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1. Introduction

The Conley index is an invariant of an isolated invariant set K [3,11–13]. It captures relevant informa-
tion of the dynamics and is robust under perturbations, actually it remains invariant under continuation. 
Roughly, the Conley index describes the unstable set Wu(K, f) of K and the dynamics induced on it. 
Although for hyperbolic fixed points the unstable set is actually a manifold, in general the unstable set may 
exhibit a very complicated topological structure. Nonetheless, if we just look at dimension 0, the description 
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of the unstable set and its dynamics reduces to the study of the connected components and how they are 
permuted by the action. The connected components of Wu(K, f) −K are called branches of the unstable 
set.

The family of branches of an unstable set may be infinite and contain components that do not accumu-
late on K or are accumulated by other branches. We focus on the “essential” components: those which are 
adherent to K and extend to infinity (more precisely, their backward images are never contained in a neigh-
borhood of K). The object of this note is to compute their number in terms of invariants related to K and 
the dynamics. Since connected components can be difficult to distinguish, we work with quasicomponents 
instead. The main theorem of the article computes the number of essential quasicomponents of the unstable 
set when K is an isolated invariant set:

Theorem 1. Suppose that f is a homeomorphism of a manifold, K is an isolated invariant set for f with 
finitely generated Čech homology groups that is not an attractor. Then, the number of essential quasicom-
ponents of the unstable set of K is equal to dim Ȟ1(W∞, K) + 1.

In the statement, and everywhere in this note, homology and cohomology groups are assumed to have 
coefficients in a field. The compactified unstable set W∞ is the Alexandroff compactification of Wu(K, f)
and the essential quasicomponents are those adherent to ∞ and K. An important caveat to the previous 
assertion is that the topology of the unstable set is not the subspace topology that it inherits from phase 
space but the intrinsic topology [13], which is finer. Very roughly, the intrinsic topology coincides with the 
subspace topology as long as the unstable set (excluding an initial part) is not adherent to K, so the result 
remains true in many instances considering the subspace topology. The theorem holds on more general 
phase spaces, such as locally compact metric ANR, and can be stated for non–invertible maps, but in the 
last case we only obtain the upper bound for the number of essential quasicomponents.

The dimension of the Čech homology (or cohomology, they are equal in our setting) group of W∞ can be 
computed easily from a single index pair (N, L) for K. In fact, it turns out to be the rank of the homological 
Conley index of K in dimension 1. In particular, dim Ȟ1(W∞) is bounded from above by dim Ȟ1(N, L). It 
follows that the dimension of Ȟ1(W∞, K̃) does not exceed dim Ȟ1(N, L) + (k − 1), where k is the number 
of connected components of K when finite.

As a quick example to illustrate the theorem, we can think of a saddle point p in the plane. The unstable 
manifold has two branches, so there are two essential quasicomponents (they coincide with the connected 
components when they come in a finite number). The Alexandroff compactification of Wu(p) is a circle and 
the equality follows. Similarly, a n–saddle point (the coalescence of n saddle points) displays n +1 branches 
and the one–point compactification of the unstable set is the wedge sum of n circles.

Theorem 1 has already been proved in cohomological terms in [8], so this version immediately follows 
from a duality argument. However, the discussion we present gives a better insight on the question, as it 
uses a suitable description of Čech homology classes and an explicit pairing with cohomology classes that 
were introduced recently [6].

As the main theorem suggests, our work applies the machinery of algebraic topology to examine the 
topology of the unstable set. Čech theory is typically a better fit than singular theory to study bad spaces 
(meaning that their (local) topology may be very complicated). Instead of working with Čech cohomology, 
we use an alternative approach named after Alexander and Spanier that yields the same groups as Čech’s 
under very general circumstances (for paracompact spaces [9], for example). Alexander–Spanier cohomology 
has the advantage of being completely intrinsic, it does not need extrinsic simplicial complexes as the nerve 
of a cover in Čech’s original definition. For homology, we use an approach in terms of “formal” simplices, that 
resembles the simplices introduced in [4] and essentially recovers the Vietoris complex. In both instances, 
we define U–small groups and their limit as the cover U gets finer yield the Čech homology and cohomology 
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groups [6]. If we fix the cover U considered, that is, the scale at which we study the space, we recover partial 
information of the space that is enough for certain computations.

The main tool used in the proof of Theorem 1 is a bilinear pairing between Čech homology classes and 
Alexander cohomology classes of X which is defined at any fixed scale U . The pairing takes the form of 
an integral: we are able to integrate Alexander–Spanier cohomology classes over Čech homology classes. 
This tool is defined from scratch in Section 5, but we refer the interested reader to the recent article in 
which the integral was introduced [6]. One of the properties of the integral is that it goes along well with 
the connecting homomorphisms of the Mayer-Vietoris sequences for homology and cohomology. This is key 
in the proof of the main theorem to relate zero dimensional objects, namely essential quasicomponents, to 
Ȟ1(W∞, K̃).

The paper and, especially, the proofs require a considerable technical effort. The fundamental reason is 
that Čech homology is defined through an inverse limit, so a Čech homology class is a sequence of homology 
classes. Thus, a representative of a class consists of a sequence of cycles. In our approach, the sequence is 
indexed by a cofinal family of open covers. We need to choose a cover fine enough so that several properties 
concerning the quality of the approximation from the associated Vietoris complex to the space are satisfied.

The article is organized as follows. We review Alexander–Spanier cohomology, its version at a fixed scale 
U and its relationship with the notion of quasicomponent in Section 2. A brief account on Conley theory 
and dynamical considerations on the unstable set is presented in Section 3. Next, the homology at scale U
is defined and we show how it recovers the Čech homology group and a result concerning the homology of 
the basin of attraction of a fixed point. Section 5 introduces the integral and its main properties. We finish 
the paper with the proof of the main result, Theorem 23, that is a more general version of Theorem 1.

2. Alexander–Spanier cohomology

The original approach to Čech cohomology involved the construction of simplicial complexes extrinsic to 
the space of study. The first definition, due to Čech [18], introduced the nerve of an open cover, a simplicial 
complex where the vertices are the elements of the cover and a collection of vertices span a simplex if their 
associated open sets have a non-empty intersection. Later, Vietoris [19] gave an alternative description via 
a larger complex, the Vietoris complex that we shall later recall. They key feature of both complexes is that 
as the cover gets progressively finer, the complexes become ever more similar to their underlying space. The 
Čech homology and cohomology groups of a topological space X are defined as the limit of the homology 
and cohomology groups of the nerves (or, equivalently [1,9], the Vietoris complexes) as the cover ranges over 
all the covers of X, and are denoted by Ȟ∗(X) and Ȟ∗(X), respectively. As mentioned above, coefficients 
are by default taken in an abstract field K and they are always excluded from the notation. Čech theory 
coincides with singular theory in CW-complexes.

Unlike Čech cohomology, Čech homology does not satisfy Eilenberg–Steenrod axioms, as exactness does 
not hold in general. However, the exactness axiom is satisfied in the category of compacta when coefficients 
are in a field. A classical reference for the definition and properties of Čech groups is [2]. Čech homology 
and cohomology satisfy a continuity property: if X is obtained as a limit of compacta Xi then the direct 
(inverse) limit of the Čech cohomology (homology) groups of Xi is isomorphic to the Čech cohomology 
(homology) group of X. Furthermore, Čech homology and cohomology satisfy a strong form of excision.

There is an alternative approach to Čech cohomology due to Alexander and Spanier that is of intrinsic 
nature. This is the approach we use in this article. We refer the reader to [16,17] for details.

2.1. Definition

Let U be a fixed open cover of a topological space X. U shall be thought of as the “scale” below 
which the structure of X is disregarded. For q ≥ 0 a q–cochain is a (not necessarily continuous) map 
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ξ : Xq+1 → K. These form a vector space Cq
U(X). Say that a q–cochain ξ is U–locally zero if ξ(x0, . . . , xq) = 0

whenever x0, . . . , xq belong to some member of U . The coboundary of a cochain is defined as follows: 
δξ(x0, . . . , xq+1) :=

∑q
j=0(−1)jξ(x0, . . . , x̂j , . . . , xq). It is straightforward to check that the coboundary of a 

U–locally zero cochain is again U–locally zero. Thus we may quotient Cq
U(X) by the subspace of U–locally 

zero cochains to obtain a vector space C
q

U (X). The coboundary operator descends to a coboundary operator 
on this space yielding a cochain complex {Cq

U (X), δ}, which we assume is augmented by the map that sends 
a ∈ K to the class that contains the constant map equal to a. Cocycles in C

q

U (X) are called U–small. We 
denote the cohomology of the complex by Hq

U(X) and call Hq
U (X) the U–small (reduced) cohomology group 

or the cohomology group at scale U of X. Notice that, by definition, the class ξ ∈ C
q

U (X) of a cochain ξ is 
a cocycle if and only if δξ vanishes over every member of U ; similarly, ξ = η means that ξ and η agree when 
evaluated on tuples that are contained in some element of U . Throughout this note, we drop the bar from 
the notation and denote equally a cochain ξ and the equivalence class in C

q

U (X) it represents.
If V refines U then every U–locally zero cochain is also V–locally zero, so there is a natural homomorphism 

C
q

U (X) → C
q

V(X). This inclusion map commutes with the coboundary operator and hence induces an 
inclusion homomorphism pVU : Hq

U (X) → Hq
V(X). There is, then, a direct system indexed by the open 

covers U of X, composed of the groups Hq
U(X) and whose bonding maps are the maps pVU . As we shall see 

below, the limit of this system is the Alexander–Spanier cohomology group of X, which we now introduce.
The previous definitions work well without sticking to a specific open cover of X. A cochain is said to be 

locally zero if there exists an open cover U of X such that ξ(x0, . . . , xq) = 0 for every tuple contained in the 
same element of U . We denote by C

q(X) the quotient space of all cochains over the locally zero ones. Since 
the coboundary of a locally zero cochain is evidently locally zero, we obtain a cochain complex {Cq(X), δ}, 
that is again assumed augmented. The cohomology of the complex is, by definition, the (reduced) Alexander–
Spanier cohomology of X. It is isomorphic to the Čech cohomology of X when X is paracompact ([9] and 
[17, Corollary 8, p. 334]) or, in general, when they are defined using the same family of coverings [1].

As the definitions suggest, the limit of U–cohomology groups is the Alexander–Spanier cohomology group.

Proposition 2. The direct limit of {Hq
U(X); pVU} is precisely the Alexander–Spanier cohomology of X. There-

fore, under general hypothesis (described above) it is also isomorphic to the Čech cohomology of X, Ȟq(X).

Proof. It follows directly from its definition that Cq(X) can be identified with the direct limit of {Cq

U (X)}. 
Then the result owes to the fact that the homology functor commutes with direct limits. �
2.2. Quasicomponents

The quasicomponent of x ∈ X is the intersection of all clopen (closed and open) subspaces of X that 
contain x. Alternatively, the quasicomponent of x can be defined as the equivalence class of x under the 
relation ∼, where y ∼ z iff there is no separation {A, B} of X (A, B disjoint, open and A ∪ B = X) such 
that y ∈ A, z ∈ B. From this interpretation, it is easy to deduce that the connected component of x is 
contained in the quasicomponent of x. For a brief account on quasicomponents we refer the reader to [20]. 
Although connected components and quasicomponents are different in general, they coincide, for instance, 
when one of them is open or when X is compact Hausdorff.

Lemma 3. Suppose X has a finite number of quasicomponents. Then, connected components and quasicom-
ponents coincide on X.

Proof. Let us show that every quasicomponent F is connected. Suppose {A, B} is a separation of F . Since 
quasicomponents are closed, the hypothesis implies that F is open as well, so A and B are clopen in X. By 
definition of quasicomponent, either A or B is empty, so F is connected. �
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A few quick properties of quasicomponents for later use:

Lemma 4.

(i) If a quasicomponent meets a clopen set O then it is contained in O.
(ii) Denote F (p) the quasicomponent of p. If (pn) → p and (qn) → q are two convergent sequences in X

such that F (pn) = F (qn) for every n, then F (p) = F (q).
(iii) A finite family of quasicomponents can be separated by clopen sets.

Proof. (i) immediately follows from the fact that the quasicomponent of a point in O must be contained 
in O. For (ii), let V be a clopen neighborhood of F (p). Since pn is contained in V for n large, so is 
its quasicomponent F (pn) = F (qn) by the previous remark. In particular, qn ∈ V and we conclude that 
q ∈ F (p). For (iii), suppose F, F ′ are different quasicomponents. There is a clopen neighborhood V of F
that does not contain F ′, so F ′∩V = ∅ by (i). We obtain similarly a clopen V ′ such that F ′ ⊂ V ′ ⊂ X−F . 
Then {V ∩(X−V ′), V ′∩(X−V )} are clopen sets that separate F and F ′. The argument can be generalized 
easily. �

Our discussion with Čech theories requires working with homology and cohomology groups at a fixed 
scale, that is, with a fixed open cover U . Thus, we typically have a fixed open cover U of X that bounds from 
below the topology that can be distinguished. Let us adapt some of the standard notions on connectedness 
to this framework.

We say that A ⊂ X is U–clopen if it is a maximal union of elements of U , in the sense that if an element 
of U meets A then it is contained in A. A clopen set A is U–clopen provided U refines the open cover 
{A, X \A}. Recall that an open cover U refines an open cover V (denoted by U � V) if every element of U
is contained in an element of V. Evidently, if U � V, every V–clopen set is automatically U–clopen. We can 
define an equivalence relation on X by y ∼ z iff there is no separation {A, B} of X such that y ∈ A, z ∈ B

and A and B are U–clopen. The equivalence class of x under ∼ is called U–component of x and may be 
thought as the (quasi)component of x at scale U . In fact, the U–component of x is the smallest U–clopen 
set that contains x and the quasicomponent of x is equal to the intersection of all U–components of x as U
ranges over all open covers of X.

Define a U–small point path as a sequence x0 = x, x1, . . . , xn = x′ such that for every 0 ≤ i ≤ n − 1, xi

and xi+1 are U-close, i.e., xi, xi+1 ∈ Ui for some open set Ui ∈ U . The U–component of x can be alternatively 
defined as the set of endpoints of U–small point paths that start at x.

Lemma 5. Let g : X → Y be a continuous surjective map. Then, the number of quasicomponents of X is 
greater or equal than the number of quasicomponents of Y . The same is true for the connected components.

Proof. The result follows from the fact that the preimage of a clopen set of Y is clopen in X. �
2.3. 0–dimensional cohomology

The relationship between the quasicomponents of a space and the elements of the 0–dimensional Čech 
groups goes back to the original works of Čech [18]. Here we show in an elementary fashion that the notions 
of quasicomponent and U–component serve to describe the 0–dimensional Alexander–Spanier cohomology 
group and the U–small cohomology group, respectively.

We start with the group H0
U(X). Note first that classes in C

0
U (X) can be viewed as maps D → K whose 

domain D consists of (q + 1)–tuples contained in a single element of U . Suppose ξ is a U–small 0–cocycle, 
that is, a map ξ : X → K that satisfies the cocycle condition inside each element of U . Thus, for every 
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x, y ∈ U ∈ U , 0 = δξ(x, y) = ξ(y) − ξ(x), i.e. ξ is constant on each element of the cover. In other words, ξ
is constant on every U–component.

From the previous characterization, it is very easy to construct U–small 0–cocycles in X. Given a U–clopen 
subset A of X, the characteristic function χA on A is evidently constant on each U–component, so it is a 
representative of a U–small 0-cycle and defines an element [χA] ∈ H0

U (X).
The discussion extends in a straightforward fashion to the Alexander–Spanier 0–cohomology group 

Ȟ0(X). The cocycle condition applied to a 0–cochain ξ : X → K forces 0 = δξ(x, y) = ξ(y) − ξ(x) for 
every x, y that belong to the same element of a certain open cover U of X. Equivalently, ξ is constant on 
every U–component for some U , that is, ξ is locally constant. Algebraically, this is a mere consequence of 
Proposition 2: Ȟ0(X) is the direct limit of the groups H0

U (X), so every Alexander–Spanier 0–cocycle is a 
U–small 0-cocycle for some U .

Unlike the previous example, it is not true that the characteristic function χF on a quasicomponent F
of X always represents a Alexander-Spanier 0-cocycle. Indeed, if F is not open, χF is not locally constant, 
so certainly not constant on U–components for any open cover U . This example gives a small hint on why 
it is preferable to work on scales fixed by an open cover than in the limit. The situation becomes evident 
as we move to Čech homology, which lacks a satisfying point-set topological description. Incidentally, the 
dynamics induced on the 0–dimensional Čech homology and cohomology groups have been studied in [7].

By Lemma 4, a finite family of quasicomponents Fi can be separated by disjoint clopen neighborhoods 
Oi, that may be thought of as U–clopen neighborhoods for a sufficiently fine cover U . The set of Alexander-
Spanier 0-cocycles {χOi

} are clearly linearly independent in Ȟ0(X) (provided the Oi do not form a partition 
of X).

Corollary 6. If Ȟ0(X) is finite dimensional then X has a finite number of quasicomponents.

A small effort immediately yields the equality between the dimension of the (non-reduced) 0–cohomology 
group and the number of quasicomponents when any of them is finite.

2.4. Results on quasicomponents

In this subsection we suppose we work with a dynamical system as in the main results of the article. The 
dynamical motivation (and hypothesis) is postponed to (the end of) Section 3, here we give some lemmas 
that can be traced back to [8]. Let X be a compact metric space and f : X → X be a homeomorphism such 
that {a, a∗} forms an attractor–repeller decomposition of X, that is, a and a∗ are invariant under f and 
the rest of orbits of f converge uniformly to a in forward time.

For the following results the standing assumption is that dim Ȟ0(X) < +∞, so by Corollary 6 the number 
of quasicomponents of X is finite and the same is true for the connected components by Lemma 3.

Lemma 7. Every connected component of X − {a, a∗} reaches a or a∗ in the sense that it is adherent to a
or a∗. The result is also true for quasicomponents because they are a union of connected components.

Proof. Suppose C is a connected component of X − {a, a∗} that is not adherent to a or a∗. C is also a 
connected component of X (cf. [20, p. 101]). The same features are shared by fnC for every n ∈ Z. Since 
fnC → a, it follows that they are all different, which is a contradiction. �

We are interested in the topological structure of X and, in particular, in the quasicomponents of X −
{a, a∗}. A quasicomponent of X − {a, a∗} that is adherent to a and to a∗ is called essential. Suppose 
in the following that Oe is a clopen (as a subset of X − {a, a∗}) neighborhood of the family of essential 
quasicomponents.
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Lemma 8. There exist neighborhoods V, V ∗ of a, a∗ in X such that for every quasicomponent F of X−{a, a∗}
exactly one of the following conditions hold:

(1) F ⊂ Oe.
(2) F ∩ V = ∅.
(3) F ∩ V ∗ = ∅.

Proof. Let {Pn}n≥1, {P ∗
n}n≥1 be bases of compact neighborhoods of a and a∗, respectively. We impose that 

Pi∩P ∗
j = ∅ for all i, j and that the bases are nested. We proceed by contradiction. Suppose for every n there is 

a quasicomponent Fn disjoint from Oe that meets both Pn and P ∗
n . Fn is not essential, so by Lemma 7 either 

all the connected components of Fn reach a or all of them reach a∗. As a consequence, there is a connected 
component of Fn that meets ∂Pm and ∂P ∗

m for every m ≤ n. Take points pmn ∈ Fn ∩ ∂Pm, qmn ∈ Fn ∩ ∂P ∗
m. 

By passing to a subsequence inductively, we can assume pmn → pm ∈ ∂Pm and qmn → qm ∈ ∂P ∗
m for every 

m ≥ 1. By Lemma 4, pm, qm belong to the same quasicomponent F , independent of m, so F meets Pm and 
P ∗
m for any m. We conclude that F is essential, so F ⊂ Oe, a contradiction. �
The lemma suggests a partition in clopen sets that is very relevant to the proofs in Section 6.

Corollary 9.

X − {a, a∗} = Oe ∪Oa ∪Oa∗

is a partition into clopen sets, where Oa, Oa∗ are composed of the quasicomponents of X − {a, a∗} adherent 
to a, a∗ outside Oe, respectively, and Oa ∩ V ∗ = ∅ = Oa∗ ∩ V from Lemma 8.

Proof. It is enough to prove that Oa and Oa∗ are closed. We show it for Oa. Suppose that (pn) is a sequence 
of points in Oa that converges to p ∈ X − {a, a∗}. Since F (pn) is adherent to a for every n, the arguments 
in Lemma 8 conclude that F (p) is adherent to a as well and p ∈ Oa. �
3. Dynamical setting

3.1. Isolated invariant sets

We give a quick review of Conley index theory for discrete dynamical systems. See [11] and the references 
therein. A similar exposition can be found in [8].

Suppose f : U ⊂ M → M is a map defined on an open subset of a locally compact absolute neighborhood 
retract for metric spaces M (such as a manifold or a simplicial complex). Note that f is not necessarily 
injective. Throughout this section we denote by M the ambient space. The reader shall think of X, used in 
the previous and upcoming sections for that purpose, as an invariant space (called compactified unstable 
set) constructed from an isolated invariant set in M .

A full orbit of a point x ∈ M is a sequence (xi)i∈Z such that x0 = x and f(xi) = xi+1 for every i ∈ Z. For 
a set A ⊂ M , define Inv(A) as the points for which there is a full orbit contained in A. A set K is called an 
isolated invariant set or locally maximal for f if it has a compact neighborhood P such that K = Inv(P ). 
In this case, P is called an isolating neighborhood of K. Isolatedness is a condition frequently satisfied by 
invariant sets, for example, it is automatic under some forms of hyperbolicity.

On his work on isolated invariant sets, Conley developed invariants that describe these sets in terms of 
dynamically meaningful neighborhoods and the action of the dynamics on them. We introduce here the 
concept of index pair. A compact pair (N, L) is called an index pair of an isolated invariant set K if it 
satisfies the following conditions:



JID:TOPOL AID:108581 /FLA [m3L; v1.338] P.8 (1-22)
8 L. Hernández-Corbato et al. / Topology and its Applications ••• (••••) ••••••
• N \ L is an isolating neighborhood of K.
• f(N \ L) ⊂ N , that is, the points that exit N belong to L.
• f(L) ∩N ⊂ L, in words, L is positively invariant in N .

These conditions imply that if K is not an attractor then L = ∅.
It is always possible to find index pairs such that N/L has finitely generated Čech homology groups. 

Henceforth, we assume this extra property on index pairs. Actually, if the phase space is a manifold there 
always exist index pairs such that N, L, N \ L are manifolds with boundary (see the notion of filtration pair 
in [3]).

Let us briefly recall what is the Conley index in the discrete setting. Given an index pair (N, L) we can 
encapsulate the dynamics in N/L via an index map f# : N/L → N/L that sends x to f(x) if f(x) ∈ N\L and 
to [L] otherwise. The index maps that arise from different index pairs are shift equivalent in the terminology 
used in [3]. In homological terms this entails that the endomorphisms (f#)∗ : Ȟ∗(N, L) → Ȟ∗(N, L) are all 
conjugate when restricted to their maximal invariant subspace (called the Leray reduction [12] of (f#)∗). 
The equivalence class of endomorphisms defined in that way is referred to as the homological Conley index 
of K. The cohomological Conley index is defined in an analogous fashion.

3.2. Compactified unstable set

Using an index pair, Robbin and Salamon [13] constructed a topological object that is intimately related 
to the unstable set (see also [8]). Consider the inverse sequence of pointed topological spaces:

· · · f#−−→ (N/L, [L]) f#−−→ (N/L, [L]) f#−−→ (N/L, [L])

The limit is denoted (W∞, ∞) and we refer to W∞ as the compactified unstable set, a terminology that 
will be explained later. Recall that the inverse limit is the space of sequences (. . . , xn+1, xn, . . . , x0) in N/L

such that f#(xi+1) = xi, for every i ≥ 0, that is, the set of backward orbits of the dynamical system 
f# : N/L → N/L. Note that we cannot speak of the backward orbit of a point x because f may not be 
invertible, we say instead that (xn) is a backward orbit of x = x0. W∞ inherits the product topology from 
the space of sequences. The marked point ∞ corresponds to the constant sequence of value [L]. Since N/L

is compact, so is W∞.
The map f induces a homeomorphism f∞ on W∞ by

f∞(. . . , xn+1, xn, . . . , x0) = (. . . , xn, xn−1, . . . , x0, f#(x0)).

Equivalently, f∞ applies f# at each term of the sequence. It follows immediately that f∞ is contin-
uous. In fact it is a homeomorphism whose inverse is simply the shift map, (. . . , xn+1, xn, . . . , x0) �→
(. . . , xn, xn−1, . . . , x1).

The description of the dynamics of f∞ : W∞ → W∞ is fairly simple. It has an attractor-repeller decom-
position given by {∞, K̃}, where K̃ is defined as the inverse limit of

· · · f−→ K
f−→ K

f−→ K

Let (xn)n≥0 ∈ W∞ and suppose y = xk = [L]. Clearly, y has a backward orbit contained in N \ L given 
by (xn)n≥k. Thus, either y ∈ K or the forward orbit of y under f exits N \ L. In terms of the dynamics 
within N/L, the second alternative is equivalent to fn

#(y) = [L] for large n. Here we use crucially that K
is the maximal invariant set in N \ L. Therefore there is a dichotomy: either (xn) belongs to K̃ and its 
forward orbit is confined to K̃ or the forward orbit of (xn) under the action of f∞ converges to the constant 
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sequence [L], that is, to the fixed point ∞. We conclude that ∞ is an attracting fixed point whose basin of 
attraction is W∞ − K̃ and that K̃ is a repeller whose basin of repulsion equals W∞ − {∞}.

In the case L is empty, ∞ is an isolated point and, moreover, W∞ = K̃ ∪{∞}. As we assume in the main 
theorem that K is not an attractor this situation is not further considered.

In spite of its definition, the dynamical properties of the index pairs imply that W∞ is a canonical object 
and does not depend on the choice of (N, L). Any index pair of K can be used to define W∞.

3.3. Topology of the unstable set

The expression “compactified unstable set” used for W∞ deserves some explanation. The next paragraphs 
describe the relationship between W∞ and the standard notion of unstable set Wu(K, f) of K, which is the 
subset of M composed of the points that have a backward orbit that converges to K. The map is hereafter 
omitted from the notation of the unstable set. As we made no assumption on differentiability in this note, 
the unstable set is nowhere close to being a manifold in general.

For technical reasons, suppose that the domain of definition of f is the whole space M (in order to ensure 
that the unstable set does not reach the boundary of the domain of definition of f). Let us define a map 
between W∞ − {∞} and the unstable set Wu(K). Note that Wu(K) is invariant under f and inherits the 
subspace topology from the phase space M .

For every (xn) ∈ W∞ − {∞} there is k ≥ 0 such that xk = [L]. We define

h : W∞ − {∞} → Wu(K), h((xn)) = fk(xk)

Evidently, the definition does not depend on the choice of k. The map h is surjective: every x ∈ Wu(K) has 
a backward orbit (xn) that converges to K. Since N \ L is a neighborhood of K, it contains a tail of the 
sequence, say (xn)n≥n0 . Then, (. . . , xn0+1, xn0 , f#(xn0), . . . , f

n0
# (xn0)) ∈ W∞ is a preimage of x. The map 

h is continuous: a neighborhood of (xn) in W∞ contains sequences (yn) such that yk is close to xk, so, in 
particular yk = [L]. The continuity of fk implies the continuity of h in the previous neighborhood.

The subset of W∞ defined by the condition x0 = [L] is sent by h onto the subset of Wu(K) composed of 
the points of N \L that have a backward orbit completely contained in N \L. Therefore, {x0 = [L]} ⊂ W∞
can be regarded as an initial part of the unstable set of K.

In the case f is a homeomorphism, h is actually a bijection between W∞ − {∞} and Wu(K) but not 
necessarily a homeomorphism. The reason is that the final topology of h in Wu(K) makes two points 
close only if their backward orbits are close at every step, so this topology (called the intrinsic topology by 
Robbin and Salamon) is finer than the subspace topology on Wu(K). As shown in [13], intrinsic and subspace 
topologies coincide when we can find an index pair (N, L) where L is positively invariant. Let us ignore for 
the moment the differences between the topologies in the initial part of the unstable set in a neighborhood 
V of K and take (N, L) inside V . Suppose (pn) is a sequence in Wu(K) that converges to p ∈ Wu(K) − V

in the subspace topology but not in the intrinsic topology. Assume further that pn = fkn(xn), with kn
minimal among the nonnegative integers such that xn ∈ N \ L, and kn → +∞ (otherwise, for some m, 
(f−m(pn)) is a sequence in the initial part in V which converges usually but diverges intrinsically). Then, 
similar conditions hold for f−n(p), n ≥ 0, and also for any limit point of the backward orbit of p. Thus, we 
conclude that the unstable set, excluding an initial part, accumulates in K in the subspace topology.

3.4. Further considerations

The map h can be used to bound the topology on Wu(K) in terms of the topology of W∞. Suppose in 
what follows that K is not an attractor. In general, h restricts to a surjective map between W∞−(K̃∪{∞})
and Wu(K) −K (and these spaces are non-empty because K is not an attractor). By Lemma 5, the number 
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of connected components of the latter, which are by definition the branches of the unstable set, is bounded 
from above by the number of connected components of the former. The same is true for quasicomponents. 
We are interested in the quasicomponents of Wu(K) −K that start in (are adherent to) K and extend to 
infinity, in the sense that their backward image is never contained in a neighborhood of K. We call them 
essential. In terms of the topology of the compactified unstable set, the essential quasicomponents are those 
adherent to K̃ and to ∞. Theorem 1 bounds their number from above by dim Ȟ1(W∞, K̃) +1. Let us recap 
the previous discussion:

Proposition 10. The number of essential quasicomponents of Wu(K) − K (with the subspace topology) is 
bounded from above by the number of essential quasicomponents of W∞− (K̃∪{∞}). There is equality when 
f is a homeomorphism and the intrinsic topology coincides with the subspace topology.

The continuity property of Čech homology gives a way to study the homology of W∞ in terms of the 
homology of the index pair (N, L). Since Čech homology is continuous with respect to compact Hausdorff 
spaces, Ȟ∗(W∞, ∞) is isomorphic to the (inverse) limit of

· · · (f#)∗−−−−→ Ȟ∗(N,L) (f#)∗−−−−→ Ȟ∗(N,L) (f#)∗−−−−→ Ȟ∗(N,L) (1)

In particular, the Čech homology groups of W∞ are finite dimensional and

dim Ȟ1(W∞) ≤ dim Ȟ1(N,L).

Note that the limit of (1) is isomorphic to the maximal subspace of Ȟ∗(N, L) where (f#)∗ acts as an 
isomorphism, so (f∞)∗ : Ȟ∗(W∞, ∞) → Ȟ∗(W∞, ∞) is an isomorphism. Incidentally, the map turns out to 
be a representative of the homological Conley index of K. Let us also add that, similarly, if we work with 
cohomology we conclude that the Čech cohomology of (W∞, ∞) is isomorphic to the direct limit of the 
relative cohomology group of (N, L) under the action of (f#)∗ and, in particular, it is finite dimensional.

Suppose that K has finitely many connected components, say k. Arguing as above, we deduce that the 
dimension of Ȟ0(K̃) is bounded from above by k (since f is surjective on K the dimension is actually equal 
to k.) By direct inspection of the long exact sequence in (Čech) homology relative to the pair (W∞, K̃) we 
obtain that

dim Ȟ1(W∞, K̃) ≤ dim Ȟ1(N,L) + k − 1

We also conclude that the 0–homology group is finite dimensional. By the strong excision property of Čech 
homology [2, Ch. X], Ȟ∗(W∞, K̃) is isomorphic to Ȟ∗(W∞/K̃, [K̃]). Therefore, by the previous arguments, 
W∞/K̃ has finitely generated Čech homology groups at dimensions 0 and 1.

The space W∞/K̃ is the result of collapsing the repeller K̃ to a point. Trivially, f∞ descends to a map 
f∞ on the quotient space whose dynamics is extremely simple: it has an attractor–repeller decomposition 
{∞, [K̃]}. However, the unstable set remains intact, W∞−(K̃∪{∞}) is homeomorphic to W∞/K̃−{[K̃], ∞}
and the restriction of f∞ and f∞ to these subspaces are trivially conjugated. Therefore, we can study 
essential quasicomponents of the unstable set by examining the quotient space W∞/K̃.

Standing hypotheses: In view of the previous discussion, let us formulate a set of hypotheses on the dy-
namics we study that applies to the unstable set of isolated invariant sets (that are not attractors) described 
above. X will be a compact metric space (that corresponds to W∞/K̃) and f : X → X a homeomorphism 
(we emphasize that it is different to the previous f , it actually corresponds to f∞ above) that has two 
fixed points a, a∗ and such that the dynamics has an attractor–repeller decomposition {a, a∗}. The basin of 
attraction of a, X − {a∗}, will be denoted by B and the basin of repulsion of a∗, X − {a}, will be denoted 
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by B∗. We will further assume that the Čech homology and (equivalently) cohomology groups of X at 
dimensions 0 and 1 are finite dimensional. Note that while this enumeration describes the general setting 
for the main theorem in Section 6, the following sections on Čech homology and the integral do not make 
any assumption on the topological space X unless explicitly stated.

4. Čech homology

In this section we present the approach to the Čech homology as a limit of homologies at scale U developed 
in [6]. The development of U–small homology groups or homology groups at scale U was motivated by the 
study of [4]. In that article, the authors worked with simplices with finite image intrinsic to the space to 
define ε–homology groups that in the limit recover Ȟ∗(X). It is worth to mention that discrete and intrinsic 
approaches to shape theory had been previously obtained in [5,15].

4.1. Homology at scale U

Let U be an open cover of a topological space X. A formal q–simplex is an ordered collection σ = (x0 . . . xq)
of points of X. We say that σ is U–small if its q + 1 vertices are contained in a single element U ∈ U . A 
U–small formal chain in X is a linear combination of U–small formal simplices c =

∑
aiσi (with coefficients 

in a field as always). Denote by CU
q (X) the vector space of U–small formal q–chains in X. For simplicity, in 

what follows we understand simplices and chains as formal simplices and formal chains, respectively.
The boundary of a simplex σ = (x0 . . . xq) is defined as ∂σ =

∑q
i=0(−1)i(x0 . . . x̂i . . . xq), where, as 

usual, the hat over an entry means that it is omitted from the collection. It is easy to check that ∂∂σ = 0. 
The boundary operator is extended linearly to chains. Evidently, the boundary of a U–small chain is again 
U–small and {CU

q (X), ∂} is a chain complex. The homology of the augmented complex is called U–small
(reduced) homology group or homology group at scale U and denoted by HU

∗ (X).
A U–small cycle c which defines a q–homology class α = [c] ∈ HU

q (X) is called a U–small representative 
of α.

Example 11. Let us show that U–components have trivial U–small 0–homology group. Suppose that A is a 
U–component of X. A U–small 0-simplex is simply (x), where x is a point in A. Consider x, x′ ∈ A. Since 
A is a U–component, there is a U–small point path x0 = x, x1, . . . , xn = x′. Evidently, the point path can 
be turned into a U–small 1–chain c =

∑
(xixi+1) such that ∂c = (x′) − (x). In particular, (x′) and (x) are 

homologous. This argument shows that

CU
1 (A) ∂−−→ CU

0 (A) ε−−→ K

is exact at CU
0 (A), where ε is the augmentation map, and the U–small 0–homology group of A is trivial.

The reason why U–small homology is referred to as homology at scale U is that it disregards any topo-
logical structure of X within each element of U .

Given a ∈ X and a q–simplex σ = (x0 · · ·xq), let conea(σ) be the (q + 1)–simplex (a x0 · · ·xq). Extend 
linearly this cone operator to chains. The algebraic identity ∂ conea(c) = c − conea(∂c) holds for every 
chain c.

Lemma 12. Every U–small cycle c supported in U ∈ U is a boundary.

Proof. Take a ∈ U . By the previous identity, c is the boundary of the U–small chain conea(c). �
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Suppose V is a refinement of U . Any V–small simplex or chain is automatically U–small and the inclusion 
induces a map πUV : HV

∗ (X) → HU
∗ (X) which simply views a V–small cycle as a U–small cycle. Using these 

morphisms, we can form an inverse system of groups {HU
∗ (X), πUV} indexed by the open covers of X. 

The inverse limit is equal to the Čech homology group of X, as will be deduced in the next subsection. 
Thus, there are projection morphisms πU : Ȟ∗(X) → HU

∗ (X) that satisfy the relation πUVπV = πU for every 
U ≺ V.

The proof of the main theorem of the article needs a considerable amount of woodworking with Čech 
homology classes. Any element γ ∈ Ȟq(X) is a family of U–small q-homology classes (γU ) coherent in 
the sense that a V–small representative cV of γV is also a U–small representative of cU for any U ≺ V
(by definition πVU(γV) = γU ). In the arguments of Subsection 6.4, covers will only be refined outside large 
compact subsets and the families of covers that we will consider at once (Uλμ with U fixed, for later reminder) 
coincide in a compact set (K0 ∩K∗

0 in the future notation). Therefore, for all the open covers in the family 
we can choose representatives of γ that essentially coincide in the compact set. Let us formalize the idea in 
the next lemma.

Given a U–small chain c, if we discard all the simplices of c that are not contained in A we are left with 
a chain supported on A that we denote rA(c). Denote by st(A, U) the union of all elements of U that meet 
A.

Lemma 13. Let U , V be open covers of X, V be a refinement of U . Suppose that A is a subset of X such that 
V and U coincide on st(A, U). Let α ∈ HV

q (X). Given a U–small representative c of πUV(α), there exists a 
V–small representative c′ of α such that rA(c) = rA(c′).

Proof. Let c0 be a V–small representative of α, [c0] = α. Since c0 and c are U–homologous cycles, c0−c = ∂d

for some U–small chain d. Decompose d as d0 + d1, where d0 = rst(A,U)(d), and define c′ = c + ∂d1. We 
deduce from the definition of d0 that the support of d1 is contained in X − A and rA(c) = rA(c′). Finally, 
note that c0 − c′ = ∂d0, so c0 and c′ are homologous as V–small cycles. �
4.2. Vietoris homology

Given an open cover U of X, the Vietoris complex of U , denoted V (U) is the simplicial complex defined 
as follows. The vertices are the points of X and a collection {x0, . . . , xq} of vertices spans a simplex in V (U)
provided there exists U ∈ U such that x0, . . . , xq ∈ U . If V is a refinement of U , the Vietoris complex of V
is evidently included in the Vietoris complex of U , V (V) → V (U).

The Vietoris complex V (U) is related to the nerve of U . In fact, both simplicial complexes are homo-
topically equivalent [1] and, in particular, have the same homology groups. The Čech homology group of 
X, Ȟ∗(X), is defined as the inverse limit of the homology groups of the nerves of the open covers of X or, 
equivalently (see the beginning of Section 2), of the homology groups of the Vietoris complexes of the open 
covers of X.

As announced in the previous subsection, we show that the homology group of V (U) is isomorphic to the 
U–small homology group. Therefore, the Čech homology group of X can be also defined as the limit of the 
U–small homology groups as U ranges over all open covers of X.

Send any U–small formal simplex (x0 . . . xq) to the same oriented simplex (x0, . . . , xq) of V (U) if all the 
vertices are different and to zero otherwise. This assignment defines a map between U–small chains and 
simplicial chains on V (U) that basically disregards the order (up to sign) of the collection of vertices. From 
this remark we conclude that the map induces isomorphisms between HU

∗ (X) and H∗(V (U)) (see [6] for 
more details).

Corollary 14. HU
∗ (X) is finitely generated provided U is finite.
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Proof. It follows from the discussion above and the fact that the nerve of U has finitely many simplices. �
4.3. Dynamical coverings

Let f : X → X be a continuous map. We know that f induces a map in the Čech homology group of X, 
but we need to be more precise as we have to work with the system of U–small homology groups of X.

Suppose that U , V are open covers of X such that U refines f−1V = {f−1(V ) : V ∈ V}. Then f sends 
U–small simplices to V–small simplices and, consequently, it induces a map f∗ : HU

∗ (X) → HV
∗ (X).

Clearly, for an arbitrary open cover U and a U–small simplex (x0 . . . xq), the image of the vertex set 
{f(x0) . . . f(xq)} may not be, in general, contained in a single element of U . Consequently, f does not define 
a map HU

∗ (X) → HU
∗ (X). However, the obstruction disappears in a familiar dynamical setting.

Definition 15. An open cover U of X is called dynamical if f−1U ≺ U , that is, for every U ∈ U , f(U) ⊂ U ′

for some U ′ ∈ U .

In view of the previous discussion, if U is dynamical, f∗ : HU
∗ (X) → HU

∗ (X) is well-defined. The downside 
is evident, dynamical open covers are scarce, they exist only in very simple dynamical situations. For 
example, dynamical open covers are a cofinal subfamily of the family of open covers of the basin of attraction 
of a fixed point.

Lemma 16. Let g : Y → Y and a ∈ Y a globally attracting fixed point for g. Every open cover U of Y can be 
refined to a dynamical open cover V.

Proof. Let Va ∈ U be a positively invariant neighborhood of a. Since a is a global attractor, Y =
∪n≥0g

−n(Va). Set V0 = {Va} and define inductively Vn+1 by adding to Vn all the nonempty open sets 
of the form g−1(V ) ∩U , where V ∈ Vn and U ∈ U . Note that Vn is a dynamical open cover of ∪n

k=0g
−k(Va)

that refines the restriction of U . Define V as the union of all Vn. �
4.4. Čech homology of the basin of attraction

Assume now that X is a compact metric space, f : X → X is a homeomorphism and {a, a∗} is an 
attractor-repeller decomposition of X. Then, B = X−{a∗} is the basin of attraction of a and B∗ = X−{a}
is the basin of repulsion of a∗. Further, we assume that Ȟ1(X) is finite dimensional to apply the following 
lemma.

Lemma 17. Let {Ei, πij} be an inverse system of vector spaces indexed by a partially ordered set I that 
possesses a cofinal sequence. Suppose that for every i ∈ I the image of the bonding map πji : Ej → Ei is 
finite dimensional if j is large enough and E = lim←−−Ei has a finite dimension as well.

(i) There exists i0 ∈ I such that the projection πj : E → Ei is injective for every i ≥ i0.
(ii) For every j ∈ I, there exists ij ∈ I, ij ≥ j such that the image of the bonding map πji : Ei → Ej is 

equal to im πj for all i ≥ ij (in the language of shape theory [10], ij is the movability index of j).

Proof. (i) The kernels keri of the projections E → Ei are finite dimensional and satisfy keri′ ⊂ keri for 
i′ ≥ i and ∩ikeri = {0}. Therefore, keri0 = {0} for some i0 ∈ I and the conclusion follows.

(ii) Being nested and eventually finite dimensional, the subspaces imπji stabilize, im πji = im πji0 for 
every i ≥ i0. Similarly, we can find i1 such that im πi0 i = im πi0i1 for every i ≥ i1. Inductively, we construct 
a cofinal sequence of indices (in)n≥0. Let v ∈ im πj and define w1 ∈ Ei1 such that πji1w1 = v. Put 
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v0 = πi0i1w1 and take w2 ∈ Ei2 such that πi0i2w2 = v0. Then, put v1 = πi1i2w2 and continue the same 
procedure. Inductively, we find an element of E (defined in a cofinal subset of indices) that projects into 
v. �

We can apply the previous lemma to the inverse system composed of the U–small homology groups 
of X and the bonding maps πUV . The property on the bonding maps is guaranteed by the last remark 
in Subsection 4.2 and the fact that every open cover has a finite refinement by the compactness of X. 
Alternatively, one could use the arguments in [6, p. 10]. By (i), the projections πU : Ȟ∗(X) → HU

∗ (X)
become injective if the cover U is fine enough, i.e.
(�) im πU is isomorphic to Ȟ1(X) if U is finer than a fixed cover W.

If V � W and V ′ � f−1V then f∗ : HV′
∗ (X) → HV

∗ (X) restricts to an isomorphism between imπV′ and 
im πV . The inverse is given by the composition of the isomorphism imπV → im πV′′ and the restriction 
of (f−1)∗ : HV′′

∗ (X) → HV′
∗ (X), for some V ′′ finer than fV ′ (recall that f is a homeomorphism and, in 

particular, it is open). We conclude that f∗ : Ȟ∗(X) → Ȟ∗(X) is conjugate to f∗ : im πV′ → im πV .
The next lemma sheds some light on the relation between the topologies of B = X − {a∗} and X. 

Related results in cohomological terms were obtained in [8,14]. It only deals with compact subsets of B, a 
more general result is beyond the scope of this note.

Lemma 18. Suppose W is an open cover of X defined by (�). Let B be a dynamical open cover of B that 
refines W|B = {U ∩ B : U ∈ W} and Z be a compact neighborhood of a in B. Then, the image of the map 
induced by inclusion

HB
∗ (Z) → HW

∗ (X)

does not contain any nontrivial element of imπW .

Proof. Since the map factors through HB
∗ (Z ′) for any Z ⊂ Z ′ ⊂ X, we can suppose that Z is positively 

invariant under f . Then f induces a map f∗ in HB
∗ (Z) that sends γ = [c] to f∗γ = [f#c], where f#c is also 

a B–small cycle supported on Z because B is dynamical, f−1B ≺ B, and f(Z) ⊂ Z. Since a is a global 
attractor in B and Z is compact, for a fixed neighborhood Va ∈ B of a, there exists m such that fm(Z) ⊂ Va. 
Therefore, fm

∗ γ = [fm
# c] is trivial in HB

∗ (Z) by Lemma 12 because the support of fm
# c is contained in Va.

Since B is dynamical, B also refines the restriction to B of Wm = W ∨ f−1W ∨ · · · ∨ f−mW. There is a 
commutative diagram where the horizontal arrows are induced by the inclusion:

HB
∗ (Z)

fm
∗

HWm∗ (X)

fm
∗

HB
∗ (Z) HW

∗ (X)

Now, since the left vertical arrow is the zero morphism and the right vertical arrow restricts to an isomor-
phism between im πWm

and im πW by the previous remark, the conclusion follows. �
4.5. Čech homology is dual to Čech cohomology

As throughout this note we make several claims concerning the dimensions of Čech homology and co-
homology groups, let us briefly address the duality in Čech theory. In contrast to singular theory, where 
cohomology is obtained dualizing the construction of homology, in Čech theory the relationship between 
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homology and cohomology is not immediate. It turns out that Čech homology is dual to Čech cohomology, 
as the following algebraic argument shows.

Since lim←−−Hom(Ei, K) ∼= Hom(lim−−→Ei, K) we deduce that

Ȟ∗(X) = lim←−−HU
∗ (X) ∼= lim←−−Hom(H∗

U (X),K) ∼= Hom(lim−−→H∗
U (X),K) = Hom(Ȟ∗(X),K)

5. Integral

In this section we review the integration of Alexander–Spanier cohomology classes over Čech homology 
classes introduced in [6]. Since the pairing happens actually at any fixed scale U , for the moment we will 
assume that U is fixed. In the last part of the section we will define the integration in the limits.

5.1. At scale U

Let ξ : Xq+1 → K be a U–small q-cochain and let σ = (x0 . . . xq) be a formal U–small q–simplex. We 
can evaluate ξ over σ in the obvious way, ξ(σ) := ξ(x0, . . . , xq). We can extend this definition linearly to 
U–small q–chains, ξ(

∑
aiσi) =

∑
aiξ(σi), and ξ becomes a linear functional on CU

q (X). An straightforward 
computation yields:

Lemma 19 (Stokes’ formula). For every U–small q–cochain ξ and q–chain c: ξ(∂c) = δξ(c).

Stokes’ formula is the key to pass from chains and cochains to homology and cohomology classes. Indeed, 
if ξ is a q–cocycle and c, c′ homologous q–chains, c − c′ is a boundary and ξ(c) − ξ(c′) = ξ(∂d) = δξ(d) = 0. 
In other words, the evaluation of ξ over c does not depend on c but on the (U–small) homology class of c. 
Similarly, if ξ, ξ′ are cohomologous and c is a q–cycle, ξ(c) − ξ′(c) = δη(c) = η(∂c) = 0. Thus, the evaluation 
of ξ over c does not depend on ξ but on the (U–small) cohomology class of ξ.

Definition 20. The integral of z ∈ Hq
U (X) over γ ∈ HU

q (X) is defined as

∫
γ

z = ξ(c)

where ξ is a U–small q–cocycle that represents z and c is a U–small q–cycle representative of γ.

The above discussion proves that the integral is well–defined, it does not depend on the choices of ξ and c. 
The linear structure of the cohomology and homology groups and the linear extension of the evaluation 
implies that the integral defines a bilinear pairing Hq

U(X) ×HU
q (X) → K.

5.2. Mayer-Vietoris

In Section 6, we shall need a version of the Mayer–Vietoris exact sequence for homology and cohomology 
at scale U to exploit a nice feature of the integral and the connecting homomorphisms. The precise definition 
of the connecting homomorphisms can be deduced directly from the chain complexes using the standard 
arguments. Here, we give a quick description.

Suppose A and B are subsets of X such that X = intA ∪ intB and U refines {intA, intB}. Then

· · · → HU
q+1(A) ⊕HU

q+1(B) → HU
q+1(X) Δ∗−−→ HU

q (A ∩B) → HU
q (A) ⊕HU

q (B) → · · ·



JID:TOPOL AID:108581 /FLA [m3L; v1.338] P.16 (1-22)
16 L. Hernández-Corbato et al. / Topology and its Applications ••• (••••) ••••••
is exact. The connecting homomorphism Δ∗ is defined as follows. Let c be a U–small representative of 
α ∈ HU

q+1(X). It can be expressed as the sum of two U–small chains cA + cB , where cA is supported on A
and cB is supported on B. Then, Δ∗α is the q–homology class represented by the U–small cycle ∂cA = −∂cB
on A ∩B. As usual, the choices of representative and decomposition do not affect the homology class obtained.

A similar exact sequence is obtained for cohomology at scale U :

· · · → Hq
U (A) ⊕Hq

U (B) → Hq
U (A ∩B) Δ∗

−−→ Hq+1
U (X) → Hq+1

U (A) ⊕Hq+1
U (B) → · · ·

Here, the connecting homomorphism Δ∗ : Hq
U (A ∩ B) → Hq+1

U (X) is defined as follows. Let ξ be a 
q–cocycle on A ∩ B that represents z ∈ Hq

U (A ∩ B). Extend ξ to a q–cochain on X of the form ξA − ξB , 
where ξA is a cochain supported on A and ξB is a cochain supported on B such that ξ = ξA − ξB on A ∩B. 
Then, define Δ∗z as the (q + 1)–cohomology class on X represented by the cocycle η = δξA on A and 
η = δξB on B. Again, the choices in the definition do not change the outcome.

The integral behaves well with Δ∗ and Δ∗. Suppose z = [ξ] ∈ Hq
U (A ∩B) and γ = [c] ∈ HU

q+1(X). Then 
Δ∗z is a U–small (q + 1)–cohomology class in X represented by η (defined as δξA in A and as δξB in B) 
and Δ∗γ is a U–small q–homology class in A ∩B represented by ∂cA = −∂cB .

On one hand, the integral of Δ∗z over γ is, by definition, equal to η(c) = δξA(cA) + δξB(cB). On the 
other hand, the integral of z over Δ∗γ is equal to ξ(∂cA) = ξA(∂cA) + ξB(∂cB). By Stokes’ formula we 
conclude that:

Proposition 21. 
∫
γ

Δ∗ z =
∫

Δ∗ γ

z.

5.3. Some examples

We provide an example in which the explicit computation of the integral is used to describe the coho-
mology class. Let X = R/Z be the circle, U be the cover composed of the open intervals of diameter 2ε for 
some 0 ≤ ε ≤ 1/4 and A = [−ε, 1/2+ ε], B = [1/2− ε, ε] are two arcs that cover X (we use the bar to denote 
points on the quotient). Note that any element of U is contained either in A or in B.

The characteristic function χ on [1/2 − ε, 1/2 + ε] is U–locally constant on A ∩B and defines a U–small 
0-cohomology class [χ]. Then, Δ∗[χ] is a U–small 1-cohomology class on X that roughly counts (with 
orientation) how many times a path goes around the circle. Let us check the intuition in an example.

For a given integer k ≥ 1, let (xi) be a strictly increasing sequence of reals such that |xi+1 − xi| < ε, 
x0 = 0 and xn = k. Then, ck =

∑n−1
i=0 (xi xi+1) is a U–small cycle in X that goes around the circle k times. 

By Proposition 21, 
∫
[ck] Δ

∗[χ] =
∫
Δ∗[ck][χ] = χ(∂cAk ), where cAk is the sum of 1-simplices (xi, xi+1) whose 

vertices lie in A. Since each piece of path in cAk starts ε–close to 0 (in particular, inside χ−1(0)) and finishes 
ε–close to 1/2 (inside χ−1(1)), the term χ(∂cAk ) counts exactly how many times the sequence (xi) crosses 
the intervals [1/2 − ε, 1/2 + ε] + Z and is equal to k, as announced.

As in the previous example, in this article we go back and forth between the zero and first (co)homology 
groups. Suppose now that A is a U–component of X, as in Example 11. The augmentation map ε : CU

0 (A) →
K can be identified with the linear extension of the characteristic function on A, which we also denote χA. 
With the terminology we recently introduced, we have:

Lemma 22. A U–small 0–chain d in A is a cycle if and only if χA(d) = 0. More generally, suppose Y is 
U–clopen. A U–small 0–chain d in Y is a cycle that represents the trivial class in HU

0 (Y ) if and only if the 
evaluation of d against χA vanishes for every U–component A in the support of d.

Proof. We go directly to the proof of the second statement. Decompose d =
∑

i di, where di is a 0–chain in 
a U–component Ai. Clearly, d is a U–small cycle if and only if so are di for every i. By the first statement, 
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the latter is equivalent to χAi
(di) = 0 and the result follows from the fact that χAi

(d) =
∑

j χAi
(dj) =

χAi
(di). �

Note that in the case d is known to be a 0–cycle in Y , χY (d) = 0 and it is enough to check that χA(d)
vanishes for all U–components except for one.

5.4. At various scales

The scale at which the elements of the integral are defined is not very relevant. Let U ≺ V, z = [ξ] ∈
Hq

U (X) and γ = [c] ∈ HV
q (X). We can interpret 

∫
γ
z in two equivalent ways. First, we can see z as a V–small 

cohomology class, represented by the same q–cocycle, ξ, and integrate at scale V. Alternatively, we can 
think of γ as a U–small homology class whose representative is still c and integrate at scale U . Evidently, 
both interpretations return the same result, ξ(c).

The previous remark paves the way to the definition of the integral in the limits: the integral of an 
Alexander–Spanier cohomology class over a Čech homology class. Let z ∈ Ȟq(X), ξ a q–cocycle that 
represents z and U an open cover for which δξ is U–locally zero. Let γ ∈ Ȟq(X). Since γ is an element of an 
inverse limit, it is a collection γ = (γV)V , where γV = πV(γ) is a V–small homology class of X. Then, define

∫
γ

z = ξ(cU ),

where cU is a U–small representative of γ. As before, it is easy to check that the integral is well–defined. It 
is important to notice that, in fact, in the definition we compute 

∫
γU

z, an integral at scale U . The scale is 
imposed by the cocycle condition of ξ and, more crucially, is the scale at which the cohomology class z first 
appears in the direct limit that defines Ȟq(X).

6. Proof of the theorem

Let us recall the hypotheses formulated at the end of Section 3. Assume X is a compact metric space, 
f : X → X is a homeomorphism and X has an attractor–repeller decomposition {a, a∗}, where a is an 
attracting fixed point and a∗ is a repelling fixed point. B = X−{a∗} and B∗ = X−{a}. Moreover, we assume 
that Ȟ0(X) and Ȟ1(X) are finite dimensional. Recall that the quasicomponents of X − {a, a∗} = B ∩ B∗

that are adherent to a and a∗ are called essential.

Theorem 23. The number of essential quasicomponents of B ∩B∗ is equal to dim Ȟ1(X) + 1.

As a corollary, when X = W∞/K̃ for an isolated invariant set K we obtain Theorem 1. Recall (Propo-
sition 10) that if we consider the subspace topology instead of the intrinsic topology in Wu(K) or if the 
original dynamics was not invertible we only get the upper bound of dim Ȟ1(X) + 1 for the number of 
essential quasicomponents.

The proof of Theorem 23 is organized as follows. First, we introduce an adapted family of covers of B∩B∗

and X and describe the connecting homomorphisms from the Mayer–Vietoris exact sequences associated 
to these covers from dimensions 0 to 1. Then, we prove the upper bound for the number of essential 
quasicomponents in Proposition 24 and we finish the proof with Proposition 25.

A small notational remark useful in the future: henceforth the letters U , V will be used exclusively to 
denote covers of B ∩B∗ and covers of X will carry two subindices as explained below.
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6.1. Choice of a suitable family of open covers

We now define a family of open covers U of B∩B∗. Let V be an open cover of B∩B∗ and Oe a V–clopen 
neighborhood of the essential quasicomponents. We can apply Lemma 8 and Corollary 9 to obtain open 
neighborhoods V0, V ∗

0 of a, a∗, respectively, such that V 0∩V
∗
0 = ∅, V0\Oe does not meet any quasicomponent 

adherent to a∗ and V ∗
0 \ Oe does not meet any quasicomponent adherent to a. Define an open cover U of 

B ∩ B∗ that refines V in the following fashion. The restriction of U to Oe is the family of sets of the form 
V ∩(X−V 0) or V ∩(X−V

∗
0), where V ∈ V and V ⊂ Oe, while in Oa∪Oa∗ the only additional condition for 

U is that Oa and Oa∗ become U–clopen. Note that no element of U meets both V 0 and V
∗
0, a requirement 

for the Mayer–Vietoris exact sequences. The family of open covers U of B ∩ B∗ obtained in this fashion is 
denoted Cov(B ∩B∗).

Clearly, Cov(B ∩ B∗) is cofinal among the family of open covers of B ∩ B∗, in the sense that any open 
cover of B∩B∗ has a refinement in Cov(B∩B∗). Let us state as a remark that if U is additionally required 
to be finer than some given open cover of B∩B∗ we obtain a subfamily of Cov(B ∩B∗) that is still cofinal.

Given any U ∈ Cov(B ∩ B∗), let {Vλ} and {V ∗
μ } be bases of open neighborhoods of a and a∗ that are 

contained in V0 and V ∗
0 , respectively. The indices are (partially) ordered as the element of the basis: λ′ ≥ λ

iff Vλ′ ⊂ Vλ, with 0 being the minimal element, and similarly for μ. Define

Uλμ = U ∪ {Vλ, V
∗
μ }

and denote Cov(X) the set of covers of X obtained in this way. Again, Cov(X) is cofinal among the family 
of open covers of X and if we further require U to be finer than some given open cover it will still be cofinal.

Let us emphasize that the form of U , and that of Uλμ, depends on the choice of the V–clopen set Oe. 
This is not reflected in the notation directly, but note that a different Oe leads to different neighborhoods 
V0 and V ∗

0 . There is a somehow canonical choice of Oe, the union of V–components that contain essential 
quasicomponents. However, in principle, until we prove Proposition 24, there could be infinitely many of 
them and that set may not be clopen.

From Lemma 8 it follows that for every Uλμ ∈ Cov(X)

B = (Oe ∪Oa ∪ {a}) ∪Oa∗ , B∗ = (Oe ∪Oa∗ ∪ {a∗}) ∪Oa

are separations of B and B∗ in two Uλμ–clopen sets (of B and B∗, respectively). In order to be more precise, 
let us restrict the first partition to K0 = X − V ∗

0 ⊂ B. Since Oa∗ is U–clopen and Oa∗ ∩ Vλ = ∅ for every 
λ, we deduce that Oa∗ ∩K0 is Uλμ|K0–clopen for every λ, μ. So, we have the following separation of K0 in 
Uλμ|K0–clopen sets:

K0 = ((Oe ∪Oa ∪ Vλ) ∩K0) ∪ (Oa∗ ∩K0) (2)

Similarly, we obtain a separation of K∗
0 = X − V0 in Uλμ|K∗

0 –clopen sets:

K∗
0 =

(
(Oe ∪Oa∗ ∪ V ∗

μ ) ∩K∗
0
)
∪ (Oa ∩K∗

0 ) (3)

6.2. An interpretation of the Mayer–Vietoris sequence

For any Uλμ ∈ Cov(X), denote K∗
λ = X −Vλ and Kμ = X −V ∗

μ . Consider the following fragments of the 
Mayer–Vietoris sequence for homology

· · · → H
Uλμ

1 (X) Δ∗−−→ H
Uλμ

0 (K∗
λ ∩Kμ) → H

Uλμ

0 (K∗
λ) ⊕H

Uλμ

0 (Kμ) → · · ·
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and the Mayer–Vietoris sequence in cohomology

· · · ← H1
Uλμ

(X) Δ∗
←−− H0

Uλμ
(K∗

λ ∩Kμ) ← H0
Uλμ

(K∗
λ) ⊕H0

Uλμ
(Kμ) ← · · ·

associated to {K∗
λ, Kμ}.

Let us see in a very particular case how Δ∗ works. Let V ∈ Cov(B ∩ B∗) and A be a V–clopen subset 
of B ∩B∗. The characteristic function on A, χA, is V–locally constant on B ∩B∗ so defines 0–cohomology 
classes [χA]Uλμ

in K∗
λ∩Kμ for every U finer than V. In view of the Mayer–Vietoris sequence above we obtain 

1–cohomology classes Δ∗[χA]Uλμ
in H1

Uλμ
(X). In the following paragraph we show that all these classes are 

essentially the same, in the sense that they are represented by the same 1–cocycle and, consequently, define 
the same class in Ȟ1(X).

A Uλμ–small 1–cocycle that represents Δ∗[χA]Uλμ
can be obtained in the following way. Take a 0–cocycle 

in K∗
λ, say the restriction of χA to K∗

λ, and a 0–cocycle in Kμ, say the zero function, whose difference is 
equal to the restriction of χA to K∗

λ∩Kμ. Define ξUλμ as δχA in K∗
λ×K∗

λ and set ξUλμ = 0 elsewhere. Then, 
ξUλμ is a Uλμ–small cocycle that represents Δ∗[χA]Uλμ

.
Note that if x, x′ are Uλμ–close, ξUλμ vanishes on (x, x′) unless x ∈ A and x′ /∈ A or viceversa. Since 

A is V–clopen and U refines V, Uλμ–close points that are separated by A must belong to Vλ or V ∗
μ . Thus, 

ξUλμ is nonzero only if x, x′ ∈ V ∗
μ and exactly one of x and x′ belongs to A. Note that this description 

remains valid if we start with U ′ � U as long as V ∗
μ does not change. Therefore, ξUλμ is the restriction to 

Uλμ–close pairs of the 1–cocycle ξ defined as follows: ξ(x, x′) = 1 if x ∈ V0 −A, x′ ∈ V0 ∩A, ξ(x, x′) = −1 if 
x ∈ V0 ∩A, x′ ∈ V0 −A and ξ(x, x′) = 0 otherwise. The cocycle ξ is V00–small and may be used to compute 
the integral of Δ∗[χA] at any finer scale Uλμ.

6.3. Upper bound on the number of essential quasicomponents

Proposition 24. The number of essential quasicomponents of B ∩B∗ does not exceed dim Ȟ1(X) + 1.

Proof. From n essential quasicomponents F1, . . . , Fn of B∩B∗ we will construct n −1 linearly independent 
homology classes in Ȟ1(X).

Consider Oj pairwise disjoint clopen neighborhoods of Fj (recall Lemma 4) and let F be the open cover 
of B ∩B∗ composed of O1, O2, . . . , On and B ∩B∗ − ∪Oj . Take a refinement V of F in Cov(B ∩B∗).

Denote by χj the characteristic function on Oj . By the arguments of the preceding Subsection 6.2, Δ∗[χj ]
is a well–defined element of H1

Uλμ
(X) for every U � V and any λ, μ, in particular for V00 = V ∪ {V0, V ∗

0 }.
By Lemma 17, the image of πV00 : Ȟ1(X) → HV00

1 (X) is equal to the image of HUλμ

1 (X) → HV00
1 (X) for 

some Uλμ ∈ Cov(X) finer than V00. Suppose without loss of generality that U refines V. Since Oi is adherent 
to a and a∗ and Oi ∩K∗

λ ∩Kμ is U–clopen (U|K∗
λ∩Kμ

–clopen, to be precise) we can find points xi ∈ Oi such 
that there is a Uλμ–small point path inside K∗

λ from xi to a∗ and a Uλμ–small point path inside Kμ from 
xi to a.

The existence of the previous point paths guarantee that the 0–cycles di = (xi) − (xn) in K∗
λ ∩ Kμ

represent the trivial homology class at scale Uλμ as 0–cycles in K∗
λ and as 0–cycles in Kμ. In view of the 

Mayer–Vietoris exact sequence:

. . . → H
Uλμ

1 (X) Δ∗−−→ H
Uλμ

0 (K∗
λ ∩Kμ) → H

Uλμ

0 (K∗
λ) ⊕H

Uλμ

0 (Kμ) → . . .

we deduce that [di] ∈ H
Uλμ

0 (K∗
λ ∩Kμ) belongs to im(Δ∗), [di] = Δ∗[ci] for some 1-cycle ci ∈ C

Uλμ

1 (X).
From the property that defines Uλμ, we obtain classes αi ∈ Ȟi(X) that at scale V00 are equal to [ci]

(viewed as a V00–small homology class). By Proposition 21, we have that
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∫
αi

Δ∗[χj ] =
∫

[ci]

Δ∗[χj ] =
∫

[di]

[χj ] = χj(xi) − χj(xn) = δij

where the integrals have been computed at scale V00. Since the integral defines a bilinear pairing, we conclude 
that {αi : 1 ≤ i ≤ n − 1} are linearly independent Čech homology classes of X and the result follows. �
6.4. Computation of the number of essential quasicomponents

An immediate consequence of the previous subsection is that the number of essential quasicomponents is 
finite provided the first Čech homology group of X is finite dimensional. We take it as hypothesis and denote 
the essential quasicomponents by F1, . . . , Fn. Let O1, . . . , On be pairwise disjoint clopen neighborhoods of 
F1, . . . , Fn in B ∩ B∗, F ∈ Cov(B ∩ B∗) and the functions χj as in the proof of Proposition 24. We show 
that elements of Ȟ1(X) are characterized by the values of the integrals of the cohomology classes Δ∗[χj ]
over them.

Proposition 25. For any α ∈ Ȟ1(X),

∫
α

Δ∗[χj ] = 0 for every 1 ≤ j ≤ n− 1 if and only if α = 0.

As a consequence, there cannot be more than n − 1 linearly independent Čech 1-homology classes of X and 
dim Ȟ1(X) ≤ n − 1.

The rest of the subsection is devoted to the proof Proposition 25, which in turn ends the proof of 
Theorem 23. The ensuing arguments require further hypothesis on the covers considered. Recall the open 
covers constructed in Subsection 4.4:

• W is an open cover of X such that im πV is isomorphic to Ȟ1(X) for every V � W.
• B is a dynamical open cover of B that refines W|B.
• Further, let B∗ be an open cover of B∗ that refines W|B∗ and is dynamical for f−1.

Denote by Cov∗(B ∩ B∗) the subfamily of open covers of B ∩ B∗ that refine the restriction of B, B∗, 
and automatically also of W, to B ∩ B∗ and denote Cov∗(X) the associated subfamily of open covers of 
X. Assume further that the marked neighborhoods V0 and V ∗

0 are small so that every element of Cov∗(X)
refines W. Clearly, Cov∗(B ∩B∗) is cofinal among the family of all open covers of B ∩B∗.

Henceforth, fix an open cover U ∈ Cov∗(B ∩ B∗) finer than F . Suppose without loss of generality (in 
view of the finiteness of the number of essential quasicomponents and the comments in Subsection 6.1) that 
in the partition of B ∩B∗ in U–clopen sets from Corollary 9

B ∩B∗ = Oe ∪Oa ∪Oa∗ , (4)

associated to the definition of U , the set Oe is equal to the union of the U–components O′
j that contain the 

Fj .
Let α ∈ Ȟ1(X). Let V0, V ∗

0 be the neighborhoods of a, a∗ defined from U and Oe and put K0 = X − V ∗
0

and K∗
0 = X − V0 as usual. By Lemma 13, α has Uλμ–small representatives cλμ for all λ, μ that coincide 

when restricted to K∗
0 ∩ K0. More formally, there exist Uλμ–small 1–cycles cλμ such that [cλμ] = πUλμ

α

and rK∗
0∩K0(cλμ) is independent of λ, μ (recall that rK0∩K∗

0 discards the simplices that are not completely 

contained in K0∩K∗
0 ). The cycles cλμ can be decomposed as cλμ = cK0 +c

K∗
0 , where the cycles are supported 
λμ λμ
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in K0 and K∗
0 , respectively, in a way that ∂cK0

λμ is independent of λ, μ. Denote d = ∂cK0
λμ = −∂c

K∗
0

λμ . It follows 
that d is a Uλμ–small representative of Δ∗[cλμ] ∈ H

Uλμ

0 (K0 ∩K∗
0 ) for all λ, μ.

Use (4) to decompose d as de+da+da∗ . The next step is to show that da, da∗ are boundaries of Uλμ–small 
1–chains for any λ, μ.

Denote cK0
00 simply as cK . Following the separation (2) of K0, the chain cK splits as cKa + cKa∗ . Taking 

boundaries preserves the decomposition, so de + da = ∂cKa , da∗ = ∂cKa∗ . Since cKa∗ is a chain supported on 
Oa∗ and Oa∗ ∩ V0 = ∅, we conclude that da∗ is the boundary of a Uλμ–small chain in K0 ∩K∗

0 . A similar 
argument involving cK

∗ and (3) reaches the same conclusion for da.
Let us proceed to study de. It can be decomposed as 

∑
di, where each di is supported in O′

i. Recall from 
Subsection 6.2 that Δ∗[χj ] can be interpreted as a class in H1

Uλμ
(X) for every λ, μ. We can compute the 

integral of Δ∗[χj ] over α at scale U00:
∫
α

Δ∗[χj ] =
∫

[c00]

Δ∗[χj ] =
∫

Δ∗[c00]

[χj ] =
∫
[d]

[χj ] =
∫

[de]

[χj ] = χj(de) = χO′
j
(dj) (5)

By Lemma 22, χO′
j
(dj) = 0 if and only if dj is the boundary of a U–small 1–chain in O′

j ⊂ B ∩ B′ or, 
equivalently, dj is the boundary of a U–small 1–chain in K∗

λj
∩Kμj

for some large λj , μj . Thus, the integrals 
in (5) vanish for all j = 1, . . . , n if and only if there exist λ, μ such that de is the boundary of a Uλμ–small 
1–chain in K∗

λ ∩Kμ. The latter condition can be rephrased as [de] is the trivial element in HUλμ

0 (K∗
λ ∩Kμ).

Note that
∑
j

χO′
j
(dj) = (

∑
j

χj)(de) =
∫

[de]

∑
j

[χj ] =
∫

[de]

[χX ] = 0

because χX , the characteristic function on X, coincides with 
∑

χj on Oe and is the constant map of value 
1 on X, so defines the trivial class in Ȟ0(X). We conclude that if the integrals in (5) vanish for n − 1 values 
of j then it vanishes also for the missing j (see the remark after Lemma 22).

Since da, da∗ are boundaries, de is a Uλμ–small representative of Δ∗[cλμ] and we conclude that the 
following statements are equivalent:

(1) The integral of Δ∗[χj ] over α vanishes for all j = 1, . . . , n − 1.
(2) [cλμ] belongs to the kernel of the connecting homomorphism Δ∗ : HUλμ

1 (X) → H
Uλμ

0 (K∗
λ ∩K∗

μ) for some 
λ, μ.

Let us elaborate a bit more on the second equivalent condition, which we take as hypothesis. Suppose 
λ, μ fixed as in the statement of (2). By the construction of Cov∗(X), Uλμ refines W from Subsection 4.4
and by Lemma 18, HUλμ

1 (K0) ⊕ H
Uλμ

1 (K∗
0 ) → HW

1 (X) is the trivial morphism. However, this is equal to 
the composition of i∗ : HUλμ

1 (K0) ⊕H
Uλμ

1 (K∗
0 ) → H

Uλμ

1 (X) and πWUλμ
: HUλμ

1 (X) → HW
1 (X). Since πWUλμ

restricts to an isomorphism from imπUλμ
to im πW , we conclude that im i∗ = kerΔ∗ has trivial intersection 

with im πUλμ
. But [cλμ] ∈ kerΔ∗ = im i∗ and [cλμ] = πUλμ

α so we deduce that [cλμ] is the trivial Uλμ–small 
homology class.

In sum, condition (1) is equivalent to πUλμ
α = 0. This holds for any U ∈ Cov∗(B ∩B∗) finer than F and 

all λ, μ. Therefore, we conclude that α = 0 ∈ Ȟ1(X) and the proof of Proposition 25 is finished.
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