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intensos y ultracortos
 

Simulation and control of electron and
 
nuclear dynamics with strong and
 

ultrashort laser pulses
 

Memoria presentada por 

Patricia Vindel Zandbergen 

para optar al grado de 

Doctor en Ciencias Qúımicas 
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Resumen 

Comprender la estructura y la dinámica de los procesos qúımicos a nivel molecular es 

un paso clave para el diseño de materiales con propiedades deseadas o para el control 

de las reacciones qúımicas. Desde los inicios de la mecánica cuática, el control de los 

fénomenos cuánticos ha sido uno de los principales objetivos en el campo de la f́ısica y 

la qúımica. El desarrollo de los láseres ultrarrápidos y ultraintensos ha permitido el uso 

de pulsos externos, no sólo para seguir el movimiento nuclear y electrónico [1–3], sino 

también para controlarlo de forma activa, es decir, manipular la dinámica molecular en 

la escala de tiempos en la que ocurren los procesos f́ısicos y qúımicos, aśı como resolver 

las ecuaciones dinámicas que los gobiernan, de forma que pueda favorecerse un tipo de 

proceso en particular [4]. De esta forma, el campo de Control Cuántico (o coherente) se 

ha desarrollado conjuntamente con la Femtoqúımica y la Attof́ısica. 

Las primeras propuestas de control surgieron independientemente con dos escenarios. 

Por un lado, Tannor y Rice propusieron un mecanismo de control en la variable tem­

poral: el esquema pump-dump [5, 6], que es un precursor de lo que se llamaŕıa control 

óptimo. Por otro lado, Brumer y Shapiro [7,8] propusieron un esquema de control coher­

ente o resuelto en frecuencias. Sin embargo, estos esquemas sólo permiten el control de 

forma eficiente cuando se conocen el Hamiltoniano molecular y las superficies de enerǵıa 

potencial. Por ejemplo, en el esquema de Brumer y Shapiro, el mismo estado intermedio 

puede dar lugar a diferentes productos de reacción. En el esquema pump-dump, sólo 

es posible el control de transiciones verticales (ventana Frank-Condon) entre estados 

1 
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electrónicos. Resolviendo este problema, se formularon esquemas que permit́ıan contro­

lar la dinámica del paquete de ondas en cada potencial. Utilizando la teoŕıa matemática 

de control óptimo, Rabitz y colaboradores [9] (e independientemente Kosloff y col. [10]) 

generalizaron la búsqueda del esquema apropiado para manipular la dinámica del sis­

tema como un problema de cálculo de variaciones, donde la incógnita es el pulso óptimo 

que se quiere obtener, mientras que la dinámica del sistema se describe mediante de la 

ecuación de Schrödinger dependiente del tiempo. Esta generalización trasladó el prob­

lema a términos matemáticos, y los siguientes desarrollos se centraron en la búsqueda 

de métodos numéricos que solucionasen de la manera más eficaz la ecuación de Euler­

Schrödinger correspondiente. 

En esta tesis se emplea la Teoŕıa de Control Local (LCT) [11, 12]. La idea de esta 
´ teoŕıa apareció inicialmente en la formulación de la Teoŕıa de Control Optimo Cuántica 

[10]. Básicamente, consiste en elegir un campo láser de control de forma que se consiga 

un incremento o disminución del valor medio de un observable (< x >,< H >) durante 

un cierto intervalo de tiempo en el que actúa el campo externo. De esta forma, las 

metodoloǵıas empleadas son más simples comparadas con aquelas utilizadas en control 

óptimo. 

El objetivo de la presente tesis es la simulación de la dinámica de moléculas excitadas 

por pulsos láseres intensos y ultracortos, en la escala de femto y attosegundos, y el 

control de distintos procesos moleculares como ionización, disociación, interferencia, 

transferencia eléctronica, estado de esṕın, propiciados por la preparación de estados 

electrónicos en superposición cuántica bajo el campo láser. Estudiando dichos procesos, 

se exploran las limitaciones del control de la dinámica electrónica y los efectos de la 

interacción entre los movimientos nucleares y electrónicos. 

En este trabajo se combinan técnicas de control cuántico y los procesos de femto y 

attof́ısica, simulados mediante solución de la ecuación de Schrödinger dependiente del 

tiempo por métodos de propagación en malla (grid-based methods). Se emplean modelos 

de potencial muy simplificados (y generales) que nos permiten comprender cualitativa-

mente la naturaleza de los procesos, su posible control y la validez de las aproximaciones 

más habituales (Born-Oppenheimer, unico electr´´ on activo, etc.). Pretendemos prede­

cir qué capacidad de control existe en procesos de attof́ısica (ionización, disociación, 

alteración de las propiedades electrónicas) cuando las técnicas de modulación de pul­

sos puedan extenderse al dominio de attosegundo, de manera que esta investigación 

pueda servir de est́ımulo a su desarrollo incipiente. Dado que la tecnoloǵıa aún no está 

disponible, y por tanto sus alcances o limitaciones no se conocen con precisión, nos cen­

tramos en modelos generales para intentar responder a cuestiones como las siguientes: 
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¿cómo afectan los procesos ionizantes con láseres de baja frecuencia en el rendimiento 

de muchos métodos de control?, ¿cómo pueden evitarse?, ¿es posible controlar la trans­

ferencia esṕın-órbita?, ¿pueden un láser conducir electrones entre átomos distantes? 

En anteriores trabajos del grupo de investigación se propusieron diversas estrate­

gias para controlar la transición esṕın-órbita mediante pulsos fuertes no resonantes. En 

esta tesis se comprueban los ĺımites de validez de dichos esquemas y la búsqueda de 

posibles correcciones, incorporando efectos que no se observan en la aproximación Born-

Oppenheimer. Utilizando una extensión del modelo de potencial de Shin y Metiu se 

describe la dinámica electrónica (los efectos de ionización y la violación de la aprox­

imación Born-Oppenheimer). También, se pretenden controlar procesos que implican 

transiciones reversibles entre estados ligados y estados ionizantes (del continuo). Esto 

es, queremos maximizar la probabilidad de que los electrones, cuando son excitados al 

continuo, se vuelvan a atrapar al volver al núcleo, cuando la fase del pulso cambia. 

En los primeros trabajos de esta tesis, se pretende manipular las transiciones singlete­

triplete en cadenas de iones utilizando una extensión del modelo de potencial de Shin-

Metiu (modelo SME) [13,14]. Mediante este modelo, es posible caracterizar simultáneamente 

el movimiento nuclear y electrónico acoplados. El acoplamiento esṕın-órbta se introduce 

de un modo heuŕıstico de forma que puedan producirse transiciones entre los compo­

nentes singlete-triplete de la función de onda. Para controlar la dinámica del sistema se 

emplea el efecto Stark Dinámico No Resonante [15]. Este mecanismo se basa en la uti­

lizaión de campos intensos que cambian el espectro de enerǵıas de los estados singlete y 

triplete de manera independiente. Aśı, simplemente variando la intensidad y frecuencia 

del campo láser, es posible encontrar los parametros óptimos que nos permiten controlar 

con éxito la evolución del sistema y poder evitar o inducir una transición de esṕın. 

Inicialmente, se consiguió el desacoplamiento de la transición singlete-triplete en 

el ĺımite adiabático (incluyendo diferentes grupos de estados singlete y triplete) y en el 

modelo completo de potencial de Shin-Metiu (dinámica de paquetes de onda vibrónicos). 

En ausencia de un pulso láser se produce la transferencia completa de población en 

ambos casos. Sin embargo, bajo el efecto de un campo láser intenso no resonante, se 

vaŕıa la enerǵıa de los estados electrónicos y se consigue mantener de forma eficiente la 

población en los estados singlete. Cuando se consideran todos los estados electrónicos 

en el modelo (dinámica en 3 dimensiones), se logra igualmente evitar la transferencia a 

los estados triplete, aunque aumenta la dispersión de la población entre los diferentes 

estados singlete, siendo la absorción multifotónica el efecto predominante, dando lugar 

a la ionización completa del sistema. En este trabajo, también variamos diferentes 

parámetros del pulso láser, empleando la aproximación de Born-Oppenheimer en el 
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modelo SME para elegir los valores óptimos con los que obtuvimos los mejores resultados, 

evitando la transferencia de población entre estados singlete y triplete. Finalmente, 

se estudió la relación entre el acoplamiento de esṕın y el grado de ionización en un 

modelo anaĺıtico de Hamiltoniano de dos estados, para identificar bajo qué condiciones 

se consigue un control eficiente de las transiciones esṕın-órbita. 

En la segunda parte de resultados, se simula y controla la transferencia de un electrón 

en la escala de femto y attosegundos mediante pulsos láser intensos, haciendo uso de la 

ıa de Control Local. eculas H+Teoŕ Para describir nuestro sistema (las mol´ 2 y HeH2+), 

se utiliza el potencial soft-core de Coulomb. Trabajando bajo la aproximación de Born-

Oppenheimer, nuestro objetivo era excitar el electrón inicialmente localizado en uno 

de los núcleos para, a continuación, atraparlo en el otro átomo. Se emplearon dos 

formulaciones distintas de la Teoŕıa de Control Local. En la primera, el campo láser 

es proporcional al valor medio del momento del electrón y el objetivo es disminuir la 

enerǵıa del sistema. En el segundo caso, el láser depende de la proyección de la función 

de onda sobre un estado objetivo (el autoestado de menor enerǵıa del núcleo objetivo). 

El mecanismo por el que ocurre la transferencia del electrón es distinto según la escala de 

tiempos en la que ésta tiene lugar. En la escala de femtosegundos, la enerǵıa del electrón 

nunca supera la barrera interna entre los núcleos, por lo que la transferencia ocurre por 

túnel, mientras que en la escala de attosegundos, se observa un mecanismo impulsivo, es 

decir, el electrón es excitado al continuo y, a contrinuación, es reatrapado en el núcleo 

objetivo. Además, comprobamos la validez de los resultados obtenidos considerando los 

núcleos fijos, y cómo la enerǵıa cinética inicial influye en la transferencia electrónica al 

aplicar los pulsos láser encontrados en los cálculos 1D en una simulación completa 2D 

(1+1D). 

En definitiva, el trabajo realizado en esta tesis aúna dos campos de investigación 

actualmente en auge, el Control Cuántico y los procesos ultrarrápidos (escala de femto 

y attosegundos). Podemos concluir que, mediante la aplicación de diferentes métodos de 

control a varios procesos f́ısicos relevantes, se ha conseguido influir de forma satisfactoria 

sobre la dinámica nuclear y electrónica en diversos sistemas. 



Introduction
 





Introduction 

Understanding the structure and dynamics of chemical processes at the molecular level 

is a key step toward the design of materials with the desired properties, or the efficient 

control of chemical reactions. Many subtleties involving basic quantum properties, such 

as superposition of states and interfering pathways allow to highly increase the yield of 

a specific process, far beyond what the probability distribution would suggest, should 

it follow the classical rules of motion. The spectra of molecules is one of the strongest 

evidence of this phenomena. Rather than distributing its energy in a continuous way 

along the molecule, one can find resonances that relate to particular structures. The 

playground of quantum dynamics offers more spectacular predictions. Using the quan­

tum correlations at our advantage, one can externally drive a molecule toward selecting 

specific states or chemical processes from the huge pool of competing processes that are 

energetically available. 

Much of the history of the probe and control of chemical processes has come side-by­

side with the development of lasers. As we will see, one can arguably relate this history 

as a process. The laser was first used as a tool to ignite and selectively probe specific 

states and processes given its fine-tunability and intensity. With ultrashort laser pulses 

came the first probe and control of the dynamics. Pulse shaping then allowed to promote 

the laser to the role of a chemical agent, using Rabitz’s terminology [16]. Finally, the 

use of very strong non-resonant pulses is promoting the laser to the role of a catalyst. 

Obviously, all the different roles are still being enacted by the laser depending on the 

particular use we need. We will now review in more detail what particular features of 

lasers are mainly used and how they were developed in order to fullfil the different roles 

of igniting, probing, ”reacting” with molecules, and ”catalyzing” chemical processes. 

In this thesis we are mainly interested in the nuclear and electronic motion that are 
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Figure 1: Characteristic length and time scales for structure and dynamics in the microcosm, 
respectively [17] 

fundamental steps underlying most chemical processes. The control of these processes, 

however, often requires manipulating the systems in the time-scale where they occur. 

The phenomena that give rise to the formation of new materials and chemical and biolog­

ical transformations consist of elementary physical steps that occur on the femtosecond 

(1 fs= 10−15 s), or in the sub-femtosecond (attosecond, 1 as = 10−18 s), timescale (fig. 

1). One can easily predict why we need to delve into such ultrashort limits. Regard­

ing the formation and breaking of chemical bonds, they occur in the timescale of the 

vibrational period of a molecule. As the spacing of vibrational energy levels is in the 

sub-electronvolt scale (∼ 0.1 eV), it implies that molecular vibrations correspond to the 

femtosecond domain. This is consistent with the fact that atoms at thermal velocities 

(∼ 1000 m/s) travel the distance over which a chemical bond changes character (1 Åor 

∼ 10−10 m) in approximately 100 fs. On the other hand, if we consider the electronic 

motion inside atoms, the typical timescale is the atomic unit of time (1 au = 0.024 fs 

= 24 as). A simple calculation shows that the characteristic transition period from the 

ground state (1s) to the first excited state (2p) of hydrogen is T = 2π/ω1s−2p = 24 

attoseconds. The electron dynamics on the molecular scale is behind the emission of 

ultraviolet and x-ray radiation. All the processes that we will describe on this thesis 

involve the ultrafast motion of electrons or nuclei, so how can we observe the molecular 
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dynamics in real time and moreover, would it be even possible to influence and control 

the incredibly quick phenomena that occur at the atomic scale? 

Ultrafast spectroscopy 

In the past few decades, the increasingly shorter (in time) light sources and faster de­

tection schemes, have lead to constant improvement in the temporal resolution of chem­

ical and biological processes. In the 1980s the experimental advances in spectroscopy 

culminated in the birth of a new scientific field called Femtosecond Chemistry or Femto­

chemistry [18–21]. The first great success of Femtochemistry (deserving the Nobel Prize 

of Ahmed Zewail in 1999) [1], was the use of a pair of femtosecond pulses (a pump and 

probe pulses) to resolve the nuclear dynamics. In the femtosecond laser experiments, 

the pump pulse either initiates a chemical reaction or creates a non-stationary state. 

Due to the broad spectrum of the femtosecond pulse, several vibrational levels from 

that particular state are coherently excited. This coherent superposition is also known 

as a wave packet. The propagation of the wave packet corresponds to the movement of 

the nuclei. An oscillation is described by the periodical (classical) motion of the wave 

packet back and forth in the molecular potential well. The probe pulse then is shot at a 

series of well-timed intervals after the pump pulse excited the molecule and is chosen to 

generate an observable that will provide information about the evolution of the system. 

This pulse allows us to ”freeze” the nuclear motion with the necessary spatial resolution, 

owing to the localized nature of the wave packet. The next question is: could we go 

further and observe and control in real time the electron dynamics on the atomic scale? 

Electrons played an important role in the scientific and technological revolution of the 

20th century [22], such as superconductivity, particle accelerators, electron microscopes, 

magnetism, nanostructures, quantum information... However, the insight and influence 

into the electron motion at the atomic scale is still a challenge for the future. 

More recently, further advances in laser technology allowed the production of ultra­

strong radiation fields with frequencies in the XUV regime, paving the way to the devel­

opment of a new scientific domain, called Attosecond Physics. These sub-femtosecond 

(hence attosecond) pulses are so short that in principle, ionization or Auger processes 

can be resolved in real time [2,23]. The studies can then again give input to the control of 

chemical processes, because in chemical reactions the nuclei move in a potential surface 

set by the electrons, the attosecond electron dynamics indirectly governs the nuclear dy­

namics. The most important idea behind the technique is a sort of two-step procedure: 

first to ignite the dynamics by means of UV (or XUV) or IR ultrashort pulses or even a 
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combination of both; then to “probe” the electronic motion, and the effect induced on 

it by the molecular structure, using ultrashort ionization [24]. In the case of very strong 

fields, the recollision of the ionized electron with the parent molecular ion can occur, 

leading to high harmonic generation, which was also shown to be a interferometric way of 

probing the structure. The pursuit of attosecond pulses dates back to 1979 when Agos­

tini et al. discovered the above threshold ionization (ATI) [25], a process in which the 

electron could absorb more photons than the minimum required for ionization after its 

ejection from an atom. A typical ATI photo-electron energy spectrum consists of several 

peaks, separated by the photon energy 'ω. Shortly after, in the late 1980s researchers 

discovered high-harmonic generation (HHG) in noble gases [26–28]: the conversion of a 

near-infared (NIR) field into extreme ultraviolet (XUV) radiation. The HHG spectrum 

consists of discrete peaks located at odd integer multiples of the fundamental NIR har­

monic frequency. The spectrum initially falls off with energy, but then remains constant, 

forming a plateau which ends at an energy of about Ip + 3.17Up [29, 30], Ip being the 

ionization energy of the gas-phase medium and Up the ponderomotive energy. This is a 

clear signature of non-perturbative effects, which scale at powers of the intensity. The 

physical mechanism of HHG is explained by a three-step semi-classical model, where 

the electron is first ionized by tunneling from the atom,then accelerated in the laser 

field back towards the parent ion, and finally recaptured by the core [31,32]. The most 

intriguing property of the HHG process, however, is its ultrashort, sub-laser-cycle time 

scale. The continuum electron is in fact a wave packet of attosecond duration. Since 

the three-step process is repeated in each half-cycle of the driving laser field, the XUV 

pulses produced by HHG with femtosecond laser pulses consequently have features both 

on the femtosecond and the attosecond time scales. On the femtosecond scale, they 

are conveniently described as high-order harmonics of the fundamental driving laser fre­

quency, while on the attosecond scale, the picture of a recolliding electron wave-packet, 

emitting a short burst of XUV light every half-cycle of the driving field, is more appro­

priate. The short duration of the XUV pulses is not only interesting for time resolved 

studies, but it also concentrates the pulse energy in an extremely short time, allowing 

to combine high photon energies with high peak intensities, hardly available otherwise. 

The temporal characterization of attosecond pulse trains, techniques such as frequency 

resolved optical gating (FROG) [33, 34] and reconstruction of attosecond beating by 

interference of two photon transitions (RABITT ) [35, 36] were proposed. This latter 

technique proved useful not only to characterize high harmonic radiation, but also to 

study the electron dynamics. 

Along with the birth of attosecond pulses came many novel technologies and appli­
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cations. Initially, the use of attosecond pulses focused on the generation of attosecond 

electron wave packets for real time observation of tunneling [37] or the interference of 

wave packets using attosecond trains [38]. In addition, these ultrafast pulses have been 

used for obtaining ionization widths [39], for imaging molecular orbitals [40] or to achieve 

electron localization in simple molecules [41]. Attosecond techniques have been also ap­

plied in the field of ultrafast solid-state physics (condensed phase) [42, 43], and they 

have already been used to control the collective electron motion in plasmas [44] and in 

protein crystallography by so called ”diffraction before destruction” techniques [45,46]. 

Recently, by using attosecond pulse trains it has been possible to control the photo­

ionization in small molecules such as D2 and H2 [47, 48] or the outcome of a simple 

chemical reaction [49]. Moreover, although the study of more complex molecules is 

challenging, the direct measurement of the change of the electronic structure in an 

amino-acid, initiated by attosecond pulses, has been achieved [50]. 

Quantum Dynamics and Quantum Control 

Accompanying these advances, the theoretical calculations and computer simulations 

have the advantage to overcome experimental restrictions and have access to the whole 

dynamics, allowing further insight and also providing new ideas in designing future 

experiments. The advances have occurred both in concepts and methodology. Both 

Femtochemistry and Attophysics have greatly benefited from the different efforts put 

into solving the time dependent Schrödinger equation (TDSE). Although early attempts 

remount to the sixties [51,52], the development of grid-based methods by R. Kosloff and 

coworkers, and M. D. Feit and J. A. Fleck in the mid eighties [6,53], allowed to simulate 

the essential steps in the time-evolution of nuclear wave packets, illuminating the first 

experimental results of Zewail [54–56]. Although the simulation of electronic processes 

adds more difficulties, owing to the divergence of the Coulomb potential and the high 

increase in dimensionality even for the smallest molecules, it is interesting to observe 

that the first applications to understand attophysical processes, ionization and high­

harmonic generations, were already explored in the 80s [57, 58]. 

The attempt to control quantum phenomena has been an implicit goal in physics 

and chemistry since the early days of quantum mechanics [59, 60]. The development of 

the ultrafast science allowed the use of external pulses not only to detect nuclear and 

electron motion, but also to control it actively: to manipulate the molecular dynamics 

in its proper time scale in order to enhance a particular process. This was the birth of 

the field of Quantum (or coherent) control [4]. Recent years have witnessed the rapid 
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development of this new field [16, 61–65], in which the coherence properties of applied 

laser fields and/or matter are employed to steer a given quantum dynamical process in 

a desired direction. 

Many of the theoretical basis of the field were established in the process of designing 

effective strategies to use lasers to actively manipulate chemical reactions at the single­

molecule level. Nowadays, a growing number of theoretical and experimental studies 

have reported laser control of molecular dynamics and other physical processes. Further­

more, the fundamental ideas of coherent control are pervading into different branches of 

science (quantum optics, quantum information...) and are expected to foster substantial 

developments. 

Quantum Control deals with the manipulation of the Hamiltonian dynamics by ex­

erting an external action on the system. The operation is necessarily unitary in the 

framework of coherent control. Thus one gets a modified, appropriately called controlled 

time-evolution of the system dynamics which helps steer the system in the desired path­

way towards some predetermined goal with high selectivity and high efficiency. Then, 

provided that the coherence of the laser and of matter is preserved in each quantum 

pathway, interference effects are expected in the final state wave function and exploited 

to produce the control. Properly, quantum control is always about selecting or en­

hancing a particular molecular processes from the set of all possible outcomes through 

constructive or destructive quantum interference effects. Based on this principle, and 

closely related ideas, several basic control scenarios have been proposed. 

But control with light requires control of the light itself. An ultrashort pulse has a 

shape, a temporal phase and a polarization state and all of them need to be controlled 

and measured accurately. Several methods have been used to shape femtosecond pulses. 

Most of these techniques involve devices such as liquid-crystal spatial light modulators, 

acousto-optic modulators, or deformable mirrors, that are designed to modulate the 

phase and/or amplitude of the dispersed spectral components of a femtosecond pulse [59, 

66, 67]. It is routinely possible to generate user-defined waveforms for coherent control 

with these pulse shapers and characterize them using a variety of ultrafast measuring 

techniques. 

In addition to the technological advances, it is of utmost importance to have powerful 

theoretical methods available. Theoretically, there are three big questions related to 

the control problem. The first one is that of controllability [68] or in other words, if 

indeed there exists a ”controller” (e.g. laser field), that brings the quantum system 

(e.g. molecule) from an initial state, to a given target state (a certain reaction product) 

exactly or differentially close. The second question concerns the problem of finding the 
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best way to achieve a given control objective, e.g., calculating the optimal laser pulse for 

breaking a particular bond in a molecule or to induce population transfer to a particular 

quantum state. This problem is called the Quantum Optimal Control problem and the 

algorithms necessary to solve it are called quantumoptimal control algorithms. The 

third one involves the properties of the space of all possible solutions, that is, how many 

different solutions exist and their properties, what are the main control knobs in the 

laser field, what are the characteristics of the dynamics, etc. These questions are very 

dependent on the Hamiltonian and the optimal field. This is called the Landscape or 

Quantum Control Landscape problem. 

Quantum Control schemes 

One can classify the Quantum Control schemes according to those that operate under 

an iterative scheme, and those that do not. Within the latter ones, Tannor, Kosloff and 

Rice introduced in the 1980s a method for selective control in a photo-induced reaction 

based on the precise timing between sequential pulses of an applied electric field to 

guide the temporal evolution of a wave packet [5, 6]. This scheme is known as pump­

dump or Tannor-Rice control scheme. The model system is best visualized using two 

electronic surfaces of a linear triatomic molecule: a model ABC molecule, with a stable 

configuration in its ground state and two possible fragmentation channels on the ground 

state potential energy surface: AB+C and A+BC (two dissociative reaction pathways), 

see fig. 2 (a). The control problem reduces itself to finding the time dependent electric 

field, which starting from the initial state (ground state, v = 0) sends the wave packet 

to the desired channel. 

This control mechanism will be discussed in terms of a two-level model system. 

The first laser pulse, the pump pulse, transfers population from the ground state to 

the excited electronic state (ABC‡), where the wave function is no longer a stationary 

state. Thus the wave packet moves along the excited state surface and its shape changes 

because of dephasing. At some time after the excitation, there will be more wave packet 

amplitude over the ABC → AB + C channel. A second ultrashort laser pulse is used to 

dump the wave packet from the excited state to the ground state, whereby mostly AB 

+ C are formed. At some other time after excitation, there might be more amplitude 

over the ABC→ A + BC channel; then the dump pulse will form predominantly A + 

BC products. Hence the selectivity in the product formation is achieved by the different 

transfer of wave packet amplitudes into one of the two channels of the ground state. 

The scheme relies on the Ehrenfest theorem by associating the wave packet dynamics 
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with classical trajectories [69]. The time delay Δt between the two pulses is the time in 

which the wave packet propagates on the excited state potential surface and represents 

the ”control knob”. 

The Tannor-Rice control scheme has been demonstrated experimentally on the Na2 

molecule in which the branching ratio of Na+ + Na to Na+2 was modified [70], as well 

as in the K2 dimer, to induce efficient population transfer to a predefined electronic 

state [71]. Zewail’s group also applied the concept to the reaction Xe+I2 → XeI + 

I where an extra pump pulse was applied instead of a dump pulse, in a pump-pump 

approach [72]. The pump-dump control scheme is an appropriate method for increasing 

the selectivity of a chemical reaction by employing specially designed laser pulses [5]. 

The optimal form of the dump-pulse was calculated as a convolution of the pump pulse 

with the molecular dynamics on the excited state. 

Another extension of the Tannor-Rice control method is a pump-pump via an infra­

red (IR) and an ultraviolet (UV) laser pulses. This scheme has been applied to control 

selective dissociation of several systems, including the symmetric ozone molecule [73], 

the symmetric FHF− molecule [74], and extended to asymmetric molecules HOD [75] 

and OHF− [76]. 

A year after the Tannor-Rice method was introduced, Brumer and Shapiro elaborated 

on a scheme based on phase control, where the coherence of a laser field is exploited 

to control population transfer as well as the branching ratio for dissociation of small 

molecules [61]. The original scheme showed that the variation of the relative phase 

between two phase-locked CW lasers with different frequencies opened two pathways to a 

final state allowing the control of reaction yields [7,8,78]. The two independent pathways 

can be two different dissociative final states which can be resonantly excited by one or 

three photons (or two and four, respectively) of the same total energy: E = 'ω1 = 3'ω3 

(or E = 2'ω2 = 4'ω4). One laser field is resonant with the transition between the 

ground state ψg and the final electronic state ψf , with a frequency ω1; the other has a 

frequency ω3, such that ω1 = 3ω3, induces a multiphoton transition [see fig. 2 (b)]. The 

application of these two lasers leads to an interference term in the quantum mechanical 

description of the probability amplitudes of the wave function. By changing the relative 

phase between the two lasers φ, constructive or destructive interferences between the two 

possible pathways occur, thereby controlling the branching ratio of different products. 

The principle of this method is similar to a diffraction pattern observed in a double-slit 

experiment, where the diffraction pattern originating from two waves which interfere 

after crossing the two slits is measured. This theoretical scheme was experimentally 

verified by Gordon and co-workers in small molecules such as HCl, HI, DI, H2S or 
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Figure 2: (a) The Tannor-Kosloff-Rice scheme uses an ultrashort laser pulse to initiate 
coherent wavepacket motion on an electronically excited state potential energy surface. After 
a suitable time delay, the population is dumped back to the ground state into the desired 
dissociation channel. (b) The Brumer-Shapiro phase-control technique exploits constructive 
versus destructive interference of two different excitation pathways via one-photon and three­
photon absorption. By tuning the relative phase between the two CW laser fields with different 
frequencies, the population in the final states can be modulated. (c) The STIRAP scheme uses 
two time-delayed nanosecond laser pulses in a counter-intuitive sequence to induce adiabatic 
population transfer with nearly 100% efficiency from the ground state ψg to the final state 
ψf . The two levels are coupled via an intermediate state ψi of which the transient population, 
however, remains zero and dissipative losses to levels φd are avoided [77] 



16 

CH3I [79–84]. 

Another control strategy based on the coherent adiabatic excitation, is the STIm­

ulated Raman Adiabatic Passage (STIRAP) scheme, developed by Bergmann and col­

laborators [85, 86] and Eberly et al [87]. This control scheme is designed to achieve full 

population transfer between specified quantum states, and is very robust to variations 

in the laser parameters once the proper operating regime, called adiabatic regime, is 

achieved [88–90] [the mechanism will be detailed in sec. 3.1]. The basic version of the 

approach is shown in fig. 2 (c), in which the inversion of population from the ground 

state ψg to the final state ψf is accomplished with the support of an intermediate state 

ψi. The scheme employs two intense laser pulses in a counter-intuitive sequence in or­

der to achieve population inversion. Sequentially, the first pulse, the Stokes pulse, is 

resonant with the energy difference between the final state ψf and the intermediate 

state ψi. The second pulse is the pump pulse which couples the ground state ψg with 

the intermediate state ψi. This counter-intuitive sequence of pulses is designed such 

that when the pump pulse is switched while the Stokes pulse is still acting, a dark or 

trapped state is prepared which prevents populating the intermediate state, ψi, that is, 

the transient population in this state remains zero, and possible dissipative population 

losses into states φd by radiative decay, for example, are avoided. The population is 

considered to be virtually confined to the two states, ψg or ψf . The complete transfer 

from the ground to the final state occurs when the pump pulse is applied at the tail of 

the Stokes pulse. The phenomenon of trapping is a consequence of quantum interference 

between the two pathways leading to state ψi in fig. 2 (c). This technique of control 

has been experimentally verified for atoms and small molecules [91, 92]. The STIRAP 

scheme has also been extended to N-level systems [87, 93]. 

It is interesting to note that these control schemes are not necessarily mutually 

exclusive, but part of the principles of some of these schemes can be combined to generate 

hybrid schemes. For instance, it was shown that it is possible to combine the selectivity 

of coherent control and the robustness of adiabatic passage in a new control scheme 

sometimes referred to as Coherent Controlled Adiabatic Passage. This scheme has 

been used to prepare arbitrary superposition states [94] or to control the double proton 

transfer in a model nucleotide base-pair with the goal of detecting and automatically 

repairing base-pair mutations [95]. 

Another control strategy exploits the resulting Stark shifts of non-adiabatic potential 

energy curves due to intense nonresonant IR laser pulses as a means to control molec­

ular reactions [15]. The Dynamic Stark Control method has been tested theoretically 

and experimentally influencing the outcome of photodissociation reactions at conical 
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intersections [96], in bond softening or hardening [97–100], selectively driving popula­

tion to excited states [101–103], changing the molecular structure [104–106], squeezing 

wave packets [107, 108] or stopping or inducing a spin-orbit coupling [109–112]. In this 

work, a control scheme based on the dynamic Stark effect is employed to influence the 

population transfer between singlet and triplet states (see sec. 3.3). 

Quantum Control algorithms 

The presented control strategies can be tuned to operate efficiently when the molecu­

lar Hamiltonian and the potential energy surfaces are well known. For example, the 

Brumer-Shapiro scheme faces the problem that the same intermediate state leads to 

different reaction products. In the Tannor-Rice method it is only possible to control 

the vertical transitions between electronic states. But, due to the anharmonicity of the 

excited state PES, the evolution of the wave packet will, in most cases, spread out, pre­

venting a clean dump into the desired dissociation channel. A necessary improvement 

required to control the wave packet dynamics within each electronic potential. This 

became possible with the development of Quantum Optimal Control Theory (QOCT). 

QOCT was first developed by Rabitz and co-workers [9,113–115] and, independently, by 

Kosloff et al. [10]. The Tannor-Rice pump-dump scheme for controlling the selectivity 

of product formation in a chemical reaction is improved by the development of a method 

for optimizing the field of a particular product with respect to the shapes of the pump 

and dump pulses. QOCT was generalized using the mathematical theory of Optimal 

Control, where the shape of the dump pulse (and finally of a single pulse) is determined 

by maximizing the desired yield, given the Hamiltonian and the final time at which the 

yield is calculated. Thus, the development of QOCT became a mathematical problem, 

and the following advances were focused on the search of the most efficient numerical 

methods to solve the corresponding Euler-Schrödinger equation. Aside the methodolog­

ical advances and all different QOCT methods [5,10,114,116–122], the idea was applied 

to control many different systems [114, 116, 123–129]. 

However, the tailored electric fields that are produced from QOCT simulations tend 

to be rather complex, and therefore difficult to reproduce experimentally, hiding the 

control mechanism in their intrincate pulse shapes. Finding this so-called optimal laser 

field is not trivial, since, as mentioned before, the approximations made in the theoretical 

calculations do not always correspond to the real Hamiltonian. For polyatomic molecules 

there is an amount of uncertainty in the Hamiltonian and developing QOCT for these 

systems is a challenging task. Additionally, it is clear that for large molecules, by 
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increasing the density of accessible quantum states, the QOCT iterative schemes quickly 

become computationally very demanding. 

Some theoretical efforts were developed to bridge the gap between QOCT and ex­

periment by introducing new functionals and optimization strategies. It is possible to 

restrict the optimal pulse complexity to a minimum, thereby achieving robust pulses, 

whose spectra are a direct signature of the control mechanism. 

Experimentally, the difficulty is to find the optimal tailored pulse that leads to the 

wanted outcome of the experiment by the correct interference of the multiple light­

induced pathways. Consequently, a more practical approach lead to the adaptive learn­

ing or Quantum Optimal Control Experiments (QOCE) [130], adapted to the experi­

mental techniques used in ultrafast laser pulse control, to solve this search problem. 

In QOCE a closed-loop algorithm iteratively modifies the laser pulse until the exper­

imental observable (representing the desired target state) is maximized or minimized. 

This is achieved by feeding the pulse shaper with information about the measured signal 

so that the electric field pattern is modified until the response signal does not signif­

icantly change using a learning algorithm like, e.g., an evolutionary algorithm (con­

vergence is achieved). In this way the algorithm learns the optimal sequence for the 

investigated system, i.e., the best pulse for a desired process in a particular molecule. 

All of this is achieved without an a priori knowledge of the molecular Hamiltonian during 

the optimal path towards the selected target state. 

Many groups applied the adaptive control in the laboratory. Processes like popu­

lation transfer to excited states [131], fragmentation of organometallic molecules [132], 

ionization [133], impulsive stimulated Raman scattering (ISRS) [134], and high harmonic 

generation [135] were objectives of the optimization. 

In this thesis, the approach of Local Control Theory (LCT) [11,12], is followed. The 

idea first appeared in the formulation of QOCT introduced by Kosloff, Rice, and Tannor 

[10] and has been extensively developed since then [11, 93, 121, 136–139]. In contrast 

with optimal control, which involves an iterative forward- backward procedure, in local 

optimization the pulse shape is optimized at every instant in time and immediately fed 

back into the dynamics. The basic idea is to choose a control field in order to ensure an 

increase or decrease of the expectation value of an observable, e.g., (x), (H), etc. during 

a certain period of time where the external field is acting. This involves less detailed 

target states and the use of simpler methodologies. 

The local control concept was used to model laser cooling or heating (in the sense 

of adding or taking away internal energy) of molecular vibrational motion on the elec­

tronic ground state, in which an excited state is used by changing the phase of the 
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laser field [121,137]. This method has also been applied to control the photodissociation 

of small molecules [140, 141] or charge transfer processes [138, 139, 142]. Furthermore, 

this approach has been used for a generalization of stimulated Raman adiabatic pas­

sage (STIRAP) [143] to an N-level quantum system [93]. In all these applications, 

the heating/cooling or population transfer were achieved by locally designing external 

fields under certain constraints like, for example, the locking of population in specific 

electronic states. 

Further developments include the treatment of multiple objectives leading to possibly 

force the system dynamics along a predescribed path through Hilbert space [144–147]. 

From the viewpoint of global optimization, a different theory of local control has been 

derived, applied to finite time intervals [118,148,149]. This approach can also be applied 

within a classical context, and local control fields from classical dynamics have been 

used in quantum problems [150]. In parallel, Rabitz and coworkers developed a method 

called ”tracking control”, in which Ehrenfest’s equations [151] for an observable are used 

to derive an explicit expression for the electric field that forces the system dynamics to 

reproduce a predefined temporal evolution of the control observable [120,152]. Quantum 

computing has also taken advantage from this theory [153, 154]. 

In addition to the examples already mentioned, the different local control schemes 

have found many applications in molecular physics, like population control [155–158], 

selective mode excitation in biological systems [159], control of molecular photoas­

sociation [160], wave packet control [161–163], control within a dissipative environ­

ment [164, 165], selective vibrational excitation or dissociation [166, 167] and selective 

rotational molecular fragmentation [168]. Other examples include isomerization con­

trol [148, 169], control of predissociation [170], or enantiomer control [171, 172]. Local 

control has also been applied to control particle transfer in the case of coupled electronic 

and nuclear motion [173]. A further application of this theory is the so called optical 

paralysis scheme [136, 151, 174]. The basic idea is to manipulate ground state proper­

ties while suppressing unwanted excitations to high-lying states, an important issue for 

strong field coherent control. 

Considering the general formulation of LCT, it is interesting to note that there 

exist similarities between monotonically convergent algorithms for optimal control and 

local control methods [175]. An additional important point that is worth mentioning, 

is that the control fields constructed within the LCT scheme can be interpreted in a 

straightforward way. This is not always possible for fields derived from other control 

theories. 

Regarding the attosecond time domain, quantum control of electron dynamics was 
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established based on advances in the field of control of nuclear dynamics, but in the case 

of sub-fs pulses, pulse shaping is at the moment technically not developed. However, 

the theoretical anticipation is timely, and might foster the development of pulse shaping 

techniques in the attosecond domain [2]. In the last years, the attention has shifted 

from the creation of new ways to obtain and characterize attosecond pulses towards the 

use of these pulses to monitor and control electron dynamics, following the path of what 

was done with reaction dynamics in molecules with femtosecond lasers [47, 176,177]. 

Many control schemes to directly manipulate the electronic motion have been already 

devised, for example dipole switching control in molecules and in open systems [178,179], 

stereocontrol of electron dynamics in polyatomic molecules [180], magnetization switch­

ing control in quantum rings [181], optimal control of population transfer in polyatomic 

molecules [182], attosecond control of charge migration in small peptides [183], coherent 

control of electric currents in superlattices and molecular wires [184,185], chiral control 

of electron transmission (current transfer) through molecules [186], and coherent spin 

control of matrix isolated molecules by IR+UV laser pulses [187]. Quantum control of 

HHG [188] includes restricted optimal control of attosecond laser pulse synthesis from 

HHG using chirped driven laser pulses [189], IR+UV control of HHG [190] and opti­

mal control of HHG by pulse-shaped laser pulses [191, 192] and by intense few-cycle 

pulses [193]. Finally, quantum control of ionization and dissociation includes strong 

field control of landscapes involving multiphoton ionization using pulse-shaped laser 

pulses [194], optimal control of multiphoton ionization by ultrafast polarization shap­

ing [195], IR+UV control of electron localization in dissociation of H2+ [196], IR+UV 

control of photoelectron spectroscopy of electron tunneling in H2 [197], laser control of 

symmetry breaking of dissociation of H2 [198]. 

Besides the time or frequency domain features of the spectra, the laser intensity 

constitutes another essential feature of control techniques. Beyond intensities of the 

order or higher than the TW/cm2, many nonlinear multi-photon transitions occur that 

may allow to excite highly inaccessible regions of the electronic potentials. Addition­

ally, Autler-Townes splittings and strong Stark shifts modify the electronic forces and 

reshape the potential energy surface [199]. At this intensities, static phenomena as bond 

hardening or bond softening [98,200], as well as dynamical processes that will be studied 

in this project, can be controlled. At even higher intensities, multi-photon ionization 

and Coulomb explosion destroy the molecule, but can be used to gather information 

about the wave function prior to the molecule’s breakdown [201]. In a recent future, 

perhaps shaping laser pulses in the attosecond regime it will become feasible to stabilize 

the molecule and control the electronic motion [202, 203]. 
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Considering this new time domain in chemistry and biology, the question arises of 

whether femto- and attosecond probing of molecular dynamics just represents a bench­

mark in an observation window, or whether it reveals new phenomena and new frontiers. 

Along the years, it has been clearly shown that the ultrafast regime does not simply 

provide more time resolution for a better observation of the processes but also opens 

new ways to manipulate matter. 

The research attempting to control quantum phenomena has been advancing for 

some 50 years, but in many aspects the field could be viewed as a few years young 

with the basic physical principles only now beginning to reveal themselves. Despite 

the evident limitations of currently available laser resources, they have already enabled 

the successful control of many types of quantum phenomena. Each advance in control 

resources is expected to reveal significant new domains for quantum control and enhance 

the quality of the achieved results. The prospect of simultaneously observing nuclear 

and electronic motion in molecules may make non-Born-Oppenheimer processes like 

the dynamics at conical intersections accessible to direct observation for the first time. 

The recent advances in the quantum control field emerged through joint efforts from 

the theoretical and experimental communities, and this cooperation is expected to be 

crucial to the future development of the field. 

Motivation of the thesis 

The main goal of this thesis is the simulation of the dynamics of molecules excited by 

intense ultrashort pulses in the femto and attosecond scale, and the control of differ­

ent molecular processes such as ionization, dissociation, interference, spin and electron 

transfer, facilitated by the preparation of electronic states in a quantum superposition 

under laser fields. Using model systems, we will explore what are the main sources that 

limit our ability to control the electron dynamics and the role of the interaction between 

the nuclear and electronic degrees of freedom. 

We combine quantum control techniques with femto and attophysics processes, work­

ing with highly simplified (but generic) potential models for qualitatively understanding 

the nature of the processes, its controllability and the validity of the usual approxima­

tions that give rise to important physical representations of the systems under study. 

We intend to predict the degree of control that can be achieved in attophysics processes 

(ionization, dissociation, change of electronic properties) when pulse modulation tech­

niques are extended to the attosecond domain, so that this research can serve as an 

incitement to its development. Since the technology is not yet available, and therefore 
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its range and limitations are not known precisely, we will focus on general models trying 

to answer questions such as: How do ionizing processes with low-frequency lasers affect 

the efficiency of many control methods? Is it possible to avoid the ionization and to 

control the spin-orbit transfer? Can one use the external fields as drivers for electrons 

between distant atoms? 

The two main results developed in this thesis are: 

•	 The test of the limits of validity of controlling the spin-orbit transitions through 

nonresonant strong pulses, when the effects of ionization by tunneling or multi­

photon absorption and the violation of the Born-Oppenheimer approximation are 

incorporated in the electron dynamics. 

•	 The control of processes involving reversible transitions between bound states and 

ionizing states (continuum). That is, we want to maximize the probability that 

the electrons, after being transported through the continuum, will be re-trapped 

when they return to the core, after the phase of the pulse changes, or to a different 

ion. 

Work Plan 

We conclude this chapter laying out the organization of the remaining of this thesis. 

In Chapter 2 we review the most important theoretical ideas that are central to 

the studies of this thesis. Our main object of study is the evolving wave function of 

the system. We start by analyzing the time dependent Schrödinger equation and the 

different approximations we embrace to describe the molecular dynamics under the effect 

of a laser field. In particular, we discuss the Born-Oppenheimer approximation (sec. 

1.1). In sec. 1.2 we introduce the equations that define the laser-matter interaction, as 

well as the approximations made to simplify our Hamiltonian when the coupling with 

the laser field is included. We restrict ourselves to the non-relativistic regime for the 

electron dynamics, and we will always assume the dipole approximation. This means 

that the laser–molecule interaction is theoretically described by the time dependent 

Schrödinger equation where the magnetic field of the laser pulse is neglected. The laser 

acts merely via the electric field, which is (as seen from the viewpoint of the molecule) 

time dependent but homogeneous in space. 

In the rotating wave approximation (sec. 1.2.1) the fast oscillating terms are re­

moved, i.e., we neglect the instantaneous effect of very non-resonant frequency compo­

nents of the field. This approximation is valid when the interaction energy is lower than 
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the energy of the photon and when the pulse duration is larger than the inverse of its 

frequency. Under the adiabatic approximation (sec. 1.2.2) we describe our system in 

terms of adiabatic or dressed states, which are the instantaneous eigenfunctions of the 

complete Hamiltonian, including the coupling with the laser field. The adiabatic regime 

defines the evolution of a system in an environment characterized by a slowly varying 

time dependent Hamiltonian, which implies that there are no transitions between the 

adiabatic states and their populations are conserved. Within this representation one 

typically neglects the non-adiabatic couplings (off-diagonal elements in the Hamilto­

nian), greatly simplifying the Hamiltonian. The adiabatic evolution requires a smooth 

pulse, long interaction time and large Rabi frequency and/or large detuning. 

We continue with the description of the spin-orbit coupling (sec. 1.3). In this 

thesis we are interested in the control of the spin-orbit transitions working in the 

ultaintense regime, where second order effects must be considered carefully and the 

Born-Oppenheimer approximation fails to account for important physical processes. 

Therefore, new terms must be included in the Hamiltonian, since these effects pro­

duce significant variations in the energy of the states and induce dynamical processes. 

Once we have imposed these approximations, we obtain the complete time dependent 

Schrödinger equation (TDSE) describing the evolution of our molecular system. Chap­

ter 2 reveals the mathematical methods applied to numerically solve this equation and 

to follow the system dynamics ”steered” by a laser field. The Fourier Grid Hamiltonian 

(FGH) method [204] is used (sec. 2.2) to calculate the eigenstates of the Hamiltonian 

in a grid (sec. 2.1). The TDSE is solved as a propagator by using the Split Operator 

method [205], which approximates the Hamiltonian as a product of kinetic energy and 

potential energy propagators over short time intervals, which can be each efficiently 

evaluated in different representations. 

In sec. 2.6 we describe the specific Hamiltonian models that we employ to describe 

the electronic and nuclear dynamics. Normally, the TDSE approach is restricted to 

model systems, since already the dynamics of two electron molecules (without approx­

imations) in a strong pulse is too demanding for present-day computers. Therefore it 

is popular to employ the single-active-electron approximation (SAE) and/or reduced 

dimensionality of the molecular system of interest. Rather than using a realistic Hamil­

tonian, we extend the Shin-Metiu model [206, 207] to include non adiabatic couplings 

which allow us to explore the degree of control over the spin-orbit transitions. In addi­

tion, a soft-core Coulomb potential [208] is used to control charge transfer processes in 

small molecules (H2 and HeH2+). 

In chapter 3 different quantum control schemes are described. The nonresonant 
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dynamic Stark effect is used as a strategy to influence the spin-orbit transitions (sec. 

3.3.2). By means of strong laser fields one can modify the molecular potentials, creating 

new non adiabatic couplings, thus changing the wave packet evolution along the potential 

energy curves and stopping or inducing a singlet-triplet transition. In chapter 4 we 

introduce the Quantum Control Algorithms, focusing on the description of Local Control 

Theory (sec. 4.2). We derive the different control equations to obtain the laser control 

fields that maximize the electron transfer between separated nuclei. 

The following sections present the results of this thesis. The original results are 

divided in two different chapters consisting in a brief summary describing the theoretical 

work and then we include the articles as they are published. 

In chapter 5 we explain in detail the results obtained in this thesis. Section 5.1 

concerns the control of the spin of the wave function via the nonresonant dynamic 

Stark effect in a model system and analyzes under which conditions this control is 

possible. It consists of the results of three different articles: ”Quantum wave packet 

dynamics in spin-coupled vibronic states” (J. Phys. Chem. A, 116, 11427-11433, 2012), 

”Manipulating the singlet-triplet transition in ion strings by nonresonant dynamic Stark 

effect” (Theor. Chem. Acc., 132, 1359, 2013) and ”The time-scale of non linear events 

driven by strong fields: can one control the spin coupling before ionization runs over?” 

(J. Phys. B, 47, 124027, 2014). 

Section 5.2 deals with the laser control of the electron transfer between nuclei when 

long internuclear distances are considered. Different formulations of the Local Control 

theory are applied working under two different time scales: femto and atto. The results 

are presented in two articles: ”Local Control approach to ultrafast electron transfer” 

(Chem. Phys., In press, 2016) and ”Slow electron transfer between separated nuclei” (In 

preparation). 

Finally chapter 7 is the summary and conclusions. 



Theoretical background
 





Atoms and molecules in strong fields 

Along this chapter we deal with the Hamiltonian describing the physics behind the 

different phenomena investigated in this thesis. In general, we study the evolution of 

the system by solving the time dependent Schrödinger equation (TDSE) 

∂	 i ˆ|Ψ(R, x, t)
) 
= − H|Ψ(R, x, t)

)	 
(1.1)

∂t ' 

where t is the time, |Ψ(R, x, t)
) 
represents the global wave function of the system, 

Ĥ is the Hamiltonian, and R and x represent the nuclear and electron coordinates, 

respectively. 

Initially, in section 1.1, we introduce the Born-Oppenheimer approximation, which 

separates the electron and nuclear motion. We follow with the description of the molec­

ular dynamics in the presence of a laser assuming a classical behaviour of the external 

field (1.2). Right after, we explain the rotating wave approximation (RWA) and the 

adiabatic approximation, which allow us to simplify the equations characterizing our 

system dynamics. In section 1.3, we finally end up describing the effects that force us 

to go beyond the Born-Oppenheimer approximation with the new terms that must be 

included in the Hamiltonian defining the system. 

1.1	 The molecular Hamiltonian under the 

Born-Oppenheimer approximation 

The Born-Oppenheimer approximation is one of the basic concepts underlying the de­

scription of the quantum states of the molecule. It separates the electron and nuclear 

motion based on the idea that the nuclear mass is so much larger than the electron mass. 

From where the next assumptions follow: 

1. The electronic wave function depends upon the nuclear positions, but not upon 

27
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their velocities, i.e., the nuclear motion is so much slower than the electron motion, 

that the nuclei can be considered to be fixed. 

2. The nuclear motion (e.g.	 rotation,vibration) sees a smeared out potential from 

the speedy electrons. 

Due to their smaller mass, electrons bounded in the nuclear potential move more 

rapidly than the heavy nuclei themselves and, on average, follow their motion. The 

physical result is that the electronic motions are instantaneously ”adapted” at each 

nuclear position. Therefore we can solve the electronic Schrödinger equation at each 

nuclear configuration which is much more computationally affordable. 

In general, the Hamiltonian can be written as 

Ĥ	= T̂N (R) + Ĥe(R, x) (1.2) 

ˆ	 ˆwhere TN (R) is the nuclear kinetic energy operator and He(R, x) is called “electronic 

Hamiltonian”. 

Considering a diatomic molecule AB, disregarding the rotation and translation of 

the center of mass, the nuclear kinetic term is 

'2	 ∂2 

T̂ (R) = −	 (1.3)
2µ ∂R2 

where µ = mAmB /(mA + mB ) is the reduced mass of the nuclei A and B, and R the 

internuclear distance. 
ˆConcerning the electronic Hamiltonian He(R, x), this term includes the kinetic en­

ergy of the electrons, the nuclear repulsion, the attraction between the electron and 

nuclei and the electronic repulsion. Thus, we can express the electronic Hamiltonian as 

potential 

kinetic 
_ ⎛ __ ⎞_ 

_	 
'2 
__
ne ∂2

_ 
2 ne 2 ne 2 ne ne 21 ZAZBe ZAe ZBe e

Ĥe(R, x) = − 
� 

+ 

⎜⎜
− 
� 

− 
� 

+ 
�� ⎟⎟

2me ∂x2 4π�0 

⎜
R DAi DBi dij 

⎟
i i 

⎜
i i i j �=i 

⎟⎝_ __ _	 ⎠
n−n _ 

e−
__
−n 

_ _ __ 
− 

_
e−−e

(1.4) 

where ne is the number of electrons in the diatomic molecule, xi represents the 

electronic coordinates i with respect to the center of mass defined by the nuclei, me and 

e are the electronic mass and charge respectively, ZA y ZB are the number of protons 

in the nuclei A and B, dij is the interelectronic distance between the electrons i and j, 
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1.1 The molecular Hamiltonian under the 
Born-Oppenheimer approximation 

whereas DAi and DBi are the distances between electron i and the nuclei A and B. 

Considering this separation of the Hamiltonian, one can propose the following ex­

pansion of the wave function 

Ĥe(R; x)|χα(R; x)
) 
= Vα(R)|χα(R; x)

) 
(1.5) 

Equation (1.5) is the electronic time independent Schrödinger equation (TISE). This 

equation can be solved by standard ab initio methods [209, 210]. 

From these electronic wave functions it is possible to evaluate the total Hamiltonian 

over the total wave function, which is a linear combination of products of nuclear and 

electronic wave functions [see eq. (1.12)]. 
ˆApplying He(R; x) to this linear combination results in 

N N 

Ĥe(R; x) |ψα(R, t)
)
|χα(R; x)

) 
= |ψα(R, t)

)
Ĥe(R; x)|χα(R; x)

) 
(1.6) 

α α 

given that there is no derivative with respect to the coordinates of the nuclear wave 
ˆfunction in He(R; x). From this result we obtain, 

N 

Ĥe(R; x)|Ψ(R, x, t)
) 
= |χα(R; x)

)
Vα(R)|ψα(R, t)

) 
(1.7) 

α 

Besides, when applying the nuclear kinetic term we have to derive with respect to 

the internuclear distance R. Operating sequentially, the first derivative is 

N N N 
∂ |ψα(R, t)

)
|χα(R; x)

) 
= |χα(R; x)

)∂|ψα(R, t)
) 
+ 

∂|χα(R; x)
)
|ψα(R, t)

)
∂R ∂R ∂R 

α α α 

(1.8) 

and the second derivative results in 

N N 
∂2 

|ψα(R, t)
)
|χα(R; x)

) 
= |χα(R; x)

)∂2|ψα(R, t)
)
+ 

∂R2 ∂R2 
α α 

(1.9)
N N

∂2|χα(R; x)
)
|ψα(R, t)

) 
+ 2 

∂|χα(R, t)
) 
∂|ψα(R; x

)

∂R2 ∂R ∂R 
α α 

Lastly, we can integrate with respect the whole electronic coordinates to follow the 
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nuclear motion. Applying eq. (1.5) and considering that the electronic wave functions 
ˆare orthonormal (

\
χα(R; x)|χβ (R; x)

) 
= δαβ ), we obtain for He(R; x) 

N \
χβ(R; x)|Ĥe(R; x)| χα(R; x)ψα(R, t)

) 
= Vβ(R)|ψβ(R, t)

) 
(1.10) 

α 

ˆand the global Hamiltonian H results in 

BO approx. _ _
eq. (1.9)

eq. (1.10) 
N '2 ∂2\

χβ (R; x)|Ĥ| |χα(R; x)
)
|ψα(R, t

)) 
= Vβ(R)|ψβ(R, t)

) 
+ − |ψβ (R, t)

)
2µ ∂R2 

α
 

'2 N 
∂2 '2 N
 

∂ ∂ − 
\
χβ (R; x)| |χα(R; x)

) 
|ψα(R, t)

) 
− 

\
χβ (R; x)| |χα(R; x)

) 
|ψα(R, t)

)
2µ ∂R2 µ ∂R ∂R

α α _ 
T RR

__ _ _ 
T R
__ _

(R) (R)βα βα_ _
eq. (1.9) 

(1.11) 

where T RR(R) y T R (R) represent the derivatives with respect to the internuclearβα βα

distance of the electronic wave function. 

Within the adiabatic approximation [211] the probability of transition between the 

electronic wave functions of the same basis set can be neglected, and only the terms in 

the diagonal remain in the Hamiltonian. Dismissing also the kinetic terms T RR(R) andββ 

T R (R) with respect to Vβ(R) in the Born-Oppenheimer approximation, the TDSE forββ 

the molecular motion reads 

⎛ 
ˆ

⎞
T (R) ⎜_ 
'2
__

∂2
_ ⎟

∂ i |ψβ(R, t)
) 
= − 

⎜⎜− |ψβ (R, t)
) 
+ Vβ (R)|ψβ (R, t)

) 
(1.12)

⎟⎟
∂t ' 

⎜
2µ ∂R2 ⎟⎜ ⎟⎝ ⎠ 

The Vβ (r) terms are usually known as potential energy curves, and can be calculated, 

within the Born-Oppenheimer approximation, as the sum of the kinetic and potential 

energy of the electrons in a quantum state β with the internuclear repulsion for each 

nuclear position R. 
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Summarizing, once the Hamiltonian is integrated, a nuclear potential is created in 

which the electrostatic energy (repulsions and attractions) of the system and the kinetic 

energy of the electrons are included. 

1.2 Light and matter interaction 

Throughout this thesis, we are interested in the processes triggered by the interaction 

between molecules and a coherent external pulse of electromagnetic radiation. In this 

section we describe the fundamentals of the molecular dynamics in the presence of a 

laser field with a coherent interaction with the system, under a semiclassical approach, 

in which the field is treated classically while the molecule-laser interaction is quantized. 

We assume that the characteristic time of the decoherence processes is much larger than 

those we are interested in, and they lie beyond the scope of this work. In general, 

neglecting the multipolar terms and the effects of the magnetic field, we can write the 

Hamiltonian of the system, including the interaction between the laser field and the 

molecule, as 

Ĥ(R, x, t) = T̂ (r) + Ĥe(R; x) − µ̂(R; x)E(t) (1.13) 

where E(t) is the amplitude of the electric field (disregarding its spatial dependence) 

and µ(R; x) is the dipolar moment operator, oriented in some direction of the polariza­

tion of the laser field. 

We can define again as in sec. 1.1 the global wave function |Ψ(R, x, t)
) 
as a linear 

combination of products of |χα(x; R)
)
|ψα(R, x)

)
. If we project over the electronic wave 

functions 
\
χβ(R; x)| and we integrate with respect to the electronic coordinates (x) we 

obtain a set of coupled equations very similar to eq. (1.12) 

N
  

∂ i ˆ|ψβ (R, t)
) 
= − T (R)|ψβ(R, t)

) 
+ Vβ (R)|ψβ (R, t)

) 
− µβα(R)E(t)|ψα(R, t)

)
∂t '

α 

(1.14) 

where µβα(R) is the transition dipole moment between the electronic wave functions 

β and α, µβα(R) = 
\
χβ (R; x)|µ(R; x)|χα(R; x)

)
. The electric field is represented by its 

envelope E0(t), its frequency ω and a phase ϕ 

E(t) = E0(t) cos(ωt + ϕ) (1.15) 
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In this thesis we employ the laser field as a tool to control the system dynamics, 

but before delving into the study of the control mechanisms we applied to influence its 

evolution, we will enquire into the study of how the electric field can produce transitions 

between different quantum levels, in particular between vibrational and electronic levels 

(rotational levels are not considered). Usually, in spectroscopy, the transition probability 

is calculated by the time dependent perturbation theory [151], where the Hamiltonian 

matrix is defined in the basis of the Hamiltonian eigenfunctions of the system in the 

absence of radiation. But when the intensity of the radiation exceeds the acceptable 

limits to be treated as a perturbation (in our case the electric field can induce population 

inversion), we must solve the TDSE exactly, as it happens in different control mechanism 

as the π-pulses model, the STIRAP mechanism (Stimulated Raman Adiabatic Passage) 

or other control schemes based on ultrashort and strong laser fields. 

To this aim, in the next section we first introduce the rotating wave approximation 

(RWA) so one can simplify the Hamiltonian term with the coupling to the electric field. 

Right after, we will define the system in the basis of the dressed states or adiabatic 

states, which are the instantaneous ”eigenfunctions” of the time dependent Hamiltonian 

including the coupling with the laser field. 

1.2.1 Rotating wave approximation (RWA) 

Let us consider the simplest situation of two potentials [Vα and Vβ] coupled by a laser of 

frequency ω which acts directly over the transition, disregarding the permanent dipole 

moments [µα(R) = 0] (diatomic homonuclear molecules). 

From eq. (1.14), the TDSE is 

' ∂ − |ψα(R, t)
) 
= T (R)|ψα(R, t)

) 
+ Vα(R)|ψα(R, t)

) 
− µαβ(R)E0(t) cos(ωt)|ψβ (R, t)

)
i ∂t
' ∂ − |ψβ (R, t)

) 
= T (R)|ψβ (R, t)

) 
+ Vβ (R)|ψβ (R, t)

) 
− µβα(R)E0(t) cos(ωt)|ψα(R, t)

)
i ∂t

(1.16) 

If we change the representation as 

−iωt |ψ� (R, t)
) 
= |ψ� (R, t)

)
e+iωt ⇒ |ψβ(R, t)

) 
= |ψ� (R, t)

)
eβ β β (1.17)

|ψ� (R, t)
) 
= |ψα(R, t)

)
α

we obtain 
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33 1.2 Light and matter interaction 

' ∂ ' ∂−iωt −iωt− |ψβ (R, t)
) 
= − e |ψβ (R, t)

) 
+ 'ω|ψβ (R, t)

)
e (1.18)

i ∂t i ∂t

and the TDSE transforms in 

' ∂ |ψα(R, t)
)

− = 
i ∂t |ψβ(R, t)

) 
(1.19) 

T (R) + Vα(R) −µαβ(R)E0(t) cos(ωt)e−iωt |ψα(R, t)
 

−µβα(R)E0(t) cos(ωt)e+iωt T (R) + Vβ (R) − 'ω |ψβ (R, t)

)
)
 

With cos(ωt) = (e+iωt + e−iωt)/2, we can write 

' ∂ |ψα(R, t)
)

− = 
i ∂t |ψβ(R, t)

) 
(1.20) 

T (R) + Vα(R) −µαβ(R)E0(t)(e−2iωt + 1)/2 |ψα(R, t)
 

−µβα(R)E0(t)(e+2iωt + 1)/2 T (R) + Vβ(R) − 'ω |ψβ (R, t)

)
)
 

At this point the rotating wave approximation is introduced, which amounts to 

considering 1 + e±2iωt ≈ 1, neglecting the transition probability due to e±2iωt . This 

is because this term oscillates faster than E0(t) and the wave function and therefore 

its accumulated effect rapidly averages zero. With this approximation we neglect the 

transition probability coming from processes out of resonance: excitation from state 

|ψα

) 
to |ψβ

) 
by stimulated emission of a photon, and decay from state |ψβ

) 
to |ψα

) 
by 

the absorption of a photon. This approximation is fulfilled when the coupling radiation 

energy Vαβ = µαβ E(t), is lower than the energy of the photon, 'ω, and when the pulse 

duration is greater than the inverse of the frequency. 

In the RWA, the resulting TDSE is: 

' ∂ |ψα(R, t) T (R) + Vα(R) −µαβ (R)E0(t)/2 |ψα(R, t)− = 
i ∂t |ψβ (R, t)

)
) 

−µβα(R)E0(t)/2 T (R) + Vβ (R) |ψβ (R, t)

)
) 

(1.21) 

where Vβ (R) = VB (R) − 'ω. 

It is easy to demonstrate that this change in the representation does not modify the 

observables. For instance, neither the norm 
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−iωt 
\
ψβ(R, t)|ψβ(R, t)

) 
= 
\
ψβ(R, t)|e e +iωt|ψβ(R, t)

) 
= 
\
ψβ (R, t)|ψβ(R, t)

) 
(1.22) 

nor the relative average position change 

\
R| ≡ 

\
ψα(R, t)|r|ψα(R, t)

) 
= 
\
ψα(R, t)|R|ψα(R, t)

) 
(1.23) 

as well as the kinetic energy [T (R)]. 

1.2.2 The adiabatic approximation: dressed states 

When the laser field does not exceed the acceptable limits of intensity to be treated as 

a perturbation, the Hamiltonian matrix can be expressed in the basis of the eigenstates 

of the system in the absence of radiation. On the contrary, we can define the system in 

terms of adiabatic states or semiclassical dressed states or dressed states, which are the 

instantaneous eigenfunctions of the complete Hamiltonian, including the coupling with 

the laser pulse.1 

When the system evolves under the adiabatic approximation, it can be correctly 

described in terms of dressed states. Let us suppose that {Φi(t)} is the set of wave 
functions that diagonalize the Hamiltonian in the RWA (HRWA(t)) at each time step 

(the basis constitutes a uniparametric family of orthonormal functions). In this case, 

H(t)|Φi(t)) = ωA(t)|Φi(t)), where ωi
A(t) are the eigenvalues of the dressed states and i 

ˆare usually called quasi-energies. Either the eigenstates of the isolated Hamiltonian H0, 

{ψi}, and the dressed states are complete representations of the Hilbert space, there 

exist a lineal transformation between both basis, which has to be defined for each time: 

φ = R(t)Φ. Therefore making 

N 

|ψ(t)) = ai(t)|Φi(t)), 
i=1 

the Schrödinger equation for the wave function defined in the new basis will be 

∂ 
 

∂R 
 

i a(t) = HA(t) − iR−1 a(t), (1.24)
∂t ∂t

1The dressed states where firstly introduced in a complete description of the Hamiltonian including 
the quantized field [212]. Therefore in the semiclassical description of the field the adiabatic states 
must be properly called semiclassical dressed states 
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where a(t) is the coefficients vector and HA(t) = R−1(t)HRWA(t)R(t) is the Hamilto­

nian matrix in the dressed states representation, which is diagonal due to the definition 

of the basis (HA(t) = (Φi(t)|H(t)|Φj (t)) = ωA(t)δij ). The second term on the right side ij i 

of the equation (1.24) defines the non-adiabatic couplings, which account for the fact 

that the Hamiltonian HA(t) is not self-commuting at different times and therefore the 

laser can produce transitions between two dressed states at different moments (but it 

can not couple the two states at the same time, because they are orthogonal). 

The adiabatic approximation lies in neglecting the non-adiabatic couplings. This is 

the same as considering that the temporal variation of the dressed states is much slower 

than the variation of its eigenvalues, that is, the non-diagonal terms that produces 

∂R/∂t (the breaking of orthogonality at different times) are smaller than the diagonal 

terms, {ωA(t)}. Mathematically, the adiabatic criteria is usually expressed as [213]i 

d 
(t) − ωA

    (Φ(t)n
    Φm(t))

    « |ωn
A 

m(t)| (1.25)
dt

Within this approximation, now the integration of the Schrödinger equation is much 

easier, as it generates just phase terms (complex exponentials which imply the dynamic 

phase) that multiply the dressed states 

N  t−i dt'ωA(t')n0|ψ(t)) = an(0)|Φn(t))e (1.26) 
n=i 

where an(0) = (Φn(0)|ψ(0)) are the initial probability amplitudes (in the absence of 

radiation) of the dressed states. 

As we are considering the evolution of the system in the Dirac representation, where 

the temporal dependence of the Hamiltonian is only due to the pulse envelopes, so if the 

temporal variation is slow enough, the adiabatic approximation is valid. The adiabatic 

approximation is the same as considering that the radiation does not produce couplings 

between the dressed states. As an immediate consequence, if the initial state of the 

system is only a dressed state, this state will not change because of the interaction with 

the laser. Therefore, the radiation will drive the system from the initial state, to the 

final states of the system which can be projected over the dressed state when the pulse 

is turned off. 
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1.3	 Breakdown of the Born-Oppenheimer approxi­

mation: spin-orbit coupling 

In common molecular electronic structure calculations one employs the Born-Oppenheimer 

approach, not including the spin-orbit (SO) coupling or internal conversion terms at con­

ical intersections in the electronic Hamiltonian. This is the standard procedure when 

the initial basis is not fully adiabatic [214]. 

Despite its great explanatory capabilities, the dynamics of nuclear wave packets 

generally fail to account for important physical processes in two limits: at short times 

and at high energies. Then, the breakdown of the Born-Oppenheimer approximation 

(BOA) and the role of electron dynamics, specially for ionization processes, must be 

considered carefully. 

The spin-orbit coupling is a relativistic effect that mainly affects the Hamiltonian 

systems with heavy nuclei [215]. In molecules, the breakdown of the Born-Oppenheimer 

approximation is mainly caused by the spin-orbit transitions in the dynamics of excited 

states. It induces intersystem crossing (ISC) and has significantly implications in the 

spectroscopy and predissociation of molecules [216–218] and in the rate of relaxation 

mechanisms [219]. More importantly for our work, it has immediate use in molecular 

magnetism. In solids, the spin-coupling can be used to create states of mixed multiplicity 

and to prepare optical spin-switches [220]. In the field of spintronics [221], spin-orbit 

effects for electrons in semiconductors and other materials are explored for technical 

applications such as quantum information storage or quantum information processing 

devices [222]. 

The relativistic effects due to the SO coupling provoke significant variations of energy 

of the states and induce dynamical processes. These effects are usually introduced 

adding a new term in the Hamiltonian 

Ĥ = T̂ (R) + Ĥe(R; x) + ĤSO(R; x)	 (1.27) 

The spin-orbit coupling Hamiltonian can be written as 
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Direct spin-orbit interaction for each e− 

_  
ne 

__ 
ne 

 _
gS µB ZAe ZB e 

ĤSO(R; x) = (X Ai ×  vi/2) ·  si + (X Bi ×  vi/2) ·  si
c D3 D3 

Ai Bi i
ne 

i 
(1.28) 

gsµB 
 
e  vi −  vj 

 
− ( xij × ) ·  si

c d3 2iji=j

Interaction of the spin with another orbit 
_ 

where c is the velocity of light, ZA and ZB the atomic number of A and B nuclei, e is 
 the electron charge,  XBi, DAi and DBi are the relative positions and the distances XAi,

between the electron and the A nucleus and between the electron and the B nucleus,

 xij and dij are the relative positions and the distance between the electrons i and j,  vi is 

the electron velocity with respect to the center of mass of the nuclei, gs ≈ 2 is the Landé 

factor,  si is the spin of the electron i and µB = e'/2mec is the Bohr magneton, being me 

the mass of the electron. The electron velocity can be replaced by its linear momentum. 

Then, the vectorial product of the linear momentum and the relative positions is the 

orbital angular momentum ( lAi)

1  vi lAi = (X Ai × ) (1.29)
' me 

Now, the coupling term turns into 

α2 ne  ZA ZB 
 

α2 ne  1  vi 
 

ĤSO =  lAi ·  si +  lBi ·  si −  xij × ( si + 2 sj ) (1.30)
2 D3 D3 2 d3 meAi Bi iji i=j

where α = e2/'c. 

In this equation, two different terms contribute to the spin orbit coupling: an in­

teraction between the spin ( si) and the orbital angular momentum ( lij ) , which is a 

monoelectronic operator, and a bielectronic interaction. 

As it follows from this formula, there is a possibility to change the spin state of a 

molecule and it does not depend on an external field. Applying the same procedure as 

in the Born-Oppenheimer approximation, we can integrate the new Hamiltonian over 

the electronic coordinates resulting in 
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N \
χβ (R; x)|Ĥ |χα(R; x)

)
|ψα(R, t)

) 
= 

α	 
(1.31) 

'2 ∂2 N 

− |ψβ (R, t)
) 
+ Vβ (R)|ψβ(R, t)

) 
+ Vβα(R)|ψα(R, t)

)
2µ ∂R2 

α 

where the non-adiabatic transitions are neglected due to the variation of the wave 

T RR function with the internuclear distance, T R (R) = (R) = 0. Besides, Vβα(R) = βα βα \
χβ (R; x)|ĤSO(R; x)|χα(R; x)

) 
represents the spin-orbit coupling integrated over the 

electronic coordinates for each value of the internuclear distance. 

1.4	 The complete time dependent Schrödinger equa­

tion 

Once we have described all the individual physical phenomena of our interest, and which 

terms we must add to our Hamiltonian to study the system dynamics, we can obtain 

the complete TDSE 

'2 ∂2	 N' ∂ − |ψβ(R, t)
) 
=	 Vβ (R) − |ψβ(R, t)

) 
+ [Vβα(R) − µβα(R)E(t)]|ψα(R, t)

)
i ∂t	 2µ ∂r2 

α 

BO 
_	 __ _

diabatic crosses 
(1.32) 

Thus,	 we get a Born-Oppenheimer potentials equation, where the wave functions 
ˆare eigenfunctions of He(R; x) for each nuclear configuration. In this equation, the 

potentials are coupled by two Hamiltonian terms: the external laser field −µβα(R)E(t) 
and the spin-orbit coupling Vβα(R). 

In the next chapter we focus on the mathematical methods that allow us to numer­

ically solve this equation. 



Numerical Methods
 





Numerical tools: unravelling the equations that 

govern the system dynamics 

From a theoretical point of view, the simulation of the control schemes demands solving 

the TDSE. Different numerical methods have been developped to that end [151]. In 

this chapter, we describe the numerical methods used in this thesis to characterize the 

interaction processes between light and matter. But first we have to consider some 

assumptions: 

1. The effects of the matter over the laser are neglected (dispersion, attenuation...), 

in such manner we just consider the transitions in the molecule 

2. The coupling is treated classically, that is, we work under the dipole approxima­

tion, which establishes that the wavelength of the type of electromagnetic radiation 

which induces, or is emitted during transitions between different atomic energy 

levels is much larger than the typical size of the system 

3. The interaction is fully coherent, disregarding fluctuations in the pulse shape and 

phase and incoherent processes such as fluorescence and collisions. 

Under these conditions the intramolecular dynamics is described by the time de­

pendent Schrödinger equation. The way we solve this first order differential equation 

depends mainly on the basis we choose to represent the Hamiltonian of the system. 

2.1	 Wave function representation. Discretization on 

a grid 

In this thesis, the wave function of the system is discretized on a grid. When ultrashort 

and strong pulses are involved, it is most convenient to work in coordinate grids, since 

41
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the wave function is typically localized in some vibrational modes. The eigenstates of 

the laser-free Hamiltonian (or the dressed states of the laser controlled Hamiltonian) 

are better suited to follow the dynamics of weaker, short-bandwidth pulses. We wish 

to replace the continuous range of coordinate values x by a grid of discrete values xi. 

Using a uniform discrete grid of x values 

xi = iΔx (2.1) 

where Δx is the uniform spacing between the grid points. The discretization of the 

normalization integral for a wave function ψ(x) (where ψ(x) is 
\
x|ψ
) 
= ψ(x)) on a 

regular grid of N values of x [eq. (2.1)] leads to 

N 

ψ ∗ (xi)ψ(xi)Δx = 1, (2.2) 
i=1 

or 

N 

Δx |ψi|2 = 1 (2.3) 
i=1 

where ψi = ψ(xi). 

The basic bras and kets of our discretized coordinate space give the value of the wave 

function at the grid points 

\
xi|ψ
) 
= ψ(xi) = ψi (2.4) 

As we will work also in the momentum representation, the selection of the grid in 

momentum space is defined by the imposed discretization in the coordinate space. Thus, 

the distance between grid points in the momentum space Δk is related to the spacing 

between grid points in the coordinate space Δx. The total length of the coordinate 

space covered by the grid is NΔx. This length determines the longest wavelength and 

therefore the smallest frequency, which occurs in the reciprocal momentum space 

2π 2π 
Δk = = (2.5)

λmax NΔx 

This relationship gives us the grid spacing in momentum space. The central point in 

the momentum space grid is taken as k = 0, and the grid points are evenly distributed 

= −N −1 N−1about zero from −kmax to kmax = .
2Δk 2Δk 

The two alternative representations of a state function |ψ
) 
on a discretized grid of 
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points either in coordinate space or in momentum space may be written as 

|ψ
) 
= |xi

)
Δxψ(xi) = |xi

)
ψx (2.6)i 

i i 

or 

|ψ
) 
= |ki

)
Δkψ(ki) = |ki

)
ψk (2.7)i 

i i 

The transformation between the two representations is computed efficiently by the 

fast Fourier transform [223]. This algorithm requires the number of grid points to be 

powers of 2 (N = 2n) but it reduces the process from O(N2) (discrete Fourier transform) 

to O(Nlog2N) operations, therefore saving a huge computational time1 . 

The uncertainty principle is conserved in a discretized grid when the Fourier trans­

form method is applied [224]. Therefore, the minimum spacing between grid points 

Δx must be chosen in a way that the energy of the wave packet during the evolution 

remains below the maximum energy that can be represented in the grid. This energy 

is the sum of the maximum available potential energy, (Vmax-Vmin) and the maximum 

available kinetic energy, Tmax = π2'2(Δx)2/2m (being m the reduced mass of the sys­

tem). On the other hand, the maximum spacing between grid points , NΔx, must be 

chosen considering that it provides the wave packet resolution in the momentum space. 

2.2 Time independent Schrödinger equation 

The need for solving the Schrödinger equation numerically arises from the description 

of the electronic structure. Conventional methods for determining the eigenvalues and 

eigenfunctions of the Schrödinger equation rely on the diagonalization of a Hamiltonian 

matrix or iterative numerical solutions of a time independent wave equation. Usually, 

a polynomial orthogonal basis is chosen φi(x), that provides a very fast and accurate 

evaluation of the matrix elements Hij = 
J∞ 

Hφj (x)dx.−∞ φi(x) ˆ As an example, we can 

mention the FBR-DVR methods [225–228] (Finite Basis Representation-Discrete Vari­

able Representation), which divide the Hamiltonian in two, Ĥ = Ĥ0 + V̂ , so that the 

matrix elements are diagonal with respect to Ĥ0, while the integral with respect to V̂

can be solved by a Gaussian quadrature [225, 226]. Finally, a standard algorithm [223] 

(Jacobi, Lanczos...) is used to diagonalize the resulting Hamiltonian matrix, obtaining 

1There are other less efficient FFT algorithms with O(NlogN) complexity for all N, even for prime 
N 
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the eigenvalues and eigenfunctions (over the polynomial basis φi(x)). 

Although the solution of the Schrödinger equation in the basis of Hamiltonian eigen­

functions is a computationally simple procedure, it is not very efficient when we need to 

consider a high number of states in the system dynamics, particularly when one works 

with strong or ultrashort fields, and the probability of dissociation or ionization (ac­

cesing the continuum) must be taken into account. In this case, is much more useful to 

solve the Schrödinger equation in a discretized positional basis, or a grid, where one can 

evaluate both bound and continuum states. 

In this thesis, instead of this procedure, two different algorithms were used: the 

Fourier Grid Hamiltonian method, derived from the discrete Fourier transform algo­

rithm, and the spectral method, based on the spectral properties of solutions of the 

time dependent Schrödinger equation. 

In any case, once we obtain the Hamiltonian matrix by diagonalization, we need to 

integrate the Schrödinger equation, which requires the multiple evaluation of the product 
ˆof the H matrix times the state vector. This last operation scales with N1xN , where 

N1 is the number of steps in the temporal integration and N is the basis dimension 

or spatial points. Furthermore, the first step implies the diagonalization of the matrix, 

which scales with N3 . 

2.2.1 FGH method 

The Fourier Grid Hamiltonian (FGH) method [204] is an accurate and simple variational 

procedure to compute eigenvalues and eigenfunctions of a Schrödinger equation. This 

method is derived from the discrete Fourier transform algorithm. Its implementation 

and use is extremely simple, requiring the evaluation of the potential only at equally 

spaced grid points, and yielding directly the amplitude of the eigenfunctions at the same 

grid points. 

It relies on the fact that the Hamiltonian operator appearing in the Schrödinger 

equation is composed of the sum of a kinetic energy and a potential energy operator. The 

kinetic energy operator is best represented in the momentum space, as the basic vectors 

of this representation are eigenfunctions of both the linear momentum and the kinetic 

energy operators. On the other hand, the potential is best treated in the coordinate 

space in which it is diagonal. The transformation between these two representations is 

by Fourier transforms. 

This method has the advantage of simplicity over other techniques. Particularly, the 

wave functions or eigenfunctions of the Hamiltonian operator are generated directly as 
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the amplitudes of the wave function on the grid points and they are not given as a linear 

combination of any set of basis functions. The accuracy of the method depends on the 

number of grid points and on the maximal radial distance considered to integrate the 

eigenvalue equation. 

The wave function can be expressed in a spatial grid as it was explained in section 

2.1. Wave functions of this basis set are not eigenfunctions of the Hamiltonian of the 

system, thus the evaluation of the Hamiltonian in this basis is not diagonal, though it 

is possible to obtain a linear combination of functions in this basis set, obtaining the 

eigenfunctions of the Hamiltonian as linear combination of the |x
) 
basis. 

Applying the Hamiltonian to this grid, the eigenfunctions are obtained as linear 

combinations in this grid just solving the eigenvalue equation. Thus, just evaluating \
x|Ĥ|x 

) 
we obtain the eigenenergies (En) as the eigenvalues of this matrix and the 

eigenvectors are the eigenfunctions expressed in the grid 
\
x|φn

) 
= φ(xi) = ψi. 

Considering a single particle of mass	 m moving in one linear direction under the 
ˆinfluence of a potential V, the non relativistic Hamiltonian operator H may be written 

as a sum of a kinetic energy and a potential energy operator 

p̂2 
ˆ ˆH = T + V (x̂) = + V (x̂)	 (2.8) 

2m 

The corresponding coordinate representation of the Hamiltonian operator is given 

as follows 

\
x|Ĥ|x 

) 
= 
\
x|T̂ |x 

) 
+ 
\
x|V̂ |x 

)	 
(2.9) 

The basic vectors of this representation, |x
)
, are eigenfunctions of the position or 

coordinate operator x̂: 

x̂|x
) 
= x|x

)	 
(2.10) 

The eigenfunctions of the momentum operator in the momentum representation are 

written as 

p̂|k
) 
= k'|x

)	 
(2.11) 

The orthogonality and completeness relationships in terms of these basic vectors are 

\
u|u 
) 
= δ(u − u )	 (2.12) 
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and 

¡ ∞ 

Î = |u
)\
u| dx (2.13) 

−∞ 

being u = x, k, and the transformation matrix between the coordinate and momen­

tum representation is 

1 −ikx 
\
k|x
) 
= √ e (2.14)

2π 
. 

The potential is diagonal in the coordinate representation 

\
x|V̂ |x 

) 
= V (x)δ(x − x ) (2.15) 

and the kinetic energy operator is diagonal in the momentum representation 

\
k|T̂ |k 

) 
= Tkδ(k − k ) = 

'2k2 

δ(k − k ) (2.16)
2m 

. 

Armed with this formulas and definitions, the Hamiltonian operator in the coordinate 

representation [eq. (2.9)] reads 

\
x|Ĥ|x 

) 
= 
\
x|T̂ |x 

) 
+ V (x)δ(x − x ) (2.17) 

Inserting the identity operator [eq. (2.13)] to the right of the kinetic energy operator, 

one obtains 

\
x|Ĥ|x 

) 
= 
\
x|T̂{

¡ ∞ 

|k
)\
k|}|x 

) 
dk + V (x)δ(x − x ) 

¡ ∞ 1 
¡ −∞

∞ 
ik(x−x = 

\
x|k
)
Tk

\
k|x 
) 
dk + V (x)δ(x − x ) = e 

' )Tk dk + V (x)δ(x − x )
2π−∞ −∞ 

(2.18) 

This equation is at the heart of the FGH method. The exponential factor and the 

integral over k may be regarded as arising from a forward, followed by an inverse Fourier 

transform (FFT). 

The FFT technique may be represented as a unitary matrix transformation between 

the coordinate and momentum grid representations of the state function (sec. 2.1). 

Denoting the matrix which represents the forward FFT by F , we can write 
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ψk = Fψx (2.19) 

where ψk and ψx are column vectors. 

Defining a column vector φn which is composed entirely of zeros except for a single 

element of unity in the nth row 

0 

0 

. 

. 

1 

. 

. 

0 

← nth row (2.20)
 

We may now use this vector, together with a forward and reverse fast Fourier trans­

formation, to obtain the nth column of the Hamiltonian matrix H0 

H0 
in = [(F −1TF + V )φn]i, (2.21) 

where T and V are the diagonal kinetic energy and potential energy [V (xi)] matrices. 

By repeating this process for all the possible N vectors φn, one can generate the complete 

matrix H0. 

A limitation of this method, specially when its generalization to many mathematical 

dimensions is considered, is the high order of matrices which must be diagonalized. The 

FGH method involves the use of matrices of order (N x N), where N is the number of 

grid points used. In one dimension, this does not constitute a problem, but for N > 2 

the computational time required increases as N2 . 

2.2.2 Spectral Method 

The spectral method [229] is based on the spectral properties of solutions to the time 

dependent Schrödinger equation. It requires computation of the time dependent auto­

correlation function 

ξ(t) = 
\
ψ(x, 0)|ψ(x, t)

)
, (2.22) 

where ψ(x, t) represents a numerical solution to the time dependent Schrödinger 

⎞ 

⎟⎟


⎛ 

⎜⎜
 ⎟⎟⎟⎟


⎜⎜⎜⎜
 ⎟⎟⎟⎟


⎜⎜⎜⎜
 ⎟⎟⎟⎟


⎜⎜⎜⎜
 ⎠
⎝
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equation, and ψ(x, 0) is the wave function at t = 0. The solution of ψ(x, t) can be accu­

rately calculated by applying the Split Operator method (see sec. 2.3.1). The numerical 

Fourier transform of ξ(t), i.e., ξ(E), displays a set of sharp maxima for E = En, where 

En are the desired eigenvalues. Once the eigenvalues are known, the corresponding 

eigenfunctions can be computed by numerically evaluating the integrals 

N 
iEkt iEkt

|φk

) 
= 
¡ t 

e  dt|ψ(x, t)
) 
≈ Δt e  e −  

i lδtEj |φj 

) 
(2.23) 

0 t j 
_ 

c

__
j (t) 
_ 

With a new propagation, one can filter the desired wave function φk. Unless there 

were degenerated wave functions, the components of ψ(x, t) different from φk quickly 

disappear, remaining just the desired wave function. 

An attractive feature of this method is that it allows the eigenvalue spectrum to be 

displayed graphically and the energy levels to be identified visually as they would be an 

experimental spectrum. Since the lineshapes for the theoretical spectrum are known, it 

is also possible to characterize the spectrum quantitavely. 

The spectral method is in principle applicable to any linear eigenvalue problem [230] 

and to problems involving any number of dimensions. The only requirement is an 

available numerical solution for the time dependent wave function (or other dependent 

variable) specified on a suitable coordinate grid. The high accuracy of the Split Operator 

method [205] makes it particularly attractive for application with the spectral method 

to the Schrödinger equation in Cartesian coordinates. 

Matrix diagonalization is attractive for treating Hamiltonians that do not differ 

greatly from Hamiltonians with known eigenfunctions or for potentials with simple an­

alytic forms, which permit setting up the Hamiltonian matrix without excessive com­

putation. However, the spectral method becomes essential when a large amount of 

computation is required to set up the Hamiltonian matrix or, in general, when the re­

quired Hamiltonian matrix is of high order. The iterative numerical integration methods 

are known to give very accurate results for one-dimensional problems. To apply them, 

it is necessary to home in on the individual eigenvalues before the cycle of iterations is 

begun, both to reduce the number of iterations and to assure that no eigenvalues are 

missed [231]. While this poses no problem in principle, it can lower the efficiency in 

situations where information on the eigenvalue spectrum is limited. 

The spectral method is specially advisable when starting from an approximation of 

the eigenfunctions, for example, an eigenfunctions of H0 computed by the FGH method, 

and we want to calculate the solution when a perturbation is included. 
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2.3 Time dependent Schrödinger equation 

Since the main purpose of this thesis is to control the electron dynamics, it is important 

to perfectly characterize the evolution of the electronic wave packet. 

The electron motion is represented by the time dependent Schrödinger equation 

(TDSE) [eq. (1.1)]. 

In the coordinates representation and considering one dimension, the Hamiltonian 

implies second order partial derivatives and a potential that will also depend on time, 

'2 ∂2 

Ĥ = − + V (x, t) (2.24)
2m ∂x2 

Traditionally, the solution of this equation lies in dividing the differential equation 

and first solving the time independent Schrödinger equation (sec. 2.2). Once the Hamil­

tonian eigenvalues are known, the temporal part can be solved immediately. However, 

when the potential is coupled with a time dependent external field, it is impossible to 

separate the initial differential equation, except if perturbation theory is applied. An­

other possibility is to diagonalize the Hamiltonian each time step (so that the basis 

depends on time) and assume the adiabatic approach [213]. But this method implies 

excessive computation. 

On the other hand, it is possible to start from the general differential equation in 

the coordinates representation and discretize either the spatial and temporal variable in 

a grid, and then apply the Crank-Nicholson algorithm [232]. 

Finally, a third possibility deals with focusing on the temporal variable, so the 

Schrödinger equation can be solved as a propagator. The use of time dependent methods 

allows the system to be described by the dynamics of an always-squared-integrable wave 

packet. Thus problems involving ionization can be studied in the same straightforward 

manner as problems involving purely bound-state processes. 

Regarding this third possibility, it follows from the Schrödinger equation that the 

evolution of the wave function within an infinitesimal time increment Δt is described 

by the unitary operator e(− i tH(t)Δt): 

Ψ(x, t +Δt) = e− i Ĥ(t)ΔtΨ(x, t) (2.25) 

where the exponential term is called time evolution operator or propagator. Now, 

the problem becomes that of a differential equation with initial condittions. Starting 

from Ψ(x, t0) the propagator lead us to obtain Ψ(x, t) at each differential time step. 
H(t)ΔtWe turn now to the question of the numerical implementation of e− i ˆ

. There 
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are three basic strategies for doing this. The first is the straightforward method of using 
ˆthe approximate eigenvalues and eigenvectors of H to propagate. The main drawback 

of this approach are that it is limited to time-independent Hamiltonians and it requires 

the construction and diagonalization of the Hamiltonian matrix, the latter scaling as 

N3 . The second approach is to retain the exponent structure of the propagator, but to 

approximate the propagator as a product of a kinetic and potential factor [229]: 

2 
Ĥ − i ( ˆ +V (x))Δt ≈ e − i T̂Δt − i V̂Δt

2me = e 
p 

e (2.26) 

This approach is called the Split Operator method, and explicitly preserves unitarity. 

The third major strategy is to consider e(− i Ĥ(t)Δt) as a function of the Hamiltonian, 

that is, f(H), and look for a suitable polynomial approximation to this function [233, 

234]: 

N 
H e 
ˆ
= cnPn(H) (2.27) 

n=0 

where Pn(H) is some polynomial of the Hamiltonian operator. Once a polynomial 

sequence is chosen, the cn are uniquely determined. Polynomial methods can be divided 

into two categories: those that choose the polynomial in advance, such as the Chebyshev 

method [235] in which the Hamiltonian must be time independent, and those that do 

not, for example the Short Iterative Lanczos propagator [236]. 

In this thesis, the TDSE was always solved by the Split Operator method, which 

will be detailed in the next section. 

2.3.1 Split Operator method 

The Split-Operator method is one of the simplest and most popular methods for time 

propagation of wave packets [53, 229, 237]. 

The method begins by representing the propagator over the global time interval [0, t] 

as a product of propagators over short time intervals, Δt, where NΔt = t. Thus, 

ˆ − iΔt ˆ − iΔt ˆ − iΔt ˆH H H HU(t, 0) = e− it 
= e e ...e (2.28) _ 

N times 
__ _ 

The strategy is then to approximate each short time propagator as a product of a 

kinetic factor and a potential factor, according to the Trotter product formula: 

2 − iΔt Ĥ − iΔt ( ˆ +V (x)) ≈ e − iΔt T̂ − iΔt V (x) 2)2me = e 
p 

e + O(Δt (2.29) 

http:O(�t(2.29
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In this way, the kinetic factor is evaluated in the momentum representation where it 

is diagonal, and the potential exponential is calculated in the coordinates representation, 

being this factor diagonal in this space as well. 

If we define F as a unitary matrix of transformation between the coordinate and 

momentum representation 

− iΔt T − iΔt V − iΔt V − iΔt F †TF F e − iΔt V e e = FF † e − iΔt T FF † e = F e (2.30) 

one can evaluate each exponential in the representation where the operators are 

diagonal. Therefore, the factorization let us use all the advantages that come from the 

Fourier method, as it was explained before. 

However, note that the product in eq. (2.29) would be exact if T and V commuted; 

we expected the error, therefore, to be proportional to the commutator [T, V ]. 

It is easily verified that the factorization in two exponentials is a very poor approx­

imation of the propagator. If the exponentials are expanded, with α = − iΔt 
' 

α2 
αH αT αV e =1 + α(V + T ) + (V 2 + V T + TV + T 2) + ...e e 

2 (2.31)
α2 

= 1 + α(V + T ) + (V 2 + T 2 + 2TV ) + ... 
2
 

where the difference is
 

α2 

ζ(α2) = [V, T ] + O(α3). (2.32)
2 

Hence, the error depends on the commutator [T, V ] (the potential includes the cou­

pling with the laser field) and it is a second order error in Δt. However, the leading order 

error can be eliminated by forming a symmetrized product of the kinetic and potential 

factors: 

− iΔt H − iΔt − iΔt − iΔt − iΔt − iΔt T − iΔtV T T V V V e ≈ e 2 e 2 e 2 e 2 + O(Δt3) = e− i
2
Δt 

e e 2 + O(Δt3) (2.33) 

i3Δt3 
where ζ = 

24'3 [2T + V, [T, V ]] + O(Δt4). This third order error depends on a double 

commutator. This propagator was first introduced by Feit and Fleck [229]. 

It is worth noting that the Split Operator method is not limited to the Fourier 

basis, in fact it can be used with other spectral methods provided that the Fourier 

Transform is replaced by the corresponding pseudospectral ↔ spectral transformation 

matrix. The Split Operator method is manifestly unitary, and is recommended whenever 
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the Hamiltonian can be written as a sum of operators that depend on coordinates and 

operators that depend on the momenta. However, the method can not handle operators 

that mix coordinates and momenta, such as an operator of the form eip̂x̂. 

As an example, a simple model of spin-orbit coupling (sec. 1.3) is used in order to 

get a better insight of this method. We start the dynamics from an initially populated 

singlet potential [V1(x)] strongly coupled to a triplet potential [V2(x)]. Applying the 

dynamic Stark effect as a tool to influence the dynamics of the system, we employ a 

laser pulse E(t) which couples V2(x) with another triplet potential [V3(x)] by means of 

a non-zero dipole transition moment, µ23  = 0.
 

Following this model the wave function can be written as
 

⎞
⎟
)
)
) 

⎞
⎟

)
)
) ⎠ = |ψ(k, t)

) 

where the second index is the Born-Oppenheimer potential which the coefficient 

belongs, as the grid is defined equally for the potentials V1(x), V2(x) and V3(x). 

The kinetic term reads 

⎠ = 

⎛ 

⎜⎝


⎞ 

⎟⎠
 

⎛ 

⎜⎝


 N 
i 

 N 
ici,1(t)|xi

ci,2(t)|xi

di,1(t)|ki
di,2(t)|ki|ψ(x, t)

) 
=
 

 N 
i 

 N 
i 

FT−−→ (2.34)
 
 N 

i 

 N 
ici,3(t)|xi di,3(t)|ki

⎛ 

⎜⎝
 

⎛ 

⎜⎝
 

⎞ 

⎟⎠


∂2/∂x2 20 0
 0 0
p̂ 

'2 1


T̂ ∂2/∂x2 2= −
 (2.35)
0
 0
 0
 0
p̂ 

2µ
 2µ
 

∂2/∂x2 20 0
 0 0
 p̂ 


and the potential term V (x, t) is
 

V (x, t) =
 

⎛ 

⎜⎝
 

⎞ 

⎟⎠
 (2.36)
 

V1(x) − µ11(x)E(t) VSO 0 

V ∗ 
SO V2(x) − µ22(x)E(t) −µ23(x)E(t) 
0 −µ23(x)E(t) V3(x) − µ33(x)E(t) 

where the spin-orbit coupling [VSO(x)] allows the population transfer between the 

singlet and triplet and the transition between the triplets is achieved by means of the 

laser field. 

Evaluation of the potential term 

As it was previously described, the potential and kinetic terms are evaluated separately. 

In the SO method the first and third steps are common, so they are jointly explained. 
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We need to evaluate the exponential factor 

− i Δt 
2e V (x,t)|ψ(x, t)

) 
(2.37) 

To this aim the potential matrix must be diagonalized 

− i Δt − i Δt 
2 W (x,t) 

2e = R(x, t)† e Vd(x,t)R(x, t) (2.38) 

where R(x, t) is the diagonalization matrix of V (x, t) and Vd(x, t) is the diagonal 

eigenvalue matrix. 

Now one can represent e−iΔtVd(x,t)/2' as 

− i Δt U1(x,t)
⎛ 

e 2 0 0 
⎞ 

Δt⎜
0 e−' 

i 
2 U2(x, t) 0 

⎟
(2.39)⎝ 

− i Δt 

⎠ 
2 U3(x,t)0 0 e

resulting 

2|ψV (x, t)
) 
= R(x, t)e− i Δt Vd(x,t)R†(x, t) |ψ(x, t)

) 
, (2.40) 

UW (x, t) 

where we have defined UW (x, t) as the propagator corresponding the potential term 

of the split operator. 

Evaluation of the kinetic term 

As it was explained in section 2.1, the wave function can be represented in the momentum 

space applying the Fourier transform, where it is diagonal. 

Starting from |ψV (x, t)
) 
we obtain |ψV (x, t)

)
, which is diagonal in p̂: 

N 
FT|ψV (x, t)
) 
−−→ |ψV (k, t)

) 
= 

) 
(2.41)α α di,α|ki

i 

where α represent the considered potential [eq. (2.34)]. 

In this representation, it is easy to evaluate the exponential of the kinetic term 
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i2 2Δk2 

1 2	 

____
1 p̂ 	 p̂

2µ	 2µe	 
N 

di,α|ki
) 
= 

N 

e 
2 

di,α|ki
) 

(2.42) 
i i _
|ψV (

__
k, t)
)_ _ 

|ψTV 
__
(k, t)

) _
α	 α 

Applying the inverse Fourier transform we obtain again the wave function in the 

coordinates space 

FT −1 

|ψα
T V (k, t)

) 
−−−→ |ψα

T V (x, t)
)	 

(2.43) 

2.4 Absorbing boundaries 

In the numerical simulation of wave packet propagation by spatially discrete methods, 

there is always a need to eliminate artificial events which are generated by the boundaries 

of the numerical grid. These events arise because the numerical mesh covers a finite 

region of space. Frequently, the numerical grid can not be made large enough to contain 

the whole wave function as it spreads over time. In particular, this is so when we 

deal with ionization in strong fields. Within a few optical cycles, the extension of the 

electronic wave function easily reaches several hundred atomic units. Numerically, wave 

packets reaching the grid boundary must be absorbed. Otherwise, a ”ghost” wave packet 

reenters on the opposite side of the grid since the numerical Fourier transformation 

effectively imposes periodic boundary conditions. In propagation techniques other than 

the Split-Operator method, one usually has to specify the boundary conditions explicitly. 

In that case, the absence of an absorber typically leads to reflection. These events are 

always extraneous to the real physical events under study so that their elimination is 

desirable. 

There exist many absorbing boundaries to choose, to avoid the problem of reflection 

[238, 239]. In this thesis, we use complex (”optical”) potentials. 

Absorbing boundaries have been employed by a number of workers, mostly by those 

carrying out time dependent wave packet calculations on a coordinate grid. Neuhauser 

and Baer successfully applied a negative imaginary potential (NIP) for enforcing the 

outgoing boundary condition in the case of reactive scattering [240,241]. The efficiency 

of the absorbing potential was found to increase when it was complex rather than imagi­

nary. The complex absorbing potential (CAP) concept draws attention from researchers 

owing to its very simple implementation. In a grid representation, to generate a CAP, 
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a complex potential is simply added to the Hamiltonian. 

CAP has successfully and efficiently been used for the calculation of the electronic 

resonances in atomic and molecular systems [242–246] and for wave packet propagation 

[243,247]. CAP was also used in the time dependent treatment of reactive scattering to 

calculate the reaction probabilities [240,241,248,249]. 

The ideal absorbing potential would absorb perfectly all incident momenta and be 

numerically robust with respect to the discretization of the coordinates. In practice it 

is also desirable that its form is either explicit or, at least, easy to obtain, and that 

the values of the parameters of the functional form are optimized with minimal effort. 

The absorbing boundaries prevent parts of the wave packet approaching to the edge 

of a numerical grid from unphysical reflection back toward the interaction region that 

deteriorate the quality of the computed solution. However, the CAP method, due to 

its nonphysical nature, leads to artificial perturbations of the system and may cause a 

shift in the energy [250]. The conditions and limitations are that one wants to turn 

it on sufficiently rapidly to absorb the flux over in a short distance as possible, but 

not to turn on sharply enough to cause reflection back toward the physically relevant 

region or space. In spite of these problems, the CAP method stands out because of 

its straightforward and simple applicability. The CAP is zero in the interaction region 

and ”turns on” in the region where there is no interaction. The absorbing boundary 

attenuates the asymptotic part of the wave packet and, hence, suppresses the reflection. 

In our calculations, some absorbing boundaries were tested and between the available 

methods we chose the most efficient one, i.e., the method offering the smallest reflection 

for the smallest width of the absorption zone. Our complex absorbing potential was 

selected from a work of Monnerville et al. [251] In a one-dimensional grid extending 

from −x0 to +x0, this optical potential has the form 

⎧ 
−iη 

2 

{
1 + sin 

[
π 
(
−1

2 + 
x
x

1

+
−
x
x
1

0 

)]} 
, −x0 ≤ z ≤ −x1⎪⎪⎪⎪⎪⎪⎪⎨

V (z) = 0 , −x1 ≤ x ≤ +x1 (2.44)⎪⎪⎪⎪⎪⎪⎪ −iη 
2 

{
1 + sin 

[
π 
(
−

2
1 + x−x1 

)]} 
, x1 ≤ x ≤ x0

⎩ 
x0−x1 

where η is a parameter chosen to maximize the absorption for a wave packet. Using 

eq. (2.44), the wave function in the regions [−x0, −x1] and [x1, x0] is effectively multiplied 

by e(Vopt(x)) in each time step. This CAP can be also extended to a two-dimensional grid 

by applying the same function to the second coordinate. Parameters have to be chosen 
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with care, if not, on one hand, the wave packets could be entirely absorbed before they 

run into the boundary. On the other hand, a part of the wave function could be reflected. 

2.5 Quasiprobability distributions 

Quasi-probability distribution functions are known to play an important role in the study 

of quantum-classical transition properties of quantum dynamical systems [252, 253]. 

Their usefulness stems from the fact that they provide a re-expression of quantum 

mechanics in terms of classical concepts so that quantum mechanical expectation values 

are now expressed as averages over phase-space distribution functions. In other words, 

statistical information is transferred from the density operator to a quasi-classical (distri­

bution) function. Although it is possible to get all the information about the dynamics of 

the quantum system by examining its properties in the position or momentum represen­

tations, to fully understand the dynamics is often advantageous to use the phase-space 

information. To this end only the quasi-probability distribution functions are helpful, 

because the phase space in the quantum approach is constructed through them. The 

first definition of the quasi-probability distribution functions in the quantum approach 

was developed in the 1930s, when the Wigner function was proposed to study quantum 

corrections in classical statistical mechanics [254]. It has been widely used as a tool for 

analysis [255–257]. 

The Wigner function in terms of momentum p and position x is determined as follows: 

¡ ∞1 
ψ ∗ (x + y)ψ(x − y)e2ipy/' dyFW (x, p) = (2.45)

π' −∞ 

where ψ is the wave function and x and p are the position and momentum, but could 

be any other conjugate variable pair. It is symmetric in x and p, 

¡ ∞1 
φ ∗ (p + q)φ(p − q)e−2ixq/' dqFW (x, p) = (2.46)

π' −∞ 

where ψ is the Fourier transform of φ. It is bounded by the restriction |FW (p, x)| ≤ 

(π')−1, which means that such a function generally takes both negative and positive 

values. Because of this one often uses smoothing funtions in order to define some class of 

completely positive joint probability functions of the following form. Using a Gaussian 

filter: 
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¡ ∞ ¡ ∞ 2 21 q y
F̄ (p, x) = exp − − FW (p + q, x + y)dqdy ≥ 0 (2.47)

π' −∞ −∞ 2Δp 
2 2Δ2 

x 

Here, ΔpΔx defines a finite region in the phase space. Choosing some value for this 

definition, one can obtain a Gaussian smoothing of the Wigner function. The simplest 

way corresponds to the value ΔpΔx = '/2. Then eq. (2.47) is known as the Husimi 

function [258] of the form: 

(x−y)21 
¡ ∞ 

ψ(y)e− ipy 
2 

FH (p, x) = − 
4 Δx 

2 
dy (2.48)

(2π)3/2)'Δx −∞ 

Unlike the Wigner quasi-distribution function, the Husimi quasi-distribution function 

is bounded by the restriction 0 ≤ FH (p, x) ≤ (π')−1 . In other words, one observes from 

this restriction that it takes only positive values, therefore it represents a distribution 

function rather than a quasi-distribution one. The Husimi distribution can be inter­

preted as the probability distribution obtained from simultaneous optimal measurement 

of coordinate and momentum, which are canonically conjugated variables. Although 

it has been demonstrated that the Husimi function can be clearly separated into two 

measurements of the position and momentum, and these measures can be easily realized 

in the situation close to the experiment [259], it is well known that the knowledge of 

the exact quantum mechanical probability distributions both for coordinate and mo­

mentum does not supply enough information to determine, in a unique way, a quantum 

state which has such probability distributions of coordinate and momentum. 

The Husimi distribution is employed to describe systems in different areas of physics 

such as Quantum Mechanics, Quantum Optics, Information Theory [260–264]. Addi­

tionally, in nanotechnology it is possible to obtain a clear description of localization 

–which corresponds to classicality– and is crucial to determine correctly the size of 

systems when the particle dynamics takes into account mobility boundaries [265]. 

In this thesis, Husimi distributions are used to provide a two-dimensional picture of 

a one-dimensional wave function, to compare them directly with classical phase space 

distributions, and to decide which mechanism provides a better understanding of the 

behaviour of the studied system. 
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2.6 Hamiltonian models: reduced dimensionality 

The interaction of strong laser pulses with atoms and molecules requires handling of 

many-body processes and non-perturbative dynamics, which both pose difficult theo­

retical and computational problems. One of the theoretical approaches to deal with 

this non-perturbative problem relies on exact numerical solutions of the time dependent 

Schrödinger equation (TDSE) on available supercomputers [41,266,267]. The computa­

tional requirements are obviously dependent on the complexity of the model. The use of 

realistic (e.g. ab initio) electronic potentials is specially difficult because computation­

ally it is very time-consuming to calculate the electronic potentials and dipole moments 

of excited states, and not many data are available. In many applications, the problem 

has been simplified by reducing the number of spatial dimensions. 

When dealing with the nuclei, if we are primarily interested in the dynamics on the 

femtosecond and attosecond time scale, we can assume the rotational motion is almost 

frozen as the molecular rotations occur on the picosecond time scale. This might not be 

true for small molecules such as H2, but in this case, experiments and theory indicate 

that the molecules become aligned with the laser polarization axis [268–271]. If one uses 

a sufficiently intense laser pulse, it is possible to replace the random angular distribution 

of a gas-phase molecular sample by a distribution that is strongly aligned, that is, to 

create a situation where the molecules are oriented in space, with their axes along the 

polarization vector of the laser. In species with no permanent dipole moment, this effect 

is mediated by the interaction of the electric field of the laser with the induced dipole 

in the molecule. Hence, for a diatomic molecules, it seems that a one-dimensional 

(1D) treatment of the nuclei, including vibration but no rotation, should be able to 

qualitatively account for the experimental situation. 

For electrons we argue differently. As we are interested in strong fields, the electrons 

are heavily accelerated. If we just employ linearly polarized light, we can expect that 

the electrons will move along the direction of polarization. 

Although the commonly used approach of solving first the electronic problem to ob­

tain the potential energy surfaces (PES) and coupling elements and afterwards treating 

the nuclear wave packet motion is, in principle, exact (if one also considers scattering 

states), some information is not easily obtained in such a way. This, in particular, 

applies to properties of the electronic part of the total wave function. Therefore it is 

desirable to not only follow the dynamics of the nuclei but, simultaneously, characterize 

the electronic motion thereby gaining insight into situations where the adiabatic sepa­

ration either applies or not. This requires solving the TDSE for the complete electronic 
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and nuclear problem. This task is computationally far too demanding and, for the time 

being, restricted to the treatment of systems of a few particles only. The problem of how 

to include non-adiabatic couplings in a numerical scheme, normally carried out through 

by employing some method of diabatization [272, 273], vanishes completely if the elec­

tronic and nuclear degrees of freedom are treated at the same level. Several model 

studies limited to a co-linear particle configuration and screened Coulomb interactions 

have been presented, where the quantum mechanical equations of motion are solved nu­

merically for the electrons and nuclei simultaneously to describe multiphoton processes 

occurring in strong laser field [266, 274–276]. In order to study electronic and nuclear 

quantum dynamics, treating all particles on the same footing, it is advantageous to find 

models which are, on one hand, simple enough to be computationally tractable and, on 

the other hand, contain all the physics of a coupled electronic and nuclear dynamics. 

Rather than using a realistic Hamiltonian for a particular system, in our work we use 

a very generic model based on the Shin-Metiu model (sec. 2.6.2), in such a way that the 

transition from a Born-Oppenheimer adiabatic dynamics to motions involving strong 

non adiabatic coupling can be studied systematically [13, 14, 277, 278]. Additionally, to 

study charge transfer processes in small molecules, the soft-core Coulomb potential is 

used to describe the system (sec. 2.6.3). 

2.6.1 The Shin-Metiu model 

The useful two-dimensional model was first introduced by Shin and Metiu to study 

charge-transfer in solids [206,207]. Within this model system it is possible to characterize 

the coupled motion of the nucleus and the electrons simultaneously. The electron-nucleus 

interaction is parameterized in such a way as to allow for an easy transition from an 

adiabatic (Born-Oppenheimer type) behaviour to a situation where the motion of the 

particles is strongly coupled. 

The Shin-Metiu model system (fig. 2.1) consists of three ions and one electron 

arranged in a line: two ions are fixed and the third ion and the electron are allowed 

to move on the internuclear axis. The masses of the ions are chosen to be that of a 

proton, while all charges are set to Z = +1, respectively. The system has two degrees 

of freedom: the position of the nucleus R and the position of the electron x. 

The interaction of the electron with the nuclei is parameterized in the form of 

“screened” Coulomb interactions. The Hamiltonian of the full system then takes the 

form (in a.u.) 
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Figure 2.1: A schematic representation of the Shin-Metiu model. An ion (green solid circle) 
and a electron (in red) are confined to move on the line joining two identical positive ions (blue 
solid circles) that are held fixed at a distance L [206]. 

1 ∂2 1 ∂2 

Ĥ(x, R) = − − + V (x, R) (2.49)
2 ∂x2 2m ∂R2 

with the ion mass m, which is taken as the proton mass. The particle interactions 

are of the form 

1 1 erf(|R1 − x|/Rf )
V (x, R) = + + −|R1 − R| |R2 − R| |R1 − x| 

(2.50) 
erf(|R2 − x|/Rf ) Zerf(|R − x|/Rc)− − + E0|R2 − x| |R − x| 

In the expression for the potential energy all electron-nuclei interactions are cut off 

with error functions (erf). The value of E0 was chosen such that the global minimum 

of the full potential was zero in all regarded cases. R1 and R2 denote the positions of 

the fixed ions. The parameter Rf which appears in the interaction between the electron 

and stationary ions was taken to be 1.5˚ The interaction with the moving ion was A. 

determined by different values of the parameter Rc, that generates a variety of potential 

energy surfaces for the moving ion. The system has two wells, one in which the moving 

ion is bound to the fixed ion on the left (1) and the other in bound to the right. The 

properties of the system can be varied by changing the energy gap between the electron 

and the moving ion. This changes the barrier of the lowest adiabatic states and the 

energy gap between the ground and the first excited adiabatic states. The distance 

between the fixed ions can be used as an additional parameter. 
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Figure 2.2: Particle configuration in the extended Shin-Metiu model, consisting of a mobile 
positive ion (green) and two electrons (red) confined to move in a single dimension between 
two fixed positive ions (in blue). This model allows to characterize the coupled nuclear and 
electronic motion simultaneously [279]. 

2.6.2 The extended Shin-Metiu model 

Volker Engel proposed the first extension of the original SM model to include three 

degrees of freedom (3D) for a proton and two collinear electrons moving between two 

fixed ions [279]. In this work, we further generalize the model to allow transitions 

between the singlet and triplet components of the electronic wave function. 

The extended Shin-Metiu model (ESM) consists of an ion (coordinate R) and two 

electrons (coordinates x,y) being confined to move in a single dimension. As in the 

original model these particles interact with each other and two additional fixed ions 

through screened Coulomb interactions. Figure 2.2 sketches the particle configuration. 

The Hamiltonian of the full system now takes the form (in a.u.): 

1 ∂2 1 ∂2 1 ∂2 

Ĥ(x, y, R) = − − − + V (x, y, R) (2.51) 
2 ∂x2 2 ∂y2 2m ∂R2 

with the nuclear mass m, which is taken as the proton mass. The potential energy 

is given as 

Z1Z Z2Z erf(|x − y|/Re)
V (x, y, R) = + + |R1 − R| |R2 − R| |x − y| 

Z1erf(|R1 − x|/Rf ) Z2erf(|R2 − x|/Rf ) Zerf(|R − x|/Rc)− − − (2.52)|R1 − x| |R2 − x| |R − x| 

Z1erf(|R1 − y|/Rf ) Z2erf(|R2 − y|/Rf ) Zerf(|R − y|/Rc)− − − |R1 − y| |R2 − y| |R − y| 
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Figure 2.3: Potential energy curves of the ESM model for (a) the uncoupled case and (b) 
when the singlets and triplets are coupled with a λ value of 10.28x10−3 eV/Å 

where the charge numbers are again set to Z1 = Z2 = Z = 1. All th electron-nuclei 

and electron-electron interactions are cut-off with error functions (erf) and contain the 

three screening parameters Rc, Re and Rf . 

Since one of the objectives of this thesis is to manipulate the singlet-triplet tran­

sitions, to monitor the spin transitions, the coupling term is introduced heuristically 

as 

J(x, y) = λ(x − y) (2.53) 

where λ is a constant coupling strength-parameter and determines the time scale of the 

singlet-triplet transition. This is the simples antisymmetric form that allows to describe 

the spin-orbit coupling in a grid. The possible dependence of the coupling on the nuclear 

coordinate R is neglected. The coupling operator J(x, y) creates new potential energy 

terms that couple (and mix) the Born-Oppenheimer electronic potentials. They are 

calculated as 

¡
VSn,Tm (R) = dxdyϕS

n (x, y, R)J(x, y)ϕT
m(x, y, R) (2.54) 

where ϕS (x, y, R) and ϕT (x, y, R) denote the electronic eigenfunctions of the singlet n m

and triplet symmetry, respectively. 

The potential energy curves for both the uncoupled and coupled cases are represented 

in figure 2.3 for a given value of λ. 
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2.6.3 The soft-core Coulomb potential 

In this thesis, we are also interested in the dynamics of the H+
2 and HeH2+ molecules 

in the presence of a strong field so we need to use a consistent model for treating 

both continuum and bound electronic states in a system with a single electron and two 

protons. 

The hydrogen molecular ion (the simplest molecule), is of fundamental interest in 

atomic and molecular physics. It constitutes a bound three-body Coulomb system which, 

in contrast to its atomic counterparts, the negative hydrogen ion and the helium atom, 

exhibits (if we neglect rotation) two time scales, the fast electronic motion (attosecond 

scale), and the vibrational motion of the nuclei (femtosecond scale). The interaction 

of this smallest molecule with strong femtosecond laser pulses is of particular interest, 

since the pulse duration is comparable to the vibrational period (14 fs for H2
+ in the 

vibrational ground state). Further, from a theoretical point of view, the simple structure 

of H2
+ allows for a numerical solution of the time dependent Schrödinger equation within 

reduced dimensionality models. 

As a first approximation, we use a (1+1)D Hamiltonian to describe the H2
+ molecule 

(one dimension for the electronic motion z, and the other for the internuclear distance), 

including the internuclear distance R and the electron separation to the center of mass 

z, where the electron is constrained to move in the molecular axis. For this reduced 

dimensional study the inter-particle interaction is modeled by a soft-core Coulomb po­

tential. This model was first proposed to study strong field dynamics of the Hydrogen 

atom [208]. 

For the one dimensional Hydrogen model atom it reads 

Q2 

V (z) = − (2.55)
(ε2 + z2)1/2 

The parameter ε is interpreted as the squared average transverse extension of the 

electronic wave function and it is introduced to remove the singularity at the origin. It 

can be fitted to some spectroscopic properties of the molecule than one may need to 

reproduce in the model, for instance the bond energy or the ionization potential. In 

addition, one can parametrize (R) as a function of the internuclear distance, thereby 

allowing a much better fit of the electronic curves calculated with the model with those 

obtained by ab initio approaches [280–283]. Since we are interested in qualitative proper­

ties, for simplicity we set the parameter to one. An important property of this potential 

is that at large z (electronic coordinate), it falls off like 1/z. Consequently, it represents 

accurately the Coulombic electron-ion final-state interaction during atomic ionization, 
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Figure 2.4: Soft core Coulmb potential (a) for different internuclear separations (R=10 a.u. 
in black, R=20 a.u. in dashed red and R=40 a.u. in dashed blue points) under the BO 
approximations and (b) the full dimensional representation 

and it supports near-threshold levels that scale like Rydberg levels. Figure 2.4 shows 

the soft core Coulomb potential for a given internuclear separation (BO potential) and 

the full dimensional case. 

This model has been extensively applied as a first qualitative step to analyze ioniza­

tion processes in H+
2 and high-harmonic spectra [284, 285], as well as electron-nuclear 

dynamics [286–289] or to treat electron correlation in He atom [290]. 

We also apply the soft-core coulomb potential model to study the HeH2+ system. 

This molecule is very interesting as it forms the simplest asymmetric molecule, with 

a single electron. There have been several experimental [291] and theoretical studies 

[292,293] determining the chemical features of this very unstable molecular cation. The 

HeH2+ is highly unstable, as expected from doubly charged species. Therefore, few data 

is known [291]. Up to date, studies in this molecule have focused on ionization, predicting 

electron localization, or control of the photodissociation and photoassociation [294–296]. 

The HeH2+ is highly unstable, as expected from doubly charged species. Therefore, 

few data is known [291]. 

Again for an aligned HeH2+ with the He atom placed at the left of the center of mass 

and the H atom placed at the right of the center of mass, the (1 + 1)D Hamiltonian 

using a soft core Coulomb potential, is 

1 ∂2 1 ∂2 

Ĥ(z, R) = − − − − 
2µe ∂z2 2µe ∂R2 

(2.56) 
qeQHe qeQH QHeQH− − +J

(z + aR)2 + ε21) 
J

(z − pR)2 + ε22) R 
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where the reduced mass of the electron is µe = 1 − 1/M = 0.9999me (M is the 

total mass of the molecule, me the electron mass) and µ = mpmα/(mp + mα)01478.4 

me (mp is the mass of the proton and mα is the mass of the alpha particle) is the 

reduced mas of the molecular frame. Here, a and p account for the relative distances 

of the α particle and the proton with respect to the center of mass, a = mp/(mp + 

mα) = 0, 2012 and p = mα/(mp + mα) = 1 − a = 0.7988 [296]. The smoothing 

parameters ε1, ε2 are adjusted to represent the ionization energy as we are working with 

large internuclear distances. Asymptotically, the ground state correlates with He+(1s) 

and the first excited state corresponds to H(1s), therefore E(HeH2+,1s)=E(He+,1s) and 

E(HeH2+,2s)=E(H,1s). Under these conditions we obtain ε1(He+)= 0.705 and ε2(H)= 

1.414. 
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Quantum Control Theory
 





Quantum Control schemes 

In this chapter we focus on the theoretical aspects of different quantum control strate­

gies. In the field of quantum control several simple schemes we proposed based on the 

analytical solution of the TDSE in simple systems. Despite their simplicity, generally we 

can classify the numerical solutions of complex models based on the solutions obtained 

with these schemes, and they are useful as initial approximations to use in algorithm 

(e.g. QOCT) approaches. 

Initially, we describe two basic models (with analytic solution) of control of popu­

lation dynamics: the π-pulses model based on the Rabi-formula (3.1) and the model of 

pulses of variable frequencies based on the Landau-Zener formula (3.2). Although we 

first introduce the models considering the quantum system as discrete energy levels, in 

our work we will always treat the system in terms of wave packets, that is, superposi­

tions of discrete (or even continuum) levels of the molecule. As the processes we are 

studying occur under the strong and ultrashort limits, the uncertainty principle works 

against the selective excitation and the dynamics can not be described easily in terms 

of a reduced number of discrete levels. Therefore, we will illustrate the mechanism for 

electronic transitions involving nuclear wave packets. 

We finally introduce two closely related models of strong field control based on ma­

nipulation of the ”effective” Hamiltonian based on the change of the energy levels when 

a strong laser field acts that lead us to control the population transfer and influence the 

system dynamics: the Light Induced Potentials (LIPs) and the Non Resonant Dynamic 

Stark Effect (NRDSE). 

3.1 π pulse mechanism
 

Considering the simplest model of two discrete levels coupled by a constant resonant
 

field, the Rabi solution [297], establishes that there is a full population inversion between
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the two states when the condition Ω0T = nπ is fulfilled (where n is any odd number). 

The Rabi frequency, Ω0, is a measure of the strength of the interaction in frequency units. 
µ12EIt is defined by the relationship Ω = , where µ12 is the dipole transition moment ' 

between the two states and E is the maximum amplitude of the laser. Although the Rabi 

formula is only valid for constant interactions (infinite duration), it can be generalized by 

the Area Theorem [298], which sets that the maximum population transfer is achieved 

if the integral 
J
0 
T 
Ω(t)dt = nπ. The Area Theorem determines the transition properties 

between two levels due to the π type pulses, with a carrier frequency resonantly coupling 

the two states. However, it also establishes the minimum energy needed to produce 

population inversion with certainty. 

Now, we focus on the description of the π model and its limitations when working in 

the ultrafast regime, that is, when we can not describe the system with discrete levels. 

We start considering wave packet transfer processes between two electronic states, or 

potential energy curves, V1(x) and V2(x), in the ultrashort time limit. Due to the lack 

of energy resolution, we will follow the dynamics in the coordinates representation (see 

2.1). The Schrödinger equation of the system under the influence of a laser field, under 

the Born-Oppenheimer approximation, is 

∂ ψ1 T + V1(x) −µ12(x)E(t) ψ1
i' = (3.1)
∂t ψ2 −µ12(x)E(t) T + V2(t) ψ2 

where T = − '
2 ∂2 

is the kinetic energy operator and E(t) = A(t) cos[ω(t) + ϕ] is the 2m ∂x2 

laser pulse. 

Within the RWA ( 1.2.1) we can neglect the transition probability from V1(x) to 

V2(x) by the spontaneous emission of a photon, and the reverse process, the transition 

from V2(x) to V1(x) by absorption. In addition, in the Dirac representation, we can 
−iω(t)tmake the unitary transformation ψ2(x, t) = ψ2(x, t)e , ψ1(x, t) = ψ1(x, t) and the 

Schrödinger equation reads 

∂ ψ1 T + U1(x) −'Ω(x, t)/2 ψ1i' = (3.2)
∂t ψ2 −'Ω(x, t)/2 T + U2(t) ψ2 

where Ω(x, t) = µ12(x)E(t)/' is the Rabi frequency of the system, which depends 

on the spatial coordinate (it would be constant in the Frank-Condon approximation) 

and time (it depends only on the pulse envelope but not in the frequency). The photon 

energy-shifted potentials are U1(x) = V1(x) and U2(x) = V2(x)−'ω(t). These potentials 
are displaced by one photon energy, so the curves cross where the laser is in resonance. 
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Figure 3.1: Wave function transfer between electronic states by pulses of area π [300] 

In general, we will write ψn(x, t) instead of ψn(x, t), unless it induces confusion. 

Now the point is how to maximize the population transfer from the initial V1(x) to the 

excited potential V2(x). One can apply the π-pulse mechanism to induce the population 

inversion between the electronic potentials, where the wave packet is transferred from 

one potential to the other, but previously some conditions must be fulfilled. Firstly, we 

have to assume the instantaneous excitation approximation [299], by which the wave 

packet is not moving during the action of the laser, so its kinetic energy is constant. In 

addition, from the RWA, V1(x) is in resonance with the excited potential V2(x) only for 

a given value coordinate x0, as it shown in fig. 4.1. 

There the head and tail of ψ1(x, 0) will be out of resonance or detuned with respect to 

the electronic transition (fig. 4.1). Therefore, we can simplify the Schrödinger equation 

(3.2) by a unitary transformation to give 

∂ ψ1(x) 0 −'Ω(t)/2 ψ1(x)
i' = (3.3)
∂t ψ2(x) −'Ω(t)/2 Δ(x) ψ2(x) 

where Δ(x) = U2(x) − U1(x). To simplify the notation we have assumed a constant 

dipole (Condon limit). This unitary transformation can only be made when the kinetic 

energy is constant. 

So the transition probability between U1(x) and U2(x) for each x can be evaluated 

using a 2-level system Hamiltonian with coupling Ω(t) and detuning Δ(x). When con­

sidering pulses like E(t) = A0 sech(t/T ), the Hamiltonian [eq. (3.3)] has an analytic 

solution, that was firstly proposed by Rosen and Zener [299,301]. When the pulse ends, 
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the transition probability is 

P (U1(x) → U2(x)) = sin2(S/2) sech2[πΔ(x)T ]	 (3.4) 

where S is the pulse area and T the pulse duration. The pulse area is defined by [299] 

¡ ∞ 

S = dt Ω(t )	 (3.5) 
−∞ 

So the global transition probability will be the probability averaged for each value 

of x, 

P	 = 
¡ 

dx |ψ1(x , 0)|2 P (U1(x ) → U2(x ), t) (3.6) 

Then, the transition probability depends on the pulse area, as in the model of two 

discrete levels, as well as on the detuning, which reduces the maximum possible popula­

tion transfer. If we define ΔT as the range of variation of the detuning where the wave 

packet is located (see fig. 4.1), then only when T « ΔT , sech
2(πΔ(x)T ) ≈ 1, and the 

wave packet can be completely transferred to the excited potential. This is equivalent 

to make the pulse width, (Δω)pulse = 1/T , larger than the electronic absorption band, 

(Δω)abs.sp.. 

Additionally, the instantaneous excitation approximation must be fulfilled, which 

implies that the duration of the population transfer between ψ1(x, t) and ψ2(x, t), given 

by the inverse of the Rabi frequency, must be smaller than the characteristic time of 

motion of the wave packets, since the wave packets disperse and move from the Frank 

Condon window where the transfer takes place (see fig. 4.1). 

To summarize, the conditions that have to be fulfilled for a full population transfer 

from ψ1(x, t) to ψ2(x, t) are 

•	 the pulse area must be π or an odd multiple of π 

•	 the Rabi frequency must be larger than the characteristic frequency of motion of 

the wave packets 

•	 the pulse duration (T ) must be smaller than the inverse of the absorption band 

(in units of frequency) 

http:��)abs.sp
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3.2 Landau-Zener model:variable frequency pulses 

In the last section we have analyzed the population transfer between two states coupled 

by a π pulse in resonance with the transition. Besides the π transition, population 

transfer is also possible if we vary the laser frequency to cross the resonance between 

the states [302, 303]. Now, we consider the same system but we introduce a pulse with 

variable frequency, E(t) = A(t) cos[η(t)], where η(t) = 
J
0 
t 
ω(t )dt . Usually, pulses where 

the frequency varies linearly with time are used, ω(t) = ω(0) + χt/2, where χ is the rate 

of frequency change or chirp [304]. 

Regarding wave packet transfer processes, we can follow the same description of 

the previous section but detuning with these chirped pulses. If the Rabi interaction 

frequency is larger than the inverse of the time that determines the velocity of motion 

of the wave packets, then eq. (3.3) is still acceptable under this context but now the 

detuning varies with the spatial and temporal coordinates, Δ(x, t) = U2(x, t) − U1(x) = 

V2(x) − 'ω(t) − V1(x). 

Then, for each x, assuming the Rabi frequency is roughly constant during the pulse 

duration (τ), the Hamiltonian is analogous to the Landau-Zener model [305]. Therefore, 

the transition probability reads 

−π Ω
2χ 

2 

P (U1(x) → U2(x), t >> τ) = 1 − e (3.7) 

From this equation, it follows that the condition required to obtain the full population 

transfer is 

Ω2 ≥ 4χ (3.8) 

In addition, if we assume that the interaction is effective while the detuning is lower 

than the maximum Rabi frequency (or the Rabi frequency at the half-width of the 

pulse), we can define a time during which the transition is efficient [306], tLZ = Ω(0)/χ. 

The pulse duration must be larger than this time 

τ > Ω(0)/χ (3.9) 

The same result is obtained considering the frequency bandwidth, Δω(t) = 
J
τ ω(t )dt 

that must be always larger than the Rabi frequency. For a linear chirp, χ = Δω/τ > 

Ω(0)/τ , which gives the same criteria obtained before. 

Therefore, considering both conditions, eq. (3.8) and eq. (3.9), 
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¡ ∞ 

S = dt Ω(t ) ∼ Ω(0)τ > Ω(0)2/χ > 4 > π (3.10) 
−∞ 

or squaring eq. (3.9) and solving 

τ 2χ > Ω(0)2/χ > π (3.11) 

If this condition is fulfilled, in eq. (3.7) the global transition probability will be ≈ 1. 

As it follows from the last inequality, in a Landau-Zener transition, the pulse area 

must be larger than π. Actually, the area must be much larger than π as the transition is 

effective just for a short period of time in which the laser frequency is close to resonance, 

albeit Cao [307] demonstrated that nearly total inversion can be achieved in the limit 

that the Area Theorem imposes. 

Nowadays, pulse chirping technologies allow to manipulate the amplitude and phase 

of the different frequency components of the pulse to create pulses of almost arbitrary 

shape. Usually, a chirp is created by spectrally splitting in a prism a fixed frequency 

pulse of minimum uncertainty (called transformed limited pulse), introducing delays 

between the different components (by changing the optical path or using the dispersive 

properties of a medium) and put them again together in another prism. Thus, the 

properties of the chirped pulse are related to the primitive pulse. If τTL is the width 

of the original pulse and ΓTL the corresponding bandwidth , ΓTL ∼ 1/τTL (the exact 

relationship depends on the pulse shape by the Fourier transform). The same bandwidth 

will be used to transform the frequencies. However, the relation between Γ = ΓTL and 

τ is not that simple, as the pulse shape now depends on the chirp χ. When both the 

pulse of minimum width is Gaussian (i.e. the envelope has Gaussian shape), and the 

chirp is linear, then by the Fourier transform we obtain [308], 

Γ2 = (1 + χ2τ 4)/τ 2 (3.12)TL 

where χ is in (time)−2 units. We can express the chirp also in the frequency space, 

obtaining 

τ 2 = (1 + χ 2Γ4 )/Γ2 (3.13)TL TL 

where χ is in(time)2 units. These two magnitudes are related by 

χ = χ Γ4 (1 + χ 2Γ4 )−1 (3.14)TL TL
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These relations indicate that the chirp depends on the original pulse width and 

the stretching that occurs during the phase modulation. When τ » τTL it is easy to 

demonstrate that χ ≈ 1/τ τTL. Moreover, during the conversion of frequencies the total 

energy of the pulse is typically conserved, so Ω = ΩTL

J
τTL/τ and the relationship 

between the areas is 

S Ω τ 
 

τ ∼ = (3.15)
STL ΩTLτTL τTL 

Regarding the population transfer with chirped pulses, when working with wave 

packets the frequency range of the chirp must be larger than the maximum detuning, 

ΔT ∼ χτ . Generally this can be achieved by a transformation of frequencies of a 

transformed-limited pulse. The width of the pulse must be τTL « 1/ΔT . The two 

conditions to be imposed to the pulse parameters are: Ω2 
TL TL TL · τ 2 > π y τ/τTL ≥ S2 = 

Ω2 · τ 2 
TL TL.
 

To summarize, the sufficient conditions to assure full wave packet transfer are:
 

1. The pulse width of the transformed limited pulse must be as short as possible, 

τTL < 1/ΔT , typically in the femtosecond scale. 

2. The intensity much be as large as possible, in particular ΩTL > ΔT , but not so 

large to avoid multiphotonic transitions. 

3. The stretching of the pulse must be as large as possible, thus τ » τTL. Neverthe­

less, the chirped pulse duration must be smaller than the time scale of the motion 

of the wave packet, so the instantaneous excitation approximation is fulfilled. 

However, it is important to notice that the instantaneous excitation approximation 

can not be purely applied, as in the vertical transition not all the components of the 

wave packet are transferred at the same time to the excited potential. Depending on the 

chirp value and sign, the highest energy (negative chirp) or the lowest energy components 

(positive chirp) will be transferred before. Therefore, the transition induces a variation 

on the kinetic moment of the excited wave packet, implying a deformation of the wave 

packet [309]. Although this fact is not essentially detrimental to the complete transfer, 

it must be analyzed with more detail. In fig. 4.2 we show the most relevant elements of 

the problem. 

When negative chirped pulses are employed, the Raman Stokes transition competes 

with the absorption. As the wave packet is moving in U2(x), it can return (vibrationally 
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Figure 3.2: Wave packet transfer between electronic states by chirped pulses, in the limit 
of instantaneous excitation. With a negative chirp (a) the dispersion of the wave packet is 
minimum, but it could return initial potential by a Raman Stokes effect when ω(t) ≈ ωs. With 
a positive chirp (b) this effect is decoupled, but the wave packet dispersion is maximum [300]. 

excited) to the initial potential by stimulated emission, thus creating an effect of pump­

dump with only one pulse [310] which implies the already mentioned Raman Stokes 

mechanism. Conversely, when positive chirps are used, the stimulated emission is un­

coupled, so when the wave packet moves, it does not return to the initial potential, even 

if the pulse area is an odd multiple of π. Moreover, the dispersion of the wave packet is 

maximum, as the higher energy components are excited at the end [311]. 

3.3	 Strong fields: control strategies based on the 

dynamic Stark effect 

With the development of ultrafast and ultrastrong laser pulses many non-linear processes 

in molecules have been observed and controlled experimentally [17, 312]. Aside from 

enabling multi-photon excitation pathways, a strong field induces large Stark shifts that 

can deeply alter the structure of the electronic potentials [99, 313,314,314,315]. 

Previously we have analyzed the ultrashort time limit, where the population transfer 

is more conveniently described in terms of wave packets in the coordinate representation. 

In this section, we will work with intense laser fields, in the high energy limit, where non 

linear effects have to be considered. The population transfer is again treated by wave 

packet propagation, as the energy is the conjugate variable of time in the uncertainty 
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principle. However, the models we used to describe the π and chirped pulses are not 

useful anymore. As the transition to vibrational levels now becomes important, we do 

not represent the system in terms of the electronic potentials of the isolated molecule, 

since they do not provide straightforwardly the most relevant information of the system 

dynamics. We turn back to the adiabatic representation (1.2.2) to understand the evo­

lution of the system, and to make it simpler we will assume the RWA (1.2.1). Based on 

these equations, we will demonstrate how an intense laser field modifies substantially 

the molecular potentials, due to a strong dynamic Stark effect (or Autler-Townes split­

ting when the laser frequency is resonant to the electronic transitions [316]). In this 

situation, the dressed states are called Light induced potentials (LIPs) but instead of 

probability amplitudes we will work with adiabatic wave packets. 

Herein, the basic elements to analyze the system dynamics are explained. We will 

illustrate the theoretical model for the simplest system, described by two electronic 

states coupled by a laser field in the adiabatic approximation. We finally set forth some 

of the most outstanding phenomena related to the application of strong laser fields. 

3.3.1	 The nonresonant dynamic Stark effect: Light Induced 

Potentials 

The Stark effect is the shift of the energy levels due to the presence of an external electric 

field. Several textbooks discuss the Stark effect produced by a static field [317, 318]. 

The dynamic Stark effect is the quasi static shift in energy levels due to the appli­

cation of optical fields. The effect is in several ways similar to the static Stark effect. 

There are some important differences between the static and dynamic Stark effect. In 

an oscillating field, there are no stationary states so it is not useful to work with static 

levels. However, under appropriate conditions [319], the idea of a quasi static level be-

comes applicable and the levels behave as if they feel a static field: the eigenstates do 

not follow the instantaneous electric field, but instead they react only to the intensity 

of the pulse envelope. 

The field strengths achievable with a static electric field are much smaller than the 

field strengths of laser pulses, so with the advent of modern ultrafast lasers [1], which 

can easily exceed intensities of a T W/cm2 , the dynamic Stark effect can be applied 

on rapid time scales and with energies comparable to those of many quantum systems 

in the absence of the field. As a result, the dynamic Stark effect due to nonresonant 

laser fields has become an increasingly important part of atomic, molecular, and optical 

physics. 
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There are different situations with oscillating fields depending on the field strengths 

and frequencies. If the field oscillates slowly, the states adiabatically follow the instan­

taneous electric field. If the driving field is in or near resonance with a pair of quantum 

levels, population transfer will occur and the levels may split as in the Rabi effect. Our 

focus is on the nonresonant case, which is of special interest in molecular dynamics due 

to its generality. 

The control mechanism based on nonresonant dynamic Stark effect (NRDSE) was 

first proposed by Sussman et al. [320] and it is particularly useful for quantum control [15] 

because ultrafast laser pulses can easily exceed atomic field strengths of 109 V/cm, 

opening the possibility of the dynamic Stark effect being highly nonperturbative and 

being so on femtosecond timescales. 

The NRDSE scheme is a simple but very general procedure for transferring the time 

dependent control exerted by the field on one part of the Hamiltonian, where dipole 

moments are non-zero, into energy control that affects the desired region of the spectra, 

where the dipole couplings are symmetry forbidden. 

In this section, we explain how we could base the control mechanism solely on the 

effects of the nonresonant dynamic Stark effect. First, we start from the Schrödinger 

equation in the RWA [eq. (1.21)] and we define the diabatic wave functions ψ1 
d and ψ2 

d . 

The real adiabatic representation would be the one that completely diagonalizes the 

global Hamiltonian of the Schrödinger equation, but it is impossible to solve analytically. 

So, usually just the potential matrix is diagonalized including the laser coupling. The 

Schrödinger equation is 

⎛ 
Ĥd 

⎞ 

− 
' 
i 
∂ 
∂t 

ψd 
1 

ψd 
2 

= 

⎜⎜⎜⎜⎜⎝ 

_ __ _
T̂ + V1(x) −µ12(x)E0(t)/2 

−µ12(x)E0(t)/2 T̂ + V2(x) 

⎟⎟⎟⎟⎟⎠ 

ψ1 

ψ2 

(3.16) 

where V2(x) = V2(x) − 'ω. 

We can simplify the notation and write 

i (
ψ̇d ψ̇d

)† ( 
ˆ ˆ

) (
ψd 

)† − , = K + V̂ + W (t) , ψd 
1 2 1 2' 

K̂ is the matrix of the kinetic energy operator, which is diagonal; V̂ is the potential 
ˆenergy matrix, diagonal as well, and W (t) is the coupling matrix, non diagonal and (

ψ1 
d , ψ2 

d
)† 

is the vector of wave functions in the diabatic representation. Now, a R̂(x, t) 
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matrix is chosen such that 

R̂−1(x, t) 
(
V (x) + Ŵ (t)

) 
R̂(x, t) = Û(x, t) 

is a diagonal matrix. For two coupled potentials R̂(x, t) can be obtained analytically. 

The Schrödinger equation can be written as 

i (
ψ̇A ψ̇A

)† ( 
ˆ T ˆ

) (
ψA 

)† i ˆ ˆ̇
)† − + , − = R−1(x, t) ˆ U(x, t) , ψA − R−1(x, t)R(x, t) 

(
ψA, ψAR(x, t) + ˆ + − + −' ' 

where 
(
ψA , ψA

)† 
= R̂−1(x, t) 

(
ψd , ψd

)† 
are the wave functions in the adiabatic repre­+ − 1 2 

ˆsentation. Usually the problem is simplified considering that R(x, t) weakly depends 

on the x coordinate and on time, therefore R̂−1(x, t)T̂ R̂(x, t) ≈ T̂ can be considered 

diagonal and in addition, the non-adiabatic coupling term is neglected. 

But we always have to be cautious with respect to this last assumption, as the non­

adiabatic coupling could be important around the avoided crossings of the potentials 

[321,322]. Within the previous approximations, the simplified Schrödinger equation is 

T + ULIP ∂ ψA (x, t) 0 ψA 
+ + +i' = (3.17)

∂t ψA T + ULIP ψA0 (x, t)− − − 

which is diagonal. The adiabatic wave packets evolve in the light induced potentials 

ULIP 
α (x, t). Using a constant laser (CW laser), Uα

LIP (x, t) can be calculated analytically: 

1 1 
ULIP 
± (x, t) = [V1(x) + V2 (x)] ± 

J
Δ(x)2 + Ω2 (3.18)

2 2 

where Δ(x) = V1(x) − V2(x) − 'ω is the detuning between the potentials and the 

laser frequency and 1
2 [V1(x) + V2 (x)] is the average potential. 

If the initial state runs into a wave packet localized in one adiabatic state, U+ 
LIP for 

instance, then, the initial state in the adiabatic representation will be 
(
ψA(0) , ψA = −(0)

)† 
+(

ψ1 
d(0) , 0

)† 
. In this situation, according to eq. (3.17) we just need to follow the dynamics 

of this wave packet in the U+ 
LIP (x, t) potential, which initially coincides with U1(x). The 

wave packet dynamics will depend essentially on the topology of one potential modified 

by light. 

Turning back to eq. (3.18), if the Rabi frequency of the transition is much smaller 

than the energy difference between the potentials, meaning Δ(x) » Ω (except around 

resonance, xc, where Δ(x)c = 0 and the two potentials cross), then U−(x < xc) ≈ 

U1(x) − Ω2/4Δ(x) and U−(x > xc) ≈ U2(x) − Ω2/4Δ(x). We use the same approxima­
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Figure 3.3: Diabatic potentials (left) and adiabatic light induced potentiial curves (right). 
When coupling a bound with a dissociative potential by means of strong laser field, the new 
LIPs experience desestabilization, ULIP (bond softening), or stabilization, ULIP (bond hard­1 2 
ening) 

tion for U+(x) but changing the signs and the potentials on both sides of xc. In this 

way, the laser light modifies the potentials due to the electronic repulsion (Stark effect), 

generating the LIPs. These potentials have different shape at each side of the resonance 

xc, and additionally the structure can be altered depending on the Rabi frequency. In 

particular, around xc an avoided crossing is produced, when the potentials get energet­

ically separated by a quantity equal to Ω. The Rabi frequency must be intense enough 

so the adiabatic approximation is valid. Otherwise, the avoided crossing is not wide 

enough and the wave packet in U−(x < xc) would be transferred to U+(x > xc) by so 

called non adiabatic couplings, by which the wave packet would remain always in U1(x). 

Figure 4.3 shows two molecular potentials in the absence of radiation: the ground 

potential V1(x) and a dissociative excited potential, V2(x). On the right side, one can 

appreciate the LIPs structure when a laser is acting, for a constant dipole moment, 

µ12. Due to the different shapes of the potentials, V1(x) and V2(x), the detuning Δ(x) 

depends on x, thus the induced Stark effect also depends on the internuclear distance. 

An intense laser field modifies V1(x) decreasing the energy of the dissociation barrier, 

thus reducing the bonding energy of the molecule (bond softening). On the other hand, 

V2(x) presents now a potential minimum allowing with bounded vibrational states. Both 

phenomena have been experimentally observed by spectroscopic techniques [98,200]. As 

a very interesting example of a dynamic based on these LIPs, we refer to the APLIP 

method (Adiabadic Passage by Light Induced Potentials) [101]. This method has been 

extensively studied in our group [321,323–325] and used, for example to selectively invert 

the electronic population of different electronic states. 
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3.3.2	 The nonresonant dynamic Stark effect: controlling spin­

orbit transitions 

The physical mechanism underlying the control of the spin coupling via the NRDSE 

can be understood by considering just a two-level system with one singlet (S) and one 

triplet (T) state, coupled via VST . The energy of these states can be Stark-shifted by a 

nonresonant electromagnetic field with envelope E [109]. 
For a given field frequency, the dynamic polarizabilities for the singlet and triplet 

states are αj (ω) (j = S, T ), where the frequency dependence is omitted in the follow­

ing. We can assign the zero point of energy to the field-free singlet energy, thus the 

Hamiltonian of the system results in 

ˆ −αS E(t)2/2 VST 
H = (3.19)

VST Δ(0) − αT E(t)2/2 

where Δ(0) is the energy difference between the states in the absence of the field. 

Shifting the energies by a suitable unitary transformation, 

0 VST 
Ĥ =	 (3.20)

VST Δ(E) 

where Δ(E) = Δ(0) − (αT − αS )E2(t)/2. 
Now, we can use the Rabi formula (3.1) to predict the spin-coupling dynamics. If 

the system is initially in the singlet state and assuming a constant envelope E , the 
population in the triplet is 

VST 
2 

PT = sin2 Ωet (3.21)
Ωe 

where Ωe = 
J

VST + Δ(E)2 . 

Following this formula, we can create a laser-controlled spin switch whenever the 

dynamic polarizabilities of the singlet and the triplet states are different, αS = αT . 

As an example, fig. 4.4 shows a cases of shifted levels to induce the spin-locking or 

spin-switching just by an appropriate choice of the amplitude and frequency of the laser 

field. The scenario is the ESM model previously described (see sec. 2.6.2) and we 

include the first two pairs of singlet and triplets (V S , V T , V S and V T ). For instance, 1 1	 2 2 

if Δ(0) « |VST | (as in the ESM model, starting in V S where the ground singlet and 1 

triplet states are degenerated and Δ(0) = 0), a substantial spin transfer will occur at 

τST = π/2VST . This spin-mixing dynamics can be locked while a laser pulse acts if we 
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(a) (b)

Figure 3.4: Extended Shin-Metiu model potential energy curves. (a) In the abscence of a 
laser field, Δ(0) << VS1,T1 and there will be spin transfer at τST = π/2VS1,T1 . (b) Under 
the effect of a strong laser field with, for example, a frequency below the resonant transition 
between S1 and S2 (other non-resosnant frequencies can be chosen), we make Δ(E) >> VST 

and thus the spin switching can be locked. 

make Δ(E) >> VST . On the other hand, if Δ(0) >> |VST | (as in the ESM starting in 

V2 
S ) full population transfer can be induced by making Δ(E) = 0. Besides, the dynamic 

polarizabilities depend on the laser pulse frequency as well. Additionally, the two-level 

theory can be used to propose alternative quantum control scenarios [109]. 

We can extend directly the effective 2-level Hamiltonian to the nuclear Hamiltonian 

in the Born-Oppenheimer approximation. Disregarding the population absorption we 

obtain 

ˆ ˆH = − 1 d2 
I

2m dR2 

(3.22)
V1 

S (R) − αS(R, ω)E(t)2/2 VS1,T1 (R)
+ 

VS1,T1 (R) V1 
T (R) − αT (R, ω)E(t)2/2 

where Î is the 2 X 2 unitary matrix. 

Since this mechanism is a very simple scheme to control the system dynamics just 

playing with the field frequencies and strengths, it can be applied to many other scenarios 

to successfully control the evolution of the system. However, for strong fields and beyond 

the Born-Oppenheimer approximation (i.e. considering the coupled nuclear-electronic 

system), eq. (3.22) may not give quantitative results. In the first place because it is not 

easy to evaluate the dynamic polarizabilities αj (R, ω), and secondly, because usually 

the multi-photon absorption to excited states and ionization can not be neglected. 



Quantum Control algorithms 

The development of new laser devices and the technology of pulse shaping that affords 

a relatively simple manipulation of light, has opened up the field of laser control of 

chemical reactions, until then dominated only by theorists [5, 6, 9, 78, 326]. Whereas, 

in experiment optimal pulses are optimized through a learning-loop setup, from a the­

oretical point of view, different control schemes have been introduced. As a general 

strategy, the interaction of a system with an external field, in our case a laser field, is 

tailored such that a transition from an initial state |Ψi

) 
at a time ti to a final state 

|Ψf 

) 
(or target state) at a time tf is induced. In achieving this goal, one might distin­

guish global and local control schemes. Both methods assume the complete knowledge 

of the system Hamiltonian and essentially use time propagation to optimize the fields. 

In the first case, the most commonly used technique is quantum optimal control theory 

(QOCT) [5, 9, 326, 327]. This technique uses a variational principle and an iterative 

process of forward and backwards propagations to construct a field which guides the 

wave function optimally towards the predefined target wave function. The control fields 

are constructed employing information on the entire dynamics from time ti to time tf . 

The nature of the iterative optimization shows many similarities with the commonly 

used experimental learning algorithm approach [62, 65]. However, its numerical imple­

mentation is computationally very expensive, due to the multiple propagations. Local 

control schemes (LCT) [11, 12] move away from the picture of a global target. Instead, 

a control field is calculated as a function of the instantaneous dynamics of the system 

at each time step. In LCT the field is calculated on the fly and therefore is obtained 

at the same time as the control with one single forward propagation. We want to note 

that there exist similarities between monotonically convergent algorithms for OCT and 

LCT: in some cases, the solution of the OCT equations using Krotov’s scheme yields the 

LCT equations. This relationship has been elucidated by Salomon and Turinici [175]. 

In this thesis, we use operators to control electronic transfer after implementing the 
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local control algorithm. Now, we will present in some detail the characteristics and 

equations related to this theory. 

4.1 Quantum Optimal Control Theory 

In the optimal control approach, the quantum control problem can be formulated as a 

problem of seeking a set of admissible controls satisfying the system dynamic equations 

and simultaneously minimizing a cost functional. The cost functional may be different 

according to the practical requirements of the quantum control problem, such as min­

imizing the control time [328, 329], the control energy [330, 331], the error between the 

final state and target state, or a combination of these conditions. 

The standard version of OCT is based on the assumption that a molecular state, 

the target state φt , is attainable by a laser driven molecular wave function |ψ(t)) at 
time T . In other words, the overlap expression |(φT |ψ(T ))|2 is equal to unity [61, 62]. 

To determine the optimal laser pulse, which drives the system to its predefined target 

state, one considers the overlap to be a functional of the field strength E(t). A maximum 

value of this functional should be obtained by the optimal pulse. To this end, OCT is 

formulated as a task which maximizes the functional with the constraint that the field 

strength has a finite value. 

4.1.1 Deriving Quantum Optimal Control Equations 

The aim is to find the field that maximizes the functional J = (ψ(T )|P̂ |ψ(T )), where 
ˆ ˆP is a projector operator, P = |φt)(φt|, such that J = Pif is the transition probability 

to go from ψ(0) = ψi at initial time to φt at final time. The same derivation is valid 
ˆif P is any positive semidefinite operator ((ψ(T )|P̂ |ψ(T )) ≥ 0 for any ψ). At the same 

time, the use of very strong laser pulses must be penalized, as the strong pulses break 

the validity of most approximate Hamiltonian descriptions, and the equations need to 

be explicitly dependent on the field. 

Variational calculus can be used to find the extremes of the functional 

J = (ψ(T )|P̂ |ψ(T )) − 
1 
¡ |E(t)|2 

dt (4.1)
α s(t) 

The functional is composed of two elements, the first term (ψ(T )|P̂ |ψ(T )) specifies 
the yield, that is the overlap with the target state φt on the expectation value of the 

ˆhermitian operator P . 
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The second term in J penalizes the electric field fluence. The weight factor α, also 

know as the penalty factor, allows for flexibility in choosing the relative importance of 

the physical objectve and fluence. The shape function s(t) was first applied into OCT 

by ref. [332], introducing a time dependence of the penalty factor α, which means that 

for different times different intensities will be allowed. It avoids abruptly changing fields 

and sets a minimum for the pulse bandwidth. The envelope functions(t) switches on 

and off smoothly, thus imprinting this property on the optimized field. 

One can vary ψ(T ) and E(t), therefore we can write 

J + δJ = (ψ(T ) + δψ(T )|P̂ |ψ(T ) + δψ(T )) − 
1 
¡ |E(t) + δE(t)|2 

dt (4.2)
α s(t)
 

Considering just first order variations of the wave function ψ(T ) and E(t),
 

δJ = (δψ(T )|P̂ |ψ(T )) + (ψ(T )|P̂ |δψ(T )) − 
2 
¡ E(t)

δE(t)dt (4.3)
α s(t)
 

As the first two terms are complex conjugates, the last equation results in
 

δJ = 2Re
[
(ψ(T )|P̂ |δψ(T ))

] 
− 

2 
¡ E(t)

δE(t)dt (4.4)
α s(t) 

In order to find a maximum (extreme) of δJ/δE(t) one needs to know how δψ(T ) 

depends on δE(t). In most derivations of the quantum OCT equations one uses La­

grange multipliers to consider both functions independent. The maximization of J is 

constrained by the dynamical equation for ψ, which is the TDSE. The quantum dynam­

ics of the system, including the variations, must follow the equation 

ψ̇(t) + ( δψ̇)(t) = −i
[
Ĥ(t) − µδE(t)

]
(ψ(t) + δψ(t)) (4.5) 

But we are just considering first order variations, thus 

(δψ̇)(t) = −iĤ(t)δψ(t) + iµδE(t)ψ(t) (4.6) 

This is a non-homogeneus TDSE that conects δψ(t) with δE(t) at all times, and in 

particular, at final time, as required in eq. (4.4). 

Solving the non-homegeneous first order differential equation one gets 

¡ t 
δψ(t) = Û(t, 0; E)δψ(0) + i Û(t, t ; E(t ))µδE(t )ψ(t )dt (4.7) 

0 

In this last equation δψ(0) = 0 since the initial state does not change, then at final 
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time 

¡ T 
ˆδψ(t) = i U(T, t ; E(t ))µδE(t )ψ(t )dt (4.8) 

0 

Substituing eq. (4.8) in eq. (4.4) we obtain 

δJ = 
¡ T 

dt 
{
2Re[(ψ(T )|P̂ Û(T, t ; E)µδE(t )|ψ(t )) ] − 

2 E(t )δE(t )
} 

(4.9) 
0 αs(t ) 

Since δE(t) is real and given a complex function z, Re(iz) = −<(z), thus 

δJ = −2 
¡ T 

dt 
{
<
[
(ψ(T )|P̂ Û(T, t ; E)µ|ψ(t ))

] 
+

1 E(t )
}
t (4.10) 

0 αs(t ) 

Defining an instantaneous gradient dJt/dE(t) such that 

δJ = 
¡ T 

0 

dJt 

dE(t) δE(t)dt (4.11) 

where 

dJt 1 
= −2

{
<
[
(ψ(T )|P̂ Û(T, t; E)µ|ψ(t))

] 
+ E(t)

} 
(4.12)

dE(t) αs(t) 

Making dJt/dE(t) = 0 at each time t, we find the maximum of the functional. This 

equation is obeyed by the optimal field. We obtain 

1<
[
(ψ(T )|P̂ Û(T, t; EOC (t))µ|ψ(t))

] 
+ EOC (t) = 0 (4.13)

αs(t) 

Which gives us 

EOC (t) = −αs(t)<
[
(ψ(T )|P̂ Û(T, t; EOC (t))µ|ψ(t))

] 
(4.14) 

or 

ˆEOC (t) = −αs(t)<
[
(ψ(T )|P̂ Û(T, t; EOC (t))µU(t, 0; EOC (t))|ψ(0))

] 
(4.15) 

This is an implicit equation: EOC (t) depends on Û(T, t; EOC (t)) which itself depends 

on EOC (t). In particular, knowing EOC (t) requires knowledge of the whole history of 

the dynamics, from the past to the present [via Û(t, 0; EOC (t))] and from the future to 
ˆthe present [via U(T, t; EOC (t))]. To solve the non-linear equation one needs iterative 
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procedures. Notice that, had we not included the quadratic penalty form of the field in 

the functional, the gradient [eq. (4.12)] would not be an explicit function of the field. 

Now, if we define the performance function 

χ(T ) = ˆ (4.16)Pψ(T ) 

then 

(ψ(T )|P̂ Û(T, t; EOC ) = (χ(T )|Û(T, t; EOC ) = (χ(t)| (4.17) 

The function χ can be only evaluated at the end of the dynamics and then one 

propagates it backwards in time with the optimal field, which can be written as 

EOC (t) = −αs(t)<
[
(χ(T )|µ|ψ(T ))

] 
(4.18) 

This is the quantum OCT equation for the optimal field. Also eq. (4.12) can be 

written in terms of the χ function 

dJt 1 
= −2

{
<
[
(χ(t)|µ|ψ(t))

] 
+ E(t)

} 
(4.19)

dE(t) αs(t) 

4.1.2 Finding the optimal control pulses 

As noticed, eq. (4.18) [or the equivalent form (4.15)] are implicit equations that can 

only be solved by iterative procedures. The two most common algorithms that solve 

the optimal control equations are described. In the following, E (k)(t) and E (k+1)(t) are 

two consecutives steps of the iterative procedure. To start the algorithm an initial guess 

field is needed E (k=0)(t). On the other hand, one must impose convergence conditions, 

in order to end the algorithm at a certain time, for instance 

¡ T 
[
E (k+1)(t) − E (k)(t)

]2 

J (k+1) − J (k) ≤ κdt ≤ Tκ or (4.20) 
0 s(t) 

where κ (κ ) are predetermined criteria for convergence. 

To simplify notation and use eq. (4.18), ψ(κ)(t) will be the wave function obtained 
ˆby propagating with U
(
t, 0; E (κ)(t)

) 
and likewise χ(κ)(t) to the performance function 

obtained by proagating with Û
(
T, t; E (κ)(t)

)
. 



88 CHAPTER 4. QUANTUM CONTROL ALGORITHMS 

The gradient method 

In this algorithm eq. (4.18) is taken as the gradient of Jt with respect to E(t) [113,333, 
334]. It is based on choosing a field on step κ+1 as the field on step κ plus a contribution 

along the gradient obtained with the same κ field 

dJt 1 
= −2

{
<
[
(χ(κ)|µ|ψ(t(κ)))

] 
+ E(t)

} 
(4.21)

dE(t) αs(t)
 

Then
 

(κ)
dJtE (κ+1)(t) = E (κ)(t) + β (4.22)
dE(t) 

Where β is a positive constant determined by linear procedure that minimizes 

J (κ+1) (κ+1)
= J [Eβ (t)]. By this choice and at least for a certain range of β, it is ful­

filled that J (κ+1) ≥ J (κ). 

The Krotov method 

The previous approach has one central disadvantage linked to the use of a gradient. 

The gradient method is prone to get stuck in the local minima of search space and 

the convergence rate is rather slow. For this reason a global iterative procedure was 

developed, termed Krotov method [335–337]. This scheme uses an immediate feedback 

and converges quadratically [117]. This algorithm is based on using as the optimal field 

at step κ + 1 

E (κ+1)(t) = −αs(t)<
[
(χ(κ)(t)|µ|ψ(κ+1)(t))

] 
(4.23) 

This equation is very similar to eq. (4.18) but one has to notice that while χ(κ)(t) 

is propagated using the field obtained at the previous step (the one that is known at 

all times), ψ(κ+1)(t) is propagated with the new field. This implies inmediate feedback. 

Obviosly, some numerical approximation must be done at some point, since E (κ+1)(t) is 

unknown. However, one can force E (κ+1)(0) = E (κ)(0) and then use this value, together 

with χ(κ)(t) to calculate, via eq. (4.23), E (κ+1)(Δt) and so on. The inmediate feedback 

will work better the smaller Δt is. This method guarantees J (κ+1) ≥ J (κ) and there is no 

need for any linear search. It is important to say that in this rapidly convergent scheme 

it is impossible to parameterize the field. Instead the electric field is changed freely at 

each point of time by the algorithm as it proceeds. 

A comparison between the two methods can be found in ref. [116]. 
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4.2 Local Control Theory 

From a computational point of view Local Control Theory (LCT) is an open loop algo­

rithm which takes into account the system’s response at a certain time to construct a 

suitable laser pulse, to be subsequently fed to the system Hamiltonian, thereby mono­

tonically varying a pre-defined objective functional. The control Hamiltonian is updated 

at each interval. Thus it constructs a feed-forward open-loop mechanism. During the 

propagation the algorithm stops once the objective is achieved or the preset threshold is 

attained. The resulting pulse is then analyzed and introduced in the experiment. Within 

the LCT framework one can also decide on the shape of the pulse envelope, or impose a 

bound on the fluency of the laser pulse, which simplifies the analysis. The fact that the 

control fields are chosen upon a simple objective of increasing/decreasing a certain tar­

get functional offers a physically intuitive interpretation. Besides, the set of equations 

used to obtain the control field are local in time, making it readily implementable within 

the dynamical framework(both for quantum and mixed quantum-classical treatments). 

4.2.1 Deriving local control equations 

The starting point is the TDSE of state |ψ(x, t)
) 
evolving in time under the Hamiltonian 

ˆ ˆH(t) given as H0 + W (x, t). 

∂ ˆi' |ψ(x, t)
) 
= H(t)|ψ(x, t)

) 
= ( Ĥ0 + W (x, t))|ψ(x, t)

) 
(4.24)

∂t

The unperturbed system is described by the Hamiltonian Ĥ0 and the time dependent 

perturbation is the coupling with the laser field, W (x, t) = −µ(x)E(t). 
In Local Control we want to find the field Elc(t) that satisfies at all times 

∂P0t d d 
= |

\
φt|Û(T, 0; Elc(t))|ψ(t)

)
|2 = 

\
ψ(t)|P̂ |ψ(t)

) 
≥ 0 (4.25)

∂t dt dt
 

ˆ
Since in LC, the operator P does not need to be positive semi-definite, we can 

generalize the discussion so that LC is any procedure that seeks a monotonic increase 
ˆor decrease in time of any observable O of interest in the dynamics, such as a transfer 

probability or a property like the energy of the system (H0). 
Therefore one shall find the field Elc(t) that satisfies 

∂ \
ψ(t)|Ô|ψ(t)

)
 0 (4.26) 

∂t 

The time derivative of the expectation value follows from the time derivative of 
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∂ ∂the ket, |ψ
) 
= −iĤ|ψ

) 
and that of the bra 

\
ψ| = i

\
ψ|Ĥ (which is the complex 

∂t ∂t 

conjugate). Thus 

∂ \
ψ(t)|Ô|ψ(t)

) 
= i
\
ψ(t)|ĤÔ|ψ(t)

) 
− i
\
ψ(t)|ÔĤ|ψ(t)

) 
(4.27)

∂t
 

which can be written in terms of the commutator 
[ 
ˆ H
] 
= H − ĤÔ
O, ˆ Ô ˆ

\
ψ(t)|Ô|ψ(t)

) 
= −i

\
ψ(t)|

[ 
ˆ H
]
|ψ(t)

)∂ 
O, ˆ (4.28)

∂t 

It is useful to write eq. (4.27) in the equivalent way 

∂ \
ψ(t)|Ô|ψ(t)

) 
= −2Re

(\
ψ(t)|ÔĤ|ψ(t)

) 
= 2<

(\
ψ(t)|ÔĤ|ψ(t)

)) 
(4.29)

∂t 

As the expectation value is a real number despite the presence of the imaginary unit, 

the local control field can be chosen strictly real. 

Since Ĥ(t) = Ĥ0 − µE(t), separating the contributions of the two parts of the Hamil­

tonian in eq. (4.28) we obtain 

∂ \
ψ(t)|Ô|ψ(t)

) 
= −i

\
ψ(t)|

[ 
ˆ H0 O, µ

]
|ψ(t)

)
O, ˆ

]
|ψ(t)

) 
+ iE(t)

\
ψ(t)|

[ 
ˆ

∂t (4.30) 
= h(t) + E(t)g(t) 

where both h(t) and g(t), as expectation values, are real functions of time. 

It is important to note that the second term in the latter equation contains the 

interaction W (z, t) and thus the electric field. Clearly, if 
[ 
ˆ = 0 noA, µ
] 

control is 

possible or at least we will not obtain any explicit dependence of the objective with the 
ˆlocal control field. On the other hand, in cases where H0 commutes with the observable 

Ô, i.e., 
[
A,ˆ Ĥ0

] 
= 0, and the observable is not explicitly time dependent, the control 

is simple and hints the possibility to influence the temporal change of the expectation 
ˆvalue of O by a properly chosen external field. From eq. (4.30) it is easy to impose 

∂(A(t))/∂t ≥ 0 (or ≤ 0). It suffices to make E(t)g(t) ≥ 0, or 

Elc(t) = f(t)g(t) = if(t)
\
ψ(t)|

[ 
ˆ Oµ|ψ(t)

))
O, µ
]
|ψ(t)

) 
= −2f(t)<

(\
ψ(t)| ˆ (4.31) 

with f(t) ≥ 0, since then ∂(A(t))/∂t = f(t)g(t)2 (for ∂(A(t))/∂t ≤ 0 we just need to 



 

91 4.2 Local Control Theory 

choose f(t) ≤ 0). If g(t) = 
[
A,ˆ µ̂
] 
= 0 (or the imaginary part of 

\
ψ(t)| Ôµ|ψ(t)

) 
is zero) 

the rate of change will be zero as well, provided h(t) = 0. If the last condition is not 

met, we would not know if that term could cause a drop in (A(t)). For this reason, in 

general, local control procedures are only defined for operators Â such that 
[ 
ˆ H0A, ˆ

] 
= 0. 

The choice of the electric field which ensures the monotonicity condition is not 

unique. Also, through the proper choice of the temporal function f(t), one can reg­

ulate the overall intensity and duration of the pulse. 

Equations (4.30) and (4.31) constitute the main equations in the local control al­

gorithm which will be solved on the discretized time interval by previously mentioned 

feed-forward method. To find a LC pulse we just need to adjust the pulse instanta­

neously to the value of the wave function. Examining eq. (4.31) more closely, 

Elc(t) = −2f(t)<
(\
ψ(0)|Û(0, t; Elc(t)) ˆ U(t, 0; Elc(t))|ψ(0)

))
Oµ ̂ (4.32) 

The idea is that in order to get Elc(t) we first need to know Elc(t). But fixing Elc(0) is 
enough to get Elc(t) by solving the equations with a numerical discretization procedure 

(for example discretization on a grid and Split-Operator method). 

Since LC requires a fast adjustment of the field Elc(t) to the wave function, it is 

important to be careful with respect of the choice of Δt, which must be short enough 

to get sensible results from the local control equations. 

One can also be overambitious and try to force 
\
ψ(t)|0̂|ψ(t)

) 
to follow a given tra­

jectory a(t). Following eq. (4.30) this is equivalent to demand 

∂ E(t)g(t) = a(t) (4.33)
∂t 

again assuming h(t) = 0. This is usually called tracking in the literature [120, 152]. 

Tracking is hard to achieve because whenever g(t) = 0 and ∂ a(t) = 0, there is no easy 
∂t 

way to know a priori (without previously writing the field) what trajectories a(t) are 

possible. 

ˆIn this work, two different operators O were chosen to achieve local control over 

a single electron dynamics. The first strategy was to slow down the electron, thus 

reducing the energy of the system. Secondly, we induced population transfer, thus 

forcing a monotonic increase in P0t over time by projecting the population on a desired 

target state. 
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4.2.2 Slowing the electron 

Our goal will be to decrease the energy of the electron to induce electron photoassoci­

ation. A sufficient condition to reduce the energy of the system upon the interaction 

with an external field is that the expectation value of Ĥ0 decreases as a function of time 

or, equivalently, that its time derivative (the energy rate) is less than zero, 

∂ ∂ (Ĥ0) = 
\
ψ(t)|Ĥ0|ψ(t)

) 
< 0 (4.34)

∂t ∂t 

The rate expression is evaluated employing the time dependent Schrödinger equation 

as 

∂ /
[ ˆ ˆ

) /
[−ˆ ˆ

) 1 
j 

∂2µ̂ ∂µ̂ ∂ 
 

(Ĥ0) = i H(t), H0] = iE(t) µ, T ] = E(t) + 2 (4.35)
∂t i2m ∂z2 ∂z ∂z

If the field is chosen as 

i 
j
∂2µ ∂µ ∂ 

 
E(t) = λ + 2 (4.36)

2m ∂z2 ∂z ∂z

with λ being a negative number, then eq. (4.34) is fulfilled automatically. In the special 

case of a linear dipole moment, i.e., µ = qz (with q being a constant), eq. (4.35) takes 

the simple form 

∂ (H0) = E(t) q (p̂) (4.37)
∂t m 

where p̂ is the momentum operator, and the control field [eq. (4.36)] is proportional 

to the expectation value of the momentum [138, 139, 338]: 

Elc(t) = λf(t) (p̂) (4.38) 

where f(t) is an envelope function. 

This equation indicates that the field must oppose the momentum of the electron, 

and the faster the electron goes, the stronger Elc(t) must be in order to stop the particle. 

Population transfer 

Another expression for the field is obtained if the objective is to increase the population 

in a target eigenstate |φT 

) 
of H0 [156, 339]. Defining the projector PT = |φT 

)\
φT |, the 

rate of population transfer into the target state is 
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∂ (PT ) = i ([H(t), PT ]) = iE(t) ([−µ, PT ]) = E(t)2< 
{\

ψ(t)|µ|φT 

)\
φT |ψ(t)

)} 
(4.39)

∂t 

where < denotes the imaginary part. Here, the control field which steadily increases 

the target state population is 

E(t) = λf(t)< 
{\

ψ(t)|µ|φT 

)\
φT |ψ(t)

)} 
(4.40) 

with λ chosen to be positive and f(t) an envelope function. From this expression it 

is obvious that some overlap between the wave packet |ψ(t)
) 
and the target state |φT 

) 
is 

needed initially, otherwise the field remains zero at all times. This problem is overcome 

by artificially populating the target state at initial time with some small fraction of the 

total population. It is, however, important to note that this is only necessary to start 

the numerical algorithm and has no important consequences in the local control field 

finally obtained. 

The local control field is telling us about how the field must be in order to force a 

monotonic increase of PT = |φT 

)\
φT | over time. Unfortunately, comparing with OCT, 

the local control field is almost never the optimal field, but one can improve the final 

yield with an optimized field version. Nevertheless, local control theory is much faster 

and computationally affordable than Optimal Control. 
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Results
 

5.1	 Control of spin-orbit transitions in ion strings 

via nonresonant strong laser pulses 

In this chapter we focus on the description of controlling the spin state of the wave 

function. 

Only a few schemes have been proposed in the literature to optically control spin 

transitions by means of strong laser pulses [187, 340]. In previous works of our group, 

different strategies were also suggested to control the spin transfer by means of nonres­

onant strong laser pulses [109–112]. The aim is now to explore the limits of the validity 

of these schemes and the quest of possible corrections, including new effects that can 

not be observed under the Born-Oppenheimer approximation. To describe the electron 

dynamics and the spin-orbit transitions (singlet-triplet transitions) we first motivate an 

extended version of the Shin-Metiu model (the ESM model) (2.6.2) where the coupling 

is introduced heuristically. This model allows us to study the effects of ionization and 

the breakdown of the Born-Oppenheimer approximation. 

In the article entitled: ”Quantum wave packet dynamics in spin-coupled vibronic 

states” (J. Phys. Chem. A, 116, 11427-11433, 2012) the nonresonant dynamic Stark 

effect (NRDSE) is used to decouple the singlet-triplet transition and therefore dynam­

ically lock the spin state in the adiabatic limit and in the full ESM model (vibronic 

wave packets). The work presents the model Hamiltonian and its Born-Oppenheimer 

limit, giving detail about the procedure used to include the singlet-triplet coupling in a 

phenomenological way. The potential energy curves in the uncoupled and coupled cases 

were calculated as well as the potential coupling matrix elements and the transition 

dipole moments. 

We compare the results obtained under the Born-Oppenheimer approximation using 

different number of electronic states (the dynamics of nuclear wave packets modelm 
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DNWP) with those obtained from the full ESM model (vibronic wave packets). In the 

absence of a laser field, full population transfer is achieved at both levels of calculation, 

which means that the DNWP approach gives the correct dynamical results. Under the 

effect of a nonresonant strong laser field, the population is efficiently maintained within 

the manifold of singlet states. Including more electronic states in the model, only 

increases the dispersion of the population among different singlet states, although the 

overall population of the triplet states slightly varies. When performing the calculations 

in the full ESM model, this effect increased and the predominant dynamical process 

was multiphoton absorption leading to ionization. However, the triplet states were not 

populated essentially. 

In ”Manipulating the singlet-triplet transition in ion strings by nonresonant dynamic 

Stark effect” (Theor. Chem. Acc., 132, 1359, 2013), the ESM model was employed to 

influence the spin-orbit transitions by means of strong laser fields as in the precedent 

work. In this case, we worked under the Born-Oppenheimer approximation including 

different number of electronic states and couplings (DNWP approach). The nonresonant 

dynamic Stark effect was again applied to avoid a singlet-triplet transition, whilst to 

force a spin transfer a combination of a chirped and a transformed limited pulses were 

used. We explored different pulse parameters (nonresonant frequencies and intensities) 

and chose the optimal values that provided the best results in locking the singlet-triplet 

transition. We compared these results to those obtained when more electronic states 

were included. Once again the need of using strong fields led to multiphoton ladder 

climbing as the main constraint to the strong-field control of spin transitions. 

In the work ”The time-scale of non linear events driven by strong fields: can one 

control the spin coupling before ionization runs over?” (J. Phys. B: At. Mol. Opt. 

Phys., 47, 124027, 2014) the relation between spin-coupling and the ionization rate was 

investigated to identify the conditions for the efficient control of the spin-orbit coupling 

via the nonresonant dynamic Stark effect while suppressing the ionization in the ESM 

Hamiltonian. 

To guide the study, a simple analytical two-level Hamiltonian was proposed (with 

one singlet and one triplet), the 2-PSI model, which includes the effective ionization rate 

Γ. This model was used as a guide to find suitable regimes or ranges of parameters where 

one can achieve the control of spin coupling in a more complex system. By defining a 

maximum threshold for the triplet population we obtained a minimum for the Stark shift 

and thus a threshold value for the field intensity. In order to find the conditions under 

which the time scale of ionization is smaller than the time scale of spin transfer, we used 

a simple but very general equation for the ionization as a function of the field. Armed 
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with these formulas, we finally found an expression which relates the characteristic times 

of the spin transfer and that of ionization in the presence of a laser field, making then 

possible to privilege one process versus the other. The parameters of the 2-PSI model 

were then fitted in the 3D ESM Hamiltonian. The analytical results estimated for the 

optimal values of spin coupling versus electric field strength are useful to establish an 

efficient quantum control of spin transitions before the ionization dominates. Thus, we 

can influence the competing processes of spin-transitions and ionization within certain 

limits. In this case, for relatively weak spin couplings and control field intensities, we 

could achieve efficient spin locking in an initial singlet state. 

5.1.1	 Quantum wave packet dynamics in spin-coupled vibronic 

states 

Falge, M., Engel, V., Lein, M., Vindel-Zandbergen, P., Chang, B.Y. and Sola, I.R., J. 

Phys. Chem. A, 116, 11427-11433 (2012) 
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ABSTRACT: Extending the Shin−Metiu two-electron Hamiltonian, we
construct a new Hamiltonian with effective singlet−triplet couplings. The
Born−Oppenheimer electronic potentials and couplings are obtained for
different parameters, and the laser-free dynamics is calculated with the full
Hamiltonian and in the adiabatic limit. We compare the dynamics of the
system using nuclear wave packets for different numbers of Born−
Oppenheimer potentials and vibronic wave packets on a full 3-dimensional
(two electron coordinates plus one nuclear coordinate) grid. Using strong
fields, we show that it is possible to dynamically lock the spin state of the
system by decoupling the singlet−triplet transition via a nonresonant
dynamic Stark effect in the adiabatic limit. Although a similar spin-locking
mechanism is observed in the dynamics of vibronic wave packets, multi-
photon ionization cannot be neglected leading to the breakdown of the control scheme.

■ INTRODUCTION

The application of femtosecond laser pulses proved to be very
useful in inducing, characterizing and controlling molecular pro-
cesses as in, e.g., unimolecular reactions.1 The concept of a
nuclear wave packet was paramount in constructing theoretical
models that guided the experiments and provided the grounds
for the design of quantum control schemes.2−6 Despite its great
explanatory capabilities, the dynamics of nuclear wave packets
(DNWP) generally fails to account for important physical
processes in two limits: at high excitation and in strong fields.
Then the breakdown of the Born−Oppenheimer approximation
(BOA) and the role of electron dynamics, specially of ionization
processes, must be considered carefully.
Recently, the development of phase-stabilized subfemto-

second pulses7 or train of pulses8 has led to the emerging field
of attophysics.9,10 Many theoretical challenges lie ahead in
understanding the key dynamical aspects of the laser-driven
electrons, particularly when the single-active electron approx-
imation is not valid, that is, for highly correlated electronic
motion. We note that a large part of the attosecond schemes,
such as streaking, requires the presence of a strong infrared field.
In this work we are interested in exploring the limit of validity of
the nuclear wave packet approach when using strong pulses.
The solution of the Schrödinger equation of coupled electron−

nuclear motion is far too demanding. Therefore, models of reduced
dimensionality have been employed extensively to describe multi-
photon processes occurring in strong laser fields see, e.g., refs
11−15. Shin andMetiu introduced a useful one-dimensional model
for charge-transfer processes in solids.16,17 Within their approach,

the electron−nucleus interactions are parametrized in such a
way that the transition from a Born−Oppenheimer adiabatic
dynamics to motions involving strong nonadiabatic couplings
can be studied systematically.18−21 The initially proposed model
involved a single electron and a single nucleus moving in one
dimension, but the extension to include two electrons has been
presented.22 Below, we perform another extension of the Shin−
Metiu model where a coupling of singlet and triplet states is
introduced heuristically. We will refer to this model as the ESM
(extended Shin−Metiu) model. For the purpose of illustrating
the dynamics of spin transitions, the strength of the coupling was
chosen so that full singlet−triplet population transfer would
occur in the range of 100 fs. The ESMmodel allows us to evaluate
the role of static and dynamic electron correlation and the break-
down of the BOA in the presence of strong fields, by comparing
the results of DNWP for the Born−Oppenheimer approximation
of the ESM model, with the dynamics of vibronic wave packets,
that is, wave packets depending on two electronic coordinates
and one internuclear distance.
In this work we focus on controlling the spin state of the wave

function.Only a few schemes have been proposed in the literature to
optically control spin transitions (which are naturally dipole
forbidden) by means of strong laser pulses. For instance, Hübner
et al. have numerically applied ultrashort π-pulses to induce spin
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changes,23−26 whereas Manz et al. used a combination of IR and
UV pulses.27,28 The properties of strong fields were fully used in
the nonresonant dynamic Stark effect (NRDSE) scheme.29−35

Strong fields generate large Stark shifts that strongly change the
spectrum of the electronic states. If localized couplings such as
conical intersections or spin−orbit couplings exist between the
electronic states, by choosing fields with the appropriate intensity,
one can displace the positions and energies where these transitions
occur. Without changing the electronic state or even strongly
modifying the vibrational energy, it is therefore possible to force
the initial wave function to avoid (or visit) these regions at a
given time, thus changing the rate of those processes. In the ESM
model this implies using field intensities of the order of a TW/cm2

or higher.
In this work we show how the NRDSE allows us to lock the

spin transition in the DNWP even when the dimension of the
basis of electronic states in the Born−Oppenheimer approx-
imation increases. The same principles apply to the dynamics of
vibronic wave packets. However, multiphoton ionization cannot
be avoided and is the predominant dynamical process. Ultimately, a
better understanding of the dynamics of vibronic wave packets will
certainly motivate the emergence of newer control schemes. This
work, essentially, sets up the first stage, where a control scheme
motivated by the physics of nuclear wave packets, fails to control the
system when ionization is not neglected.
The remainder of the paper is organized as follows. In section

II we describe the ESMHamiltonian and its Born−Oppenheimer
limit, detailing the procedure used to include singlet−triplet
coupling in a phenomenological way. Section III gives the results
of the dynamics in the absence of an external field and with the
control field. We compare the results obtained within the Born−
Oppenheimer approximation (DNWP) using different number
of electronic states, and in the full ESM model (vibronic wave
packets). Section IV contains the Conclusions.

■ HAMILTONIAN MODEL

Extended Shin−Metiu Model. We regard an extended
version of the Shin−Metiu model16,17 (ESM), which consists of
an ion (coordinate R) and two electrons (coordinates x, y) being
confined to move in a single dimension. These particles interact
with each other and two additional fixed ions through screened
Coulomb interactions. The particle configuration is sketched
in Figure 1. There, the fixed ions are located at distances
R1 =−5 Å and R2 = 5 Å. The Hamiltonian reads (atomic units are
employed)
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with the nuclear mass m, which we take as the proton mass. The
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where in the numerical calculation, the charge numbers are set to
Z1 = Z2 = Z = 1. The electron−nuclei and electron−electron
interactions are parametrized by error functions (erf) and
contain the three screening parameters Rc, Re, and Rf. They are
taken as equal and are assigned numerical values of 1.5 Å in our
numerical calculations. The total time-dependent wave function
of the two-electron, one-nucleus system is

ϕ ψ=q t x y R t s( , ) ( , , , ) (1,2) (3)

where ψ(x,y,R,t) is the time-dependent spatial part and s(1,2)
denotes the spin function, respectively. Because of exchange
symmetry, the spatial wave function is either symmetric (ψ+(x,y,R,t),
singlet (S)) or antisymmetric (ψ−(x,y,R,t), triplet (T)) with respect
to electron exchange. As long as there is no coupling between the
two symmetry species, the time evolution of the wave functions is
given as

ψ ψ= =± − ±x y R t x y R t( , , , ) e ( , , , 0)Hti
(4)

so that, starting with an symmetric/antisymmetric wave function,
the symmetry is strictly conserved as a function of time.
To monitor spin-flip transitions, we introduce a coupling

between the two symmetry manifolds and write the Hamiltonian
for the total system as

=
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⎞
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J x y H x y R
H
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In order that the symmetry in the two components of the wave
function is conserved, the coupling operator J(x,y) has to be
antisymmetric with respect to electron exchange. As a simple
function which fulfills this property we choose

λ= −J x y x y( , ) ( ) (6)

where λ is here taken as a constant coupling strength-parameter.
For simplicity, we neglect the possible dependence of the
coupling on the nuclear coordinate R.

Electronic Structure and Potential Curves.We first study
the electronic structure of the model system by solving the
electronic Schrödinger equation for fixed nuclear positions R,
which, in the uncoupled case, reads

φ φ=H x y R x y R V R x y R( , , ) ( , , ) ( ) ( , , )n n nel
M M M

(7)

where M = S or M = T, respectively, and Hel(x,y,R) denotes the
electronic Hamilton operator:
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Figure 1. Particle configuration in the one-dimensional model of
coupled nuclear-electronic dynamics. Two electrons and one nucleus
move in the field of two extra nuclei, which are fixed at distances of
±5 Å.
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The functionsVn
M(R) (n = 1, 2, ...) denote the respective potential

energy curves. In the coupled problem, we have:
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The potentials and electronic wave functions in each case are
calculated by complex-time propagation.36 Because the total
wave function contains a symmetric and antisymmetric
component and is no longer of pure singlet or triplet character,
we denote the two components as φn

± (x,y,R), respectively. In
Figure 2, we show the two sets of potentials obtained in the case

of zero coupling and for quantum numbers n = 1, 2, and 3.
The curves within the same symmetry are well separated in
energy, suggesting that a nuclear dynamics can properly be
described within the adiabatic approach of the Born−Oppenheimer
approximation.
The ground-state potentials of the two symmetries are nearly

identical whereas larger differences occur in the first excited state,
except for the region around the symmetry point R = 0. This can
be rationalized by analysis of the electronic wave functions. In the
ground state, the electronic probability density is attached to the
left and right fixed nuclei with vanishing density at the symmetry
line with x = y. These densities are almost identical for both
symmetries. In the excited state, however, fixing the nuclear
distance to R = 2 Å, density builds up at the symmetry line in
the singlet density, which then differs essentially from the
triplet density, the latter being zero for x = y by definition. It is
only around the configuration where the nucleus is located at
R = 0, that the two electron densities again resemble each
other. We note that the near degeneracy of the singlet and
triplet lowest energy states is related to the present choice of
the model parameters and the linear configuration of our
model, which does not allow for exchange contributions from
occupied orbitals located at larger negative and positive
distances, R. Introducing a coupling, as specified above, results
in a splitting of the potential curves. An example is given in
Figure 3, which contains potentials obtained for a coupling
parameter λ = 10.28 × 10−3 eV/Å.

The different electronic states are coupled by matrix elements
of the form

∫ φ φ=V R x y x y R J x y x y R( ) d d ( , , ) ( , ) ( , , )n mS ,T
S T

n m (10)

These couplings are displayed in Figure 4 for a coupling
parameter of λ = 1.028× 10−3 eV/Å. Note that they directly scale

with λ. They are symmetric/antisymmetric with respect to the
configuration at R = 0. The strongest couplings exist between
states with equal quantum numbers in the two manifolds. In the
case these numbers are different, the extra node on one or the
other wave function leads to a reduced coupling and also sign
changes. The choice of λ determines the strength of the coupling
and therefore the time scale of the singlet−triplet transition. As
shown in the results in section III, this leads to full singlet−triplet
transfer in roughly 100 fs. This choice allows control with an
external field.
When an electric field interacts with the system, the coupled

electronic states approach also needs the transition dipole-
moments. They are defined as (M = S, T)

∫μ φ φ= − −R x y x y R x y x y R( ) d d ( , , ) ( ) ( , , )n mM ,M
M M

n m

(11)

In Figure 5, we compare these transition dipole moments with
those determined with the electronic wave functions of the
coupled problem, i.e.:

∫
∫
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φ φ
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− −
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Figure 2. Potential curves Vn
M(R) for the lowest three electronic

quantum numbers n in the singlet (M = S, solid lines) and in the triplet
(M = T, dashed lines) states. Notice that T1 and T3 practically coincide
with S1 and S3, so that they cannot be distinguished from the
corresponding singlets in the figure.

Figure 3. Potential curves Vn(R) for the lowest six electronic quantum
numbers n and a coupling parameter of λ = 10.28 × 10−3 eV/Å.

Figure 4. Potential coupling matrix elements.
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These elements are strongest for the symmetric configuration
and of opposite sign for the two spin manifolds. The weak

mixing of the states of different symmetry does not change
the values essentially, as is the case for the potential energy
curves; see Figure 3. Note that our system is charged and
thus the dipole moments are not translationally invariant.
We calculated them in the coordinate system illustrated in
Figure 1.

Hamiltonian for the DNWP Approach. Assuming the
Born−Oppenheimer approximation, it is possible to simulate the
dynamics of the singlet−triplet population transfer by means of
nuclear wave packets. To observe the effects of a strong
nonresonant field on the spin-coupling dynamics, one needs to
include in the Hamiltonian at least one excited singlet and one
excited triplet state for a symmetrical setting where the strongly
coupled lowest-energy states can experience Stark-shifts, thus
changing the dynamics. This is what we call the minimal
symmetric set (MSS) model.
In the MSS model, the nuclear dynamics Hamiltonian in the

presence of the control field εc(t) is
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where I is the 4 × 4 unit matrix and the potentials and couplings
are those obtained in the Born−Oppenheimer approximation
of the ESM model as explained in section II.B. In the numerical
calculations we use “square” laser pulses with fast ramps of
sin2(π(t−t0)/τs) form. The switching on/off time is set to
τs = 25 fs.
The extension of the model to include a more complete set of

electronic states is straightforward. One only needs to include in
eq 13 all the relevant potentials Vj

S(R), Vj
T(R) and couplings

μSi,Sj(R), μTi,Tj
(R), VSi,Tj

(R), calculated in section II.B. In addition
to the MSS we have considered a model including the 6 lowest
singlet and triplet states (LSS). These 12 Born−Oppenheimer
states span the energy range of any 3-photon process starting in
S1 for the laser frequency used in the numerical results.

■ DYNAMICS

Field-Free Dynamics. The quantum dynamics in the full
vibronic calculation is governed by the time-dependent
Schrödinger equation (TDSE) containing the Hamiltonian of
eq 1 with solutionsψ(x,y,R,t).We solve the TDSE on a 3D grid of
256 × 256 × 256 points using the split-operator37 with Fast-
Fourier transform technique to evaluate the effect of the kinetic
energy operator.38 On the spatial grid, the electron coordinates
vary from −15 to +15 Å whereas the nuclear coordinate varies
from −4 to +4 Å. Absorbing barriers at the grid boundaries were
used to take into account ionization and dissociation. With
respect to the DNWP, the TDSE is governed by the Hamiltonian
of eq 13 (or a similar one, based on the LSS model). The
numerical solution is also obtained using the split-operator
technique in the nuclear grid of 256 points defined between
R = −4 and R = +4 Å.

To compare the exact calculation with the DNWP approach,
we calculate populations as (M = S, T)

∫ φ ψ= |⟨ | ⟩ |P t R x y R x y R t( ) d ( , , ) ( , , , )n n xy
M M 2

(14)

In other words, we first project the total wave function on the
electronic eigenfunctions of the uncoupled system and calculate
the norm of the such obtained nuclear component. We start with
an illustration of the field-free dynamics and regard the singlet−
triplet population transfer choosing an initial wave packet, which
is the vibronic ground state of the S1 state. This state most
strongly couples to the T1 state so that for λ = 1.028× 10−3 eV/Å, a
complete transfer of population takes place in approximately 120 fs,
following basically the behavior of a resonant two-level system.
This is illustrated in Figure 6, which compares the populations

obtained from the fully coupled calculation (Pn(t)) with those

Figure 5. Transition dipole moments μnm between the spin-coupled
states compared to those calculated by employing the noncoupled
triplet and singlet electronic wave functions (μMn,Mm

).

Figure 6. S−T population transfer. Shown are curves obtained within
the complete electron−nuclear calculation (straight lines) and within
the approach employing coupled electronic states (dashed lines).
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from the DNWP approach (Pm
M(t)) calculated using only the

lowest energy singlet and triplet states. It is seen that the spin-
transition dynamics is very similar, which means that the DNWP
approach gives the correct dynamical results for the example
regarded. Similar results would be obtained for different values of
λ, varying only the period of the Rabi flopping between the
singlet and triplet states.
Nuclear Wave Packet Dynamics in External Fields. We

have seen that in the absence of an external field the population is
rapidly transferred from the singlet to the triplet state. To
manipulate the spin transition, the control pulse must be switched
fast enough. Additionally, because the transition dipole moment in
the Franck−Condon region is relatively small, we need strong
pulses. However, multiphoton absorption to other singlet states
must be avoided. The mechanism of decoupling the singlet−
triplet transition relies on second-order nonresonant pro-
cesses.33,34 Thus, the laser frequency should be chosen to
maximize the differences in the dynamic polarizabilities of S1 and
T1. This is accomplished by choosing ω close to the T1 → T2
Franck−Condon transition, which is relatively separated from
the S1 → S2 Franck−Condon transition. Using this guide, one
can numerically estimate the necessary pulse peak amplitude ε0
and carrier frequency ω. As a very rough estimate, for a constant
field ε0, one needs the energy of the nonlinear interaction with
the field (the Stark shift), αε0

2, to be at least of the order of VS1T1

∼ 0.01 eV. For |μS1Sj| ∼ 1 au, assuming the dynamic polarizability
is of the order of α ∼ μ2 ∼ 1, we obtain ε0 ∼ 0.02 au.
In Figure 7 we show the population dynamics using a single

control pulse εc for both the MSS and LSS models. By numerical

sampling we obtained best results in the LSS model with pulse
parameters ε0 = 0.017 au (implying a peak intensity I0 of 10.1
TW/cm2) and ℏω = 1.63 eV, although there is some flexibility in
the choice of pulse frequencies in different intervals. With weaker
pulses, the time-averaged population of the triplet state increases
and the spin state does not remain constant. With stronger
pulses the small Rabi oscillations observed in the MSS results
(Figure 7a) can be totally suppressed. However, in the LSS
model the time-averaged population in the excited singlet states
considerably increases and leads to singlet−triplet transitions
among the excited states. The pulse duration is arbitrarily set as

200 fs to display more clearly the effect of spin locking. However,
this pulse parameter can be adjusted freely.
As observed, during the action of the laser, the population is

efficiently maintained within the singlet states manifold. How-
ever, whenmore electronic states are included in the model (as in
the LSS versus the MSS) the overall population of the triplet
states increases a little, but more importantly, part of the
population is excited to different singlet states. Despite using
nonresonant pulses, it is difficult to avoid multiphoton absorption,
but the absorption leads to a steady population. No Rabi flopping or
nuclear wave packet dynamics is observed.
In Figure 8 we show the evolution of the nuclear probability

density of all the singlet states. Although the potentials shown in

Figure 2 have very different equilibrium geometries for the different
singlet states, so that one could expect the spread of the nuclear
density over all the energy available configuration space, the nuclear
wave packet dynamics is mostly confined to the bottom of the
potential energy in V1

S, a signature that the dynamics is still mainly
adiabatic.33,34 The population dynamics in Figure 7 nicely documents
that, as long as the control-field is active, the singlet population can be
kept constant in the average whereas afterward, the S−T population
transfer becomes effective.

Laser-Driven Vibronic Wave Packet Dynamics.We now
regard the interaction of the control field εc(t) used in the LSS
model with the coupled electron−nuclear system. The
Hamiltonian then is of the form

ε= + + ·H x y R t H x y R x y t( , , , ) ( , , ) ( ) ( )w c (15)

where H(x,y,R) is the Hamiltonian from eq 1. For comparison
with the DNWP approach, we calculate the populations as
defined in eq 14, which are shown in Figure 9 for the singlet states

Figure 7. Electronic states population dynamics in the (a) MSS and (b)
LSSmodels, with laser intensity 10.1 TW/cm2 and ℏω = 1.63 eV. AS and
AT denote the total singlet and triplet populations, respectively.

Figure 8.Nuclear probability density for all the singlet states in the LSS
model with I0 = 10.1 TW/cm2 and ℏω = 1.63 eV.

Figure 9. Population dynamics in the coupled nuclear-electron system that
is subject to the control field derived within the LSSmodel. The population
in different singlet states is shown, as indicated. Also included is the total
singlet (AS) and triplet (AT) and also the total bound-state population.
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S1 and S3. The initial decay of the S1 state is similar to the one
obtained within the LSS model (Figure 7). Also, as in the LSS
approach, the triplet states are not populated essentially. This can
be seen from the total triplet population (AT), which is also
included in the figure. Thus, for short interaction times, both
approaches give similar results.
For longer times, a different behavior evolves from the coupled

electron−nuclear treatment. There, very quickly, the total bound-state
population decreases to zero, meaning that the control field induces
complete ionization within 40 fs. Thus an efficient ladder climbing
takes place that cannot occur in the DNWP approach that incor-
porates a limited set of electronic states and no ionization continuum.
Although multiphoton ionization quickly undermines the

purpose of controlling the spin state, the process occurs essentially
in the Franck−Condon region. This can be readily observed by
following the dynamics of the nuclear density of the vibronic
wave packets in Figure 10. This density is determined from the

bound state fraction of the wave function. Because upon ionization
the electronic density moves into the asymptotic region, the
density approaches zero for longer times.
The ionization takes place with the nuclei in the initial

equilibrium geometry. On the other hand, the control pulse
εc(t) is still successfully avoiding spin transitions, as revealed
by the average electronic spin angular momentum, Sav(t) =
(⟨ψ|S2|ψ⟩)1/2/⟨ψ|ψ⟩ = (2PT/(PT + PS))

1/2. In Figure 11 we show

how Sav behaves for the different models used in this work.
Starting from the singlet state, Sav = 0, the electronic angular
momentum reaches√2 in the triplet state, in the absence of the
external field. Via NRDSE Sav can be efficiently “locked” with a
small contamination of triplet character. For a given field strength
ε0 the locking is more effective (Sav is more steady) in the LSS
than in the MSS, because the polarizabilities are larger when
more electronic states are included in the calculation. Increasing
the number of triplet electronic states (all of them are included in
the ESM model) only makes Sav a bit larger, as the number of
triplet states to which the population can flow increases.

■ SUMMARY AND CONCLUSIONS

In this work we have extended the two-electron Shin−Metiu
model to include singlet−triplet couplings in addition to non-
adiabatic couplings. We have obtained electronic bound states
and their couplings in the adiabatic limit of the model. Themodel
is flexible enough to incorporate dynamic and static electron
correlation effects and is thus an excellent starting point to study
strong field dynamics of vibronic (two electron plus nuclear)
wave packets. This allowed us to test the limit of validity of
certain control strategies motivated by the Born−Oppenheimer
dynamics.
In particular, we have applied a strong-field laser control scheme

based on the nonresonant dynamic Stark effect. Including different
numbers of electronic states in the Born−Oppenheimer approxi-
mation wewere able to show efficient spin-locking, that is, dynamics
such that the spin state could remain effectively unchanged during
the laser action despite the strong singlet−triplet coupling. Due to
the relatively weak dipole couplings, the scheme relied on using
quite strong pulses, slightly detuned from electronic resonances.
The results were sufficiently satisfactory given the constraints of the
models.
The same principles of efficient spin-locking were observed to

apply in the dynamics of vibronic wave packets. However, fast
multiphoton ionization in the Franck−Condon region could not
be avoided and is in fact the predominant dynamical process.
Thus the NRDSE scheme, which is a control mechanism based
on the dynamics of nuclear wave packets, fails to work when the
scheme is applied to vibronic wave packets. We believe that a
better understanding of the dynamics of vibronic wave packets is
a necessary step to motivate new strong-field control schemes that
may presumably overcome strong-field ionization. The extended
Shin−Metiu model is a flexible but demanding arena where these
schemes can be tested and put to work.
The ESM model assumes that both the electrons and the ions

are aligned with respect to the laser field. The consequences of
directly treating a full 9D model are difficult to assess as it is
obviously numerically too demanding to perform the required
calculations. However, it could be interesting to simply inspect
the role of the alignment of the system with respect to the field.
As the NRDSE scheme relies only on the peak intensity, for an
extended string or solid or for a gas of heavy molecules whose
rotational periods are orders of magnitude larger than the duration
of the applied fields (where rotation could be neglected), the
expected effect would be that the molecules or regions of the solid
alignedwith respect to the fieldwould “freeze” the spin components,
whereas other molecules or regions would show spin dynamics. On
the contrary, for molecules with fast rotational periods one could in
principle expect adiabatic alignment of the molecules, although
light-induced conical intersections could affect the alignment and
thus the degree of control.39

Figure 10. Nuclear probability density for all the singlet states obtained
from the dynamics of vibronic wave packets using a pulse with I0 = 10.1
TW/cm2 and ℏω = 1.63 eV.

Figure 11. Average electronic spin angular momentum in the absence
of the external field, and using a pulse with I0 = 10.1 TW/cm2 and
ℏω = 1.63 eV for the different models.
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Abstract Using strong laser pulses, we show that it is

possible to control the spin state in a model system

based on a two-electron extension with spin couplings of

the Shin–Metiu Hamiltonian, truncated to account for the

lowest electronic energy states. We consider two differ-

ent models depending on the number of electronic states

included in the calculation. The initial electronic state

determines when the spin state is stable or not in the

absence of an external field. In the latter case, by non-

resonant dynamic Stark effect, we show that it is pos-

sible to avoid spin transitions with strong fields, using

different pulse frequencies. This effective spin locking

requires minimizing absorption to excited singlets as well

as decoupling the singlet and triplet electronic states. In

the first case, we show that it is possible to force the

spin transition by a combination of two pulses, a chirped

pulse and a transform limited pulse, where the time-

delay must be chosen to maximize spin switching on a

different electronic state. Our results show that forcing

the spin switching is a more difficult goal than avoiding

it and that this goal becomes highly restricted when

many electronic pathways or multi-photon processes are

available.

Keywords Dynamic Stark effect � Wave-packet

dynamics � Quantum control

1 Introduction

Laser control of quantum processes is an active arena

particularly in the application of femtosecond laser pulses

to quantum-state excitation and unimolecular reactions

[1–3]. Successful laser control experiments have been

reported in an increasing variety of physical systems,

including complex chemical and biological processes [1, 2].

Addressing the dynamics of complex systems, the

mechanism of the optical control is often understood from

the spectral features of the pulses [4] (albeit with important

caveats [5]), implying correlations between the pulse fre-

quencies and the Hamiltonian resonances, with relative

phases of the spectrum adding important dynamical infor-

mation concerning the cross-talk of the resonances [6].

However, this picture is no longer valid when strong fields

are used. Nonresonant effects may then completely shift or

distort the Hamiltonian spectrum, which is no longer

independent of the pulse spectrum [7–13]. It is possible to

base the control mechanism solely on the effects of the

nonresonant dynamic Stark effect (NRDSE) [14–18]. This

strategy is particularly useful when the aim of the control

problem is to ‘‘disconnect’’ an undesired transition [16, 17].

The NRDSE is behind many interesting control scenarios

involving molecular alignment [19–26], the control of

photodissociation reactions [14, 15, 27–29], or the control
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of singlet–triplet transitions [16–18], which is also the

motivation of this work.

The spin–orbit coupling is a relativistic effect that

mainly affects the Hamiltonian of systems with heavy

nuclei [30]. In molecules, the spin–orbit transition is one of

the main sources that causes the breakdown of the Born–

Oppenheimer approximation in the dynamics of excited

states, inducing intersystem crossing (ISC) and altering the

spectroscopy and photodissociation of molecules and the

relaxation rates in complex biological systems [31, 32].

Although in not heavy atoms, the mass is often invoked as

a reason to neglect the ISC processes, simulations of the

dynamics of polyatomic molecules with light atoms have

shown that the effect of ISC must be taken into account in

many occasions [33–35]. In solids, the spin coupling

between different states can be used to create states of

mixed multiplicity and to prepare optical spin switches

[36–39]. These are important in spintronics [40] and may

have potential application as quantum information storage

or quantum information processing devices [41].

Rather than using a realistic Hamiltonian for a particular

system, in this work we use the very generic Shin–Metiu

(SM) Hamiltonian that models charge transfer processes in

some matrix environments [42–47]. The original SM

model is conveniently extended to include two electron

processes with singlet–triplet couplings [48, 49]. This

extended Shin–Metiu (ESM) model is particularly inter-

esting because one can treat electron and nuclear processes

at the same level, without invoking the Born–Oppenheimer

approximation. Recently, we have shown that in the

dynamics of the ESM with strong fields, ionization is

important and it is in fact the dominant process [49]. In this

work, however, we neglect ionization and use the adiabatic

states (electronic potential curves) obtained from the

electronic Hamiltonian of the ESM in the Born–Oppen-

heimer approximation to simulate the dynamics of the

nuclear coordinates under the influence of laser pulses and

singlet–triplet couplings. For this reason, in Sect. 2 we

study the ESM and give the different electronic potentials

and couplings. We also show the spin-coupling dynamics

of the system starting from different initial states.

The goal of the study is to survey the extent to which

optical control of the singlet–triplet transfer is possible,

either by adiabatically ‘‘freezing’’ the spin populations by

means of a laser, such that the rate of spin transfer is

substantially reduced, or by forcing the spin transition

when this is negligible. The control of these processes is

based either on a pump–dump pulse sequence or on the

NRDSE scheme, whose principles are briefly reviewed for

the system of study in Sect. 3. Preliminary results have

shown that the NRDSE scheme can induce spin freezing,

although ionization takes over the system in\50 fs. In this

work, we study in detail the processes of both spin locking

and spin switching. Two models of different complexity

(involving different number of electronic states and cou-

plings) are introduced. In Sect. 4, we analyze spin locking

for both models, outlining the different roles of the pulse

parameters, and in Sect. 5, we study the more difficult

process of spin-state switching. Finally, Sect. 6 is the

summary and conclusions.

2 Hamiltonian model and field-free dynamics

The electronic potentials and dipole couplings are obtained

from the Born–Oppenheimer limit of an extended version

of the Shin–Metiu model (ESM), including spin cou-

plings. The ESM consists of an ion (coordinate R) and

two electrons (coordinates x, y) confined to move in a

single dimension, interacting with each other and two

additional fixed ions through screened Coulomb interac-

tions. Because of exchange symmetry, the spatial wave

function is either symmetric (wS(x, y, R, t), singlet (S)) or

anti-symmetric (wT(x, y, R, t), triplet (T)) with respect to

electron exchange. Details are given in ref. [49].

The spin uncoupled Born–Oppenheimer potential

energy curves and electronic wave functions are obtained

by imaginary time propagation of an electronic wave

function of singlet/triplet symmetry wM(x, y, t;R)

(M = S, T) at fixed nuclear position R

wMðx; y; t; RÞ ¼ e�HeltwMðx; y; t ¼ 0; RÞ ð1Þ

with the electronic Hamiltonian operator

Helðx; y;RÞ ¼ �
1

2

o2

ox2
� 1

2

o2

oy2
þ Vðx; y;RÞ ð2Þ

for different values of R. In the absence of spin coupling in

the electronic Hamiltonian, the wave function symmetry is

conserved. For long times, t, wM(x, y, t;R) converges to the

ground state uM
1 ðx; y;RÞ of the respective symmetry and the

norm of the wave function decreases as NðtÞ ¼ e�2V1ðRÞt:
After the ground state is determined, the next higher

eigenstate uM
2 ðx; y;RÞ is obtained by another imaginary

time propagation starting from an initial state where the

ground state is projected out:

~wMðx; y; t ¼ 0; RÞ ¼ wMðx; y; t
¼ 0; RÞ � wMðx; y; t ¼ 0; RÞ

� ��uM
1 ðx; y;RÞ

�

� uM
1 ðx; y;RÞ: ð3Þ

Higher eigenstates are calculated successively using the

same scheme. In this way, the basis of Born–Oppenheimer

electronic states fuM
j ðx; y;RÞg and their respective

potential curves Vj
M(R) are obtained. Dipole and spin

couplings are evaluated with respect to these electronic

basis as well.
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To monitor spin transitions, we introduce in a heuristic

way a spin-coupling term of the form

Jðx; yÞ ¼ kðx� yÞ; ð4Þ

where the coupling strength-parameter is chosen as k ¼
1:028� 10�3 eV/Å. For simplicity, we neglect the possible

dependence of the coupling on the nuclear coordinate R.

J(x, y) creates new potential energy terms that couple (and

mix) the Born–Oppenheimer electronic potentials. They

are obtained from

VSn;Tm
ðRÞ ¼

Z
dx dy uS

nðx; y;RÞJðx; yÞuT
mðx; y;RÞ: ð5Þ

where uS
n and uT

m denote the electronic eigenfunctions of

singlet and triplet symmetry, respectively. To monitor

laser-driven dynamics, we calculate the transition dipole

moments

lMn;Mm
ðRÞ ¼

Z
dx dy uM

n ðx; y;RÞð�x� yÞuM
m ðx; y;RÞ:

ð6Þ

where M = S or T.

In Fig. 1, we show the first electronic singlet and triplet

potentials obtained from the ESM Hamiltonian for a par-

ticular choice of parameters (screening parameters

Rc = Re = Rf = 1.5 Å and charge numbers Z1 = Z2 = Z =

1 for the ESM Hamiltonian, see ref. [49]), neglecting the

spin-coupling terms. The general feature of these potentials

is that the singlet and triplet states come on pairs, showing

either a double-well structure or a single equilibrium

geometry at R = 0. Because the two electrons tend to be at

opposite sides of the central ion (that is, each facing a

different end-ion), the exchange symmetry of the electronic

wave function does not lead to substantial energy differ-

ences between the singlet and the triplet wave functions.

Thus, the singlet–triplet transfer due to the VSj;Tj
terms (for

j = 1, 3, etc.) is expected to be large. However, V2
S and V2

T

(V5
S and V5

T as well, for higher energies) have a different

structure near the equilibrium geometry and the spin-cou-

pling mechanism is not efficient for any reasonable value

of k.

In addition to the spin coupling, nonadiabatic coupling

terms could have been included. The energy separation

between the singlet curves (and between the triplet curves

as well) makes internal conversion processes very unlikely,

as shown in the numerical results obtained solving the full

vibronic Hamiltonian [49]. Thus, we neglect their contri-

bution in the present work.

In Fig. 2, we show the population dynamics starting

either from V1
S or from V2

S in the absence of any external

field. We solve the time-dependent Schrödinger equation

for the nuclear motion in two electronic states (Sj and Tj,

for j either 1 or 2),

i
o

ot

wS
j

wT
j

 !

¼ � 1

2m

d2

dR2

wS
j

wT
j

 !

þ VS
j ðRÞ VSj;Tj

ðRÞ
VSj;Tj
ðRÞ VT

j ðRÞ

� �
wS

j

wT
j

 !

ð7Þ

using the split-operator with fast Fourier transform tech-

nique. In Eq. (7), m is the mass of a proton.

For the choice of the coupling parameter k, we observe

full singlet–triplet switching in a period T * 120 fs starting

in V1
S, and practically no triplet contamination starting from

V2
S (the maximum population in T2 is 3� 10�5). The goal of

this work is to design optical processes to avoid the spin

-4 -2 0 2 4
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Fig. 1 Potential curves for the lowest three electronic states with

singlet (M = S, solid lines) and triplet (M = T, dashed lines)

symmetries. Notice that T1 and T3 practically coincide with S1 and

S3, while S2 and T2 have different equilibrium geometries. Also

shown in the figure are the frequencies for the Franck–Condon

resonant transition between S1 ! S2 and T1 ! T2
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Fig. 2 Singlet triplet population transfer in the absence of an external

field. In solid lines, we show the population of S1 and T1 when the

dynamics starts in S1. In dashed line, we show the population of S2

when the dynamics starts from this excited state. In this case, the

population in T2 remains practically zero and it is not shown
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dynamics from V1
S (that is, to induce spin locking) and to

force it starting from V2
S (that is, to induce spin switching). To

that end, we will use the NRDSE or a pump–dump scheme.

3 The NRDSE scheme

In order to understand the physical mechanism underlying

the control of the spin coupling via the NRDSE, it is enough

to consider the simplest polarizable two-level system with

one singlet (S) and one triplet (T) state, coupled via VST,

whose energy can be Stark shifted by a nonresonant elec-

tromagnetic field with envelope EðtÞ [50]. Suppose that for a

given field frequency, the dynamic polarizabilities for the

singlet and triplet states are aj(x) (j = S, T, we will often

omit the frequency dependence in the following). Then

choosing the field-free singlet energy as the zero point of

energy, the effective Hamiltonian for the system is

H ¼ �aSEðtÞ2=2 VST

VST Dð0Þ � aTEðtÞ2=2

� �
ð8Þ

where Dð0Þ is the energy difference between the states in

the absence of the field. One can choose an instantaneous

zero point of energy that includes the Stark-shift

contribution to the singlet energy, making the Hamiltonian

H ¼ 0 VST

VST DðEÞ

� �
ð9Þ

where DðEÞ ¼ Dð0Þ � ðaT � aSÞE2ðtÞ=2: The Rabi formula

can then be used to predict the spin-coupling dynamics.

Suppose the system is initially in the singlet state,

assuming for simplicity a constant envelope E, the

population in the triplet will be

PT ¼
VST

Xe

� �2

sin2 Xet ð10Þ

where Xe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

ST þ DðEÞ2
q

: For instance, if Dð0Þ � jVST j
(as in the ESM model, starting in V1

S where Dð0Þ ¼ 0),

substantial spin transfer will occur at sST = p / 2VST. This

spin-mixing dynamics can be halted while a laser pulse acts

if DðEÞ � VST . Conversely, if Dð0Þ � VST (as in the ESM

starting in V2
S) full population transfer can be induced by

making DðEÞ ¼ 0 and timing the pulse duration exactly as

se ¼ p=2Xe. Thus, a laser-controlled spin switch can be

created whenever the dynamic polarizability of the singlet

state is different from that of the triplet state, aS = aT.

Moreover, the dynamic polarizabilities depend on the pulse

frequency x as well. Additionally, the two-level theory can

be used to propose alternative (more robust) quantum

control scenarios [50].

The extension of the effective 2-level Hamiltonian to the

nuclear Hamiltonian in the Born–Oppenheimer

approximation is straightforward. Neglecting population

absorption one can obtain [51]

H¼� 1

2m

d2

dR2
I

þ VS
1 ðRÞ�aSðR;xÞEðtÞ2=2 VS1;T1

ðRÞ
VS1;T1

ðRÞ VT
1 ðRÞ�aTðR;xÞEðtÞ2=2

� �

ð11Þ

Since VS1;T1
ðRÞ is almost constant (and small) around the

equilibrium geometries of the V1
S potential and V1

S(R) &
V1

T(R), in the absence of the field, the population dynamics

is practically that of a two-level system, where the singlet–

triplet population transfer does not lead to wave-packet

dynamics. This prediction explains the excellent agreement

between the population dynamics in Fig. 2 and the result of

applying the Rabi formula. For strong fields, however,

Eq. (11) does not give quantitative results. Firstly, because

it is difficult to evaluate the dynamic polarizabilities

aj(R, x), and secondly, because multi-photon absorption to

excited states usually cannot be neglected. Therefore, in the

following results, we solve the time-dependent Schrödinger

equation including different sets of electronic states.

Within the Born–Oppenheimer approximation, the

nuclear dynamics Hamiltonian in the presence of the con-

trol field �cðtÞ; is

Heff¼� 1

2m

d2

dR2
I

þ

VS
1 �lS1;S2

�cðtÞ VS1;T1
VS1;T2

�lS1;S2
�cðtÞ VS

2 VS2;T1
VS2;T2

VT1;S1
VT1;S2

VT
1 �lT1;T2

�cðtÞ
VT2;S1

VT2;S2
�lT1;T2

�cðtÞ VT
2

0

BBB@

1

CCCA

ð12Þ

where I is the 4 9 4 unit matrix. In Eq. (12), we have

restricted the Born–Oppenheimer expansion to the minimal

symmetric set (MSS) of electronic states that can represent

the dynamics of the system under the influence of an

external field that controls the singlet–triplet transition. In

the numerical calculations, we use ‘‘square’’ laser pulses

with fast ramps of sin2ðpðt � t0Þ=ssÞ form. The switching

on/off time is set to ss = 25 fs.

The extension of the model to include a more complete

set of electronic states is straightforward. In addition to the

MSS, we have considered a model including the 6 lowest

singlet and triplet states (LSS). These 12 Born–Oppenhei-

mer states span the energy range of any 3-photon process

starting in S1 for all laser frequencies used in this work. It

should be noted though that the ESM model favors fast

multi-photon excitation from the initial state to the ioni-

zation continuum [49]. The ionization process is not con-

sidered in this work. However, as pointed out in [49], the

ionization process does not affect considerably the spin
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dynamics and some observables such as the averaged spin

angular momentum of the system, hint that the controlled

process is still acting on the small population surviving

ionization.

4 Spin-state locking

4.1 Dynamics using the MSS model

The results with the MSS model can be used as proof-of-

principles for the optical control of the singlet–triplet

transition. The initial state is the ground vibrational

eigenstate of S1, which is an even function with maximum

probability on both potential wells. As an example, in

Fig. 3, we show the population dynamics in the four

electronic states using a single control pulse �c with dif-

ferent parameters that give best results over different fre-

quency intervals. The overall duration of the pulse is set to

200 fs to display more clearly the effect of spin locking.

We have found robust solutions in the space of param-

eters for a broad range of peak intensities and frequencies.

Although strong pulses are needed to overcome the small

transition dipole, the results are not very sensitive to the

peak intensity. In general, for larger peak amplitude �0 the

population is more evenly spread between the singlet

potentials with smaller excitation of the triplet states.

The frequency must be chosen detuned from the S1 !
S2 resonance (�hxðS1 ! S2Þ � 1 eV), defined in the initial

Franck–Condon region, to avoid absorption to a different

state. In the example of Fig. 3a, �hx ¼ 1:68 eV is slightly

above the resonance between T1 and T2

(�hxðT1 ! T2Þ � 1:6 eV) and thus clearly blue shifted with

respect to xðS1 ! S2Þ. Therefore, we expect a larger

positive Stark-shift on V1
T than in V1

S, allowing the effective

decoupling of these potentials with �0 ¼ 0:017 a.u. or lar-

ger (implying a peak intensity I0 of 10.1 TW/cm2).

Other frequency intervals can be chosen: If x is between

xðS1 ! S2Þ and xðT1 ! T2Þ the dynamic Stark-shift

should be positive in V2
S but negative in V1

T. Weaker fields

could then decouple the electronic states. However, it is

more difficult to avoid populating the V2
S potential. For the

results in Fig. 3b, we use �hx ¼ 1:39 eV and the same peak

intensity (I0 = 10.1 TW/cm2).

With x\ðxðS1 ! S2Þ;xðT1 ! T2ÞÞ both V2
S and V1

T

experience a negative Stark-shift (larger in V1
S) that give

similar results as those shown in case (a). However, multi-

photon excitation to S2 becomes resonant and as a result,

more population is excited to S2. The different shapes of

the potentials induce nuclear motion that shows up in some

Rabi oscillations between the electronic populations in S1

and S2. In Fig. 3c, for �hx ¼ 0:84 eV, we have slightly

reduced the pulse intensity to I0 = 8.95 TW/cm2.

4.2 Dynamics in the LSS model

When considering a larger set of electronic states, the

control of the process becomes more complex. On one

hand, the different electronic states normally add to the

polarizabilities, increasing the effect of the Stark effect:

weaker pulses could in principle be used. On the other

hand, one has to care about many possible resonances

(xðS1 ! SjÞ;xðSj ! Sk)) that lead to absorption and

multi-photon ladder climbing of electronic states. Given

the intensities required to decouple the singlet–triplet

transition, the second effect is clearly more dominant than

the first one, making the spin-state locking quite more

challenging in the LSS model than in the MSS model.

In Fig. 4, we analyze the time-averaged populations in

the triplets and excited singlets (all except S1) as a function

of the pulse frequency and intensity

hPTi ¼
1

sl

X6

j¼1

Zsl

0

wT
j ðtÞjwT

j ðtÞ
D E

dt

hPESi ¼
1

sl

X6

j [ 1

Zsl

0

wS
j ðtÞjwS

j ðtÞ
D E

dt

ð13Þ
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Fig. 3 Electronic states population dynamics in the MSS model with

different pulse frequencies and intensities: a with �hx ¼ 1:63 eV and

I0 = 10.1 TW/cm2, b with �hx ¼ 1:41 eV and I0 = 10.1 TW/cm2 and

c with �hx ¼ 0:87 eV and I0 = 8.95 TW/cm2
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where sl = 200 fs is the pulse duration. The goal of

decoupling the S1 ! T1 transition involves minimizing

hPTi (avoiding the singlet–triplet transition) and hPESi
(avoiding the absorption to other electronic states).

Whereas with stronger pulses, hPTi is small for all the

range of frequencies explored in this work, hPESi is par-

ticularly large at lower frequencies, obviously around

xðS1 ! S2Þ, but also very much until x[ xðT1 ! T2Þ.
Disregarding vibrational excitation, the LSS model

includes all singlet states that can be accessed by three

photons at �hx� 1:7 eV.

In Fig. 5, we show the population dynamics for three

different cases. For the three frequency windows

x\xðS1 ! S2Þ (smaller), xðS1 ! S2Þ	x	xðT1 ! T2Þ
(intermediate) and x[ xðT1 ! T2Þ (larger), we have

chosen x and �0 such that both hPTi and hPESi are mini-

mized. This gives �hx ¼ 0:87 eV, I0 = 7.9 TW/

cm2; �hx ¼ 1:41 eV, I0 = 5.0 TW/cm2; and �hx ¼ 1:63 eV,

I0 = 10.1 TW/cm2, respectively.

In general, for all frequencies below the S1 ! S2 reso-

nance at the pulse intensities needed for spin locking, there

is always substantial absorption to excited singlet states.

For the best results shown in Fig. 5, the population in the

singlets is mostly steady at 0.9 (although there is some slow

decay into the triplets) but the population is widely spread

between S1, S2 and S3. The ladder climbing excitation

mechanism is very efficient in the ESM model.

As discussed in Sect. 3, the NRDSE mechanism is more

efficient using intermediate frequencies. Thus, spin locking

can be achieved with less intense pulses. To minimize

absorption to S3, the frequency must be smaller than

1.42 eV. However, 3-photon excitation to S5 cannot be

avoided. In the best results shown in Fig. 5, 90 % of the

population is kept on the singlet states, but there is a clear

beating between population in S1 and S5. Within the con-

straints of the LSS model, best results are obtained for

larger frequencies. Here, part of the population goes to S6.

In Fig. 6, we show the evolution of the nuclear proba-

bility density of all the singlet states for smaller and

intermediate frequencies (the results for larger frequencies

are very similar to those for intermediate frequencies). In

the first case, the nuclear wave packet spreads and becomes

mostly delocalized (although some coherent vibrational

motion can be observed). This is mainly because the

geometry of S3 (with a single minima) is very different

from that of S1 and S2. Surprisingly, very little singlet–

triplet transfer is observed in the population of the different

excited singlet states. When the laser is turned off only a

small fraction of the population undergoes singlet–triplet

conversion.
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Fig. 5 Electronic states population dynamics in the LSS model with

best pulse parameters in the three frequencies ranges. a with �hx ¼
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	 �hxðT1 ! T2Þ and c with �hx ¼ 1:63 eV [ �hxðT1 ! T2Þ. Other

parameters are given in the text. AS stands for the population of all

singlet states and AT for the population of all the triplet states
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For intermediate and larger frequencies, the nuclear

wave-packet dynamics is still mostly confined to the bot-

tom of the potential energy in V1
S and much singlet–triplet

conversion is observed when the laser is turned off.

5 Spin-state switching dynamics

As discussed in Sect. 2, almost all electronic singlet states

practically overlap with the triplet states, so that the spin-

transfer dynamics is very efficient. For the lowest energy

potentials, only in S2, there is no singlet–triplet transition.

Following the NRDSE recipe (Sect. 3), in order to transfer

the population from S2 to T2, one first needs to force a near-

degeneracy of the two electronic states by Stark shifting the

states using a strong nonresonant pulse. The electronic

structure of the singlets around S2 is quite different from

that of the triplets around T2 (S2 is closer to S1 while T2 is

closer to T3), so that in principle the dynamic polarizabil-

ities can be quite different and the NRDSE can be applied.

However, the energy difference between the states at the

equilibrium configuration of S2 is approximately 1 eV,

while the transition electronic dipoles are relatively small,

making it impossible to compensate the energy difference

by Stark-shift using any reasonably strong laser pulse.

Thus, the singlet–triplet transfer cannot be indirectly

induced by a single control pulse.

Instead of applying the NRDSE, in this work, we design

an alternative dump–pump strategy that requires two pulses

controlling the time-delay between them. The idea is

sketched in Fig. 7. First, we apply a dump pulse that moves

the population from S2 to S1. Then, we wait for the efficient

singlet–triplet transfer between S1 and T1. Finally, a pump

pulse is applied to transfer the population from T1 to T2. In

the following, we present the results obtained within the

MSS model.

A typical result with approximately optimized pulse

parameters is shown in Fig. 8. Here, we have chosen a

negatively first chirped pulse with intensity I0 = 5.9 TW/

cm2, duration sl = 90 fs and frequency x(t) = x0 ? b
(t - t0)/2, where �hx0 ¼ 1:15 eV, �hb ¼ �0:0136 eV/fs and

t0 is the center of the pulse. The transformed-limited sec-

ond pulse has I0 = 0.9 TW/cm2, sl = 40 fs and �hx0 ¼
1:52 eV. The parameters of the first pulse are optimized to

achieve maximal population transfer (approx 90 %) in a

reasonably short time. Since the equilibrium geometry of

S2 and S1 is very similar, it is difficult to disentangle the

optical Rabi flopping between S2 and S1 from the spin Rabi

flopping between S1 and T1. To avoid the S1 ! S2 back-

transition, one needs to use chirped pulses. We chose a

negative chirp, but it is possible to use positively chirped

pulses as well. Since the S2 ! S1 Franck–Condon transi-

tion is at lower energies than the S2 ! S3 transition, at first

look the choice of a positive chirp would seem a better

option to minimize absorption into highly excited singlet

states. For the MSS model, however, the results are slightly

better for the negatively chirped pulses.

On the other hand, the equilibrium geometry of T1 is

very different from that of T2. The time-delay between the

pulses, sd = 110 fs, is chosen to facilitate maximal singlet–

triplet conversion between S1 and T1. For the second pulse,

one can use a transformed-limited pulse because the wave

packet in T2 moves away from the Franck–Condon window

and naturally deactivates the probability of stimulated

emission. The parameters of the second pulse are chosen to

maximize the yield of the T1 ! T2 transition in a very

short time.

In Fig. 9, we show a contour plot of the time evolution

of the nuclear probability densities of singlet and triplet

spin character, separately. During the S2 ! S1 stimulated
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emission and the S1 ! T1 spin transfer, the singlet nuclear

wave packet remains basically in the same region (around

R = ±2.5 Å). The triplet nuclear wave packet appears at

later states and moves toward R = 0, where the minima of

T2 is located.

Unfortunately, it is not possible to achieve similar

results with the LSS model, regardless of the sign of chirp.

The main problem is that in the Franck–Condon region the

transition dipole between S1 and S2 is much smaller (a

factor of 100 times smaller) than the transition dipole

between S2 and S3 or between S1 and S5 or S6. As a con-

sequence, the dump pulse must be very strong and the

transition competes with two- and three-photon absorption

to other excited states, similarly at what happened when

using low frequencies to lock the population in S1. For the

optimal parameters used above, a population of only 0.06

arrives to T2 at the end of the process, while singlet–triplet

transitions between several excited states account for a

total 22 % of population in the triplet states.

6 Summary and conclusions

In this work, we analyzed in detail the role of different

laser parameters in the control of the singlet–triplet tran-

sition by means of the NRDSE. Following previous work

[49], we used the ESM model to obtain the electronic

potentials, dipole couplings and singlet–triplet couplings.

Depending on the number of potentials included in the

calculation, we defined two approximate models: the

minimal MSS model and the larger LSS model. Multi-

photon ionization and internal conversion were not taken

into account. The time-dependent Schrödinger equation for

the nuclear motion was then solved for these models

starting from different electronic states in order to force

spin locking when the laser-free dynamics implied full

singlet-triplet conversion, or spin switching, when the

laser-free dynamics conserved the spin state.

Certainly, the 3-D 5-particle collinear ESM Hamilto-

nian implies strong restrictions on the motion of the

electrons and ion which show in the potentials and cou-

plings. In particular, the singlet and triplet electronic

states tend to have very similar energies, facilitating fast

ISC processes. On the other hand, the model favors multi-

photon ladder-type ionization, making strong-field control

rather difficult. Still, we believe that the ESM is suffi-

ciently flexible to allow the interplay of very different

processes which can be analyzed to great detail, making

the model an excellent numerical ‘‘laboratory’’ to test

different control scenarios.

In this work, we focused on finding appropriate laser

strategies and tuning the laser parameters in conditions

where there is strong competence between different non-

linear processes, albeit disregarding ionization. Although

appropriate laser parameters for spin switching were dif-

ficult to find even in the MSS model and were not found in

the LSS model, spin locking was shown to be possible for

different frequency windows. The smallness of the dipole

couplings in the Franck–Condon region required the use of

very strong pulses, which drove population to excited

singlet states and thus opened new routes for spin transi-

tions from the excited singlet to excited triplet states.

Forcing a balance between two goals, minimizing the

population in the triplet states and the population in the

excited singlet states, was found to be a good strategy to

identify control pulse frequencies and intensities that

would maximally decouple the initial singlet state from the

triplet states while at the same time they minimize the

disturbance on the system.
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Although previous work [49] showed that multi-photon

ionization is the fastest process in the ESM model under

the pulse intensities used in this work, the results also

showed that ionization occurred mainly in the Franck–

Condon window and did not affect the spin dynamics. In

particular, the NRDSE was shown to maintain the control

on the spin populations of the remaining (nonionized) parts

of the system. Given that the full vibronic dynamics

requires considerable computation time, the strategy used

in this work also paves the way to identifying the best

control scenarios when ionization is taken into account. We

expect that this control strategy will be effective when the

required laser intensity is smaller, for instance in weaker

spin-coupling conditions.
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16. González-Vázquez J, Sola IR, Santamaria J, Malinovsky VS

(2006) Quantum control of spinorbit coupling by dynamic Stark-

shifts induced by laser fields. Chem Phys Lett 431:231–235
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47. Gräfe S, Engel V (2006) Local control theory applied to coupled

electronic and nuclear motion. Chem Phys 329:118

48. Erdmann M, Gross EKU, Engel V (2004) Time-dependent elec-

tron localization functions for coupled nuclear-electronic motion.

J Chem Phys 121:9666–9670

49. Falge M, Engel V, Lein M, Vindel-Zandbergen P, Chang BY,

Sola IR (2012) Quantum wave-packet dynamics in spin-coupled

vibronic states. J Phys Chem A 116:11427. doi:10.1021/

jp306566x
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Abstract
An initially populated spin state of an ion chain interacting with an external field can decay via
spin coupling or via ionization. Using a simple two-level Hamiltonian we investigate the
relation between spin-coupling and ionization rate and identify conditions for an efficient
spin-control via a non-resonant Stark effect by suppressing ionization. The results are
confirmed in solving the time-dependent Schrödinger equation for the interaction of a laser
field with a spin-coupled model system where two electrons and a nucleus move in a collinear
configuration. It is thus shown, that quantum control of intersystem crossing can indeed be
effective if the intensity of the external field and the accompanying Stark-shift is adjusted
properly to the spin-coupling strength.

Keywords: ionization, spin-control, non-adiabatic dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

With the development of ultrafast and ultrastrong laser pulses,
many nonlinear processes in molecules have been observed
and controlled experimentally [1, 2]. Aside from enabling
multi-photon excitation pathways, a strong field induces
large Stark shifts that can deeply alter the structure of the
electronic potentials [3–7]. These effects have been used
to induce molecular alignment [8–14], to assist selective
population transfer between vibronic states [15–20], to control
photodissociation reactions [21–25], modify the rate of
photochemical processes [26–29] or even change the bond
length of molecules [30–34].

We are interested in the control of spin transitions via a
particular optical control strategy, based on the nonresonant
dynamic Stark effect (NRDSE) [21, 22]. By Stark shifting the

electronic spectra in the presence of a strong nonresonant field,
one can force the decoupling of the singlet and triplet states on
a system with otherwise fast intersystem crossing. However,
the presence of strong fields triggers many other (unwanted)
nonlinear processes, in particular multi-photon absorption to
excited singlet (and triplet) states and, more importantly, multi-
photon ionization. In this work we characterize the conditions
required to control the spin transition on a time-scale shorter
than the onset of ionization. In particular, we show under what
intensities one observes a change from Stark-shift driven (i.e.
controlled) to ionization driven dynamics, setting limits for the
maximum values of the spin couplings under which the system
is controllable via an NRDSE process.

The accurate calculation of the rate of ionization under
strong fields, beyond perturbation theory, is a difficult
enterprise that, nonetheless, has become quite important

0953-4075/14/124027+06$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK
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with the birth of attosecond physics [2]. For two-electron
systems, grid-based propagation schemes using regularized
soft-core Coulomb potentials [35–37] in few dimensions (for
instance, one dimension per electron) provide a reasonable
ground for the evaluation of dynamical processes where
both multi-photon and tunnelling ionization can occur.
In previous work we have studied the interplay between
nonlinear field processes, coupled electron and nuclear
motion and singlet–triplet transitions. We have developed the
extended Shin–Metiu model (ESM) [47] based on the original
Hamiltonian introduced by Shin and Metiu to study charge
transfer processes in solids with screened Coulomb potentials
[38–45]. The ESM model is a dynamical model incorporating
three degrees of freedom (3D) for a proton and two collinear
electrons moving between two fixed ions, allowing transitions
between the singlet and triplet components of the electronic
wave function. Although much flexibility exists in the choice
of parameters, for symmetrical couplings between all particles
(equal charges and screenings) the ESM favours symmetrical
arrangements where the moving ion is placed in between both
fixed ions and each electron is in between one fixed ion and
the central ion. When the separation between the fixed ions
is large, e.g. R = R2 − R1 � 10 Å, two nuclear equilibrium
geometries exist. In this regard, a molecular analogue of the
present ESM structure conceivably looks more like an isomeric
system rather than a diatomic molecule.

In this work we do not incorporate effects associated with
the rotational degree of freedoms. An off-resonant field creates
an angle-dependent potential so that, in general, the angular
motion should be included in a theoretical description [46]. In
neglecting rotations we adopt the reasonable approximation
that the latter are too slow in comparison with the relevant time-
scales (of ST-transitions and ionization, respectively) which
here are in the femtosecond regime for the large coupling
case. It is thus reasonable to treat the nuclear frame as frozen
with respect to the rotational motion. Otherwise one can
consider the ESM model as a prototype for systems with
limited rotation.

In addition, because of the large separation between the
two electrons in average, the energies of the here relevant
singlet and triplet states are almost degenerate, especially
around the equilibrium geometries. Since the electronic
wave functions come on pairs of symmetric (singlet) and
antisymmetric (triplet) states under exchange of electron
coordinates, z1 and z2, any extra term in the Hamiltonian that
is an odd function of z1 − z2 acts as a very effective source
of spin coupling between the near degenerate states. The spin
coupling is then essentially that of a two-level problem.

In our former work [47, 48], we tuned the parameters
of the ESM Hamiltonian to force spin switching from the
ground electronic singlet state to a degenerate electronic
triplet state in 120 fs. We then showed that it is possible
to control the spin transition, locking the spin populations,
while at the same time minimizing multi-photon absorption
[48]. However, by solving the time-dependent Schrödinger
equation (TDSE) on a 3D grid we also found that the rate of
ionization is much faster than the natural (laser-free) duration
of the spin transition, making the whole NRDSE scheme finally

ineffective [47]. In this work we analyse the conditions that
are required to turn around this conclusion. The solution of
the TDSE with the ESM Hamiltonian involves cumbersome
numerical calculations that do not permit an easy evaluation of
the interplay of different Hamiltonian parameters, particularly
when they lead to opposite effects that are important in
controlling the dynamics. In section 2 we build a minimal
Hamiltonian for a two-level system with polarizable spin states
(Stark effect), intramolecular spin couplings and effective
ionization. From this so-called 2-PSI Hamiltonian we obtain
analytical expressions for the time-scales of ionization and spin
transfer, using a simple model for the ionization as a function
of the field amplitude. We show under what conditions, that is,
for what spin-coupling strengths, it is possible to decouple the
spin transition before the onset of ionization. In section 3 we
use the numerical calculations from the ESM dynamics to fit
the parameters of the 2-PSI model in order to obtain reasonable
estimates of the ionization rates within the framework of the
simple model. The analytical expressions are then used as a
guide to find the laser intensities for a given spin coupling
that allow the spin states to be decoupled before substantial
ionization occurs. The actual test of whether control is possible
is then carried out in section 4 using the fully numerical
ESM model for different coupling strengths. Finally, section 5
contains the conclusions.

2. The 2-PSI model

In order to understand the control of the spin transfer via the
nonresonant Stark effect and the role of the ionization, we
first propose a simple two-level Hamiltonian which includes
the effect of Stark shifts on a singlet (αS) and a triplet (αT)
state coupled to each other via a spin interaction term VST.
This model is the same as used in [48] but we include here an
effective ionization rate � that we regard, for simplification,
equal for the singlet and triplet states

Heff =
(−i�(ε) VST

VST �(ε) − i�(ε)

)
(1)

where the energy difference in the presence of field ε is

�(ε) = �(0) − (αT − αS)ε
2/2 (2)

and we will make �(0) = 0 as in the ESM, where the ground
singlet and triplet states are degenerate. Atomic units will
be used throughout unless otherwise stated. To simplify the
notation we write α = |αT − αS|.

The characteristic time for the spin transfer in the absence
of the field is defined by

τST = π

2VST
. (3)

In the presence of an external field, assuming for simplicity
a constant envelope ε, integrating the TDSE for the above
Hamiltonian (equation (1)) gives for the triplet population:

PT (t) = e−�t

(
VST

�e

)2

sin2 �et (4)

with �e =
√

V 2
ST + �(ε)2, and we assumed that initially, only

the singlet state is populated, i.e. Ps(t = 0) = 1. The latter can
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be depopulated via ionization and spin transfer. The NRDSE
gives a prescription to avoid the spin transfer: use a field strong
enough that �(ε) � VST.

For instance, defining a maximum threshold value for
the triplet population, Pm

T , provides, via equation (4), the
minimum (threshold) for the Stark shift, �m. Let us first neglect
ionization. From

Pm
T = V 2

ST

V 2
ST + �2

m

(5)

we obtain

�m = VST

√
1 − Pm

T

Pm
T

= VSTχ1/2 (6)

where

χ = Pm
S /Pm

T (7)

is the relative singlet to triplet conversion at the threshold,
when the singlet population is the minimum allowed. Clearly,
the control is possible as long as the polarizabilities of the
singlet and triplet states are different enough, α > 0. Since the
Stark-shift is a quadratic effect in the field, the threshold value
for the field intensity is, from equation (2)

ε2
m = 2VSTχ1/2

α
. (8)

Additionally, the field changes the time-scale of the spin
transfer. If we define τe as the first time the triplet population
is maximal, for large χ (�m � VST) one obtains

τe = π

2
�−1

e ≈ π

2

1

�m
= χ−1/2τST. (9)

Now we go back to the ionization problem. The goal of the
control is to avoid losing population from the singlet state
neither from a spin transition nor from ionization. Given the
above Hamiltonian (equation (1)) the task is difficult, as a
strong field is needed to avoid spin transfer while the strong
field immediately induces ionization via �(ε). The key here is
to find under which conditions the time-scale of the ionization
is much slower than the time-scale of the spin transfer, such
that one can maintain the population in the initial state in the
presence of the field for a time longer than τST.

We use here a simple but very general equation for the
ionization as a function of the field

� = Cεn
m. (10)

In a strong field approximation the parameter n can be related
to the field frequency (twice the number of photons required
to reach ionization). We simply regard equation (10) as an
empirical model. Under this view the model is in fact quite
general and roughly reproduces the ionization rate in the
ESM Hamiltonian at short times, as we will show in the next
section. Thus, the parameters of equation (10) for the PSI-
model will be obtained by fitting the results of the numerical
simulations using the ESM Hamiltonian. The model allows a
simple relation between the time-scale of ionization and the
field amplitude. Defining the characteristic time of ionization
as the lifetime τion = ln 2 �−1, and inserting the threshold field
given by equation (8) for a fixed χ we obtain

τion = ln 2

C

(
α

2VSTχ1/2

)n/2

. (11)

The relation between the characteristic times of the spin
transfer and ionization is

τST

τion
= πC

2 ln 2

(
2

α

)n/2

χn/4V (n−2)/2
ST = Kχn/4V (n−2)/2

ST (12)

where K depends only on the non-spin-coupled part of
the Hamiltonian that gives the spectra of the singlets and
triplets and the ionization potentials (fixed for a certain set
of parameters in the ESM model, for instance) and is thus
approximately independent of VST. Although one can change
the value of K by playing with different pulse frequencies (thus
changing the dynamic polarizability difference α) for the ESM
model we have found that it is clearly larger than 1 (K ∼ 40).5

The same result with an extra χ−1/2 factor is obtained by
comparing τion with the time-scale for the spin transfer in the
presence of the field

τe

τion
= Kχ(n−2)/4V (n−2)/2

ST (13)

Clearly if n = 2, then τST/τion = Kχ1/2, and the time-scales
for ionization and spin transfer will be fixed by the non-spin-
coupled part of the Hamiltonian. With K � 1 this makes
ionization the dominant process. However, for values of n
different than 2, it will be possible to privilege one process
versus the other. We will show in the next section that for the
ESM with symmetric parameters, n > 2. Thus the spin transfer
can be controlled before the onset of ionization in the regime
of weak spin couplings or small VST.

3. Fitting the 2-PSI parameters with the ESM model:
the ionization rate

Following the simple 2-PSI model, the most relevant parameter
to determine if one can control the spin transfer by a quadratic
field effect (the Stark shift) before the ionization takes place, is
the exponent n that measures the dependence of the ionization
rate on the field, which will depend on the Hamiltonian model.

We now turn to the full ESM Hamiltonian. The ESM
couples the singlet manifold (symmetric wave functions) with
the triplet manifold (antisymmetric wave functions). In matrix
form:

HESM =
(

H(z1, z2, Z) λ(z1 − z2)

λ(z1 − z2) H(z1, z2, Z).

)
(14)

The coupling is chosen as the simplest antisymmetric form
with the spin-coupling strength given by λ. The diagonal part
is the 3D Hamiltonian for the collinear motion of two electrons
(z1 and z2) and one proton (Z) with mass m

H(z1, z2, Z) = −1

2

∂2

∂z2
1

− 1

2

∂2

∂z2
2

− 1

2m

∂2

∂Z2
+ V (z1, z2, Z)

(15)

under an effective (screened) Coulomb type potential
V (z1, z2, Z). In what follows, we vary λ. As a reference value,
we use the coupling strength λ0 = 1.028 × 10−3 eV Å−1

5 Using �ω = 1.63 eV and I0 = 10.1 TW cm−2 (in au 0.06 and 0.017,
respectively) we observe τion = 22 fs and τST = 120 fs. On the other hand,
the singlet to triplet ratio is χ ∼ 10 (as a rough estimation) and n = 2.6. With
these results we obtain K ∼ 40 au.
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that was recently tested to control the spin-transfer dynamics
[47, 48]. For this choice of parameters we observed τST,0 =
120 fs. Here and in the following, a subindex ‘0’ refers to
results obtained with this set of parameters.

In order to fit the parameters of the 2-PSI model we solve
the TDSE on a 3D grid with the ESM Hamiltonian [47, 48]
using the split operator with fast Fourier transform [49, 50].
The spatial grid for the nuclear coordinate ranges from −4 to
+4 Å, whereas the spatial grid for the electron coordinates is
divided into an inner region (|x| and |y| � 10 Å) and an outer
region (|x| or |y| > 10 Å) where the wavefunction is damped by
an absorbing boundary. Assuming that ionization is effective
in the outer region, the non-ionized population corresponds to
the norm of the wavefunction in the inner region.

Since we are interested only in the rate of ionization
as a function of the field, the spin coupling is set to zero
(λ = 0) in these simulations in order to avoid spin transfer.
The envelope of the electric field is a sin2-function which rises
from time t = 0 to 50 au (1.21 fs) to its maximum and is
then kept constant at the latter value. The remaining, non-
ionized population Pni(t), which corresponds to PS(t) in the
2-PSI model, was calculated for different values of the field
amplitude ε sampled over more than one order of magnitude at
a frequency ω = 0.06 au. The frequency was chosen following
the analysis of [48] where efficient control of the spin-
transition was observed for frequencies below and above some
possible one-photon electronic resonances in a simplified ESM
Hamiltonian obtained by truncating the electronic basis to the
first six Born–Oppenheimer states, disregarding ionization and
non-adiabatic transitions. Then ln(Pni) ≈ −�t was linearly
fitted to obtain the rate of ionization �. Figure 1(a) shows that
the linear fit is reasonably good as soon as ionization sets in,
i.e., when the wave packet leaves the edges of the 3D grid.

In figure 1(b) we show the results of fitting � to the
field amplitude ε in logarithmic scale (because we are only
interested in the slope of the curves, the arguments of the
logarithms are the rates in fs−1 and field strengths in au,
respectively). With amplitudes ranging approximately from
0.002 to 0.030 au the behaviour is approximately linear with
an exponent of n = 2.6. Deviations occur for lower intensities
i.e. longer ionization times because the simple 2-PSI model
fails to take into account the dependence of the rate with the
ion’s motion. However, the exponential model still provides a
reasonable estimate. Power-law dependencies of the ion signal
on the laser intensity with exponents between one and two are
familiar from 1+1 photon resonance enhanced multi-photon
ionization as studied, e.g., in the case of the NO molecule, see
[51] and references therein.

4. Control of spin transfer before the onset of
ionization

As shown in the previous section, � can be fitted with the
form given by equation (10) with an exponent close to but
larger than 2. Thus, one expects that τST may become smaller
than τion for weak VST. However, the small departure from the
quadratic dependence implies that large changes in VST (or
correspondingly τST) will be needed to observe a shift from

0 10 20 30 40 50
t [fs]
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-1

0

ln
(P

ni
(t

))

ε=0.010 a.u.
ε=0.015 a.u.
ε=0.020 a.u.
ε=0.025 a.u.
ε=0.030 a.u.
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(Γ

)

(a)

(b)

Figure 1. (a) Logarithmic decay of the remaining (non-ionized)
population ln(Pni) as a function of time, for different pulse
amplitudes ε from 0.01 to 0.03 au and ω = 0.06 au. The solid lines
show the best linear fits at short times up to 100 fs. (b) Logarithmic
fit of the population decay due to ionization with respect to the field
amplitude giving a slope of n = 2.6.

ionization driven to Stark-shift driven dynamics, where the
spin transfer is controlled before ionization takes over.

For instance, taking the results of [47] as a reference, with
ε0 = 0.017 au we obtained χ ∼ 10 (this is a rough estimation,
since due to the fast ionization it is difficult to assess the
decoupling between the spin states) and τion,0 ∼ 22 fs, which
is about six times shorter than τST,0. With n = 2.6, in order
to make τion ∼ τST while keeping χ , we would need to work
with a Hamiltonian with a much weaker coupling VST

VST

VST,0
=

(
τST

τion

τion,0

τST,0

)2/(n−2)

≈
(

τion,0

τST,0

)2/(n−2)

≈
(

1

6

)2/(n−2)

≈ 1

390
. (16)

Thus, only when the spin coupling is roughly 400 times
weaker than the reference result it is possible to avoid the
spin transition before substantial ionization occurs working
with fields of an amplitude an order of magnitude weaker. In
fact, as equation (9) shows, it will be possible to observe the
effect on the spin decoupling before, since τe can be easily
3–10 times shorter than τST.

In figure 2 we show how the probability of ionization
and the average spin angular momentum Sav = √

2PT vary
as a function of the scaled time (t/τST) for different choices
of the spin coupling, here written as different multiples of the
reference time for the spin transition, τST,0. In the absence
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Figure 2. Triplet state population (a) and probability of ionization
(b) as a function of the time scaled with respect to the spin-flipping
time (t/τST) for different spin-coupling strengths, given as multiples
of a reference inverse strength τST,0. The results are obtained from
the numerical solution of the TDSE for the ESM-model and show
that for τST ∼ 25τST,0 it is already possible to control the spin
transition before significant ionization occurs.

of an external control field, Sav rises to
√

2 (not shown in
the figure) while in the strong coupling case, Sav reaches a
plateau of ∼0.6. The curve shows many oscillations due to
numerical instabilities, as practically all population ionizes
and therefore Pni get close to zero after t ∼ 0.2 τST,0 = 24 fs.
With a coupling ten times weaker (τST = 10 τST,0), using a
field ε = 0.005 37 au ≈ 1/

√
10 × ε0 the ionization dominates

(>50%) before τST. However, as the relation of singlet to
triplet state population is χ ∼ 10 and τe ∼ τion one can
observe the first attenuated coherent oscillation of Sav before
ionization takes over the system. For even weaker couplings
one can clearly observe the process of spin locking with minor
ionization (<20%) at times smaller or even of the order of τST.
For instance, with τST = 25 τST,0 we have used ε = 0.0034 au
≈ 1/

√
25×ε0 while for τST = 50 τST,0 we used ε = 0.0024 au

≈ 1/
√

50× ε0. These results show that for a coupling strength
of VST � 1/25 × VST,0 efficient spin locking can be achieved
before significant ionization occurs. The rough guess given by
equation (16) underestimates the coupling strength required
for an efficient control, but gives the right order of magnitude
for convenient parameters.

5. Summary and conclusion

In this work we show that spin locking with the help of external
electric fields can, in principle, be achieved under certain
conditions. We first analyse ionization and control of spin

transfer via the nonresonant dynamic Stark effect (NRDSE)
scheme in a very simple, but general, two-level approximation
of a non-resonantly driven system with strong internuclear
(singlet–triplet) couplings. It is found that the key feature
that determines if optical spin-control is possible or not is
the dependence of the ionization rate on the control field
amplitude. In a simple empirical model this dependence can
be approximated as a power law with the exponent deciding
if ionization or control is the predominant process for a given
set of parameters.

The 2-PSI model reduces the electronic active states to
the ground manifold (the singlet and triplet quasi-degenerate
states) and lacks any nuclear dynamics. However, it can be
used as a guide to find suitable regimes or ranges of parameters
where one can achieve the control of spin coupling in more
complex systems. This requires the fitting of the parameters of
the model with respect to the dynamics of the complex system
that is being approximated.

As a numerical study, in this work we have investigated
the control of the spin state in a coupled two-electron-nucleus
motion under a strong field, namely the ESM Hamiltonian.
It was found that the analytical estimates for the optimal
values of spin coupling versus electric field strength are useful
to establish an efficient quantum control of spin transitions
before ionization is effective. Thus the competing processes
of spin-transitions and ionization can, within certain limits,
be influenced. In particular, for relatively weak spin couplings
and control field intensities we could achieve efficient spin
locking in an initial singlet state.

It has to be noted that our conclusions rest on the
particular model (the ESM Hamiltonian) that we employ in
the calculation. However, the coupled electron-nuclei model
contains many essential ingredients for the description of
the dynamics of molecules in laser fields. For example, it
incorporates not only the ST-coupling but also the influence
of vibrational motion on the accompanying transitions
being important in, e.g., biradicals which exhibit crucial
ST-interactions [52]. Also, with respect to the electronic
structure, the entire manifold of singlet- and triplet-states is
included [47]. Within the ESM model it is possible, by a proper
choice of parameters, to increase the density of electronic states
which, nevertheless, is enough in the present study to allow a
very efficient ionization.

Indeed, one may claim that the ESM Hamiltonian poses
very challenging conditions for the control of the spin
state. Namely, one observes one-photon resonant enhanced
ionization and, on the other hand, the spin coupling is very
effective, as the singlet and triplet states are resonant or
quasi-resonant for most nuclear geometries. Hence the nuclear
dynamics does not reduce the efficiency of the singlet–triplet
transition, as would be expected in other systems.

Although we emphasize the model character of the present
study, we are confident that our main point, namely that it
is possible to control the ST-transitions in the presence of
ionization, is still valid if the dynamics of the system is more
complicated. When the number of nuclear degrees of freedom
or electronic states is increased, the spin-flip time is modified
and the field parameters have to be adjusted accordingly to
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achieve a successful control. To prove the general
controllability of spin-coupling, much more elaborate studies
will be necessary.
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126	 CHAPTER 5. RESULTS
 

5.2	 Control of electron transfer between separated 

nuclei 

In this chapter we study the simulation and control of the electron transfer in the femto­

and attosecond scale by intense laser pulses using the Local Control Theory (4.2). The 

control of the electron processes is a challenge due to the velocity at which the electron 

moves and disperses, particularly when the electron ionizes. 

The work ”Local Control approach to ultrafast electron transfer” (Chem. Phys., 2016, 

In press), focuses on the control of a process involving reversible quantum transitions 

between bound and ionized states (continuum) which is an essential ingredient in atto­

physics. That is, the aim is to maximize the probability that an electron, after being 

transported through the continuum, can be retrapped as it returns to the core. The 

electron transfer process was studied in the H+
2 (symmetric system) and HeH2+ (asym­

metric system) molecules, both modeled by a soft core Coulomb potential (2.6.3) and 

working under the Born-Oppenheimer approximation in one spatial dimension. 

Two different local control formulations were employed to increase the yield of pho­

toassociation of the electron with the desired nuclei using eq. (4.38) and eq. (4.40). In 

the first approach the aim is to decrease the energy of the electron after being excited 

to the continumm as it crosses the target nucleus. In the second approach, the objective 

is to increase th population in a target state, that is, the eigenfunction of the desired 

nuclei. In both situations the control mechanism is based on impulsive de-excitation 

and occurs in the attosecond regime. The results demonstrate that by applying local 

control theory one can in principle design laser pulses which lead to efficient electron 

transfer to a target nucleus. The first approach was found to be more efficient, but in 

any case, the mechanism is an impulsive retrapping induced by a strongly peaked field 

when the electron is crossing the target nucleus. However, in any situation, in all cases, 

the ionization process is always competing with the electron retrapping. We also found 

that the efficiency of photoassociation is reduced at larger internuclear distances, for 

larger initial electron kinetic energies and when the amplitude of the laser control fields 

is decreased artificially. It was also demonstrated that the nuclear motion did not affect 

the efficiency of the processes. 

Although the work shows that the laser control of long range electron transfer via 

the continuum is in principle possible, the required attosecond pulses are in general so 

short and intense that are currently not achievable experimentally. 

In the work entitled ”Slow electron transfer between separated nuclei” (In prepara­
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tion), the process of electron transfer is based on a tunneling mechanism and occurs in 

the femtosecond time scale. As in the previous work, the scenario is the H+
2 molecule 

and we consider large internuclear separations. Initially the photoassociation with the 

target proton is achieved by means of local control fields at different distances using 

eq. (4.40). Using Husimi distribution functions, it is found that the transfer is mediated 

by a tunneling mechanism. A scheme was proposed, where tunneling and thus elec­

tron transfer, occurs between the first excited localized states. We demonstrated that 

analytical pulses led to the same final results, so local control theory is not be needed 

when tunneling is the sole mechanism of the electron transfer. Under these conditions, 

ionization was completely avoided and almost 100 % of population transfer to the target 

proton was achieved. However, this method failed when larger internuclear distances 

were considered, as the tunneling time increases exponentially and one needs to selec­

tively excite the electron to Rydberg states even closer to the continuum, a process that 

is difficult by itself. 

The time scale of the slow electron transfer mechanism is of the order or larger 

than typical vibrational periods. The fixed nuclei approximation is just valid as long 

as the electronic processes occur much faster than the nuclear motion. Thus, the ef­

fect of including the nuclear motion was also analyzed using the same pulses as in the 

1D results. As expected, the yield of the process decreased, although some population 

transfer was achieved and ionization was also avoided. Furthermore, the effect of the 

initial nuclear kinetic energy was studied in two different ways: by adding an initial mo­

mentum (positive and negative) and by varying the width of the nuclear wave function. 

In the first situation, we found that for small negative momenta, the yield of photoas­

sociation increased, but for higher values and positive momenta the electron transfer 

decreased. This effect was also affected by the population loss by ionization. The effect 

was explained by considering the potential energy curves of the excited states where 

the tunneling occurs and the average of the internuclear distance with the initial kinetic 

energy. 

The femtosecond transfer based on tunneling promises higher yields if the nuclei 

are not too far apart, but the results are sensitive to model dimensionality and nuclear 

motion and are more difficult to extrapolate to other molecular processes. 

5.2.1 Local Control approach to ultrafast electron transfer 

Vindel-Zandbergen, P., Meier, C. and Sola, I.R, Chem. Phys. (In press) 
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We study ultrafast electron transfer between separated nuclei using local control theory. By imposing
electron ionization and electron transport through the continuum, different local control formulations
are used to increase the yield of retrapping the electron at the desired nuclei. The control mechanism
is based on impulsive de-excitation. Both symmetric and asymmetric nuclear arrangements are analyzed,
as well as the role of the nuclear motion.
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1. Introduction

In recent years, advances in laser technology enabled the pro-
duction of sub-femtosecond (i.e. attosecond) pulses, with frequen-
cies in the UV regime, paving the way to the development of a
new scientific domain, called Attosecond Physics [1,2]. These
pulses are so short that ionization or Auger processes can be in
principle resolved in real time; alternatively, their bandwidths
are large enough that several electronic states can be coherently
excited at the same time. Currently, attophysics techniques are
mainly used as a spectroscopic tool, to unravel ultrafast molecular
(or condensed phase) processes, by means of e.g. pump–probe
techniques.

One can observe several analogies with the field of Femtochem-
istry [3], where the pump–probe scheme was successfully used to
resolve the nuclear dynamics. After monitoring the motion of
nuclei, a natural step forward was to attempt to control the nuclear
dynamics [4], which was proposed both in the time and energy
(frequency) domain. In the first case, the control can be seen as
the search for an external, often phase-modulated field, EðtÞ, such
that a transition from the initial state jwii to a predefined target
state jwf i at a time tf is induced and typically maximized. The tar-
get state can imply the preparation of a new chemical species, for
instance, through the fragmentation of a particular bond.

In achieving this goal, one may distinguish two different strate-
gies, optimal control theory [5] (OCT) and local control theory [6]
(LCT). In OCT, the control fields are constructed employing infor-
mation on the entire dynamics from time ti to time tf , whereas
in LCT, the field is determined instantaneously, taking the system’s

response into account. Different local control schemes have found
many applications in molecular physics [7–23].

The main purpose of this work is to apply local control tech-
niques to attosecond processes, involving the motion of electrons.
The control of the electron processes is a challenge due to the
velocity at which the electron moves and disperses, particularly
when the electron ionizes. However, attosecond pulses can be seen
as the ideal tools, acting very locally in time and offering wide
bandwidth to span both continuum and bound states. Presently,
the experimental techniques that allow to modulate attosecond
pulses are not yet developed. However, the theoretical anticipation
is timely, as it helps determining the physical resources that might
be necessary in order to exert this control.

Within this scientific context, our goal is to control the electron
transfer between two separated protons, mainly aided by local
control methods. This elementary process can constitute an impor-
tant step toward the control of many chemical reactions involving
charge rearrangement. In this work the electron transfer is not
mediated by nuclear motion. Hence, it relies on fast processes
through the ionization continuum. The essential step involves the
photoassociation of the electron colliding with the target proton.
In some respects, this work complements studies of photoassocia-
tion between neutral atoms in slow collision [24,25].

One ultimate motivation is to determine the laser resources
necessary to enhance the yield of reversible quantum transitions
between bound states and ionized states, which is an essential
ingredient in attophysics [1,2]. Our work should be regarded as a
tentative step towards that goal as we use simplified models where
the electron is treated in a single dimension.

The paper is organized as follows. In Section 2 we introduce the
model Hamiltonian and describe the numerical methods applied to
interpret the control mechanisms. In Section 3 we investigate
under which conditions one can maximize electron transfer
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between two protons largely separated within the framework of
local control theory. We consider impulsive ultrafast processes
that occur in few femtoseconds. We also analyze the effect of the
nuclear dynamics onto the yields. Finally, Section 4 is the
conclusions.

2. Numerical methods

We need to use a consistent model for treating both continuum
and bound electronic states in a system with a single electron and
two nuclei. As a first approximation, we use a 1-D Hamiltonian,
where the electron is constrained to move in the molecular axis z
driven by a linearly polarized external field, EðtÞ. Neglecting small
mass polarization terms, the Hamiltonian in the length gauge is
(atomic units are used throughout unless otherwise stated)

H ¼ �1
2

d2

dz2
þ Vðz;RÞ þ zEðtÞ ð1Þ

For this reduced dimensional study the internuclear distance R is
fixed and the electron-nuclei potential is modeled by a soft-core
Coulomb potential [26]

Vðz;RÞ ¼ � Q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ aRÞ2 þ e21
� �r � Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� bRÞ2 þ e22
� �r þ Q1Q2

R
ð2Þ

where Qi are the nuclear charges (QHe ¼ 2 and QH ¼ 1 a.u.), a and b
account for the relative distances of the nuclei with respect to the
center of mass, and ei are smoothing parameters. In the case of
Hþ2 , a ¼ p ¼ 1=2 whereas for e.g. HeH2+, a ¼ mp=ðmp þmaÞ ¼
0;2012 and b ¼ ma=ðmp þmaÞ ¼ 1� a ¼ 0:7988 [27]. The smooth-
ing parameters were chosen as e1 ¼ e2 ¼ 1 for Hþ2 and
e1ðHeÞ ¼ 0:705; e2ðHÞ ¼ 1:414 for HeH2+.

This model has been extensively applied as a first qualitative
step to analyze ionization processes in Hþ2 and high-harmonic
spectra [28,29], as well as electron-nuclear dynamics [30–33].
One can easily extend the calculation to include the nuclear motion
by removing the constraint in R and by adding the internuclear
kinetic energy, as explained later. For the laser-controlled dynam-
ics shown in this work, the 2-D calculations give quantitatively the
same results as the 1-D model. Initially, we assume a fixed nuclei
approximation, where an hydrogen atom and a proton, or the He
and H nuclei, are largely separated. Two different ways to achieve
electron transfer applying LCT are considered. In the first one, the
objective is mathematically expressed as the population in a target
state jwf i, constructed as a wave function localized at the nuclei
where we want the electron to be recaptured.

Defining the projector PT ¼ jwf ihwf j, the rate of population
transfer into the target state is

d
dt
hPTi ¼ ih½HðtÞ; PT �i ¼ iEðtÞh½�l; PT �i

¼ EðtÞ2I hWðtÞjljwf ihwf jWðtÞi
� �

ð3Þ

Hence, a control field of the form

EðtÞ ¼ kI hWðtÞjljwf ihwf jWðtÞi
� �

ð4Þ

where I stands for the imaginary part andWðtÞ is the wave function
of the system, guarantees monotonic increase in time of population
in the target state [34,35].

In the second LC protocol, we minimize the energy of the elec-
tron once it moves out in the ionization continuum, such that the
electron can be stopped and retrapped in the further nuclei. A suf-
ficient condition to reduce the energy of the system upon the inter-
action with an external field is that the expectation value of H0 (the
Hamiltonian in the absence of the external field) decreases as a

function of time or, equivalently, that its time derivative (the
energy rate) is lower than zero. Using the time dependent
Schrödinger equation (TDSE) the rate is evaluated as

d
dt
hH0i ¼ i ½HðtÞ;H0�h i ¼ iEðtÞ ½�l; T�h i

¼ EðtÞ 1
i2m

d2l
dz2
þ 2

dl
dz

d
dz

 !* +
ð5Þ

In the special case of a linear dipole moment, i.e., l ¼ qz (with q
being a constant), Eq. (5) takes the simple form

d
dt

H0h i ¼ EðtÞ q
m

ph i ð6Þ

Hence, one can reduce the energy of the system choosing a field
proportional to the expectation value of the momentum [36–38],

EðtÞ ¼ kf ðtÞhWðtÞjpjWðtÞi ð7Þ

with k < 0.
In both cases k enters as a free parameter that measures the

strength of the laser interaction. k is found numerically by trial
and error. In Eq. (7) we include a positive sine square envelope
function f ðtÞ that forces a time-delay in the action of the control
field, to avoid minimizing the energy before the electron has time
to fly over the outer nuclei.

In the homonuclear (symmetrical) system, one has to take
superpositions of the ground and the first excited electronic states
of the Hamiltonian in order to construct the initial and target local-
ized states,

wL1=R1
¼ ðw1 � w2Þ ð8Þ

where wL1 is the lowest energy wave function localized at the left
proton (left potential well) of Eq. (2) and wR1 is the target wave func-
tion localized at the right potential well.

In general, in our simulations we assume that the initial state is
already excited, that is, wL is multiplied by an exponential factor
that gives an initial momemtum in the positive direction

Wðz;0Þ ¼ wL1 ðzÞe
ikez ð9Þ

In addition, to initiate the LCT approach one needs a small
‘‘seed” of population in the right potential well (the target state),
which we fix as � 0:3%. Once the local control field is found, this
‘‘seeded” population is no longer needed, and the simulations
shown in the results imply 100% population in the ground (local-
ized) state at initial time.

The numerical results are obtained by solving the TDSE with the
Split-Operator method [39–41] with time steps of Dt ¼ 0:01 a.u. A
grid of 256 points spanning from z ¼ �80 to z ¼ 80 a.u. is used for
the electronic coordinate. Imaginary (‘‘optical”) potentials [42,43]
absorb the outgoing wave functions avoiding reflection on the grid
boundaries and allowing to measure the ionization probability. The
eigenstates w1;2 from Eq. (8) are computed using the Fourier Grid
Hamiltonian method [44]. The dynamical mechanism of the trans-
fer is studied by analyzing the approximate phase-space represen-
tation of the wave functions at different times, using the Husimi
transformation [45].

Finally, to study the role of the nuclear motion in the control of
the electron transfer, 1þ 1D calculations were performed using the
full Hamiltonian of Eq. (1) including the nuclear kinetic term. The
initial wave packet is then the product of the electronic wave func-
tion times a nuclear Gaussian wave packet wnucðRÞ, centered at the
left nuclei.

In this case, we use a grid of 1024 points ranging from R ¼ 0:1 to
R ¼ 150 a.u. for the nuclear coordinate and 256 points from
z ¼ �80 to z ¼ 80 for the electronic coordinate.
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3. Fast electron transfer

3.1. Impulsive mechanism after fast electron ionization

We first consider electron transfer in the symmetrical system,
between an Hydrogen atom and a proton.

In general, the yields of the LCT control process are very small
unless higher momentum is given to the electron at initial time.
Here we study the solutions that are obtained when the initial
kinetic energy is larger than the ionization energy, so that the elec-
tron moves from one nuclei to the other through the continuum.
The role of the LCT pulse is then to maximize the probability of
retrapping the electron at the desired (right) nucleus.

We first apply the LCT approach based on the projection opera-
tor for fixed internuclear distance. As typical parameters we use
R ¼ 20 a.u. and an initial momentum of ke ¼ 1:25 a.u., that is
� 0:1 a.u. above the ionization threshold, which guarantees almost
complete ionization. Moving freely, the electron takes about
� 0:4 fs to reach the outer nucleus. Certainly the retrapping mech-
anism requires an impulsive action, which must be provided by the
control field. Hence we chose ke to be as small as possible without
compromising the first ionization step. Best results were obtained
with k ¼ 25 in Eq. (4).

Fig. 1 shows the population dynamics, partitioned into the left
and right domains, under the local control field, shown in the inset,
for a propagation time of tf ¼ 4 fs,

PRðtÞ ¼ jhWðz; tÞjWðz; tÞiz2Rj
2 ð10Þ

where R is ð0; L=2Þ (with L the grid size) for the right domain.
Also shown is the optimization yield, measured as the overlap

of the wave function with the target state,

PR1 ðtÞ ¼ jhwR1 jWðz; tÞij
2 ð11Þ

Finally, PT is the norm of the wave function remaining in the
grid, such that Pion ¼ ð1� PTÞ provides asymptotically (at large
time) the ionization probability. Several features can be extracted
from the results: the probability of ionization is essentially unity
given the initial kinetic energy of the electron; the local control
pulse is mainly a spike with a maximum peak amplitude of
Emax ¼ �1:1 a.u. and 0:15 fs duration, that allows photoassociation
of the electron in the right well, with an efficiency around � 10%.

However, there are some features of the pulse before and after
the spike (some modulation) that are necessary for the final yield
to raise significantly.

Similar results were obtained for larger internuclear distances.
For an internuclear distance of R ¼ 40 a.u., the laser main spike
has a peak amplitude of about Emax ¼ �0:9 a.u., 0:1 fs duration
and is centered at t ¼ 3:5 fs. In this case, there is another important
spike that slightly increases as well the population on the target
nucleus (Emax ¼ �0:5 a.u. and 0:2 fs duration) at t ¼ 1:8 fs. The
yields are typically slightly smaller as the electron wave packet is
more spread and the electron probability around the target state
becomes smaller.

One striking feature of the pulse is the strong peak around
t ¼ 0:8 fs. To analyze its importance with respect to the total ion-
ization Pion ¼ ð1� PTÞ and with respect to the control objective PR
or PR1 (as defined by Eqs. (10) and (11) respectively), we perform
test calculations using the control field, but with the maximum
peak amplitude (Emax) cut by a threshold value Etr .

The results are shown in Fig. 2, which contains a direct compar-
ison of Pion, PR and PR1 , obtained without and with cut-off, the latter
denoted by Ptr

ion, P
tr
R and Ptr

R1
. As major result one finds that the con-

trol objective, PR and PR1 , strongly relies on this feature in the con-
trol field. On the other hand, the total ionization probability is
almost unaltered by this peak.

3.2. Impulsive transfer by pump plus local control de-excitation

In the previous section, the LCT control mechanism was influ-
enced by the choice of the initial wave function, where we
imparted a momentum to the electron enough to have almost full
ionization. Here we provide results supporting ultrafast electron
transfer obtained from LCT under different settings. In particular,
we use an ultrashort pump pulse to generate the ionization and
we use the LCT approach based on slowing the momentum (that
is, a local control field proportional to hpðtÞi). An essential ingredi-
ent of this pump plus local control (P + LC) implementation is to
start the LCT algorithm after some delay with respect to the pump
pulse. This is regulated by the envelope sine square function f ðtÞ,
which is switched on at t ¼ 0:25 fs. Now, the target wave function
is just employed as a tool to measure the fraction of the electron
wave packet recaptured in the ground state of the right proton
(11), since it is not included in the LCT algorithm.
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Fig. 1. Population dynamics and laser control field (inset) for electron transfer
between two protons separated 20 a.u. We show the norm of the wave function
remaining in the grid PT (so 1� PT is a rough measure of the ionization probability),
the overall electron probability in z > 0 (PR) and the population in the target state
PR1 , which is approximately the probability of retrapping the electron in the right
proton.
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We show the ratio of the probabilities obtained using the truncated field with those
obtained using the LC field, where the truncated field is obtained by cutting the
peak amplitude of the LC field, �max. The calculations were obtained for a fixed
internuclear distance of R ¼ 20 a.u.
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As a representative example, we show results for an internu-
clear distance of 20 a.u. Ultrafast ionization is achieved by means
of a sine squared half-cycle 500 as pulse (total duration) with a
peak amplitude of 0:35 a.u. The effect of the pump pulse is similar
to that obtained by imparting an initial momentum to the electron.
Here we use ke ¼ 0 in the initial wave function. Best results are
obtained with k ¼ 0:6 for a total propagation time of tf ¼ 6 fs.

Fig. 3 shows the approximate yield of ionization
PionðtÞ ¼ 1� PTðtÞ when one applies only the pump pulse (P) and
when both the pump and the local control field are used (P + LC).
In the latter case, we also show the yield PR1 ðtÞ. The pump pulse
is responsible for 95% probability of ionization. The control pulse
achieves 50% of electron transfer, measured as the final probability
localized on the right well, PRðt ¼ 1Þ. The energy de-excitation
induced by this LCT approach is such that it slightly reduces the
efficiency of the pump pulse in inducing the ionization (that is,
there remains a larger population in PLðt ¼ 1Þ), but a larger prob-
ability (around 40%) is found on the lowest excited state localized
on the right proton. This effect can be controlled by the time-delay
of the LC. However, a larger time-delay reduces the yield of elec-
tron transfer on the right proton, so a tradeoff must be found.

The control mechanism of the photoassociation is again impul-
sive and the electron retrapping occurs in � 3 fs. The LC pulse con-
sists of an intensive peak acting when the electron is crossing the
right proton which induces photoassociation by decreasing the
electron energy. Comparing the results obtained by this approach
with those obtained with Eq. (3) (the LC field as a function of the
projection operator) we observe that in both cases the dynamics
follows an impulsive mechanism, but the local control pulse is sim-
pler and typically less intense and yet gives higher electron trans-
fer efficiencies than in the former case. The LCT approach based on
Eq. (4) (field proportional to the average momentum) directly
favors the impulsive strategy, such that the local solutions work
better.

To explain the proposed impulsive mechanism, we plot in Fig. 4
the Husimi distributions obtained from the wave function at differ-
ent times, using the same local control field as the results of Fig. 3.
During the electron transfer, the momentum distribution is always
positive, with a mean kinetic energy above the ionization potential.
Due to the initial momentum given to the electron, the wave func-
tion quickly spreads. The first laser spike projects part of this wide
wave function on the right proton around t3 � 0:5 fs. The subse-

quent slight modulations allow for a small slow down of the elec-
tron distribution and a small probability of retrapping (see at
t4 � 1:0 and t5 � 1:7 fs) although after the first spike the electron
mainly ionizes with relatively large kinetic energy.

This mechanism is also valid for longer distances with similar
results. For an internuclear distance of R ¼ 40 a.u. we achieve
� 30% photoassociation with a pump pulse of t ¼ 250 as duration
and a peak amplitude of 0:3 a.u. and a local control pulse with
k ¼ 114 for a total propagation time of tf ¼ 4 fs.

3.3. Asymmetries: the HeH2+ system

Here we analyze the results of electron transfer from the Hydro-
gen atom to an alpha particle (He2+), where the electron moves
from left to right, and from He+ to the proton (right to left). Because
the system is asymmetric, the initial (localized) wave functions are
eigenstates of the electronic Hamiltonian (1). As the best results for
the symmetric case where obtained using the ‘‘pump plus laser
control” scheme, this strategy is also employed to achieve electron
transfer in the HeH2+ molecule. As a representative example, we
show results for an internuclear distance of 20 a.u.

Fig. 5 shows for both cases the yield of ionization when just the
pump pulse (P) is applied (PionðtÞ ¼ 1� PTðtÞ) and when both the
pump and control fields are acting (P + LC), as well as the projec-
tion into the lowest energy eigenstates localized on either the
Helium nucleus (PHe) or the Hydrogen nucleus (PH). In both cases,
the pump pulse achieves around 60% of ionization. When we ion-
ize the H atom the pump pulse is a sine square 500 as pulse with a
peak amplitude of 0:3 a.u. To ionize the electron from He+, the
pump pulse is a sine square pulse with a total duration of 1 fs
and a significantly larger peak amplitude of 1:0 a.u. Once again,
we add some delay between the pump and local control pulses,
regulated by the envelope functions f ðtÞ, which are switched on
at t ¼ 0:25 fs and at t ¼ 0:5 fs, respectively. From H to He2+ the con-
trol pulse reduces the yield of ionization to a 10% and achieves
50% of electron retrapping. Hence the efficiency of the trapping
mechanism is very high, larger than 80%. These results are
obtained with k ¼ 1:5 for a total propagation time of 8 fs. When
we transfer the electron from He+ to the proton, the yield of ioniza-
tion remains the same, but the probability of retrapping the elec-
tron at the proton is smaller (� 15%). Best results are obtained
with k ¼ 0:5 for the local control pulse, and a total propagation
time of 3 fs. Because stronger pump pulses are needed to ionize
He+ than H, the electron typically travels with larger kinetic energy
(i.e. faster) through the continuum from right to left and it is more
difficult to retrap the electron, as expected. This is more clearly
observed when the initial state is prepared by adding an initial
(negative) momentum to the lowest state localized in He+.

In any case, the impulsive mechanism with the laser field pro-
portional to the expectation value of the momentum provides lar-
ger yields of electron transfer than those obtained by the
projection on a localized target state, and require less intense
pulses. (Using the projector operator, peak amplitudes � 6 a.u.
are typically required in the control fields.) The same procedure
can be applied when the nuclei are separated by larger internuclear
distances yielding slightly smaller yet qualitatively similar results.

3.4. The role of the nuclear motion

We have performed 1þ 1D calculations including the nuclear
motion on the results of ultrafast electron transfer, applying the
same local control pulses (or pump plus LC pulses) obtained from
the 1D studies.

As expected by the ultrafast nature of the impulsive mecha-
nism, the frozen nuclei approximation gives excellent results,
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proportional to the expectation value of the momentum. PionðPÞ represents the
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and the dynamics remains unchanged when the initial nuclear
kinetic energy for the internuclear motion (given either by a net
momentum or induced by a highly localized initial Gaussian
packet) is of the order of the initial electron kinetic energy. Unre-
alistic kinetic energies (larger than 0:2 a.u.) are needed to observe
changes of the order of 0:2% in the yields.

4. Summary and conclusions

We have used local control theory to study the possibility of
long-range ultrafast electron transfer between nuclei separated
by large distances such that the transfer has effectively to proceed
through the continuum. As a consequence, the electronic wave
packet suffers extensive spreading, which yields a control by exter-
nal laser pulses extremely difficult. Despite this challenging situa-
tion, we found that by applying local control theory one can

conceive electric fields which lead to efficient electron transfer to
a target nucleus. However, in any situation, the objective of elec-
tron retrapping is always in competition with ionization. As for
the initial excitation, two approaches have been explored: one is
to apply a momentum boost to the electron wave packet to provide
sufficient energy to be promoted into the continuum, the other is
to apply an attosecond laser pulse to the initially bound system.
In both cases, the excitation is followed by the control pulse, which
induced retrapping. Again, two possibilities have been studied, one
based on a projection to a bound, localized target state, the other
based on minimization of the mean momentum after a well-cho-
sen delay. The latter approach was found to be more efficient. In
any case, the mechanism is an impulsive retrapping induced by a
strongly peaked field, occurring at the moment when the elec-
tronic wave packet has a large overlap with the target nucleus.

The efficiency of retrapping the electron (reducing the ioniza-
tion) decreases at larger internuclear distances or when the kinetic
energy of the electron is larger or when we artificially reduce the
amplitude of the electric field, but qualitatively the same impulsive
mechanism is observed. The nuclear kinetic energy plays no signif-
icant role at the timescales considered in this work. On the other
hand, for asymmetric electron transfer (e.g. in HeH2+) stronger
modulations are observed in the local fields and persisting for
longer times, in particular when one aims at retrapping at the
nuclei with more positive charge, that is, with a larger attractive
basin.

Despite the fact the obtained attosecond pulses are currently
not achievable in the laboratory, our study shows that a laser con-
trol of long range electron transfer via the continuum is in principle
possible. The presented calculations treat the electronic dynamics
in one spatial dimension using soft-core Coulomb potentials, how-
ever, the impulsive mechanism can be expected to work in full
dimensionality as well. In this case, spreading that occurs in all
dimensions might be more difficult to overcome by the control.
In addition, if the electron comes off one proton with angular
momentum then the photoassociation could involve additional
challenges. But on the other hand, the true Coulomb potential
might be more efficient to attract the moving electron, potentially
leading to efficient trapping. It is thus very interesting to extend
the presented methodology to full dimensionality, without invok-
ing the soft core potential approximation.

Fig. 4. Electron transfer mechanism revealed by the Husimi distributions of the electron wave function, shown at different times.
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Slow electron transfer between separated protons

I. INTRODUCTION

The paper is organized as follows. In section II we in-
troduce the model Hamiltonian and describe the numer-
ical methods applied to interpret the control mechanism.
In section III we find the control mechanism that imply
slow electron transfer between two protons largely sep-
arated via tunneling, taking hundreds of femtoseconds.
In section IV we study the role of the nuclear motion in
the control of the electron transfer under this timescale.
Finally, section V is the conclusions.

II. NUMERICAL METHODS

We need to use a consistent model for treating both
continuum and bound electronic states in a system with
a single electron and two protons. As a first approx-
imation, we use a 1 + 1D Hamiltonian, including the
internuclear distance R and the electron separation to
the center of mass z, where the electron is constrained
to move in the molecular axis. For this reduced dimen-
sional study the inter-particle interaction is modeled by
a soft-core Coulomb potential [? ]. In the presence of
a linearly polarized external field, E(t), and neglecting
small mass polarization terms, the Hamiltonian in the
length gauge is (atomic units are used throughout unless
otherwise stated)

H = −1

2

∂2

∂z2
− 1

M

∂2

∂R2
+ V (z,R)− zE(t) (1)

where M is the mass of the proton, with the soft-core
Coulomb potential

V (z,R) = − 1√
1 + (z −R/2)2

− 1√
1 + (z +R/2)2

+
1

R

(2)
This model has been extensively applied as a first qual-

itative step to analyze ionization processes in H+
2 and

high-harmonic spectra [? ? ], as well as electron-nuclear
dynamics[? ? ? ? ].

Initially, we assume a fixed nuclei approximation,
where an hydrogen atom and a proton are largely sep-
arated. In Section III we select results for fixed inter-
nuclear distances of 10 and 20 a.u. We achieve electron
transfer applying LCT. The objective is mathematically
expressed as the population in a target state |ψf 〉[? ? ]
, constructed as a wave function localized at the proton
where we want the electron to be recaptured. Therefore,
the control field depends on the projection on a target
state

E(t) = λ=
[〈

Ψ(t)|µ|ψf

〉〈
ψf |Ψ(t)

〉]
(3)

where = stands for the imaginary part and Ψ(t) is the
wave function of the system.

Here λ enters as a free parameter that measures the
strength of the laser interaction. λ must be found nu-
merically

In finding the local control field with Eq.(3), the pro-
jection operator Pt = |ψR1

〉〈
ψR1
| must commute with

the Hamiltonian of the system[? ]. Therefore, the target
wave function must be an eigenfunction of the Hamilto-
nian. However, if the separation of the protons is not
large enough, the localized wave functions are not true
eigenstates, as the tunneling time cannot be neglected.
One way to solve this problem is to add a very small static
field component, EDC , to break the symmetry of the
Hamiltonian, such that the effective potential is tilted,
Vtilted(z) = V (z) + zEDC . Then the target and the ini-
tial states are the ground or first excited electronic wave
functions of the Hamiltonian with the DC component
localized at the desired proton. The initial state is ψL

localized at the left potential well and ψR is the target
state at the right potential well.

By making EDC small enough, the tilted potential has
no significant impact on the search of the local control
field for large internuclear distances (R ≥ 20 a.u.). How-
ever, the DC component is an essential ingredient in the
control of electron localization at smaller proton separa-
tions.

In our simulations, the initial state is created by ex-
citing the H+

2 molecule, that is, ψL is multiplied by an
exponential factor that gives an initial momentum in the
positive direction

Ψ(z, 0) = ψL1
(z)eikez (4)

In addition, to initiate the LCT approach one needs
a small ”seed” of population in the right potential well
(the target state), which we fix as ≈ 0.3%. Once the
local control field is found this ”seeded” population is no
longer needed, and the simulations shown in the results
imply 100% population in the ground (localized) state at
initial time.

Numerical results are obtained by solving the TDSE
with the Split-Operator method [? ? ? ] with time steps
ranging from ∆t = 0.1 to 0.01 a.u. depending on the sim-
ulation. A grid of 1024 points spanning from z = −80 to
z = 80 a.u. is used for the electronic coordinate. Imag-
inary (”optical”) potentials [? ? ] absorb the outgoing
wave functions avoiding reflection on the grid boundaries
and allowing to measure the ionization probability. The
eigenstates ψL,R are computed using the Fourier Grid
Hamiltonian method [? ]. The dynamical mechanism
of the transfer is studied by analyzing the approximate
phase-space representation of the wave functions at dif-
ferent times, using the Husimi transformation [? ].

Finally, to study the role of the nuclear motion in the
control of the electron transfer, 1 + 1D calculations were
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FIG. 1: Laser control fields and population dynamics for an
internuclear distance of 10 [(a) and (c)] and 20 a.u.[(b) and
(d)], when tunneling is the mechanism responsible for electron
transfer.

performed using the full Hamiltonian of Eq.(1). The ini-
tial wave packet is the product of the electronic wave
function times a nuclear Gaussian wave packet ψnuc(R),
centered at the left nuclei. Now, we use a grid of 1024
points ranging from R = 0.1 to R = 150 a.u. for the nu-
clear coordinate and 256 points from z = −80 to z = 80
a.u. for the electronic coordinate.

III. SLOW ELECTRON TRANSFER

The tunneling mechanism

We first study electron transfer when the electron stars
with a small momentum. The initial wave function, lo-
calized at the left potential, has an initial momentum
of ke = 0.001 a.u. [see Eq.(4)]. Under these conditions,
best results are obtained for nuclei separated less than 20
a.u. The results of a typical LCT calculation are shown
in Fig.

We have used the LCT approach based on the projec-
tion operator on a target wave function that is the low-
est energy eigenfunction localized on the right well of a
”tilted” potential. The calculations were performed using
a static field of EDC = −5·10−3 a.u. and EDC = −2·10−5

a.u. Best results were obtained with λ = 0.2 for R = 10
a.u. and λ = 2.8 for R = 20 a.u. in Eq.(3).

Fig.1(a) and (b) show the optimal field for R = 10
and R = 20 a.u. and (c) and (d) panels represent the
population dynamics partitioned into the left and right
domains

PD(t) = |
〈
Ψ(z, t)|Ψ(z, t)

〉
z∈D|

2 (5)

where D is (−L/2, 0) or (0, L/2) (with L the grid size)

for the left and right domains, respectively. Also shown
is the optimization yield, measured as the overlap of the
wave function with the target state,

PR1
(t) = |

〈
ψR1
|Ψ(z, t)

〉
|2 (6)

As observed, for R = 10 a.u., complete electron trans-
fer is achieved with ∼ 0.08% population remaining in
the left potential well. The final population in the right
potential well is completely localized in the target state,
PR1/PR = 1, an there is no population loss due to ion-
ization. For R = 20 a.u., again the electron transfer is
almost complete, with ∼ 6% population in the left Hy-
drogen. The final population is localized in the target
state, PR1/PR = 0.99, while the remaining population
(less than 30%) is lost as ionization.

To interpret the mechanism under the electron trans-
fer process, it is interesting to observe that the aver-
age energy of the electron never exceeds the energy of
the internal barrier between the two protons in the soft-
core Coulomb potential, V (0, R = 10) and V (0, R = 20)
[Eq.(2)]. In addition, at these internuclear distances, the
tunneling times between localized states in one well to
the other are within the time-scales of the control pro-
cess. A rough calculation for R = 20 a.u. gives t1 ≈ 3
ps for population inversion between the ground localized
states ψL1

and ψR1
, and t2 ≈ 250 fs for population in-

version between the first excited localized states in each
well, ψL2

and ψR2
. For R = 10 a.u., the population in-

version between ψL1
and ψR1

is t1 ≈ 100 fs. For the
soft-core model other excited states have energies above
the Coulomb barrier. Roughly we propose the follow-
ing mechanism as the key process governing the electron
transfer: First, as a net positive momentum is given to
the electron initially, the electron finds itself distributed
between the excited states of the left Hydrogen with en-
ergies below the continuum. The electron transfer occurs
by tunnelling. Finally the control laser field decreases the
energy of the electron in the right basin.

To help visualizing the process we use the Husimi
transformation. Fig.2 shows the Husimi plots of the elec-
tron wave function at the time the electron transfer is
happening for R = 20 a.u. As observed, the momentum
distribution is localized around zero and does not change,
implying that the electron is not reaching the continuum
while it moves to the right potential well. These dis-
tributions correspond to a tunneling mechanism, where
the electron density starts to ”disappear” from the left
Hydrogen atom and is transferred to the proton on the
right.

Since tunneling is the main mechanism behind the elec-
tron transfer, in the following the mechanism is imposed
on the dynamics by finding biased control fields.

Using the mechanism proposed before, the idea is to
use two laser pulses tuned to the first electronic transi-
tion, time delayed by t2, the time it takes to tunnel in
the first excited localized states. This is a ”four-states”
scheme where only the localized ground states (ψL1

and
ψR1

) and first excited states (ψL2
and ψR2

) participate
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FIG. 2: Husimi functions for different times when the electron
is being transferred from the left Hydrogen atom to the proton
on the right for an internuclear distance of R = 20 a.u

in the dynamics. In this control scenario we have used
ke = 0. Fig.3(a) and (b) show the laser pulses and the
population dynamics. The first laser pulse that produces
population inversion from ψL1

to ψL2
is equivalent to a

π pulse of ∼ 20 fs duration, 0.02 a.u. pulse amplitude
and ω = 0.39 a.u. The second laser pulse that de-excites
the electron from ψR2

to ψR1
is also a π pulse of ∼ 10

fs duration, 0.02 a.u. pulse amplitude and ω = 0.39 a.u.
The yield of population inversion for the second pulse is
only slightly lower than 1. Using this scheme, one can
completely avoid ionization (≈ 2%). In fig.4 we observe
the propagation of the electronic wave packet, that shows
the mechanism of the ”four-states” scheme.

For R = 10 a.u. the mechanism is even simpler. Since
tunneling time is t1 = 100 fs, starting from the localized
state at the left Hydrogen, we just need to propagate
enough time and the electron is completely transferred to
the right potential well, without the action of an external
laser field.

In summary, electron transfer between protons that
are separated by moderately large distances is possible
by means of a slow transfer process, where tunneling be-
low the internal barrier is the predominant mechanism.
Tunneling can be made the sole mechanism responsible
for the process. In this case, however, local control theory
is not required, as analytical pulses, or even no external
field, can lead to the same final results. The tunneling
mechanism can not be used effectively when the internu-
clear distance increases, as the tunneling time increases
exponentially and one needs to selectively excite the elec-
tron to Rydberg states ever closer to the continuum, a
process that is difficult by itself. In addition, as we show
in the next section, the nuclear dynamics acts as a very
strong perturbation source that affects the yield of the
process.
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FIG. 3: Population dynamics and analytic laser field of the
”four-states” scheme
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FIG. 4: Wave packet propagation in the ”four-states” scheme

The role of the nuclear motion

The fixed nuclei approximation is valid as long as the
electronic processes occur in a time-scale much faster
than that of the nuclear motion. In the slow electron
transfer mechanism, the transfer times are of the order
or larger than typical vibrational periods. Here, we ana-
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FIG. 5: Population dynamics of a 2-D calculation with no
initial nuclear kinetic energy when the analytic laser control
field is acting
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FIG. 6: Variation of total and right well remaining population
at tf with the initial nuclear kinetic energy (a) depending on
the initial momentum given to the nuclei, positive (k+

n ) and
negative (k−

n ) (b) as a function of the initial width of the
nuclear wave function

lyze how the nuclear motion affects the yield of the pro-
cess. We use the optimal pulses found in the fixed-nuclei
LCT approach, as well as the analytic pulses of the ”four-
state” scheme and apply them on a full 2-D (or (1+1D))
calculation considering different initial nuclear wave func-
tions. The effect of the initial nuclear kinetic energy is
considered in two different ways: by studying the effect

FIG. 7: Wave packet at different times for a 2-D propagation

of the width of the Gaussian nuclear wave function and
by adding a net momentum in the positive or negative
direction. However, we do not directly apply the LCT
approach to the (1 + 1)D TDSE.

As a representative example, fig.5 shows the effect of
the nuclear motion over the population dynamics for
R = 20 a.u., when the analytic pulses of the 1-D ”four-
states” scenario are used in a 2-D calculation and no ini-
tial kinetic energy is given to the nuclei. Although some
population transfer is achieved and ionization is also
avoided, the effect of the nuclear motion completely in-
fluences the photoassociation process. Now, only ∼ 30%
population remains at the right Hydrogen and the elec-
tron transfer mainly occurs in the first 150 fs, but the
transfer mechanism is the same as in the 1-D situa-
tion. As we can see in fig.7 the 2-D wave packet initially
spreads along the internuclear coordinate (t1 = 20 fs).
Then, the first laser pulse excites the electron to the ex-
cited state (t1 = 40 fs) in the left Hydrogen (negative
z values). Now, the tunneling time is lower since the
wave function is moving to lower internuclear distances,
and the population transfer mainly finishes at t3 = 60 fs.
Between t4 = 325 fs and t5 = 330 fs the population inver-
sion occurs from the excited and ground state in the right
nucleus, when the second laser pulse is acting. Finally,
at t6 = 400 we obtain the wave packet at the end of the
propagation, with the electron population distributed in
the two potential wells and spread along the internuclear
distance, but mainly around R = 20 a.u.

Fig.6 shows the effect of the nuclear motion as the ra-
tio between the 2-D and the 1-D results for the yield of
the process PR(∞) (the probability of being localized at
the right proton at final time) as well as for the remain-
ing (not ionized) population PT (∞). In Fig.6(a) we fix
the initial width of the nuclear Gaussian wave packet at
σ = 0.31 a.u. and we consider the effect of positive or
negative nuclear momentum. In fig.6(b) the net momen-
tum is zero and only the width of the initial Gaussian
wave packet is changed. As a first insight, one can ob-
serve the yield of population transfer decreases to ∼ 30%
when no initial momentum is given to the nuclei, but the
total population remains as in the 1-D calculations.

Also, we can notice differences in the variation of the
final population depending on the sign of the initial nu-
clear momentum. The total population decreases as the
initial kinetic energy increases for both positive and nega-
tive momenta, but the degree of population loss is bigger
in the positive case. As well, we can appreciate this be-
haviour in the population transfer to the right potential
well for positive values of the nuclear momentum. How-
ever, when considering the negative case, initially there
is an increase in the electron transfer to the right pro-
ton for small initial kinetic energies of the nuclei. Then,
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FIG. 8: (a)Potential energy curves of the second and third
excited states around R=20 a.u. (b)Variation of the average
of the internuclear distance for different values of the initial
nuclear momenta. For negative values, the nuclei initially ap-
proach until a minimum value of < R > when they collide
and then the internuclear distance increases. For positive val-
ues of kN , the nuclei always separate. The gradient of the
variation of < R > is greater as kN is larger.

the yield decreases but not as drastically as for positive
values.

These results can be explained by considering the po-
tential energy curves of the second and third excited
states where the tunneling is happening [fig.?? (a)] and
the variation of the average of the internuclear distance
with the initial nuclear kinetic energy [fig.?? (b)]. When
we apply a negative momentum, the nuclei start to get
closer, so the tunneling time decreases, therefore, initially
the electron transfer increases. But, from kinetic val-
ues larger than ∼ 0.15 eV the electron transfer remains
constant, regardless of the increase of the initial nuclear
momentum. The decrease of the population in the right
potential is due to the total population loss by ionization.

When considering positive values of the initial momen-
tum, as the nuclei separate, the energy difference be-
tween the excited states decreases and the tunneling time
increases, lowering the population transfer, finally even
avoiding photoassociation.

Fig.??(c) shows the overlap between the projections
over the nuclear coordinate of the wave functions corre-
sponding the second (ψ3) and third (ψ4) excited states.
For high negative values of the initial nuclear momentum,
the overlap drops to ∼ 0.4 during the first 50 fs that coin-

cides with the decreasing of the mean value of the inter-
nuclear distance, and then it reaches again the maximum
value, as < R > enlarges. As the initial nuclear momen-
tum increases, the overlap is bigger, corresponding again
with the variation of the expectation values ofR. Regard-
ing the nuclear potential energy curves around R = 20
a.u. [fig.??(a)], for lower values of the internuclear dis-
tance, the energy difference between states increases, so
the overlap between the second and third excited states
must decrease. On the other hand, as we move to larger
values of R, the energy difference becomes nearly zero,
so the excited states are now degenerated states and the
overlap between them is close to 1.

Resuming, for negative values of the initial nuclear mo-
mentum, the population transfer increases as the nuclei
approximate. The internuclear distance decreases so the
energy difference between the excited states increases and
the tunneling time diminishes. Positive values of initial
kinetic energies, imply a rise of the internuclear distance
as the nuclear are separating, so the energy difference be-
tween the excited states is reduced. The tunneling time
increases so the population transfer is lower. This effect
is more significant as the initial nuclear kinetic energy is
bigger. Regarding the effect of the initial width of the
nuclear wave packet, we can observe the total population
remains constant but the population transfer increases as
we move to lower values of initial kinetic energy. There-
fore, highly localized nuclear wave packets (small widths)
favour the electron transfer.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have successfully controlled the elec-
tron transfer in the H+

2 molecule with the electron ini-
tially localized in one the Hydrogen nuclei, by means of
intense and ultrashort laser fields. We worked with a
highly simplified Hamiltonian and a soft-core Coulomb
potential was used to represent the system, for qualita-
tively understanding the nature of the process.

We have applied Local Control Theory (LCT) to ob-
tain laser control pulses that lead us to population trans-
fer and electron localization.

The photoassociation is induced by means of tunneling,
which corresponds with a slow electron transfer, and the
local control field depends on the projection on a target
state. This mechanism gave rise to highly acceptable
results.

Moreover, the effect of the nuclear motion was also
evaluated. Despite we have demonstrated the nuclei mo-
tion influences the electron transfer, we still achieved
some degree of control over the photoassociation, with
satisfactory yields, however the effect of the initial nu-
clear kinetic energy results more important.

This model can also be extended to simulate the behav-
ior and control the electron transfer in other molecules.
(add conclusions and outlooks)
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Conclusions
 





Summary and conclusions
 

6.1 Summary 

In this thesis we have theoretically demonstrated the posibility of controlling the electron 

and nuclear dynamics excited by intense ultrashort pulses in different scenarios. We 

join quantum control techniques with femto and attosecond processes working in highly 

simplified potential models representing the systems under study to follow the combined 

nuclear and electron dynamics. These simple models allowed us to understand the nature 

of the processes, its controllability and the validity of the usual approximations. 

The first main idea was to influence the singlet and triplet transitions in ion strings, 

using the extended Shin-Metiu (ESM) model. Within this model system it is possible 

to characterize the coupled motion of the nucleus and the electron simultaneously. The 

spin-orbit coupling was introduced heuristically to allow transitions between the singlet 

and triplet components of the wave function. The underlying mechanism controlling 

the dynamics was the Non Resonant Dynamic Stark effect. A strong field can change 

the energy spectra of the singlet and triplet states, independently. Therefore, just by 

playing with field frequencies and strengths, one can find the optimal parameters to 

successfully control the evolution of the system and avoid or induce a spin transition. 

A more complete description of this scheme and the model is discussed in section 3.3.2 

and 2.6.2. 

We first address the decoupling of the singlet-triplet transition in the adiabatic limit 

(including different sets of singlet and triplet states) and in the full ESM model (dynam­

ics of vibronic wave packets). In the absence of a laser field full population transfer is 

achieved at both levels of calculation. Under the effect of a nonresonant strong laser field, 

the energy of the states is shifted and the population is efficiently maintained within 

the manifold of the singlet states. Including all electronic states in the model (full ESM 

model), only increases the dispersion of the population among different singlet states 
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and the predominant effect is multiphoton absorption leading to ionization. However, 

the triplet states are not populated essentially. Additionally, different pulse parameters 

were tested working under the Born-Oppenheimer approximation in the ESM model to 

choose the optimal values that provided the best results in locking the singlet-triplet 

transition. Besides, a spin trasnfer is forced by a combination of a chirped and a trans­

formed limited pulse. Finally, in order to identify the conditions for the effcient control 

of the spin-orbit transitions, the realationship between the spin coupling and the ion­

ization rate was investigated in a simple analytical two-level Hamiltonian. For a more 

detailed explanation of these results see sec. 5.1. 

Right after, we continue describing the simulation and control of the electron transfer 

in the femto- and attosecond scale by intense laser pulses using the Local Control Theory 

(see sec. 4.2). The basic idea behind this algorithm is to choose a control field in order to 

ensure an increase or decrease of the expectation value of an observable during a certain 

period of time where the external field is acting. Using a soft core Coulomb potential 

to describe the system (H
+2 ) and working under the Born.Oppenheimer approximation
 

the aim was to excite the electron initially localized in one nucleus and then retrap it 

in the other atom. Two different formulations of this theory were used. In the first 

one, the laser field depends on the expectation value of the momentum of the electron 

and the aim is to decrease the energy of the system. In the second one, the laser field 

depends on the projection of the wave function in a target state (the lowest eigenstate 

of the target nucleus). Depending on the time scale of the electron transfer two different 

mechanisms were found. In the femtosecond domain, tunneling is the predominant 

mechanism where the electron never overcomes the internal barrier between the nuclei, 

whereas in the attosecond scale the electron transfer occurs by an implusive mechanism 

(the electron reaches the continuum and then is retrapped in the target nucleus). We 

also tested the validity of the ”fixed nuclei” results and how the initial kinetic energy 

affects the electron transfer, by applying the laser control fields that emerge from 1D 

calculations on a full 2D (1+1D) calculation. For a detailed discussion of these resutls 

see sec. 5.2. 

6.2 Conclusions and outlooks 

The main objecive of this thesis is the merging of two emerging research areas, Quantum
 

Control and ultrafast physics (femto and attosecond processes). We applied different
 

control methods to various physical processes of current importance involving both
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electron and nuclear dynamics. In the following we report the fundamental conclusions 

we can extract form this work: 

•	 Including different number of electronic states in the Born-Oppenheimer approx­

imation, we have applied a strong field laser control scheme based on NRDSE to 

influence the spin-orbit transitions 

•	 We have analyzed in detail the role of different laser parameters in the control of 

singlet-triplet transitions in conditions where there is strong competence between 

different non-linear processes. The appropiate parameters fos spin switching were 

diffucult to find but we showed efficient spin-locking despite the strong singlet­

triplet coupling for different frequency windows. 

•	 The same principles of efficient spin-locking were observed to apply in the dynamics 

of vibronic wave packets, however, multi-photon ionization is the predominant 

dynamical process, thus the NRDSE scheme fails to work when it is applied to the 

coupled electron-nuclear system. 

•	 However, we have shown that the competing processes of spin-transitions and 

ionization can be influenced and it is possible to establish an efficient quantum 

control of spin transitions before ionization is effective. 

•	 It was found in a very simple two-level approximation model that the key feauture 

that determines if optical spin control is possible or not is the dependence of the 

ionization rate on the control field amplitude 

•	 The extended two-electron Shin-Metiu model is an excellent starting point to 

study strong field dynamics of vibronic wave packets, allowing us to test the limit 

of validity of certain control strategies defined in the Born-Oppenheimer basis. 

•	 A better understanding of the dynamics of vibronic wave packets is a necessary 

step to motivate new strong-field control schemes that may presumably overcome 

multiphoton ionization or tunneling ionization. 

•	 We found that applying Local Control Theory one can concieve electric fields 

which lead to efficient electron transfer to a target nucleus, even in the callenging 

situation when the transfer proceeds through the continuum when the electron 

retrapping is always in competition with ionization and the electronic wave packet 

suffers extensive spreading. 
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•	 Highly simplified Hamiltonians have shown to be very useful for qualitatively un­

derstanding the nature of the processes under study 

•	 We have studied two different mechanisms of electron transfer depending on the 

time scale of the electron dynamics. In the attosecond regime we found the pho­

toassociations is an impulsive process, where the electron is excited to the contin­

uum and then is retrapped by an intense peak attosecond pulse. In the femtosecond 

scale the eletron transfer occurs by a tunneling mechnism. 

•	 Electron transfer through the ionization continuum demands strong requirements 

in terms of frequency, intensity and timing on attosecond pulses to maximize the 

probability of re-trapping the electron at the desired core, clearly exceeding current 

capabilities. On the other hand the efficiency is less model dependent. 

•	 Femtosecond transfer based on tunneling, however, promises higher yields if the 

nuclei are not too far apart, but the results are sensitive to model dimensional­

ity and nuclear motion and are more difficult to extrapolate to other molecular 

processes. 

•	 In the femtosecond transfer we have found that analytical pulses lead to same final 

results as the local control pulses, thus LCT is not requiered when tunneling is 

the sole mechanism of electron transfer. 

•	 Although we can not yet assess whether the control of electron transfer or other 

electron processes should be better exerted in the atto or in the femto regime, the 

results show that it is still too early to retire Femtochemistry from the race. 
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[102] V. Malinovsky, J. Santamaŕıa, I. Sola, J. Phys. Chem. A 107 (40) (2003) 8259– 

8270. 
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A 111 (14) (2007) 2670–2678. 
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[238] D. Maćıas, S. Brouard, J. Muga, Chem. Phys. Lett. 228 (6). 

[239] J. Palao, J. Muga, Chem. Phys. Lett. 292 (1-2) (1998) 1–6.
 



163 BIBLIOGRAPHY 

[240] D. Neuhauser, M. Baer, J. Chem. Phys. 91 (8) (1989) 4651–4657. 

[241] D. Neuhasuer, M. Baer, J. Chem. Phys. 90 (8) (1989) 4351–4355. 

[242] R. Santra, L. Cederbaum, Phys. Rep. 368 (1) (2002) 1 – 117. 

[243] J. Muga, J. Palao, B. Navarro, I. Egusquiza, Phys. Rep. 395 (6) (2004) 357 – 426. 

[244] N. Moiseyev, Phys. Rep. 302 (5-6) (1998) 212 – 293. 

[245] Y. Sajeev, R. Santra, S. Pal, J. Chem. Phys. 123 (20) (2005) 204110. 

[246] S. Feuerbacher, T. Sommerfeld, R. Santra, L. S. Cederbaum, J.	 Chem. Phys. 

118 (14) (2003) 6188–6199. 

[247] R. Kosloff, D. Kosloff, J. Comput. Phys. 63 (2) (1986) 363 – 376. 

[248] A. Nissen, H. O. Karlsson, G. Kreiss, J. Chem. Phys. 133 (5) (2010) 054306. 

[249] T. Seideman, W. H. Miller, J. Chem. Phys. 96 (6) (1992) 4412–4422. 

[250] N. Rom, N. Lipkin, N. Moiseyev, Chem. Phys. 151 (2) (1991) 199 – 204. 

[251] M. Monnerville, P. Halvick, J. Rayez, Chem. Phys. 159 (2) (1992) 227 – 234. 

[252] D. I. Bondar, R. Cabrera, H. A. Rabitz, arXiv:1202.3628arXiv:1202.3628. 

[253] R. Cabrera, D. I. Bondar, H. A. Rabitz, arXiv preprint arXiv:1107.5139. 

[254] E. Wigner, Phys. Rev. 40 (1932) 749–759. 

[255] L. Cohen, J. Math. Phys. 7 (5) (1966) 781–786. 

[256] H. O. Bartelt, K. H. Brenner, A. W. Lohmann, Opt. Comm. 32 (1) (1980) 32 – 

38. 

[257] G. B. Lemos, R. M. Gomes, S. P.	 Walborn, S. Ribeiro, P. H., F. Toscano, Nat. 

Commun. 3 (2012) 1211. 

[258] K. Husimi, Proc. Phys. Math. Soc. Jpn 22 (1940) 264–314. 

[259] T. Shito, arXiv:1211.3274. 

[260] G. Wallis, ZAMM - Appl. Math. Mecha. 72 (12) (1992) 684–684.
 



164 BIBLIOGRAPHY 

[261] A. Anderson, J. J. Halliwell, Phys. Rev. D 48 (1993) 2753–2765. 

[262] W. P. Schleich, Phase Space Functions, Wiley-VCH Verlag GmbH & Co. KGaA, 

2005, pp. 321–348. 

[263] A. Wehrl, Rev. Mod. Phys. 50 (1978) 221–260. 

[264] F. Pennini, A. Plastino, Phys. Rev. E 69 (2004) 057101. 

[265] M.	 Janssen, Fluctuations And Localization In Mesoscopic Electron Systems, 

Vol. 64, World Scientific Lecture Notes in Physics, 2001. 

[266] S. Chelkowski, T. Zuo, O. Atabek, A. D. Bandrauk, Phys. Rev. A 52 (4) (1995) 

2977. 

[267] E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52 (1984) 997–1000. 

[268] T. Seideman, J. Chem. Phys. 103 (18) (1995) 7887–7896. 

[269] C. Horn, M. Wollenhaupt, M. Krug, T. Baumert, R. de Nalda, L. Bañares, Phys. 
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