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1

Resumen

El marco de esta memoria es la teoría de diferenciabilidad en espacios de Banach y en varie-
dades de tipo Banach-Finsler. En ella nos ocupamos de varias cuestiones diferentes que, como
iremos viendo, están muy relacionadas entre sí.

El primer problema que abordamos trata de caracterizar los espacios de Banach separables
donde existen funciones meseta diferenciables que localmente dependen de un número finito
de coordenadas. Recordemos que una función meseta definida en un espacio de Banach X
es una función real-valuada f : X → R tal que su soporte es no vacío y acotado, es decir,
existe un elemento x ∈ X tal que f(x) 6= 0 y la clausura del conjunto {x ∈ X : f(x) 6= 0}
es acotada. La existencia de una función meseta con buenas condiciones nos proporciona
una gran cantidad de propiedades geométricas y de herramientas que no disponemos en otros
espacios de Banach. Un buen ejemplo es un espacio de Banach el cual admite una función
meseta diferenciable, ya que ésta implica que el espacio sea Asplund y admita particiones de
la unidad diferenciables. La propiedad en la que nosotros estamos interesados es la siguiente:
una función f : X → R, definida en un espacio de Banach, localmente depende de un número
finito de coordenadas (LFC, para acortar) siempre que localmente se pueda factorizar a través
de espacios de dimensión finita, es decir, para todo x ∈ X, existan un entorno U de x, una
cantidad finita de funcionales {f1, . . . , fn} ⊂ X∗ y una función continua g : Rn → R tales que
f(y) = g(f1(y), . . . , fn(y)) para todo y ∈ U .

Fue Kuiper quien utilizó por primera vez el concepto de función LFC para construir
renormamientos LFC y de clase C∞ en c0 (esta construcción apareció en [15]). Durante
las últimas décadas, esta noción ha sido muy utilizada en teoría de renormamientos de espa-
cios de Banach, de hecho, se ha convertido en una de las formas más comunes de tratar estos
problemas. Probablemente, la aplicación más importante de las funciones LFC fue dada por
H. Toruńczyk en [108], donde usó la existencia de funciones meseta LFC de clase C∞ en c0(Γ)
para construir particiones de la unidad de clase Ck en espacios reflexivos con funciones meseta
Ck diferenciables. Recientemente, P. Hájek y M. Johanis en [55] y [56] han usado el concepto
de funciones LFC para obtener sup-particiones de la unidad diferenciables y Lipschitz en cierta
clase de espacios de Banach no separables.

La existencia de una función meseta continua y LFC proporciona propiedades extra en los
espacios de Banach. En el artículo [101] (en el cual se define por primera vez la noción de
una función LFC) J. Pechanec, J.H.M. Whitfield y V. Zizler demuestran que todo espacio de
Banach que admite una función meseta LFC está saturado con copias de c0. Algunos años
más tarde, M. Fabian y V. Zizler [26] prueban que, además, estos espacios deben ser Asplund.
Sin embargo, no todo espacio Asplund, c0-saturado admite una función meseta LFC (ver [69]).

El problema que abordamos en el Capítulo 2 viene motivado por los artículos [51] y [54].
En el primero de ellos se demuestra que un espacio de Banach separable admite una norma
LFC de clase C∞ siempre que éste admita una norma LFC. Este resultado suscita varias
cuestiones, entre ellas si ocurre lo mismo cuando sustituimos norma por función meseta. El
segundo artículo mencionado supone un gran avance en esta dirección, demostrando que la
respuesta es positiva siempre y cuando el espacio admita una base de Schauder. En este



2 Resumen

capítulo presentamos una mejora de este resultado, caracterizando los espacios de Banach
separables que admiten una función meseta LFC de clase C∞ como aquellos que admiten una
función meseta LFC continua, así, contestamos a un problema propuesto en [54], [57] y [26].
Concretamente, el resultado principal del Capítulo 2 es el siguiente:

Teorema 1. Sea X un espacio de Banach separable. Entonces, X admite una función meseta
continua LFC si y sólo si X admite una función meseta de clase C∞ y LFC.

Este resultado ha sido publicado en [65]. La idea clave de su demostración es un lema
previo que, grosso modo, descompone una función LFC a través de c0 en la unión finita de
los abiertos donde finitamente está representada, es decir, dada una función f : X → R, si
f = g1(f1

1 , . . . , f
1
n1

) en B(x1, 2r1) y f = g2(f2
1 , . . . , f

2
n2

) en B(x2, 2r2) con g1, g2 funciones
continuas y f1

1 , . . . , f
1
n1
, f2

1 , . . . , f
2
n2
∈ X∗, entonces existen una aplicación lineal y continua

T : X → c0(N) y una función continua g : c0(N)→ R tales que f(x) = g(T (x)) en B(x1, r1) ∪
B(x2, r2).

Además, en la Sección 3 del Capítulo 2, generalizaremos la definición de funciones LFC a
funciones que localmente se factorizan a través de espacios de Banach que pertenecen a una
familia fijada de espacios de Banach F (LF -F , para acortar), es decir, para todo x ∈ X,
existen un entorno U de x en X, un espacio de Banach E ∈ F , un operador lineal y continuo
T : U → E y una función continua g : E → R tales que f(y) = g(T (y)) en U . En este contexto
obtenemos un teorema similiar al anterior:

Teorema 2. Sea F una familia de espacios de Banach separables y sea X un espacio de
Banach con dual separable que admite una función meseta continua LF-F . Asumamos que
todo espacio de Banach E ∈ F admite una función meseta b de clase Ck (de clase Ck y LFC).
Entonces X admite una función meseta de clase Ck (de clase Ck y LFC, respectivamente).

El Capítulo 3 es un breve resumen de los resultados de aproximación diferenciable y Lip-
schitz de funciones Lipschitz que se conocen hasta el momento. Un problema que surge de
forma natural en cualquier contexto es el de intentar aproximar una función por otra con
mejores propiedades. Es un hecho bien conocido que en el caso finito dimensional toda fun-
ción Lipschitz f : Rn → R puede ser uniformemente aproximada por una función Lipschitz de
clase C∞ utilizando convoluciones integrales

fn(x) =

∫
Rn
f(y)ϕn(y − x)dy,

donde ϕn son funciones no negativas de clase C∞ en Rn tales que
∫
Rn ϕn = 1 y suppϕn ⊂

B(0, 1/n). Desafortunadamente, en espacios de Banach de dimensión infinita no es posible
utilizar el método de convoluciones integrales al no existir una medida suficientemente buena
como la medida de Lebesgue.

El problema de aproximar uniformemente una función continua por una función diferen-
ciable o analítica en un espacio de Banach ha sido muy estudiado en el último siglo (ver [83],
[15], [108], [48], [34], [17], [22], [40], [90], etc). En el Capítulo 3 nuestra atención se centra
en los resultados existentes en aproximación uniforme de funciones Lipschitz por funciones
Lipschitz diferenciables, es decir, dado ε > 0 y f : X → R una función Lipschitz, cuándo
existe una función g : X → R de clase Ck y Lipschitz tal que |f(x) − g(x)| < ε en X y
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Lip(g) ≤ C0 Lip(f), donde C0 ≥ 1 es una constante que depende únicamente del espacio de
Banach X. Los primeros resultados en esta dirección los obtuvieron J.M. Lasry y P.L. Lions
[85]. En este artículo utilizan convoluciones infimales para demostrar que en todo espacio de
Hilbert toda función Lipschitz puede ser uniformemente aproximada por una función de clase
C1 con la misma constante Lipschitz. Para más información y resultados sobre convoluciones
infimales ver [4], [106], [107] y [16].

A diferencia de la aproximación diferenciable, en el caso de aproximación Lipschitz no
podemos usar particiones de la unidad diferenciables, ya que, aunque todas las funciones involu-
cradas sean Lipschitz, no tenemos ningún control en el tamaño de la suma de sus derivadas.
Para solucionar este problema, R. Fry en el artículo [35] construye en todo espacio de Banach
con dual separable, una familia de funciones diferenciables y Lipschitz con el supremo de las
constantes Lipschitz acotado, cumpliendo las mismas propiedades que una partición de la
unidad, excepto que en lugar de sumar uno en todo punto es el supremo de todas ellas lo que
tiene que valer uno. Por esta razón, tiempo más tarde, son llamadas sup-particiones de la
unidad. Utilizando las técnicas de sup-particiones de la unidad es posible aproximar en una
gran clase de espacios de Banach cualquier función Lipschitz f : X → R por funciones Lipschitz
diferenciables g : X → R con la constante Lipschitz contralada, es decir, Lip(g) ≤ C0 Lip(f)
donde C0 ≥ 1 es una constante que depende únicamente del espacio de Banach (ver [35], [10]
y [56]). Recientemente se ha utilizado estas técnicas para aproximar uniformemente funciones
Lipschitz por funciones analíticas y Lipschitz (ver [39], [8] y [9]).

En este capítulo también presentamos algunas mejoras en el problema de la aproximación
Lipschitz y diferenciable. El resultado principal que obtenemos es que la constante C0 ≥ 1 es
independiente del espacio de Banach siempre y cuando éste tenga un espacio dual separable,
de hecho, puede ser tomada menor o igual a 4 + r para cada r > 0. Por último, indicar que
la aproximación diferenciable y Lipschitz de funciones Lipschitz está muy relacionada con la
aproximación C1-fina, es decir, dada una función de clase C1, aproximar al mismo tiempo
la función y su derivada por otra de clase mayor (ver [92], [11] y [56]). Este capítulo y los
resultados aquí enunciados serán claves para el desarrollo del resto de la memoria.

En el Capítulo 4 tratamos un problema de extensión diferenciable, el cual es uno de los
principales objetivos de esta memoria. Es interesante preguntarse si una función con alguna
buena propiedad definida en un subconjunto puede ser extendida a un espacio más grande
conservando esa propiedad. Dos ejemplos clásicos son: el Teorema de extensión continua de
Tietze, el cual asegura que toda función continua definida en un subespacio cerrado de un espa-
cio topológico normal puede ser extendida a una función continua definida en todo el espacio;
y el Teorema de Hahn-Banach, que extiende todo funcional lineal y continuo definido en un
subespacio cerrado de un espacio de Banach a un funcional lineal y continuo definido en todo
el espacio. Podemos preguntarnos si estos resultados siguen siendo válidos cuando queremos
extender funciones diferenciables, es decir, cuándo una función definida en un subconjunto
cerrado de un espacio de Banach es la restricción de una función diferenciable definida en todo
el espacio, y cuándo una función diferenciable definida en un subespacio cerrado puede ser
extendida a una función diferenciable en todo el espacio.

Un ejemplo trivial es cuando el subespacio es complementado, en este caso toda función
de clase Ck definida en el subespacio se puede extender a una función de clase Ck definida
en todo el espacio, sin más que componer con la proyección lineal y continua del subespacio.
Usando un resultado clásico de J. Lindenstrauss y L Tzafriri [89], el cual asegura que si en un
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espacio de Banach todos los subespacios cerrados son complementados entonces este espacio
es isomorfo a un espacio de Hilbert, el problema de extender funciones diferenciables desde
subespacios cerrados únicamente será interesante en espacios de Banach de dimensión infinita
que no sean Hilbert.

El problema de extensión desde subconjuntos cerrados en dimensión finita ha sido exhausti-
vamente estudiado. El primero en tratar tal problema fue H. Whitney en [111] y [112], quien
caracterizó las funciones definidas en subconjuntos cerrados de R que pueden ser extendidas
a funciones de clase Ck definidas en todo R en término de sus diferencias divididas. La
resolución de este problema para mayores dimensiones fue dada por G. Glaeser [47] para el
caso de extensión C1 y, finalmente, C. Fefferman en una serie de artículos ([29] y [30]) completa
la solución del problema y caracteriza las funciones definidas en subconjuntos compactos de
Rn que pueden ser extendidas a funciones de clase Ck definidas en todo el espacio.

En espacios de Banach de dimensión infinita el problema ha sido bastante menos estudiado.
Por un lado tenemos el trabajo de C.J. Atkin [3], que extiende funciones diferenciables definidas
en una unión finita de abiertos convexos en un espacio de Banach separable sin función meseta
diferenciable, siempre y cuando esta función admita una extensión diferenciable a todo el
espacio cuando la restringimos a un cierto entorno de cada punto de su dominio. Por otra
parte, D. Azagra, R. Fry y L. Keener [7] demuestran que toda función de clase C1 definida en
un subespacio cerrado de un espacio de Banach con dual separable puede ser extendida a una
función de clase C1 definida en todo el espacio de Banach. Éste es nuestro punto de partida.

En este capítulo tratamos el problema de extensión diferenciable de funciones real-valuadas
y vector-valuadas desde subconjuntos cerrados, para ello damos una condición necesaria para
que una función se pueda extender de forma diferenciable y vemos en qué espacios esta condi-
ción es también suficiente. La condición que imponemos sobre un par de espacios de Banach
(X,Z), donde X será el espacio de partida y Z el espacio de llegada, es una propiedad de
aproximación diferenciable de funciones Lipschitz. Más concretamente, diremos que (X,Z)
satisface la propiedad (*) si existe una constante C0 ≥ 1 que depende de X y Z, tal que para
todo subconjunto A de X, toda aplicación Lipschitz f : A → Z y todo ε > 0, existe una
aplicación g : X → Z Lipschitz y de clase C1 tal que

||f(x)− g(x)|| < ε para todo x ∈ A, y Lip(g) ≤ C0 Lip(f).

El principal resultado que presentamos en este capítulo es el siguiente:

Teorema 3. Sea (X,Z) un par de espacios de Banach con la propiedad (*) y A un subconjunto
cerrado de X. Una aplicación f : A → Z puede ser extendida a una aplicación de clase C1

en todo el espacio X si y sólo si existe una aplicación continua D : A→ L(X,Z) tal que para
todo y ∈ A y todo ε > 0, existe r > 0 tal que

||f(z)− f(w)−D(y)(z − w)|| ≤ ε||z − w||, para todo z, w ∈ A ∩B(y, r). (1)

Como podemos ver en el anterior teorema, la propiedad de extender funciones que admiten
la desigualdad (1) para alguna aplicación continua D está muy cerca de la aproximación
diferenciable de funciones Lipschitz, de hecho, en espacios separables obtenemos la siguiente
caracterización:
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Corolario 4. Sea X un espacio de Banach separable. Son equivalentes:

(i) El par (X,R) satisface la propiedad (*), es decir, existe una constante C0 ≥ 1 tal que toda
función f Lipschitz definida en un subconjunto de X con valores reales se puede aproxi-
mar uniformemente por una función g de clase C1 y Lipschitz con Lip(g) ≤ C0 Lip(f).

(ii) Toda función real-valuada definida en un subconjunto cerrado A ⊂ X que cumple la
desigualdad (1) en A para una aplicación continua D : A → X∗, se puede extender por
una función de clase C1 a todo el espacio de Banach X.

(iii) El espacio dual X∗ es separable.

En la Sección 3 del Capítulo 4 damos una extensa lista de pares de espacios de Banach
que cumplen la propiedad (*) y, así, el Teorema 3. Es interesante notar que cuando Z = R, la
propiedad (*) se reduce a la aproximación diferenciable de funciones Lipschitz estudiada en el
Capítulo 3.

En la Sección 4 de este capítulo tratamos la extensión de aplicaciones diferenciables
definidas en subespacios cerrados. Para ello, necesitamos añadir una condición extra al par
de espacios de Banach (X,Z). Diremos que (X,Z) satisface la propiedad de extensión lineal
si existe una constante λ ≥ 1, que depende de X y Z, tal que para todo subespacio cerrado
Y ⊂ X y todo operador lineal y continuo T : Y → Z existe un operador lineal y continuo
T̃ : X → Z tal que T̃ (y) = T (y) para todo y ∈ Y y ||T̃ ||L(X,Z) ≤ λ||T ||L(Y,Z). En esta sección
vemos que si un par de espacios de Banach satisface esta propiedad, entonces toda aplicación
f : Y → Z de clase C1 cumple la desigualdad (1) para una aplicación continua D, así podemos
aplicar el Teorema 3 para obtener el siguiente corolario:

Corolario 5. Sea (X,Z) un par de espacios de Banach el cual cumple la propiedad (*) y
la propiedad de extensión lineal. Toda aplicación f : Y → Z de clase C1 definida en un
subespacio cerrado de X admite una extensión de clase C1 a todo el espacio X.

Es importante notar que cuando Z = R la propiedad de extensión lineal se reduce al
conocido teorema de Hahn-Banach. Por lo que este resultado generaliza el obtenido en [7]
a funciones vector-valuadas y a funciones definidas en cierta clase de espacios no separables.
En esta sección también vemos una lista de pares de espacios de Banach que cumplen ambas
propiedades.

Por último, es importante indicar que a lo largo de este capítulo trabajamos tanto con
extensión diferenciable como con extensión diferenciable Lipschitz. De hecho, obtenemos que
la propiedad (*) es equivalente a que toda aplicación Lipschitz que cumpla la desigualdad
(1) para una aplicación continua y acotada, pueda extenderse a una aplicación Lipschitz y
de clase C1 con la constante Lipschitz controlada. En esta línea, la propiedad de extensión
lineal es también necesaria para que toda aplicación Lipschitz y de clase C1 definida en un
subespacio cerrado pueda ser extendida por una aplicación Lipschitz y de clase C1 con la
constante Lipschitz controlada. Los resultados presentados en este capítulo han sido recogidos
en [67] y [68].

Aparte de los problemas de diferenciación en espacios de Banach, el estudio de las varie-
dades Banach-Finsler es uno de los principales objetivos de esta memoria. Así, en los Capítulos
5, 6 y 7 se presentan varias propiedades de esta clase de variedades.
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Una variedad Banach-Finsler (en adelante, variedad Finsler) es una variedad diferenciable
modelada en un espacio de Banach tal que admite una aplicación continua que a cada punto de
la variedad le asigna una norma definida en el espacio tangente (isomorfo al espacio de Banach
donde la variedad está modelada). Gracias a esta estructura podemos definir la longitud de
caminos sobre la variedad de forma habitual y, de este modo, introducir la distancia Finsler,
la cual será una métrica equivalente con la topología de la variedad. R.S. Palais en [100]
introdujo una propiedad extra, concretamente estudió las variedades Finsler cuyos espacios
tangentes tienen normas localmente (1 + ε)-equivalentes para todo ε > 0; estas variedades
son conocidas como variedades Finsler en el sentido de Palais y generalizan a las variedades
de Riemann. Por otra parte, H. Upmeier en [110] y K.H. Neeb en [98] trabajaron con una
propiedad algo más débil, pidiendo, únicamente, que para cada punto de la variedad exista un
entorno y una constante K ≥ 1 tal que las normas sean K-equivalentes en ese entorno; estas
variedades son conocidas como variedades Finsler en el sentido de Neeb-Upmeier y forman
una clase de variedades más amplia que la de variedades Finsler en el sentido de Palais.

En el Capítulo 5 introducimos dos clases de variedades Finsler, variedad Finsler en el
sentido de Neeb-Upmeier débil-uniforme y en el sentido de Neeb-Upmeier uniforme, tales
que generalizan las variedades Finsler en el sentido de Palais y las variedades de Riemann,
respectivamente, pero con mejores propiedades que las variedades Finsler en el sentido de
Neeb-Upmeier. Es interesante hacer notar que las cuatro clases de variedades Finsler son
equivalentes en variedades finito dimensionales. En este capítulo estudiamos varias propiedades
de estas clases de variedades y las relaciones existentes entre ellas, también obtenemos algunas
desigualdades del valor medio, y un resultado sobre existencia de cartas bi-Lipschitz, las cuales
serán herramientas de gran utilidad en los siguientes capítulos.

En el Capítulo 6 se obtienen diferentes resultados sobre aproximación diferenciable de
funciones Lipschitz, extensión diferenciable y extensión diferenciable Lipschitz en el contexto
de variedades Finsler. El estudio de la aproximación diferenciable de funciones Lipschitz
en variedades viene motivado por el trabajo de D. Azagra, J. Ferrera, F. López-Mesas y
Y.C. Rangel [6], en el que demuestran que toda función Lipschitz definida en una variedad
Riemanniana separable puede ser aproximada por una función Lipschitz de clase C∞ con casi la
misma constante Lipschitz. Usando este hecho, no es difícil ver que toda variedad Riemanniana
separable es C∞-uniformemente mesetable (concepto introducido en [5]), es decir, existen dos
números positivos r > 0 y R > 1 tales que, para cada punto p ∈ M y cada δ ∈ (0, r),
existe una función b : M → [0, 1] de clase C∞, tal que b(p) = 1, b(x) = 0 siempre que
dM (x, p) ≥ δ, y supx∈M ||db(x)||x ≤ R/δ. La importancia de que una variedad Riemanniana
sea uniformemente mesetable se puede ver en los artículos [5] y [42]. En el primero de ellos se
demuestra el principio variacional de Deville-Godefroy-Zizler para toda variedad Riemanniana
completa y C1-uniformemente mesetable; este principio variacional es una herramienta esencial
en el análisis no-suave y en la resolución de las ecuaciones de Hamilton-Jacobi. En el segundo
artículo se obtiene una versión infinito dimensional del teorema de Myers-Nakai para toda
variedad Riemanniana completa y C1-uniformemente mesetable. Sobre estas dos cuestiones
hablaremos más adelante.

Vista la importancia de poder aproximar uniformemente una función Lipschitz por una fun-
ción Lipschitz y diferenciable en una variedad Riemanniana separable, es natural preguntarse
si es posible obtener el mismo resultado en el caso no separable, y si también ocurre cuando
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la variedad es Finsler. Ambos problemas los resolvemos simultáneamente en la Sección 1 del
Capítulo 6. Uno de los resultados principales que obtenemos es el siguiente:

Teorema 6. Sea M una variedad Finsler de clase Ck en el sentido de Neeb-Upmeier débil-
uniforme modelada en un espacio de Banach separable con función meseta Ck y Lipschitz (M
está modelada en un espacio de Hilbert no separable). Entonces, para toda función continua
ε : M → (0,∞) y toda función Lipschitz f : M → R, existe una función Lipschitz g : M → R
de clase Ck (de clase C1, respectivamente) tal que

|f(x)− g(x)| < ε(x) para todo x ∈M , y Lip(g) ≤ C Lip(f),

donde C ≥ 1 es una constante que depende únicamente de M .

Como corolario inmediato de este teorema obtenemos la siguiente generalización del resul-
tado dado en [6] a toda variedad Riemanniana, pero en este caso obtenemos únicamente
aproximación por funciones de clase C1 y no de clase C∞.

Corolario 7. Sea M una variedad Riemanniana. Para todo r > 0, toda función continua
ε : M → (0,∞) y toda función Lipschitz f : M → R, existe una función Lipschitz g : M → R
de clase C1 tal que

|f(x)− g(x)| < ε(x) para todo x ∈M , y Lip(g) ≤ Lip(f) + r.

En la Sección 2 del Capítulo 6 se introduce el concepto de variedad Finsler Ck-uniforme-
mente mesetable de forma análoga a la definición en variedades Riemannianas dada en [5]. No
es difícil ver que toda variedad Finsler donde se puede aproximar uniformemente funciones
Lipschitz por funciones Lipschitz y diferenciables es uniformemente mesetable, por lo que el
teorema anterior nos da una gran cantidad de ejemplos de variedades Finsler uniformemente
mesetables, entre ellas toda variedad Riemanniana. Además, utilizando las técnicas desar-
rolladas en [35], [10] y [56] construimos sup-particiones de la unidad en variedades Finsler
separables uniformemente mesetables y demostramos la siguiente caracterización:

Teorema 8. Sea M una variedad Finsler en el sentido de Neeb-Upmeier de clase Ck y sepa-
rable. Entonces, M es Ck uniformemente mesetable si y sólo si toda función Lipschitz puede
ser aproximada por una función de clase Ck con la constante Lipschitz controlada.

En la última sección de este capítulo se prueban algunos resultados sobre extensión dife-
renciable en variedades de Banach y extensión diferenciable y Lipschitz en variedades Finsler,
que se obtienen utilizando los resultados vistos en el Capítulo 4.

En el Capítulo 7 presentamos algunas aplicaciones de los anteriores resultados. Como
ya hemos comentado anteriormente, toda variedad Riemanniana donde se pueden aproximar
funciones Lipschitz por funciones Lipschitz y diferenciables es C1-uniformemente mesetable.
Por lo que obtenemos, como consecuencia inmediata del Corolario 7, que toda variedad
Riemanniana es C1-uniformemente mesetable, así contestamos a un problema propuesto en
[5], [6] y [42], y concluimos que el principio variacional de Deville-Godefroy-Zizler y el teorema
de Myers-Nakai se cumplen para toda variedad Riemanniana completa.

También aplicamos estos resultados, concretamente el teorema del valor medio y el carácter
bi-Lipschitz de las cartas, a un problema de derivadas escalares. Recordar que si M y N son
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espacios métricos y f : M → N es una aplicación continua, dado x ∈ M podemos definir la
derivada escalar superior de f en x como

D+
x f = lim sup

z→x
z 6=x

dN (f(z), f(x))

dM (z, x)
.

Cuando M y N son espacios de Banach o variedades Riemannianas conexas y completas, y
la aplicación es diferenciable en x, la derivada escalar superior en x coincide con la norma
de la diferencial de la función en el punto x (ver [70] y [50], respectivamente). O. Gutú y
J.A. Jaramillo en [50] prueban que si M y N son variedades Finsler en el sentido de Neeb-
Upmeier conexas y completas, y f : M → N es una aplicación diferenciable en M , entonces
D+
x f ≤ ||df(x)||x para todo x de M . En la Sección 2 probamos que ambas expresiones

son iguales para todo par de variedades Finsler en el sentido de Palais que sean conexas y
completas, de este modo contestamos a una cuestión planteada en [50].

En la Sección 3 se generaliza el principio variacional de Deville-Godefroy-Zizler a varie-
dades Finsler uniformemente mesetables. En concreto, obtenemos que si M es una variedad
Finsler en el sentido de Neeb-Upmeier débil-uniforme C1-uniformemente mesetable y completa,
dada una función f : M → R ∪ {∞} inferiormente semicontinua, acotada inferiormente y
f 6≡ +∞, entonces para todo ε > 0 existe una función ϕ : X → R Lipschitz de clase C1

y acotada tal que f − ϕ alcanza su mínimo fuerte en M , ||ϕ||∞ = supx∈M |ϕ(x)| < ε y
||dϕ||∞ = supx∈M ||dϕ(x)||x < ε. Este principio variacional es una herramienta muy útil
para el desarrollo del análisis no-suave y para encontrar teoremas de existencia y unicidad
de soluciones de viscosidad de las ecuaciones de Hamilton-Jacobi (ver [21], [22] y [5]). Por
ello, pensamos que éste es un buen punto de partida para comenzar a desarrollar el análisis
no-suave y las ecuaciones de Hamilton-Jacobi en variedades Finsler, lo que puede ser una de
las futuras aplicaciones de estos resultados.

Otra cuestión que tratamos en el Capítulo 7 es un problema del tipo Banach-Stone, en este
caso tratamos de caracterizar la estructura métrica y diferenciable de las variedades Finsler
por sus álgebras de funciones diferenciables y Lipschitz. El clásico teorema de Myers-Nakai
[94] y [96] asegura que la estructura de una variedad Riemanniana M de dimensión finita
está caracterizada por el álgebra de Banach de todas las funciones real-valuadas, acotadas,
de clase C1 y con derivada acotada, dotada de la norma del supremo de la función y de su
derivada. Este resultado ha sido extendido por I. Garrido, J.A. Jaramillo y Y.C. Rangel en
[42] a variedades Riemannianas infinito dimensionales y completas, siempre que ellas sean C1-
uniformemente mesetables (como anteriormente hemos visto, podemos eliminar esta última
condición ya que toda variedad Riemanniana es C1-uniformemente mesetable). En la última
sección de este capítulo, extendemos este resultado a variedades Finsler en el sentido de Palais
completas y Ck-uniformemente mesetables. Desafortunadamente, no sabemos si, al igual que
en el caso Riemann, la estructura métrica determina la estructura diferenciable, es decir, no
sabemos si una isometría métrica entre dos variedades Finsler es un difeomorfismo, lo que en
variedades Riemannianas se conoce como teorema de Myers-Steenrod [95]. Por esta razón los
resultados que obtenemos son algo más débiles que en el caso Riemanniano. Para intentar
solventar este problema trabajamos con las álgebras de funciones Ckb (M) con k ∈ N, definidas
como las álgebras de funciones real-valuadas, acotadas, de clase Ck y con primera derivada



Resumen 9

acotada, dotadas de la norma del supremo de la función y de su primera derivada. Así, uno
de los resultados principales que obtenemos es el siguiente:

Teorema 9. SeanM y N dos variedades Finsler en el sentido de Palais de clase Ck, completas
y modeladas en espacios de Banach separables con funciones meseta de clase Ck y Lipschitz
(espacios de Banach WCG con funciones meseta de clase C1). Entonces, las álgebras Ckb (M) y
Ckb (N) (C1

b (M) y C1
b (N), respectivamente) son equivalentes como álgebras normadas si y sólo

si M y N son Ck-débil equivalentes (C1-débil equivalentes, respectivamente) como variedades
Finsler, es decir, existe una isometría h : M → N tal que tanto h como h−1 son Ck-débil
diferenciables. En particular, h es una isometría y un Ck−1 difeomorfismo.

Usando las propiedades básicas de las funciones débil diferenciables podemos obtener el
teorema de Myers-Nakai, en toda su potencia, para variedades Finsler finito dimensionales.

Corolario 10. Sean M y N dos variedades Finsler de clase Ck, completas y finito dimen-
sionales. Entonces, las álgebras Ckb (M) y Ckb (N) son equivalentes como álgebras normadas si
y sólo si M y N son Ck equivalentes como variedades Finsler, es decir, existe un isometría
h : M → N el cual es un difeomorfismo de clase Ck.

Para terminar, obtenemos una interesante aplicación de las variedades Finsler a los espacios
de Banach.

Corolario 11. Sean X e Y dos espacios de Banach WCG con funciones meseta de clase C1.
Entonces, X e Y son isométricos si y sólo si C1

b (X) y C1
b (Y ) son equivalentes como álgebras

normadas.

Los resultados del Capítulo 5, Capítulo 6 y de la primera parte del Capítulo 7 han sido
publicados en [66]. La caracterización de las variedades Finsler en términos de sus álgebras
de funciones ha sido recogida en el trabajo [63]. Por último, indicar que algunas de las herra-
mientas y técnicas desarrolladas en estos capítulos ya han sido utilizadas en [64] para obtener
resultados de inversión global de aplicaciones no-suaves en variedades Finsler de dimensión
finita.

Al final de cada capítulo incluimos una breve sección de problemas abiertos, la cual contiene
algunas cuestiones en el área que siguen - a nuestro saber - abiertas.
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Chapter 1

Introduction

1.1 Introduction

The main topic of this thesis is the differential theory on Banach spaces and on Banach-Finsler
manifolds. We deal here with several different questions which are interrelated, as we will see.

The first problem we address is to obtain a characterization of separable Banach spaces
that admit a smooth bump function which locally depends on finitely many coordinates. Let
us recall that a bump function on a Banach space X is a real-valued function f : X → R
such that it has non-empty and bounded support, i.e. there exists an element x ∈ X such
that f(x) 6= 0 and the closure of {x ∈ X : f(x) 6= 0} is bounded. It is well known that
the existence of a bump function with good properties implies many geometrical benefits on
the Banach space, and it provides several tools that we do not have in other Banach spaces.
A good example of this fact is the existence of a smooth bump function on a Banach space,
which implies that the Banach space is Asplund and admits smooth partitions of unity. We are
interested in the following property: a function f : X → R defined on a Banach space, locally
depends on finitely many coordinates (LFC, for short) whenever it can locally be factorized
through finite-dimensional Banach spaces, i.e. if for every x ∈ X there are a neighborhood
U of x, a finite subset {f1, . . . , fn} ⊂ X∗ and a continuous function g : Rn → R such that
f(y) = g(f1(y), . . . , fn(y)) for every y ∈ U .

Kuiper was the first to use the concept of LFC function in order to obtain a C∞-smooth
and LFC equivalent norm on c0 (the Kuiper’s construction appeared in [15]). Over the last
several decades, this notion has been used successfully in renorming of Banach spaces, in fact,
it is one of the most common tools to deal with this class of problems. One of the most
important applications of LFC functions is the use of C∞-smooth, LFC bump functions on
c0(Γ) in the construction of Ck-smooth partitions of unity in reflexive Banach spaces admitting
a Ck-smooth bump, due to H. Toruńczyk [108]. Recently, P. Hájek and M. Johanis in [55] and
[56] have used the concept of LFC function to obtain Lipschitz and smooth sup-partitions of
unity on a certain class of non-separable Banach spaces.

The existence of a continuous, LFC bump function provides several extra-properties in
the Banach spaces. In the paper [101] J. Pechanec, J.H.M. Whitfield and V. Zizler explicitly
introduce the LFC notion and show that every Banach space admitting an LFC bump function
is saturated with copies of c0. A few years later, M. Fabian and V. Zizler [26] prove that these
spaces must also be Asplund. However, not every Asplund, c0-saturated Banach space admits
an LFC bump function (see [69]).
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The question we address in Chapter 2 is motivated by the papers [51] and [54]. In the first
one, the author shows that a separable Banach space admits a C∞-smooth and LFC norm
provided that it admits an LFC norm. We can therefore wonder whether the same property
holds when LFC norm is replaced with LFC bump. An important step in this direction is
given in the second paper, in which a positive answer is provided as long as the Banach space
admits a Schauder basis. In this chapter we present an extension of this result and establish a
characterization of the class of separable Banach spaces which admit a C∞-smooth and LFC
bump function as those that admit a continuous and LFC bump function. This result answers
a problem posed in [54], [57] and [26]. Precisely, the main result in Chapter 2 is the following:

Theorem 1.1.1. Let X be a separable Banach space. Then, X admits a continuous and LFC
bump function if and only if X admits a C∞-smooth and LFC bump function.

This work has been published in [65]. The proof of this result relies on a previous lemma,
which, roughly speaking, obtains a factorization of an LFC function in the finite union of some
neighborhoods where the LFC function is locally factorized, by a suitable composition through
the space c0. In other words, given a function f : X → R such that f = g1(f1

1 , . . . , f
1
n1

)
on B(x1, 2r1) and f = g2(f2

1 , . . . , f
2
n2

) on B(x2, 2r2) with g1, g2 continuous functions and
f1

1 , . . . , f
1
n1
, f2

1 , . . . , f
2
n2
∈ X∗, then there exist a bounded and linear operator T : X → c0(N)

and a continuous function g : c0(N)→ R such that f(x) = g(T (x)) on B(x1, r1) ∪B(x2, r2).

Furthermore, in Section 3 of Chapter 2, we generalize the LFC notion to functions which
locally factorize by Banach spaces that belong to a fixed class of Banach spaces F (LF -F ,
for short), i.e. for every x ∈ X there are a neighborhood U of x, a Banach space E ∈ F ,
a bounded and linear operator T : U → E and a continuous function g : E → R such that
f(y) = g(T (y)) on U . In this context, we obtain a similar theorem to the above one:

Theorem 1.1.2. Let F be a family of separable Banach spaces and let X be a Banach space
which admits a separable dual and a continuous and LF-F bump function. Assume that every
E ∈ F admits a bump function b which is Ck-smooth (Ck-smooth and LFC). Then X admits
a Ck-smooth bump function (respectively, Ck-smooth and LFC).

In Chapter 3 we give a brief survey of recent results concerning smooth and Lipschitz
approximation of Lipschitz functions. In any context, it is natural to wonder whether a
function can be approximated by another one with better properties. It is well known that in
finite-dimensional case, every Lipschitz function f : Rn → R can be uniformly approximated
by C∞-smooth and Lipschitz functions considering the integral convolutions

fn(x) =

∫
Rn
f(y)ϕn(y − x)dy,

where ϕn are C∞-smooth functions on Rn such that satisfy
∫
Rn ϕn = 1 and suppϕn ⊂

B(0, 1/n). Unfortunately, the integral convolution method cannot be used in infinite-dimen-
sional Banach spaces, due to the lack of a measure like Lebesgue’s measure.

The approximation of continuous functions by smooth or analytic functions has been ex-
tensively studied in the last century (see [83], [15], [108], [48], [34], [17], [22], [40], [90], etc).
In Chapter 3 we focus on some results of uniformly approximation of Lipschitz functions by
smooth and Lipschitz functions, i.e. given a Lipschitz function f : X → R defined on a Banach
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space and ε > 0, when there exists a Ck-smooth and Lipschitz function g : X → R such that
|f(x)−g(x)| < ε on X and Lip(g) ≤ C0 Lip(f), where C0 ≥ 1 is a constant which only depends
on the Banach space. J.M. Lasry and P.L. Lions [85] obtained the first result in this direc-
tions. They used inf-sup-convolution in order to show that every Lipschitz function defined
on a Hilbert space can be uniformly approximated by C1-smooth and Lipschitz functions with
the same Lipschitz constants. For more information on inf-sup-convolution techniques, see [4],
[106], [107] and [16].

In contrast to smooth approximation, we cannot use smooth partitions of unity to obtain
smooth and Lipschitz approximation, since the size of the sum of their derivatives are not
controlled, despite all involved functions are Lipschitz. In order to deal with this problem,
R. Fry in [35] constructs a family of smooth and Lipschitz functions with uniformly bounded
Lipschitz constants in all Banach space with separable dual. This family of functions satisfies
the same properties as a partition of unity, except that the supremum of the functions evaluated
in any point must be equal to one instead of their sum. For that reason they are called sup-
partitions of unity some time later. Using sup-partitions of unity techniques we are able to
approximate Lipschitz functions f : X → R by smooth and Lipschitz functions g : X → R
with controlled Lipschitz constant, i.e. Lip(g) ≤ C0 Lip(f), where C0 ≥ 1 is a constant that
depends only on the Banach space X (see [35], [10] and [56]). Recently, these techniques have
been used to uniformly approximate Lipschitz functions by Lipschitz and analytic functions
in a certain class of Banach spaces (see [39], [8] and [9]).

In this chapter we also present some slightly improvements in the smooth and Lipschitz
approximation results, the main one is that the constant C0 ≥ 1 can be obtained to be
independent of the Banach space provided that its dual space is separable. In fact, we prove
that the constant can be chosen less or equal to 4 + r for any r > 0. Finally, let us note
that smooth and Lipschitz approximation of Lipschitz functions is strongly related to C1-fine
approximation, i.e. the problem of uniformly approximating both a C1-smooth function and
its derivative by functions with a higher order of differentiability (see [92], [11] and [56]). This
chapter and its results are key to developing the rest of the thesis.

In Chapter 4 we consider a smooth extension question, which is one of the main subjects of
this thesis. We can always wonder whether a function defined on a subset with a nice property
can be extended to a bigger subset and the extension function keeps the same property. Two
well known examples are: the Tiezte extension Theorem, which states that X is a normal
space if and only if for every continuous function f defined on a closed subset of X, there
exists a continuous extension of f to X; and the Hahn-Banach Theorem, which extends every
bounded and linear mapping defined on a closed subspace of a Banach space to a bounded
and linear mapping defined on the whole Banach space with the same norm. We can ask
whether these results hold for smooth functions. In other words, if X is a Banach space, when
a function defined on a closed subset of X is the restriction of a smooth function defined on
X, and when a smooth function defined on a closed subspace of X can be extended to the
whole Banach space by a smooth function.

Let us notice that for every Ck-smooth function defined on a complement subspace there
exists a Ck-smooth extension defined on the whole space. Indeed, the Ck-smooth extension
function is the composition of the original function with the bounded and linear projection
of the subspace. J. Lindenstrauss and L Tzafriri showed in [89] that the only Banach space
all of whose closed subspaces are complement is isomorphic to a Hilbert space. Thus, the
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smooth extension problem from closed subspaces is only interesting when we consider infinite-
dimensional Banach spaces which are not Hilbert.

The smooth extension problem from closed subsets of finite-dimensional spaces has been
exhaustively studied. H. Whitney gave a first answer in [111] and [112] when X = R. In these
papers necessary and sufficient conditions of the functions defined on closed subsets of R (in
terms of its divided differences) are obtained for the existence of Ck-smooth extensions to R.
The Rn case was solved by G. Glaeser [47] when C1-smooth functions are considered. Finally,
C. Fefferman in a series of papers ([29] and [30]) establishes a characterization of the functions
that are the restriction on a compact subset of a Ck-smooth function on Rn, for all k, n ≥ 1.

For infinite-dimensional Banach spaces, the question has been much less studied. On the
one hand, C.J. Atkin in [3] extends every smooth function f defined on a finite union of
open convex sets in a separable Banach space which does not admit smooth bump functions,
provided that for every point in the domain of f , the restriction of f to a suitable neighborhood
of the point can be extended to the whole space. On the other hand, D. Azagra, R. Fry and
L. Keener in [7] show that every C1-smooth function defined on a closed subspace of a Banach
space with separable dual can be extended to a C1-smooth function defined on the whole
space. That is our starting point.

In this chapter, the problem of the smooth extension of real-valued functions and vector-
valued functions from closed subsets of Banach spaces is addressed. We find a necessary
condition for a mapping defined on a closed subset to admit a C1-smooth extension to the
whole space and discuss in which Banach spaces that condition is also sufficient. The condition
that is considered in a pair of Banach spaces (X,Z), where X is the domain and Z is the target
space, is a smooth and Lipschitz approximation property. More precisely, the pair of Banach
spaces (X,Z) is said to satisfy property (*) if there is a constant C0 ≥ 1, which depends only
on X and Z, such that for every subset A ⊂ X, every Lipschitz mapping f : A→ Z and every
ε > 0, there is a C1-smooth and Lipschitz mapping g : X → Z such that

||f(x)− g(x)|| < ε for all x ∈ A, and Lip(g) ≤ C0 Lip(f).

The main result in Chapter 4 is the following:

Theorem 1.1.3. Let (X,Z) be a pair of Banach spaces with property (*), A a closed subset
of X and let f : A→ Z be a mapping. There is a C1-smooth extension of f to the whole space
X if and only if there is a continuous map D : A → L(X,Z) such that for every y ∈ A and
ε > 0, there exists r > 0 such that

||f(z)− f(w)−D(y)(z − w)|| ≤ ε||z − w||, for all z, w ∈ A ∩B(y, r). (1.1)

As we see in the above theorem, the smooth extension of mappings satisfying inequality
(1.1) for a continuous map D is closely related to the smooth and Lipschitz approximation
of Lipschitz mappings. In fact, we obtain the following characterization in separable Banach
spaces:
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Corollary 1.1.4. Let X be a separable Banach space. The following statements are equivalent:

(i) The pair (X,R) satisfies property (*), i.e. there is a constant C0 ≥ 1 such that every
real-valued Lipschitz function defined on a subset of X can be uniformly approximated by
a C1-smooth and Lipschitz function defined on X with Lip(g) ≤ C0 Lip(f).

(ii) For every real-valued function defined in a closed subset A ⊂ X which satisfies inequality
(1.1) on A for a continuous map D : A→ X∗, there exists a C1-smooth extension to the
whole space X.

(iii) The dual space X∗ is separable.

In Section 3 of Chapter 4, we list pairs of Banach spaces with property (*), thus pairs of
Banach spaces satisfying Theorem 1.1.3. It is worth noticing that property (*) is exactly the
smooth and Lipschitz approximation of Lipschitz functions studied in Chapter 3 when Z = R.

In Section 4 of this chapter we deal with the problem of the smooth extension of mappings
defined on closed subspaces. We need to add an extra-condition in the pair of Banach spaces
(X,Z). The pair of Banach spaces (X,Z) is said to satisfy the linear extension property
if there is λ ≥ 1, which depends only on X and Z, such that for every closed subspace
Y ⊂ X and every bounded and linear operator T : Y → Z, there is a bounded and linear
operator T̃ : X → Z such that T̃|Y = T and ||T̃ ||L(X,Z) ≤ λ||T ||L(Y,Z). We prove that if a
pair of Banach spaces satisfies the linear extension property, then every C1-smooth mapping
f : Y → Z satisfies inequality (1.1) for a continuous map D. Hence, Theorem 1.1.3 can be
applied and it is obtained the following corollary:

Corollary 1.1.5. Let (X,Z) be a pair of Banach spaces which satisfies property (*) and the
linear extension property. Then for every C1-smooth mapping f : Y → Z defined on a closed
subspace of X there is a C1-smooth extension to the whole space X.

It is important to note that the linear extension property is the well known Hahn-Banach
theorem when Z = R. Thus, this result is an extension of the given one in [7] to both vector-
valued functions and mappings defined on a certain class of non-separable Banach spaces. In
this section we also list pairs of Banach spaces which satisfy both properties.

In addiction, we study both smooth extension and smooth and Lipschitz extension, through-
out the chapter. In fact, we show that property (*) is equivalent to the following statement:
for every Lipschitz mapping which satisfies inequality (1.1) for a continuous and bounded map
D, there is a C1-smooth and Lipschitz extension to the whole space with controlled Lipschitz
constant. In this direction, the linear extension property is also necessary to obtain C1-smooth
and Lipschitz extensions (with controlled Lipschitz constant) of C1-smooth and Lipschitz map-
pings defined on closed subspaces. These results have been collected in the works [67] and
[68].

Apart from smooth problems on Banach spaces, the study of Banach-Finsler manifolds is
one of the main subject of this thesis. Thus, in Chapter 5, 6 and 7 several properties of this
class of manifolds are presented.

A Banach-Finsler manifold (from now on, Finsler manifold) is a smooth manifold modeled
on a Banach space such that there exists a continuous map which assigns a norm on the
tangent space (which is isomorphic to the Banach space where the manifold is modeled) to
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each point at the manifold. Using this structure, we can define the length of paths on the
manifold in the usual way, and, therefore, the associated Finsler metric which is consistent
with the topology given in the manifold. On the one hand, R.S. Palais introduced a certain
class of Finsler manifolds in [100]. Precisely, he studied those Finsler manifolds whose tangent
spaces locally have (1+ε)-equivalent norms for every ε > 0. Those manifolds are the so-called
Finsler manifolds in the sense of Palais and they generalize Riemann manifolds. On the other
hand, H. Upmeier in [110] and K.H. Neeb in [98] considered a weaker condition. They assume
that for every point at the manifold there exist a neighborhood of the point and a constant
K ≥ 1 such that the norms of the tangent spaces are K-equivalent in that neighborhood.
Those manifolds are the so-called Finsler manifolds in the sense of Neeb-Upmeier.

In Chapter 5 we introduce two new classes of manifolds, Finsler manifolds in the sense of
Neeb-Upmeier weak-uniform and in the sense of Neeb-Upmeier uniform. They are generaliza-
tions of Finsler manifolds in the sense of Palais and Riemannian manifolds, respectively, but
their properties are better than those in Finsler manifolds in the sense of Neeb-Upmeier. It
is worth noting that these four concepts of manifolds are equivalent whenever they are finite-
dimensional manifolds. In this chapter, several properties of these classes of manifolds and
the relations between them are studied. Some results related to mean value inequalities are
also provided, and a result of the existence of suitable local bi-Lipschitz charts is given as an
essential tool to obtain the results in the next chapters.

In Chapter 6 we address some problems on smooth and Lipschitz approximation, smooth
extension and smooth and Lipschitz extension in the context of manifolds. The study of
smooth and Lipschitz approximation of Lipschitz functions is motivated by the paper [6], where
D. Azagra, J. Ferrera, F. López-Mesas and Y.C. Rangel show that every Lipschitz function
defined on a separable Riemannian manifold can be uniformly approximated by a C∞-smooth
and Lipschitz function with almost the same Lipschitz constant. It is not difficult to see that
this fact implies that every separable Riemannian manifold is C∞-uniformly bumpable (this
concept is introduced in [5]), i.e. there are r > 0 and R > 1 such that for every p ∈ M and
δ ∈ (0, r), there exists a C∞-smooth function b : M → [0, 1] such that b(p) = 1, b(x) = 0
whenever dM (x, p) ≥ δ, and supx∈M ||db(x)||x ≤ R/δ. The uniformly bumpable character of
a Riemannian manifold provides nice applications, as can be seen in [5] and [42]. In the first
paper, the authors prove the Deville-Godefroy-Zizler smooth variational principle for every
complete Riemannian manifold provided that the manifold is C1-uniformly bumpable. This
smooth variational principle is key in non-smooth analysis and to obtain viscosity solutions to
Hamilton-Jacobi equations. In the second paper, an infinite-dimensional Myers-Nakai theorem
is stated for complete, C1-uniformly bumpable and separable Riemannian manifolds. These
issues will be discussed again in the relevant sections below.

Hence, two natural questions that arise are whether the same approximation result holds
in non-separable Riemannian manifolds, and more generally in Finsler manifolds. We consider
the Finsler manifold setting, so we give a positive answer to both questions at once in Section
1 of Chapter 6. One of the main results that we prove is the following:

Theorem 1.1.6. Let M be a Ck Finsler manifold in the sense of Neeb-Upmeier weak-uniform
modeled on a separable Banach space which admits a Ck-smooth and Lipschitz bump function
(M is modeled on a non-separable Hilbert space). Then for every Lipschitz function f : M → R
and every continuous function ε : M → (0,∞), there exists a Ck-smooth (respectively, C1-
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smooth) and Lipschitz function g : M → R such that

|f(x)− g(x)| < ε(x) for every x ∈M , and Lip(g) ≤ C Lip(f),

where C ≥ 1 depends only on M .

The given results provide a generalization to the non-separable setting of the approximation
result given in [6] for separable Riemannian manifolds, but the function g which approximates
f can only be chosen to be C1-smooth. Recall that for separable Riemannian manifolds, the
Lipschitz function g that approximates f can be obtained to be C∞-smooth.

Corollary 1.1.7. Let M be a Riemannian manifold. For every Lipschitz function f : M → R,
every continuous function ε : M → (0,∞) and r > 0, there exists a C1-smooth and Lipschitz
function g : M → R such that

|f(x)− g(x)| < ε(x) for every x ∈M , and Lip(g) ≤ Lip(f) + r.

The concept of Ck-uniformly bumpable Finsler manifold is introduced in the same way
as the Riemannian case [5] in Section 2 of Chapter 3. It can be proved that every Finsler
manifold is uniformly bumpable whenever every Lipschitz function can be uniformly approxi-
mated by a smooth and Lipschitz function. Hence, the above theorem gives us many examples
of Finsler manifolds which are uniformly bumpable, among them every Riemannian mani-
fold. Furthermore, sup-partitions of unity are constructed in every separable and uniformly
bumpable Finsler manifold, along the same lines as [35], [10] and [56], and we obtain the
following characterization:

Theorem 1.1.8. Let M be a separable Ck Finsler manifold in the sense of Neeb-Upmeier.
Then, M is Ck-uniformly bumpable if and only if every real-valued Lipschitz function defined
on M can be uniformly approximated by a Ck-smooth and Lipschitz function with controlled
Lipschitz constant.

In the last section of the chapter some results about smooth extension on Banach manifolds
and smooth and Lipschitz extension on Finsler manifolds are stated. For that purpose we use
the theorems obtained in Chapter 4.

In Chapter 7, several applications of these results are presented. As we already know, a
Riemannian manifold is C1-uniformly bumpable provided that every Lipschitz function can be
uniformly approximated by a C1-smooth and Lipschitz function. Thus, Corollary 1.1.7 implies
that every Riemannian manifold is C1-uniformly bumpable, which answers a question posed
in [5], [6] and [42]. Hence, the Devile-Godefroy-Zizler smooth variational principle and the
infinite-dimensional version of the Myers-Nakai theorem hold for every complete Riemannian
manifold.

We also use the developed tools, especially the mean value inequalities and the existence
of suitable local bi-Lipschitz charts, in order to solve a question of scalar derivative. Recall
that if M and N are metric spaces and f : M → N is a continuous mapping, for every x ∈M
the upper scalar derivative of f at x is defined as

D+
x f = lim sup

z→x
z 6=x

dN (f(z), f(x))

dM (z, x)
.
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When M and N are either Banach spaces or connected and complete Riemannian manifolds,
and f : M → N is a smooth mapping at x, then the scalar derivative of f at x is the norm
of the differential of the mapping at x (see [70] and [50], respectively). O. Gutú and J.A.
Jaramillo showed in [50] that ifM and N are connected and complete Finsler manifolds in the
sense of Neeb-Upmeier, and f : M → N is a smooth mapping in M , then D+

x f ≤ ||df(x)||x
for every x in M . We obtain that actually both values are equal, whenever M and N are
connected and complete Finsler manifolds in the sense of Palais, so we answer a question set
out in [50].

In Section 3 we extend the Deville-Godefroy-Zizler smooth variational principle to uni-
formly bumpable Finsler manifolds. In particular, we show that if M is a complete and
C1-uniformly bumpable C1 Finsler manifold in the sense of Neeb-Upmeier weak-uniform and
f : M → R ∪ {∞} is a lower semicontinuous function which is bounded below and f 6≡ +∞,
then for any ε > 0 there is a bounded, C1-smooth and Lipschitz function ϕ : X → R such
that f − ϕ attains its strong minimum in M , ||ϕ||∞ = supx∈M |ϕ(x)| < ε and ||dϕ||∞ =
supx∈M ||dϕ(x)||x < ε. That variational principle is a key tool to develop non-smooth analysis
and in order to prove theorems of existence and uniqueness of viscosity solutions to Hamilton-
Jacobi equations (see [21], [22] and [5]). For this reason, we think it could be a starting
point for the development of non-smooth analysis and Hamilton-Jacobi equations on Finsler
manifolds, which may be one of the future applications of these results.

A different question, which we consider in Chapter 7, is a Banach-Stone type theorem.
In this case we prove that the metric and smooth structure of a Finsler manifold is charac-
terized in terms of its Banach algebra of smooth and Lipschitz functions. The Myers-Nakai
theorem [94] and [96] states that a finite-dimensional Riemannian manifold M is character-
ized by its Banach algebra of all real-valued, bounded and C1-smooth functions with bounded
derivative defined on M endowed with the sup-norm of the function and its derivative. This
result has been extended by I. Garrido, J.A. Jaramillo and Y.C. Rangel in [42] to infinite-
dimensional, complete Riemannian manifolds whenever they are C1-uniformly bumpable (as
we saw already, every Riemannian manifold is C1-uniformly bumpable, so we can remove this
condition). Our aim in the last section of this chapter is to find an extension of this result to
complete, Ck-uniformly bumpable Finsler manifolds in the sense of Palais. Unfortunately, the
metric structure of a Finsler manifold does not determinate the smooth structure, up to our
knowledge, as in the Riemannian case. That is to say, we cannot assure that every (metric)
isometry between two Finsler manifolds is a diffeomorphism, that fact holds in Riemannian
manifolds and it is the so-called Myers-Steenrod theorem [95]. For that reason, we obtain a
slightly weaker version of the Myers-Nakai theorem. To overcome this shortcoming we study
the algebras Ckb (M), with k ∈ N, of all real-valued, bounded and Ck-smooth functions with
bounded first derivative endowed with the sup-norm of the function and its derivative. Thus,
one of the main results in this chapter is the following:

Theorem 1.1.9. Let M and N be complete Ck Finsler manifolds in the sense of Palais mod-
eled on separable Banach spaces that admit Ck-smooth and Lipschitz bump functions (modeled
on WCG Banach spaces that admit C1-smooth and Lipschitz bump functions). Then, the alge-
bras Ckb (M) and Ckb (N) (respectively, C1

b (M) and C1
b (N)) are equivalent as normed algebras

if and only if M and N are weakly Ck equivalent as Finsler manifolds (respectively, weakly
C1 equivalent), i.e. there exists an isometry h : M → N such that h and h−1 are weakly
Ck-smooth. In particular, h is an isometry and a Ck−1-diffeomorphism.
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We obtain a stronger version in complete, finite-dimensional Finsler manifolds, since the
concept of weakly smoothness coincides with the concept of smoothness in this context. Thus,
we recover the Myers-Nakai theorem for that class of manifolds.

Corollary 1.1.10. LetM and N be complete, finite-dimensional Ck Finsler manifolds. Then,
the algebras Ckb (M) and Ckb (N) are equivalent as normed algebras if and only if there exists
an isometry h : M → N which is a Ck-diffeomorphism.

Finally, we obtain an interesting application of Finsler manifolds to Banach spaces.

Corollary 1.1.11. Let X and Y be WCG Banach spaces which admit C1-smooth bump func-
tions. Then, X and Y are isometric if and only if C1

b (X) and C1
b (Y ) are equivalent as normed

alegras.

The results presented in Chapter 5, Chapter 6 and the first part of Chapter 7 have been
published in [66]. The characterization of a Finsler manifold in terms of its algebras of smooth
functions has been collected in [63]. Lastly, let us indicate that some of the tools developed
in these chapters have already been used in order to obtain global inversion of non-smooth
mappings in finite-dimensional Finsler manifolds [64].

Each chapter ends with a brief section of Open Problems, containing some questions in
the area that are - to our best knowledge - open.
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1.2 Notation

Our notation is standard and we shall follow, whenever possible, the notations given in the
textbooks [22], [25] and [84]. Along this work, Banach spaces are considered over the real
numbers and smoothness is meant in the Fréchet sense. Let us denote by N the set of natural
numbers.

If (X, || · ||) is a Banach space, then its dual is denoted by (X∗, || · ||∗). In some cases,
when this notation can cause confusion, the norms of X and X∗ will be denoted by || · ||X and
|| · ||X∗ , respectively. For x ∈ X and r > 0, we denote the open ball of radius r centered at x
by B(x, r) = {y ∈ X : ||x− y|| < r}, analogously, we denote B(x, r) = {y ∈ X : ||x− y|| ≤ r}
the closed ball of radius r centered at x, and S(x, r) = {y ∈ X : ||x − y|| = r} the sphere of
radius r centered at x. When there is a risk of confusion, we denote by BX(x, r) and BX(x, r)
the open ball and closed ball, respectively, of radius r centered at x of X. Moreover, we denote
BX = BX(0, 1) the closed unit ball of X.

If M ⊂ X, then span(M) stands for the linear hull of M , that is, the smallest (in the sense
of inclusion) linear subspace ofX containingM . Similarly span(M) stands for the closed linear
hull ofM ; the convex hull ofM will be denoted by co(M), and co(M) denotes the closed convex
hull of M . The annihilator of M is defined as M⊥ = {f ∈ X∗ : f(y) = 0 for all y ∈M}.

A Banach space X is called an Asplund space if every subspace separable Y of X has a
separable dual.

A Banach space X is said to be weakly compactly generated (WCG) if there exists a weakly
compact set K ⊂ X with span(K) = X. This class of Banach spaces includes the separable
and reflexive Banach spaces.

If X and Z are Banach spaces, let us denote by L(X,Z) the space of all bounded and
linear maps from the Banach space X to the Banach space Z; and by Isom(X,Z) the space
of all isomorphisms from X to Z. If f : X → Z is a differentiable mapping, we will denote
the Fréchet derivative of f at x ∈ X in the direction h ∈ X by f ′(x)(h). The support of a
mapping f : X → Z is defined by

supp(f) := {x ∈ x : f(x) 6= 0}.

A norm || · || of X is said to be differentiable on X, if it is differentiable away from the origin.
A bump function b on X is a function b : X → R such that supp(b) is nonempty and bounded.

Explicitly and implicitly, the following useful characterization will be used in different
occasions (see [22]):

Theorem 1. Let X be a separable Banach space. Then the following statements are equivalent:

• X admits a C1-smooth norm.
• X admits a C1-smooth bump function.
• X∗ is separable.

Let (M,d) be a metric space. As in the Banach case, we denote by BM (x, r), BM (x, r)
and SM (x, r) the open ball, closed ball and sphere inM of radius r centered at x, respectively.
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The distance between two sets A and B, and the distance between a point x ∈ M and a set
A are defined by

dist(A,B) := inf{d(a, b) : a ∈ A, b ∈ B} and dist(x,A) := inf{d(x, a) : a ∈ A}.

Let (M,dM ) and (N, dN ) be metric spaces. A mapping f : M → N is Lipschitz if there
exists a constant L > 0 such that

dN (f(x), f(y)) ≤ LdM (x, y), for all x, y ∈M .

We denote the Lipschitz constant of f by

Lip(f) := sup
x,y∈M
x 6=y

dN (f(x), f(y))

dM (x, y)
.

A function is said to be bi-Lipschitz if it is Lipschitz and admits a Lipschitz inverse.
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Chapter 2

LFC bumps on separable Banach spaces

The notion of an LFC function (a function that locally depends on finitely many coordinates)
was introduced by J. Pechanec, J.H.M. Whitfield and V. Zizler in [101], where they showed that
every Banach space which admits an LFC bump is saturated with copies of c0. Nonetheless,
the first use of LFC in the literature is the Kuiper’s construction (which appeared in [15]) of a
C∞-smooth, LFC equivalent norm on c0. The LFC notion has been exploited in many times.
One of the most important applications is the use of C∞-smooth, LFC bumps on c0(Γ) in the
construction of Ck-smooth partitions of unity in a certain class of non-separable Banach spaces
admitting a Ck-smooth bump function, due to H. Toruńczyk [108]. Since it is easier to check
the differentiability properties of functions defined on finite-dimensional spaces, the notion of
LFC has been successfully used (implicitly and explicitly) in a large number of papers.

The existence of an LFC bump on the space implies additional properties: It was proved
in [26] (see also [69]) that it is an Asplund space, and, as we have already said at the beginning
of the introduction, it was proved in [101] (see also [69]) that it is saturated with copies of c0.
However, not every Asplund, c0-saturated space admits an LFC bump function [69].

The LFC notion is closely related to the class of polyhedral Banach spaces (introduced by
V. Klee [81]; see [[71], Chapter 15] for results and references). P. Fonf [32] proved that every
polyhedral Banach space is saturated with copies of c0. P. Fonf [33] characterized separable
polyhedral Banach spaces as those Banach spaces admitting an equivalent LFC norm. Later,
P. Hájek [51] characterized them as those admitting an equivalent C∞-smooth and LFC norm.
More specifically, he proved that every Banach space with an LFC norm admits a C∞-smooth
and LFC norm. It remains an open problem whether every separable Banach space with a
C∞-smooth LFC bump is a polyhedral Banach space. P. Hájek and M. Johanis conjectured
that the answer is negative [53]. They constructed an Orlicz space admitting a C∞-smooth
LFC bump and not satisfying Leung’s sufficient condition on polyhedrality [86].

P. Hájek and M. Johanis proved in [54] that every separable Banach space with a Schauder
basis and a continuous LFC bump, admits a C∞-smooth and LFC bump function. The main
result of this chapter extends the result of [54] and establishes a characterization of the class of
separable Banach spaces admitting a continuous, LFC bump as those separable Banach spaces
with a C∞-smooth, LFC bump. This result answers a problem posed in [54], [57] and [26].

In Section 2.1 we introduce the concept of LFC function and some of their most important
properties. Furthermore, we recall some geometric implications in the Banach spaces that
admit a continuous, LFC bump function. In Section 2.2 we prove Theorem 2.2.2 which is the
main result in this chapter and assures that a separable Banach space admits a C∞-smooth,
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LFC bump function whenever it admits a continuous, LFC bump function. The proof of this
result is supported in Lemma 2.2.1, which develops a technique of “join together” a finite
family of neighborhoods, where the LFC function is locally factorized, in order to obtain a
new factorization of the function on the union of these neighborhoods through the space c0. In
Section 2.3, we consider LF functions, a generalization of the concept of LFC function. An LF
function is a function that is locally factorized through specific (finite or infinite-dimensional)
Banach spaces. We give a class of natural examples of Banach spaces with LF norms and LF
bump functions. We also see the relationship between LF functions and functions that locally
depend on countably many coordinates, a concept introduced by M. Fabian and V. Zizler in
[27], and prove a similar (and more general) result to Theorem 2.2.2. We finish this chapter
by recalling some problems in this area which remain open.

2.1 Functions that Locally depend on Finitely many Coordinates

The notion of a function that locally depends on finitely many coordinates was first defined
on Banach spaces with Schauder basis using the coordinate functionals [101]. Later, a gen-
eralization of this notion was considered by some authors using arbitrary continuous linear
functionals.

Definition 2.1.1. Let X be a Banach space, A ⊂ X an open subset, E an arbitrary set,
M ⊂ X∗ and a mapping b : A −→ E.

(a) We say that b depends only on M on a subset U ⊂ A if b(x) = b(y) whenever x, y ∈ U
are such that f(x) = f(y) for all f ∈ M . If M = {f1, ..., fn}, this is equivalent to the
existence of a mapping g : Rn −→ E such that b(x) = g(f1(x), ..., fn(x)) for all x ∈ U .

(b) We say that b locally depends on finitely many coordinates from M (LFC-M ,
for short) if for each x ∈ A there are a neighborhood Ux ⊂ A of x and a finite subset
Fx ⊂ M such that b depends only on Fx on Ux. We say that b locally depends on
finitely many coordinates (LFC, for short) if it is LFC-X∗.

(c) A norm is said to be LFC, if it is LFC away from the origin.

A simple example is the sup norm on c0, which is LFC-{e∗i } away from the origin (where
{e∗i } are the coordinate functionals in c0). Indeed, for every x ∈ c0, x 6= 0, there exists n ∈ N
such that |x(i)| < ||x||∞/2 for every i ≥ n. Then the norm || · ||∞ depends only on {e∗1, . . . , e∗n}
on B(x, ‖x‖∞/4).

Roughly speaking, we see a continuous LFC function as a continuous function locally
factorized through finite-dimensional spaces.

Fact 2.1.2. Let X be a Banach space, A ⊂ X an open subset, M ⊂ X∗ and k = 0, 1, . . . ,∞.
A Ck-smooth function b : A −→ R is LFC-M if and only if for every x ∈ A, there are
a neighborhood Vx ⊂ A of x, a finite subset {f1, . . . , fnx} ⊂ M and a Ck-smooth function
gx : Rnx −→ R such that gx(f1(y), . . . , fnx(y)) = b(y) for every y ∈ Vx.

Vx
b //

(f1,...,fnx )
DDD

!!D
DD

R

Rnx
gx

=={{{{{{{{
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Proof. From the definition of LFC-M , there are for every x ∈ A, a closed ball B(x, sx) ⊂ A and
functionals {f1, ..., fnx} ⊂ X∗ such that if fi(y) = fi(z) for i = 1, . . . , nx and y, z ∈ B(x, sx),
then b(y) = b(z). We can assume that the functionals {f1, ..., fnx} are linearly independent;
otherwise we can omit those that lineally depend on the others, because the condition f(y) =
f(z) also holds for every functional f in the linear span of {fi : i = 1, . . . , nx}.

Let us consider {e1, . . . , enx} in X such that fi(ej) = δij , for i, j = 1, . . . , nx. Let us define
the linear mapping L : Rnx −→ X as

L(t1, . . . , tnx) =

nx∑
i=1

tiei + (x−
nx∑
i=1

fi(x)ei)

and consider the closed and convex set C := L−1(B(x, sx)) of Rnx . Now, let us define the
function Gx : C −→ R as

Gx(t1, . . . , tnx) = b(

nx∑
i=1

tiei + (x−
nx∑
i=1

fi(x)ei))

and s′x = min{sx, sx∑nx
i=1 ||fi|| ||ei||

}.

On the one hand, the function Gx is clearly Ck-smooth on int(C) 6= ∅. Now, if y ∈ B(x, s′x)
and we take the auxiliary point z :=

∑nx
i=1 fi(y)ei + (x−

∑nx
i=1 fi(x)ei), we have that

||z − x|| = ||
nx∑
i=1

fi(y − x)ei|| ≤

(
nx∑
i=1

||fi|| ||ei||

)
||y − x|| < sx.

Then, (f1(y), . . . , fnx(y)) ∈ C and

Gx(f1(y), . . . , fnx(y)) = b(

nx∑
i=1

fi(y)ei + (x−
nx∑
i=1

fi(x)ei)).

On the other hand, ||y − x|| < sx, ||z − x|| < sx and fi(y) = fi(z) for i = 1, . . . , nx,
which yields

b(y) = b(z) = b(

nx∑
i=1

fi(y)ei + (x−
nx∑
i=1

fi(x)ei)) = Gx(f1(y), . . . , fnx(y)).

Thus, b(y) = Gx(f1(y), . . . , fnx(y)) for every y ∈ B(x, s′x). Finally, since the point x′ =
(f1(x), . . . , fnx(x)) belongs to int(C) there are r′x > rx > 0 such thatBRnx (x′, rx) ⊂ BRnx (x′, r′x) ⊂
int(C). Let us consider a C∞-smooth function ϕ : Rnx → [0, 1] such that

-

6

ϕ(y) =

{
1 if y ∈ BRnx (x′, rx),

0 if y 6∈ BRnx (x′, r′x).
−r′x −rx rx r

′
x

1 ϕ
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Let us define gx : Rnx → R as gx(y) = ϕ(y)Gx(y) for all y ∈ Rnx . The function gx is
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well defined and is Ck-smooth since gx(y) = 0 for all y 6∈ int(C), and gx(y) = Gx(y) on
BRnx (x′, rx). Thus, if let us take Vx := (f1, . . . , fnx)−1(BRnx (x′, rx)) ∩ B(x, s′x), then x ∈ Vx
and

b(y) = gx(f1(y), . . . , fnx(y)) for every y ∈ Vx.

We shall use the fact that for every LFC mapping b : A −→ E and every mapping
h : E −→ F (F an arbitrary set) the composition h ◦ b is also LFC.

Let us recall here some useful geometrical properties (see [26], [101] and [69]), which are
used throughout this chapter.

Theorem 2.1.3. [26] Let X be a Banach space and M ⊂ X∗. Let us suppose that there exists
a continuous LFC-M bump function on X. Then span(M) = X∗. In particular, every Banach
space which admits a continuous LFC bump function is an Asplund space.

Theorem 2.1.4. [101] Let X be an infinite-dimensional Banach space which admits an LFC
bump function, then X is saturated by c0.

Finally, we also use the following lemma due to P. Hájek and M. Johanis [54, Lemma 13].

Lemma 2.1.5. [54] Let ε > 0 and a sequence {δn}∞n=1 of strictly positive numbers. Let us
consider the open subset U of `∞(N),

U = {x ∈ `∞(N) : |xj0 | − δj0 > sup
j>j0

|xj |+ δj0 for some j0 ∈ N}.

Then, there is a C∞-smooth and LFC-{e∗i } function F : U → R (where {e∗i } are the coordinate
functionals on `∞(N)) such that ||x||∞ ≤ F (x) ≤ ||x||∞ + ε for every x ∈ U .

Although we shall use the above lemma to prove the results in this chapter, it is worth
noting that this lemma could be replaced by the existence of an equivalent norm on `∞(N)
which is C∞-smooth and LF-{e∗i } in the bigger open subset

UH = {x ∈ `∞(N) : ||x||∞ > lim
n→∞

|x(n)|}.

This fact can be proved using both Lemma 2.1.5 and a fundamental theorem of Haydon [58],
that yields the existence of an equivalent norm ||(·, ·)|| on `∞(N)× c0(N) which is C∞-smooth
and LF-{e∗i } on the open subset

U(N) = {(x, y) ∈ `∞(N)× c0(N) : max{||x||∞, ||y||∞} < || |x|+
1

2
|y| ||∞}.

Indeed, the mapping T : `∞(N)→ `∞(N)×c0(N) defined as T (x) = ((x(n))n, (
x(n)
n )n) is linear,

bounded and injective. Furthermore, T (UH) ⊂ U(N). Thus, the function G(x) = ||T (x)|| is
an equivalent norm on `∞(N) and it is C∞-smooth and LF-{e∗i } on UH .
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2.2 Smooth LFC bump functions

We first show that it is possible to “join together” any finite number of neighborhoods, where
we have local factorizations of a given LFC function, to obtain a new factorization of the LFC
function in the union of these neighborhoods by a suitable composition through the space c0.

Lemma 2.2.1. Let X be a Banach space such that X∗ is separable and b : X −→ R a
continuous, LFC function on X. Let us consider p ∈ N, Bj = B(xj , rj) open balls, integers
nj ∈ N, continuous functions gj : Rnj −→ R and functionals {f ji }

nj
i=1 ⊂ X∗, for j = 1 . . . , p.

Let us assume that for every x ∈ B(xj , 2rj),

b(x) = gj(f j1 (x), . . . , f jnj (x)).

Then, there exists a continuous linear map T : X −→ c0(N) and a continuous function g :
c0(N) −→ R such that b(x) = g(T (x)) for every x ∈

⋃p
j=1Bj.

Proof. Since X∗ is a separable Banach space, there exists a one-to-one continuous linear map-
ping i : X −→ c0(N). Indeed, it is enough to take a sequence {gk}∞k=1 dense on SX∗ and define
i(x) = (gk(x)/2k)∞k=1. In addition, the linear mapping i satisfies that

xn
ω−→0 (weakly) whenever (∆)
{xn}∞n=1 is a bounded sequence with i(xn)→ 0 (in norm).

Let us consider the continuous, LFC function b : X −→ R. We define n =
∑p

j=1 nj ,
consider Rn = Rn1 × · · · × Rnp and the canonical projection pj : Rn −→ Rnj given by
pj(v) = vj , for v = (v1, . . . , vp) ∈ Rn1 × · · · × Rnp . We can relabel the set of function-
als {f1

1 , . . . , f
1
n1
, . . . , fp1 , . . . , f

p
np} as {f1, . . . , fn} in such a way that pj(f1(x), . . . , fn(x)) =

(f j1 (x), . . . , f jnj (x)) for every x ∈ X and j = 1, . . . , p. Let us define Gj : Rn −→ R as
Gj(x) = gj(pj(x)). To simplify notation, we will use gj to denote Gj in the rest of the proof
(thus, we have gj(f1(x), . . . , fn(x)) = b(x) for all x ∈ B(xj , 2rj)). We define

T : X −→ Rn × c0(N), T (x) = (f1(x), . . . , fn(x), i(x)). (2.1)

The function T is one-to-one, linear and continuous.

Let us first show the assertion of the lemma for p = 2. Since T is one-to-one, T (B1) ∩
T (B2) = T (B1 ∩B2). If x ∈ T (B1)∩ T (B2) = T (B1 ∩B2), there exists y ∈ B1 ∩B2 such that
T (y) = x. Thus

b(y) = g1(f1(y), . . . , fn(y)) = g1(π(x))

= g2(f1(y), . . . , fn(y)) = g2(π(x)),

where π is the projection of Rn × c0(N) onto Rn given by the n first coordinates.

Let us define g : T (B1) ∪ T (B2) −→ R as

g(x) =

{
g1(π(x)) if x ∈ T (B1)

g2(π(x)) if x ∈ T (B2).
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If x ∈ T (B1) ∩ T (B2), we have already showed that g1(π(x)) = g2(π(x)). To show that g is
well defined and continuous on T (B1) ∪ T (B2), it suffices to prove that g1(π(x)) = g2(π(x))
whenever x ∈ T (B1)∩ T (B2). Assume, on the contrary, that there is z ∈ T (B1)∩ T (B2) with
g1(π(z)) 6= g2(π(z)). Then, there exist two sequences {xm} ⊂ B1 and {ym} ⊂ B2 such that
T (xm)→ z and T (ym)→ z. Since limm ||π(T (xm))−π(z)||∞ = limm ||π(T (ym))−π(z)||∞ = 0
and g1 and g2 are continuous, we have

g1(π(z)) = lim
m→∞

g1(π(T (xm))) = lim
m→∞

g1(f1(xm), . . . , fn(xm)),

g2(π(z)) = lim
m→∞

g2(π(T (ym))) = lim
m→∞

g2(f1(ym), . . . , fn(ym)).

Let δ > 0 such that |g1(z1, . . . , zn)− g2(z1, . . . , zn)| ≥ δ > 0, where zi is the i-coordinate of z.
Since the functions g1 and g2 are continuous on the point (z1, . . . , zn), there exists η > 0 such
that

|g1(t1, . . . , tn)− g1(z1, . . . , zn)| < δ/4 and |g2(t1, . . . , tn)− g2(z1, . . . , zn)| < δ/4

whenever t = (t1, . . . , tn) ∈ Rn and ‖(t1, . . . , tn)− (z1, . . . , zn)‖∞ < η.

Let us take 0 < ε < min{η, r2/2}. There exists n0 ∈ N such that ||π(T (xm)) − π(z)||∞ < ε
and ||π(T (ym)) − π(z)||∞ < ε whenever m ≥ n0. To simplify, we denote {xm} and {ym} as
the subsequences {xm}m≥n0 and {ym}m≥n0 .

Since T (xm − ym) → 0, by property (∆) of the mapping i, we obtain that xm − ym
ω−→ 0.

From the fact that coω({xm − ym : m ∈ N}) = co({xm − ym : m ∈ N}), we obtain convex
combinations of {xm − ym} converging (in norm) to 0, i.e. there are non-negative numbers
{λεi}

mε
i=1 such that

∑mε
i=1 λ

ε
i = 1 and ‖

∑mε
i=1 λ

ε
ixi −

∑mε
i=1 λ

ε
iyi‖ < ε. Since

∑mε
i=1 λ

ε
ixi ∈ B1 and∑mε

i=1 λ
ε
iyi ∈ B2, we have

dist(

mε∑
i=1

λεixi, B2) ≤ ‖
mε∑
i=1

λεixi −
mε∑
i=1

λεiyi‖ < ε.

Notice that ε < r2/2 and then
∑mε

i=1 λ
ε
ixi ∈ B(x2, 2r2) ∩B1. Therefore

b(

mε∑
i=1

λεixi) = g2(

mε∑
i=1

λεif1(xi), . . . ,

mε∑
i=1

λεifn(xi)) = g2(π ◦ T (

mε∑
i=1

λεixi)) (2.2)

= g1(

mε∑
i=1

λεif1(xi), . . . ,

mε∑
i=1

λεifn(xi)) = g1(π ◦ T (

mε∑
i=1

λεixi)). (2.3)

We know that ||π(T (xm)) − π(z)||∞ < ε for every m ∈ N. Thus, by convexity, we have that
||π ◦ T (

∑mε
i=1 λ

ε
ixi)− π(z)||∞ < ε. Since ε < η, we deduce

|g1(

mε∑
i=1

λεif1(xi), . . . ,

mε∑
i=1

λεifn(xi))− g1(z1, . . . , zn)| < δ/4, (2.4)

|g2(

mε∑
i=1

λεif1(xi), . . . ,

mε∑
i=1

λεifn(xi))− g2(z1, . . . , zn)| < δ/4. (2.5)
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From equations (2.2), (2.3), (2.4) and (2.5) we deduce that

|g1(z1, . . . , zn)− g2(z1, . . . , zn)| < δ/2

which is a contradiction. This proves that the function g is well defined and continuous on
the closed set T (B1) ∪ T (B2). Now, by the Tietze theorem we can construct a continuous
extension, which we shall denote also by g, on the space Rn × c0(N). Notice that the above
arguments imply that b|B1∪B2 is locally weakly uniformly continuous.

Finally, let us define B(x) = g(T (x)) for every x ∈ X. Then B is a continuous function
and B(x) = b(x) for every x ∈ B1 ∪B2.

Let us consider the general case of p balls. Since the function T defined in (2.1) is one-to-
one,

⋂
i∈I T (Bi) = T (

⋂
i∈I Bi) where I ⊂ {1, . . . , p}. If x ∈

⋂
i∈I T (Bi) = T (

⋂
i∈I Bi) there

exists y ∈
⋂
i∈I Bi such that T (y) = x. Thus

b(y) = gi(f1(y), . . . , fn(y)) = gi(π(x)) = gj(f1(y), . . . , fn(y)) = gj(π(x))

for every i, j ∈ I, where π is the projection of Rn × c0(N) onto Rn given by the n first
coordinates. Let us define g :

⋃p
i=1 T (Bi) −→ R such that

g(x) = gi(π(x)), if x ∈ T (Bi).

Let us check that g is well defined and continuous in
⋃p
i=1 T (Bi). Consider z ∈

⋂
i∈I T (Bi)

where I ⊂ {1, . . . , p} and I has at least two elements. If i, j ∈ I and i 6= j, it is enough
to check that gi(π(x)) = gj(π(x)), whenever x ∈ T (Bi) ∩ T (Bj). This equality is already
proved for the case p = 2. Notice that the integer n considered in the case p = 2 for the
two balls Bi and Bj is less or equal than the integer n considered in the general case of the
p balls B1, . . . , Bp, and thus the projections, both denoted as π, do not necessarily coincide.
Nevertheless, this fact does not interfere in the proof, since we consider gk(π(x)) as gk(pk(x))
in both case. Now, we can apply the Tietze theorem and find a continuous extension, which
we shall denote also by g, defined on Rn× c0(N). Notice that the above arguments imply that
b|∪pi=1Bi

is locally weakly uniformly continuous.

Finally, let us define B(x) = g(T (x)) for every x ∈ X. Then, B is a continuous function
and B(x) = b(x), for every x ∈

⋃p
i=1Bi.

The following theorem is the main result of this chapter. It establishes a characterization
of the class of separable Banach spaces admitting a continuous, LFC bump as those separable
Banach spaces with a C∞-smooth LFC bump.

Theorem 2.2.2. Let X be a separable Banach space. The following statements are equivalent:

1. X admits a continuous, LFC bump function.

2. X admits a C∞-smooth, LFC bump function.

Proof. We only need to prove (1) ⇒ (2). Let b : X −→ R be a continuous, LFC bump
function. We can obtain, using a composition of b with a suitable real function, a continuous,
LFC bump b : X −→ [1, 2] such that b(0) = 1 and b(x) = 2 whenever ‖x‖ ≥ 1. For every
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x ∈ X, there exist rx > 0, nx ∈ N, functionals {fx1 , . . . , fxnx} ⊂ X∗ and a continuous function
gx : Rnx −→ R such that

b(y) = gx(fx1 (y), . . . , fxnx(y)), for every y ∈ B(x, 2rx).

Since X is separable, there exists a sequence of points {xm}∞m=1 ⊂ X such that X =
⋃
m∈NBm

(where rm = rxm and Bm = B(xm, rm)). We can assume that 0 ∈ B1 and define the increasing
sequence of open sets Vj := B1∪· · ·∪Bj . We know by Theorem 2.1.3 that, under our assump-
tions, X∗ is separable. From Lemma 2.2.1, we obtain for every j ∈ N, a continuous linear map
Tj : X −→ c0(N) and a continuous function gj : c0(N) −→ R such that b(x) = gj(Tj(x)) for
every x ∈ Vj .

Following the construction given by P. Hájek and M. Johanis in [54], let us choose two
sequences of real numbers εj and ηj decreasing to 0 and 1 respectively, 0 < εj <

1
4(ηj − ηj+1)

with η1 < 1 + 1
4 and ε1 <

1
8 . We can uniformly approximate the continuous function ηj gj in

c0(N) by a C∞-smooth and LFC-{e∗i } function [108], which we shall denote by hj , satisfying

|hj(x)− ηj gj(x)| < εj , for every x ∈ c0(N).

Let us define Hj : X −→ R, Hj(x) = hj(Tj(x)), for every x ∈ X and j ∈ N. Since Tj is
linear and continuous and hj is C∞-smooth and LFC-{e∗i }, we can easily deduce thatHj is C∞-
smooth and LFC. Indeed, for every x ∈ X, let us consider V ⊂ c0(N) a neighborhood of Tj(x), a
natural number s, a continuous function p : Rs −→ R and {e∗1, . . . , e∗s} (coordinate functionals
on c0(N)) such that hj(y) = p(e∗1(y), . . . , e∗s(y)) for every y ∈ V . Since Tj is continuous, the
set W = T−1

j (V ) is a neighborhood of x on X. Then Hj(z) = p(e∗1 ◦ Tj(z), . . . , e∗s ◦ Tj(z)) for
all z ∈W . Since e∗i ◦ Tj ∈ X∗, we conclude that Hj is LFC. In addition, we have

|Hj(x)− ηj b(x)| < εj , for every x ∈ Vj .

Let us define

Φ : X −→ `∞(N), Φ(x) = (Hj(x))j .

Φ is well defined since limj Hj(x) = b(x) for every x ∈ X. Let us check that Φ is continuous.
Consider x ∈ X and ε > 0. Since b is continuous at x, there is δ > 0 such that |b(x)−b(y)| < ε

4
whenever ||x − y|| < δ. In addition, there exists j0 ∈ N such that if j ≥ j0, then x ∈ Vj and
εj <

ε
4 . Thus, for every y ∈ Vj0 with ||x− y|| < δ, we have

|Hj(x)−Hj(y)| ≤ |Hj(x)− ηjb(x)|+ ηj |b(x)− b(y)|+ |ηjb(y)−Hj(y)| ≤ 2εj + ηj
ε

4
< ε,

whenever j ≥ j0. From the above inequality and the fact that H1, . . . ,Hj0 are continuous at
x, we can easily deduce the continuity of Φ at x.

Let us consider the open subset U of `∞(N) defined in Lemma 2.1.5,

U = {x ∈ `∞(N) : |xj0 | − εj0 > sup
j>j0

|xj |+ εj0 for some j0 ∈ N}.
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Let us prove that Φ(X) ⊂ U . If x ∈ Vj0 for some j0 and j > j0, we have

Hj0(x)− εj0 > ηj0b(x)− 2εj0 > ηj0+1b(x) + 2εj0 > (ηjb(x) + εj) + εj0 > Hj(x) + εj0

and thus Φ(X) ⊂ U . By Lemma 2.1.5, there exists a C∞-smooth and LFC-{e∗i } function
F : U → (0,∞) (where {e∗i } are the coordinate functionals on `∞(N)) satisfying ||x||∞ ≤
F (x) ≤ ||x||∞ + ε1. Then the composition function defined as

B : X −→ R, B(x) = F (Φ(x))

is C∞-smooth and LFC. In addition,

(a) Since 0 ∈ Vj for every j ∈ N, Hj(0) < ηjb(0)+εj ≤ η1+ε1. Thus, B(0) ≤ ||Φ(x)||∞+ε1 ≤
η1 + 2ε1 ≤ 3

2 .

(b) If ‖x‖ ≥ 1 and j0 ∈ N verifies x ∈ Vj0 , then Hj0(x) > ηj0 b(x)− εj0 ≥ 2ηj0 − εj0 > 2− ε1

and B(x) ≥ ||Φ(x)||∞ > 2− ε1 ≥ 15
8 .

Therefore B is a separating function on X and by composing it with a suitable C∞-smooth,
real function we obtain a C∞-smooth, LFC bump function on X.

2.3 Locally Factorized functions

Roughly speaking, in the previous section, we have seen a LFC function as a function that
is locally factorized through finite-dimensional spaces. Now, we generalize this concept to
functions that are locally factorized through specific Banach spaces. Thus, Lemma 2.2.1 and
Theorem 2.2.2 can be generalized using the concept of locally factorized functions.

Definition 2.3.1. Let X, E and Y be Banach spaces, A ⊂ X an open subset, F a family of
Banach spaces and b : A→ Y a continuous mapping.

(a) We say that b is factorized by E on a subset U ⊂ A if there exist a continuous, linear
map T : X −→ E and a continuous function G : E −→ Y such that b(x) = G(T (x)) for
all x ∈ U .

(b) We say that b is locally factorized by E (b is LF-E, for short) if for each x ∈ A there
exists a neighborhood Ux ⊂ A of x such that b is factorized by E on Ux.

(c) We say that b is locally factorized by F (b is LF-F , for short) if for each x ∈ A there
are a neighborhood Ux ⊂ A of x and a Banach space Ex ∈ F such that b is factorized by
Ex on Ux.

Ux
b //

Tx   B
BB

BB
BB

B Y

Ex

Gx

>>}}}}}}}}

Now, we can see an LFC function as an LF-{Rn : n ∈ N} function. Moreover, every
continuous, LFC function is LF-c0. However, it is clear that not every LF-F function is LFC.
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In fact, there exist Banach spaces with LF-F norms but they do not admit a continuous, LFC
bump function.

Example 2.3.2. For a Banach space E with norm || · ||, let us consider

c0(E) =
∑
c0

E = {(xn)∞n=1 : xn ∈ E and lim
n
||xn|| = 0}

with the norm ||x||∞ = sup{||xn|| : n ∈ N}, for every x ∈ c0(E). It can be readily verified that
the norm in c0(E) is LF-{En : n ∈ N}. Moreover, if E = `p(N) with 1 ≤ p ≤ ∞, then the norm
in c0(`p) is LF-`p away from the origin. Indeed, for every x ∈ c0(E), x 6= 0, there exists n ∈ N
such that ||xi|| < ||x||∞/2 for every i ≥ n. Then ||y||∞ = max{||yi|| : i = 1, . . . , n} for every
y ∈ B(x, ‖x‖∞/4). Now, if E = `p(N), let us take φ : (`p(N))n → `p(N) and G : `p(N) → R
defined by

φ(x1, . . . , xn) = (x1(1), x2(1), . . . , xn(1), x1(2), x2(2), . . . , xn(2), . . . ), and
G(z) = max{||{zi+j·n}∞j=0||p : i = 1, . . . , n}.

Hence, ||y||∞ = G(φ(y1, . . . , yn)) = G(T (y)) for every y ∈ B(x, ||x||∞/4), where the mapping
T :
∑

c0
`p(N)→ `p(N) is defined as T (y) = φ(y1, . . . , yn), which is continuous and linear.

However, note that in this case, c0(`p) does not admit a continuous, LFC bump, because∑
c0
`p is not c0-saturated (recall that Theorem 2.1.4 says that every Banach space with a

continuous, LFC bump function is c0-saturated).

Example 2.3.3. Likewise, for a family of Banach spaces F = {(Eγ , || · ||γ) : γ ∈ Γ}, where Γ
is a non-empty set, we can consider

c0(F) =
∑
c0(Γ)

Eγ

= {(xγ)γ∈Γ : xγ ∈ Eγ and the set {γ ∈ Γ : ||xγ ||γ ≥ ε} is finite for every ε > 0}

with the norm ||x||∞ = sup{||xγ || : γ ∈ Γ}, for every x ∈ c0(F). Then, the norm in c0(F) is
LF-{

∏
γ∈GEγ : G ∈ G} where G is the collection of all finite, non-empty subsets of Γ.

Following the proof given by M. Fabian and V. Zizler of Theorem 2.1.3 (see [26]), we can
show the following proposition which gives us an expression of the dual space of a Banach
space with an LF-F bump function in terms of its factorization.

Proposition 2.3.4. Let X, E be Banach spaces and F a family of Banach spaces such that
X admits a continuous, LF-E (LF-F) bump function b : X → R. Let {Ui}i∈I be a family of
open subsets covering X and b = Gi ◦Ti on Ui for every i ∈ I, where Ti : X → E (respectively,
Ti : X → Ei with Ei ∈ F) is a continuous, linear map and Gi : E → R (respectively,
Gi : Ei → R) is a continuous function. Then X∗ =

⋃
i∈I(kerTi)⊥.

Proof. Following [26], let us define the function φ on X by:

φ(x) =

{
b−2(x) if b(x) 6= 0

+∞ if b(x) = 0.
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It follows that φ is a bounded below, lower semicontinuous function on X and it is LF-E
(respectively, LF-F). Furthermore, the subset dom(φ) = {x ∈ X : φ(x) < +∞} is bounded,
open and non-empty.

Let f ∈ X∗ and ε > 0 be given. From the Ekeland variational principle (see [22, Theorem
I.2.4]) it follows that there is x0 ∈ dom(φ) such that

(φ− f)(x) ≥ (φ− f)(x0)− ε||x− x0||, for all x ∈ X.

Since {Ui} covers X there is i ∈ I such that x0 ∈ Ui.
• If kerTi = {0} then (kerTi)

⊥ = {0}⊥ = X∗.

• If kerTi 6= {0}, let us take δ > 0 such that B(x0, δ) ⊂ Ui. Then, for all h ∈ kerTi with
||h|| < δ, we have that

φ(x0 + h)− φ(x0) = (Gi(Ti(x0 + h)))−2 − (Gi(Ti(x0)))−2 = 0.

Hence, for h ∈ kerTi with ||h|| < δ

f(h) = f(x0 + h)− f(x0) ≤ φ(x0 + h)− φ(x0) + ε||h|| = ε||h||.

Let f̃ be the restriction of f to kerTi. It satisfies f̃ ∈ (kerTi)
∗ and ||f̃ || < ε. If f̃1 is a

norm preserving Hahn-Banach extension of f̃ to X, then f − f̃1 ∈ (kerTi)
⊥. Hence

dist(f, (kerTi)
⊥) ≤ dist(f, f − f̃1) = ||f̃1|| < ε.

Thus
⋃
i∈I(kerTi)⊥ = X∗.

Corollary 2.3.5. [26] Every Banach space which admits a continuous LFC bump function is
an Asplund space.

Proof. Assume that X is a separable Banach space. There is {Ui}∞i=1 a countable family of
open subsets which covers X and b = Gi ◦ Ti on Ui for every i ∈ N, where Ti : X → Rni are
continuous, linear maps and Gi : Rni → R are continuous functions. Then, by Proposition
2.3.4, X∗ =

⋃
i∈N(kerTi)⊥. It follows from the bipolar theorem that (kerTi)

⊥ = span{e∗j ◦Ti :
j = 1, . . . , ni}. Thus, X∗ is separable and X is Asplund.

Now, we shall see the relation between functions that are LF-F and functions that locally
depend on countably many coordinates introduced by M. Fabian and V. Zizler in [27].

Definition 2.3.6. Let X be a Banach space, H a subspace of X∗ and b : X → R a continuous
function. We say that b locally depends on countably many elements of H if for each
x ∈ X there are a neighborhood Ux ⊂ X of x, countably many elements {fi}∞i=1 ⊂ BH , and a
continuous function G : `∞(N) → R such that b(z) = G(f1(z), f2(z), . . . ) for each z ∈ Ux. If
H = X∗, we say that b locally depends on countably many coordinates (b is LCC, for
short).

First of all, let us note that the concept of LCC function coincides with the concept of
LF-`∞ function. Indeed, on the one hand, if b : X → R is a continuous, LF-`∞ function
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defined on a Banach space, then for every x ∈ X there are U an open neighborhood of x on X,
a continuous linear map T : X → `∞(N) and a continuous function G : `∞(N)→ R such that
b = G◦T on U . Let us take fi = 1

||T ||e
∗
i ◦T : X → R (where {e∗i } are the coordinate functionals

in `∞(N)) and G̃ : `∞(N) → R given by G̃(z) = G(||T || z). So, b(z) = G̃(f1(z), f2(z), . . . ) for
every z ∈ U and b is LCC. On the other hand, if H is a subspace of X∗ and b : X → R is a
continuous function which locally depends on countably many elements of H, then for every
x ∈ X there are U an open neighborhood of x on X, countable many elements {fi}∞i=1 ⊂ BH
and a continuous function G : `∞(N) → R such that b(z) = G(f1(z), f2(z), . . . ) for every
z ∈ U . We only have to define T : X → `∞(N) as T (z) = (f1(z), f2(z), . . . ), which is a
continuous linear map, since fi ∈ BH . Thus, b = G ◦ T on U and b is LF-`∞.

Proposition 2.3.7. Let X be a Banach space, F a family of separable Banach spaces and
b : X → R a continuous, LF-F function. Then b is LF-`∞ and thus LCC.

Proof. For every x ∈ X there are U an open neighborhood of x on X, a separable Banach
space E ∈ F , a continuous linear map T : X → E and a continuous function G : E → R such
that b = G ◦ T on U . It is well known that every separable Banach space is isometric to a
subspace of `∞ (see, for example, [25, Proposition 5.11]). Since E is a separable Banach space,
there is an isometry S : E → `∞(N). We can define G̃ : S(E) → R given by G̃(S(z)) = G(z)
for every z ∈ E. Then G̃ is a continuous function defined in a closed subspace of `∞. By the
Tietze extension theorem there is a continuous extension of G̃ to `∞, we also denote to this
continuous extension by G̃ : `∞(N)→ R. So, b = G̃ ◦ (S ◦ T ) on U and b is LF-`∞.

Finally, with the same arguments employed in Lemma 2.2.1 and Theorem 2.2.2, we can
show the following more general statement. For the reader’s convenience, we present here the
required modifications.

Theorem 2.3.8. Let X, E be separable Banach spaces and F a family of separable Banach
spaces such that X admits a continuous, LF-E (LF-F) bump function. Assume that X∗ is
separable and E (respectively, every E ∈ F) admits a bump function b satisfying one of the
following properties:

1. b is Ck-smooth, where k ∈ N ∪ {∞},

2. b is continuous and LFC,

3. b is LFC and Ck-smooth, where k ∈ N ∪ {∞}.

Then, X admits a bump function satisfying the same property.

First of all, we must show a similar lemma to Lemma 2.2.1 for LF-E and LF-F func-
tions. Here, we prove the lemma for LF-F functions, the result for LF-E functions follows
immediately from the LF-F case.

Lemma 2.3.9. Let X be a Banach space with separable dual and F a family of Banach spaces.
Let us consider p ∈ N, Bj = B(xj , rj) open balls, Ej ∈ F , continuous functions gj : Ej → R,
and continuous linear maps Tj : X → Ej, for j = 1 . . . , p. Let us assume that

b(x) = gj(Tj(x)), for every x ∈ B(xj , 2rj).
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Then, there exist a continuous linear map T : X → E1 × · · · × Ep × c0(N) and a continuous
function g : E1 × · · · × Ep × c0(N)→ R such that b(x) = g(T (x)) for every x ∈

⋃p
j=1Bj.

Proof. Let us take the same function i : X → c0(N) as Lemma 2.2.1. Let us define T : X →
E1 × · · · × Ep × c0(N) as

T (x) = (T1(x), . . . , Tp(x), i(x)).

The function T is one-to-one, continuous and linear.

Let us define g :
⋃p
i=1 T (Bi)→ R such that

g(x) = gi(πi(x)), if x ∈ T (Bi),

where πi denotes the projection of E1 × · · · × Ep × c0(N) onto Ei.

We can follow the steps of Lemma 2.2.1 to check that g is well defined and continuous on⋃p
i=1 T (Bi). Now, we apply the Tietze extension theorem and find a continuous extension of g

to the whole space E1× · · ·×Ep× c0(N), which we shall also denote by g, and b(x) = g(T (x))
for every x ∈

⋃p
j=1Bj .

Proof of Theorem 2.3.8. We only need to prove the assertion when b : X → R is a continuous,
LF-F bump function and every E ∈ F admits a bump function with one of the properties of
the theorem. We shall denote that property by S.

By composing with a suitable real function, we can obtain a continuous, LF-F function
b : X −→ [1, 2] such that b(0) = 1 and b(x) = 2 whenever ‖x‖ ≥ 1. For every x ∈ X, there
exist rx > 0, Ex ∈ F , a continuous and linear map Tx : X → Ex and a continuous function
gx : Ex → R such that

b(y) = gx(Tx(y)), for every y ∈ B(x, 2rx).

Since X is separable, there exists a sequence of points {xm}∞m=1 of X such that X =
⋃
m∈NBm

(where rm = rxm and Bm = B(xm, rm)). We can assume that 0 ∈ B1 and define the increasing
sequence of open sets Vj := B1 ∪ · · · ∪ Bj . From Lemma 2.3.9, we obtain for every j ∈ N,
a continuous linear map Tj : X → E1 × · · · × Ej × c0(N) and a continuous function gj :
E1 × · · · × Ej × c0(N)→ R such that b(x) = gj(Tj(x)) for every x ∈ Vj .

Following the construction given by P. Hájek and M. Johanis in [54] and the proof of
Theorem 2.2.2, let us choose two sequences of real numbers εj and ηj decreasing to 0 and 1
respectively, 0 < εj <

1
4(ηj−ηj+1) with η1 < 1+ 1

4 and ε1 <
1
8 . We can uniformly approximate

the continuous function ηj gj in E1 × · · · × Ej × c0(N) by a function hj with the property S
(see [108]) satisfying

|hj(x)− ηj gj(x)| < εj , for every x ∈ E1 × · · · × Ej × c0(N).

Let us define Hj : X −→ R, Hj(x) = hj(Tj(x)), for every x ∈ X and j ∈ N. Since Tj is
linear and continuous and hj satisfies the property S, we can easily deduce that Hj satisfies
the property S. In addition, we have

|Hj(x)− ηj b(x)| < εj , for every x ∈ Vj .



36 2.3. Open Problems

Let us define

Φ : X −→ `∞(N), Φ(x) = (Hj(x))j .

The function Φ is well defined since limj Hj(x) = b(x) for every x ∈ X, and it is continuous.

Let us consider the open subset U of `∞(N),

U = {x ∈ `∞(N) : |xj0 | − εj0 > sup
j>j0

|xj |+ εj0 for some j0 ∈ N}.

Then Φ(X) ⊂ U . By Lemma 2.1.5, there exists a C∞-smooth and LFC-{e∗i } function F :
U → (0,∞) (where {e∗i } are the coordinate functionals on `∞(N)) satisfying ||x||∞ ≤ F (x) ≤
||x||∞ + ε1. Then the composition function defined as

B : X −→ R, B(x) = F (Φ(x))

satisfies the property S. In addition, B(0) ≤ 3
2 , and B(x) > 15

8 for every ‖x‖ ≥ 1.

Therefore B is a separating function on X and we can obtain a bump function with the
property S on X. �

Open Problems

Let us now turn to some questions that remain open. In general, the following problems are
well known in the area.

1. Let X be a separable Banach space admitting a continuous LFC bump function. Is
the space X polyhedral? Or, equivalently, does there exist an LFC norm? A tentative
counterexample to this question has been given by P. Hájek and M. Johanis in [53]
where they have conjectured that the answer is negative. Specifically, they constructed
an Orlicz space admitting a C∞-smooth LFC bump function and not satisfying Leung’s
sufficient condition on polyhedrality [86].

2. Does Theorem 2.2.2 hold in the non-separable case? I.e., let X be a non-separable
Banach space which admits a continuous LFC bump function. Does X admit a C∞-
smooth LFC bump function? It is worth mentioning that, in the non-separable case, the
same question about LFC norms remains open.

3. Let X be a Banach space admitting a Ck-smooth and LFC bump function. Does then
X admit LFC and Ck-smooth partitions of unity? This problem has a positive solution
when either X is a WCG Banach space or X = C(K) (see [22] and [52]).

4. Let X be a Banach space admitting a non-continuous LFC bump function. Does X
admit a continuous LFC bump function?
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Chapter 3

Smooth and Lipschitz approximation on
Banach spaces

In this chapter we give a brief survey of some recent results concerning smooth and Lips-
chitz approximation of Lipschitz functions and C1-fine approximation of smooth functions on
Banach spaces. These results will be widely used in the following chapters.

We start by listing the most fundamental results in the area. First of all, let us recall what
means C1-fine approximation. Let f : X → Z be a C1-smooth mapping between Banach
spaces and ε : X → (0,∞) a continuous function. We say that f is C1-fine approximated
by a Ck-smooth mapping g : X → Z (with k ∈ N ∪ {∞}), if ||f(x) − g(x)|| < ε(x) and
||f ′(x) − g′(x)|| < ε(x) for all x ∈ X. The finite-dimensional case was solved by H. Whitney
in the classical paper [111].

Theorem 3.0.1. [111] Let U be an open subset of Rn. Then, for any Ck-smooth function
f : U → R, with k ∈ N, and any continuous function ε : U → (0,∞), there is an analytic
function g : U → R such that

|f(x)− g(x)| < ε(x) and ||f (j)(x)− g(j)(x)|| < ε(x) for all x ∈ U and 1 ≤ j ≤ k,

where the superscripts (j) on f and g represent the jth Fréchet derivatives.

The infinite-dimensional setting has proven to be more difficult. The most fundamental
work in this direction has been made by N. Moulis in [92].

Theorem 3.0.2. [92] Let X be c0(N) or `p(N) (with 1 < p < ∞), Z a Banach space and
U an open subset of X. Then, for any C1-smooth mapping f : U → Z and any continuous
function ε : U → (0,∞), there is a Cα-smooth mapping g : U → Z (where α = ∞ if X = c0

or p is even, α = p− 1 if p is odd, and α = [p] if p is not an integer number), such that f is
C1-fine approximated by g, i.e.

||f(x)− g(x)|| < ε(x) and ||f ′(x)− g′(x)|| < ε(x) for all x ∈ U.

D. Azagra, R. Fry, J.G. Gil, J.A. Jaramillo and M. Lovo in [11] extended this result to
any Banach space that admits an unconditional Schauder basis and a smooth, Lipschitz bump
function.
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Theorem 3.0.3. [11] Let X be a Banach space with an unconditional basis, Z a Banach space
and U an open subset of X. Assume that X admits a Ck-smooth, Lipschitz bump function,
with k ∈ N∪{∞}. Then, for any C1-smooth mapping f : U → Z and any continuous function
ε : U → (0,∞), there is a Ck-smooth mapping g : U → Z such that f is C1-fine approximated
by g, i.e.

||f(x)− g(x)|| < ε(x) and ||f ′(x)− g′(x)|| < ε(x) for all x ∈ U.

R. Fry used similar techniques in [36, 38] in order to obtain a result on smooth and Lipschitz
approximation of Lipschitz functions on Banach spaces with an unconditional Schauder basis
and a smooth, Lipschitz bump function. More precisely, he proved that in those spaces any
Lipschitz function f can be uniformly approximated by a smooth and Lipschitz function.
Moreover, the Lipschitz constant of the constructed smooth function is controlled by the
Lipschitz constant of f , i.e. the ratio between their Lipschitz constants is bounded.

Theorem 3.0.4. [36, 38] Let X be a Banach space with an unconditional basis and Z a Banach
space. Assume that X admits a Ck-smooth, Lipschitz bump function, with k ∈ N∪{∞}. Then,
there is a constant C0 ≥ 1, which only depends on X, such that for every Lipschitz mapping
f : X → Z and every ε > 0, there is a Ck-smooth and Lipschitz mapping g : X → Z such that

||f(x)− g(x)|| < ε for all x ∈ X, and Lip(g) ≤ C0 Lip(f).

We are mainly interested in this type of results, where any Lipschitz function can be
uniformly approximated by a smooth and Lipschitz function. The finite-dimensional case is
solved using the integral convolution techniques. The first theorem in the infinite-dimensional
setting was given by J.M Lasry and P.L. Lions in [85] where they use the infimal convolution
techniques to prove C1-smooth and Lipschitz approximation of Lipschitz functions on Hilbert
spaces (separable or non-separable).

Theorem 3.0.5. [85] Let X be a Hilbert space. Then, for every Lipschitz function f : X → R
and ε > 0, there is a C1-smooth and Lipschitz function g : X → R such that

|f(x)− g(x)| < ε for all x ∈ X, and Lip(g) ≤ Lip(f).

D. Azagra, J. Ferrera, F. López-Mesas and Y.C. Rangel in [6] combined Theorem 3.0.2 and
Theorem 3.0.5 to obtain C∞-smooth and Lipschitz approximations on separable Riemannian
manifolds, in particular on separable Hilbert spaces.

Theorem 3.0.6. [6] Let X be a separable Hilbert space. Then, for any Lipschitz function
f : X → R, any continuous function ε : X → (0,∞) and any r > 0, there is a C∞-smooth
Lipschitz function g : X → R such that

|f(x)− g(x)| < ε(x) for all x ∈ X, and Lip(g) ≤ (1 + r) Lip(f).

On the other hand, R. Fry started studying the problem from a different point of view.
In [35] he introduces new techniques (called sup-partitions of unity, that will be studied later)
in order to obtain smooth and Lipschitz approximation of Lipschitz and bounded functions
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on separable Banach spaces. This method was generalized by D. Azagra, R. Fry and A.
Montesinos in [10].

Theorem 3.0.7. [35, 10] Let X be a separable Banach space which admits a Ck-smooth,
Lipschitz bump function, with k ∈ N ∪ {∞}. Then, for any ε > 0 there is a constant C ≥ 1,
which depends on X and ε, such that for every Lipschitz function f : X → [0, 1], there is a
Ck-smooth and Lipschitz function g : X → R such that

|f(x)− g(x)| < ε for all x ∈ X, and Lip(g) ≤ C Lip(f).

Recently, P. Hájek and M. Johanis have improved the above theorem in different directions
in the paper [56] (see also [7]).

Theorem 3.0.8. [56] Let X be a separable Banach space which admits a Ck-smooth, Lipschitz
bump function, with k ∈ N ∪ {∞}. Then, there is a constant C0 ≥ 1, which only depends on
X, such that for every Lipschitz function f : X → R and every ε > 0, there is a Ck-smooth
and Lipschitz function g : X → R such that

|f(x)− g(x)| < ε for all x ∈ X, and Lip(g) ≤ C0 Lip(f).

In the next section, we show that the constant C0 of the above theorem can be obtained
to be independent of the separable Banach space.

The non-separable case has not been so well developed. In addition to Theorem 3.0.5 for
Hilbert spaces, there are also two important results. P. Hájek and M. Johanis proved in [55]
that every Lipschitz mapping defined on c0(Γ) can be uniformly approximated by C∞-smooth
and Lipschitz mappings.

Theorem 3.0.9. [55] Let Γ be an arbitrary set and Z a Banach space. Then, for every
Lipschitz mapping f : c0(Γ) → Z and every ε > 0, there is a C∞-smooth, Lipschitz and LFC
mapping g : c0(Γ)→ Z, such that

||f(x)− g(x)|| < ε for all x ∈ X, and Lip(g) ≤ Lip(f).

Using this result and the techniques developed in [35], among other tools, they obtained the
following characterization. Firstly, we recall the notion of smooth and Lipschitz sup-partition
of unity on a Banach space, which was introduced by R. Fry [35] and it becomes one of the keys
to obtain smooth and Lipschitz approximation. Subsequent generalizations of this result and
related results were given in [10] and [56]. The symbol c00(Γ) denotes the space of sequence
consisting of all x = (xγ)γ∈Γ such that supp(x) = {γ ∈ Γ : xγ 6= 0} is finite.

Definition 3.0.10. Let X be a Banach space. We say that X admits Ck-smooth and Lip-
schitz sup-partitions of unity subordinated to an open cover U = {Ur}r∈Ω of X, if there
is a collection of Ck-smooth and L-Lipschitz functions {ψα}α∈Γ (where L > 0 depends on X
and the cover U) such that

(S1) ψα : X → [0, 1] for all α ∈ Γ,

(S2) for each x ∈ X the set {α ∈ Γ : ψα(x) > 0} ∈ c00(Γ),
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(S3) {ψα}α∈Γ is subordinated to U = {Ur}r∈Ω, i.e. for each α ∈ Γ there is r ∈ Ω such that
supp(ψα) ⊂ Ur, and

(S4) for each x ∈ X there is α ∈ Γ such that ψα(x) = 1.

Theorem 3.0.11. [56] Let X be a Banach space, Γ an infinite set and k ∈ N ∪ {∞}. Then
the following statements are equivalent:

(i) There is a Ck-smooth and Lipschitz sup-partition of unity subordinated to {B(x, 1) : x ∈
X}.

(ii) X is uniformly homeomorphic to a subset of c0(Γ) and there is C0 ≥ 1 such that for every
Lipschitz function f : X → R and ε > 0, there is a Ck-smooth and Lipschitz function
g : X → R such that |f(x)− g(x)| < ε on X and Lip(g) ≤ C0 Lip(f).

(iii) There is a bi-Lipschitz homeomorphism ϕ : X → c0(Γ) such that the coordinate functions
e∗γ ◦ ϕ are Ck-smooth for every γ ∈ Γ.

Finally, it is worth mentioning the close relation between smooth and Lipschitz approxi-
mation and C1-fine approximation, as P. Hájek and M. Johanis showed in [56].

Theorem 3.0.12. [56] Let X be a Banach space and k ∈ N ∪ {∞}. Assume that there is
C0 ≥ 1 such that for every Lipschitz function f : X → R and ε > 0 there is a Ck-smooth and
Lipschitz function g : X → R such that |f(x) − g(x)| < ε and Lip(g) ≤ C0 Lip(f). Then, for
every open subset U of X, every C1-smooth function f : U → R and every continuous function
ε : U → (0,∞), there is a Ck-smooth function g : U → R such that f is C1-fine approximated
by g, i.e.

|f(x)− g(x)| < ε(x) and ||f ′(x)− g′(x)|| < ε(x) for all x ∈ U .

Theorem 3.0.8 and Theorem 3.0.12 yield the following corollary:

Corollary 3.0.13. [56] Let X be a separable Banach space which admits a Ck-smooth, Lip-
schitz bump function, with k ∈ N ∪ {∞}. Then, for any C1-smooth function f : X → R and
any ε > 0, there is a Ck-smooth and Lipschitz function g : X → R such that

|f(x)− g(x)| < ε and ||f ′(x)− g′(x)|| < ε for all x ∈ X.

The purpose of Section 3.1 is to slightly improve the result on separable Banach spaces
given in Theorem 3.0.8, showing that the upper bound of the ratio between the Lipschitz
constant of the constructed smooth function that uniformly approximates to a function f and
the Lipschitz constant of f does not depend on the Banach space. In fact, the upper bound
may be taken not greater than 4 + r, for any r > 0. In this section, we follow the ideas of [35]
and [56].

In Section 3.2, we give an extra equivalent statement in Theorem 3.0.11 and get some
sufficient conditions to have smooth and Lipschitz approximation on non-separable Banach
spaces. Moreover, we construct smooth and Lipschitz partitions of unity on every (separable
or non-separable) Banach space admitting smooth and Lipschitz approximation. Smooth and
Lipschitz partitions of unity are fundamental tools for the following chapters.
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3.1 Approximation on separable Banach spaces

In this section we are going to prove the following improvement of Theorem 3.0.8 and the
result given in [35].

Theorem 3.1.1. Let X be a separable Banach space which admits a Ck-smooth, Lipschitz
bump function, with k ∈ N ∪ {∞}. Then, for any Lipschitz function f : X → R, any ε > 0
and r > 0, there is a Ck-smooth and Lipschitz function g : X → R such that

|f(x)− g(x)| < ε for all x ∈ X, and Lip||·||(g) ≤ (4 + r) Lip||·||(f),

where Lip||·||(f) = sup{ |f(x)−f(y)|
||x−y|| : x, y ∈ X and x 6= y} for any equivalent norm || · || on X.

In order to prove Theorem 3.1.1, we shall follow the ideas of [35] and [56]. Let us divide
the proof into several propositions.

Proposition 3.1.2. Let X be a separable Banach space with a C1-smooth norm ||·||. Then, for
any r > 0 there exists a C1-smooth and Lipschitz sup-partition of unity {ϕn}∞n=1 subordinated
to {B(x, 1) : x ∈ X} such that

Lip(ϕn) ≤ 2 + r for all n ∈ N,

where Lip = Lip||·||.

Proof. Let us take η, δ > 0 such that (1 + η)5 ≤ 1 + r/2, δ < 1/2 and 1
1−2δ ≤ 1 + η, and a

C1-smooth norm || · ||1 in c0(N) such that

||x||∞ ≤ ||x||1 ≤ (1 + η)||x||∞, for every x ∈ c0(N)

(see, for example, [22]).

Let us define ξ1 : R→ [0, 1] such that

-

6

ξ1(t) =

{
0 if t ≤ 1/2,

1 if t ≥ 1,
1
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which is C∞-smooth and Lip(ξ1) ≤ 2(1 + η).

Also, let us define ξ2 : R→ [0, 1]

-

6

ξ2(t) =

{
1 if t ≤ δ,
0 if t ≥ 1/2,

δ 1
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which is C∞-smooth and Lip(ξ2) ≤ 2(1+η)
1−2δ .
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We take a sequence {xn}∞n=1 of points on X such that {B(xn, δ)}n∈N is an open cover of
X, and we define C1-smooth and Lipschitz functions fn, gn : X → R, for every n ∈ N, as

fn(x) = ξ1(||x− xn||) and gn(x) = ξ2(||x− xn||).

Let us take a C∞-smooth and Lipschitz function θ : R→ [0,+∞) such that θ(t) = 0 in an
open neighborhood of (−∞, 0], θ(t) ≥ t whenever t ≥ 1, and Lip(θ) ≤ 1 + η. Let us define the
function ψn : X → R for every n ≥ 1 as

ψn(x) = θ(||(g1(x), . . . , gn−1(x), fn(x), 0, . . . )||1) for all x ∈ X.

Thus, ψn is C1-smooth and Lip(ψn) ≤ (1 + η)2 max{Lip(ξ1),Lip(ξ2)} ≤ 2 (1+η)3

1−2δ . Let us recall
that we denote the Lipschitz constant Lip||·|| by Lip. Notice that the Lipschitz constant is
independent of n.

Furthermore, the functions ψn satisfy:

• ψn(x) ≥ 1 whenever x 6∈ B(xn, 1), since

ψn(x) ≥||(g1(x), . . . , gn−1(x), fn(x), 0, . . . )||1
≥||(g1(x), . . . , gn−1(x), fn(x), 0, . . . )||∞ ≥ |fn(x)| = 1 for all x 6∈ B(xn, 1).

• For each x ∈ X, there is an n0 such that ψn0(x) = 0. Indeed, there exists n0 ∈ N with
x ∈ B(xn0 ,

1
2) while x 6∈ B(xj ,

1
2) for j = 1, . . . , n0 − 1. Thus, fn0(x) = 0, gj(x) = 0 for

j = 1, . . . , n0 − 1, and ψn0(x) = 0.

• For each x ∈ X, there is an n0 such that ψn(x) ≥ 1 for all n > n0. Since {B(xn, δ)}n∈N
is a cover of X, there exists n0 ∈ N such that x ∈ B(xn0 , δ). By the construction of ψn,
for every n > n0 we have ψn(x) ≥ |gn0(x)| = 1.

Let us take another C∞-smooth and Lipschitz function h : R → [0, 1] such that h(t) = 1
on a neighborhood of the interval (−∞, 0], h(t) = 0 if t ≥ 1, and Lip(h) ≤ 1 + η. Finally, we
define C1-smooth and Lipschitz functions ϕn : X → [0, 1] as

ϕn(x) = h(ψn(x)) for every x ∈ X,

which satisfy:

• supp(ϕn) ⊂ B(xn, 1) for all n,

• for each x ∈ X, there is an n0 such that ϕn0(x) = 1,

• for each x ∈ X, there is an n0 such that ϕn(x) = 0 for all n > n0.

Moreover,

Lip(ϕn) ≤ (1 + η) Lip(ψn) ≤ 2
(1 + η)4

1− 2δ
≤ 2(1 + η)5 ≤ 2 + r.

Hence, {ϕn}∞n=1 is the C1-smooth and Lipschitz sup-partition of unity that we were looking
for.
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Proposition 3.1.3. Let X be a separable Banach space with a C1-smooth norm || · ||. Then,
for every Lipschitz function f : X → R, every ε > 0 and r > 0, there is a C1-smooth and
Lipschitz function g : X → R such that

|f(x)− g(x)| < ε for all x ∈ X, and Lip(g) ≤ (4 + r) Lip(f),

where Lip = Lip||·||.

Proof. Let us take η > 0 such that (2+η)(1+η)2

1−η ≤ 2 + r/2 and t := (1 + η).

First of all, it is not difficult to prove that there is a C∞-smooth and Lipschitz function
M : R2 → R such that

(i) |M(x, y)−min{x, y}| < η on R2,

(ii) Lip||·||∞M ≤ 1 + η, and

(iii) M(x, y) = 0 whenever min{x, y} = 0.

Indeed, let us take 0 < s = η/2
2+η/2 < η

4 . By integral convolutions, there is a C∞-smooth,
Lipschitz function M̃ : R2 → R such that |M̃(x, y)−min{x, y}| < s and Lip||·||∞(M̃) = 1. Let
us define γ : R→ R such that

-
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γ(u) =

{
0 if |u| ≤ s,
u if |u| ≥ 1,
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γ is C∞-smooth, Lip(γ) ≤ 1+s
1−s ≤ 1 + η and |γ(u)− u| ≤ 2s < η/2. So, we define M : R2 → R

as M(x, y) = γ(M̃(x, y)) for all (x, y) ∈ R2. The function M is C∞-smooth and Lip||·||∞M ≤
(1 + η). Moreover, if min{x, y} = 0, then |M̃(x, y)| < s and thus M(x, y) = 0. Also, for all
(x, y) ∈ R2 we have that

|M(x, y)−min{x, y}| ≤ |γ(M̃(x, y))− M̃(x, y)|+ |M̃(x, y)−min{x, y}| ≤ η

2
+ s < η.

Now, let us define a C1-smooth and Lipschitz function h : X → R as h(x) = ξ(||x||), where
ξ : R → [0, 1] is a C∞-smooth and Lipschitz function satisfying that ξ(u) = 0 in an open
neighborhood of (−∞, 0], ξ(u) = 1 if u ≥ 1, and Lip(ξ) ≤ 1 +η. By Proposition 3.1.2, we take
a C1-smooth and Lipschitz sup-partition of unity {ϕn}∞n=1 subordinated to {B(x, 1) : x ∈ X}
such that Lip(ϕn) ≤ 2 + η for all n. Following the steps of [56, Theorem 3], we construct a
mapping Φ : X → c0(Z× N) such that the coordinate (n,m) ∈ Z× N of Φ is given by

φnm(x) = tnM(ϕm

( x
tn

)
, h
( x
tn

)
).
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First of all, we shall see that Φ(x) ∈ c0(Z× N) for all x ∈ X. For every x ∈ X and ε > 0,
there are n0, n1 ∈ Z such that tn < ε/(1 + η) for all n < n0, and h (x/tn) = ξ (||x||/tn) = 0
for all n > n1. Thus, |φnm(x)| ≤ tn|M(ϕm

(
x
tn

)
, h
(
x
tn

)
)| ≤ tn(1 + η) < ε for every m ∈ N and

n < n0, and |φnm(x)| = 0 for every m ∈ N and n > n1, since min{ϕm( xtn ), h( xtn )} = 0. Since
{ϕm}∞m=1 is a sup-partition of unity, for each n0 ≤ n ≤ n1, φnm(x) 6= 0 only for finitely many
m ∈ N, which implies Φ(x) ∈ c0(Z× N).

On the one hand, it is clear that the coordinate functions are C1-smooth and Lip(φnm) ≤
(1+η) max{Lip(ϕm),Lip(h)} ≤ (1+η) max{2+η, 1+η} = (2+η)(1+η) for every (n,m) ∈ Z×N.
Thus Lip(Φ) ≤ (2 + η)(1 + η).

On the other hand, fixed x, y ∈ X with x 6= y, there is an n ∈ Z such that 2tn ≤ ||x−y|| <
2tn+1. We can assume that ||x|| ≥ tn (otherwise ||y|| ≥ 2tn−||x|| ≥ tn). Then h(x/tn) = 1 and
there ism ∈ N such that ϕm(x/tn) = 1, thus, φnm(x) ≥ tn(min{ϕm( xtn ), h( xtn )}−η) = tn(1−η).
Now, if φnm(z) > 0 for some point z ∈ X, then ϕm( ztn ) > 0. Since the sup-partition of
unity {ϕn}∞n=1 is subordinated to {B(x, 1) : x ∈ X} and x

tn ,
z
tn ∈ supp(ϕm), we have that

|| xtn −
z
tn || < 2. Then φnm(y) = 0, since ||x− y|| ≥ 2tn, and

||Φ(x)− Φ(y)||∞ ≥ |φnm(x)− φnm(y)| = φnm(x) ≥ tn(1− η) >
1− η

2t
||x− y||.

Summarizing, Φ is one-to-one and Φ−1 is Lipschitz. Moreover, the mapping Φ satisfies that

1− η
2(1 + η)

||x− y|| ≤ ||Φ(x)− Φ(y)||∞ ≤ (2 + η)(1 + η)||x− y||, for every x, y ∈ X.

Now, if f : X → R is a Lipschitz function, let us take f ◦ Φ−1 : Φ(X) → R which is a
21+η

1−η Lip(f)-Lipschitz function. We can define a Lipschitz extension of f ◦ Φ−1 to the whole
space c0(Z× N) with the same Lipschitz constant. Indeed, the function

x ∈ c0(Z× N) 7→ inf
{
f ◦ Φ−1(y) + Lip(f ◦ Φ−1)||x− y|| : y ∈ Φ(X)

}
is a Lipschitz extension of f ◦ Φ−1 to c0(Z × N) with the same Lipschitz constant. Applying
Theorem 3.0.9 to the Lipschitz extension, we find a C∞-smooth, Lipschitz and LFC function
g̃ : c0(Z× N)→ R such that for every x ∈ Φ(X)

|f ◦ Φ−1(x)− g̃(x)| < ε and Lip(g̃) ≤ 2
1 + η

1− η
Lip(f).

Hence, the function g : X → R defined as g(x) = g̃ ◦Φ(x) is C1-smooth, |f(x)− g(x)| < ε
on X and

Lip(g) ≤ 2(2 + η)
(1 + η)2

1− η
Lip(f) ≤ (4 + r) Lip(f).

Proof of Theorem 3.1.1. Let us take η > 0 such that ((1 + η)2(4 + η) + η) ≤ 4 + r. Let us fix
an equivalent norm || · || on X. Since X is separable and admits a Ck-smooth and Lipschitz
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bump function, by [22, Theorem II.4.1] there is a C1-smooth norm ||| · ||| such that

1

1 + η
|||x||| ≤ ||x|| ≤ (1 + η)|||x|||, for every x ∈ X.

Then Lip|||·|||(f) ≤ (1 + η) Lip||·||(f). Now, let us consider the C1-smooth norm ||| · ||| on X
and apply Proposition 3.1.3 to the Lipschitz function f : X → R. We find a C1-smooth and
Lipschitz function h : X → R such that for all x ∈ X

|f(x)− h(x)| < ε/2 and Lip|||·|||(h) ≤ (4 + η) Lip|||·|||(f).

Then
Lip||·||(h) ≤ (1 + η)2(4 + η) Lip||·||(f).

Let us take ε̃ = min{ε/2, η Lip||·||(f)} (we may assume Lip||·||(f) > 0, otherwise the
assertion is trivial) and apply Corollary 3.0.13 to the C1-smooth function h : X → R. Hence,
we find a Ck-smooth function g : X → R such that for all x ∈ X

|h(x)− g(x)| < ε̃ ≤ ε/2 and ||h′(x)− g′(x)|| < ε̃ ≤ η Lip||·||(f).

Thus, |f(x)− g(x)| < ε on X and

Lip||·||(g) ≤ Lip||·||(h) + η Lip||·||(f) ≤ ((1 + η)2(4 + η) + η) Lip||·||(f)

≤ (4 + r) Lip||·||(f).

�

A question that arises now is whether we may construct a sup-partition of unity subordi-
nated to {B(x, 1) : x ∈ X} with Lipschitz constant less that 1 + r for any r > 0. We are going
to show here that it is not possible in general. Let us suppose that M ≥ 1 is the Lipschitz
constant of a sup-partition of unity subordinated to the open cover {B(x, 1) : x ∈ X} of a
separable Banach space. Then, it follows along the same lines as the proof of Proposition 3.1.3
that for every η > 0 there is a bi-Lipschitz embedding Φ : X → c+

0 (N× Z) such that

1

2 + η
||x− y|| ≤ ||Φ(x)− Φ(y)||∞ ≤ (M + η)||x− y|| for every x, y ∈ X,

where c+
0 (N× Z) is the positive cone of c0(N× Z).

So, on the one hand, the separable Banach space X (2 + η)(M + η)-embeds into c+
0 for

every η > 0.

On the other hand, N.J. Kalton and G. Lancien in [79] have obtained the best constant
for the embeddings of certain Banach spaces into c+

0 . In particular, they have proved that `p
(2p + 1)1/p-embeds into c+

0 if 1 ≤ p <∞ and the constant is the best possible.

Then, for any η > 0 and 1 < p <∞ we have that

(2p + 1)1/p ≤ (2 + η)(M + η).
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This implies that M ≥ 3/2. So, M cannot be taken 1 + η for any separable Banach space and
any η > 0. For instance, M must be greater that

√
5/2 for X = `2.

3.2 Approximation and partitions of unity on Banach spaces

In this section we shall give some new statements related to Theorem 3.0.11, and obtain certain
relationships between smooth and Lipschitz sup-partitions of unity, smooth and Lipschitz
partitions of unity, homeomorphisms into c0(Γ) and smooth and Lipschitz approximation.
Firstly, for k ∈ N ∪ {∞} we shall say that a Banach space X satisfies property (Ak) if
there is a constant C0 ≥ 1, which depends only on X, such that for every Lipschitz function
f : X → R and every ε > 0, there exists a Ck-smooth and Lipschitz function g : X → R such
that |f(x)− g(x)| < ε for all x ∈ X and Lip(g) ≤ C0 Lip(f).

Before carrying on with the results of this section, let us recall an useful characterization
showed in [56].

Proposition 3.2.1. [56, Proposition 1] Let X be a Banach space and k ∈ N ∪ {∞}. The
Banach space X satisfies property (Ak) if and only if there is a constant C ≥ 1, which only
depends on X, such that for each closed subset A ⊂ X there is a Ck-smooth and C-Lipschitz
function hA : X → [0, 1] such that hA(x) = 0 for all x ∈ A, and hA(x) = 1 for all x ∈ X
whenever dist(x,A) ≥ 1.

3.2.1 Approximation on non-separable Banach spaces

Our purpose is to give a slightly weaker condition implying property (Ak) than the one given
in Theorem 3.0.11(iii). In particular, we prove that the homeomorphism ϕ : X → c0(Γ),
whose coordinate functions are Ck-smooth, can be taken Lipschitz with uniformly continuous
inverse.

Theorem 3.2.2. Let X be a Banach space and Γ 6= ∅ a set. Assume that X is homeomorphic
to a subset of c0(Γ) via a mapping ϕ : X → c0(Γ) such that ϕ is Lipschitz, ϕ−1 is uniformly
continuous and the coordinate functions e∗γ ◦ ϕ are Ck-smooth for every γ ∈ Γ. Then, X
satisfies property (Ak).

Let us divide the proof into several propositions.

Proposition 3.2.3. Under the assumptions of Theorem 3.2.2, there is a constant d > 0, which
only depends on X, such that dist(ϕ(A), ϕ(B)) ≥ d whenever A and B are closed subsets of
X with dist(A,B) ≥ 1.

Proof. Since ϕ−1 : ϕ(X) ⊂ c0(Γ)→ X is uniformly continuous, there is d > 0 such that

||ϕ−1(x)− ϕ−1(y)|| < 1 for every x, y ∈ ϕ(X) with ||x− y||∞ < d.

Hence, if A and B are closed subsets of X and dist(A,B) ≥ 1, then ||ϕ(x)− ϕ(y)||∞ ≥ d for
every x ∈ A and y ∈ B, since ||ϕ−1(ϕ(x))− ϕ−1(ϕ(y))|| ≥ dist(A,B) ≥ 1.
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Proposition 3.2.4. Under the assumptions of Theorem 3.2.2, there is a constant C ≥ 1,
which only depends on X, such that for each closed subset A ⊂ X, there is a Ck-smooth and
C-Lipschitz function hA : X → [0, 1] such that hA(x) = 0 for all x ∈ A, and hA(x) = 1 for all
x ∈ X whenever dist(x,A) ≥ 1.

Proof. Let us take a closed subset A of X and denote by B the closed subset {x ∈ X :
dist(x,A) ≥ 1}. Then dist(A,B) ≥ 1 and, by Proposition 3.2.3, dist(ϕ(A), ϕ(B)) ≥ d.

Applying Theorem 3.0.9 to the function x ∈ c0(Γ) 7→ dist(x, ϕ(A)), we find a C∞-smooth,
Lipschitz and LFC function h : c0(Γ)→ R such that

|h(x)− dist(x, ϕ(A))| ≤ d/4 for all x ∈ c0(Γ), and Lip(h) ≤ 1.

So, h(x) ≤ d/4 whenever x ∈ ϕ(A), and h(x) ≥ 3d/4 for all x ∈ ϕ(B). Let us take a C∞-
smooth and Lipschitz function ξ : R → [0, 1] such that ξ(t) = 0 for all t ≤ d/4, ξ(t) = 1
whenever t ≥ 3d/4 and Lip(ξ) ≤ 3/d. Finally, we define hA : X → [0, 1] as

hA(x) = ξ(h(ϕ(x))) for all x ∈ X.

Then hA is Ck-smooth, 3 Lip(ϕ)
d -Lipschitz, hA(x) = 0 for x ∈ A, and hA(x) = 1 for x ∈ B.

Now, by Proposition 3.2.4 and Proposition 3.2.1, the proof of Theorem 3.2.2 is concluded,
and we obtain the following slightly weaker version of Theorem 3.0.11.

Theorem 3.2.5. Let X be a Banach space, Γ an infinite set and k ∈ N ∪ {∞}. Then the
following statements are equivalent:

(i) There is a Ck-smooth and Lipschitz sup-partition of unity subordinated to {B(x, 1) : x ∈
X}.

(ii) X is uniformly homeomorphic to a subset of c0(Γ) and satisfies property (Ak).

(iii) X is homeomorphic to a subset of c0(Γ) via a mapping ϕ : X → c0(Γ) such that ϕ is
Lipschitz, ϕ−1 is uniformly continuous and the coordinate functions e∗γ ◦ϕ are Ck-smooth
for every γ ∈ Γ.

3.2.2 Smooth and Lipschitz partitions of unity

We shall show that there are Ck-smooth and Lipschitz partitions of unity whenever the Banach
space satisfies property (Ak). Recall that a Banach space X admits Ck-smooth and Lipschitz
partitions of unity if for every open cover U = {Ur}r∈Ω of X there is a collection of Ck-smooth,
Lipschitz functions {ψi}i∈I such that

(1) ψi ≥ 0 on X for every i ∈ I,

(2) the family {supp(ψi)}i∈I is locally finite, where supp(ψi) = {x ∈ X : ψi(x) 6= 0},

(3) {ψi}i∈I is subordinated to U = {Ur}r∈Ω, i.e. for each i ∈ I there is r ∈ Ω such that
supp(ψi) ⊂ Ur and

(4)
∑

i∈I ψi(x) = 1 for every x ∈ X.
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The following lemma gives us the tool to generalize the construction of suitable open
coverings on a Banach space, which will be the key to obtain smooth and Lipschitz partitions
and some of our main results in the following chapters.

Lemma 3.2.6. (See M.E. Rudin [104]) Let E be a metric space, U = {Ur}r∈Ω be an open cov-
ering of E. Then, there are open refinements {Vn,r}n∈N,r∈Ω and {Wn,r}n∈N,r∈Ω of U satisfying
the following properties:

(i) Vn,r ⊂Wn,r ⊂ Ur for all n ∈ N and r ∈ Ω,

(ii) dist(Vn,r, E \Wn,r) ≥ 1/2n+1 for all n ∈ N and r ∈ Ω,

(iii) dist(Wn,r,Wn,r′) ≥ 1/2n+1 for any n ∈ N and r, r′ ∈ Ω, r 6= r′,

(iv) for every x ∈ E there is an open ball B(x, sx) of E and a natural number nx such that

(a) if i > nx, then B(x, sx) ∩Wi,r = ∅ for any r ∈ Ω,

(b) if i ≤ nx, then B(x, sx) ∩Wi,r 6= ∅ for at most one r ∈ Ω.

Proposition 3.2.7. Let X be a Banach space with property (Ak). Then, for every {Ur}r∈Ω

open covering of X, there is an open refinement {Wn,r}n∈N,r∈Ω of {Ur}r∈Ω satisfying the prop-
erties of Lemma 3.2.6, and there is a Lipschitz and Ck-smooth partition of unity {ψn,r}n∈N,r∈Ω

such that

supp(ψn,r) ⊂Wn,r ⊂ Ur and Lip(ψn,r) ≤ C025(2n − 1) for every n ∈ N and r ∈ Ω.

Proof. Let us consider an open covering {Ur}r∈Ω of X. By Lemma 3.2.6, there are open
refinements {Vn,r}n∈N,r∈Ω and {Wn,r}n∈N,r∈Ω of {Ur}r∈Ω satisfying the properties (i)-(iv) of
Lemma 3.2.6. Consider the distance function Dn(x) = dist(x,X \

⋃
r∈ΩWn,r) on X which is 1-

Lipschitz. By applying property (Ak), there is a Ck-smooth, C0-Lipschitz function gn : X → R
such that |gn(x)−Dn(x)| < 1

2n+3 for every x ∈ X. Thus

gn(x) >
1

2n+2
whenever x ∈

⋃
r∈Ω

Vn,r,

gn(x) <
1

2n+3
whenever x ∈ X \

⋃
r∈Ω

Wn,r.

By composing gn with a suitable C∞-smooth function ϕn : R→ [0, 1] such that

ϕn(x) =

{
1 if t ≤ 1

2n+3

0 if t ≥ 1
2n+2

and Lip(ϕn) ≤ 2n+4, we obtain a Ck-smooth function hn := ϕn(gn) that is zero on an open
set including X \

⋃
r∈ΩWn,r, hn|⋃

r∈Ω Vn,r
≡ 1 and Lip(hn) ≤ C02n+4.

Now, let us define

H1 = h1, and Hn = hn(1− h1) · · · (1− hn−1) for n ≥ 2.
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It is clear that
∑

nHn(x) = 1 for all x ∈ X. Since supp(hn) ⊂
⋃
r∈ΩWn,r andWn,r∩Wn,r′ = ∅

for every n ∈ N and r 6= r′, we can write

hn =
∑
r∈Ω

hn,r, where hn,r(x) = hn(x) on Wn,r and supp(hn,r) ⊂Wn,r.

Notice that Lip(hn,r) ≤ Lip(hn) ≤ C02n+4. Let us define, for every r ∈ Ω,

ψ1,r = h1,r, and ψn,r = hn,r(1− h1) · · · (1− hn−1) for each n ≥ 2.

The functions {ψn,r}n∈N,r∈Ω satisfy that

(i) they are Ck-smooth and Lipschitz, with Lip(ψn,r) ≤ C0
∑n+4

i=5 2i = C025(2n − 1),

(ii) supp(ψn,r) ⊂ supp(hn,r) ⊂Wn,r ⊂ Ur, and

(iii) for every x ∈ X,

∑
n∈N,r∈Ω

ψn,r(x) =
∑
r∈Ω

ψ1,r(x) +
∑
n≥2

(∑
r∈Ω

hn,r(x)

)
n−1∏
i=1

(1− hi(x)) =
∑
n∈N

Hn(x) = 1.

It is worth noticing that the partitions of unity yield the smooth and Lipschitz C0-fine
approximation of Lipschitz functions whenever X has property (Ak). We skip the proof, since
we shall prove a stronger version in Theorems 6.1.2 and 6.1.5.

Proposition 3.2.8. Let X be a Banach space with property (Ak). Then, for any Lipschitz
function f : X → R, any continuous function ε : X → (0,∞) and any r > 0, there is a
Ck-smooth Lipschitz function g : X → R such that

|f(x)− g(x)| < ε(x) for all x ∈ X, and Lip(g) ≤ C0(1 + r) Lip(f),

where C0 is the constant given by (Ak).

Finally, we sum up the relationship between the properties studied in this section in Dia-
gram 4.1.

Open Problems

Let us now turn to some questions that remain open.

1. Let X be a WCG Banach space with a Ck-smooth norm. Does X have property (Ak)?
An attempt to solve this problem can be found in [37], although there is a gap in the
proof and it is unknown at present if the result holds.

2. Let X and Z be Banach spaces, f : X → Z be a Lipschitz mapping and ε > 0. When
can we assure that there is a Ck-smooth and Lipschitz mapping g : X → Z such that
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||f(x) − g(x)|| < ε and Lip(g) ≤ C0 Lip(f), for a constant C0 ≥ 1 that depends only
on X and Z? P. Hájek and M. Johanis [56] have given sufficient conditions so that the
Banach spaces X and Z satisfy this property. In the next section, we shall see examples
of pairs of Banach spaces with this property. Nevertheless, a characterization of this
property in terms of the Banach spaces X and Z is unknown.

3. Let X be a Banach space and f : X → R a Ck-smooth function with k ≥ 2, and
ε : X → (0,∞) a continuous map. The function f is said to be Cq-fine approximated
by a Cp-smooth function g : X → R (with p > k ≥ q), if |f(x) − g(x)| ≤ ε(x) and
||f (i)(x) − g(i)(x)|| ≤ ε(x) for all 1 ≤ i ≤ q on X. In [92] N. Moulis showed that
every C2k−1-smooth function can be Ck-finely approximated by C∞-smooth functions in
separable Hilbert spaces. An attempt to give a more complete answer to this problem for
Hilbert spaces was given by M.P. Heble in the papers [59], [60] and [61]. Unfortunately,
there is a gap in [61] and it is not clear how it could be fixed. So far, the Ck-fine
approximation problem with k ≥ 2 remains open, even in the case when X is a separable
Hilbert space.

4. Let X be a Banach space which satisfies property (Ak). Does X admit a Ck-smooth
and Lipschitz sup-partition of unity subordinated to {B(x, 1) : x ∈ X}? Notice that if
X is a separable Banach space and satisfies the property (Ak), a positive answer to this
question is given in [35] and [10].

5. LetX be a Banach space which admits Ck-smooth and Lipschitz partitions of unity. Does
X admit a Ck-smooth and Lipschitz sup-partition of unity subordinated to {B(x, 1) :
x ∈ X}? Or, does X have property (Ak)? Again, if X is separable, a positive answer to
this question is given in [35], [10] and [56].

6. Let X be a Banach space. Are the following statements equivalent?

(i) X has property (A1).

(ii) For every Lipschitz function f : X → R and every ε > 0, there exists a C1-smooth
and Lipschitz function g : X → R such that |f(x)− g(x)| < ε for all x ∈ X.

If X is separable, they are equivalent to the separability of X∗.

7. The constant C0 of the property (Ak) depends on X. In Theorem 3.1.1 we have proved
that C0 can be taken less than 4 + r for any Banach space with separable dual and
any r > 0. May the constant C0 be taken independently of the Banach space X in the
non-separable case? When we consider a Hilbert space, the constant C0 may be chosen
less than 1 + r for any r > 0 (notice that C0 is the constant of the property (A∞) in
the separable case, Theorem 3.0.6, and it is the constant of the property (A1) in the
non-separable case, Theorem 3.0.5). Could C0 be taken less that 1 + r for any Banach
space and any r > 0?

8. In Section 3.1 we have showed that for any Banach space with separable dual and any
η > 0, there is a sup-partition of unity subordinated to the cover {B(x, 1) : x ∈ X} with
Lipschitz constant M ≤ 2 + η. Nevertheless, it cannot be taken 1 + η for any separable
Banach space and any η > 0. For instance, M must be greater that

√
5/2 for X = `2.
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So, another problem that arises is to seek the best constant of the sup-partition of unity
of a particular Banach space X.

There is a Ck-smooth and
Lipschitz sup-partition of unity

subordinated to {B(x, 1) : x ∈ X}

$,QQQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQQQKS

��

X admits Ck-smooth and Lipschitz
partitions of unity

X satisfies property (Ak) and
is uniformly homeomorphic

to a subset of c0(Γ)
KS

��

X satisfies property (Ak):
There is a constant C0 ≥ 1, which
only depends on X, such that for
every Lipschitz function f : X → R
and ε > 0, there is a Ck-smooth
and Lipschitz function g : X → R
such that |f(x)− g(x)| < ε on X

and Lip(g) ≤ C0 Lip(f)
KS

��

KS

There is a bi-Lipschitz homeomorphism
ϕ : X → c0(Γ) such that the

coordinate functions are Ck-smoothKS

��

There is a constant C ≥ 1 such
that for each closed subset A ⊂ X

there is a Ck-smooth and C-Lipschitz
function hA : X → [0, 1] such that
hA(x) = 0 for all x ∈ A, and
hA(x) = 1 for all x ∈ X
whenever dist(x,A) ≥ 1

X is homeomorphic to a subset of c0(Γ) via
a mapping ϕ : X → c0(Γ) such that ϕ is

Lipschitz, ϕ−1 is uniformly continuous and
the coordinate functions are Ck-smooth

+3

X is homeomorphic to a subset of c0(Γ)
via a mapping ϕ : X → c0(Γ) such that
ϕ is Lipschitz and there is a constant
d > 0, which only depends on X,
such that dist(ϕ(A), ϕ(B)) ≥ d

whenever A and B are closed subsets
of X with dist(A,B) ≥ 1, and

the coordinate functions are Ck-smooth

KS

Diagram 4.1: Smooth and Lipschitz approximation
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Chapter 4

Smooth extensions on Banach spaces

In this chapter, we study how the techniques given in [7] can be applied to obtain a C1-smooth
extension of a C1-smooth and vector-valued function defined on a closed subset of a Banach
space. More precisely, if X and Z are Banach spaces, A is a closed subset of X and f : A→ Z
is a mapping, under what conditions does there exist a C1-smooth mapping F : X → Z such
that the restriction of F to A is f? Under the assumption that Y is a complemented subspace
of the Banach space X, an extension of a smooth mapping f : Y → Z is easily found by
taking the mapping F (x) = f(P (x)), where P : X → Y is a continuous linear projection.
Unfortunately, this extension does not solve the problem since every Banach space X has a
closed subspace which is not complemented in X whenever it is not isomorphic to a Hilbert
space [89].

The smooth extension problem from closed subsets of finite-dimensional spaces has been
exhaustively studied. H. Whitney in [111] and [112] gave necessary and sufficient conditions
for functions defined on closed subsets of R in order to obtain the existence of Ck-smooth
extensions to R. G. Glaeser [47] solved the problem for C1-smooth functions defined on
closed subsets of Rn. Finally, C. Fefferman in a series of papers ([29] and [30]) establishes a
characterization of the functions that are the restriction to a compact subset of a Ck-smooth
function on Rn, for all k, n ≥ 1.

The infinite-dimensional setting has proven to be more difficult. C. J. Atkin in [3] extends
every smooth function f defined on a finite union of open convex sets in a separable Banach
space which does not admit smooth bump functions, provided that for every point in the
domain of f , the restriction of f to a suitable neighborhood of the point can be extended to
the whole space. The most fundamental result has been given by D. Azagra, R. Fry and L.
Keener [7]. They have shown that if X is a Banach space with separable dual X∗, Y ⊂ X
is a closed subspace and f : Y → R is a C1-smooth function, then there exists a C1-smooth
extension F : X → R of f . They proved a similar result when Y is a closed convex subset,
f is defined on an open set U of X containing Y and f is C1-smooth on Y as a function on
X, i.e. f : U → R is differentiable at every point y ∈ Y and the function Y 7→ X∗ defined as
y 7→ f ′(y) is continuous on Y .

Let us point out that the case of real analytic maps is quite different. In particular, R.M.
Aron and P.D. Berner [2] have proved that for any pair of Banach spaces (X,Z) such that
Z is complemented in its second dual, and any real analytic function f : Y → Z which is
bounded on bounded sets and Y is a closed subspace of X, there exist an open subset U of
X containing Y and an analytic extension F : U → Z of f that is bounded on bounded sets,
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whenever there exists a bounded and linear operator T : Y ∗ → X∗ such that T (g)|Y ∗ = g for
all g ∈ Y ∗.

The aim of this chapter is to extend the results in [7] to the general setting of vector-
valued functions defined on (not necessarily separable) Banach spaces where every Lipschitz
mapping can be approximated by a C1-smooth, Lipschitz mapping. We shall use the techniques
developed in [7], the results of Lipschitz and smooth approximation of Lipschitz mappings given
by P. Hájek and M. Johanis [55] and [56] (see Chapter 3), the open coverings given by M. E.
Rudin [104], and the ideas of M. Moulis [92], P. Hájek and M. Johanis [56].

4.1 Preliminaries and definitions

The existence of a C1-smooth extension of a mapping f defined on a closed subset is charac-
terized by the following property:

Definition 4.1.1. Let X and Z be Banach spaces and A ⊂ X a closed subset.

1. We say that the mapping f : A→ Z satisfies the mean value condition if there exists
a continuous map D : A→ L(X,Z) such that for every y ∈ A and every ε > 0, there is
an open ball B(y, r) in X such that

||f(z)− f(w)−D(y)(z − w)|| ≤ ε||z − w||,

for every z, w ∈ A∩B(y, r). In this case, we say that f satisfies the mean value condition
on A for the map D.

2. We say that the mapping f : A → Z satisfies the mean value condition for a
bounded map if it satisfies the mean value condition for a bounded and continuous map
D : A→ L(X,Z), i.e. sup{||D(y)|| : y ∈ A} <∞.

Notice that a mapping f : A→ Z satisfies the mean value condition (mean value condition
for a bounded map and f is Lipschitz) whenever there is a smooth extension (respectively,
smooth and Lipschitz extension) to the whole space X. Indeed, let F : X → Z be a C1-smooth
(C1-smooth and Lipschitz) mapping with F|A = f . By the Fundamental Theorem of Integral
Calculus we have that

F (z)− F (w) =

∫ 1

0
F ′(sz + (1− s)w)(z − w)ds, for every w, z ∈ X.

In addition, for every y ∈ A and every ε > 0 there is an open ball B(y, r) in X such that

||F ′(w)− F ′(y)|| < ε, for every w ∈ B(y, r).

Thus,

||f(z)− f(w)− F ′(y)(z − w)|| = ||
∫ 1

0
(F ′(sz + (1− s)w)− F ′(y))(z − w)ds||

≤
∫ 1

0
||F ′(sz + (1− s)w)− F ′(y)|| ||z − w||ds ≤ ε||z − w||
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for every z, w ∈ A ∩B(y, r). Then, f satisfies the mean value condition for D : A→ L(X,Z)
defined by D(y) = F ′(y) (respectively, f satisfies the mean value condition for a bounded map
and f is Lipschitz).

In this chapter we obtain, under certain conditions on the Banach spaces, C1-smooth
extensions of mappings f : A→ Z satisfying the mean value condition on A. More precisely,
let us consider the following properties.

Definition 4.1.2.

1. The pair of Banach spaces (X,Z) has property (*) if there is a constant C0 ≥ 1, which
depends only on X and Z, such that for every subset A ⊂ X, every Lipschitz mapping
f : A → Z and every ε > 0, there is a C1-smooth and Lipschitz mapping g : X → Z
such that ||f(x)− g(x)|| < ε for all x ∈ A and Lip(g) ≤ C0 Lip(f).

2. The pair of Banach spaces (X,Z) has property (A) if there is a constant C ≥ 1,
which depends only on X and Z, such that for every Lipschitz mapping f : X → Z
and every ε > 0, there exists a C1-smooth and Lipschitz mapping g : X → Z such that
||f(x)− g(x)|| < ε for all x ∈ X and Lip(g) ≤ C Lip(f).

3. The pair of Banach spaces (X,Z) has property (E) if there is a constant K ≥ 1, which
depends only on X and Z, such that for every subset A of X and every Lipschitz mapping
f : A→ Z, there exists a Lipschitz extension F : X → Z such that Lip(F ) ≤ K Lip(f).

4. A Banach space X has property (*), property (A) or property (E) whenever the
pair (X,R) does.

Remark 4.1.3.

1. Clearly, a pair of Banach spaces (X,Z) satisfies property (A) whenever it satisfies property
(*). In Section 3 we shall prove that, in general, these properties are not equivalent.

2. X satisfies property (*) if and only if it satisfies property (A). Indeed, this is a conse-
quence of the fact that X always has property (E): if A is a subset of X and f : A→ R
is a Lipschitz function, then the function F defined on X as

F (x) = inf
a∈A
{f(a) + Lip(f)||x− a||}

is a Lipschitz extension of f to X and Lip(F ) = Lip(f). Notice that we have denoted
this property by property (A1) in the previous chapter.

3. It is easy to prove that a pair of Banach spaces (X,Z) satisfies property (*) provided
that (X,Z) satisfies properties (A) and (E). Moreover, if Z is a dual Banach space,
then (X,Z) satisfies property (*) if and only if (X,Z) satisfies properties (A) and (E).
Indeed, let us assume that (X,Z) satisfies property (*) and consider a Lipschitz mapping
f : A → Z, where A is a subset of X. Then, for every n ∈ N, there is a C1-smooth,
Lipschitz mapping fn : X → Z such that ||f(x) − fn(x)|| ≤ 1

n for every x ∈ A and
Lip(fn) ≤ C0 Lip(f). Then, for every x ∈ X, the sequence {fn(x)}n is bounded. Since
the closed balls in (Z, || · ||∗) are weak*-compact, there exists for every free ultrafilter U
in N, the weak*-limit

f̂(x) := w∗ − lim
U
fn(x).

Clearly, f̂ : X → Z is an extension of f : A→ Z and Lip(f̂) ≤ C0 Lip(f).
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4. It is worth mentioning that property (E) can be obtained from the following approximation
property: for every subset A ⊂ X, every Lipschitz function f : A→ Z and every ε > 0,
there exists a Lipschitz mapping g : X → Z such that ||f(x)− g(x)|| < ε for every x ∈ A
and Lip(g) ≤ (1 + ε) Lip(f). In particular, a pair of Banach spaces (X,Z) has property
(E), whenever (X,Z) satisfies property (A) with constant C0 = (1 + ε) for any ε > 0.

Recall that every Banach space X admits continuous partitions of unity, i.e. for every open
cover U = {Ur}r∈Ω of X there is a collection of continuous functions {ψi}i∈I such that

(1) ψi : X → [0, 1] for every i ∈ I,
(2) the family {supp(ψi)}i∈I is locally finite, where supp(ψi) = {x ∈ X : ψi(x) 6= 0},
(3) {ψi}i∈I is subordinated to U = {Ur}r∈Ω, i.e. for each i ∈ I there is r ∈ Ω such that

supp(ψi) ⊂ Ur and

(4)
∑

i∈I ψi(x) = 1 for every x ∈ X.

First, let us recall the vector-valued version of the Tietze theorem (see for instance [24,
Theorem 6.1]) and give a proof for completeness.

Proposition 4.1.4. [24, Theorem 6.1] Let X and Z be Banach spaces and A ⊂ X a closed
subset. Then, for every continuous mapping f : A → Z, there is a continuous mapping
F : X → Z such that F|A = f .

Proof. First, let us give the following lemma.

Lemma 4.1.5. Let X and Z be Banach spaces, A ⊂ X a closed subset and R > 0. For
every continuous mapping f : A → BZ(0, R) and every ε > 0, there is a continuous mapping
g : X → BZ(0, R) such that ||f(y)− g(y)|| < ε for every y ∈ A.

Let us prove this lemma. For any a ∈ A there is a ball B(a, ra) such that ||f(z)−f(a)|| < ε
for every z ∈ A ∩ B(a, ra). Thus, the family {B(a, ra)}a∈A ∪ {X \ A} is an open cover of X,
and there is a continuous partition of unity {ϕγ}γ∈Γ ∪ {ϕ} such that supp(ϕγ) ⊂ B(aγ , rγ)
and supp(ϕ) ⊂ X \A. The mapping g(x) :=

∑
γ∈Γ ϕγ(x)f(aγ) is continuous, ||f(y)− g(y)|| ≤∑

γ ϕγ(y)||f(y)− f(aγ)|| < ε for every y ∈ A, and ||g(x)|| < R for all x ∈ X. This finishes the
proof of the lemma.

Now, let f : A→ Z be a continuous mapping. Then, there is a continuous mapping

g1 : X → Z such that ||f(y)− g1(y)|| < 1 for all y ∈ A.

Let us apply the above lemma to f−g1|A : A→ BZ(0, 1). Then, there is a continuous mapping
g2 : X → BZ(0, 1) such that ||f(y) − g1(y) − g2(y)|| < 1/2 on A. By induction, we find a
sequence of continuous mappings

gn : X → BZ(0,
1

2n−2
) such that ||f(y)−

n∑
j=1

gj(y)|| < 1

2n−1
for all y ∈ A and n ≥ 2.

Then, the mapping F : X → Z given by F (x) =
∑

j≥1 gj(x) is continuous since the serie∑
j≥2 gj is absolutely and uniformly converge in X, and F (y) = f(y) for every y ∈ A.
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In Section 4.2, it is stated that, if the pair of Banach spaces (X,Z) satisfies property (*),
then every mapping f : A → Z, where A is a closed subset of X, is the restriction of a C1-
smooth mapping (C1-smooth and Lipschitz mapping) F : X → Z if and only if f satisfies
the mean value condition (respectively, the mean value condition for a bounded map and f is
Lipschitz).

In Section 4.3 we give examples of pairs of Banach spaces (X,Z) satisfying property (*).
In particular, when either (i) X and Z are Hilbert spaces with X separable, or (ii) X∗ is
separable and Z is a Banach space which is an absolute Lipschitz retract, or (iii) X = L2 and
Z = Lp with 1 < p < 2, or (iv) X = Lp and Z = L2 with 2 < p < ∞. Throughout this
chapter, the space Lp denotes any separable Banach space Lp(S,Σ, µ) with (S,Σ, µ) a σ-finite
measure space. We also prove that property (*) is necessary and give an example of a pair of
Banach spaces satisfying property (A) but not property (*).

In Section 4.4, it is proved that every C1-smooth mapping f : Y → Z defined on a closed
subspace of X admits a C1-smooth extension to X, whenever the pair of Banach spaces (X,Z)
satisfies property (*) and every bounded and linear operator T : Y → Z can be extended to a
bounded and linear operator on X. Moreover, we obtain some results on bounded and linear
extension morphisms on the Banach space C1

L(X,Z) of all C1-smooth and Lipschitz mappings
f : X → Z.

4.2 On smooth extension of mappings

The main results of this chapter are the following theorems.

Theorem 4.2.1. Let (X,Z) be a pair of Banach spaces with property (*), A ⊂ X a closed
subset of X and a mapping f : A→ Z. Then, f satisfies the mean value condition if and only
if there is a C1-smooth extension G of f to X.

Theorem 4.2.2. Let (X,Z) be a pair of Banach spaces with property (*), A ⊂ X a closed
subset of X and a mapping f : A → Z. Then, f is Lipschitz and satisfies the mean value
condition for a bounded map if and only if there is a C1-smooth and Lipschitz extension G of
f to X.

Moreover, if f is Lipschitz and satisfies the mean value condition for a bounded map D :
A → L(X,Z) with M := sup{||D(y)|| : y ∈ A} < ∞, then we can obtain a C1-smooth and
Lipschitz extension G with Lip(G) ≤ (1 +C0)(M + Lip(f)), where C0 is the constant given by
property (*) (which depends only on X and Z).

First of all, let us notice that if the pair (X,Z) satisfies property (*), X does too, i.e. there
is a constant C0 ≥ 1 (which depends only on X) such that for every subset A ⊂ X, every
Lipschitz function f : A → R and every ε > 0, there is a C1-smooth and Lipschitz function
g : X → R such that |g(x) − f(x)| < ε for all x ∈ A and Lip(g) ≤ C0 Lip(f). Indeed, let
us take e ∈ Z with ||e|| = 1 and ϕ ∈ Z∗ with ||ϕ|| = 1 and ϕ(e) = 1. Let f : A → R be
an L-Lipschitz function and ε > 0. The mapping h : A → Z defined as h(x) = f(x)e for all
x ∈ A, is L-Lipschitz. Since the pair (X,Z) satisfies property (*), there exists a C1-smooth
and Lipschitz mapping g̃ : X → Z such that ||h(x)−g̃(x)|| < ε for all x ∈ A and Lip(g̃) ≤ C0L.
The required function g : X → R can be defined as g(x) := ϕ(g̃(x)). Thus, by Proposition
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3.2.7, the Banach space X has C1-smooth and Lipschitz partitions of unity (in particular, it
has C1-smooth partitions of unity) whenever the pair (X,Z) satisfies property (*).

We shall need the following lemmas.

Lemma 4.2.3. Let (X,Z) be a pair of Banach spaces with property (*). Then, for every
subset A ⊂ X, every Lipschitz mapping f : A→ BZ(0, R) (with R ∈ (0,∞)) and every ε > 0,
there is a C1-smooth and Lipschitz mapping h : X → Z such that

(i) ||f(x)− h(x)|| < ε for every x ∈ A,

(ii) ||h(x)|| < C0 Lip(f)1/2 +R+ ε for every x ∈ X, and

(iii) Lip(h) ≤ C0((1 + 2C0) Lip(f) + 2(R+ ε) Lip(f)1/2).

Proof. Without loss of generality we may assume that Lip(f) > 0. By property (*) there is a
C1-smooth and Lipschitz mapping g : X → Z such that

||f(x)− g(x)|| < ε for all x ∈ A, and Lip(g) ≤ C0 Lip(f).

Let us define W := {x ∈ X : dist(x,A) ≥ 1
Lip(f)1/2 }. Since X satisfies property (*), there

is a C1-smooth function hA : X → [0, 1] such that hA(x) = 1 whenever x ∈ A, hA(x) = 0
whenever x ∈ W and Lip(hA) ≤ 2C0 Lip(f)1/2. Indeed, we apply property (*) to obtain a
C1-smooth and Lipschitz function H : X → R such that |H(x)− dist(x,A)| < 1

5 Lip(f)1/2 and
Lip(ϕ) ≤ C0. Let us take a C∞-smooth and Lipschitz function ϕ : R→ [0, 1] with (i) ϕ(t) = 1
whenever |t| ≤ 1

5 Lip(f)1/2 , (ii) ϕ(t) = 0 whenever |t| ≥ 4
5 Lip(f)1/2 and (iii) Lip(ϕ) ≤ 2 Lip(f)1/2.

Then, hA(x) = ϕ(H(x)) is the required function.

Let us define h : X → Z as h(x) := g(x)hA(x), which is C1-smooth and ||f(x)−h(x)|| < ε
for all x ∈ A (recall that hA(x) = 1 for all x ∈ A).

Since hA(x) = 0 for all x ∈ W , we have that h(x) = 0 for all x ∈ W . Also, ||h(x)|| ≤
||g(x)|| ≤ R+ε for all x ∈ A. Now, for each x 6∈W there is x0 ∈ A such that ||x−x0|| < 1

Lip(f)1/2

and thus,

||g(x)|| ≤ ||g(x)− g(x0)||+ ||g(x0)|| ≤ C0 Lip(f)||x− x0||+R+ ε < C0 Lip(f)1/2 +R+ ε.

Therefore, ||h(x)|| < C0 Lip(f)1/2 +R+ε for every x ∈ X. Now, if x ∈ int(W ), then h′(x) = 0.
Also, if x 6∈ int(W ), then

||h′(x)|| ≤||g′(x)||||hA(x)||+ ||h′A(x)||||g(x)||
≤C0 Lip(f) + 2C0 Lip(f)1/2(C0 Lip(f)1/2 +R+ ε)

≤C0((1 + 2C0) Lip(f) + 2(R+ ε) Lip(f)1/2).

Thus, Lip(h) ≤ C0((1 + 2C0) Lip(f) + 2(R+ ε) Lip(f)1/2).

Lemma 4.2.4. Let (X,Z) be a pair of Banach spaces with property (*). Then, for every
subset A ⊂ X, every continuous mapping F : X → Z such that F|A is Lipschitz, and every
ε > 0, there exists a C1-smooth mapping G : X → Z such that
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(i) ||F (x)−G(x)|| < ε for all x ∈ X,

(ii) Lip(G|A) ≤ C0 Lip(F|A). Moreover, ||G′(y)|| ≤ C0 Lip(F|A) for all y ∈ A, where C0 is
the constant given by property (*).

(iii) In addition, if F is Lipschitz, then there exists a constant C1 ≥ C0 depending only on
X and Z, such that the mapping G can be chosen to be Lipschitz on X and Lip(G) ≤
C1 Lip(F ).

Proof. Assume that the mapping F : X → Z is continuous on X and F|A is Lipschitz. Since
X admits C1-smooth partitions of unity, there is (by [22, Theorem VIII 3.2]) a C1-smooth
mapping h : X → Z, such that ||F (x)− h(x)|| < ε for all x ∈ X. Let us apply property (*) to
F|A to obtain a C1-smooth and Lipschitz mapping g : X → Z such that

(a) ||F (x)− g(x)|| < ε/4 for all x ∈ A, and

(b) Lip(g) ≤ C0 Lip(F|A).

Consider the open sets D = {x ∈ X : ||F (x)− g(x)|| < ε/4}, B = {x ∈ X : ||F (x)− g(x)|| <
ε/2} inX and the closed set C = {x ∈ X : ||F (x)−g(x)|| ≤ ε/4} inX. Then A ⊂ D ⊂ C ⊂ B.
By [22, Proposition VIII 3.7] there is a C1-smooth function u : X → [0, 1] such that

u(x) =

{
1 if x ∈ C,
0 if x ∈ X \B.

Let us define G : X → Z as

G(x) := u(x)g(x) + (1− u(x))h(x).

It is clear that G is a C1-smooth mapping. Since u(x) = 0 for all x ∈ X \B, we deduce that

||F (x)−G(x)|| = ||F (x)− h(x)|| < ε for all x ∈ X \B.

Now, if x ∈ B, then

||F (x)−G(x)|| ≤ u(x)||F (x)− g(x)||+ (1− u(x))||F (x)− h(x)||
≤u(x)ε/2 + (1− u(x))ε ≤ ε.

Finally, since u(x) = 1 andG(x) = g(x) for every x ∈ D, we obtain that Lip(G|A) = Lip(g|A) ≤
C0 Lip(F|A) and ||G′(y)|| = ||g′(y)|| ≤ C0 Lip(F|A) for all y ∈ A.

Let us now assume that F is Lipschitz on X. Let us apply property (*) to F and F|A to
obtain C1-smooth and Lipschitz mappings g, h : X → Z such that

(a) ||F (x)− g(x)|| < ε/4 for all x ∈ A,

(b) ||F (x)− h(x)|| < ε for all x ∈ X,

(c) Lip(g) ≤ C0 Lip(F|A) and Lip(h) ≤ C0 Lip(F ).
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We take again the subsets D, B and C as in the previous case. Notice that dist(C,X \
B) ≥ ε

4(Lip(F )+C0 Lip(F|A )) = ε′. Let us prove that there is a C1-smooth, Lipschitz function
u : X → [0, 1] such that

u(x) =

{
1 if x ∈ C
0 if x ∈ X \B

and Lip(u) ≤
9C0(Lip(F ) + C0 Lip(F|A))

ε
.

Let us consider 0 < r ≤ ε′/4, and the distance function D : X → R, D(x) = dist(x,C).
Since the function D is 1-Lipschitz, we apply property (*) to obtain a C1-smooth, Lipschitz
function R : X → R such that Lip(R) ≤ C0 and |D(x)−R(x)| < r for all x ∈ X. Also, let us
take a C1-smooth and Lipschitz function ϕ : R→ [0, 1] with (i) ϕ(t) = 1 whenever |t| ≤ r, (ii)
ϕ(t) = 0 whenever |t| ≥ ε′−r and (iii) Lip(ϕ) ≤ 9

8(ε′−2r) ≤
9

4ε′ . Next, we define the C
1-smooth

function u : X → [0, 1], u(x) = ϕ(R(x)). Notice that Lip(u) ≤ 9C0(Lip(F )+C0 Lip(F|A ))

ε .

Let us now consider G : X → Z as

G(x) = u(x)g(x) + (1− u(x))h(x).

Clearly G is C1-smooth on X. We follow the above proof to obtain that

(i) ||F (x)−G(x)|| < ε on X,

(ii) Lip(G|A) = Lip(g|A) ≤ C0 Lip(F|A), and ||G′(y)|| ≤ C0 Lip(F|A) for all y ∈ A.

Additionally, if x ∈ X \B, then u(x) = 0, G(x) = h(x), and ||G′(x)|| = ||h′(x)|| ≤ C0 Lip(F ).
For x ∈ B, we have

||G′(x)|| ≤||g(x)u′(x) + h(x)(1− u)′(x)||+ ||u(x)g′(x) + (1− u(x))h′(x)||
≤||(g(x)− F (x))u′(x) + (h(x)− F (x))(1− u)′(x)||+ C0 Lip(F )

≤(ε/2 + ε)||u′(x)||+ C0 Lip(F )

≤3ε

2
·

9C0(Lip(F ) + C0 Lip(F|A))

ε
+ C0 Lip(F ) ≤ C0

2
(29 + 27C0) Lip(F ).

We define C1 := C0
2 (29 + 27C0) and obtain that Lip(G) ≤ C1 Lip(F ).

Lemma 4.2.5. Let (X,Z) be a pair of Banach spaces with property (*), a closed subset A ⊂ X
and a mapping f : A → BZ(0, R) (with R ∈ (0,∞]) satisfying the mean value condition
for a map D : A → L(X,Z). Then, for every ε > 0 there exists a C1-smooth mapping
h : X → BZ(0, R+ ε) such that

(i) ||f(y)− h(y)|| < ε for all y ∈ A,

(ii) ||D(y)− h′(y)|| < ε for all y ∈ A, and

(iii) Lip(f − h|A) < ε.

Proof. Since A is closed, by the vector-valued version of the Tietze theorem (Proposition 4.1.4)
there is a continuous extension F : X → BZ(0, R) of f . Since X is a Banach space, A ⊂ X
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is a closed subset and f satisfies the mean value condition for D : A → L(X,Z) on A, there
exists {B(yγ , rγ)}γ∈Γ a covering of A by open balls of X, with centers yγ ∈ A, such that

||D(y)−D(yγ)|| ≤ ε

8C0
and ||f(z)− f(w)−D(yγ)(z − w)|| ≤ ε

8C0
||z − w||, (4.1)

for every y, z, w ∈ Bγ ∩ A, where Bγ := B(yγ , rγ) and C0 is the constant given by property
(*).

Let us define Tγ : X → Z by Tγ(x) = f(yγ) +D(yγ)(x− yγ), for every x ∈ X. Notice that
Tγ satisfies the following properties:

(B.1) Tγ is C∞-smooth on X,

(B.2) T ′γ(x) = D(yγ) for all x ∈ X, and

(B.3) Lip((Tγ − F )|Bγ∩A) ≤ ε
8C0

, since for all z, w ∈ Bγ ∩A,

||(Tγ − F )(z)− (Tγ − F )(w)|| = ||f(w)− f(z)−D(yγ)(w − z)|| ≤ ε

8C0
||z − w||.

Since F : X → BZ(0, R) is a continuous mapping and X admits C1-smooth partitions of
unity, there is a C1-smooth mapping F0 : X → Z such that ||F (x) − F0(x)|| < ε

2 for every
x ∈ X.

Let us denote B0 := X \ A, Σ := Γ ∪ {0} (we assume 0 /∈ Γ), and C := {Bβ : β ∈ Σ},
which is a covering of X. By Proposition 3.2.7, there are an open refinement {Wn,β}n∈N,β∈Σ of
C = {Bβ : β ∈ Σ} and a C1-smooth and Lipschitz partition of unity {ψn,β}n∈N,β∈Σ satisfying:

(P1) supp(ψn,β) ⊂Wn,β ⊂ Bβ ;

(P2) Lip(ψn,β) ≤ C025(2n − 1) for every (n, β) ∈ N× Σ; and

(P3) for each x ∈ X there is an open ball B(x, sx) of X with center x and radius sx > 0, and
a natural number nx such that

(1) if i > nx, then B(x, sx) ∩Wi,β = ∅ for every β ∈ Σ,

(2) if i ≤ nx, then B(x, sx) ∩Wi,β 6= ∅ for at most one β ∈ Σ.

Let us define Ln,β := max{Lip(ψn,β), 1} for every n ∈ N and β ∈ Σ. Now, for every n ∈ N
and γ ∈ Γ, we apply Lemma 4.2.4 to Tγ − F on Bγ ∩ A to obtain a C1-smooth mapping
δn,γ : X → Z so that

||Tγ(x)− F (x)− δn,γ(x)|| < ε

2n+2Ln,γ
for every x ∈ X, (C.1)

‖δ′n,γ(y)‖ ≤ ε

8
for every y ∈ Bγ ∩A (C.2)

and
Lip((δn,γ)|Bγ∩A) ≤ ε

8
. (C.3)
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From inequality (4.1), (B.2), (C.2) and (C.3), we have, for all y ∈ Bγ ∩A,

‖T ′γ(y)−D(y)− δ′n,γ(y)‖ ≤ ‖T ′γ(y)−D(y)‖+ ‖δ′n,γ(y)‖ ≤ ε

4
,

and
Lip((Tγ − F − δn,γ)|Bγ∩A) ≤ ε

4
.

Let us define ∆n
β : X → Z,

∆n
β(x) =

{
F0(x) if β = 0,

Tβ(x)− δn,β(x) if β ∈ Γ.
(4.2)

Thus, ||F (x)−∆n
β(x)|| < ε

2 whenever n ∈ N, β ∈ Σ and x ∈ X. Now, we define

h(x) =
∑

(n,β)∈N×Σ

ψn,β(x)∆n
β(x).

Since {ψn,β}n∈N,β∈Σ is locally finitely nonzero, h is C1-smooth. Now, if x ∈ X, then

||F (x)− h(x)|| ≤
∑

(n,β)∈N×Σ

ψn,β(x)||F (x)−∆n
β(x)|| ≤

∑
(n,β)∈N×Σ

ψn,β(x)
ε

2
< ε.

Therefore, ||h(x)|| < R+ ε for all x ∈ X (recall that ||F (x)|| ≤ R for all x ∈ X).

Let us now estimate the distance between the derivatives. From the definitions given above,
notice that:

(D.1) Since
∑

N×Σ ψn,β(x) = 1 for all x ∈ X, we have that
∑

N×Σ ψ
′
n,β(x) = 0 for all x ∈ X.

(D.2) Thus, we can write D(y) =
∑

N×Σ(ψ′n,β(y))f(y) +
∑

N×Σ ψn,β(y)D(y), for every y ∈ A.

(D.3) supp(ψn,0) ⊂ B0 = X \A, for all n.

(D.4) h′(x) =
∑

N×Σ ψ
′
n,β(x)∆n

β(x) +
∑

N×Σ ψn,β(x)(∆n
β)′(x), for all x ∈ X.

(D.5) Properties (1) and (2) of the open refinement {Wn,β} imply that for every x ∈ X
and n ∈ N, there is at most one β ∈ Σ, which we shall denote by βx(n), such that
x ∈ supp(ψn,β). In the case that y ∈ A, then βy(n) ∈ Γ. We define Fx := {(n, β) ∈
N× Σ : x ∈ supp(ψn,β)}. In particular, Fy ⊂ N× Γ whenever y ∈ A.

We obtain, for y ∈ A,

‖D(y)−h′(y)‖ (4.3)

≤
∑

(n,β)∈Fy

‖ψ′n,β(y)‖||Tβ(y)− f(y)− δn,β(y)||

+
∑

(n,β)∈Fy

ψn,β(y)‖T ′β(y)−D(y)− δ′n,β(y)‖
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≤
∑

{n:(n,βy(n))∈Fy}

Ln,βy(n)||Tβy(n)(y)− f(y)− δn,βy(n)(y)||

+
∑

{n:(n,βy(n))∈Fy}

ψn,βy(n)(y)‖T ′βy(n)(y)−D(y)− δ′n,βy(n)(y)‖

≤
∑

{n:(n,βy(n))∈Fy}

(Ln,βy(n)
ε

2n+2Ln,βy(n)
+ ψn,βy(n)(y)

ε

4
) ≤ ε

4
+
ε

4
< ε.

Let us prove that Lip(f − h|A) < ε. In order to simplify the notation let us write

Snβ (y) := ∆n
β(y)− f(y) and R(y, z) :=

∑
(n,β)∈Fy

ψn,β(z)Snβ (y)

for y, z ∈ A. Notice that ψ(n,β)(z) = 0 whenever (n, β) 6∈ Fz and thus,

R(y, z) =
∑

(n,β)∈Fy∩Fz

ψn,β(z)Snβ (y)

for y, z ∈ A. In addition, let us write

M(z, y) :=
∑

(n,β)∈Fz\Fy

ψn,β(y)Snβ (z) = 0 for y, z ∈ A.

Now, from the above and properties (D.1) to (D.5), we obtain for every y, z ∈ A

||(h(y)−f(y))− (h(z)− f(z))||

= ||
∑

(n,β)∈Fy

ψn,β(y)Snβ (y)−
∑

(n,β)∈Fz

ψn,β(z)Snβ (z)−R(y, z) +R(y, z) +M(z, y)||

= ||(
∑

(n,β)∈Fy

ψn,β(y)Snβ (y)−R(y, z)) + (R(y, z)−
∑

(n,β)∈Fz∩Fy

ψn,β(z)Snβ (z))

+ (M(z, y)−
∑

(n,β)∈Fz\Fy

ψn,β(z)Snβ (z))||

≤
∑

(n,β)∈Fy

|ψn,β(y)− ψn,β(z)| ||Snβ (y)||+
∑

(n,β)∈Fz∩Fy

ψn,β(z)||Snβ (y)− Snβ (z)||

+
∑

(n,β)∈Fz\Fy

|ψn,β(y)− ψn,β(z)| ||Snβ (z)|| ≤
∑

(n,β)∈Fy

Ln,β||y − z||
ε

2n+2Ln,β

+
∑

(n,β)∈Fz∩Fy

ψn,β(z)
ε

4
||y − z||+

∑
(n,β)∈Fz\Fy

Ln,β||y − z||
ε

2n+2Ln,β
< ε||y − z||.

Thus Lip(f − h|A) < ε.

Lemma 4.2.6. Let (X,Z) be a pair of Banach spaces with property (*), a closed subset
A ⊂ X and a Lipschitz mapping f : A → BZ(0, R) (with R ∈ (0,∞]) satisfying the mean
value condition for a bounded map D : A → L(X,Z) with M = sup{||D(y)|| : y ∈ A} < ∞.
Then, for every ε > 0 there is a C1-smooth and Lipschitz mapping g : X → Z such that
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(i) ||f(y)− g(y)|| < ε for every y ∈ A,

(ii) ||D(y)− g′(y)|| < ε for every y ∈ A,

(iii) Lip(f − g|A) < ε,

(iv) ||g(x)|| < C0 Lip(f)1/2 +R+ ε for every x ∈ X,

(v) Lip(g) ≤ C0((1 + 2C0) Lip(f) + 2(R + ε) Lip(f)1/2 + M) + ε whenever R < ∞, and
Lip(g) ≤ C0(M + Lip(f)) + ε whenever R = +∞; where C0 is the constant given by
property (*).

Proof. Let us suppose that R < +∞, and take 0 < 3ε′ < ε. By Lemma 4.2.5 there is a
C1-smooth mapping h : X → BZ(0, R+ ε′) such that

(i) ||f(y)− h(y)|| < ε′ for all y ∈ A,

(ii) ||D(y)− h′(y)|| < ε′ for all y ∈ A, and

(iii) Lip(f − h|A) < min{ ε′

C0(1+2C0) , (
ε′

2C0(R+2ε′))2}.

Since h is C1-smooth on X, there exists {B(yγ , rγ)}γ∈Γ a covering of A by open balls of
X, with centers yγ ∈ A such that

||h(y)− h(yγ)|| ≤ ε′

8C0
and ||h′(y)− h′(yγ)|| ≤ ε′

8C0
, for every y ∈ Bγ , (4.4)

where Bγ := B(yγ , rγ) and C0 is the constant given by property (*) (which depends only on
X and Z). Let us define Tγ by Tγ(x) = h(yγ) + h′(yγ)(x − yγ), for x ∈ X. Notice that Tγ
satisfies the following properties:

(B.1) Tγ is C∞-smooth on X,

(B.2) T ′γ(x) = h′(yγ) for all x ∈ X,

(B.3) Lip((Tγ − h)|Bγ ) ≤ ε′

8C0
, and

(B.4) ||T ′γ(x)|| = ||h′(yγ)|| ≤ ||D(yγ)||+ ε′ ≤M + ε′ for every x ∈ X.

Let us define B0 := X \ A, Σ := Γ ∪ {0} (we assume 0 /∈ Γ), and C := {Bβ : β ∈ Σ},
which is an open covering of X. Following the proof of Lemma 4.2.5, we obtain an open
refinement {Wn,β}n∈N,β∈Σ of C = {Bβ : β ∈ Σ} and a C1-smooth and Lipschitz partition of
unity {ψn,β}n∈N,β∈Σ satisfying conditions (P1), (P2) and (P3).

Let us define Ln,β := max{Lip(ψn,β), 1} for every n ∈ N and β ∈ Σ. Now, for every n ∈ N
and γ ∈ Γ, we apply property (*) to Tγ − h on Bγ in order to obtain a C1-smooth mapping
δn,γ : X → Z so that

||Tγ(x)− h(x)− δn,γ(x)|| < ε′

2n+2Ln,γ
for every x ∈ Bγ and (C.1)

Lip(δn,γ) ≤ C0 Lip((Tγ − h)|Bγ ) ≤ ε′

8
. (C.2)
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In particular,

||Tγ(x)− δn,γ(x)|| < ||h(x)||+ ε′

2n+2Ln,γ
< R+ 2ε′ for every x ∈ Bγ . (4.5)

From inequality (4.4), (B.2) and (C.2) and for every y ∈ Bγ , we have

‖T ′γ(y)− h′(y)− δ′n,γ(y)‖ ≤ ‖T ′γ(y)− h′(y)‖+ ‖δ′n,γ(y)‖ ≤ ε′

4
.

Therefore,

Lip((Tγ − h− δn,γ)|Bγ ) ≤ ε′

4
.

Now, since Lip(h|A) ≤ Lip(f)+(ε′/C0)2, let us apply Lemma 4.2.3 to h|A : A→ BZ(0, R+

ε′) to obtain C1-smooth and Lipschitz mappings Fn0 : X → BZ(0, C0 Lip(f)1/2 +R+3ε′) such
that ||Fn0 (z)− h(z)|| < ε′

2n+2Ln,0
for all z ∈ A and n ∈ N, and

Lip(Fn0 ) ≤ C0((1 + 2C0) Lip(h|A) + 2(R+ 2ε′) Lip(h|A)1/2).

From condition (iii) above, we deduce

Lip(Fn0 ) ≤ C0((1 + 2C0) Lip(f) + 2(R+ 2ε′) Lip(f)1/2) + 2ε′.

Let us define ∆n
β : X → Z and g : X → Z as

∆n
β(x) =

{
Fn0 (x) if β = 0,

Tβ(x)− δn,β(x) if β ∈ Γ,
and g(x) =

∑
(n,β)∈N×Σ

ψn,β(x)∆n
β(x). (4.6)

Since {ψn,β}n∈N,β∈Σ is locally finitely nonzero, the mapping g is C1-smooth. It is clear that

||g(x)|| ≤
∑

(n,β)∈N×Σ

ψn,β(x)||∆n
β(x)|| < C0 Lip(f)1/2 +R+ ε for all x ∈ X.

The proofs of ||h(y)−g(y)|| < ε′, ||h′(y)−g′(y)|| < ε′ for all y ∈ A and Lip((h−g)|A) < ε′ follow
along the same lines as Lemma 4.2.5. Thus, ||f(y)−g(y)|| < ε for all y ∈ A, ||D(y)−g′(y)|| < ε
for y ∈ A, and Lip(f − g|A) < ε.

In addition, since ||T ′γ(x)||+ ||δ′n,γ(x)|| ≤M + 9ε′/8,

||(∆n
β)′(x)|| ≤max{C0((1 + 2C0) Lip(f) + 2(R+ 2ε′) Lip(f)1/2) + 2ε′,M + 9ε′/8}

≤C0((1 + 2C0) Lip(f) + 2(R+ 2ε′) Lip(f)1/2 +M) + 2ε′.

Let us check that g is Lipschitz. From the fact that
∑

(n,β)∈Fx ψ
′
n,β(x) = 0 for all x ∈ X,
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where Fx := {(n, β) ∈ N× Σ : x ∈ supp(ψn,β)} and the fact (P3) we deduce that

||g′(x)|| ≤
∑

(n,β)∈Fx

||ψ′n,β(x)|| ||h(x)−∆n
β(x)||+

∑
(n,β)∈Fx

ψn,β(x)||(∆n
β)′(x)||

≤
∑

{n:(n,βx(n))∈Fx}

Ln,βx(n)
ε′

2n+2Ln,βx(n)

+
∑

{n:(n,βx(n))∈Fx}

ψn,βx(n)(x)(C0((1 + 2C0) Lip(f) + 2(R+ 2ε′) Lip(f)1/2 +M) + 2ε′)

< C0((1 + 2C0) Lip(f) + 2(R+ 2ε′) Lip(f)1/2 +M) + 3ε′,

for all x ∈ X, where βx(n) is the only index β (if it exists) satisfying condition (P3)-(2) for x.
Thus, Lip(g) ≤ C0((1 + 2C0) Lip(f) + 2(R + ε) Lip(f)1/2 +M) + ε. (Recall, that here we do
not assume ε < Lip(f).)

If R = +∞, we apply property (*) to h|A : A→ Z in order to obtain C1-smooth mappings
Fn0 : X → Z such that ||h(x) − Fn0 (x)|| < ε′

2n+2L0,β
on A, and Lip(Fn0 ) ≤ C0 Lip(h|A) ≤

C0 Lip(f)+ε′. Thus, ||(∆n
β)′(x)|| ≤ max{C0 Lip(f)+ε′,M +9ε′/8} ≤ C0(M +Lip(f))+9ε′/8

and ||g′(x)|| ≤ C0(M + Lip(f)) + ε for every x ∈ X.

Proof of Theorems 4.2.1 and 4.2.2. Let us assume that the mapping f : A→ Z satisfies the
mean value condition and consider 0 < ε < 1. Then, by Lemma 4.2.5 there exists a C1-smooth
mapping G1 : X → Z such that if g1 := G1|A , then

(i) ||f(y)− g1(y)|| < ε
24C0

for every y ∈ A,

(ii) ||D(y)−G′1(y)|| < ε
24C0

for every y ∈ A, and

(iii) Lip(f − g1) < min{ ε
24C0(1+2C0)

, ( ε
24C0

)2}.

Notice that the mapping f − g1 satisfies the mean value condition for the bounded map
D−G′1 : A→ L(X,Z) with sup{||D(y)−G′1(y)|| : y ∈ A} ≤ ε

24C0
. Let us apply Lemma 4.2.6

to f − g1 to obtain a C1-smooth mapping G2 : X → Z such that if g2 := G2|A , then

(i) ||(f − g1)(y)− g2(y)|| < ε
25C0

for every y ∈ A,

(ii) ||D(y)− (G′1(y) +G′2(y))|| < ε
25C0

for every y ∈ A,

(iii) Lip(f − (g1 + g2)) < min{ ε
25C0(1+2C0)

, ( ε
25C0

)2},

(iv) ||G2(x)|| ≤ C0
ε

24C0
+ ε

24C0
+ ε

25C0
≤ ε

22 for all x ∈ X, and

(v) Lip(G2) ≤ C0((1 + 2C0) ε
24C0(1+2C0)

+ 2( ε
24C0

+ ε
25C0

) ε
24C0

+ ε
24C0

) + ε
25C0

≤ ε
22 .

By induction, we find a sequence Gn : X → Z of C1-smooth mappings satisfying for n ≥ 2,
where gn := Gn|A ,

(i) ||(f −
∑n−1

i=1 gi)(y)− gn(y)|| < ε
2n+3C0

for every y ∈ A,

(ii) ||D(y)−
∑n

i=1G
′
i(y)|| < ε

2n+3C0
for every y ∈ A,
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(iii) Lip(f −
∑n

i=1 gi) < min{ ε
2n+3C0(1+2C0)

, ( ε
2n+3C0

)2},

(iv) ||Gn(x)|| ≤ ε/2n for all x ∈ X, and

(v) Lip(Gn) ≤ ε/2n.

Let us define the mapping G : X → Z as G(x) :=
∑∞

n=1Gn(x). Since ||Gn(x)|| ≤ ε/2n

and ||G′n(x)|| ≤ Lip(Gn) ≤ ε
2n for all x ∈ X and n ≥ 2, the series

∑∞
n=1Gn and

∑∞
n=1G

′
n

are absolutely and uniformly convergent on X. Hence, the mapping G is C1-smooth on X.
It follows from (i) that ||f(y) −

∑n
i=1Gi(y)|| < ε/2n+3 for every y ∈ A and n ≥ 1. Thus

G(y) = f(y) for all y ∈ A.

Let us now consider f : A → Z a Lipschitz mapping satisfying the mean value condition
for a bounded map D : A→ L(X,Z) with M := sup{||D(y)|| : y ∈ A} <∞. We can assume
that ε ≤ 16(M+Lip(f))

9 (if Lip(f) = 0, the extension is obvious). By Lemma 4.2.6, there exists
a C1-smooth mapping G1 : X → Z such that if g1 := G1|A

(i) ||f(y)− g1(y)|| < ε
24C0

for every y ∈ A,

(ii) ||D(y)−G′1(y)|| < ε
24C0

for every y ∈ A,

(iii) Lip(f − g1) < min{ ε
24C0(1+2C0)

, ( ε
24C0

)2}, and

(iv) Lip(G1) ≤ C0(M + Lip(f)) + ε
24 .

The mappings Gn : X → Z for n ≥ 2 are defined as in the general case. It can be checked
that the mapping G : X → Z defined as G(x) :=

∑∞
n=1Gn(x) is C1-smooth, is an extension

of f to X and

Lip(G) ≤ C0(M + Lip(f)) +
ε

24
+
∞∑
n=2

ε

2n
≤ (1 + C0)(M + Lip(f)).

�

4.3 On the properties (*), (A) and (E)

In this section, we present examples of pairs of Banach spaces (X,Z) satisfying property (*).
The first examples are pairs of Banach spaces satisfying properties (A) and (E) and thus
property (*).

Example 4.3.1. Let X and Z be Banach spaces such that X is finite-dimensional. Then,
the pair (X,Z) satisfies properties (A) and (E). On the one hand, W.B. Johnson, J. Lin-
denstrauss and G. Schechtman have shown in [73] that every pair of Banach space (X,Z)
with X n-dimensional satisfies property (E) with constant K(n) ≥ 1 (which depends only
on the dimension of X). On the other hand, the classical convolution techniques for smooth
approximation in finite-dimensional spaces provide property (A) for (X,Z).

Example 4.3.2. Let X and Z be Hilbert spaces with X separable. Then (X,Z) satisfies the
properties (A) and (E). M.D. Kirszbraun has shown in [80] (see [14, Theorem 1.12]) that the
pair (X,Z) satisfies property (E) with K = 1, whenever X and Z are Hilbert spaces. Also,
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R. Fry has proven in [38] (see also [56, Theorem H] and Theorem 3.0.4) that (X,Z) satisfies
property (A) when X is a separable Hilbert space.

Example 4.3.3. The pairs (L2, Lp) for 1 < p < 2 and (Lp, L2) for 2 < p < ∞ satisfy
properties (A) and (E). K. Ball showed that for every 1 < p < 2 the pair (L2, Lp) satisfies
property (E) with constant K(p) ≥ 1 depending only on p [13]. I. G. Tsar’kov proved that for
every 2 < p < ∞ the pair (Lp, L2) satisfies property (E) with constant K(p) ≥ 1 depending
only on p [109]. Also, the results in [38, Theorem 1] (see also Theorem 3.0.4) yield the fact
that (X,Z) satisfies property (A).

Recall that a subset A of a metric space Z is called a Lipschitz retract of Z if there is a
Lipschitz retraction from Z to A, i.e. there is a Lipschitz map r : Z → A such that r|A = idA.
A metric space Z is called an absolute Lipschitz retract if it is a Lipschitz retract of any metric
space W containing Z. Some examples of absolute Lipschitz retracts are the following:

1. Rn for every n ∈ N,

2. (c0(N), || · ||∞),

3. (`∞(N), || · ||∞),

4. (Cu(P ), || · ||∞), where P is a metric space and

Cu(P ) = {f : P → R : f is bounded and uniformly continuous},

5. the space (C(K), || · ||∞) for every compact Hausdorff space K, and

6. (B0(V ), || · ||∞), where V is a topological space, v0 ∈ V and

B0(V ) = {f : V → R : f is bounded, and f(v)→ 0 whenever v → v0}.

(See [14] and [87] for more information on absolute Lipschitz retracts and a proof of these
examples.) An absolute Lipschitz retract space satisfies the following Lipschitz extension
property.

Proposition 4.3.4. [14, Proposition 1.2] Let Z be a metric space. The following are equiva-
lent:

(i) Z is an absolute Lipschitz retract.

(ii) There is K ≥ 1, which only depends on Z, such that for every metric space X, every
subset A ⊂ X and every Lipschitz mapping f : A → Z, there is a Lipschitz extension
F : X → Z of f such that Lip(F ) ≤ K Lip(f).

By combining the above characterization and the results in [56], we obtain the following
proposition.

Proposition 4.3.5. Let X be a Banach space such that there are a set Γ 6= ∅ and a bi-Lipschitz
homeomorphism ϕ : X → c0(Γ) with C1-smooth coordinate functions e∗γ ◦ϕ : X → R. Let Z be
a Banach space which is an absolute Lipschitz retract. Then the pair (X,Z) satisfies properties
(A) and (E).
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Proof. Property (E) trivially follows from Proposition 4.3.4. Now, let us take the mapping
f ◦ ϕ−1 : ϕ(X) → Z which is Lip(ϕ−1) Lip(f)-Lipschitz. By Proposition 4.3.4, there is a
Lipschitz extension f̃ : c0(Γ) → Z of f ◦ ϕ−1 with Lip(f̃) ≤ K Lip(ϕ−1) Lip(f) and K is
the constant given in Proposition 4.3.4. Now, from Theorem 3.0.9 we can find a C∞-smooth
and Lipschitz mapping h : c0(Γ) → Z which locally depends on finitely many coordinate
functionals {e∗γ}γ∈Γ, such that ||f̃(x) − h(x)|| < ε for every x ∈ c0(Γ) and Lip(h) = Lip(f̃).
Let us define g : X → Z as g(x) := h(ϕ(x)) for every x ∈ X. The mapping g is C1-smooth,
||f(x)− g(x)|| < ε for all x ∈ X and Lip(g) ≤ C Lip(f), with C := K Lip(ϕ) Lip(ϕ−1). Thus
(X,Z) has property (A).

This provides the following example.

Example 4.3.6. Let X and Z be Banach spaces such that there are a set Γ 6= ∅ and a bi-
Lipschitz homeomorphism ϕ : X → c0(Γ) with C1-smooth coordinate functions, and Z is an
absolute Lipschitz retract. Then, the pair (X,Z) satisfies properties (A) and (E). In particular,
let X and Z be Banach spaces such that X∗ is separable and Z is an absolute Lipschitz retract.
Then, the pair (X,Z) satisfies properties (A) and (E). Notice that P. Hájek and M. Johanis
[56] (see the proof of Theorem 3.1.3) proved the existence of a bi-Lipschitz homeomorphism
with Ck-smooth coordinate functions in every separable Banach space with a Ck-smooth and
Lipschitz bump function.

Now, with these examples, Theorem 4.2.1 and Theorem 4.2.2, we obtain the following
consequence.

Corollary 4.3.7. Let X and Z be Banach spaces and assume that at least one of the following
conditions holds:

(i) X is finite-dimensional,

(ii) X and Z are Hilbert spaces and X is separable,

(iii) X = L2 and Z = Lp with 1 < p < 2,

(iv) X = Lp and Z = L2 with 2 < p <∞,

(v) there are a set Γ 6= ∅ and a bi-Lipschitz homeomorphism ϕ : X → c0(Γ) with C1-smooth
coordinate functions (for example, when either X∗ is separable or X = c0(Γ)), and Z is
an absolute Lipschitz retract.

Let A be a closed subset of X and f : A → Z a mapping. Then, f satisfies the mean value
condition (mean value condition for a bounded map and f is Lipschitz) on A if and only if
there is a C1-smooth (respectively, C1-smooth and Lipschitz) extension G of f to X.

Moreover, if f is Lipschitz and satisfies the mean value condition for a bounded map D :
A → L(X,Z) with M := sup{||D(y)|| : y ∈ A} < ∞, then we can obtain a C1-smooth and
Lipschitz extension G with Lip(G) ≤ (1+C0)(M+Lip(f)), where C0 ≥ 1 is the constant given
by property (*) (which depends only on X and Z).

It is easy to see the relationship between smooth extension (smooth and Lipschitz exten-
sion) and the existence of C1-smooth bump functions (respectively, C1-smooth and Lipschitz
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bump functions). Indeed, if every real-valued function defined on a closed subset of X which
satisfies the mean value condition (mean value condition for a bounded map and it is Lipschitz)
admits a C1-smooth extension to X (C1-smooth and Lipschitz extension), then the function
(see Figure 4.1)

f(x) =

{
1 if x = 0,

0 if x ∈ X \B(0, 1)

admits an C1-smooth extension (respectively, C1-smooth and Lipschitz extension), since f
satisfies the mean value condition for the bounded map D : {0} ∪ (X \B(0, 1))→ X∗ defined
as D(x) = 0X∗ . This extension is a C1-smooth bump function (respectively, C1-smooth and
Lipschitz bump function).

-
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Figure 4.1: Bump function

Let us now prove that property (*), which is a closely related to admitting smooth bump
functions, is necessary to obtain C1-smooth and Lipschitz extensions. We also obtain an
example of a pair of Banach spaces satisfying property (A) but not property (*). Thus, it does
not admit C1-smooth and Lipschitz extension.

Proposition 4.3.8. Let (X,Z) be a pair of Banach spaces such that there is a constant
C ≥ 1, which only depends on X and Z, such that for every closed subset A ⊂ X and every
Lipschitz mapping f : A → Z satisfying the mean value condition for a bounded map D with
M = sup{||D(y)|| : y ∈ A} < ∞, there exists a C1-smooth and Lipschitz extension G of f to
X with Lip(G) ≤ C(M + Lip(f)). Then, the pair (X,Z) satisfies property (*). Therefore, by
Theorem 4.2.2, the above assumption is equivalent to property (*).

Proof. Let A be a subset of X, f : A → Z a L-Lipschitz mapping and ε > 0. Let us take a
ε

(C+1)L -net in A which we shall denote by N , i.e. a subset N of A such that (i) ||z−y|| ≥ ε
(C+1)L

for every z, y ∈ N , (ii) for every x ∈ A there is a point y ∈ N such that ||x − y|| ≤ ε
(C+1)L .

Clearly, N is a closed subset of X and f|N : N → Z is a L-Lipschitz mapping on N satisfying
the mean value condition for the bounded map given by D(x) = 0 ∈ L(X,Z) for every x ∈ N .
Then, by assumption, there exists a C1-smooth and CL-Lipschitz mapping G : X → Z such
that G|N = f|N . For any x ∈ A, let us choose y ∈ N such that ||x − y|| ≤ ε

(C+1)L . Then,
G(y) = f(y) and

||f(x)−G(x)|| ≤ ||f(x)− f(y)||+ ||G(x)−G(y)|| ≤ (L+ CL)||x− y|| ≤ ε.
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Example 4.3.9. Although the pairs (Lp, L2) and (L2, Lq) with 1 < p < 2 and 2 < q < ∞
satisfy property (A) (see [38]), they do not satisfy property (E) [97]. Thus, Remark 4.1.3 (3)
implies that the pairs (Lp, L2) and (L2, Lq) do not satisfy property (*) whenever 1 < p < 2 <
q < ∞ and Lp, Lq and L2 are infinite dimensional, and the above proposition reveals that
there exist Lipschitz mappings h : A→ L2 and h′ : B → Lq defined on closed subsets A of Lp
and B of L2 with 1 < p < 2 and 2 < q <∞ satisfying the mean value condition on A and B
for a bounded map which cannot be extended to C1 smooth and Lipschitz mappings on Lp
and L2, respectively, i.e. the conclusion of Theorem 4.2.2 does not hold for the pairs (Lp, L2)
and (L2, Lq) with 1 < p < 2 and 2 < q < ∞. In particular, property (A) is a necessary
condition but it is not a sufficient condition to obtain C1-smooth and Lipschitz extensions,
and properties (*) and (A) are not equivalent in general.

It is worth pointing out the following characterization that it is obtained when the problem
is restricted to the separable and real-valued case.

Proposition 4.3.10. Let X be a separable Banach space. The following statements are equiv-
alent:

(i) X satisfies property (*).

(ii) X admits C1-smooth and Lipschitz extension of every Lipschitz function defined on a
closed subset, which satisfies the mean value condition for a bounded map, i.e. for every
closed subset A ⊂ X and every Lipschitz function f : A → R satisfying the mean value
condition for a bounded map D : A → X∗ with M := sup{||D(y)|| : y ∈ A} < ∞,
there is a C1-smooth and Lipschitz extension of f to X, G : X → R, with Lip(G) ≤
C(M + Lip(f)) (where C ≥ 1 depends only on the space X).

(iii) X admits C1-smooth extension of every function defined on a closed subset, which sat-
isfies the mean value condition.

(iv) X admits a C1-smooth bump function.

(v) X∗ is Asplund.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) are given by Theorem 4.2.1 and Theorem 4.2.2. We have
already showed that (ii) ⇒ (iv) and that (iii) implies that X admits a C1-smooth bump
function (see Figure 4.1), which is equivalent to (iv) (see [22]). (iv)⇒ (v) is well known (see
again [22]) and (v)⇒ (i) was shown by P. Hájek and M. Johanis in [56].

4.4 Smooth extension from subspaces

Finally, let us make a brief comment on the extension of C1-smooth mappings defined on a
subspace. First of all, we must realize that we need to extend bounded and linear operators
to extend smooth mappings from subspaces.

Proposition 4.4.1. Let X and Z be Banach spaces and Y a closed subspace of X. If every
C1-smooth mapping f : Y → Z can be extended to a C1-smooth mapping F : X → Z, then
for every bounded and linear operator T : Y → Z there is a bounded and linear operator
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T̃ : X → Z such that T̃|Y = T . Moreover, assume that every C1-smooth and Lipschitz
mapping f : Y → Z can be extended to a C1-smooth and Lipschitz mapping F : X → Z
such that Lip(F ) ≤ C Lip(f) with C depending only on X and Z. Then, for every bounded
and linear operator T : Y → Z there is a bounded and linear operator T̃ : X → Z such that
T̃|Y = T and ||T̃ ||L(X,Z) ≤ C||T ||L(Y,Z).

Proof. Let T : Y → Z be a bounded and linear operator. Obviously, T is C1-smooth on Y ,
||T ||L(Y,Z)-Lipschitz and T ′(0) = T . If F : X → Z is a C1-smooth extension (and C||T ||L(Y,Z)-
Lipschitz), then T̃ = F ′(0) satisfies that T̃|Y = F ′(0)|Y = T ′(0) = T (and ||T̃ ||L(X,Z) =
||F ′(0)|| ≤ Lip(F ) ≤ C||T ||L(Y,Z), respectively).

Definition 4.4.2. We say that the pair of Banach spaces (X,Z) satisfies the linear extension
property if there is λ ≥ 1, which depends only on X and Z, such that for every closed subspace
Y ⊂ X and every bounded and linear operator T : Y → Z, there is a bounded and linear
operator T̃ : X → Z such that T̃|Y = T and ||T̃ ||L(X,Z) ≤ λ||T ||L(Y,Z).

Examples 4.4.3.

(i) Maurey’s extension theorem [91] asserts that the pair of Banach spaces (X,Z) satisfies
the linear extension property whenever X has type 2 and Z has cotype 2. Therefore,
(L2, Lp) for 1 < p < 2 and (Lp, L2) for 2 < p < ∞ satisfy the linear extension property
(recall that Lp has type 2 for 2 ≤ p <∞ and cotype 2 for 1 < p ≤ 2, see [1]).

(ii) For every compact Hausdorff space K, every non-empty set Γ and 1 < p <∞, the pairs
(c0(Γ), C(K)) and (`p(N), C(K)) satisfy the linear extension property ([88, Theorem 3.1],
[74] and [72, Chapter 40]).

(iii) For every compact Hausdorff space K, the pair (X,C(K)) satisfies the linear extension
property whenever X is an Orlicz space with a separable dual [77].

(iv) The pair (X, c0(N)) satisfies the linear extension property whenever X is a separable
Banach space [105] (see also [72, Chapter 40]).

(v) However, there are Banach spaces X so that for any K compact Hausdorff, the pair
(X,C(K)) fails the linear extension property. For instance, W.B. Johnson and M. Zippin
[75] proved that there are subspaces Y of `1 such that not every bounded and linear
operator T : Y → C(K) can be extended to a bounded and linear operator T̃ : `1 →
C(K). Also, N.J. Kalton [78] showed that for every 1 < p < ∞ there exist a separable
and superreflexive Banach space X containing `p and a bounded and linear operator
T : `p → C(K) that cannot be extended to a bounded and linear operator T̃ : X → C(K).
So, by Proposition 4.4.1, they are examples of pair of Banach spaces (X,Z), one of them
satisfying properties (A) and (E), so that not every C1-smooth mapping defined on a
subspace of X can be extended to a C1-smooth mapping defined on the whole space X.

We shall prove the following useful proposition.

Proposition 4.4.4. Let (X,Z) be a pair of Banach spaces satisfying the linear extension
property and Y a closed subspace of X. If f : Y → Z is a C1-smooth mapping (C1-smooth
and Lipschitz mapping), then f satisfies the mean value condition (respectively, mean value
condition for a bounded map) on Y .



4. Smooth extensions on Banach spaces 73

Proof. First, let us give the following lemma.

Lemma 4.4.5. Let (X,Z) be a pair of Banach spaces satisfying the linear extension property
and Y a closed subspace of X. Then there is a constant η ≥ 1 and there is a continuous
map B : L(Y,Z) → L(X,Z) such that B(f)|Y = f and ||B(f)||L(X,Z) ≤ η||f ||L(Y,Z) for every
f ∈ L(Y,Z).

The proof of this lemma follows the lines of the real-valued case [7, Lemma 2]. Indeed,
let us take W = L(X,Z), V = L(Y,Z) and T : W → V the bounded and linear map given
by the restriction to Y , T (f) = f|Y . By assumption, the map T is onto. Thus, we apply the
Bartle-Graves’s theorem (see [22, Lemma VII 3.2]) in order to find the map B.

Now, if f : Y → Z is a C1-smooth mapping (C1-smooth and Lipschitz mapping), we
consider the mapping D : Y → L(X,Z) defined as D(y) := B(f ′(y)) for every y ∈ Y . Then,
f satisfies the mean value condition for D (respectively, the mean value condition for the
bounded map D).

Now, we can apply Theorems 4.2.1 and 4.2.2 to obtain the following result on C1-smooth
extensions and C1-smooth and Lipschitz extensions to X of C1-smooth mappings defined on
Y whenever (X,Z) satisfies property (*) and the linear extension property.

Corollary 4.4.6. Let (X,Z) be a pair of Banach spaces which satisfies property (*) and the
linear extension property. Let Y be a closed subspace of X. Then, every C1-smooth mapping
defined on Y has a C1-smooth extension to the whole space X.

Moreover, there is C ≥ 1, which depends on X and Z, such that every Lipschitz and C1-
smooth mapping f : Y → Z has a Lipschitz and C1-smooth extension F : X → Z to X with
Lip(F ) ≤ C Lip(f).

In particular:

Corollary 4.4.7. Let (X,Z) be any of the following pairs of Banach spaces:

(i) (Lp, L2), 2 < p <∞,

(ii) (c0(Γ), C(K)), Γ is a non-empty set and K is a compact Hausdorff space,

(iii) (`p(N), C(K)), 1 < p <∞ and K is a compact Hausdorff space,

(iv) (X,C(K)), X is an Orlicz space with separable dual and K is a compact Hausdorff space,

(v) (X, c0(N)), X with separable dual,

(vi) (X,R), such that there is a set Γ 6= ∅ and there is a bi-Lipschitz homeomorphism ϕ :
X → c0(Γ) with C1-smooth coordinate functions (for instance, when X∗ is separable).

Let Y be a closed subspace of X. Then, every C1-smooth mapping f : Y → Z has a C1-smooth
extension to X.

Moreover, there is C ≥ 1, which depends only on X and Z, such that every Lipschitz and
C1-smooth mapping f : Y → Z has a Lipschitz and C1-smooth extension F : X → Z to X
with Lip(F ) ≤ C Lip(f).
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Recall that a Banach space X has the separable complementation property provided that
every separable Banach subspace of X is contained in a separable complemented subspace of
X. An important class of Banach spaces with this property is the class of WCD Banach spaces
(see [22, Chapter VI]). For more examples of Banach spaces with the separable complemented
property see [31]. So, using (v) and (vi) of Corollary 4.4.7, it is easy to prove the following
consequence.

Corollary 4.4.8. Let X be an Asplund WCG Banach space and let Z be either c0(N) or R.
Let Y be a separable and closed subspace of X. Then, every C1-smooth mapping f : Y → Z
has a C1-smooth extension to X.

Moreover, there is C ≥ 1, which depends only on X and Z, such that every Lipschitz and
C1-smooth mapping f : Y → Z has a Lipschitz and C1-smooth extension F : X → Z to X
with Lip(F ) ≤ C Lip(f).

Sometimes it is not possible to extend C1-smooth mappings defined on any subspace of
X, but there exist some subspaces from which every C1-smooth mapping can be extended.
For instance, in the example 4.4.3(v) we have seen that for every 1 < p < ∞ there is a
separable and superreflexive Banach space X containing `p such that there are C1-smooth
mappings f : `p → C(K) that cannot be extended to a C1-smooth mapping F : X → C(K).
Nevertheless, it is obvious that every C1-smooth mapping defined on a complement subspace
of X can be extended to the whole space. In this way, let us consider the following definition.

Definition 4.4.9. Let X and Z be Banach spaces and Y a closed subspace of X. We say that
the pair (Y,Z) has the linear X-extension property if there is λ ≥ 1, which depends on X,
Y and Z, such that for every bounded and linear map T : Y → Z there is a bounded and linear
extension T̃ : X → Z with ||T̃ ||L(X,Z) ≤ λ||T ||L(Y,Z).

By Theorem 4.2.1, Theorem 4.2.2 and a slight modification of Proposition 4.4.4, we obtain
the following corollary.

Corollary 4.4.10. Let (X,Z) be a pair of Banach spaces with property (*). Let Y be a closed
subspace of X such that the pair (Y, Z) has the linear X-extension property. Then, every
C1-smooth mapping f : Y → Z has a C1-smooth extension to X.

Moreover, there is C ≥ 1, which depends on X, Y and Z, such that every Lipschitz and
C1-smooth mapping f : Y → Z has a Lipschitz and C1-smooth extension F : X → Z to X
with Lip(F ) ≤ C Lip(f).

We conclude this chapter with some considerations on extension morphisms of C1-smooth
mappings. Let X and Z be Banach spaces and consider the Banach space

C1
L(X,Z) := {f : X → Z : f is C1-smooth and Lipschitz},

with the norm ||f ||C1
L

:= ||f(0)||+ Lip(f). We write C1
L(X) := C1

L(X,R).

Definition 4.4.11. Let X and Z be Banach spaces and Y a closed subspace of X. We say
that a bounded and linear mapping T : C1

L(Y,Z)→ C1
L(X,Z) (T : Y ∗ → X∗) is an extension

morphism whenever T (f)|Y = f for every f ∈ C1
L(Y,Z) (respectively, for every f ∈ Y ∗).
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Lemma 4.4.12. Let X be a Banach space and Y a closed subspace of X. If there exists an
extension morphism T : C1

L(Y )→ C1
L(X), then there exists an extension morphism S : Y ∗ →

X∗.

Proof. Let T : C1
L(Y ) → C1

L(X) be an extension morphism and define D : C1
L(X) → X∗ as

D(f) = f ′(0) for every f ∈ C1
L(X). The mapping D is linear, bounded and ||D|| ≤ 1. Thus,

D ◦ T : C1
L(Y ) → X∗ is linear and bounded. Also, (D ◦ T (f))|Y = (T (f)′(0))|Y = f ′(0) ∈

L(Y, Z). Now, let us take the restriction S := D ◦ T|Y ∗ : Y ∗ → X∗, which is linear, bounded,

S(ϕ)|Y = (T (ϕ))′(0)|Y = ϕ′(0) = ϕ, and

||S(ϕ)||X∗ = ||D ◦ T (ϕ)||X∗ ≤ ||T (ϕ)||C1
L
≤ ||T || ||ϕ||C1

L
,

for every ϕ ∈ Y ∗.

The above lemma and the results given by H. Fakhoury in [28] provide the following
characterizations.

Proposition 4.4.13. Let X and Z be Banach spaces. The following statements are equivalent:

(i) There is a constant M > 0 such that for every closed subspace Y ⊂ X, there exists an
extension morphism P : C1

L(Y, Z)→ C1
L(X,Z) with ||P || ≤M .

(ii) There is a constant M > 0 such that for every closed subspace Y ⊂ X, there exists an
extension morphism T : C1

L(Y )→ C1
L(X) with ||T || ≤M .

(iii) There is a constant M > 0 such that for every closed subspace Y ⊂ X, there exists an
extension morphism S : Y ∗ → X∗ with ||S|| ≤M .

(iv) X is isomorphic to a Hilbert space.

Proof. The equivalence between (iii) and (iv) was established in [28, Théorème 3.7].

(i) ⇒ (ii) Let us take z ∈ SZ and ϕ ∈ SZ∗ (where SZ and SZ∗ denote the unit spheres
of Z and Z∗, respectively) such that ϕ(z) = 1. Let Y be a closed subspace of X and P :
C1
L(Y,Z) → C1

L(X,Z) an extension morphism with ||P || ≤ M . For every f ∈ C1
L(Y ), let us

consider the Lipschitz and C1-smooth mapping fz : Y → Z defined as fz(y) = zf(y) for every
y ∈ Y . Let us define Rf := P (fz) ∈ C1

L(X,Z). Then, the mapping T : C1
L(Y ) → C1

L(X)
defined as T (f) = ϕ ◦Rf , where f ∈ C1

L(Y ) is a linear extension mapping with ||T || ≤M .

(ii) ⇒ (iii) is given by Lemma 4.4.12 and (iv) ⇒ (i) follows from the result that every
closed subspace of a Hilbert space H is complemented in H [89].

Recall that X is a Pλ-space if X is a complemented subspace of every Banach superspace
W of X (see [18, p. 95]).

Corollary 4.4.14. Let X and Z be Banach spaces. The following statements are equivalent:

(i) There is a constant M > 0 such that for every Banach superspace W of X, there exists
an extension morphism P : C1

L(X,Z)→ C1
L(W,Z) with ||P || ≤M .
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(ii) There is a constant M > 0 such that for every Banach superspace W of X, there exists
an extension morphism T : C1

L(X)→ C1
L(W ) with ||T || ≤M .

(iii) There is a constant M > 0 such that for every Banach superspace W of X, there exists
an extension morphism S : X∗ →W ∗ with ||S|| ≤M .

(iv) X is a Pλ-space.

Proof. The equivalence between (iii) and (iv) was established in [28, Corollaire 3.3]. The rest
of the proof is similar to that of Proposition 4.4.13.

It is worth noticing that the existence of an extension morphism S : X∗ → W ∗ does not
imply that X is a complement subspace of W . Indeed, there exists an extension morphism
S : X∗ → X∗∗∗ for every Banach space X (see for instance [28]). Nevertheless, there is no an
extension morphism T : C1

L(X) → C1
L(W ), up to our knowledge, with X a non-complement

subspace of W .

Open Problems

Let us list some questions that remain open in the area.

1. When does a Banach space admit C2-smooth extensions?

2. Let f : c0(N)→ R be a C1-smooth function. Is there a C1-smooth function F : `∞(N)→
R such that F|c0 = f? Is there at least a C1-smooth function F : U → R defined on an
open subset U ⊂ `∞(N) such that c0(N) ⊂ U and F|c0 = f?

3. We have showed that there exist C1-smooth extensions of C1-smooth real-valued func-
tions defined on closed subspaces whenever X satisfies property (*). Nevertheless, we do
not know whether property (*) or any other condition is necessary. In other words, are
there a Banach space X, a closed subspace Y ⊂ X and a C1-smooth function f : Y → R
such that there is not a C1-smooth extension of f to the whole space X?

4. In Remark 4.1.3 we have proved that if Z is a dual Banach space, then (X,Z) satisfies
property (*) if and only if (X,Z) satisfies properties (A) and (E). Is the property (*)
equivalent to the properties (A) and (E) when Z is a general Banach space? I.e., is the
duality condition on Z necessary?

5. Let (X,Z) be a pair of Banach spaces such that for every subset A in X and every
Lipschitz mapping f : A→ Z, there exists a Lipschitz extension F : X → Z of f . Does
the pair (X,Z) have property (E)? In other words, may the Lipschitz extension F be
chosen so that Lip(F ) ≤ K Lip(f) and K depending only on X and Z?

6. Let Y be a closed subspace of a Banach space X. H. Fakhoury [28] showed that the
existence of an extension morphism S : Y ∗ → X∗ is equivalent to the existence of an
extension morphism R : Lip(Y )→ Lip(X), where

Lip(X) := {f : X → R : f is Lipschitz},
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with the norm ||f ||Lip := |f(0)| + Lip(f). We have proved in Lemma 4.4.12 that there
exists an extension morphism S : Y ∗ → X∗ whenever there exists an extension morphism
T : C1

L(Y ) → C1
L(X). Nevertheless, we do not know whether the reverse holds. I.e.,

is there an extension morphism T : C1
L(Y ) → C1

L(X) whenever there exist both an
extension morphism S : Y ∗ → X∗ and an extension morphism R : Lip(Y )→ Lip(X)?
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Chapter 5

On Finsler manifolds

In this Chapter we present the definitions of Banach manifolds and Finsler manifolds, as well
as several well-known properties that will be used in the following chapters. We also give some
new properties on Finsler manifolds. Our object is to refresh the reader with the language
and the tools of manifolds, and obtain some new properties which are used in the following
chapters.

In Section 5.1 we introduce the basic knowledge of Banach manifolds. We continue in
Section 5.2 by recalling the concepts of C` Finsler manifold in the sense of Palais and Neeb-
Upmeier introduced in [100], [98], [110] (both modeled on a Banach space X either separable or
non-separable). We introduce the notions of C` Finsler manifold in the sense of Neeb-Upmeier
weak-uniform and uniform as a generalization of a C` Finsler manifold in the sense of Palais
and a Riemannian manifold, respectively. Some results related to the structure of C` Finsler
manifolds in the sense of Palais, Neeb-Upmeier weak-uniform and Neeb-Upmeier uniform are
provided. In Section 5.3 we will give some mean value inequalities for C` Finsler manifolds in
the different senses, and a result on the existence of suitable local bi-Lipschitz diffeomorphisms.
Both properties will be essential tools to establish the results on the following chapters.

The notation we use is standard. A more exhaustive description of these concepts can be
found in classical books, for instance [23], [82], [84], [19] and [110]. We will say that the norms
|| · ||1 and || · ||2 defined on X are K-equivalent (K ≥ 1) whether 1

K ||v||1 ≤ ||v||2 ≤ K||v||1, for
every v ∈ X.

5.1 Banach manifolds

Definition 5.1.1. A C` Banach manifold (modeled on a Banach space (X, ||·||)) is a set M
and a family of injective mappings ϕα : Uα ⊂M → X of sets Uα onto open sets ϕα(Uα) ⊂ X
such that:

(1)
⋃
α Uα = M .

(2) For every pair α, β with Uα ∩ Uβ = W 6= ∅, the sets ϕα(W ) and ϕβ(W ) are open in X
and the mapping ϕβ ◦ ϕ−1

α is C`-smooth in ϕα(W ).

(3) The family {(Uα, ϕα)}α is maximal relative to the conditions (1 ) and (2 ).

The pair (Uα, ϕα) with x ∈ Uα is called a chart ofM at x. A family {(Uα, ϕα)}α satisfying
(1 ) and (2 ) is called an atlas on M . In general, the extension to the maximal structure will
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be done without further comment, since given an atlas on M , we can easily complete it to a
maximal one, by taking the union of all the charts that, together with any of the charts of the
given structure, satisfy condition (2 ). Recall that an atlas on M induces a natural topology
on M : a set A ⊂M is open whether ϕα(A ∩ Uα) is an open set in X for all α.

Definition 5.1.2. Let M and N be C` Banach manifolds modeled on X and Y , respectively.
A mapping f : M → N is Ck-smooth at x ∈M (k ≤ `) if there are (U,ϕ) a chart of M at x
and (V, ψ) a chart of N at f(x), such that f(U) ⊂ V and the mapping

ψ ◦ f ◦ ϕ−1 : ϕ(U) ⊂ X → Y

is Ck-smooth at ϕ(x).

U ⊂M
f // V ⊂ N

ψ
��

ϕ(U) ⊂ X

ϕ−1

OO

ψ◦f◦ϕ−1
// ψ(V ) ⊂ Y

It follows from the definition of Banach manifolds that the above definition is independent
of the choice of the charts.

Definition 5.1.3. Let M be a C` Banach manifold. A C1-smooth function γ : (−δ, δ) → M
is called a C1 curve in M . Suppose that γ(0) = x ∈M and let

C1(M)x = {f : M → R : f is C1-smooth at x}.

The tangent vector to the curve γ at t = 0 is a function γ′(0) : C1(M)x → R given by

γ′(0)(f) = (f ◦ γ)′(0), for f ∈ C1(M)x.

A tangent vector at x is the tangent vector at t = 0 of some curve γ : (−δ, δ) → M with
γ(0) = x. The set of all tangent vectors to M at x is denoted by TxM and called the tangent
space of M at x.

Let x ∈ X and ϕ : U ⊂ M → X be a C`-smooth chart of M at x. We easily check that the
map

Φ(x) : TxM → X defined as Φ(x)(v) = (ϕ ◦ γ)′(0), (5.1)

where v is the tangent vector of a C1 curve γ : (−δ, δ)→M with γ(0) = x, defines a bijection
from TxM onto X. By means of these bijection we can transport linear structure and topology
from X to TxM .

The set
TM =

⊔
p∈M

TpM = {(p, v) : p ∈M, v ∈ TpM}

is called the tangent bundle of M and it is endowed with an atlas which provides a structure
of C`−1 Banach manifold.

For more information on these concepts see, for instance, [19] and [23]. Now, with the
idea of tangent space we can extend to Banach manifolds the notion of the differential of
a differentiable function. Let M and N be C` Banach manifolds modeled on X and Y ,
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respectively, and let f : M → N be a C1-smooth function. For every x ∈ M and for every
v ∈ TxM , choose a curve γ : (−δ, δ) → M with γ(0) = x and γ′(0) = v. Then f ◦ γ is a C1

curve in N with f ◦ γ(0) = f(x). The mapping

df(x) : TxM → Tf(x)N given by df(x)(v) = (f ◦ γ)′(0)

is a linear mapping and it does not depend on the choice of γ representing v. The linear
mapping df(x) is called the differential of f at x. Notice that the differential of a chart ϕ at
x is the bijection Φ(x) from TxM onto X defined in the equation (5.1).

We shall denote the differential of a C1-smooth function at a point x between two Banach
manifolds by df(x), while the differential of a C1-smooth function at a point x between two
Banach spaces will be denoted by f ′(x).

Finally, recall that a topological space X is said to be paracompact if every covering
{Uα} of X by open sets has a locally finite refinement, more precisely, there is a covering {Vβ}
satisfying (i) {Vβ} refines {Uα} in the sense that each Vβ ⊂ Uα for some α, and (ii) {Vβ} is
locally finite, that is, each x ∈ X has a neighborhood W which intersects only a finite number
of sets Vβ . From now on, we will work with paracompact Banach manifolds.

5.2 Finsler manifolds

Let us begin by introducing the class of manifolds we will consider in the following chapters.

Definition 5.2.1. Let M be a (paracompact) C` Banach manifold modeled on a Banach space
(X, || · ||). Let us denote by TM the tangent bundle of M and consider a continuous map
|| · ||M : TM → [0,∞). We say that

(F1) (M, || · ||M ) is a C` Finsler manifold in the sense of Palais (see [100], [19] and
[102]) if || · ||M satisfies the following conditions:

(P1) For every x ∈ M , the map || · ||x := || · ||M |TxM : TxM → [0,∞) is a norm on the
tangent space TxM such that for every chart ϕ : U → X with x ∈ U , the norm
v ∈ X 7→ ||dϕ−1(ϕ(x))(v)||x is equivalent to || · || on X.

(P2) For every x0 ∈M , ε > 0 and every chart ϕ : U → X with x0 ∈ U , there is an open
neighborhood W of x0 such that if x ∈W and v ∈ X, then

1

1 + ε
||dϕ−1(ϕ(x0))(v)||x0 ≤ ||dϕ−1(ϕ(x))(v)||x ≤ (1 + ε)||dϕ−1(ϕ(x0))(v)||x0 .

In terms of equivalence of norms, the above inequalities yield to the fact that the
norms ||dϕ−1(ϕ(x))(·)||x and ||dϕ−1(ϕ(x0))(·)||x0 are (1 + ε)-equivalent.

(F2) (M, || · ||M ) is a C` Finsler manifold in the sense of Neeb-Upmeier ([98]; Upmeier
in [110] denotes these manifolds by normed Banach manifolds) if || · ||M satisfies
conditions (P1) and

(NU1) For every x0 ∈ M there exists a chart ϕ : U → X with x0 ∈ U and Kx0 ≥ 1 such
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that for every x ∈ U and every v ∈ TxM ,

1

Kx0

||v||x ≤ ||dϕ(x)(v)|| ≤ Kx0 ||v||x. (5.2)

Equivalently, (M, || · ||M ) is a C` Finsler manifold in the sense of Neeb-Upmeier if
it satisfies conditions (P1) and

(NU2) For every x0 ∈ M there exists a chart ϕ : U → X with x0 ∈ U and a constant
Mx0 ≥ 1 such that for every x ∈ U and every v ∈ X,

1

Mx0

||dϕ−1(ϕ(x0))(v)||x0 ≤ ||dϕ−1(ϕ(x))(v)||x ≤Mx0 ||dϕ−1(ϕ(x0))(v)||x0 . (5.3)

The proof is explained below in Proposition 5.2.3(2).

(F3) (M, || · ||M ) is a C` Finsler manifold in the sense of Neeb-Upmeier weak-
uniform if it satisfies (P1) and there is K ≥ 1 such that

(NU3) For every x0 ∈M , there exists a chart ϕ : U → X with x0 ∈ U satisfying, for every
x ∈ U and v ∈ X,

1

K
||dϕ−1(ϕ(x0))(v)||x0 ≤ ||dϕ−1(ϕ(x))(v)||x ≤ K||dϕ−1(ϕ(x0))(v)||x0 . (5.4)

In this case, we will say that (M, || · ||M ) is K-weak-uniform.

(F4) (M, || · ||M ) is a C` Finsler manifold in the sense of Neeb-Upmeier uniform if
|| · ||M satisfies (P1) and

(NU4) There is S ≥ 1 such that for each x0 ∈ M there exists a chart ϕ : U → X with
x0 ∈ U and

1

S
||v||x ≤ ||dϕ(x)(v)|| ≤ S||v||x, whenever x ∈ U and v ∈ TxM. (5.5)

In this case, we will say that (M, || · ||M ) is S-uniform.

Neeb-Upmeier

Palais Neeb-Upmeier
Uniform

Neeb-Upmeier Weak-uniform

Riemannian

Figure 5.1: Finsler manifolds
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Examples 5.2.2.

• It is clear that Banach spaces are C∞ Finsler manifolds in the sense of Palais and in
the sense of Neeb-Upmeier uniform.

• Every Riemannian manifold is a C∞ Finsler manifold in the sense of Palais (see [100])
and a C∞ Finsler manifold in the sense of Neeb-Upmeier uniform. Recall that a Rie-
mannian manifold (M, g) is a C∞ Banach manifold M modeled on some Hilbert space
H, such that g(p) =< ·, · >p is a scalar product on the tangent space TpM for every
p ∈ M , so that ||x||p := (< x, x >p)

1/2 defines an equivalent norm on TpM for each
p ∈ M , and in such away that the mapping p ∈ M 7→ gp ∈ S2(M) is a C∞ section of
the bundle σ2 : S2 →M of symmetric bilinear forms.

• Every paracompact C1 Banach manifold M admits a continuous map || · ||M : TM →
[0,∞) such that (M, || · ||M ) is a C1 Finsler manifold in the sense of Palais (see [100,
Theorem 2.11]).

• Let (X, || · ||) be a Banach space and (N(X), ρ) the metric space of all norms on X which
are equivalent to the norm || · ||, endowed with the metric defined for p, q ∈ N(X) by

ρ(p, q) = sup{|p(x)− q(x)| : ||x|| < 1}.

Let f : X → (N(X), ρ) be a continuous function. Let us take the C∞ Banach manifold
M = X (then, TM = X ×X) and define the Finsler structure in M

|| · ||M : TM → [0,∞) given by ||(x, v)||M = f(x)(v).

Then (M, || · ||M ) is a C∞ Finsler manifold in the sense of Palais.

• Let X be a Banach space and f : X → R a Ck-smooth function on X. The set M =
{x ∈ X : f(x) = 0} is a Ck Banach manifold whenever f ′(x) 6= 0 for all x ∈M . In this
case the tangent space at x is TxM = ker f ′(x) = {v ∈ X : f ′(x)(v) = 0} (see [19] for
details) and the Finsler structure || · ||M → [0,∞) is given by

||(x, v)||M = ||v||.

Then (M, || · ||M ) is a Ck Finsler manifold in the sense of Palais. In particular, the unit
sphere S(0, 1) of a Banach space (X, || · ||) is a Ck Finsler manifold in the sense of Palais
whenever the norm || · || is Ck-smooth.

Properties 5.2.3.

(1) Clearly, (F1) ⇒ (F3). Also, (F4) ⇒ (F3) ⇒ (F2) (see Figure 5.1).

(2) If (M, || · ||M ) satisfies condition (P1), then conditions (NU1) and (NU2) are equivalent.

Proof. Let us suppose that (M, || · ||M ) satisfies (NU1). For every x0 ∈ M there exists a
chart ϕ : U → M with x0 ∈ U and Kx0 ≥ 1 satisfying inequality (5.2). Thus, let us take
dϕ−1(ϕ(x0))(w) ∈ Tx0M and dϕ−1(ϕ(x))(w) ∈ TxM for every w ∈ X and x ∈ U , and they
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satisfy

1

Kx0

||dϕ−1(ϕ(x0))(w)||x0 ≤||w|| ≤ Kx0 ||dϕ−1(ϕ(x0))(w)||x0 , and

1

Kx0

||dϕ−1(ϕ(x))(w)||x ≤||w|| ≤ Kx0 ||dϕ−1(ϕ(x))(w)||x.

Then, the same chart satisfies the inequality (5.3) for Mx0 = K2
x0
.

Conversely, let us suppose that for x0 ∈M there exists a chart ϕ : U → X with x0 ∈ U and
Mx0 ≥ 1 satisfying inequality (5.3). On the one hand, by hypothesis (P1) there is a constant
Cx0 ≥ 1 such that

1

Cx0

||dϕ−1(ϕ(x0))(w)||x0 ≤ ||w|| ≤ Cx0 ||dϕ−1(ϕ(x0))(w)||x0 for every w ∈ X.

On the other hand, by (NU2), for every x ∈ U and v ∈ TxM , we have dϕ(x)(v) ∈ X and

1

Mx0

||v||x ≤ ||dϕ−1(ϕ(x0))(dϕ(x)(v))||x0 ≤Mx0 ||v||x.

Hence, the chart ϕ : U → X satisfies the inequality (5.2) for Kx0 = Mx0Cx0 .

(3) The concepts of C` Finsler manifold in the sense of Palais and C` Finsler manifold in
the sense of Neeb-Upmeier are equivalent for finite-dimensional manifolds. In fact, for
a finite-dimensional C` Banach manifold M and a map || · ||M : TM → [0,∞), the
following statements are equivalent:

(i) (M, || · ||M ) is a C` Finsler manifold in the sense of Palais.
(ii) The map || · ||M : TM → [0,∞) is continuous and || · ||x := || · ||M |TxM : TxM →

[0,∞) is a norm on the tangent space TxM for every x ∈M .

Proof. Let M be a C` finite-dimensional Banach manifold modeled on X satisfying the con-
dition (ii), x0 ∈ M and (U,ϕ) a chart of M at x0. We can define the following continuous
structure

||| · ||| : U ×X → [0,∞) as |||(x, v)||| = |||v|||x := ||dϕ−1(ϕ(x))(v)||x,

which gives an equivalent norm on X for any x ∈ U .

Let us take ε > 0, A = ||| · |||−1( 1
1+ε , 1 + ε) ⊂ U × X and Sx0 = {v ∈ X : |||v|||x0 = 1}.

Since {x0}×Sx0 ⊂ A and Sx0 is compact, using the Tube Lemma (see for instance [93, Lemma
26.8]) we obtain an open neighborhood of x0, U εx0

⊂ U such that U εx0
× Sx0 ⊂ A. Thus,

1

1 + ε
< |||v|||x < 1 + ε, for every x ∈ U εx0

and v ∈ Sx0 .

Since |||v|||x = ||dϕ−1(ϕ(x))(v)||x and |||v|||x0 = 1, we obtain that

1

1 + ε
||dϕ−1(ϕ(x0))(v)||x0 < ||dϕ−1(ϕ(x))(v)||x < (1 + ε)||dϕ−1(ϕ(x))(v)||x0 ,
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for every x ∈ U εx0
and |||v|||x0 = 1. Hence,

1

1 + ε
||dϕ−1(ϕ(x0))(v)||x0 ≤ ||dϕ−1(ϕ(x))(v)||x ≤ (1 + ε)||dϕ−1(ϕ(x))(v)||x0 ,

for every x ∈ U εx0
and v ∈ X.

(4) Nevertheless, in the infinite-dimensional setting, there are examples of C` Finsler man-
ifolds in the sense of Neeb-Upmeier uniform (so, in the sense of Neeb-Upmeier weak-
uniform) that do not satisfy the Palais condition (P2) (see [41, Example 10]). Also,
there are examples of C` Finsler manifolds in the sense of Neeb-Upmeier that are not
weak-uniform.

Proof. The ideas of this example follow those of [41, Example 10]. Let (X, || · ||) be an infinite-
dimensional Banach space. For each n we consider the map θn : X → [0, 1] defined by

-

6

θn(x) = inf{1, n||x||} =

{
1 if ||x|| ≥ 1

n ,

n||x|| if ||x|| ≤ 1
n .

−
1

n

1

n

1 θn

�
�
�S

S
S

Let us take X ′ = R × X with the norm ||(t, x)||X′ = |t| + ||x|| and consider the Banach
manifold M = X ′. Thus, TM = X ′ ×X ′. We can choose a normalized sequence {v∗n}∞n=1 in
the dual space (X ′)∗ such that the sequence {v∗n}∞n=1 converges to 0 in the ω∗-topology (see
[76] and [99]). For each n we choose vn ∈ X ′ such that

1 ≤ ||vn||X′ ≤ 2 and v∗n(vn) = 1.

We shall denote x = (t, x) ∈ X ′ whenever t ∈ R and x ∈ X. Now, let us define a structure
|| · ||M : TM → [0,∞) by

||((t, x), v)||M := ||v||X′ + |t| sup
n
{θn(x)|v∗n(v)|},

and denote it by ||v||x.
• The map || · ||M is continuous. Indeed, let us fix ((t0, x0), v0) ∈ TM and ε > 0,∣∣||((t, x), v)||M − ||((t0, x0), v0)||M

∣∣ ≤
≤ ||v − v0||X′ +

∣∣|t| sup{θn(x)|v∗n(v)|} − |t0| sup{θn(x0)|v∗n(v0)|}
∣∣

≤ ||v − v0||X′ + |t− t0| sup{θn(x)|v∗n(v)|}+ |t0|
∣∣sup{θn(x)|v∗n(v)|} − sup{θn(x0)|v∗n(v0)|}

∣∣ .
Let us take v ∈ X ′ and t ∈ R such that ||v − v0||X′ < ε/(1 + |t0|) and |t − t0| < ε, so it is
enough to prove that

|t0|
∣∣sup{θn(x)|v∗n(v)|} − sup{θn(x0)|v∗n(v0)|}

∣∣ < ε

for x and v close enough to x0 and v0, respectively.
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Since the sequence {v∗n(v0)}∞n=1 tends to 0, there exists n0 such that |v∗n(v0)| < ε/(1 + |t0|)
for every n ≥ n0. Thus,

|v∗n(v)| ≤ |v∗n(v0)|+ |v∗n(v − v0)| < ε/(1 + |t0|) + ||v∗n||||v − v0||X′ < 2ε/(1 + |t0|),

for every n ≥ n0 and ||v − v0||X′ < ε/(1 + |t0|), and therefore

0 ≤ |t0|
(

sup
n
{θn(x)|v∗n(v)|} − sup

1≤n≤n0

{θn(x)|v∗n(v)|}
)
≤ 2ε.

Using the continuity of the map

(x, v) ∈ X ×X ′ 7→ sup
1≤n≤n0

{θn(x)|v∗n(v)|},

we deduce the continuity of || · ||M at ((t0, x0), v0) and, thus, on M .

• (M, || · ||M ) is a Finsler manifold in the sense of Neeb-Upmeier. Indeed, for every x0 =
(t0, x0) ∈M we take U = BM (x0, 1), Kx0 = 2+ |t0| and the smooth chart id : U → X ′ defined
as id(x) = x. Then its differential is the “identity” mapping, i.e. d id(x)(v) = v for every
x ∈ U and v ∈ TxM . Thus, for x = (t, x) ∈ U and v ∈ TxM , we have that

||v||X′ ≤ ||v||x ≤ (1 + |t|)||v||X′ ≤ (2 + |t0|)||v||X′ = Kx0 ||v||X′ ,

since |t| ≤ 1 + |t0| whenever (t, x) ∈ U .

• However, the manifold (M, || · ||M ) is not a Finsler manifold in the sense of Neeb-Upmeier
uniform. Let us suppose that there is a constant K ≥ 1 such that (M, || · ||M ) is K-uniform
in the sense of Neeb-Upmeier and take 0 ∈ X and t0 ∈ R such that t0/2 > K(K + 1). By
assumption, there is a chart ϕ : U → X ′ with x0 = (t0, 0) ∈ U such that

1

K
||v||x ≤ ||dϕ(x)(v)||X′ ≤ K||v||x

for every x ∈ U and v ∈ TxM = X ′. Since ϕ ◦ id−1 : id(U) ⊂ X ′ → X ′ is C1-smooth, we can
assume that ||d(ϕ ◦ id−1)(id(x))− d(ϕ ◦ id−1)(id(x0))||X′ < 1 for every x ∈ U . Thus, for every
x ∈ U and v ∈ X ′ we obtain that

||dϕ(x)(v)− dϕ(x0)(v)||X′ = ||dϕ(x) ◦ d(id−1)(id(x))(v)− dϕ(x0) ◦ d(id−1)(id(x0))(v)||X′
= ||d(ϕ ◦ id−1)(id(x))(v)− d(ϕ ◦ id−1)(id(x0))(v)||X′ ≤ ||v||X′ ,

since d(id−1)(id(x))(v) = v ∈ TxM and d(id−1)(id(x0))(v) = v ∈ Tx0M .

Then, for every x ∈ U and v ∈ TxM = X ′

||v||x ≤ K||dϕ(x)(v)||X′ ≤ K(||dϕ(x0)(v)||X′ + ||v||X′) (5.6)
≤ K(K||v||x0 + ||v||X′) = K(K + 1)||v||X′ ,

since ||v||x0 = ||v||(t0,0) = ||v||X′ . Now, we can choose n large enough, xn ∈ X with ||xn|| = 1
n

and tn ∈ R such that |tn − t0| < 1 and xn denotes the point (tn, xn) ∈ U . Then θn(xn) = 1
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and

||vn||xn ≥ ||vn||X′ + |tn|θn(xn)|v∗n(vn)| ≥
(

1 +
|tn|
2

)
||vn||X′ ≥

(
1

2
+
|t0|
2

)
||vn||X′ ,

which contradicts the inequality (5.6), because t0/2 > K(K + 1).

(5) Note that if M is a C` Finsler manifold in the sense of Palais, then it is K-weak-uniform
for every K > 1. Also, if M is S-uniform, then M is S2-weak-uniform.

Proof. The first part is obvious. For the second one, notice that the inequality (5.5) is equiv-
alent to the fact that ||dϕ−1(ϕ(x))(·)||x is S-equivalent to || · || on X, for every x ∈ U . Now,
if x ∈ U and v ∈ X, then dϕ−1(ϕ(x))(v) ∈ TxM and dϕ−1(ϕ(x0))(v) ∈ Tx0M , and we apply
the inequality (5.5) to obtain

1

S2
||dϕ−1(ϕ(x0))(v)||x0 ≤

1

S
||v|| ≤ ||dϕ−1(ϕ(x))(v)||x ≤ S||v|| ≤ S2||dϕ−1(ϕ(x0))(v)||x0 .

(6) The condition (NU2) in the definition of C` Finsler manifold in the sense of Neeb-
Upmeier yields the following condition:

(NU2’) For every x0 ∈M , there exists a constant Mx0 ≥ 1 such that for every Rx0 > Mx0

and every chart ψ : V → X with x0 ∈ V , there is an open subset W with x0 ∈W ⊂
V such that for every x ∈W and v ∈ X

1

Rx0

||dψ−1(ψ(x0))(v)||x0 ≤ ||dψ−1(ψ(x))(v)||x ≤ Rx0 ||dψ−1(ψ(x0))(v)||x0 . (5.7)

Thus, the condition (NU3) in the definition of C` Finsler manifold in the sense of Neeb-
Upmeier weak-uniform yields the following condition:

(NU3’) For every R > K, x0 ∈ M and every chart ψ : V → X with x0 ∈ V , there is an
open subset W with x0 ∈W ⊂ V such that

1

R
||dψ−1(ψ(x0))(v)||x0 ≤ ||dψ−1(ψ(x))(v)||x ≤ R||dψ−1(ψ(x0))(v)||x0 , (5.8)

whenever x ∈W and v ∈ X.

Proof. Let us fix x0 ∈M . By the condition (NU2) there exist a constant Mx0 ≥ 1 and a chart
ϕ : U → X of M at x0 such that

1

Mx0

||dϕ−1(ϕ(x0))(v)||x0 ≤ ||dϕ−1(ϕ(x))(v)||x ≤Mx0 ||dϕ−1(ϕ(x0))(v)||x0

for every x ∈ U and v ∈ X. Let us take Rx0 > Mx0 and a chart ψ : V → X with x0 ∈ V .

Let us apply conditions (P1) and (NU3) to ϕ and (P1) to ψ to obtain L1, L2 ≥ 1 such that

||dϕ−1(ϕ(x))(v)||x ≤ L1||v|| and ||v|| ≤ L2||dψ−1(ψ(x0))(v)||x0 (5.9)



88 5.2. Finsler manifolds

for every x ∈ U ∩ V and v ∈ X. Notice that L1 and L2 depend on x0.

Let us take ε > 0 such that Mx0/(1 − ε) ≤ Rx0 . Since ϕ ◦ ψ−1 is C`-smooth and ψ is
continuous, there is W ⊂ U ∩ V a neighborhood of x0 such that

||(ϕ ◦ ψ−1)′(ψ(x0))− (ϕ ◦ ψ−1)′(ψ(x))|| < ε

Mx0L1L2
(5.10)

for every x ∈ W . Thus, for x ∈ W and v ∈ X we denote w = dϕ(x0)(dψ−1(ψ(x0))(v)) ∈ X,
and using the equations (NU2), (5.9) and (5.10), we obtain

1

Mx0

||dψ−1(ψ(x0))(v)||x0 =
1

Mx0

||dϕ−1(ϕ(x0))(w)||x0 ≤ ||dϕ−1(ϕ(x))(w)||x

≤||dϕ−1(ϕ(x))(dϕ(x)(dψ−1(ψ(x))(v)))||x
+ ||dϕ−1(ϕ(x))(dϕ(x0)(dψ−1(ψ(x0))(v))− dϕ(x)(dψ−1(ψ(x))(v)))||x

≤||dψ−1(ψ(x))(v)||x + L1||((ϕ ◦ ψ−1)′(ψ(x0))− (ϕ ◦ ψ−1)′(ψ(x)))(v)||

≤||dψ−1(ψ(x))(v)||x +
ε

Mx0L2
||v|| ≤ ||dψ−1(ψ(x))(v)||x +

ε

Mx0

||dψ−1(ψ(x0))(v)||x0 .

Thus

1

Rx0

||dψ−1(ψ(x0))(v)||x0 ≤
1− ε
Mx0

||dψ−1(ψ(x0))(v)||x0 ≤ ||dψ−1(ψ(x))(v)||x

for every x ∈W and v ∈ X. The other inequality can be proved in the same way.

(NU3’) follows from the (NU2’) and the fact that if M is Neeb-Upmeier K-weak-uniform,
then Mx0 = K for every x0 ∈M .

It is worth mentioning that we do not know whether there exist C` Finsler manifolds in the
sense of Palais which are not C` Finsler manifolds in the sense of Neeb-Upmeier uniform. In
fact, we do not know whether the class of C` Finsler manifolds in the sense of Neeb-Upmeier
uniform coincides with the class of C` Finsler manifolds in the sense of Neeb-Upmeier weak-
uniform.

Let M be a C` Finsler manifold and f : M → R a differentiable function at p ∈ M . The
norm of df(p) ∈ TpM∗ is given by

||df(p)||p = sup{|df(p)(v)| : v ∈ TpM, ||v||p ≤ 1},

where TpM∗ is the dual space of TpM . Let us consider a differentiable function f : M → N
between Finsler manifoldsM and N . The norm of the derivative at the point p ∈M is defined
as

||df(p)||p = sup{||df(p)(v)||f(p) : v ∈ TpM, ||v||p ≤ 1}
= sup{ξ(df(p)(v)) : ξ ∈ Tf(p)N

∗, v ∈ TpM and ||v||p = 1 = ||ξ||∗f(p)},

where || · ||∗f(p) is the dual norm of || · ||f(p).

Finally, in any Finsler manifold there is a metric consistent with its topology, which is
defined as follows: If (M, || · ||M ) is a Finsler manifold in the sense of Neeb-Upmeier, the
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length of a piecewise C1-smooth path c : [a, b]→M is defined as

`(c) :=

∫ b

a
||c′(t)||c(t) dt.

Besides, if M is connected, then it is connected by piecewise C1-smooth paths, and the asso-
ciated Finsler metric dM on M is defined as

dM (p, q) = inf{`(c) : c is a piecewise C1-smooth path connecting p to q}.

The Finsler metric is consistent with the topology given in M (see [100] or [110, Proposition
12.22]). The open ball of center p ∈ M and radius r > 0 is denoted by BM (p, r) := {q ∈ M :
dM (p, q) < r}. The Lipschitz constant Lip(f) of a Lipschitz function f : M → N , where M
and N are Finsler manifolds, is defined as

Lip(f) = sup{dN (f(x), f(y))

dM (x, y)
: x, y ∈M, x 6= y}.

Throughout we shall always assume that all Finsler manifolds are connected, thus they are
metric spaces. Otherwise we may consider its connected components.

5.3 Mean value inequalities

In the following proposition we obtain some “mean value" inequalities. The ideas of the proof
follow those of the Riemannian case (see [5]).

Proposition 5.3.1. (Mean value inequalities). Let M and N be C1 Finsler manifolds in the
sense of Neeb-Upmeier, and let f : M → N be a C1-smooth mapping.

(i) If sup{||df(x)||x : x ∈ M} < ∞, then f is Lipschitz and Lip(f) ≤ sup{||df(x)||x : x ∈
M}.

(ii) If f is Lipschitz and the manifold N is P -weak-uniform, then sup{||df(x)||x : x ∈M} ≤
P Lip(f).

(ii’) If f is Lipschitz and the manifold N is P -uniform, then sup{||df(x)||x : x ∈ M} ≤
P 2 Lip(f).

(iii) Thus, if f is Lipschitz and the manifold N is Palais, then sup{||df(x)||x : x ∈ M} =
Lip(f).

Proof. (i) Let us consider p, q ∈ M with dM (p, q) <∞, and ε > 0. Then there is a piecewise
C1-smooth path γ : [0, T ] → M joining p and q with `(γ) ≤ dM (p, q) + ε/C, where C =
sup{||df(x)||x : x ∈M} (notice that it can be assumed that C > 0, otherwise the assertion is
trivial). In order to simplify the proof, let us assume that γ is C1-smooth (the general case
follows straightforward). Now, we define β : [0, T ] → N as β(t) = f(γ(t)). Then, β joins the
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points f(p) and f(q), and

dN (f(p), f(q)) ≤ `(β) ≤
∫ T

0
||df(γ(t))(γ′(t))||β(t)dt ≤

∫ T

0
||df(γ(t))||γ(t)||γ′(t)||γ(t) dt

≤ C

∫ T

0
||γ′(t)||γ(t) dt ≤ CdM (p, q) + ε.

Thus, dN (f(p), f(q)) ≤ CdM (p, q) + ε for every ε > 0. Then, dN (f(p), f(q)) ≤ CdM (p, q) and
Lip(f) ≤ C.

(ii) First, let us consider the case N = R. Let us denote by L := Lip(f). Let us take
x0 ∈ M and v ∈ Tx0M with ||v||x0 = 1 and choose a C1-smooth curve γ : (−δ, δ) → M
with γ(0) = x0 and γ′(0) = v. Then the function f ◦ γ : (−δ, δ) → R is C1-smooth with
f ◦ γ(0) = f(x0) and df(x0)(v) = (f ◦ γ)′(0). Since the map t 7→ ||γ′(t)||γ(t) is continuous on
(−δ, δ), for every ε > 0 there exists r > 0 with r < δ such that∣∣||γ′(t)||γ(t) − ||γ′(0)||γ(0)

∣∣ < ε for every t ∈ [−r, r].

Hence,

|df(x0)(v)| = |(f ◦ γ)′(0)| =
∣∣∣∣limt→0

(f ◦ γ)(t)− (f ◦ γ)(0)

t

∣∣∣∣ ≤ Lip(f) lim sup
t→0

dM (γ(t), γ(0))

|t|
≤ Lip(f) Lip(γ|[−r,r]) ≤ Lip(f) sup

{
||γ′(s)||γ(s) : s ∈ [−r, r]

}
≤ Lip(f)(||γ′(0)||γ(0) + ε) = Lip(f)(||v||x0 + ε) ≤ (1 + ε) Lip(f).

Since this conclusion holds for every x0 ∈M , v ∈ Tx0M with ||v||x0 = 1 and ε > 0, we deduce
that

sup
x∈M
||df(x)||x ≤ L.

Now, let us consider the general case, i.e. f : M → N where N is a C1 Finsler manifold in
the sense of Neeb-Upmeier P -weak-uniform. If there is a point x0 ∈M such that ||df(x0)||x0 >
PL, then there are ξ ∈ Tf(x0)N

∗ and v ∈ Tx0M such that

||v||x0 = ||ξ||∗f(x0) = 1 and |ξ(df(x0)(v))| > PL.

Let us take a chart of N at f(x0) satisfying inequality (5.4) with constant P , which we shall
denote by ψ : V → Y , where N is modeled on the Banach space Y . Also, let us take r > 0
such that f(x0) ∈ BN (f(x0), r/4) ⊂ BN (f(x0), r) ⊂ V and define the function

g : f−1(BN (f(x0), r/4))→ R, as g(x) = ξ ◦ dψ−1(ψ(f(x0)))(ψ(f(x))).

Then, on the one hand,

|dg(x0)(v)| = |ξ ◦ dψ−1(ψ(f(x0)))(dψ(f(x0))df(x0)(v))| = |ξ(df(x0)(v))| > PL. (5.11)

On the other hand, let us check that the function g is PL-Lipschitz with the distance dM .
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Indeed, first let us show that ψ is P -Lipschitz with the norm

||| · ||| := ||dψ−1(ψ(f(x0)))(·)||f(x0) on Y.

Since ψ : V → Y satisfies inequality (5.4) with constant P , we have for every z ∈ V and
v ∈ TzN ,

|||dψ(z)(v)||| = ||dψ−1(ψ(f(x0)))(dψ(z)(v))||f(x0) ≤ P ||dψ−1(ψ(z))(dψ(z)(v))||z = P ||v||z.

Hence, |||dψ(z)||| := sup{|||dψ(z)(v)||| : v ∈ TzN and ||v||z ≤ 1} ≤ P for every z ∈ V , and
thus sup{|||dψ(z)||| : z ∈ V } ≤ P . Also, let us check that, for every z, z′ ∈ BN (f(x0), r/4),

dN (z, z′) = inf{`(γ) : γ is a piecewise C1-smooth path connecting z and z′ and γ ⊂ V }.

Indeed, if there are z, z′ ∈ BN (f(x0), r/4) with

dN (z, z′) = inf{`(γ) : γ is a piecewise C1-smooth path connecting z and z′}
< inf{`(γ) : γ is a piecewise C1-smooth path connecting z and z′ with γ ⊂ V },

then there is a path γ : [0, 1] → N such that γ(0) = z, γ(1) = z′, `(γ) < dN (z, z′) + r/4 and
γ(t) /∈ V for some t ∈ [0, 1]. Then dN (f(x0), γ(t)) ≥ r and dN (z, γ(t)) ≤ `(γ) ≤ dN (z, z′)+r/4.
This yields,

r ≤ dN (f(x0), γ(t)) ≤ dN (f(x0), z) + dN (z, γ(t)) ≤ dN (f(x0), z) + dN (z, z′) + r/4 < r,

which is a contradiction. Now, we can follow the proof of part (i) to deduce that ψ is P -
Lipschitz on BN (f(x0), r/4) with the norm ||| · ||| = ||dψ−1(ψ(f(x0)))(·)||f(x0) on Y . Finally,
for every x, y ∈ f−1(B(f(x0), r/4)), we have

|g(x)− g(y)| =|ξ ◦ dψ−1(ψ(f(x0)))(ψ ◦ f(x)− ψ ◦ f(y))|
≤||dψ−1(ψ(f(x0)))(ψ ◦ f(x)− ψ ◦ f(y))||f(x0)

=|||ψ ◦ f(x)− ψ ◦ f(y)||| ≤ PdN (f(x), f(y)) ≤ PLdM (x, y).

Then g : f−1(B(f(x0), r/4)) → R is PL-Lipschitz, and by the real case we have that
sup{||dg(x)||x : x ∈ f−1(B(f(x0), r/4))} ≤ PL, which contradicts (5.11).

(ii’) and (iii) follow from (ii) and Properties 5.2.3(5).

The following lemma provides a local bi-Lipschitz behavior of the charts of a C1 Finsler
manifold.

Lemma 5.3.2. Let us consider a C1 Finsler manifold M in the sense of Neeb-Upmeier.

(1) For every x0 ∈ M there exists a constant Kx0 ≥ 1 such that for every chart (U,ϕ)
with x0 ∈ U satisfying inequality (5.3), there exists an open neighborhood V ⊂ U of x0

satisfying

1

Kx0

dM (p, q) ≤ |||ϕ(p)− ϕ(q)||| ≤ Kx0dM (p, q), for every p, q ∈ V, (5.12)
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where ||| · ||| is the (equivalent) norm ||dϕ−1(ϕ(x0))(·)||x0 defined on X.

(2) If M is K-weak-uniform, then for every x0 ∈ M and every chart (U,ϕ) with x0 ∈ U
satisfying inequality (5.4), there exists an open neighborhood V ⊂ U of x0 satisfying

1

K
dM (p, q) ≤ |||ϕ(p)− ϕ(q)||| ≤ KdM (p, q), for every p, q ∈ V, (5.13)

where ||| · ||| is the (equivalent) norm ||dϕ−1(ϕ(x0))(·)||x0 defined on X.

(3) If the manifold M is K-uniform, then for every x0 ∈M and every chart (U,ϕ) with x0 ∈
U satisfying condition (5.5), there exists an open neighborhood V ⊂ U of x0 satisfying

1

K
dM (p, q) ≤ ||ϕ(p)− ϕ(q)|| ≤ KdM (p, q), for every p, q ∈ V. (5.14)

Proof. Let us assume the hypothesis in (1) holds. By Property 5.2.3(6) there exists a constant
Kx0 ≥ 1 such that for every chart (W,ϕ) with x0 ∈ W , there is an open subset U with
x0 ∈ U ⊂W such that ϕ satisfies inequality (5.3) in U .

The arguments given in the proof of Proposition 5.3.1 yield the existence of r > 0 with
BM (x0, r/4) ⊂ BM (x0, r) ⊂ U ⊂M such that if p, q ∈ BM (x0, r/4), then

dM (p, q) = inf{`(γ) : γ is a piecewise C1-smooth path connecting p and q with γ ⊂ U}.

Let us consider p, q ∈ BM (x0, r/4), ε > 0 and a piecewise C1-smooth path γ : [0, T ] → U
joining p and q with `(γ) ≤ dM (p, q) + ε/Kx0 . Let us define β : [0, T ]→ X as β(t) = ϕ(γ(t)).
Then, β joins the points ϕ(p) and ϕ(q), and from inequality (5.3) we obtain

|||ϕ(p)− ϕ(q)||| ≤ `(β) ≤
∫ T

0
|||dϕ(γ(t))(γ′(t))||| dt ≤Kx0

∫ T

0
||γ′(t)||γ(t)dt

=Kx0`(γ) ≤ Kx0dM (p, q) + ε.

Now, let us consider ϕ−1 and s > 0 such that B(ϕ(x0), s) ⊂ ϕ(BM (x0, r/4)). For x, y ∈
B(ϕ(x0), s), let us define the path γ : [0, 1]→M as γ(t) := ϕ−1(ty+ (1− t)x) ∈ BM (x0, r/4).
Then,

dM (ϕ−1(x), ϕ−1(y)) ≤ `(γ) =

∫ 1

0
||γ′(t)||γ(t)dt =

∫ 1

0
||dϕ−1(ϕ(γ(t)))(y − x)||γ(t)dt

≤
∫ 1

0
Kx0 ||dϕ−1(ϕ(x0))(y − x)||x0 = Kx0 |||x− y|||.

Finally, let us define the open set V := ϕ−1(B(ϕ(x0), s)).

(2) follows from (1) and the fact that ifM is Neeb-UpmeierK-weak-uniform, thenKx0 = K
for every x0 ∈M . The proof under the hypothesis given in (3) follows along the same lines.

Finally, let us see that every C` Finsler manifold in the sense of Neeb-Upmeier K-weak-
uniform admits an equivalent structure such that with this structureM is a C` Finsler manifold
in the sense of Palais and the associated metric is K-equivalent to the original one.
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Proposition 5.3.3. If (M, || · ||M ) is a C` Finsler manifold in the sense of Neeb-Upmeier
K-weak-uniform. Then there exists a continuous map ||| · |||M : TM → [0,∞) satisfying (P1)
and (P2), i.e. (M, ||| · |||M ) is a C` Finsler manifold in the sense of Palais. Moreover, for
every x ∈M and v ∈ TxM

1

K
|||(x, v)|||M ≤ ||(x, v)||M ≤ K|||(x, v)|||M , and thus (5.15)

1

K
d|||·|||M (p, q) ≤ d||·||M (p, q) ≤ Kd|||·|||M (p, q), for every p, q ∈M ,

where d|||·|||M and d||·||M are the associated distances to (M, |||·|||M ) and (M, ||·||M ), respectively.

Proof. Let {(Uα, ϕα)}α∈∆ be a family of charts of M satisfying inequality (5.4) and {Uα}α∈∆

a covering of M . Let us take xα ∈ Uα for any α ∈ ∆, and let {θα}α∈∆ be a partition of unity
of M subordinated to {Uα}α∈∆. The map ||| · |||M : TM → [0,∞) given by

|||(x, v)|||M = |||v|||x =
∑
α∈∆

θα(x)||dϕ−1
α (ϕα(xα)) ◦ dϕα(x)(v)||xα

for every x ∈ M and v ∈ TxM , satisfies (P1) and (P2). Indeed, for every x ∈ M there is
an open neighborhood U of x and a finite number of indexes α1, . . . , αn ∈ ∆ such that θα
vanishes at U for all α 6∈ {α1, . . . , αn}. So, if ϕ : V → X is a chart of M with x ∈ V ⊂ U , the
map

v ∈ X 7→ |||dϕ−1(ϕ(x))(v)|||x =
n∑
j=1

θαj (x)||dϕ−1
αj (ϕαj (xαj )) ◦ dϕαj (x) ◦ dϕ−1(ϕ(x))(v)||xαj

=

n∑
j=1

θαj (x)||dϕ−1
αj (ϕαj (xαj ))((ϕαj ◦ ϕ−1)′(ϕ(x))(v))||xαj

is an equivalent norm to || · || on X. Property (P2) follows from the continuity of (ϕαj ◦ϕ−1)′

and θαj . Condition (5.15) follow from inequality (5.4).
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Chapter 6

Smooth approximation and smooth
extension on Finsler manifolds

In this chapter we address some problems discussed in Chapter 3 and Chapter 4 in the context
of manifolds, particularly, whether every Lipschitz function f : M → R defined on a non-
separable Riemannian manifold can be uniformly approximated by a Lipschitz, C∞-smooth
function g : M → R. The study of this problem was motivated by the work in [6], where this
result of approximation is stated for separable Riemannian manifolds. The question whether
this result holds for every Riemannian manifold is posed in [5], [6] and [42]. A positive answer
to this question provides nice applications such as: (i) the uniformly bumpable character of
every Riemannian manifold, (ii) Deville-Godefroy-Zizler smooth variational principle holds for
every complete Riemannian manifold [5] and (iii) the infinite-dimensional version of the Myers-
Nakai theorem given in [42] holds for every complete Riemannian manifold (either separable
or non-separable) as well, which will be seen in the next chapter.

We study the smooth and Lipschitz approximation problem in the context of C` Finsler
manifolds. Our aim is to study sufficient conditions on a C` Finsler manifold M so that
the above result on uniform approximation of Lipschitz functions defined on M holds. We
consider the setting of C` Finsler manifolds so that we can obtain a unified approach to this
problem for both Riemannian and non-Riemannian manifolds, such as smooth submanifolds
of a Banach space X, that is a natural continuation of the study done in infinite-dimensional
Banach spaces.

In Section 6.1, we prove that every real-valued and Lipschitz function defined on a C`

Finsler manifold M (in the sense of Neeb-Upmeier) weak-uniform modeled on a Banach space
X can be uniformly approximated by a Ck-smooth and Lipschitz function provided that the
Banach space X satisfies a similar approximation property, which we have denoted by (Ak)
in Chapter 3, in a uniform way: for every Lipschitz function f : X → R and every ε > 0,
there is a Ck-smooth and Lipschitz function g such that |f(x) − g(x)| < ε for every x ∈ X
and Lip(g) ≤ C0 Lip(f), where the constant C0 only depends on the Banach space X and C0

does not depend on a certain class of equivalent norms considered in X. This class of norms
is closely related to the set of norms defined in the tangent spaces to M . We prove that, for
` = 1, the above assertion holds whenever the manifold M is modeled on a Banach space X
with separable dual orM is a (separable or non-separable) Riemannian manifold. In the proof
of this assertion, we use the results given in the previous chapter as well as the existence of
smooth and Lipschitz partitions of unity subordinated to suitable open covers of the manifold
M and the ideas of the separable Riemannian case [6]. A similar result is provided in the
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case that M is a C` Finsler manifold (in the sense of Neeb-Upmeier) uniform. It is worth
mentioning that, in this case, the constant C0 does not required to be independent of a certain
class of norms considered in X. We also obtain some results of uniformly approximation of
Lipschitz mappings by Lipschitz and smooth mappings, when the target space is a Banach
space.

In Section 6.2, under the above assumptions on the manifold M (in particular, if M is a
Riemannian manifold), it is deduced that M is uniformly bumpable (this concept was defined
in [5]), which will be used to obtain some corollaries in Chapter 7. Furthermore, we follow
the ideas of [35], [10] and [56] to establish a characterization of the class of separable C`

Finsler manifolds M in the sense of Neeb-Upmeier which are Ck-smooth uniformly bumpable
(see Definition 6.2.1) as those having the property that every real-valued, Lipschitz function f
defined on M can be uniformly approximated by a Ck-smooth and Lipschitz function g such
that Lip(g) ≤ C Lip(f) and C only depends on M .

In Section 6.3, we use Theorem 4.2.1 to get smooth extensions of mappings defined on
closed subsets of Banach manifolds. In particular, we show that if M is a paracompact C1

Banach manifold modeled on a Banach space X and Z is a Banach space such that the pair
of Banach spaces (X,Z) satisfies property (*) and the linear extension property (see Chapter
4) then for every closed submanifold P of M and every C1-smooth mapping f : P → Z, there
is a C1-smooth extension of f to the whole manifold M .

In Section 6.4 the following extension result is established on a C1 Finsler manifold M in
the sense of Neeb-Upmeier weak-uniform modeled on a Banach space X: for every C1-smooth
and real-valued function f defined on a closed submanifold P of M , such that f is Lipschitz
with respect to the metric of the manifold M , there is a C1-smooth and Lipschitz extension
of f defined on M , provided the Banach space X satisfies the approximation property (*) and
C0 does not depend on a certain class of equivalent norms considered in X. A similar result is
provided in the case that M is a C` Finsler manifold (in the sense of Neeb-Upmeier) uniform.
It is worth mentioning that, in this case, the constant C0 does not required to be independent
of a certain class of norms considered in X. The proof relies on a related result established in
Chapter 4. We also obtain some results of smooth and Lipschitz extension of mappings when
the target space is a Banach space.

6.1 Smooth approximation of mappings on manifolds

Before starting the main result of this section, let us recall that a Banach space (X, || · ||)
satisfies property (Ak) (see Chapter 3) if there is a constant C0 ≥ 1, which only depends on
the space (X, || · ||), such that for any Lipschitz function f : X → R and any ε > 0 there is a
Lipschitz, Ck-smooth function g : X → R such that

|f(x)− g(x)| < ε for all x ∈ X, and Lip(g) ≤ C0 Lip(f).

Recall that if a Banach space X satisfies property (Ak), then for every Lipschitz function
f : A→ R (where A is a subset of X) and every ε > 0 there is a Lipschitz, Ck-smooth function
g : X → R such that

|f(x)− g(x)| < ε for all x ∈ A, and Lip(g) ≤ C0 Lip(f).
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Indeed, there exists a Lipschitz extension F : X → R of f such that Lip(F ) = Lip(f) (for
instance x 7→ infy∈A{f(y) + Lip(f)||x− y||}), and applying property (Ak) to F the assertion
is obtained.

In this chapter, the Banach spaces satisfying property (Ak) with constant C0 independent
of the equivalent norm considered on X play an important role. For this reason, let us give
some examples of Banach spaces satisfying this property.

Remark 6.1.1.

1. Every finite-dimensional Banach space X admits property (A∞). Since the functions
g(·) are constructed by means of integral convolutions, it can be easily checked that the
constant C0 can be taken as 1 for every equivalent norm || · || considered in X.

2. Every Hilbert space H admits property (A1) (see [85]). Also, from the construction of
the functions g(·) with inf-sup-convolution formulas, it can be easily checked that the
constant C0 can be taken as 1 for every Hilbertian norm || · || considered in H.

3. Every separable Banach space with a Ck-smooth and Lipschitz bump function satisfies
property (Ak) (see [10], [35], [56] and [7]). Moreover, the constant C0 can be obtained
to be independent of the equivalent norm considered in X, in fact, C0 can be chosen less
than 4 + r for any r > 0 (see Theorem 3.1.1).

In the following, we will extend to a certain class of C` Finsler manifolds, the result on
approximation of Lipschitz functions by smooth and Lipschitz functions defined on separable
Riemannian manifolds given in [6]. This result is new, even in the case when M is a non-
separable Riemannian manifold.

Theorem 6.1.2. Let M be a C` Finsler manifold in the sense of Neeb-Upmeier K-weak-
uniform modeled on a Banach space X which admits property (Ak) and the constant C0 does
not depend on the (equivalent) norm. Then, for every Lipschitz function f : M → R, any
r > 0 and any continuous function ε : M → (0,∞) there is a Lipschitz, Cm-smooth function
g : M → R (m := min{`, k}) such that

|g(p)− f(p)| < ε(p) and ||dg(p)||p ≤ C1 Lip(f) for every p ∈M,

and therefore, Lip(g) ≤ C1 Lip(f), where C1 := (1 + r)C0K
2.

Proof. We can assume that L := Lip(f) > 0 (otherwise the assertion is trivial) and 0 < ε(p) <
rC0K

2L, for all p ∈ M . For every p ∈ M , there is δp > 0 such that ε(p)/3 < ε(q) for every
q ∈ BM (p, 3δp) and a C`-smooth chart ϕp : BM (p, 3δp) → X with ϕp(p) = 0, satisfying (P1)
of Definition 5.2.1, inequality (5.4) and inequality (5.13) for all points of the ball BM (p, 3δp).
In particular, ϕp and ϕ−1

p are Lipschitz with the (equivalent) norm ||dϕ−1
p (0)(·)||p considered

on X, Lip(ϕp) ≤ K and Lip(ϕ−1
p ) ≤ K.

Let us consider an open cover {BM (pγ , δγ)}γ∈Γ of M , where δγ := δpγ for some set of
indexes Γ. Also, let us write ϕγ := ϕpγ , εγ := ε(pγ) and ||| · |||γ := ||dϕ−1

γ (0)(·)||pγ . Let us
define, for every γ ∈ Γ,

fγ : ϕγ(BM (pγ , 3δγ)) ⊂ X → R as fγ(x) := f(ϕ−1
γ (x)),
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which isKL-Lipschitz with the norm |||·|||γ onX. By Lemma 3.2.6, there are open refinements
{Vn,γ}n∈N,γ∈Γ and {Wn,γ}n∈N,γ∈Γ of {BM (pγ , 2δγ)}γ∈Γ satisfying properties (i)−(iv) of Lemma
3.2.6.

Now, we need the following lemma related to the existence of smooth and Lipschitz parti-
tions of unity on a manifold M . Firstly, let us recall the definition of a smooth and Lipschitz
partitions of unity on a C` Finsler manifold.

Definition 6.1.3. A collection of real-valued, Ck-smooth and Lipschitz functions {ψi}i∈I de-
fined on a C` Finsler manifold M is a Ck-smooth and Lipschitz partition of unity subordinated
to the open cover U = {Ur}r∈Ω of M whether (1) ψi ≥ 0 on M for every i ∈ I, (2) the family
{supp(ψi)}i∈I is locally finite, where supp(ψi) = {x ∈M : ψi(x) 6= 0}, i.e. for every x ∈ M
there is an open neighborhood U of x and a finite subset J ⊂ I such that supp(ψi) ∩ U = ∅
for every i ∈ I \ J , (3) for every i ∈ I there is r ∈ Ω such that supp(ψi) ⊂ Ur, and (4)∑

i∈I ψi(x) = 1 for every x ∈M .

Lemma 6.1.4. Under the assumptions of Theorem 6.1.2, there is a Cm-smooth partition
of unity {ψn,γ}n∈N,γ∈Γ of M such that supp(ψn,γ) ⊂ Wn,γ and ψn,γ is Lipschitz for every
n ∈ N, γ ∈ Γ. In fact, ||dψn,γ(p)||p ≤ n15C0K

22n+1 for all p ∈ M , and thus Lip(ψn,γ) ≤
n15C0K

22n+1 for all n ∈ N and γ ∈ Γ.

Let us assume that Lemma 6.1.4 has been proved. Let us denote by

Ln,γ := max {1, sup{||dψn,γ(p)||p : p ∈M}} .

Since X admits property (Ak) and the constant C0 does not depend on the equivalent norm
considered on X, there is a Ck-smooth, Lipschitz function gn,γ : X → R such that

|gn,γ(x)− fγ(x)| ≤ εγ/3

2n+2Ln,γ
for all x ∈ ϕγ(BM (pγ , 3δγ))

and Lip(gn,γ) ≤ C0 Lip(fγ) ≤ C0KL with the norm ||| · |||γ on X. Let us define the function
g : M → R as

g(p) :=
∑

n∈N,γ∈Γ

ψn,γ(p)gn,γ(ϕγ(p)), p ∈M.

Now, if p 6∈ BM (pγ , 2δγ), then ψn,γ(p) = 0 and ψn,γ(p)gn,γ(ϕγ(p)) = 0. Since supp(ψn,γ) ⊂
Wn,γ ⊂ BM (pγ , 2δγ), it is clear that p 7→ ψn,γ(p)gn,γ(ϕγ(p)) is Cm-smooth on M , for each
n ∈ N and γ ∈ Γ. Moreover, {supp(ψn,γ)}n∈N,γ∈Γ is locally finite, and thus g is well defined
and Cm-smooth on M .

Note that, if ψn,γ(p) 6= 0, then p ∈ supp(ψn,γ) ⊂ BM (pγ , 2δγ) and thus f(p) = fγ(ϕγ(p)).
Hence,

|g(p)− f(p)|

= |
∑

n∈N,γ∈Γ

ψn,γ(p)gn,γ(ϕγ(p))− f(p)| = |
∑

n∈N,γ∈Γ

ψn,γ(p)(gn,γ(ϕγ(p))− f(p))|
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= |
∑

{(n,γ):ψn,γ(p)6=0}

ψn,γ(p)(gn,γ(ϕγ(p))− fγ(ϕγ(p)))|

≤
∑

{(n,γ):ψn,γ(p) 6=0}

ψn,γ(p)
εγ/3

2n+2Ln,γ
<

∑
{(n,γ):ψn,γ(p)6=0}

ψn,γ(p) ε(p) = ε(p).

Let us check that g is 2C0K
2L-Lipschitz on M . Recall that

• Since
∑

N×Γ ψn,γ(p) = 1 for all p ∈M , we have that
∑

N×Γ dψn,γ(p) = 0 for all p ∈M .

• Property (iv) of the open refinement {Wn,γ}n∈N,γ∈Γ implies that for every p ∈ M and
n ∈ N, there is at most one γ ∈ Γ, which we shall denote by γp(n), such that p ∈
supp(ψn,γ). Let us define the finite set Fp := {(n, γ) ∈ N × Γ : p ∈ supp(ψn,γ)} =
{(n, γp(n)) ∈ N× Γ : p ∈ supp(ψn,γp(n))}.

• If we consider the norm ||| · |||γ on X, then Lip(gn,γ) ≤ C0KL and thus |||g′n,γ(x)||| :=
sup{|g′n,γ(x)(v)| : |||v|||γ ≤ 1} ≤ C0KL for all x ∈ X.

• Also, |||dϕγ(p)||| := sup{|||dϕγ(p)(v)|||γ : ||v||p ≤ 1} ≤ K whenever p ∈ B(pγ , 3δγ).

Therefore, we obtain that ||d(gn,γ ◦ ϕγ)(p)||p ≤ C0K
2L whenever p ∈ B(pγ , 3δγ) and

||dg(p)||p = ||
∑

(n,γ)∈Fp

gn,γ(ϕγ(p))dψn,γ(p) +
∑

(n,γ)∈Fp

ψn,γ(p)d(gn,γ ◦ ϕγ)(p)||p

= ||
∑

(n,γ)∈Fp

(gn,γ(ϕγ(p))− f(p))dψn,γ(p) +
∑

(n,γ)∈Fp

ψn,γ(p)d(gn,γ ◦ ϕγ)(p)||p

≤
∑

(n,γ)∈Fp

|gn,γ(ϕγ(p))− fγ(ϕγ(p))| ||dψn,γ(p)||p +
∑

(n,γ)∈Fp

ψn,γ(p)C0K
2L

≤
∑

{n: (n,γp(n))∈Fp}

ε(p)

2n+2Ln,γp(n)
Ln,γp(n) + C0K

2L ≤ ε(p)/4 + C0K
2L < (1 + r)C0K

2L.

Finally, by Proposition 5.3.1(i), Lip(g) ≤ sup{||dg(p)||p : p ∈ M} ≤ (1 + r)C0K
2L which

finishes the proof of Theorem 6.1.2.

Now, let us prove Lemma 6.1.4. Let us consider the two refinements {Vn,γ}n∈N,γ∈Γ and
{Wn,γ}n∈N,γ∈Γ of {BM (pγ , 2δγ)}γ∈Γ satisfying the properties (i)− (iv) of Lemma 3.2.6. Recall
that distM (Vn,γ ,M \Wn,γ) ≥ 1/2n+1 and distM (Wn,γ ,Wn,γ′) ≥ 1/2n+1 for every γ, γ′ ∈ Γ,
γ 6= γ′, and every n ∈ N. Also, recall that ϕγ : BM (pγ , 3δγ) → ϕγ(BM (pγ , 3δγ)) := B̃γ ⊂ X
satisfies

1

K
dM (p, q) ≤ |||ϕγ(p)− ϕγ(q)|||γ ≤ KdM (p, q), for p, q ∈ BM (pγ , 3δγ).

Let us denote Ṽn,γ := ϕγ(Vn,γ) and W̃n,γ := ϕγ(Wn,γ). Clearly,

Ṽn,γ ⊂ W̃n,γ ⊂ ϕγ(BM (pγ , 3δγ)) = B̃γ ⊂ X.
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Also, for every x ∈ Ṽn,γ ⊂ X and y ∈ B̃γ \W̃n,γ ⊂ X, there are p ∈ Vn,γ and q ∈ BM (pγ , 3δγ)\
Wn,γ such that ϕγ(p) = x and ϕγ(q) = y. Thus,

|||x− y|||γ = |||ϕγ(p)− ϕγ(q)|||γ ≥
1

K
dM (p, q) ≥ 1

K2n+1
.

Let us define distγ(A,B) := inf{|||x − y|||γ : x ∈ A and y ∈ B} for any pair of subsets
A,B ⊂ X. Then, distγ(Ṽn,γ , B̃γ \ W̃n,γ) ≥ 1

K2n+1 .

Let us define φn,γ : X → R as φn,γ(x) := distγ(x, Ṽn,γ). Then, φn,γ(x) = 0 for every
x ∈ Ṽn,γ , and φn,γ(x) ≥ 1

K2n+1 whenever x ∈ B̃γ \ W̃n,γ . Let us take a Lipschitz function
θn : R→ [0, 1] such that

-

6

θn(t) =

{
1 if t < 1

4K2n+1 ,

0 if t > 1
2K2n+1 ,

1

4K2n+1

1

2K2n+1

1

θn
. ................... ................... ..................

...............
...

.............
......
.

..............
.....

..................
..

...................... ....................... ........................

with Lip(θn) ≤ 5K2n+1. Then, (θn ◦ φn,γ)(Ṽn,γ) = 1, (θn ◦ φn,γ)(B̃γ \ W̃n,γ) = 0 and Lip(θn ◦
φn,γ) ≤ 5K2n+1 (with the norm ||| · |||γ).

Now, by property (Ak), we can find Ck-smooth and Lipschitz functions ξn,γ : X → R such
that

sup
y∈X
{|ξn,γ(y)− (θn ◦ φn,γ)(y)|} < 1/4 and Lip(ξn,γ) ≤ C0 Lip(θn ◦ φn,γ),

with the norm ||| · |||γ , for every γ ∈ Γ and n ∈ N.
Let us take a C∞-smooth Lipschitz function θ : R → [0, 1] such that θ(t) = 0 whenever

t < 1
4 , θ(t) = 1 whenever t > 3

4 and Lip(θ) ≤ 3. Let us define

h̃n,γ : X → [0, 1] as h̃n,γ(x) = θ(ξn,γ(x)),

for every n ∈ N and γ ∈ Γ. Then, h̃n,γ(x) is Ck-smooth, Lip(h̃n,γ) ≤ 15C0K2n+1 (with the
norm ||| · |||γ), h̃n,γ(Ṽn,γ) = 1 and h̃n,γ(B̃γ \ W̃n,γ) = 0.

Now, let us define hn,γ : M → [0, 1] as

hn,γ(p) =

{
h̃n,γ(ϕγ(p)) if p ∈ BM (pγ , 3δγ),

0 otherwise.

Then, the function hn,γ is Cm-smooth, supp(hn,γ) ⊂ Wn,γ ⊂ BM (pγ , 2δγ), ||dhn,γ(p)||p ≤
15C0K

22n+1 for every p ∈M and thus Lip(hn,γ) ≤ 15C0K
22n+1.

Let us define hn : M → R as hn(p) =
∑

γ∈Γ hn,γ(p), for every n ∈ N. Since dist(Wn,γ ,Wn,γ′) >
0 whenever γ 6= γ′, we deduce that hn is Cm-smooth. Also,

hn(p) =

{
1 if p ∈

⋃
γ∈Γ Vn,γ ,

0 if p ∈M \
⋃
γ∈ΓWn,γ .
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In addition, ||dhn(p)||p ≤ 15C0K
22n+1 for every p ∈ M and thus Lip(hn) ≤ 15C0K

22n+1.
Finally, let us define

ψ1,γ = h1,γ and ψn,γ = hn,γ(1− h1) · · · (1− hn−1), for n ≥ 2.

Clearly the functions {ψn,γ}n∈N,γ∈Γ are Cm-smooth functions, supp(ψn,γ) ⊂ supp(hn,γ) ⊂
Wn,γ ⊂ BM (pγ , 2δγ),

||dψn,γ(p)||p ≤ n15C0K
22n+1 for all p ∈M

and thus Lip(ψn,γ) ≤ n15C0K
22n+1. In addition, for every p ∈M ,

∑
n∈N,γ∈Γ

ψn,γ(p) =
∑
γ∈Γ

ψ1,γ(p) +
∑
n≥2

∑
γ∈Γ

hn,γ(p)

 n−1∏
i=1

(1− hi(p))

= h1(p) +
∑
n≥2

hn(p)

n−1∏
i=1

(1− hi(p)) = 1.

Hence, {ψn,γ}n∈N,γ∈Γ is a Cm-smooth partition of unity subordinated to the open cover
{Wn,γ}n∈N,γ∈Γ of M with ||dψn,γ(p)||p ≤ n15C0K

22n+1 and Lip(ψn,γ) ≤ n15C0K
22n+1 for

all p ∈M , n ∈ N and γ ∈ Γ. This finishes the proof of Lemma 6.1.4.

If we do not assume that the constant C0 is independent of the (equivalent) norm considered
in the Banach space X, a similar result to Theorem 6.1.2 can be obtained for C` Finsler
manifolds in the sense of Neeb-Upmeier K-uniform modeled on a Banach space X.

Theorem 6.1.5. Let M be a C` Finsler manifold in the sense of Neeb-Upmeier K-uniform,
modeled on a Banach space (X, || · ||) which admits property (Ak). Then, for every Lipschitz
function f : M → R, any r > 0 and any continuous function ε : M → (0,∞) there is a
Lipschitz, Cm-smooth function g : M → R (m := min{`, k}) such that

|g(p)− f(p)| < ε(p) and ||dg(p)||p ≤ C1 Lip(f) for every p ∈M,

and thus Lip(g) ≤ C1 Lip(f), where C1 := (1+r)C0K
2 and C0 is the constant given by property

(Ak).

The proof of Theorem 6.1.5 follows along the same lines as that for Theorem 6.1.2. Let us
indicate that, in this case, throughout the proof the norm considered in X is || · || (instead of
||| · |||γ).

In the same way as the proof of Theorem 6.1.2 and Theorem 6.1.5, we can prove the
following vector-valued results.

Proposition 6.1.6. Let Z be a Banach space. Let M be a C` Finsler manifold in the sense
of Neeb-Upmeier K-weak-uniform modeled on a Banach space X such that the pair of Banach
spaces (X,Z) satisfies property (∗k), i.e. for every subset A of X, every Lipschitz mapping
f : A→ Z and any ε > 0, there is a Lipschitz, Ck-smooth mapping g : X → Z such that

||f(x)− g(x)|| < ε for every x ∈ A, and Lip(g) ≤ C0 Lip(f),
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where C0 depends only on X and Z, and moreover C0 is independent of the (equivalent) norm
considered in X. Then, for every Lipschitz mapping f : M → Z, any r > 0 and any continuous
function ε : M → (0,∞), there is a Lipschitz, Cm-smooth mapping g : M → Z such that

||g(p)− f(p)|| < ε(p) and ||dg(p)||p ≤ (1 + r)C0K
2 Lip(f) for every p ∈M.

Proposition 6.1.7. Let Z be a Banach space. Let M be a C` Finsler manifold in the sense of
Neeb-Upmeier K-uniform modeled on a Banach space X such that the pair of Banach spaces
(X,Z) satisfies property (∗k) with C0 depending only on X and Z. Then, for every Lipschitz
mapping f : M → Z, any r > 0 and any continuous function ε : M → (0,∞), there is a
Lipschitz, Cm-smooth mapping g : M → Z such that

||g(p)− f(p)|| < ε(p) and ||dg(p)||p ≤ (1 + r)C0K
2 Lip(f) for every p ∈M.

6.2 Uniformly bumpable and smooth approximation

Let us recall that the existence of smooth and Lipschitz bump functions on a Banach space
is an essential tool to obtain approximation of Lipschitz functions by Lipschitz and smooth
functions defined on Banach spaces (see Chapter 3). A generalization of this concept to
manifolds is the notion of uniformly bumpable manifold, which was introduced by D. Azagra,
J. Ferrera and F. López-Mesas [5] for Riemannian manifolds. A natural extension to every C`

Finsler manifold can be defined in the same way, as follows.

Definition 6.2.1. A C` Finsler manifold M in the sense of Neeb-Upmeier is Ck-uniformly
bumpable (with k ≤ `) whenever there are R > 1 and r > 0 such that for every p ∈ M and
δ ∈ (0, r) there exists a Ck-smooth function b : M → [0, 1] such that:

1. b(p) = 1,

2. b(q) = 0 whenever dM (p, q) ≥ δ,

3. supq∈M ||db(q)||q ≤ R/δ.

Note that this is not a restrictive definition. In fact, D. Azagra, J. Ferrera, F. López-
Mesas and Y.C. Rangel [6] proved that every separable Riemannian manifold is C∞-uniformly
bumpable. Now, we can show that a rich class of Finsler manifolds, which includes every
Riemannian manifold (separable or non-separable), is uniformly bumpable. This result answers
a problem posed in [5], [6] and [42].

Proposition 6.2.2. Let M be a C` Finsler manifold in the sense of Neeb-Upmeier satisfying
one of the following conditions:

1. M is K-weak-uniform and it is modeled on a Banach space X which admits property
(Ak) and the constant C0 does not depend on the (equivalent) norm.

2. M is K-uniform and it is modeled on a Banach space X which admits property (Ak).

Then, M is Cm-uniformly bumpable with m := min{`, k}.
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Proof. The assertion follows from Theorem 6.1.2 and Theorem 6.1.5 in a similar way to the
Riemannian case. Let us give the proof under the assumption given in (1) for completeness.
For every r > 0, 0 < δ < r and p ∈M , let us define the function f : M → [0, 1] such that

f(q) =

{
1− dM (q,p)

δ if dM (q, p) ≤ δ,
0 if dM (q, p) ≥ δ.

The function f is 1
δ -Lipschitz, f(p) = 1 and f(q) = 0 whenever q 6∈ BM (p, δ). Let us take

C1 = 2C0K
2 the constant given in Theorem 6.1.2 and ε := 1

4 . By Theorem 6.1.2, there is a
Cm-smooth function g : M → R such that

|g(q)− f(q)| < 1

4
and ||dg(q)||q ≤ C1 Lip(f)

for every q ∈M . Thus Lip(g) ≤ C1 Lip(f) = C1
δ .

Let us take a suitable C∞-smooth and Lipschitz function θ : R→ [0, 1] such that θ(t) = 0
whenever t ≤ 1

4 and θ(t) = 1 for t ≥ 3
4 (with Lip(θ) ≤ 3). Let us define b(q) = θ(g(q)) for

q ∈M . It is clear that

• b is Cm-smooth,

• supq∈M ||db(q)||q ≤ 3C1
δ , and thus Lip(b) ≤ 3C1

δ ,

• b(p) = 1 and b(q) = 0 for q 6∈ BM (p, δ).

Finally, we define R := 3C1 = 6C0K
2 and this finishes the proof.

Now, we establish a characterization of the class of separable C` Finsler manifolds in the
sense of Neeb-Upmeier which are uniformly bumpable as those separable C` Finsler manifolds
in the sense of Neeb-Upmeier admitting approximation of Lipschitz functions by Lipschitz and
smooth functions.

First of all, we need to define the main tool to obtain smooth and Lipschitz approximation.
The notion of smooth sup-partitions of unity on Banach spaces was introduced by R. Fry [35]
to solve the problem of smooth and Lipschitz approximation on Banach spaces with separable
dual, and it has been studied in Chapter 3. This concept can be considered in the context of
C` Finsler manifolds as well.

Definition 6.2.3. Let M be a C` Finsler manifold in the sense of Neeb-Upmeier. M admits
Ck-smooth and Lipschitz sup-partitions of unity subordinated to an open cover U =
{Ur}r∈Ω of M , if there is a collection of Ck-smooth and L-Lipschitz functions {ψα}α∈Γ (where
L > 0 depends on M and the cover U) such that

(S1) ψα : M → [0, 1] for all α ∈ Γ,

(S2) for each x ∈M the set {α ∈ Γ : ψα(x) > 0} ∈ c00(Γ),

(S3) {ψα}α∈Γ is subordinated to U = {Ur}r∈Ω, i.e. for each α ∈ Γ there is r ∈ Ω such that
supp(ψα) ⊂ Ur, and

(S4) for each x ∈M there is α ∈ Γ such that ψα(x) = 1.
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Following the proofs given in [35] and [10], it can be stated the existence of Ck-smooth
sup-partitions of unity on separable, C` Finsler manifolds that are Ck-uniformly bumpable.
As in the case of Banach spaces, the existence of Ck-smooth sup-partitions of unity in a C`

Finsler manifold M provides the tool to prove the uniform approximation of (real-valued)
Lipschitz functions by smooth Lipschitz functions on M . Thus, it can be stated the following
characterization.

Theorem 6.2.4. Let M be a separable C` Finsler manifold in the sense of Neeb-Upmeier.
The following conditions are equivalent:

(1) M is Ck-uniformly bumpable (k ≤ `).

(2) There exists r′ > 0 such that for every δ < r′ the manifold M admits a Ck-smooth and
Lipschitz sup-partition of unity {ϕn}n∈N subordinated to the open cover {BM (p, δ)}p∈M
of M such that Lip(ϕn) ≤ sup{||dϕn(x)||x : x ∈ M} ≤ C1

δ for all n ∈ N, with C1 ≥ 1 a
constant depending only on M .

(3) There is C2 ≥ 1 (which only depends on M) such that for any Lipschitz function f : G→
R defined on an open subset of M and any ε > 0, there exists a Lipschitz and Ck-smooth
function g : M → R such that |f(x)− g(x)| < ε for every x ∈ G, ||dg(x)||x ≤ C2 Lip(f)
for all x ∈M , and thus Lip(g) ≤ C2 Lip(f).

Sketch of the Proof. The proof of (3) ⇒ (1) follows along the same lines as the proof of
Proposition 6.2.2. The proof of (1) ⇒ (2) ⇒ (3) is analogous to the Banach space case [35],
[10] and [56] (see also the proof of Theorem 3.1.1) with some modifications. Let us sketch the
steps of the proofs for the readers convenience.

(1)⇒ (2) Let us mention the necessary modifications to be made in [35] and [10] to prove this
assertion. Let us take η > 0 such that (1 + η)2 ≤ 2, and a C∞-smooth norm || · || on c0, such
that ||·||∞ ≤ ||·|| ≤ (1+η)||·||∞. SinceM is Ck-uniformly bumpable, there are constants r > 0
and R > 1 such that for every point p ∈ M and δ ∈ (0, r′) (where r′ := min{r, 1

1+η}) we can
obtain two families of Ck-smooth functions, {bp}p∈M and {b̃p}p∈M , where bp, b̃p : M → [0, 1]
are such that

(1) bp(p) = 1, b̃p(p) = 1,

(2) bp(x) = 0 whenever dM (x, p) ≥ δ, b̃p(x) = 0 whenever dM (x, p) ≥ δ/2R, and

(3) Lip(bp) ≤ supx∈M ||dbp(x)||x ≤ R/δ, and Lip(̃bp) ≤ supx∈M ||db̃p(x)||x ≤ 2R2/δ.

Notice that

{
bp(x) ≥ 1/2 if dM (x, p) ≤ δ/2R
bp(x) = 0 if dM (x, p) ≥ δ

, and

{
b̃p(x) ≥ 1/2 if dM (x, p) ≤ δ/4R2

b̃p(x) = 0 if dM (x, p) ≥ δ/2R
.
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Let us define a C∞-smooth and 3-Lipschitz function ξ : R→ [0, 1] such that

-

6

ξ(t) =

{
0 if t ≥ 1/2,

1 if t ≤ 0,
1

2

1 ξ. ..................... .................... .................. ................. ...............
.............

..
.
.............

......

................
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................... .................... .....................

Now, by composing {bp}p∈M and {b̃p}p∈M with ξ and 1 − ξ, we obtain Ck-smooth and
Lipschitz functions fp = ξ(bp), gp = 1− ξ(̃bp) : M → [0, 1] such that

fp(x) =

{
0 if dM (x, p) ≤ δ/2R
1 if dM (x, p) ≥ δ

, and gp(x) =

{
1 if dM (x, p) ≤ δ/4R2

0 if dM (x, p) ≥ δ/2R
.

Lip(fp) ≤ sup{||dfp(x)||x : x ∈M} ≤ 3R/δ, and

Lip(gp) ≤ sup{||dgp(x)||x : x ∈M} ≤ 6R2/δ.

SinceM is separable, let us fix a dense countable sequence {pn}n∈N ofM and let us denote
fn := fpn and gn := gpn . Let us define a function h : R→ [0, 1] as a C∞-smooth and Lipschitz
function with h(t) = 1 on a neighborhood of the interval (−∞, 0], h(t) = 0 for t ≥ 1, and
Lip(h) ≤ (1 + η).

Finally, we define for n ≥ 1 the function ϕn : X → [0, 1] as

ϕn(x) := h(||(g1(x), . . . , gn−1(x), fn(x), 0, 0, . . . )||),

and it is easy to check that it is a countable Ck-smooth and Lipschitz sup-partition of unity
subordinated to {BM (p, δ)}p∈M with

Lip(ϕn) ≤ sup{||dϕn(x)||x : x ∈M} ≤ (1 + η)2 max{3R/δ, 6R2/δ} ≤ 12R2/δ.

(2) ⇒ (3) Step 1. There is a constant C̃ ≥ 1, that only depends on M , such that for every
Lipschitz function f : M → [0, 1] with Lip(f) ≥ 1, there exists a Lipschitz and Ck-smooth
function g : M → R such that

|f(x)− g(x)| < 1/4 for every x ∈M, and Lip(g) ≤ sup{||dg(x)||x : x ∈M} ≤ C̃ Lip(f).

Notice that the constants r′ > 0 and C1 ≥ 1 given by condition (2) depend only on M .
Let us take η > 0 such that (1 + η)3 ≤ 2, a C∞-smooth norm || · || on c0 that depends on
finitely many coordinates on c0(N) \ {0}, such that || · ||∞ ≤ || · || ≤ (1 + η)|| · ||∞, and a
constant B > max{4, 1

r′ }, which only depends on M . Now, if Lip(f) := L ≥ 1, let us define
δ := 1

(1+η)BL < r′. By (2), there exists a Ck-smooth and Lipschitz sup-partition of unity
{ϕn}∞n=1 subordinated to {BM (p, δ)}p∈M such that

Lip(ϕn) ≤ sup{||dϕn(x)||x : x ∈M} ≤ C1/δ = (1 + η)C1BL.
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Therefore, we can define the function g : M → R as

g(x) :=
||{f(pn)ϕn(x)}||
||{ϕn(x)}||

x ∈M.

As || · || is C∞-smooth and depends locally on finitely many coordinates on c0(N) \ {0}, the
family of functions {ϕn}∞n=1 is Ck-smooth and locally finite, and ||{ϕn(x)}|| ≥ 1 on M . Then
g is well defined and it is Ck-smooth on M .

Let us see that ||dg(x)||x ≤ C̃L for every x ∈ M , and thus it is C̃L-Lipschitz, where
C̃ := 4C1B (C̃ only depends on M). For any x ∈M

||dg(x)||x ≤||{ϕn(x)}|| || || · ||
′({f(pn)ϕn(x)})({f(pn)dϕn(x)})||x

||{ϕn(x)}||2

+ ||{f(pn)ϕn(x)}|| || || · ||
′({ϕn(x)})({dϕn(x)})||x
||{ϕn(x)}||2

≤ 2(1 + η)3C1BL ≤ 4C1BL.

Finally |g(x)− f(x)| < 1/4 on M . Indeed, for x ∈M

|g(x)−f(x)| ≤ ||{(f(pn)− f(x))ϕn(x)}||
||{ϕn(x)}||

≤ (1+η)L·

 sup
n∈N

x∈BM (pn,δ)

{dM (x, pn)}

 ≤ 1/B < 1/4.

Step 2. Either Lemma [7, Lemma 1] or [56, Proposition 1 and Theorem 3] provides the
final step to ensure the existence of a constant C2 ≤ 3C̃ (C2 only depends on M) such that
every real-valued and Lipschitz function f : M → R can be uniformly approximated by a
Ck-smooth function g such that Lip(g) ≤ sup{||dg(x)||x : x ∈M} ≤ C2 Lip(f). The proofs in
[7] and [56] are given for Banach spaces, but they also work for a C` Finsler manifold provided
Step 1 holds.

Remark 6.2.5. Recall that if M is a C` Finsler manifold (separable or non-separable) in the
sense of Neeb-Upmeier modeled on a Banach space X, then condition (3) in Theorem 6.2.4
yields the fact that X has property (Ak). A proof of this fact can be obtained by applying the
techniques of N. Moulis [92], P. Hájek and M. Johanis [56]. Unfortunately, the results given
in the above section require additional assumptions on the manifold M to prove the converse,
i.e. to prove that if X has property (Ak), then M satisfies condition (3) in Theorem 6.2.4.

6.3 Smooth extensions of mappings on manifolds

Let us apply Theorem 4.2.1 in order to obtain a smooth extension theorem for mappings
between a Banach manifold M and a Banach space Z. First of all, as in the Banach space
case, we define the following mean value condition.

Definition 6.3.1. Let us consider a C1 Banach manifold M modeled on the Banach space
X, a Banach space Z, a subset A of M and a continuous map f : A → Z. We say that the
mapping f : A → Z satisfies the mean value condition on A if for every x ∈ A there is
(equivalent, for all) a chart ϕ : U → X with U an open subset of M and x ∈ U , such that the
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mapping f ◦ ϕ−1 satisfies the mean value condition on ϕ(A ∩ U). In other words, there exists
a continuous map D : ϕ(A∩U)→ L(X,Z) such that for every y ∈ ϕ(A∩U) and every ε > 0,
there is an open ball B(y, r) in X such that

||f ◦ ϕ−1(z)− f ◦ ϕ−1(w)−D(y)(z − w)|| ≤ ε||z − w||,

for every z, w ∈ ϕ(A ∩ U) ∩B(y, r).

The proof of the following proposition is similar to the real-valued case [7]. Recall that a
paracompact C1 manifold M modeled on a Banach space X admits C1-smooth partitions of
unity whenever the Banach space X does.

Proposition 6.3.2. Let M be a paracompact C1 Banach manifold modeled on the Banach
space X and let Z be a Banach space. Assume that the pair (X,Z) satisfies property (*).
Let A be a closed subset of M and f : A → Z a mapping. Then, f satisfies the mean value
condition on A if and only if there is a C1-smooth extension G : M → Z of f .

Proof. Let {Ua}a∈A be a covering of A by open sets in M , so that there are C1-smooth charts
ϕa : Ua → X in M with f ◦ ϕ−1

a satisfying the mean value condition on ϕa(A ∩ Ua), for
every a ∈ A. Let us take Oa an open neighborhood of a in M with Oa ⊂ Ua for any a ∈ A.
Thus, ϕa(A ∩ Oa) is a closed subset of X and f ◦ ϕ−1

a satisfies the mean value condition on
ϕa(A∩Oa). By Theorem 4.2.1 there is a C1-smooth extension F̃a : X → Z of f ◦ϕ−1

a |ϕa(A∩Oa)

to X for any a ∈ A. SinceM is a paracompact C1 manifold modeled on a Banach space which
admits C1-smooth partitions of unity, we can take {θa}a∈A ∪ {θ} a C1-smooth partition of
unity subordinated to the open cover {Oa}a∈A∪{M \A} ofM . Thus, the mapping G : M → Z
defined as

G(x) =
∑
a∈A

θa(x)(F̃a ◦ ϕa)(x)

is a C1-smooth extension of the mapping f to the whole manifold M .

Let us recall that P ⊂M is a C1 submanifold ofM modeled on a closed subspace Y of X
if for every p ∈ P there is a chart (Vp, ϕp) ofM at p, such that p ∈ Vp and ϕp(Vp∩P ) = A∩Y ,
where A is an open subset of X with ϕp(p) ∈ A ∩ Y . Notice that we do not require in this
definition that Y is complemented in X. Thus, this definition of submanifold is more general
than the one considered in some texts for Banach manifolds modeled on infinite-dimensional
Banach spaces.

Corollary 6.3.3. Let M be a paracompact C1 Banach manifold modeled on a Banach space
X and let Z be a Banach space. Assume that the pair (X,Z) satisfies property (*) and the
linear extension property. Let P be a C1 submanifold of M . Then, every C1-smooth mapping
f : P → Z has a C1-smooth extension to M .

The proof of this corollary follows along the same lines as the proof of Proposition 6.3.2.
Here, we apply Corollary 4.4.6 to yield the conclusion.

Using the examples given in Section 3 and Section 4 of Chapter 4, we obtain a variety of
examples of pairs consisting of a Banach manifold and a Banach space, which satisfy the smooth
extension results stated in Proposition 6.3.2 and Corollary 6.3.3. Among these examples we
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can include any pair consisting of a Riemannian manifoldM and a Hilbert space Z with either
M separable or Z = R.

6.4 Smooth and Lipschitz extensions of mappings on manifolds

In this section we give a smooth extension result on a certain class of C1 Finsler manifolds
M for functions f : A → R defined on a closed subset A ⊂ M , whenever f is Lipschitz with
respect to the Finsler metric of the manifold M and f satisfies the following property.

Definition 6.4.1. Let M be a C1 Finsler manifold in the sense of Neeb-Upmeier and let Z
be a Banach space. Let A be a subset of M and a continuous map f : A→ Z.

(1) If M is a C1 Finsler manifold in the sense of Neeb-Upmeier weak-uniform, we say that
a mapping f : A→ Z satisfies the mean value condition for a bounded map on A
if there exists a constant C > 0 such that for every x ∈ A there is a chart ϕ : U → X
with U an open subset of M and x ∈ U , such that the mapping f ◦ϕ−1 satisfies the mean
value condition on ϕ(A ∩ U) for a bounded map D : ϕ(A ∩ U)→ L(X,Z) such that

sup{|D(y)|x : y ∈ ϕ(A ∩ U)} ≤ C, (6.1)

where |D(y)|x = sup{||D(y)(v)|| : v ∈ X with ||dϕ−1(ϕ(x))(v)||x ≤ 1}.

(2) If M is a C1 Finsler manifold in the sense of Neeb-Upmeier uniform, we say that a
mapping f : A → Z satisfies the uniform mean value condition for a bounded
map on A if there exists a constant C > 0 such that for every x ∈ A there is a chart
ϕ : U → X with U an open subset of M and x ∈ U satisfying inequality (5.5), such that
the mapping f ◦ ϕ−1 satisfies the mean value condition on ϕ(A ∩ U) for a bounded map
D : ϕ(A ∩ U)→ L(X,Z) such that

sup{||D(y)|| : y ∈ ϕ(A ∩ U)} ≤ C, (6.2)

where ||D(y)|| = sup{||D(y)(v)|| : v ∈ X with ||v|| ≤ 1}.

Lemma 6.4.2. Let (X,Z) be a pair of Banach spaces with the property (*) and let A ⊂ X be
a closed subset of X. Let f : A → Z be a Lipschitz mapping which satisfies the mean value
condition for a bounded map D : A→ L(X,Z) with M := sup{||D(y)|| : y ∈ A} <∞. Let us
consider ε > 0 and a Lipschitz extension of f to X, which we shall denote by F : X → Z (i.e.
F : X → Z is Lipschitz and F (y) = f(y), for all y ∈ A). Then, there exists a C1-smooth and
Lipschitz mapping G : X → Z such that

(i) G|A = f ,

(ii) ||F (x)−G(x)|| < ε for all x ∈ X, and

(iii) Lip(G) ≤ R(Lip(F ) +M + Lip(f)),

where R := (1 + 27
2 C0)(1 + C0), is a constant that depends only on X and Z.
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Proof. Since the pair (X,Z) admits the property (*), from Theorem 4.2.2, we know that there
exists a Lipschitz and C1-smooth extension g : X → Z of f to X such that

g|A = f and Lip(g) ≤ (1 + C0)(M + Lip(f)),

where C0 depends on X and Z (C0 is the constant given by property (*)). Also, from property
(*), there is a C1-smooth and Lipschitz mapping h : X → Z such that

||F (x)− h(x)|| < ε for x ∈ X, and Lip(h) ≤ C0 Lip(F ).

Consider the sets D = {x ∈ X : ||F (x)− g(x)|| < ε/4}, C = {x ∈ X : ||F (x)− g(x)|| ≤ ε/4}
and B = {x ∈ X : ||F (x)− g(x)|| < ε/2} in X. Then A ⊂ D ⊂ C ⊂ B.

As in the proof of Lemma 4.2.4, let us consider a C1-smooth and Lipschitz function

u(x) =

{
1 if x ∈ C
0 if x ∈ X \B

and Lip(u) ≤ 9C0(Lip(F ) + Lip(g))

ε
.

Now, let us define G : X → Z as

G(x) = u(x)g(x) + (1− u(x))h(x), x ∈ X.

Clearly, the mapping G is C1-smooth and G(y) = f(y) for y ∈ A.

• If x ∈ X \B, then ||F (x)−G(x)|| = ||F (x)− h(x)|| < ε.

• If x ∈ B, then ||F (x)−G(x)|| ≤ u(x)||F (x)− g(x)||+ (1− u(x))||F (x)− h(x)|| < ε.

Let us prove that G is Lipschitz on X.

(i) If x ∈ X \B, then ||G′(x)|| = ||h′(x)|| ≤ C0 Lip(F );

(ii) if x ∈ B, then

||G′(x)|| ≤ ||g(x)u′(x) + h(x)(1− u)′(x)||+ ||g′(x)u(x) + h′(x)(1− u(x))||
≤ ||(g(x)− F (x))u′(x) + (h(x)− F (x))(1− u)′(x)||

+ u(x) Lip(g) + (1− u(x))C0 Lip(F )

≤ 3ε

2
Lip(u) + (1 + C0)(M + Lip(f)) + C0 Lip(F )

≤ 29

2
C0 Lip(F ) + (1 +

27

2
C0)(1 + C0)(M + Lip(f)).

Now, let us define

R := max{29

2
C0, (1 +

27

2
C0)(1 + C0)} = (1 +

27

2
C0)(1 + C0),

which yields to Lip(G) ≤ R(Lip(F ) +M + Lip(f)).
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Proposition 6.4.3. Let M be a C1 Finsler manifold in the sense of Neeb-Upmeier K-weak-
uniform modeled on a Banach space X with property (*) such that the constant C0 does not
depend on the (equivalent) norm considered on X. Let A ⊂ M be a closed subset of M and
f : A → R a function. Then, f is Lipschitz and satisfies the mean value condition for a
bounded map on A if and only if there is a C1-smooth and Lipschitz extension G : M → R of
f to the whole manifold M .

Moreover, if f is Lipschitz and satisfies the mean value condition for a bounded map with
constant C > 0, then we can obtain a C1-smooth and Lipschitz extension G of f with Lip(G) ≤
S(C + Lip(f)) where S := 1

2 + 2RK2 and R is the constant given in Lemma 6.4.2.

Proof. First, let us extend f to M as F (x) := infy∈A{f(y) + LdM (x, y)}, for every x ∈ M ,
where L = Lip(f) = sup{ |f(p)−f(q)|

dM (p,q) : p, q ∈ A, p 6= q}. The function F is a Lipschitz extension
of f to M , with the same Lipschitz constant Lip(F ) = Lip(f) = L.

By applying Properties 5.2.3(6), let us take {(Ua, ϕa)}a∈A a family of charts of M at the
points a ∈ A such that {Ua}a∈A is a covering of A by open sets in M , the mapping f ◦ ϕ−1

a

satisfies the mean value condition on ϕa(A ∩ Ua) for a bounded map Da : ϕa(A ∩ Ua) → X∗

with sup{|Da(y)|a : y ∈ ϕa(A∩Ua)} ≤ C, and ϕa : Ua → X satisfies the inequality (5.4). Let
us denote |||w|||a := ||dϕ−1

a (ϕa(a))(w)||a for every a ∈ A and w ∈ X. Thus, we have

|||dϕa(y)|||a : = sup{|||dϕa(y)(v)|||a : ||v||y = 1} ≤ K for all y ∈ Ua, and
||dϕ−1

a (ϕa(y))||a : = sup{||dϕ−1
a (ϕa(y))(v)||y : |||v|||a = 1} ≤ K for all y ∈ Ua.

Moreover, due to Lemma 5.3.2 we may assume the charts ϕa : Ua → X are K-bi-Lipschitz in
Ua with the norms ||| · |||a.

Let us take Oa an open neighborhood of a in M with Oa ⊂ Ua for every a ∈ A. Thus,
ϕa(A∩Oa) is a closed subset of X and f ◦ ϕ−1

a is a Lipschitz function that satisfies the mean
value condition on the closed subset ϕa(A∩Oa) for the bounded map Da : ϕa(A∩Oa)→ X∗

with constant C > 0.

Since {Oa}a∈A ∪ {M \ A} is an open covering of M , by Lemma 6.1.4, there is an open
refinement {Wn,a}n∈N,a∈A∪{Wn,0}n∈N of {Oa}a∈A∪{M \A} satisfying properties (i)− (iv) of
Lemma 3.2.6, and there is {ψn,a}n∈N,a∈A ∪ {ψn,0}n∈N a C1-smooth and Lipschitz partition of
unity of M such that supp(ψn,a) ⊂ Wn,a ⊂ Oa for every n ∈ N and a ∈ A, and supp(ψn,0) ⊂
Wn,0 ⊂ M \ A for every n ∈ N. Let us write Ln,a := max{1, sup{||dψn,a(x)||x : x ∈ M}} for
every n ∈ N and a ∈ Ã := A ∪ {0}.

Let us define fa : ϕa(A ∩Oa)→ R (for all a ∈ A) and Fa : ϕa(Ua)→ R (for all a ∈ A) as

fa(y) := f ◦ ϕ−1
a (y) and Fa(x) := F ◦ ϕ−1

a (x),

for every y ∈ ϕa(A ∩ Oa) and x ∈ ϕa(Ua). The functions fa and Fa are KL-Lipschitz with
the norm ||| · |||a in X, fa : ϕa(A ∩Oa)→ R is a Lipschitz function satisfying the mean value
condition on the closed subset ϕa(A ∩ Oa) for a bounded map, with constant C, and Fa is a
Lipschitz extension of fa to ϕa(Ua) for every a ∈ A. Since X admits property (*) (with the
same constant C0, for every equivalent norm), we can apply Lemma 6.4.2 to obtain C1-smooth
and Lipschitz functions Gn,a : X → R, for all n ∈ N and a ∈ A, such that
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(a) Gn,a|ϕa(A∩Oa)
= fa,

(b) |Gn,a(x)− Fa(x)| < L
2n+1Ln,a

for every x ∈ ϕa(Ua), and

(c) Lip(Gn,a) ≤ R(Lip(Fa) +C+ Lip(fa)) ≤ KR(2L+C), for the norm ||| · |||a on X, where
R is the constant given in Lemma 6.4.2.

Let us apply Theorem 6.1.2 to F : M → R to obtain a family {Gn,0 : M → R}n∈N of
C1-smooth and Lipschitz functions such that

(a) |Gn,0(x)− F (x)| < L
2n+1Ln,0

for every x ∈M , and

(b) Lip(Gn,0) ≤ 2C0K
2 Lip(F ) = 2C0K

2L.

Now, let us define G : M → R as

G(x) :=
∑

n∈N,a∈A
ψn,a(x)Gn,a(ϕa(x)) +

∑
n∈N

ψn,0(x)Gn,0(x).

Since supp(ψn,a) ⊂ Wn,a ⊂ Oa for every (n, a) ∈ N × A, supp(ψn,0) ⊂ Wn,0 ⊂ M \ A for
every n ∈ N, and {ψn,a}n∈N,a∈Ã is a C1-smooth partition of unity of M , the function G is
well defined and C1-smooth on M . Now, if y ∈ A and ψn,a(y) 6= 0, then y ∈ A ∩ Oa and
ϕa(y) ∈ ϕa(A∩Oa). Therefore, Gn,a(ϕa(y)) = f(y) and G(y) =

∑
n∈N,a∈A ψn,a(y)f(y) = f(y).

Let us prove that G is Lipschitz on M . Recall that

•
∑

n∈N,a∈Ã dψn,a(x) = 0 for all x ∈M , and thus
∑

n∈N,a∈Ã dψn,a(x)F (x) = 0.

• Property (iv) of the open refinement {Wn,a}n∈N,a∈Ã implies that for every p ∈ M and
n ∈ N, there is at most one a ∈ Ã, which we shall denote by ap(n), such that p ∈
supp(ψn,a). Let us define the finite set Fp := {(n, a) ∈ N × Ã : p ∈ supp(ψn,a)} =

{(n, ap(n)) ∈ N× Ã : p ∈ supp(ψn,ap(n))}.

In addition, if x ∈M , a ∈ A and dψn,a(x) 6= 0, then F (x) = F (ϕ−1
a (ϕa(x))). Therefore,

||dG(x)||x ≤ ||
∑

n∈N,a∈A
Gn,a(ϕa(x)) dψn,a(x) +

∑
n∈N

Gn,0(x)dψn,0(x)||x

+||
∑

n∈N,a∈A
ψn,a(x) dGn,a(ϕa(x)) dϕa(x) +

∑
n∈N

ψn,0(x)dGn,0(x)||x

≤
∑

n∈N,a∈A
||dψn,a(x)||x|Gn,a(ϕa(x))− F (x)|+

∑
n∈N
||dψn,0(x)||x|Gn,0(x)− F (x)|

+
∑

n∈N,a∈Ã

ψn,a(x) max{K2R(2L+ C), 2C0K
2L}

≤
∑
n∈N

Ln,ap(n)
L

2n+1Ln,ap(n)
+K2R(2L+ C) ≤ L

2
+K2R(2L+ C).

Thus, if we define S := 1
2+2RK2, it follows from Proposition 5.3.1 that Lip(g) ≤ sup{||dg(x)||x :

x ∈M} ≤ S(C + Lip(f)) and the constant S only depends on M .
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Let us recall that Theorem 3.1.1 implies that every Banach space with separable dual
admits property (*) and the constant C0 does not depend on the norm (notice that a Banach
space X satisfies property (*) if and only if satisfies property (A1)). Unfortunately, we do
not know if the conclusion of the Proposition 6.4.3 holds if we drop the assumption that the
Banach space X admits the property (*) with the same constant C0 for every (equivalent)
norm. If we do not assume that hypothesis, a similar result to the above proposition can
be obtained for C` Finsler manifolds in the sense of Neeb-Upmeier K-uniform modeled on a
Banach space X. The proof follows along the same lines as that for Proposition 6.4.3.

Proposition 6.4.4. Let M be a C1 Finsler manifold in the sense of Neeb-Upmeier K-uniform
modeled on a Banach space X with property (*). Let A ⊂ M be a closed subset of M and
f : A→ R a function. Then, f is Lipschitz and satisfies the uniform mean value condition for
a bounded map on A if and only if there is a C1-smooth and Lipschitz extension G : M → R
of f to the whole manifold M .

Moreover, if f is Lipschitz and satisfies the uniform mean value condition for a bounded
map with constant C > 0, then we can obtain a C1-smooth and Lipschitz extension G of f
with Lip(G) ≤ S(C + Lip(f)) where S := 1

2 + 2RK2 and R is the constant given in Lemma
6.4.2.

As in Section 6.3 and by means of Corollary 4.4.6, we obtain the following results for closed
submanifolds. Recall that if M is a C1 Finsler manifold and P is a C1 submanifold of M ,
then || · |||TP is a Finsler structure for P [100, Theorem 3.6].

Corollary 6.4.5. Let M be a C1 Finsler manifold in the sense of Neeb-Upmeier K-weak-
uniform such that it is modeled on a Banach space X that admits property (*) and the constant
C0 does not depend on the (equivalent) norm considered in X. Let P ⊂ M be a closed C1

submanifold and let f : P → R be a C1-smooth function. If f is Lipschitz as a function on
M (i.e., there is L ≥ 0 such that |f(p)− f(q)| ≤ LdM (p, q), for every p, q ∈ P ), then there is
a C1-smooth and Lipschitz extension g : M → R such that Lip(g) ≤ S Lip(f), where S ≥ 1
depends only on M .

The proof relies on the fact that the function f satisfies the mean value condition for a
bounded map whenever f is C1-smooth and Lipchitz as a function on M defined on a closed
C1 submanifold.

Corollary 6.4.6. Let M be a C1 Finsler manifold in the sense of Neeb-Upmeier K-uniform
such that it is modeled on a Banach space X with property (*). Let P ⊂ M be a closed C1

submanifold and let f : P → R be a C1-smooth function. If f is Lipschitz as a function on M ,
then there is a C1-smooth and Lipschitz extension g : M → R such that Lip(g) ≤ S Lip(f),
where S ≥ 1 depends only on M .

The proof relies on the fact that the function f satisfies the uniform mean value condition
for a bounded map whenever f is C1-smooth and Lipchitz as a function on M defined on a
closed C1 submanifold.

Similarly to Proposition 6.4.3, we can show the following vector-valued results:

Proposition 6.4.7. Let Z be a Banach space. Let M be a C` Finsler manifold in the sense
of Neeb-Upmeier weak-uniform modeled on a Banach space X such that the pair of Banach
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spaces (X,Z) admits property (*) and the constant C0 does not depend on the (equivalent)
norm on X. Furthermore, let us suppose that there is a constant K ≥ 1 depending only on M
and Z, such that for every subset A of M and every Lipschitz mapping f : A→ Z, there is a
Lipschitz extension F : M → Z of f to M with Lip(F ) ≤ K Lip(f) (for instance, if Z is an
absolute Lipschitz retract).

Let A ⊂ M be a closed subset of M and f : A → Z a mapping. Then, f is Lipschitz and
satisfies the mean value condition for a bounded map on A if and only if there is a C1-smooth
and Lipschitz extension G : M → Z of f to the whole manifold M . Moreover, if f is Lipschitz
and satisfies the mean value condition for a bounded map with constant C > 0, then we can
obtain a C1-smooth and Lipschitz extension G of f with Lip(G) ≤ S(C+ Lip(f)) where S ≥ 1
depends only on M and Z.

Proposition 6.4.8. Let Z be a Banach space. Let M be a C` Finsler manifold in the sense
of Neeb-Upmeier uniform modeled on a Banach space X such that the pair of Banach spaces
(X,Z) admits property (*). Furthermore, let us suppose that there is a constant K ≥ 1
depending only on M and Z, such that for every subset A of M and every Lipschitz mapping
f : A→ Z, there is a Lipschitz extension F : M → Z of f to M such that Lip(F ) ≤ K Lip(f).

Let A ⊂ M be a closed subset of M and f : A → Z a mapping. Then, f is Lipschitz
and it satisfies the uniform mean value condition for a bounded map on A if and only if
there is a C1-smooth and Lipschitz extension G : M → Z of f to the whole manifold M .
Moreover, if f is Lipschitz and it satisfies the uniform mean value condition for a bounded
map with constant C > 0, then we can obtain the C1-smooth and Lipschitz extension G with
Lip(G) ≤ S(C + Lip(f)) where S ≥ 1 depends only on M and Z.

Open Problems

Let us list some unsolved problems related to this chapter.

1. Does Theorem 6.1.2 hold for every C` Finsler manifold in the sense of Neeb-Upmeier
provided the same hypothesis on X?

2. It is an open problem whether the constant C0 of the property (Ak) can be taken to
be independent of the equivalent norm considered in X, when X is either non-separable
or non-Hilbert. Thus, we cannot assure that Theorem 6.1.2 holds for all C` Finsler
manifolds in the sense of Neeb-Upmeier weak-uniform modeled on either non-separable
or non-Hilbert Banach spaces.

3. Let M be a non-separable C` Finsler manifold in the sense of Neeb-Upmeier. Can
every function defined on M be uniformly approximated by a Ck-smooth and Lipschitz
function whenever M is Ck-uniformly bumpable?

4. Is there any C` Finsler manifold in the sense of Neeb-Upmeier M modeled on a Banach
space X which admits Ck-smooth bump functions, such that M is non-Ck-uniformly
bumpable?

5. We do not know whether Propositions 6.1.6, 6.1.7, 6.3.2, 6.4.7 and 6.4.8 hold when the
target space is a C` Finsler manifold N .
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6. When does a Banach manifold M admit C2-smooth extensions of C2-smooth functions
g : P → R defined on a C1 submanifold P of M?
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Chapter 7

Applications on Finsler manifolds

In this chapter we obtain nice applications of the previous results on Riemannian manifolds
and Finsler manifolds such as: a Deville-Godefroy-Zizler smooth variational principle and a
Myers-Nakai theorem.

The Deville-Godefroy-Zizler smooth variational principle (see [22]) asserts, roughly speak-
ing, that a lower bounded, lower semicontinuous function defined on a Banach space can be
perturbed by a Ck-smooth and Lipschitz function in order to attain a perturbed minimum,
provided the Banach space admits a Ck-smooth bump function with bounded derivatives up
to order k. This principle has proven to be very useful in various areas of nonlinear analysis,
in particular, in optimization and applications to viscosity solutions of Hamilton-Jacobi equa-
tions. D. Azagra, J. Ferrera and F. López-Mesas proved a version of this variational principle
for uniformly bumpable complete Riemannian manifolds [5].

In this chapter, we are also interested in characterizing the Finsler structure of a Finsler
manifold M in terms of the algebra of real-valued, bounded and Ck-smooth functions defined
onM with bounded first derivative. The problem of the interrelation of the topological, metric
and smooth structure of a space X and the algebraic and topological structure of the space
C(X) (the set of real-valued continuous functions defined on X) has been largely studied.
These results are usually referred to as Banach-Stone type theorems. Recall the celebrated
Banach-Stone theorem, asserting that the compact spaces K and L are homeomorphic if and
only if the Banach spaces C(K) and C(L) endowed with the sup-norm are isometric. For more
information about Banach-Stone type theorems see the survey [44] and references therein.

The Myers-Nakai theorem states that the structure of a complete Riemannian manifold
M is characterized in terms of the Banach algebra C1

b (M) of all real-valued, bounded and
C1-smooth functions defined on M with bounded derivative endowed with the sup-norm of
the function and its derivative. More specifically, two complete Riemannian manifolds M and
N are equivalent as Riemannian manifolds, i.e. there is a C1 diffeomorphism h : M → N such
that

〈dh(x)(v), dh(x)(w)〉h(x) = 〈v, w〉x
for every x ∈ M and v, w ∈ TxM if and only if the Banach algebras C1

b (M) and C1
b (N) are

isometric. This result was first proved by S. B. Myers [94] for a compact and Riemannian
manifold and by M. Nakai [96] for a finite-dimensional Riemannian manifold. Very recently,
I. Garrido, J.A. Jaramillo and Y.C. Rangel [42] have given an extension of the Myers-Nakai
theorem for every infinite-dimensional, complete Riemannian manifold, provided that they
are uniformly bumpable. A similar result for the so-called finite-dimensional Riemannian-
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Finsler manifolds is given in [43] (see also [103]). An interesting result for Banach manifolds
was obtained in [46], where it was proved that the smooth structure of a C∞-smooth Banach
manifoldM is determined by the algebra C∞(M) (the space of all real-valued and C∞-smooth
functions defined on M) whenever M is modeled on a Banach space with a C∞-smooth bump
function.

In Section 7.1 several applications on Riemannian manifolds are given. It is deduced that
a Riemannian manifoldM is uniformly bumpable and thus the Deville-Godefroy-Zizler smooth
variational principle holds whenever M is complete. This generalizes the result given in [5]
for separable and complete Riemannian manifolds. Moreover, it is deduced that the infinite-
dimensional version of the Myers-Nakai theorem for separable Riemannian manifolds given in
[42] holds for every infinite-dimensional complete Riemannian manifold.

In Section 7.2, we consider the upper and lower scalar Dini derivatives of a mapping f
between Finsler manifolds at x, denoted respectively by D+

x f and D−x f , and we prove that
when M and N are Finsler manifolds in the sense of Palais and f : M → N is a C1-smooth
mapping on M then D+

x f = ||df(x)||x and, if in addiction df(x) ∈ Isom(TxM,Tf(x)N), then
D−x f = ||[df(x)]−1||−1

f(x).

In Section 7.3 the algebra C1
b (M) of all real-valued, bounded and C1-smooth functions

defined on M with bounded derivative endowed with the sup-norm of the function and its
derivative is shown to be a Banach algebra, provided M is a Finsler manifold in the sense
of Neeb-Upmeier weak-uniform. Thus, following the steps given in [5], the Deville-Godefroy-
Zizler variational principle is extended to the class of complete and uniformly bumpable Finsler
manifolds in the sense of Neeb-Upmeier weak-uniform.

Our aim in Section 7.4 is to extend the Myers-Nakai theorem to the context of Finsler
manifolds. On the one hand, we obtain the Myers-Nakai theorem for (i) finite-dimensional and
complete Finsler manifolds, and (ii) WCG Banach spaces with a C1-smooth bump function.
On the other hand, we study for k ≥ 1 the algebra Ckb (M) of all real-valued, bounded and
Ck-smooth functions with bounded first derivative defined on a complete Finsler manifold
M . We prove that these algebras determine the weak Finsler structure of a complete Finsler
manifold when k = 1 and the Finsler structure when k ≥ 2. In particular, we obtain a weaker
version of the Myers-Nakai theorem for (i) separable and complete Finsler manifolds in the
sense of Palais modeled on a Banach space with a Lipschitz and Ck-smooth bump function,
and (ii) C1-uniformly bumpable and complete Finsler manifolds in the sense of Palais modeled
on WCG Banach spaces. In the proof of these results we will use the ideas of the Riemannian
case [42].

7.1 Consequences on Riemannian manifolds

The results given in the previous chapter provide some interesting consequences on Riemannian
manifolds. The following corollary provides a generalization (in the C1-smoothness case) to
the non-separable setting of the result given in [6] for separable Riemannian manifolds (see
Theorem 3.0.6).
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Corollary 7.1.1. Let M be a Riemannian manifold. Then, for every Lipschitz function
f : M → R, every continuous function ε : M → (0,∞) and r > 0 there is a C1-smooth and
Lipschitz function g : M → R such that

|g(p)− f(p)| < ε(p) for every p ∈M , and Lip(g) ≤ Lip(f) + r.

Let us notice that for separable Riemannian manifolds, the Lipschitz function g that ap-
proximates f can be obtained to be C∞-smooth (see [6]). One of the tools of their proof is
the result of N. Moulis [92], asserting that every separable Hilbert space has property (A∞).
It is an open problem whether the non-separable Hilbert space has property (A∞). We do
not know whether the proof of N. Moulis can be adapted to the non-separable case. Thus, in
the non-separable case, we can only ensure that the Hilbert space has property (A1) (see The-
orem 3.0.5). Consequently, we only obtain that the approximating function g is C1-smooth.
Moreover, from Proposition 6.2.2 we obtain the following corollary:

Corollary 7.1.2. Every Riemannian manifold is C1-uniformly bumpable.

Let M be a Riemannian manifold. Let us denote by C1
b (M) the algebra of all bounded,

Lipschitz and C1-smooth functions f : M → R, i.e.

C1
b (M) := {f : M → R : f is C1-smooth, ||f ||∞ <∞ and ||df ||∞ <∞}.

It is easy to check that C1
b (M) is a Banach space endowed with the norm ||f ||C1

b (M) :=

max{||f ||∞, ||df ||∞} (where ||f ||∞ = supp∈M |f(p)| and ||df ||∞ = supp∈M ||df(p)||p). More-
over, it is a Banach algebra with the norm 2||·||C1

b (M) (see [5] and [42]). Recall that two normed
algebras (A, || · ||A) and (B, || · ||B) are said to be equivalent as normed algebras whenever there
exists an algebra isomorphism T : A → B such that ||T (a)||B = ||a||A for every a ∈ A. Also,
the Riemannian manifoldsM and N are said to be equivalent whenever there is a Riemannian
isometry h : M → N , i.e. h is a C1-diffeomorphism from M onto N satisfying

〈dh(x)(v), dh(x)(w)〉h(x) = 〈v, w〉x

for every x ∈M and every v, w ∈ TxM (where 〈·, ·〉p is the scalar product defined in TpM). I.
Garrido, J.A. Jaramillo and Y.C. Rangel proved in [42] a version of the Myers-Nakai theorem
(see [94], [96]) for infinite-dimensional Riemannian manifolds under the assumption that the
Riemannian manifold is C1-uniformly bumpable. Therefore, from [42] and Corollary 7.1.2, we
can deduce the following assertion.

Corollary 7.1.3. Let M and N be complete Riemannian manifolds. Then M and N are
equivalent Riemannian manifolds if, and only if, C1

b (M) and C1
b (N) are equivalent as normed

algebras. Moreover, every normed algebra isomorphism T : C1
b (N) → C1

b (M) is of the form
T (f) = f ◦ h, where h : M → N is a Riemannian isometry.

A version for uniformly bumpable complete Riemannian manifolds of the Deville-Godefroy-
Zizler smooth variational principle [22] (DGZ smooth variational principle, for short) was
proved in [5]. Thus, from [5] and Corollary 7.1.2 we deduce the following corollary. Recall
that a function f : M → R ∪ {∞} attains its strong minimum on M at x ∈ M if f(x) =
inf{f(z) : z ∈ M} and dM (xn, x) → 0 whenever {xn}∞n=1 is a sequence of points of M such
that f(xn)→ f(x). A function f : M → R ∪ {∞} is said to be proper whether f 6=∞.
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Corollary 7.1.4. (DGZ smooth variational principle for Riemannian manifolds). Let M be
a complete Riemannian manifold and let f : M → R ∪ {∞} be a lower semicontinuous (lsc)
function which is bounded below and proper. Then, for each ε > 0 there is a bounded, Lipschitz
and C1-smooth function ϕ : M → R such that

1. f − ϕ attains its strong minimum on M ,

2. ||ϕ||∞ < ε and ||dϕ||∞ < ε.

7.2 Scalar derivatives on Finsler manifolds

Let M and N be metric spaces, f : M → N a continuous mapping and let x ∈M ′, where M ′
is the set of accumulation points of M . The lower and upper scalar derivatives of f at x
are defined as

D−x f = lim inf
z→x

dN (f(z), f(x))

dM (z, x)
, D+

x f = lim sup
z→x

dN (f(z), f(x))

dM (z, x)
.

WhenM and N are Banach spaces and f : M → N is differentiable at x, then D+
x f = ||f ′(x)||

and, if in addition f ′(x) is invertible, then D−x f = ||f ′(x)−1||−1 (see [70]). An analogous
statement holds for smooth mappings between complete Riemannian manifolds: if f : M → N
is a C1-smooth mapping between complete Riemannian manifolds, then D+

x f = ||df(x)||x. In
addition, if df(x) ∈ Isom(TxM,Tf(x)N), then D−x f = ||[df(x)]−1||−1

f(x) (see [50]). In the same
paper, the authors prove that if f : M → N is a C1-smooth mapping between C1 Finsler
manifolds in the sense of Palais, then D+

x f ≤ ||df(x)||x for every x ∈ M . In addition, if
df(x) ∈ Isom(TxM,Tf(x)N), then D−x f ≥ ||[df(x)]−1||−1

f(x).

We are going to prove that, actually, the equality holds for C1 Finsler manifolds in the
sense of Palais.

Proposition 7.2.1. Let M and N be C1 Finsler manifolds in the sense of Neeb-Upmeier, and
let f : M → N be a C1-smooth mapping.

(i) For every x ∈M we have that

D+
x f ≤ KxPf(x)||df(x)||x and ||df(x)||x ≤ Pf(x)D

+
x f,

where Kx, Pf(x) ≥ 1 are the constants given in Lemma 5.3.2(1). In addition, if df(x) ∈
Isom(TxM,Tf(x)N), then

D−x f ≤ Kx||[df(x)]−1||−1
f(x) and ||[df(x)]−1||−1

f(x) ≤ KxPf(x)D
−
x f.

(ii) If the manifold M is K-weak-uniform and the manifold N is P -weak-uniform, then for
every x ∈ M we have that D+

x f ≤ KP ||df(x)||x and ||df(x)||x ≤ PD+
x f . In addition,

if df(x) ∈ Isom(TxM,Tf(x)N), then D−x f ≤ K||[df(x)]−1||−1
f(x) and ||[df(x)]−1||−1

f(x) ≤
KPD−x f .

(iii) If the manifold M is K-uniform and the manifold N is P -uniform, then for every x ∈M
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we have that D+
x f ≤ K2P 2||df(x)||x and ||df(x)||x ≤ P 2D+

x f . In addition, if df(x) ∈
Isom(TxM,Tf(x)N), then D−x f ≤ K2||[df(x)]−1||−1

f(x) and ||[df(x)]−1||−1
f(x) ≤ K

2P 2D−x f .

(iv) Thus, if the manifolds M and N are Finsler manifolds in the sense of Palais, then for
every x ∈M we have that D+

x f = ||df(x)||x. In addition, if df(x) ∈ Isom(TxM,Tf(x)N),
then D−x f = ||[df(x)]−1||−1

f(x).

Proof. (i) Let us denote by X and Y the Banach spaces where M and N are modeled, respec-
tively. Let us fix x ∈M and y = f(x) ∈ N . By Lemma 5.3.2, there are constants Kx, Py ≥ 1
and charts (U,ϕ) of M at x and (V, ψ) of N at y, such that ϕ(x) = 0, ψ(y) = 0, f(U) ⊂ V , ϕ
is Kx-bi-Lipschitz with the equivalent norm ||| · |||x := ||dϕ−1(0)(·)||x and ψ is Py-bi-Lipschitz
with the equivalent norm ||| · |||y = ||dψ−1(0)(·)||y.

Let us prove the first inequality. Using the inequality (5.7), it is easy to prove that there
exists r > 0 such that for every z ∈ BM (x, 2r)

||df(z)||z ≤ KxPy||df(x)||x,

where ||df(z)||z = sup{||df(z)(v)||f(z) : ||v||z ≤ 1}. Now, for each z ∈ BM (x, r) with z 6= x
there exists a C1-smooth path γ : [0, 1] → M such that γ(0) = x, γ(1) = z and `(γ) ≤
dM (x, z) + min{r, ε dM (x, z)}. So, γ(t) ∈ BM (x, 2r) for every t ∈ [0, 1] and

dN (f(x), f(z)) ≤ `(f ◦ γ) =

∫ 1

0
||df(γ(t))(γ′(t))||f(γ(t))dt ≤

∫ 1

0
||df(γ(t))||γ(t)||γ′(t)||γ(t)dt

≤ KxPy||df(x)||x `(γ) ≤ (1 + ε)KxPy||df(x)||x dM (x, z).

Thus, D+
x f ≤ KxPy||df(x)||x.

Let us prove the reverse inequality. First, let us consider the case N = R. Let us fix
v ∈ TxM with ||v||x = 1, choose a C1-smooth curve γ : (−δ, δ) → M with γ(0) = x and
γ′(0) = v. Then the function f ◦ γ : (−δ, δ) → R is C1-smooth with f ◦ γ(0) = f(x) and
df(x)(v) = (f ◦ γ)′(0). Since the map t 7→ ||γ′(t)||γ(t) is continuous on (−δ, δ), for every ε > 0
there exists r > 0 with r < δ such that∣∣||γ′(t)||γ(t) − ||γ′(0)||γ(0)

∣∣ < ε for every t ∈ [−r, r].

Hence,

|df(x)(v)| = |(f ◦ γ)′(0)| =
∣∣∣∣limt→0

(f ◦ γ)′(t)− (f ◦ γ)′(0)

t

∣∣∣∣
=

∣∣∣∣limt→0

(f ◦ γ)′(t)− (f ◦ γ)′(0)

dM (γ(t), γ(0))
· dM (γ(t), γ(0))

t

∣∣∣∣
≤
∣∣∣∣lim sup

z→x

dN (f(z), f(x))

dM (z, x)

∣∣∣∣ · ∣∣∣∣lim sup
t→0

dM (γ(t), γ(0))

t

∣∣∣∣
≤ D+

x f · Lip(γ|[−r,r]) ≤ D
+
x f · sup

{
||γ′(s)||γ(s) : s ∈ [−r, r]

}
≤ D+

x f · (||γ′(0)||γ(0) + ε) = D+
x f · (||v||x + ε) ≤ (1 + ε)D+

x f.

This holds for every v ∈ TxM with ||v||x = 1 and ε > 0, thus ||df(x)||x ≤ D+
x f .
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Now, let us consider the general case, i.e. f : M → N where N is a C1 Finsler manifold in
the sense of Neeb-Upmeier. Let us denote y = f(x) ∈ N . By Lemma 5.3.2, there is a constant
Py ≥ 1 and a chart (V, ψ) of N at y, such that ψ(y) = 0 and ψ is Py-bi-Lipschitz with the
equivalent norm ||| · |||y = ||dψ−1(0)(·)||y. If ||df(x)||x > PyL, then there are ξ ∈ Tf(x)N

∗ and
v ∈ TxM such that

||v||x = ||ξ||∗f(x) = 1 and |ξ(df(x)(v))| > PyD
+
x f.

Let us define the function

g : f−1(V )→ R, as g(z) = ξ ◦ dψ−1(0)(ψ(f(z))).

Then, on the one hand,

|dg(x)(v)| = |ξ ◦ dψ−1(0)(dψ(f(x))df(x)(v))| = |ξ(df(x)(v))| > PyD
+
x f. (7.1)

On the other hand, by the real case

||dg(x)(v)|| ≤ D+
x g = lim sup

z→x

∣∣ξ ◦ dψ−1(0)(ψ(f(z)))− ξ ◦ dψ−1(0)(ψ(f(x)))
∣∣

dM (z, x)

≤ ||ξ||∗f(x) lim sup
z→x

||dψ−1(0)(ψ(f(z)))− dψ−1(0)(ψ(f(x)))||y
dM (z, x)

= lim sup
z→x

|||ψ ◦ f(z)− ψ ◦ f(x)|||y
dM (z, x)

≤ Py lim sup
z→x

dN (f(z), f(x))

dM (z, x)
= PyD

+
x f,

which contradicts (7.1).

The proof of the second part follows along the same lines as that for the Riemannian case
(see [50]).

(ii), (iii) and (iv) follow from (i), Properties 5.2.3(5) and the fact that ifM and N are Neeb-
Upmeier K-weak-uniform and P -weak-uniform, respectively, then Kx = K and Pf(x) = P for
every x ∈M .

7.3 Deville-Godefroy-Zizler variational principle on Finsler manifolds

In this section, the Deville-Godefroy-Zizler smooth variational principle will be extended to
the class of C1 Finsler manifolds in the sense of Neeb-Upmeier weak-uniform, provided that
they are C1-uniformly bumpable. This proof follows the ideas of the Riemannian case [5].

Proposition 7.3.1. (DGZ smooth variational principle for Finsler manifolds). Let M be a
complete and C1-uniformly bumpable C1 Finsler manifold in the sense of Neeb-Upmeier K-
weak-uniform, and let f : M → R∪ {∞} be a lsc function which is bounded below and proper.
Then, for each ε > 0 there is a bounded, Lipschitz and C1-smooth function ϕ : M → R such
that:

1. f − ϕ attains its strong minimum on M ,

2. ||ϕ||∞ < ε and ||dϕ||∞ < ε.
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Proof. D. Azagra, J. Ferrera and F. López-Mesas showed the above result for Riemannian
manifolds in [5]. They split the proof into three lemmas. Following their steps, we must only
prove the following lemma:

Lemma 7.3.2. Let M be a complete C1 Finsler manifold in the sense of Neeb-Upmeier K-
weak uniform. Then, the vector space

C1
b (M) = {f : M → R : f is C1-smooth, ||f ||∞ <∞ and ||df ||∞ <∞},

endowed with the norm ||f ||C1
b

= max{||f ||∞, ||df ||∞} is a Banach space.

Let us recall that ||df ||∞ = supx∈M ||df(x)||x and ||df(x)||x = sup{|df(x)(v)| : v ∈
TxM, ||v||x ≤ 1}. We only have to show that (C1

b (M), || · ||C1
b
) is complete. Let (φn)∞n=1

be a Cauchy sequence of C1
b (M), then the sequences (φn)∞n=1 and (dφn)∞n=1 uniformly con-

verge to continuous functions φ : M → R and ψ : M → TM∗, respectively, where ψ is defined
as

ψ(x) = lim
n→∞

dφn(x) ∈ TxM∗, for every x ∈M.

First of all, we shall prove that dφ = ψ. For a fixed p ∈ M , there is a C1-smooth chart
(U,ϕ) of M at p satisfying conditions (P1) and (NU3) of Definition 5.2.1, ϕ(p) = 0 and
ϕ : U → V := ϕ(U) ⊂ X. By Lemma 5.3.2 the chart ϕ is K-bi-Lipschitz, i.e. ϕ and ϕ−1

are K-Lipschitz with the (equivalent) norm ||| · ||| := ||dϕ−1(0)(·)||p considered on X. Let us
define

φ̃n = φn ◦ ϕ−1 : V ⊂ X → R and φ̃ = φ ◦ ϕ−1 : V ⊂ X → R.

Fix r > 0 such that Br := {x ∈ X : |||x||| < r} ⊂ V ⊂ X. For every x ∈ Br we have

|||dφ̃m(x)− dφ̃n(x)|||

= sup
{
|dφ̃m(x)(v)− dφ̃n(x)(v)| : v ∈ X, |||v||| = 1

}
= sup

{
|(dφm(ϕ−1(x))− dφn(ϕ−1(x)))(dϕ−1(x)(v))| : v ∈ X, |||v||| = 1

}
(7.2)

≤ sup
{
||dφm(ϕ−1(x))− dφn(ϕ−1(x))||ϕ−1(x)||dϕ−1(x)(v)||ϕ−1(x) : v ∈ X, |||v||| = 1

}
≤ K||dφm − dφn||∞ sup{||dϕ−1(0)(v)||p : v ∈ X, |||v||| = 1} = K||dφm − dφn||∞.

Thus, for every h ∈ Br

|(φ̃m(h)− φ̃m(0))−(φ̃n(h)− φ̃n(0))| ≤ Lip|||·||| (φ̃m − φ̃n)|Br |||h||| (7.3)

≤
(

sup
x∈Br

|||dφ̃m(x)− dφ̃n(x)|||
)
|||h||| ≤ K||dφm − dφn||∞|||h|||.

On the one hand, (dφm)∞m=1 is a Cauchy sequence with the norm || · ||∞, and, by inequality
(7.3), for every ε > 0 there exists a n0 ∈ N such that

|(φ̃m(h)− φ̃m(0))− (φ̃n(h)− φ̃n(0))| < ε

3
|||h|||,

for every h ∈ Br and every m,n ∈ N with m,n ≥ n0. Since {φ̃m}∞m=1 uniformly converges to
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φ̃, we obtain that

|(φ̃(h)− φ̃(0))− (φ̃n(h)− φ̃n(0))| ≤ ε

3
|||h|||, for n ≥ n0 and h ∈ Br. (7.4)

On the other hand, it is easy to prove that

dφ̃n(0)
n→∞−−−→ ψ(p) ◦ dϕ−1(0) since dφn(p)

n→∞−−−→ ψ(p). (7.5)

In addition, ∣∣∣∣∣ φ̃n0(h)− φ̃n0(0)

|||h|||
− dφ̃n0(0)

(
h

|||h|||

)∣∣∣∣∣ |||h|||→0−−−−−→ 0. (7.6)

Hence, by the inequalities (7.4), (7.5) and (7.6), we can take h small enough such that

∣∣∣∣∣ φ̃(h)− φ̃(0)− ψ(p) ◦ dϕ−1(0)(h)

|||h|||

∣∣∣∣∣
≤

∣∣∣∣∣(φ̃(h)− φ̃(0))− (φ̃n0(h)− φ̃n0(0))

|||h|||

∣∣∣∣∣+

∣∣∣∣∣ φ̃n0(h)− φ̃n0(0)

|||h|||
− dφ̃n0(0)

(
h

|||h|||

)∣∣∣∣∣
+

∣∣∣∣(dφ̃n0(0)− ψ(p) ◦ dϕ−1(0))

(
h

|||h|||

) ∣∣∣∣ < ε.

So, φ is differentiable at p and dφ(p) = ψ(p). Indeed,

dφ(p) = d(φ̃ ◦ ϕ)(p) = dφ̃(0) ◦ dϕ(p)

= ψ(p) ◦ dϕ−1(0) ◦ dϕ(p) = ψ(p) ◦ d(ϕ−1 ◦ ϕ)(p) = ψ(p).

Now, we will show that dφ = ψ is continuous. For every ε > 0, there exists n0 ∈ N such
that ||dφn(x)−dφm(x)||x ≤ ε/3K for everym,n ≥ n0 and x ∈M . Then, ||dφn(x)−dφ(x)||x ≤
ε/3K for every x ∈M and n ≥ n0. Let us define

φ̃n = φn ◦ ϕ−1 : V ⊂ X → R and φ̃ = φ ◦ ϕ−1 : V ⊂ X → R,

which satisfy

|||dφ̃(x)− dφ̃(0)||| ≤ |||dφ̃(x)− dφ̃n0(x)|||+ |||dφ̃n0(x)− dφ̃n0(0)|||+ |||dφ̃n0(0)− dφ̃(0)|||

≤ K||dφ− dφn0 ||∞ + |||dφ̃n0(x)− dφ̃n0(0)|||+K||dφn0 − dφ||∞,

for every x ∈ Br ⊂ V ⊂ X (the last inequality is consequence of (7.2)). Since ||dφ−dφn0 ||∞ ≤
ε/3K and dφ̃n0 is continuous at 0, there exists δ > 0 such that |||dφ̃(x)−dφ̃(0)||| < ε whenever
x ∈ X with |||x||| < δ. Thus, dφ̃ is continuous at 0 and dφ is continuous at p.

Remark 7.3.3. It is worth noting that if a C1 Finsler manifold M in the sense of Neeb-
Upmeier satisfies the DGZ smooth variational principle, then it is necessarily modeled on a
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Banach space X with a C1-smooth and Lipschitz bump function. Indeed, by the DGZ smooth
variational principle, there exists a C1-smooth and Lipschitz function φ : M → R such that

• g = 1− φ attains its strong minimum at x0 ∈M ,

• ||φ||∞ < 1
4 and ||dφ||∞ < 1

4 .

Since x0 is the strong minimum of g on M , for every δ > 0 there exists a > 0 such that

g(y) ≥ a+ g(x0) for every y ∈M with dM (y, x0) > δ. (7.7)

Let us take ϕ : U → X a chart with x0 ∈ U satisfying inequality (5.2) with the constant
Kx0 ≥ 1. Let us choose δ > 0 such that BM (x0, 2δ) ⊂ U , ϕ(BM (x0, 2δ)) is bounded in X, and
the corresponding constant a > 0 satisfies the above inequality (7.7) for δ. Let θ : R→ R be a
C∞-smooth and Lipschitz function with

θ(t) =

{
1 if t ≤ g(x0)

0 if t ≥ g(x0) + a
and Lip(θ) ≤ 2/a.

Let us define b : X → R by b(x) = θ(g(ϕ−1(x))) for every x ∈ ϕ(BM (x0, 2δ)), and b(x) = 0
whenever x 6∈ ϕ(BM (x0, 2δ)). Then, it is clear that b is a C1-smooth bump function on X and
Lip(b) ≤ Kx0

2a .

7.4 A Myers-Nakai theorem on Finsler manifolds

In this section, we are interested in characterizing the Finsler structure of a Finsler manifold
M in terms of the space of real-valued, bounded and Ck-smooth functions defined on M with
bounded derivative. Hence, we will extend the Myers-Nakai theorem to the class of Ck Finsler
manifolds in the sense of Palais, provided that they are Ck-uniformly bumpable.

From now on, we shall refer to Ck Finsler manifolds in the sense of Palais as Ck Finsler
manifolds, and k ∈ N∪{∞}. We shall use the standard notation of Ck(U, Y ) for the set of all
k-times continuously differentiable mappings defined on an open subset U of a Banach space
(Finsler manifold) taking values into a Banach space (Finsler manifold) Y . We shall write
Ck(U) whenever Y = R.

7.4.1 On weakly smooth mappings and the algebra Ckb (M)

Now, let us recall the concept of weakly Ck-smooth mapping.

Definition 7.4.1. Let X and Y be Banach spaces and consider a mapping f : U → Y , where
U is an open subset of X. The mapping f is said to be weakly Ck-smooth at the point x0

whenever there is an open neighborhood Ux0 of x0 such that y∗ ◦ f is Ck-smooth at Ux0, for
every y∗ ∈ Y ∗. The mapping f is said to be weakly Ck-smooth on U whenever f is weakly
Ck-smooth at every point x ∈ U .

On the one hand, J. M. Gutiérrez and J.L. G. Llavona [49] proved that if f : U → Y
is weakly Ck-smooth on U , then g ◦ f ∈ Ck(U) for all g ∈ Ck(Y ). They also proved that
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if f : U → Y is weakly Ck-smooth on U , then f ∈ Ck−1(U). For k = 1, the above yields
that every weakly C1-smooth mapping on U is continuous on U . Also, for k = ∞, every
weakly C∞-smooth mapping on U is C∞-smooth on U . M. Bachir and G. Lancien [12] proved
that, if the Banach space Y has the Schur property, then the concept of weakly Ck-smoothness
coincides with the concept of Ck-smoothness. On the other hand, there are examples of weakly
C1-smooth mappings that are not C1-smooth (see [49] and [12]).

Definition 7.4.2. Let M and N be Ck Finsler manifolds modeled on X and Y , respectively,
and let U ⊂ M , O ⊂ N be open subsets of M and N . A mapping f : U → N is said to be
weakly Ck-smooth at the point x0 of U if there exist charts (W,ϕ) of M at x0 and (V, ψ) of
N at f(x0) such that W ⊂ U , f(W ) ⊂ V and

ψ ◦ f ◦ ϕ−1 : ϕ(W ) ⊂ X → Y

is weakly Ck-smooth at ϕ(W ). We say that f : U → N is weakly Ck-smooth in U if f
is weakly Ck-smooth at every point x ∈ U . We say that a bijection f : U → O is a weakly
Ck-diffeomorphism if f and f−1 are weakly Ck-smooth on U and O, respectively. Notice that
these definitions do not depend on the chosen charts.

W ⊂M
f // V ⊂ N

ψ
��
ψ(V ) ⊂ Y

y∗

��
ϕ(W ) ⊂ X

ϕ−1

OO

y∗◦ψ◦f◦ϕ−1
// R

Let us note that there are homeomorphisms which are weakly C1-smooth but not differ-
entiable. Indeed, we follow [49, Example 3.9] and define g : R→ c0(N) and h : c0(N)→ c0(N)
as

g(t) = (0,
1

2
sin(2t), . . . ,

1

n
sin(nt), . . . ) and h(x) = x+ g(x1)

for every t ∈ R and x = (x1, . . . , xn, . . . ) ∈ c0. The mapping h is an homeomorphism,
h−1(y) = y − g(y1) for every y = (y1, . . . , yn, . . . ) ∈ c0, and h is weakly C1-smooth on c0(N).
Notice that if h were differentiable at a point x ∈ c0 with x1 = 0, then

h′(x)(1, 0, 0, . . . ) = (1, 1, 1, . . . ) ∈ `∞ \ c0,

which is a contradiction.

Now, let us consider different definitions of isometries between Ck Finsler manifolds.

Definition 7.4.3. Let (M, || · ||M ) and (N, || · ||N ) be Ck Finsler manifolds and a bijection
h : M → N .

(MI) We say that h is a metric isometry for the Finsler metrics, if

dN (h(x), h(y)) = dM (x, y), for every x, y ∈M.
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(FI) We say that h is a Ck Finsler isometry if it is a Ck-diffeomorphism satisfying

||dh(x)(v)||h(x) = ||(h(x), dh(x)(v))||N = ||(x, v)||M = ||v||x,

for every x ∈ M and v ∈ TxM . We say that the Finsler manifolds M and N are Ck

equivalent as Finsler manifolds if there is a Ck Finsler isometry between M and N .

(ω-FI) We say that h is a weak Ck Finsler isometry if it is a weakly Ck-diffeomorphism
and a metric isometry for the Finsler metrics. We say that the Finsler manifolds M
and N are weakly Ck equivalent as Finsler manifolds if there is a weak Ck Finsler
isometry between M and N .

Proposition 7.4.4. Let M and N be Ck Finsler manifolds. Let us assume that there is a
Ck-diffeomorphism and metric isometry (for the Finsler metrics) h : M → N . Then h is a
Ck Finsler isometry.

Proof. Let us fix x ∈ M and y = h(x) ∈ N . For every ε > 0, there are r > 0 and charts
ϕ : BM (x, r) ⊂ M → X and ψ : BN (y, r) ⊂ N → Y satisfying property (P2) of Definition
5.2.1 and inequality (5.13). Since h : M → N is a metric isometry, h is a bijection from
BM (x, r) onto BN (y, r).

Let us consider the equivalent norms on X and Y defined as ||| · |||x := ||dϕ−1(ϕ(x))(·)||x
and ||| · |||y = ||dψ−1(ψ(y))(·)||y, respectively.

Since h is a metric isometry, we obtain from Lemma 5.3.2, for p, q in an open neighborhood
of ϕ(x),

|||ψ ◦ h ◦ ϕ−1(p)− ψ ◦ h ◦ ϕ−1(q)|||y ≤ (1 + ε)dN (h ◦ ϕ−1(p), h ◦ ϕ−1(q))

= (1 + ε)dM (ϕ−1(p), ϕ−1(q)) ≤ (1 + ε)2|||p− q|||x.

Thus, sup{|||d(ψ ◦ h ◦ ϕ−1)(ϕ(x))(w)|||y : |||w|||x ≤ 1} ≤ (1 + ε)2. Now, for every v ∈ TxM
with v 6= 0, let us write w = dϕ(x)(v) ∈ X. We have

||dh(x)(v)||y = ||dψ−1(ψ(y))dψ(y)dh(x)(v)||y = |||d(ψ ◦ h)(x)(v)|||y
= |||d(ψ ◦ h)(x)dϕ−1(ϕ(x))(w)|||y = |||d(ψ ◦ h ◦ ϕ−1)(ϕ(x))(w)|||y
≤ (1 + ε)2|||w|||x = (1 + ε)2||v||x.

Since this inequality holds for every ε > 0 and the same argument works for h−1, we
conclude that ||dh(x)(v)||y = ||v||x for all v ∈ TxM . Thus, h is a Ck Finsler isometry.

Let us now turn our attention to the Banach algebra C1
b (M), the algebra of all real-valued,

C1-smooth and bounded functions with bounded derivative defined on a C1 Finsler manifold
M , i.e.

C1
b (M) = {f : M → R : f ∈ C1(M), ||f ||∞ <∞ and ||df ||∞ <∞},

where ||f ||∞ := sup{|f(x)| : x ∈ M} and ||df ||∞ := sup{||df(x)||x : x ∈ M}, introduced
in the previous section. Recall that the usual norm considered on C1

b (M) is ||f ||C1
b

=

max{||f ||∞, ||df ||∞} for every f ∈ C1
b (M) and (C1

b (M), || · ||C1
b (M)) is a Banach space (see
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Lemma 7.3.2). In fact (C1
b (M), 2|| · ||C1

b (M)) is a Banach algebra. Let us notice that, by
Proposition 5.3.1, we have ||df ||∞ = Lip(f).

For 2 ≤ k ≤ ∞ and a Ck Finsler manifold M , let us consider the algebra Ckb (M) of all
real-valued, Ck-smooth and bounded functions that have bounded first derivative, i.e.

Ckb (M) = {f : M → R : f ∈ Ck(M), ||f ||∞ <∞ and ||df ||∞ <∞} = Ck(M) ∩ C1
b (M).

with the norm || · ||C1
b
. Thus, Ckb (M) is a subalgebra of C1

b (M). Nevertheless, it is not a
Banach algebra.

A function ϕ : Ckb (M)→ R (1 ≤ k ≤ ∞) is said to be an algebra homomorphism whether
for all f, g ∈ Ckb (M) and λ, η ∈ R,

(i) ϕ(λf + ηg) = λϕ(f) + ηϕ(g), and

(ii) ϕ(f · g) = ϕ(f)ϕ(g).

Let us denote by H(Ckb (M)) the set of all nonzero algebra homomorphisms, i.e.

H(Ckb (M)) = {ϕ : Ckb (M)→ R : ϕ is an algebra homomorphism and ϕ(1) = 1}.

Let us list some of the basic properties of the algebra Ckb (M) and the algebra homomor-
phisms H(Ckb (M)). They can be checked as in the Riemannian case (see [42], [45] and [62]).

(a) If ϕ ∈ H(Ckb (M)), then ϕ 6= 0 if and only if ϕ(1) = 1.

(b) If ϕ ∈ H(Ckb (M)), then ϕ is positive, i.e. ϕ(f) ≥ 0 for every f ≥ 0.

(c) If the Ck Finsler manifold M is modeled on a Banach space that admits a Lipschitz
and Ck-smooth bump function, then Ckb (M) is a unital algebra that separates points
and closed sets of M . Indeed, let us take x ∈ M , and C ⊂ M a closed subset of M
with x 6∈ C. Let us take r > 0 small enough so that C ∩ BM (x, r) = ∅ and a chart
ϕ : BM (x, r) → X satisfying property (P2) of Definition 5.2.1. Let us take s > 0 small
enough so that ϕ(x) ∈ B(ϕ(x), s) ⊂ ϕ(B(x, r/2)) ⊂ X and a Lipschitz and Ck-smooth
bump function b : X → R with b(ϕ(x)) = 1 and b(z) = 0 for every z 6∈ B(ϕ(x), s). Let
us define h : M → R as h(p) = b(ϕ(p)) for every p ∈ BM (x, r) and h(p) = 0 otherwise.
Then h ∈ Ckb (M), h(x) = 1 and h(c) = 0 for every c ∈ C.

(d) The space H(Ckb (M)) is closed as a topological subspace of RCkb (M) with the product
topology. Moreover, since every function in Ckb (M) is bounded, it can be checked that
H(Ckb (M)) is compact in RCkb (M).

(e) If Ckb (M) separates points and closed subsets, thenM can be embedded as a topological
subspace of H(Ckb (M)) by identifying every x ∈M with the point evaluation homomor-
phism δx given by δx(f) = f(x) for every f ∈ Ckb (M). Also, it can be checked that the
subset δ(M) = {δx : x ∈M} is dense in H(Ckb (M)). Indeed, let us take ϕ ∈ H(Ckb (M)),
f1, . . . , fn ∈ Ckb (M) and ε > 0. Then there exists p ∈ M such that |δp(fi) − ϕ(fi)| < ε
for all i = 1, . . . , n. Otherwise, the function g =

∑n
i=1(fi − ϕ(fi))

2 ∈ Ckb (M) would
satisfy g ≥ ε and ϕ(g) = 0, which is impossible since ϕ is positive. Therefore, it follows
that H(Ckb (M)) is a compactification of M .
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(f) Every f ∈ Ckb (M) admits a continuous extension f̂ to H(Ckb (M)), where f̂(ϕ) = ϕ(f)

for every ϕ ∈ H(Ckb (M)). Notice that this extension f̂ coincides in H(Ckb (M)) with
the projection πf : RCkb (M) → R, given by πf (ϕ) = ϕ(f), i.e. πf |

H(Ck
b

(M))
= f̂ . In the

following, we shall identify M with δ(M) in H(Ckb (M)).

Proposition 7.4.5. Let M be a complete Ck Finsler manifold that is Ck-uniformly bumpable.
Then, ϕ ∈ H(Ckb (M)) has a countable neighborhood basis in H(Ckb (M)) if and only if ϕ ∈M .

Proof. The assertion can be proved in a similar way to the Riemannian case [42]. Let us give
the proof for completeness. Let us take ϕ ∈ H(Ckb (M)) \M with a countable neighborhood
basis. Since M is dense in H(Ckb (M)) (recall that M is identified with δ(M)) there is a
sequence of points (pn)∞n=1 in M converging at ϕ, i.e. δpn → ϕ. Since ϕ 6∈ M and M is
complete, the sequence (pn)∞n=1 has none Cauchy subsequence. So there exist ε > 0 and
(pnj )

∞
j=1 a subsequence of (pn)∞n=1 such that dM (pnk , pnj ) ≥ ε for every k 6= j.

Since M is Ck-uniformly bumpable, there exist R > 1 and 0 < δ < ε/2 such that we
can construct a sequence {bj}∞j=1 of Ck-smooth bump functions satisfying, for any j ≥ 1, the
following conditions:

1. bj(pn2j ) = 1,

2. bj(q) = 0 whenever dM (q, pn2j ) ≥ δ, and

3. ||dbj ||∞ ≤ R
δ .

Let us define f : M → R by f(x) =
∑

j bj . It is clear that f ∈ Ckb (M), f(pn2j ) = 1 and
f(pn2j+1) = 0 for every j ≥ 1. Therefore, the continuous extended function f̂ : H(Ckb (M))→ R
is such that

f̂(x) =

1 if x ∈ AH(Ckb (M))
,

0 if x ∈ BH(Ckb (M))
,

where A = {pn2j : j ≥ 1} and B = {p2j+1 : j ≥ 1}. However, ϕ ∈ AH(Ckb (M)) ∩BH(Ckb (M)) and
thus f̂(ϕ) = 0 and f̂(ϕ) = 1, which is a contradiction.

Conversely, if ϕ ∈ M we can consider the open ball in M , Bn = BM (ϕ, 1
n). Then,

{Bn
H(Ckb (M))

: n ∈ N} is a countable neighborhood basis in H(Ckb (M)).

7.4.2 A Myers-Nakai Theorem

Our main result is the following Banach-Stone type theorem for a certain class of Finsler
manifolds. It states that the algebra structure of Ckb (M) determines the Ck Finsler manifold.
Let us begin by defining the class of Banach spaces where the Finsler manifolds shall be
modeled.

Definition 7.4.6. A Banach space (X, || · ||) is said to be k-admissible if for every equivalent
norm | · | and ε > 0, there are an open subset B ⊃ {x ∈ X : |x| ≤ 1} of X and a Ck-smooth
function g : B → R such that
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(i) |g(x)− |x|| < ε for x ∈ B, and

(ii) Lip(g) ≤ (1 + ε) for the norm | · |.

It is easy to prove the following lemma.

Lemma 7.4.7. Let X be a Banach space with one of the following properties:

(A.1) Density of the set of equivalent Ck-smooth norms: every equivalent norm on X can be
approximated in the Hausdorff metric by equivalent Ck-smooth norms [22], i.e. for every
equivalent norm | · | on X and every ε > 0, there exists an equivalent Ck-smooth norm
||| · ||| on X such that

(1− ε)|x| ≤ |||x||| ≤ (1 + ε)|x| on X.

(A.2) C1-fine approximation by Ck-smooth functions (k ≥ 2) and density of the set of equiva-
lent C1-smooth norms: For every C1-smooth function f : X → R and every ε > 0, there
is a Ck-smooth function g : X → R satisfying |f(x)− g(x)| < ε and ||f ′(x)− g′(x)|| < ε
for all x ∈ X (see [56], [11], [92] and Chapter 3); also, every equivalent norm defined
on X can be approximated in the Hausdorff metric by equivalent C1-smooth norms (see
[22, Theorem II 4.1]).

Then X is k-admissible.

Proof. For the reader’s convenience, we present the proof of (A.2). Fix | · | an equivalent
norm on X and ε > 0, let us take α > 0 such that 2α + α2 < ε and the open subset
B := {x ∈ X : |x| < 1 +α}. It is clear that {x ∈ X : |x| ≤ 1} ⊂ B. Since the set of equivalent
C1-smooth norms in X is dense in the set of equivalent norms in X, there exists an equivalent
C1-smooth norm ||| · ||| on X such that

(1− α)|x| ≤ |||x||| ≤ (1 + α)|x| on X.

In addition, by the C1-fine approximation property, there exists a Ck-smooth function g :
X → R such that ∣∣|||x||| − g(x)

∣∣ < α and
∣∣∣∣||| · |||′(x)− g′(x)

∣∣∣∣ < α.

Hence,∣∣|x| − g(x)
∣∣ ≤ ∣∣|||x||| − g(x)

∣∣+
∣∣|x| − |||x|||∣∣ < α+ α|x| < 2α+ α2 < ε on B,

and Lip(g) ≤ α+ (1 + α) ≤ (1 + ε) with the norm | · |.

Banach spaces satisfying condition (A.2) are, for instance, separable Banach spaces with a
Lipschitz Ck-smooth bump function. Banach spaces satisfying condition (A.1) for k = 1 are,
for instance, Weakly Compactly Generated (WCG) Banach spaces with a C1-smooth bump
function.
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Theorem 7.4.8. Let M and N be complete Ck Finsler manifolds that are Ck-uniformly
bumpable and are modeled on k-admissible Banach spaces. Then M and N are weakly Ck

equivalent as Finsler manifolds if and only if Ckb (M) and Ckb (N) are equivalent as normed
algebras. Moreover, every normed algebra isomorphism T : Ckb (N) → Ckb (M) is of the form
T (f) = f ◦ h where h : M → N is a weak Ck Finsler isometry. In particular, h is a Ck−1

Finsler isometry whenever k ≥ 2.

In order to prove Theorem 7.4.8, we shall follow the ideas of the Riemmanian case [42].
Let us divide the proof into several propositions.

Proposition 7.4.9. Let M and N be Ck Finsler manifolds such that N is modeled on a k-
admissible Banach space Y . Let h : M → N be a map such that T : Ckb (N) → Ckb (M) given
by T (f) = f ◦ h is continuous. Then h is ||T ||-Lipschitz for the Finsler metrics.

Proof. For every y ∈ N , let us take a chart ψy : Vy → Y with ψy(y) = 0. Let us consider
the equivalent norm on Y , ||| · |||y := ||dψ−1

y (0)(·)||y and fix ε > 0. Let us define the ball
B|||·|||y(z, t) := {w ∈ Y : |||w − z|||y < t}.

Fact. For every r > 0 such that B|||·|||y(0, r) ⊂ ψy(Vy) and every ε̃ > 0, there exists a
Ck-smooth and Lipschitz function fy : Y → R such that

1. fy(0) = r,

2. ||fy||∞ := sup{|fy(z)| : z ∈ Y } = r,

3. Lip(fy) ≤ (1 + ε)2 for the norm ||| · |||y,

4. fy(z) = 0 for every z ∈ Y with |||z|||y ≥ r, and

5. |||z|||y ≤ r − fy(z) + ε̃ for every |||z|||y ≤ r.

Let us prove the Fact. First of all, let us take r > 0, ε̃ > 0 and 0 < α < min{1, ε4 ,
2ε̃
5r}. Since

N is a Ck Finsler manifold modeled on a k-admissible Banach space Y , there are an open
subset B ⊃ {x ∈ Y : |||x|||y ≤ 1} of Y and a Ck-smooth function g : B → R such that

(i) |g(x)− |||x|||y| < α/2 on B, and

(ii) Lip(g) ≤ (1 + α/2) for the norm ||| · |||y.

Now, let us take a C∞-smooth and Lipschitz function θ : R→ [0, 1] such that

-

6

(i) θ(t) = 0 whenever t ≤ α,

(ii) θ(t) = 1 whenever t ≥ 1− α,

(iii) Lip(θ) ≤ (1 + ε), and

(iv) |θ(t)− t| ≤ 2α for every t ∈ [0, 1 + α]. α 1− α

1
θ

. ..........................
..........................

.........................
........................

........................

.
........................

........................
.........................

..........................
..........................

Let us define

f(x) =

{
θ(g(x)) if x ∈ B,
1 if x ∈ Y \B.
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It is straightforward to verify that f is well defined, Ck-smooth, f(x) = 1 whenever |||x|||y ≥ 1,
f(x) = 0 whenever |||x|||y ≤ α/2, and Lip(f) ≤ (1 + ε)(1 + α/2) for the norm ||| · |||y. Let
us now consider fy : Y → [0, r] as fy(z) = r(1 − f( zr )), which is Ck-smooth, Lipschitz and
satisfies:

(i) fy(0) = r,

(ii) ||fy||∞ = r,

(iii) |fy(z)− fy(x)| ≤ (1 + ε)(1 + α/2)|||z − x|||y ≤ (1 + ε)2|||z − x|||y,

(iv) fy(z) = 0 for every z ∈ Y with |||z|||y ≥ r,

(v) ||| zr |||y ≤
α
2 + g( zr ) ≤ α

2 + 2α + f( zr ) for every |||z|||y ≤ r. Thus, |||z|||y ≤ r(α2 + 2α) +
r − fy(z) ≤ ε̃+ r − fy(z) for every |||z|||y ≤ r.

Let us now prove Proposition 7.4.9. Let us fix p1, p2 ∈ M and ε > 0. Let us consider
σ : [0, 1]→M a piecewise C1-smooth path inM joining p1 and p2, with `(σ) ≤ dM (p1, p2)+ε.
Since h : M → N is continuous, the path σ̂ := h ◦ σ : [0, 1] → N , joining h(p1) and h(p2),
is continuous as well. For every q ∈ σ̂([0, 1]), there is 0 < rq < 1 and a chart ψq : Vq → Y
such that ψq(q) = 0, BN (q, rq) ⊂ Vq and the bijection ψq : Vq → ψq(Vq) is (1 + ε)-bi-Lipschitz
for the norm ||dψ−1

q (0)(·)||q in Y (see Lemma 5.3.2). Since σ̂([0, 1]) is a compact set of N ,
there is a finite family of points 0 = t1 < t2 < · · · < tm = 1 and a family of open intervals
{Ik}mk=1 covering the interval [0, 1] so that, if we define qk := σ̂(tk) and rk := rqk , for every
k = 1, . . . ,m, we have

(a) σ̂(Ik) ⊂ BN (qk, rk/(1 + ε)),

(b) Ij ∩ Ik 6= ∅ if, and only if, |j − k| ≤ 1.

It is clear that σ̂([0, 1]) ⊂
⋃m
k=1BN (qk,

rk
1+ε). Now, let us select a point sk ∈ Ik∩Ik+1 such that

tk < sk < tk+1, for every k = 1, . . . ,m−1. Let us write ak := σ̂(sk), for every k = 1, . . . ,m−1,
ψk := ψqk , Vk := Vqk and ||| · |||k := ||dψ−1

k (0)(·)||qk , for every k = 1, . . . ,m. Notice that
ak ∈ BN (qk,

rk
1+ε) ∩ BN (qk+1,

rk+1

1+ε ), for every k = 1, . . . ,m − 1. Since ψk : Vk → ψk(Vk) is
(1 + ε)-bi-Lipschitz for the norm ||| · |||k in Y , we deduce that ψk(ak) ∈ B|||·|||k(0, rk), for every
k = 1, . . . ,m− 1.

Now, let us we apply the above Fact to rk, ε and ε̃ = ε/2m to obtain functions fk : Y →
[0, rk] satisfying properties (1)–(5), k = 1, . . . ,m. Let us define the Ck-smooth and Lipschitz
functions gk : N → [0, rk] as

gk(z) =

{
fk(ψk(z)) if z ∈ Vk,
0 if z 6∈ Vk,

k = 1, . . . ,m. Then,

(i) gk ∈ Ckb (N),

(ii) gk(qk) = rk,

(iii) |gk(z)− gk(x)| ≤ (1 + ε)3dN (z, x) for all z, x ∈ N ,
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(iv) If z ∈ ψ−1
k (B|||·|||k(0, rk)), then |||ψk(z)|||k ≤ rk and from condition (5) on the Fact, we

obtain

dN (z, qk) ≤ (1 + ε)|||ψk(z)−ψk(qk)|||k = (1 + ε)|||ψk(z)|||k ≤ (1 + ε)(rk− gk(z) + ε/2m).

The Lipschitz constant of gk ◦ h, for k = 1, . . . ,m, is the following

Lip(gk ◦ h) ≤ ||gk ◦ h||C1
b (M) = ||T (gk)||C1

b (M) ≤ ||T ||||gk||C1
b (N)

= ||T ||max{||gk||∞, ||dgk||∞} ≤ ||T ||(1 + ε)3.

Now, since rk = gk(qk) = gk(h(σ(tk))) and ψk(h(σ(sk))) ∈ B|||·|||k(0, rk), we have

dN (h(p1),h(p2)) ≤
m−1∑
k=1

[dN (h(σ(tk)), h(σ(sk))) + dN (h(σ(sk)), h(σ(tk+1)))]

≤
m−1∑
k=1

(1 + ε)[gk(qk)− gk(h(σ(sk)))

+ gk+1(qk+1)− gk+1(h(σ(sk))) + ε/m]

≤
m−1∑
k=1

(1 + ε)[Lip(gk ◦ h)dM (σ(tk), σ(sk))

+ Lip(gk+1 ◦ h)dM (σ(tk+1), σ(sk)) + ε/m]

≤
m−1∑
k=1

||T ||(1 + ε)4[dM (σ(tk), σ(sk)) + dM (σ(tk+1), σ(sk))] + ε(1 + ε)

≤
m−1∑
k=1

||T ||(1 + ε)4`(σ|[tk,tk+1]
) + ε(1 + ε) = ||T ||(1 + ε)4`(σ) + ε(1 + ε)

≤ ||T ||(1 + ε)4(dM (p1, p2) + ε) + ε(1 + ε)

for every ε > 0. Thus, h is ||T ||-Lipschitz.

Lemma 7.4.10. Let M and N be Ck Finsler manifolds such that N is modeled on a Banach
space with a Lipschitz Ck-smooth bump function. Let h : M → N be a homeomorphism such
that f ◦ h ∈ Ckb (M) for every f ∈ Ckb (N). Then, h is a weakly Ck-smooth mapping on M .

Proof. Let us fix x ∈ M and ε = 1. There are charts ϕ : U → X of M at x and ψ : V → Y
of N at h(x) satisfying property (P2) of Definition 5.2.1 and inequality (5.13) on U and V ,
respectively. We can assume that h(U) ⊂ V . Since Y admits a Lipschitz and Ck-smooth
bump function and ψ(h(U)) is an open neighborhood of ψ(h(x)) in Y , there are real numbers
0 < s < r such that B(ψ(h(x)), s) ⊂ B(ψ(h(x)), r) ⊂ ψ(h(U)) and a Lipschitz and Ck-
smooth function α : Y → R such that α(y) = 1 for y ∈ B(ψ(h(x)), s) and α(y) = 0 for
y 6∈ B(ψ(h(x)), r). Let us define U0 := h−1(ψ−1(B(ψ(h(x)), s))) ⊂ U , which is an open
neighborhood of x in M .

Let us check that y∗ ◦ (ψ ◦ h ◦ϕ−1) is Ck-smooth on ϕ(U0) ⊂ X for all y∗ ∈ Y ∗. Following
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the proof of [46, Theorem 4], we define g : N → R as

g(y) =

{
0 whenever y 6∈ V
α(ψ(y)) · y∗(ψ(y)) whenever y ∈ V .

It is clear that g ∈ Ckb (N) and, by assumption, g ◦ h ∈ Ckb (M). Now, it follows that
ψ(h(ϕ−1(z))) ∈ B(ψ(h(x)), s) for every z ∈ ϕ(U0). Thus

y∗ ◦ (ψ ◦ h ◦ ϕ−1)(z) = y∗(ψ(h(ϕ−1(z)))) = α(ψ(h(ϕ−1(z))))y∗(ψ(h(ϕ−1(z))))

= g(h(ϕ−1(z))) = g ◦ h ◦ ϕ−1(z),

for every z ∈ ϕ(U0). Since (g ◦h) ◦ϕ−1 is Ck-smooth on ϕ(U0), we have that y∗ ◦ (ψ ◦h ◦ϕ−1)
is Ck-smooth on ϕ(U0). Thus ψ ◦ h ◦ ϕ−1 is weakly Ck-smooth on ϕ(U0) and h is weakly
Ck-smooth on M .

Proof of Theorem 7.4.8. If h : M → N is a weak Ck Finsler isometry, we can define the
operator T : Ckb (N) → Ckb (M) by T (f) = f ◦ h. Let us check that T is well defined. For
every x ∈ M , there are charts ϕ : U → X of M at x and ψ : V → Y of N at h(x), such that
h(U) ⊂ V and ψ ◦ h ◦ ϕ−1 is weakly Ck-smooth on ϕ(U) ⊂ X. Also, f ◦ ψ−1 is Ck-smooth
on ψ(V ) ⊂ Y . Thus, by [49, Proposition 4.2], (f ◦ ψ−1) ◦ (ψ ◦ h ◦ ϕ−1) = f ◦ h ◦ ϕ−1 is
Ck-smooth on ϕ(U). Therefore, f ◦ h is Ck-smooth on U . Since this holds for every x ∈ M ,
we deduce that f ◦ h is Ck-smooth on M . Moreover, T is an algebra isomorphism with
||T (f)||C1

b (M) = ||f ◦ h||C1
b (M) = ||f ||C1

b (N) for every f ∈ Ckb (N).

Conversely, let T : Ckb (N) → Ckb (M) be a normed algebra isometry. Then, we can define
the mapping h : H(Ckb (M)) → H(Ckb (N)) by h(ϕ) = ϕ ◦ T for every ϕ ∈ H(Ckb (M)). The
mapping h is a bijection. Moreover, h is an homeomorphism. Recall that we identify x ∈ M
with δx ∈ H(Ckb (M)). Thus, h(x) = h(δx) = δx ◦ T . Since h is an homeomorphism, by
Proposition 7.4.5, we obtain that a point ϕ ∈ H(Ckb (M)) has a countable neighborhood basis
in H(Ckb (M)) if, and only if, ϕ ∈ M and the same holds in N . Therefore for every p ∈ N ,
there is a unique point x ∈ M such that h(δx) = δp. Let us check that T (f) = f ◦ h for all
f ∈ Ckb (N). Indeed, for every x ∈M and every f ∈ Ckb (N),

T (f)(x) = δx(T (f)) = (δx ◦ T )(f) = h(δx)(f) = δh(x)(f) = f(h(x)) = f ◦ h(x).

Now, from Proposition 7.4.9 and Lemma 7.4.10 we deduce that h is a weak Ck Finsler
isometry. �

Remark 7.4.11. It is worth mentioning that, for Riemannian manifolds, every metric isom-
etry is a C∞ Finsler isometry. This result was proved by S. Myers and N. Steenrod [95] in the
finite-dimensional case and by I. Garrido, J.A. Jaramillo and Y.C. Rangel [42] in the general
case. Also, S. Deng and Z. Hou [20] obtained a version for finite-dimensional Riemannian-
Finsler manifolds. Nevertheless, there is no a generalization, up to our knowledge, of the
Myers-Steenrod theorem for all Finsler manifolds. Thus, for k = 1 we can only assure that the
metric isometry obtained in Theorem 7.4.8 is weakly C1-smooth.

Let us finish this note with some interesting corollaries of Theorem 7.4.8. First, recall that



7. Applications on Finsler manifolds 133

every separable Banach space with a Lipschitz Ck-smooth bump function satisfies condition
(A.2) and every WCG Banach space with a C1-smooth bump function satisfies condition (A.1)
for k = 1.

Corollary 7.4.12. Let M and N be complete, C1 Finsler manifolds that are C1-uniformly
bumpable and are modeled on WCG Banach spaces. Then M and N are weakly C1 equivalent
as Finsler manifolds if, and only if, C1

b (M) and C1
b (N) are equivalent as normed algebras.

Moreover, every normed algebra isomorphism T : C1
b (N)→ C1

b (M) is of the form T (f) = f ◦h
where h : M → N is a weak C1 Finsler isometry.

Corollary 7.4.13. LetM and N be complete, separable Ck Finsler manifolds that are modeled
on Banach spaces with a Lipschitz and Ck-smooth bump function. Then M and N are weakly
Ck equivalent as Finsler manifolds if and only if Ckb (M) and Ckb (N) are equivalent as normed
algebras. Moreover, every normed algebra isomorphism T : Ckb (N) → Ckb (M) is of the form
T (f) = f ◦ h where h : M → N is a weak Ck Finsler isometry. In particular, h is a Ck−1

Finsler isometry whenever k ≥ 2.

Since every weakly Ck-smooth function with values in a finite-dimensional normed space
is Ck-smooth and, by Remark 6.1.1 and Proposition 6.2.2, every finite-dimensional Ck Finsler
manifold is Ck-uniformly bumpable, we obtain the following Myers-Nakai result for finite-
dimensional Ck Finsler manifolds.

Corollary 7.4.14. Let M and N be complete and finite-dimensional Ck Finsler manifolds.
Then M and N are Ck equivalent as Finsler manifolds if, and only if, Ckb (M) and Ckb (N) are
equivalent as normed algebras. Moreover, every normed algebra isomorphism T : Ckb (N) →
Ckb (M) is of the form T (f) = f ◦ h where h : M → N is a Ck Finsler isometry.

We obtain an interesting application of Finsler manifolds to Banach spaces. Recall the well
known Mazur-Ulam Theorem establishing that every surjective isometry between two Banach
spaces is affine.

Corollary 7.4.15. Let X and Y be WCG Banach spaces with C1-smooth bump functions.
Then X and Y are isometric if, and only if, C1

b (X) and C1
b (Y ) are equivalent as normed

algebras. Moreover, every normed algebra isomorphism T : C1
b (Y ) → C1

b (X) is of the form
T (f) = f ◦ h where h : X → Y is a surjective isometry. In particular, h and h−1 are affine
isometries.

Open Problems

1. Corollary 7.1.1 states that every Lipschitz function defined in a non-separable Rieman-
nian manifold can be uniformly approximated by a C1-smooth and Lipschitz function
with almost the same Lipschitz constant. Can this function be constructed to be C∞-
smooth? Equivalently, do Hilbert spaces satisfy property (A∞)? N. Moulis [92] showed
that every separable Hilbert space has property (A∞). It is an open problem whether
the non-separable Hilbert space has property (A∞).

2. The Deville-Godefroy-Zizler smooth variational principle has proven to be very use-
ful in various areas of nonlinear analysis, in particular, to obtain viscosity solutions of
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Hamilton-Jacobi equations (see [21] and [22]). D. Azagra, J. Ferrera and F. López-
Mesas in [5] developed a subdifferential theory in Riemannian manifolds and used this
variational principle in order to obtain viscosity solutions of Hamilton-Jacobi equations
defined in Riemannian manifolds. An interesting application of these chapters could
be the development of the subdifferential theory in Finsler manifolds and the study of
viscosity solutions of Hamilton-Jacobi equations defined on Finsler manifolds.

3. Is the isometry h : M → N obtained in Theorem 7.4.8 not only a weak Ck Finsler
isometry but also a Ck Finsler isometry? In other words, let M and N be complete
Ck Finsler manifolds that are Ck-uniformly bumpable and are modeled on k-admissible
Banach spaces. Are Ckb (M) and Ckb (N) equivalent as normed algebras if and only if M
and N are Ck equivalent as Finsler manifolds?

4. For Riemannian manifolds, every metric isometry is a C∞ Finsler isometry [95] and
[42]. Nevertheless, there is no a generalization, up to our knowledge, of this result for
all Finsler manifolds. In fact, we do not know whether every weak C1 metric isometry
between Ck Finsler manifolds in the sense of Palais is a C1 Finsler isometry. Let us
note that this assertion does not hold in the Neeb-Upmeier uniform case. If we take M
the Banach space c0(N) with the Finsler structure ||(x, v)||M := ||v||∞, and (N, || · ||N )
the C∞ Finsler manifold in the sense of Neeb-Upmeier uniform with N = c0(N) and
||(x, v)||N = ||(v1, v2 + v1 cos(2x1), . . . , vn + v1 cos(nx1), . . . )||∞. Then, the mapping
h : M → N defined as

h(x) = (x1, x2 +
1

2
sin(2x1), . . . , xn +

1

n
sin(nx1), . . . )

is weakly C1-smooth on M but it is not differentiable.

Also, it is worth noticing that the map h : R → (R2, || · ||1) defined as h(t) = (t, 0)
whenever t ≤ 0 and h(t) = (0, t) whenever t ≥ 0, is an non-surjective isometry between
C∞ Finsler manifolds in the sense of Palais which is not C1-smooth.
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