.91 17.24 14.47 14.34
241.29 50.0 13.25 18.42 18.47 18.5 18.59 nan nan
5.32 7.94 9.21 19.53 19.61 19.28 19.54 15.56 14.85

281.34 40.93 10.82 15.85 16.28 16.51 16.52 nan nan
20.96 4.77 9.89 17.94 18.29 18.45 18.59 nan nan
18.47 3.21 5.49 17.14 17.21 17.03 17.46 16.01 16.07
36.15 37.34 9.2 18.2 18.42 18.32 18.38 nan nan

336.18 11.25 9.92 18.18 16.96 16.6 15.93 13.0 12.94
8.03 3.39 12.3 19.31 17.87 17.52 16.56 13.38 13.21

17.22 5.72 10.49 18.75 17.48 17.12 16.3 13.27 13.05
11.61 1.77 11.23 18.45 18.62 18.71 18.84 nan nan

337.66 12.94 13.9 17.36 17.03 17.18 17.04 16.39 nan
241.73 42.76 8.45 18.1 18.29 18.28 18.04 15.54 15.31
39.55 45.15 8.8 19.39 17.85 17.6 17.16 14.58 14.65
39.53 33.03 11.48 16.96 17.22 17.33 17.48 nan nan

254.94 22.94 2.74 14.64 14.94 15.06 15.17 15.08 15.44
278.38 41.65 6.81 18.78 19.2 19.09 18.96 17.69 nan
237.36 48.04 14.02 17.75 17.13 17.12 17.1 nan nan
330.8 29.65 11.24 17.38 17.79 17.89 17.9 nan nan

142.98 39.77 10.41 17.27 17.37 17.32 16.79 14.01 13.9
266.04 31.91 11.59 18.62 18.86 18.95 18.95 nan nan
122.11 32.04 4.32 13.31 13.9 14.03 14.21 14.46 14.59
131.35 38.03 12.94 16.25 15.97 16.07 15.99 nan nan
283.73 38.31 9.73 19.05 18.04 17.71 17.07 14.2 14.15
340.33 9.82 10.44 17.62 18.12 18.18 18.36 nan nan
36.93 44.41 11.52 16.05 15.99 16.34 16.27 nan nan
123.4 32.1 9.68 18.68 17.36 17.02 16.38 13.66 13.5

343.14 10.34 7.15 18.15 17.31 16.92 17.0 14.91 14.77
183.25 43.23 10.46 17.89 17.48 17.34 16.72 14.0 13.88
127.73 31.99 9.54 19.31 19.07 18.91 18.36 15.68 15.57
260.0 33.27 10.36 16.92 17.41 17.62 17.72 nan nan

123.74 34.63 13.92 18.44 18.08 18.09 18.04 nan nan
335.07 12.92 4.73 16.8 17.07 17.22 17.33 nan nan
133.62 38.14 11.7 18.48 18.72 18.73 18.85 nan nan
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151.84 30.15 11.48 19.42 18.31 18.06 17.06 14.1 13.96
149.41 30.03 9.57 18.59 18.78 18.7 18.37 15.7 15.59
116.38 45.64 11.04 18.94 18.92 18.48 18.79 nan nan
244.14 54.17 13.47 18.69 18.33 18.35 18.22 16.58 16.47
340.09 12.09 6.1 16.33 16.95 17.07 17.3 nan nan
244.64 54.0 9.37 17.93 18.49 18.73 18.81 nan nan
18.43 3.55 10.77 18.02 17.59 17.34 16.61 13.51 13.33
33.69 44.87 13.01 19.26 19.08 19.04 18.98 nan nan

153.63 40.85 7.45 19.39 18.34 18.07 17.49 14.88 14.77
130.8 39.75 4.21 13.77 14.52 14.67 14.87 15.27 15.24
26.23 1.62 9.37 17.24 17.9 18.08 18.26 nan nan

136.43 30.72 10.36 17.63 16.43 16.02 15.26 12.34 12.23
138.98 53.42 13.69 14.14 13.75 13.76 13.8 nan nan
284.9 40.57 3.92 17.6 17.56 17.31 17.41 16.4 16.49

154.91 31.65 14.01 18.99 18.56 18.44 18.28 nan nan
239.81 48.39 12.56 18.33 18.5 18.55 18.65 nan nan
331.64 12.99 11.35 18.4 18.7 18.87 18.9 nan nan
277.88 42.04 6.92 17.11 17.53 17.62 17.7 nan nan
19.24 7.52 11.14 17.3 17.65 17.74 17.86 nan nan

257.73 32.33 12.9 18.13 18.07 18.1 18.12 nan nan
188.64 56.11 12.0 18.07 18.19 18.25 18.49 16.73 15.92
255.44 22.89 10.21 17.09 17.6 17.82 17.94 nan nan
30.1 7.25 13.66 19.04 18.61 18.66 18.77 nan nan

280.5 30.81 9.94 18.3 18.94 19.17 19.62 nan nan
332.09 29.04 5.13 14.84 15.43 15.59 15.73 nan nan
151.14 40.24 12.37 18.16 18.42 18.54 18.5 nan nan
241.42 46.18 7.91 17.9 16.59 16.36 16.0 13.64 13.6
273.52 30.83 3.26 17.23 17.28 17.06 16.95 16.48 nan
133.09 33.02 4.85 16.57 16.9 17.04 17.15 nan nan
10.61 4.5 12.45 18.65 18.51 18.55 18.72 nan nan
1.31 35.28 10.08 17.93 18.58 18.75 19.0 nan nan

239.54 48.94 12.89 19.11 18.92 18.74 19.0 nan nan
243.22 42.82 10.83 17.7 18.03 18.17 18.34 nan nan
130.91 36.57 9.78 19.16 17.85 17.51 16.86 14.02 13.85
227.96 56.41 12.54 16.59 16.33 16.5 16.39 nan nan
120.56 40.18 6.19 16.55 16.64 16.56 16.63 nan nan
278.41 40.67 9.15 18.08 18.64 18.77 18.57 nan nan
6.76 4.12 9.94 18.48 17.65 17.32 16.69 13.84 13.66

127.66 40.85 11.02 16.04 16.07 16.35 16.33 nan nan
201.8 57.14 8.38 19.04 19.29 19.12 19.23 16.47 15.55

224.78 55.52 11.71 18.51 18.84 18.65 18.94 nan nan
40.28 34.63 9.24 17.17 17.88 18.12 18.26 nan nan
15.24 3.06 10.71 17.72 18.1 18.27 18.41 nan nan
39.67 28.15 13.25 18.34 18.15 18.17 18.24 nan nan
7.16 6.92 10.01 17.53 18.06 18.19 18.41 nan nan

36.99 33.98 12.16 17.91 18.04 18.06 18.19 nan nan
37.53 32.24 12.76 16.77 16.61 16.74 16.64 nan nan
28.98 1.59 13.87 18.89 18.5 18.49 18.57 nan nan
8.0 4.04 12.05 18.0 18.18 18.25 18.32 nan nan

130.1 34.53 14.08 18.84 18.45 18.4 18.43 nan nan
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
131.34 55.82 9.44 17.44 18.09 18.28 18.56 nan nan
239.1 57.53 6.66 19.07 18.36 17.42 18.23 nan nan

273.41 41.97 10.99 20.0 18.62 18.33 17.91 15.34 15.21
35.28 33.88 10.26 17.49 17.45 17.26 16.9 14.51 14.47

113.73 41.09 10.18 17.72 17.17 16.96 16.25 13.45 13.32
13.31 39.45 13.2 16.97 16.59 16.64 16.53 nan nan
130.6 37.98 8.19 17.24 18.17 18.35 18.47 nan nan
18.17 3.11 10.79 17.68 18.1 18.35 18.33 nan nan

157.67 40.22 7.75 17.05 17.87 18.05 18.23 nan nan
22.61 8.09 13.93 19.76 19.55 19.42 19.41 nan nan

130.49 40.25 7.9 16.96 17.91 18.07 18.0 nan nan
122.3 35.47 12.38 15.38 15.11 15.27 15.19 14.7 14.73

115.05 38.99 11.16 19.35 19.17 18.98 18.66 16.08 15.8
282.39 40.34 11.13 14.77 14.94 15.23 15.23 nan nan
273.33 30.19 4.83 15.15 15.7 15.82 16.0 16.15 16.42
284.97 39.18 5.32 18.94 17.55 16.67 17.39 nan nan
267.01 32.48 12.74 19.18 19.1 19.09 19.28 nan nan
124.9 31.24 4.53 15.14 15.81 15.97 16.14 16.49 nan
3.89 6.2 13.57 18.61 18.82 18.92 18.9 nan nan

265.92 31.8 10.14 18.88 18.47 18.22 17.59 14.73 14.63
332.64 9.85 12.38 17.03 15.55 15.14 14.21 nan nan
237.03 48.49 9.78 19.66 18.15 18.0 17.69 15.4 15.31
164.98 40.73 8.56 17.63 18.68 18.99 19.1 nan nan
136.94 38.95 10.63 16.16 16.62 16.86 16.89 nan nan
18.32 6.06 13.84 18.69 18.54 18.59 18.51 nan nan
33.45 45.17 6.37 17.52 17.98 17.89 17.76 nan nan
31.06 7.44 11.16 16.28 16.5 16.81 16.8 nan nan
38.22 44.19 4.9 13.88 14.46 14.6 14.79 15.26 15.38

106.62 39.51 nan 19.14 17.6 17.26 16.34 nan nan
348.08 33.38 13.13 19.29 19.38 19.53 19.58 nan nan
130.27 39.39 10.82 16.38 16.73 16.93 16.99 nan nan
155.48 40.84 10.94 16.28 16.63 16.87 16.94 16.29 15.98
331.6 13.43 10.97 17.7 17.97 18.04 18.23 nan nan
27.96 5.28 10.99 17.23 17.7 17.83 18.02 nan nan

134.38 40.27 10.68 14.64 15.0 15.25 15.32 nan nan
334.79 10.08 9.56 18.17 18.76 18.84 19.08 nan nan
240.69 43.93 12.61 19.36 19.14 18.88 19.0 nan nan
158.72 39.52 11.54 17.84 18.2 18.36 18.48 nan nan
35.56 45.38 nan 19.48 18.65 18.3 17.98 15.16 15.04

135.32 30.18 8.21 17.61 18.45 18.53 18.66 nan nan
227.3 55.54 12.42 17.56 17.64 17.68 17.82 nan nan
22.16 33.84 9.09 19.81 18.43 18.2 17.57 14.85 14.9

242.84 52.77 4.81 12.35 12.98 13.11 13.29 13.63 13.69
38.23 37.07 5.42 15.49 15.97 16.06 16.13 nan nan

341.28 34.03 9.8 18.63 19.35 19.32 19.79 nan nan
131.59 55.11 6.3 17.78 17.47 17.34 17.12 15.14 15.32
236.24 45.26 8.08 15.72 16.48 16.62 16.83 nan nan
264.03 31.98 5.63 16.59 17.16 17.25 17.36 nan nan
274.46 41.34 5.9 17.19 17.78 17.87 18.18 nan nan
106.62 38.61 9.57 19.72 18.33 18.06 17.42 14.75 14.62
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
236.2 45.84 9.39 17.05 17.75 17.98 18.12 nan nan

134.62 40.18 8.37 18.6 19.17 19.01 18.94 16.3 15.12
282.38 39.62 4.39 17.0 17.66 17.76 18.01 nan nan
109.26 39.89 7.74 15.84 16.8 16.95 17.06 16.36 nan
278.5 39.74 11.77 17.93 18.18 18.25 18.36 nan nan
21.53 33.28 9.55 16.66 17.41 17.58 17.73 nan nan

332.84 33.78 5.98 17.37 17.91 18.03 18.23 nan nan
38.19 35.74 4.76 16.25 14.68 14.63 20.27 12.97 12.97
21.13 6.82 5.76 15.98 16.68 16.83 16.99 17.13 nan

282.86 40.91 1.49 17.84 14.46 13.84 11.48 4.84 4.3
188.96 42.38 4.71 11.59 12.17 12.34 12.51 12.89 12.96
120.94 30.75 3.32 14.84 15.29 15.45 15.58 15.76 16.02
194.93 57.4 8.83 16.33 17.17 17.39 17.56 nan nan
337.41 32.42 10.69 18.23 18.73 18.83 19.2 nan nan
130.77 33.46 4.5 14.46 15.06 15.21 15.35 nan nan
340.73 11.76 4.93 12.58 11.61 10.97 14.72 12.83 12.69
276.97 40.88 9.5 18.16 16.45 15.21 15.39 12.08 11.72
14.88 41.4 9.88 17.36 18.09 18.09 18.41 nan nan

130.26 39.94 4.84 14.99 15.62 15.82 15.97 16.18 nan
343.3 33.08 5.91 16.69 17.26 17.42 17.56 nan nan

277.61 31.09 5.36 16.15 16.57 16.67 16.74 15.58 15.59
276.13 30.9 10.04 18.69 17.43 17.04 16.28 13.37 13.2
341.18 12.43 11.78 17.81 18.13 18.28 18.35 nan nan
10.55 7.53 9.53 18.18 18.68 18.08 18.48 16.65 nan
109.7 40.85 8.07 16.14 18.7 18.64 18.76 nan nan
1.77 6.43 11.31 16.0 16.42 16.64 16.7 nan nan

14.39 4.93 8.64 18.13 16.99 16.58 16.58 13.88 13.81
6.73 6.59 13.3 17.49 17.13 17.27 17.11 16.39 nan

136.48 30.09 10.05 18.42 17.65 17.4 16.91 13.95 13.81
27.71 33.44 8.99 17.9 18.04 17.38 17.7 16.25 nan

277.26 30.53 4.51 14.93 15.47 15.62 15.77 15.94 16.4
121.25 35.22 12.07 18.51 18.83 18.71 18.91 nan nan
131.15 39.95 11.94 17.48 17.75 17.84 17.89 nan nan
39.38 44.98 12.05 17.86 18.08 18.2 18.26 nan nan

261.03 56.33 8.57 15.91 16.56 16.67 16.73 14.97 14.79
108.29 40.21 10.31 19.69 18.26 17.93 17.46 14.45 14.36
121.0 40.33 11.74 19.17 19.83 19.82 19.67 nan nan

122.03 33.73 13.02 18.19 18.12 18.11 18.25 nan nan
128.5 36.99 12.58 16.35 16.06 16.23 16.13 nan nan
17.73 5.76 11.9 17.64 18.04 18.06 18.24 nan nan

236.79 53.12 10.59 18.86 18.0 17.54 16.8 13.79 13.6
130.72 34.41 11.45 16.3 16.4 16.7 16.69 nan nan
26.64 7.98 12.44 18.31 18.43 18.51 18.48 nan nan
336.1 10.62 6.83 17.58 18.11 18.1 18.36 nan nan

330.35 9.67 11.19 17.62 18.01 18.12 18.31 nan nan
7.29 6.43 6.05 16.95 17.57 17.65 17.86 nan nan

107.32 39.68 11.33 16.31 16.71 16.79 16.98 nan nan
347.56 34.03 4.2 14.9 15.63 15.76 15.99 16.35 nan
278.45 39.76 4.81 16.15 16.73 16.89 17.06 nan nan
4.23 7.08 4.78 15.7 16.28 16.4 16.57 15.95 nan
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R.A. Dec Abs. mag (r) J0395 r J0660 i WISE1 WISE2
120.87 34.36 4.31 14.62 15.29 15.43 15.61 16.08 16.14
27.24 2.54 13.39 17.0 16.66 16.63 16.67 nan nan

137.53 52.13 5.82 19.22 17.93 16.86 17.73 16.38 nan
257.25 23.54 13.97 18.99 18.66 18.61 18.65 nan nan
125.69 36.24 11.18 15.51 15.75 16.05 16.01 15.52 15.37
0.88 35.09 11.86 18.58 18.59 18.68 18.71 nan nan

134.74 32.14 11.98 19.26 19.18 18.98 18.21 15.27 15.03
39.72 43.39 5.2 16.6 17.24 17.36 17.52 nan nan
8.57 39.61 12.08 17.09 17.31 17.38 17.5 nan nan

277.92 31.11 8.73 18.13 18.07 17.95 17.67 15.09 15.28
135.67 32.36 6.79 18.94 18.32 18.36 18.36 17.42 nan
14.88 2.37 13.18 18.97 19.05 19.06 19.17 nan nan
28.89 7.72 10.91 17.56 17.89 18.04 18.16 nan nan

243.11 42.85 9.5 17.24 17.92 18.02 18.25 nan nan
340.87 10.78 4.81 14.53 15.22 15.38 15.56 15.98 nan
140.57 30.67 11.02 17.41 16.28 15.86 15.07 12.11 11.93
342.48 11.68 12.62 17.43 17.52 17.58 17.66 nan nan
259.75 56.4 12.62 19.17 19.16 19.04 19.19 nan nan
242.65 44.18 4.94 14.48 15.06 15.2 15.41 15.63 15.74
282.23 40.26 4.71 16.94 17.68 17.85 18.0 nan nan
241.34 43.08 9.65 14.38 15.06 15.26 15.41 15.93 16.05
343.8 9.61 10.13 17.17 16.54 16.23 15.52 12.63 12.47

213.69 56.56 11.42 17.91 18.2 18.26 18.46 nan nan
213.96 53.61 4.92 16.3 17.03 17.2 17.37 nan nan
197.48 55.06 12.98 18.88 18.57 18.59 18.72 nan nan
124.89 32.4 10.46 17.68 18.14 18.27 18.48 nan nan
240.89 51.81 5.9 17.25 17.95 18.07 18.26 nan nan
121.62 32.52 4.88 15.04 15.61 15.76 15.92 15.97 15.73
259.93 33.32 12.48 18.65 18.91 19.01 19.08 nan nan
235.51 50.43 10.39 16.56 17.18 17.33 17.5 nan nan
136.2 31.55 4.8 14.59 15.36 15.51 15.7 16.25 nan
25.51 3.2 12.4 19.05 18.92 18.52 19.1 16.71 nan

245.79 42.98 6.51 17.3 17.96 18.13 18.31 nan nan
233.07 45.77 6.29 16.41 16.64 16.7 16.72 15.71 15.83
2.88 2.14 13.65 19.2 18.94 18.75 18.97 nan nan

134.15 37.65 11.76 19.83 19.01 18.72 17.93 15.02 14.88
38.55 35.73 5.32 17.22 15.73 15.67 20.45 14.12 14.24

335.37 30.42 4.73 14.87 15.56 15.71 15.9 15.87 15.62
263.76 32.61 4.97 14.8 15.37 15.53 15.68 15.78 15.99
258.62 22.79 4.16 14.32 14.96 15.13 15.31 15.78 15.92
33.93 33.67 4.37 13.42 13.94 14.08 14.25 14.46 14.59

263.97 32.29 5.3 12.28 17.26 17.24 17.11 15.91 16.23
107.63 38.27 8.38 20.01 18.82 18.45 17.8 14.99 15.08
341.88 33.81 7.81 20.22 19.44 19.15 19.67 16.44 15.78
121.26 40.99 1.65 17.0 12.83 12.27 10.41 nan nan
4.68 2.56 12.78 17.21 17.15 17.14 17.28 17.21 nan

33.96 29.35 5.66 13.69 14.15 14.3 14.44 14.58 14.67
116.28 38.19 4.11 14.46 15.04 15.17 15.29 nan nan
257.98 23.02 10.9 14.44 14.99 15.14 15.29 nan nan
35.28 45.54 9.69 19.12 18.2 17.97 17.59 15.04 15.0
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231.65 48.97 12.57 17.92 18.2 18.23 18.29 nan nan
227.44 55.98 9.81 13.84 15.7 12.11 11.94 11.76 11.67
135.67 36.75 11.1 17.37 17.71 17.83 17.93 nan nan
342.2 10.44 13.79 19.02 18.53 18.46 18.49 nan nan

115.01 39.78 3.2 15.0 15.78 15.92 16.15 nan nan
110.0 40.36 11.14 14.59 15.02 15.12 15.3 nan nan
5.57 2.53 11.73 17.53 17.75 17.83 18.07 nan nan

122.19 31.52 7.4 18.76 18.46 17.75 17.97 15.53 15.46
134.31 33.31 9.59 18.56 18.6 18.48 18.11 15.46 15.61
330.18 33.38 0.88 18.09 13.6 13.47 11.15 nan nan
138.64 58.21 8.68 17.27 17.99 18.07 18.21 nan nan
34.0 35.69 11.25 15.17 15.92 16.07 16.27 16.56 16.12

38.93 7.5 14.19 18.93 18.7 18.68 18.58 nan nan
38.98 35.93 6.77 16.79 17.37 17.41 17.39 nan nan

150.98 40.57 3.58 12.72 13.5 13.66 13.87 14.38 14.48
136.98 56.0 12.37 18.9 19.13 19.24 19.18 nan nan
126.02 31.08 13.14 17.81 17.58 17.6 17.63 nan nan
124.73 37.5 10.78 16.35 16.69 16.95 17.0 nan nan
132.15 31.34 12.36 18.02 18.36 18.41 18.51 nan nan
16.15 41.3 7.13 13.92 13.61 13.3 13.31 10.87 10.73
216.9 53.81 11.57 14.85 15.13 15.29 15.35 nan nan
40.01 45.46 12.35 17.7 17.63 17.76 17.86 nan nan

279.27 40.36 11.63 19.03 18.34 18.17 17.53 14.72 14.54
279.55 30.59 12.27 18.74 18.88 18.9 19.11 nan nan
132.3 40.61 12.8 18.32 18.25 18.19 18.58 nan nan
37.45 35.3 4.46 17.33 16.11 16.08 20.74 14.7 14.67
37.76 27.72 5.12 14.7 15.3 15.42 15.61 15.96 nan

284.86 40.46 10.88 18.47 19.1 19.12 19.61 nan nan
3.02 2.02 6.29 16.92 16.88 16.77 16.94 16.12 16.01

39.25 36.75 10.06 17.52 17.97 18.12 18.31 nan nan
226.84 52.51 10.44 16.9 17.05 16.67 17.56 16.51 16.37
168.97 41.05 10.32 15.09 15.48 15.72 15.78 nan nan
109.57 37.53 12.56 16.45 17.21 17.33 17.67 nan nan
27.29 33.45 8.15 19.51 19.31 18.1 19.23 nan nan

335.81 13.65 11.37 15.4 15.79 16.05 16.1 16.59 nan
330.7 27.84 8.81 16.0 16.79 16.95 17.22 nan nan
282.7 41.75 11.3 19.26 17.65 17.27 16.3 12.99 12.87

121.55 33.74 11.47 16.12 16.47 16.55 16.69 16.73 nan
334.13 29.01 8.53 17.16 16.5 16.04 15.93 12.41 12.27
331.05 26.42 4.38 14.15 14.77 14.95 15.1 15.42 15.44
206.8 56.35 12.06 17.94 18.09 18.08 18.22 nan nan

127.12 36.57 11.31 17.0 17.38 17.48 17.57 nan nan
278.76 41.16 7.2 19.79 19.38 19.19 18.79 15.79 15.87
130.48 37.39 11.8 17.82 17.96 18.02 18.14 nan nan
259.18 30.97 11.69 17.87 18.07 18.16 18.31 nan nan
115.45 38.6 13.13 20.19 19.76 19.39 18.92 15.81 15.55
39.2 30.85 5.08 13.82 14.2 14.34 14.49 14.59 14.63

128.56 40.05 10.25 19.69 19.49 19.27 18.7 15.64 15.6
343.97 32.89 5.0 15.52 14.94 11.59 13.11 nan nan
337.54 10.03 13.25 17.82 17.62 17.72 17.66 nan nan
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7.7 3.78 13.88 16.73 16.09 16.05 16.01 nan nan

211.88 53.4 12.54 18.07 18.17 18.25 18.25 nan nan
39.86 35.32 2.98 14.76 14.71 10.83 14.58 nan nan

257.29 23.33 12.21 17.25 17.43 17.47 17.57 nan nan
35.62 28.5 10.75 16.94 17.36 17.49 17.41 15.09 14.84

183.05 54.87 13.0 17.95 17.87 17.96 18.12 nan nan
12.76 4.94 11.74 17.49 17.82 17.91 17.93 nan nan

114.32 41.44 9.6 17.9 17.09 16.77 16.33 13.73 13.58
23.24 2.19 9.6 16.15 16.84 17.0 17.18 nan nan
19.49 44.06 12.63 17.07 16.82 16.93 16.87 16.36 16.38

262.47 32.39 0.35 16.51 13.2 12.88 11.13 6.56 6.47
332.4 12.39 11.36 17.15 17.45 17.58 17.71 nan nan
258.9 33.22 9.89 14.34 14.64 14.87 14.93 nan nan
16.21 7.18 nan 19.06 18.23 17.96 17.3 14.43 14.3
137.3 54.72 8.31 19.13 19.43 18.69 19.35 16.08 14.72

106.03 40.33 10.69 18.83 19.65 19.68 20.0 nan nan
23.98 7.82 11.12 16.15 16.66 16.92 17.01 nan nan

267.94 31.68 11.14 18.59 19.07 19.28 19.48 nan nan
275.9 41.07 11.23 14.09 14.42 14.57 14.67 nan nan

258.42 32.67 13.12 17.49 17.33 17.35 17.39 nan nan
243.96 45.68 11.66 19.17 18.5 18.29 17.36 14.22 13.96
227.38 52.84 5.85 19.07 18.13 16.18 18.02 16.79 nan
233.59 53.04 13.39 18.85 18.48 18.33 18.58 nan nan
25.5 7.56 11.53 18.22 18.67 18.65 18.89 nan nan

169.34 41.0 12.59 18.13 18.23 18.27 18.39 nan nan
343.56 32.4 14.48 18.78 17.58 17.48 17.38 15.77 15.92
109.29 74.01 10.23 14.95 15.22 15.46 15.45 14.0 13.76
133.43 57.81 10.51 15.91 16.41 15.52 16.35 13.88 13.55
132.65 32.13 12.02 17.22 17.33 17.47 17.52 nan nan
112.54 30.37 10.73 18.87 17.58 17.2 16.51 13.61 13.47
333.76 33.45 2.1 17.13 13.61 13.2 11.47 6.3 6.03
222.82 52.84 3.49 14.64 15.48 15.6 15.87 16.42 16.55
139.82 29.74 nan 18.84 18.82 18.78 18.26 15.85 15.73
236.45 48.42 4.59 13.16 15.32 12.05 12.12 nan nan
26.97 2.86 11.95 16.64 16.83 16.88 17.0 nan nan

283.37 42.06 11.76 18.78 19.02 18.65 19.06 nan nan
121.87 32.7 11.5 17.82 18.1 18.04 18.2 nan nan
330.18 28.14 1.26 14.49 14.94 15.06 15.19 15.23 15.32
256.3 24.17 5.74 17.23 17.93 18.07 18.34 nan nan

125.34 37.14 12.52 18.7 18.74 18.64 18.76 nan nan
122.45 32.36 10.81 18.79 17.13 16.75 15.83 12.69 12.54
241.97 47.88 7.14 19.43 18.38 16.68 18.18 16.91 nan
276.73 42.8 9.6 19.62 18.73 18.43 17.82 15.11 15.0
334.94 12.6 11.85 16.67 16.92 17.01 17.13 nan nan
12.16 8.05 8.53 14.97 15.74 15.91 16.12 16.52 nan

137.05 53.86 12.23 17.42 17.58 17.64 17.77 nan nan
239.72 44.09 11.08 17.92 16.55 15.87 15.3 12.4 12.19
22.7 39.09 12.07 17.87 17.96 17.99 18.08 nan nan

140.53 31.05 8.57 18.44 18.39 17.95 17.94 15.71 15.41
331.94 31.48 6.8 16.76 17.62 14.56 14.4 16.15 nan
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