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A B S T R A C T

The current success of Reinforcement Learning algorithms for its performance in complex environments has
inspired many recent theoretical approaches to cognitive science. Artistic environments are studied within
the cognitive science community as rich, natural, multi-sensory, multi-cultural environments. In this work, we
propose the introduction of Reinforcement Learning for improving the control of artistic robot applications.
Deep Q-learning Neural Networks (DQN) is one of the most successful algorithms for the implementation
of Reinforcement Learning in robotics. DQN methods generate complex control policies for the execution of
complex robot applications in a wide set of environments. Current art painting robot applications use simple
control laws that limits the adaptability of the frameworks to a set of simple environments. In this work,
the introduction of DQN within an art painting robot application is proposed. The goal is to study how the
introduction of a complex control policy impacts the performance of a basic art painting robot application.
The main expected contribution of this work is to serve as a first baseline for future works introducing DQN
methods for complex art painting robot frameworks. Experiments consist of real world executions of human
drawn sketches using the DQN generated policy and TEO, the humanoid robot. Results are compared in terms
of similarity and obtained reward with respect to the reference inputs.
1. Introduction

Artistic environments are considered within cognitive studies as
rich, natural, multi-sensory, multi-cultural environments
(Tversky, Healey, & Kirsh, 2014). Developing robots able to generate
or imitate pieces of art has been a challenge that has always attracted
the interest of the scientific robotic community and the general public.
One proof of this is the RobotArt1 annual competition with a total prize
pool of $ 100 000 in 2018.

One of the scientific areas that has had more success developing art
painting robots is the area of image processing. Multiple applications
have been proposed combining state of the art image processing tech-
niques and robot frameworks. An example of this is Paul, the portrait
drawing robot (Tresset & Leymarie, 2013). Paul works by using an
image processing algorithm to transform photos of people into human-
like sketches. In this framework, high frequency lines are first extracted
from the image. Then, a shadowing step is introduced to transfer the
shadows from the image to the drawing. More recent frameworks

∗ Correspondence to: ISCAR, Department of Computer Architecture and Automatics, Universidad Complutense de Madrid (UCM), Pl. de las Ciencias,
1, 28040 Madrid, Madrid, Spain.

E-mail address: raufer06@ucm.es (R. Fernandez-Fernandez).
1 https://robotart.org/2018-winners/.

introduce state of the art machine learning methods. An example of
this is the introduction of Neural Style Transfer in painting robot appli-
cations. Neural Style Transfer is a technique proposed by Gatys, Ecker,
and Bethge (2016). Here, Gatys proposed the introduction of Neural
Networks to extract the style and content features of different images
to perform a Style Transfer step between them. The result is a frame-
work able to generate new images with the style of a selected artist.
Many successful art painting robot applications have been proposed
introducing this idea within their frameworks1. Other applications have
also been proposed with the introduction of different machine learning
techniques. An example of this is the framework proposed by Helou
et al. using Autoencoders (El Helou, Mandt, Krause, & Beardsley, 2019).
Here, the authors proposed a mobile robotic platform for big surface
painting. Autoencoders were introduced in the pre-preprocessing step
to obtain the desired painting texture. All these applications have in
common that they focus on the implementation of state of the art image
processing techniques to improve the quality and artistic value of the
images generated in the pre-processing steps.
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Fig. 1. Teo the humanoid robot drawing the sketch of a dog using the proposed framework.
Fig. 2. Sketches extracted from the Quick, Draw! Dataset used for the experiments. From top left to bottom right: Wine bottle, book, hammer, dog, triangle, chair, fan, mountain,
flower, bus, sun, whale and the Mona Lisa.
Reinforcement Learning is usually presented as an archetype of the
success of recent theoretical approaches to cognitive science (Collins,
2019). Since the appearance of Deep Learning, Reinforcement Learning
control policies are presented as an increasing popular way to imple-
ment robot control using Deep Neural Networks. Reinforcement Learn-
ing allows the autonomous learning of complex parametric control
policies that can be implemented in complex robotics tasks (Haarnoja
et al., 2019; Levine, Finn, Darrell, & Abbeel, 2016; Levine, Holly, Gu, &
Lillicrap, 2017). Deep Q-learning Networks (DQN) are presented as one
of the most successful architectures to implement Deep Reinforcement
Learning in robotics (Levine et al., 2017). Zhou et al. (2018) success-
fully designed a DQN framework to generate sketches using the Quick,
Draw! dataset (Jongejan, Rowley, Kawashima, Kim, & Fox-Gieg, 2016).

The introduction of a DQN algorithm within an art painting robot
application using a humanoid robot is proposed in this paper. The goal
is to study how DQN affects the performance of a basic art painting
robot application. The main expected contribution of this work is to
serve as a first baseline for future works introducing DQN methods for
complex art painting robot frameworks.

The proposed DQN framework encodes the agent that defines the
required pencil position within the canvas as a function of the current
state. These generated agent positions are then transferred to a robotic
platform via an internal robot cartesian gridmap for performing real
world executions. The DQN framework proposed is based on the work
58
by Zhou et al. (2018) and adapted to work with a real robot platform.
As an additional contribution, a supplementary DQN classification net-
work is defined within the reward function to improve the training step.
The robotic platform selected for the experiments is TEO the humanoid
robot from Universidad Carlos III de Madrid depicted in Fig. 1. Results
are evaluated in terms of similarity with respect the reference sketches
and the obtained DQN reward. Different parameters are introduced
to measure and compare the complexity of each category. All of the
reference sketches presented in this paper are extracted from the Quick,
Draw! dataset. These selected sketches are shown in Fig. 2.

The structure of the paper goes as follows: first, an introduction and
study of the related works is presented in Section 2. Section 3 depicts
an introduction to the theoretical concepts involved in this paper. The
proposed framework is defined in Section 4. Section 5 defines the
experiments for the paper. Finally, results are presented in Section 6
and conclusions can be found in Section 7.

2. Related works

The study of the relevant related works is divided into two subsec-
tions: art and robots and art and machine learning. The first includes
works where the goal is to design art painting robot applications that
are able to generate or imitate pieces of art. The second focus on the
study of the state of the art of machine learning frameworks that are
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related to the future development of art painting robot applications
and focus on defining the full problem emphasizing on the execution
step. The goal of the proposed work is to close this gap by introducing
one of these ideas, a complex control DQN policy, within an art robot
application.

2.1. Art and robots

Recent works, like the ones presented to the RobotArt1 competition,
have increased the quality of the pieces of art generated using robotic
platforms. One of the reasons behind these improved results is the
introduction of state of the art algorithms like Style Transfer. Some of
these applications, however, do not provide any technical insight about
the framework implementation. Due to the technical nature of this
paper, only the robot frameworks with available scientific literature
will be studied.

Earlier works, such as the already introduced Paul the robot (Tresset
& Leymarie, 2013), have had already achieved impressive results using
simple image processing techniques. More recently, Luo and Liu (2018)
proposed a robot painting framework to draw cartoon-like portraits
using image processing techniques such as face detection, facial de-
composition and contour detection. The Busker robot (Scalera, Seriani,
Gasparetto, & Gallina, 2018) proposed by Scalera et al. uses artistic
rendering algorithms such as random stroke generation to generate
watercolour paintings of 2D input images. Another interesting appli-
cation is the one proposed by Alhafnawi, Hauert, and O’Dowd (2020)
where a swarm of robots is used as pixels to create a painting canvas.
In Karimov et al. (2021), three different processing image algorithms
are introduced to generate artistic images from regular photos. In Chen
et al. (2022) iLQR is used to generate an achievable robot trajectory
using recorded artists painting motions and a cable-driven parallel
robot.

Other works involving painting robots with different goals than art
generation, have recently achieved higher levels of complexity by the
introduction of Deep Neural Networks. This is the case of the already
cited mobile robotic platform proposed by El Helou et al. (2019),
and the ‘‘calligraphist’’ robot developed by Kotani and Tellex (2019).
Few works involving art painting robots have focused on improving
the robot execution step. These works propose the introduction of
trajectory generation techniques similar to motion primitives (Makkar,
Atoofi, Hamker, & Nassour, 2018; Mohan et al., 2011), or improving the
low level motor control architectures as proposed by Atoofi, Hamker,
and Nassour (2018).

2.2. Art and machine learning

Different machine learning frameworks have been proposed with
the goal to create or imitate pieces of art. Most of these frameworks
have been later used as the basis of art painting robot applications. In
this section, a study of the state of the art of these machine learning
frameworks is presented. Creative Adversarial Networks (CAN) is a
framework proposed by Elgammal, Liu, Elhoseiny, and Mazzone (2017)
using Generative Adversarial Networks (GAN) to produce new artificial
generated artistic images. A more recent work by Mellor et al. (2019)
also proposed the introduction of GAN frameworks for the generation
of pieces of art. Here, instead of an image, the output of the framework
are the strokes needed to paint that image. The results were obtained
using an oil painting simulator (Li, 2023). A different approach was the
already introduced framework proposed by Zhou et al. (2018). Here,
the authors introduced the use of a DQN architecture for imitating
human drawn sketches. More recently, Guo et al. (2020) proposed the
introduction of a Learning from Demonstration framework to imitate
59

the actions of a human painter using a robotic platform.
3. Background: Deep Q-learning neural networks

Let the task be defined as a Markov Decision Process (MDP) fol-
lowing the tuple 𝑀 = {𝑆,𝐴, 𝛾, 𝑅}: 𝑆 can be defined as a discretized
state space of possible end-effector robot positions; 𝐴 can be defined
as a set of possible actions inside this state space; the parameter 𝛾
is the discount factor introduced to deal with long term predicted
rewards, and 𝑅 is the reward function designed for the problem. The
goal is to find a policy 𝜋∗(𝑠) that maximizes the expected reward of
a full episode of the given task. Q-learning is presented as an off-
policy Reinforcement Learning method that searches for the optimal
policy 𝜋∗(𝑠) by maximizing the value function 𝑄(𝑆,𝐴) as defined in
the Bellman equation in Eq. (1):

𝑄(𝑆𝑡, 𝐴𝑡) =𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡, 𝐴𝑡)] (1)

where 𝛼 is the step-size parameter and 𝑎 is an action defined within the
set of possible actions 𝐴.

The policy 𝜋∗(𝑠) can then be defined as the greedy policy that takes
the action with the highest expected reward defined by 𝑄(𝑆𝑡, 𝐴𝑡) at each
time step 𝑡.

In DQN, the function 𝑄(𝑆,𝐴) is defined as a Deep Neural Net-
work. The output of the Deep Neural Network is the Q-value 𝑄(𝑠𝑡, 𝐴𝑡)
corresponding to the state 𝑠𝑡 passed as input.

One of the main problems of Q-learning is the overestimation
problem. This problem comes from the bias introduced by recurrently
choosing and exploiting the action with the maximum current value,
which may or may not be the action with the maximum average value.
Double Q-learning (Van Hasselt, Guez, & Silver, 2016) is presented as a
way to deal with this. The idea of Double Q-learning is to introduce an
additional Q-learning function for the same problem. Only one of the
two functions is selected to be updated each step. This selection can
be performed at random and can change between steps. The Q-Value
function is updated as in Eq. (2):

𝑄(𝑆𝑡, 𝐴𝑡) =𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max
𝑎

𝑄′(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡, 𝐴𝑡)] (2)

here 𝑄′(𝑆𝑡+1, 𝑎) is the estimated value of the not selected network. The
ntroduction of this second network is demonstrated to deal with the
verestimation problem and improve the convergence of the Q-learning
unction.

. Framework

In this paper, an implementation of a DQN architecture for sketch
rawing using a humanoid robot is proposed. This framework is based
n the work introduced by Zhou et al. (2018) and adapted to work with
real humanoid robot.

.1. Model

Two different inputs are introduced to the proposed DQN architec-
ure depicted at Fig. 3. These inputs are defined as the global stream
nd the local stream. Each of these inputs are processed by a different
art of the DQN architecture. The part of the network that processes the
lobal stream is referred as the global network, while the part of the
etwork that processes the local stream is referred as the local network.
he outputs of the global and local networks are concatenated and
rocessed by a fully connected network. This network is referred as
he output network in the paper, and outputs the desired pen position
ithin the local patch.

The global stream consists of four 𝑀 ×𝑀 channels where 𝑀 is the
iscretized canvas size. The first channel contains the generated canvas.
his channel encodes, with a greyscale representation, the current state
f the canvas where the agent is painting. The second channel is the
eference canvas. This channel encodes the reference sketch using also a
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Fig. 3. Proposed DQN framework. The outputs of the global and local networks are concatenated and transferred to the output network. This output network generates the desired
pen position within the local patch. This output is translated to a real robot cartesian gridmap. Using this robot cartesian gridmap, an Inverse Kinematic model is introduced
to generate the control signals to move the robot to the position defined by the agent. TEO the humanoid robot from Universidad Carlos III de Madrid is introduced for the
experimental setup.
Table 1
DQN layer specifications.

Global network Local network Output network

1_CL 2_CL 3_CL 1_CL 1_FC 2_FC

Size 32 64 64 128 512 242
Kernel 8 4 3 11 – –
Stride 4 2 1 1 – –

greyscale representation. The third channel is the distance map defined
by Eq. (3):

𝐷(𝑥, 𝑦) =

√

(𝑥 − 𝑝𝑥)2 + (𝑦 − 𝑝𝑦)2

𝑀
,∀(𝑥, 𝑦) ∈ 𝛺 (3)

where 𝛺 depict the 𝑀×𝑀 canvas and (𝑝𝑥, 𝑝𝑦) is the current pen position
within this canvas. This distance map contains the relative position of
the pen with respect all the positions of the canvas. The last channel
is the colour map. This colour map is fully set to ones (1) if the pen is
touching the canvas or zeros (0) if it is not. Finally, the local stream is
defined as a single 𝑁 ×𝑁 local patch of the generated canvas centred
in the pen position, where 𝑁 ≤ 𝑀 .

Different architectures are then introduced for the global and local
network. The global network is composed of three convolutional layers
(CL) with the following sizes: 32 with a kernel size of 8 × 8 and a stride
of 4; 64 with a kernel size of 4 × 4 and a stride of 2; and 64 with a
kernel size of 3 × 3 and a stride of 1. The local network is composed by a
single convolutional layer with a size of 128 with a kernel size of 11 × 11
and a stride of 1. The output network takes as input the concatenated
outputs of the global and local networks and is composed of two fully
connected (FC) layers. The first layer has a size of 512 with a linear
activation. The second and final layer has a size of 242 corresponding
to all possible pen positions within the 11 × 11 patch for the painting
and non painting states. The values of the different layers are depicted
at Table 1.

4.2. Training

In order to improve the training process, a pre-training step is
introduced to avoid training the DQN from scratch. In this pre-training
60
step, artificial canvasses are generated using a random stroke generator.
The network is trained using supervised learning with these artificially
generated canvasses and the true ground actions required to generate
them.

For the training step, Double Q-learning is implemented to avoid
the overestimation problem. In terms of performance, an additional
classification network with the same architecture as the one proposed
in Fernandez-Fernandez, Victores, Estevez, and Balaguer (2019) is in-
troduced to provide additional feedback to the agent. The resulting
reward function using this classification network is defined in Eq. (4):

𝑟 =

{

𝑟𝑘, if 𝑘 < 𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠
𝛩, otherwise if 𝑘 < 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠

(4)

where the constant 𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 is the number of strokes per sketch
the agent is trained using 𝑟𝑘 and the 𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 is the total number
of strokes allowed to the agent per sketch, where 𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 ≥
𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠. The value 𝛩 is the output of the classification network
for the current sketch category. The reward 𝑟𝑘 at the 𝑘𝑡ℎ step is defined
as in Eq. (5)

𝑟𝑘 = 𝑟𝑝𝑖𝑥𝑒𝑙 − 𝑃𝑠𝑡𝑒𝑝 (5)

where 𝑃𝑠𝑡𝑒𝑝 is a penalization value introduced to penalize slow agents.
An agent is considered slow if, in one step, it moves less than 5
discretized positions in both dimensions. The 𝑟𝑝𝑖𝑥𝑒𝑙 value is defined as
𝑟𝑝𝑖𝑥𝑒𝑙 = 𝑠𝑘−𝑠𝑘+1 where 𝑠𝑘 is the similarity at the 𝑘𝑡ℎ step of the generated
canvas with respect the reference canvas as defined in Eq. (6):

𝑠𝑘 = 𝛼 ∗

∑𝑀
𝑖=1

∑𝑀
𝑗=1(𝑃

𝑟𝑒𝑓
𝑖𝑗 − 𝑃 𝑘

𝑖𝑗 )
2

𝑀2
(6)

where, the constant 𝛼 is introduced to scale the similarity value with
respect the output of the classification network. 𝑃 𝑟𝑒𝑓

𝑖𝑗 and 𝑃 𝑘
𝑖𝑗 are the

values at the (𝑖, 𝑗) position of the reference canvas and the generated
canvas respectively.

4.3. Integration with the real robot

To transfer the position generated by the network for its execution
in the real robot, a robot cartesian gridmap is introduced. This robot
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Fig. 4. Experimental setup used for the experiments. In the photo, TEO is drawing a flower.
cartesian gridmap is the equivalent of the local patch, defined for the
local stream, in the real world. This cartesian gridmap depicts the total
242 actions that can be executed by the agent. It is an 11 × 11 × 2 (x,
y, z) gridmap with 3D-cells of size 𝑙1 × 𝑙1 × 𝑙2. The goal is to make the
position of the agent within the local patch directly transferable to the
real world. Each cell represents a possible cartesian robot end-effector
position.

In order to control the robot, for each new position selected by the
agent (𝑝𝑎𝑔𝑒𝑛𝑡) within the local patch, a new cartesian robot end-effector
position (𝑃𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) has to be obtained. If the robot cartesian gridmap
is defined to be centred in the current robot end-effector position
(𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡), the 𝑃𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 position can then be obtained using Eq. (7):

𝑃𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 = 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑝𝑎𝑔𝑒𝑛𝑡 ∗ 𝑙1 (7)

This 𝑃𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 position can then be used to control the robot via an
Inverse Kinematic model. Changes in the colour selected by the agent
(painting or not painting) are processed using the 𝑧 dimension. Non
painting positions are defined with an 𝑙2 offset in 𝑧 that moves the pen
away from the canvas.

5. Experiments: Sketeching with TEO

The humanoid robot TEO (Martínez et al., 2012) from Universidad
Carlos III de Madrid was the selected robotic platform for the exper-
iments. TEO is a 60 kg humanoid robot with 28 Degrees Of Freedom
(DOF) and a height of 1.7 m. Each of the arms of the robot is composed
by 6 DOF with a three-finger robot hand. For the experiments, the full
right arm of the robot was used keeping the rest of the robot static. In
order to allow the robot to paint, a marker was attached to the robot
right hand. As the canvas, an erasable whiteboard was placed in front
of the robot. The same robot starting position was used for all of the
experiments. Fig. 4 depicts the experimental setup.

The sketches selected were part of the Quick, Draw! Dataset (Jonge-
jan et al., 2016). Thirteen categories were randomly selected. These
are, in no particular order: wine bottle, book, hammer, dog, triangle,
chair, fan, mountain, flower, bus, sun, whale and the mona lisa. From
these thirteen categories only eight were used for the training step:
book, hammer, chair, fan, mountain, flower, bus and whale. The other
five categories: wine bottle, dog, triangle, sun and the mona lisa were
used only for testing. The training categories were divided in training
and test datasets. The test categories were only used for testing. One
random sketch for each of the categories was selected to be painted
by TEO. These sketches were selected within the test dataset of each
category. The reference selected sketches are shown in Fig. 2. The
hyper-parameters used for the experiments are depicted at Table 2,
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Table 2
Hyper-parameters for the experiments in this paper.

Hyperparameter Setting value

Shared

Canvas size 84 × 84
Local patch size 11 × 11
Number of actions 242
Discount (𝛾) 0.9
Experience replay size 10e3
Batch size 128
Optimizer Adam (Kingma & Ba, 2015)

Pre-training

Epochs 60e3
Strokes per Epoch Random number between 1–100
Learning rate 1e−5
Loss function Categorical Cross-Entropy
𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 100

Double Q-learning

Target update frequency 10e3
Epsilon 0.1
𝑝𝑖𝑥𝑒𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 100
𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 150
𝑚𝑎𝑥_𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 15e4
Learning rate 1e−6
Loss function Mean squared error
Train dataset size 3000
Similarity scale 1000
𝑃 _𝑠𝑡𝑒𝑝 0.02

where 𝑚𝑎𝑥_𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑟𝑜𝑘𝑒𝑠 is defined as the number of strokes used for
training. The rest of the parameters are either defined within the
definition of the algorithm or in the previous sections of this paper.
These hyper-parameters are the result of multiple iterations of tuning
the networks.

All the code has been open sourced and is available at https://
github.com/roboticslab-uc3m/xgnitive-sketch.

6. Results

The experimental results obtained through the execution of the
selected reference sketches using the proposed framework and TEO
are depicted in Fig. 5 and Table 3. The waypoint agent trajectories
depicted in the results are defined by the DQN agent positions. High
level differences between reference sketches and executed sketches are
introduced by the agent rather than by the robot. A video containing
the execution of one of the sketches with the real robot is depicted in
the following link https://youtu.be/YnSK9LMvIeU.

https://github.com/roboticslab-uc3m/xgnitive-sketch
https://github.com/roboticslab-uc3m/xgnitive-sketch
https://github.com/roboticslab-uc3m/xgnitive-sketch
https://youtu.be/YnSK9LMvIeU
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Fig. 5. Experimental results extracted from executing the DQN framework with TEO. Two resulting sketches are presented for each reference sketch. These are, from left to
right, the waypoint trajectory defined by the agent and the robot executed sketch. The waypoint agent trajectory depicts the intermediate positions defined by the DQN agent.
Purple colours depicts starting points, red colours depict the last points of the trajectory. The robot executed sketch is a photo of the resulting sketch drawn by the robot in the
whiteboard.
Table 3
Experimental results.

MSE Simil. DQN Rew. Sketch strokes Sketch points Sketch Vel. Categ. Strokes Categ. Points Categ. Vel.

Bottle 92% 22.06 1 25 30.92 2.48 25.50 34.32
Book 92% 43.91 5 38 31.08 7.21 43.5 39.6
Hammer 93% 37.88 1 31 31.26 3.33 34.19 36.36
Dog 88% 38.79 7 54 23.76 7.18 61.42 23.72
Triangle 91% 30.62 1 14 61.14 1.52 15.8 65.55
Chair 91% 20.98 2 8 59.88 5.07 26.05 40.33
Fan 87% 47.57 10 70 24.77 7.68 71.08 28.12
Mountain 92% 17.05 1 7 98.14 2.1 19.05 50.49
Flower 89% 61.29 4 65 19.6 4 61.63 23.61
Bus 88% 31.88 4 38 28.32 7.36 60.15 25.78
Sun 89% 35.90 8 37 25.32 8.1 42.68 26.76
Whale 89% 26.87 6 55 23.96 7.36 60.15 25.78
Mona Lisa 84% 68.5 8 79 36.76 8.79 64.82 32.33
Table 3 measures the similarity and DQN reward of the executed
sketches. The similarity is obtained using a normalized Mean Squared
Error (MSE) algorithm. The results depict high similarity values across
all of the studied categories. The average similarity value in the case
of the categories included in the training step is 90%. In the case
of the categories introduced only for testing this value is 89%. The
DQN Reward parameter depicts the total reward obtained by the agent
during the full sketch execution. In order to compare results between
different categories, three additional parameters were introduced to
measure the complexity of each reference sketch and category. These
three parameters are: the number of strokes and the number of points
as defined in the Quick, Draw! dataset; and the stroke velocity (pix-
els/point). These parameters are obtained for each reference sketch and
category. For the categories, these values are defined as the average
value of all the sketches within the given category.

7. Conclusions

In this paper, an application of DQN within a robotic framework
for drawing human-like sketches using the humanoid robot TEO has
been proposed. The goal was to implement a Reinforcement Learning
policy controller in a real art painting robotic framework. The robotic
platform used was TEO, the humanoid robot from Universidad Carlos
III de Madrid. The proposed framework takes as inputs multiple streams
that encode the global and local features of the generated and reference
canvasses. These inputs are defined as the global and local streams.
Double Q-learning and an additional classification DQN are introduced
62
for improving the training step. A real robot cartesian gridmap is
defined as a way to transfer agent positions to real world cartesian co-
ordinates. The framework was trained using eight categories extracted
from the Quick, Draw! dataset. Five new categories were introduced
only for testing. TEO, a multifunctional humanoid robot, a regular
marker, and a conventional whiteboard were used as the only materials
for the experiments.

Results show high similarity ratios for all of the studied categories.
Relevant differences between the generated and the reference sketches
only occur with the most complex sketches. Our hypothesis is that this
happens due to the limitation in the number of strokes allowed by the
agent. Complex sketches may require a higher number of maximum
strokes. This maximum number of strokes was chosen to be the same
as the one proposed in Zhou et al. (2018). In terms of the generalization
capability of the network, the average similarity values obtained with
the categories used only for testing are in the same range than the ones
used also for training. Related future works involve the introduction of
machine learning techniques to improve the creative step of the robot.
This would allow the framework to generate its own artistic sketches
and be executed in real time by the proposed DQN framework.
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