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Abstract

This is a brief abstract that outlines the topics and contents of this work. The reader
interested in a more detailed overview can skip directly to the introduction.

The braid monodromy is an invariant of algebraic curves that encodes strong infor-
mation about their topology. Let C' be an affine algebraic plane curve, defined by a
polynomial function f, and having a generic projection on the z axis of C2. The braid
monodromy of C' can be presented as a homomorphism

p:m(C\{z1,...,zn}) — By,

where z1, ..., x,, are the values of x on which f(z,y) have multiple roots, and B,, denotes
the braid group of n strands. If we see the curve as the image of a multivalued function g,
the image under p of a given loop is determined by the paths in C? that (z, g(z)) follows
when z runs along the loop.

The braid monodromy has a long story and its development and applications has
passed through the works of Zariski ([44, 45]), van Kampen ([16]), Moishezon and Teicher
([26, 27, 28, 29, 30, 31]), and Carmona ([9]) among many others ([11, 10, 19, 37, 2, 18, 3]).

A result by Carmona ([9]) shows that the braid monodromy of a curve C determines
the topology of the pair (P?,C). He also provided a program that calculates the braid
monodromy of a curve from its equation. However, it remained an open problem to
find what this topology actually is. This is, given the braid monodromy of C, to find a
description for the topology of (C%,C) or (P?,C).

In this work we provide such a presentation for the affine case. It consists of a regular
CW decomposition of the pair (D, C ND), where D is a large enough polydisc in C2. The
construction uses the presentation of the braid monodromy in the form of local braids and
conjugating braids. In this presentation the local braids must be given as an ordered set of
independent sub-braids, associated with different preimages of a critical value of a generic
projection. The main theorem concerning the algebraic curves states the good definition
of this decomposition (Theorem 1.18).

We also provide a program that, from the braid monodromy, calculates this CW com-
plex explicitly. Since Carmona has already given a program that calculates the braid
monodromy of a curve from its equation, it is possible, by using both programs, to calcu-
late the CW decomposition from an equation of the curve. A second program turns this
CW complex into a simplicial complex thin enough to take a regular neighborhood of the
curve. Both programs are included in the appendices. The projective case is also briefly
discussed.



On the other hand, the topological study of the singular points of complex hypersur-
faces has as its cornerstone the work of John Milnor, presented in [25]. In this book he
introduces a fibration, now known as the Milnor fibration, which is an essential aspect of
the topology around these points. Two important invariants immediately derive from it:
the Milnor fiber and the monodromy of the fibration.

The Milnor fiber of isolated singularities has been intensively studied and is well un-
derstood. For the non-isolated case, however, much less is known.

A feature of the Milnor fiber of the non-isolated surface singularities that has been
the subject of considerable research in recent times is its boundary (see [21, 22, 34, 41]).
Another aspect of the Milnor fiber of the non-isolated singularities that has been studied
is its homotopy type (see [38, 42, 40, 32, 33, 12]). Some results exist for the case of quasi-
ordinary singularities as well ([7, 13]). All of these results cover topological aspects or
properties of the Milnor fiber of non-isolated singularities without directly addressing its
topological type.

In this work we provide a combinatorial model of the compact Milnor fiber of the
quasi-ordinary surface singularities with a single Puiseux pair. This model is built in the
following way. Through a series of steps, we construct a CW decomposition of the pair
(D,C N D), where D is a large enough polydisc, and C is the discriminant curve of the
Milnor fiber. Then, by means of a branched covering, we lift up this decomposition into
a CW decomposition of the compact fiber (Theorem 3.11). Another model for the same
fiber, as a cyclic gluing of four-dimensional balls along certain solid tori, is also given
(Theorem 3.13).

This construction allows us to see the compact Milnor fiber as the preimage of the
four dimensional ball under a series of branched coverings. By studying the deck trans-
formations of these coverings, we are able to calculate the geometrical monodromy of the
Milnor fibration (Theorem 5.1), and the complex homology groups of the compact Milnor
fiber (Theorem 4.1). We also calculate the fundamental group (Theorem 5.3) and the
homology groups (Theorem 5.4) of the compact Milnor fiber.
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Resumen

Este es un breve resumen que describe los temas y contenidos principales de este trabajo.
El lector interesado en una descripcién mas detallada puede saltar directamente a la
intriduccién.

La monodromfia de trenzas es un invariante de las curvas algebraicas que codifica fuerte
informacién acerca de su topologia. Sea C' una curva algebraica afin plana, definida por
una funcién polinémica f, y con una proyeccién genérica en el eje z de C2. La monodromia
de trenzas de C puede ser presentada como un homomorfismo

p:m(C\{x1,...,2m}) — Bn,

donde x1, ..., 2, son los valores de x sobre los cuales f(x,y) tiene raices miltiples, y B,
denota el grupo de trenzas de n hebras. Si vemos a la curva como la imagen de una funcién
multivaluada g, la imagen bajo p de un lazo dado estd determinada por los caminos en C?
que sigue (z, g(x)) cuando x recorre el lazo.

La monodromia de trenzas tiene una larga historia y su desarrollo pasa por los trabajos
de Zariski ([44, 45]), van Kampen ([16]), Moishezon y Teicher ([26, 27, 28, 29, 30, 31]) y
Carmona ([9]), entre muchos otros ([11, 10, 19, 37, 2, 18, 3]).

Un resultado de Carmona ([9]) muestra que la monodromia de trenzas de una curva
C determina la topologia del par (P2, C). Carmona ademés proporcioné un programa que
calcula la monodromia de trenzas de una curva a partir de su ecuaciéon. Sin embargo,
permanecié abierto el problema de determinar en efecto esta topologia. Esto es, dada la
monodromia de trenzas de C, encontrar una presentacién para la topologia de (C2,C) o
(P2, C).

En este trabajo proporcionamos tal presentacion para el caso de curvas afines. La
misma consiste en una descomposicion CW regular del par (D,C N D), donde D es un
polidisco suficientemente grande en C2. La construccién de dicha descomposicién utiliza
la presentacién de la monodromia de trenzas como trenzas locales y trenzas conjugadas.
En esta presentacién las trenzas locales deben estar dadas como un conjunto ordenado de
sub-trenzas independientes, asociadas a las diferentes preimagenes de un valor critico de
una proyeccién genérica. El teorema principal sobre las curvas algebraicas afirma la buena
definicion de esta descomposicién (Teorema 1.18).

También proporcionamos un programa que, a partir de una monodromia de tren-
zas, calcula este CW complejo explicitamente. Dado que Carmona ya habia provisto un
programa que calcula la monodromia de una curva a partir de su ecuacion, es posible, uti-
lizando ambos programas, calcular el CW complejo a partir de una ecuaciéon de la curva.
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Un segundo programa transforma este CW complejo en un complejo simplicial suficiente-
mente fino como para tomar una vecindad regular de la curva. Ambos programas estan
incluidos en los apéndices. El caso proyectivo también es brevemente discutido.

De otra parte, el estudio topolégico de los puntos singulares de hipersuperficies com-
plejas tiene como piedra angular el trabajo de John Milnor, expuesto en [25]. En este
libro es introducida una fibracién, ahora conocida como la fibracién de Milnor, que es un
aspecto esencial de la topologia alrededor de estos puntos. Dos invariantes importantes se
derivan inmediatamente de ella: la fibra de Milnor y la monodromia de la fibracién.

La fibra de Milnor de las singularidades aisladas ha sido intensamente estudiada y es
bien entendida. En el caso no aislado, sin embargo, se sabe mucho menos.

Un rasgo de la fibra de Milnor de las singularidades de superficie no aisladas que
ha sido objeto de considerable investigacién en los ultimos tiempos es su frontera (ver
[21, 22, 34, 41]). Otro aspecto de la fibra de Milnor de la singularidades no aisladas que
ha sido estudiado es su tipo de homotopia (ver [38, 42, 40, 32, 33, 12]). Algunos resultados
existen también para el caso para el caso de las singularidades quasi-ordinarias ([7, 13])
Todos estos resultados abarcan aspectos o propiedades topoldgicas de la fibra de Milnor
de las singularidades no aisladas sin abordar directamente su tipo topologico.

En este trabajo proporcionamos un modelo combinatorio para la fibra de Milnor de
las singularidades cuasi-ordinarias de superficie con un par de Puiseux. Este modelo es
construido de la siguiente forma. A través de una serie de pasos, construimos una descom-
posicion CW del par (D,C N D), donde D es un polidisco suficientemente grande, y C
es la curva discriminante de la fibra de Milnor. Entonces, por medio de cubiertas ramifi-
cadas, levantamos esta descomposiciéon en una descomposiciéon CW de la fibra compacta
(Teorema 3.11). También proveemos otro modelo para la misma fibra como un pegado
ciclico de bolas de dimensién cuatro a lo largo de ciertos toros sélidos (Teorema 3.13).

Esta construccién nos permite ver a la fibra compacta de Milnor como la preimagen
de una bola de dimensién cuatro bajo una serie de cubiertas ramificadas. Estudiando las
transformaciones de cubierta de este recubrimiento calculamos la monodromia geométrica
de la fibraciéon de Milnor (Teorema 5.1), y los grupos de homologia complejos de la fibra
de Milnor compacta (Teorema 4.1). También calculamos el grupo fundamental (Teorema
5.3) y los grupos de homologia (Teorema 5.4) de la fibra de Milnor compacta.
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Introduction

This thesis is devoted to the topological study of two objects coming from algebraic ge-
ometry. These are, on the one hand, the embedding of a plane algebraic curve within the
affine or projective space, and, on the other hand, the Milnor fiber of a quasi-ordinary
surface singularity with a single Puiseux pair, along with the related monodromy action.

Let us consider the plane algebraic curves in the first place. The fundamental tool we
use in the study of these curves is the braid monodromy.

The braid monodromy is an invariant of algebraic curves that encodes strong informa-
tion about their topology. It can be thought in the following way. Let f : C> — C be a
polynomial function of the form

flzy) =y +ar(@)y" "+ -+ an1(2)y + an(z),

where each q; is a polynomial in  with complex coefficients. Let C' be the algebraic curve
defined by f.

For any given fixed value ¢, the intersection of the line x = ¢ with C' consists of the roots
of f(e,y). It is easily seen that only on a finite number of values z1, . . ., x,, of  does f(x,y)
have multiple roots. Therefore, f defines a multivalued function g : C\{z1,...,z,} — C,
where g(c) consists of the n points where the line z = ¢ cuts the curve C.

Let us consider a loop 7 : [0,1] — C\{z1,...,2,}. Then, as x travels along -, its
image g(z) describes n paths inside of C2, given by (y(t), g(¥(t))), producing a braid of n
strands.

It can also be seen that homotopic loops give rise to homotopic braids, which allows
us to define a homomorphism

p:m(C\{z1,...,zn}) — By,

where B,, denotes the braid group of n strands. This homomorphism is called a braid
monodromy for C. And since all the monodromies of a given curve are related by a simple
set of transformations (conjugation by any given braid and Hurwitz moves, see [9] and
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[3] for a definition), yielding equivalence classes, it is possible to talk about the braid
monodromy of a curve.

On the other hand, any braid running between points {ai,...,a,} and {b1,...,b,}
defines a permutation of n elements, where ¢ is sent to j if there is a strand of the braid
running from a; to bj. This defines a homomorphism ¢ : B, — ¥,. In particular,
the braid p(7y) defines a permutation among the n points of g(x), given by ¢(p(v)). It
is worth noticing that this permutation is exactly the image of 7 under the covering
monodromy p : w1 (C\{z1,...,xmn}) —> X, that describes C as a covering of C branched
over {z1,...,Tm}. Therefore,

pop=p.

This allows us to see that the braid monodromy includes all the information contained
in the covering monodromy, but adds yet further information. Hence, the braid mon-
odromy is a stronger invariant than the covering monodromy classically used to describe
the Riemann surface associated with g.

The idea of the braid monodromy has its origin in the foundational article [44] by
Oscar Zariski about the fundamental group of the complement of an algebraic curve. A
well known theorem by Riemann ([44, p. 306]) states that given points x1, ..., Z;, in C, and
permutations o1, ..., oy, assigned to x1,..., T, generating a transitive group, there exists
an algebraic multivalued function y(z), the branches of which are permuted according to
o; by surrounding the corresponding x; on a sufficiently small loop.

A more modern perspective allows us to observe that, since the fundamental group of
C\{z1,...,zp} is free, and generated by loops around each of the points z1, ..., Ty, then
O1,...,0m define a covering monodromy p : 71 (C\{z1,...,2,}) — X,. The theorem
states therefore that there exists an algebraic curve C in C?, satisfying that the branched
covering consisting of the projection of C into the x axis branches along {z1,...,z,,}, and
that the monodromy of this covering is u.

In his article, Zariski addresses the generalization of this problem into two dimensions.
In this case, we need to consider an algebraic plane curve C and a permutation assigned to
each generator of 71(C?\C'). Then we inquire about the existence of an algebraic function
z(x,y) branching along C, and such that its branches are permuted, by travelling along
the generators of 7 (C?\C), according to the corresponding permutation.

A previous result by Enriques ([11]) implies that such a function exists, provided that
all the relations among the generators of 1 (C?\C) are satisfied by its corresponding per-
mutations. This is, provided that the assigned permutations define a covering monodromy
p:m(C\C) — X,.

This result was not a complete solution of the initial problem, though, because the
referred relations were at that time unknown. Zariski’s interest in [44] centers then on the
problem of finding a method to calculate the fundamental group of the complement of an
algebraic curve.

The Lefschetz Hyperplane Section Theorem, or Zariski-Lefschetz Theorem, which was
already known, implied that given a curve C' and a generic vertical line L, the generators
g1, -, gn of T (L\C) were generators of 1 (C2\C). Zariski’s idea was to move these loops



in C2\C, along a continuous path of vertical lines, surrounding the singular points of C
and returning to L. By doing so, each loop g; was transformed into a loop ¢} and, by
reading g/ in terms of g1, ..., g, in L, relations for m (C2\C) could be obtained. The braid
monodromy was implicit here, because the transformation of g; into g} is determined by
the braid corresponding to the loop around the singular point into consideration.

In the same article, Zariski pointed out, though not completely proved, that the fun-
damental group of the complement of a sextic with six cusps over a conic is Z/2+7Z/3. He
showed moreover that if the complement of a sextic with six cusps has this fundamental
group, then the cusps must lie on a conic. Later investigations in [45] showed the likely
existence of sextics with six cusps not lying on a conic, implying the possible existence
of what it is now known as a Zariski pair, which can be thought as two curves that have
the same topology but different embeddings in the projective space. Such findings greatly
motivated the study of the complement spaces of algebraic curves. The first confirmed
examples of Zariski pairs were found by Mutsuo Oka ([37]) and Enrique Artal ([2]).

Concerning the fundamental group of the complement of a curve, Zariski’s arguments
were rather informal, for which he asked Egbert van Kampen to give a rigorous topological
proof of his results. It was he who in [16] described the method to find such a group, which
is now known as the Zariski-van Kampen method, in its full generality. This method
allowed to confirm the fundamental groups previously computed by Zariski.

As we have seen, the method relied on the process of moving a vertical line along a
closed path, and thus sending the set of intersecting points of the line with the curve to
itself. While Zariski and van Kampen spoke only about permutations in this regard, this
process actually yields a richer object, a braid, which carries not only all the information of
the permutation, but also the information about how the points are permuted by travelling
through the space. Oscar Chisini seems to have been the first one to realize about the
importance of this fact, which led him to define the braid monodromy in [10].

The braid groups, although already implicit in previous works, were explicitly intro-
duced and studied by Emil Artin in [4, 5, 6]. The theory developed in these articles
provided an adequate setting for the braid monodromy’s definition and technique, being
of particular importance the introduction of a convenient algebraical presentation. It is
easy to see that the braid group of n strands defines an action on the fundamental group
of a complex line punctured at n points. The perspective opened by Chisini’s approach
allows us to see that the Zariski-van Kampen relations are given by the action of b on the
generators g1, ..., gn, where b is the image by the braid monodromy of the loop surround-
ing the projection of the singular point into consideration.

Some decades later the braid monodromy was used by Boris Moishezon on the study of
projective surfaces. In [26], he considers a projective surface as a covering of the projective
plane branched along a discriminant curve, and uses the braid monodromy of the curve
to obtain results about the surface. A systematic study of the braid monodromy was
continued by him and Mina Teicher in [27, 28, 29, 30, 31], where they applied it to diverse
problems.

Later on, Anatoly Libgober showed in [19] that the braid monodromy of an affine plane
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curve determines not only the fundamental group, but furthermore the homotopy type of
its complement.

It was shown later the even stronger fact that the braid monodromy of a curve C
determines the topology of the pair (P2, C)). This was first proved by Kulikov and Teicher
in [18] for the particular case of curves having only nodes and cusps. The full general
case was proved by Jorge Carmona in [9], by using arguments that rely heavily on the
graph manifold structure of certain neighborhoods (see [43, 35]). There, he also provided
a program that calculates the braid monodromy of a curve from its equation.

Although by these results it became known that the braid monodromy determines
the topology of (P2, (), it remained an open problem to find what this topology actually
is. This is, given the braid monodromy of an affine or projective curve C, to find a
presentation for the topology of (C2,C) or (P?,C).

In this work we provide such a presentation for the affine case. The presentation con-
sists of a regular CW decomposition of the pair (D,C N D), where D is a large enough
polydisc in C2. This is, a regular CW decomposition of D having C' ND as a subcomplex.
The construction uses the presentation of the braid monodromy in the form of local braids
and conjugating braids. This presentation must satisfy that the local braids can be ex-
pressed as an ordered set of independent sub-braids, associated with different preimages
of a critical value of a generic projection. From here, we construct certain balls Ty, ..., Ty,
and By, ..., B, associated with the local braids and the conjugating braids respectively.
Each of this balls is embedded in C?, and has a CW decomposition such that the inter-
section of the ball with C is a subcomplex. By joining all of these balls, we obtain a CW
complex that decomposes (D,C N D). Theorem 1.18 states the good definition of this
decomposition.

We also provide a program that, from the braid monodromy, calculates this CW com-
plex explicitly. Since Carmona has already given a program that calculates the braid
monodromy of a curve from its equation, it is possible, by using the two programs, to
calculate the CW decomposition of (D,C' N D) from an equation of the curve. A second
program turns this CW complex into a simplicial complex thin enough to take a regular
neighborhood of the curve. The projective case is also briefly discussed.

It is yet unknown if two topologically equivalent curves have the same braid mon-
odromy, though a partial converse was proved by Artal, Carmona and Cogolludo in [3].

Let us consider now the Milnor fiber of a quasi-ordinary surface singularity with a
single Puiseux pair. The topological study of the singular points of complex hypersurfaces
has as its cornerstone the work of John Milnor, presented in his book [25]. In this book
he introduces a fribration, now known as the Milnor fibration, which is an essential aspect
of the topology around these points.

Let f: (C"*1,0) — (C,0) be a hypersurface singularity germ. If this singularity is
isolated, then there exists € > 0 such that, for every ¢/ with 0 < &’ < ¢,

f7H0) M S,

where S,/ denotes the sphere centered at the origin with radius &’. If the singularity is
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not isolated we have a similar property. In this case there exists a stratification of f~1(0)
such that each stratum is transversal to S.-.
For this €, there exists n < € such that

FHz) hse

for every z with 0 < |z| < n. Let Dy be the complex disk of radius 7 punctured at
the origin, and B, the closed ball of radius € in C**!. Let X, be defined by X, , =
B: N f~1(D}). Then,

f |Xs,n: Xam — D:)

is a locally trivial fiber bundle, which is independent of € and 7. This fiber bundle is called
the Milnor fibration of the singularity.

Two important invariants immediately derive from here. On the first hand, the fiber
F of the fibration, which is given by the preimage of any point in Dy. This fiber is an
analytic manifold with boundary called the (compact) Milnor fiber.

On the other hand we have a monodromy. A trivialization of the Milnor fibration yields
a diffeomorphism p : FF — F' defined up to isotopy. This map expresses how the fiber
is taken into itself by travelling along 9D} and completing a loop. This diffeomorphism
is called the geometric monodromy of the fibration, and completely determines it. The
homomorphisms p, : H.(F;Z) — H.(F;Z) that it induces are also important invariants
called algebraic monodromies.

For the case of isolated singularities, Milnor proved that the Milnor fiber has the
homotopy type of a wedge sum or bouquet of n-dimensional spheres. The number u
of these spheres is called the Milnor number of the singularity, and is computable from
the expression of f. Following these results, the Milnor fiber of this kind of singularities
has been intensively studied and is, by now, well understood. For the non-isolated case,
however, much less is known.

A feature of the Milnor fiber of the non-isolated surface singularities that has been
the subject of considerable research in recent times is its boundary. In the study of the
isolated singularities, the link of the singularity, which is also the boundary of the Milnor
fiber, plays a central role. In the case of non-isolated singularities, however, this link is
not smooth and the study of the boundary of the Milnor fiber (which is smooth) proves
to be a natural path to follow. In [21, 22] Francoise Michel and Anne Pichon showed that
the boundary of the Milnor fiber of a surface singularity with one-dimensional critical
locus is a graph manifold ([43, 35]). In [34] Andrds Némethi and Agnes Szilard obtained
the same result by different methods, and developed an extensive study of the boundary
of the Milnor fiber of this kind of singularities. Homological results were found by Dirk
Siersma in [41].

Another aspect of the Milnor fiber of the non-isolated singularities that has been
studied is its homotopy type. On this matter several Milnor style bouquet theorems have
been given for certain families of singularities by Siersma and Némethi ([38, 42, 40, 32, 33]),
and more recently by J. Ferndndez de Bobadilla and Miguel Marco ([12]).
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Some results exist for the case of quasi-ordinary singularities as well. In [7], Chunsheng
Ban, Lee McEwan and Némethi showed that the Euler characteristic of the Milnor fiber,
for an irreducible quasi-ordinary surface singularity f, is the Euler characteristic of the
Milnor fiber of the plane curve singularity defined by g(x,z) = f(z,0,z) (provided an
adequate coordinate system). A similar result about the zeta-function of a hypersurface
quasi-ordinary singularity, and thus concerning the algebraical monodromies of its Milnor
fiber, was proved in [13] by Pedro D. Gonzélez, McEwan and Némethi.

All of these results cover topological aspects or properties of the Milnor fiber of non-
isolated singularities without directly addressing its topological type. This is because of
the great diversity and complexity of these spaces. The same reason often obstructs the
extraction of general results, bounding the studies to be restricted to particular families
of functions.

In this work we provide a topological model of the compact Milnor fiber of the singu-
larities of type 2™ — x%°, i.e. quasi-ordinary surface singularities with a single Puiseux
pair. This model is built in the following way. First, in the spirit of the first part, we
construct a CW decomposition of the pair (D,C' ND), where D is a large enough polydisc
in C2, and C is the discriminant curve of the Milnor fiber. Then, by means of a branched
covering, we lift up this decomposition into a CW decomposition of the compact fiber.
The good definition of this model is shown in Theorem 3.11. Another model for the same
fiber, as a cyclical gluing of four-dimensional balls, along certain solid tori, is also given
in Theorem 3.13.

This construction allows us to see the compact Milnor fiber as the preimage of the
four dimensional ball under a series of branched coverings. By studying the deck trans-
formations of these coverings, we are able to calculate the geometrical monodromy of the
Milnor fibration. This result is stated in Theorem 5.1.

The action of these deck transformations on the Milnor fiber, seen as a CW complex,
also induces transformations on the complex chain spaces of the fiber. In fact, it induces a
module structure. This allows us to decompose the complex chain spaces as a direct sum
of the eigenspaces of the operators induced by the deck transformations. By studying the
behaviour of the boundary operators within these eigenspaces we are able to calculate the
complex homology groups of the compact Milnor fiber, which are provided in Theorem 4.1.

Also, by using the classical Zariski-van Kampen method we calculate the fundamental
group of the complement of the curve zy(zy — 1) = 0. From here, by using covering
theory, we are able to calculate the fundamental group of the compact Milnor fiber, given
in Theorem 5.3. Finally, by using the previous results and the Universal Coefficient
Theorem for Homology, we calculate the homology groups of the compact Milnor fiber,
which are provided in Theorem 5.4.

We finish this introduction by describing the structure of the work, which is as follows.

In Chapter 1 we provide a regular CW decomposition of the pair (D,C ND), where C
is an affine plane curve and D is a large enough polydisc. This decomposition is obtained
by successively building decompositions of pairs of spaces of increasing complexity. A
section is dedicated to each of these pairs. In Section 1.1 we give preliminary definitions.
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In Section 1.2 we construct a decomposition of a cylinder containing a braid. In Section
1.3 we do the same for the cone of a three-dimensional sphere that contains a closed braid.
In Section 1.4 we give a decomposition for a small ball around a point of a curve. In
Section 1.5 we decompose certain sets associated with the local braids. In Section 1.6 we
define a certain complex that we use later to join the different complexes we obtain. In
Section 1.7 we decompose sets associated with the conjugating braids. Finally, in Section
1.8, we glue all of these complexes to obtain a decomposition of (D, Q2N D).

In Chapter 2 we explain the programs for this decomposition and address the projective
case. In Section 2.1 we explain the program that calculates the CW decomposition of
(D, 22N D), with the code included in appendix A. In Section 2.2 we explain the program
that calculates the simplicial decomposition, with the code included in appendix B. The
projective case is examined in Section 2.3.

In Chapter 3 we build the models for the compact Milnor fiber CF of the singularities
of type 2" —x%?. In Section 3.1 we construct a CW decomposition for the pair (D, C'ND),
where C is the curve with equation zy(xy — 1) = 0 and D a large enough polydisc. By
lifting this decomposition through a branched covering, in Section 3.2 we obtain a similar
decomposition for (D,C’ N D), where C' is the curve with equation z%° — 1 = 0. In
Sections 3.3 and 3.4 we explain respectively the topology and combinatorics of this pair.
In Section 3.5, by lifting once again in a similar fashion, we obtain a decomposition for
the compact Milnor fiber. In Section 3.6 we explain the topology of the fiber, providing
another topological model. In Section 3.7, we explain the combinatorics of the fiber seen
as a CW complex.

In Chapter 4 we calculate the complex homology of the Milnor fiber CF. In Section
4.1 we provide some preliminary definitions and lemmas. In Section 4.2 we show that the
complex chain spaces can be decomposed in certain ways, and find convenient bases for
them. In Section 4.3 we examine the behaviour of the boundary operators. Finally, in
Section 4.4, we calculate the complex homology groups with the aid of a program contained
in appendix C.

In Chapter 5 we calculate several invariants of the Milnor fiber and fibration of the
singularities of type 2™ — z%?. In Section 5.1 we calculate the geometrical monodromy of
the Milnor fibration. In Section 5.2 we calculate the fundamental group of the complement
of the curve zy(zy — 1) = 0. By using this group and covering techniques, in Section 5.3
we calculate the fundamental group of the Milnor fiber. Finally, in Section 5.4, we use the
previous results to calculate the homology groups of the fiber.
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Chapter 1

A CW Decomposition for an
Affine Algebraic Plane Curve

In this chapter we will make extensive use of the braid monodromy and related concepts.
For definitions and a detailed treatment of these topics we recommend the references [3]
and [9].

As we have already stated in the introduction, Carmona showed that the braid mon-
odromy of an algebraic curve C' determines the topology of the pair (P2, C). This result
uses the concept of equivalent monodromies, which means monodromies that can be ob-
tained from one another by conjugation by any given braids and by Hurwitz moves. His
theorem states the following.

Theorem by Carmona Let Cy and Co be two projective plane curves with equivalent
braid monodromies. Let us suppose that the line at infinity is not tangent to either Cy or
Cy. Then Cy and Cy are ambient isotopic (]9, Theorem 4.2.1]).

In this chapter we use the braid monodromy of a plane affine curve C to provide a
topological model of the pair (D, C' ND), where D is a large enough polydisc. Aside from
the boundary of 9D, this is the same as providing a model of (C2,C). Therefore, what
we give is a complete topological description of the embedding of C' into C2. The model
we give consists of a CW decomposition of the pair (D,C ND), i.e., a CW decomposition
of D having C' "D as a subcomplex. Besides, this decomposition is regular.
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1.1 Preliminaries

Let € be an algebraic curve defined by a polynomial function f : C?> — C. Then, we can
assume that f is of the form

fl@y) =y" +a@)y" ™+ +an-1(2)y + an(2),

where, for every i, a;(z) € Clz] with deg(a;(z)) < i or a;(x) = 0. This is so because, if
f were otherwise, we could make a change of variable x — x — cy, where ¢ is a complex
number such that z — cy does not divide the homogeneous part of higher degree of f (see
[14, Lemma 2.7]). Since x — = —cy is a linear isomorphism, this operation does not alter
the topology of €. Also, we may assume that f does not have multiple factors since, if it
had them, they could be removed without altering its set of zeroes.

Let A be defined by

A ={z € C| f(z,y) has multiple roots} .

Claim 1.1. The set A is finite.

Proof. We know the general fact that if A is a U.F.D., then ¢ € A[t] has multiple
irreducible factors if and only if the discriminant of g, disci(q), is equal to zero. By taking
A = Clz] we have that f € C[z][y], as element of A[y], has multiple factors if and only if
discy(f) = 0. Let us notice that disc, (W) is a polynomial belonging to C[z], that we will
call D(x) and, since f has not multiple factors, D(z) is not identically zero.

Now, for any fixed a, f(a,y) has multiple roots if and only if D(a) = 0. Hence,
A ={a € C| D(a) =0}, which is a finite set of points. [J

Let z1, ...,z be the points of A, and let xy be a point of C\ A. Also, let 71,...,7m,
be a geometric set of generators of m1(C\ A, zg), this is, a set of generators satisfying that
N1 - ... Nm is homotopic to the boundary of a disk centered at infinity.

Each of these generators can be chosen to be of the form 7; = \;y; A, ! where ~; is a
small loop around z;, and \; is a path going from zg to the initial point of ;, as shown
in the following figure.

Let

p:m(C\{z1,...,zn}) — B,

be the braid monodromy of f, presented as a homomorphism. Then, the image of each 7;
under this monodromy can be obtained as a conjugated braid of the form p(n;) = «;fic; L
where 3; and «; are as follows.

The braid §; is given by the monodromy of f around ~;, taking the initial point of ~;
as a base point. On the other hand, the braid «; is a certain braid associated with the
open path A;. We will see that, although the braid monodromy is not defined for open
paths, there is in fact a way to associate a braid «; to the open path \;. The definition of
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Figure 1.1

this braid is fairly similar to the one made for braids over closed paths, and is such that
the decomposition p(n;) = a;fic; ! holds.

We call 8; and «; in this context a local braid and a conjugating braid respectively. We
will now take a closer look to these braids and provide precise definitions for them.

For any given point z € C let us denote the complex line z = z by L,—,. We will
use a similar notation for all the lines in C2, writing L and the equation of the line as a
subindex. Let us define

Voey i = Lo, NV (f).

Then, V,—, is a finite set with at most n points, and exactly n if z ¢ A. Let a € C\A and
let us choose a collection {p; ?:_11 of simple curves sequentially connecting in L,—, the n
points of V,—,, such that p; and p; are always disjoint, except perhaps for their ends.

Definition 1.1. We call {p; ?:_11 a system of sequentially connecting paths for f at a, or
an SCP for short.

This is what Moishezon called a skeleton in a slightly different context ([28]). Such
a system always defines an isomorphism between the braid group B, and the group of
isotopy classes of homeomorphisms from the pair (L,—q, Vz—4) into itself that fix a disk
centered at infinity. We refer to this group as the mapping class group of (Ly—q, Vizq)
relative to the disk centered at infinity. The correspondence is defined in the following
way.

Forl1 <¢<n-1,let v, : Ly—y — Ly—q be a homeomorphism satisfying that
0;(Va=a) = Vz=q and consisting of a rotation by 180° of the disk that is a regular neigh-
borhood of the curve p;. Let us observe that this homeomorphism transposes the points
of V,—, at both ends of p;. The isotopy classes of the 1; form a generating set for the
mapping class group of (Ly—q, Vy—,) relative to the disk centered at infinity. Then, the



Chapter 1 A CW Decomposition for an Affine Algebraic Plane Curve
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Figure 1.2: Example of an SCP for a set V;—, consisting of four points.

isomorphism is given by the correspondence of the class of each v; with the Artin generator
o; of By, which is a half-twist between the i-th and (i + 1)-th strands.

Let & be a point in C, and let us consider a loop - defined by the parametrization
Y(t) = & + e (t € I), for some £ > 0. We choose ¢ small enough so that no point of
A is contained in the disk bounded by -, with the possible exception of Z. For simplicity,
we denote y(I) also by ~.

Let V., denote the points of V/(f) with first coordinate in 4. Then, the pair

(v x C), V) = (Ute 1 La=y) U, V;n=v(t))

is naturally a fiber bundle pair over the base space . A trivialization of this bundle yields
a homeomorphism ¢ : L;—, — Ly—q such that if we cut ((y x C), V) along L;—,, and
re-glue according to ¢, the obtained space is the product of (Ly—q, Vo—a) by S

Let 8 be the braid corresponding to the isotopy class of ¢. This braid is called the
local braid of f around &, and can be thought as the braid formed by the n points of
Vi—v(t) @s t goes from 0 to 1. Thus, the link /3 obtained by closing 3 is equal to V., which
is embedded in (y x C) C Dgo x C. We often think about [ realized in this way and not
as an abstract braid.

Let us notice that, by taking € small enough, this local braid can be defined in the
same way for f € C{z —2}[y] and for f € C{z —Z,y}, so we can speak about local braids
in these contexts too.

Let us define now a braid associated to an open path. Let A be a simple curve in C\A
with initial point b and final point a. Let w = {wi};zll be an SCP at b and ¢ = {p; ?;11
an SCP at a. Let V) denote the points of V(f) with first coordinate in A. Then, by
identifying w and p with a straight line in the real part of C, and the points of V,_; and
Vieq With 1,...,n, we obtain V) as a classically defined braid inside of A x C, that we call
.

Is worth noticing also that, by identifying L,—; and L;—, by a homeomorphism that
sends each w; into p;, it is also possible to obtain a as the braid corresponding to the
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isotopy class of a homeomorphism in the same way we did for 5.

If X is one of the paths A; defined before, we call « a conjugating braid for the corre-
sponding x;. Then, by choosing an SCP on zy and on the initial point of each v; we obtain,
for each v; a local braid §;, and for each \; a conjugating braid «;. By assigning to each
7; the conjugated element o;B;0; I we obtain a presentation for the braid monodromy of
f.

This is the setting we use for constructing the CW decomposition of (D,Q2 N D). As
already explained in the introduction, we develop this construction by successively build-
ing CW decompositions of pairs of spaces of increasing complexity. We thus start by
constructing a CW decomposition of a cylinder containing a braid (Section 1.2), followed
by a decomposition of the cone of a three-dimensional sphere that contains a closed braid
(Section 1.3), and then by decompositions associated with the local braids (Section 1.5),
conjugating braids (Section 1.7), and finally the decomposition of (D,§2 N D) (Section
1.8). The final decomposition is best understood by going from a local to a global per-
spective in this way, while thinking about it from the global to the local is only desirable
retrospectively.

1.2 Decomposition of a Cylinder Containing a Braid

We begin by describing a CW decomposition of a torus with a closed braid embedded
inside. Let us consider the points P; := (4,0,0) and Q; := (4,0,¢) of R3, where j €
{1,...,n} and c is a natural number to be defined. For each j, let h; be a polygonal
or smooth path, with strictly monotonous third coordinate, joining P; with @Q;. Let us
suppose that the paths {h’} are disjoint. Then h},...,h;, constitute a braid b of n strands.

Let B, be the braid group for n strands. Let e be the identity of this group, which
represents a trivial braid of n strands, and let oq,...,0,_1 be the Artin generators of
this group. Each generator o; represents the braid that transposes the ¢-th and ¢ + 1-th
strands, while leaving the rest of the strands straight, and such that if the braid is seen
as running from bottom to top, the transposition follows the right-hand rule direction.

Then we consider a factorization b = 71-.. .-, of b, with 7; € {e, 01,07, ..., 001, 0'7;_11}
for every i. Let us notice that we allow the redundant and possibly repeated presence of e
in the word 71 - ... 7. We do not think of b as an abstract braid but rather as a subspace
of R3.

Let us denote the planes of R? by writing r and the equation of the plane as a subindex,
and let P and @ denote the sets J P; and [JQ); respectively. Let Dy and D, be closed
disks contained in r,—¢ and r,—. respectively, and such that P is contained in the interior
of Dy and @ in that of D.. Moreover, let us choose these disks in such a way that b
is contained in a closed cylinder C, with bottom equal to Dy and top equal to D., and
satisfying that [0C\(Do U D.)] Nb = 0.
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Let us assume that there is a set of planes r,—,,,...,r,—,, , such that every r,—,,
intersects b in the set of points {(j,0,2;)}7_;, and such that the braid running from
Ty=z,_, 1O Tz—,, is exactly 7;. This can be assumed without loss of generality by deforming
b inside C, and means that the braids 7, ..., 7; are disposed in strictly ascending order.
Furthermore, if we define ¢ = k, we can assume that z; = 7.

For 1<j<nand1<i<k+1let us define A;g; := (7,0, — 1). We define also

D; = CNry—ia,
Ci = {(z,y,2) e C|i—1<2z<i}.

Then C; is a sub-cylinder of C' between D; and D;+1 and bN D; = {Aj(i)}. We can see
the cylinder C illustrated in Figure 1.3.

Dk+1l||||

Dy, Hl{\’ (Ck,mk)

D2 ‘.l 111 |--‘

|‘/‘l| (Cy,71)

Dl ¥__/
Figure 1.3
Let 7; be a fixed arbitrary element of {7y,...,7t}. Let us notice that , C C; and

runs from {A;; } to {Ajs1)}- Let hi, ..., hy, be the strands of 7;, where hy is the strand
starting at Ay;) and finishing at some element of {4 1)}

If 7; is the trivial braid we can assume, without loss of generality, that hq,...,h, are
vertical line segments, and thus contained in ry—g. Let us consider the set (C;N7y—)\Uhp,
which is a union of n + 1 disjoint rectangular-shaped topological disks that are neither
open nor closed. Let ¢, ...,¢, be the closures of these disks. Let us observe that ¢y, ..., <,
split C; into two combinatorial (n + 2)-gonal prisms, attached by n + 1 rectangular faces.
Since C;\(0C; Ugp U -+ - Ug,) is the union of two disjoint three-dimensional open balls,
and 9C; Ugy U ---Ug, is a two-dimensional CW complex, of which 7; is a subcomplex,
then 0C; Ugy U ---Ug, provide us a CW decomposition for (C;, ;).

Definition 1.2. We call C;, endowed with this CW complex structure, a double prism
for 7; = e.

We see the double prism illustrated in Figure 1.4 with names and orientations for each
cell.
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M2(i+1)

Ao(i+1)
dos A1(i+1 . <I®
Lasy ey dyir1) A2(i41) @
264 dyisn) 0
2(i+1 ;
| An(it1) (@)
\ )

. €o(i S2(1)
(i) O, o) €1(4) ' O @ J)%(i)

Figure 1.4: Here, II(;) and ;) denote the interior of the prisms.

The boundaries of the cells, homologicaly speaking, are given below.

Dim. 1 Dim. 2
Aejim) = Ajirny — Aoy 0(S6m) = €y + dirn) — ¢ir16) — di)
o(d;iy) = Ajr10) — Aj0) A(K@y) = mi) + €o@) — Mi(i+1) — Ent1()
O(mi)) = Aoy — Ansrs)  9(54)) = Magi) = €ntr(s) — Magi+1) + €o)
A(maay) = Aoy — Anv1a)  9(0u)) = mag) +doy + -+ + dpgsy
(I iy) = —ma@y — dpy — - — doga)
Dim. 3
O (») = ki) = Oy + Oir) = o) =+ = Snli)

0(Q) = =) = Vo) + Vi) + o) + -+ i)

We will examine now the case in which 7; is an Artin generator. In this case every
strand on {hy, ..., hy}, except for two of them, connect some point of { A;(;y } with the point
of {Aji41)}} that has the same subindex, that is, the one that is directly above. These
strands can be assumed to be vertical line segments contained in 7,—g. The remaining two
strands, which we can assume are h; and hs, suffer a transposition, with h; connecting
Al(z) with A2(i+1), and ho connecting Ag(l) with Al(i+1)-

Let us take the points {A;(;, Aax), A1(i+1), A2(i+1)} into consideration. These four
points span a geometrical rectangle with boundary R homeomorphic to S'. Now imagine
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that R is the equator of a convex three-dimensional topological ball that we call ®. This
ball can be assumed convex and thin enough to ensure that ®\ R C Ci. Then, we can
deform h; and hs to make them run along the boundary of ®, as it is illustrated in
Figure 1.5.

€2 (1)

€1(i)

dy(5)

Figure 1.5

Let us consider the segments A; ;) Ay and Ay 1)Agiq1) along with the strands hy and
ho. The union of these four paths is homeomorphic to S'. Let us consider a topological
disk bounded by such union. We will call this disk ¢;, and assume that its interior is
contained in the interior of ®. Then ¢; is a combinatorial quadrilateral that ascends
making a half twist. In addition, hi, he and R split 9P into four triangles, forming a
combinatorial tetrahedron. We name these triangles as follows:

i = Ay A+ Azt
vo = Ay AairnAagy,
vy = A2(i)A1(z‘+1)A2(i+1)a
ve = Ay Ay Ao

Let us observe also that ¢; splits ® into two three-dimensional balls. We call @y (respec-
tively ®q) the ball whose boundary contains vy (res. v3). These objects are shown in
Figure 1.5.

Finally, from the intersection C; N ry—g let us subtract the set ® Uhy U---U hy,. The
resulting set is a union of n disjoint rectangular-shaped topological disks. Let ¢y, <2,..., <,
be the closures of these disks, ordered by crescent x coordinates.

Let us observe that C;\ (0C; UgoU---Ug, Ury U---Uwry) is the union of four disjoint
three-dimensional open balls. Since 0C; Ugy U ---Ug, Uy U--- Uy is a two-dimensional
CW complex, of which 7; is a subcomplex, it provides us a CW decomposition for (Cj, 7;).
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Definition 1.3. We call C; endowed with this CW complex structure a double quasi-prism
for 7;.

For a general Artin generator a;tl we assume that the twisted quadrilateral enclosed

by @ is ¢;,. Figure 1.6 illustrates a double quasi-prism, for a general right-handed twist
o4, with names given to each cell. We use the same names for a left-handed twist (Let
us notice that the decompositions of o, and o, I have the same set of cells and the same
boundaries up to dimension two).

L
Q

= )

/N

J) (i)

------------------------ \
’%___ e S En+1fi)
o Ayl 4 -
p—ta |
E L %o /
Ha Oy o
(1) n(i) > .
nt1(
M ()
Figure 1.6

For a general generator o7, with s = &1, the boundaries of the cells are given below,
where the underlines mean that the underlined terms are to be omitted.

Dim. 1 Dim. 2

d(ejw) = Ajisrny — 450 (i) = €j(iy + dji+1) — €j+16) — 4y, J# 4

Ndj(i) = Ajy1) — Aj) Asqi)) = (i) — dy(iv1) = hg1() — dgqi)

A(ma()) = Aoy — Ant109) I(11(5)) = dy(ir1) = hy(i) + €q(0)

O(maiy) = Aoy — Anti0) O(va@)) = —dgiy — €g+1() T+ hag(i)

Ahyiy) = Agra(irr) — Agli) Nv3(i) = dg(i1) = €q+10) T hg+103)

I hgt1() = Agirr) = Agri)  O(agi)) = —dg(i) + €qi) = hg1)
O(K(y) = Mm@y + €o(i) — Mi(i41) — Ent1(i)
O(>(i)) = Ma@) = €ns1() — Ma(i+1) + €o(i)
I(O0)) = magy +doy + -+ dpga)
(Vi) = —magiy — dngy — -+ — do(i)
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Dim 3.
OI)) = Ky = 0y + Oavr) — o) =+ = Sgl) =+~ Sni) — Va—s(s) — V3—s(i)
O(Qs)) = =24 — V) + D1y + S0 + -+ gy T+ Sni) + Vats(i) T V34s(i)
(i) = s(V1s) — Vag) + Sq(i))
(@) = s(Vag) — Vaa) — Sq(i))

If we endow each (Cj, 7;) in (C, b) with a double prism or a double quasi-prism structure
we obtain a CW decomposition for (C,b). Let us notice that this decomposition is a CW
complex built only from a factorization 7 - ... 75 of b.

Definition 1.4. We call (C,b) endowed with this CW complex structure a loom for
b=7m-... 7.

Theorem 1.2. Let b be a braid of n strands and 7 - ... - 7 a factorization of b. A loom
for b=y ... 7 is a well defined regular CW decomposition for (C,b).

Proof. It follows from the construction that a loom for any factorization of any braid
b is a well defined regular CW complex. We need to see that, although looms arising from
different factorizations of b are combinatorially different, they yield the same underlying
pair of spaces, which is (C,b).

Let 71 - ... 7 and 7{ - ... - 7/, be two words presenting the same algebraic braid in
Artin’s presentation. That these words present the same topological braid (C,b) is a basic
fact of braid theory. That the underlying pair of spaces of a loom for either 7 -...- 7 or
T ... 7, is (C,b) is clear by construction. [J

1.3 Decomposition of the Cone of a Three-Sphere
Containing a Closed Braid

Let b be a braid of n strands as in the previous section. Let us deform C in R? and glue
D; with Dy to form a solid torus C’, in such a way that, for every j, P; is glued with
Qj. Now let us embed C’ in S®. By this process b is transformed into a closed braid or
link that we call the closure of b and denote by b.

Let us consider b embedded in a three-dimensional sphere S in this way. Then, the
cone of S is a four-dimensional ball containing the cone of b, which is two-dimensional.
Although the symbol V is usually used for logical disjunction or the wedge sum of spaces,
we will use it along this chapter to denote the cone of a space. Thus, let V.S be the cone

10
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of S and Vb the cone of b inside of VS. Our purpose now is to construct a CW the pair
(VS, Vb). We do this by constructing VS through a series of steps.

We start the construction from a cylinder containing a braid. Let C' be a loom for b.
The plane 7,—¢ intersects OC at the union of four line segments, two of which are vertical.
These segments will be called a; and a9, being a; the closest to the z axis and ao the far-
thest. Let us recall that the CW complex structure of C' is dependent on the factorization
b=m ... -7, where 7; € {e,al,afl,...,an,l,agil} for each ¢. Let us assume 171 = e,
and construct the CW complex accordingly. This apparently superfluous requirement has
the purpose to facilitate later constructions.

As a second step, we identify the disks Dy and Dg1, according to a homeomorphism
constant on the x and y variables. By doing this, we transform C into a solid torus, that
we call T1, and b into the closed braid b. Also, the sets resulting from Ci,...,C}) and
D1, ..., Dy will preserve these names, with the disk resulting from the identification of
D; and Dy being called D;. It is clear that T has a CW complex structure directly
inherited from C. We call T} endowed with this structure a closed loom for b.

The third step will be to glue T to another solid torus to complete a sphere. Let 75 be
a solid torus, let 1 and A be two disjoint meridian disks of 75, and let [ be a longitude of
T, (homologous to the generator of Hq(T3)) such that pNi and AN are single points. Now
we glue 77 and T, by their boundaries according to a homeomorphism ¢ : 9T — 9T,
such that

p(ar) = Op, ¢(az) =0A, ¢(0D1) =1.

We denote the three-dimensional sphere T7 U, T3 by S. It can be readily seen that S has
a CW complex structure induced by those of T} and T5. The zero and one-dimensional
cells of this structure are those of T7; the two-dimensional cells are those of T with the
addition of p and A; and the three-dimensional cells are those of T with the addition of
the two balls composing To\ (072 U U ).

The last step is to endow V.S with the CW complex structure conically induced by
the structure of S. Let us notice that the resulting CW complex is built only from a
factorization 7y - ... - 7 of b.

Definition 1.5. We call VS endowed with this CW complex structure a marble for b =
T eee Tk

This complex is shown in Figure 1.7.

Theorem 1.3. Let b be a braid of n strands, 7 - ... - 7 a factorization of b, and b its
closure. A marble for b = 71 - ... 7 is a well defined regular CW decomposition for
(VS,Vb).

Proof. 1t is clear by construction and Theorem 1.2. [J

The following observation implies that the topology of the underlying pair of the
CW complex is not only independent of the factorization of b, but independent on this
factorization up to conjugation.

11



Chapter 1 A CW Decomposition for an Affine Algebraic Plane Curve
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Figure 1.7

Observation 1.4. Let a,b € B,. By Markov’s Theorem ([8, Theorem 2.3]), if a and b
are conjugated braids in By, then @ = b. Therefore, the marbles for any factorizations of
two conjugated braids a and b are decompositions of the pairs (VS, Va) and (V.S, Vb), and
thus are topologically equivalent (though not combinatorially equivalent).

Let us consider now the two balls that compose To\ (072 U U A). One of these balls
has its boundary attached to points of 9Ty coming from points of R? with positive ¥
coordinate. A similar statement is true for the other ball, but for points with negative y
coordinate. These two balls will be called respectively the superior and inferior caps of
V.S, and will be denoted by HS"? and H™,

We will describe now the cells composing V.S and its boundaries. Let AA denote the
apex of VS (The double A is only a name and has the purpose to distinguish this vertex
from other vertices that are to be called A). Let us notice that the cells of V.S are divided
into three (disjoint) sets: The set Bnd(V.S) of all the cells of S; the set Con(V.S) of all the
conical cells produced by taking the cone of each cell of S; and the singleton {AA}.

We begin with the set Bnd(VS), which is composed by u, A\, H*P, H™™ and all the cells
of T7. The torus 77 is in turn composed by a series of prisms and quasi-prisms C4, ..., Cy.
For each C; we have the cells and boundaries already described in the previous section,
only that the identification of D; and Dy4q implies that the subindex ¢ now has to be
taken modulus k. Then, it only remains to provide the boundaries of u, A, HS"? and H™
which are given below.

() €o(1) T+ + €ok)

OA) = epp10) T+ entir)
O(H™™P) = p— A=y — =2y
O(H™) = A= K@) = Ry

12
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Now we consider the set Con(V.S). For any cell p of S, let Vp denote the cone of p.
Moreover, for any chain ¢ = ajp; + --- + ayp; of cells of a given dimension of S, let Ve
denote the chain a; V p1 +--- 4+ a; V p;. We give each cell Vp the orientation resulting by
adding to the orientation of p the vertex AA. Then, the boundaries of the conical cells
are given by

I(vp) =AA—p

if dim(p) = 0, and by .
a(Vp) = (=) (—p) + V(9(p))
if dim(p) > 0.

1.4 Local Decomposition for the Zero Set of a Func-
tion in C{z,y}

Let us consider again f and €) as in the first section. We are now interested in finding a
CW decomposition of a small neighborhood around a point p of .

By a translation, we may assume that p is the origin. Now we consider f as an
element of C{z,y}. In fact, since we are only going to examine f locally, what we discuss
in this section is valid for any function of C{z,y} sending zero to zero, not necessarily a
polynomial. Therefore, in this section, we consider f as an arbitrary element of C{x,y}
such that f(0,0) = 0.

Let D® and D" be disks in C centered at the origin with radii € and 7 respectively, and
such that f is convergent in the polydisc D¢ x D". The radii € and 7 are to be shrunken
if necessary. Also, for any function of C{x,y} convergent on D x D", let V(-) denote the
zero set of that function in D® x D".

Let us recall that an element w of C{z,y} is called a Weierstrass polynomial (with
respect to y) if it is of the form

w(z,y) = yt+ al(:r)yd_l + - Fag1(x)y + aq(x),

where, for every i, a;(z) € C{z} and a;(0) = 0.

As in the first section, by a change of variable, we may assume that f(0,y) is not
identically zero. Then, by the Weierstrass Preparation Theorem, there exists a unit u €
C{x,y} and a Wierstrass polynomial w € C{z}[y| such that, inside a certain neighborhood
of (0,0),

f(a,y) = ul, y)w(z, y).

By shrinking ¢ and 7, we may assume that the former equality holds in D¢ x D".
Furthermore, the fact that u is a unit in C{z,y} means that «(0,0) # 0, so choosing ¢
and 7 small enough we can ensure that V' (f) = V(w). This means that close to the origin
we can work with w instead of f for geometrical reasonings.

13
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On the other hand, we know that the factorization of w into irreducible factors in
C{z}]y] (and in C{z,y}) is of the form

k
w($’y) = wllﬂ(aj7y) o 'wll(x>y)
where wy, ..., w; are Weierstrass polynomials. Then,
V(w) =V(w)U---UV(w).

The set V(w) is called a local analytic curve in the neighborhood of (0,0), while each V (w;.)
is called an irreducible local analytic curve component of V(w).

By the Local Normalization Theorem for Algebraic Curves, each V (w,) is a disk cen-
tered at the origin, and the boundary of V(w) is a link in 9(D¢ x D"). This local study
of curves by means of their Weierstrass polynomials is classical and is exposed with detail
in [14].

On the other hand, we may assume that w has not multiple factors (i.e. k1 = --- =
k; = 1) because, if it had them, they could be removed without altering V' (w). Then we
have the following.

Claim 1.5. For every i # j, V(w;) NV (w;) = (0,0).

Proof. We reason in a similar way as in Claim 1.1. By taking A = C{z}, we have that
discy(w) is a series belonging to C{x}, that we will call D(z). Since W has not multiple
factors, D(x) is not identically zero.

Let us observe that D(x) can be factorized as D(z) = z™Q(x), with m > 0 and
Q(z) € C{x} satisfying that Q(0) # 0. Let us reduce ¢ enough so we can ensure that
Q(x) # 0 for every x € Df. Therefore, D(z) # 0 for every z € D*\{(0,0)}.

From here it follows that w has not multiple roots in D\ {(0,0)}, and therefore V' (w;)
and V(w;) do not intersect in a point other than (0,0). O

Now, let & be a fixed point of dD?, and let g1, ..., ¥, be the roots of w(&,y). Then the
points of V(w) with first coordinate equal to & are (Z,91), ..., (Z,¥n). If we move & over
0D¢ all the way around D¢ completing the circumference, the points (&,91),..., (&, ¥n)
will travel accordingly inside dD¢ x C completing a closed braid. Let b be a braid such
that its closing produces this closed braid. Then b is a local braid of w along dD*® with a
given orientation.

Besides, b = |J OV (w,) is contained in d(D? x D). Since the V (w,) are disjoint disks
except by the origin, (D° x D",V (w)) is the cone of (9(D? x D"),b) with apex at he
origin. Hence, we can then apply Theorem 1.3 and give (D° x D", V(w)) a CW complex
structure. Since two different SCP at & yield conjugated braids, Observation 1.4 ensures
that the pair (V.S,Vb) is topologically equivalent to (D x D",V (w)), regardless of the
choice of b.

Furthermore, since b C D¢ x D", we can take T7 = 0D¢ x D" and To = D¢ x 0D".

14
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1.5 Decomposition for a Local Braid

Let us consider again f and €2 as in the first section. Let D" and D, denote closed disks
in C, centered at the origin and at point p respectively, of radius r, and to be shrunken
if necessary. Let (Z,9) € . If we wanted a purely local description of the embedding
of Q in C?, we could take a small polydisc D := Dg x DZ around (Z,¢) and then apply
Theorem 1.3 just as in Section 1.4 to obtain a CW decomposition of (D, N D). In this
section, however, we aim a little more.

We want our polydisc to contain not only the points of 2 near (£, §), but all the points
of © near any point (#,y) € Q. Thus, intuitively speaking, our polydisc D will be the
product of a small disk D and a big disk Dg, in such a way that D = D5 x DZ contains
all the points in Q2N (D5 x C). Moreover, since we are interested in describing the topology
of the embedding of the curve into (D5 x C), we will not demand D to be a polydisc, but
only a four-dimensional ball satisfying that QN D = QN (D% x C). It can be seen that any
two four-dimensional balls (and in particular polydiscs) satisfying this and an additional
condition on the boundary are ambient isotopic in C2, by an isotopy leaving 2 constant.
We will construct now a CW decomposition for (D,Q N D).

Now we consider f as an element of C{z — Z}[y]. In fact, since we are only going
to examine f in values of = close to &, we will work in the wider context of a function
f € C{x — #}[y]. Therefore, in this section, we consider f as an arbitrary element of
Cle - a}y)

Let Z be a point in C. As in the first section, we can assume f € C{z — Z}[y] is of the
form

f@y)=y" +ay" '+ + an1y +an,

where a; € C{z — &} for every i. Let D be a disk where every a; is convergent. Then f
will be considered as a function from D x C into C. We denote the zero set of f by V(f)
as usual. Finally, let A be defined by

A ={x € D;

f(z,y) has multiple roots} .
We know that A is either empty or equal to {Z}, being the latter the interesting case.
Claim 1.6. Either A =0 or A = {2}.

Proof. Tt can be proved by the same arguments used in Claims 1.1 and 1.5.

Let p1 = (&,y1),...,p = (&,y;) be the points of V,—;, with I <n. For 1 <r </, let
®, be the local analytic curve of f in the neighborhood of p,. For € small enough, we can

assume that
V(i iN(D: xC)=d1U---UDy.

We already know that each ®, is a union of topological disks identified by their centers.
Besides, these disks are, except by their common centers, disjoint.
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For 1 <r </, let n, denote the number of points in which the vertical line L,—. inter-
sects @, for ¢ € D5 \ {Z}; this is, the degree of the corresponding Weierstrass polynomial
around p,. Let us notice that if, for a certain r, the number n, is equal to 1, then &, is
a single disk transversal to Ly—z;. Also, since f does not have multiple roots in D5 \ {Z},
the sets ®1,...,®; are pairwise disjoint.

We summarize these statements in the following lemma.

Lemma 1.7. For 1 < r <, the set ®, is a disk if n, = 1, and a union of at most n,
independent topological disks with identified centers if n, > 1. Also, for j #r, ®,N®; = 0.

Now, let the loop v be defined by
() =3 +ee®™ t el

Let a = Z + ¢, and let 8 be the local braid of f around & taken along 7, and defined
according to an SCP p = {pi}?:]l in Ly—g,.

Let us define the boundary 09, of ®, as the union of the boundaries of the disks
forming it. Then, for 1 < r <, the link 9®, is a union of components of /3, and

B=0D,U---UdP,.

From here it follows that there is a sub-braid ) of 3, defined according to p, such that
its closure B(r) is equal to 9®,. This braid ;) is the local braid along vy of the Weierstrass
polynomial around p, and, if we make € tend to 0, then () tends to p,. Thus, 8 can be
decomposed into the [ sub-braids 5y, ..., Bq).

Let us consider the SCP p for a moment. If, for each r, the curves of p on V,—, join
consecutively the points of V;—, corresponding to the strands 3., we say that p separates
B into By, - - -, Ba), that it is a separating SCP for (8 or, by short, that it is an SSCP for

R

Ly=q

Figure 1.8: Here we see two different SCP at the same a. The one on the left separates 3, while the one
on the right does not.
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Observation 1.8. Given f, &, 7, and § as before, for a small enough ¢, the SCP at +¢
that joins through straight segments the points of V;. in the lexicographical order of C
is an SSCP for .

It is important to notice that, as algebraic braids, f(y),..., 5 are also defined upon
p- 1If p is separating, we can consider each f3,) as defined upon an SCP py,), consisting on
the paths on p joining the points of V,—, corresponding to 3,). The order that p induces
on the p( is also the order that $ induces on the f(,). Therefore, p defines an ordered
set {p1,...,pi} of SCP, which in turn defines the ordered set of sub-braids {1y, ..., Bu)}-
The following is a trivial but important observation.

Observation 1.9. If the algebraic braids 3, 8(y), ..., 8 are defined upon an SSCP for
3, then 8 determines, and is determined, by the set {f1),..., 58} and a total order on
this set.

From now on, we demand that the SCP p defining 3 is separating and that 51y, ..., B
are numbered in the order induced by p.

Now we are in a position to provide the decomposition of (D, N D), as we proposed
at the beginning of the section. We will do so by constructing the ball D from smaller
parts.

For 1 <r <l let H, be a Milnor polydisc around (%, y,). Without loss of generality,
by taking € small enough, we may assume that, for every r, H, is the product of D with
some disk D,, in the y variable. We may also assume that Hy, ..., H; are pairwise disjoint.
Let us observe also that

H.NV(f) = &,
8Hrmv(f) = B

Then, by the conical structure of the Milnor polydisc, we are in a condition to apply
Theorem 1.3 and Observation 1.4 to each H, as in Section 1.4. Thus, we endow each
H, with the CW complex structure referred to in the theorem, turning H, into a marble
associated with some factorization of ;).

In fact, we could define each H, more generally as a Milnor ball, and since a Milnor
ball also has a conical structure, we could apply Theorem 1.3 in the same way. However,
to define H, as a polydisc aids to the imagination because, on each H,, the two solid tori
T1 and T3 of the marble structure can be chosen to be the the two solid tori dD; x D,
and D% x 0D,, naturally produced by the product structure of the polydisc.

Now we are going to glue all the marbles H1, ..., H; in a convenient way. Let us observe
that, if we have two disjoint balls in R3, it is possible to deform them in such a way that,
after the deformation, they intersect on a disk. Similarly, it is possible to deform two balls
in R*, or in C?, in such a way that they intersect on a three-dimensional ball. In this way,
we are going to deform Hy in order that H; and Hs intersect on a three-dimensional ball.
Then we deform Hg in order that Hs and Hj intersect on a three-dimensional ball, and
so on, until we deform H; in order that H; and H;_; intersect in the same way.
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It is obvious that, by doing these deformations, each H, # H; ceases to be a geometrical
polydisc. However, the marble structure is preserved, though deformed. It is clear also
that at the end of the process the union of all the H, is a four-dimensional ball in C2.
In order for this ball to have a CW complex structure, and intersects the curve in a nice
subcomplex, these deformations must be done carefully. We are going to show now the
exact way in which these deformations are to be done.

Since we allow the redundant presence of the identity in the factorization of any 5,
we may assume that the factorizations of all the braids f3(,) have the same length k.

On the other hand, let us recall that any marble possesses a family of disks denoted
by D;, and a family of cylinders denoted by C;, which are subcomplexes of its marble

structure and were defined in the previous section. For each 7, let Dy, ..., D) and
Carys -+ C,ry denote the disks D; and the cylinders C; of H,. Let us denote also the
superior and inferior caps of H, by H(SEPT), and H grjfr). The subindex "—" has no true

meaning here, and its use will be explainéd later.

We proceed to glue Hy and Hj as follows. Let us deform Hs inside of D% x C (by an
isotopy of its inclusion map), and leaving ®, fixed, in order that 0H; and JHj intersect
in a three-dimensional ball. We demand this deformation to be done without generating
intersections with Hs, ..., H;. This is possible because p; and p2 can be joined by a path
inside of L,—3; that does not intersect HgU---U H;. Then, the deformation can be done in
the interior of a regular neighborhood of this path that does not intersect Hz3U---U H;. In
other words, the deformation can follow this path, while keeping Hs thin enough to avoid
intersecting H3U- - -U H;. Therefore, since ®,, C H, for every r > 3, this deformation does
not generate new intersections with V'(f) either.

The deformation can be done, moreover, in such a way that the following conditions
hold.

o (OH1NOHy) = HyNHy=H") = HPM .

e The orientations of Hy N Hy inherited from H; and Hs coincide.

e For every 0 < i < k, the boundaries of C; 1) and C{; 3 coincide in the intersection

of Hy and Hy, i.e. that 9C(; ) N H{™)) = 0C;9) N HPM ).

It is a trivial observation that this gluing is cellular. The resulting situation is illustrated
in Figure 1.9.

Following the same procedure, we can deform Hj3 in order that Ho N Hy = H, (SEPZ) =
H (irifg), and that the same coincidence conditions hold. We continue this gluing process
inductively until we reach H;. We define then

T:=HU---UH.

It follows from the construction that this set is a closed ball and, since we have glued
all the H, cellularly, it has a CW complex structure trivially inherited from the H,. Let
us notice that the resulting CW complex is built only from the ordered set of sub-braids
{B@),---»Bay} and their factorizations.
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Figure 1.9

Definition 1.6. We call T' endowed with this CW complex structure a tower for z.
The following theorem has already been proved along the construction.

Theorem 1.10. Let a, 7, and § be as defined in this section. Let p be an SCP at a
that separates (5, defining the ordered set of sub-braids {6(1), ceey ﬁ(l)}. A tower for Z,
built upon the ordered set of sub-braids {31y, ., B}, and their factorizations, is a well
defined regular CW decomposition for (7,7 NV (f)), where T is constructed as before.

Here, T is by definition the underlying space of the tower. We will prove now a
stronger version of this theorem (Theorem 1.13). Though it is not strictly necessary to
our construction, this strongest version will allow us to consider T' as an arbitrary ball
satisfying certain properties. In particular, it will allow us to consider 1" as a polydisc of
the form D x D, for a large enough disk D in y, as