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confronto sono due sconosciuti e anche poco affiatati, e il Desk, anche lui
ora felicemente disperso nel mondo. Un pensiero va anche a tutte le persone
che hanno fatto parte della mia vita e che spero continuino a esserlo. Il
gruppo delle elementari: Simo, Carlos e il Dona. Mesner, Betto e il suo
humor all’inglese, i siculi Simone e Marco con un piano B sempre in tasca e
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Introducción

El objetivo de esta memoria es explorar los diferentes aspectos de la Teoŕıa
de Control, área de investigación que abarca problemas y técnicas de muy
diversa ı́ndole. Dentro de los problemas de la Teoŕıa de Control se distinguen
principalmente los problemas de control óptimo y los de control exactos. El
primer tipo de problemas tiene su origen en el cálculo de variaciones, que
surge de problemas muy conocidos, como el problema de la Brachistocrona.
El segundo se centra principalmente en el control de las trayectorias de los
sistemas dinámicos con el fin de lograr un estado espećıfico, abarcando proble-
mas tales como controlabilidad exacta, controlabilidad a cero, controlabilidad
aproximada o estabilización, y sus muchas variaciones. Para la descripción
de tales problemas de control, genéricamente se precisa de tres elementos
esenciales: las ecuaciones que describen la dinámica, las variables de entrada
(cantidades disponibles a fin de controlar el sistema) y las salidas observadas
(cantidades que deben ser controladas u optimizadas).

En la teoŕıa de control pueden distinguirse dos tipos principales de sis-
temas: sistemas de dimensión finita y sistemas de dimensión infinita. En
esta memoria, nos centraremos en este segundo tipo problemas, marco ha-
bitual para procesos descritos por ecuaciones en derivadas parciales (EDPs),
y de los que se tratarn numerosos ejemplos. En particular, desempeñará
un papel central en esta tesis una propiedad espećıfica que presentan algu-
nas soluciones de las EDPs: la frontera libre, importante campo de estudio
en matemáticas, con numerosas contribuciones, e intŕınsecamente conectada
con el carácter no lineal de las EDPs, aspecto que no presenta la teoŕıa li-
neal. Todos los problemas que se discuten en este trabajo son, de hecho, de
naturaleza no lineal.

La expresión general de una EDP que utilizamos en esta tesis viene dada
por

∂ψ(y)

∂t
− div a(y,∇y) + f(y) = u(x, t), (1)

donde ψ, a, f, g son diferentes funciones estructurales que vaŕıan según el
captulo estudiado, e y es la solución. La ecuación (1) puede ser de tipo
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2 INTRODUCCIÓN

parabólico o eĺıptico dependiendo de si ψ es o no la función nula, es decir si
ψ ≡ 0. Las condiciones de contorno y los datos iniciales que se acoplen a la
ecuación (1) también dependerán del problema en estudio.

La mayor parte de los resultados de esta memoria están relacionados con
documentos elaborados por el propio autor, en colaboración con sus direc-
tores y otros especialistas, si bien en algunas ocasiones, la versión que aqúı
se presenta mejora la versión ya publicada. A continuación se listan las a
dichos art́ıculos según el caṕıtulo en que se tratan:

(Caṕıtulo 1):

· J.I. Dı́az, T. Mingazzini and Á. M. Ramos, On the optimal control
for a semilinear equation with cost depending on the free boundary,
NETWORKS AND HETEROGENEOUS MEDIA Vol. 7, Number 4,
December 2012.

(Caṕıtulo 2):

· J.-M. Coron, J. I. Dı́az, A. Drici, T. Mingazzini, Global Null Controlla-
bility of the 1-Dimensional Nonlinear Slow Diffusion Equation, Chinese
Annals of Mathematics, 34B(3), 2013, 333-344.

· A. Drici, T. Mingazzini, Feedback Stabilization of the 1-Dimensional
Porous Medium Equation. (Presentado).

(Caṕıtulo 3):

· J.I. Dı́az, T.Mingazzini, A criterion on the boundary non-diffusion or
expansion of the support for some reaction-diffusion free boundary
problems, or how the free boundary approaches to the boundary. (En
prepración).

Caṕıtulo 1. Empezamos por el modelado de un proceso decisional so-
bre la poĺıtica de una industria. En esta situación, el propietario tiene que
decidir la forma de regular la velocidad de producción que podemos suponer
conectada directamente a la cantidad de sustancias contaminantes generadas
durante la actividad. También suponemos que la contaminación se descarga
a través de una tubeŕıa en un estanque de agua donde hay un área espe-
cial B llamada el área protegida que no puede ser infectada por alguna ley
de regulación: el castigo por cualquier infracción a la presente restricción se
castiga con una multa proporcional al volumen vertido. El problema requiere
decidir cómo regular la velocidad de producción con el fin de obtener el mejor
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equilibrio entre las ganancias obtenidas por una alta tasa de producción y
las pérdidas debidas a la multa que debe pagarse por la contaminación de B.

Matemáticamente, esto se traduce en un problema de optimización a
través de una función de coste que representa las pérdidas de la industria
y que ha minimizarse. El objetivo es decidir si existe una mejor solución.
Aunque la teoŕıa de la minimización ya está bien estudiada, adoptamos un
funcional que depende de la medida del conjunto de positividad de soluciones
de la ecuación de tipo (1). Este tipo de funcional no es común en la literatura
a pesar de que es altamente útil. Para la formalización del funcional de
coste J , se introduce la siguiente notación. Dada una función y : Ω → R+,
definimos

El conjunto de positividad, S(y) = {x ∈ Ω : y(x) > 0};
El conjunto nulo,N (y) = {x ∈ Ω : y(x) = 0};
La frontera libre, F(y) = ∂S(y) ∩ Ω,

donde Ω es un dominio acotado (abierto conectado) de RN con N ≥ 1 que
representa el estanque de agua, y ∂Ω es el borde de Ω. También introducimos
la función creciente G : R+ → R+, tal que G(0) > 0. Si denotamos con yu
(yu(T, ·)) la solución del problema (1) (caso eĺıptico y parabólico) con término
fuente u(x)χω (u(T, x)χω) y condición de Dirichlet homogénea, la función de
coste tiene la forma

J(u) =

∫
Ω

χS(yu)∩B(x) dx+

∫
Ω

1

G(yu)
dx. (2)

Nuestro problema es encontrar

min
u∈Uad

J(u).

Un supuesto importante que se refleja en el modelo es la relación entre
el tamaño de Ω y el tamaño de ω que representa la sección del tubo de
desagüe, siendo este último mucho más pequeño. Esta observación, junto
con el supuesto de que la ubicación de ω no está cerca de la orilla (∂Ω) da
sentido al hecho de que la contaminación no llega a la costa o, si lo hace, su
densidad es tan baja que puede despreciarse. Este hecho se introduce en el
modelo a través de una condición de contorno homogénea de tipo Dirichlet
y la formación de la frontera libre con la que el funcional tiene sentido.

Este tipo de problema tiene muchas aplicaciones: para la catálisis en
un medio poroso (véase, por ejemplo, Aris [9] y los resultados de homo-
geneización de Dı́az [40] y Conca, Dı́az, Liñán y Timofte [31]); para las
plantas de desalinización (véase, por ejemplo, Bleninger - Jirka [17] y Dı́az,
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Sánchez, N. S ánchez, Veneros y Zarzo [46]); y para otros muchos problemas
relativos al medio ambiente (véase, por ejemplo, [16] y [54]).

Logramos probar que en un subconjunto compacto de L∞(Ω) con la res-
tricción de u ≥ 0, el funcional J tiene al menos un mı́nimo. La propiedad de
positividad de los controles garantiza que yu ≥ 0, dando sentido al modelo.

Tomamos ahora un funcional, J∗, ligeramente diferente, con una estruc-
tura similar a J , pero cuyos primeros términos es

J∗1 =

∫
Ω

χN (yu)∩B(x). (3)

y J∗2 , que suponemos continuo y creciente en yu. El problema en este caso
es que el funcional y 7→

∫
Ω
χN (y)∩B(x) no es semicontinuo inferiormente en

L1(Ω), por lo que introducimos una condición a la familia de soluciones de
{yn} ⊂ L1(Ω) que garantice no sólo la semicontinuidad sino también la con-
tinuidad del conjunto vaćıo. Para ser más precisos, con esta condición, si
yn → y en L1(Ω) luego∫

Ω

|χN (yn)(x)− χN (y)(x)| dx→ 0, según n→∞.

La idea es proporcionar a la familia de funciones con una condición “no-
arbitrariamente-plana” cerca del aparato de nivel cero, una herramienta in-
troducida en los trabajos de Caffarelli [24], [25], Brezzi y Caffarelli [23],
Phillips [67], Rodrigues [69] y Nochetto [65], [64], entre otros autores. Esta
condición impide sustancialmente que los conjuntos de nivel próximos a cero
sean demasiado grandes.

Se concluye el primer caṕıtulo con una implementación numérica del pro-
blema de minimización del funcional (2) para el problema eĺıptico cuando (1)
tiene la forma {

−∆y(x) + f(y(x)) = u(x)χω in Ω,

y = 0 on ∂Ω,
(4)

con f(y) = |y|q−1y, q ∈ (0, 1). Se estudian los casos en los que Ω es un
intervalo acotado de R y cuando se trata de cuadrado cerrado de R2. Para
la función de G que aparece en J1 elegimos G(y) = (1 + ky) con k > 0.

Caṕıtulo 2. En este caṕıtulo nos centramos en la “controlabilidad global
a cero” y en la estabilización de la ecuación de los medios porosos (PME)
en una dimensión bajo diferentes condiciones de contorno. La PME es una
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formulación especial de (1) donde ψ(y) = y1/m con m > 1, a(u,∇u) = ∇u,
y f ≡ 0. Esta ecuación se puede usar para modelar varios procesos, como la
filtración no lineal en medios porosos o la transferencia de calor no lineal.

Subrayamos el carácter degenerado de esta ecuación, que es lo que hace
que los problemas de la controlabilidad y estabilización no sean de fácil re-
solución.

Para probar la controlabilidad global a cero de esta ecuación con apro-
piados controles al interior y al borde, se aplican diferentes técnicas tomadas
de la teoŕıa no-lineal y no degenerada de EDPs ([11]), y de la teoŕıa de
control de sistemas de dimensión finita (método de retorno: véase [34] y sus
referencias).

En concreto, queremos mostrar cómo una acción combinada de los con-
troles de frontera y de un control interno espacialmente homogéneo puede
permitir la extinción de la solución en cualquier prescrito horizonte temporal
T > 0, para cualesquiera datos iniciales en un cono de un espacio vectorial
(controlabilidad global a cero). Se prueba la controlabilidad para los siguien-
tes dos problemas de control

PDD


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
y(0, t) = v0(t)χI(t) t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(5)

y

PDN


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
(ym)x(0, t) = 0 t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(6)

donde I := (t1, T ) con t1 ∈ (0, T ), m ≥ 1 y χI es la función indicatriz de
I. En ambos problemas, y es la variable de estado y UDN := (uχI , 0, v1χI),
respectivamente UDD := (uχI , v0χI , v1χI), las variables de control.

Enfatizamos el hecho de que el control interno u(t) tiene la propiedad
de ser independiente de la variable de espacio x y que todos los controles
están activos sólo en una parte del intervalo de tiempo. Por otra parte, los
sistemas son controlables a cero en tiempo arbitrario, entonces la forma lo-
calizada del control u(t)χI(t) (la misma para los controles de frontera) en un
subintervalo de [0, T ] es más un dificultad enfática que real: sirve principal-
mente para subrayar que los controles no están activos en la primera parte.
Análogamente podŕıa elegirse un intervalo de control (t, t) ∈ (0, T ) o incluso
más generalmente tres intervalos diferentes, uno para cada control v0, v1, u,
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tal que el intersección de los tres sea no vaćıa.
El principal resultado de este caṕıtulo es que cada dato inicial que pertenece
al espacio H−1(0, 1) y sea no negativo, se puede dirigir a cero en cualquier
momento utilizando una combinación de los tres controles monodimension-
ales que aparecen en (5) o los dos en (6).
El enfoque adoptado se basa principalmente en la técnica llamada método de
retorno, introducida en [32, 33] (ver [34, Captulo 6] para obtener información
sobre este método). Más precisamente, se prueba primero la controlabilidad
a cero del problema (5) mediante la aplicación de una idea aparecida en [28]
(por la controlabilidad de la ecuación de Burger). En un segundo paso se
usan argumentos de simetŕıa para obtener el mismo resultado para (6).

Nuestra versión del método de retorno consiste en la elección de una
familia a un parámetro (ε) de trayectorias que es independiente de la variable
espacio desde un estado inicial y ≡ 0 hasta un estado final y ≡ 0, alejándose
de cero en un tiempo central. Vamos a utilizar los controles para llegar a
la solución de nuestro sistema a una de tales trayectorias, no importa cuál,
para algún tiempo positivo más pequeño de T .

A continuación, se analiza un procedimiento simple para estabilizar el
estado cero para la ecuación de los medios porosos con condición homogénea
al borde de tipo Neumann. Consideramos el siguiente sistema de control

yt − (ym)xx = u, (x, t) ∈ Q,
(ym)x(0, t) = 0, t ∈ (0,∞),

(ym)x(1, t) = 0, t ∈ (0,∞),

y(x, 0) = y0, x ∈ (0, 1),

(7)

donde Q := (0, 1) × (0,∞) y m > 1. El valor inicial y0 puede cambiar de
signo, entonces, para que (7) sea bien planteado, el término no-lineal ym ha
interpretarse como |y|m−1 y.

Para u ≡ 0, el comportamiento de las soluciones de (7) está bien explicado
en [3], donde se muestra que si y0 ∈ L∞(Ω), con Ω ⊂ RN y N ≥ 1, entonces

y(·, t) Lp−→ 1

|Ω|

∫
Ω

y0 dx, para t→∞.

La convergencia puede darse también en L∞, si N = 1 (para N > 1, ha de
exigirse que el valor inicial sea estrictamente positivo en Ω). En el caso en
que el dato inicial tenga media cero, se demuestra la existencia de C > 0 tal
que para cada y0 ∈ L∞(Ω) with

∫
Ω
y0 dx = 0

‖y(·, t)‖L∞(Ω) ≤
C ‖y0‖L∞(Ω) ‖y0‖−1

Lm+1(Ω)(
c(m− 1)t+ ‖y0‖1−m

Lm+1(Ω)

) 1
m−1

.
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Nuestro objetivo es estabilizar el sistema a cero independientemente de los
datos iniciales, que se elegirán en un espacio de enerǵıa adecuado. Para
hacer esto, utilizamos un control interno de tipo feedback u : y 7→ u(y) ∈ R,
u(t) := u(y(·, t)) que sea constante en el espacio:

u(t) := −
∫ 1

0

ym(x, t) dx,

arriving to the following decay rate for the solution

‖y(·, t)‖Lm+1(0,1) ≤ Ct−
1

m−1 ,

Concluimos este caṕıtulo con el estudio de la controlabilidad a cero para
un tipo de ecuación con diferente no linealidad, cuyo valor de elipticidad no
depende del valor de la solución sino de su primera derivada. Para empezar,
tratamos el caso de ecuaciones no degeneradas y en un segundo paso se
aborda el problema de las ecuaciones de tipo p-laplaciano, mostrando por el
sistema no degenerado (8) la controlabilidad local y por (9) la controlabilidad
global a cero bajo la hipótesis adicional y0x ≥ 0.

yt − a(yx)x = u(t) (x, t) ∈ Q,
yx(0, t) = 0 t ∈ (0, T ),

yx(1, t) = v(t) t ∈ (0, T ),

y(x, 0) = y0 x ∈ (0, 1),

(8)


yt − (|yx|p−2yx)x = u1(t)x+ u2(t) (x, t) ∈ Q,
yx(0, t) = v0(t) t ∈ (0, T ),

yx(1, t) = v1(t) t ∈ (0, T ),

y(x, 0) = y0 x ∈ (0, 1),

(9)

siendo Q = (0, 1)× (0, T ) en ambos sistemas. En el primero paso, el hecho
de ser no degenerado viene dado por la función a : R → R que verifica la
condición 0 < µ ≤ a′(x). La variables de control vienen dados por u, v y
u1, u2, v1, v2.

Caṕıtulo 3. Este caṕıtulo no se centra en aspectos directos de la Teoŕıa
de Control, sino que va a estudiar herramientas muy útiles para esta teoŕıa.
De hecho, el tema es la existencia y el comportamiento de las soluciones
muy débiles de ciertos problemas eĺıpticos y parabólicos semilineales y de su
frontera libre cuando los datos son muy irregulares. El punto es que muchas
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veces cuando se trata de problemas de controlabilidad exacta o problemas
de control óptimo, la oportunidad de elegir controles muy irregulares es muy
útil porque da muchos más grados de libertad en la explotación del sistema.
Espećıficamente, vamos a estudiar la forma en que se comporta la frontera
libre de soluciones de algunas ecuaciones en derivadas parciales dependiendo
de la traza de las soluciones. Consideramos los problemas{

−Lu+ λβ(u) 3 f en Ω,
u = h sobre ∂Ω,

(10)

y la versión parabólica asociada
ut − Lu+ λβ(u) 3 f(x, t) en QT ,
u = h(t, x) sobre ΣT ,
u(x, 0) = u0(x) sobre Ω.

(11)

En ambos casos, L = div(A∇u) en un operador uniformemente eĺıptico y
β(u) es el gráfico maximal monótono de R2 tal que 0 ∈ β(0), dado por

β(u) = λ |u|q−1 u (12)

en el caso de ecuaciones de reacción-difusión; y por

β(u) =


0 para u < 0,

[0, 1] para u = 0,

1 para u > 0,

(13)

en el caso del problema de obstáculo.
Como se mencionó antes, los problemas, tanto el eĺıptico como el parabólico,

dan lugar a una frontera libre definida como el borde del soporte de la
solución.

Estudiamos aqúı el comportamiento de la frontera libre cerca del soporte
dado al contorno h (respectivamente h(·, t)). Empleando la misma notación
a la del Caṕıtulo 1, asumimos que

S(h) ( ∂Ω,

y

S(h(·, t)) ( ∂Ω, for a.e. t > 0.

La principal cuestión que se investiga es si el borde de F(u) está conec-
tado o no con el borde de el soporte del dato h (y pregunta similar para la
formulación parabólica).
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En particular hemos encontrado algunos criterio suficiente sobre el com-
portamiento de h cerca del borde de su soporte, asegurando que el borde de
F(u) está en contacto con ∂S(h). De esta manera, el soporte del dato no se
difunde en el borde del dominio, es decir

∂S(u) ∩ ∂Ω = ∂S(h).

Es lo que podemos llamar la propiedad de no difusión en el borde del so-
porte. Además, queremos dar condiciones suficientes que aseguren el com-
portamiento cualitativo contrario, es decir, condiciones en h que impliquen
que hay una expansión estricta del apoyo S(h) en el borde ∂Ω. Esto es,
queremos saber los casos en los que F(u) no tiene contacto con ∂S(h), aśı

∂S(h) ( ∂S(u) ∩ ∂Ω.

Llamamos a este fenómeno propiedad de expansión en el borde del soporte.
En cierto sentido, esta investigación puede considerarse como continuación
natural del estudio de la no-difusión del soporte (ver [39] y [5]) en el caso
h ≡ 0; bajo apropiadas condiciones sobre f cerca de la frontera de su soporte
se ha que S(u) = S(f). En el caso de problemas parabólicos de frontera libre,
el problema radica en estudiar la evolución de la frontera libre para tiempos
pequeños (en inglés, waiting time property) y recibió una gran atención en
los últimos 40 años (ver, por ejemplo, las monograf́ıas [70], [8] y sus muchas
referencias).

El único papel en la literatura previa sobre tal comportamiento, segn
conocimiento del autor, es [48], en el cual se prueba la expansión en el borde
del soporte para el problema (10) para el caso particular Lu = ∆u, β = uq,
con h la función de Heaviside y Ω el semi plano R× R+.

El punto delicado en nuestro estudio es que queremos permitir que el dato
sea discontinuo, por lo que la noción de la traza de la soluciń debe tomarse
en un marco muy general (algo que, en nuestra opinión, no es discutido
suficientemente en [48]. Para ello, seguimos el enfoque propuesto por Häım
Brezis, en un art́ıculo no publicado (en 1972) y a menudo mencionado en
la literatura (véase [71], [61] y [42]), aplicable a ecuaciones semilinealeas de
segundo orden con valor al borde en L1(∂Ω) (extendido más tarde a medidas
sobre ∂Ω).

Podemos probar la existencia y unicidad de forma análoga a la utilizada
en [20], [71] y [61], para cada f y h en L1(Ω; ρ) × L1(∂Ω), donde ρ es la
función distancia del borde. Además la dependencia continua de los datos y
el principio de comparación valen (ver Téorema 3.0.6).

Para el estudio del comportamiento de la solución cerca del borde de
S(h) consideramos el caso particular en que Ω = R× [0,∞) es el semi plano
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superior, L tiene coeficientes constantes, no hay término fuente f y β(u)
viene dado por (12) o (13). En lo que se refiere a los datos de la fron-
tera, estamos interesados en la función h que satisface h ∈ L∞(∂Ω), h(x1) =
0 en (−∞, 0) y h(x1) > 0 en (0,+∞). Como queremos estudiar el compor-
tamiento cerca de x = (0, 0) y no en todo Ω, supondremos que h es no
decreciente y que h(x1) = c+ > 0 para x1 ≥ δ > 0. En este dominio intro-
ducimos la definición de solución limite muy débil por (10), construida como
u = limn→∞ un, donde un es la solución del problema truncado, es decir, del
problema definido en un rectángulo acotado con valores en la frontera, que
es un truncamiento en śı mismo del original. El teorema 3.0.8 da el resultado
de existencia y el principio de comparación para este problema.

Nuestro resultado principal para el comportamiento cualitativo de la
solución de (10) es:

Teorema 1. Suponiendo el marco anteriormente explicado, existen cuatro
constantes C < C, ε < ε y dos puntos x1,ε, x1,ε > 0, tales que:

i) Si h(x1) ≥ Cx
2

1−q
1 para c.t. x1 ∈ (0, x1,ε) y h(x) ≥ ε para c.t. x1 ∈

(x1,ε,+∞),entonces se verifica la propiedad de expansión en la frontera del
soporte.

ii) Si h(x1) ≤ Cx
2

1−q
1 para c.t. x1 ∈ (0, x1,ε) y h(x1) ≤ ε para c.t. x1 ∈

(x1,ε,+∞), entonces se cumple la propiedad de no difusión en el borde del
soporte.
En ambos casos, q ∈ (0, 1), cuando β viene dado por (12), y q = 0 cuando β
viene dado por (13).

Con respecto al problema parabólico, se investiga la existencia y unicidad
de soluciones en dominios acotados, la estabilización de las soluciones para
t→∞ a la solución del problema estacionario y el comportamiento cualita-
tivo de las soluciones en un contexto similar al que se ha introducido para
el caso eĺıptico. El concepto de solución muy débil en dominios acotados y
el concepto de solución ĺımite muy débil en cilindros con el semiplano como
sección transversal es muy semejante a los adoptados para el caso eĺıptico.
Los resultados relativos a la existencia y unicidad, aśı como el estudio del
comportamiento del borde siguen las mismas estrategias que se aplican para
el caso eĺıptico, bajo hipótesis apropiada en el dato inicial.

Se señala que el análisis de la frontera libre estudiado en este caṕıtulo
puede ser de gran interés en el estudio de algunos problemas de control
óptimo, con aplicaciones al medio ambiente como se plantea en el caṕıtulo 1.



Introduction

This thesis has the objective to explore different aspects of the Control The-
ory. Control Theory is by now a very huge area of research which includes
very different problems and various techniques. Inside the Control Theory
one can find mainly two types of problems: Optimal Control problems and
Exact Control problems. The first kind has its origin in the calculus of vari-
ations, springing from very known problems such as the Brachystochrone
problem. The second one focus mainly on the control of trajectories of dy-
namical systems in order to achieve a specific target. It includes problems
which go under the name of exact controllability, null controllability, approx-
imate controllability, feedback stabilization and many other variations.

For the description of a generic control problem three elements are essen-
tial: the equations describing the dynamics, the input variables (quantities
available in order to control the system), the observed outputs (quantities to
be controlled or optimized). We can distinguish two main types of systems
which are encountered in the Control Theory: finite dimensional systems and
infinite dimensional systems. We are interested in the second one which is
the normal setting for processes described by Partial Differential Equations
(PDEs): we will give many examples of such processes in the rest of this
dissertation.

Control theory first scope was to design mechanism that keep certain to-
be-controlled variables at constant values against external disturbances that
act on a system or changes in its properties. The word system, which will
be use often in the text, is a passe-partout term that can mean a physical,
chemical, mechanical, biological or economical process but is also used to
identify the mathematical models which are behind the process itself. An
easy example of a control system from our common experience is our house.
Houses are regulated by thermostats so that the inside temperature remains
constant, notwithstanding variations in the outside weather conditions or
changes in the situation in the house: doors that may be open or closed,
number of persons present in a room, activity in the kitchen, etc.

In this thesis a central role is played by a specific property which some
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solutions of PDEs display: the Free Boundary or Dead Core. This itself is
a huge field of study in Mathematics which have seen many contributions.
This property is intrinsically connected with the nonlinear character of such
PDEs since the linear theory does not present this aspect. All problems we
discuss in this work are in fact of nonlinear nature.

The general form of the PDE we encounter in this thesis is

∂ψ(y)

∂t
− div a(y,∇y) + f(y) = g(x, t), (14)

where ψ, a, f, g are different structural functions which change according to
the chapter, and y is the solution of the equation. Equation (14) can be of
parabolic or elliptic type depending on whether or not ψ is the null function,
i.e., ψ ≡ 0. The boundary conditions and initial data which couple equation
(14) will also depend on the problem under study.

Most of the results of this memoir are related to papers produced by this
author in collaboration with his advisers and other specialists. In some oc-
casions the version presented here improves the already published version.
Here is the list of related papers:

(Chapter 1):

· J.I. Dı́az, T. Mingazzini and Á. M. Ramos, On the optimal control
for a semilinear equation with cost depending on the free boundary,
NETWORKS AND HETEROGENEOUS MEDIA Vol. 7, Number 4,
December 2012.

(Chapter 2):

· J.-M. Coron, J. I. Dı́az, A. Drici, T. Mingazzini, Global Null Controlla-
bility of the 1-Dimensional Nonlinear Slow Diffusion Equation, Chinese
Annals of Mathematics, 34B(3), 2013, 333-344.

· A. Drici, T. Mingazzini, Feedback Stabilization of the 1-Dimensional
Porous Medium Equation. (Submitted).

(Chapter 3):

· J.I. Dı́az, T.Mingazzini, A criterion on the boundary non-diffusion or
expansion of the support for some reaction-diffusion free boundary
problems, or how the free boundary approaches to the boundary. (In
preparation).
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Chapter 1. We start by modelling a decision-making process about the
policy of an industry. In this situation the owner has to decide how to regulate
the production facing the consecutive emission of pollution, which we can
suppose directly connected to the amount of polluting substances generated
during the activity. We also assume that the pollution is discharged through
a pipe in a pond of water where there is a special area B called the protected
area which cannot be infected due to some regulation law: the penalty for
any infringement of this restriction is punished with a fine proportional to the
volume invaded. The point is to decide how to regulate the rate of production
in order to get the best balance between the gain obtained by a high rate
of production and the loss due to the fine which needs to be paid for the
contamination of B.

Mathematically, this translates into an optimization problem via a cost
functional, which represents the loss of the industry and has to be minimized.
The aim is to decide whether a best solution exists. Although the theory of
minimization is already well studied, we adopt a functional which depends
on the measure of the positivity set of solutions of equation of type (14).
This type of functional is not common in the literature though it is highly
useful.

For the mathematical formulation of the problem we can consider two
main cases, the stationary case and the dynamical case.

In the first one, we assume that the factory has already reached a stable
regime of production. The modelling of the reaction-diffusion-absorption of
the pollutants in water is done through the nonlinear elliptic boundary-value
system

{
− div a(y,∇y) + f(y) = u(x)χω x ∈ Ω,

y = 0 x ∈ ∂Ω,
(15)

where Ω is a bounded domain (open connected) of RN with N ≥ 1 repre-
senting the pond of water, ∂Ω is the boundary of Ω, a : R × RN → R and
f : R → R have to satisfy specific structural conditions. The set ω ⊂ Ω is
the location of the outlet of the discharge tube. The characteristic function
of ω is denoted with χω.

In the dynamical case, we assume that the factory starts its production
from zero (the initial datum is zero) and we analyse the situation at a certain
time T > 0. The mathematical system we use in this case is the nonlinear
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parabolic problem
∂ψ(y)

∂t
− div a(y,∇y) + f(y) = u(x, t)χω (x, t) ∈ QT ,

y = 0 (x, t) ∈ Γ,

y(x, 0) = 0 x ∈ Ω,

(16)

with QT = Ω × (0, T ) for T > 0, Γ = ∂Ω × (0, T ) and ψ : R → R a non-
decreasing function. In both cases y represents the density of the polluting
solution in the water (observed output).

An important assumption which is reflected in the model is the relation
between the size of Ω and the size of ω, the latest being much smaller, as
it represents the cross area of a tube. This observation together with the
assumption that the location of ω is not close to the shore (∂Ω) gives sense
to the fact that the pollution does not reach the coast or, if it does, it is so
low in density that it can be neglected. This fact is brought into the model
through homogeneous Dirichlet boundary condition. This assumption is also
fundamental for the formation of the Free Boundary.

The optimization problem that we set is actually a minimization prob-
lem, which can be seen as a minimization of the losses. The minimization
functional J is composed by two terms, i.e. J = J1 + J2. The first term,
J1, measures the part of B invaded by the pollution and can be informally
thought as a quantity increasing as the amount of pollution u increases. J2

represents the losses which derive from the choice of a low rate of production,
and so it will be a decreasing function of u. The aim is to find an appropriate
u out of a possible bunch of candidates, which minimizes J .

This kind of problem has many applications: catalysis in a porous medium
(see, e.g., Aris [9] and the homogenization results of Dı́az [40] and Conca,
Dı́az, Liñán and Timofte [31]), desalination plants (see, for instance, Bleninger-
Jirka [17] and Dı́az, Sánchez, N. Sánchez, Veneros and Zarzo [46]), other
environmental discharge problems (see, e.g. [16] and [54]), etc.

For the formalization of the cost functional J and for further uses we
introduce the following notation. Given a function y : Ω→ R+ we define:

The positivity set, S(y) = {x ∈ Ω : y(x) > 0};
The null set,N (y) = {x ∈ Ω : y(x) = 0};
The free boundary, F(y) = ∂S(y) ∩ Ω.

(17)

We recall that Ω is a bounded domain, and ω and B are measurable sets.
We also introduce the increasing function G : R+ → R+, such that G(0) > 0.
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If we denote with yu either the solution of problem (1.1) with source term
u(x) or the one of (1.2) at time T with source term u(x, t), the minimization
functional reads as follows

J(u) =

∫
Ω

χS(yu)∩B(x) dx+

∫
Ω

1

G(yu)
dx. (18)

Our problem is to find
min
u∈Uad

J(u),

where Uad is the set of admissible controls. We prove that when Uad is any
compact subset of the cone K = (L∞+ (QT ); || · ||L1(QT )) ⊂ L1(QT ), we can find
a minimum for J .

We then take a slightly different functional, J∗, with similar structure to
J but whose first term is

J∗1 =

∫
Ω

χN (yu)∩B(x). (19)

and the second term is J∗2 which we assume continuous and increasing in
yu. The problem in this case is that the functional y 7→

∫
Ω
χN (y)∩B(x) is not

lower semicontinuous in L1(Ω).
We introduce a condition on the family of solutions {yn} ⊂ L1(Ω) which

guarantees not only the semicontinuity but also the continuity of the null set.
To be more precise, under this condition, if yn → y in L1(Ω) then∫

Ω

|χN (yn)(x)− χN (y)(x)|dx→ 0, as n→∞.

The idea is to provide the family of functions with a “not-arbitrarily-flat”
condition near the zero level set, an instrument which comes from the works
of Caffarelli [24], [25], Brezzi and Caffarelli [23], Phillips [67], Rodrigues [69]
and Nochetto [65], [64], among other authors. This condition substantially
forbids the level sets close to zero to be too big.

We conclude the first chapter with some numerical implementation of the
minimization problem of functional (18) for the elliptic problem when (15)
has the form {

−∆y(x) + f(y(x)) = u(x)χω in Ω,

y = 0 on ∂Ω,
(20)

with f(y) = |y|q−1y, q ∈ (0, 1). We study the cases when Ω is a bounded
interval of R and when it is a bounded square of R2. For the function G
appearing in J1 we choose G(y) = (1 + ky) with k > 0.
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Chapter 2. In this chapter we focus on the “global null controllability”
and stabilization of the Porous Medium Equation (PME) in one spacial di-
mension under different boundary type conditions. The PME is a specific
formulation of (14) where ψ(y) = y1/m with m > 1, a(u,∇u) = ∇u, f ≡ 0.
This equation may be used to model different processes, from nonlinear fil-
tration in porous media to nonlinear heat transfer.

We underline the degenerate character of this equation which is what
makes the problem of controllability and stabilization not easy at all. Actu-
ally, there are really few works in the literature concerning controllability of
such type of equations.

To prove the global null controllability for this equation with appropri-
ate boundary and interior controls, we applied different techniques borrowed
from the theory of nonlinear, nondegenerate PDEs ([11]) and from the Con-
trol Theory for finite dimensional systems (Return Method: see [34] and its
references).

Specifically, we want to show how a combined action of boundary controls
and a spatially homogeneous internal control may allow the global extinction
of the solution (the so-called global null controllability) in any prescribed
temporal horizon T > 0. We prove the global null controllability for the
following two control problems

PDD


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
y(0, t) = v0(t)χI(t) t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(21)

and

PDN


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
(ym)x(0, t) = 0 t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(22)

where I := (t1, T ) with t1 ∈ (0, T ), m ≥ 1 and χI is the characteristic
function of I. In both problems, y represents the state variable and UDN :=
(uχI , 0, v1χI), respectively UDD := (uχI , v0χI , v1χI), is the control variable.

We emphasize the fact that the internal control u(t) has the property to
be independent of the space variable x and that all the controls are active only
on a part of the time interval. However, since the systems are null controllable
in arbitrarily fixed time, the localized form of the control u(t)χI(t) (the same
for the boundary controls) on a subinterval of [0, T ] is more an emphatic
than a real difficulty. It serves mostly to underline that the controls are not
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active in the first time lapse. In the same way, it could be possible to take a
control interval (t, t) with t, t ∈ (0, T ) or even more generally three different
intervals, one for each control v0, v1, u, such that the intersection of the three
is not empty.
The main results of this chapter is that any non-negative initial data which
belongs to the space H−1(0, 1) can be steered to zero at any time using a
combinations of the three one dimensional controls appearing in (21) or the
two in (22).

As already said, the approach followed is mainly based on the so-called
return method introduced in [32, 33] (see [34, Chapter 6] for information
on this method). Our version of the return method consists in choosing a
suitable one parameter family of trajectories a(t)/ε, which is independent of
the space variable, going from the initial state y ≡ 0 to the final state y ≡ 0.
We shall use the controls to reach one of such trajectories, no matter which
one, in some positive time smaller than the final T .

We then pass to analyse a simple procedure to stabilize the zero state for
the porous medium equation with homogeneous Neumann boundary condi-
tion. We consider the following control system

yt − (ym)xx = u, (x, t) ∈ Q,
(ym)x(0, t) = 0, t ∈ (0,∞),

(ym)x(1, t) = 0, t ∈ (0,∞),

y(x, 0) = y0, x ∈ (0, 1),

(23)

where Q := (0, 1) × (0,∞) and m > 1. The initial datum y0 can be of
changing sign, so in order to have the well-posedness of the problem (23),
the nonlinear term ym must be intended as |y|m−1 y.

For u ≡ 0, the behaviour of the solutions of (23) is well described in [3]
where it is shown that if y0 ∈ L∞(Ω), with Ω ⊂ RN, N ≥ 1 then

y(·, t) Lp−→ 1

|Ω|

∫
Ω

y0 dx, for t→∞.

This convergence can be even in the L∞-norm if N = 1 (for N > 1, one
needs the initial data to be strictly positive in Ω). Also, different rates of
homogenization are proved depending on the mean of the initial data. For
the case of zero mean, they showed the existence of C > 0 such that for every
y0 ∈ L∞(Ω) with

∫
Ω
y0 dx = 0

‖y(·, t)‖L∞(Ω) ≤
C ‖y0‖L∞(Ω) ‖y0‖−1

Lm+1(Ω)(
c(m− 1)t+ ‖y0‖1−m

Lm+1(Ω)

) 1
m−1

.
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Our purpose is to stabilize the system to zero independently of the initial
data, which will be chosen in a proper energy space. To do that, we will use
the internal feedback control u : y 7→ u(y) ∈ R, u(t) := u(y(·, t)), constant
in space, given by

u(t) := −
∫ 1

0

ym(x, t) dx, (24)

arriving to the following decay rate for the solution

‖y(·, t)‖Lm+1(0,1) ≤ Ct−
1

m−1 , (25)

We conclude this chapter studying the null controllability for a different
type of nonlinearity, whose ellipticity value does not depend any more on the
value of the solution but of its first derivative. To begin with, we treat the
case of non-degenerate equations and in a second moment we address the
problem of the p-laplacian equation, showing for the non-degenerate system
(26) the local null controllability and for (27) the global null controllability
under the assumption that y0x ≥ 0.

yt − a(yx)x = u(t) (x, t) ∈ Q,
yx(0, t) = 0 t ∈ (0, T ),

yx(1, t) = v(t) t ∈ (0, T ),

y(x, 0) = y0 x ∈ (0, 1).

(26)


yt − (|yx|p−2yx)x = u1(t)x+ u2(t) (x, t) ∈ Q,
yx(0, t) = v0(t) t ∈ (0, T ),

yx(1, t) = v1(t) t ∈ (0, T ),

y(x, 0) = y0 x ∈ (0, 1).

(27)

In both systems Q = (0, 1)× (0, T ). In the first one, the non-degeneracy is
expressed through a : R→ R which satisfies the uniform ellipticity condition
0 < µ ≤ a′(x). The controls in the systems are represented by the functions
u, v and u1, u2, v1, v2 respectively.

Chapter 3. This chapter does not focus on direct aspects of Control
Theory but goes to study very useful tools for this field. In fact, the topic
is the existence and behaviour of very weak solutions of certain semilinear
elliptic and parabolic problems and of their free boundary when the data are
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very irregular. The point is that many times when dealing with exact con-
trollability problems or optimal control problems, the opportunity to choose
very irregular controls is very useful because it gives much many degrees of
freedom in operating on the system.

The ultimate goal is to describe the way the free boundary of solutions
to some partial differential equations behaves depending on the trace of the
solutions. We consider the problems{

−Lu+ λβ(u) 3 f in Ω,
u = h on ∂Ω,

(28)

and the associated parabolic version
ut − Lu+ λβ(u) 3 f(x, t) in QT ,
u = h(t, x) on ΣT ,
u(x, 0) = u0(x) on Ω.

(29)

In both cases, L = div(A∇u) is a uniformly elliptic operator and β(u) is a
maximal monotone graph of R2 such that 0 ∈ β(0): β is given by

β(u) = λ |u|q−1 u (30)

in case of reaction-diffusion equations and by

β(u) =


0 for u < 0,

[0, 1] for u = 0,

1 for u > 0,

(31)

in case of the Obstacle Problem, for example.
As mentioned before, the above problems give rise to a free boundary

defined as the boundary of the support of the solution. In the parabolic case
definitions (17) apply to u(·, t). We assume always that

S(h) ( ∂Ω,

respectively
S(h(t, ·)) ( ∂Ω, for a.e. t > 0.

To be more precise, our main goal is to find some sufficient criterion on
the behaviour of h near the boundary of its support ensuring that the free
boundary F(u) is in contact with ∂S(h). In this way the support of the
datum is not diffused on the boundary of the domain and we would have

∂S(u) ∩ ∂Ω = S(h).
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It is what we can call the non-diffusion on the boundary of the support prop-
erty. In addition, we want to give some sufficient conditions ensuring the
opposite qualitative behaviour, i.e., to find conditions on h implying that
there is a strict expansion of the support S(h) on the boundary ∂Ω. In other
words, we want to know cases in which F(u) has no contact with ∂S(h) and
so

S(h) ( ∂S(u) ∩ ∂Ω.

We call this phenomenon the expansion on the boundary of the support prop-
erty. In some sense, this research can be considered as a natural continuation
of the study of the so called non-diffusion of the support property (see [39]
and [5]) in the case where h ≡ 0; under a suitable behaviour of f near the
boundary of its support S(u) = S(f). In the case of parabolic free boundary
problems this question is related with the behaviour of the free boundary for
small times (the so called waiting time property) and received a great atten-
tion in the last 40 years (see, e.g., the monographs [70], [8] and their many
references). The only paper in the previous literature about such boundary
qualitative behaviour we are aware of is [48] in which they proved the expan-
sion on the boundary of the support property for problem (28) in the special
case of Lu = ∆u, β = uq, h given by the Heaviside function and Ω the half
plane R×R+. As we shall see later, this property also holds even for suitable
continuous boundary data h.

The delicate point in our study is that we want to allow the boundary
datum to be discontinuous and so the notion of the trace of the solution must
be taken in a very general framework (something which, in our opinion, is not
discussed enough in [48]). We follow the approach proposed by Häım Brezis,
in an unpublished paper (1972) profusingly mentioned in the literature (see
[71], [61] and [42]), which holds for semilinear second order boundary value
problems with boundary data in L1(∂Ω) (later extended to measures on ∂Ω).
The main idea is to multiply by a “regular” test function and to integrate
twice by parts, see Definition 3.0.5

We can prove existence and uniqueness, in similar way to [20], [71] and
[61], for any f and h in L1(Ω; ρ)× L1(∂Ω), where ρ is the distance function
from the boundary. Moreover continuous dependence from the data and
comparison principle hold (see Theorem 3.0.6).

For the study of the behaviour of the solution close to the boundary of
S(h) we consider the particular case where Ω = R × [0,∞) is the upper
half plane, the matrix A is constant, there is no source term f and the
nonlinear term β(u) is given by (30) or (31). For what concern the boundary
datum, we are interested in the case of h satisfying, h ∈ L∞(∂Ω), h(x1) =
0 on (−∞, 0) and h(x1) > 0 on (0,+∞).
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The reason why we consider boundary data in L∞(∂Ω) instead of in
L1(∂Ω) (remember that now ∂Ω is unbounded, so L∞(∂Ω) * L1(∂Ω)) is
that we know the explicit solution in the unperturbed linear case (λ = 0,
L = ∆, f ≡ 0) with boundary data given by the Heaviside function. Such
solution is given by

u(x1, x2) = 1− 1

π
arctan

(
x1

x2

)
(32)

(the result can be found in [48] formula (2.6)). Having at disposal an explicit
solution like (3.14) is really useful in the study of the behaviour of general
solutions close to the point x = (0, 0). In addition, since our main interest, as
already said, is specifically the behaviour near the boundary of the support
∂S(h) and not in the whole Ω, we shall assume also that h is non-decreasing
and that h(x1) = c+ > 0 for x1 ≥ δ > 0. On an unbounded domain we
introduce the notion of limit very weak solution of problem (28) given by
u = limn→∞ un, where un is the solution of the truncated problem, i.e., the
problem studied on a bounded rectangle with boundary datum which is a
truncation itself of the original one. In Theorem 3.0.8 we give the existence
result and the comparison principle for this problem.

Our main result on the qualitative behaviour of the solution of (28) is

Theorem 1. Assuming the setting just explained we have that there exist
four positive constants C < C, ε < ε and two boundary points x1,ε, x1,ε > 0,
such that :

i) If h(x1) ≥ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(x) ≥ ε for a.e. x1 ∈

(x1,ε,+∞) then the expansion on the boundary of the support property holds.

ii) If h(x1) ≤ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(x1) ≤ ε for a.e. x1 ∈

(x1,ε,+∞) then the non-diffusion on the boundary of the support property
holds.
In both cases, q ∈ (0, 1) when β is given by (3.8) and q = 0 when β is chosen
as (31).

Concerning the parabolic problem, we investigate existence and unique-
ness of solutions on bounded domain, the stabilization of solutions for t→∞
to the solution of the stationary problem and the qualitative behaviour of so-
lutions in a context similar to the one already introduced for the elliptic case.
The concept of very weak solution on bounded domains and the concept of
limit very weak solution on cylinders whose cross section is the half plane are
very similar to the ones adopted for the elliptic case. The results concerning
existence and uniqueness as well as the study of the boundary behaviour
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follow the same strategies applied for the elliptic case, under appropriate
hypothesis on the initial datum.

We point out that the analysis of the free boundary studied in this chap-
ter can be of great interest in the study of some optimal control problems.
Consider, for example, a functional J as the one given in Chapter 1 but with
B being a neighbourhood in R × [0,∞) of the interval (−k, 0) × {0}, and
assume that the control variable this time is the boundary value h, with h
as in Theorem 1. Then, in the minimization problem we will not consider
those controls h whose growth near x1 = 0 is too fast while we will prefer
those with bigger mass at infinity and low growth close to the origin.



Chapter 1

Optimal Control and Free
Boundary

This chapter has been written starting from the paper:

· J.I. Dı́az, T. Mingazzini and Á. M. Ramos, On the optimal control
for a semilinear equation with cost depending on the free boundary,
NETWORKS AND HETEROGENEOUS MEDIA Vol. 7, Number 4,
December 2012.

1.1 Motivation and formulation of the prob-

lem

The topic of this chapter lies in the intersection of three branches of Math-
ematics: Partial differential equations, optimal control, and free boundary
problems. Indeed we design an optimal control problem whose cost func-
tional depends in some way on the support of solutions to quasilinear elliptic-
parabolic problems. A crucial role is played by the specific forms of the dif-
ferent non-linearities appearing in the differential equation. In fact, a right
balance between them gives rise to the existence of a free boundary, in this
case identified with the set separating the null part of the solution from the
part where it is different from zero. It is exactly this phenomenon which gives
sense to the problem. In a linear elliptic-parabolic problem, for example, or
in other cases of non-linear problems, the cost functional would be trivial
because the solution possesses an empty null set due to an infinite speed of
propagation or because it satisfies a strict comparison principle. Let us take,
for example, the heat equation in Rn × R+,

yt −∆y = u,

23
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with u being any non-negative function and y(0) ≥ 0, both belonging to
suitable spaces in order to have existence and uniqueness. It is a known
fact that the solution y will satisfies y(x, t) > 0 for all (x, t) ∈ Rn × (0,∞).
Therefore, a functional which depends on S(y) = {(x, t) ∈ Rn × (0,∞) :
y(x, t) > 0} or any subsets of it would not have any sense, as it would
contribute in the same way for all the solutions whenever u ≥ 0.

Our interest in this type of problems sprang from physical-chemical prob-
lems. We consider a toy model consisting of a factory polluting water, gas
or ice. The factory is located next to a pond of water like a lake and it has
a discharge tube which ends into the water.

Suppose there is a specific region B inside the water which cannot be
polluted because of some reason: imagine some area close to a holiday resort
where people are allowed to swim. This area is referred to as a protected
region. Every infringement of this restriction is sanctioned with a fine which
is proportional to the part of B invaded.

The company has to decide how to regulate the rate of production, which
we can suppose directly connected to the amount of polluting substances
generated during the activity of the industry, in order to get the best balance
between the gain obtained by a high rate of production and the loss due to
the fine which needs to be paid for the contamination of B.

For the mathematical formulation of the problem we can consider two
main cases, the stationary case and the dynamical case.

In the first one, we assume that the factory has already reached a stable
regime of production. The important choice is which should it be. The
modelling of the reaction-diffusion-absorption of the pollutants in water is
done with the nonlinear elliptic boundary system{

− div a(y,∇y) + f(y) = u(x)χω x ∈ Ω,

y = 0 x ∈ ∂Ω,
(1.1)

where Ω is a bounded domain (open connected) of RN with N ≥ 1 rep-
resenting the pond of water, ∂Ω is the boundary of Ω, a : R × RN → R
satisfies hypothesis (1.5) and f : R→ R is a non decreasing function satisfy-
ing (1.6). The set ω ⊂ Ω is the location of the outlet of the discharge tube.
The characteristic function of ω is denoted with χω,

χω(x) =

{
1 x ∈ ω,
0 x ∈ Ω \ ω.

In the dynamical case, we assume that the factory starts its production
from zero (the initial datum is zero) and we analyze which is the situation
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at a certain time T > 0. The mathematical system we use in this case is the
nonlinear parabolic problem

∂ψ(y)

∂t
− div a(y,∇y) + f(y) = u(x, t)χω (x, t) ∈ QT ,

y = 0 (x, t) ∈ Γ,

y(x, 0) = 0 x ∈ Ω,

(1.2)

with QT = Ω × (0, T ) for T > 0, Γ = ∂Ω × (0, T ) and ψ : R → R a non
decreasing function. In both cases y represents the density of the polluting
solution in the water.

An important assumption which is reflected in the model is the relation
between the size of Ω and the size of ω, the latest being much smaller. The
reason is obvious if we think that the size of ω represents the cross area of a
tube. This observation together with the assumption that the location of ω is
not close to the shore (∂Ω) gives sense to the fact that the pollution does not
reach the coast or, if it does, it is so low in density that it can be neglected.
This fact is brought into the model through homogeneous Dirichlet boundary
condition.

Another aspect in the model is that ω and B are disjoint: it would be a
nonsense to let the discharge tube pour directly inside the protected region.
This last fact could be anyway neglected as it doesn’t affect the solution of
the model.

The optimization problem that we set is actually a minimization prob-
lem, which can be seen as a minimization of the losses. The minimization
functional J is composed by two terms, i.e. J = J1 + J2. The first term,
J1, measures the part of B invaded by the pollution and can be informally
thought as a quantity increasing as the amount of pollution u increases. J2

represents the losses which derive from the choice of a low rate of production,
and so it will be a decreasing function of u. The aim is to find an appropriate
u out of a possible bunch of candidates, which minimizes J .

We point out that this minimum might be not unique. What we have
done is to prove the existence of a minimum but we did not investigate the
question of uniqueness as it seems to be a too hard point given the high
generality of our setting.

The problem under consideration is relevant in many different applied
contexts: catalysis in a porous medium (see, e.g., Aris [9] and the homoge-
nization results of Dı́az [40] and Conca, Dı́az, Liñán and Timofte [31]), de-
salination plants (see, for instance, Bleninger-Jirka [17] and Dı́az, Sánchez,
N. Sánchez, Veneros and Zarzo [46]), other environmental discharge problems
(see, e.g. [16] and [54]), etc.



26 CHAPTER 1. OPTIMAL CONTROL AND FREE BOUNDARY

For the formalization of the cost functional J and for further uses we
introduce the following notation. Given a function y : Ω→ R+ we define:

The positivity set, S(y) = {x ∈ Ω : y(x) > 0};
The null set,N (y) = {x ∈ Ω : y(x) = 0};
The free boundary, F(y) = ∂S(y) ∩ Ω.

(1.3)

We recall that Ω is a bounded domain, and ω and B are measurable sets.
We also introduce the increasing function G : R+ → R+, such that G(0) > 0.
If we denote with yu either the solution of problem (1.1) with source term
u(x) or the one of (1.2) at time T with source term u(x, t), the minimization
functional reads as follows

J(u) =

∫
Ω

χS(yu)∩B(x) dx+

∫
Ω

1

G(yu)
dx. (1.4)

Our problem is to find

min
u∈Uad

J(u),

where Uad is the set of admissible controls: It is a compact subset of an
energy functional space with the constraint u ≥ 0. This property of the
controls guarantees that yu ≥ 0 (see Remark 1.2.3).

Remark 1.1.1. Instead of (1.4) we could have considered a functional whose
first term were −

∫
Ω
χN (yu)∩B(x) dx.

1.2 Well-posedness and free boundary

There are many references dealing with degenerate quasilinear equations,
their well-posedness and qualitative properties. We recall, without trying to
be complete, the monograph of DiBenedetto [47] were the porous medium
type equations and the p-laplacian type equations are treated. For the case
of doubly nonlinear equations we cite [4],[66] and [27] where the concept of
entropy solution was developed. We will refer mainly for the existence and
uniqueness to [7] where the authors study triply nonlinear degenerate elliptic-
parabolic-hyperbolic equations. In general the concept of entropy solution
is useful for the uniqueness of solutions which a weak formulation may not
have.

We will give the definition of entropy solution and then a well-posedness
result only for problem (1.2). All definitions and results for (1.1) can be
obtained upon setting ψ ≡ 0, u(t, ·) ≡ ũ(·). First of all we impose the
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structural assumption on the nonlinearities appearing in (1.1) and (1.2). Let
us start with a : R× RN → RN :

a is continuous with a(r, 0) = 0;

(a(r, ξ)− a(r, η)) · (ξ − η) ≥ 0;

There exist p ∈ (1,∞), C1 > 0, C2 ≥ 0, such that

a(r, ξ) · ξ ≥ C1|ξ|p,
|a(r, ξ)| ≤ C2(|ξ|p−1);

There exists C ∈ C(R2,R) such that

(a(r, ξ)− a(s, η)) · (ξ − η) + C(r, s)(1 + |ξ|p + |η|p)|r − s| ≥ 0.

(1.5)

All these relations should be valid for all ξ, η ∈ RN , r, s ∈ R. In addition we
impose the following restrictions on the remaining terms:

ψ : R→ R continuous, non-decreasing with ψ(0) = 0 and ψ(r) > 0, r > 0;

f : R→ R continuous, non-decreasing with f(0) = 0, f(±∞) = ±∞;

u ∈ L∞(QT ).
(1.6)

We will use the following notation: for c, z ∈ R

z+
c = (z − c)+ = max(z − c, 0), z−c = (z − c)− = −min(z − c, 0)

H+
c (z) =

{
1, z > c,

0, z ≤ c,
H−c (z) =

{
0, z ≥ c,

−1, z < c,

For any set X we define C∞0 (X) as the space of infinitely differentiable
function whose support is contained in X.

Definition 1.2.1. An entropy solution of (1.2) is a measurable function
y : QT → R satisfying

(P1) y ∈ L∞(QT ) ∩ Lp(0, T ;W 1,p
0 (Ω));

(P2) For all ξ ∈ C∞0 ([0, T )× Ω)∫
QT

ψ(y)∂tξ − a(y,∇y) · ∇ξ − f(y)ξ dx dt+

∫
QT

uχωξ dx dt = 0;
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(P3.1) For all (c, ξ) ∈ R+ × C∞0 ([0, T )× Ω), ξ ≥ 0,∫
QT

ψ+
c (y)∂tξ −H+

c (y)a(y,∇y) · ∇ξ −H+
c (y)f(y)ξ dx dt

+

∫
QT

H+
c (y)uχω ξ dx dt ≥ 0.

(1.7)

(P3.2) For all (c, ξ) ∈ R− × C∞0 ([0, T )× Ω), ξ ≥ 0,∫
QT

ψ−c (y)∂tξ −H−c (y)a(y,∇y) · ∇ξ −H−c (y)f(y)ξ dx dt

+

∫
QT

H−c (y)uχω ξ dx dt ≥ 0.

(1.8)

(P3.3) For all (c, ξ) ∈ R× C∞0 ([0, T )× Ω), ξ ≥ 0, (1.7) and (1.8) hold.

Proposition 1.2.2. Assume that (1.5) and (1.6) hold. For each u ∈ L∞(QT )
there exits one entropy solution to problem (1.2) and it is unique in the sense
that if y and ŷ are two entropy solutions, then ψ(y) ≡ ψ(ŷ) and f(y) ≡ f(ŷ).

Moreover, let us assume again that y and ŷ are two solutions correspond-
ing to the data u and û respectively. Then for a.e. t ∈ (0, T ),∫

Ω

(ψ(y)− ψ(ŷ))+(t) +

∫
Qt

(f(y)− f(ŷ))+

≤
∫
Qt

H+(y − ŷ)(u− û)χω,

(1.9)

where Qt = Ω× (0, t).

The proof of this result can be found in [7].

Remark 1.2.3. From Proposition 1.2.2, we can deduce two interesting prop-
erties of solutions. The first one is the positiveness of solutions, which means
that if the source term u is non negative then the same property is true for
the solution y. To show this, we notice that if we set u ≡ 0 we have that the
corresponding solution is y ≡ 0. Now we take another solution ŷ with û ≥ 0.
We plug these two solutions in (1.9) and get∫

Ω

(−ψ(ŷ))+(t) +

∫
Qt

(−f(ŷ))+ ≤
∫
Qt

H+(−ŷ)(−û)χω. (1.10)
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From the definition of H+ and the fact that û ≥ 0 we see that the right-hand
side of (1.10) is non positive, while the left-hand side is clearly non negative.
This implies that both sides are zero. Moreover, as both term in the left-
hand side are non negative, each of them is zero. From the properties of ψ
we deduce that ŷ ≥ 0.
The second property is the continuous dependence of solutions from the
initial data and the source term. Once again we take two general solutions
y, ŷ with source term u, û respectively. We put them in (1.9) twice, firstly
ordered in a way and then with exchanged position. We get two inequalities
and we sum them up to obtain

||ψ(y)(t)− ψ(ŷ)(t)||L1(Ω) + ||f(y)− f(ŷ)||L1(Qt) ≤ ||u− û||L1(ω×(0,t)). (1.11)

1.2.1 Free boundary and finite speed of propagation

Under suitable conditions, there occurs a phenomenon called localization of
solutions, i.e., S(yu) ∩ Ω is strictly contained in Ω for some u ∈ Uad. We
present first the result for the elliptic system and then for the parabolic one,
both of them could be find in [8].

Suppose that y ≥ 0 is a solution of (1.1) with source term u ≥ 0. Let us
fix the attention on a point x0 ∈ Ω and call d0 = dist (x0, ∂Ω). We add the
following structural assumption:

C|r|σ+1 ≤ f(r)r, for all r ∈ R, (1.12)

for some σ > 0 and C > 0. We define the energy

E(d) =

∫
Bd(x0)

a(y,∇y) · ∇y dx, (1.13)

whereBd(x0) is the open ball of radius d centered in x0. We have the following
result which guarantees the presence of a dead core, i.e., a non empty set of
points in Ω where the solution vanishes.

Proposition 1.2.4. Let u ∈ Uad be such that u ≡ 0 in Bd1(x0) for some
0 < d1 < d0. Assume that (1.12) holds with σ < p− 1 and that

||u||
(1+σ)(1−γ)

σ

L
1+σ
σ (Bd(x0))

≤ ε(d− d1)
1−γ
γ , for all d ∈ (d1, d2),

for some d2 ∈ (d1, d0),

γ =
(1− θ)(p− σ − 1)

(p− 1)(σ + 1)
and θ =

N(p− σ − 1) + σ + 1

N(p− σ − 1) + p(σ + 1)
.
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Then, if y(x) is the solution of (1.1) and E is its corresponding energy (see
(1.13)), there exist Ē, ε̄ such that, if E(d0) ≤ Ē and ε ≤ ε̄, then

y(x) = 0, for all x ∈ Bd1(x0).

Proof. See [8].

Remark 1.2.5. For a small subset ω, uχω is mostly zero in Ω and this,
combined with Proposition 1.2.4, produces, for any solution with not too big
energy, the presence of a dead core (see Example 1).

Example 1. Let us consider the one dimensional quasilinear system −
d

dx
(|yx|p−2yx) + |y|q−1y = us in (−2, 2),

y(−2) = y(2) = 0,
(1.14)

where q ∈ (0, 1), p ≥ 2 and us is given by

us(x) =

{
2(p− 1)cp−1

2 xp−2 + (c1 − c2x
2)q x ∈ (−1/2, 1/2),

0 x ∈ [−2,−1/2] ∪ [1/2, 2].

The two positive constant c1, c2 appearing in the formula for us are actually
functions of a parameter xs ∈ (1/2, 2) and are given by

c1 =
c2

4
+ k

(
1− 1

2xs

) p
p−q−1

,

c2 =
kp

x0(p− q − 1)

(
1− 1

2xs

) q+1
p−q−1

,

k =

(
xps

(p− q − 1)p

pp−1(q + 1)(p− 1)

) 1
p−q−1

.

(1.15)

The solution of (1.14) is

ys(x) =


c1 − c2x

2 x ∈ (−1/2, 1/2),

k

(
1− |x|

xs

) p
p−q−1

+

x ∈ [−2,−1/2] ∪ [1/2, 2].

In fact, ys ∈ C1,1([−2, 2]) and satisfies (1.14) pointwise in (−2,−1/2) ∪
(−1/2, 1/2) ∪ (1/2, 2).
From the formula of us we see that us ≥ 0 and in particular us = 0
in (−2, 1/2) ∪ (1/2, 2). If we look at the solution, we see that N (y) =



1.3. EXISTENCE OF A MINIMUM 31

(−2,−x0)∪ (x0, 2). In this specific case, the energy of ys in a neighbourhood
of a point x0 is

E(d) =

∫
Bd(x0)

|ysx|pdx

= 2cp2 +
kp

xp−1
s

pp

(p− q − 1)p−1(p(q + 2)− (q + 1))

(
1− 1

2xs

) p(q+2)−(q+1)
p−q−1

.

(1.16)
From this last expression we see that in order to increase the energy of ys in

a neighbourhood of a point one has to increase the constants c2 and k, which
is equivalent to take bigger values of xs. So even if S(us) = [−1/2, 1/2] for
all choices of xs > 1/2, N (ys) disappears for xs ≥ 2.

For the parabolic system, under suitable hypothesis, we are going to show
that the solutions have the property of finite speed of propagation. Starting
from the zero state at time zero, the solution at time T is not strictly pos-
itive whenever u(x, t) is not identically zero. In order to get this result, we
introduce a new structural condition:

C|r|k+1 ≤ ψ(r)r −
∫ r

0

ψ(τ) dτ ≤ C̄|r|k+1 for all r ∈ R, (1.17)

with C, C̄, k > 0.

Proposition 1.2.6. Let y0 be an initial data not necessarily identically zero.
Assume that y0(x) = 0 for x ∈ Bd1(x0), 0 < d1 < d0, and that (1.17) holds
with 1 + k < p. If u(x, t) = 0 in Bd1(x0) × (0, T ), then there exist a time
0 < T ∗ ≤ T and a decreasing function d(t) : (0, T ∗) → (0,∞) such that the
solution y of (1.2) is non negative and

y(x, t) = 0 for all x ∈ Bd(t)(x0), and any t ∈ (0, T ∗).

An estimation of d(t) and T ∗ is possible and it depends on different pa-
rameters of the model and energies of the solution.

1.3 Existence of a minimum

We start this section by giving the family of admissible controls. Let us
consider the cone K = (L∞+ (QT ); || · ||L1(QT )) ⊂ L1(QT ), which is the set of
non negative bounded functions with the metrics given by the L1 norm. We
define

Uad := any compact subset of K. (1.18)
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Theorem 1.3.1. Under structural assumptions (1.5), (1.6), there exists at
least one minimum of J in Uad.

To have a better understanding of J we focuse first on the behaviour of
J1. In the following lemma we show a sort of semicontinuity result for J1.

Lemma 1.3.2. Consider a sequence {yn}n ⊂ L1
+(Ω) = {y ∈ L1(Ω), y ≥ 0}

converging to y ≥ 0 in L1(Ω). Then

lim inf
n→∞

LN(S(yn) ∩B) ≥ LN(S(y) ∩B), (1.19)

where LN stands for the Lebesgue measure.

Proof. We start from a result which can be found in [26]. For 0 < δn → 0,
let us define

Γn = {x ∈ Ω : yn(x) ≤ δn}.

Then one have

LN(Γn \ N (y))→ 0, as n→∞. (1.20)

We show now that (1.20) implies (1.19). N (yn) ⊂ Γn and it is immediate to
see that (1.20) implies

LN(N (yn) \ N (y))→ 0, as n→∞. (1.21)

Of course, if we call En := N (yn) \ N (y), we have that

· LN(En)→ 0, as n→∞,
· N (y) ⊃ N (yn) \ En,
· S(yn) ∩ En = ∅.

(1.22)

If we look at the second line in (1.22) and we take the complement of
both side, we notice that it gives S(y) ⊂ S(yn) ∪ En, which, due to the
subadditivity of the measure, implies

LN(S(y) ∩B) ≤ LN(S(yn) ∩B) + Ln(En ∩B).

This together with the first expression of (1.22) gives (1.19).

Now we are ready to give the proof of Theorem 1.3.1.
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Proof of Theorem 1.3.1. Let {un} ⊂ Uad be a minimizing sequence for J .
As Uad is compact, there exists a subsequence (which we still denote with
{un}) which converges to a function u ∈ Uad in L1 norm. As un → u, from
Proposition 1.2.2 we have ψ(yn(·, T ))→ ψ(y(·, T )) in L1(Ω), where y and yn
are the solutions of (1.2) with source term u and un respectively. From now
on, we will refer to yn(·, T ) and y(·, T ) as yun and yu.

We can extract another subsequence such that ψ(yun) → ψ(yu) a.e. in
Ω, and this, for the continuity of ψ, implies that yun → yu a.e.. Function

1
G(y)

is uniformly bounded for all 0 ≤ y ∈ L1(Ω) because G(0) > 0 and G is
increasing, which means that

0 ≤ 1

G(y)
≤ 1

G(0)
.

So, using the Lebesgue dominate convergence theorem, we get∫
Ω

1

G(yun)
dx→

∫
Ω

1

G(yu)
dx.

From Lemma 1.3.2 we already know that∫
Ω

χS(ψ(yu))∩B(x) dx

is lower semicontinuous in L1(Ω). Due to the structure assumption on ψ (see
(1.6)), we have that S(ψ(yu)) = S(yu), and hence∫

Ω

χS(ψ(yu))∩B(x) dx =

∫
Ω

χS(yu)∩B(x) dx.

To conclude, we obtain that

J(un)→ min
v∈Uad

J(v) ≥ J(u).

Hence J(u) = minv∈Uad
J(v).

1.3.1 A related problem

One can ask what would happen if, instead of functional J we take a slightly
different one, J∗, with similar structure to J ,

J∗ = J∗1 + J∗2 =

∫
Ω

χN (yu)∩B(x) +

∫
Ω

G(yu). (1.23)
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This time, J∗1 measures the part of B invaded by the null set of yu while J∗2 is
increasing in yu. Minimising one of the two terms singularly would increase
the value of the other one. So, also in this case the minimisation problem of
J∗ is not trivial. One can see J∗ as specular to J , indeed when u increases
J1(u) increases and J2 decreases, while in J∗ is the opposite.

The difficulty now is that the functional y 7→
∫

Ω
χN (y)∩B(x) is not lower

semicontinuous in L1(Ω). Consider the following example:

Example 2. Let us take for N = 1 the semilinear problem{
−ϕ′′(r) + ϕq(r) = u(r) r ∈ (−2, 2),
ϕ(−2) = ϕ(2) = 0,

with q ∈ (0, 1), which is (1.1) with a(r, q) = q and f(r) = rq.

We set

ϕε(r) =


0 r ∈ (1, 2),

e−
1

1−r r ∈ (1− ε, 1),
C1 − C2r

2 r ∈ (0, 1− ε),
and define ϕε(r) by reflection on the interval (−2, 0). The constants C1 and
C2 have to be chosen so as to make ϕε ∈ C1(−2, 2), which means

C1 = e−
1
ε + e−

1
ε
1− ε
2ε2

, C2 = e−
1
ε

1

2ε2(1− ε) .

In fact, the derivative is

ϕ′ε(r) =


0 r ∈ (1, 2),

− 1

(1− r)2
e−

1
1−r r ∈ (1− ε, 1),

−2C2r r ∈ (0, 1− ε).

To have a continuous derivative it is enough to check that the limit from the
left and the limit from the right in r = (1− ε) coincide. That is to say

2C2(1− ε) =
e−

1
ε

ε2
,

which gives C2. Now to obtain C1, we check the continuity of ϕε in r = (1−ε),
i.e.,

e−
1
ε = C1 −

1− ε
2ε2

e−
1
ε ,
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which gives C1.
We want to check now that these functions satisfy

−ϕ′′ε + ϕqε ≥ 0. (1.24)

On the interval (0, 1−ε) the functions are concave and positive and the result
follows. On (1− ε, 1) we have that

−ϕ′′ε (r) + ϕqε(r) = e−
1

1−r

[
2

(1− r)3
− 1

(1− r)4

]
+ e−

q
1−r

= e−
q

1−r

[
e

q−1
1−r

1− 2r

(1− r)4
+ 1

]
≥ 0,

(1.25)

for 1 − r < 1 − r0 for some r0 > 0. In fact, if we take (1 − r) sufficiently
small,

e
q−1
1−r

1− 2r

(1− r)4
> − e

q−1
1−r

(1− r)4
> −1.

So if we take ε < r0 we obtain (1.24) on the whole interval.
Now it easy to check that uε := −ϕ′′ε + ϕqε → 0 uniformly as ε ↓ 0. On

interval (1, 2) it is evident. On interval (1− ε, 1), for ε sufficiently small, we
deduce from equation (1.25) that

| − ϕ′′ε (r) + ϕqε(r)| ≤ e−
q

1−r ≤ e−
q
ε .

On (0, 1− ε), for ε sufficiently small

| − ϕ′′ε (r) + ϕqε(r)| = |2C2 + (C1 − C2r
2)q| ≤ |2C2 + Cq

1 |

≤ 2
e−

1
ε

ε2
+

(
2e−

1
ε

ε2

)q

≤ 2

(
2e−

1
ε

ε2

)q

.

Hence we can conclude that

| − ϕ′′ε (r) + ϕqε(r)| ≤ 2q+1

(
e−

1
ε

ε2

)q

, for all r ∈ (0, 2),

which goes to zero as ε→ 0.
In addition we see that ϕε → 0. Nevertheless N (ϕε) = ∅, for any ε < r0,

while in the limit it is the whole interval (−2, 2).

Here we want to show a condition that, if satisfied by a family of func-
tion {yn} ⊂ L1(Ω) which converges to y ∈ L1(Ω), guarantees not only the
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semicontinuity but also the continuity of the null set. To be more precise,
we want to show that if yn → y in L1(Ω) then∫

Ω

|χN (yn)(x)− χN (y)(x)|dx→ 0, as n→∞,

or, with a measure notation,

LN(N (y) \ N (yn)) + LN(N (yn) \ N (y))→ 0, as n→∞. (1.26)

We have already seen in the proof of Lemma 1.3.2 that

LN(N (yn) \ N (y))→ 0,

so it remains to show that also the first term in (1.26) goes to zero. The idea
is to provide the family of functions with a “not-arbitrarily-flat” condition
near the zero level set, an instrument which comes from the works of Caf-
farelli [24], [25], Brezzi and Caffarelli [23], Phillips [67], Rodrigues [69] and
Nochetto [65], [64], among other authors.

Definition 1.3.3 (No-flat condition). Let us take L1
+(Ω) ⊃ Y = {yn}n∈N.

We say that Y has the no-flat condition if there exist ε0 > 0 and h : R+ → R+

with lim
t→0

h(t) = 0 such that

LN({x ∈ Ω : 0 < yn(x) ≤ ε}) ≤ h(ε) ∀ε < ε0. (1.27)

Example 3. We give here a very simple family of functions which does not
satisfy the no-flat condition and a family which instead satisfy the no-flat
condition. Let us consider the domain Ω = (0, 1) ⊂ R and define

yn(x) =
1

n
for all x ∈ (0, 1).

For every ε0 > 0, we can find n0 sufficiently big such that 1/n < ε0 for all
n > n0. If we call

mn(ε) := LN({x ∈ Ω : 0 < yn(x) ≤ ε}),

we see that, for all n > n0,

mn(ε) =

{
0 ε ∈ (0, 1/n),
1 ε ∈ [1/n, ε0]

If n→∞, mn(ε)→ 1 for all ε ∈ (0, ε0). Hence (1.27) does not hold.
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On the same domain consider instead, for n ≥ 1,

wn(x) = max(1/n− x, 0) for all x ∈ (0, 1).

Defining in the same way the function mn(ε) we see that, once fixed any
ε0 < 1, if 1/n > ε0 then mn(ε) = ε, if on the other hand 1/n < ε0,

mn(ε) = min(1/n, ε).

It comes naturally to set the bound h(ε) = ε, which satisfies the assumption
of Definition 1.3.3.

Lemma 1.3.4. Let Y satisfy the no-flat condition 1.3.3 and yn → y in
L1(Ω). Then

Ln(N (y) \ N (yn))→ 0, as n→∞. (1.28)

Proof. We take a sequence {εn}n∈N with εn > 0, εn → 0 as n→∞ and such
that

lim
n→∞

||y − yn||L1(Ω)

εn
= 0.

We write
N (y) \ N (yn) = A<n ∪ A>n ,

where
A<n = {x ∈ Ω : y(x) = 0 and 0 < yn(x) ≤ εn},
A>n = {x ∈ Ω : y(x) = 0 and yn(x) > εn}.

(1.29)

Let us consider first A>n . Since A>n ⊂ {x ∈ Ω : |y(x) − yn(x)| > εn}, from
the Chebychev inequality we see

LN(A>n ) ≤ 1

εn

∫
Ω

|y − yn| dx.

Hence LN(A>n ) → 0 as n → ∞. Now comes the part where we need the
no-flat condition.
For n sufficiently big, LN(A<n ) ≤ h(εn), because Y satisfies the no-flat con-
dition, and for n→∞, h(εn)→ 0. So we easily have

lim
n→∞

LN(A<n ) = 0.

Combining both results we obtain

lim
n→∞

Ln(N (y) \ N (yn)) = lim
n→∞

A<n + lim
n→∞

A>n = 0.
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In order to state a result similar to Theorem 1.3.1 also for a functional
J∗ with J∗1 given by (1.23), one should find an appropriate set of admissible
controls U∗ad such that the family of all solutions of (1.1) or (1.2) with control
term u ∈ U∗ad satisfies the no-flat condition.

1.4 Numerical experiments

In this part we develop a numerical implementation of the minimization
problem of functional (1.4). We will deal with the one and two dimensional
case.

1.4.1 One dimensional case

The domain of the problem will be an interval. In particular, without loss of
generality, we take Ω = (0, I) where I > 0.

We apply first a finite element scheme to solve the boundary value prob-
lem {

− yxx + f(y) = uχω(x) in (0, I),

y(x) = 0 x = 0, x = I.
(1.30)

where f(y) = |y|q−1y, q ∈ (0, 1).
In the discretization procedure of the domain in subintervals we consider

subintervals of the the same length and denote with n the number of internal
nodes. The procedure to arrive to a matrix representation of the problem is
standard (see for instance [68]). Starting by the definition of weak solution,
y, solution of (1.30), has to verify∫ I

0

yxϕ dx+

∫ I

0

f(y)ϕ dx =

∫
ω

uφ dx for all ϕ ∈ H1
0 (0, I). (1.31)

This variational formulation requires to test equation (1.30) against an in-
finite dimensional vector space of test function, i.e., H1

0 (0, I). One replaces
the infinite dimensional problem in H1

0 (0, I) by a finite dimensional one on
the n-dimensional subspace Vn ⊂ H1

0 (0, I),

Vn ={v : (0, I)→ R : v ∈ C[0, I],

v|[xk,xk+1] linear, k = 0, . . . , n, v(0) = v(I) = 0},

where xk = kI/(n+ 1), k = 0, . . . , n+ 1 is a uniform grid of points in (0, I).
This means that we approximate y with yn ∈ Vn and check that yn satisfies
(1.31) with ϕ ∈ Vn arbitrary.
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The commonly used basis of Vn is given by ϕk, k = 1, . . . , n with

ϕk =


x−xk−1

xk−xk−1
x ∈ [xk−1, xk],

xk+1−x
xk+1−xk

x ∈ [xk, xk+1],

0 otherwise.

The solution will be then a linear combination of the basis, yn =
∑
ykϕk.

Plugging yn into (1.31) and choosing as test functions the elements of the
basis ϕk we obtain

∑
i

∫ I

0

yiϕixϕkx +

∫ I

0

f

(∑
i

yiϕi

)
ϕk =

∫ I

0

uϕk, k = 1, . . . , n.

If we call the step length h = xk − xk−1 , due to the small support of the ϕk,
the expression can be simplified to

1

h
(2yk − yk−1 − yk+1) +

∫ xk+1

xk−1

f(
k+1∑
i=k−1

yiϕi)ϕk =

∫ xk+1

xk−1

uϕk,

and using the method of the trapezoids for the last two integrals we can
approximate that equation by

1

h
(2yk − yk−1 − yk+1) + hf(yk) = hu(xk),

for k = 1, . . . , n. We point out that this scheme can be also obtained in this
simple 1-D case by using of finite differences instead of finite elements. In a
compact way, if we put Y = [y1, · · · , yn]T , U = [u(x1), · · · , u(xn)]T ,

AY + f(Y ) = U,

where

A =
1

h2


2 1 0 0 0 · · ·
−1 2 1 0 0 · · ·
0 −1 2 1 0 · · ·
...

. . . . . . . . . . . . . . .

 and f(Y ) =

 f(y1)
...

f(yn)

 .

To solve the nonlinear system so obtained we apply the Newton’s method.
We remind that if we want to find a zero of the function F (y), we take an
initial guess y0 and we look for y1, such that F (y1) = 0, with the first order
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approximated formula F (y1) ∼ F (y0) +∇F (y0)(y1 − y0). This formula and
F (y1) = 0 gives the iterative scheme

yn+1 = yn − (∇F (yn))−1F (yn).

In our case F (Y ) = AY + f(Y )− U .
For computational purposes the non linear term |y|q−1y is here approxi-

mated close to the origin by arctan(1000y), which grows very fast near the
origin and gives a similar qualitative behaviour. The protected region is given
by the subinterval B = (a, b) with 0 < a < b < I.

In order to compute J we use the following functions:

J1 =

∫
Ω

χS(y(x;u))∩B(x) dx, and J2 = λ

∫
Ω

1

G(y(x;u))
dx,

each of which is computed separately. The parameter λ > 0 appearing in
J2 is a weight which is used to give more relevance to J2 (λ > 1) or to J1

(λ < 1).
For the value of J1, a simple counting method is applied. This method

consists in counting the number of interval of the form (xk, xk+1) which are
contained in S(yn) multiplied by the length h. We approximate the value of
J2 by using the method of trapezoids. Function G is chosen to be G(y) =
(1 + ky), with k = 106.

As we are dealing with an approximation at different levels, the set
{x ∈ (0, I) : y(x) > 0} is approximated by {x ∈ (0, I) : y(x) > δ}, with
δ = 10−6.
For the global minimization problem we make use of the software GOP
(Global Optimization Platform) developed by MOMAT group and which can
be found at www.mat.ucm.es/momat/software.htm. The need for a global
optimization method arises from the possible existence of local minima. We
also point out that the theoretical result contained in this work does not say
anything about uniqueness of solution of the minimization problem corre-
sponding to (1.30). We can see in our experiments that this problem can
have multiple solutions: in experiment 4 (see also Figure 1.2) we show two
of these possible solutions, while in all the others we just put one.

1D numerical experiments

In these numerical experiments we denote with M the upper bound of
the control vector, ω = (w1, w2) is the control region and uopt the non zero
part of the optimal control vector that we have found with our algorithm.
The dimension of uopt depends mainly on the dimension of ω and on n.
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Experiment 1.1 (see Figure 1.1)

I = 10; n = 100; M = 1; w1 = 1.5; w2 = 2; a = 2.5; b = 6; λ = 0.1;

uopt = 0.9970 0.3486 0.0002 0.0006 0.0001;

J(uopt) = 0.7678;

Experiment 1.2 (see Figure 1.1)

I = 10; n = 100; M = 1; w1 = 1.5; w2 = 2; a = 8.5; b = 9; λ = 0.1;

uopt = 1 1 1 1 1;

J(uopt) = 0.5930;

Experiment 1.3

I = 10; n = 100; M = 1; w1 = 1.5; w2 = 2; a = 5; b = 9; λ = 0.1;

uopt = 1 1 1 1 1;

J(uopt) = 0.5930;

Experiment 1.4 (see Figure 1.2)

I = 10; n = 100; M = 7; w1 = 1.5; w2 = 2; a = 5; b = 9; λ = 0.1;

First solution : u1
opt = 2.7032 4.3910 0.0022 2.2641 0.0025;

Second solution : u2
opt = 4.7708 4.9370 0.0125 0.0131 0.0138;

J(uopt) = 0.4802;

Experiment 1.5 (see Figure 1.3)

I = 10; n = 100; M = 7; w1 = 1.5; w2 = 2; a = 8; b = 8.5; λ = 0.1;

uopt = 7.0000 7.0000 4.4883 2.4839 4.1998;

J(uopt) = 0.1832;

Experiment 1.6 (see Figure 1.3)

I = 10; n = 100; M = 1; w1 = 1.5; w2 = 4; a = 8; b = 8.5; λ = 0.1;



42 CHAPTER 1. OPTIMAL CONTROL AND FREE BOUNDARY

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

 

 

y
u
B

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 

 

y
u
B

Figure 1.1: Experiments 1.1 and 1.2
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Figure 1.2: Experiments 1.4
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Figure 1.3: Experiments 1.5 and 1.6

uopt =

Columns 1 through 9

1.0000 1.0000 1.0000 0.1881 0.0527 1.0000 0.1878 1.00001.0000

Columns 10 through 18

0.7518 0.9629 1.0000 1.0000 0.3309 0.8586 0.8335 1.0000 0.1195

Columns 19 through 25

0.1408 0.9015 0.1087 0.1484 0.1193 0.7423 1.0000

J(uopt) = 0.1832;

From the pictures we can see the qualitative behaviour of the solutions
depending on the different parameter values. Actually, once we set λ, it is
mostly the relation between M,a,w2 which imposes a specific profile to the
solutions. If, for example, the distance a−w2 is big compared to M , then no
invasion of the protected region occurs (see Figure 1.1, experiment 1.2). On
the other hand, if these two quantity are somehow balanced then a partial
invasion appears (Figure 1.1, experiment 1.1 or Figure 1.2 and Figure 1.3).

1.4.2 Two dimensional case

In two dimensions, we set the domain to be the easiest possible for the
moment, Ω = (0, I)× (0, I). The boundary value problem is now



44 CHAPTER 1. OPTIMAL CONTROL AND FREE BOUNDARY

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

(1, 1)

(1, 2)

(1, n) (n, n)

(n, 1)(2, 1)

i

j

Figure 1.4: Discretization grif of y

{
−∆y(x) + f(y(x)) = u(x)χω in Ω = (0, I)× (0, I),

y = 0 on ∂Ω.
(1.32)

Also in this case f(y) = |y|q−1y, q ∈ (0, 1).
Using the finite difference method we solve the state equation (with non

complex domains we could have used again finite elements). We discretize
the square with a grid of points labelled with two indices, xi,j, as shown in
Figure 1.4. We look for approximate values of y in those points, yi,j ≈ y(xi,j).
The following approximations for the derivatives are used

• ∂y

∂x1

(xi,j) ' (yi+1,j − yi,j)/h,

• ∂2y

∂x2
1

(xi,j) ' (yi+1,j − 2yi,j + yi−1,j)/h
2,

• −∆y(xi,j) ' [4yi,j − (yi+1,j + yi,j+1 + yi−1,j + yi,j−1)]/h2.

Function uχω evaluated in the internal nodes of Ω is arranged in a square
matrix which we call U . We also define the matrix Y = (yi,j)ji.

Using the finite difference scheme we are reduced to solve the nonlinear
system

AY + f(Y ) = U, (1.33)

with Y and U being the column vectors

Y =


Yj,1
Yj,2

...
Yj,n

 and U =


Uj,1
Uj,2

...
Uj,n

 .
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This time A is a (n2 × n2) square matrix with the value 4 on the main
diagonal, the (n+ 1)(n− 1)-vector P

Q = (1, . . . , 1︸ ︷︷ ︸
n−1

, 0),

P = −(Q, . . . , Q︸ ︷︷ ︸
n−1

, 1, . . . , 1︸ ︷︷ ︸
n−1

)

on the first sub and super diagonal and the value −1 on the nth sub and
super diagonal. f(Y ) is as in Section 1.4.1.

The optimal U found (a minimizer of J ) and the corresponding solution
of (1.33), reshaped in matrix form, are denoted with Uopt and Yopt.

The main difference with respect to the 1-D case is that now the pro-
tected region may be very general. Once again, we restrict to the simple case
of a rectangle (for general 2-D domain we can apply finite elements approx-
imations, see [68]) which is characterized by two points: BL, the lower-left
corner and BR, the upper-right corner. The same idea is applied to the con-
trol region, whose lower-left and upper-right corners will be written as wL
and wR respectively. In this case M is again the upper bound for the control
matrix.

We apply also in this case the approximations we have applied in section
1.4.1 for what concern f and S(y). The evaluation of J1 and J2 is also similar
to the one performed in section 1.4.1. For solving (1.33), Newton’s method
is used and for solving the minimization problem we use again the software
GOP.

2-D numerical experiments

We perform here three different numerical experiments with different val-
ues of the parameter λ = {0.1, 1, 10}, but with the same settings for the
other parameters.

General settings for experiments:

I = 3; n = 15; BL = [1, 1]; BR = [2.5, 2.5];

wL = [0.2, 0.2]; wR = [1, 1]; M = 2.

For each case a graph of Yopt and Uopt are shown in the next figures. As we
can see in figures 1.5,1.7, 1.9 the profile of Yopt is in light grey on those points
where the support does not meet the protected region and in a darker tone
of grey where it does. Figures 1.6, 1.8, 1.10 represents the control graphs.
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We can notice that, according to different values of the parameter λ,
which changes the relative weight of the two parts of the functional J , the best
strategy may consist in invading or not the protected region. For example we
can see from Figure 1.5 and 1.6 that in case λ = 10 the best strategy, as we
could have expected, is to take the maximal value of the control everywhere,
i.e. Uopt = 2.

Figure 1.5: Graph of Yopt when λ = 0.1
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Figure 1.6: Graph of Uopt when λ = 0.1
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Figure 1.7: Graph of Yopt when λ = 1
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Figure 1.8: Graph of Uopt when λ = 1
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Figure 1.9: Graph of Yopt when λ = 10
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Chapter 2

Porous Media Equation

This chapter has been written starting from the papers:

· J.-M. Coron, J. I. Dı́az, A. Drici, T. Mingazzini, Global Null Controlla-
bility of the 1-Dimensional Nonlinear Slow Diffusion Equation, Chinese
Annals of Mathematics, 34B(3), 2013, 333-344.

· A. Drici, T. Mingazzini, Feedback Stabilization of the 1-Dimensional
Porous Medium Equation. (Submitted).

In this chapter we deal with other important issues of Control Theory,
which are the null controllability and the stabilization of a particular kind
of nonlinear, infinite-dimensional dynamical system. While the theory for
finite dimensional system is well understood at least in a linear framework,
the control in infinite dimension, which is the abstract way of treating PDEs
of evolution type, is quite recent and full of open questions even for the linear
cases. In the nonlinear case the situation is even more complicated and there
is not one complete theory which can describe the controllability properties of
all systems. During the last decades different tecniques have been developed
and we refer to [34] for a survey which includes both the linear and nonlinear
part.

In our specific case the dynamical system consists of nonlinear slow diffu-
sion equations: the first two sections are devoted to the Porous Media Equa-
tion (shortly PME), while the last one focuses shortly on the p-Laplacian
type equations.

Setting a parameter m ∈ R, m ≥ 1, the PME has the form

yt −∆
(
|y|m−1 y

)
= f. (2.1)

It belongs to the more general family of non linear diffusion equations

49
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yt −∆φ(y) = f, (2.2)

where φ is a continuous nondecreasing function with φ(0) = 0.
This family of equations arises in many different frameworks and, depend-

ing on the nature of φ, it models different diffusion processes, mainly grouped
into three categories: “slow diffusion”, “fast diffusion”and linear processes.

The “slow diffusion”case is characterized by a finite speed of propagation
and the formation of free boundaries, while the “fast diffusion”one is char-
acterized by a finite extinction time, which means that the solution becomes
identically zero after a finite time.

If one neglects the source term, i.e. f ≡ 0, and imposes the constraint
of nonnegativeness to the solutions (which is fundamental in all the appli-
cations where y represents for example a density), then one can precisely
characterize these phenomena. In fact, it was shown in [38] that the homo-
geneous Dirichlet problem associated to (2.2) on a bounded open set Ω of
RN satisfies a finite extinction time if and only if∫ 1

0

ds

φ(s)
< +∞,

which for constitutive laws given by (2.1) corresponds to the case m ∈ (0, 1).
On the contrary, if ∫ 1

0

ds

φ(s)
= +∞, (2.3)

(which is the case for m ≥ 1) then, for any initial datum y0 ∈ H−1(Ω)∩L1(Ω)
with (−∆)−1y0 ∈ L∞(Ω), there is a kind of “retention property”. This means
that, if y0(x) > 0 on a positively measured subset Ω′ ⊂ Ω, then y(·, t) > 0
on Ω′ for any t > 0. In addition to (2.3), if φ satisfies∫ 1

0

φ′(s)ds

s
< +∞,

(i.e. m > 1 in the case of (2.1)) then the solution enjoys a finite speed
of propagation and generates a free boundary given by that of its support
(∂{y > 0}).

Most typical applications of “slow diffusion”are: nonlinear heat propaga-
tion, groundwater filtration and the flow of an ideal gas in a homogeneous
porous medium. With regard to the “fast diffusion”, it rather finds a paradig-
matic application to the flow in plasma physics. Many results and references
can by found in the monographs [8] and [70].
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2.1 Global null controllability

As already said, the aim of section is to show how a combined action of
boundary controls and a spatially homogeneous internal control may allow
the global extinction of the solution (the so-called global null controllability)
in any prescribed temporal horizon T > 0. We shall prove the global null
controllability for the following two control problems

PDD


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
y(0, t) = v0(t)χI(t) t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(2.4)

and

PDN


yt − (ym)xx = u(t)χI(t) in (0, 1)× (0, T ),
(ym)x(0, t) = 0 t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(2.5)

where I := (t1, T ) with t1 ∈ (0, T ), m ≥ 1 and χI is the characteristic
function of I. In both problems, y represents the state variable and UDN :=
(uχI , 0, v1χI), respectively UDD := (uχI , v0χI , v1χI), is the control variable.
The function ym should be more properly written in form (2.1), but as we
shall impose the constraint y ≥ 0 it makes no real difference.

We emphasize the fact that the internal control u(t) has the property to
be independent of the space variable x and that all the controls are active only
on a part of the time interval. Moreover, as we shall show later, the systems
are null controllable in arbitrarily fixed time, and then the localized form of
the control u(t)χI(t) (the same for the boundary controls) on a subinterval of
[0, T ] is more an emphatic than a real difficulty. It serves mostly to underline
that the controls are not active in the first time lapse. In the same way, it
could be possible to take a control interval (t, t) with t, t ∈ (0, T ) or even
more generally three different intervals, one for each control v0, v1, u, such
that the intersection of the three is not empty.

The main results of this paper are contained in the following statement.

Theorem 2.1.1. Let m ∈ [1,+∞).
i) For any initial data y0 ∈ H−1(0, 1) such that y0 ≥ 0 and any time T > 0,
there exist controls v0(t), v1(t) and u(t) with v0(t)χI(t), v1(t)χI(t) ∈ H1(0, T ),
v0, v1 ≥ 0 and u ∈ L∞(0, T ) such that the solution y of PDD satisfies y ≥ 0
on (0, 1)× (0, T ), and y(·, T ) ≡ 0 on (0, 1).
ii) For any initial data y0 ∈ H−1(0, 1) such that y0 ≥ 0 and any time T > 0,
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there exist controls v1(t) and u(t) with v1(t)χI(t) ∈ H1(0, T ), v1 ≥ 0 and
u ∈ L∞(0, T ) such that the solution y of PDN satisfies y ≥ 0 on (0, 1)×(0, T ),
and y(·, T ) ≡ 0 on (0, 1).

Notice that since H−1(0, 1) = (H1
0 (0, 1))′ and H1

0 (0, 1) ⊂ C([0, 1]), we
have H−1(0, 1) ⊃M(0, 1), where M(0, 1) is the set of bounded Borel mea-
sures on (0, 1); for instance, the initial datum can be a Dirac mass distribution
at a point in (0, 1). As said before in the case of “slow diffusion”(m > 1), the
solution may present a free boundary given by that of its support (as soon as
the support of y0 is strictly smaller than [0, 1]). Nevertheless, our strategy is
built in order to prevent such a situation. Indeed, on the set of points (x, t)
where y vanishes (i.e. on the points (x, t) ∈ (0, 1) × (0, T ) \ supp(y)), the
diffusion operator is not differentiable at y ≡ 0 and so, some linearization
methods which works quite well for second order semilinear parabolic prob-
lems (see, e.g., [45, 51, 53, 55]) can not be applied directly. Moreover, the
evanescent viscosity perturbation with some higher order terms only gives
some controllability results for suitable functions φ, as the ones of the Stefan
problem ([45], [43] and [44]).

Here we follow a different approach which is mainly based on the so-called
return method introduced in [32, 33] (see [34, Chapter 6] for information on
this method). More precisely, we shall prove first the null controllability of
problem (2.4) by applying an idea appeared in [28] (for the controllability of
the Burgers equation). In a second step, we shall show, using some symmetry
arguments, that the same result holds for (2.5).

Our version of the return method consists in choosing a suitable one
parameter family of trajectories a(t)/ε, which is independent of the space
variable, going from the initial state y ≡ 0 to the final state y ≡ 0. We shall
use the controls to reach one of such trajectories, no matter which one, in
some large positive time smaller than the final T . Once we fix a partition of
the form 0 < t1 < t2 < t3 < T , we shall choose a function a(t) satisfying the
following properties:

i) a ∈ C2([0, T ]);

ii) a(t) = 0, 0 ≤ t ≤ t1 and t = T ;

iii) a(t) > 0, t ∈ (t1, T );

iv) a(t) = 1, t2 ≤ t ≤ t3.

Then, we can write the decomposition of the solution y of problem PDD
as a perturbation of the explicit solution a(t)/ε of the same equation with
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Figure 2.1: Solution profile.

the control U := (a(t)/ε, a(t)/ε, a(t)/ε) in the following way:

y(x, t) =

(
a(t)

ε
+ z(x, t)

)
. (2.6)

Now, our aim is to find controls such that z(·, t3) ≡ 0, which means that we
have controlled our solution y(·, t) to the state 1/ε at time t = t3; this will
be done by using a slight modification of a result in [11]. On the final time
interval (t3, T ), we shall use the same trajectory y(·, t) ≡ a(t)/ε to reach the
final state y(·, T ) ≡ 0. An ideal representation of the trajectory can be seen
in Figure 2.1.

One can see that the central core of our procedure is to drive the initial
state to a constant state in a finite time thanks to the use of a boundary and
internal control which only depends on the time variable.

On the first interval (0, t1) we shall not make any use of the controls. So we
let the solution y(t) := y(·, t) regularize itself from an initial state in H−1(0, 1)
to a smoother one in H1

0 (0, 1) for t = t1. Then, as the degenerate character
of the diffusion operator neglects the diffusion effects outside the support of
the state, we move y(t) away from the zero state by asking z(t) := z(·, t) to
be nonnegative at least on the interval (t1, t2). With this trick, the solution
y(t) will be far enough from zero. On the interval (t2, t3) the states y(t) will
be kept strictly positive even if the internal control u(t) will be allowed to
take negative values.

As already mentioned concerning the local retention property, we point
out that the presence of the control u(t) is fundamental for the global null
controllability. To be more precise, notice that if we assume u(t) ≡ 0 then
we can find initial states which cannot be steered to zero at time T just
with some nonnegative boundary controls. As a matter of fact, one can use
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the well-known family of Barenblatt solutions [10, 70] (also known as ZKB
solutions) to show it. Indeed, if we introduce the parameters

α =
1

m+ 1
, k =

m− 1

2m(m+ 1)
, τ << 1,

and choose C such that (C/k)1/2(T + τ)α < 1/2, then the function

ym(x, t) = (t+ τ)−α
(
C − k |x− 1/2|2 (t+ τ)−2α

)1/(m−1)

+

is a solution of system (2.4) with u = 0, v0 = v1 = 0 and ym(·, T ) 6= 0. Any
other solution of system (2.4) with the same initial datum and v0, v1 ≥ 0
would be a supersolution of ym which implies that ym(·, 0) cannot be con-
nected with y(·, T ) ≡ 0.

2.1.1 Well-posedness of the Cauchy problem

For the existence theory of problem (2.4) we refer to [4, 18, 21, 19, 29, 30,
57, 70]; in particular, we shall use a frame similar to the ones in [4] and [18].
More precisely, we adopt the following definition.

Definition 2.1.2. Let (v0, v1) ∈ L∞(0, T )2 and vD = (1 − x)v0(t) + xv1(t)
and let u ∈ L∞(0, T ). Assume that y0 ∈ H−1(0, 1). We say that y is a weak
solution of

PDD


yt − (|y|m−1 y)xx = u(t) in (0, 1)× (0, T ),
y(0, t) = v0(t) t ∈ (0, T ),
y(1, t) = v1(t) t ∈ (0, T ),
y(x, 0) = y0(x) x ∈ (0, 1),

(2.7)

if

y ∈ C0([0, T ];H−1(0, 1)) and y(0) = y0 in H−1(0, 1), (2.8)

y ∈ L∞(τ, T ;L1(0, 1)), ∀τ ∈ (0, T ], (2.9)

∂ty ∈ L2(τ, T ;H−1(0, 1)), ∀τ ∈ (0, T ], (2.10)

|y|m−1 y ∈ |vD|m−1 vD + L2(τ, T ;H1
0 (0, 1)), ∀τ ∈ (0, T ], (2.11)

and for every τ ∈ (0, T ], for every ξ ∈ L2(0, T ;H1
0 (0, 1)),∫ T

τ

〈∂ty, ξ〉+

∫ T

τ

∫ 1

0

(|y|m−1 y)xξx =

∫ T

τ

∫ 1

0

uξ, (2.12)

where the symbol 〈·, ·〉 stands for the dual pairing between H−1(0, 1) and
H1

0 (0, 1).
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Remark 2.1.3. We have changed the definition of weak solution given in
[4] in order to handle the case where y0 is only in H−1(0, 1), instead of
y0 ∈ Lm+1(0, 1) as assumed in [4].

The modifications to extend the previous definition to the case of problem
(PND) are straightforward (see [4]). For instance, the extension to the interior
of the boundary datum can be taken now as vD = (c1 + c2x

2)v1(t).
With this definition, one has the following proposition.

Proposition 2.1.4. The boundary-value problem (2.4) has at most one weak
solution.

Proof. The proof is almost the same as the one in [4, Theorem 2.4]. We
repeat the principal steps and underline the differences.

Suppose y1, y2 are two solutions. We call y = y1− y2 ∈ L2(0, T,H−1) and
by duality representation there exists a function v ∈ L2(0, T,H1

0 ) such that∫ T

0

∫ 1

0

vxξx dx dt =

∫ T

0

< y, ξ > dt (2.13)

for all ξ ∈ L2(0, T ;H1
0 ). We can also state that v ∈ L∞(0, T,H1

0 ). In fact as
y ∈ C(0, T,H−1(0, 1)) and thanks to the suriectivity of −∆ : H1

0 → H−1 we
have that for every t ∈ [0, T ]∫ 1

0

vx(t)ξx dx =< y(t), ξ >

for every ξ ∈ H1
0 (0, 1). This implies that vx(t) is weakly continuous in the

L2(0, 1) topology on [0, T ], which gives the boundedness.
So we pick ξ = v. With the same computations as in [4]∫ t

τ

< ∂ty, v > + < y(τ), v(τ) >=
1

2

∫ 1

0

(vx)
2(t). (2.14)

On the other hand we have∫ t

τ

∫ 1

0

vx(y
1/m
1 − y1/m

2 )x =

∫ t

τ

< y, y
1/m
1 − y1/m

2 >=∫ t

τ

∫ 1

0

(y1 − y2)(y
1/m
1 − y1/m

2 ). (2.15)

Hence using v as test function in the definition of solution and (2.14) and
(2.15)

1

2

∫ 1

0

(vx)
2(t) +

∫ t

τ

∫ 1

0

(y1 − y2)(y
1/m
1 − y1/m

2 ) =< y(τ), v(τ) >,
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and as (y1 − y2)(y
1/m
1 − y1/m

2 ) ≥ 0,

1

2

∫ 1

0

(vx)
2(t) ≤< y(τ), v(τ) > .

Sending τ → 0, the right hand side goes to zero because y(τ)→ 0 inH−1(0, 1)

and v(τ) is bounded in H1
0 (0, 1). Hence we can conclude that

∫ 1

0
(vx)

2(t) = 0
for a.e. t ∈ (0, T ). Hence y = 0.

Next proposition is taken from [4, Theorem 1.7, Theorem 2.4].

Proposition 2.1.5. Suppose that (v0, v1) ∈ H1(0, T )2 and that y0 ∈ Lm+1,
then there exists one and only one weak solution y of problem (2.4). Moreover
this solution satisfies

y ∈ L∞(0, T ;L1(0, 1)), (2.16)

∂ty ∈ L2(0, T ;H−1(0, 1)), (2.17)

|y|m−1 y ∈ |vD|m−1 vD + L2(0, T ;H1
0 (0, 1)). (2.18)

With 2.1.5 and [21] we get the following result.

Proposition 2.1.6. Suppose that (v0, v1) ∈ H1(0, T )2 and vanishes in a
neighbourhood of t = 0, then there exists one and only one weak solution of
problem (2.4).

Proof.

Now, we emphasize that the solution of problem (PDD) enjoys an addi-
tional semigroup property (we will need it to construct the final trajectory),
which directly follows from Definition 2.1.2, Proposition 2.1.6 and Proposi-
tion 2.1.5.

Lemma 2.1.7 (Matching). Suppose that y1, respectively y2, is a weak so-
lution of (2.4) on the interval (0, T1), respectively (T1, T ), with y2(T1) =
y1(T1) ∈ L2(0, 1). If we denote

y(t) =

{
y1(t) t ∈ (0, T1),
y2(t) t ∈ (T1, T ),

then y is a weak solution of (2.4) on the interval (0, T ).
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2.1.2 Proof of the main theorem: first step

In the interval (0, t1] the solution with no control evolves as in [21], hence 0 ≤
ym(t) ∈ H1

0 (0, 1) for all t ∈ (0, t1]. Due to the inclusion H1
0 (0, 1) ⊂ L∞(0, 1)

we get that y1(x) := y(x, t1) is a bounded function. We call the solution on
this first interval y0, i.e.

y|(0,t1) = y0. (2.19)

In order to be able to apply the null controllability result in [11] to the
function z(x, t), given in the decomposition (2.6), on the interval (t2, t3) we
need the H1-norm of z(t2) to be small enough. We want to find some esti-
mates of the solution z of

zt −
(
m

(
a(t)

ε
+ z

)m−1

zx

)
x

= 0, in (0, 1)× (t1, t2),

zx(t, 0) = zx(t, 1) = 0, t ∈ (t1, t2),

z(x, 0) = y1(x), x ∈ (0, 1).

(2.20)

For the existence, regularity and comparison results for this problem we
refer to [52], where the equation is recast in the form (|Y |1/m sign(Y ))t−Yxx =
a′/ε.
From the maximum principle, we deduce that y1 ∈ L∞(0, 1) and y1 ≥ 0
imply that z ∈ L∞((0, 1)× (t1, t2)) and z ≥ 0. In fact, we have 0 ≤ z ≤ M ,
where M := ‖y1‖L∞(0,1) is a solution of the state equation of (2.20), and in
particular a super solution of (2.20).

To study the behaviour of z, we will actually make use of rescaling.

2.1.3 Small initial data and a priori estimates

For δ > 0, we define z̃ := δz. Then z̃ satisfies
z̃t −

(
m

(
a(t)

ε
+

1

δ
z̃

)m−1

z̃x

)
x

= 0, in (0, 1)× (t1, t2),

z̃x(t, 0) = z̃x(t, 1) = 0, t ∈ (t1, t2),

z̃(x, 0) = δy1, x ∈ (0, 1).

(2.21)

After collecting the factor
1

ε
and rescaling the time τ :=

t

εm−1
, we get

z̃t −
(
m
(
a(τ) +

ε

δ
z̃
)m−1

z̃x

)
x

= 0.
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Choosing δ := ε1−α with 0 < α < 1, the system can be written in the
following form


z̃τ −

(
m (a(τ) + εαz̃)m−1 z̃x

)
x

= 0, in (0, 1)× (τ1, τ2),

z̃x(τ, 0) = z̃x(τ, 1) = 0, τ ∈ (τ1, τ2),

z̃(x, 0) = ε1−αy1, x ∈ (0, 1),

(2.22)

where τ :=
t

εm−1
. For simplicity, we take α = 1/2.

Thus, the null controllability of system (2.20) is reduced to the null con-
trollability of system (2.22). As we can see, the initial data in (2.22) is now
depending on ε and tends to 0 as ε→ 0.

2.1.4 H1-estimate

We recall that, according to regularity theory for linear parabolic equations
with bounded coefficients, z̃(t) ∈ H2(0, 1) for t > 0, see e.g. [50, pp. 360-364].
Multiplying by z̃xx the first equation of (2.22) and integrating on x ∈ (0, 1),
we get ∫ 1

0

z̃τ z̃xx dx =

∫ 1

0

(
m
(
a(τ) +

√
εz̃
)m−1

z̃x

)
x
z̃xx dx.

Then, integrating by parts and using the boundary condition in (2.22), we
are led to

1

2m

d

dτ

∫ 1

0

z̃2
x dx = −

∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2
xx dx

− (m− 1)

3

√
ε

∫ 1

0

(
a(τ) +

√
εz̃
)m−2 (

z̃3
x

)
x

dx

= −
∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2
xx dx

+
(m− 1)(m− 2)

3
ε

∫ 1

0

(
a(τ) +

√
εz̃
)m−3

z̃4
x dx.

We denote by

IT1 := −
∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2
xx dx,

IT2 :=
(m− 1)(m− 2)

3
ε

∫ 1

0

(
a(τ) +

√
εz̃
)m−3

z̃4
x dx.
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We observe that IT1 ≤ 0. Let us look at the term IT2. For m ∈ (1, 2), we
have that IT2 ≤ 0. Otherwise,

IT2 ≤
(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε

∫ 1

0

z̃4
x dx.

The fact that the L∞-norm of z̃ is finite comes from that z̃ = δz and that the
supremum of z is bounded, as already pointed out. We use now a well-known
Gagliardo-Nirenberg’s inequality in the case of a bounded interval:

Lemma 2.1.8. Suppose z ∈ L∞(0, 1) with zxx ∈ L2(0, 1) and either z(0) =
z(1) = 0 or zx(0) = zx(1) = 0, then

‖zx‖L4 ≤
√

3 ‖zxx‖
1
2

L2 ‖z‖
1
2
L∞ .

Proof of lemma 2.1.8. Integrating by parts and using the boundary condi-
tions, we obtain ∫ 1

0

z4
x dx =

∫ 1

0

z3
xzx dx = −3

∫ 1

0

z2
xzxxz dx.

Then, using Cauchy–Schwarz’s inequality, we get

‖zx‖4
L4 ≤ 3 ‖zx‖2

L4 ‖z‖L∞ ‖zxx‖L2 ,

and the result follows immediately.

Setting C ′ := C ‖z̃‖2
L∞ and considering that ‖z̃x‖4

L4 ≤ C ′ ‖z̃xx‖2
L2 , we have

1

2m

d

dτ

∫ 1

0

z̃2
x dx ≤ −

∫ 1

0

(
a(τ) +

√
εz̃
)m−1

z̃2
xx dx

+
(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε

∫ 1

0

z̃4
x dx,

≤ − (a(τ))m−1

∫ 1

0

z̃2
xx dx

+ C ′
(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε

∫ 1

0

z̃2
xx dx,

= C ′′(m, τ, ε)

∫ 1

0

z̃2
xx dx,

where

C ′′(m, τ, ε) :=

(
C ′

(m− 1)(m− 2)

3

(
a(τ) +

√
ε ‖z̃‖∞

)m−3
ε− (a(τ))m−1

)
.
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For τ > 0, we have
C ′′(m, τ, ε) < 0,

if ε is small enough.
From these estimates, we deduce that the H1-norm is non increasing in

the interval (τ1, τ2). Hence, for all ρ ≥ 0, we can choose ε small enough to
get ‖z̃(τ2)‖H1(0,1) ≤ ε ‖y1‖H1(0,1) ≤ ρ.

2.1.5 End of the proof of the main theorem

Now, we go back to problem (2.22) but with Dirichlet boundary conditions
and initial data z̃(τ2). We apply an extension method that can be found for
instance in [53, Chapter 2]. It consists in extending the space domain from
(0, 1) to E := (−d, 1+d) and inserting a sparse control in ω, a nonempty open
interval whose closure in R is included in (−d, 0). We look at the following
system 

wt −
(
m(1 +

√
εw)m−1wx

)
x

= χωũ, (x, τ) ∈ Q′,
w(−d, τ) = w(1 + d, τ) = 0, τ ∈ (τ2, τ3),

w(x, τ2) = w2(x), x ∈ E,
(2.23)

where Q′ := E × (τ2, τ3) and τ3 := t3/ε
m−1. The function w2 ∈ H1

0 (E) ∩
H2(E) is an extension of z̃(τ2) to E which does not increase the H1-norm, i.e.
‖w2‖H1(E) ≤ k ‖z̃(τ2)‖H1(0,1) ≤

√
εk ‖y1‖H1(0,1), for some k > 0 independent

of z̃(τ2).

Proposition 2.1.9. There exists ρ > 0 such that, for any initial data w2 with
‖w2‖H1 ≤ ρ and for any ε sufficiently small, system (2.23) is null controllable,
i.e. there exists ũ ∈ L2(Q′) such that w(τ3) = 0.

Proof. The proof is substantially the same as in [11]. We just have to choose
ε sufficiently small such that the solution of the control problem satisfies,
||w||L∞ < 1√

ε
. In [11] the proof is split in two main part: Theorem 4.1 and

Theorem 4.2. We will only show how to adapt the proof of Theorem 4.1.
The modification in the proof of Theorem 4.2 can be done similarly.

To begin with we change the time interval in the new one (0, tε), with
tε = ε1−m(τ3− τ2) and always for simplicity we denote Q = E× (0, tε). Also,
we rewrite the initial data as w(0) =

√
εw0.

wt − (aε(w)wx)x = χωũ, (x, t) ∈ Q,
w(−d, t) = 0, w(1 + d, t) = 0, τ ∈ (0, tε),

w(0) =
√
εw0(x), x ∈ E,

(2.24)
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with aε(w) = m(1 +
√
εw)m−1 We also define the primitive Aε of aε. We

take w0 such that (Aε(w0))xx, (w0)x, w0 ∈ L2(E).
Now let’s fix µ << 1 and ε > 0 sufficiently small. Consider the set of

functions

K := {w : ‖wx‖L∞(QT ) ,
∥∥∥√twt∥∥∥

L∞(QT )
, ‖wxt‖L2(QT ) ≤ ρ,

w(0) =
√
εw0, w(∂E) = 0}

with

ρ ≤
∣∣∣∣−1 + µ1/(m−1)

√
ε

∣∣∣∣ (2.25)

to be specified later. This bound for ρ is chosen to obtain an elliptic behaviour
for aε(w). In fact, see that as w(−d, t) = w(1 + d, t) = 0, and taking d < 1/2

|w(x, t)| ≤ min

(
w(−d, t) +

∫ x

−d
ρ ds , w(1 + d, t) +

∫ x

1+d

−ρ ds

)
≤ ρ,

which implies ‖w‖L∞(QT ) ≤ ρ and aε(w) ≥ µ. Then with this general setting
of parameters we follow [11] theorem 4.1 to stretch the slight modifications
one needs.

Define bε = aε(w̃) for a fixed w̃ ∈ K. Consider the linear equation

wt − (bεwx)x = uχω (2.26)

and the optimal control problem: minimize∫
e−2sαφ−3u2 + σ−1

∫
E

w(tε)
2 (2.27)

subject to (2.26). The solution wσ of (2.27) (we have omitted in the notation
the dependence of wσ on ε), satisfies the inequality

‖(wσ)x‖L∞(QT ) +
∥∥∥√(t)(wσ)t

∥∥∥
L∞(QT )

+ ‖(wσ)xt‖L2(QT )

≤ C∗(1 + ρ6)

∫
E

(Aε(
√
εw0))2

xx + (
√
εw0)2

x + (
√
εw0)2 dx.

In order to be able to continue with the proof we need wσ ∈ K. So we want
to find ε and ρ such that∫

E

(Aε(
√
εw0))2

xx + (
√
εw0)2

x + (
√
εw0)2dx <

ρ

C∗(1 + ρ6)
. (2.28)
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Here we have pay a bit of attention. In fact, modifying ε we are also modifying
aε, Aε, tε. So we now choose ρ such that (2.25) holds and that estimate 3.24
in [11] holds for a given ε0 sufficiently small. Now we just pick up one ε < ε0

such that (2.28) holds (notice that (2.25) is till valid). This is possible because
for every x ∈ R, |aε(x)| is decreasing for ε → 0 and the same is for |Aε(x)|.
So the left hand side of (2.28) is going to zero. For the right hand side the
only unknown is C∗ which may depend on tε, ρ and µ. Without trying to
compute exactly this dependence we argue in the following way: ρ and µ are
fixed and decreasing ε does not affect them. tε instead is increasing. So if
C∗ ↓ for tε ↑ then the right hand side is increasing making for ε sufficiently
small (2.28) true. On the contrary, if C∗ ↑ for tε ↑ then we can just fix a
time t∗ < tε and prove the null controllability of system (2.24) at time t∗.

From now on, having found such an ε which makes (2.28) true, the proof
follows exactly as in [11].

Remark 2.1.10. Note that, combining the results in [11] and [50, pp. 360-
364], the solution of (2.23) satisfies w(0, ·), w(1, ·) ∈ H1(τ2, τ3).

Proof of Theorem 2.1.1. We consider the function

y(·, t) =



y0(·, t), t ∈ (0, t1),
a(t)

ε
+ z(·, t) =

a(t)

ε
+
z̃(·, t)√

ε
, t ∈ (t1, t2),

a(t)

ε
+
w(·, t)√

ε
, t ∈ (t2, t3),

a(t)

ε
, t ∈ (t3, T ),

(2.29)

which is a solution of system (2.4) with controls given by

u(t) :=
a′(t)

ε
, t ∈ (0, T ), (2.30)

v0(t) :=



0, t ∈ (0, t1),
a(t)

ε
+
z̃(0, t)√

ε
, t ∈ (t1, t2),

a(t)

ε
+
w(0, t)√

ε
, t ∈ (t2, t3),

a(t)

ε
, t ∈ (t3, T ),

(2.31)
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and

v1(t) :=



0, t ∈ (0, t1),
a(t)

ε
+
z̃(1, t)√

ε
, t ∈ (t1, t2),

a(t)

ε
+
w(1, t)√

ε
, t ∈ (t2, t3),

a(t)

ε
, t ∈ (t3, T ).

(2.32)

The function y ∈ C([0, T ];H−1(0, 1)) and, as one can check using the im-
proved regularity of the solution when it is strictly positive, (v1, v2) ∈ H1(0, T )2.
Combining Proposition 2.1.6, Proposition 2.1.5 and Lemma 2.1.7, it is easy
to see that the function given by (2.29) is the solution on the interval (0, T )
of problem (2.4) with nonhomogeneous term (2.30) and boundary conditions
given by (2.31)-(2.32).

To conclude, we have from construction that y(·, T ) ≡ 0.

The proof of part ii) follows the common argument of extension by symmetry.
First, one notices that using the smoothing property of (2.5) when u ≡ 0
and v1 ≡ 0, we may assume that y0 is in L2(0, 1). Then, we consider the
auxiliary problem

P s
DD


yt − (ym)xx = ũ(t)χI(t) in (−1, 1)× (0, T ),
y(−1, t) = v0(t)χI(t) t ∈ (0, T ),
y(1, t) = v1(t)χI(t) t ∈ (0, T ),
y(x, 0) = ỹ0(x) x ∈ (−1, 1),

(2.33)

with ỹ0 ∈ L2(−1, 1) defined by

ỹ0(x) = y0(x) and ỹ0(−x) = y0(x), ∀x ∈ (0, 1). (2.34)

and with v0(t) = v1(t). We apply the arguments of part i) to P s
DD with (0, 1)

replaced by (−1, 1) and adjusting the formulation of (2.23) in such a way
that the control region ω is now symmetric with respect to x = 0. Then,
as we show later, the restriction of the solution of P s

DD to the space interval
(0, 1) is the sought trajectory for system PDN .

Lemma 2.1.11. Let ω be a nonempty open subset of [−1− d, 1 + d] \ [−1, 1]
which is symmetric with respect to (w.r.t.) x = 0. Then, if w2 is symmetric
w.r.t. x = 0, we can find a control us, symmetric w.r.t. x = 0, such that the
solution w of system (2.23) satisfies

1. w is symmetric w.r.t. x = 0,
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2. w(·, τ3) = 0.

Proof. The proof follows almost straightforward from [11, Theorems 4.1 and
4.2]. We just have to minimize the functional which appear in [11, Theorems
4.1] in the space of L2 functions which are symmetric w.r.t. x = 0.

The symmetry of the initial value implies as a consequence the symmetry
of the solution w.

To conclude the proof of part ii) of Theorem 2.1.1, we note that as the
solution y(·, t) of (2.33) belongs to H2(−1, 1) for all t ∈ (0, T ), we see that
yx(0, t) = 0 for all t ∈ (0, T ) and so, the conclusion is a direct consequence
of part i).

2.2 Stabilization

In this section, we introduce a simple procedure to stabilize the zero state for
the porous medium equation with homogeneous Neumann boundary condi-
tion. We consider the following control system

yt − (ym)xx = u, (x, t) ∈ Q∞,
(ym)x(0, t) = 0, t ∈ (0,∞),

(ym)x(1, t) = 0, t ∈ (0,∞),

y(x, 0) = y0, x ∈ (0, 1),

(2.35)

where Q∞ := (0, 1) × (0,∞) and m > 1. The initial datum y0 can be of
changing sign, so in order to have the well-posedness of the problem (2.35),
the nonlinear term ym must be intended as |y|m−1 y.

For u ≡ 0, the behavior of the solutions of (2.35) is well described in [3]
where it is shown that if y0 ∈ L∞(Ω), with Ω ⊂ RN, N ≥ 1 then

y(·, t) Lp−→ 1

|Ω|

∫
Ω

y0 dx, for t→∞.

This convergence can be even in the L∞-norm if N = 1 (for N > 1, one
needs the initial data to be strictly positive in Ω). Also, different rates of
homogenization are proved depending on the mean of the initial data. For
the case of zero mean, they showed the existence of C > 0 such that for every
y0 ∈ L∞(Ω) with

∫
Ω
y0 dx = 0

‖y(·, t)‖L∞(Ω) ≤
C ‖y0‖L∞(Ω) ‖y0‖−1

Lm+1(Ω)(
c(m− 1)t+ ‖y0‖1−m

Lm+1(Ω)

) 1
m−1

.
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Our purpose is to stabilize the system to zero independently of the initial
data, which will be chosen in a proper energy space. To do that, we will use
an internal feedback control u : y 7→ u(y) ∈ R, u(t) := u(y(·, t)) constant in
space. We focus specifically on a control of the form

u(t) := −
∫ 1

0

ym(x, t) dx. (2.36)

Remark 2.2.1. We could have chosen a more general function u as control,
multiplying the integral by a parameter λ > 0 that could be settled according
to needs. The point is that adding λ is not really effective in improving the
stabilization rate. This is due to the fact that the nonlinear term (ym)xx
plays an important role in all inequalities, and in order to get an arbitrarily
small estimate of the type

‖y(·, t)‖Lm+1(0,1) ≤
C

λ
t−

1
m−1 ,

one should modify the equation into the different one

yt − λ(ym)xx = −λ
∫ 1

0

ym dx.

In the next section, we shall prove the existence for small time and the
uniqueness of solutions of system (2.35) with control law given by (2.36).
Because of the changing sign of the solutions, we could not adopt the same
technique of monotonicity that was applied in [6, 37] to prove the existence.
What we do instead is to make use of a fixed point theorem. Then, we shall
show that the existence can be extended for all time and give an uniform
decay rate.

2.2.1 Well-posedness for small time

We start recalling what we mean by a weak solution of the system (2.35) on
a finite cylinder QT = (0, 1) × (0, T ) for T < ∞. Given u ∈ L1(0, T ) and
y0 ∈ L1(0, 1), a measurable function y defined in QT is said to be a weak
solution of the system (2.35) if:

1. y ∈ L1(QT ) and ym ∈ L1(0, T ;W 1,1(0, 1));

2. y satisfies∫∫
QT

(ym)xηx − yηt dxdt =

∫ 1

0

y0η(x, 0) dx+

∫ T

0

u

(∫ 1

0

η dx

)
dt,

(2.37)
for every η ∈ C1(QT ) with η(·, T ) = 0.
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Proposition 2.2.2 (see [70]). Assume that y0 ∈ Lm+1(0, 1) and u ∈ L∞(0, T ).
Problem (2.35) has a unique weak solution. Moreover, if y is the solution then
y ∈ L∞(0, T ;Lm+1(0, 1)), ym ∈ L2(0, T ;H1(0, 1)) and the following energy
inequality holds

1

m+ 1

∫ 1

0

|y|m+1 dx+

∫∫
QT

|(ym)x|2 dxdt

≤ 1

m+ 1

∫ 1

0

|y0|m+1 dx+

∫ T

0

u

(∫ 1

0

ym dt

)
dx. (2.38)

Lemma 2.2.3. Let us assume that y ∈ L2(QT ) is a solution of (2.35)-(2.36)
with ym ∈ L2(0, T ;H1(0, 1)), then y is the unique solution.

Proof. The proof is the same as in [70, p. 79], we just repeat it to show that
the nonlinear term does not alter its validity. Let y1, y2 be two solutions with
the same initial datum. Let wi := ymi for i = 1, 2 and, according to (2.37),
we have∫∫

QT

(w1 − w2)xηx − (y1 − y2)ηt dxdt = −
∫ T

0

∫ 1

0

(w1 − w2) dx

∫ 1

0

η dxdt,

for all η in the space of test functions. To get the result, we use a function
introduced by Olĕınik

η(x, t) :=

∫ T

t

(w1(x, s)− w2(x, s)) ds,

even if it does not possess the regularity required. In fact, it can be approx-
imated by a sequence of test functions, and (2.37) remains true in the limit.
Thus,∫∫

QT

(w1 − w2)(y1 − y2) dxdt

+

∫∫
QT

(w1 − w2)x

∫ T

t

(w1 − w2)x dsdxdt

= −
∫ T

0

∫ 1

0

(w1 − w2) dx

∫ 1

0

∫ T

t

(w1 − w2) dsdxdt. (2.39)

Observing that

(w1 − w2)x

∫ T

t

(w1 − w2)xds = −1

2

d

dt

(∫ T

t

(w1 − w2)x ds

)2

,
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and∫ 1

0

(w1 − w2) dx

∫ T

t

∫ 1

0

(w1 − w2) dxds = −1

2

d

dt

(∫ T

t

∫ 1

0

(w1 − w2) dxds

)2

,

we can rewrite (2.39) as∫∫
QT

(w1 − w2)(y1 − y2) dxdt

+
1

2

∫ 1

0

(∫ T

0

(w1 − w2)x ds

)2

dx

+
1

2

(∫ T

0

∫ 1

0

(w1 − w2) dxds

)2

= 0.

Since all terms are nonnegative, we have y1 ≡ y2.

To prove the well-posedness for small time of the nonlocal problem (2.35)-
(2.36), we use the Banach fixed point theorem. We first restrict our attention
to initial data that belong to L∞(0, 1).

Theorem 2.2.4. For any y0 ∈ L∞(0, 1), there exists a time T (depending
on the L∞-norm of y0) such that the boundary value problem (2.35)-(2.36)
has a unique solution.

We introduce the following map

K : z 7→ y := K(z),

where y is the solution of
yt − (ym)xx = −

∫ 1

0

zm dx, (x, t) ∈ QT ,

(ym)x(0, t) = 0, t ∈ (0, T ),

(ym)x(1, t) = 0, t ∈ (0, T ),

y(x, 0) = y0, x ∈ (0, 1),

(2.40)

and the domain of K is the closed subset

B :=
{
z ∈ L1(QT ) : ||z||L∞(QT ) ≤ c

}
⊂ L1(QT ).

From [70, ps. 29-31], we know that given any two solutions y, ỹ of problem
(2.35) (respectively with forcing terms u, ũ and initial data y0, ỹ0), we have
the following estimates

‖y‖L∞(QT ) ≤ ‖y0‖L∞(0,1) + T ‖u‖L∞(0,T ) , (2.41)
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‖y(·, t)− ỹ(·, t)‖L1(0,1) ≤ ‖y0 − ỹ0‖L1(0,1) +

∫ t

0

|u(s)− ũ(s)| ds. (2.42)

In (2.40), u(t) := −
∫ 1

0
zm(x, t)dx. If we take T < 1

mcm−1 and ‖y0‖L∞(0,1) ≤
m−1
m
c, we see from (2.41) that

‖y‖L∞(QT ) ≤ ‖y0‖L∞(0,1) + T ‖z‖mL∞(QT ) < c,

hence K : B → B. Before passing to show the contraction property of K,
we give an estimate of |am − bm| with a, b ∈ R (remind rm := |r|m−1 r).
In the case where |a| , |b| ≤ c, the above inequalities can be summarized
as |am − bm| ≤ m |a− b| cm−1. From (2.42), we obtain for any couple of
solutions of (2.40) with same initial datum,

‖y − ỹ‖L1(QT ) ≤ T

∫ T

0

∫ 1

0

|zm − z̃m| dxdt

≤ T

∫ T

0

∫ 1

0

mcm−1 |z − z̃| dxdt

≤ Tmcm−1 ‖z − z̃‖L1(QT ) .

For any c in the definition of the Banach space B, choosing T < 1
mcm−1 , we

see that K is a contraction. We have thus proved that it admits a unique
fixed point in B, which is the solution for small time of system (2.35)-(2.36).

2.2.2 Decay rate and initial data in Lm+1

We start by proving a decay estimate of an energy functional. Suppose that
y is a solution of (2.35)-(2.36), then inequality (2.38) gives

∫ 1

0

|y|m+1 (x, t) dx ≤
∫ 1

0

|y|m+1 (x, 0) dx

− (m+ 1)

(∫ T

0

(∫ 1

0

ym dx

)2

+

∫ 1

0

|(ym)x|2 dxdt

)
. (2.43)
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Let w := ym, we see that

|w|m+1
m ≤

(∣∣∣∣∫ 1

0

w dx

∣∣∣∣+

(∫ 1

0

|wx|2 dx

) 1
2

)m+1
m

=

((∫ 1

0

w dx

)2

+

∫ 1

0

|wx|2 dx+ 2

∣∣∣∣∫ 1

0

w dx

∣∣∣∣ (∫ 1

0

|wx|2 dx

) 1
2

)m+1
2m

≤ 2
m+1
2m

((∫ 1

0

w dx

)2

+

∫ 1

0

|wx|2 dx

)m+1
2m

.

Integrating in space yields

1

2

(∫ 1

0

|w|m+1
m dx

) 2m
m+1

≤
(∫ 1

0

w dx

)2

+

∫ 1

0

|wx|2 dx. (2.44)

Going back to y and using (2.43) and (2.44), we have∫ 1

0

|y|m+1 dx ≤
∫ 1

0

|y0|m+1 dx− m+ 1

2

∫ t

0

(∫ 1

0

|y|m+1 dx

) 2m
m+1

dt.

Hence, applying the comparison principle and elevating afterwards to the
power 1/(m+ 1), one can show with a direct computation that

‖y(·, t)‖Lm+1(0,1) ≤
(
m− 1

2
t+ ‖y0‖1−m

Lm+1(0,1)

)− 1
m−1

≤ Ct−
1

m−1 , (2.45)

where C :=
(
m−1

2

)− 1
m−1 . We emphasizes the fact that the decay rate is

independent of the initial datum.
We now extend the set of solutions to admit as initial datum a function

which is not bounded but merely in the energy space Lm+1(0, 1).
To prove the existence of at least one solution, we pick a sequence of

initial data (y0,n)n∈N ⊂ L∞(0, 1) such that y0,n → y0 in Lm+1(0, 1) and,
without loss of generality, we may assume that |y0,n| ≤ |y0| a.e. x ∈ (0, 1). In
what follows, C will denote a general constant independent of n but whose
value may change from line to line. Owing to (2.45), the solutions yn to
(2.35)-(2.36) with initial datum y0,n satisfies

‖yn‖L∞(0,T ;Lm+1(0,1)) ≤ C,
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where C depends on ‖y0‖Lm+1(0,1). From (2.38)

∫∫
QT

|(ymn )x|2 dxdt ≤ 1

m+ 1

∫ 1

0

|y0|m+1 dx

+ ‖yn‖mL∞(0,T ;Lm(0,1)) ‖ymn ‖L1(QT ) ,

which means that ‖(ymn )x‖L2(QT ) ≤ C. As

‖yn‖mL∞(0,T ;Lm+1(0,1)) = ‖ymn ‖L∞(0,T ;L
m+1
m (0,1))

,

it follows that ‖ymn ‖Lm+1
m (QT )

≤ C. Since m+1
m

> 1, the space L
m+1
m (QT )

is reflexive. Therefore, up to a subsequence, we obtain the following weak
convergences

yn ⇀ y, in Lm+1(QT ),

ymn ⇀ ỹ, in L
m+1
m (QT ),

(ymn )x ⇀ v, in L2(QT ).

It is clear that v ≡ (ỹ)x. To establish that we actually have ỹ ≡ ym, it suffices
to show that ymn → ỹ a.e. in QT . Indeed, from this we infer yn → ỹ1/m a.e.
in QT which, combining with the weak convergence to y, implies y ≡ ỹ1/m.
Concerning the a.e. convergence, we need a time derivative estimate. From
[70, ps. 34-35], we know that if we call φ(yn) := ymn ,∫∫

QT

tφ′(yn) |ynt|2 dxdt+ T

∫ 1

0

|φ(yn)x(T )|2 dx ≤
∫∫

QT

|φ(yn)x|2 dxdt

+

∫∫
QT

tφ′(yn)u2
n dxdt.

Hence, using Young’s inequality, we get

m

∫∫
QT

t |yn|m−1 |ynt|2 dxdt+ T

∫ 1

0

|(ymn )x(T )|2 dx ≤
∫∫

QT

|(ymn )x|2 dxdt

+mT
m− 1

m+ 1

∫∫
QT

|yn|m+1 dxdt+mT
2

m+ 1

∫ T

0

|un|m+1 dt.

Going back to our nonlocal problem, Holder’s inequality yields

‖un‖Lm+1(0,T ) ≤ C ‖yn‖mL∞(0,T ;Lm+1(0,1)) .
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Define Qτ
T := (0, 1)× (τ, T ), we have

‖ymn ‖L∞(τ,T ;H1(0,1)) ≤ C,

where in this case the constant depends on τ , i.e., C = C(τ). Then, by
Rellich–Kondrachov’s theorem,

‖yn‖L∞(QτT ) ≤ C.

This leads to

m

∫
QτT

t |yn|2(m−1) |ynt|2 dxdt ≤ mCm−1

∫
QτT

t |yn|m−1 |ynt|2 dxdt,

that is
‖(ymn )t‖L2(QτT ) ≤ C.

Thus, we have shown ‖ymn ‖H1(QτT ) ≤ C. Consequently, we can extract a

subsequence still labelled (yn)n∈N such that ymn → ym in L2(Qτ
T ). By the

diagonal argument, passing to another subsequence, we may assume that
yn → y a.e. in QT . It remains to check that∫ T

0

(∫ 1

0

ymn dx

)(∫ 1

0

η dx

)
dt→

∫ T

0

(∫ 1

0

ym dx

)(∫ 1

0

η dx

)
dt,

which follows from Lebesgue’s theorem. Indeed, ‖ymn (·, t)‖L1(0,1) is bounded
in L∞(0, T ) and, passing to a subsequence, ‖ymn (·, t)‖L1(0,1) → ‖ym(·, t)‖L1(0,1)

a.e. t ∈ (0, T ). Therefore, we can pass to the limit in (2.37) as n→∞, which
gives that y is a solution of (2.35)-(2.36).

2.2.3 Existence for all time

In this part, we shall prove the existence of a solution for all time t ≥ 0.
The argument is standard and we repeat it just for completeness. Let y0 ∈
Lm+1(0, 1) be fixed. If y1, y2 are solutions on [0, T1), [0, T2) respectively, then
y1 ≡ y2 on [0,min(T1, T2)).

Consider the set of solutions {ys : [0, Ts) → Lm+1(0, 1)} and let T̃ :=

supTs. We define y : [0, T̃ )→ Lm+1(0, 1) in the following way:

y(t) := ys(t), if t < Ts,

which, thanks to the uniqueness, is well-defined and is also a solution on
the interval [0, Ts). Now, choose a sequence (tk)k∈N with tk → T̃ . We know
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from (2.45) that ‖y(tk)‖Lm+1(0,1) ≤ C for all k ∈ N. Due to our assumptions,
there exists T > 0 independent of k such that the problem (2.35)-(2.36) with
initial datum y(tk) possesses a unique solution yk : [0, T ] → Lm+1(0, 1). By

uniqueness, yk(t) = y(t+ tk) for small t. Fix k such that tk ∈ (T̃ −T, T̃ ) and
set

ỹ(t) :=

{
y(t), if t ∈ [0, tk],

yk(t− tk), if t ∈ [tk, tk + T ].

It follows that ỹ is a solution of (2.35)-(2.36) on [0, tk + T ] and tk + T̃ > T̃ ,

which contradicts the definition of T̃ .

2.3 Derivative dependent nonlinearities

In this part we deal with a different type of nonlinearity, whose ellipticity
value does not depend any more on the value of the solution but of its first
derivative. To begin with we treat the case of non degenerate equations and
in a second moment we address the problem of the p-laplacian equation. In
both cases we are interested in the null controllability of these equations.

2.3.1 Non degenerate system

The control system in this case has the form
yt − a(yx)x = u(t) (x, t) ∈ Q,
yx(0, t) = 0 t ∈ (0, T ),

yx(1, t) = v(t) t ∈ (0, T ),

y(x, 0) = y0 x ∈ (0, 1),

(2.46)

with Q = (0, 1)× (0, T ) and a : R→ R which satisfies the uniform ellipticity
condition 0 < µ ≤ a′(x), and the bounds |a′(x)|, |a′′(x)|, |a′′′(x)| ≤ M < ∞
for all x ∈ R. As in section 1 we make use of an internal constant control u,
but this time the boundary control is of Neumann type. Our main result is
the following one:

Theorem 2.3.1. For any sufficiently small δ and for any initial data with
||y0x||H1 ≤ δ there exists controls u, v1, v2 such that the solution of system
(2.46) verifies y(·, T ) = 0.

We start differentiating formally the state equation of (2.46) with respect
to x and we call w = yx. We look at the equation for w in the new domain
Q′ = (0, 1)× (0, T ′) with T ′ < T ,
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
wt − a(w)xx = 0 (x, t) ∈ Q′,
w(0, t) = 0 t ∈ (0, T ′),

w(1, t) = v1(t) t ∈ (0, T ′),

w(x, 0) = w0 x ∈ (0, 1),

(2.47)

where w0 = y0x. In a first step we would like to steer w to zero at time T ′

with the only dirichlet boundary condition in x = 1. To prove such a result
we extend the domain Q′ to Q′2 = (0, 2) × (0, T ′), and the initial datum w0

to z0 ∈ H1(0, 2) with ||z0||H1(0,2) ≤ c||w0||H1(0,1). We build the new problem
as in section 1 

zt − a(z)xx = u(x, t)χω (x, t) ∈ Q′,
z(0, t) = 0 t ∈ (0, T ′),

z(2, t) = 0 t ∈ (0, T ′),

z(x, 0) = z0 x ∈ (0, 1),

(2.48)

where ω ⊂ (1, 2). We can state the following.

Proposition 2.3.2. For any δ > 0 there exists η > 0 such that for every
z0 ∈ H1(0, 2) with ||z0||H1 ≤ η, (2.48) is exactly null controllable.

At this point we define the function

y(x, t) =

∫ x

1/2

z(s, t) ds+ C x ∈ (0, 1), t ∈ (0, T ′),

where C is a constant to be chosen later. One can check that y solve the
following problem

d

dt
y(x, t)− a(yx)x(x, t) = −a(z)x(1/2, t) x ∈ (0, 1)× (0, T ′),

yx(0, t) = 0 t ∈ (0, T ′),

yx(1, t) = z(1, t) t ∈ (0, T ′),

y(x, 0) =

∫ x

1/2

z0(s) ds+ C x ∈ (0, 1).

(2.49)

We remark that since z(·, t) ∈ H1(0, 2), the state equation of (2.49) makes
sense. To conclude we define ȳ as

ȳ =

{
y(x, t) t ∈ (0, T ′),

k(t) t ∈ (T ′, T ),
(2.50)
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where k ∈ C1(T ′, T ) is such that k(T ) = 0 and ȳ is sufficiently regular. In
the same spirit we define

v̄(t) =

{
z(1, t) t ∈ (0, T ′),

0 t ∈ (T ′, T ).
(2.51)

The vector (ȳ, v̄) is a trajectory of system (2.46) with ȳ(T ′) = 0. Hence
Theorem 2.3.1 holds.

2.3.2 p-Laplacian case

With the p-laplacian operator in the diffusion the situation is more com-
plicated. In this case the degeneracy occurs at the points where yx = 0.
For the null control of the p-laplacian equation the set of control we use is
more sophisticated and the hypothesises on the initial condition are more
restrictive. 

yt − (|yx|p−2yx)x = u1(t)x+ u2(t) (x, t) ∈ Q,
yx(0, t) = v0(t) t ∈ (0, T ),

yx(1, t) = v1(t) t ∈ (0, T ),

y(x, 0) = y0 x ∈ (0, 1),

(2.52)

The meaning of the symbols is the same as in section 2.3.1. We can see
that the internal control is composed by two parts. The first one , u1 has
the function of steering the initial data to a constant state while u2 is mainly
needed in a second time to go from a generic constant state to zero, even
though it plays a role also in the first part

Proposition 2.3.3. Let m ∈ [2,+∞). For any initial data y0 ∈ W 1,p(0, 1)
with y0x ≥ 0 and any time T > 0, there exist controls v0(t), v1(t) and
u1(t), u2(t) such that the solution y of (2.52) satisfies y(·, T ) ≡ 0 on (0, 1).

The proof is a combination of the ideas used in sections 2.1 and 2.3.1. In
particular, as in section 2.3.1, we make use of the existing relation between
the PME and the p-laplacian equation.

the first step we formally derive with respect to x system (2.52) as in
section 2.3.1 and we focus on the cylinder Q′ = (0, 1) × (0, T ′). We set
w = yx and we have a new system

wt − (|w|p−2w)xx = u1(t) (x, t) ∈ Q′
w(0, t) = v0(t) t ∈ (0, T ′),

w(1, t) = v1(t) t ∈ (0, T ′),

w(x, 0) = y0x := w0 x ∈ (0, 1),

(2.53)
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with w0 ∈ Lp(0, 1). We apply Theorem 2.1.1 to obtain controls ū1, v̄0, v̄1 and
a solution w̄ such that w̄(T ′) = 0. Again we define on (0, T ′) the function

y(x, t) =

∫ x

1
2

w(s, t) ds+ C x ∈ (0, 1), t ∈ (0, T ′) (2.54)

with C = y0(1/2). We can see that (2.54) is a solution of (2.52) with

u2(t) = −(|w(x, t)|p−2w(x, t))x(1/2, t)−
1

2
u1(t).

The choice of 1/2 as integration point is due to the higher regularity that w
enjoys in the interior, giving sense to u2.

If we check at y we see that y(T ′) ≡ C. So on the interval (T ′, T ) we
switch off u1 and we follow a constant in space trajectory up to zero. This
means we choose a smooth function c : [T ′, T ] → R such that c(T ′) = C,
c(T ) = 0: it is a solution of (2.52) on (0, 1) × (T ′, T ) with controls u1 = 0,
u2 = c′, v0 = v1 = c.
The function obtained as

ȳ(t) =

{
y t ∈ (0, T ′),

c t ∈ (T ′, T ),
(2.55)

is the sought trajectory.

Remark 2.3.4. The hypothesis y0x ≥ 0 is quite restrictive and it would
be nice to find a method to extend proposition 2.3.3 to the general case of
y0 ∈ W 1,p(0, 1).





Chapter 3

Expansion on the boundary of
the support

This chapter has been written starting from the paper:

· J.I. Dı́az, T.Mingazzini, A criterion on the boundary non-diffusion or
expansion of the support for some reaction-diffusion free boundary
problems, or how the free boundary approaches to the boundary. (In
preparation).

In this chapter we shall study the way the free boundary of solutions
to some partial differential equations behaves depending on the trace of the
solutions. The free boundary problems we consider are of two different types:

i) Elliptic reaction-diffusion type problems, as{
−Lu+ λuq = 0 in Ω,
u = h on ∂Ω,

(3.1)

under the fundamental assumption

q ∈ (0, 1), (3.2)

which guaranties the formation of the free boundary (at least for λ > 0 large
enough, if Ω is bounded, or for any λ > 0, if Ω is unbounded). Such problem
arises, for instance, in Chemical Engineering when a catalytic chemical reac-
tor occupying a domain Ω has a reactant feed channel (entrance boundary)
which is represented by the part Γ+ ⊂ ∂Ω, where the reactant concentration
is h(x) > 0 and the rest of walls of the chemical reactant are isolated in such
a way that, if we denote by Γ0 := ∂Ω \ Γ+, then h(x) = 0 on Γ0. Here we

77
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h > 0

h = 0Γ0

Γ+ u > 0 u ≡ 0

Figure 3.1: Chemical reactor scheme

assume that there is no exit boundary (see Figure 3.1). The exponent q is
called the order of the reaction.
ii) The obstacle problem

{
−Lu ≥ f(x), u ≥ 0 and (−Lu− f(x))u = 0 in Ω,
u(x) = h(x) on ∂Ω.

(3.3)

Here the free boundary is given by the boundary of the coincidence set (the
set of points where u = 0); according for instance to [39] a sufficient condition
for the existence of the free boundary is that f(x) ≤ −µ for some µ > 0 on a
large enough open subset of Ω (see, for instance, [69] for a full treatment of
the obstacle problem). Among the many frameworks in which the obstacle
problem arises we could mention, for instance, the unilateral problem of the
stationary shape of a membrane which is forced downwards by a constant
force f , is fixed on the boundary to a hight h(x) and constrained to lie over
the hyperplane u = 0. Actually, here we shall consider the special case in
which (3.3) can be formulated in terms of{

−Lu+ λβ(u) 3 ε in Ω,
u = h on ∂Ω,

(3.4)

for some constant ε ∈ [0, λ), where β(u) is the maximal monotone graph of
R2 given by

β(u) =


0 for u < 0,

[0, 1] for u = 0,

1 for u > 0.

(3.5)
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If u “solve problem” (3.4) (the rigorous definition of solution will be given
later) then u is also a solution of the obstacle problem (3.3) with f = −λ+ε:
indeed, we will see that ε ≥ 0 and h ≥ 0 imply that u ≥ 0. Then, if u > 0,
−Lu + λ = ε which is the same as −Lu − f = 0. Finally, since there is
uniqueness of solution for both formulations we get that the solutions must
be the same.

Another interesting application of problem (3.4) arises also in the context
of Chemical Engineering (as problem (3.1) with q = 0: see, e.g., [9]).

For some general purposes, such as the existence, uniqueness and regu-
larity of the solutions, the domain Ω will be assumed to be an open regular
set of RN . Nevertheless, when studying the qualitative properties of the so-
lutions we focus on the bi-dimensional case, and we adopt as domain Ω the
upper half plain in R2, Ω = R × [0,∞). In this setting we use the follow-
ing notation: x := (x1, x2) with x1 ∈ R and x2 ∈ [0,∞). The unbounded
boundary of the domain is then ∂Ω = R×{0} and so the boundary function
h will depend only on the variable x1. In addition, L denotes a second order
elliptic operator of the form

Lu =
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u

)
= div(A(x)∇u), (3.6)

with aij ∈ C1,α(Ω) for some α ∈ (0, 1), such that the corresponding matrix
A(x) is symmetric and positive definite. Actually, in the parts concerning
the behaviour of the support and free boundary of the solutions we shall
restrict to the case of constant coefficients. This restriction serves merely to
simplify the calculations and does not affect the local behaviour. For what
concerns the boundary datum h, we assume that

h ∈ L∞(∂Ω) and h ≥ 0 on ∂Ω,

even though the existence and uniqueness results on a bounded domain hold
for h ∈ L1(∂Ω) (and even for signed boundary measures).

A general exposition containing many references on both problems can
be found in the monograph [39]. One can see that both problems are special
cases of the wider formulation{

−Lu+ λβ(u) 3 f in Ω,
u = h on ∂Ω,

(3.7)

where β(u) is a maximal monotone graph of R2 such that 0 ∈ β(0): β is
given by

β(u) = λ |u|q−1 u (3.8)
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in case of problem (3.1) and by (3.5) in case of problem (3.3). We define, as
usual, the domain of β as D(β) = {r ∈ R : β(r) 6= ∅} where ∅ stands for
the empty set.

We also consider the associated parabolic problem
ut − Lu+ λβ(u) 3 f(x, t) in Q∞,
u = h(t, x) on Σ∞,
u(x, 0) = u0(x) on Ω,

(3.9)

where Q∞ = Ω × (0,∞), Σ∞ = ∂Ω × (0,∞) and for some f ∈ L∞(Q∞) ∩
L1

loc((0,∞);L1
loc(Ω)), h ∈ L∞(Σ∞) ∩ L1

loc((0,+∞);L1(∂Ω)), with f, h ≥ 0
respectively on Q∞ and on Σ∞, and u0 ∈ L∞(Ω) with u0 ≥ 0 on Ω.

As mentioned before, the above problems, both elliptic and parabolic,
give rise to a free boundary defined as the boundary of the support of the
solution. If we denote the positivity set of a non-negative function u by
S(u) := {x ∈ Ω : u(x) > 0}, then the free boundary is defined as F(u) =
∂S ∩ Ω (we also introduce the null set of u as N (u) := {x ∈ Ω : u(x) = 0}
and the support of u as S(u)). Similar notations can be introduced also for
the parabolic problem, applying the definitions to u(t, ·). Our main goal in
this paper is to study the behaviour of the free boundary near the support
of the boundary datum h (respectively h(t, ·)). We shall assume always that

S(h) ( ∂Ω,

respectively

S(h(t, ·)) ( ∂Ω, for a.e. t > 0.

The main question we investigate in this paper is whether the free bound-
ary F(u) is connected or not with the boundary of the support of the bound-
ary datum h (and similar question for the parabolic formulation). In some
sense, this research can be considered as a natural continuation of the study
of the so called non-diffusion of the support property (see [39] and [5]) in the
case where h ≡ 0; under a suitable behaviour of f near the boundary of its
support S(u) = S(f). In the case of parabolic free boundary problems this
question is related with the behaviour of the free boundary for small times
(the so called waiting time property) and received a great attention in the
last 40 years (see, e.g., the monographs [70], [8] and their many references).
Another study, not too far from our interest is the paper by Martel and Sou-
plet [62] regarding the behaviour of solutions of linear parabolic problems
with incompatible initial data.

To be more precise, our main goal is to find some sufficient criterion on
the behaviour of h near the boundary of its support ensuring that the free
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boundary F(u) is in contact with ∂S(h). In this way the support of the
datum is not diffused on the boundary of the domain and we would have

∂S(u) ∩ ∂Ω = S(h). (3.10)

It is what we can call the non-diffusion on the boundary of the support prop-
erty. In addition, we want to give some sufficient conditions ensuring the
opposite qualitative behaviour, i.e., to find conditions on h implying that
there is a strict expansion of the support S(h) on the boundary ∂Ω. In other
words, we want to know cases in which F(u) has no contact with ∂S(h) and
so

S(h) ( ∂S(u) ∩ ∂Ω.

We call this phenomenon the expansion on the boundary of the support prop-
erty. The only paper in the previous literature about such boundary quali-
tative behaviour we are aware of is [48] in which they proved the expansion
on the boundary of the support property for problem (3.1) in the special case
of Lu = ∆u, h given by the Heaviside function and Ω the half plane R×R+.
As we shall see later, this property also holds even for suitable continuous
boundary data h.

Before stating our main results we need to make precise the notion of
solution. The delicate point in our study is that we want to allow the bound-
ary datum to be discontinuous and so the notion of the trace of the solution
must be taken in a very general framework (something which, in our opinion,
is not discussed enough in [48]).

We recall that the notion of boundary trace of a function u in Ω depends
on the regularity properties of such function u. For instance, when u ∈ C(Ω)
the boundary trace u|∂Ω is clearly well defined and belongs to C(∂Ω). If
u is in some Sobolev space W 1,p(Ω), for some p > 1, then the boundary
trace can be defined and is a function in the space Lp(∂Ω) (more precisely

in the Sobolev space W 1− 1
p
,p(∂Ω): see, e.g., [58] and [2]) . Nevertheless, the

identification of the elements of the trace space W 1− 1
p
,p(∂Ω) is not always

easy and leads to some pathological results against intuition. For instance in
the book by Mikhailov [63] one can see that already when Ω = B, the unit
ball of R2, there are continuous functions h ∈ C(∂B) which are not the trace

of any function in H1(Ω) (i.e., C(∂B) * H
1
2 (∂B)).

A different approach was proposed by Häım Brezis, in an unpublished
paper (1972) profusingly mentioned in the literature (see [71], [61] and [42]),
which holds for semilinear second order boundary value problems with bound-
ary data in L1(∂Ω) (later extended to measures on ∂Ω). The main idea is
to multiply by a “regular” test function (ϕ ∈ W 2,∞(Ω) ∩W 1,∞

0 (Ω)) and to
integrate twice by parts. We introduce the adjoint operator
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L∗u =
N∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
u

)
= div(A∗∇u)

(A∗ the transposed matrix of A) and for x ∈ ∂Ω we define

∂Au := (A∗∇u) · n,

where n(x) is the outward normal vector to ∂Ω in x. A solution is then a
function u which satisfies

−
∫

Ω

uL∗ϕ dx+ λ

∫
Ω

bϕ dx =

∫
Ω

fϕ dx−
∫
∂Ω

h∂Aϕ dσ, (3.11)

for all ϕ ∈ W 2,∞(Ω) ∩W 1,∞
0 (Ω) and for some b ∈ L1

loc(Ω) such that b(x) ∈
β(u(x)) for a.e. x ∈ Ω (in case of problem (3.1), it is b = uq). In order
to give a meaning to all the above integrals it is useful to recall that since
ϕ ∈ W 1,∞

0 (Ω), we know that c1ρ(x) 6 ϕ1(x) 6 c2ρ(x) ∀x ∈ Ω, where

ρ(x) := dist (x, ∂Ω),

and c1, c2 are positive constants. Thus we must require at least that

f ∈ L1(Ω; ρ),

where

L1(Ω; ρ) := {f ∈ L1
loc(Ω) :

∫
Ω

|f(x)|ρ(x) dx < +∞}.

Definition 3.0.5. Given f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω), we say that u is
a very weak solution of problem (3.7) if u ∈ L1(Ω) and there exists b ∈
L1(Ω; ρ) such that b(x) ∈ β(u(x)) for a.e. x ∈ Ω, and for any test function
ϕ ∈ W 2,∞(Ω) ∩W 1,∞

0 (Ω) identity (3.11) holds.

It is not too difficult to adapt to our framework some existence and
uniqueness results in the literature (see [20], [71] and [61]).

Theorem 3.0.6. Let Ω be a bounded regular open set of RN , let β be a
maximal monotone graph of R2 such that 0 ∈ β(0) and let f ∈ L1(Ω; d)
and h ∈ L1(∂Ω). Then there exists a unique very weak solution u of problem
(3.7). Moreover, there exists a constant C, only dependent of Ω, such that

if û is the very weak solution corresponding to the data f̂ ∈ L1(Ω; d) and
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ĥ ∈ L1(∂Ω), with b̂(x) ∈ β(û(x)) for a.e. x ∈ Ω as in Definition 3.0.5, then
we have ∥∥[u− û]+

∥∥
L1(Ω)

+ λ

∥∥∥∥[b− b̂]
+

∥∥∥∥
L1(Ω;d)

≤ C

(∥∥∥∥[f − f̂]
+

∥∥∥∥
L1(Ω;d)

+

∥∥∥∥[h− ĥ]
+

∥∥∥∥
L1(∂Ω)

) (3.12)

and
‖u− û‖L1(Ω) + λ

∥∥∥b− b̂∥∥∥
L1(Ω;d)

≤ C

(∥∥∥f − f̂∥∥∥
L1(Ω;d)

+
∥∥∥h− ĥ∥∥∥

L1(∂Ω)

)
.

(3.13)

In particular, f ≤ f̂ and h ≤ ĥ implies that u ≤ û on Ω.

To study the behaviour of the solution close to the boundary of S(h)
we consider the particular case where Ω = R × [0,∞), aij is constant for
i, j ∈ {1, 2}, f ≡ 0, and β(u) is given by (3.8) or (3.5). For what con-
cern the boundary datum, we are interested in the case of h satisfying,
h ∈ L∞(∂Ω), h(x1) = 0 on (−∞, 0) and h(x1) > 0 on (0,+∞).

The reason why we consider boundary data in L∞(∂Ω) instead of in
L1(∂Ω) (remember that now ∂Ω is unbounded, so L∞(∂Ω) * L1(∂Ω)) is
that we know the explicit solution in the unperturbed linear case (λ = 0,
L = ∆, f ≡ 0) with boundary data given by the Heaviside function (3.50).
Such solution is given by

u(x1, x2) = 1− 1

π
arctan

(
x1

x2

)
(3.14)

(the result can be found in [48] formula (2.6)). Having at disposal an explicit
solution like (3.14) is really useful in the study of the behaviour of general
solutions close to the point x = (0, 0). In addition, since our main interest, as
already said, is specifically the behaviour near the boundary of the support
∂S(h) and not in the whole Ω, we shall assume also that h is non decreasing
and that h(x1) = c+ > 0 for x1 ≥ δ > 0. We can resume this set of hypothesis
in 

Ω = R× [0,∞), aij constant for i, j ∈ {1, 2}, f ≡ 0,
β(u) is given by (3.8) or (3.5),
h ∈ L∞(∂Ω), h non decreasing ,
h(x1) = 0 on (−∞, 0) and h(x1) = c+ > 0 on (δ,+∞).

(Hhp)
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To give a definition of solution for the new setting Hhp, we first introduce
the family of rectangles

Rn = {(x1, x2) : |x1| < n, 0 < x2 < x̄},

where x̄ is a constant which will be make explicit later on. We define now
the bounded domain Ωn, which is any sufficiently smooth regularization of
the rectangular Rn. We call Γ1

n the horizontal boundary of Ωn, i.e., Γ1
n :=

{(x1, x2) ∈ ∂Ωn : x2 = 0 or x2 = x̄}, and Γ2
n = ∂Ωn \ Γ1

n. Then we consider
the problem 

− Lu+ β(u) 3 0 in Ωn,

u(x1, 0) = h(x1), u(x1, x̄) = 0 |x1| ≤ n,

u(x1, x2) = 0 (x1, x2) ∈ Γ2
n, x1 < 0,

u(x1, x2) = z(x2) (x1, x2) ∈ Γ2
n, x1 > 0,

(3.15)

where z is given by (3.48). We define the class of “limit very weak solutions”.

Definition 3.0.7. In the framework of Hhp, we say that u is a limit very
weak solution of problem (3.7) if u = limn→∞ un, where un is the solution of
the truncated problem (3.15).

Theorem 3.0.8. Assume (Hhp). There exists a unique limit very weak so-
lution of problem (3.7) on the hyperplane Ω = R × [0,∞). Moreover that
solution satisfies the comparison principle with respect to the boundary data
h: if h ≤ ĥ then the corresponding limit very weak solutions satisfy u ≤ û on
Ω.

Remark 3.0.9. It is easy to see that any “limit very weak solution” is a
very weak solution in the sense that u ∈ L∞(Ω), u ≥ 0 and there exists
b ∈ L∞(Ω) such that b(x) ∈ β(u(x)) for a.e. x ∈ Ω and, for any test
function ϕ ∈ W 2,∞(Ω) ∩ W 1,∞

0 (Ω) with compact support, identity (3.11)
holds. Actually, it also satisfies that u ∈ H1

loc(Ω)∩C(Ω) (indeed, it is enough
to apply the local regularity result by Zhang and Bao [72] and to argue by
bootstrap for other Sobolev spaces; see their Theorem 1.6, so as to arrive to
continuity on open subsets).

In the specific setting of L = ∆, boundary datum the Heaviside function
and β(u) = |u|q−1 u, q ∈ (0, 1), it is possible to show (see [48] ) that the
uniqueness holds for local H1

loc(Ω)−weak solutions which are continuous up
to the boundary except the origin (i.e. in C(Ω− (0, 0)). Note that, although
they prove uniqueness of a solution without asking the condition of being
limit solution, their formulation is very restrictive (in particular it does not
include the possibility of h just in L∞(∂Ω)).
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x1

x2

u > 0

u = 0

(0, 0)

F(u)

Figure 3.2: Expansion on the boundary of the support

Our technique allows to extend the uniqueness result in [48] in several
senses ( L 6= ∆, case of β multivalued, and, for instance, cases in which the
set of discontinuity of the boundary datum h is a countable set of points)
that we shall not develop here.

Our main result concerns the qualitative behaviour of the solution of
(3.7) under the assumption (Hhp).

Theorem 3.0.10. Assume (Hhp). Then there exist four positive constants
C < C, ε < ε and two boundary points x1,ε, x1,ε > 0, such that :

i) If h(x1) ≥ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(x) ≥ ε for a.e. x1 ∈

(x1,ε,+∞) then the expansion on the boundary of the support property holds.

ii) If h(x1) ≤ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(x1) ≤ ε for a.e. x1 ∈

(x1,ε,+∞) then the non-diffusion on the boundary of the support property
holds.
In both cases, q ∈ (0, 1) when β is given by (3.8) and q = 0 when β is chosen
as (3.5).

The pictures of an indicative qualitative behaviour of solutions illustrated in
Theorem 3.0.10 is resumed is Figure 3.2 (i) and 3.3 (ii).

Corollary 3.0.11. In the same framework of Theorem 3.0.10 we have the
additional consequences:

1) Under condition (i), u = ∂
∂n
u = 0 on (−∞, 0)× {0}.
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x1

x2

u > 0

u = 0

F(u)

(0, 0)

Figure 3.3: Non-diffusion on the boundary of the support

2) Under condition (ii), ∂
∂n
u > 0 on (−ζ, 0) × {0} for some ζ > 0. If

in particular, h is the a multiple of the Heaviside function then ∂
∂n
u /∈

C(∂Ω) and u /∈ C(Ω).

In both situations, n = (0, 1) is the normal vector to ∂Ω.

Concerning the parabolic problem our main interest consists in analysing
the stabilization of the solution to the solution of stationary problem in order
to well understand the expansion on the boundary of the support property.
When Ω is a general open bounded set the notion of very weak solution is
quite similar to the elliptic case.

Definition 3.0.12. Let us take any T > 0, f ∈ L1(0, T ;L1(Ω; d)), h ∈
L1(0, T ;L1(∂Ω)) and u0 ∈ L1(Ω; d) with u0(x) ∈ D(β). We say that u is a
very weak solution of problem (3.9) if u ∈ L1(0, T ;L1(Ω)) and there exists
b ∈ L1(0, T ;L1(Ω; d)) such that b(t, x) ∈ β(u(t, x)) for a.e. (t, x) ∈ (0, T )×Ω,
and for every test function ϕ ∈ W 1,∞([0, T ];L∞(Ω)) ∩ L∞(0, T ;W 2,∞(Ω) ∩
W 1,∞

0 (Ω))with ϕ(T, ·) = 0 the following identity holds

−
∫ T

0

∫
Ω

u
∂ϕ

∂t
dxdt+

∫ T

0

∫
Ω

uL∗ϕ dx+ λ

∫ T

0

∫
Ω

bϕ dxdt

=

∫
Ω

u0(x)ϕ(0, x) dx+

∫ T

0

∫
Ω

fϕ dxdt−
∫ T

0

∫
∂Ω

h ∂Aϕ dσdt.

(3.16)

Once again, it is not too difficult to adapt to our framework some existence
and uniqueness results in the literature (see [59]).
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b

b

b

x1

x2

0

L

−L

l−(t)

l+(t)
t1

t2

t = ∞
u∞ > 0

u(t1) > 0

u(t2) > 0

u=0

t

Figure 3.4: Convergence of S(u(t, ·)) to S(u∞)

Theorem 3.0.13. i) For data f, h and u0 as in Definition 3.0.12 there exists
a unique very weak solution of (3.9). Moreover we have a smoothing effect
([59]).

ii) If in addition h ∈ W 1,1(0, T ;L1(∂Ω)), then the very weak solution
satisfies u ∈ C([0, T ];L1(Ω; d)).

Our result on the asymptotic behaviour, for t→ +∞, seems to be new in
the context of very weak solutions (check [41] and [56] for similar results on
more regular solutions).

Remark 3.0.14. Whenever we are dealing at the same time with the parabolic
and the elliptic problem, as we are going to do, we use the symbols u∞, h∞,
f∞ to denote the solution and the data of the elliptic boundary value prob-
lem.

For the next result we will add the following hypothesis:

∃ q ∈ [0, 1) such that |b| ≤ C |r|q

for any b ∈ β(r) and for any r ∈ R.
(3.17)

In the above condition the case q = 0 means that R(β) (the range of β, i.e.,
r ∈ R such that there exists x ∈ R for which r ∈ β(x)) is bounded.
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Theorem 3.0.15. Consider the case of condition (3.17). Assume h ∈
W 1,1(0, T ;L1(∂Ω)) for any T > 0 and that there exists a sequence tn → +∞,
as n→ +∞, such that∫ tn+1

tn−1

∫
Ω

|f(s, x)− f∞(x)| ρ(x) dxds→ 0 as n→ +∞ (3.18)

and ∫ tn+1

tn−1

∫
∂Ω

|h(s, x)− h∞(x)| dσds→ 0 as n→ +∞. (3.19)

Assume in addition that

u ∈ L∞(0,∞;L1(Ω; ρ)). (3.20)

Then u(tn, ·)→ u∞ in L1(Ω; ρ) with u∞ the very weak solution of (3.7) with
data f∞ and h∞.

For the qualitative behaviour of the solutions, we consider now the half
plane case under the assumptions

Ω = R× [0,∞), aij are constants, f ≡ 0, u0 ≥ 0,
β(u) is given by (3.8) or (3.5),

h ∈ W 1,1
loc (0,+∞;L1(∂Ω)) ∩ L∞((0,+∞)× ∂Ω),

h(t, ·) = 0 on (−∞, 0) and h(t, ·) > 0 on (0,+∞),
h(t, x1) = c+∀x1 ∈ [δ,∞), t > 0.

(Ĥhp)

In this setting we adapt the definition of limit very weak solution from
the elliptic case using truncated-in-space solutions. Existence and uniqueness
can be obtain in similar way.

Corollary 3.0.16. Assume (Ĥhp). Then there exist four positive constants
C < C, ε ≤ ε and two boundary points x1,ε, x1,ε > 0 such that

i) if u0 = 0, h(t, x1) ≤ Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and h(t, x1) ≤ ε for a.e.

x1 ∈ (x1,ε,+∞), for any t ≥ 0, then the nondiffusion on the boundary of the
support property holds for any t ≥ 0, i.e., ∂S(u(t, .)) ∩ ∂Ω = S(h(t, .)) for
any t ≥ 0 (infinite waiting time property).

ii) Assume that u0(x1, x2) ≥ u1(x1, x2) + u2(x1, x2) with u1 and u2 solutions

of the problems (3.56) and (3.57) and that h(t, x1) ≥ Cx
2

1−q
1 for a.e. x1 ∈

(0, x1,ε) and h(t, x1) ≥ ε for a.e. x1 ∈ (x1,ε,+∞), for any t ∈ (0, T ).
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Then the expansion on the boundary of the support property holds for any
t ∈ (0, T ], i.e., S(h(t, .)) ( ∂S(u(t, .)) ∩ ∂Ω := [−δ0,∞] × {0}, for some
δ0 > 0.

Remember that q ∈ (0, 1) when β(u) is given by (3.8) and q = 0 for the
case (3.5).

Corollary 3.0.17. The conclusions of Corollary 3.0.11 remain valid for
u(t, ·) under the corresponding assumptions.

We point out that the analysis of the free boundary studied in this chap-
ter can be of great interest in the study of some optimal control problems.
Consider, for example, a functional J as the one given in Chapter 1 but with
B being a neighbourhood in R × [0,∞) of the interval (−k, 0) × {0}, and
assume that the control variable this time is the boundary value h, with h
as in Hhp. Then, in the minimization problem we will not consider those
controls h whose growth near x1 = 0 is too fast while we will prefer those
with bigger mass at infinity and low growth close to the origin.

The organization of the rest of this chapter is the following. Section 3.1
is devoted to the proof of the general existence and uniqueness results, The-
orems 3.0.6 and Theorem 3.0.13. The stabilization of very weak solutions,
when t→ +∞, is considered in Section 3.2 and, in particular Theorem 3.0.15
is proved there. Finally the special case of the half plane is considered in Sec-
tion 3.3. After proving Theorem 3.0.8 we present the proof of Theorem 3.0.10
in Subsections 3.3.3 and 3.3.4. The special case of discontinuous boundary
data plays an important role in such proof and so it is previously discussed
there.

3.1 On the existence and uniqueness of very

weak solutions

3.1.1 Proof of Theorem 3.0.6

We need to introduce first a result on the corresponding linear problem{
− Lu = f in Ω,

u = h on ∂Ω.
(3.21)
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Definition 3.1.1. Assume f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). A function u ∈
L1(Ω) is a weak solution of (3.21) if it satisfies∫

Ω

uL∗φ dx =

∫
∂Ω

h ∂Aφ dσ −
∫

Ω

fφ dx

for every function φ ∈ C2
0(Ω̄).

This lemma is a known result and we cite it for further needs.

Lemma 3.1.2. Assume u solves (3.21) with h = 0 and f ∈ L2(Ω). Then
u ∈ H1

0 (Ω) and ∫
Ω

−Lu · u dx ≥ C||u||2L2(Ω)

Next proposition is a consequence of a generalization of the estimates of
Brezis [20] applied to the operator L. The proof when L is the Laplacian
can be found in [61]. The case of an even more general second order linear
operator of the form

Lu = − div(A∇u) + b · ∇u− div(cu) + du

under appropriate structural and regularity assumptions on the coefficients
A ∈ Mn×n(R),b, c ∈ Rn, d ∈ R (essentially the maximum principle should
hold) is contained in [71].

Proposition 3.1.3. Let f ∈ L1(Ω; ρ) and h ∈ L1(∂Ω). Then there exists a
unique solution u ∈ L1(Ω) of problem (3.21) in the sense of Definition 3.1.1.
Moreover there exists C = C(Ω, L) > 0 such that

||u||L1(Ω) ≤ C(||f ||L1(Ω;ρ) + ||h||L1(∂Ω)) (3.22)

and u satisfies

−
∫

Ω

u+L
∗φ dx ≤

∫
Ω

f(sgn +u)φ dx−
∫
∂Ω

∂Aφh+ dσ, (3.23)

and

−
∫

Ω

|u|L∗φ dx ≤
∫

Ω

f(sgnu)φ dx−
∫
∂Ω

∂Aφ |h| dσ, (3.24)

for every non negative φ ∈ C2
0(Ω̄). We have used the notation

sgn r =


1 if r > 0,
0 if r = 0,
−1 if r < 0,

sgn +r =

{
1 if r ≥ 0,
0 if r < 0.
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Proof of Theorem 3.0.6. Uniqueness, monotonicity and estimate (3.12) fol-
low from Proposition 3.1.3. Indeed, assume that u1 and u2 are solutions
of (3.7) with data f1, h1 and f2, h2 respectively. It means that there exist
b1(x) ∈ β(u1(x)) and b2(x) ∈ β(u2(x)) such that (3.11) holds. This implies
that w = u1 − w2 is a solution of{

− Lw = f ∗ = f1 − f2 − b1 + b2 in Ω,

w = h∗ = h1 − h2 on ∂Ω.
(3.25)

Then, estimate (3.12) follows from (3.23) when applied to w with test func-
tion φ0 solution of {

− L∗φ0 = 1 in Ω,

φ0 = 0 on ∂Ω.
(3.26)

Also monotonicity follows from estimate (3.23) when applied to w with test
function φ0. Uniqueness can be derived with the same procedure from (3.24).

Existence. We consider the Yosida approximation βµ of β, maximal mono-
tone graph of R2, which we know to be a Lipschitz increasing function (see
[21]). We look for a solution of the problem{

− Lu+ βµ(u) = f in Ω,

u = h on ∂Ω.
(3.27)

The solution of such a problem is a straightforward generalisation of Propo-
sition 2.1.2 in [61].

Let us call uµ the solution of (3.27), and let consider f ∈ L∞(Ω) and
h ∈ L∞(∂Ω). Then, by the monotonicity of solution one have the upper
bound uµ ≤ M = max(supΩ f, sup∂Ω h) for all µ > 0. Also {βµ(uµ)} is
uniformly bounded in L∞(Ω) (see [22]).

We now show that {uµ} and {βµ} are a Cauchy sequences in L2(Ω). Given
λ, µ > 0, we subtract the equation for uλ and uµ and multiply for uλ − uµ
and integrate to obtain with the use of Lemma 3.1.2

0 =

∫
Ω

−L(uλ − uµ)(uλ − uµ) +

∫
Ω

(βλ(uλ)− βµ(uµ))((uλ − uµ))

≥ C||uλ − uµ||2L2(Ω) + (βλ(uλ)− βµ(uµ), (uλ − uµ))L2(Ω),

which following [22] gives

C||uλ − uµ||2L2(Ω) + (βλ(uλ)− βµ(uµ), λβλ(uλ)− µβµ(uµ))L2(Ω) ≤ 0.

Sending λ, µ → 0 and remembering that {βµ(uµ)} is uniformly bounded in
L∞(Ω), we get that ||uλ − uµ||L2(Ω) → 0. We set u := limµ→0 uµ. By Lemma
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2.4 of [36] also βµ(uµ) is a Cauchy sequence in L2(Ω) and its limit b ∈ L∞(Ω)
satisfies that b(x) ∈ β(u(x)) since β is maximal. Passing to the limit in the
definition of solution we have

0 = −
∫

Ω

uµL
∗ϕ dx+ λ

∫
Ω

βµ(uµ)ϕ dx−
∫

Ω

fϕ dx+

∫
∂Ω

h∂Aϕ dσ →

−
∫

Ω

uL∗ϕ dx+ λ

∫
Ω

b ϕ dx−
∫

Ω

fϕ dx+

∫
∂Ω

h∂Aϕ dσ

(3.28)
for any ϕ ∈ C2

0(Ω̄). Hence u is a solution of (3.7).
If (f, h) ∈ L1(Ω; ρ)× L1(∂Ω) we consider {(fn, hn)} ⊂ L∞(Ω)× L∞(∂Ω)

which converges to (f, h) in L1(Ω; ρ)×L1(∂Ω). Call un the solution of (3.7)
with data fn and hn. Thanks to (3.13), un and bn are Cauchy sequences in
L1(Ω) and hence converges to functions u, b respectively. Since β is maximal
b(x) ∈ β(u(x)) and passing to the limit in the definition of solution we find
that u solves (3.7).

3.1.2 Proof of Theorem 3.0.13

We start this part by giving a result on the corresponding linear problem:
ut − Lu = f(t, x) in QT ,

u = h(t, x) on ΣT ,

u(0, x) = u0(x) on Ω,

(3.29)

Proposition 3.1.4. Assume f ∈ L1(QT ; ρ), h ∈ L1(Σ) and u0 ∈ L1(Ω; ρ).
Problem (3.29) possesses a unique weak solution u ∈ L1(QT ), in the sense
that ∫

QT

−(ζt + Lζ)u− fζ dxdt = −
∫

ΣT

h ∂Aζ dσdt+

∫
Ω

ζ(x, 0)u0 dx

for every ζ ∈ C2,1(QT ). There hold also

||u||L1(QT ) ≤ C(||f ||L1(QT ;ρ) + ||h||L1(ΣT ) + ||u0||L1(Ω;ρ)) (3.30)

with C > 0 and∫
QT

−(ζt + Lζ)|u| − fζsgn (u) dx dt

≤ −
∫

ΣT

|h| ∂Aζ dσ dt+

∫
Ω

ζ(x, 0)|u0| dx
(3.31)

for every non-negative ζ ∈ C2,1
0 (QT ).
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Proof. The proof is exactly the same of [60] with ∆ replaced by L.

Lemma 3.1.5. Let h ∈ L1(Σ) and u0 ∈ L1(Ω; ρ). Then problem (3.9) has
at most one solution. If u1, u2 are solutions with data h1, u01 and h2, u02

respectively, then

||u1 − u2||L1(QT ) + ||g(u1)− g(u2)||L1(QT ;ρ)

≤ C
(
||h1 − h2||L1(Σ) + ||u01 − u02||L1(Ω;ρ)

)
,

(3.32)

with C > 0. Furthermore, if h1 ≤ h2 and u01 ≤ u02 then u1 ≤ u2.

Proof. Suppose u1, u2 two solutions of (3.9) with same data. Then w =
u1 − u2 satisfies∫

QT

−(ζt + Lζ)w + (g(u1)− g(u2))ζ dx dt = 0

for every ζ ∈ C2,1
0 (QT ). Take ζ = ψT solution of

− ψt − Lψ = 1 in QT,

ψ = 0 on Σ,

ψ(x, T ) = 0 in Ω.

Since g is non decreasing, (g(u1) − g(u2))w ≥ 0. We deduce that w = 0.
Now if u1 and u2 are solutions with data h1, u01 and h2, u02 then u = u1−u2

is solution of (3.29) with f = g(u1)− g(u2), h = h1 − h2 and u0 = u01 − u02.
Hence from (3.31) we deduce (3.32).

Proof of Theorem 3.0.13. The proof of existence for the case of β a continu-
ous function is again an easy adaptation of previous results in the literature
concerning the special case of L = ∆ (see, e.g., [1] Lemma 2.7 and [60] Lemma
1.3 and Lemma 1.7: notice that the assumption of β Lipschitz assumed at
the beginning of the paper is not needed in both lemmas). The adaptation
to the case of L given by (3.6) and β multivalued is completely similar to the
one presented in the stationary case.

The continuity in t of the very weak solution will be used in our study
of the asymptotic behaviour of solutions and can be obtained by reformulat-
ing the parabolic semilinear problem as an abstract Cauchy problem on the
Banach space X = L1(Ω; ρ)

(AP )

{
du
dt

(t) + A(t)u(t) 3 f(t) in X
u(0) = u0
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where A(t) : D(A(t)) → P(X) is the operator defined by (w, z) ∈ A(t) ⊂
X ×X iff w ∈ L1(Ω) is the very weak solution of{

−Lw + λβ(w) 3 z in Ω,
w(x) = h(t, x) on ∂Ω.

Here, in the definition of the operator A(t), t ∈ (0, T ) is a parameter (re-
member that h ∈ W 1,1(0, T : L1(∂Ω), hence h(t, ·) makes sense). For a.e.
t ∈ (0, T ), this operator is T − ω−accretive on X (see, e.g., [12] or [14]) for
some ω ≥ 0 large enough. Indeed, we must show that (I + µ(A(t) + ωI))−1

is a contraction on X and this is equivalent to show that if wi, with i = 1, 2,
are the very weak solutions of{

−µLwi + λµβ(wi) + µωwi 3 zi(x) in Ω,
wi(x) = h(t, x) on ∂Ω,

(3.33)

for some zi ∈ L1(Ω; ρ), then∥∥∥[w1 − w2
]

+

∥∥∥
L1(Ω;ρ)

≤
∥∥∥[z1 − z2

]
+

∥∥∥
L1(Ω;ρ)

.

But this is a trivial consequence of the estimates proven in Theorem 1 once
that ω is taken large enough (in particular ω > C, the constant appearing in
estimate (14) which was only dependent of Ω). In addition, for a.e. t ∈ (0, T )
this operator is m-accretive (see [12]) in the sense that R(I + µA(t)) = X.
Indeed we must prove that problem (3.33) (i.e., (3.7)) for a given right hand
side in zi ∈ L1(Ω; ρ) has a unique solution, which, again, is consequence
of Theorem 3.0.6. Finally, since h ∈ W 1,1(0, T : L1(∂Ω)) we get that the
t−dependence of the solution has the same regularity: w ∈ W 1,1(0, T :
L1(Ω)) and so the Crandall-Evans theorem ([35],[49]) can be applied ensur-
ing the existence and uniqueness of a mild solution u ∈ C([0, T ] : L1(Ω; ρ))
of the abstract problem (AP ). Finally, since we have uniqueness of the very
weak solution of the parabolic problem, it is easy to see (as, for instance,
in [15]) that both solutions must coincide and thus we get the desired time
regularity result.

3.2 On the stabilization when t→ +∞
Remember that the solutions of the parabolic problem (3.9) and the elliptic
problem (3.7) will be indicated with u and u∞ respectively.

Proof of Theorem 3.0.15. We follow some of the ideas contained in [41] (see
also references therein). We define

Un(s, x) = u(tn + s, x), Fn(s, x) = f(tn + s, x), Hn(s, x) = h(tn + s, x).
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where tn →∞ when n→∞. By Theorem 3.0.13 we know that there exists
b ∈ L1(0, T ;L1(Ω; ρ)) such that b(t, x) ∈ β(u(t, x)) a.e. in QT . Thus we also
define Bn(s, x) = b(tn + s, x). Then it is clear that

∂Un
∂s
− LUn + λBn(s, x) = Fn(s, x) in (−1, 1)× Ω,

Un = Hn(s, x) on (−1, 1)× ∂Ω.
(3.34)

for all n > 1. Then from the estimate of Theorem 3.0.13 (which coincides
with (1.26) of [60] easily adapted to the case in which L is given by (3.6)),
for any ε ∈ (0, 2)

‖Un‖L1((−1+ε,1)×Ω) + λ ‖Bn‖L1((−1+ε,1);L1(Ω;ρ)) ≤

C
(
‖Fn‖L1((−1+ε,1);L1(Ω;ρ)) + ‖Hn‖L1((−1+ε,1);L1(∂Ω))

+ ‖Un(−1 + ε, ·)‖L1(Ω;ρ))

)
.

Assumptions (3.18) and (3.19) imply that Fn → F∞, and Hn → H∞ strongly
in L1((−1, 1);L1(Ω; ρ)) and L1((−1, 1);L1(∂Ω)) respectively, where F∞ and
H∞ are defined as F∞(s, x) = f∞(x) and H∞(s, x) = H∞(x). Moreover,
from assumption (3.20), ‖Un(−1, ·)‖L1(Ω;ρ)) is bounded independently of n.
Consequently, due to assumption (3.17), {ρBn} is a bounded sequence in
Lp((−1, 1);Lp(Ω)) with p = 1/q if q ∈ (0, 1) and for every p > 1 if q = 0.
Thus,

ρBn ⇀ ρB∞

weakly in Lp((−1, 1);Lp(Ω)) (after passing to a subsequence), for some B∞ in
Lp((−1, 1);Lp(Ω)) . Then, by [60] (Lemma 1.6 (ii) easily adapted to the case
in which L 6= ∆), we get that Un → U∞ (strongly) in C([−1 + ε, 1];L1(Ω; ρ))
for some U∞ ∈ C([−1 + ε, 1];L1(Ω; ρ)) for any ε ∈ (0, 2). Indeed, since
problem (3.34) is linear we can use the decomposition

Un = P(Fn − λBn, 0, 0) + P(0, Hn, 0) + P(0, 0, Un(−1))

where P is the solution mapping (see [60] Lemma 1.6). The operator P(Fn−
λBn, 0, 0) is compact from Lp((−1+ε, 1)×Ω)×{0}×{0} → C([−1+ε, 1]×Ω)
since, in general w = P(q, 0, 0) is given by

w(s, x) =

∫ 1

−1

∫
Ω

GL(x, y, s, τ) q(y, τ) dy dτ

(remember that the Green function GL(x, ·, s, ·) ∈ C0([−1 + ε, 1]× Ω). The
compactness of the other terms P(0, Hn, 0) and P(0, 0, Un(−1)) was shown
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in Lemma 1.6 (ii) of the mentioned reference. In our case we know the
continuity in time of the functions (Proposition 3.0.13). In particular, since
Un → U∞ in C([−1 + ε, 1];L1(Ω)), we find that {Un(−1 + ε, ·)} is a Cauchy
sequence in L1(Ω; ρ).

Then, by applying an estimate similar to (14) but for the parabolic problem
(see estimate (1.26) of [60] easily adapted to the case in which L is given by
(3.6)) we get

‖Un − Um‖L1((−1+ε,1)×Ω) + λ ‖Bn −Bm‖L1((−1+ε,1);L1(Ω;ρ))

≤ C
(
‖Fn − Fm‖L1((−1+ε,1);L1(Ω;ρ)) + ‖Hn −Hm‖L1((−1+ε,1);L1(∂Ω))

+ ‖Un(−1 + ε)− Um(−1 + ε)‖L1(Ω;ρ)

)
which proves that {ρBn} is a Cauchy sequence in L1((−1 + ε, 1);L1(Ω))
and so ρBn → ρB∞ strongly in L1((−1 + ε, 1);L1(Ω)). Then, since β is
maximal monotone we conclude (see [13]) that B∞(s, x) ∈ β(U∞ (s, x)) for
a.e. (s, x) ∈ (−1 + ε, 1)× Ω.

It only remains to be proved that U∞ (s, x) = u∞(x) with u∞ the (unique)
very weak solution of (3.7) with data f∞, h∞. Since

ess sup
tn+s∈(0,+∞)

‖u(tn + s, .)‖L1(Ω:d) ≤ C,

then there exists a (stationary) Radon measure µ∞ ∈ M(Ω; ρ) such that
u(tn + s, .) ⇀ µ∞ weakly in M(Ω; ρ). Moreover u(tn + s, .) → U∞ (s, x)
(strongly) in C([−1 + ε, 1];L1(Ω; ρ)) ⊂ C([−1 + ε, 1];M(Ω; ρ)). Then, by
the uniqueness of the limit, we deduce that U∞ (s, .) = µ∞(·) for any s ∈
[−1 + ε, 1], so that the singular part of the measure µ∞(·) vanishes (i.e.,
µ∞ ∈ L1(Ω; ρ)). Let us denote now u∞(x) ≡ µ∞(x). Then U∞ (s, x) = u∞(x)
for any s ∈ [−1+ε, 1] . By the same reasons (thanks to the assumption on β)
we get that B∞(s, x) = b∞(x) for a.e. s ∈ [−1 + ε, 1] for some b∞ ∈ L1(Ω; ρ)
such that b∞(x) ∈ β(u∞ (x)) for a.e. x ∈ Ω. Finally, we take as test function
ϕ(s, x) = ψ(s)ζ(x) with ζ ∈ W 2,∞(Ω) ∩W 1,∞

0 (Ω) and ψ ∈ C1([−1, 1]) such

that ψ|[−1,−1+ε] = ψ(1) = 0 and such that
∫ +1

−1+ε
ψ(s)ds = 1 in the definition of

very weak solution of the parabolic problem. Obviously such special ϕ(s, x) is
a correct test function since ϕ ∈ W 1,∞(−1, 1;L∞(Ω))∩L∞(−1, 1;W 2,∞(Ω)∩
W 1,∞

0 (Ω)) and ϕ(1, .) = 0. Then, from the definition of very weak solution,
we get that
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−
∫ 1

−1+ε

∫
Ω

Un(s, x)ψ′(s)ζ(x) dxds+

∫ 1

−1+ε

∫
Ω

ψ(s)Un(s, x)L∗ζ(x) dxds

+ λ

∫ 1

−1+ε

∫
Ω

Bn(s, x)ψ(s)ζ(x) dxds

=

∫
Ω

Un(−1, x)ψ(−1)ζ(x) dx+

∫ 1

−1+ε

∫
Ω

Fn(s, x)ψ(s)ζ(x) dxds

−
∫ 1

−1+ε

∫
∂Ω

ψ(s)Hn(s, σ)
∂ζ(σ)

∂n
dσds.

Passing to the limit, as n→ +∞, and using that ψ(−1 + ε) = 0 we arrive to

−
(∫ 1

−1+ε

ψ′(s) ds

)(∫
Ω

u∞(x)ζ(x) dx

)
+

∫ 1

−1+ε

ψ(s) ds

∫
Ω

u∞(x)L∗ζ(x) dx

+ λ

∫ 1

−1+ε

∫
Ω

B∞(s, x)ψ(s)ζ(x) dx

=

∫ 1

−1+ε

ψ(s) ds

∫
Ω

f∞(x)ζ(x) dx−
∫ 1

−1+ε

ψ(s) ds

∫
∂Ω

h∞(σ)
∂ζ(σ)

∂n
dσ.

But ∫ 1

−1+ε

ψ′(s)ds = 0,

and since
∫ +1

−1+ε
ψ(s)ds = 1 we get that∫

Ω

u∞(x)L∗ζ(x)dx+ λ

∫
Ω

b∞(x)ζ(x) dxds

=

∫
Ω

f∞(x)ψ(s)ζ(x) dx−
∫
∂Ω

h∞(σ)
∂ζ(σ)

∂n
dσ

which shows that u∞ coincides with the (unique) very weak solution of the
stationary problem.

Remark 3.2.1. Notice that the boundedness of the trayectories assumption
is considerably weaker than the usual for weak solutions (see, e.g, [41]) which
is of the type u ∈ L∞(0,+∞;H1(Ω)). Notice also that this condition is
necessary once we assume that conclusion of Theorem 3.0.15 holds.
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A sufficient condition leading to the boundedness of the trajectories (as-
sumption (3.20)) can be obtained by the method of super and subsolutions
as in Proposition 3 of [41].

Proposition 3.2.2. Assume that the stationary problem (3.7) admits a bounded
weak solution u∞. Let f, f∞ and h, h∞ satisfy (3.18) and (3.19) respec-
tively. Suppose the existence of fu, fd ∈ L1((0, T ) × Ω) for any T > 0 and
hu, hd ∈ L1((0, T )× ∂Ω) with fu, hu (fd, hd) non increasing (decreasing) in t
such that

− f(x) ≤ fd(t, x) ≤ f(t, x) ≤ fu(t, x) ≤ f(x),

− h(x) ≤ hd(t, x) ≤ h(t, x) ≤ hu(t, x) ≤ h(x),

for 0 ≤ f̄ = div c with c ∈ Lp(Ω)N , 0 ≤ h̄ ∈ L1(∂Ω) and

lim
t→∞

fu(t, x) = lim
t→∞

fd(t, x) = f∞(x) in L1(Ω; ρ),

lim
t→∞

hu(t, x) = lim
t→∞

hd(t, x) = h∞(x) in L1(∂Ω).
(3.35)

Let u, uu, ud be bounded weak solutions of (3.9) associated to the data (f, h, u0),
(fu, hu, ū0) and (fd, hd, u0) with ū0, u0 solutions of (3.7) with data f̄ , h̄ and
−f̄ ,−h̄ respectively. If uu, ud ∈ L∞((t0,∞);L1(Ω)) for some t0 > 0 then the
conclusion of Theorem 3.0.15 holds.

3.3 On the half plane problems

3.3.1 Proof of Theorem 3.0.8.

Before starting with proving existence and uniqueness we shall show some
results concerning the boundedness of the support of solutions. For this
purpose we assume that

β(u) = uq, λ = 1, suph = 1. (3.36)

This hypothesis on λ and h is not a restriction as, taking it off, all calculations
can be performed in the same way. Moreover the proof of Theorems 3.0.8 and
3.0.10 for the multivalued case (which formally corresponds to make q = 0
in all the above expressions) follows, word by word, the same proof of the
case in which q ∈ (0, 1) and replacing the identity symbol = by the one of
containing 3. The details about local super and subsolutions can be seen
also in the book [39] (Theorem 2.16 Chapter 2).
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In this first part of this section we study some comparison functions which
are essential, first of all, to give sense to the formulation of problem (3.15),
especially to its boundary conditions, fundamental in the definition of “limit
very weak solution”. Secondly, they are important also in the study of the
behaviour of solutions near the origin.

Assuming (3.36), we repeat the same procedure of [48], looking for local
supersolutions, which are solutions of{

− Lu+ uq = 0 in BR(x0),

u = 1 on ∂BR(x0),
(3.37)

where BR(x0) is the ball with radius R and centered in x0. The problem is
that, differently from [48], we do not know exact radial solution for (3.37).
So we introduce a family of radial supersolution for (3.37).

Assume that y(x) = η(|x − x0|) is a radially symmetric function defined
in BR(x0). Then, if we denote with r = |x− x0|, we have

Ly(x) = η′′
∑
ij

aij
xixj
r2

+
η′

r

(∑
i

aii −
∑
ij

aij
xixj
r2

)
. (3.38)

Considering that∑
i

aii − ν ≤
∑
i

aii −
∑
ij

aij
xixj
r2
≤
∑
i

aii − µ, (3.39)

we can define the quantity

BA = sup
x∈Ω

(∑
i

aii −
∑
ij

aij
xixj
r2

)
.

In particular, if we assume η′, η′′ ≥ 0

−Ly ≥ −νη′′ − BA

r
η′. (3.40)

We introduce the operator

Lν(η) = νη′′ +
BA

r
η′ (3.41)

which operates on functions of a real scalar variable and we study the prop-
erties of the solutions to the problem{

− Lνη + ηq = 0 r ∈ (0, R),

η(0) = 0, η(R) = 1
(3.42)



100 CHAPTER 3. EXPANSION ON THE SUPPORT

whenever R ∈ R+. We set the constants

C0 =

(
(1− q)2

2ν(q + 1) + 2BA(1− q)

)1/(1−q)

, R0 =
1

C
(1−q)/2
0

(3.43)

and introduce the function

η0(r) = C0r
2

1−q , r ∈ [0, R0].

It is a direct computation to see that η0 is the solution of (3.42). For R > R0

we do not know the analytic form of the solution ηR of (3.42) but we know
that the function

ηR(r) =

{
0 r ∈ [0, R−R0],
η0(r − (R−R0)) r ∈ [R−R0, R]

(3.44)

is a supersolution. The next lemma gives the proof of this fact.

Lemma 3.3.1. The function ηR, for R > R0, defined by (3.44) is a super-
solution of (3.42).

Proof. For r ∈ (0, R − R0), −LνηR + ηqR = 0. For r ∈ (R − R0, R), calling
s = r − (R−R0),

−LνηR + ηqR = −νη′′0(s)− BA

s+R−R0

η′0(s) + ηq0(s)

≥ −νη′′0(s)− BA

s
η′0(s) + ηq0(s)

= −Lνη0 + ηq0 = 0,

where the inequality is due to the fact that η′0 ≥ 0 and R − R0 ≥ 0. This
inequality combined with the values of ηR at the boundary, i.e., ηR(0) = 0
and ηR(R) = 1 makes of ηR a spersolution for problem (3.42).

The following lemma is the conclusion of this line of reasoning.

Lemma 3.3.2. Suppose that uR is solution of (3.37). Then the function
yR(x) = ηR(|x− x0|) satisfies yR ≥ uR in BR(x0).

Proof. The proof uses the comparison principle. Just notice, recalling (3.40)
and Lemma 3.3.1, that

−LyR + yqR ≥ −LνηR + ηqR ≥ 0 = −LuR + uqR.

Checking the boundary conditions we obtain the statement.
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Using the results on local supersolution just given, we can find a function
ρ : (R0,∞) → R+ such that if R > R0 and if ηR is the solution of (3.42) in
(0, R) then

ηR = 0 in [0, ρ(R)] and ηR > 0 in (ρ(R), R].

We define the function

d(R) = R− ρ(R), R > R0, (3.45)

and the following properties hold:

Lemma 3.3.3. It holds

(i) R0 < R1 < R2 ⇒ d(R1) ≥ d(R2);

(ii) lim
R→∞

d(R) = cνq.

Proof. Point (i) is exactly the same as in [48]. The second statement follows
the same line too but we sketch it to show the details. We already know that
on [0, ρ(R)] the solution is zero since ηR is zero. We focus on the problem{

− Lνη + ηq = 0 r ∈ (ρ(R), R),

η(ρ(R)) = 0, η(R) = 1.

We set w(r) = η(R− r) and we transform the problem into
− νw′′ + Bs

R− rw
′ + wq = 0,

w ≥ 0,

w(0) = 1, w(d(R0)) = 0.

(3.46)

We note that the second extreme of the domain in (3.46) should be d(R) =
R−ρ(R), which, according to point (i), is smaller than d(R0). This does not
affect the result since w = 0 in (d(R), d(R0)). We multiply (3.46) by w′ and
integrate over (r, d(R0))

0 = −ν
2

∫ d(R0)

r

d

ds
(w′)2 ds+

∫ d(R0)

r

Bs

R− r (w′)2 ds+
1

q + 1

∫ d(R0)

r

d

ds
wq+1 ds

≥ ν

2
(w′)2(r)− 1

q + 1
wq+1(r).

The inequality in the second line is due to the non negativity of the second
term of the right-hand side in the first line. Since 0 ≤ w ≤ 1 we conclude
that

|w′(r)| ≤
(

2

ν(q + 1)

)1/2

, 0 ≤ r ≤ d(R0).
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We have found that the family of solutions {w(r, R) : R > R0} is equicon-
tinuous in [0, d(R0)] and from compactness argument we can extract a sub-
sequence {w(·, Rn)} with Rn → ∞ and a function w̄ ∈ C([0,∞)) such that
w(·, Rn) → w̄ uniformly on compact sets. Actually what really matters is
the convergence on [0, d(R0)] as w(r, R) = 0 for r > d(R0) and R > R0. In
the limit, the equation for w̄ becomes

− νw′′ + wq = 0,

w ≥ 0,

w(0) = 1, w(∞) = 0.

(3.47)

whose unique solution is

z(t) =

[(
1− t

cνq

)
+

]2/(1−q)

, (3.48)

with

cνq =
(2ν(1 + q))1/2

1− q . (3.49)

The convergences of w(·, R) to the solution of (3.47) implies that d(R)→ cνq
as R→∞.

Lemma 3.3.4. Let uR be the solution of (3.37). Then uR(x) ≤ yR(x) =
ηR(|x− x0|).

Remark 3.3.5. If in (3.37) we set the value at the boundary to be ε instead
of one, all results just shown change just in the value of the constants. To
be more specific, the constant C0 appearing in (3.43) remains the same while
R0 should be changed in Rε = ε(1−q)/2C0 and cνq in cνqε = ε(1−q)/2cνq.

We remind that the Heaviside function Hv is given by

Hv(x1) =

{
0 x1 ∈ (−∞, 0),
1 x1 ∈ (0,∞).

(3.50)

Lemma 3.3.6. Let u be a solution of (3.7) in the setting of Hhp with h the
Heaviside function. Then

S(u) ⊂ {(x, y) ∈ Ω : x ≥ 0, y < cνq} ∪ {(x, y) ∈ Ω : x ≤ 0, r < cνq}.

Proof. The proof is the same as the one proposed in [48] and uses the tech-
nique of local super-solution. We start by giving a bound in the x2 direction.
For R > R0 we consider the function yR as in Lemma 3.3.4 and we set

ū(x1, x2; ξ) = yR (x1 − ξ, x2 −R)
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defined in BR(ξ, R). Since ū = 1 in ∂BR(ξ, R), by the comparison principle
we obtain that ū ≥ u in BR(ξ, R). As we have chosen ξ ∈ R arbitrarily we
deduce that

u(x1, x2) = 0 for all x1 ∈ R, d(R) ≤ x2 ≤ 2R− d(R).

Letting R→∞ and thanks to Lemma 3.3.3 we have that

u(x1, x2) = 0 for all x1 ∈ R, x2 ≥ cνq.

The boundedness in for x1 < 0 works similarly. Again we set

ū(x1, x2; θ) = yR (x1 −R cos θ, x2 −R sin θ) , for π/2 ≤ θ ≤ π

this time defined on Σθ = BR(R cos θ, R sin θ) ∩ Ω. The boundary of Σθ

consists of the part of ∂BR(R cos θ, R sin θ) which is in Ω and where ū = 1
and u ≤ 1 and a part of ∂Ω with x1 < 0 where ū ≥ 0 and u = 0. Once again,
because we can move θ ∈ [π/2, π], by the comparison principle we obtain
that

u(x1, x2) = 0 in {(x1, x2) : x1 ≤ 0, d(R) < r < 2R− d(R)},

with r = (x2
1 + x2

2)1/2. Letting R→∞

u(x1, x2) = 0 in {(x1, x2) : x1 ≤ 0, r ≥ cνq)}.

Remark 3.3.7. As in Remark 3.3.5, if in Lemma 3.3.6 we substitute Hv

with εHv, the result is the same but with cνq replaced by cνqε.

Proof of Proposition 3.0.8. We start by reminding that Ωn is any sufficiently
smooth regularization of the rectangular

Rn = {(x1, x2) : |x1| < n, 0 < x2 < x̄}.

We set x̄ > cνq where cνq is given by (3.49). We call un the unique solution of
(3.15), which we know exists due to Proposition 3.0.6. From Lemma 3.3.6,
un = 0 for x1 ≤ −cνq, so we extend them to Ω∞ by setting un(x1, x2) = 0 for
x1 ≤ n, 0 ≤ x2 ≤ x̄ and un(x1, x2) = z(x2) for x1 ≥ n, 0 ≤ x2 ≤ x̄. Applying
the comparison principle we see that

un ≤ z and 0 ≤ un+1 ≤ un for all n ∈ N.
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Hence we can define punctually

u(x1, x2) = lim
n→∞

un(x1, x2). (3.51)

To show that u is a local weak solution, we select a general test function
whose support will be contained in Ω̄n for all n sufficiently big (since all
functions are zero for x2 > cνq this is not a loss of generality). Passing to the
limit in (3.11) we obtain that u satisfies (3.11) for all ϕ ∈ C2

0(Ω̄).
Uniqueness follows from the uniqueness of the limit in (3.51) and the

comparison principle from the same property of the truncated solutions.

3.3.2 Proof of Theorem 3.0.10

The proof of Theorem 3.0.10 start by showing (ii) for h = εHv. We will
use this result later to prove (ii) for a general boundary data inside the
assumption of (ii). In a second moment we will show (i) and give a numerical
representation of the behaviour of C(q) and C(q) when ε = 1.

3.3.3 Heaviside function

Problem (3.7) under assumption Hhp and with h = εHv is{
− Lu+ uq = 0 in Ω,

u(x1, 0) = εHv(x1) x1 ∈ R.
(3.52)

We remind that the symmetric matrix A

A =

(
a11 a12

a21 a22

)
satisfies

µ|ξ|2 ≤ ξTAξ ≤ ν|ξ|2, for all ξ ∈ R2, (3.53)

for some µ, ν > 0.

Remark 3.3.8. The existence of µ > 0 such that condition (3.53) holds is
equivalent to the fact that

a2
12 < a22a11. (3.54)
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Indeed, if we set ξ = (ξ1ξ2), we have

ξTAξ = a11ξ
2
1 + 2a12ξ1ξ2 + a22ξ

2
2

= µ(ξ2
1 + ξ2

2) +
(
(a11 − µ)ξ2

1 + 2a12ξ1ξ2 + (a22 − µ)ξ2
2

)
.

In order for the second term to be greater or equal to zero for all ξ1, ξ2 ∈ R,
it must hold

a2
12 < (a11 − µ)(a22 − µ) < a11a22.

This fact is used later on to obtain a subsolution.

In order to study the positivity set for the solution of (3.52) we look for
a proper subsolution. What we are really interested in is the behavior of the
solution in a neighborhood of the origin, i.e. the point (0, 0). In fact, we will
show that, although the boundary datum εHv is zero for x1 < 0, the solution
is positive for x1 > −ζµε and x2 sufficiently small, for some ζµε > 0.

The procedure to obtain a proper lower bound u for u is the same as the
one in [48]. We look for a u solution of

− Lu = −εq in R× (0, cνq),

u(x1, 0) = εH(x1) x1 ∈ R,
u(x1, cνqε) ≤ 0 x1 ∈ R.

(3.55)

If such u exists, and remembering the bounds 0 ≤ u ≤ ε where u is solution
of (3.52), we get

−L(u− u) = −εq + uq ≤ 0.

This property, by the comparison principle, assures that u ≥ u.
To find out an explicit formula for u, we split u = u1 + u2 with

{
− Lu1 = −εq x1 ∈ R, 0 < x2 < cνqε,

u1(x1, 0) = 0, u1(x1, cνqε) = −ε x1 ∈ R,
(3.56)

and

{
− Lu2 = 0 x1 ∈ R, 0 < x2 < cνqε,

u2(x1, 0) = εH(x1), u2(x1, cνqε) ≤ ε x1 ∈ R.
(3.57)

We try, as in [48], to find a u2 which depends only on the ratio m = x1/x2.
For such a function f we have
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2∑
i,j=1

aij
∂2

∂xi∂xj
f(x1/x2) =

1

x2
2

(
(a22m

2 − 2a12m+ a11)f ′′ + 2(a22m− a12)f ′
)
.

(3.58)

We look for solution of the differential equation

(a22m
2 − 2a12m+ a11)f ′′ + 2(a22m− a12)f ′ = 0 (3.59)

we see that it is equivalent to gf ′′ + g′f ′ = (gf ′)′ = 0 where g(m) =
ā22m

2 − 2ā12m + ā11. We deduce that f ′−1 where C is a constant. Hence f
is the indefinite integral of it,

f = C

∫
1

a22m2 − 2a12m+ a11

(3.60)

From (3.54) we know that a2
12 < a11a22, which implies that

f(m) = C̄ + C
1

(a11a12 − a2
12)1/2

arctan

(
a22m− a12

a11a12 − a2
12

)
.

We set

u2(x1, x2) = fε(x1/x2),

where fε is f with the constant C̄ = C̄ε and C = Cε chosen for the specific
problem. Let us check the boundary conditions: we fix x1 6= 0 and send x2 →
0. If x1 < 0, then x1/x2 → −∞ and fε(x1/x2)→ C1−C π

2
(a11a12− a2

12)−1/2.
Setting C = Cε = επ−1(a11a12 − a2

12)1/2 and C̄ = C̄ε = ε/2 we have that
fε(x1/x2) → 0. For x1 > 0, we see that fε(x1/x2) → ε. Since, with these
values for the constants, 0 ≤ fε ≤ ε, also the other boundary condition is
satisfied.

For u1 we choose

u1(x1, x2) = −
(

ε

cνqε
+
εqcνqε

2

)
x2 +

εq

2
x2

2. (3.61)

It is immediate to verify that u1 given by (3.61) is solution of (3.56).
Now we check that u is display the property of positivity in a neighbour-

hood of the origin. We know that for x2 = 0 and x1 < 0, u is zero. We want
to understand if it is positive for some x2 > 0. We compute
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∂u

∂x2

= −
(

ε

cνqε
+
cνqε
2

)
+ x2 −

Cεx1

a22x2
1 − a12x1x2 + a11x2

2

, (3.62)

and evaluate it in x2 = 0

∂u

∂x2

(x1, 0) = −
(

ε

cνqε
+
cνqε
2

)
− Cε
a22x1

. (3.63)

One can see that it is strictly positive for x1 < 0 sufficiently close to zero,
precisely in a neighbourhood of (−ζνε, 0)× {0}, where

ζνε =
2Cεcνqε

a22(2ε+ c2
νqε)

3.3.4 General data

In this part we show that the behaviour displayed by the solution of (3.52)
can be found also in solution of (3.1) where h is continuous, depending on
the decay rate of h near zero. If h is sufficiently big when x1 ∼ 0, then the
free boundary is not connected with S(h).

The function hε ∈ C(R) has the form

hε(x1) =


0 x1 ≤ 0,

Cx
2

1−q 0 < x1 ≤ xε,
1 x > xε,

(3.64)

This boundary data differ from Hv just in a right neighbourhood of the origin.
Indeed for x1 ≤ 0 and for x1 ≥ xε they coincide. Hence the only relevant
discrepancy in the behaviour of the solution may be registered close to the
origin.

Remark 3.3.9. We use the family of functions hε as representative of the
whole family of boundary data described in hypothesis Hhp since what really
matters is the behaviour of the data in a right neighbourhood of zero.

proof of Theorem 3.0.10. For the proof of (i) it is enough to consider the

special case of hε(x1) = Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and hε(x1) = ε for a.e.

x1 ∈ (x1,ε,+∞). Indeed, if h ≥ hε then we know that the correspondent limit
very weak solutions u and uε satisfy that u ≥ uε ≥ 0. So, if the expansion
on the boundary of the support property holds for uε with more reason it also
holds for u.



108 CHAPTER 3. EXPANSION ON THE SUPPORT

Consider problem the solution uε of (3.52) with ε = 1 and boundary data
given by H(x1 − xε). It is immediate to check that H(x1 − xε) ≤ hε(x1) for
all x1 ∈ R. This implies that uε ≤ uε where uε is the solution of (3.52) with
boundary data hε. So if

xε =

(
1

C

) 1−q
2

is such that xε < ζν then there exists V , neighbourhood of (0, 0) in R2, such
that uε > 0 in V ∩ {x1 < 0, x2 > 0}. But this is true whenever

C >

(
1

ζν

) 2
1−q

.

It is enough to set C = ζ
−2/(1−q)
ν and x1,ε = (1/C)(1−q)/2. The statement

follows since uε ≤ uε.
One can also try to repeat the same proof with εH(x1−xε) and compare

the results to find the best lower bound for which the expansion on the
boundary of the support property holds.

For the proof of (ii) it is enough to consider the special case of hε(x1) =

Cx
2

1−q
1 for a.e. x1 ∈ (0, x1,ε) and hε(x1) = ε for a.e. x1 ∈ (x1,ε,+∞). Indeed,

if h ≤ hε then we know that the correspondent limit very weak solutions u
and uε satisfy that 0 ≤ u ≤ uε. So, if the nondiffusion of the boundary of
the support property holds for uε then it also holds for u.

Consider the function u = w(x1 + vx2) where

w(s) = Cs
2

1−q
+ ,

with C > 0. We compute

−Lu+ uq = −(a11 + 2a12v + a22v
2)w′′ + wq

= x
2/(1−q)
+

(
−(a11 + 2a12v + a22v

2)
2(1 + q)

(1− q)2
C + Cq

)
.

(3.65)

If take

C ≤ (1− q)2

2(1 + q)(a11 + 2a12v + a22v2)
,

we have that −Lu+ uq ≥ 0, hence u is a supersolution. We notice that

u(θ, r) = 0 for θ ∈ Θ = (−π/2, arctan(−v)),

where θ = arctan(x1/x2). Again, since u ≤ u we obtain that u is zero in the
sector Θ.
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Figure 3.5: Graphs of C(q) and C(q)

Of course for consistency we expect C ≤ C. But can we affirm that
equality holds? The answer in general is no. Let us consider for example the
case of L = ∆, which means A = Id. We have

C =

(
π(q2 − q + 2)

(1− q)
√

2(q + 1)

) 2
1−q

and C =
(1− q)2

2(1 + q)
.

We see from the graphs in Figure 3.5 that C < C for q ∈ (0, 0.2), and the
difference is quite big. For q ∈ (0.2, 1) the difference becomes even bigger as
C is decreasing while C is increasing.

The question of what happen when C < C < C is still open and a
different approach or a finer analysis is needed.

Proof of Corollary 3.0.11. The additional properties are a by product of the
proof of Theorem 3.0.10. Indeed, for (1), since the supersolution w already
satisfies this property, so does the solution because it is non negative. Point
(2) is true because we have shown that u ≥ u1 + u2 with u1 and u2 solutions
of the problems (3.56) and (3.57) respectively and u = u1 + u2 satisfies the
required properties.

3.3.5 Proof of Corollary 3.0.16

In the case of (i) we can use the same supersolution (which denote now by
u(x)) than for the stationary case. Since as our initial condition is u0 = 0
then, applying the comparison result, we get that 0 ≤ u(t, x) ≤ u(x) for any
t > 0 and a.e. (x1, x2) ∈ R× [0,∞).
The proof of part ii) comes from the fact that u1(x1, x2) + u2(x1, x2) is a
subsolution for the parabolic problem for t ∈ (0, T ].
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