Implementacién de una plataforma para tests
de inyeccién de fallos mediante
electromagnetismo contra SoCs basados en

RISC-V

Por
Pedro Javier Ferndndez Fernandez

UNIVERSIDAD COMPLUTENSE
MADRID

Grado en Ingenieria Informatica (Bilingiie)
FACULTAD DE INFORMATICA

Dirigido por
Juan Antonio Clemente, Juan Carlos Fabero

Implementation of an electromagnetic fault
injection platform for a RISCV-based SoC

MADRID, MAYO 2022

Resumen

El mercado de los microcontroladores, CPUs, ordenadores de escritorio y servidores ha
alcanzado nuevas cotas y superado numerosos retos técnicos durante la tltima década.
Con la apariciéon del conjunto de instrucciones RISC-V en 2010, lleg6 un nuevo mundo de
posibilidades y libertades. Sin embargo, la necesidad creciente de ordenadores seguros y
confiables también ha aumentado, tanto de cara al consumidor, como en otras partes de la
industria. En numerosas ocasiones, los componentes hardware son los grandes olvidados
a la hora de evaluar la seguridad de un sistema, debido a razones tales como la dificultad
de acceder o manipular estos componentes, o el coste prohibitivo que conlleva modificar e
investigar dichas partes. En este trabajo, se plantea la pregunta: «;Cémo de bien resiste
la arquitectura RISC-V frente a peligros fisicos?». Para evaluar posibles respuestas, se
desarrolla un dispositivo nével capaz de llevar a cabo ataques de inyeccion de fallos
mediante electromagnetismo, con énfasis en obtener un dispositivo cuya fabricacién sea
asequible.

Palabras clave: Inyeccion de fallos, Single Event Upset, electromagnetismo, ataques de
glitcheo, seguridad de la arquitectura, explotacion de fallos, hardware.

i

Abstract

The market of microcontrollers, CPUs, desktop and server computers has seen both
numerous milestones achieved and new challenges arise in the last decade. With the RISC-
V ISA being introduced in 2010, a new set of possibilities and freedoms was unlocked.
However, the overall necessity for security and resilient computers has increased, not only
for consumer grade devices, but also for every other field. Hardware is oftentimes one of
the most forgotten attack surfaces, due to several reasons like lack of ease-of-access, or
the cost of research. In this document, we ask the question: “how well does the RISC-V
architecture stand against physical harms?”. We also develop a novel device capable of
doing Electromagnetic Fault Injection attacks while being a very affordable solution to

build.

Keywords: Fault Injection, Single Event Upset, electromagnetism, glitch attack, archi-
tectural security, exploit, hardware.

il

Contents

Page Number

[1

Introduction, motivation and contributions|

2 State of the artl

2.1 Fault Injection|
[2.2 Electromagnetic Fault Injection (EMFI)|
2.3 Devices to measure EM fieldd00

[2.3.1 Passive electromagnetic receiver| L.

The proposed EMFI1 attacker device)

[3.1 Implementation details|
[3.1.1 The mosquito EMFT injector|.
[3.1.2 cheapSHOUTER: advanced injector from scratch|

(3.2 Preliminary EMFI results|
[3.2.1 Preliminary results with memories|.
[3.2.2 Preliminary results with microcontrollers|
[3.2.3 Preliminary cheapSHOUTER resultsf

The RISC-V-based DUTs used 1n this project|

4.1 Description of the devices|
[4.1.1 MAi1X Bi'l' with Kendryte K210 Corel
[4.1.2 Longan Nano with GD32VF103C8T6|
[4.1.5 1CE40HX4K-TQ144 FPGA running a soft-corel.

4.2 [nstruction Set Architecture reviewl

Fault Injection Experiments|

[>.1 Considered experiment parameters|

[5.1.2 Implementation details of the EMFT devicel
[>.1.3 Relative horizontal position of the DUT|
[>.1.4 Environmental conditions of the experiment|
[>.1.5 Logical state of the DUT|.
[b.1.6 About experiment logs|o
[5.2 Experimental results oL oo

v

S O Ot Ww W

11
13
15
15
18
20

22
22
22
23
24
25

Implementation of an EMFT platform for a RISCV-based SoC UCM

6 Conclusions and future workl 46
[Bibliography and reference links| 52
(A RISC-V OpenOCD Linux set up procedure for Kendryte K210| 54
(B Commands to dump memory over JTAG]| 56
[C FPGA set-up and firmware source code| 57
[D Source code for the developed tool to count SBUs and MBUjs| 61

Chapter 1

Introduction, motivation and
contributions

For a long time, the hardware security realm has received significantly less public attention
than the software counterpart, due to the technical difficulties and expenses derived from
hardware experimentation and research. Most modern-day devices, like smartphones,
computers, Internet of Things (IoT), infamous crypto-wallets, and even industrial sys-
tems, are exposed to physical hazards, either from the environment they work on, or
from malicious attackers trying to obtain unfair advantages through the device manipu-
lation.

However, at the same time this difficulty to secure the hardware of our devices has
increased, lots of new technological innovations have been recently proposed. The rise
of open-source software has permeated into the developer culture and has extended to
the hardware, electronics, Central Processing Unit (CPU) design, Field Programmable
Gate Arrays (FPGAs), and (Register-Transfer Level) RTL fields. The appearance of the
RISC-V Instruction Set Architecture (ISA) in 2010 was one of many significant milestones,
whose success is being perceived nowadays.

The question this research aims to answer is: do these technological advances constitute
an improvement in the fight against the increasing hardware challenges? While some
of these challenges have been known for a long time (such as electromagnetic fields and
radiation affecting circuits in space computers), now the world is seeing a rise of malicious
attacks to everyday devices based on the same principles.

This work has 2 primary objectives: The first is to evaluate the reliability against EMFI
attacks of several Systems-on-Chip (SoCs) that implement different versions of the previ-
ously mentioned RISC-V ISA. The second, to develop an economically affordable EMFI
device suited for academia research. Both contributions will be developed in the subse-
quent chapters of this document.

An affordable electromagnetic fault injection device suited for academia research is go-
ing to be built, and used to explore devices that are based on different versions and
implementations of the previously mentioned RISC-V ISA.

Thus, Chapter 2 explores the state-of-the-art techniques and experiments in Fault Injec-
tion, and introduces important terminology. Chapter 3 introduces the two EMFI devices

Implementation of an EMFT platform for a RISCV-based SoC UCM

that have been designed, while Chapter 4 presents the RISC-V devices used for experi-
ments in this work, and reviews RISC-V ISA concepts. Chapter 5 showcases the results
of EMFT experiments performed with the presented RISC-V based devices, and Chapter
6 explores future research and innovations that can be derived of this work.

This work was financially supported in part by the Spanish Ministry of Science and
Innovation (MICINN) under grant "PID2020-112916GB-100". This project is conducted
by the grupo en Gestion del Hardware Dindmicamente Reconfigurable research group, at
the UCM Computer Science faculty (Facultad de Informética).

Chapter 2

State of the art

In this chapter, the most modern and effective fault injection methodologies, research and
devices are reviewed. Focus is placed on the electromagnetic fault injection techniques,
which are of the uttermost interest.

2.1 Fault Injection

The use of controlled fault injection experiments has been a persistent subject in academia
for the last two decades. The objective of these tests may be one of the following:

e Determine how resilient a system is against real spontaneous faults.

Stress-test the System Under Evaluation (SUE).

Change normal program behaviour into a path that usually would not be taken.

Test the physical resistance of hardware components.

Introduce non-persistent (temporary) vulnerabilities into secure hardware or secure
software.

In software solutions, fault injection is performed by introducing unexpected /malformed
datum into the input streams of a program, and afterwards, probing both the internal
status and the outputs of the program, to observe for indicators of problems.

When it comes to hardware, the methodologies change significantly. Providing incorrect
inputs is no longer the only way to proceed. The inputs might be correct or expected
information, similar to what the system may receive during normal operation. Instead,
physical parameters of the SUE are altered to influence and inject faults into the internal
state of the system. This internal state is then observed and compared against a known
correct state. The outputs of the system can also be monitored for errors, like it is done
with software.

This is possible because the internal status of a hardware device is stored in compo-
nents like latches, flip-flops, and memories. These may be susceptible in varying degrees
to physical changes, depending on the technology they were built with. Different tech-
nologies could be classified, for example, by the properties of the transistors used. For
instance, transistors’ size (nm), their manufacturing material (silicon, germanium, etc.),

Implementation of an EMFT platform for a RISCV-based SoC UCM

or technology (FET, MOSFET, BJT). Not only do transistors’ properties affect the re-
liability against physical variations, but also the properties of other components affect
the overall design (like capacitors, which are a vital part of DRAM memories). For these
components, parameters to consider might be the capacitor’s internal dielectric material
being used, its size, or its capacitance value, as parameters that might influence how
susceptible to faults the component is. Any component that is involved in maintaining
information of the system might be influenced in one way or another.

The existence of faults in one or more of these electronic components can cause a change
in the perceived internal status of the hardware device.

Not only is the internal status affected by physical changes, but also the combinational
pieces of logic in a circuit. These are built on top of logic gates, which are manufactured
using transistors. Thus, a fault can occur in a part of a circuit that does not store the
machine’s state, but rather that computes the next state of the machine, or that computes
the output, or in many other relevant information paths of the system. Clock signals and
their paths can also be disrupted by a fault,

Examples of physical parameters that can be altered to produce faults in a hardware
device comprehend:

e Temperature
e Clock speed
e Operating voltage of the circuit

These terms are oftentimes used in conjunction with the term glitching, rather than fault
injection, and other research may refer to techniques like clock glitching, voltage glitching,
and so on.

Fault Injection attacks have repeatedly been used to defeat the security of commercial
products. For instance, in 2015, several researchers [I] independently obtained boot ROM
level unsigned code execution in the popular Nintendo 3DS family of consoles through
a glitching attack, thus allowing for complete takeover of the system. Later, other re-
searchers [2] leveraged the obtained knowledge to find software-level vulnerabilities in the
boot ROM. Other critical devices were targeted at the popular CCC (Chaos Computer
Club) conference in Europe, where a team of security researchers defeated protection mea-
sures of various popular crypto wallets in the market [3]. Similarly, in 2019 researcher
YifanLu [4] injected software vulnerabilities into the Sony’s PlayStation Vita through a
controlled and accurate voltage fault injection attack. The same year, Gauvain Roussel
et al. [5], defeated the security in the Nvidia TEGRA x1, the security processor in the
Nintendo Switch console released two years before. They used a hardware fault injection
attack vector to extract the CPU’s secrets. Later, in 2020, researchers Akos Hajdu et al.
were able to defeat the security of smart contracts in hardware wallets through means
of fault injection [6]. The following year, researchers Robert Buhren, Hans Niklas, Thilo
Krachenfels and Jean-Pierre Seifert were able to defeat the security mechanisms of AMD’s
Secure Processor (AMD-SP, formerly known as PSP) [7] just using voltage fault injection,
compromising AMD’s Secure Encrypted Virtualization (SEV) technology.

In the security industry, most advanced solutions and equipment for Fault Injection ex-
periments are developed and provided by companies. For example, the company NewAE

Implementation of an EMFT platform for a RISCV-based SoC UCM

Technology Inc. is known for offering a range of products that stand out, like the
Chip Whisperer family of devices, which are able to introduce operating voltage glitches
through the use of crowbar circuits and fast transistors. For illustrative purposes, this was
showcased in Colin O’Flynn’s paper [8] which presented and showed this device in action,
attacking embedded devices and causing the targets to execute instructions incorrectly
or to store faulty data. He was able to obtain high reproduction rate of the fault effects,
both with microcontrollers and FPGAs. Higher end solutions include the ChipShouter, a
device capable of generating controlled and position-accurate electromagnetic pulses, to
create currents in the target device through induction. It includes several safety measures
to deal with the high voltages, and it is a costly device (+3000€)E] suited for industrial
and governmental research.

The involved physical phenomenons will be briefly reviewed in the next chapters as we
develop a device that achieves the same results but operates in a much simpler fashion
and is cheaper, thus being suited for academic scenarios.

2.2 Electromagnetic Fault Injection (EMFI)

For each of the physical parameters mentioned earlier, there exist several ways to alter
or modify them. Some of them are semi-permanent or permanent, altering the original
circuit or board, for example, replacing the clock source of the system with an attacker
controlled clock source. This could involve soldering and replacing components or cables
on the boards. Although in some cases it would be possible to de-solder and undo any
modifications, the board would unlikely be in the same state as at the beginning, and
the warranty of the device will be voided. Others solutions are non-permanent, like
using a laser to inject controlled charges into the on-chip networks of the Device Under
Test (DUT), or using electromagnetic fields to induce a charge into the power or data
rails of the device. The latter is the technique that will be explored more in depth,
Electromagnetic Fault Injection (EMFT). Most of these techniques can be permanently
damaging to the DUT if executed incorrectly.

In short, this technique consists in the use of attacker-controlled electromagnetic fields
generated in the area in which the device under test is located. The fault injection
is produced not by the existence of the electromagnetic field itself, but rather by the
electromotive forces (voltage) that are generated in the conductor materials that the chip
is made of. If the conductor material is part of a closed circuit, then the voltage flows,
and it can be called a current moving through the circuit. These unexpected currents in
parts of the chip or in electrical paths where they should not be, are what are considered
as faults in the DUT, and are the culprit of altering the internal status of the whole
system or of many of its individual components.

Since the time work started on this project, a plethora of new research papers have
been published regarding fault injection on RISC-V targets, with some of these works
employing EMFI devices specifically, rather than other techniques like voltage fault in-
jection.

Researches from the Department of Electrical and Computer Engineering University of
Waterloo used an EMFI platform [9] to attack RISC-V and ARM Cortex-M0 CPUs,

Thttps://store.newae.com/chipshouter-kit /

Implementation of an EMFT platform for a RISCV-based SoC UCM

demonstrating instruction skipping with high reproduction rate. They employed both
JTAG and custom fault handlers to extract state information from the DUTs.

At the RTL and simulation level, research by Johan Laurent et al. [10] showed how the
microarchitecture is relevant when evaluating the faults and countermeasures that can
be implemented in a RISC-V core. The popular Rocket Processor core was selected for
the research, as its RTL source code can be analysed and studied.

Similarly, in 2020 student Mahmoud A. Elmohr explored electromagnetic fault injection
in RISC-V architecture cores, with an emphasis in FPGA designs and implementations
[11]. Furthermore, papers exploring the security concerns of fault injection in RISC-
V systems reveal the concerns and possibilities of malicious attackers employing these
techniques to bypass security measures. Shoei Nashimoto et al. [12] were able to bypass
the memory protections of popular RISC-V Trusted Execution Environments (TEE) like
Keystone and MultiZone (Hex Five) by targetting specific instructions.

2.3 Devices to measure EM fields

Although not the main objective of this work, having the means to measure the actual
strength of our device would be a valuable addition to the knowledge of the EMFT set-up.
This way, it would be possible to empirically measure the strength of a given EMFI device,
and create approximate comparisons between it and different devices or implementations.
This could be important, as the strength of the device is directly related to the appearance
of faults, as explored in later chapters.

For instance, in 2021 the hacker known as PoroCYon managed to dump the Nintendo
DSi’s protected boot region through an electromagnetic fault injection attack [I3]. In
the initial setup, an expensive, commercial product for EMFI experiments was employed.
However, as the author narrates, the results were not good, no faults were observed, and
the experiment failed, because the strength generated by the device was not sufficient
to provoke any fault on the system. However, when employing a custom research device
developed at their university, the results were successful.

Real cases like these show it might be important to understand not only the fault injection
technique being used, and whereas it is effective in disrupting the DUT, but also the
equipment and its inner design, as well as how to fine-tune it. In the particular case of
EMFTI, one of the many parameters for success is the strength of the electromagnetic fields
generated by the injector. For this reason, a few solutions were developed and tested to
try to measure and represent the strength of the electromagnetic field generated by our
proposed EMFT platform in a given area of space.

Initially, hall-effect based sensors were explored to measure the magnetic component of the
fields and two prototypes were assembled and software was developed, but these turned
out to be ineffective in detecting the electromagnetic fields generated by the proposed
device.

2.3.1 Passive electromagnetic receiver

A different device was built aiming at detecting the electromagnetic field generated by
the device. It consisted of a basic passive electronic circuit, capable of detecting radio

Implementation of an EMFT platform for a RISCV-based SoC UCM

signals in the | 1.8 , 30 | MHz range. This circuit was designed, built and tested by
José J. Barcel6 SarriaEl who published the circuit schematic shown in Fig with build
instructions for the device.

Figure 2.1: Implementation of the passive electromagnetic receiver.

This device works as a very generic electromagnetic field detector, and the frequencies it
can work with are highly dependent on the type of antenna used, similarly to popular
hobbyist AM crystal radio receiversﬂ A set of diodes and capacitors rectify the Alternate
Current (AC) induced in the antenna, to a Direct Current (DC) signal, which is then
fed into a micro-amperimeter, to provide an approximate visual representation of the
intensity of the signal perceived. This is by no means calibrated laboratory equipment,
but rather a simplistic field tool usable to determine the existence or not of certain
electromagnetic noise.

Antenna

(((<RF signal that we want to measure I

47nF —

m—
’I 2004A a 300pA
OA91 100KQ 1+
e ——— (ATT)
0A91 A A70pF —
10nF ——
e I=
Figure 2.2: Diagram of the electronic circuit. Source:

https://electroclinica.org/2018 /03 /23 /fabricacion-de-un-sencillo-medidor-de-campo-
de-rf-diy/

Zhttps://electroclinica.org/2018 /03 /23 /fabricacion-de-un-sencillo-medidor-de-campo-de-rf-diy /
3https://electronics.stackexchange.com/questions /616496 /is-this-circuit-measuring-the-electrical-
field /616497616497

Implementation of an EMFT platform for a RISCV-based SoC UCM

Unfortunately, neither this circuitry was able to detect the electromagnetic fields gener-
ated by the two devices proposed in the next chapter, probably due to the high-frequency
oscillating fields generated, but also due to the lesser amounts of energy that these injec-
tors employ, if compared to a radio emitter. Our portable implementation of the device
is shown in Fig. [2.1

The induced current in the antenna is not big enough to overcome the diode’s forward
bias threshold. An improvement to the circuit and solution to this issue, would be to add
an amplifier component after the antenna and before the diodes. This receiver as-is, may
be more suited for traditional, low-frequency radio signals.

Chapter 3

The proposed EMFI1 attacker device

To conduct EMFT experiments and evaluate the security and reliability implications, an
appropriate hardware set-up that can be used to reproduce the experiments and their
conditions is required. The implementation of this device is discussed in this chapter.
Following this development, aiming to obtain some preliminary results with the device
and simultaneously aid to their research, I teamed up with Mohammadreza Rezaei, a
PhD student at the UCM Computer Science faculty, to test the system on several COTS
SRAM memories.

3.1 Implementation details

Aiming to perform the experiments, an EMFT device was created in order to generate the
disruptions explained earlier. The bottom line is that a high voltage needs to be generated
and routed through a set of spires, a coil. This will generate an electromagnetic field.
The field will produce the induction phenomena on the conductor elements in its range
of movement. A current will be induced on such conductors, disrupting their normal
operation conditions. Moreover, a key point in its design was to produce a cheap and
easy-to-replicate device that can be set up with minimal materials. This is in contrast to
commercial solutions, which are often sold for thousands of dollars [7].

In this work, two ways to obtain a working EMFI device are explored. Firstly, beginning
by simply modifying and "hacking’ a cheap, widespread mosquito killer racket, to turn it
into an inexpensive EMFI device for academic research. Secondly, a completely control-
lable EMFT device is designed from the schematics, equally suited for academic research,
but highly customizable, repairable, and able to produce more repeatable results.

To do so, a novel method is proposed, which consists in re-purposing an existing device
which contains most of the components and circuitry needed to generate the required
voltage levels.

Specifically, a kind of circuit called "Mosquito Zapper" was selected. This type of circuit
is often found in anti-insect electrical devices, which are used to prevent pests and other
sanitary problems. An example can be seen in Fig. Although there are many
variations of the circuit, they all follow the same idea. Firstly, one of these devices was
acquired from a local store, and then it was disassembled. Fig. shows circuitry inside
the Mosquito Zapper device that was disassembled.

Implementation of an EMFT platform for a RISCV-based SoC UCM

Figure 3.1: Example of commercial high-voltage mosquito zapper.

\ 2
w - R
..‘ ... IOL \
®0‘0
e (2 e & ole

Figure 3.2: Printed Circuit Board (PCB) of the commercial zapper device.

From the observation of this circuit, schematics were reverse-engineered and drawn. This
made possible to develop a custom device, the possibility to understand all the compo-
nents and stages required to generate an electromagnetic field with simple electronics,
and manipulate parameters of such generated electromagnetic field.

The schematic depicted in Fig. [3.3| accurately represents the circuit in one of the devices
that was acquired. It can be divided into three functional blocks. From left to right,
firstly the user input (push button) and the power supply (batteries) can be observed.
When the user presses the button, current starts flowing and a green LED diode (D1)
indicates this. The current then flows into the transformer, and its feedback output to the
MOSFET transistor. Said circuit behaves as an oscillator or self-oscillator, by switching
on and off repeatedly. This converts the Direct Current (DC) produced by the batteries
into Alternate Current (AC). This is important, as the high-voltage transformer will only
function with AC, not DC. The transformer itself relies on magnetic fields and induction
to produce a high-voltage AC from the low-voltage AC on its input. The right-side part

10

Implementation of an EMFT platform for a RISCV-based SoC UCM

Low Voltage DC source High Voltage Stage - D
. T1 C_Small DIODE
lTrainsfurmer_iPESS a |2
o | o I 4
BT3av =b Nl I I: 3 gl 3 % g 5 - 02 & 03 l
§ ' IRF740
Battery mar c0q \15 el % E ¥ oiove A piooE o SC g E
R1 3 4 I (ZAPY)
SW_Push are A I
1K I J_ 2 C3
o T C_Small C_Small T

Figure 3.3: Reverse-engineered circuit schematic in KiCad.

of the circuit is a voltage rectifier, which converts the AC back to DC. It is combined
with several capacitors (C1,C2,C3) to store and increase the voltage even more, likely to
an order of kiloVolts. This charge is stored in a final capacitor (C4) and connected to
the metal grid that is used to zap mosquitoes and other bugs.

3.1.1 The mosquito EMFT injector

Once the original circuit is understood, it becomes trivial to modify it to turn it into
an EMFI device. The bottom-line is reusing all the existing electronic circuitry that
generates a high-voltage current. However, instead of connecting this current to a metal
grid like the one depicted in Fig. and in the circuit in Fig. [3.3] it will be passed
through a spire, all at once, thus generating a strong electromagnetic field. The required
modifications to the base circuit can be reproduced as follows:

Manufacturing of a spire to create the electromagnetic field.

The most significant change is the replacement of the metal grid by a spire (observed in
Fig. |3.4), which will be used to generate the electromagnetic field, causing induction in
nearby conductors as the field increases and decreases. This is insufficient to provoke a

Low Voltage DC source High Voltage Stage - o4
i 1 C_Small DIODE
l Trainsfarmer_iPESS 1 | 5
DL o = Il " >|
B33V e N LED L At 2 % g 5 D2 D3 '
Battery —me 3V IRF740 DIODE DIODE Sple
SWi " R2 % % ~ - c4=/— of n
R1 3 4 11 turns
SW_Push an AN 1l
1K T J_ €2 3 N
o T C_Small C_Small

Figure 3.4: The mosquito-killer grid is replaced by a spire.

strong and moving field because the capacitor barely has time to accumulate energy, as
its energy is being drained while it is being charged, in a continuous manner. Instead, it
is desired to charge the big C4 capacitor as much as possible, and discharge it at all once.
The capacitance is the measure of a capacitor’s ability to store an electrical charge onto
its plates. In Fig. [3.2] observe capacitor C4 located on the right-hand side of the circuit
board, of a size considerably larger than the other capacitors.

Introduction of a spark gap to fire the high voltage circuit when charged.

The most affordable and straightforward solution to considerably charge the capacitor is
to introduce a spark gap. This is an air gap in the circuit, through which current can

11

Implementation of an EMFT platform for a RISCV-based SoC UCM

Figure 3.5: Homemade 6-turn spire installed into the modified mosquito device.

only pass when it is high enough to break the air’s electrical resistance. This phenomenon
is what produces a visible spark from one terminal of the gap to the other. For this to
happen, the charge on the capacitor has to be sufficiently high.

Low Voltage DC source High Voltage Stage D4
c1

. T4 DIODE

lTralnsfurmer_iPESS el a |2

D1 o] I - h

T3SV = YL L Al 2 3 g 5 D2 D3 .
Battery mmm N IRF740 DIODE DIODE Syl
Swi - " R2 % E o~ - Clh == Ef n
SW_Push an AN 3 4 ” urns
1K I J_ c2 c3 o
[S T C_Small C_Small

Spark Gap

Figure 3.6: A spark gap is added to force the discharge of the capacitor C4 all at once.

With this simple modification, all the charge in the capacitor will be released at once,
once enough charge was accumulated to break the air’s resistance. This simultaneously
ensures that the current going through the spire is high enough to produce a significant
field during a brief period of time.

Empirically, as it will be showcased in point 3.3, it is observed that this setup is enough to
produce noticeable faults. However, it is interesting to compare the experimental results
to a theoretical framework. The spire introduced into the circuit is a solenoid, and the
magnetic field generated by this kind of structure has some peculiarity. The greater the
longitude of the solenoid, the closer to zero the magnetic field outside the solenoid is.
In a supposedly infinite solenoid, the field outside the structure would be zero, as the
fields generated from each of the solenoid coil turns cancel each-other out. This topic is
extensively discussed in Aritro Pathak argument [14]. As can be observed in Fig. the
proposed coil is far from being an infinite solenoid, and magnetic field lines escape the
structure, affecting surrounding objects. There is no magnetic field without an existing
electrical field, which is also present.

12

Implementation of an EMFT platform for a RISCV-based SoC UCM

(Optional) Adding a discharge resistor to safely discharge the circuit.

Optionally, it is possible to include additional modifications to increase the safety of the
circuit. Although the high voltages produced by the modified device are not lethal to
humans, it is recommended to add a discharge resistor so that any remaining energy in
the capacitor naturally discharges after the device has been fired or partially charged.
This modification is observed in Fig. [3.7]

Low Voltage DC source High Voltage Stage D4

= T 1 ¢ Small DIODE
lTrainsformer_iPESS = I Il
[+ Y LED 1 oy 3 E :
BES7 T o N \EH 1RF740 2 -] B2 5 Spire
Battery - ¢y = s ¥ oiooe M piooE s =~ =
SW_Push &) Ay 3 & 11 R3 turns
| 1K J_ I
1K c2 CS 10M o
[T C_Small C_Small

Spark Gap

Figure 3.7: A resistor (R3) can be added to slowly discharge capacitor C4 over time.

3.1.2 cheapSHOUTER: advanced injector from scratch

Although correct, the reverse-engineered schematic above is a not complete, functional
description of the circuit, as it was not possible to find the specific part numbers for several
components like the capacitors or the transformer. Designing our own circuitry that can
be actually used to manufacture and test a prototype, proved to be more complex than
expected. It was not possible to just clone or completely derive the new design from the
reverse-engineered one, although in general terms it is divided in the same three stages
that the reverse-engineered circuit had: firstly, user input and oscillator followed by a
step-up transformer, next a voltage rectification and step-up circuit composed of diodes
and capacitors, and finally a bigger capacitor to store the charge connected to a discharge
system.

Additionally, the schematics include circuitry to measure the charge status in the last
capacitor, although this was not implemented in the first prototype.

The process of putting together a design started by choosing a high-voltage transformer
to be the keystone of the design. Once a transformer model was chosen, the rest of
the circuit was designed around it. Initially, both 749196501 [I5] and 749196118 [16]
models from Wurth Elektronik were selected and ordered, as these were one of the few
widely available on retail suppliers at the moment, and they worked with high voltages.
Unfortunately, these models turned out to not be chosen correctly nor useful, as their
primary coil to secondary coil turn ratio was 1 to 1, thus acting as a filter, and not
achieving the voltage step-up effect that was desired.

Other components were not immediately available due to the current semiconductor short-
age that is nowadays affecting the world, but the following could be sourced. The MOS-
FET transistor chosen for the oscillator part of the circuit was the IRFZ44ZPBF. The
circuit uses 1K resistors, diodes (of which part number UF5408 were used), and capaci-
tors (MPP-39nr15) to rectify the AC into DC before sending it to a high-capacity 1000v
capacitor (ECW-H10753JVB) to store the electric charge, that is then rapidly discharged
over a coil producing the electromagnetic field. Fig. depicts the schematic of the final

13

Implementation of an EMFT platform for a RISCV-based SoC UCM

v

SparkGap

=

FiN

GND
Valtmeter

Figure 3.8: Schematic of the circuit of the proposed device, designed in KiCad.

design, which was attempted to be produced into a working prototype thorugh the use
of proto-boards.

This schematic can be obtained attached to this memory, as a project file for the popular
open source and free Electronic Design Automation (EDA) software, KiCad 6.0. The
complete list of components and their part numbers can be consulted in the Bill Of
Materials (BOM) .xls file. The device was named cheapSHOUTER as a funny allusion
in contrast to the more expensive and professional chipSHOUTER device mentioned in
earlier chapters.

Ultimately, it was only possible to completely assemble and verify the complete design,
with a different transformer. This was because erroneous transformers were ordered,
which did not produce sufficiently high voltage on their output. However, verification
of the rest of the circuit was successful. A first attempt to solve this was winding our
own transformer, as shown in Figs. 3.9 and 3.10] An inductor from a high-voltage low-
consumption COTS light bulb was used as a secondary coil with a very high number of
turns, and the crafted transformer had a primary coil of 6 turns, and a primary feedback
coil of 6 turns, which was empirically shown to be able to output a (not very stable)
average output of 200 to 500 V, when measured with a multimeter.

Because this manually winded transformer was not accurately built, it was eventually
replaced with a donor transformer from one of the mosquito devices, which helped to
verify both the oscillator circuit and the rectifier circuit. The selected capacitor was
charged and a strong spark could be generated by connecting both terminals of the
capacitor.

To conclude the prototype build, an SMD inductor component was extracted from a
recycled motherboard, and used as the coil /probe of the device. This coil is much smaller
and has more turns than the manually fabricated one used for the repurposed mosquito
injector. Furthermore, these devices use a ferrite core, instead of the air core used in the
previous device, which significantly increases the magnetic flux.

Thus, all parts of the circuit, except for the custom transformer, were empirically veri-
fied. Because the device was considerably more prototypical and bare-bones, only a few
preliminary tests with the cheapSHOUTER were performed, and are described at the

14

Implementation of an EMFT platform for a RISCV-based SoC UCM

s w
o mEnahaaEs
. R i g
- R e
- o ;
%@&g : . .ll-l 2 7
@ﬁ@g eve” '.:~ k! LB ﬂ. e s alo
L % :
g l.-,
Figure 3.9: Testing circuit. Figure 3.10: Manually winded transformer.

end of the next section.

3.2 Preliminary EMFI results

Using the first injector version which was described in section 3.1.1, the modified mosquito
zaper-based device, several tests and experiments were run. It was rapidly evidenced
that the device was working, and producing considerable faults on the DUTs. These
preliminary experiments were not oriented to be specially reproducible.

In subsection 3.2.1, the preliminary results with memories and the mosquito injector are
showcased. Following, section 3.2.2 describes and shows the experiments with microcon-
troller, using the same injector. Finally, section 3.2.3 describes some basic tests performed
with the cheapSHOUTER design prototype hardware.

3.2.1 Preliminary results with memories

COTS SRAM memories were the first target of our newly assembled device. The induc-
tion generated by the injector’s electromagnetic field, in several experiments, was shown
to produce both temporary and permanent faults. A circuit board with a socket, seen in
Fig. was employed to interface with the SRAM memories from an Arduino board.
These memories have a TSOP48 footprint, as depicted in Fig[3.12] To read and write
the contents of the memories, a PC host software utility developed by Mohammadreza
was used.

Description of the experiments:
Experiments were performed using two different memory components:

Firstly, a brand new CY62167DV30LL-55ZXI SRAM memory [I8|, manufactured by
Infineon Technologies in 130-nm bulk CMOS process, was used for the first tests. This
is a 16-Mbit memory, which the manufacturer claims has high-performance transistors,
and automatic power-down features that reduce power consumption by 99% if addresses
are not being toggled. The models used in this research were the 48-pin TSOP packages,
although the same memories are also available in a 48-ball VFBGA package. This SRAM

15

Implementation of an EMFT platform for a RISCV-based SoC UCM

Bt

sDs 37R

Figure 3.11: SRAM memory socket board used by Mohammadreza.

48-pin TSOP | pinout (Top View) |- 2

O
A5 1 48} A16
A4] 2 47 |5 BYTE
A3y 3 46 |2 Vss
A2y 4 45 |2 1/015/A20
A5 44 = 1/07
A0 6 43=1/014
A o7 422 1/06
A8 =48 413 1/013
A9 9 40105
NC H 10 39 1/012
WEd 11 38fa1/04
CE, o 12 37 Vee
Ne o 13 36 = 1011
BHES| 14 35Fm1/03
BLEH] 15 34 1/010
A18g 16 33 1/02
a7 17 32109
AT H18 31g 101
A6 =19 30 1108
A5 = 20 29 = 1/00
A =21 28§ OE
A3 =422 27T Vss
A2 =423 26 B CE1
Al 24 25 A0

Figure 3.12: SRAM memory layout. Source: Infineon CY62167DV30 datasheet [17].

memory is essentially a parallel memory, where multiple bits can be read at once, unlike in
memories with serial protocols (i.e.: i2¢, SPI, etc.). The tests run were the following:

e Test 1.1: The memory was initially filled with a static pattern of OXFF bytes. After
the whole memory was written, x1 shot was done from a 5 cm distance away from
the SRAM. Afterwards, the memory was read back. No bit-flips were detected.

e Test 1.2: The memory was initially filled with a static pattern of OxFF bytes. x2
shots were done from a 5 cm distance away from the SRAM, in dynamic fashion:
while reading. Single bit-flips appeared exactly when the pulses occurred. We
do not attribute it to bit-flips, but to perturbations in the I/O lines which were
transporting the read data.

e Test 1.3: The memory was initially filled with a static pattern of OxFF bytes.
Afterwards, in a dynamic fashion, while reading, x1 shot was done from a distance
of 1 cm from the SRAM. The software started reading 0x00 bytes since the moment
the shot was received. The memory stopped responding, even if turning it off and
on again. Apparent physical damage was caused to the chip, and the memory no
longer worked. It is believed that this might have been a consequence of a high
voltage current being induced in the chip, destroying some connections inside.

In a second test, another different SRAM chip of the same model was inserted, although
this time it was not brand new, as it had been irradiated by Mohammadreza in a previous
radiation-ground based campaign [19], but it was a working non-damaged memory.

16

Implementation of an EMFT platform for a RISCV-based SoC UCM

e Test 2.1: x2 shots from 5 cm away from the SRAM in a dynamic manner (i.e.:
while the memory was being read). No apparent errors.

e Test 2.2: x3 new shots from 3 cm away in a dynamic manner. No apparent errors.

e Test 2.3: x3 shots from 3 ¢cm away, but to the cables, and another 3 shots to the
connector, in a dynamic manner. No apparent errors.

e Test 2.4: After finishing this dynamic reading cycle, the SRAM contents were read
again from the beginning. 7 addresses affected by Multiple Bit Upsets (MBUs) [[]
and Multiple Cell Upsets (MCUs) Hwere discovered at the beginning of the memory
space. The direct x2 and x3 shots in Test 1) and Test 2) might have caused this.

e Test 2.5: x3 shots from 1 cm away, in static manner. No errors observed.

e Test 2.6: x2 shots from 1 cm away, in a static manner, a whopping quantity of 520
addresses presented upsets.

e Test 2.7: x1 final shot from 1 cm away, in a static manner. No errors observed.

Finally, using a different CY62167DV30LL-55ZXI SRAM, the same pattern of OxFF bytes
was written, and a dynamic test was performed, issuing 5 shots while the software was
reading the memory in real time. All the observed bit-flips are shown in Table [3.1]

H Address Data H

0x003800 0xOF
0x003820 Ox1F
0x00B800 0x3F
0x00B820 Ox1F
0x01B800 0x3F
0x01B820 Ox7F
0x01F820 OxT7F
O0x111111 0Ox11

Table 3.1: Address and data of the observed bitflips

Finally, a static test was carried at 1 cm of distance, previously filling the memories
with the same linear pattern of OxFF bytes. This experiment produced a surprising
and considerable number (+100) of upsets, which can be found in the companion file
20211125-Static_lem 130-nm_ 520adr.csv

Analysis and hypotheses:

To further gain understanding of the faults that had been observed, these results were
forwarded to the Grupo en Hardware DIndmicamente Reconfigurable (GHADIR), who
are the developers of the tool LAELAPSﬂ (Lists of All Events for Locating Anomalies by
Preparing Statistics). This statistical analysis|20][21] revealed that errors in the physical

LAn MBU occurs when a single external agent provokes errors in several bits in the same memory
word.

2An MCU occurs when a single external agent provokes errors in several bits in different same memory
words. This is very common since SRAM words are interleaved, so logically adjacent bits are physically
distant to each other in the device.

3https://github.com/fjfrancopelaez/ LELAPE

17

Implementation of an EMFT platform for a RISCV-based SoC UCM

layout of the memory appeared in vertical lines. More information can be found in the
companion file CY62167D by Statistical Analysis.pdf.

The cause of these observed errors in vertical lines could be due to several factors. For
example, three hypotheses could be: true Multiple Cell Upsets (MCUs), single event
functional interrupts (SEFIs) at reading, or micro-latchups|22]. Extensive analysis of
faults induced by EMFI on SRAM memories was not performed and remains a very
interesting line of future research to explore.

3.2.2 Preliminary results with microcontrollers
Arduino UNO

The Arduino UNO is an inexpensive and widely used board with an 8-bit ATmega328P
microcontroller, employed in a plethora of Do-It-Yourself (DIY) projects. A simple code
was created which always performed the exact same arithmetic operations in a loop. It
will be used with all the next targets as well, and it is quite straightforward:

#include <stdio.h>
int main(void){
int i,j,k,cnt;
k = 0;
while(1){
cnt = 0;
for(i=0; i<5000; i++){
for(j=0; j<5000; j++){
cnt++; 3}
printf("%d %d %d %d\n", cnt, i, j,k++); }
}

In theory, this code will run indefinitely on the Arduino UNO, as it does not have an
exit condition. The arithmetic never changes in the code, therefore the result of such
operations will always be the same. Finally, the results of the arithmetic operation and
the value of the loop’s counter is sent over a serial connection to the PC.

void loop{) { 30784 5000 5000 200
// put your main code here, to run repeatedly:
30784 5000 5000 202
char texto[] = "contenidoenmemoria™;
30784 5000 5000 204
int i,j,k,cnt;
k= 0; OK 30784 5000 5000 208
while (1) {
delay (200) 7 30724 5000 5000 208
cnt = 07
for{i=0; 1<5000; i++){ Incorrect |[30784 sooo soo
for(j=0; j<5000; j++){
cnt++; 30784 5000 5000 21640
1
1 30784 5000 5000 21642

Figure 3.13: Example of software malfunction on the Arduino UNO after an injector
burst.

However, when using our injector to shoot atop the surface of the ATmega328P Integrated
Circuit, multiple faults were immediately observed:

o A first shot at 4 cm crashed the device. It had to be rebooted.

18

Implementation of an EMFT platform for a RISCV-based SoC UCM

30784 5000 5'3'3'3

30784 5000 5000 -T&5
30784 5000 5000 -T&3
30784 5000 5000 -T61
30784 5000 5000 -759

30784 5000 5000 -757

Figure 3.14: Second software malfunction on the Arduino UNO after an injector burst.
The counter value became negative.

A shot at 4 cm caused an immediate change in the variable k, which increased, as
seen on Fig. 3.13

A shot at 4 cm caused an immediate change in the counter, which became a negative
number, as seen on Fig.

Shots at greater distances either did not produce observable faults nor crashed the
device.

Shots at closer distances crashed or rebooted the device most of the time.

Arduino MEGA

Similarly, the Arduino MEGA is a slightly more powerful board than the Arduino UNO,
packing an ATmega2560 AVR microcontroller, with greater memory and I/O capabili-
ties.

@ coms

30784 5000 5000 642

30784 5000 5000 g44

30784 5000 5000 646

30784 5000 5000 g48

30784 5000 5000 €50

30784 5000 5000 &52

30784 5000 5000 654

30784 5000 500%ctc Occ Occccccococcocococoocococcccoe®

| Autoscroll [] Mostrar marca temporal
Figure 3.15: Software malfunction on the Arduino MEGA after an injector burst.

As in the previous example, arithmetic errors were produced when sending burst with
the injector. Additionally, some print-related routine was affected by a fault, causing
garbage to be dumped on the serial terminal, as can be observed in Fig. and Fig.
B.16

19

Implementation of an EMFT platform for a RISCV-based SoC UCM

30784 5000 5000 38

30784 5000 5000 42

SEETESSE] SRSTWITVEL>ETAgS [SISETCETAS SGRITEU3 §6¢ v|

‘ [Autoserol [Mostrar marca temporal Nueva lnea | [9600baudo w| | Limpiar salida ‘

Figure 3.16: Second software malfunction on the Arduino MEGA affecting the serial
output.

Raspberry Pi B+

Finally, the Single Board Computer (SBC) Raspberry Pi model B+ was targeted. It
employs a BCM2835 ARM CPU and has 512 MB of available RAM memory.

ik Wﬂmﬁ.

i

L

Fi

Figure 3.17: Arithmetic fault on the Raspberry Pi loop software, provoking an incorrect
accumulator value.

Unlike the previous target, the Raspberry Pi B+ resembles more to a computer than to
a microcontroller. It runs a Linux-based operating system called RaspbianOS, which has
support for modern abstraction techniques like virtual-memory process isolation, use of
cache memory, etc.

Several bursts of the EMFT device were enough to cause observable upsets and faults on
the running software, like the arithmetic errors that can be seen in Fig. [3.17] or complete
crashes and faults in the program, as observed in Fig. [3.18 At this point, even though
demonstrated in an informal manner, it is obvious that our device is disrupting the normal
operation of these microcontrollers and memory components in the boards.

3.2.3 Preliminary cheapSHOUTER results

After the successful confirmation that the first cheap and repurposed proposed device was
working and producing faults, it was time to test the second design. Again, an Arduino
UNO device was selected, and the code presented in the previous section was compiled
and loaded into the device. The much smaller probe was placed at a very close distance
of the ATMega32 microcontroller on the board, at about 0.1 cm. Said probe was placed
centred atop the chip. The device was shot, and immediately the serial terminal stopped
receiving any information. The 'L’ LED light on the Arduino board usually blinks at
start-up, indicating that the bootloader of the microcontroller is running. This blink
pattern no longer appeared, and the device appeared to be permanently damaged. The

20

Implementation of an EMFT platform for a RISCV-based SoC UCM

J

N
e Gl
D &

[l
Ll

L
-

Figure 3.18: Segmentation fault on the Raspberry Pi software.

© coma - o x

send

30

30784 5000 5000 6 v
scroll []show timestamp Newline ©9600baud - Clear output

Figure 3.19: Reboot of the Arduino program.

combination of the new probe, which generates a stronger electromagnetic field because
it has a ferrite core and a larger number of turns, with a very close distance to the DUT,
resulted in an electromagnetic field strong enough to damage internal conductors of the
device.

30784 5000 5000 1114

[Autoscroll [Jshow timestamp Newine ~9600baud - Clear output

Figure 3.20: Counter increasing from 1038 to 1110 unexpectedly.

Using another brand-new Arduino UNO board, a set of 20 tests was run at 2 cm. This
time, the device was not damaged. From 20 shots, only four produced alterations in the
execution. Shots number 7,8 and 14 caused a reset of the device as seen in Fig. [3.19
while shot number 9 altered the arithmetic counter of the program, making it increase
significantly, more than expected, as depicted in Fig. [3.20]

21

Chapter 4

The RISC-V-based DUTs used in this
project

4.1 Description of the devices

For this project, two different COTS development boards with RISC-V ASIC cores were
used, with the addition of a development board with an FPGA in which a RISC-V soft
core was synthesized and deployed.

4.1.1 MAIiX BiT with Kendryte K210 Core

The MAiX BiTH.1] is a low-cost development board based on the Kendryte K210 SoC
[23]. It employs the RISC-V 64-bit RV64GC ISA with the IMAFDC set of extensions,
has 8 MiB of on-chip SRAM, and includes two cache memories[24]. As for the instruction
cache, the datasheet mentions: ‘Cores 0 and 1 each have a 32 KiB instruction cache to
improve dual-core instruction read performanceﬂ These are two memories of 32 KiB
each. As for the data cache, the datasheet again explains: ‘Cores 0 and 1 each have a 32
KiB data cache to improve dual-core data read performance E] Again, these caches are
32 KiB each, one located in each core.

As it can be seen in the table in Fig. from the Kendryte K210 datasheet, the general-
purpose SRAM memory has two different interfaces that can be used to access its contents.
One of them is routed to access the CPU caches mentioned earlier, while the other one
accesses the memory directly without caching. It is also fragmented in two sections: a 6
MiB range is available for the CPUs and general purpose applications, while 2 MiB are
allocated only for use of the KPU (a general purpose neural-network processing unit)E].
Only the general-purpose SRAM areas will be explored in this work.

The MAiX Bit board exposes a JTAG interface that can be used to debug and probe the
internal status of the CPU at any moment in time. Appendix [A]shows how to set up the
appropriate software toolchain to interact with the Maix Bit over JTAG. The Sipeed USB-

'Bottom of page 13 of the cited datasheet.
2Page 14 of the cited datasheet.
3https://wiki.sipeed.com /soft /maixpy/en/api_reference/Maix/kpu.html

22

Implementation of an EMFT platform for a RISCV-based SoC UCM

HEKS Kendryte K210

RGB LED Mmicrophone RISC-V Dual Core

64bit 40@Mhz, with
KPU\FPU

USB TypeC
port

DVP 24P connector

CH552
USB to UART IC

One-click
download circuit

8bit MCU LCD
connector

MicroSD card

slot(BOT side)

RY1303A

3 Channels DC-
DC IC

128Mbit FLASH

Figure 4.1: MAIx BiT board with Kendryte K210 RISC-V and other components. Source:
https://www.mouser.es/images/marketingid /2019 /microsites/0/Sipeed-Bit-intro.jpg

SRAM address map :

Region Access Start Address End Address Size

General-purpose SRAM CPU cached Bx800a0aea Bx805FFFFF Bx6000680
AL SRAM CPU cached 0x86608600 BxBBJFFFFF Bx2@0000
General-purpose SRAM CPU non-cached @x48000600 Bx485FFFFF Bx600000
AT SRAM CPU non-cached @x48600000 Bx487FFFFF Bx200000

Figure 4.2: SRAM memory address map of the Kendryte K210. Source: Kendryte K210
datasheet[24].

JTAG/TTL RISC-V Debugger E| was used as a USB - JTAG bridge. Previously, a generic
USB-JTAG bridge based on the inexpensive FTDI FT232r chipf’| was considered and
tested, but it was finally discarded due to its low speed, which became a bottleneck when
dumping the 6 MiB of memory from the Kendryte K210 RAM memory over JTAG.

4.1.2 Longan Nano with GD32VF103C8T6

The Longan Nand4.3| is a development board manufactured by Sipeed, which packs a
GD32VF103C8T6 RISC-V core with support for the RV32IMAC instruction set, plus
support for so-called rapid interrupts [25]. It follows a Harvard architecture for memory
organization, This DUT is much more limited, if compared with the previous target,
having only 128 KiB Flash and 32 KiB SRAM memories, and a reduced instruction
set.

As in the previous case, this board includes a populated JTAG header which allows for
easy-to-access debugging capabilities, using the Sipeed USB to JTAG adapter that will
be shown in the set-ups of the next chapter. Additionally, it has dedicated pins for UART
Tx and Rx data lines.

4https:/ /www.seeedstudio.com/Sipeed-USB-JTAG-TTL-RISC-V-Debugger-ST-Link-V2-STMS-

STM32-Simulator-p-2910.html
Shttps://ftdichip.com/wp-content /uploads/2020/08/DS_FT232R.pdf

23

Implementation of an EMFT platform for a RISCV-based SoC UCM

Figure 4.3: Longan nano board with GD32VF103C8T6 RISC-V plus peripherals. Source:
https://es.aliexpress.com /item /4000368549335.html?channel=twinner

4.1.3 iCE40HX4K-TQ144 FPGA running a soft-core

For the third device under test in this project, focus is shifted from ASIC implementations
of RISC-V CPUs to implementations that can be deployed in FPGA devices. FPGAs are
reprogrammable components, and this is tremendously important, as the construction
and structure of an FPGA device is considerably different to that of ASIC components.
Therefore, it can be theorized that internal faults may occur or materialize differently
than on ASIC chips.

Figure 4.4: Alhambra II FPGA mainboard. Source: https://robotlandia.es/1194-
large default/placa-alhambra-ii-fpga-de-codigo-abierto.jpg

Specifically, the RISC-V-FPGA implementation for Alhambra I was used, which syn-
thesizes into a core implementing an RV32]E] RISC-V CPU. In comparison, this CPU
is simpler than the others, implementing only the base integer ISA with no extensions
at all. It does not contain a JTAG controller, unlike the previous targets, so empirical
experiments will rely on observing faults on a running program in the soft CPU, rather
than memory analysis.

Shttps://github.com/Obijuan/RISC-V-FPGA
Thttps://github.com/Obijuan/RISC-V-FPGA /issues/7

24

Implementation of an EMFT platform for a RISCV-based SoC UCM

A specific firmware was explicitly designed to serve as a target for the fault injection
experiments, and its code can be found in appendix [Cl The code of this firmware is
similar to the code shown in Chapter 3. It runs an infinite loop performing arithmetic
operations, which in normal conditions must always produce the same results.

4.2 Instruction Set Architecture review

The RISC-V (pronounced risk five) architecture was born in May 2010 at UC Berkeley[26]
as part of the Parallel Computing Laboratory (Par Lab). Later, in 2015, the RISC-
V International Foundation was created, to 'build an open, collaborative community of
software and hardware innovators based on the RISC-V ISA’. This foundation is a non-
profit corporation and has controlled the development of the architecture, promoting
initial adoption of the RISC-V ISA. The ISA or Instruction Set Architecture is a document
that describes the model of the CPU and what instructions it must execute, as well as
the software or hardware involved in the process.

RISC (Reduced Instruction Set Computer) is a term which encompasses all micropro-
cessor architectures that employ reduced and optimized sets of instructions, instead of
the specialized and huge sets of instructions typically found in Complex Instructions Set
Computer (CISC) architectures.

The basic keystones of the RISC-V ISA are reviewed here, with special emphasis on those
design decisions that could, in the author’s view, be relevant to maintaining the status of
the program, and which could be more easily be affected by a fault injection attack.

Currently, the RISC-V ISA is subdivided in three major specifications:

e The ISA specification: which contains the bulk of the details about the instruc-
tion set and operation of a RISC-V machine.

e The Debug specification: containing the details about debugging hardware that
can be optionally included in a RISC-V core.

e The Trace specification: containing the details of the instruction tracing hard-
ware that can be optionally included in a RISC-V core.

In this document, focus is placed to review the ISA specification. It defines a few different
sets of instructions called the bases, which only contain integer instructions support, upon
which extensions can be added. These are:

e RV32I: Base integer ISA with 32-bit instructions and address space.
e RV32E: Base integer ISA with 32-bit instructions oriented to embedded systems.
e RV64I: Base integer ISA with 64-bit instructions and address space.
e RV128I: Base integer ISA with 128-bit address space.
Some examples of extensions to these bases are:
e M Extension: for integer multiplication/division instructions.
e A Extension: for Atomic instructions.

e [Extension: for Single Precision ("Float" datatype) floating point support.

25

Implementation of an EMFT platform for a RISCV-based SoC UCM

D Extension: for Double Precision ("Double" datatype) floating point support.

B Extension: for Bit manipulation instructions.
e H Extension: for Hypervisor support instructions.
e ctc.

It is important to take into account the different extensions a RISC-V core may have, as
these directly influence which capabilities, computing power, and use cases the core may
have. The underlying hardware will also change accordingly, to provide logic blocks with
which to build the required logic units to support the new instructions.

Instructions can be classified in groups or categories and it can be expected that instruc-
tions from the same category may use the same hardware resources and units.

The RISC-V Reference Card seen in Fig. illustrates the different categories of in-
structions that can be found in a RISC-V core.

Free & openl’, RIS C Reference Card o

Base Integer Instructions: RV32I, RV641, and RV1281 RV Privileged Instructions
Category Name | Fmt RV32I Base +RV{64,128} Category Name
Loads Load Byte LB rd,rsl,imm CSR Access Atomic R/W [cSRRW rd,csr,rsl
Load Halfword LE rd,rsl,imm Atomic Read & Set Bit(CSRRS rd,csr,rsl
Load Word LW rd,rsl,imm |[L{D|Q} rd,rsl,imm Atomic Read & Clear Bit|CSRRC rd,csr,rsl
Load Byte Unsigned LBU rd,rsl,imm Atomic R/W Imm CSRRWI rd,csr, imm
Load Half Unsigned LHU _ rd,rsl,imm |L{W|D}U rd,rsl,imm [Atomic Read & Set Bit Inm|CSRRSI rd,csr,imm
Stores Store Byte sB rsl,rs2,imm Atomic Read & Clear Bit I rd,csr,imm
Store Halfword SH rsl,rs2,imm [Change Level Env. Call [ECALL
Store Word sw rsl,rs2,imm _[s{D|0Q} rsl,rs2,imm Environment Breakpoint |EBREAK
Shifts Shift Left SLL rd,rsl,rs2 SLL{W|D} rd,rsl,rs2 i Return [ERET
Shift Left Immediate SLLI rd,rsl,shamt [SLLI{W|D} rd,rsl,shamt{Trap Redirect to Superviso{MRTS
Shift Right SRL rd,rsl,rs2 [SRL{W|D} rd,rsl,rs2 Redirect Trap to Hypervisor |MRTH

Shift Right Immediate| SRLI rd,rsl,shamt |SRLI{W|D} rd,rsl,shamt]|Hypervisor Trap to Supervisor|HRTS

Shift Right Arithmetic|
Shift Right Arith Imm

SRA rd,rsl,rs2 [SRA{W|D) rd,rsl,rs2 [Interrupt Wait for Interrup{WFT
SRAI rd,rsl,shamt [SRAT(W|D} rd,rsl,shamt/MM Supervisor FENCE [SFENCE. VM rs1

B R DB A R[CC B B[B D[

Arithmetic ADD ADD rd,rsl,rs2 ADD{W|D} rd,rsl,rs2
ADD Immediate ADDI rd,rsl,imm [ADDI{W|D} rd,rsl,imm
SUBtract SUB rd,rsl,rs2 |SUB{W|D} rd,rsl,rs2
Load Upper Imm LUI rd,imm Opti I Ce (16-bit) Instruction i RVC
Add Upper Imm to PC AUIPC rd,imm Category Name | Fmt RVC RVI
Logical XOR XOR rd,rsl,rs2 Loads Load Word | CL |C.LW rd’,rsl’,imm LW rd’,rsl’,imm*4
XOR i XORI rd,rsl,imm Load Word SP| CI |C.LWSP rd,imm LW rd,sp,imm*4
OR OR rd,rsl,rs2 Load Double| CL [c.LD rd’,rsl’,imm [LD rd’,rsl’,imm*8
OR Immediate ORI rd,rsl,imm Load Double SP| CI |c.LDSP rd,imm LD rd,sp,imm*8
AND AND rd,rsl,rs2 Load Quad| CL |c.Lo rd’,rsl’,imm |LQ rd’,rsl’,imm*16
AND ANDI _rd,rsl,imm Load Quad SP| CI |c.1oSP rd,imm LO rd,sp,imm*16
Compare Set < SLT rd,rsl,rs2 'Stores Store Word | CS [c.swW rsl’,rs2’,imm |SW rsl’,rs2’,imm*4
Set < Immediate| SLTI rd,rsl,imm Store Word SP| CSS |C.SWSP rs2,imm SW rs2,sp,imm*4
Set < Unsigned SLTU rd,rsl,rs2 Store Double| CS [c.SD rsl’,rs2’,imm [SD rsl’,rs2’,imm*8
Set < Imm Unsigned| 1 |SLTIU rd,rsl,imm Store Double SP| CSS |c.sDSP rs2,imm SD rs2,sp,imm*8
Branches Branch =| SB [BEQ rsl,rs2,imm Store Quad| CS [c.sQ rsl’,rs2’,imm [SQ rsl’,rs2’,imm*16
Branch #| SB [BNE rsl,rs2,imm Store Quad SP| CSS |C.SQSP _ rs2,imm SO rs2,sp,imm*16
Branch <| SB [BLT rs1,rs2,imm [Arithmetic ADD| CR [c.app rd,rsl |]ADD rd,rd,rsl
Branch 2| SB [BGE rsl,rs2,imm ADD Word| CR |c.ADDW rd,rsl |ADDW rd, rd, imm
Branch < Unsigned| SB [BLTU rs1,rs2,imm ADD Immediate| CI |c.ADDI rd, imm |ADDI rd,rd,imm
Branch > Unsigned| SB |BGEU _rs1,rs2,imm ADD Word Imm| CI |C.ADDIW rd,imm IADDIW rd, rd, imm
Jump & Link J&L| U [oAL rd,imm ADD SP Imm * 16 CI |C.ADDI16SP x0,imm IADDI sp,sp,imm*16
Jump & Link Register| UJ |JALR _rd,rsl,imm ADD SP Imm * 4| CIW |C.ADDI4SPN rd',imm ADDI rd',sp,imm*4
Synch Synchthread | I |FENCE Load Immediate| CI |c.LI rd, imm ADDI rd,x0, imm
Synch Instr & Data| 1 |FENCE.I Load Upper Imm| CI |c.Luz rd, imm LUI rd,imm
System System CALL | 1 |SCALL Move| CR |c.mv rd,rsl rd,rs1,x0
System BREAK| I [SBREAK SuB| CR |c.suB rd, rsl rd,rd,rsl
Counters ReaD CYCLE| 1 |[RDCYCLE rd [Shifts Shift Left Imm| CI |c.SLLT rd, imm rd, rd,imm
ReaD CYCLE upper Half| I |RDCYCLEH rd Branches Branch=0| CB |c.BEQZ rsl’,imm rsl',x0,imm
ReaD TIME[1 [RDTIME rd Branch#0| CB |C.BNEZ rsl’,imm rsl’,x0,imm
ReaD TIME upper Half| 1 [RDTIMEH rd Jump Jump| CJ |c.a imm X0, imm
ReaD INSTR RETired| 1 |RDINSTRET rd Jump Register| CR |c.JR rd,rsl %0,rs1,0
ReaD INSTR upper Half| 1 |RDINSTRETH rd Jump & Link J&L| CJ |c.JaL imm ra,imm
Jump & Link Register| CR |c.JALR rsl ra,rs1,0
System Env. BREAK|[CI [c.EBREAK

Figure 4.5: RISC-V Instruction reference sheet. Source:
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/files/docs/RISCVGreenCardv8-
20151013.pdf

For example, if a RISC-V were designed which implemented these instructions, it can be
expected that all Load-type instructions use similar Load Queues or Load Buffers in the
hardware, while Addition/Subtraction-type instructions could share related functional
units in hardware, like an integer Arithmetic Logic Units (ALUs).

A fault that is produced in a functional unit may affect the execution of the program
if that functional unit has been reserved or is in use by a given instruction, but may
go initially unnoticed or be completely benign if no instruction is using or will use the
hardware affected by the fault. Consequently, it is principal to understand the different

26

Implementation of an EMFT platform for a RISCV-based SoC UCM

types of instructions the ISA defines, to better analyse observed faults and pinpoint parts
of the design that might have been affected by a SEU (Single Event Upset).

27

Chapter 5

Fault Injection Experiments

As seen in Chapter 3, now a proposed device is known to work, being able to produce faults
in components like memories, microcontrollers and CPU-based systems. Next, a set-up
and procedures to realize further EMFI experiments are described, with emphasis on
ensuring that the experiments and their conditions can be reproduced by other researchers
in a laboratory environment.

5.1 Considered experiment parameters

The parameters that need to be controlled to perform a reproducible fault injection
experiment are:

e Relative vertical distance from the DUT to the EMFI device’s probe or coil.

Implementation details of the EMFT device.

Relative horizontal position of the DUT.

e Environmental conditions of the experiment.

Logical state of the DUT.

5.1.1 Relative vertical distance from the DUT

As explained in Chapter 3, the distance from the electromagnetic field source of an
EMFT device to the DUT is important, as the electromagnetic field strength is inversely
proportional to the distance. Thus, the closer the EMFT injector is placed to the DUT,
the greater the effects of the field on the DUT will be.

A distance far away from the DUT may result in no faults being observed in the device,
while a distance too short could result in permanent damage of the DUT, like in the
preliminary experiments with memories in Chapter 3. Henceforth, a researcher shall run
several tests to calibrate their setup and find a reasonable distance, depending on the
DUTs in place, their dimensions, and the EMFI device’s strength.

28

Implementation of an EMFT platform for a RISCV-based SoC UCM

Figure 5.1: Example of test run with Alhambra II board at 4 cm

5.1.2 Implementation details of the EMFI device

The strength of the electromagnetic field generated by our device can be expressed in
terms of different parameters. Therefore, it is possible to roughly compare two different
EMFT devices, should the need arise. For example, a pair of EMFT devices with the same
electronic circuitry, but a different number of turns in their coils, would not produce the
same results. The device with a larger number of turns in its coil will have a larger induc-
tance, and thus a larger electromagnetic flux. This could be perceived such as one device
being able to produce observable faults at a given distance, while the other injector would
not produce any observable faults at the same distance. A similar example would be two
EMFT devices with the same electronic circuitry, and the same number of turns in their
probes, but with different materials in the core. In this case, the magnetic permeability
changes, and so does the magnetic flux, in the end influencing the electromagnetic field
that is being generated.

Depending on the objective of the experiments, it may not be essential to consider mea-
suring the exact strength of the fields generated, for example, if the researcher wants to
investigate the resilience of a device under these fault-prone situations, regardless of the
exact type and strength of the faults occurring. Small manufacturing differences in the
electronic circuit of the EMFI devices may generate variations and energy losses, but
these errors are often negligible if compared to all the other parameters.

5.1.3 Relative horizontal position of the DUT

As important as the previous parameters is the relative position of the DUT under the
injector. The part of the DUT that is immediately under the EMFI device in the vertical
axis will be the most probable to be affected by a fault. Therefore, a researcher might want
to know which part of the chip’s die is located under the probe or the coil of our device.
For experiments targeting the resilience of the memory components, the on-chip storage

29

Implementation of an EMFT platform for a RISCV-based SoC UCM

and memory elements would need to be pinpointed. For experiments aiming at analysing
the effects of faults in the component’s logic, the areas with the desired components
(decoders, encoders, multiplexers, logic gates and logic circuits, latches, etc.) would need
to be located. Depending on the target and the precision required, smaller and more
accurate coils and probes will have to be fabricated.

Instruction Instruction
register dec/:ode

ALU Registers
registers—}
Carry
ALU
PC / stack

Figure 5.2: Labeled die photograph of the historic 8008 Intel CPU, by Ken Shirriff.
Source: http://www.righto.com/2016/12/die-photos-and-analysis-ofa4.html

If additional details about the DUT were available, like the internal layout (which can
be obtained through proprietary information provided by the manufacturer, through x-
ray images of the device, or through package decaping) it becomes possible to pinpoint
specific areas of the chip (e.g.: cache memories, CPU core, interconnection networks,
etc.) and locate the EMFI device’s probe or spire atop that part of the target. Fig. [5.2
shows Intel’s 8008 processor die, with several logic blocks identified and labelled, making
it possible to cluster different sections of the CPU depending on which area of the die
they are located. For example, an attacker or researcher who knows where the Arithmetic
Logic Unit (ALU) is located could inject specific faults in that area of the die, to have a
higher chance of causing faults in arithmetic operations.

5.1.4 Environmental conditions of the experiment

It is important to keep a constant and stable physical state of the DUT, which can be
reproduced. This includes values such as the surface temperature of the DUT, the room
temperature, the lightning levels of the room or area where the experiment is performed
(and if direct sunlight is hitting the device), humidity level of the room, and existence of
any other environmental conditions that might affect the experiments.

While running the experiments, it is preferable to keep the device away from other elec-
tronic devices which may be running to discard any kind of electromagnetic or radio-
frequency noise.

30

Implementation of an EMFT platform for a RISCV-based SoC UCM

5.1.5 Logical state of the DUT

The last parameter that has to be controlled is the actual logical state of the DUT. This
comprehends whether the device is powered off, in standby mode (if existing) or if it’s
running software and which one (in the case of a core), if it is actively storing data (in the
case of a memory), or if it has a working bitstream flashed (in the case of an FPGA).

In the case of a core, it is relevant to include the source code or release number of the
program that was being run, in addition to details about what Operating System (if any)
was running at the same time.

For memories, it is enough to include a written description which explains the mem-
ory state, in the experiments’ report (e.g.: "The memory was written with 0xDE bytes",
"Program A was loaded in the system") or provide a binary copy of the contents of the
memory before the experiment is run. For FPGAs, both the Hardware Description Lan-
guage (HDL) source code and the used bitstream can be included. The bitstream needs
to be included because the synthesis process is not always deterministic, and different
tools or versions of a synthesis tool can produce different bitstreams.

5.1.6 About experiment logs

For the static experiments with MAiX Bit and Longan Nano, the CPU was halted im-
mediately after it is booted using JTAG and OpenOCD, and the devices were manually
probed, registering the results from the experiments in their respective comma-separated
value (CSV) file. The following data was recorded: device under test, type of injector,
number of injector shots issued, distance from the coil to the DUT in each shot, number
of faults detected and their relative addresses in the dump file, md5 hash of the golden
file, and md5 hash of the posterior dump (when relevant). For dynamic experiments with
MAIiX BiT and Alhambra IT FPGA, the software running on the device and its specific
version were noted, in addition to what stage of the software was running (boot code,
specific path of execution, etc.).

5.2 Experimental results

To perform static experiments with RISC-V boards, the next procedure was employed:
Firstly we set up the device by flashing a program to the onboard memory. On a normal
device reset, the CPU jumps to the code and starts executing it.

However, for the experiments the CPU is immediately halted after boot. The OpenOCD
tool reset Conﬁguration[] ensures that the cores are halted ’at the reset vector before the
1st instruction is execute’.

At this point, JTAG is used to take a memory dump of the system. This first dump will
be known as the golden dump, which will be used as a baseline to compare.

Next, while the cores are still halted, the injector is used to provoke faults on the de-
vice.

Finally, a second memory dump is taken, and its contents are compared to the golden
dump, looking for changes. The addresses in which the differences are found (if any) are

Thttps:/ /openocd.org/doc/html/Reset-Configuration.html

31

Implementation of an EMFT platform for a RISCV-based SoC UCM

recorded and included in the appropriate CSV file. In this way, we look for faults being
induced mainly in the memory components, but also in the mechanisms and buses used for
reading the memory (i.e.: the JTAG controller, I/O mechanisms, etc.) . Hardware-wise,
the set-up, which is depicted in Figl5.3] proved to be portable and easy to use.

TEILLI L LT LR ECCE T T i

Figure 5.3: Portable EMFI JTAG setup for static tests: Injector, DUT, JTAG USB
adapter, and laptop.

For dynamic tests, a program of choice is loaded and let run. While the program is
running, EMFI bursts are issued and the behaviour of the program is observed, recording
any unusual results or outputs.

5.2.1 MAiX BiT

The procedures described in Appendix [A] and Appendix [B] were employed to set up a
JTAG connection to the SoC’s JTAG controller. This offered control over the system,
and a way to reset or clear the state of the device. Additionally and equally important,
it provides access to observe the state of the JTAG controller, which in itself can be
affected by faults, as it is part of the SoC. The device was flashed with MicroPython
firmware v0.6.2 for the MAiX BiTf| Per-experiment details of the environment of the
experiments can be found in the experiments batchl.xzlsz and experiments batch2.xlsx
companion files to this work.

Static Tests (Batch 1)

Experiment Description: Using the initial mosquito injector, 30 static experiments
were performed using the MAiX BiT development board. In these static experiments,
only the JTAG interface of the device was being observed. The Serial-over-USB terminal
of the device was not observed. The injector was located atop the centre of the device,

Zhttps://github.com /sipeed /MaixPy /releases/tag/v0.6.2

32

Implementation of an EMFT platform for a RISCV-based SoC UCM

and with the probe coil completely parallel to the surface of the DUT. All the following
tests used the JTAG cached memory interface to dump the contents of the SRAM.

Analysis and hypotheses: Of these 30 experiments, the first three ones were not
relevant, as due to an oversight, only Core 0 was halted, while Core 1 was running,
thus the state of the system was different for each experiment. Of the remaining 27
experiments, 7 were performed at a distance of 4 cm, 10 were performed at 3 c¢m, and
10 were performed at 2 cm. Only the experiments at 2 cm produced observable results,
with apparent faults in 9 out of the 10 experiments.

Int paralle arallels-Parallels-Virtual-Platform: ~/PERSONAL

version
program v i (command valid any time)
rtual_addr
ate a virtual address into a physical address (command valid
any time)
wait_halt [milli
to t ied number of milliseconds (default 500@) for a

rt. Useful for cases thing
of an srst deassert. T (d

xsvf (tapnam

Runs a .

interpreted as TCK cycles rather

quiet' option, all comme . s e

eported.

tvalls e : OpenOCD
Info 3UG_
Info

s DBUC STATUS BUSY X server

M parallels@parallels-Parallels-Virtual-Platform: ~ O =

wailt_srst_deassert ms
Wait for an SRST deassert. Useful for cases where you need something
to happen within ms of an srst deassert. Timeout in ms (command
valid any time)

wp [address length [('r'|'w'|'a"') value [mask]]]
list (no params) or create watchpoints

xsvf (tapname|'plain') filename ['virt2'] ['quiet']
Runs a XSVF file. If 'virt2' is given, xruntest counts are
interpreted as TCK cycles rather than as microseconds. Without the
'quiet' option, all comments, retries, and mismatches will be
reported.

> clear

invalid command name "clear"

; telnet
XX XXXX DBUG_STATUS_BUSY XX)

X XXX DBUG STATUS BUSY XX { A

! A client

XXXXXXXXX DBUG_STATUS_BUSY XX

>

Figure 5.4: OpenOCD reset-like errors observed in static experiment no. 26 (batch 1).

The OpenOCD error message shown in Fig. was present in all the static experiments
which showed observable results. It should only be observed in normal conditions when
the CPU is manually reset pushing the onboard reset button, hence resetting the JTAG
controller as well.

Three hypothesis are presented, as to why these JTAG interference may be occurring and
affecting the communication.The first hypothesis involves the communication channel. To
talk with the JTAG controller, a USB to JTAG adapter is used, which at the same time
has several wires connected to the device. It is possible that the EMFTI is not only affecting

33

Implementation of an EMFT platform for a RISCV-based SoC UCM

the conductors inside the DUT, but also these wires, thus effectively injecting nonsensical
signals in the communication channels. The cables may be acting as antennas for the
electromagnetic noise the device generates, disrupting the connection.

The second hypothesis proposed would be that the faults are being, as ideally desired,
inside the microcontroller’s die. Because the device’s probe is being place atop the center
of the DUT, if the JTAG controller logic is located in the center of the die (for instance,
designers might have place it there so it is at the same distance of every other part of the
silicon) it could be a recurrent part of the DUT being affected by the experiments, and
provoking the errors observed.

A third hypothesis is that, regardless of the JTAG controller position, faults can occur on
interconnection networks going to this controller. Specially, since said controller would
need to have access to most of the hardware of the CPU, it’s connection could be spanning
all over the die’s surface. Therefore, any fault, regardless of its position, could possibly
affect communications going to the JTAG controller, propagating into it. An unexpected
input arriving to this debugging state-machine could likely put it into an invalid state or
cause a reset of the system.

Conclusions: It is observed that the EMFI device produced faults in the device which
affected the communication between OpenOCD and the JTAG controller, either resetting
the controller itself or altering its status, so that the connection with OpenOCD was
restarted. These errors will be observed again in the following experiments. The last
two hypotheses could be easily strengthened (or completely discarded) if the internal die
layout of the device was known, either obtained through x-ray imaging of the die, chip
decapping, or through other techniques, allowing us to know the position of the JTAG
controller logic and its interconnection networks. The detailed results for the described
tests can be found in the experimBatch1.xcls file.

Dynamic Tests (Batch 1)

Experiment Description: Using the same device, 20 dynamic experiments were per-
formed. The key difference in these experiments is that now focus is placed on observing
the behaviour of the system under fault injection conditions while it is executing real
software, rather than only analysing the effects of EMFI on memory components. To do
so, the MAiX BiT was connected to both the JTAG controller, using the Sipeed JTAG
adapter and over USB to a separate laptop, in which a serial terminal was listening for
incoming log messages using the Linux ’'screen’ softwareﬂ This set-up can be observed in
Fig. The injector was located on top of the center of the device, and with the probe
coil completely parallel to the surface of the DUT.

Analysis and hypotheses: In these experiments, several outcomes were observed, with
the DUT being forced into different faulty paths of execution. It was observed that
the injector was able to produce, at least, five different kinds of faults into the CPU,
specifically: faulty fetches (experiment no. 35), illegal instruction execution in both Core
0 and Core 1 (experiments no. 36, 42, 44, 46, 48 and 50), misaligned stores (experiment
no. 34), faulty loads (experiment no. 39 and 45) and misaligned loads (experiment
no. 49). These were cases in which specific parts of the CPU were affected by a glitch,

3command used: screen /dev/ttyUSBO0 115200

34

Implementation of an EMFT platform for a RISCV-based SoC UCM

Septiembre 2022
Lunes Mares Miércoks Jueves _Vemes

30 31 1 2

Figure 5.5: Dual laptop setup for JTAG and UART over USB. Used for dynamic tests.

resulting in an exception being raised and the associated exception handler routine being
executed.

While the debugging mechanisms available do not have the mechanisms to trace the exact
micro-architectural components that may have been affected by the faults, it is possible to
make general assumptions of which components could have been affected. For example,
the ultimate cause of a misaligned store exception, is a store instruction trying to write
to a memory address which does not follow the alignment requirements of the processor.
The origin of such an invalid memory address is unknown, although there can be several
sources for this faulty value. It could have been caused by a memory address stored in
SRAM, which was corrupted by our EMFT interference, and later loaded into the CPU’s
registers and used to access the memory. However, a different possibility could be one in
which the address was correctly stored in SRAM and correctly loaded into a CPU register,
but it was corrupted by the EMFI attack once in a register in the CPU store buffers or
store queues. Similarly, a different possibility would encompass the situation in which the
address was correctly stored in a register, and the CPU was operating in said register,
for instance, by adding an offset to the register value. If a bit flip affected the logic units
in charge of such an arithmetic operation, the result of such addition could be erroneous
and go undetected initially. As the error propagates to the store unit / memory unit, an

35

Implementation of an EMFT platform for a RISCV-based SoC UCM

pedro-javierf : screen — Konsole

Archivo Editar Ver Marcadores Preferencias Ayuda

- pedro-javierf : screen

Figure 5.6: Fetch fault. Dynamic experiment no. 35 (batch 1).

exception is raised as the address is not one from an aligned memory address. This is
an example of a situation in which an error is observed through a different component
rather than in the one directly affected by the initial fault.

Static Tests (Batch 2)

Experiment Description: A second batch of 30 tests was performed on a different day,
following the same procedure. The injector was located on top of the centre of the device,
and with the probe coil completely parallel to the surface of the DUT. However, this time
the non-cached memory interface of the device was used, as described in Appendix [B]
The exact same set-up and number of shots was used, as in the first batch. Interestingly,
the results were different from the ones obtained using the cached interface. In 10 out
of 30 experiments, unexpected behaviour was observed. In 6 of them, OpenOCD errors
were observed, but no issues were observed in the SRAM memory dumps taken after the
fault injection occurred. In two other experiments, the faults injected not only caused
OpenOCD reset errors, but also resulted in incorrect SRAM dumps completely filled with
0x00 bytes. Experiment no. 29 also suffered from excessively slow SRAM dumping time.
The average time that it took to dump the 6 MiB of SRAM memory in normal operation
is of around 260-280 s, as can be seen in Fig. 5.8, However, experiment no. 29 reported
a time of 797.9 s, and the previously mentioned zero-filled dump file.

Finally, two experiments presented SRAM dumps taken after fault injection which pre-
sented different MD5 hashes than the golden dump taken before the EMFT attack, indi-
cating upsets. Of these two experiments, experiment no. 1, at 4 cm of distance, did not
showcase any OpenOCD error log, while experiment no. 30, at 0.5 cm of distance, not

36

Implementation of an EMFT platform for a RISCV-based SoC UCM

pedro-javierf : screen — Konsole

Archivo Editar WVer Marcadores Preferencias Ayuda

>] pedro-javierf : screen

Figure 5.7: Illegal instruction fault. Dynamic experiment no. 46 (batch 1).

XXXXXXXXX DBUG_STATUS_BUSY XXXXXXXXXXXXX
XXXXXXXXX DBUG_STATUS_BUSY XXXXXXXXXXXXX
> dump_1image batch2kendryte/aft29.bin ©x40000000 0x600000

dumped 6291456 bytes in 797.994690s (7.699 KiB/s)

>

Figure 5.8: Large JTAG SRAM dumping time. Dynamic experiment no. 29 (batch 2)

only presented OpenOCD reset error logs, but also printed a "Core 0 halted" error when
the EMFI device was used. In this last experiment, when trying to dump the SRAM
again, the system presented an error due to an exception in the core, which seems to
happen during a read operation, the one issued to dump the memory. This prevented to
dump the SRAM on the first attempt, as seen in Fig. [5.9] However, a second attempt
re-issuing the dump image OpenOCD command completed successfully, obtaining the
SRAM image which presented a different hash than the golden image.

Analysis: The two SRAM dumps taken after fault injection, from experiments 1 and 30,
were analysed and compared against their relative golden dumps. To do so, firstly, the
VBinDiff utility was used. This tool compares two files for differences (often known as a
diff operation) and, unlike other tools, shows the results in a visual manner, highlighting
the bytes in which changes have occurred from one file to another.

In experiment 1, only two affected bytes were observed as seen in Fig. [5.10] Bytes at
contiguous relative file addresses 0x0018FBAS and 0x0018FBA9 suffered changes. In the
golden dump, the value was 0x5A38 whereas after fault injection these bytes changed to
0x7C83. No more differences were observed between the two images.

Conversely, the analyzed files from experiment 30 revealed a substantial amount of bytes

37

Implementation of an EMFT platform for a RISCV-based SoC UCM

XXXXXXXXX DBUG_STATUS_BUSY XXXXXXXXXXXXX

XXXXXXXXX DBUG_STATUS_BUSY XXXXXXXXXXXXX

Core [0] halted at 0x400000eb due to debug interrupt

XXXXXXXXX DBUG_STATUS_BUSY XXXXXXXXXXXXX

> dump_1image batch2kendryte/aft30.bin 0x40000000 0x600000

Core got an exception (Oxffffffff) while reading from 0x40000fff

(It may have failed between 0x40000000 and 0x40000ffe as well, but we didn't che
ck then.)

> dump_image batch2kendryte/aft30.bin 0x40000000 0x600000
dumped 6291456 bytes in 287.143616s (21.397 KiB/s)
>

Figure 5.9: Previously never seen errors on the JTAG log terminal, indicating Core
exception, and preventing initial SRAM dumping attempt. Dynamic experiment no. 30

(batch 2)

[| C:\Users\pedrojavierfernandez\Downloads\VBinDiff-3.0_beta5\VBinDiff.exe
C:\Users\pedrojavierfernandez\Downloads\VBinDiff-3.0_beta5\goldl.bin

Arrow keys move F find RET next difference ESC quit ALT freeze top
C [eni/EBCDIC E edit file G goto position Q quit CTRL freeze bottom

Figure 5.10: Highlighted changes between gold1.bin and aft1.bin.

whose values had changed after the fault injection experiment. The amount of faults is
such that it is not feasible to visually analyzed them individually. Instead, the approach
selected is to cluster and categorize them, based on the memory addresses at which they
are found.

A group of 3 bytes, plus a separate byte, were affected at 0x0018EE30 addresses and can
be observed in Fig. [5.11]

For instance, a set of two bytes were affected at addresses 0x0018FBAS8 and 0x0018FBAY,
like in experiment one. This time, the bytes changed from 0xD900 to 0xC4D1. Further-
more, a set of four contiguous bytes changed at address 0x0018FD50, depicted in Fig.

b.I2

In Fig. Another affected region can be spotted starting at addresses 0x0018FECO
with multiple contiguous and non-contiguous bytes that change in value.

Continuing toward upper memory addresses, three bytes are affected at address 0x00197C40.
A cluster of six bytes is also modified, with OxFF bytes changing their value, at address
0x0019D300. Two groups of 32 bits (4 bytes) which were zeroed (0x00) in the golden file,
changed their value around address 0x0019E2EQ. A byte was affected at 0x0019EBOO,

38

Implementation of an EMFT platform for a RISCV-based SoC UCM

IC:\Users\pedrojavierfernandez\Downloads\VBinDiff-3.0_beta5\aft30.bin
EDCO:) &8 @ cooooooo coccoooo
EDDO: 00 5000000606 ©OO
EDE@: 00 b0000000 GO
EDFO: 00 5000000606 ©OO
EE@O: 00 56000000 GO0
EE10: 00 5000000606 ©OO
EE20: 00 5000000606 600G
EE30: 00 00 60

EE40: 00
EE50: 00
EE60: 00

EE70: 00

EDCO: 00 5

EDDO: 00 Cieseaes s
EDEO: 00 50000000 Goo
EDFO: 00 50000000 Goo
EE@O: 00 50000000 Goo
EEl10: 00 50000000 Goo
EE20: 00 50000000 cooo
EE30: 00 5o 5o
EE40: 00 oCoooo

FCCo: o1

FCDO: 00

FCEQ: FF

FCFo: 00

FDOO: 00

FD10: 00

FD20: o1

FD30: 08

FD40: 00

FD50: 00

FD6O: 00 5 coo
0018 FD70: 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 ...

FCCo: 01 o0 o 5 5

FCDO: 00 00

FCEO: FF [FF

FCFO: 00 00

FDOO: 00 00

FD10: 00 00

FD20: 01 00

FD30: 08 00

FD40: 1 o0 00

FD50: 00 00

FD60: 00 00

Figure 5.12: Group of 4 affected bytes at 0x0018FD50.

followed by another changed byte just 16 bytes forward in memory, at 0x0019EB10.

Considerably large 31 Kb clusters of memory positions starting at 0x0025F9EQ are af-
fected, with seemingly random bytes suffering changes. Similar clusters of around the
same size appear modified through higher memory positions.

To analyse and categorize the results, a software tool was developed to look for SBU
(Single Bit Upsets) and MBU (Multiple Bit Upsets) comparing the golden files with the
dumps obtained after performing the fault injection procedure. The code for this tool
written in the C language can be found in Appendix [D] and receives as input the golden
image and the image taken after the experiment.

For the assets from experiment no. 1, the tool showcased what already had been observed
visually. There were two upsets, one of multiplicity 3, and another of multiplicity 6. For
experiment no. 30, the tool helped to count the total number of upsets produced and to
categorize them based on their types, as observed on Fig. [5.14] A representation of the
data can be observed in Fig. [5.15] observing that the majority of upsets observed were
SBUs. which is reasonable statistically speaking.

39

Implementation of an EMFT platform for a RISCV-based SoC UCM

IC:\Users\pedrojavierfernandez\Downloads\VBinDiff-3.0_beta5\aft30.bin
FE70: 00 00 G0 6000
FE8O: 00 00 00 BBBB....
FE9@: 00 00 00

FEAQ: 00 060 G0
FEBO: 0GB OO 5
FECO: TOQeB . AW $>4ff"%; ¢
FED®: 8F .0BT.R.. Qo.mlA
FEEQ: H!..00CM =/H-1¢0
FEFO: BF r$.a.epu c U0} ~-
FFooe: 00 60 60 xj.C.
FFlo: 00

FF20: 00

FE70: 00 00 60
FE8O: 00 00 00 BBBB....

FE9O: 00 00 08
FEA@: 00 e e .
FEBO: 00 00 080 c.......
FECO: TOQe. . /W $~4Bni; E
FEDO: 8F .mBT.f.. To.mlA
FEEO@: H!..00CM =/H-;¢0
FEF@: BF r$.a.epu cqU0O} "
FFoO: 00 00 08 XjoCounn
FF10: 00

Figure 5.13: Region with multiple affected memory positions.

:~$./a.out gold30.bin aft30.bin
golden size = 6291456
after size = 6291456

Number SBUs: 779819
Number multiplicity
Number multiplicity

Number multiplicity
Number multiplicity
Number multiplicity
Number multiplicity
Number multiplicity
Total upsets = 883180

Figure 5.14: Result of the tool with the set of data from experiment 30.

Hypotheses: The observations from experiment 30 are partially satisfactory, as it is
evident that the state of the system was heavily impacted by the EMFI device, as is
observed both in the OpenOCD logs and through memory analysis. The first hypothesis
is that these changes could have been produced solely by the injector device, affecting
the SRAM memory.

Unfortunately, even though it was observed that our injector device is able to introduce
faults in memories, as shown in Chapter 3, there is a chance that the disturbed memory
positions affected in the last static experiment were not as a direct consequence of faults
caused on the memory. As depicted in Fig. a CPU exception was somehow detected
by OpenOCD. However, this was not expected, as both CPU cores were halted by the
JTAG controller, at the beginning of the OpenOCD set-up. This might suggest that the
fault injected altered the JTAG controller, awakening one of the cores, which started to
run again, just to crash into an exception later. This rampant CPU core could have
executed part of its expected code and issued memory writes, altering the state of the
memory, and thus generating the clusters with changes that were seen in previous figures.
This is the second hypothesis. Nevertheless, there are some caveats to these suppositions.
For instance, the changes in the big clusters appeared to occur on random and interleaved
positions (while CPU code is more likely to process buffers or arrays linearly) and the data
in the golden dumps appear to have high-entropy, suggesting machine code (instructions)

40

Implementation of an EMFT platform for a RISCV-based SoC UCM

#3-MBUs
—

0,8%
#2-MBUs
10,8%

SBUs
88 3%

Figure 5.15: Pie chart showing the predominant type of upsets discovered: An 88,3% were
SBUs, while the 10,8% were multiplicity 2 MBUs, followed by an 0,8% of multiplicity 3
MBUs.

or other high-density information, which a CPU in a microcontroller would typically not
modify, unlike with clear-text data, like strings in a program, that may be formatted or
muted by a program. Unfortunately, this is not a sufficient proof to discard that this
hypothesis of changes were provoked by the CPU.

The third hypothesis is that both the injector affected the memory directly, and that
the CPU in a faulty state trashed certain memory regions before running into an excep-
tion.

Conclusions: Ultimately, the conclusion is that there is not enough information to
discern and categorically affirm which was the exact root cause of the issue. Three
reasonable hypothesis are presented, all within the bounds of the capabilities of the
employed EMFT device. The table with the experiment conditions of this batch can be
found in included file maixbitnocache.xcls

A note on security concerns: Exception registers poisoning-like attacks

Dynamic tests revealed that our injector, despite being somewhat simple, is able to cause,
at least, five different types of exceptions in the normal execution of the RISC-V core:
misaligned stores, faulty fetches, illegal instruction, faulty loads and misaligned loads.
From the point of view of a malicious attacker who is trying to extract secrets or code
from a RISC-V device, this is a likely indicator that EMFI can be used to perform
more complex attacks, which not only disrupt the state of the system, but exploit that
incoherent state to bypass security mechanisms at the architectural or Operating System
level.

One attack that stands out in this situation is the so-called "Exception Vector Poison-
ing" attack, for ARM architectures. This attack, which has been actively used [27] for
years, exploits the fact that it is possible to trigger exceptions and thus redirect the flow
of execution of the CPU to the exception handler routines, which often execute in an
exception or interrupt context. Therefore, with preparation and knowledge of the target
device, it is possible to modify the memory addresses where these vectors point, making
them point to an area of memory controlled by the attacker. Afterwards, using fault

41

Implementation of an EMFT platform for a RISCV-based SoC UCM

injection, the attacker can trigger the exception handler, thus forcing the CPU to jump
and execute whatever code stored in the mentioned attacker-controlled memory address.
A successful attack of this kind was performed by researcher "derrek"[I] as cited in Chap-
ter 2. A glitch attack was used to halt the execution of the Nintendo 3DS’s bootloader
before it erased its own code from memory, redirecting the flow of execution to a routine
programmed by the researcher to dump the bootloader’s binary code from memory to an
external storage device.

Similarly, the RISC-V architecture employs mechanisms to locate the routines that shall
be executed in the scenario of an exception arising in the system. If these mechanisms can
be tampered to redirect the flow of execution to an attacker-controlled memory region,
and if it is possible to generate arbitrary exceptions through fault injection, the security
of the device can be compromised. It has been observed that our injector device can
provoke these exceptions. Recent previous research for RISC-V architecture showcased
on DEF CON 29[2§] indicates that mechanisms like the mitvec[29] can be altered and
abused to perform similar code hijacking attacks.

5.2.2 Longan Nano

The Longan Nano, although using a different RISC-V microcontroller, has a PCB de-
signed by the company Sipeed, and thus is compatible with the USB to JTAG debugger
employed previously for the MAiX BiT experiments. Unfortunately, the current official
Software Development Kit (SDK) contains broken debugging tools, like OpenOCD, which
made it impossible to successfully debug the device. Therefore, only dynamic tests were
performed.

Figure 5.16: Injector centred atop the Longan Nano at a 2 cm distance.

Experiment Description: A set of 50 dynamic experiments was performed. The device
was loaded with a firmware that uses UART to log messages and then runs the same
arithmetic loop code shown in the preliminary results of Chapter 3. As in previous
experiments, the mosquito device was used and the probe was place centred atop the
DUT.

42

Implementation of an EMFT platform for a RISCV-based SoC UCM

Analysis: Several types of faults were observed in the experiments. A chart showing
the percentages for each type of fault can be seen in Fig. [5.17 Most experiments where
no faults were observed correspond to larger distances from the injector to the DUT,
while the cases with a higher number of observable faults correspond to tests in which
the injector was located closer to the device.

NRED

Reset
UART Error

Arithmetic Error
Trap/Exception

Figure 5.17: Pie chart of the types of faults and their occurence in the 50 tests.

25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 5000 5000
25000000 500trap

Program has exited with code:0x30000002

Figure 5.18: Longan Nano trap exception example in dynamic experiment no. 39

Fig. [5.18 shows the result of experiment no. 39, in which the fault injection experiment
produces a trap or exception, leading to the activation and execution of the default ex-
ception handler on the device, printing a numeric code representing the type of exception
that occurred. The code of this default exception handler in C can be seen in Fig. [5.19|
The RISC-V standard exception codes are defined in the privileged specification of the
ISAEL When an exception occurs, the specific error values are saved in the architectural
register called the Machine Cause Register or mcause register. The mentioned handler
reads these codes and prints them through the default output configured, serial in this
case.

Hypotheses:

For the experiments that resulted in an exception being handled in the core (17,3% of
the total) there is some more information than in those in which the device just crashed.
Particularly, two different mcause codes were obtained: 0x30000002 and 0x30000001.

4https://riscv.org/wp-content /uploads/2017 /05 /riscv-privileged-v1.10.pdf Page 35.

43

Implementation of an EMFT platform for a RISCV-based SoC UCM

handle

GD3

uintptr_t handle_nmi()

write hex(
write

__attribute_ ((weak)) uintptr_t handle grap(uintptr_t mcause, u
i

iTti(mcau
han

write(1, "trap\n", 5);

_exit(mcause) ;
return ©;
|

Figure 5.19: GD32V low-level exception Handler code in SDK files handlers.c and _ exit.c

According to the privileged RISC-V specification mentioned earlier, the most significant
bit (MSB) of the register shall be 1 if the trap was caused by an interrupt, and 0 otherwise.
Both error codes have a 0 as the MSB, thus indicating the exception was not produced
by a planned interrupt, but rather by some malfunction or error.

e Error 0x30000002, Illegal instruction: This is the most common exception observed
in the experiments of this work. There are several paths that, if suffering from a
fault, could lead to this type of exception. Several possible hypotheses are presented.
Firstly, a fault in the instruction decoding logic, resulting in invalid decoding of
a correct set of bytes. The other possibility is a fault in the address value of
the instruction fetch operation, resulting in an architecturally-correct fetch (i.e.: a
valid memory access that doesn’t raise any exception) but that is logically incorrect,
fetching instructions from a different place than expected (e.g.: from a data region,
from zeroed memory etc.) thus resulting in invalid data being forwarded to the
instruction decoding logic.

e Error 0x30000001, Instruction access fault: In this case, the error code is slightly
more specific, allowing to hypothesize with more insight. In this case, the instruc-
tion fetch failed. This is caused by an invalid read operation, possibly due to a fault
or error in the memory address, which could be pointing to invalid memory regions
(out of the memory map), protected regions or pages, or simply data pages.

In both cases, there is not enough information to pinpoint the exact component that was
originally affected by the fault, as the error could have propagated, and with the proposed
experiment settings it is only possible to observe the final outcome and which logic is
catastrophically failing. Statistically, it is possible that a larger number of experiments
would have revealed other types of exceptions being caused, similarly to the experiments
with the MAiX BiT DUT.

Conclusions:

It can be concluded that this 32-bit RISC-V microcontroller seems to be equally suscep-
tible to being affected by the EMFT using the proposed basic injector. Knowledge of the

44

Implementation of an EMFT platform for a RISCV-based SoC UCM

RISC-V ISA can be employed to gather information about the type of exception or fault
that has occurred, always taking into account that errors might have propagated from
different parts of the DUT before reaching the observed affected logic.

The results of all the experiments can be found in included file experiments;onganyatchl.

5.2.3 Alhambra IT FPGA RISC-V soft core

Dynamic Tests

Unfortunately, the selected RISC-V soft-core available for this board did not include a
JTAG state machine, therefore, it is not possible to perform purely static experiments
like memory analysis after fault injection, at least without altering the CPU state or
employing it to analyse the memory. For these experiments, aim was put to looking
for the appearance of faults in a program running arithmetic operations on the core,
and observing if it was interrupted, halted or if it had crashed, or if alterations in the
outputs of the program were caused. The source code for the C firmware designed to be
glitched can be found in Appendix[C] Limitations like a reduced serial output functionality
existed in the base firmware used, thus limiting the ability to print verbose dynamic debug
messages.

Experiment Description:

A first batch of 50 runs of the program were carried, trying to induce glitches in the
arithmetic loop of the firmware. 42 tests resulted in disruption of the system, which
automatically rebooted itself. This is, an 84% of the executions were altered by the
injector. However, no arithmetic faults were observed.

Hypotheses and Conclusions:

The internal composition of FPGAs is different from that of ASIC parts. However, even
though in the batch of experiments that was performed, no faults other than reboots
were observed, and no arithmetic flaws were observed, this is not enough reason to affirm
that FPGAs are more immune to EMFI attacks. The hypothesis is that with a larger
number of tests, it may be possible to observe exceptions and arithmetic faults, like with
the previous devices. It can be concluded that further experimentation needs to be done
with this FPGA device, solving firstly the firmware limitations, or switching to a more
advanced and complex soft-core design.

45

Chapter 6

Conclusions and future work

In previous chapters, the advantages and caveats of an affordable electromagnetic fault
injector have been explored. The initial objectives are reviewed and evaluated to see if
the main milestones have been achieved. Finally, future lines of work that have spawned
as a result of this work are discussed.

The main objective of this work was successfully achieved, which consisted in finding
an affordable solution to conduct EMFI experiments in the academic context. Available
hardware resources were widely explored, such as off-the-self appliances like a mosquito
killer device, which were then re-purposed to serve a nobler duty. The bottom-line was
affordability, which was obtained with success. Furthermore, an intermediate solution in
terms of cost-usability ratio was developed completely anew. The second injector design
does not require to re-purpose any previously existing device. However, results are only
partially satisfactory, as it was not possible to verify the circuit completely due to the
difficulty to source electronic components, which is affecting the whole industry at the
time of writing.

Nevertheless, the development of this work and the desire to improve the different designs
(mechanical, electronic, etc.) described in it, yielded new ideas for future work and
research. Some of the most relevant are:

e Injector Printed Circuit Board (PCB) Design: In chapter 3, an EMFI de-
vice’s circuit was designed from scratch. This initial prototype was built using
scratch-boards. To improve the design, make it easier for other people to build it,
and make it suitable for mass-production up to an extent, the next logical step is to
design a PCB. Overseas hobbyist PCB manufacturing has become cheaper in the
last years, thus making creating high-quality PCBs a reasonable goal for student
research. This was not explored due to a lack of time.

e 3D printed injector support: The aim of keeping development and research
costs at a minimum while obtaining reliable results and a safe, newbie-friendly
platform for fault injection tests, can be achieved by using the now popular 3D
printing techniques. Our in-house EMFI device, cheapSHOUTHER, can be built
and soldered in a scratch-board, or in a PCB like mentioned above. However, in any
of these cases, the bare circuit will be exposed to the people handling the device.
High voltages always have to be considered dangerous, and thus, the need for casing

46

Implementation of an EMFT platform for a RISCV-based SoC UCM

or insulation arises. In addition, a case or shell for our device would provide the
researches with a more comfortable device, easier to use, and easier to store.

e 3D printed injector arm: Another possible improvement or future line of work
would be the design of 3D models for mechanical arms which would hold the device
in place. These arms would allow regulating height and position of the device with
significantly greater precision, while at the same time, ensuring that the device can
be left unattended without worrying of subtle changes in its position or location,
as the device would be attached or glued to the mechanical scaffolding.

e Use of a CNC machine for increased accuracy: If used in conjunction with
the 3D printed arm, a CNC turning machine would provide extremely precise move-
ments to relocate the injector with accuracy in space. This can be used to effectively
target specific areas of the die or chip under test, and to reproduce the experiments
with more fidelity, by being able to position the injector’s probe in space with
increased precision.

e Improvements for the reverse engineered circuit: The cheapSHOUTER de-
vice developed in this work presents room for improvement as well. The first stage
of the circuit, the analogue oscillator, presents several caveats, most notably a lack
of frequency control. A better analogue oscillator circuit would be possible, but the
cost would increase significantly. While this work was being developed, company
NewAE released a new middle-end EMFTI device, called the picoEMPH. This device
is peculiar, as it replaces the oscillator circuitry with an affordable COTS microcon-
troller, the Raspberry Pi Pico (©). This allows for software-controlled frequencies,
through the generation of an output Pulse Width Modulation (PWM) signal, which
is used to drive the high-voltage transformer. A similar digital control system could
be integrated into the design proposed in Chapter 3. Furthermore, safety improve-
ments can be introduced into the injector, using different electronic components.
For example, a new iteration of the circuit could be created, replacing the spark
gap with an optocoupler switch (specifically, a variety often referred to as photo-
transistor). This way, the circuit and the logic that triggers the shot of the device
becomes electrically isolated from the circuit that works at a high voltage. A basic
diagram of an optocoupler switch is depicted in Fig. and an example application
is depicted in Fig. [6.2] Using this component would allow triggering the shot of the
injector in a safer way and more controlled way, although the price of the hardware
might increment.

g IR o6
Diode |
! Photo-
| transistor
2 -y ! 5
Infra-red 1
Light beam L
3Q 4

Figure 6.1: Diagram of a photo-transistor.Figure 6.2: Photo-transistor
Source: https:/ /www.electronics-application. Source:
tutorials.ws/blog/optocoupler.html https://i.stack.imgur.com/gMjwr.png

Thttps://github.com /newaetech /chipshouter-picoemp

47

Implementation of an EMFT platform for a RISCV-based SoC UCM

e Evaluation of RISC-V building blocks: Individual commonly-used building
blocks (i.e: ALUs, register banks, cache memories, and even manufacturer’s Intel-
lectual Property (IP) blocks) can be studied to test their resilience or behaviour
under fault injection situations. To approach this, a possible solution would be
having an FPGA-controlled baseline design, in which blocks can be altered or even
completely replaced as the researcher considers, being able to switch their low-level
implementations. Then, the performance and tolerance of the whole system can be
evaluated, to evaluate and compare how the modification of a given component af-
fects the whole system. A candidate for this could be the popular RISC-V generator
rocket-chip?}

e Evaluation of RISC-V security and virtualization extensions: Should a
research be designed to dive deeper into the RISC-V architecture and the effects
of EMFI in all the possible implementations and variations, it would be of interest
to analyse the virtualization and security-oriented extensions of the ISA, as these
extensions are likely to be found in secure devices, more susceptible to suffering
from malicious fault injection attacks.

e Creation or study of fault models: Fault models are used in engineering to try
modelling and predicting the situations in which a fault occur, and its consequences.
For a given DUT, a future study could elaborate a fault model to evaluate and
predict how they respond to EMFI.

Despite the endless possible targets that could be tested under EMFI conditions, and the
enhancements that our devices could go through, the results of this work are satisfactory,
as most objectives and milestones were reached, even if with varying degrees of success.
It is crystal clear that the RISC-V architecture is no stranger to being susceptible to fault
injection attacks, even if the architecture itself is not yet as widespread as other RISC
flavours. More research needs to be developed to study the potential vulnerabilities or
weaknesses of the architecture, specially when facing low-cost solutions that could allow
for easy hardware disruption to attackers all over the world, with physical access to their
devices.

In an increasingly connected world, both reliability and security are concerns which man-
ufacturers and designers must address. Real-world data is going to be needed to create
models, simulations, and to improve the quality of the products of tomorrow. RISC-V
keeps gaining followers and support, and more microchips implementing this ISA will be
released to the market, henceforth reinforcing the need for experimentation and research
about all the aspects and corners of this architecture.

Zhttps://github.com /chipsalliance /rocket-chip

48

List of Figures

[2.1 Implementation of the passive electromagnetic receiver.| 7
[2.2 Diagram of the detector electronic circuit|. 7
[3.1 Example of commercial high-voltage mosquito zapper.|. 10
[3.2 Printed Circuit Board (PCB) of the commercial zapper device|. 10
[3.3 Reverse-engineered circuit schematic in KiCad.|. 11
[3.4 'T'he mosquito-killer grid is replaced by a spire.|. 11
[3.5 Homemade 6-turn spire installed into the modified mosquito device.| . . . 12

3.6 A spark gap 1s added to force the discharge of the capacitor C4 all at once.| 12
3.7 A resistor (R3) can be added to slowly discharge capacitor C4 over time.| 13

[3.8 Schematic of the circuit of the proposed device, designed in KiCad.| . . . 14
[3.9 Iransformer testing circuit|o 15
[3.10 Manually winded transtormer.| L. 15
[3.11 SRAM memory socket board used by Mohammadreza.| 16
[3.12 SRAM Memory Layout|., 16
3.13 First software malfunction on the Arduino UNO/ 18
[3.14 Second software malfunction on the Arduino UNOI. 19
[3.15 Software malfunction on the Arduino MEGA after an injector burst.|. . . 19
13.16 Second software maliunction on the Arduino MEGAI. 20
[3.17 Arithmetic fault on the Raspberry Pi software| 20
[3.18 Segmentation fault on the Raspberry Pi sottware| 21
[3.19 Reboot of the Arduino program.|. 21
[3.20 Counter increasing from 1038 to 1110 unexpectedly,| 21
(4.1 MAIx Bi'T board with Kendryte K210 RISC-V|. 23
4.2 SRAM memory address map of the Kendryte K210. | 23
[4.3 Longan nano board with GD32VF103C8T6 RISC-V.| 24
44 Alhambra Il FPGA mainboard) 24
4.5 RISC-V Instruction reference sheet| 26
(5.1 Example of test run with Alhambra II board at 4 cm| 29
[5.2 Labeled die photograph of the historic 8008 Intel CPU| 30
[5.3 Portable EMFI JTAG setup.|. 32

(5.4 OpenOCD reset-like errors observed in static experiment no. 26 (batch 1).| 33
[5.5 Dual laptop setup for JTAG and UART over USB. Used for dynamic tests.| 35
[5.6 Fetch fault during experiment no. 35./ 36
[p.7 llegal instruction fault during experiment no. 46 37
.8 Large JTAG SRAM dumping time. Dynamic experiment no. 29 (batch 2)] 37

49

Implementation of an EMFT platform for a RISCV-based SoC UCM

(5.9 Core exception and SRAM dumping error.| 38
[5.10 Highlighted changes between goldl.bin and attl.bin|. 38
[5.11 Observed changes when comparing gold30.bin and aft30.bin.| 39
[5.12 Group of 4 affected bytes at OxO0I8E'D50. 39
[5.13 Region with multiple affected memory positions.|. 40
[5.14 Result of the tool with the set ot data from experiment 30. 40
[5.15 Pie chart showing the predominant type of upsets discovered| 41
[5.16 Injector centred atop the Longan Nano at a 2 cm distance.| 42
[5.17 Pie chart showing tault frequency| 43
[5.18 Longan Nano trap exception example| 43
[5.19 Longan Nano exception Handler code| 44
[6.1 Diagram of a photo-transistor.|. 47
[6.2 Photo-transistor application. | 0000 47

50

List of Tables

[3.1 Address and data of the observed bitflips|

o1

Bibliography

[1] Derrek, “Exploiting nintendo 3ds’s arm9/arm11 bootrom vectors pointing at unini-
tialized ram.”

[2] M. Scire, M. Mears, D. Maloney, M. Norman, S. Tux, and P. Monroe, “Attacking
the nintendo 3ds boot roms,” 2018.

[3] J. D. Thomas Roth, Dmitry Nedospasov, “wallet.fail hacking the most popular cryp-
tocurrency hardware wallets.”

[4] Y. Lu, “Injecting software vulnerabilities with voltage glitching,” 2019.

[5] G. Roussel-Tarbouriech, N. Menard, T. True, T. Vi, and Reisyukaku, “Methodically
defeating Nintendo Switch security,” 2019.

[6] Hajdu, N. Ivaki, I. Kocsis, A. Klenik, L. Gonczy, N. Laranjeiro, H. Madeira, and
A. Pataricza, “Using fault injection to assess blockchain systems in presence of faulty
smart contracts,” IEEE Access, vol. 8, pp. 190760-190783, 2020.

[7] R. Buhren, H. N. Jacob, T. Krachenfels, and J.-P. Seifert, “One Glitch to Rule Them
All: Fault Injection Attacks Against AMD’s Secure Encrypted Virtualization,” 2021.

[8] C. O’Flynn, “Fault Injection using Crowbars on Embedded Systems.”

[9] M. A. Elmohr, H. Liao, and C. H. Gebotys, “Em,” in 2020 21st International Sym-
posium on Quality Electronic Design (ISQED).

[10] J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula, “Fault injection on
hidden registers in a RISC-V Rocket processor and software countermeasures,” in
2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 252—
255, 2019.

[11] Elmohr, Mahmoud A., “Embedded systems security: On EM fault injection on RISC-
V and BR/TBR PUF Design on FPGA,” Master’s thesis, 2020.

[12] S. Nashimoto, D. Suzuki, R. Ueno, and N. Homma, “Bypassing isolated execution on
RISC-V with fault injection.” Cryptology ePrint Archive, Report 2020,/1193, 2020.
https://ia.cr/2020/1193.

[13] PoroCYon, “Nintendo hacking - Dumping the DSi boot ROMs: Uncovering 13 year
old hardware secrets.”

[14] A. Pathak, “An elementary argument for the magnetic field outside a solenoid.”

[15] W. Elektronik, “749196501 transformer datasheet.”

92

https://ia.cr/2020/1193

Implementation of an EMFT platform for a RISCV-based SoC UCM

[16] W. Elektronik, “749196118 transformer datasheet.”
[17] I. Technologies, “CY62167DV30 datasheet.”
[18] Infineon Technologies, “Infineon cy62167dv3011-55zxi datasheet.”

[19] M. Rezaei, G. Hubert, P. Martin-Holgado, Y. Morilla, J. C. Fabero, H. Mecha, F. J.
Franco, H. Puchner, and J. A. Clemente, “Impact of Dynamic Voltage Scaling on
SEU Sensitivity of COTS Bulk SRAMs and A-LPSRAMs against Proton Radiation,”
IEEFE Trans. Nucl. Sci., vol. 69, no. 2, pp. 126133, 2022.

[20] F. J. Franco, J. A. Clemente, M. Baylac, S. Rey, F. Villa, H. Mecha, J. A. Agapito,
H. Puchner, G. Hubert, and R. Velazco, “Statistical deviations from the theoretical
only-sbu model to estimate mcu rates in srams,” IEEE Transactions on Nuclear
Science, vol. 64, no. 8, pp. 2152-2160, 2017.

[21] F. J. Franco, J. A. Clemente, H. Mecha, and R. Velazco, “Influence of randomness
during the interpretation of results from single-event experiments on srams,” IEEFE
Transactions on Device and Materials Reliability, vol. 19, no. 1, pp. 104-111, 2019.

[22] C. Palomar Trives, “Induccion de sucesos aislados en memoria SRAM (Induced single
events in SRAMs),” 2012.

[23] Seeed Technology Co, Ltd SIPEED, “Sipeed maix bit reference page.”

[24] C.-C. Inc., “Kendryte K210 English datasheet.”

[25] Seeed Technology Co, Ltd SIPEED, “Sipeed Longan Nano reference page.”

[26] R.-V. Foundation, “RISC-V History.”

[27] A. ’acez’ Cama, “Corrupting the ARM exception vector table.”

[28] M. Zabrocki, “Glitching RISC-V chips: MTVEC corruption for hardening ISA.”

[29] R. Foundation, “The RISC-V instruction set manual, volume ii: Privileged architec-
ture.”

93

Appendix A

RISC-V OpenOCD Linux set up
procedure for Kendryte K210

OpenOCD configuration for KendryteK210 in Debian based Linux distributions The fol-
lowing files need to be created with the following contents: k210.cfg

debug adapter
source [find ft2232c.cfg]

transport select jtag
adapter_khz 10000

server port
gdb_port 3333
telnet_port 4444

add cpu target
set _CHIPNAME riscv

jtag newtap $_CHIPNAME cpu -irlen 5 -expected-id 0x04e4796b

set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME riscv -chain-position $_TARGETNAME

command
init
halt

ft2232c.cfg

interface ftdi
ftdi_vid_pid 0x0403 0x6010
ftdi_layout_init oxfff8 oxfffb

o4

Implementation of an EMFT platform for a RISCV-based SoC UCM

. ftdi_layout_signal nTRST -data 0x0100 -oe 0x0100
ftdi_layout_signal nSRST -data 0x0200 -oe 0x0200
Instalation:

$ wget https://github.com/kendryte/openocd-kendryte/releases/
download/v0.2.3/kendryte-openocd-0.2.3-ubuntu64.tar.gz
> $ tar xvf kendryte-openocd-0.1.3-ubuntu64.tar.gz
$./kendryte-openocd/bin/openocd -f k210.cfg

95

Appendix B

Commands to dump memory over

JTAG

Dumping memory over JTAG with OpenOCD: Connect to the OpenOCD local
server over telnet:

$./kendryte-openocd/bin/openocd -f k210.cfg
$ telnet localhost 4444

Once connected, the memory space of the MAiX BiT can be dumped (using the cached
interface) using the following command:

[> dump_image RAMdump.bin 0x80000000 0x600000]

For the MAiX BiT non-cached interface, the following range of addresses must be used:

[> dump_image RAMdump.bin 0x40000000 0x600000 }

o6

Appendix C

FPGA set-up and firmware source
code

Alhambra II PicoSoC core set-up
a). Set up icestudio and the toolchain.
b). Flash PicoSoC design to FPGA

c¢). Download pre-built RISC-V GNU toolchain binaries for riscv32i from the link below

d). Modify Makefile at firmware/soc-demo/src-c¢ to point to the prebuilt binaries

e). Run 'make’ while the FPGA is connected. This will flash the firmware to the SoC
Prebuilt Toolchain
https://github.com/stnolting /riscv-gce-prebuilt
GlitchMe firmware source code

// GlitchMe C firmware

// Pedro Javier Fernandez - 2022

// Based on RISC-V-FPGA-master /soc-demo/src-c/test.c
#include <stdint.h>

//-- Registros mapeados

#define reg_uart_data (*(volatile uint32_t*)0x02000008)
#define reg_leds (*(volatile uint32_t*)0x03000000)

void putchar(char c)

{
if (c == "\n")
putchar('\r');
reg_uart_data = c;
}

57

Implementation of an EMFT platform for a RISCV-based SoC

UCM

void print(const char =*p)

{

while (*p)

putchar(x(p++));

char getchar_prompt(char *prompt)

{

int32_t
int32_t

uint32_t
asm

reg_leds
count =

if (prom

while (c

reg_leds
return c

char getchar()

{

c=-1;
count = 0;

cycles_begin, cycles_now, cycles;
volatile ("rdcycle %0" :

= ~@;
0;

pt)
print(prompt);

== -1 A

asm__ volatile ("rdcycle %0" :

"=r"(cycles_begin));

"=r"(cycles_now));

cycles = cycles_now - cycles_begin;

if (cycles > 2000000) {
if (prompt)
print(prompt);
cycles_begin = cycles_now;
count += 1;
reg_leds = count;
}
C

= reg_uart_data;

:@’

’

return getchar_prompt(0);

void menu()

{

print(”"\n");
print(" ____ _ o ____\n");
print(” | _ \\(L) ___ ___ / ___ | ___ / ___|I\n");

Implementation of an EMFT platform for a RISCV-based SoC

UCM

print(” | |2) | |/ _—/ _ ___ \\/ _\\| |\n");
print(" [__/[| (] (O 122 | (O | [——_\n");
print(” |_| [N NN/ N___/ ____|\n");
print(”"\nRunning on the Alhambra II board :-)\n");
print(”"\n");

void sleep()

{

int i = 0;
while(i != 100)

it++;

// This function is the target of the glitch attacks
void glitchMe()

{

int counter = 0;

while(1)

{
counter++;
if(counter==1) print("1\n");
else if(counter==2) print(”2\n");
else if(counter==3) print(”3\n");
else if(counter==4) print(”"4\n");
else if(counter==5) print(”5\n");
else if(counter==6) print(”"6\n");
else if(counter==7) print("7\n");
else if(counter==8) print(”8\n");
else if(counter==9) print(”"9\n");
else if(counter==10){print("10\n"); counter =
sleep();

void crashMe()

{

// Unaligned memory read
int* pointer = 0x00000001;

// Dereference
int value = *pointer;

void main()

29

Implementation of an EMFT platform for a RISCV-based SoC UCM

{
char c;
reg_leds = 0x1F;
print("Booting...\n\n ");
reg_leds = 0x7F;
print("Press ENTER to continue...");
//-=- Wait until /n or /r is received
do {
c = getchar_prompt(0);
} while (c != '"\n' && c != '\r');
menu();
while (1)
{
print("Command> ");
char cmd = getchar();
if (cmd > 32 && cmd < 127)
putchar(cmd);
print(”\n");
switch (cmd)
{
case '1':
menu() ;
break;
case '2':
glitchMe();
break;
case '3':
crashMe();
break;
default:
continue;
}
}
b

60

Appendix D

Source code for the developed tool to
count SBUs and MBUs

countUpsets.c

Compare two files and find the number
of SBUs and MBUs that are detected from
one to the other.

Pedro Javier Fernandez (c) 2022

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>

// Note 1:

// For MBUs, we keep a counter for
// the different multiplicity upsets
// found. Because this tool compares
// at a byte (8-bit) level, the

// maximum multiplicity of an MBU

// is 8. (i.e.: no need to keep

// track of multiplicity >= 8 MBUs).

// Note 2:
// Multiplicity @ means no upsets.
// Multiplicity 1 is the same as an SBU.

typedef struct MBUCounter

{
#define MAX_MULTIPLICITY 8

61

Implementation of an EMFT platform for a RISCV-based SoC UCM

unsigned int counter[MAX_MULTIPLICITY+1];
} MBUCounter;

111777177771177771777177777177777

// Helper functions
111777177771177771177717777177777

void do_xor(uint8_t* output, uint8_t a, uint8_t b)
{

*output = a * b;

void findUpsets(unsigned char* golden, unsigned charx after,
unsigned int size,
unsigned int* sbu_count,
MBUCounter* mbu_count)

{
// Local variables
uint8_t xor_result = 0;
int local_count = 0;

// Improvement: for large files, unsigned will warp around...
for(unsigned int x = 0; x < size; x++)
{

local_count = 0;

// Compute number of upsets
do_xor(&xor_result, golden[x], after[x]);

// If both bytes are equal, the result of the xor will be @
// Otherwise, count the number of upsets (which is equal to
// the number of bits that are set)

if(xor_result!=0)

{

// Brian Kernighan’s Algorithm

// The loop is executed as many times as set bits (1's)
// are in the byte.

while(xor_result)

{

xor_result &= (xor_result - 1);

local_count++;

}

// If only one bit was set, then there was only one upset
if(local_count==1)

62

Implementation of an EMFT platform for a RISCV-based SoC UCM

(*#sbu_count)++;
else if(local_count > 1) // only count multiplicity >=2
mbu_count->counter[local_count]++;

// Expected arguments
// ./sbucount <goldenFile> <afterFile>
int main(int argc, char =*argv[])
{
// Local variables
FILEx golden_file;
FILEx after_file;
struct stat golden_stats;
struct stat after_stats;
unsigned charx golden_data;
unsigned char* after_data;
unsigned int sbu_num = 0;
MBUCounter mbu_counts;

// Init counters
for(int i = 0; i < MAX_MULTIPLICITY+1; i++)
mbu_counts.counter[i] = 0;

// Check parameters
if(argc!=3)
{
printf("[!] invalid number of parameters\n");
printf("[i] usage: ./sbucount <goldenFile> <afterFile>\n");
return 1;

// Open golden & after files

golden_file = fopen(argv[1], "rb");

if (!golden_file) {
perror("fopen”);
exit(EXIT_FAILURE);

after_file = fopen(argv[21, "rb");

if (lafter_file) {
perror(”fopen”);
exit(EXIT_FAILURE);

// Sanity check both files are equal in size
if (stat(argv[1], &golden_stats) == -1) {

63

Implementation of an EMFT platform for a RISCV-based SoC UCM

perror(”stat");
exit (EXIT_FAILURE);

}

if (stat(argv[2], &after_stats) == -1) {
perror(”"stat");
exit (EXIT_FAILURE);

}

printf("golden size = %1d\n",golden_stats.st_size);
printf("after size = %ld\n\n",after_stats.st_size);
if(golden_stats.st_size != after_stats.st_size)
{

printf("[!] Files have unequal sizes\n");

return 1;

// Load both files into memory
golden_data = malloc(golden_stats.st_size);
after_data = malloc(after_stats.st_size);

fread(golden_data, golden_stats.st_size, 1, golden_file);
fread(after_data, after_stats.st_size, 1, after_file);

// Analyze
findUpsets(golden_data, after_data, golden_stats.st_size, &sbu_num, &mbu_counts);

// Print results
printf("Number of SBUs: %d\n", sbu_num);

for(int i = 2; i < MAX_MULTIPLICITY+1; i++)
printf("Number of multiplicity %d MBUs: %d\n", i, mbu_counts.counter[i]);

// Cleanup
free(golden_data);
free(after_data);

return 0;

64

	Introduction, motivation and contributions
	State of the art
	Fault Injection
	Electromagnetic Fault Injection (EMFI)
	Devices to measure EM fields
	Passive electromagnetic receiver

	The proposed EMFI attacker device
	Implementation details
	The mosquito EMFI injector
	cheapSHOUTER: advanced injector from scratch

	Preliminary EMFI results
	Preliminary results with memories
	Preliminary results with microcontrollers
	Preliminary cheapSHOUTER results

	The RISC-V-based DUTs used in this project
	Description of the devices
	MAiX BiT with Kendryte K210 Core
	Longan Nano with GD32VF103C8T6
	iCE40HX4K-TQ144 FPGA running a soft-core

	Instruction Set Architecture review

	Fault Injection Experiments
	Considered experiment parameters
	Relative vertical distance from the DUT
	Implementation details of the EMFI device
	Relative horizontal position of the DUT
	Environmental conditions of the experiment
	Logical state of the DUT
	About experiment logs

	Experimental results
	MAiX BiT
	Longan Nano
	Alhambra II FPGA RISC-V soft core

	Conclusions and future work
	Bibliography and reference links
	RISC-V OpenOCD Linux set up procedure for Kendryte K210
	Commands to dump memory over JTAG
	FPGA set-up and firmware source code
	Source code for the developed tool to count SBUs and MBUs

