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Abstract

This is a brief abstract that outlines the topics and contents of this work. The reader
interested in a more detailed overview can skip directly to the introduction.

The braid monodromy is an invariant of algebraic curves that encodes strong infor-
mation about their topology. Let C be an a�ne algebraic plane curve, defined by a
polynomial function f , and having a generic projection on the x axis of C2. The braid
monodromy of C can be presented as a homomorphism

fl : fi
1

(C\{x
1

, . . . , xm}) ≠æ Bn,

where x
1

, . . . , xm are the values of x on which f(x, y) have multiple roots, and Bn denotes
the braid group of n strands. If we see the curve as the image of a multivalued function g,
the image under fl of a given loop is determined by the paths in C2 that (x, g(x)) follows
when x runs along the loop.

The braid monodromy has a long story and its development and applications has
passed through the works of Zariski ([44, 45]), van Kampen ([16]), Moishezon and Teicher
([26, 27, 28, 29, 30, 31]), and Carmona ([9]) among many others ([11, 10, 19, 37, 2, 18, 3]).

A result by Carmona ([9]) shows that the braid monodromy of a curve C determines
the topology of the pair (P2, C̄). He also provided a program that calculates the braid
monodromy of a curve from its equation. However, it remained an open problem to
find what this topology actually is. This is, given the braid monodromy of C, to find a
description for the topology of (C2, C) or (P2, C̄).

In this work we provide such a presentation for the a�ne case. It consists of a regular
CW decomposition of the pair (D, C fl D), where D is a large enough polydisc in C2. The
construction uses the presentation of the braid monodromy in the form of local braids and
conjugating braids. In this presentation the local braids must be given as an ordered set of
independent sub-braids, associated with di�erent preimages of a critical value of a generic
projection. The main theorem concerning the algebraic curves states the good definition
of this decomposition (Theorem 1.18).

We also provide a program that, from the braid monodromy, calculates this CW com-
plex explicitly. Since Carmona has already given a program that calculates the braid
monodromy of a curve from its equation, it is possible, by using both programs, to calcu-
late the CW decomposition from an equation of the curve. A second program turns this
CW complex into a simplicial complex thin enough to take a regular neighborhood of the
curve. Both programs are included in the appendices. The projective case is also briefly
discussed.
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On the other hand, the topological study of the singular points of complex hypersur-
faces has as its cornerstone the work of John Milnor, presented in [25]. In this book he
introduces a fibration, now known as the Milnor fibration, which is an essential aspect of
the topology around these points. Two important invariants immediately derive from it:
the Milnor fiber and the monodromy of the fibration.

The Milnor fiber of isolated singularities has been intensively studied and is well un-
derstood. For the non-isolated case, however, much less is known.

A feature of the Milnor fiber of the non-isolated surface singularities that has been
the subject of considerable research in recent times is its boundary (see [21, 22, 34, 41]).
Another aspect of the Milnor fiber of the non-isolated singularities that has been studied
is its homotopy type (see [38, 42, 40, 32, 33, 12]). Some results exist for the case of quasi-
ordinary singularities as well ([7, 13]). All of these results cover topological aspects or
properties of the Milnor fiber of non-isolated singularities without directly addressing its
topological type.

In this work we provide a combinatorial model of the compact Milnor fiber of the
quasi-ordinary surface singularities with a single Puiseux pair. This model is built in the
following way. Through a series of steps, we construct a CW decomposition of the pair
(D, C fl D), where D is a large enough polydisc, and C is the discriminant curve of the
Milnor fiber. Then, by means of a branched covering, we lift up this decomposition into
a CW decomposition of the compact fiber (Theorem 3.11). Another model for the same
fiber, as a cyclic gluing of four-dimensional balls along certain solid tori, is also given
(Theorem 3.13).

This construction allows us to see the compact Milnor fiber as the preimage of the
four dimensional ball under a series of branched coverings. By studying the deck trans-
formations of these coverings, we are able to calculate the geometrical monodromy of the
Milnor fibration (Theorem 5.1), and the complex homology groups of the compact Milnor
fiber (Theorem 4.1). We also calculate the fundamental group (Theorem 5.3) and the
homology groups (Theorem 5.4) of the compact Milnor fiber.
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Resumen

Este es un breve resumen que describe los temas y contenidos principales de este trabajo.
El lector interesado en una descripción más detallada puede saltar directamente a la
intriducción.

La monodromía de trenzas es un invariante de las curvas algebraicas que codifica fuerte
información acerca de su topología. Sea C una curva algebraica afín plana, definida por
una función polinómica f , y con una proyección genérica en el eje x de C2. La monodromía
de trenzas de C puede ser presentada como un homomorfismo

fl : fi
1

(C\{x
1

, . . . , xm}) ≠æ Bn,

donde x
1

, . . . , xm son los valores de x sobre los cuales f(x, y) tiene raíces múltiples, y Bn

denota el grupo de trenzas de n hebras. Si vemos a la curva como la imagen de una función
multivaluada g, la imagen bajo fl de un lazo dado está determinada por los caminos en C2

que sigue (x, g(x)) cuando x recorre el lazo.
La monodromía de trenzas tiene una larga historia y su desarrollo pasa por los trabajos

de Zariski ([44, 45]), van Kampen ([16]), Moishezon y Teicher ([26, 27, 28, 29, 30, 31]) y
Carmona ([9]), entre muchos otros ([11, 10, 19, 37, 2, 18, 3]).

Un resultado de Carmona ([9]) muestra que la monodromía de trenzas de una curva
C determina la topología del par (P2, C̄). Carmona además proporcionó un programa que
calcula la monodromía de trenzas de una curva a partir de su ecuación. Sin embargo,
permaneció abierto el problema de determinar en efecto esta topología. Esto es, dada la
monodromía de trenzas de C, encontrar una presentación para la topología de (C2, C) o
(P2, C̄).

En este trabajo proporcionamos tal presentación para el caso de curvas afines. La
misma consiste en una descomposición CW regular del par (D, C fl D), donde D es un
polidisco suficientemente grande en C2. La construcción de dicha descomposición utiliza
la presentación de la monodromía de trenzas como trenzas locales y trenzas conjugadas.
En esta presentación las trenzas locales deben estar dadas como un conjunto ordenado de
sub-trenzas independientes, asociadas a las diferentes preimágenes de un valor crítico de
una proyección genérica. El teorema principal sobre las curvas algebraicas afirma la buena
definición de esta descomposición (Teorema 1.18).

También proporcionamos un programa que, a partir de una monodromía de tren-
zas, calcula este CW complejo explícitamente. Dado que Carmona ya había provisto un
programa que calcula la monodromía de una curva a partir de su ecuación, es posible, uti-
lizando ambos programas, calcular el CW complejo a partir de una ecuación de la curva.
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Un segundo programa transforma este CW complejo en un complejo simplicial suficiente-
mente fino como para tomar una vecindad regular de la curva. Ambos programas están
incluidos en los apéndices. El caso proyectivo también es brevemente discutido.

De otra parte, el estudio topológico de los puntos singulares de hipersuperficies com-
plejas tiene como piedra angular el trabajo de John Milnor, expuesto en [25]. En este
libro es introducida una fibración, ahora conocida como la fibración de Milnor, que es un
aspecto esencial de la topología alrededor de estos puntos. Dos invariantes importantes se
derivan inmediatamente de ella: la fibra de Milnor y la monodromía de la fibración.

La fibra de Milnor de las singularidades aisladas ha sido intensamente estudiada y es
bien entendida. En el caso no aislado, sin embargo, se sabe mucho menos.

Un rasgo de la fibra de Milnor de las singularidades de superficie no aisladas que
ha sido objeto de considerable investigación en los últimos tiempos es su frontera (ver
[21, 22, 34, 41]). Otro aspecto de la fibra de Milnor de la singularidades no aisladas que
ha sido estudiado es su tipo de homotopía (ver [38, 42, 40, 32, 33, 12]). Algunos resultados
existen también para el caso para el caso de las singularidades quasi-ordinarias ([7, 13]).
Todos estos resultados abarcan aspectos o propiedades topológicas de la fibra de Milnor
de las singularidades no aisladas sin abordar directamente su tipo topológico.

En este trabajo proporcionamos un modelo combinatorio para la fibra de Milnor de
las singularidades cuasi-ordinarias de superficie con un par de Puiseux. Este modelo es
construido de la siguiente forma. A través de una serie de pasos, construimos una descom-
posición CW del par (D, C fl D), donde D es un polidisco suficientemente grande, y C
es la curva discriminante de la fibra de Milnor. Entonces, por medio de cubiertas ramifi-
cadas, levantamos esta descomposición en una descomposición CW de la fibra compacta
(Teorema 3.11). También proveemos otro modelo para la misma fibra como un pegado
cíclico de bolas de dimensión cuatro a lo largo de ciertos toros sólidos (Teorema 3.13).

Esta construcción nos permite ver a la fibra compacta de Milnor como la preimagen
de una bola de dimensión cuatro bajo una serie de cubiertas ramificadas. Estudiando las
transformaciones de cubierta de este recubrimiento calculamos la monodromía geométrica
de la fibración de Milnor (Teorema 5.1), y los grupos de homología complejos de la fibra
de Milnor compacta (Teorema 4.1). También calculamos el grupo fundamental (Teorema
5.3) y los grupos de homología (Teorema 5.4) de la fibra de Milnor compacta.
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Introduction

This thesis is devoted to the topological study of two objects coming from algebraic ge-
ometry. These are, on the one hand, the embedding of a plane algebraic curve within the
a�ne or projective space, and, on the other hand, the Milnor fiber of a quasi-ordinary
surface singularity with a single Puiseux pair, along with the related monodromy action.

Let us consider the plane algebraic curves in the first place. The fundamental tool we
use in the study of these curves is the braid monodromy.

The braid monodromy is an invariant of algebraic curves that encodes strong informa-
tion about their topology. It can be thought in the following way. Let f : C2 ≠æ C be a
polynomial function of the form

f(x, y) = yn + a
1

(x)yn≠1 + · · · + an≠1

(x)y + an(x),

where each ai is a polynomial in x with complex coe�cients. Let C be the algebraic curve
defined by f .

For any given fixed value c, the intersection of the line x = c with C consists of the roots
of f(c, y). It is easily seen that only on a finite number of values x

1

, . . . , xm of x does f(x, y)
have multiple roots. Therefore, f defines a multivalued function g : C\{x

1

, . . . , xm} ≠æ C,
where g(c) consists of the n points where the line x = c cuts the curve C.

Let us consider a loop “ : [0, 1] ≠æ C\{x
1

, . . . , xm}. Then, as x travels along “, its
image g(x) describes n paths inside of C2, given by (“(t), g(“(t))), producing a braid of n
strands.

It can also be seen that homotopic loops give rise to homotopic braids, which allows
us to define a homomorphism

fl : fi
1

(C\{x
1

, . . . , xm}) ≠æ Bn,

where Bn denotes the braid group of n strands. This homomorphism is called a braid
monodromy for C. And since all the monodromies of a given curve are related by a simple
set of transformations (conjugation by any given braid and Hurwitz moves, see [9] and
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[3] for a definition), yielding equivalence classes, it is possible to talk about the braid
monodromy of a curve.

On the other hand, any braid running between points {a
1

, . . . , an} and {b
1

, . . . , bn}
defines a permutation of n elements, where i is sent to j if there is a strand of the braid
running from ai to bj . This defines a homomorphism „ : Bn ≠æ �n. In particular,
the braid fl(“) defines a permutation among the n points of g(x), given by „(fl(“)). It
is worth noticing that this permutation is exactly the image of “ under the covering
monodromy µ : fi

1

(C\{x
1

, . . . , xm}) ≠æ �n that describes C as a covering of C branched
over {x

1

, . . . , xm}. Therefore,
„ ¶ fl = µ.

This allows us to see that the braid monodromy includes all the information contained
in the covering monodromy, but adds yet further information. Hence, the braid mon-
odromy is a stronger invariant than the covering monodromy classically used to describe
the Riemann surface associated with g.

The idea of the braid monodromy has its origin in the foundational article [44] by
Oscar Zariski about the fundamental group of the complement of an algebraic curve. A
well known theorem by Riemann ([44, p. 306]) states that given points x

1

, . . . , xm in C, and
permutations ‡

1

, . . . , ‡m assigned to x
1

, . . . , xm generating a transitive group, there exists
an algebraic multivalued function y(x), the branches of which are permuted according to
‡i by surrounding the corresponding xi on a su�ciently small loop.

A more modern perspective allows us to observe that, since the fundamental group of
C\{x

1

, . . . , xm} is free, and generated by loops around each of the points x
1

, . . . , xm, then
‡

1

, . . . , ‡m define a covering monodromy µ : fi
1

(C\{x
1

, . . . , xm}) ≠æ �n. The theorem
states therefore that there exists an algebraic curve C in C2, satisfying that the branched
covering consisting of the projection of C into the x axis branches along {x

1

, . . . , xm}, and
that the monodromy of this covering is µ.

In his article, Zariski addresses the generalization of this problem into two dimensions.
In this case, we need to consider an algebraic plane curve C and a permutation assigned to
each generator of fi

1

(C2\C). Then we inquire about the existence of an algebraic function
z(x, y) branching along C, and such that its branches are permuted, by travelling along
the generators of fi

1

(C2\C), according to the corresponding permutation.
A previous result by Enriques ([11]) implies that such a function exists, provided that

all the relations among the generators of fi
1

(C2\C) are satisfied by its corresponding per-
mutations. This is, provided that the assigned permutations define a covering monodromy
µ : fi

1

(C2\C) ≠æ �n.
This result was not a complete solution of the initial problem, though, because the

referred relations were at that time unknown. Zariski’s interest in [44] centers then on the
problem of finding a method to calculate the fundamental group of the complement of an
algebraic curve.

The Lefschetz Hyperplane Section Theorem, or Zariski-Lefschetz Theorem, which was
already known, implied that given a curve C and a generic vertical line L, the generators
g

1

, . . . , gn of fi
1

(L\C) were generators of fi
1

(C2\C). Zariski’s idea was to move these loops
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in C2\C, along a continuous path of vertical lines, surrounding the singular points of C
and returning to L. By doing so, each loop gi was transformed into a loop gÕ

i and, by
reading gÕ

i in terms of g
1

, . . . , gn in L, relations for fi
1

(C2\C) could be obtained. The braid
monodromy was implicit here, because the transformation of gi into gÕ

i is determined by
the braid corresponding to the loop around the singular point into consideration.

In the same article, Zariski pointed out, though not completely proved, that the fun-
damental group of the complement of a sextic with six cusps over a conic is Z/2 úZ/3. He
showed moreover that if the complement of a sextic with six cusps has this fundamental
group, then the cusps must lie on a conic. Later investigations in [45] showed the likely
existence of sextics with six cusps not lying on a conic, implying the possible existence
of what it is now known as a Zariski pair, which can be thought as two curves that have
the same topology but di�erent embeddings in the projective space. Such findings greatly
motivated the study of the complement spaces of algebraic curves. The first confirmed
examples of Zariski pairs were found by Mutsuo Oka ([37]) and Enrique Artal ([2]).

Concerning the fundamental group of the complement of a curve, Zariski’s arguments
were rather informal, for which he asked Egbert van Kampen to give a rigorous topological
proof of his results. It was he who in [16] described the method to find such a group, which
is now known as the Zariski-van Kampen method, in its full generality. This method
allowed to confirm the fundamental groups previously computed by Zariski.

As we have seen, the method relied on the process of moving a vertical line along a
closed path, and thus sending the set of intersecting points of the line with the curve to
itself. While Zariski and van Kampen spoke only about permutations in this regard, this
process actually yields a richer object, a braid, which carries not only all the information of
the permutation, but also the information about how the points are permuted by travelling
through the space. Oscar Chisini seems to have been the first one to realize about the
importance of this fact, which led him to define the braid monodromy in [10].

The braid groups, although already implicit in previous works, were explicitly intro-
duced and studied by Emil Artin in [4, 5, 6]. The theory developed in these articles
provided an adequate setting for the braid monodromy’s definition and technique, being
of particular importance the introduction of a convenient algebraical presentation. It is
easy to see that the braid group of n strands defines an action on the fundamental group
of a complex line punctured at n points. The perspective opened by Chisini’s approach
allows us to see that the Zariski-van Kampen relations are given by the action of b on the
generators g

1

, . . . , gn, where b is the image by the braid monodromy of the loop surround-
ing the projection of the singular point into consideration.

Some decades later the braid monodromy was used by Boris Moishezon on the study of
projective surfaces. In [26], he considers a projective surface as a covering of the projective
plane branched along a discriminant curve, and uses the braid monodromy of the curve
to obtain results about the surface. A systematic study of the braid monodromy was
continued by him and Mina Teicher in [27, 28, 29, 30, 31], where they applied it to diverse
problems.

Later on, Anatoly Libgober showed in [19] that the braid monodromy of an a�ne plane
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curve determines not only the fundamental group, but furthermore the homotopy type of
its complement.

It was shown later the even stronger fact that the braid monodromy of a curve C
determines the topology of the pair (P2, C). This was first proved by Kulikov and Teicher
in [18] for the particular case of curves having only nodes and cusps. The full general
case was proved by Jorge Carmona in [9], by using arguments that rely heavily on the
graph manifold structure of certain neighborhoods (see [43, 35]). There, he also provided
a program that calculates the braid monodromy of a curve from its equation.

Although by these results it became known that the braid monodromy determines
the topology of (P2, C), it remained an open problem to find what this topology actually
is. This is, given the braid monodromy of an a�ne or projective curve C, to find a
presentation for the topology of (C2, C) or (P2, C̄).

In this work we provide such a presentation for the a�ne case. The presentation con-
sists of a regular CW decomposition of the pair (D, C fl D), where D is a large enough
polydisc in C2. This is, a regular CW decomposition of D having C fl D as a subcomplex.
The construction uses the presentation of the braid monodromy in the form of local braids
and conjugating braids. This presentation must satisfy that the local braids can be ex-
pressed as an ordered set of independent sub-braids, associated with di�erent preimages
of a critical value of a generic projection. From here, we construct certain balls T

0

, . . . , Tm

and B
1

, . . . , Bm associated with the local braids and the conjugating braids respectively.
Each of this balls is embedded in C2, and has a CW decomposition such that the inter-
section of the ball with C is a subcomplex. By joining all of these balls, we obtain a CW
complex that decomposes (D, C fl D). Theorem 1.18 states the good definition of this
decomposition.

We also provide a program that, from the braid monodromy, calculates this CW com-
plex explicitly. Since Carmona has already given a program that calculates the braid
monodromy of a curve from its equation, it is possible, by using the two programs, to
calculate the CW decomposition of (D, C fl D) from an equation of the curve. A second
program turns this CW complex into a simplicial complex thin enough to take a regular
neighborhood of the curve. The projective case is also briefly discussed.

It is yet unknown if two topologically equivalent curves have the same braid mon-
odromy, though a partial converse was proved by Artal, Carmona and Cogolludo in [3].

Let us consider now the Milnor fiber of a quasi-ordinary surface singularity with a
single Puiseux pair. The topological study of the singular points of complex hypersurfaces
has as its cornerstone the work of John Milnor, presented in his book [25]. In this book
he introduces a fribration, now known as the Milnor fibration, which is an essential aspect
of the topology around these points.

Let f : (Cn+1, 0) ≠æ (C, 0) be a hypersurface singularity germ. If this singularity is
isolated, then there exists Á > 0 such that, for every ÁÕ with 0 < ÁÕ Æ Á,

f≠1(0) t SÁÕ ,

where SÁÕ denotes the sphere centered at the origin with radius ÁÕ. If the singularity is

xii



not isolated we have a similar property. In this case there exists a stratification of f≠1(0)
such that each stratum is transversal to SÁÕ .

For this Á, there exists ÷ π Á such that

f≠1(z) t SÁ

for every z with 0 < |z| Æ ÷. Let Dú
÷ be the complex disk of radius ÷ punctured at

the origin, and BÁ the closed ball of radius Á in Cn+1. Let XÁ,÷ be defined by XÁ,÷ =
BÁ fl f≠1(Dú

÷). Then,
f |X

Á,÷

: XÁ,÷ ≠æ Dú
÷

is a locally trivial fiber bundle, which is independent of Á and ÷. This fiber bundle is called
the Milnor fibration of the singularity.

Two important invariants immediately derive from here. On the first hand, the fiber
F of the fibration, which is given by the preimage of any point in Dú

÷. This fiber is an
analytic manifold with boundary called the (compact) Milnor fiber.

On the other hand we have a monodromy. A trivialization of the Milnor fibration yields
a di�eomorphism fl : F ≠æ F defined up to isotopy. This map expresses how the fiber
is taken into itself by travelling along ˆDú

÷ and completing a loop. This di�eomorphism
is called the geometric monodromy of the fibration, and completely determines it. The
homomorphisms flú : Hú(F ;Z) ≠æ Hú(F ;Z) that it induces are also important invariants
called algebraic monodromies.

For the case of isolated singularities, Milnor proved that the Milnor fiber has the
homotopy type of a wedge sum or bouquet of n-dimensional spheres. The number µ
of these spheres is called the Milnor number of the singularity, and is computable from
the expression of f . Following these results, the Milnor fiber of this kind of singularities
has been intensively studied and is, by now, well understood. For the non-isolated case,
however, much less is known.

A feature of the Milnor fiber of the non-isolated surface singularities that has been
the subject of considerable research in recent times is its boundary. In the study of the
isolated singularities, the link of the singularity, which is also the boundary of the Milnor
fiber, plays a central role. In the case of non-isolated singularities, however, this link is
not smooth and the study of the boundary of the Milnor fiber (which is smooth) proves
to be a natural path to follow. In [21, 22] Françoise Michel and Anne Pichon showed that
the boundary of the Milnor fiber of a surface singularity with one-dimensional critical
locus is a graph manifold ([43, 35]). In [34] András Némethi and Ágnes Szilárd obtained
the same result by di�erent methods, and developed an extensive study of the boundary
of the Milnor fiber of this kind of singularities. Homological results were found by Dirk
Siersma in [41].

Another aspect of the Milnor fiber of the non-isolated singularities that has been
studied is its homotopy type. On this matter several Milnor style bouquet theorems have
been given for certain families of singularities by Siersma and Némethi ([38, 42, 40, 32, 33]),
and more recently by J. Fernández de Bobadilla and Miguel Marco ([12]).
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Some results exist for the case of quasi-ordinary singularities as well. In [7], Chunsheng
Ban, Lee McEwan and Némethi showed that the Euler characteristic of the Milnor fiber,
for an irreducible quasi-ordinary surface singularity f , is the Euler characteristic of the
Milnor fiber of the plane curve singularity defined by g(x, z) = f(x, 0, z) (provided an
adequate coordinate system). A similar result about the zeta-function of a hypersurface
quasi-ordinary singularity, and thus concerning the algebraical monodromies of its Milnor
fiber, was proved in [13] by Pedro D. González, McEwan and Némethi.

All of these results cover topological aspects or properties of the Milnor fiber of non-
isolated singularities without directly addressing its topological type. This is because of
the great diversity and complexity of these spaces. The same reason often obstructs the
extraction of general results, bounding the studies to be restricted to particular families
of functions.

In this work we provide a topological model of the compact Milnor fiber of the singu-
larities of type zn ≠ xayb, i.e. quasi-ordinary surface singularities with a single Puiseux
pair. This model is built in the following way. First, in the spirit of the first part, we
construct a CW decomposition of the pair (D, C fl D), where D is a large enough polydisc
in C2, and C is the discriminant curve of the Milnor fiber. Then, by means of a branched
covering, we lift up this decomposition into a CW decomposition of the compact fiber.
The good definition of this model is shown in Theorem 3.11. Another model for the same
fiber, as a cyclical gluing of four-dimensional balls, along certain solid tori, is also given
in Theorem 3.13.

This construction allows us to see the compact Milnor fiber as the preimage of the
four dimensional ball under a series of branched coverings. By studying the deck trans-
formations of these coverings, we are able to calculate the geometrical monodromy of the
Milnor fibration. This result is stated in Theorem 5.1.

The action of these deck transformations on the Milnor fiber, seen as a CW complex,
also induces transformations on the complex chain spaces of the fiber. In fact, it induces a
module structure. This allows us to decompose the complex chain spaces as a direct sum
of the eigenspaces of the operators induced by the deck transformations. By studying the
behaviour of the boundary operators within these eigenspaces we are able to calculate the
complex homology groups of the compact Milnor fiber, which are provided in Theorem 4.1.

Also, by using the classical Zariski-van Kampen method we calculate the fundamental
group of the complement of the curve xy(xy ≠ 1) = 0. From here, by using covering
theory, we are able to calculate the fundamental group of the compact Milnor fiber, given
in Theorem 5.3. Finally, by using the previous results and the Universal Coe�cient
Theorem for Homology, we calculate the homology groups of the compact Milnor fiber,
which are provided in Theorem 5.4.

We finish this introduction by describing the structure of the work, which is as follows.

In Chapter 1 we provide a regular CW decomposition of the pair (D, C fl D), where C
is an a�ne plane curve and D is a large enough polydisc. This decomposition is obtained
by successively building decompositions of pairs of spaces of increasing complexity. A
section is dedicated to each of these pairs. In Section 1.1 we give preliminary definitions.
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In Section 1.2 we construct a decomposition of a cylinder containing a braid. In Section
1.3 we do the same for the cone of a three-dimensional sphere that contains a closed braid.
In Section 1.4 we give a decomposition for a small ball around a point of a curve. In
Section 1.5 we decompose certain sets associated with the local braids. In Section 1.6 we
define a certain complex that we use later to join the di�erent complexes we obtain. In
Section 1.7 we decompose sets associated with the conjugating braids. Finally, in Section
1.8, we glue all of these complexes to obtain a decomposition of (D, � fl D).

In Chapter 2 we explain the programs for this decomposition and address the projective
case. In Section 2.1 we explain the program that calculates the CW decomposition of
(D, � fl D), with the code included in appendix A. In Section 2.2 we explain the program
that calculates the simplicial decomposition, with the code included in appendix B. The
projective case is examined in Section 2.3.

In Chapter 3 we build the models for the compact Milnor fiber CF of the singularities
of type zn ≠xayb. In Section 3.1 we construct a CW decomposition for the pair (D, C flD),
where C is the curve with equation xy(xy ≠ 1) = 0 and D a large enough polydisc. By
lifting this decomposition through a branched covering, in Section 3.2 we obtain a similar
decomposition for (D, C Õ fl D), where C Õ is the curve with equation xayb ≠ 1 = 0. In
Sections 3.3 and 3.4 we explain respectively the topology and combinatorics of this pair.
In Section 3.5, by lifting once again in a similar fashion, we obtain a decomposition for
the compact Milnor fiber. In Section 3.6 we explain the topology of the fiber, providing
another topological model. In Section 3.7, we explain the combinatorics of the fiber seen
as a CW complex.

In Chapter 4 we calculate the complex homology of the Milnor fiber CF . In Section
4.1 we provide some preliminary definitions and lemmas. In Section 4.2 we show that the
complex chain spaces can be decomposed in certain ways, and find convenient bases for
them. In Section 4.3 we examine the behaviour of the boundary operators. Finally, in
Section 4.4, we calculate the complex homology groups with the aid of a program contained
in appendix C.

In Chapter 5 we calculate several invariants of the Milnor fiber and fibration of the
singularities of type zn ≠ xayb. In Section 5.1 we calculate the geometrical monodromy of
the Milnor fibration. In Section 5.2 we calculate the fundamental group of the complement
of the curve xy(xy ≠ 1) = 0. By using this group and covering techniques, in Section 5.3
we calculate the fundamental group of the Milnor fiber. Finally, in Section 5.4, we use the
previous results to calculate the homology groups of the fiber.

xv



Chapter 1

A CW Decomposition for an
A�ne Algebraic Plane Curve

In this chapter we will make extensive use of the braid monodromy and related concepts.
For definitions and a detailed treatment of these topics we recommend the references [3]
and [9].

As we have already stated in the introduction, Carmona showed that the braid mon-
odromy of an algebraic curve C determines the topology of the pair (P2, C). This result
uses the concept of equivalent monodromies, which means monodromies that can be ob-
tained from one another by conjugation by any given braids and by Hurwitz moves. His
theorem states the following.

Theorem by Carmona Let C
1

and C
2

be two projective plane curves with equivalent
braid monodromies. Let us suppose that the line at infinity is not tangent to either C

1

or
C

2

. Then C
1

and C
2

are ambient isotopic ( [9, Theorem 4.2.1]).

In this chapter we use the braid monodromy of a plane a�ne curve C to provide a
topological model of the pair (D, C fl D), where D is a large enough polydisc. Aside from
the boundary of ˆD, this is the same as providing a model of (C2, C). Therefore, what
we give is a complete topological description of the embedding of C into C2. The model
we give consists of a CW decomposition of the pair (D, C fl D), i.e., a CW decomposition
of D having C fl D as a subcomplex. Besides, this decomposition is regular.

1



Chapter 1 A CW Decomposition for an A�ne Algebraic Plane Curve

1.1 Preliminaries

Let � be an algebraic curve defined by a polynomial function f : C2 æ C. Then, we can
assume that f is of the form

f(x, y) = yn + a
1

(x)yn≠1 + · · · + an≠1

(x)y + an(x),

where, for every i, ai(x) œ C[x] with deg(ai(x)) Æ i or ai(x) © 0. This is so because, if
f were otherwise, we could make a change of variable x ‘≠æ x ≠ cy, where c is a complex
number such that x ≠ cy does not divide the homogeneous part of higher degree of f (see
[14, Lemma 2.7]). Since x ‘≠æ x≠cy is a linear isomorphism, this operation does not alter
the topology of �. Also, we may assume that f does not have multiple factors since, if it
had them, they could be removed without altering its set of zeroes.

Let � be defined by

� = {x œ C | f(x, y) has multiple roots} .

Claim 1.1. The set � is finite.

Proof. We know the general fact that if A is a U.F.D., then q œ A[t] has multiple
irreducible factors if and only if the discriminant of q, disct(q), is equal to zero. By taking
A = C[x] we have that f œ C[x][y], as element of A[y], has multiple factors if and only if
discy(f) = 0. Let us notice that discy(W ) is a polynomial belonging to C[x], that we will
call D(x) and, since f has not multiple factors, D(x) is not identically zero.

Now, for any fixed a, f(a, y) has multiple roots if and only if D(a) = 0. Hence,
� = {a œ C | D(a) = 0}, which is a finite set of points. ⇤

Let x
1

, . . . , xm be the points of �, and let x
0

be a point of C \ �. Also, let ÷
1

, . . . , ÷m

be a geometric set of generators of fi
1

(C\ �, x
0

), this is, a set of generators satisfying that
÷

1

· . . . · ÷m is homotopic to the boundary of a disk centered at infinity.
Each of these generators can be chosen to be of the form ÷i = ⁄i“i⁄

≠1

i , where “i is a
small loop around xi, and ⁄i is a path going from x

0

to the initial point of “i, as shown
in the following figure.

Let
fl : fi

1

(C\{x
1

, . . . , xm}) ≠æ Bn

be the braid monodromy of f , presented as a homomorphism. Then, the image of each ÷i

under this monodromy can be obtained as a conjugated braid of the form fl(÷i) = –i—i–
≠1

i ,
where —i and –i are as follows.

The braid —i is given by the monodromy of f around “i, taking the initial point of “i

as a base point. On the other hand, the braid –i is a certain braid associated with the
open path ⁄i. We will see that, although the braid monodromy is not defined for open
paths, there is in fact a way to associate a braid –i to the open path ⁄i. The definition of

2



A CW Decomposition for an A�ne Algebraic Plane Curve Chapter 1

x1

x
s

“s

⁄s

x
m x

0

Figure 1.1

this braid is fairly similar to the one made for braids over closed paths, and is such that
the decomposition fl(÷i) = –i—i–

≠1

i holds.
We call —i and –i in this context a local braid and a conjugating braid respectively. We

will now take a closer look to these braids and provide precise definitions for them.
For any given point z œ C let us denote the complex line x = z by Lx=z. We will

use a similar notation for all the lines in C2, writing L and the equation of the line as a
subindex. Let us define

Vx=z := Lx=z fl V (f).

Then, Vx=z is a finite set with at most n points, and exactly n if z /œ �. Let a œ C\� and
let us choose a collection {fli}n≠1

i=1

of simple curves sequentially connecting in Lx=a the n
points of Vx=a, such that fli and fliÕ are always disjoint, except perhaps for their ends.

Definition 1.1. We call {fli}n≠1

i=1

a system of sequentially connecting paths for f at a, or
an SCP for short.

This is what Moishezon called a skeleton in a slightly di�erent context ([28]). Such
a system always defines an isomorphism between the braid group Bn and the group of
isotopy classes of homeomorphisms from the pair (Lx=a, Vx=a) into itself that fix a disk
centered at infinity. We refer to this group as the mapping class group of (Lx=a, Vx=a)
relative to the disk centered at infinity. The correspondence is defined in the following
way.

For 1 Æ i Æ n ≠ 1, let Âi : Lx=a ≠æ Lx=a be a homeomorphism satisfying that
Âi(Vx=a) = Vx=a and consisting of a rotation by 180¶ of the disk that is a regular neigh-
borhood of the curve fli. Let us observe that this homeomorphism transposes the points
of Vx=a at both ends of fli. The isotopy classes of the Âi form a generating set for the
mapping class group of (Lx=a, Vx=a) relative to the disk centered at infinity. Then, the

3



Chapter 1 A CW Decomposition for an A�ne Algebraic Plane Curve

fl
3

fl
2

fl
1

Lx=a

Figure 1.2: Example of an SCP for a set V
x=a

consisting of four points.

isomorphism is given by the correspondence of the class of each Âi with the Artin generator
‡i of Bn, which is a half-twist between the i-th and (i + 1)-th strands.

Let x̂ be a point in C, and let us consider a loop “ defined by the parametrization
“(t) = x̂ + Áe2ifit (t œ I), for some Á > 0. We choose Á small enough so that no point of
� is contained in the disk bounded by “, with the possible exception of x̂. For simplicity,
we denote “(I) also by “.

Let V“ denote the points of V (f) with first coordinate in “. Then, the pair

((“ ◊ C), V“) =
1€

tœI
Lx=“(t),

€
tœI

Vx=“(t)

2

is naturally a fiber bundle pair over the base space “. A trivialization of this bundle yields
a homeomorphism Ï : Lx=a ≠æ Lx=a such that if we cut ((“ ◊ C), V“) along Lx=a, and
re-glue according to Ï, the obtained space is the product of (Lx=a, Vx=a) by S1.

Let — be the braid corresponding to the isotopy class of Ï. This braid is called the
local braid of f around x̂, and can be thought as the braid formed by the n points of
Vx=“(t) as t goes from 0 to 1. Thus, the link —̄ obtained by closing — is equal to V“ , which
is embedded in (“ ◊ C) µ D”

x0 ◊ C. We often think about — realized in this way and not
as an abstract braid.

Let us notice that, by taking Á small enough, this local braid can be defined in the
same way for f œ C{x ≠ x̂}[y] and for f œ C{x ≠ x̂, y}, so we can speak about local braids
in these contexts too.

Let us define now a braid associated to an open path. Let ⁄ be a simple curve in C\�
with initial point b and final point a. Let Ê = {Êi}n≠1

i=1

be an SCP at b and Í = {fli}n≠1

i=1

an SCP at a. Let V⁄ denote the points of V (f) with first coordinate in ⁄. Then, by
identifying Ê and Í with a straight line in the real part of C, and the points of Vx=b and
Vx=a with 1, . . . , n, we obtain V⁄ as a classically defined braid inside of ⁄ ◊C, that we call
–.

Is worth noticing also that, by identifying Lx=b and Lx=a by a homeomorphism that
sends each Êi into fli, it is also possible to obtain – as the braid corresponding to the

4



A CW Decomposition for an A�ne Algebraic Plane Curve Chapter 1

isotopy class of a homeomorphism in the same way we did for —.
If ⁄ is one of the paths ⁄i defined before, we call – a conjugating braid for the corre-

sponding xi. Then, by choosing an SCP on x
0

and on the initial point of each “i we obtain,
for each “i a local braid —i, and for each ⁄i a conjugating braid –i. By assigning to each
÷i the conjugated element –i—i–

≠1

i we obtain a presentation for the braid monodromy of
f .

This is the setting we use for constructing the CW decomposition of (D, � fl D). As
already explained in the introduction, we develop this construction by successively build-
ing CW decompositions of pairs of spaces of increasing complexity. We thus start by
constructing a CW decomposition of a cylinder containing a braid (Section 1.2), followed
by a decomposition of the cone of a three-dimensional sphere that contains a closed braid
(Section 1.3), and then by decompositions associated with the local braids (Section 1.5),
conjugating braids (Section 1.7), and finally the decomposition of (D, � fl D) (Section
1.8). The final decomposition is best understood by going from a local to a global per-
spective in this way, while thinking about it from the global to the local is only desirable
retrospectively.

1.2 Decomposition of a Cylinder Containing a Braid

We begin by describing a CW decomposition of a torus with a closed braid embedded
inside. Let us consider the points Pj := (j, 0, 0) and Qj := (j, 0, c) of R3, where j œ
{1, . . . , n} and c is a natural number to be defined. For each j, let hÕ

j be a polygonal
or smooth path, with strictly monotonous third coordinate, joining Pj with Qj . Let us
suppose that the paths {hÕ

j} are disjoint. Then hÕ
1

, . . . , hÕ
n constitute a braid b of n strands.

Let Bn be the braid group for n strands. Let e be the identity of this group, which
represents a trivial braid of n strands, and let ‡

1

, . . . , ‡n≠1

be the Artin generators of
this group. Each generator ‡i represents the braid that transposes the i-th and i + 1-th
strands, while leaving the rest of the strands straight, and such that if the braid is seen
as running from bottom to top, the transposition follows the right-hand rule direction.

Then we consider a factorization b = ·
1

·. . .··k of b, with ·i œ {e, ‡
1

, ‡≠1

1

, . . . , ‡n≠1

, ‡≠1

n≠1

}
for every i. Let us notice that we allow the redundant and possibly repeated presence of e
in the word ·

1

· . . . · ·k. We do not think of b as an abstract braid but rather as a subspace
of R3.

Let us denote the planes of R3 by writing r and the equation of the plane as a subindex,
and let P and Q denote the sets

t
Pj and

t
Qj respectively. Let D

0

and Dc be closed
disks contained in rz=0

and rz=c respectively, and such that P is contained in the interior
of D

0

and Q in that of Dc. Moreover, let us choose these disks in such a way that b
is contained in a closed cylinder C, with bottom equal to D

0

and top equal to Dc, and
satisfying that [ˆC\(D

0

fi Dc)] fl b = ÿ.

5



Chapter 1 A CW Decomposition for an A�ne Algebraic Plane Curve

Let us assume that there is a set of planes rz=z1 , . . . , rz=z
k≠1 such that every rz=z

i

intersects b in the set of points {(j, 0, zi)}n
j=1

, and such that the braid running from
rz=z

i≠1 to rz=z
i

is exactly ·i. This can be assumed without loss of generality by deforming
b inside C, and means that the braids ·

1

, . . . , ·k are disposed in strictly ascending order.
Furthermore, if we define c = k, we can assume that zi = i.

For 1 Æ j Æ n and 1 Æ i Æ k + 1 let us define Aj(i) := (j, 0, i ≠ 1). We define also

Di := C fl rz=i≠1

,

Ci := {(x, y, z) œ C | i ≠ 1 Æ z < i} .

Then Ci is a sub-cylinder of C between Di and Di+1

and b fl Di = {Aj(i)}. We can see
the cylinder C illustrated in Figure 1.3.

D
k+1

D
k

D2

D1

(C
k

,·
k

)

(C1,·1)

Figure 1.3

Let ·i be a fixed arbitrary element of {·
1

, . . . , ·k}. Let us notice that ·i µ Ci and
runs from {Aj(i)} to {Aj(i+1)

}. Let h
1

, . . . , hn be the strands of ·i, where h¸ is the strand
starting at A¸(i) and finishing at some element of {Aj(i+1)

}.
If ·i is the trivial braid we can assume, without loss of generality, that h

1

, . . . , hn are
vertical line segments, and thus contained in ry=0

. Let us consider the set (Ciflry=0

)�fihn,
which is a union of n + 1 disjoint rectangular-shaped topological disks that are neither
open nor closed. Let Î

0

, . . . , În be the closures of these disks. Let us observe that Î
0

, . . . , În

split Ci into two combinatorial (n + 2)-gonal prisms, attached by n + 1 rectangular faces.
Since Ci�(ˆCi fi Î

0

fi · · · fi În) is the union of two disjoint three-dimensional open balls,
and ˆCi fi Î

0

fi · · · fi În is a two-dimensional CW complex, of which ·i is a subcomplex,
then ˆCi fi Î

0

fi · · · fi În provide us a CW decomposition for (Ci, ·i).

Definition 1.2. We call Ci, endowed with this CW complex structure, a double prism
for ·i = e.

We see the double prism illustrated in Figure 1.4 with names and orientations for each
cell.

6



A CW Decomposition for an A�ne Algebraic Plane Curve Chapter 1

A0(i+1)
A1(i+1)

A2(i+1)

A
n(i+1)

A
n+1(i+1)

A0(i) A1(i)
A2(i)

A
n(i)

A
n+1(i)

d0(i+1)
d1(i+1)

d2(i+1)

d

n(i+1)

d0(i)
d1(i)

d2(i)

d

n(i)

Î0(i)
Î1(i)

Î2(i)

Î
n(i)

e0(i)
e1(i)

e2(i)

e
n(i)

e
n+1(i)

◊(i)

Ë(i)

◊(i+1)

Ë(i+1)

m1(i)

m2(i)

m1(i+1)

m2(i+1)

Ÿ
(i) {

(i)

�
(i)

�
(i)

Figure 1.4: Here, �(i) and �(i) denote the interior of the prisms.

The boundaries of the cells, homologicaly speaking, are given below.

Dim. 1 Dim. 2

ˆ(ej(i)) = Aj(i+1)

≠ Aj(i)

ˆ(dj(i)) = Aj+1(i) ≠ Aj(i)

ˆ(m
1(i)) = A

0(i) ≠ An+1(i)

ˆ(m
2(i)) = A

0(i) ≠ An+1(i)

ˆ(Îj(i)) = ej(i) + dj(i+1)

≠ ej+1(i) ≠ dj(i)

ˆ(Ÿ
(i)) = m

1(i) + e
0(i) ≠ m

1(i+1)

≠ en+1(i)

ˆ({
(i)) = m

2(i) ≠ en+1(i) ≠ m
2(i+1)

+ e
0(i)

ˆ(◊
(i)) = m

1(i) + d
0(i) + · · · + dn(i)

ˆ(Ë
(i)) = ≠m

2(i) ≠ dn(i) ≠ · · · ≠ d
0(i)

Dim. 3

ˆ(�
(i)) = Ÿ

(i) ≠ ◊
(i) + ◊

(i+1)

≠ Î
0(i) ≠ · · · ≠ În(i)

ˆ(�
(i)) = ≠{

(i) ≠ Ë
(i) + Ë

(i+1)

+ Î
0(i) + · · · + În(i)

We will examine now the case in which ·i is an Artin generator. In this case every
strand on {h

1

, . . . , hn}, except for two of them, connect some point of {Aj(i)} with the point
of {Aj(i+1)

}} that has the same subindex, that is, the one that is directly above. These
strands can be assumed to be vertical line segments contained in ry=0

. The remaining two
strands, which we can assume are h

1

and h
2

, su�er a transposition, with h
1

connecting
A

1(i) with A
2(i+1)

, and h
2

connecting A
2(i) with A

1(i+1)

.
Let us take the points {A

1(i), A
2(i), A

1(i+1)

, A
2(i+1)

} into consideration. These four
points span a geometrical rectangle with boundary R homeomorphic to S1. Now imagine

7
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that R is the equator of a convex three-dimensional topological ball that we call �. This
ball can be assumed convex and thin enough to ensure that ��R µ C̊i. Then, we can
deform h

1

and h
2

to make them run along the boundary of �, as it is illustrated in
Figure 1.5.

A1(i+1)
A2(i+1)

A1(i)
A2(,i)

‹
3‹

1

‹
4

‹
2

d1(i+1)

d1(i+1)

d1(i+1)

d1(i)

d1(i)

d1(i)

‹3

‹1

‹4

‹2

��(i) ��(i)

Î1(i)

h2 e2(i)

h1
e1(i)

Figure 1.5

Let us consider the segments A
1(i)A2(i) and A

1(i+1)

A
2(i+1)

along with the strands h
1

and
h

2

. The union of these four paths is homeomorphic to S1. Let us consider a topological
disk bounded by such union. We will call this disk Î

1

, and assume that its interior is
contained in the interior of �. Then Î

1

is a combinatorial quadrilateral that ascends
making a half twist. In addition, h

1

, h
2

and R split ˆ� into four triangles, forming a
combinatorial tetrahedron. We name these triangles as follows:

‹
1

= A
1(i)A1(i+1)

A
2(i+1)

,

‹
2

= A
1(i)A2(i+1)

A
2(i),

‹
3

= A
2(i)A1(i+1)

A
2(i+1)

,

‹
4

= A
1(i)A1(i+1)

A
2(i).

Let us observe also that Î
1

splits � into two three-dimensional balls. We call �
�

(respec-
tively �

�

) the ball whose boundary contains ‹
1

(res. ‹
3

). These objects are shown in
Figure 1.5.

Finally, from the intersection Ci fl ry=0

let us subtract the set � fi h
1

fi · · · fi hn. The
resulting set is a union of n disjoint rectangular-shaped topological disks. Let Î

0

, Î
2

, . . . , În

be the closures of these disks, ordered by crescent x coordinates.
Let us observe that Ci�(ˆCi fi Î

0

fi · · · fi În fi ‹
1

fi · · · fi ‹
4

) is the union of four disjoint
three-dimensional open balls. Since ˆCi fi Î

0

fi · · · fi În fi ‹
1

fi · · · fi ‹
4

is a two-dimensional
CW complex, of which ·i is a subcomplex, it provides us a CW decomposition for (Ci, ·i).

8
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Definition 1.3. We call Ci endowed with this CW complex structure a double quasi-prism
for ·i.

For a general Artin generator ‡±1

q we assume that the twisted quadrilateral enclosed
by � is Îq. Figure 1.6 illustrates a double quasi-prism, for a general right-handed twist
‡q, with names given to each cell. We use the same names for a left-handed twist (Let
us notice that the decompositions of ‡q and ‡≠1

q have the same set of cells and the same
boundaries up to dimension two).

A0(i) A1(i)
A

q(i)

A
n(i)

A
n+1(i)

d0(i)

d

q(i)

d

n(i)

Î0(i)

Î
n(i)

e0(i)
e1(i)

e
q(i)

e
n(i) e

n+1(i)

◊(i)

Ë(i)

m1(i)

m2(i)

Ÿ
(i) {

(i)

�
(i)

�
(i)

Figure 1.6

For a general generator ‡s
q , with s = ±1, the boundaries of the cells are given below,

where the underlines mean that the underlined terms are to be omitted.
Dim. 1 Dim. 2

ˆ(ej(i)) = Aj(i+1)

≠ Aj(i)

ˆ(dj(i)) = Aj+1(i) ≠ Aj(i)

ˆ(m
1(i)) = A

0(i) ≠ An+1(i)

ˆ(m
2(i)) = A

0(i) ≠ An+1(i)

ˆ(hq(i)) = Aq+1(i+1)

≠ Aq(i)

ˆ(hq+1(i)) = Aq(i+1)

≠ Aq+1(i)

ˆ(Îj(i)) = ej(i) + dj(i+1)

≠ ej+1(i) ≠ dj(i), j ”= q

ˆ(Îq(i)) = hq(i) ≠ dq(i+1)

≠ hq+1(i) ≠ dq(i)

ˆ(‹
1(i)) = dq(i+1)

≠ hq(i) + eq(i)

ˆ(‹
2(i)) = ≠dq(i) ≠ eq+1(i) + hq(i)

ˆ(‹
3(i)) = dq(i+1)

≠ eq+1(i) + hq+1(i)

ˆ(‹
4(i)) = ≠dq(i) + eq(i) ≠ hq+1(i)

ˆ(Ÿ
(i)) = m

1(i) + e
0(i) ≠ m

1(i+1)

≠ en+1(i)

ˆ({
(i)) = m

2(i) ≠ en+1(i) ≠ m
2(i+1)

+ e
0(i)

ˆ(◊
(i)) = m

1(i) + d
0(i) + · · · + dn(i)

ˆ(Ë
(i)) = ≠m

2(i) ≠ dn(i) ≠ · · · ≠ d
0(i)

9



Chapter 1 A CW Decomposition for an A�ne Algebraic Plane Curve

Dim 3.

ˆ(�
(i)) = Ÿ

(i) ≠ ◊
(i) + ◊

(i+1)

≠ Î
0(i) ≠ · · · ≠ Îq(i) ≠ · · · ≠ În(i) ≠ ‹

2≠s(i) ≠ ‹
3≠s(i)

ˆ(�
(i)) = ≠{

(i) ≠ Ë
(i) + Ë

(i+1)

+ Î
0(i) + · · · + Îq(i) + · · · + În(i) + ‹

2+s(i) + ‹
3+s(i)

ˆ(�
�(i)) = s(‹

1(i) ≠ ‹
4(i) + Îq(i))

ˆ(�
�(i)) = s(‹

2(i) ≠ ‹
3(i) ≠ Îq(i))

If we endow each (Ci, ·i) in (C, b) with a double prism or a double quasi-prism structure
we obtain a CW decomposition for (C, b). Let us notice that this decomposition is a CW
complex built only from a factorization ·

1

· . . . · ·k of b.

Definition 1.4. We call (C, b) endowed with this CW complex structure a loom for
b = ·

1

· . . . · ·k.

Theorem 1.2. Let b be a braid of n strands and ·
1

· . . . · ·k a factorization of b. A loom
for b = ·

1

· . . . · ·k is a well defined regular CW decomposition for (C, b).

Proof. It follows from the construction that a loom for any factorization of any braid
b is a well defined regular CW complex. We need to see that, although looms arising from
di�erent factorizations of b are combinatorially di�erent, they yield the same underlying
pair of spaces, which is (C, b).

Let ·
1

· . . . · ·k and · Õ
1

· . . . · · Õ
kÕ be two words presenting the same algebraic braid in

Artin’s presentation. That these words present the same topological braid (C, b) is a basic
fact of braid theory. That the underlying pair of spaces of a loom for either ·

1

· . . . · ·k or
· Õ

1

· . . . · · Õ
kÕ is (C, b) is clear by construction. ⇤

1.3 Decomposition of the Cone of a Three-Sphere
Containing a Closed Braid

Let b be a braid of n strands as in the previous section. Let us deform C in R3 and glue
D

1

with Dk+1

to form a solid torus C Õ, in such a way that, for every j, Pj is glued with
Qj . Now let us embed C Õ in S3. By this process b is transformed into a closed braid or
link that we call the closure of b and denote by b̄.

Let us consider b̄ embedded in a three-dimensional sphere S in this way. Then, the
cone of S is a four-dimensional ball containing the cone of b̄, which is two-dimensional.
Although the symbol ‚ is usually used for logical disjunction or the wedge sum of spaces,
we will use it along this chapter to denote the cone of a space. Thus, let ‚S be the cone

10
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of S and ‚b̄ the cone of b̄ inside of ‚S. Our purpose now is to construct a CW the pair
(‚S, ‚b̄). We do this by constructing ‚S through a series of steps.

We start the construction from a cylinder containing a braid. Let C be a loom for b.
The plane ry=0

intersects ˆC at the union of four line segments, two of which are vertical.
These segments will be called a

1

and a
2

, being a
1

the closest to the z axis and a
2

the far-
thest. Let us recall that the CW complex structure of C is dependent on the factorization
b = ·

1

· . . . · ·k, where ·i œ {e, ‡
1

, ‡≠1

1

, . . . , ‡n≠1

, ‡≠1

n≠1

} for each i. Let us assume ·
1

= e,
and construct the CW complex accordingly. This apparently superfluous requirement has
the purpose to facilitate later constructions.

As a second step, we identify the disks D
1

and Dk+1

, according to a homeomorphism
constant on the x and y variables. By doing this, we transform C into a solid torus, that
we call T

1

, and b into the closed braid b̄. Also, the sets resulting from C
1

, . . . , Ck and
D

1

, . . . , Dk will preserve these names, with the disk resulting from the identification of
D

1

and Dk+1

being called D
1

. It is clear that T
1

has a CW complex structure directly
inherited from C. We call T

1

endowed with this structure a closed loom for b.
The third step will be to glue T

1

to another solid torus to complete a sphere. Let T
2

be
a solid torus, let µ and ⁄ be two disjoint meridian disks of T

2

, and let l be a longitude of
T

2

(homologous to the generator of H
1

(T
2

)) such that µfl l and ⁄fl l are single points. Now
we glue T

1

and T
2

by their boundaries according to a homeomorphism Ï : ˆT
1

≠æ ˆT
2

such that
Ï(a

1

) = ˆµ, Ï(a
2

) = ˆ⁄, Ï(ˆD
1

) = l.

We denote the three-dimensional sphere T
1

fiÏ T
2

by S. It can be readily seen that S has
a CW complex structure induced by those of T

1

and T
2

. The zero and one-dimensional
cells of this structure are those of T

1

; the two-dimensional cells are those of T
1

with the
addition of µ and ⁄; and the three-dimensional cells are those of T

1

with the addition of
the two balls composing T

2

�(ˆT
2

fi µ fi ⁄).
The last step is to endow ‚S with the CW complex structure conically induced by

the structure of S. Let us notice that the resulting CW complex is built only from a
factorization ·

1

· . . . · ·k of b.

Definition 1.5. We call ‚S endowed with this CW complex structure a marble for b =
·

1

· . . . · ·k.

This complex is shown in Figure 1.7.

Theorem 1.3. Let b be a braid of n strands, ·
1

· . . . · ·k a factorization of b, and b̄ its
closure. A marble for b = ·

1

· . . . · ·k is a well defined regular CW decomposition for
(‚S, ‚b̄).

Proof. It is clear by construction and Theorem 1.2. ⇤

The following observation implies that the topology of the underlying pair of the
CW complex is not only independent of the factorization of b, but independent on this
factorization up to conjugation.

11
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⁄

Hsup

µ

Hinf

⁄

T
2

T
1

{(1)

⁄T
1

T
2D1

a1 a2 Hsup l

D2 µ

(C1,·1) Hinf

D1 ⁄

Figure 1.7

Observation 1.4. Let a, b œ Bn. By Markov’s Theorem ([8, Theorem 2.3]), if a and b
are conjugated braids in Bn, then ā = b̄. Therefore, the marbles for any factorizations of
two conjugated braids a and b are decompositions of the pairs (‚S, ‚ā) and (‚S, ‚b̄), and
thus are topologically equivalent (though not combinatorially equivalent).

Let us consider now the two balls that compose T
2

�(ˆT
2

fi µ fi ⁄). One of these balls
has its boundary attached to points of ˆT

1

coming from points of R3 with positive y
coordinate. A similar statement is true for the other ball, but for points with negative y
coordinate. These two balls will be called respectively the superior and inferior caps of
‚S, and will be denoted by Hsup and H inf .

We will describe now the cells composing ‚S and its boundaries. Let AA denote the
apex of ‚S (The double A is only a name and has the purpose to distinguish this vertex
from other vertices that are to be called A). Let us notice that the cells of ‚S are divided
into three (disjoint) sets: The set Bnd(‚S) of all the cells of S; the set Con(‚S) of all the
conical cells produced by taking the cone of each cell of S; and the singleton {AA}.

We begin with the set Bnd(‚S), which is composed by µ, ⁄, Hsup, H inf and all the cells
of T

1

. The torus T
1

is in turn composed by a series of prisms and quasi-prisms C
1

, . . . , Ck.
For each Ci we have the cells and boundaries already described in the previous section,
only that the identification of D

1

and Dk+1

implies that the subindex i now has to be
taken modulus k. Then, it only remains to provide the boundaries of µ, ⁄, Hsup and H inf ,
which are given below.

ˆ(µ) = e
0(1)

+ · · · + e
0(k)

ˆ(⁄) = en+1(1)

+ · · · + en+1(k)

ˆ(Hsup) = µ ≠ ⁄ ≠ {
(1)

≠ · · · ≠ {
(k)

ˆ(H inf) = µ ≠ ⁄ ≠ Ÿ
(1)

≠ · · · ≠ Ÿ
(k)

12
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Now we consider the set Con(‚S). For any cell fl of S, let ‚fl denote the cone of fl.
Moreover, for any chain c = a

1

fl
1

+ · · · + alfll of cells of a given dimension of S, let ‚c
denote the chain a

1

‚ fl
1

+ · · · + al ‚ fll. We give each cell ‚fl the orientation resulting by
adding to the orientation of fl the vertex AA. Then, the boundaries of the conical cells
are given by

ˆ(‚fl) = AA ≠ fl

if dim(fl) = 0, and by
ˆ(‚fl) = (≠1)dim(fl)(≠fl) + ‚(ˆ(fl))

if dim(fl) > 0.

1.4 Local Decomposition for the Zero Set of a Func-
tion in C{x, y}

Let us consider again f and � as in the first section. We are now interested in finding a
CW decomposition of a small neighborhood around a point p of �.

By a translation, we may assume that p is the origin. Now we consider f as an
element of C{x, y}. In fact, since we are only going to examine f locally, what we discuss
in this section is valid for any function of C{x, y} sending zero to zero, not necessarily a
polynomial. Therefore, in this section, we consider f as an arbitrary element of C{x, y}
such that f(0, 0) = 0.

Let DÁ and D÷ be disks in C centered at the origin with radii Á and ÷ respectively, and
such that f is convergent in the polydisc DÁ ◊ D÷. The radii Á and ÷ are to be shrunken
if necessary. Also, for any function of C{x, y} convergent on DÁ ◊ D÷, let V (·) denote the
zero set of that function in DÁ ◊ D÷.

Let us recall that an element w of C{x, y} is called a Weierstrass polynomial (with
respect to y) if it is of the form

w(x, y) = yd + a
1

(x)yd≠1 + · · · + ad≠1

(x)y + ad(x),

where, for every i, ai(x) œ C{x} and ai(0) = 0.
As in the first section, by a change of variable, we may assume that f(0, y) is not

identically zero. Then, by the Weierstrass Preparation Theorem, there exists a unit u œ
C{x, y} and a Wierstrass polynomial w œ C{x}[y] such that, inside a certain neighborhood
of (0, 0),

f(x, y) = u(x, y)w(x, y).
By shrinking Á and ÷, we may assume that the former equality holds in DÁ ◊ D÷.

Furthermore, the fact that u is a unit in C{x, y} means that u(0, 0) ”= 0, so choosing Á
and ÷ small enough we can ensure that V (f) = V (w). This means that close to the origin
we can work with w instead of f for geometrical reasonings.

13
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On the other hand, we know that the factorization of w into irreducible factors in
C{x}[y] (and in C{x, y}) is of the form

w(x, y) = wk1
1

(x, y) · · · wk
l

l (x, y)

where w
1

, . . . , wl are Weierstrass polynomials. Then,

V (w) = V (w
1

) fi · · · fi V (wl).

The set V (w) is called a local analytic curve in the neighborhood of (0, 0), while each V (wr)
is called an irreducible local analytic curve component of V (w).

By the Local Normalization Theorem for Algebraic Curves, each V (wr) is a disk cen-
tered at the origin, and the boundary of V (w) is a link in ˆ(DÁ ◊ D÷). This local study
of curves by means of their Weierstrass polynomials is classical and is exposed with detail
in [14].

On the other hand, we may assume that w has not multiple factors (i.e. k
1

= · · · =
kl = 1) because, if it had them, they could be removed without altering V (w). Then we
have the following.

Claim 1.5. For every i ”= j, V (wi) fl V (wj) = (0, 0).

Proof. We reason in a similar way as in Claim 1.1. By taking A = C{x}, we have that
discy(w) is a series belonging to C{x}, that we will call D(x). Since W has not multiple
factors, D(x) is not identically zero.

Let us observe that D(x) can be factorized as D(x) = xmQ(x), with m Ø 0 and
Q(x) œ C{x} satisfying that Q(0) ”= 0. Let us reduce Á enough so we can ensure that
Q(x) ”= 0 for every x œ DÁ. Therefore, D(x) ”= 0 for every x œ DÁ�{(0, 0)}.

From here it follows that w has not multiple roots in DÁ�{(0, 0)}, and therefore V (wi)
and V (wj) do not intersect in a point other than (0, 0). ⇤

Now, let x̌ be a fixed point of ˆDÁ, and let y̌
1

, . . . , y̌n be the roots of w(x̌, y). Then the
points of V (w) with first coordinate equal to x̌ are (x̌, y̌

1

), . . . , (x̌, y̌n). If we move x̌ over
ˆDÁ all the way around DÁ completing the circumference, the points (x̌, y̌

1

), . . . , (x̌, y̌n)
will travel accordingly inside ˆDÁ ◊ C completing a closed braid. Let b be a braid such
that its closing produces this closed braid. Then b is a local braid of w along ˆDÁ with a
given orientation.

Besides, b̄ =
t

ˆV (wr) is contained in ˆ(DÁ ◊ D÷). Since the V (wr) are disjoint disks
except by the origin, (DÁ ◊ D÷, V (w)) is the cone of (ˆ(DÁ ◊ D÷), b̄) with apex at he
origin. Hence, we can then apply Theorem 1.3 and give (DÁ ◊ D÷, V (w)) a CW complex
structure. Since two di�erent SCP at x̌ yield conjugated braids, Observation 1.4 ensures
that the pair (‚S, ‚b̄) is topologically equivalent to (DÁ ◊ D÷, V (w)), regardless of the
choice of b.

Furthermore, since b µ ˆDÁ ◊ D÷, we can take T
1

= ˆDÁ ◊ D÷ and T
2

= DÁ ◊ ˆD÷.
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1.5 Decomposition for a Local Braid

Let us consider again f and � as in the first section. Let Dr and Dr
p denote closed disks

in C, centered at the origin and at point p respectively, of radius r, and to be shrunken
if necessary. Let (x̂, ŷ) œ �. If we wanted a purely local description of the embedding
of � in C2, we could take a small polydisc D := DÁ

x̂ ◊ D÷
ŷ around (x̂, ŷ) and then apply

Theorem 1.3 just as in Section 1.4 to obtain a CW decomposition of (D, � fl D). In this
section, however, we aim a little more.

We want our polydisc to contain not only the points of � near (x̂, ŷ), but all the points
of � near any point (x̂, y) œ �. Thus, intuitively speaking, our polydisc D will be the
product of a small disk DÁ

x̂ and a big disk D÷
ŷ , in such a way that D = DÁ

x̂ ◊ D÷
ŷ contains

all the points in �fl(DÁ
x̂ ◊C). Moreover, since we are interested in describing the topology

of the embedding of the curve into (DÁ
x̂ ◊C), we will not demand D to be a polydisc, but

only a four-dimensional ball satisfying that �flD = �fl (DÁ
x̂ ◊C). It can be seen that any

two four-dimensional balls (and in particular polydiscs) satisfying this and an additional
condition on the boundary are ambient isotopic in C2, by an isotopy leaving � constant.
We will construct now a CW decomposition for (D, � fl D).

Now we consider f as an element of C{x ≠ x̂}[y]. In fact, since we are only going
to examine f in values of x close to x̂, we will work in the wider context of a function
f œ C{x ≠ x̂}[y]. Therefore, in this section, we consider f as an arbitrary element of
C{x ≠ x̂}[y].

Let x̂ be a point in C. As in the first section, we can assume f œ C{x ≠ x̂}[y] is of the
form

f(x, y) = yn + a
1

yn≠1 + · · · + an≠1

y + an,

where ai œ C{x ≠ x̂} for every i. Let DÁ
x̂ be a disk where every ai is convergent. Then f

will be considered as a function from DÁ
x̂ ◊C into C. We denote the zero set of f by V (f)

as usual. Finally, let � be defined by

� = {x œ DÁ
x̂ | f(x, y) has multiple roots} .

We know that � is either empty or equal to {x̂}, being the latter the interesting case.

Claim 1.6. Either � = ÿ or � = {x̂}.

Proof. It can be proved by the same arguments used in Claims 1.1 and 1.5.

Let p
1

= (x̂, y
1

), . . . , pl = (x̂, yl) be the points of Vx=x̂, with l Æ n. For 1 Æ r Æ l, let
�r be the local analytic curve of f in the neighborhood of pr. For Á small enough, we can
assume that

V (f) fl (DÁ
x̂ ◊ C) = �

1

fi · · · fi �l.

We already know that each �r is a union of topological disks identified by their centers.
Besides, these disks are, except by their common centers, disjoint.
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For 1 Æ r Æ l, let nr denote the number of points in which the vertical line Lx=c inter-
sects �r, for c œ DÁ

x̂ \ {x̂}; this is, the degree of the corresponding Weierstrass polynomial
around pr. Let us notice that if, for a certain r, the number nr is equal to 1, then �r is
a single disk transversal to Lx=x̂. Also, since f does not have multiple roots in DÁ

x̂ \ {x̂},
the sets �

1

, . . . , �l are pairwise disjoint.
We summarize these statements in the following lemma.

Lemma 1.7. For 1 Æ r Æ l, the set �r is a disk if nr = 1, and a union of at most nr

independent topological disks with identified centers if nr > 1. Also, for j ”= r, �r fl�j = ÿ.

Now, let the loop “ be defined by

“(t) = x̂ + Áe2fiit, t œ I.

Let a = x̂ + Á, and let — be the local braid of f around x̂ taken along “, and defined
according to an SCP fl = {fli}n≠1

i=1

in Lx=a.
Let us define the boundary ˆ�r of �r as the union of the boundaries of the disks

forming it. Then, for 1 Æ r Æ l, the link ˆ�r is a union of components of —̄, and

—̄ = ˆ�
1

fi · · · fi ˆ�l.

From here it follows that there is a sub-braid —
(r)

of —, defined according to fl, such that
its closure —̄

(r)

is equal to ˆ�r. This braid —
(r)

is the local braid along “ of the Weierstrass
polynomial around pr and, if we make Á tend to 0, then —

(r)

tends to pr. Thus, — can be
decomposed into the l sub-braids —

(1)

, . . . , —
(l).

Let us consider the SCP fl for a moment. If, for each r, the curves of fl on Vx=a join
consecutively the points of Vx=a corresponding to the strands —

(r)

, we say that fl separates
— into —

(1)

, . . . , —
(l), that it is a separating SCP for — or, by short, that it is an SSCP for

—.

—(1) —(1)

—(2) —(2)

—(3) —(3)
L

x=a

L
x=a

Figure 1.8: Here we see two di�erent SCP at the same a. The one on the left separates —, while the one
on the right does not.
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Observation 1.8. Given f , x̂, “, and — as before, for a small enough Á, the SCP at x̂ + Á
that joins through straight segments the points of Vx̂+Á in the lexicographical order of C
is an SSCP for —.

It is important to notice that, as algebraic braids, —
(1)

, . . . , —
(l) are also defined upon

fl. If fl is separating, we can consider each —
(r)

as defined upon an SCP fl
(r)

, consisting on
the paths on fl joining the points of Vx=a corresponding to —

(r)

. The order that fl induces
on the fl

(r)

is also the order that — induces on the —
(r)

. Therefore, fl defines an ordered
set {fl

1

, . . . , fll} of SCP, which in turn defines the ordered set of sub-braids {—
(1)

, . . . , —
(l)}.

The following is a trivial but important observation.

Observation 1.9. If the algebraic braids —, —
(1)

, . . . , —
(l) are defined upon an SSCP for

—, then — determines, and is determined, by the set {—
(1)

, . . . , —
(l)} and a total order on

this set.

From now on, we demand that the SCP fl defining — is separating and that —
(1)

, . . . , —
(l)

are numbered in the order induced by fl.
Now we are in a position to provide the decomposition of (D, � fl D), as we proposed

at the beginning of the section. We will do so by constructing the ball D from smaller
parts.

For 1 Æ r Æ l let Hr be a Milnor polydisc around (x̂, yr). Without loss of generality,
by taking Á small enough, we may assume that, for every r, Hr is the product of DÁ

x̂ with
some disk Dy

r

in the y variable. We may also assume that H
1

, . . . , Hl are pairwise disjoint.
Let us observe also that

Hr fl V (f) = �r,

ˆHr fl V (f) = —r.

Then, by the conical structure of the Milnor polydisc, we are in a condition to apply
Theorem 1.3 and Observation 1.4 to each Hr as in Section 1.4. Thus, we endow each
Hr with the CW complex structure referred to in the theorem, turning Hr into a marble
associated with some factorization of —

(r)

.
In fact, we could define each Hr more generally as a Milnor ball, and since a Milnor

ball also has a conical structure, we could apply Theorem 1.3 in the same way. However,
to define Hr as a polydisc aids to the imagination because, on each Hr, the two solid tori
T

1

and T
2

of the marble structure can be chosen to be the the two solid tori ˆDÁ
x̂ ◊ Dy

r

and DÁ
x̂ ◊ ˆDy

r

naturally produced by the product structure of the polydisc.
Now we are going to glue all the marbles H

1

, . . . , Hl in a convenient way. Let us observe
that, if we have two disjoint balls in R3, it is possible to deform them in such a way that,
after the deformation, they intersect on a disk. Similarly, it is possible to deform two balls
in R4, or in C2, in such a way that they intersect on a three-dimensional ball. In this way,
we are going to deform H

2

in order that H
1

and H
2

intersect on a three-dimensional ball.
Then we deform H

3

in order that H
2

and H
3

intersect on a three-dimensional ball, and
so on, until we deform Hl in order that Hl and Hl≠1

intersect in the same way.
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Chapter 1 A CW Decomposition for an A�ne Algebraic Plane Curve

It is obvious that, by doing these deformations, each Hr ”= H
1

ceases to be a geometrical
polydisc. However, the marble structure is preserved, though deformed. It is clear also
that at the end of the process the union of all the Hr is a four-dimensional ball in C2.
In order for this ball to have a CW complex structure, and intersects the curve in a nice
subcomplex, these deformations must be done carefully. We are going to show now the
exact way in which these deformations are to be done.

Since we allow the redundant presence of the identity in the factorization of any —
(r)

,
we may assume that the factorizations of all the braids —

(r)

have the same length k.
On the other hand, let us recall that any marble possesses a family of disks denoted

by Di, and a family of cylinders denoted by Ci, which are subcomplexes of its marble
structure and were defined in the previous section. For each r, let D

(1,r)

, . . . , D
(k,r)

and
C

(1,r)

, . . . , C
(k,r)

denote the disks Di and the cylinders Ci of Hr. Let us denote also the
superior and inferior caps of Hr by Hsup

(≠,r)

, and H inf

(≠,r)

. The subindex "≠" has no true
meaning here, and its use will be explained later.

We proceed to glue H
1

and H
2

as follows. Let us deform H
2

inside of DÁ
x̂ ◊ C (by an

isotopy of its inclusion map), and leaving �
2

fixed, in order that ˆH
1

and ˆH
2

intersect
in a three-dimensional ball. We demand this deformation to be done without generating
intersections with H

3

, . . . , Hl. This is possible because p
1

and p
2

can be joined by a path
inside of Lx=x̂ that does not intersect H

3

fi · · ·fiHl. Then, the deformation can be done in
the interior of a regular neighborhood of this path that does not intersect H

3

fi · · ·fiHl. In
other words, the deformation can follow this path, while keeping H

2

thin enough to avoid
intersecting H

3

fi · · ·fiHl. Therefore, since �r µ Hr for every r Ø 3, this deformation does
not generate new intersections with V (f) either.

The deformation can be done, moreover, in such a way that the following conditions
hold.

• (ˆH
1

fl ˆH
2

) = H
1

fl H
2

= Hsup

(≠,1)

= H inf

(≠,2)

.

• The orientations of H
1

fl H
2

inherited from H
1

and H
2

coincide.

• For every 0 Æ i Æ k, the boundaries of C
(i,1)

and C
(i,2)

coincide in the intersection
of H

1

and H
2

, i.e. that ˆC
(i,1)

fl Hsup

(≠,1)

= ˆC
(i,2)

fl H inf

(≠,2)

.

It is a trivial observation that this gluing is cellular. The resulting situation is illustrated
in Figure 1.9.

Following the same procedure, we can deform H
3

in order that H
2

fl H
3

= Hsup

(≠,2)

=
H inf

(≠,3)

, and that the same coincidence conditions hold. We continue this gluing process
inductively until we reach Hl. We define then

T := H
1

fi · · · fi Hl.

It follows from the construction that this set is a closed ball and, since we have glued
all the Hr cellularly, it has a CW complex structure trivially inherited from the Hr. Let
us notice that the resulting CW complex is built only from the ordered set of sub-braids
{—

(1)

, . . . , —
(l)} and their factorizations.
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⁄(≠,2)

⁄(≠,2)

⁄(≠,1)

⁄(≠,1)

H
2

H
1

Hinf
(≠,2)

Hsup
(≠,1)

D(1,2)

C
(1,2)

D(2,2) {(1,2)

C
(1,1)D(1,1)

D(2,1)

Ÿ(1,1)

Figure 1.9

Definition 1.6. We call T endowed with this CW complex structure a tower for x̂.

The following theorem has already been proved along the construction.

Theorem 1.10. Let a, “, and — be as defined in this section. Let fl be an SCP at a
that separates —, defining the ordered set of sub-braids {—

(1)

, . . . , —
(l)}. A tower for x̂,

built upon the ordered set of sub-braids {—
(1)

, . . . , —
(l)}, and their factorizations, is a well

defined regular CW decomposition for (T, T fl V (f)), where T is constructed as before.

Here, T is by definition the underlying space of the tower. We will prove now a
stronger version of this theorem (Theorem 1.13). Though it is not strictly necessary to
our construction, this strongest version will allow us to consider T as an arbitrary ball
satisfying certain properties. In particular, it will allow us to consider T as a polydisc of
the form DÁ

x̂ ◊ D, for a large enough disk D in y, as we posed in the beginning of this
section. Also, for the rest of the section, we may assume we work in the smooth category.

Let us observe that T satisfies the two following equalities:

I. T fl V (f) = (DÁ
x̂ ◊ C) fl V (f) = �

1

fi · · · fi �l.
II. ˆT fl V (f) = (“ ◊ C) fl V (f) = —̄.

The following lemma states that T is in fact generic in regard to these equalities.
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Lemma 1.11. Let U µ DÁ
x̂ ◊ C be homeomorphic to a closed ball and such that

U fl V (f) = (DÁ
x̂ ◊ C) fl V (f) and

ˆU fl V (f) = —.

Then there exists an isotopy from T into U constant on V (f).

Before continuing, let us fix the following notation. Let A and B be topological
spaces and g, h : A ≠æ B homeomorphisms to their images. Then, to denote an isotopy
H : A ◊ I ≠æ B, such that H

0

= g and H
1

= h, we write H : g ≠æ h. Also, let 1A denote
the identity map on A. In order to prove Lemma 1.11 we need to show the following
auxiliary fact first.

Lemma 1.12. Let h : T ≠æ U be an orientation-preserving homeomorphism. Then,
there exists an isotopy of the identity H : U ◊ I ≠æ U that, for every r, sends �r into
h(�r).

Proof. Let B
1

, . . . , Bl be four-dimensional balls in U such that, for every r, �r µ Br.
Let us observe that each Br can be deformed (while leaving �r constant) into a standard
polydisc DÁ

x̂ ◊ D÷
y

r

, for certain yr and ÷. Due to this, each Br has a product structure
inherited from the polydisc, and can in fact be thought as the polydisc. For each r, let Tr

be the solid torus in Br corresponding to ˆDÁ
x̂ ◊ D÷

y
r

. Then, for each r,

—r µ Tr µ ˆBr µ ˆU .

By definition, T
1

, . . . , Tl are disjoint and unknotted in ˆU . It can further be assumed that
Tr = ˆBr fl ˆU .

Let us recall that a marble is built by gluing two solid tori, one of which contains a
closed braid. For each Hr, let T Õ

r be the solid torus of the construction that contains —r.
By construction, T Õ

1

, . . . , T Õ
l are disjoint and unknotted in ˆT . Is is trivial to see that,

for every r, there is a ball BÕ
r µ Hr such that �r µ BÕ

r and T Õ
r = ˆBÕ

r fl ˆT . Therefore
h(T Õ

1

), . . . , h(T Õ
l ) are disjoint and unknotted in ˆU and satisfy that h(T Õ

r) = ˆh(BÕ
r) fl ˆU .

The condition that T
1

, . . . , Tl are unknotted in ˆU implies that B
1

, . . . , Bl can be moved
and rearranged freely by means of isotopies of U . Let us notice that this would not be
true for a three-dimensional ball, but it is for a four-dimensional ball like U , because each
Bi is homotopically equivalent to a disk intersecting ˆU on its boundary circumference.
In particular, and since h(T Õ

1

), . . . , h(T Õ
l ) are also unknotted, B

1

, . . . , Bl can be taken into
h(BÕ

1

), . . . , h(BÕ
l).

To see that it is possible to take �r into h(�r) by an isotopy of this kind it is enough
to see that —r can be taken to h(—r). This can be easily shown by using the fact that
every orientation-preserving homeomorphism in S3 is isotopic to the identity. ⇤

Proof of Lemma 1.11. Let (B, �Õ
1

, . . . , �Õ
l) be a copy of (T, �

1

, . . . , �l). Let iT : B ≠æ T
be the inclusion map (Sending �Õ

r into �r), and iÕ
U : B ≠æ U an orientation-preserving
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homeomorphism. Let Ï : iT ≠æ iÕ
U be an isotopy in C2. Let us keep in mind that, for

every r, Ï sends iT (�Õ
r) = �r into iÕ

U (�Õ
r).

Let iU : B ≠æ U be a homeomorphism such that, for every r, iU (�Õ
r) = �r. The

existence of such a map is implied by Lemma 1.12, because by choosing any h, the map
H≠1

1

¶ h : T ≠æ U is a homeomorphism sending each �r into itself. By identifying B with
T , we obtain iU .

Then, again by Lemma 1.12, and by identifying B with U by means of iU , and defining
h = iÕ

U ¶ i≠1

T : T ≠æ U , there exists an isotopy Â̄ : iU ≠æ iÕ
U that sends each �r into

h(�r). This is, that sends each iU (�Õ
r) into h(�r) = iÕ

U (�Õ
r).

Let Â : iÕ
U ≠æ iU be the reverse isotopy of Â̄. Then, by joining Ï and Â we obtain

an isotopy Ê : iT ≠æ iU . Since Ï sends each iT (�Õ
r) into iÕ

U (�Õ
r), and Â each iÕ

U (�Õ
r) into

iU (�Õ
r), then Ê sends each iT (�Õ

r) into iU (�Õ
r). This is, for every r, Ê sends �r into �r.

On the other hand, it is not di�cult to show that there exists an isotopy ‰ : C2 ◊I ≠æ
C2, such that ‰

0

= ‰
1

= 1C2 , and that, for every t, ‰t(Êt(�r)) = �r. The idea is to observe
that, for every r, (Êt(pr), t) and (pr, t) form two paths in C2 ◊ I, both starting at (pr, 0)
and finishing at (pr, 1), and therefore forming the continuous image of a circumference that
we call sr. Since C2 ◊ I is a five-dimensional space, s

1

, . . . , sl are unknotted, for which
there exists a homeomorphism (even an isotopy of the identity) from C2 ◊ I to C2 ◊ I,
taking each (Êt(pr), t) into (pr, t). By extending this homeomorphism to each (Êt(�r), t)
and (�r, t) we obtain ‰.

Then, ◊ : B ◊ I ≠æ C2 defined by ◊(x, t) = ‰t(Êt(x)) is an isotopy from iT to iU

constant on each �r. ⇤

As a consequence of this, we can think about T as an arbitrary closed ball contained
in DÁ

x̂ ◊ C satisfying I and II. The following theorem is an immediate consequence of
Lemma 1.11.

Theorem 1.13. Let a, “, and — be as defined in this section. Let fl be an SCP at a
that separates —, defining the ordered set of sub-braids {—

(1)

, . . . , —
(l)}. Let U be a closed

four-dimensional ball contained in DÁ
x̂ ◊ C satisfying that

(I) U fl V (f) = V (f) fl (DÁ
x̂ ◊ C) and

(II) ˆU fl V (f) = —.

A tower for x̂, built upon the ordered set of sub-braids {—
(1)

, . . . , —
(l)}, and their factor-

izations, is a well defined regular CW decomposition for (U, U fl V (f)).

Proof. Let us recall the ordered set of sub-braids {—
(1)

, . . . , —
(l)} is defined upon fl.

Therefore, to prove the good definition we need to show three things. In the first place,
that the topology of the underlying pair of spaces of the tower is independent of fl, in the
second place, that it is independent of the chosen factorizations for —

(1)

, . . . , —
(l) and, in

the third place, that this pair is (U, U fl V (f)).
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In Lemma 1.11 we showed that the underlying pair of a tower constructed upon an
arbitrary fl, and arbitrary factorizations of the sub-braids, is (U, U fl V (f)). This implies
the three statements. ⇤

Given a tower as constructed above, for any 1 Æ i Æ k, the set
tl

r=1

C
(i,r)

is a big
cylinder with bottom equal to

tl
r=1

D
(i,r)

and top equal to
tl

r=1

D
(i+1,r)

.

Definition 1.7. We call the closure of the first of these cylinders, cl(
tl

r=1

C
(1,r)

), the
stump of T .

This subcomplex will be important for us later, since we will use it to glue T to other
complexes.

We will describe now the cells composing T and its boundaries. The set of cells of T
is the union of the cells of each of the Hr, accounting for the identifications. According to
the notation from Section 2, the set of cells of a generic marble H is

Bnd(H) fi Con(H) fi {AA},
where

Bnd(H) = {µ, ⁄, Hsup, H inf} fi {‡ œ Ci} and
Con(H) = {‚‡ | ‡ œ Bnd(H)} .

For each Hr, we call the cells of Bnd(Hr) fi {AA} by its usual names, and add a subindex
1 Æ r Æ l to each one to indicate to which Hr it belongs. On the other hand, the subindex
1 Æ i Æ k will keep indicating to which Ci the cell belongs or, equivalently, to which factor
of —r it is associated. If the cell does not belong to any Ci we will use the symbol "≠"
instead of i. For a conical cell in Con(Hr) we just add the symbol "‚" in front of the name
of its base cell. Let us define

A :=
€

1ÆrÆl

Ë
Bnd(Hr) fi Con(Hr) fi {AA

(≠,r)

}
È

.

Then, the set of cells of T is given by the quotient

A�„,

where „ is an equivalence relation that accounts for the identified cells. Since the gluing
of two marbles is always done by subcomplexes of their boundaries, the cells grouped in
non-trivial equivalence classes of „ always belong to Bnd(Hr) for some r. Let us specify
which are these cells.

The fact that every Hr is glued to Hr+1

by the identification of Hsup

(≠,r)

and H inf

(≠,r+1)

implies that the cells to be identified are those in cl(Hsup

(≠,r)

) and cl(H inf

(≠,r+1)

) for 1 Æ r Æ
l ≠ 1 or, equivalently, those appearing in ˆmHsup

(≠,r)

or ˆmH inf

(≠,r+1)

for some m. These
identifications are exactly the following, taking into account the conditions imposed on
the gluing:
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I. Hsup

(≠,r)

= H inf

(≠,r+1)

for 1 Æ r Æ l ≠ 1. For each of these r, we will denote the cell
resulting from this identification by H inf

(≠,r+1)

. The cell Hsup

(≠,l), which is the only one
of its kind not being identified, will be called Hsup

(≠,≠)

, since it is no longer dependent
on r. The following two cases are similar to this one.

II. {
(i,r)

= Ÿ
(i,r+1)

for 1 Æ r Æ l ≠ 1. We will denote the cell resulting from this
identification by Ÿ

(i,r+1)

. The cell {
(i,l) will be called {

(i,≠)

.

III. m
2(i,r)

= m
1(i,r+1)

for 1 Æ r Æ l ≠ 1. We will denote the cell resulting from this
identification by m

1(i,r+1)

. The cell m
2(i,l) will be called m

2(i,≠)

.

IV. µ
(≠,r)

= µ
(≠,r+1)

for 1 Æ r Æ l. This implies that all the µ
(≠,r)

become identified
into a single cell. The cell resulting from this identification will be called µ

(≠,≠)

or
simply µ. The following five cases are similar to this one.

V. ⁄
(≠,r)

= ⁄
(≠,r+1)

for 1 Æ r Æ l. The single cell resulting from this identification will
be called ⁄

(≠,≠)

or simply ⁄.

VI. e
0(i,r)

= e
0(i,r+1)

for 1 Æ r Æ l. The single cell resulting from this identification will
be called e

0(i,≠)

.

VII. en
r

+1(i,r)

= en
r+1+1(i,r+1)

for 1 Æ r Æ l. The single cell resulting from this identifica-
tion will be called en+1(i,≠)

. The subindex n + 1 here is rather arbitrary and it was
chosen for practical reasons: It is a number, it is independent of r, and it is greater
than any nr (which implies that there is no cell previously named en+1

).

VIII. A
0(i,r)

= A
0(i,r+1)

for 1 Æ r Æ l. The single cell resulting from this identification will
be called A

0(i,≠)

.

IX. An
r

+1(i,r)

= An
r+1+1(i,r+1)

for 1 Æ r Æ l. The single cell resulting from this identifi-
cation will be called An+1(i,≠)

.

Let B be the set of cells of T , with the names directly inherited from the marbles (with
the added subindex (r)) or given in I-IX, according to the case. Let g : A ≠æ B be the
function that sends each cell to its corresponding cell in T .

Let fl be a cell of some Hr that is being identified to another cell, and let us suppose
that fl ”= g(fl). Then, this identification can also be thought as the elimination of the cell
fl from the complex and its replacement with g(fl). This way of thinking will prove useful
sometimes, for which we will use this language occasionally. A cell fl eliminated in this
way will be called a ghost cell.

We should be careful to notice that, by identifying two cells, their cones never become
identified. This means that, for the types of cells listed before, the one-to-one correspon-
dence between conical and not conical cells is lost. In the case of µ, for example, the cells
µ

(≠,1)

, . . . , µ
(≠,l) have been removed from the complex, but their cones ‚µ

(≠,1)

, . . . , ‚µ
(≠,l)
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have not. At the same time, a cell µ
(≠,≠)

have been introduced, but for this cell there
does not exist a conical cell ‚µ

(≠,≠)

.
To end this section we examine the boundaries of the cells of T . The boundary of

any cell fl in T is given by the boundary of fl in Hr, where Hr is the marble to which
fl belongs. To find such a boundary we use the explicit formulae we have already given
for the boundaries of the cells of a marble, but making the replacements indicated in I
to IX, in the case that cells of these types appear. Explicitly, if fl is a cell of Hr and its
boundary there is given by ˆH

r

fl = ‡
1

+ · · · + ‡p, then the boundary in T of g(fl) is given
by ˆT (g(fl)) = g(‡

1

) + · · · + g(‡p). If we extend g linearly to chains, we can write

ˆT (g(fl)) = g(ˆH
r

fl).

In the case of the conical cells this formula can be elaborated a little more and is worth
a commentary. Let us recall that for any cell fl in Hr, with dim(fl) > 0, the boundary in
Hr of fl is given by ˆH

r

(‚fl) = (≠1)dim(fl)(≠fl) + ‚(ˆH
r

fl). Then, the boundary in T of
g(‚fl) is given by

ˆT (g(‚fl)) = (≠1)dim(fl)(≠g(fl)) + g(‚(ˆH
r

fl)).

And, since g always leave conical cells invariant, we obtain the formula

ˆT (‚fl) = (≠1)dim(fl)(≠g(fl)) + ‚(ˆH
r

fl).

Let us notice also that fl is always a cell in A, and therefore this formula allows us to
calculate the boundary of all the conical cells of T , even of those having ghost cells as its
bases. The formula also allows us to calculate the boundary of conical cells ‚fl in T such
that ˆH

r

fl contains a ghost cell.
Let us consider the cell ‚µ

(≠,1)

of T as an example. The boundary in T of this cell is
calculated as follows, according to our formula.

ˆT (‚µ
(≠,1)

) = ≠g(µ
(≠,1)

) + ‚(ˆH1µ
(≠,1)

)
= ≠µ + ‚e

0(1,1)

+ · · · + ‚e
0(k,1)

.

It is worth observing that ‚µ
(≠,1)

is the cone of a ghost cell, and the boundary of
µ

(≠,1)

(in H
1

) is composed also of ghost cells. However, the formula provides us the
correct boundary of ‚µ

(≠,1)

in T , and it can be checked that all the cells appearing on
this boundary exist in T .

1.6 Joints

At this point we already have CW complexes associated with the local braids. In order
to connect these with the complexes associated with the conjugating braids, yet to be
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constructed, we need to provide a rather peculiar decomposition of a cylinder with a
trivial braid, di�erent from the double prism we already defined.

Let us consider a tower T , for which we will use all the notation of the previous
section. Let us consider the bottom E :=

tl
r=1

D
(1,r)

of the stump
tl

r=1

C
(1,r)

of T ,
which is illustrated in the following figure. Let us embed this disk in R3 in order that it
coincides with the disk with equations z = 0, (x ≠ 1/2)2 + y2 Æ 1/4; and in such a way
that A

0(1,≠)

= (0, 0, 0), An+1(1,≠)

= (1, 0, 0), and the points of m
1(1,1)

have non-positive y
coordinate.

m2(1,l)

d

j

l

(1,l)

m1(1,l)

Ë(1,l)

◊(1,l)

m1(1,r+1)

d

j

r

(1,r)

m1(1,r)

Ë(1,r)

◊(1,r)

m1(1,2)

d

j1(1,1)

m1(1,1)

Ë(1,1)

◊(1,1)

A0(1,≠) A

n+1(1,≠)

Figure 1.10

Let us also consider the bottom F a double prism of n strands, and let us embed this
disk in R3 in order that it coincides with the disk with equations z = 1, (x + 1/2)2 + y2 Æ
1/4; and in such a way that A

0

= (0, 0, 1), An+1

= (1, 0, 1), and the points of m
1

have
non-positive y coordinate. Here the vertices Aj , that lie in F , should not be confused with
the vertices Aj(i,r)

and Aj(i,≠)

, that lie in E and come from T . Let C Õ be the cylinder
encompassed between E and F . We now define a set of edges that join each vertex on E
with a vertex on F . For 1 Æ r Æ l let �r be defined by

n
0

:= 0, �r :=
rÿ

s=0

ns.

For 1 Æ r Æ l and 1 Æ jr Æ nr let us define the following objects, which can be seen in
Figures 1.11 and 1.12.

• Let zr,j
r

be the segment running from Aj
r

(1,r)

in E to A
�

r≠1+j
r

in F through the
cylinder C Õ.
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• Let w0 be the segment running from A
0(1,≠)

in E to A
�0 = A

0

in F .

• Let w1 be the segment running from An+1(1,≠)

in E to A
�

l

+1

= An+1

in F .

Let us order the set {A
�

r

+j
r

} by the natural order of its subindices, and the set {Aj
r

(1,r)

}
by the lexicographical order defined by Aj

r

(1,r)

Æ Aj
r

Õ (1,rÕ
)

if and only if r Æ rÕ, or r = rÕ

and jr Æ jrÕ . Then, we can naturally join the points of each of these sets according to this
ordering in such a way that the segments {zr,j

r

} are the n strands of the trivial braid e of
Bn.

We want to fill C Õ with cells in order that the segments zr,j
r

, w0 and w1 are all
subcomplexes of the resulting complex, and without modifying the CW decompositions
that we already have within E and F . The idea of the construction is the following. Let
us notice that the edges d

0

, . . . , dn form a diameter of F that runs from A
0

to An+1

.
Similarly, for each 1 Æ r Æ l, the edges d

0(1,r)

, . . . , dn
r

(1,r)

form a path in E joining
A

0(1,≠)

with An+1(1,≠)

. We will introduce l quadrilaterals ‰r, that we depict as rectangles
(Fig. 1.11), satisfying the following:

1. Each ‰r have d
0(1,r)

fi · · · fi dn
r

(1,r)

as its base, but all of them share w0 as right side,
w1 as left side, and d

0

fi · · · fi dn as upper side.

2. For 1 Æ r Æ l, the strands zr,j
r

run through the interior of ‰r.

Since the rectangles ‰
1

, . . . , ‰l split the interior of C Õ into l + 1 three-dimensional balls,
they induce a CW decomposition of C Õ of which the already given decompositions of E
and F are subcomplexes.

We will construct now this decomposition, by defining each of the cells in C Õ \ (E fiF ).
The following figure illustrates a rectangle ‰r with the cells that compose it, and that we
are about to define.

A0 A�
r≠1+1 A�

r≠1+j

r

A�
r

A
n+1

d�
r≠1+j

r

Ï
r

Î
r,1 Î

r,j

r

Î
r,n

r

≠1 Ê
r

w0 z
r,1 z

r,2 z
r,j

r

z
r,n

r

≠1 z
r,n

r

w1

d0(1,r) d1(1,r) d

j

r

(1,r) d

n

r

≠1(1,r) d

n

r

(1,r)

A0(1,≠) A1(1,r) A
j

r

(1,r) A
n

r

(1,r) A
n+1(1,≠)

Figure 1.11
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• We take w0, w1 and all the segments in {zr,j
r

} as the one-dimensional cells.

• Let us notice that w0 and w1 split ˆC Õ\(E fi F ) into two cells. We call › the cell
containing negative y coordinates and Â the one containing positive ones.

• For 1 Æ r Æ l and 0 Æ jr Æ nr ≠1 let us define ’r,j
r

as a quadrilateral with boundary
zr,j

r

+ d
�

r≠1+j
r

≠ zr,j
r

+1

≠ dj
r

(1,r)

. This quadrilateral serve to connect zr,j
r

with
zr,j

r

+1

without interfering with the decompositions of E and F .

• For 1 Æ r Æ l, let Ïr be the quadrilateral bounded by d
0

+ · · · + d
�

r≠1
≠ zr,1 ≠

d
0(1,r)

+ w0, and Êr the one bounded by d
�

n

r

+ · · · + dn ≠ w1 ≠ dn
r

(1,r)

+ zr,n
r

. These
quadrilaterals serve, the first to connect w0 with zr,1, and the second to connect w1
with zr,n

r

.

• Then, for each 1 Æ r Æ l, the quadrilaterals Ïr, ’r,1, . . . , ’r,n
r

≠1

, Êr join consecutively,
in this order, to form a bigger quadrilateral ‰r that contains the strands zr,1, . . . ,
zr,n

r

. The l + 1 open balls in which C Õ is splitted by ‰
1

, . . . , ‰l will be called �, �
1

,
. . . , �l≠1

, and �, from lesser to greater y coordinates.

By this process we have constructed a CW decomposition for (C Õ, e) respecting the original
decompositions of E and F . Let us notice that the resulting CW complex is built only
from E, or more precisely, from the order and number of strands of the sub-braids —

(r)

,
i.e. the ordered list (n

1

, . . . , nl).

Definition 1.8. We call C Õ endowed with this CW complex structure a joint for T or,
equivalently, for E or for (n

1

, . . . , nl).

This complex is shown in Figures 1.11 and 1.12. with names and orientations for each
cell. The following theorem is clear by construction.

Theorem 1.14. Let T be a tower and (n
1

, . . . , nl) the list of the number of strands of
the sub-braids —

(r)

by order. Let E and F be as defined in this section. A joint for T (or
for (n

1

, . . . , nl)) is a well defined regular CW decomposition for (C Õ, e) that has E and F
as subcomplexes.

We will give now the boundaries of the cells composing (C Õ, e). Let us notice that
the cells of (C Õ, e) are divided into three sets: the cells of E, the cells of F , and the cells
of C Õ\(E fi F ). The boundary of any cell of E is given by its boundary in T , which is
already known. Similarly, the boundary of any cell of F is given by its boundary in a
double prism or quasi-prism with bottom F . The boundaries of the remaining cells, those
of C Õ\(E fi F ), are given below.
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Let us notice that a joint of this kind can also be constructed taking E =
tl

r=1

D
(s,r)

(for any s) as the bottom of C Õ. In that case, we just replace in the following formulae
the subindex i = 1 for i = s in all the cells belonging to E.

m2

Ë

Â

A0 A
j

A
n+1d0 d

j

d

n

◊

m1
›

‰
l

‰
r

‰1

�

Ë(1,l)
�

l≠1 ◊(1,l)

�

r

Ë(1,r)
◊(1,r)

�

r≠1

�1
Ë(1,1)

�

◊(1,1)

A0(1,≠) A
n+1(1,≠)

Figure 1.12

Dim. 1 Dim. 2

ˆ(w0) = A
0

≠ A
0(1,≠)

ˆ(w1) = An+1

≠ An+1(1,≠)

for 1 Æ r Æ l, 1 Æ jr Æ nr:

ˆ(zr,j
r

) = A
�

r≠1+j
r

≠ Aj
r

(1,r)

ˆ(›) = w0 ≠ m
1

≠ w1 + m
1(1,1)

ˆ(Â) = w0 ≠ m
2

≠ w1 + m
2(1,l)

ˆ(Ïr) = w0 ≠ zr,1 ≠ d
0(1,r)

+
�

r≠q
j=0

dj

ˆ(Êr) = ≠w1 + zr,n
r

≠ dn
r

(1,r)

+
nq

j=�

r

dj

For 1 Æ r Æ l, 1 Æ jr Æ nr ≠ 1:

ˆ(’r,j
r

) = zr,j
r

≠ zr,j
r

+1

+ d
�

r≠1+j
r

≠ dj
r

(1,r)
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Dim. 3

ˆ(�) = › ≠ ◊
(1,1)

+ ◊ ≠ Ï
1

≠
n1≠1q
j1=1

’
1,j1 ≠ Ê

1

ˆ(�) = ≠Â ≠ Ë
(1,l) + Ë + Ïl +

n
l

≠1q
j

l

=1

’l,j
l

+ Êl

For 1 Æ r Æ l ≠ 1:

ˆ(�r) = ≠Ë
(1,r)

≠ ◊
(1,r+1)

+ Ïr +
n

r

≠1q
j

r

=1

’r,j
r

+ Êr ≠ Ïr+1

≠
n

r+1≠1q
j

r+1=1

’r+1,j
r+1 ≠ Êr+1

1.7 Decomposition for a Conjugating Braid

Let us consider f and � once more. Our aim now is to construct a CW complex, analogous
to the complex already constructed for a local braid, but associated with a conjugating
braid or, more generally, with an arbitrary open path.

As in the first section, let ⁄ be a simple curve in C\� with initial point b and final point
a, and let – be the braid associated to ⁄. In the case that interests us we will take b and a
as certain points close to x

0

and some xs respectively, though in this section we consider ⁄
as a general path in C \ �. Let us swell ⁄ a little to form a narrow strip ⁄̄. We may define
⁄̄ as the image of an injective isotopy Is : ⁄ ◊ I ≠æ C\� with Is(⁄ ◊ {0}) = ⁄, where
I = [0, 1]. For every t, we denote Is(⁄ ◊ {t}) by ⁄t. Since this isotopy is an embedding,
⁄̄ trivially inherits the product structure of ⁄ ◊ I. For simplicity, we write ⁄̄ = ⁄ ◊ I and
⁄t = ⁄ ◊ {t}.

Let V
¯⁄ be the set of points of V (f) with first coordinate belonging to ⁄̄. Then, since

the isotopy Is is small enough, V
¯⁄ has the product structure V

¯⁄ = –◊ I, where every fiber
– ◊ {t} is defined as the set of points of V (f) with first coordinate belonging to ⁄t. We
denote – ◊ {t} by –t. Notice that –

0

= –.
Let X œ C be defined by X :=

Ó
y œ C | (x, y) œ V

¯⁄ for some x œ ⁄̄
Ô

.

Claim 1.15. The set X is bounded.

Proof. Let us suppose that X is not bounded. Then, there exists a sequence {(xm, ym)}
in V

¯⁄ such that ÎymÎ æ Œ. Since ⁄̄ is compact, {xm} has a subsequence {xm
i

} convergent
to some point x œ ⁄̄. Let us consider now the subsequence {(xm

i

, ym
i

)} of {(xm, ym)},
which still satisfies that Îym

i

Î æ Œ. This divergence along with the continuity of f
implies that f has less than n roots at x. This is not possible since x œ ⁄̄ µ C\�. ⇤
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Let D µ C be a disk containing X. We will now take the spaces ⁄̄ ◊ D and V
¯⁄ into

consideration. Since ⁄̄ = ⁄ ◊ I, then ⁄̄ ◊ D has the product structure ⁄̄ ◊ D = ⁄ ◊ I ◊ D.
It follows, by the definitions of V

¯⁄, –t and D, that

V
¯⁄ = (⁄̄ ◊ C) fl V (f) = (⁄̄ ◊ D) fl V (f) and

–t = (⁄t ◊ C) fl V (f) = (⁄t ◊ D) fl V (f).

The situation is illustrated in the following figure.

⁄

¯⁄

⁄1

(D◊⁄,–)

(D◊⁄1,–1)(D◊¯⁄,A
⁄̄

)

C2

C

Figure 1.13

Let us observe now that, for every t, ⁄◊{t}◊D is a cylinder in which –t is embedded.
In particular, ⁄ ◊ {0} ◊ D is a cylinder that contains the braid –, which is the situation
of the first section. Now, we construct a CW decomposition for (⁄ ◊ {0} ◊ D, –) and
afterwards for (⁄̄ ◊ D, V

¯⁄).
Let us choose two points x

0

and xs in �, and consider towers Tx0 and Tx
s

for x
0

and
xs. Let us choose also a factorization – = ·

1

· . . . · ·kc of –, and add the redundant factor e
at the beginning and at the end, obtaining – = e·

1

· . . . · ·kce. Then, we divide ⁄◊{0}◊D
into sub-cylinders C

0

, . . . ,Ckc+1

as in the first section, each sub-cylinder Ci having top
Di and bottom Di≠1

, and containing the corresponding factor of –. Now, we endow the
cylinder C

1

fi · · · fi Ckc with a loom structure applying Theorem 1.2. Finally, we endow
the cylinders C

0

and Ckc+1

with joint structures associated with Tx0 and Tx
s

respectively.
In this way we have a CW structure for (⁄◊{0}◊D, –). Now we extend such structure

to (⁄̄ ◊ D, A
¯⁄) by means of the product structure ⁄ ◊ I ◊ D of ⁄̄ ◊ D. Let us notice that

the resulting CW complex is built only from a factorization ·
1

· . . . · ·kc of – and from
towers Tx0 and Tx

s

(Or more precisely, from the ordered list (n
1

, . . . , nl) for x
0

and its
counterpart for x

1

).

Definition 1.9. We call ⁄ ◊ {0} ◊ D endowed with this CW complex structure a bridge
for – = ·

1

· . . . · ·kc, Tx0 and Tx
s

.
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Theorem 1.16. Let – be as defined in this section, let ·
1

· . . . · ·kc be a factorization of
–, and Tx0 and Tx

s

towers for x
0

and xs. A bridge for – = ·
1

· . . . · ·kc, x
0

and xs is a well
defined regular CW decomposition for (⁄̄ ◊ D, V

¯⁄), were ⁄̄, D and A
¯⁄ are constructed as

before.
Proof. It is clear by construction and by Theorems 1.2 and 1.14. ⇤

Definition 1.10. Given a bridge as constructed above, the cylinders a ◊ I ◊ D and
b ◊ I ◊ D, will be called respectively the initial end and final end of ⁄̄ ◊ D.

Similarly, the cylinders ⁄ ◊ {0} ◊ D and ⁄ ◊ {1} ◊ D will be called respectively the
bottom and top of ⁄̄ ◊ D, and denoted by Bot(⁄̄ ◊ D) and Top(⁄̄ ◊ D).

We will give now the boundaries of the cells composing ⁄̄ ◊ D. Let us notice that the
cells of ⁄̄ ◊ D are divided into three sets: the cells of Bot(⁄̄ ◊ D), the cells of Top(⁄̄ ◊ D),
which are an exact copy of the former, and the product cells Prod(⁄̄ ◊ D) produced by
taking each cell of Bot(⁄̄ ◊ D) and multiplying it by I.

We begin with the cells of Bot(⁄̄ ◊ D), which are themselves divided into the cells of
C

1

fi· · ·fiCkc and the cells of C
0

and Ckc+1

. Since C
1

fi· · ·fiCkc is a loom, the boundaries of
its cells are as described in the first section. The boundaries of the cells of C

0

and Ckc+1

are as described in the previous section. The cells in Bot(⁄̄ ◊ D) are given the names
already established in the first section and the previous section, but adding the subindex
(i, 0) to indicate to which Ci they belong.

On the other hand, Top(⁄̄ ◊ D) is a copy of Bot(⁄̄ ◊ D) and the boundaries of their
cells are the same. The cells in Top(⁄̄ ◊ D) are given the names already established in the
first and last sections, but adding the subindex (i, 1) to indicate to which Ci they belong.

Finally, we consider the product cells. For any cell fl œ Bot(⁄̄ ◊ D), let Ifl denote the
product cell fl ◊ I. Moreover, for any chain c = ‡

1

+ · · · + ‡l of cells of a given dimension
in Bot(⁄̄◊D), let Ic denote the chain I‡

1

+ · · ·+ I‡l. We give each cell Ifl the orientation
resulting by adding to the orientation of fl the direction running from Bot(⁄̄ ◊ D) to
Top(⁄̄ ◊ D). Then, the boundaries of the product cells are given by

ˆ(Ifl) = fl
1

≠ fl
0

if dim(fl) = 0, and by
ˆ(Ifl) = (≠1)dim(fl)(fl

1

≠ fl
0

) + I(ˆ(fl))
if dim(fl) < 0.

1.8 Global Decomposition

Let us return to our goal of obtaining a complete topological description of the embedding
of � in C2. Let us recall that � is defined by a function f : C2 æ C of the form

f(x, y) = yn + a
1

(x)yn≠1 + · · · + an≠1

(x)y + an(x),
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where, for every i, ai(x) œ C[x] with deg(ai(x)) Æ i or ai(x) © 0. Let us recall also that
we have defined

� = {x œ C | f(x, y) has multiple roots} = {x
1

, . . . , xm}.

Let D ◊ E be a polydisc such that

� µ D,

ˆ(D ◊ E) fl � µ ˆD ◊ E.

We call such a polydisc a great polydisc for f . The fact that � µ D implies moreover that
the intersection of ˆD ◊ E with � is transverse. The two conditions imply also that all
the points of the form (xs, y) œ V (f), with xs œ �, belong to the polydisc.

We will provide now a CW decomposition of the pair (D, C fl D), where D is a great
polydisc for f . By doing so we obtain a complete topological description of the embedding
of C into C2.

We construct this decomposition by taking towers for every point xs œ � and a base
point, and then connecting the towers through bridges. The steps of the construction are
the following:

1. First we define disks DÁ
x0 , . . . , DÁ

x
m

and local braids —
0

, . . . , —l around the m points
x

1

, . . . , xl of � and a base point x
0

.

2. We construct towers Tx0 , . . . , Tx
m

for x
0

, . . . , xl.

3. We deform these towers slightly for technical reasons.

4. We define paths ⁄
1

, . . . , ⁄m joining each disk DÁ
x

s

to the disk DÁ
x0 , and conjugating

braids –
1

, . . . , –m associated to them. We also swell the paths into strips ⁄̄
1

, . . . , ⁄̄m

that fit correctly with DÁ
x0 , . . . , DÁ

x
m

.

5. We define bridges B
1

, . . . , Bm for ⁄
1

, . . . , ⁄m.

6. We deform these bridges in order that every Bs fit with Tx
s

and Tx0 correctly.

7. Finally, we deform the resulting ball into a great polydisc.

Let x
0

œ C\� and Á > 0 such that the disks DÁ
x0 , . . . , DÁ

x
m

are pairwise disjoint. For
every 0 Æ s Æ m, let “s be the curve given by “s(t) = xs + Áe2ifit, let —s be the local braid
of xs along “s, and let fls be an SCP at xs + Á that separates —s. Then, each fls defines an
ordered set {—s

(1)

, . . . , —s
(l

s

)

} of sub-braids of —s, where ls is the cardinal of Ax
s

.
Let Tx0 , . . . , Tx

m

be towers for x
0

, . . . , xm, with each Tx
s

constructed upon the ordered
set {—s

(1)

, . . . , —s
(l

s

)

}. Then, each Tx
s

satisfies that Tx
s

µ DÁ
x

s

◊ C and the hypotheses of
Theorem 1.13.

Lets us recall that each Tx
s

is constructed from ls piled marbles Hs
1

, . . . , Hs
l
s

corre-
sponding to —s

(1)

, . . . , —s
(l

s

)

respectively. Each Hs
r in turn possesses a collection of cylinders
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{Cs
i(r)

} and a collection of disks {Ds
i(r)

} satisfying that, for every i, Ds
i≠1(r)

and Ds
i(r)

are
the bottom and top of Cs

i(r)

. Let us recall also that the union
tl

s

r=1

Cs
1(r)

has been called
the stump of Tx

s

. We denote this set by Fs.
In order to facilitate our construction we perform a slight deformation on each Tx

s

in
the following way. For each 1 Æ s Æ m (but not for s = 0), we deform Tx

s

isotopically
in order that the bottom and top of Fs (i.e. the disks

tl
s

r=1

Ds
0(r)

and
tl

s

r=1

Ds
1(r)

) are
contained in Lx

s

+Á and Lx
s

≠iÁ respectively. In fact, to demand only that (
tl

s

r=1

Ds
0(r)

) fl
—s µ Lx

s

+Á and (
tl

s

r=1

Ds
1(r)

) fl —s µ Lx
s

≠iÁ would be enough to our purposes, but we can
do it either way.

We also deform Tx0 in a similar way. Since x
0

/œ �, Ax0 is a set of n points and l
0

= n.
Therefore, —

0

is a trivial braid of n strands and every —0

(r)

is a trivial braid of one strand.
We impose over each marble H0

r of Tx0 the condition to be associated to the factorization

b0

(r)

= eee · · · e¸ ˚˙ ˝
m times

of b0

(r)

, where e is the identity of B
1

. Then, we deform Tx0 in order that, for every
0 Æ p Æ m, the disk

tn
r=1

D0

p(r)

is contained in Lx0+Áe2ifi(p/m) . This means that the
x coordinate of every point of any

tn
r=1

D0

p(r)

is exactly the p-th vertex of a m-sided
polygon inscribed in DÁ

x0 . We call the cylinder
tn

r=1

C0

p(r)

the p-th stump of Tx0 and
denote it by F p’th

0

. Let us notice that F p’th

0

lies between
tn

r=1

D0

p≠1(r)

µ Lx0+Áe2ifi(p≠1/m)

and
tn

r=1

D0

p(r)

µ Lx0+Áe2ifi(p/m) .
Therefore, Tx0 is symmetric by rotations by 2fi/m. To ensure later that the towers

and bridges fit correctly we need also to define a convenient system of SCP around x
0

. For
every 1 Æ s Æ m, let Ês be an SCP for x

0

+ Áe2ifi(s/m), i.e., for each vertex of the m-sided
polygon inscribed in DÁ

x0 . By taking “
0

narrow enough, we can choose each Ês in such a
way that it is compatible with fl0, this is, a translation of fl0 along “

0

. In particular, we
define Ê0 = fl0.

Now we can proceed to the construction of the bridges. For every 1 Æ s Æ m, let ⁄s

be a simple path

⁄s : [0, 1] ≠æ C\
m€

p=0

D̊Á
x

p

satisfying that

⁄s(0) = xo + Áe2ifi(s≠1/m),

⁄s(1) = xs + Á,

⁄s((0, 1)) µ C\
m€

p=0

DÁ
x

p

.

We also demand that ⁄
1

, . . . , ⁄m be disjoint. On the other hand, for every 1 Æ s Æ m, let

Âs : Lx0+Áe2ifi(s≠1/m) ≠æ Lx
s

+Á
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be the homeomorphism sending Ês into fls. Then, as in the previous section, and for every
1 Æ s Æ m, ⁄s and Âs define a braid –s.

Now we swell each ⁄s a little to form a narrow strip ⁄̄s in C\ tm
p=0

D̊Á
x

p

, with a product
structure ⁄̄s = ⁄s ◊ I as in the previous section. We do this in such a way that the
following two conditions hold.

1. That ⁄s,1 = ⁄s ◊ {1} is the curve starting at x
0

+ Áe2ifi(s/m) and ending at xs ≠ iÁ.

2. That the arch ⁄̄s fl ˆDÁ
x0 (respectively ⁄̄s fl ˆDÁ

x
s

) is equal to the fiber

(x
0

+ Áe2ifi(s≠1/m)) ◊ I (res. ⁄̄s fl ˆDÁ
x

s

= (xs + Á) ◊ I)

in the product structure ⁄̄s = ⁄s ◊ I.

The situation is illustrated in the following figure.

x

s

x

s

+Á

x0+Áe

2ifi(s≠1/m)

x0
x

s

≠iÁ

x0+Áe

2ifi(s/m)

⁄
s

¯⁄
s

⁄
s,1

Figure 1.14

Now we have defined everything that is needed for the construction of our bridges. For
every 1 Æ s Æ m, let Bs := ⁄̄s ◊ Ds be a bridge for –s, Tx0 and Tx

s

. Let In.s and Fin.s be
the initial and final ends of Bs, given by (x

0

+ Áe2ifi(s≠1/m)) ◊ I ◊ Ds and (xs + Á) ◊ I ◊ Ds

respectively.
To ensure the correct fitting of Bs with Tx0 and Tx

s

we deform it order that

Bs fl Tx0 = In.s = F s’th

0

and
Bs fl Tx

s

= Fin.s = Fs.
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We do this in such a way that In.s and F s’th

0

(res. Fin.s and Fs) not only coincide as
sets but further as CW complexes. The fact that this can be done is trivial, because
the joint and bridge complexes were constructed specifically to ensure that Fin.s and
Fs (res.In.s and F s’th

0

) are isomorphic subcomplexes. In this way, the initial end of Bs

becomes identified with the s-th stump of Tx0 , and the final end with the stump of Tx
s

,
e�ectively connecting Tx0 with Tx

s

.
Now let us consider the union

G :=
A

m€

s=0

Tx
s

B

fi
A

m€

s=1

Bs

B

with the CW complex structure induced by all of their components. Let us notice
that this complex depends only on the braids –

1

, . . . , –m, the ordered families of braids
{—s

(1)

, . . . , —s
(l

s

)

}, and factorizations of all of these.

Definition 1.11. We call G endowed with this CW complex structure a global decompo-
sition for �.

Theorem 1.17. Let –
1

, . . . , –m and {{—s
(1)

, . . . , —s
(l

s

)

}}m
s=1

be as defined in this section.
A global decomposition, as defined in this section, built upon the braids –

1

, . . . , –m and
{{—s

(1)

, . . . , —s
(l

s

)

}}m
s=1

, and factorizations of all of these, is a well defined regular CW de-
composition for (G, G fl �).

Proof. We have already proved in Theorems 1.13 and 1.16 the good definition of the
towers and the bridges. It only remains to show that the complex produced by its gluing
is a well defined decomposition for (G, G fl �).

Let us observe that, for any given 1 Æ s Æ m, it holds that Fin.sfl � = Fs fl �. Since
Fin.s and Fs are three-dimensional balls, and Fs fl � is a set of n segments, they can be
trivially isotoped into one another. That their CW complex structures also coincide is
due to the fact that the SCP fls at xs + Á used to define {—s

(1)

, . . . , —s
(l

s

)

} is the same one
used to define –s. Therefore, their CW structures coincide by definition. We reason in a
similar way for In.s and F s’th

0

. ⇤

Let us see now that the pair (G, C fl G) is topologically equivalent to the (D, C fl D),
for which we have in fact constructed a CW decomposition for the latter.

Theorem 1.18. Let –
1

, . . . , –m and {{—s
(1)

, . . . , —s
(l

s

)

}}m
s=1

be as defined in this section.
Let D be a great polydisc for f . A global decomposition, as defined in this section, built
upon –

1

, . . . , –m and {{—s
(1)

, . . . , —s
(l

s

)

}}m
s=1

, and factorizations of all of these, is a well
defined regular CW decomposition for (D, C fl D).

Proof. Let us define a set A by

A =
A

m€

s=0

DÁ
x

s

B

fi
A

m€

s=1

⁄̄s

B

,
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Chapter 1 A CW Decomposition for an A�ne Algebraic Plane Curve

which is a topological disk. Let D ◊ E be a great polydisc for f such that A µ D. Then,
by Theorem 1.13, we may assume that each tower Tx

s

is a polydisc of the form DÁ
x

s

◊ E.
Also, by the definition of a bridge, we may assume that each bridge Bs is of the form
⁄̄s ◊ E.

From here we may assume that G = A◊E. Therefore, an isotopy from A to D induces
an isotopy from G to D ◊ E. It only remains to see that this isopoty can be chosen to be
an isotopy from the pair (G, G fl �) to the pair ((D ◊ E), (D ◊ E) fl �).

Let us define

X = C2 \
€

1ÆsÆm
Lx=x

s

,

X Õ := (D ◊ E) \ G.

Then, the projection
fix : (X, X fl �) ≠æ C

(x, y) ‘≠æ x

is a fiber bundle of a pair. Therefore, the restriction of fix to the pair (X Õ, X Õ fl �) is also
a fiber bundle of a pair. This implies that X Õ possesses the product structure

X Õ = ((ˆD ◊ E), (ˆD ◊ E) fl �) ◊ I,

and also that an isotopy from the pair (G, Gfl�) to the pair ((D ◊E), (D ◊E)fl�) exists.
⇤

By a similar argument, we can show that (C2\D, � fl (C2\D)) is homeomorphic to
(ˆD, �flˆD)◊ [0, 1). Then the CW decomposition given here is a complete combinatorial
description of the embedding of � in C2.
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Chapter 2

Programs and Projective Case

In the first chapter we provided an algorithmic method for constructing a regular CW
decomposition of (D, � fl D) from the braid monodromy of �, where � is an a�ne plane
curve and D a large enough polydisc. We will present now a program in SageMath that
implements this algorithm and that, for any curve, provides the decomposition of (D, �flD)
explicitly.

We have also written a second program, based on the first one, that provides a sim-
plicial decomposition of (D, � fl D). This decomposition is thin enough to take a regular
neighborhood of the curve.

In the first two sections of this chapter we explain each of these programs. In the third
section, which is essentially unrelated to the first two, we discuss briefly the problem of
obtaining a CW decomposition of the pair (P2, �), for a given projective curve �. We
show how such a decomposition can be constructed, though we don’t provide it explicitly
as we did in the a�ne case.

Finally, since we will be working with the same objects, we keep all the definitions and
notations of the previous chapter.

2.1 Program for a CW Decomposition

We begin by explaining the first program. Let us recall that the global decomposition
for (D, � fl D) is constructed from the ordered sets {{—s

(1)

, . . . , —s
(l

s

)

}}m
s=1

of sub-braids of
the local braids, the conjugating braids –

1

, . . . , –m, and factorizations for all of these.
This program uses as its input the sets of braids for �, and returns the regular CW
decomposition of (D, �flD) explicitly. The complete program can be found in appendix A.
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Chapter 2 Programs and Projective Case

It is worth noticing that, in [9], Carmona has given a program in Maple that calculates
the braid monodromy of � from an equation for it. His program returns the braid mon-
odromy in the form of a list of local braids and conjugating braids, and the local braids
are separated, which means that the output of Carmona’s program is exactly the input
of ours. Therefore, Carmona’s program together with ours allows to obtain a regular CW
decomposition of (D, � fl D) from an equation for �.

Now we describe the program. Within it, braids are represented in the following way.
An Artin generator ‡Á

i (Á = ±1) of any braid group is designated by the number Ái, and
the identity e of the same group by 0. A braid will be represented then by a list of the
integers corresponding to a given factorization. Along this section we will refer freely to
such lists as braids.

We start the program by defining the following classes.

• LocalBraid. An instance of this class will represent the ordered set of sub-braids
—

(r)

of the local braid — associated to a given xs œ �, along with the conjugating
braid – associated to that same point. This class has the following fields. The field
sing_point, containing the number s of the critical value xs. The field braids,
containing the list of the l sub-braids —

(r)

. A field n containing the list n
1

, . . . , nl,
where nj is the number of strands —

(j)

. And finally, a field cong_braid containing
the conjugating braid –.

• BraidMonodromy. This class has an only field local_braids, containing the list of
the m objects of type LocalBraid describing the m elements of �. An instance of
this class contains therefore the complete information about the braid monodromy
of a curve.

These two classes provide a structure for the input. We continue by providing a
structure for the cell complex. This structure is based on the next three classes that we
define.

• Cell. An instance of this class represents a cell.

• CellWithSign. An instance of this class represents a cell with sign. This class has
two fields, one containing a number ±1 and the other one an object of type Cell.

• Chain. The instances of this class represent elements of the chain modules. It
has an only field, set_of_cells_w_sign, that contains a set of objects of type
CellWithSign.

Then we create classes for the di�erent families of cells of our decomposition. Let us
recall that our CW complex is formed by the union of the towers Tx0 , . . . , Tx

m

and the
bridges B

1

, . . . , Bm. To distinguish cells from di�erent towers and bridges let us add to
each cell the superindex s to indicate to which Tx

s

or Bs they belong to. Let us recall also
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that the set of cells of each tower Tx
s

is

t
1ÆrÆl

s

Ë
Bnd(Hr) fi Con(Hr) fi {AA

(≠,r)

}
È

„s
.

For each Tx
s

we define

Con(Tx
s

) : =
€

1ÆrÆl
s

Con(Hr) and

Non-Con(Tx
s

) : =
t

1ÆrÆl
s

Ë
Bnd(Hr)

t{AA
(≠,r)

}
È

„s
.

To represent the cells in these sets we define the classes

• ConeCell and

• TowerCell,

respectively.
Let us consider the class TowerCell first. Each cell of Non-Con(Tx

s

) is a function of
several variables. A typical example would be

es
j(i,r)

,

which is function of its name “e” and the indexes s, j, i and r. The meaning of these
variables is explained below.

• Name: The name of the cell indicates its type or, more specifically, its place in the
complex as we defined it.

• Index j: The index 0 Æ j Æ nr (or nr + 1 for some cells) is an integer indicating
which strand of —

(r)

the cell is associated to. Some cells are not function of the set
of strands and lack this index.

• Index i: The index 1 Æ i Æ k is an integer indicating which factor ·r of —
(r)

the
cell is associated to, or which Ci it belongs to. Again, some cells lack this index. In
those cases we write “ ≠ ” instead.

• Index r: The index 1 Æ r Æ ls is an integer indicating which sub-braid —
(r)

of the
local braid the cell is associated to, or which Hr it belongs to. Once again, some
cells lack this index, and in those cases we write “ ≠ ” instead.

• Index s: Finally, the index 0 Æ s Æ m indicates which critical value xs the cell is
associated to, or which Tx

s

it belongs to.
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The class TowerCell possesses fields for all of these variables, and two additional
fields, one for the dimension of the cell, and one for the braid monodromy (object of type
BraidMonodromy). These fields are called dim, name, index (for j), sing_point, (i,r),
and mon. As it can be seen, the two indexes i and r are included as a pair in a single field.
The dimension and the braid monodromy are unnecessary from a mathematical point of
view, but it is convenient to have them included. If a determined cell is lacking an index
we fill the corresponding field with none. Thus, the cell es

j(i,r)

will be represented by the
object

TowerCell(1,e,j,s,(i,r),mon).

It is important to notice that ghost cells admit to be represented in this way, even if
they do not form part of the complex. This is, not only the cells Non-Con(Tx

s

) but also
the cells of

t
1ÆrÆl

s

Bnd(Hr) can be represented as objects of this type. This is important
because the program needs to do so in order to create conical cells and calculate their
boundaries.

For this class we define a function Border that returns the boundary of any given cell
in Non-Con(Tx

s

) in the form of a set of objects of type CellWithSign. This function is
calculated simply by the boundary formulae we have given.

Now let us consider the class ConeCell. Every cell ‚fl in Con(Tx
s

) has a base fl
that belongs to Bnd(Hr), for some r, and might be a ghost cell. Therefore, the cells in
Con(Tx

s

) are function of the cells in
t

1ÆrÆl
s

Bnd(Hr), which always admit a representation
as an object of type TowerCell. The class ConeCell has then a single field, called cell,
containing an object of type TowerCell that represents the base of the conical cell.

As before, for this class we define a function Border that returns the boundary of any
given cell in Con(Tx

s

) as a set of objects of type CellWithSign. This function is calculated
simply by the boundary formulas

ˆT (‚fl) = AA
(≠,r)

≠ fl and
ˆT (‚fl) = (≠1)dim(fl)(≠g(fl)) + ‚(ˆH

r

fl).

Now let us recall that the set of cells of each bridge Bs is

Bot(Bs) fi Top(Bs) fi Prod(Bs).

For these sets of cells we define the classes

• BottomCell,

• TopCell and

• ProductCell,

respectively.
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Let us consider the class BottomCell first. The set Bot(Bs) is in turn composed by
two disjoint subsets, one composed by the cells of the loom, and another one composed
by the cells of the joints. A typical example of a cell on a joint would be

zs
r,j

r

(i,0)

,

whereas a typical cell on the loom would be

es
j(i,0)

.

Since the cells on Bot(Bs) and Top(Bs) will be represented by di�erent classes, the last
subindex, taking the value 0 or 1, and used to distinguish cells from the top and the
bottom, will become redundant and will be omitted from now on. The class BottomCell

has fields for all the variables that these cells are dependent on, and additional fields
for the dimension and the braid monodromy. These fields are called dim, name, r, jr,
sing_point, i and mon. The field r will be used both for the subindex r of the cells on
the joints and the subindex j of the cells on the loom. Thus, the cells zs

r,j
r

(i,0)

and es
j(i,0)

will be represented by the objects

BottomCell(1,z,r,jr,s,i,mon) and
BottomCell(1,e,j,none,s,i,mon).

As usual, we define a function Border, calculated from the boundary formulae we have
given.

Since the cells on Top(Bs) are an exact copy of those on Bot(Bs), the class TopCell

is defined identically as BottomCell.
Finally, we define the class ProductCell. This class has two fields called cellB and

cellT containing the objects of type BottomCell and TopCell that respectively represent
the cells at Bot(Bs) and Top(Bs) corresponding to the product cell.

This class also has a function border calculated by the formulas

ˆ(Ifl) = fl
1

≠ fl
0

,

ˆ(Ifl) = (≠1)dim(fl)(fl
1

≠ fl
0

) + I(ˆ(fl)).

It should be noticed that the product cells at the ends of bridge Bs, this is, the product
cells on D

0

and Dkc+1

, are identified with certain cells on T
0

and Tx
s

. These identifications
need to be taken into account. A function product_of_chain is used for this end. This
function, when applied to a chain c, returns I(c) but omitting the cells on D

0

and Dkc+1

.
The program uses this function as if it were the operator I in the application of the formula
ˆ(Ifl) = (≠1)dim(fl)(fl

1

≠ fl
0

) + I(ˆ(fl)). In this way, for any product cell fl, the program
calculates a chain that is the boundary of fl but omitting the cells on D

0

and Dkc+1

. Then,
the missing cells (i.e. those on on T

0

and Tx
s

) are added explicitly to each boundary.
Once we have classes to represent all kind of cells, and functions to calculate its bound-

aries, all what is remaining to obtain a CW complex is to provide the list of cells. For this
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end we define the functions cells_of_tower and cells_of_bridge that return the cells
of any given tower or bridge respectively, as a dictionary that assigns to each dimension
the set of cells of that dimension.

A function CW_decomposition, defined for the class BraidMonodromy, uses these two
functions to return all the cells of the CW complex, again as a dictionary.

Having the entire CW complex, it only remains to specify which cells belong to the
curve �. To this end we use a function called in_curve.

2.2 Program for a Simplicial Decomposition

We will explain now the second program. This program uses as its input a regular CW
complex as returned by the first program, and returns a simplicial decomposition of (D, �fl
D) explicitly. The complete program can be found in appendix B.

Let us recall that the output of the first program is a dictionary that assigns to each
dimension a set of objects of type Cell, for which there are defined functions called border,
and that this dictionary represents the CW decomposition of (D, �flD). Along this section
we will refer freely to this kind of dictionaries as CW complexes.

Let – be a cell in the decomposition of (D, � fl D), and — a cell in ˆ–. Then there are
objects a and b in D that represent – and —. By calculating the border of a, the program
creates a new object that is identical to b, but a di�erent object nevertheless. In order to
avoid this we create a new structure for the regular CW complexes.

We start by defining the following classes.

• Simple_Cell. An instance of this class represents a cell. This class has two fields,
dim and name, that contain the dimension and name of the cell.

• Cell_With_Sign. An instance of this class represents a cell with sign. This class
has two fields, one containing an object of type Simple_Cell, and the other one a
number ±1.

We continue by defining a function simple_complex. This function uses a single pa-
rameter intended to be a CW complex. Let D be a CW complex and, for every dimension
i, let Xi be the set assigned to it. Then, for each cell in Xi, the function creates an object
of type Simple_Cell that has the name and dimension of the given cell, and then groups
all the resulting objects in a set, that we will call SXi. The function returns the list
that assigns to each dimension i the set SXi of objects of type Simple_Cell. Therefore,
what the function simple_complex does is to take all the objects of type Cell within a
CW complex, and replace them with equivalent objects of type Simple_Cell. Along this
section we will refer freely to this kind of dictionaries as simple complexes.

Let SD be a dictionary returned by simple_complex. Then, given a and b as before,
there are objects sa and sb in SD corresponding to a and b. The function simple_complex
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also identifies sb with the object created by applying the function border to sa, thus
avoiding the duplication issue explained before.

We also define a function subcomplex that tells which objects of type Simple_Cell in
this dictionary represent cells on �.

We will explain now a general algorithm to obtain, from a regular CW complex, a
simplicial complex with the same underlying space. The algorithm in question is the one
that runs from lower to higher dimension and transforms each cell into a star over its
center. Although this algorithm is known and very simple, we explain it in order to make
our program understandable.

Let C be a CW complex of dimension dim, and let Ci be the set of cells of C of
dimension i. Given a cell ‡ on C, we denote the set of cells on the boundary of ‡ by ˆ(‡).
Finally, let x be an element and (y

1

, . . . , yk) a k-tuple of elements. We define xú(y
1

, . . . , yk)
as the (k + 1)-tuple (x, y

1

, . . . , yk).
Let K denote the simplicial complex we are about to build, and Ki the set of simplices

of K of dimension i. We define K
0

as the set of one-tuples of elements of C.
In order to define the simplices of higher dimensions, for each cell ‡ œ C and each

dimension 0 Æ i Æ dim(‡), we build certain sets that we will call Vi(‡), Bi(‡) and Wi(‡).
These sets represent the following:

Vi(‡) : The i-simplices of K lying on the interior of ‡.
Bi(‡) : The i-simplices of K lying on the boundary of ‡.
Wi(‡) : The i-simplices of K lying on the closure of ‡.

We build these sets by recursion in the following way. For each ‡ œ C
0

we define

V
0

(‡) = ÿ,
B

0

(‡) = {‡}, and
W

0

(‡) = {‡}.

Now, let 1 Æ d Æ dim and let us assume that the sets Vi(‡), Bi(‡), and Wi(‡) are already
defined for the cells of Cd≠1

. Then, for every ‡ œ C
0

we define Vi(‡), Bi(‡) and Wi(‡) as
follows. For i = 0,

V
0

(‡) = ÿ,
B

0

(‡) =
€

flœˆ(‡)

W
0

(fl), and

W
0

(‡) = V
0

(‡) fi B
0

(‡).

And for 1 Æ i Æ d,

Vi(‡) = {‡ ú ⁄ | ⁄ œ Bi≠1

(‡)},
Bi(‡) =

€
flœˆ(‡)

Wi(fl) (or Bi(‡) = ÿ if i = d), and

Wi(‡) = Vi(‡) fi Bi(‡).
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Then we define

K = K
0

fi
Q

a
€

‡œC

dim(‡)€

i=0

Vi(‡)

R

b ,

which is a disjoint union.
It is easy to see that this algorithm, when applied to a regular CW complex, produces

a simplicial complex with the same underlying space. And in particular, when applied to
a simplicial complex, it produces its barycentric subdivision.

Let us recall that only regular CW complexes admit combinatorial descriptions. Specif-
ically, a regular CW complex can be presented as a set of cells with border functions.
Simplicial complexes are regular by definition and therefore can be presented as sets of
tuples. This is the reason for which the algorithm is restricted to the regular case.

In fact, the fundamental idea of the algorithm also works for CW complexes that are
not regular, though in this case it needs to be expressed in di�erent terms, and the result
is a CW complex in which every cell is the image of a simplex (and might not be regular).
However, since the CW decomposition of (D, � fl D) we have designed is regular, we can
follow the combinatorial approach. This approach has also the advantage that it allows to
express the complexes by the relatively simple structures we have defined, while keeping
all the nice properties of regular complexes.

Several variations of this algorithm can be useful. For example, for the purpose of
transforming a CW complex into a simplicial complex, since one-dimensional cells are also
one-dimensional simplices, a variation that omits the subdivision of the one-dimensional
cells can also be used.

Let S be a subcomplex of C. Another variation of the algorithm omits the subdivision
of the one-dimensional cells, except by those that do not lie on S, but have both of its
ends lying on S. This second variation is useful because it allows a regular neighborhood
of S to be taken on a barycentric subdivision of K.

The program continues with a function from_CW_to_simplicial_with_sets that is
an implementation of the second variation. This function uses two parameters intended
to be a simple complex and a subcomplex of this, and returns a dictionary that assigns
to each dimension a set of tuples. These sets of tuples represent K

1

, . . . , Kdim and the
dictionary represents K. Along this section we will refer freely to this kind of dictionaries
as simplicial complexes. A function simplex_in_subcomplex keeps track of the simplices
produced by subdividing the subcomplex.

Another function, subdivide, is an implementation of the main subdivision algorithm
we just described (with no variations). This function uses a single parameter, intended
to be a regular CW or simplicial complex, and returns a simplicial complex. As we have
already said, if used upon a simplicial complex, the complex returned is its barycentric sub-
division. If subdivide is used upon the output of from_CW_to_simplicial_with_sets,
a function simplex_in_subcomplex keeps track of the subsimplices coming from the orig-
inal subcomplex.

By successively applying simple_complex, from_CW_to_simplicial_with_sets and
subdivide, the program provides a simplicial complex, represented as a dictionary, that

44



Programs and Projective Case Chapter 2

decomposes (D, � fl D).
The function from_CW_to_simplicial_with_sets, besides turning the CW complex

into a simplicial complex, acts as a first barycentric subdivision with regard to �. The
function subdivide performs a barycentric subdivision itself. Therefore, the simplicial
complex returned by the program is thin enough for taking a regular neighborhood of �.

Two last functions, reg_neig and comp_reg_neig, return simplicial decompositions
for a regular neighborhood of � and the complement of �.

2.3 Decomposition for a Projective Plane Curve

Let � be a projective curve in P2. In this section we discuss how to obtain a CW decom-
position of the pair (P2, �), as we did in the previous complement for the case of an a�ne
curve.

Let LŒ be a line in P2 in generic position with regard to �, this is, transversal to
�. Let P be a point in LŒ not lying on �. We can define coordinates in P2\LŒ in the
following way. The pencil of lines through P is parametrized by P1, and therefore, by
removing LŒ, the remaining lines of the pencil are parametrized by C, providing a first
coordinate x (if we want the projection map on x to be generic, we can also demand that
P does not belong to any non-generic line). A similar procedure, by taking another point
of projection, provides a second coordinate y. In this way, we have a natural identification
of P2\LŒ with C2.

Let Ly=0

be the line of P2 corresponding to the x axis of C2. Then, on the pencil of
lines through P , there are finitely many lines intersecting � non-transversally (tangent to
� or passing through singularities). Let

� = {x
1

, . . . , xm}

be the set of these points. This is the same � defined in the previous chapter.
We will describe in the first place a CW complex decomposition for a regular neigh-

borhood of the line at the infinity LŒ. If we see P2 as a compactification of C2 in this
way, then a closed regular neighorhood R of LŒ is the complement of an open polydisc
DÁ ◊ D”. This implies that ˆR is equal to ˆ(DÁ ◊ D”) and homeomorphic to S3. Then,
ˆR has a natural Heegaard splitting ˆR = T

1

fiT T
2

, where

T
1

= ˆDÁ ◊ D”,
T

2

= DÁ ◊ ˆD” and
T = ˆDÁ ◊ ˆD”.

Let D
1

and D
2

be meridian disks for T
1

and T
2

. Let m and l be the boundaries of D
1

and
D

2

with given orientations.
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Let us notice that if L is any line of P2 passing through the origin, then L fl R is a disk
centered at L fl LŒ. Let p : R ≠æ LŒ be the restriction to R of the projection from the
origin to the line at infinity. This map sends every disk L fl R onto its own center L fl LŒ,
and endows R with a fiber bundle structure, the base of which is LŒ, and the fibers of
which are the disks of the form L fl R.

The restriction of p to ˆR is therefore a Hopf fibration on ˆR. Furthermore, it is
easy to see that T is a union of fibers of this Hopf fibration, which makes T itself an
S1-fibered space. Let h

1

, . . . , hn be n fibers of T . Then h
1

, . . . , hn are circumferences on T
homologous to m + l (if m and l are given the right orientations), and form, with respect
to D

1

, a full twist braid inside ˆR. The situation is illustrated in the following figure.

T
1

p≠1p(T )

l

hi

hi

D
1

m

Figure 2.1

Then the one-skeleton
m fi l fi h

1

fi · · · fi hn

induces naturally a CW complex structure on T .
Let us consider now the torus p≠1p(T ) on R, which is bounded by T . Let us notice that

p≠1p(h
1

), . . . , p≠1p(hn) is a set of fibers of R that are meridian disks of p≠1p(T ). Then,
we can endow p≠1p(T ) with the CW complex structure defined by the following one and
two-skeletons:

1 : m fi l fi h
1

fi · · · fi hn

2 : T fi p≠1p(h
1

) fi · · · fi p≠1p(hn).

The CW complex structure of T can be also extended to T
1

and T
2

as follows. We
endow T

1

and T
2

with the CW complex structure defined by the following one and two-
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skeletons. For T
1

:

1 : m fi l fi h
1

fi · · · fi hn ,

2 : T fi D
1

.
And for T

2

:
1 : m fi l fi h

1

fi · · · fi hn ,

2 : T fi D
2

.

Let us observe that the three solid tori T
1

, T
2

and p≠1p(T ) share T as a common
boundary. We have given these three solid tori CW complex decompositions all coincident
on the common boundary T . Thus, we have a decomposition for T

1

fiT T
2

fiT p≠1p(T ).
Now, let SNth := p(T

1

), SSth := p(T
2

), and e := p(T ). Since p |ˆR is a Hopf fibration,
then SNth and SSth are disks, and e is their common boundary. The union of SNth and
SSth equals LŒ, so we can think of e as an equator for LŒ, and of SNth and SSth as
northern and southern hemispheres.

Let BNth := p≠1(SNth) and BSth := p≠1(SSth). Then BNth and BSth are two four-
dimensional balls, whose union is R and whose interiors are disjoint. Let us notice that
BNth is the the product of SNth and the fiber of R. This means that BNth is the prod-
uct of two disks, and therefore ˆBNth has a natural Heegaard splitting, with solid torit

xœS
Nth

ˆp≠1(x) and p≠1(ˆSNth). We see that

€

xœS
Nth

ˆp≠1(x) = ˆR fl
S

U
€

xœS
Nth

p≠1(x)

T

V = T
1

,

p≠1(ˆSNth) = p≠1(e) = p≠1p(T ),

and that the common boundary of these tori is T , which means that the Heegaard splitting
for ˆBNth is in fact

ˆBNth = T
1

fiT p≠1p(T ).

Similarly, ˆBSth has the natural Heegaard splitting

ˆBSth = T
2

fiT p≠1p(T ).

This implies that the complement of the set T
1

fiT T
2

fiT p≠1p(T ) in R is composed of
two disjoint four-dimensional open balls. Since we already have a CW decomposition for
T

1

fiT T
2

fiT p≠1p(T ), we have a decomposition for R.
We will discuss now how this decomposition, and the one defined in the previous

chapter, induce a decomposition for (P2, �).
Let D = DÁ ◊ D” be a polydisc containing all the points of the form (xi, y) œ � with

xi œ �, and let R be the complement of the interior of D as before. If the line at the
infinite LŒ is generic, as we have chosen it to be, then the intersection of � and R consists
of n disks centered at LŒ, the boundaries of which form a full twist on ˆR. By means of
an isotopy, we can assume these disks are fibers of R, and that its boundaries lie on T .
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By taking h
1

, . . . , hn as the boundaries of these disks (i.e., the n components of � fl
ˆR), and endowing R with the CW complex structure just described, we obtain a CW
decomposition for the pair (R, R fl �), that we denote by R̃.

On the other hand, Theorem 1.18 provides us with a CW decomposition of the pair
(D, D fl �) that we denote by D̃. Let ˆR̃ and ˆD̃ be the CW complex structures induced
by R̃ and D̃ on ˆR = ˆD. These structures do not coincide. However, ˆR̃ induce a
subdivision of D̃ that we call D̃Õ, and ˆD̃ a subdivision of R̃, that we call R̃Õ.

Then R̃Õ and D̃Õ are CW decompositions of the pairs (R, R fl �) and (D, D fl �),
respectively, that are coincident on ˆR = ˆD. Therefore, the union of R̃Õ and D̃Õ provide
a CW decomposition of the pair (P2, �).

In the a�ne case we provided an explicit presentation of the decomposition of the pair
(D, D fl �). To provide the equivalent presentation for (P2, �) would be more di�cult
however, because ˆR̃ and ˆD̃ are quite di�erent, and its intersection is hard to describe.
A possible solution would be to separate ˆR and ˆD a small distance, leaving a space in
between homeomorphic to S3 ◊ I. This space could then be filled with a transitioning
decomposition, as we did for the joints in the previous chapter.
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Chapter 3

A CW Decomposition of the
Milnor Fiber of Singularities of

the Form z

n ≠ x

a

y

b

In this chapter we study the topology of the compact Milnor fiber of the singularities of
the form f : (x, y, z) = zn ≠ xayb. Here, f is a representative of a surface singularity germ
f : (C3, 0) ≠æ (C, 0) and a, b, and n are positive integers. Let BÁ and SÁ be the ball and
sphere of radius Á in C3 respectively.

Since f is a quasi-homogeneous polynomial, it holds that, for every Á > 0, there exists
a stratification of f≠1(0) such that each stratum is transversal to SÁ. Therefore, the ÷
appearing in the definition of the Milnor fiber, as we presented it in the introduction, can
be chosen to be arbitrarily large. In particular, for ÷ = 1, and say Á = 2, we have that

f≠1(t) t SÁ

for every t with 0 < |t| Æ ÷. Therefore, by taking t = ≠1, we obtain that the compact
Milnor fiber of f is given by the intersection of the surface

F :=
Ó

(x, y, z) œ C3 | zn ≠ (xayb ≠ 1) = 0
Ô

with BÁ. We denote this compact Milnor fiber by CF .
The purpose of this chapter is to construct a CW decomposition for CF . To do this, we

start by constructing a decomposition of a much simpler space, and then, through the use
of coverings, we find decompositions for increasingly complicated spaces, until eventually
reaching one for CF .
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3.1 Decomposition for a Hyperbola and its Asymp-
totes

We begin by finding a CW decomposition for a su�ciently large polydisc of C2 intersecting
the set

)
(x, y) œ C2 | xy(xy ≠ 1) = 0

*
in a subcomplex. To this end we could use the

method described in Chapter 1, however, in this particular case, we can build a much
simpler decomposition. In this section we describe that decomposition.

As in the previous chapter, let us denote the complex lines in C2 by writing L and the
equation of the line as a subindex. Let us also define

H
1,1 :=

Ó
(x, y) œ C2 | xy ≠ 1 = 0

Ô
,

which is a hyperbola. Let us observe that
)
(x, y) œ C2 | xy(xy ≠ 1) = 0

*
= H

1,1 fi Lx=0

fi
Ly=0

. Let
B :=

Ó
(x, y) œ C2 | ÎxÎ , ÎyÎ Æ Á

Ô

be large enough to ensure that B fl H
1,1 has a non-empty interior.

Now we will set the bases for our construction with some more definitions. For each
0 Æ ” Æ Á, let S” be the sphere defined by

S” = ˆ
Ó

(x, y) œ C2 | ÎxÎ , ÎyÎ Æ ”
Ô

=
Ó

(x, y) œ C2 | max{ÎxÎ , ÎyÎ} = ”
Ô

,

and let T
1,”, T

2,” and T” be defined by

T
1,” =

Ó
(x, y) œ C2 | ÎxÎ = ”, ÎyÎ Æ ”

Ô
,

T
2,” =

Ó
(x, y) œ C2 | ÎxÎ Æ ”, ÎyÎ = ”

Ô
and

T” =
Ó

(x, y) œ C2 | ÎxÎ = ÎyÎ = ”
Ô

.

Let us notice that, for each ”, the sets T
1,” and T

2,” are two solid tori, with common
boundary T”, that constitute a Heegaard splitting for S”. The situation is illustrated in
Figure 3.1. Let us observe also that ˆB = SÁ.

We consider B as having the conical structure B = (SÁ ◊ [0, Á])�(SÁ ◊ {0}), defined
by the following rule:

(p, t) := t

Á
p ’p œ SÁ, ’t œ [0, Á].

Then, every three-dimensional fiber SÁ◊{”} of B is equal to S”, and every one-dimensional
fiber {p} ◊ [0, Á] is equal to the segment 0p, which is a radius of B. Moreover, it holds for
every ” that T

1,Á ◊ {”} = T
1,” , T

2,Á ◊ {”} = T
1,” and TÁ ◊ {”} = T”, meaning that the

Heegaard splittings S” = T
1,” fiT

”

T
2,” are coherent with the conical structure of B.
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For each 0 Æ ” Æ Á, let us define

co
1,” = T

1,” fl Ly=0

=
Ó

(x, 0) œ C2 | ÎxÎ = ”
Ô

,

co
2,” = T

2,” fl Lx=0

=
Ó

(0, y) œ C2 | ÎyÎ = ”
Ô

,

m” =
Ó

(x, y) œ C2 | x = ”, ÎyÎ = ”
Ô

,

l” =
Ó

(x, y) œ C2 | y = ”, ÎxÎ = ”
Ô

.

Then, co
1,” and co

2,” are cores for T
1,” and T

2,” respectively, while m” and l” are meridians
for T

1,” and T
2,” respectively. We consider co

1,”, co
2,”, m” and l” with counterclockwise

orientations in the spaces Ly=0

, Lx=0

, Lx=” and Ly=” respectively.
Let m := min {Î(x, y)Î | (x, y) œ H

1,1} and � := {(x, y) œ H
1,1 | Î(x, y)Î = m}. We

will show that � lies within a single sphere S”, that we call S”0 . In fact, � is a circumfer-
ence contained in T”0 and homologous to ≠m”0 + l”0 .

Lemma 3.1. It holds that � = S”0 fl H
1,1 for some ”

0

. Moreover, � = ≠m”0 + l”0.

Proof. Let f : R+ æ R be defined by f(s) = s2≠1

s . An analysis over the derivatives of f
shows that f has its absolute minimum at s = 1, a fact that will be used later.

Let us notice that H
1,1 =

)
(z, z≠1) | z œ C

*
. For every point (z, z≠1) œ H

1,1, it holds
that

...(z, z≠1)
...

2

= ÎzÎ2 +
...z≠1

...
2

= ÎzÎ4 + 1
ÎzÎ2

= f(ÎzÎ2).

Therefore,
Ó

z |
...(z, z≠1)

... = m
Ô

=
;

z |
...(z, z≠1)

...
2 Æ

...(w, w≠1)
...

2 ’w œ C
<

=
Ó

z | f(ÎzÎ2) Æ f(ÎwÎ2) ’w œ C
Ô

=
Ó

z | ÎzÎ2 = 1
Ô

= {ei◊ | ◊ œ R}.

Which means that a given point (z, z≠1) belongs to � if and only if f has an absolute
minimum at ÎzÎ2. Since we know that the absolute minimum of f occurs at s = 1, then
(z, z≠1) belongs to � if and only if ÎzÎ2 = 1, that is, if and only if z = ei◊ for some ◊ œ R.
Hence, we have that

� =
Ó

(z, z≠1) |
...(z, z≠1)

... = m
Ô

= {(ei◊, e≠i◊) | ◊ œ R},

and this set is exactly ≠m
1

+ l
1

. By fixing ”
0

= 1 we obtain the lemma. We have also
obtained that m =

Ô
2. ⇤
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From now on, we will denote ≠m” + l” by k”. On the other hand, for every ”
0

< ” Æ Á,
let us notice that S”fl H

1,1 has two connected components, one of them contained in T̊
1,”

and the other in T̊
2,”. Let h

1,” and h
2,” denote these components:

h
1,” := S” fl H

1,1 fl T
1,” ,

h
2,” := S” fl H

1,1 fl T
2,” .

Let us notice that h
1,” and h

2,” are circumferences ambient isotopic to k” in S”. More-
over, h

1,” and h
2,” form a Hopf link inside S”. If we allow ” to vary, we see that h

1,” and
h

2,” tend both to k” as ” tends to ”
0

, and tend to co
1,” and co

2,” respectively as ” tends to
infinity (if we allow ” to be greater than Á).

Then,
B fl H

1,1 = k
0

fi
€

”0<”ÆÁ
(h

1,” fi h
2,”),

and this set is an annulus. The topology of the inclusion B fl H
1,1 µ B, and the objects

we have defined are illustrated in Figure 3.1.

T1,”

T2,”

T1,”

T2,”

h2,”

h1,”

T1,”0 T2,”0

S”
h1,”

h2,”

co1,”

co2,”

S”0 T1,”0 T2,”0

h1,”0 h2,”0co1,”0 co2,”0

Figure 3.1

Let us proceed now with the construction of the CW decomposition. For every ” such
that ”

0

Æ ” Æ Á, let us define

D
1,” :=

Ó
(x, y) œ C2 | x = ”, ÎyÎ Æ ”

Ô
fi

Ó
(x, y) œ C2 | x œ [0, ”] , ÎyÎ = ”

Ô
,

D
2,” :=

Ó
(x, y) œ C2 | y = ”, ÎxÎ Æ ”

Ô
fi

Ó
(x, y) œ C2 | y œ [0, ”] , ÎxÎ = ”

Ô
.
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The set D
1,” is the union of the meridian disk of T

1,” bounded by m”, and the annulus
contained in T

2,” bounded by m” and co
2,”. Similarly, D

2,” is the union of the meridian
disk of T

2,” bounded by l”, and the annulus contained in T
1,” bounded by l” and co

1,”.
Additionally, for every ”

0

Æ ” Æ Á and ◊ œ R let us define the segments

L
1,”(◊) := (”ei◊, 0)(”ei◊, ”e≠i◊) and

L
2,”(◊) := (0, ”ei◊)(”ei◊, ”e≠i◊).

Let us observe that (”ei◊, 0) is a point of co
1,”, (0, ”ei◊) a point in co

2,” and (”ei◊, ”e≠i◊) a
point in k”. Then,

t
◊œR L

1,”(◊) is an annulus contained in T
1,”, bounded by co

1,” and k”,
and

t
◊œR L

2,”(◊) is an annulus contained in T
2,”, bounded by co

2,” and k”.
We may assume, by deforming H

1,1, that for every ”
0

< ” Æ Á, h
1,” is contained

in
t

◊œR L
1,”(◊) and h

2,” is contained in
t

◊œR L
2,”(◊). Let A

1,” be the sub-annulus oft
◊œR L

1,”(◊) bounded by h
1,” and k”, and A

2,” that one of
t

◊œR L
2,”(◊) bounded by h

2,”

and k”.
Now, for any fixed ”

0

< ” Æ Á, observe that the union T” fi D
1,” fi D

2,” fi A
1,” fi A

2,” is a
two-dimensional CW complex having h

1,”fih
2,” as a subcomplex, and whose complement in

S” is composed by two three-dimensional open balls. Therefore, T” fiD
1,” fiD

2,” fiA
1,” fiA

2,”

provide a CW complex structure for (S”, H
1,1 fl S”) that we will denote by D(S”).

Similarly, For ”
0

, the union T”0 fi D
1,”0 fi D

2,”0 is a two-dimensional CW complex. To
this complex we add k” as an edge, splitting T” into two cells, obtaining a two-dimensional
complex of which k” is a subcomplex. As before, the complement of this complex in S”0 is
composed by two three-dimensional open balls. Therefore, T”0 fiD

1,”0 fiD
2,”0 fik”0 provide

a CW complex structure for (S”0 , H
1,1 fl S”0) that we will denote by D(S”0). After the

previous discussion, the following lemma is clear.

Lemma 3.2. The Complexes D(S”0) and D(S”) are well-defined CW decompositions for
(S”0 , H

1,1 fl S”0) and (S”, H
1,1 fl S”) respectively.

The complexes D(S”0) and D(SÁ) are illustrated in Figures 3.3 and 3.2 respectively,
with a name and orientation given to each cell. For convenience, we use di�erent types
of letters to denote cells according to the dimension: Uppercase Latin for dimension 0,
lowercase Latin for dimension 1, lowercase Greek for dimension 2, uppercase Greek for
dimension 3 and, again, uppercase Greek for dimension 4.

Let us define S
[”0,Á]

:=
t

”0Æ”ÆÁ S”. Our aim now will be to find a CW decomposition
for this space, that we will call D(S

[”0,Á]

). Let us consider an arbitrary cell flÁ in D(SÁ).
For every ”

0

< ” Æ Á, flÁ has an equivalent cell fl” in D(S”), so we can define the set
fl :=

t
”0<”<Á fl”. Let us observe that, for every flÁ, fl is an open ball of dimension

dim(flÁ) + 1.
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c1 c2

‡ ‡

„1 Ê1 Ê2 „2k h1 h2 kl m

�1 �2fi fi

◊1 ◊2
P1 a1 Q1 b1 R P2a2Q2b2R

m l

Figure 3.2

ĉ1 ĉ2

‡̂ ‡̂

Ê̂1 Ê̂2ˆk ˆkˆl m̂

ˆ

�1 ˆ

�2fî fî

◊̂1 ◊̂2
P̂1 â1 R̂ P̂2â2R̂

m̂ ˆl

Figure 3.3

Let us denote the set of cells {fl | flÁ œ D(SÁ)} by D(S
(”0,Á)

). In the following table we
assign a name to each cell in this set. The cells in D(SÁ) are listed in the first column by
dimension, from 0 to 3. In the second column, in front of each cell flÁ, there is the name
that we assign to the corresponding fl (the dimension of fl is greater that the dimension
of flÁ by one).
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Dim. 0 Dim. 1 h
1

÷
1

Ê
1

�
1

h
2

÷
2

Ê
2

�
2

P
1

p
1

c
1

’
1

„
1

�
1

P
2

p
2

c
2

’
2

„
2

�
2

Q
1

q
1

a
1

–
1

‡ �
Q

2

q
2

a
2

–
2

fi �
R r b

1

—
1

b
2

—
2

Dim. 3 Dim. 4
Dim. 1 Dim. 2

Dim. 2 Dim. 3 �
1

�
1

m µ �
2

�
2

l ⁄ ◊
1

�
1

k Ÿ ◊
2

�
2

We define D(S
[”0,Á]

) by

D(S
[”0,Á]

) = D(S”0) fi D(S
(”0,Á)

) fi D(SÁ) .

The definition of fl ensures that this is a well defined CW complex. We refer to the
cells of D(SÁ), D(S

(”0,Á)

) and D(S”0) as the upper, middle and lower cells of D(S
[”0,Á]

)
respectively. The boundaries of all the cells of D(S

[”0,Á]

) are given below.

Dimension 1:

Upper Middle

ˆ(m) = R ≠ R
ˆ(l) = R ≠ R
ˆ(k) = R ≠ R
ˆ(h

1

) = Q
1

≠ Q
1

ˆ(h
2

) = Q
2

≠ Q
2

ˆ(c
1

) = P
1

≠ P
1

ˆ(c
2

) = P
2

≠ P
2

ˆ(a
1

) = P
1

≠ Q
1

ˆ(a
2

) = P
2

≠ Q
2

ˆ(b
1

) = Q
1

≠ R ˆ(b
2

) = Q
2

≠ R

ˆ(p
1

) = P
1

≠ P̂
1

ˆ(p
2

) = P
2

≠ P̂
2

ˆ(q
1

) = Q
1

≠ R̂ ˆ(q
2

) = Q
2

≠ R̂

ˆ(r) = R ≠ R̂

Lower

ˆ(m̂) = R̂ ≠ R̂ ˆ(ĉ
1

) = P̂
1

≠ P̂
1

ˆ(ĉ
2

) = P̂
2

≠ P̂
2

ˆ(l̂) = R̂ ≠ R̂ ˆ(â
1

) = P̂
1

≠ R̂ ˆ(â
2

) = P̂
2

≠ R̂

ˆ(k̂) = R̂ ≠ R̂
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Dimension 2:

Upper

ˆ(‡) = l ≠ m ≠ k
ˆ(fi) = m ≠ k ≠ l
ˆ(◊

1

) = m + a
1

+ b
1

≠ a
1

≠ b
1

ˆ(◊
2

) = l + a
2

+ b
2

≠ a
2

≠ b
2

ˆ(Ê
1

) = c
1

≠ l + a
1

+ b
1

≠ a
1

≠ b
1

ˆ(Ê
2

) = c
2

≠ m + a
2

+ b
2

≠ a
2

≠ b
2

ˆ(„
1

) = h
1

≠ k + b
1

≠ b
1

ˆ(„
2

) = h
2

+ k + b
2

≠ b
2

Middle

ˆ(µ) = r ≠ r + m̂ ≠ m

ˆ(⁄) = r ≠ r + l̂ ≠ l

ˆ(Ÿ) = r ≠ r + k̂ ≠ k

ˆ(÷
1

) = q
1

≠ q
1

+ k̂ ≠ h
1

ˆ(÷
2

) = q
2

≠ q
2

≠ k̂ ≠ h
2

ˆ(’
1

) = p
1

≠ p
1

+ ĉ
1

≠ c
1

ˆ(’
2

) = p
2

≠ p
2

+ ĉ
2

≠ c
2

ˆ(–
1

) = p
1

≠ q
1

+ â
1

≠ a
1

ˆ(–
2

) = p
2

≠ q
2

+ â
2

≠ a
2

ˆ(—
1

) = q
1

≠ r ≠ b
1

ˆ(—
2

) = q
2

≠ r ≠ b
2

Lower

ˆ(‡̂) = l̂ ≠ m̂ ≠ k̂

ˆ(fî) = m̂ + k̂ ≠ l̂

ˆ(◊̂
1

) = m̂ + â
1

≠ â
1

ˆ(◊̂
2

) = l̂ + â
2

≠ â
2

ˆ(Ê̂
1

) = ĉ
1

≠ l̂ + â
1

≠ â
1

ˆ(Ê̂
2

) = ĉ
2

≠ m̂ + â
2

≠ â
2

Dimension 3:

Upper

ˆ(�
1

) = ‡ + fi + ◊
1

≠ ◊
1

+ Ê
1

≠ Ê
1

+ „
1

≠ „
1

ˆ(�
2

) = ≠‡ ≠ fi + ◊
2

≠ ◊
2

+ Ê
2

≠ Ê
2

+ „
2

≠ „
2
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Middle

ˆ(�
1

) = µ + –
1

+ —
1

≠ –
1

≠ —
1

+ ◊
1

≠ ◊̂
1

ˆ(�
2

) = ⁄ + –
2

+ —
2

≠ –
2

≠ —
2

+ ◊
2

≠ ◊̂
2

ˆ(�
1

) = ’
1

≠ ⁄ + –
1

+ —
1

≠ –
1

≠ —
1

+ Ê
1

≠ Ê̂
1

ˆ(�
2

) = ’
2

≠ µ + –
2

+ —
2

≠ –
2

≠ —
2

+ Ê
2

≠ Ê̂
2

ˆ(�
1

) = ÷
1

≠ Ÿ + —
1

≠ —
1

+ „
1

ˆ(�
2

) = ÷
2

+ Ÿ + —
2

≠ —
2

+ „
2

ˆ(�) = ⁄ ≠ µ ≠ Ÿ + ‡ ≠ ‡̂
ˆ(�) = µ + Ÿ ≠ ⁄ + fi ≠ fî

Lower

ˆ(�̂
1

) = ‡̂ + fî + ◊̂
1

≠ ◊̂
1

+ Ê̂
1

≠ Ê̂
1

ˆ(�̂
2

) = ≠‡̂ ≠ fî + ◊̂
2

≠ ◊̂
2

+ Ê̂
2

≠ Ê̂
2

Dimension 4:

ˆ(�
1

) = � + � + �
1

≠ �
1

+ �
1

≠ �
1

+ �
1

≠ �
1

≠ �
1

+ �̂
1

ˆ(�
2

) = ≠� ≠ � + �
2

≠ �
2

+ �
2

≠ �
2

+ �
2

≠ �
2

≠ �
2

+ �̂
2

Now let us define S
[0,”0]

:=
t

0Æ”Æ”0 S”. As we did with S
[”0,Á]

, we will now find a con-
venient CW decomposition for S

[0,”0]

. Let us notice that, by extending D(S”0) conically to
the origin, we can readily obtain a CW decomposition for S

[0,”0]

. From this decomposition
and D(S

[”0,Á]

) we obtain a CW decomposition for B, satisfying our initial requirement
that B fl H

1,1, B fl Lx=0

and B fl Ly=0

are all subcomplexes. However, we will not use
this complex in the successive constructions because it abounds in cells that provide no
essential information. We will instead deviate a little from our original purpose, allowing
the decomposition of B not to meet entirely the coordinate axes in a subcomplex.

Let � := int(S
[0,”0]

) =
t

0Æ”<”0 S”, which is an open four-dimensional ball. Then we
define the CW decomposition D(B) for B by

D(B) = {�} fi D(S
[”0,Á]

).

Theorem 3.3. The complex D(B) is a well defined CW decomposition for B. The
intersections B fl H

1,1, S
[”0,Á]

fl Lx=0

and S
[”0,Á]

fl Ly=0

are subcomplexes of D(B).

Proof. To see that D(B) is well defined it su�ces to observe that ˆ� = S”0 is a subcomplex
of D(S

[”0,Á]

). All B flH
1,1 = S

[”0,Á]

flH
1,1, S

[”0,Á]

flLx=0

and S
[”0,Á]

flLy=0

are subcomplexes
by construction. ⇤
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3.2 Decomposition for the Curve x

a

y

b ≠ 1 = 0

Let a and b be positive integers. We will describe now a CW decomposition for a su�-
ciently large polydisc of C2 intersecting the set Ha,b :=

Ó
(x, y) œ C2 | xayb ≠ 1 = 0

Ô
in a

subcomplex. We construct such CW decomposition by lifting the complexes we already
have through the use of branched coverings.

Let us define
BÕ :=

Ó
(x, y) œ C2 | ÎxÎ Æ a

Ô
Á, ÎyÎ Æ b

Ô
Á
Ô

.

We will soon see that BÕ intersects Ha,b in a space in which every connected component
has non-empty interior, for which it is a su�ciently large polydisc as desired. This is the
polydisc we will decompose.

Now let P be the following map:

P : C2 æ C2

(x, y) ‘æ (xa, yb) .

This map is an ab-fold covering of C2 over C2, branched over one or two of the coordinate
axes (except for the trivial case a = b = 1). In fact, it is the composition of the two cyclic
coverings (x, y) ‘æ (xa, y) and (x, y) ‘æ (x, yb). The crucial fact that makes P important
for us is that

The map P |H
a,b

is an unbranched covering of Ha,b over H
1,1.

Also,
The map P |BÕ is a branched covering of BÕ over B.

Making this last statement true was the motivation to define BÕ the way we did.
Besides, it implies that BÕ intersects Ha,b in the desired way. The branching set of P |BÕ

is B fl Lx=0

if a > 1 and b = 1, B fl Ly=0

if a = 1 and b > 1, and B fl (Lx=0

fi Ly=0

) if
a > 1 and b > 1. The trivial case a = b = 1 results in an empty branching set and is not
of interest to us, since it is the case of the previous section.

Now we use P to construct a CW complex Da,b(BÕ) for (BÕ, BÕ fl Ha,b). We define this
complex by

Da,b(BÕ) :=
Ó

P ≠1(Î) | Î œ D(B)
Ô

.

Theorem 3.4. The complex Da,b(BÕ) is a well defined CW decomposition for (BÕ, BÕ fl
Ha,b).

Proof. Let us notice that the branching set of the covering

P |P ≠1
(S[”0,Á]): P ≠1(S

[”0,Á]

) ≠æ S
[”0,Á]
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is either S
[”0,Á]

fl Lx=0

, S
[”0,Á]

fl Ly=0

, or the union of both sets. In any case, this branching
set is a subcomplex of D(S

[”0,Á]

), which implies that the complex
Ó

P ≠1(Î) | Î œ D(S
[”0,Á]

)
Ô

is well defined.
On the other hand, the fact that ”

0

= 1, implies that P ≠1(S”0) = S”0 and P ≠1(�) = �.
Then we have the following.

• P ≠1(S”0) is a subcomplex of
Ó

P ≠1(Î) | Î œ D(S
[”0,Á]

)
Ô

.

• P ≠1(�) is a cell.

• ˆP ≠1(�) = P ≠1(S”0)

This implies that Ó
P ≠1(�)

Ô
fi

Ó
P ≠1(Î) | Î œ D(S

[”0,Á]

)
Ô

is a well defined CW complex, and this complex is by definition Da,b(BÕ).
Besides, it holds that BÕ fl Ha,b = P ≠1(B fl H

1,1). Since B fl H
1,1 is a subcomplex of

D(B), BÕ fl Ha,b is a subcomplex of Da,b(BÕ). ⇤

It is worth noticing that this good definition, as well as some following lemmas, rely
on the construction of our CW complexes. Actually, we have designed these complexes
purposely in such a way that they include the branching and splitting complexes as sub-
complexes, thus making these statements true.

3.3 Topology of the Curve x

a

y

b ≠ 1 = 0

Now that we have the desired decomposition Da,b(BÕ), we will describe the topology of the
inclusion BÕ fl Ha,b µ BÕ and the combinatorics of Da,b(BÕ). The topology of the inclusion
BÕ fl Ha,b µ BÕ can be inferred from that of B fl H

1,1 µ B by means of P .
In order to do this we must first find a splitting complex for P . In this context, a

splitting complex means a three-dimensional sumcomplex of D(B), of which the branching
set of P is a subcomplex, and the complement of which is simply connected. The general
definition and main properties of splitting complexes can be found in [36].

Let FP denote the cone of D
1,Á fi D

2,Á in B.

Lemma 3.5. The set FP is a splitting complex for P , and FP \� is a subcomplex of D(B).

Proof. That FP \� is a subcomplex of D(B) is clear from the construction of D(B). The
cells composing FP \� are �

1

, �
2

, �
1

, �
2

and all the cells in ˆ(�
1

), ˆ(�
2

), ˆ(�
1

), ˆ(�
2

).
To see that FP is a splitting complex for B it is enough to observe that the complement

of D
1,Á fi D

2,Á in ˆB\(Lx=0

fi Ly=0

) = ˆB\ {co
1,Á fi co

2,Á}, is simply connected. This
property is preserved by the conical structure. ⇤
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Then, P allows us to construct BÕ from copies of B by using elementary covering
theory as follows. We consider ab copies of B and denote them by {Bi,j}iœ[[1,a]], jœ[[1,b]]

,
where [[·, ·]] denotes closed intervals in Z. We cut each of these copies along FP , i.e. along
the cones of D

1,Á and D
2,Á. Foevery i œ [[1, a]] and j œ [[1, b]] let the sets Xi and Yj be

defined by Xj := {B
1,j , . . . , Ba,j} and Yi := {Bi,1, . . . Bi,b}. Then, on each Xi we glue the

a copies of B cyclically along D
1,Á, and on each Yi we glue the b copies cyclically along

D
2,Á. The space resulting from this gluing is BÕ, and each copy of B is projected into B

by P .
Furthermore, we can make this gluing in such a way that each copy of B\� is projected

into B\�, and each copy of � into �. In other words, we can construct BÕ\� by gluing
the copies of B\� (on each Bi,j), and construct � µ BÕ by gluing the copies of � (on each
Bi,j). In the case of BÕ\�, since FP \� is a subcomplex of D(B), this gluing can be made
cellularly, i.e. by identifying cells with cells. This is enough to a�rm the following.

Lemma 3.6. Each copy Bi,j\� of B\� intersects BÕ\� in a subcomplex of Da,b(BÕ)\ {�},
and this subcomplex is a copy of D(B)\ {�}, cut along FP \�.

From these constructions it can be seen that Ha,b is something that could be described
as a multiple hyperbola, made of ab copies of H

1,1 glued together. The following lemma
implies that the number of connected components of Ha,b is gcd(a, b). Each of these com-
ponents resemble H

1,1 in the fact that they are made of one curve close to the origin from
which two wings open to the infinite. Let c := gcd(a, b) and mÕ := min {ÎzÎ | z œ Ha,b}.
Then we have the following.

Lemma 3.7. For the set of points of Ha,b with minimum magnitude the following identity
holds: )

z œ Ha,b | ÎzÎ = mÕ* = S”0 fl Ha,b = P ≠1(k”0) .

Moreover, this set is the disjoint union of c curves homologous to a
c m”0 + b

c l”0 on T”0.

Proof. Since Î(x, y)Î < Î(z, w)Î =∆ ÎP (x, y)Î < ÎP (z, w)Î for every (x, y), (z, w) œ C2, it
holds that

Ó
z œ P ≠1(H

1,1) | ÎzÎ = mÕÔ = P ≠1

1Ó
z œ H

1,1 | ÎzÎ =
Ô

2
Ô2

.

Therefore )
z œ Ha,b | ÎzÎ = mÕ* = P ≠1(k”0).

Now let us observe that for every (x, y), (z, w) œ C2, with P (x, y) = (z, w), it holds
that ÎxÎ = ÎyÎ = 1 if and only if ÎzÎ = ÎwÎ = 1. Hence, since k”0 µ T”0 , then
{z œ Ha,b | ÎzÎ = mÕ} µ T”0 . Furthermore, Because all the points of T”0 have equal mag-
nitude (in fact, equal to

Ô
2), it holds that {z œ Ha,b | ÎzÎ = mÕ} = T”0 fl Ha,b. And since

all the points of S”0\T”0 have magnitude strictly lesser than
Ô

2, this last equality implies
that )

z œ Ha,b | ÎzÎ = mÕ* = S”0 fl Ha,b,
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and mÕ = m =
Ô

2.
Let us now examine the set P ≠1(k”0). We know that k”0 =

Ó
(ei◊, e≠i◊) | ◊ œ R

Ô
. Then

P ≠1(k”0) =
Ó

( a

Ô
ei◊,

b

Ô
e≠i◊) | ◊ œ R

Ô
and therefore

P ≠1(k”0) =
Ó

(ei( ◊

a

+k 2fi

a

), e≠i( ◊

b

+j 2fi

b

)) | ◊ œ R, k œ [[0, a]], j œ [[0, b]]
Ô

=
€

kœ[[0,a]], jœ[[0,b]]

Ó
(ei( ◊

a

+k 2fi

a

), e≠i( ◊

b

+j 2fi

b

)) | ◊ œ R
Ô

.

For every k œ [[0, a]] and j œ [[0, b]] let us define

ck,j : =
Ó

(ei( ◊

a

+k 2fi

a

), e≠i( ◊

b

+j 2fi

b

)) | ◊ œ R
Ô

,

X : = {ck,j | k œ [[0, a]], j œ [[0, b]]} .

Then,
P ≠1(k”0) =

€

c
k,j

œX

ck,j .

Let us notice that for any given k and j, ck,j is a curve in T”0 . However, several of these
curves may be coincident; i.e., there may be d, e œ [[0, a]] and f, g œ [[0, a]] such that
cd,f = ce,g.

Let us define
Ï : Za ü Zb ⇣ X

(k, j) ‘æ ck,j
,

which is a surjective function; and let N = È(1, 1)Í E Za üZb, where È·Í denotes generated
by. It follows from the equations that, for every k and every j, ck,j = ck+1,j+1

. Then, for
every (k, j) œ Za ü Zb and every (d, e) œ N we have that Ï((d, e) + (k, j)) = Ï(k, j). As a
result,

ÏÕ : Z
a

üZ
b

N ⇣ X

N + (k, j) ‘æ ck,j

is well defined and surjective.
We know that Z

a

üZ
b

N is isomorphic to Zc and in fact Z
a

üZ
b

N = {(0, 0), (0, 1), . . . , (0, c)}.
Then, the surjectivity of ÏÕ implies that

X = {Ï(0, 0), Ï(0, 1), . . . , Ï(0, c)}
= {c

0,0, . . . , c
0,c} .

It is easy to see from the equations of c
0,0, . . . , c

0,c that these are all di�erent curves, even
disjoint. Then X is a set of c elements and

P ≠1(k”0) = c
0,0 fi · · · fi c

0,c

=
€

jœ[[0,c]]

Ó
(ei ◊

a , e≠i( ◊

b

+j 2fi

b

)) | ◊ œ R
Ô

.
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All these curves are homologous to a
c m”0 + b

c l”0 , which gives us the result. ⇤

Now we can present a simple topological model for (BÕ, BÕ fl Ha,b). Let us define

T Õ
Á : =

Ó
(x, y) œ C2 | ÎxÎ = a

Ô
Á, ÎyÎ = b

Ô
Á
Ô

,

mÕ
Á : =

Ó
(x, y) œ C2 | x = a

Ô
Á, ÎyÎ = b

Ô
Á
Ô

,

lÕÁ : =
Ó

(x, y) œ C2 | y = b

Ô
Á, ÎxÎ = a

Ô
Á
Ô

.

And let FQ be the union of c disjoint solid tori in BÕ, each of them intersecting ˆBÕ in
an annulus contained in T Õ

Á with core homologous to a
c mÕ

Á + b
c lÕÁ in T Õ

Á. Let Aˆ be the
union of those c annuli, and A := ˆFQ\int(Aˆ). Then we have the following topological
characterization of (BÕ, BÕ fl Ha,b).

Theorem 3.8. The pairs (BÕ, BÕ fl Ha,b) and (BÕ, A) are homeomorphic.

Proof. We will see that BÕ fl Ha,b and A are ambient isotopic in BÕ. Let us first examine
the case for a = b = 1. In this case BÕ is B, FQ is a single solid torus, A is an annulus,
and BÕ fl Ha,b = B fl H

1,1 is also an annulus, as we showed in the previous section. Let
H : (B fl H

1,1) ◊ I ≠æ B be an isotopy, constant on h
1,Á fi h

2,Á, and pushing B fl H
1,1

into an annulus Hˆ contained in ˆB. Then, since the cores of Hˆ and Aˆ are homologous
(both homologous to mÕ

Á + lÕÁ), we may deform B in order that Hˆ coincides with Aˆ .
Subsequently, we may deform B in order that B fl H

1,1 coincides with A.
We can reason in a similar way for the general case. In this case, as a direct consequence

of the previous lemma and the definition of FQ, the 2c components of ˆAˆ may be forced
to coincide with 2c annuli obtained by pushing BÕ fl Ha,b into ˆB. ⇤

Actually, the sets A and FQ could have been constructed on an arbitrary closed four-
dimensional ball.

3.4 Combinatorics of D
a,b

(BÕ)

Now we are interested in describing the combinatorics of Da,b(BÕ). Let us observe that
given any cell of Î œ D(B), the preimage P ≠1(Î) consists of a disjoint union of cells
which are copies of the original Î, and which we call the preimages under P of Î. It is
a consequence of Lemmas 3.5 and 3.6 that, given any Î œ D(B)\ {�}, every copy Bi,j

of B contains exactly one preimage of Î, though several copies of B may share the same
one. For every Î œ D(B)\ {�} we choose a single preimage of Î, which we denote by Î̃.
We may further choose all these preimages Î̃ inside a single privileged copy of B, which
we may assume is B

1,1. By adding � to this set of chosen preimages we obtain a subset
B̌ of Da,b(BÕ) that we will call the first copy complex of Da,b(BÕ), which is a set of cells
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but not a well defined CW complex. Notice that B̌ contains exactly one preimage of each
Î œ D(B). We will be able to observe later that, despite the underlying space of the first
copy complex is not B

1,1, it is almost as if it were because �, which is the only odd cell,
behaves conveniently similar to the origin.

Let ť, š : C2 ≠æ C2 be defined by

ť(x, y) = (e
2fi

a x, y) and
š(x, y) = (x, e

2fi

b y).

Then ť and š are generators of the deck transformations group of the coverings (x, y) ‘æ
(xa, y) and (x, y) ‘æ (x, yb) respectively. Together, the two generate the deck transforma-
tions group of P . Thus, when applied to BÕ, ť and š cyclically permute the ab copies of B
of which BÕ is made. Moreover these copies are all the translations of B

1,1 by ť and š.
Let us notice also that for every cell fl in Da,b(BÕ), the images ť(fl) and š(fl) are also

cells in Da,b(BÕ). In consequence, ť and š define functions from Da,b(BÕ) to Da,b(BÕ) that
we keep calling ť and š. We can extend these functions linearly to the chain groups of
Da,b(BÕ) as follows:

Let Ci denote the chain group of Da,b(BÕ) of dimension i. Then, for every 0 Æ i Æ 4
we define ť, š : Ci ≠æ Ci by

ť(fl
1

+ · · · + flj) := ť(fl
1

) + · · · + ť(flj) and
š(fl

1

+ · · · + flj) := š(fl
1

) + · · · + š(flj),

which are in fact homomorphisms. For simplicity, we will often write ťfl and šfl instead of
ť(fl) and š(fl).

Let us observe that given a cell Î œ D(B)\{�}, the application of ť and š cyclically
permute the preimages of Î among the copies of B that make BÕ. Moreover, the preimages
of Î are exactly all the translations of Î̃ by ť and š.

Since Lx=0

is the branching set of (x, y) ‘æ (xa, y), for every Î œ D(B)\{�} lying
on Lx=0

, it holds that ť acts trivially over the preimages of Î. Similarly, for every Î œ
D(B)\{�} lying on Ly=0

, it holds that š acts trivially over the preimages of Î. Finally,
regarding �, both ť and š act trivially over it due to its symmetry, i.e. ť(�) = š(�) = �.
For no other cell of Da,b(BÕ) do ť or š act trivially. Thus, we have the following.
Lemma 3.9. The cells of Da,b(BÕ) are exactly the following, and satisfy the properties
described.

• The cell �. Both ť and š act trivially over �.

• The preimages of P
1

, c
1

, p
1

, ’
1

, P̂
1

and ĉ
1

, which are the six cells of D(B)\{�}
lying on Lx=0

. If Î is one of these cells, its preimages are Î̃, š(Î̃),. . . , šb≠1(Î̃). Only
ť acts trivially over these cells.

• The preimages of P
2

, c
2

, p
2

, ’
2

, P̂
2

and ĉ
2

, which are the six cells of D(B)\{�}
lying on Ly=0

. If Î is one of these cells, its preimages are Î̃, ť(Î̃),. . . , ťb≠1(Î̃). Only
š acts trivially over these cells.
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• The preimages of all the remaining cells of D(B)\{�}. If Î is one of these cells,
its preimages are

Ó
ť iš j(Î̃)

Ô

0ÆiÆa≠1, 0ÆjÆb≠1

. Neither ť or š act trivially over these
cells.

Now we want to calculate the boundaries of all the cells of Da,b(BÕ). The following
lemma is a consequence of the definition of Da,b(BÕ), ť and š.

Lemma 3.10. For every Î œ Da,b(BÕ), and every i, j œ Z,

ˆ(ť iš jÎ) = ť iš jˆ(Î) .

Lemma 3.9 implies that, once the boundaries of the cells of B̌ have been calculated,
this formula provides us the boundaries of all the cells of Da,b(BÕ). The boundaries of the
cells of B̌ are given at the end of the chapter (assuming u = 1).

3.5 Decomposition of the Milnor Fiber

Let a, b, and n be positive integers. We will describe now a CW decomposition for the
intersection of the surface

F :=
Ó

(x, y, z) œ C3 | zn ≠ (xayb ≠ 1) = 0
Ô

with a su�ciently large polydisc.
Let CF := F fl (BÕ ◊ C). Let us observe that CF is bounded, since for any (x, y, z) œ

BÕ ◊ C with zn ≠ (xayb ≠ 1) = 0 it holds that ÎzÎn =
...xayb ≠ 1

... Æ
...xayb

... + 1 Æ Á2 + 1.
In fact, this bound is optimal, which implies that CF is also closed and, in consequence,
compact. In fact, this is the compact Milnor fiber of f we have already defined, and the
set we will decompose.

Now let Q be the following map:

Q : F æ C2

(x, y, z) ‘æ (x, y) .

It is easy to confirm that

The map Q is a cyclic n-fold covering of F over C2 branched along Ha,b.

Furthermore,

The map Q |CF is a cyclic n-fold covering of CF over BÕ branched along BÕ fl Ha,b.

Now we use Q to construct a CW complex D(CF) for CF . We define this complex by

D(CF) :=
Ó

Q≠1(Î) | Î œ Da,b(BÕ)
Ô

.
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Theorem 3.11. The complex D(CF) is a well defined CW decomposition for CF .

Proof. This is true because the branching set BÕ fl Ha,b of Q is a subcomplex of Da,b(BÕ).
⇤

As before, this good definition, as well as some of the following lemmas, rely on the
construction of our CW complexes. We have designed these complexes purposely in such
a way that they include the branching and splitting complexes of both P and Q as sub-
complexes, which is the crucial fact that bound these statements to be true and allows us
advance in our constructions.

3.6 Topology of the Milnor Fiber

Up to this point we have defined the space CF and the CW decomposition D(CF). How-
ever, we do not have a topological description of CF , nor any combinatorial information
about D(CF). We will now give a complete topological description of CF . In order to do
this we must find a splitting complex FQ for Q.

Let · denote the solid torus �̄
1

fi �̄
2

in B, and FQ the set P ≠1(·) in BÕ. Let us notice
that this definition of FQ coincides with the one we gave in Section 3.3 (up to isotopy).

Lemma 3.12. The set FQ is both a subcomplex of Da,b(BÕ) and a splitting complex for Q.

Proof. To see that FQ is a subcomplex, it is enough to observe that · is a subcomplex of
B. The cells composing · are the upper cells Q

1

, Q
2

, R, b
1

, b
2

, h
1

, h
2

, k, „
1

and „
2

; the
middle cells q

1

, q
2

, r, —
1

, —
2

, ÷
1

, ÷
2

, Ÿ, �
1

and �
2

; and the lower cells R̂ and Ÿ̂ (as defined
in Section 3.1, p. 54, 55).

On the other hand, to see that FQ is a splitting complex for Q we need to prove that
(BÕ\Ha,b)\FQ is simply connected, which is the same as showing that BÕ\FQ is simply
connected.

We will show first that B\· is simply connected. Let us observe that „̄
1

fi „̄
2

is an
annulus contained in ˆ· , with core homologous in · to the core of · . As a consequence,
B\· and B\(„̄

1

fi „̄
2

) are homeomorphic. To prove that B\(„̄
1

fi „̄
2

) is simply connected
we first observe that („̄

1

fi „̄
2

) µ ˆB and that int(B\(„̄
1

fi „̄
2

)) = B̊ is a ball. Let “ be a
loop on B\(„̄

1

fi „̄
2

) with some base point at B̊. If “ is contained in B̊ then it is trivial.
On the contrary, if “ intersects ˆB, then “ may be slightly deformed to submerge it into
B̊, for which “ is homotopic to some loop on B̊, and therefore trivial.

We conclude that B\· is simply connected. A similar argument shows that BÕ\FQ is
simply connected. ⇤

Then, Q allows us to construct CF by using elementary covering theory as follows. We
consider n copies of BÕ and denote them by {BÕ

k}kœ[[1,n]]

, Then we cut them along FQ and
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glue them cyclically along this cutting. The space resulting from this gluing is CF , and
every BÕ

k is projected into BÕ by Q. Thus, we have the following.

Theorem 3.13. Let M be the 4-manifold obtained by cutting n copies of BÕ along FQ,
and gluing them cyclically along this cutting. Then M is homeomorphic to CF .

Let us recall that FQ was defined in Section 3.3 in purely topological terms as a certain
union of tori contained in the four-dimensional ball. Therefore, we have obtained a purely
topological definition of a manifold M that is homeomorphic to the compact Milnor fiber
of f or, in other words, a topological characterization for this fiber.

Furthermore, since FQ is a subcomplex of D(CF), this gluing can be made cellularly.
This implies that the space CF obtained by the gluing possesses the CW decomposition
resulting from the lifting of Da,b(BÕ), which is D(CF) by definition. Then we have the
following.

Lemma 3.14. Each copy BÕ
k of BÕ intersects CF in a subcomplex of D(CF), and this

subcomplex is a copy of Da,b(BÕ), cut along FQ.

We can think then that the gluing process not only produces CF from BÕ, but also
D(CF) from Da,b(BÕ).

3.7 Combinatorics of D(CF)

Now we are interested in describing the combinatorics of D(CF). We shall think about
the composite covering P ¶ Q : CF ≠æ B. The branching set of this covering is

(B fl Lx=0

) fi (B fl Ly=0

) fi P (BÕ fl Ha,b)

= B fl [Lx=0

fi Ly=0

fi H
1,1] ,

with the omission of Lx=0

if a = 1 and Ly=0

if b = 1. The splitting complex is

FP fi P (FQ) = FP fi · .

Let us recall that CF is made by gluing the n spaces {BÕ
k}kœ[[1,n]]

. Since each BÕ
k is a

copy of BÕ, each BÕ
k is made from ab copies of B, that we denote by {Bi,j,k}iœ[[1,a]], jœ[[1,b]]

.
Then CF is made from abn copies of B, cut along FP fi · and then glued together in the
way indicated by P and Q. It is easy to observe that each copy Bi,j,k is projected into B
by P ¶ Q. Besides, since (FP fi ·)\� is a subcomplex of D(B), most of this gluing can be
made cellularly. Thus we have the following.

Lemma 3.15. For every cell fl œ Da,b(BÕ), the preimage Q≠1(fl) consists of a disjoint
union of cells which are copies of fl. Every BÕ

k contains exactly one of these preimages,
though several copies may share the same one.
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From here it easily follows that for every Î œ D(B), the preimage (P ¶Q)≠1(Î) consists
of a disjoint union of cells which are copies of the original Î. And that if Î ”= �, every
Bi,j,k contains exactly one preimage under P ¶Q of Î, though several copies may share the
same one.

Now we choose a single privileged space BÕ
k, let us say BÕ

1

, and let us observe that
B

1,1,1 is just the copy of B
1,1 inside BÕ

1

. The space BÕ
1

contains also a copy of the first
copy complex B̌, which we call B. It is easily seen that given any Î œ D(B), B contains
exactly one preimage Î under P ¶ Q, which we will denote by Î Õ. The argument for this
is the following: Let Î œ D(B), and recall that B̌ is a subset of Da,b(BÕ) that contains
exactly one preimage Î̃ of Î under P . By the lemma, BÕ

1

contains exactly one preimage of
Î̃ under Q. Then, by definition of B, we obtain that B contains exactly one preimage of Î
under P ¶ Q.

Now, let t, s, u : C3 ≠æ C3 be defined by

t(x, y, z) = (e
2fi

a x, y, z),
s(x, y, z) = (x, e

2fi

b y, z) and
u(x, y, z) = (x, y, e

2fi

n z).

Let us show that t, s and u are deck transformations of P ¶ Q. In the case of t, it holds
that Q ¶ t = ť ¶ Q and, consequently, P ¶ Q ¶ t = P ¶ ť ¶ Q = P ¶ Q, which means that t
is a deck transformation of P ¶ Q. The same argument applies for s. Besides, t and s act
over each BÕ

k exactly as ť and š do over BÕ.
On the other hand, u is a deck transformation of Q, which makes it a deck transfor-

mation of P ¶ Q. Moreover, u generates the deck transformation group of Q and, when
applied to CF , u permute cyclically the n spaces {BÕ

k}kœ[[1,n]]

.
In fact, t, s and u generate the deck transformations group of P ¶ Q. The three trans-

formations t, s and u permute cyclically the elements of {Bi,j,k}iœ[[1,a]], jœ[[1,b]],kœ[[1,n]]

in the
variables i, j and k respectively, which implies that the spaces {Bi,j,k}iœ[[1,a]], jœ[[1,b]],kœ[[1,n]]

that compose CF are all the translations of B
1,1,1 under t, s and u.

Now let us notice that for every cell fl in D(CF) the images t(fl), s(fl) and u(fl) are also
cells in D(CF). Hence, t, s and u define functions from D(CF) to D(CF) that we keep
calling t, s and u. We can extend these functions linearly to the chain groups of D(CF) as
follows: Let Ci denote the chain group of D(CF) of dimension i. Then, for every 0 Æ i Æ 4
we define t, s, u : Ci ≠æ Ci by

t(fl
1

+ · · · + flj) : = t(fl
1

) + · · · + t(flj),
s(fl

1

+ · · · + flj) : = s(fl
1

) + · · · + s(flj) and
u(fl

1

+ · · · + flj) : = u(fl
1

) + · · · + u(flj),

which are homomorphisms.
Let us observe that given a cell Î œ D(B), Î ”= �, the transformations t, s and u

permute the preimages of Î under P ¶ Q among the spaces {Bi,j,k}, and these preimages
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are exactly all the translations of Î Õ by t, s and u. Likewise, we may see that u permutes
the preimages of � under P ¶ Q among the spaces {BÕ

k}, and that these preimages are
exactly all the n translations of �Õ by u.

In general, given Î œ D(B), the transformations t, s and u will act trivially or not over
preimages of Î depending on whether or not Î belongs to the branching sets associated to
each of these transformations, and on whether or not Î is �. As before, t acts trivially
over all the preimages of � and all cells lying on Lx=0

, and s acts trivially over all the
preimages of � and all cells lying on Ly=0

. Additionally, u acts trivially over all the
preimages of cells lying on H

1,1. Thus, we have the following:

Lemma 3.16. The cells composing D(CF) are exactly the following, and satisfy the prop-
erties described. The term preimage refers to preimage under P ¶ Q.

• The preimages of �, namely �Õ, u(�Õ),. . . ,un≠1(�Õ). Only t and s act trivially over
these cells.

• The preimages of P
1

, c
1

, p
1

, ’
1

, P̂
1

and ĉ
1

, which are the cells of D(B) lying on
Lx=0

. If Î is one of these cells, its preimages are
Ó

sjuk(Î Õ)
Ô

0ÆjÆb≠1, 0ÆkÆn≠1

.

Only t acts trivially over these cells.

• The preimages of P
2

, c
2

, p
2

, ’
2

, P̂
2

and ĉ
2

, which are the cells of D(B) lying on
Ly=0

. If Î is one of these cells, its preimages are
Ó

tiuk(Î Õ)
Ô

0ÆiÆa≠1, 0ÆkÆn≠1

.

Only s acts trivially over these cells.

• The preimages of Q
1

, Q
2

, h
1

, h
2

, q
1

, q
2

, ÷
1

, ÷
2

, R̂ and k̂, which are the cells of
D(B) lying on H

1,1. If Î is one of these cells, its preimages are
Ó

tisj(Î Õ)
Ô

0ÆiÆa≠1, 0ÆjÆb≠1

.

Only u acts trivially over these cells.

• The preimages of all the remaining cells of D(B). If Î is one of these cells, its
preimages are Ó

tisjuk(Î Õ)
Ô

0ÆiÆa≠1, 0ÆjÆb≠1, 0ÆkÆn≠1

.

Neither t, s or u act trivially over these cells.

Now we want to calculate the boundaries of all the cells of D(CF). The following
lemma is a consequence of the definition of D(CF), t, s and u.
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Lemma 3.17. For every Î œ D(CF), and every i, j, u œ Z,

ˆ(tisjukÎ) = tisjukˆ(Î) .

Lemma 3.16 implies that, once the boundaries of the cells of B have been calculated,
this formula provides us the boundaries of all the cells of D(CF). The boundaries of the
cells of B are given below.

Dimension 1:
Upper Middle

ˆ(m) = usR ≠ R
ˆ(l) = utR ≠ R
ˆ(k) = tR ≠ sR
ˆ(h

1

) = tQ
1

≠ sQ
1

ˆ(h
2

) = sQ
2

≠ tQ
2

ˆ(c
1

) = tP
1

≠ P
1

ˆ(c
2

) = sP
2

≠ P
2

ˆ(a
1

) = P
1

≠ Q
1

ˆ(a
2

) = P
2

≠ Q
2

ˆ(b
1

) = Q
1

≠ R ˆ(b
2

) = Q
2

≠ R

ˆ(p
1

) = P
1

≠ P̂
1

ˆ(p
2

) = P
2

≠ P̂
2

ˆ(q
1

) = Q
1

≠ R̂ ˆ(q
2

) = Q
2

≠ R̂

ˆ(r) = R ≠ R̂

Lower

ˆ(m̂) = sR̂ ≠ R̂ ˆ(ĉ
1

) = tP̂
1

≠ P̂
1

ˆ(ĉ
2

) = sP̂
2

≠ P̂
2

ˆ(l̂) = tR̂ ≠ R̂ ˆ(â
1

) = P̂
1

≠ R̂ ˆ(â
2

) = P̂
2

≠ R̂

ˆ(k̂) = tR̂ ≠ sR̂

Dimension 2:
Upper

ˆ(‡) = sl ≠ tm ≠ k
ˆ(fi) = m ≠ uk ≠ l
ˆ(◊

1

) = m + sa
1

+ usb
1

≠ a
1

≠ b
1

ˆ(◊
2

) = l + ta
2

+ utb
2

≠ a
2

≠ b
2

ˆ(Ê
1

) = c
1

≠ l + a
1

+ b
1

≠ ta
1

≠ tub
1

ˆ(Ê
2

) = c
2

≠ m + a
2

+ b
2

≠ sa
2

≠ sub
2

ˆ(„
1

) = h
1

≠ k + sb
1

≠ tb
1

ˆ(„
2

) = h
2

+ k + tb
2

≠ sb
2

Middle

ˆ(µ) = usr ≠ r + m̂ ≠ m

ˆ(⁄) = utr ≠ r + l̂ ≠ l

ˆ(Ÿ) = tr ≠ sr + k̂ ≠ k

ˆ(÷
1

) = tq
1

≠ sq
1

+ k̂ ≠ h
1

ˆ(÷
2

) = sq
2

≠ tq
2

≠ k̂ ≠ h
2

ˆ(’
1

) = tp
1

≠ p
1

+ ĉ
1

≠ c
1

ˆ(’
2

) = sp
2

≠ p
2

+ ĉ
2

≠ c
2

ˆ(–
1

) = p
1

≠ q
1

+ â
1

≠ a
1

ˆ(–
2

) = p
2

≠ q
2

+ â
2

≠ a
2

ˆ(—
1

) = q
1

≠ r ≠ b
1

ˆ(—
2

) = q
2

≠ r ≠ b
2
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Lower

ˆ(‡̂) = sl̂ ≠ tm̂ ≠ k̂

ˆ(fî) = m̂ + uk̂ ≠ l̂

ˆ(◊̂
1

) = m̂ + sâ
1

≠ â
1

ˆ(◊̂
2

) = l̂ + tâ
2

≠ â
2

ˆ(Ê̂
1

) = ĉ
1

≠ l̂ + â
1

≠ tâ
1

ˆ(Ê̂
2

) = ĉ
2

≠ m̂ + â
2

≠ sâ
2

Dimension 3:

Upper

ˆ(�
1

) = ‡ + fi + t◊
1

≠ ◊
1

+ sÊ
1

≠ Ê
1

+ u„
1

≠ „
1

ˆ(�
2

) = ≠‡ ≠ fi + s◊
2

≠ ◊
2

+ tÊ
2

≠ Ê
2

+ u„
2

≠ „
2

Middle

ˆ(�
1

) = µ + s–
1

+ us—
1

≠ –
1

≠ —
1

+ ◊
1

≠ ◊̂
1

ˆ(�
2

) = ⁄ + t–
2

+ ut—
2

≠ –
2

≠ —
2

+ ◊
2

≠ ◊̂
2

ˆ(�
1

) = ’
1

≠ ⁄ + –
1

+ —
1

≠ t–
1

≠ ut—
1

+ Ê
1

≠ Ê̂
1

ˆ(�
2

) = ’
2

≠ µ + –
2

+ —
2

≠ s–
2

≠ us—
2

+ Ê
2

≠ Ê̂
2

ˆ(�
1

) = ÷
1

≠ Ÿ + s—
1

≠ t—
1

+ „
1

ˆ(�
2

) = ÷
2

+ Ÿ + t—
2

≠ s—
2

+ „
2

ˆ(�) = s⁄ ≠ tµ ≠ Ÿ + ‡ ≠ ‡̂
ˆ(�) = µ + uŸ ≠ ⁄ + fi ≠ fî

Lower

ˆ(�̂
1

) = ‡̂ + fî + t◊̂
1

≠ ◊̂
1

+ sÊ̂
1

≠ Ê̂
1

ˆ(�̂
2

) = ≠‡̂ ≠ fî + s◊̂
2

≠ ◊̂
2

+ tÊ̂
2

≠ Ê̂
2

Dimension 4:

ˆ(�
1

) = � + � + t�
1

≠ �
1

+ s�
1

≠ �
1

+ u�
1

≠ �
1

≠ �
1

+ �̂
1

ˆ(�
1

) = ≠� ≠ � + s�
2

≠ �
2

+ t�
2

≠ �
2

+ u�
2

≠ �
2

≠ �
2

+ �̂
2

ˆ(�) = (1 + t + · · · + ta≠1)(1 + s + · · · + sb≠1)(�̂
1

≠ �̂
2

)
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Chapter 4

The Complex Homology of the
Milnor Fiber

Let f(x, y, z) = zn ≠ xayb and CF be as in the previous chapter. Our purpose now is to
calculate, for arbitrary a, b and n, the complex homology of the compact Milnor fiber CF .
The main theorem of the chapter is the following.

Theorem 4.1. The complex homology of CF is the following:

H
0

(CF ;C) = C,

H
1

(CF ;C) = C(d≠1)(n≠1),

H
2

(CF ;C) = C(d≠1)(n≠1)+n≠1,

H
3

(CF ;C) = 0,

H
4

(CF ;C) = 0.

Where d := gcd(a, b).

The next sections are devoted to the proof of this theorem. Along them, i, j, and k are
always thought as integers modulo a, b and n respectively.

4.1 Preliminaries

Let us define
R := C[t,s,u]�ta ≠ 1, sb ≠ 1, un ≠ 1.
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We write the formal variables t, s and u in boldface to distinguish them from the deck
transformations t, s, and u. Let us notice that besides being a ring, R is also a C-vector
space. As a vector space, R has dimension abn, and the natural basis

Ó
tisjuk

Ô

iœ[[0,a≠1]], jœ[[0,b≠1]], kœ[[0,n≠1]]

,

however, we will define another basis that will be more convenient for us. Let us fix the
following notation:

’l := e2fii l

a , ›j := e2fii j

b , µk := e2fii k

n .

And for 0 Æ i Æ a ≠ 1, 0 Æ j Æ b ≠ 1 and 0 Æ k Æ n ≠ 1, let us define

pi(t) := 1 + (’̄it)1 + · · · + (’̄it)a≠1

’i
= ta ≠ 1

t ≠ ’i
,

pj(s) := 1 + (›̄js)1 + · · · + (›̄js)b≠1

›j
= sb ≠ 1

s ≠ ›j
,

pk(u) := 1 + (µ̄ku)1 + · · · + (µ̄ku)n≠1

µk
= un ≠ 1

u ≠ µk
.

Then, the set
{pi(t)pj(s)pk(u)}iœ[[0,a≠1]], jœ[[0,b≠1]], kœ[[0,n≠1]]

is a basis of R, as we are about to prove.
Let us define

◊t : R ≠æ R, ◊s : R ≠æ R, ◊u : R ≠æ R
q ‘≠æ tq q ‘≠æ sq q ‘≠æ uq

.

Let us observe that, for every i, (t≠’i)pi(t) = 0, which implies that ’i is an eigenvalue of
◊t, and pi(t) an eigenvector associated with ’i. Similarly, for every j and k, pj(s) is an
eigenvector of ◊s associated with the eigenvalue ›j , and pi(u) an eigenvector of ◊u asso-
ciated with the eigenvalue µk. Therefore, every element pi(t)pj(s)pk(u) is simultaneously
an eigenvector of ◊t, ◊s and ◊u, associated with eigenvalues ’i, ›j and µk respectively.

Lemma 4.2. The set {pi(t)pj(s)pk(u)} is a basis for R as a C-vector space.

Proof. Given an eigenvalue ’i of ◊t, we denote the eigenspace associated with ’i by
Et(’i), and similarly for eigenvalues ›j and µk. Now, let us fix k = 0. For every j, the set
of vectors

Xj := {p
0

(t)pj(s)p
0

(u), . . . , pa≠1

(t)pj(s)p
0

(u)}
is linearly independent, since it is formed by eigenvectors of ◊t associated with di�erent
eigenvalues, namely 1, ’

1

,. . . ,’a≠1

.
On the other hand, given j and jÕ, the spaces Es(›j) and Es(›jÕ) intersect only at the

origin. Since, for every j, Xj µ Es(›j), it follows that X
0

fi · · · fi Xb≠1

is a L.I. set. Yet
X

0

fi · · · fi Xb≠1

is contained in Eu(µ
0

), and by repeating this argument we may show that
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{pi(t)pj(s)pk(u)} is a L.I. set. Since this is a set of abn vectors, we have proved that it is
a basis. ⇤

The following corollary is clear from the proof.

Corollary 4.3. For every i, j and k, the sets

{pi(t)p
0

(s)p
0

(u), . . . , pi(t)pb≠1

(s)pn≠1

(u)} ,

{p
0

(t)pj(s)p
0

(u), . . . , pa≠1

(t)pj(s)pn≠1

(u)} , and
{p

0

(t)p
0

(s)pk(u), . . . , pa≠1

(t)pb≠1

(s)pk(u)}
are bases for Et(’i), Es(›j) and Eu(µk) respectively. A basis for any intersection of these
eigenspaces is obtained by intersecting these bases in the same way. In particular, for fixed
i, j and k the set

{pi(t)pj(s)pk(u)}
is a basis for Et(’i) fl Es(›j) fl Eu(µk).

Now, let us define

Rt,s,u := R,

Rt,s := R�u ≠ 1,

Rt,u := R�s ≠ 1,

...
Ru := R�t ≠ 1, s ≠ 1,

Rÿ := R�t ≠ 1, s ≠ 1, u ≠ 1.

We can also find bases of eigenvectors for these spaces as we did for R.

Lemma 4.4. The following sets are bases for the respective C-vector spaces:

{pi(t)pj(s)p
0

(u)}iœ[[0,a≠1]], jœ[[0,b≠1]]

(or {pi(t)pj(s)} ) for Rt,s,

{pi(t)p
0

(s)pk(u)}iœ[[0,a≠1]], kœ[[0,n≠1]]

(or {pi(t)pk(u)} ) for Rt,u,
...

...
...

...
{p

0

(t)pj(s)p
0

(u)}jœ[[0,b≠1]]

(or {pj(s)} ) for Rs,

{p
0

(t)p
0

(s)pk(u)}kœ[[0,n≠1]]

(or {pk(u)} ) for Ru,

{p
0

(t)p
0

(s)p
0

(u)} (or {1} ) for Rÿ.

Proof. Let us consider the case of Rt,s. In this space, the class [pk(u)] of pk(u) satisfies
the following:

if k = 0 then µk = 1 and [pk(u)] = [n],
if k ”= 0 then [pk(u)] = [0].

73



Chapter 4 The Complex Homology of the Milnor Fiber

This can be easily confirmed: The division algorithm tells us that pk(u) = (u≠1)q(u) +
pk(1). If k = 0, then pk(u) = un≠1

u≠1

= 1+u+ · · · +un≠1. Therefore, pk(1) = n and
[pk(u)] = [pk(1)] = [n]. On the other hand, let us recall that

pk(u) = (u ≠ 1)(u ≠ µ
1

) · · · (u ≠ µk) · · · (u ≠ µn≠1

),

where notation · means omission. If k ”= 0, then pk(u) has a factor of the form (u≠1),
which implies that [pk(u)] = [0].

Now, a generating set for Rt,s can be obtained by taking the classes in Rt,s of the
elements of a basis of R. Applying this procedure to {pi(t)pj(s)pk(u)} we obtain the
generating set {pi(t)pj(s)p

0

(u)} = {pi(t)pj(s)n} for Rt,s. By arguments similar to those
of the previous lemma we can see that this set is in fact a basis. Besides, the factor n can
be ignored because it is a constant. The remaining cases can be handled analogously. ⇤

On the other hand, let

Ci,j,k := C[t,s,u]�t ≠ ’i, s ≠ ›j , u ≠ µk.

We will prove now some facts concerning these spaces and their relation with R.

Lemma 4.5. For every i, j and k, Ci,j,k is isomorphic to C.

Proof. By the division algorithm, for c œ C, p = (x ≠ c)q + p(c), for some q œ C[x].
The class [p] of p in C[x]�(x ≠ c) is defined by

[p] = {(x ≠ c)q + p(c) | q œ C[x]} .

Thus, the correspondence [p] ¡ p(c) is an isomorphism between C[x]�x ≠ c and C. The
statement of the lemma follows from here inductively. The isomorphism between Ci,j,k

and C is given by [p] ¡ p(’i, ›j , µk). ⇤

Observation 4.6. For every i, j and k, Ci,j,k is isomorphic to pi(t)pj(s)pk(u)R.

Proof. Let q œ R. By applying the division algorithm to q, successively dividing by
t≠’i, s≠›j and u≠µk, we find that the equality

pi(t)pj(s)pk(u)q = pi(t)pj(s)pk(u)q(’i, ›j , µk)

holds in R. From here, it follows that the correspondence pi(t)pj(s)pk(u)q ¡ q(’i, ›j , µk)
is an isomorphism between pi(t)pj(s)pk(u)R and C. Since Ci,j,k is isomorphic to C, we
have obtained the result. The isomorphism between Ci,j,k and pi(t)pj(s)pk(u)R is given
by the correspondence [q] ¡ pi(t)pj(s)pk(u)q. ⇤

Given any q œ C[t,s,u], we denote the class of q in Ci,j,k by [q]i,j,k. We shall notice
that, given a fixed Ci,j,k, the class of some piÕ(t) in Ci,j,k satisfies that

[piÕ(t)]i,j,k = [0]i,j,k if and only if iÕ ”= i.
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This can be seen by an already familiar argument. Let us recall that

piÕ(t) = (t ≠ 1)(t ≠ ’
1

) · · · (t ≠ ’iÕ) · · · (t ≠ ’a≠1

).

If iÕ = i, then piÕ(t) has no factor of the form (t≠’i), and since piÕ(t) has no factors of
the form (s≠›j) and (u≠µk) either, then [piÕ(t)]i,j,k ”= [0]i,j,k in Ci,j,k by definition. On
the other hand, if iÕ ”= i, then piÕ(t) has a factor of the form (t≠’i), which implies that
[piÕ(t)]i,j,k = [0]i,j,k.

Similarly,

[pjÕ(s)]i,j,k = [0]i,j,k if and only if jÕ ”= j and
[pkÕ(u)]i,j,k = [0]i,j,k if and only if kÕ ”= k.

Lemma 4.7. The space R is isomorphic to the direct sum expressed below, both as a ring
and as a C-vector space.

R ¥
n

iœ[[0,a≠1]]

jœ[[0,b≠1]]

kœ[[0,n≠1]]

Ci,j,k

Proof. We define an isomorphism Ï : R ≠æ üCi,j,k by defining each of its components.
The component Ïi,j,k of Ï on a given Ci,j,k is given by

Ïi,j,k(q) := [q]i,j,k = [q(’i, ›j , µk)]i,j,k.

Let piÕ(t)pjÕ(s)pkÕ(u) be a basic vector of R. Then,

Ïi,j,k(piÕ(t)pjÕ(s)pkÕ(u)) = [piÕ(t)pjÕ(s)pkÕ(u)]i,j,k

= [piÕ(t)]i,j,k[pjÕ(s)]i,j,k[pkÕ(u)]i,j,k,

and since [piÕ(t)]i,j,k = [0]i,j,k if and only if iÕ ”= i, and similarly for pjÕ(s) and pkÕ(u), it
holds that

Ïi,j,k(piÕ(t)pjÕ(s)pkÕ(u)) = [0]i,j,k if (iÕ, jÕ, kÕ) ”= (i, j, k) and
Ïi,j,k(piÕ(t)pjÕ(s)pkÕ(u)) = [c]i,j,k if (iÕ, jÕ, kÕ) = (i, j, k),

where c is a constant. Therefore,

Ï(piÕ(t)pjÕ(s)pkÕ(u)) = (0, . . . , 0, [c]iÕ,jÕ,kÕ
¸ ˚˙ ˝

, 0, . . . , 0
Position iÕ,jÕ,kÕ

).

This implies that, for every i, j and k, Ï sends Èpi(t)pj(s)pk(u)Í isomorphically into
0 ü · · · ü 0 ü Ci,j,k ü 0 ü · · · ü 0. From here, it follows that Ï is an isomorphism. ⇤
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4.2 The Chain Spaces and Their Bases

For every j œ {0, . . . , 4}, let X(j) be the set of cells of D(CF) of dimension j, B(j) :=
X(j) fl B, and M (j) the C-vector space generated by X(j), this is, the space of formal
complex linear combinations of elements of X(j).

Then, M (j) has a R-module structure given by the following operation: for q =
a

1

tk1sk2uk3 + · · · + a
0

œ R and Î œ X(j),

qÎ := a
1

tk1sk2uk3(Î) + · · · a
0

(Î),

where t, s and u are not variables, but the deck transformations already defined. We
denote M (j) when considering it with this R-module structure as RM (j). Lemma 3.16
implies that B(j) is a generating set for RM (j).

Let j remain fixed for the rest of the section, and let us denote X(j), B(j) and M (j)

simply by X, B and M . Then, for every ú µ {t, s, u}, let us define

Xú := {Î œ X | g œ {t, s, u} acts trivially over Î i� g /œ ú} ,

Bú := {Î œ B | g œ {t, s, u} acts trivially over Î i� g /œ ú} .

In other words, Xú (res. Bú) is the subset of X (res. B) formed by the cells that are
translated by the transformations of ú, and remain fixed by the rest of the transformations.
Then,

X = Xt,s,u fi Xt,s fi Xt,u fi Xs,u fi Xt fi Xs fi Xu fi Xÿ and
B = Bt,s,u fi Bt,s fi Bt,u fi Bs,u fi Bt fi Bs fi Bu fi Bÿ.

For ú µ {t, s, u}, let Mú be the C-vector space generated by Xú. Then, Mú is a
subspace of M , and also an R-submodule of RM . We denote Mú when considering it with
this submodule structure as RMú. Then,

M = Mt,s,u ü Mt,s ü Mt,u ü Ms,u ü Mt ü Ms ü Mu ü Mÿ and
RM = RMt,s,u ü RMt,s ü RMt,u ü RMs,u ü RMt ü RMs ü RMu ü RMÿ.

This decomposition has the defect that the submodules RMú are not R-free (except
for the first one). However, this can be easily solved. For ú µ {t, s, u}, let RúMú denote
the Rú-module freely generated by Bú.

Let us consider RMt,s for a moment. Since u acts trivially over every cell of Mt,s, it
holds that q(t,s,u)Î = q(t,s, 1)Î, for every q(t,s,u) œ R and every Î œ Mt,s. This implies
that RMt,s = Rt,sMt,s. A similar situation stands for every RMú, and therefore

RM = RMt,s,u ü Rt,sMt,s ü Rt,uMt,u ü Rs,uMs,u ü RtMt ü RsMs ü RuMu ü RÿMÿ.

Now we need to find a basis for M and each of the Mú. Although X and every Xú are
such bases by definition, we will define another basis that will be more convenient for us.
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Given that Mú is a free Rú-module with basis Bú, we know that Mú = übœBúRúb. Hence,
if G is a basis for Rú as a C-vector space, then GBú is a basis for Mú as a C-vector space.
By Lemmas 4.2 and 4.4, we have the following.

Lemma 4.8. The following sets are bases for the respective vector spaces.

{pi(t)pj(s)pk(u)xt,s,u}x
t,s,u

œB
t,s,u

for Mt,s,u,

{pi(t)pj(s)p
0

(u)xt,s}x
t,s

œB
t,s

for Mt,s,

{pi(t)p
0

(s)pk(u)xt,u}x
t,u

œB
t,u

for Mt,u,
...

...
...

{p
0

(t)pj(s)p
0

(u)xs}x
s

œB
s

for Ms,

{p
0

(t)p
0

(s)pk(u)xu}x
u

œB
u

for Mu,

{p
0

(t)p
0

(s)p
0

(u)xÿ}xÿœBÿ
for Mÿ.

The union of these bases, that we will denote by V , is a basis for M .

To have an adequate notation for these vectors, we define a bijection h by the following
rule:

{t, s, u} ≠æ {(i, j, k)}
{t, s} ≠æ {(i, j, 0)}
{t, u} ≠æ {(i, 0, k)}
...

...
...

{s} ≠æ {(0, j, 0)}
{u} ≠æ {(0, 0, k)}
ÿ ≠æ {(0, 0, 0)}.

We also denote the power set of {t, s, u} by P ({t, s, u}), and the polynomial pi(t)pj(s)pk(u)
by vi,j,k. Then, with this notation we can restate the previous lemma by saying that the
following sets are bases for the respective C-vector spaces:

{vi,j,kxú}
(i,j,k)œh(ú)

=
t

(i,j,k)œh(ú)

vi,j,kBú for Mú.

V := {vi,j,kxú | ú œ P ({t, s, u}), (i, j, k) œ h(ú)} for M .
For example, the basis for Mt,s is {vi,j,0xt,s}, or equivalently

t
i,j vi,j,0Bt,s.

On the other hand, for simplicity, we keep calling ◊t, ◊s and ◊u the transformations
from RM to RM that multiply a given vector by t, by s, and by u. These are in fact
linear transformations from M to M . We also keep denoting their eigenspaces by Et(·),
Es(·) and Eu(·). We may use these eigenspaces to construct another decomposition of M .
For each i, j and k, let us define

Mi,j,k := Et(’i) fl Es(›j) fl Eu(µk).

We will find a basis for each of these subspaces and later prove that they decompose M
as a direct sum.
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Let us recall that every element vi,j,k œ R is an eigenvector of ◊t : R æ R, ◊s : R æ R
and ◊u : R æ R, associated with eigenvalues ’i, ›j and µk respectively. This situation is
reflected both in RM and M . For the same reason as in the case of R, every basic vector
vi,j,kxú œ V is an eigenvector of ◊t : M æ M , ◊s : M æ M and ◊u : M æ M , associated
with eigenvalues ’i, ›j and µk respectively.

Moreover, from Corollary 4.3 it derives the following:

Lemma 4.9. For fixed i
0

, j
0

and k
0

, the sets

{vi0,j,kxú | ú œ P ({t, s, u}), (i
0

, j, k) œ h(ú)} ,
{vi,j0,kxú | ú œ P ({t, s, u}), (i, j

0

, k) œ h(ú)} and
{vi,j,k0xú | ú œ P ({t, s, u}), (i, j, k

0

) œ h(ú)}

are bases for Et(’i0), Es(›j0) and Eu(µk0) respectively. A basis for any intersection of these
eigenspaces is obtained by intersecting these bases in the same way, and in particular, the
set

{vi0,j0,k0xú | ú œ P ({t, s, u}), (i
0

, j
0

, k
0

) œ h(ú)}
is a basis for Mi0,j0,k0.

This basis for Mi0,j0,k0 will be important for us later and will be denoted by Fi0,j0,k0 .
Let us notice that if we define a set Bi,j,k µ B by

Bi,j,k :=
€

{ú|(i,j,k)œh(ú)}
Bú,

Then
Fi,j,k = vi,j,kBi,j,k.

Let |·| denote the cardinal of a set. The following will be useful observations.

Remark 4.10. dim(Mi,j,k) = |Bi,j,k|.
Remark 4.11. For i, j, k ”= 0,

Bi,j,k = Bt,s,u,

Bi,j,0 = Bt,s,u fi Bt,s,

Bi,0,k = Bt,s,u fi Bt,u,

B
0,j,k = Bt,s,u fi Bs,u,

Bi,0,0 = Bt,s,u fi Bt,s fi Bt,u fi Bt,

B
0,j,0 = Bt,s,u fi Bt,s fi Bs,u fi Bs,

B
0,0,k = Bt,s,u fi Bt,u fi Bs,u fi Bu,

B
0,0,0 = B.
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We will see now that the subspaces Mi,j,k decompose M . For each i, j and k let us
define

Mú;i,j,k := Mú fl Mi,,j,k.
Then we have the following.
Lemma 4.12. The following equalities hold:

M =
n

i,j,k

Mi,j,k,

Mú =
n

i,j,k

Mú;i,j,k,

Mi,j,k =
n

úœP ({t,s,u})

Mú;i,j,k

To see the first equality it su�ces to observe that

M = ÈV Í
=

n

i,j,k

È{vi,j,kxú | ú œ P ({t, s, u}), (i, j, k) œ h(ú)}Í

=
n

i,j,k

Mi,j,k.

The rest of equalities follow from the first one. We finish this section by finding bases
for Mú;i,j,k.
Lemma 4.13. Given fixed i, j, k, the following equivalences hold:

Mt,s,u;i,j,k ”= 0 i� 0 = 0 (i.e. always),
Mt,s;i,j,k ”= 0 i� k = 0,
Mt,u;i,j,k ”= 0 i� j = 0,

...
...

...
Ms;i,j,k ”= 0 i� i = 0 and k = 0,
Mu;i,j,k ”= 0 i� i = 0 and j = 0,
Mÿ;i,j,k ”= 0 i� i = 0, j = 0 and k = 0.

The following sets are bases for the respective non-empty spaces:

vi,j,kBt,s,u for Mt,s,u;i,j,k,
vi,j,0Bt,s for Mt,s;i,j,0,
vi,0,kBt,u for Mt,u;i,0,k,

...
...

...
v

0,j,0Bs for Ms;0,j,0,
v

0,0,kBu for Mu;0,0,k,
v

0,0,0Bÿ for Mÿ;0,0,0.
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Proof. Let us prove in general that for fixed ú
0

, i
0

, j
0

and k
0

the set vi0,j0,k0Bú0 is a
basis for Mú0;i0,j0,k0 . A basis for Mú0;i0,j0,k0 is given by

{vi,j,kxú0}
(i,j,k)œh(ú0)

fl {vi0,j0,k0xú | ú œ P ({t, s, u}), (i
0

, j
0

, k
0

) œ h(ú)}
= vi0,j0,k0Bú0 .

From here, it follows the general equivalence

Mú;i,j,k ”= 0 i� (i, j, k) œ h(ú),

from which the stated equivalences are particular cases. ⇤

4.3 The Boundary Operator

Now we will work with di�erent spaces M (r) at the same time. For each M (r) we will have
then decompositions, bases, transformations and eigenspaces as defined in the previous
sections. To distinguish between them, we will use the superindex (r), for example, V (r)

and V (r≠1) will denote bases for M (r) and M (r≠1) respectively. Let us notice, however,
that the transformations ◊(r)t, ◊(r)s and ◊(r)u have always eigenvalues {’i} , {›j} and
{µk} respectively, regardless of the value of r.

Let us consider the boundary operator ˆ(r) : M (r) ≠æ M (r≠1), which we will simply
denote by ˆ. Let [ˆ] denote the matrix of ˆ with respect to the bases V (r) and V (r≠1).
On the other hand, let [ˆ]R be a matrix of ˆ on the generating sets B(r) and B(r≠1),
considering RM (r) and RM (r≠1) as R-modules. Thus, [ˆ] is a matrix or complex numbers
and [ˆ]R a much smaller matrix of complex polynomials.

Let us recall that at the end of Section 3.7 we gave the boundaries of all the cells in
B. Due to our definition of product on RM (r), the symbols t, s and u written there can
be thought either as deck transformations or as elements of R multiplying the cells in the
modules RM (r). According to the later approach, we see that the boundary of every cell
of B(r) is given as a linear combination in RM (r≠1) of elements of B(r≠1). Therefore, to
give the boundaries that we have given at the end of Section 3.7 is the same thing as
giving the matrix [ˆ]R, though written in a di�erent fashion. Hence, the matrix [ˆ]R is
explicitly known to us.

Now, an immediate consequence of Lemma 3.17 and our definition of product in RM
is that

ˆ(tisjukÎ) = tisjukˆ(Î).

As a consequence, if v œ E
(r)

t (’i) for some i, then

tˆ(v) = ˆ(tv) = ˆ(’iv) = ’iˆ(v),

which implies that ˆ(v) œ E
(r≠1)

t (’i). By reasoning in a similar way for s and u we have
the following.
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Lemma 4.14. For every i, j and k,

ˆ(E(r)

t (’i)) µ E
(r≠1)

t (’i),
ˆ(E(r)

s (›j)) µ E(r≠1)

s (›j),
ˆ(E(r)

u (µk)) µ E(r≠1)

u (µk),
ˆ(M (r)

i,j,k) µ M
(r≠1)

i,j,k .

It is easy to see also that ˆ(M (r)

ú ) µ M
(r≠1)

ú and ˆ(M (r)

ú;i,j,k) µ M
(r≠1)

ú;i,j,k , though we do
not make use of this fact. Let us consider fixed i, iÕ, j, jÕ, k and kÕ. For every v œ V (r),
let Cv denote the column of [ˆ] corresponding to the image of v; and let C Õ

v be the vector
containing the entries of Cv associated with the elements of F

(r≠1)

iÕ,jÕ,kÕ µ V (r≠1). Now we
consider the set of vectors {C Õ

v | v œ F
(r)

i,j,k}. The matrix whose columns are the vectors on
this set will be denoted by [ˆi,j,k|iÕ,jÕ,kÕ ], or simply by [ˆi,j,k] if i = iÕ, j = jÕ and k = kÕ.

Since for every r the bases of the M
(r)

i,j,k, as given in Lemma 4.9, form a partition of V (r)

(Lemma 4.12), by arranging the elements of V (r) and V (r≠1) in an appropriate way we
can decompose [ˆ] in disjoint submatrices of the form [ˆi,j,k|iÕ,jÕ,kÕ ]. The previous lemma
implies that all these submatrices are zero except perhaps for those of the form [ˆi,j,k]. By
arranging the elements of V (r) and V (r≠1) in an appropriate way, we may further locate
these submatrices in the diagonal, for which we have the following lemma.

Lemma 4.15. The matrix [ˆ] is "block diagonal" in the sense just described. A submatrix
[ˆi,j,k|iÕ,jÕ,kÕ ] is on the diagonal if and only if it is of the form [ˆi,j,k].

Let us notice that, if we set ˆi,j,k to denote the restriction of ˆ to M
(r)

i,j,k and M
(r≠1)

i,j,k ,
then [ˆi,j,k] is exactly the matrix of ˆi,j,k on the bases Fi,j,k and Fi,j,k. Similarly, ˆi,j,k|iÕ,jÕ,kÕ

can be set to denote the composition of ˆi,j,k with the projection over M
(r≠1)

iÕ,jÕ,kÕ .
Now we will show that [ˆ]R can be used to find each [ˆi,j,k] explicitly. We will need to

define yet another matrix, though by already familiar constructions. Let us consider fixed i,
j and k. For every b œ B(r), let CR,b(t,s,u) denote the column of [ˆ]R corresponding to the
image of b; and let C Õ

R,b(t,s,u) be the vector containing the entries of CR,b(t,s,u) associated
with the elements of B

(r≠1)

i,j,k . Now we consider the set of vectors {C Õ
R,b(t,s,u) | b œ B

(r)

i,j,k}.
The matrix whose columns are the vectors on this set will be denoted by [ˆi,j,k]R(t,s,u).

Lemma 4.16. For every i, j and k,

[ˆi,j,k] = [ˆi,j,k]R(’i, ›j , µk).

Proof. We denote the vectors formed by the elements of B(r≠1) and B
(r≠1)

i,j,k equally by
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B(r≠1) and B
(r≠1)

i,j,k . Let i, j and k be fixed and b œ B
(r)

i,j,k, then

ˆ(vi,j,kb) = vi,j,kˆ(b)
= vi,j,kCR,b(t, s, u) · B(r≠1)

= vi,j,kC Õ
R,b(t, s, u) · B

(r≠1)

i,j,k (by Lemma 4.14)

= C Õ
R,b(t, s, u) · vi,j,kB

(r≠1)

i,j,k .

But here, since the elements of Fi,j,k belong to E
(r≠1)

t (’i0), E
(r≠1)

s (›j0) and E
(r≠1)

k (µk0),
the last expression is equal to C Õ

R,b(’i, ›j , µk) · vi,j,kB
(r≠1)

i,j,k , and therefore

ˆ(vi,j,kb) = C Õ
R,b(’i, ›j , µk) · vi,j,kB

(r≠1)

h(i,j,k)

.

This provides the result. ⇤

4.4 The Complex Homology

Our aim now will be to calculate the complex homology of CF . Let

M (4)

ˆ(4)≠æ M (3)

ˆ(3)≠æ M (2)

ˆ(2)≠æ M (1)

ˆ(1)≠æ M (0)

ˆ(0)≠æ 0

be the complex homology sequence of CF . Since the chain spaces here are finite C-vector
spaces, all of them and their subspaces are direct sums of copies of C. As a consequence,
the spaces of boundaries, of cycles, and the homology spaces are all determined by their
dimensions. All we need then is to calculate these dimensions.

The dimensions of the spaces of cycles and boundaries are given by the nullities and
ranks of the matrices [ˆ(r)], while the dimensions of the homology spaces are di�erences
of these. Lemma 4.15 implies that the rank of [ˆ(r)] is the sum of the ranks of the [ˆ(r)

i,j,k],
and similarly for the nullities. Therefore, all what is needed to calculate these dimensions
is to calculate the rank and nullity of each matrix [ˆ(r)

i,j,k], for 0 Æ i Æ a ≠ 1, 0 Æ j Æ b ≠ 1
and 0 Æ k Æ n ≠ 1. Since these ranks will vary according to the values of i, j and k, we
will reason by cases.

Along the proofs, several calculations are done by using SageMath. The program used
is included in appendix C. We will also need to know the cardinal of each set B

(r)

ú . In
order to find them, we present each B(r) and B

(r)

ú explicitly in the following table, which
can be deduced from Lemma 3.16. The omitted sets are empty.

B(0) = B
(0)

t,s,u fi B
(0)

t,s fi B
(0)

t,u fi B(0)

s,u
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with B
(0)

t,s,u = {R}
B

(0)

t,s = {Q
1

, Q
2

, R̂}
B

(0)

t,u = {P
1

, P̂
1

}
B(0)

s,u = {P
2

, P̂
2

}

B(1) = B
(1)

t,s,u fi B
(1)

t,s fi B
(1)

t,u fi B(1)

s,u

with B
(1)

t,s,u = {m, l, k, a
1

, a
2

, b
1

, b
2

, m̂, l̂, â
1

, â
2

, r}
B

(1)

t,s = {h
1

, h
2

, k̂, q
1

, q
2

}
B

(1)

t,u = {c
1

, ĉ
1

, p
1

}
B(1)

s,u = {c
2

, ĉ
2

, p
2

}

B(2) = B
(2)

t,s,u fi B
(2)

t,s fi B
(2)

t,u fi B(2)

s,u

with B
(2)

t,s,u = {‡, fi, ◊
1

, ◊
2

, Ê
1

, Ê
2

, „
1

, „
2

, ‡̂, fî, ◊̂
1

,

◊̂
2

, Ê̂
1

, Ê̂
2

, µ, ⁄, Ÿ, –
1

, –
2

, —
1

, —
2

}
B

(2)

t,s = {÷
1

, ÷
2

, }
B

(2)

t,u = {’
1

}
B(2)

s,u = {’
2

}

B(3) = B
(3)

t,s,u = {�
1

, �
2

, �̂
1

, �̂
2

, �
1

, �
2

, �
1

, �
2

, �
1

, �
2

, �, �}

B(4) = B
(4)

t,s,u fi B(4)

u

with B
(4)

t,s,u = {�
1

, �
2

}
B(4)

u = {�}

Lemma 4.17. For (i, j, k) = (0, 0, 0), the ranks and nullities of ˆ(0), . . . , ˆ(4) are given by

Null[ˆ(0)

0,0,0] = 8,

Null[ˆ(1)

0,0,0] = 16, Rk[ˆ(1)

0,0,0] = 7,

Null[ˆ(2)

0,0,0] = 9, Rk[ˆ(2)

0,0,0] = 16,

Null[ˆ(3)

0,0,0] = 3, Rk[ˆ(3)

0,0,0] = 9,

Null[ˆ(4)

0,0,0] = 0, Rk[ˆ(4)

0,0,0] = 3.
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Proof. Let r be fixed. Let us notice then that, since B
(r)

0,0,0 = B(r), it holds that
[ˆ(r)

0,0,0]R = [ˆ(r)]R, and by Lemma 4.16, [ˆ(r)

0,0,0] = [ˆ(r)

0,0,0]R(1, 1, 1) = [ˆ(r)]R(1, 1, 1). Here,
[ˆ(r)]R(1, 1, 1) is a matrix of complex numbers whose rank can be obtained by a straightfor-
ward calculation. We have calculated the rank of each [ˆ(r)]R(1, 1, 1) by using the program
included in appendix C.

Now let us recall that by Remarks 4.10 and 4.11, the dimension of M
(r)

0,0,0 is equal to
the cardinal of B

(r)

0,0,0 = B(r). Therefore, for r equal to 0, 1, 2, 3 and 4, dim(M (r)

0,0,0) is
equal to 8, 23, 25, 12 and 3 respectively. The nullities can be calculated from here using
the Rank Theorem. ⇤

Lemma 4.18. For (i, 0, 0), with i ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are given by

Null[ˆ(0)

i,0,0] = 6,

Null[ˆ(1)

i,0,0] = 14, Rk[ˆ(1)

i,0,0] = 6,

Null[ˆ(2)

i,0,0] = 10, Rk[ˆ(2)

i,0,0] = 14,

Null[ˆ(3)

i,0,0] = 2, Rk[ˆ(3)

i,0,0] = 10,

Null[ˆ(4)

i,0,0] = 0, Rk[ˆ(4)

i,0,0] = 2.

Proof. For any given matrix A, let diag(A) and S(A) denote the diagonal and Smith
form of A respectively. Let r be fixed. We first use the program shown in Appendix C
to find [ˆ(r)

i,0,0]R(t,s,u), by eliminating from [ˆ(r)]R the adequate rows and columns, and
then to evaluate it in s=u = 1. The entries of the resulting matrix [ˆ(r)

i,0,0]R(t, 1, 1) take
values on the principal ideal domain C[t], and therefore the Smith form for this matrix
is defined. We then instruct the program to find the Smith form of [ˆ(r)

i,0,0]R(t, 1, 1). For
each r, the diagonal of this Smith form, calculated by the program, is shown below.

diag
1
S

1
[ˆ(1)

i,0,0]R(t, 1, 1)
22

= (1, 1, 1, 1, 1, 1),

diag
1
S

1
[ˆ(2)

i,0,0]R(t, 1, 1)
22

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0),

diag
1
S

1
[ˆ(3)

i,0,0]R(t, 1, 1)
22

= (1, 1, 1, 1, 1, 1, 1, 1, 1, t ≠ 1, 0, 0),

diag
1
S

1
[ˆ(4)

i,0,0]R(t, 1, 1)
22

= (1, 1).

Now let us notice that, the only entry di�erent from 1 and 0 appearing on any of the
diagonals listed before is t≠1, and for every i ”= 0, this entry satisfies that (t≠1) |t=’

i

=
’i ≠ 1 ”= 0. It is easily seen from here that the ranks of the matrices [ˆ(r)

i,0,0] are given by
the number of non-zero entries on these diagonals. Formally, we reason as follows. Since

S
1
[ˆ(r)

i,0,0]R(’i, 1, 1)
2

= S
1
[ˆ(r)

i,0,0]R(t, 1, 1)
2

|t=’
i

,
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Then,

Rk
1
[ˆ(r)

i,0,0]
2

= Rk
1
[ˆ(r)

i,0,0]R(’i, 1, 1)
2

,

= Rk
1
S

1
[ˆ(r)

i,0,0]R(’i, 1, 1)
22

,

= Rk
1
S

1
[ˆ(1)

i,0,0]R(t, 1, 1)
2

|t=’
i

2
.

This implies that, for each r, the rank of the matrix [ˆ(r)

i,0,0] is the number of non-zero
entries of diag

1
S

1
[ˆ(r)

i,0,0]R(t, 1, 1)
22

.
By Remarks 4.10 and 4.11,

dim(M (r)

i,0,0) =
---B(r)

i,0,0

--- =
---B(r)

t,s,u fi B
(r)

t,s fi B
(r)

t,u fi B
(r)

t

--- .

Therefore, for r equal to 0, 1, 2, 3 and 4, dim(M (r)

i,0,0) is equal to 6, 20, 24, 12 and 2
respectively. The nullities can be calculated from here using the Rank Theorem. ⇤

Lemma 4.19. For (0, j, 0), with j ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are given by

Null[ˆ(0)

0,j,0] = 6,

Null[ˆ(1)

0,j,0] = 14, Rk[ˆ(1)

0,j,0] = 6,

Null[ˆ(2)

0,j,0] = 10, Rk[ˆ(2)

0,j,0] = 14,

Null[ˆ(3)

0,j,0] = 2, Rk[ˆ(3)

0,j,0] = 10,

Null[ˆ(4)

0,j,0] = 0, Rk[ˆ(4)

0,j,0] = 2.

Proof. This can be proved in the same way as the preceding lemma, by the symmetry
of t and s. ⇤

Lemma 4.20. For (0, 0, k), with i ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are given by

Null[ˆ(0)

0,0,k] = 5,

Null[ˆ(1)

0,0,k] = 13, Rk[ˆ(1)

0,0,k] = 5,

Null[ˆ(2)

0,0,k] = 10, Rk[ˆ(2)

0,0,k] = 13,

Null[ˆ(3)

0,0,k] = 3, Rk[ˆ(3)

0,0,k] = 9,

Null[ˆ(4)

0,0,k] = 0, Rk[ˆ(4)

0,0,k] = 3.

Proof. We reason as in the previous two lemmas. Let r be fixed. We instruct the
program of Appendix C to find [ˆ(r)

0,0,k]R(t,s,u), and then to evaluate it in t=s= 1. The
entries of the resulting matrix [ˆ(r)

0,0,k]R(1, 1,u) take values on C[u]. As before, we then
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instruct the program to find the Smith form of [ˆ(r)

0,0,k]R(1, 1,u). For each r, the diagonal
of this Smith form is shown below.

diag
1
S

1
[ˆ(1)

0,0,k]R(1, 1, u)
22

= (1, 1, 1, 1, 1),

diag
1
S

1
[ˆ(2)

0,0,k]R(1, 1, u)
22

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0),

diag
1
S

1
[ˆ(3)

0,0,k]R(1, 1, u)
22

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0),

diag
1
S

1
[ˆ(4)

0,0,k]R(1, 1, u)
22

= (1, 1, 1).

Let us notice that all the entries appearing on the listed diagonals are equal to 1 or 0.
Since

S
1
[ˆ(r)

0,0,k]R(1, 1, µk)
2

= S
1
[ˆ(r)

0,0,k]R(1, 1, u)
2

|u=µ
k

,

then,

Rk
1
[ˆ(r)

0,0,k]
2

= Rk
1
[ˆ(r)

0,0,k]R(1, 1, µk)
2

,

= Rk
1
S

1
[ˆ(r)

0,0,k]R(1, 1, µk)
22

,

= Rk
1
S

1
[ˆ(1)

0,0,k]R(1, 1, u)
2

|u=µ
k

2
.

This implies that, for each r, the rank of the matrix [ˆ(r)

0,0,k] is the number of non-zero
entries of diag

1
S

1
[ˆ(r)

0,0,k]R(1, 1, u)
22

.
On the other hand,

dim(M (r)

0,0,k) =
---B(r)

0,0,k

--- =
---B(r)

t,s,u fi B
(r)

t,u fi B(r)

s,u fi B(r)

u

--- .

Therefore, for r equal to 0, 1, 2, 3 and 4, dim(M (r)

0,0,k) is equal to 5, 18, 23, 12 and 3
respectively. The nullities can be calculated from here using the Rank Theorem. ⇤

Lemma 4.21. For (i, j, 0), with i, j ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are
given by

Null[ˆ(0)

i,j,0] = 4,

Null[ˆ(1)

i,j,0] = 13, Rk[ˆ(1)

i,j,0] = 4,

Null[ˆ(2)

i,j,0] = 10, Rk[ˆ(2)

i,j,0] = 13,

Null[ˆ(3)

i,j,0] = 2, Rk[ˆ(3)

i,j,0] = 10,

Null[ˆ(4)

i,j,0] = 0, Rk[ˆ(4)

i,j,0] = 2.

Proof. Let r be fixed. We first instruct the program of Appendix C to find [ˆ(r)

i,j,0]R(t,s,u),
by eliminating from [ˆ(r)]R the adequate rows and columns, and then to evaluate it in u= 1.
The entries of the resulting matrix [ˆ(r)

i,j,0]R(t,s, 1) take values on the ring C[t ,s]. Since
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this ring is not a principal ideal domain, the the Smith form of a matrix is not in general
defined. However, for the matrices [ˆ(r)

i,j,0]R(t,s, 1) in particular, the Smith form does exist.
We use the program to calculate their Smith forms as before, which provide us the ranks.

On the other hand,

dim(M (r)

i,j,0) =
---B(r)

i,j,0

--- =
---B(r)

t,s,u fi B
(r)

t,s

--- .

Therefore, for r equal to 0, 1, 2, 3 and 4, dim(M (r)

i,j,0) is equal to 4, 17, 23, 12 and 2
respectively. The nullities can be calculated from here using the Rank Theorem. ⇤

Lemma 4.22. For (i, 0, k), with i, k ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are
given by

Null[ˆ(0)

i,0,k] = 3,

Null[ˆ(1)

i,0,k] = 12, Rk[ˆ(1)

i,0,k] = 3,

Null[ˆ(2)

i,0,k] = 10, Rk[ˆ(2)

i,0,k] = 12,

Null[ˆ(3)

i,0,k] = 2, Rk[ˆ(3)

i,0,k] = 10,

Null[ˆ(4)

i,0,k] = 0, Rk[ˆ(4)

i,0,k] = 2.

Proof. Let r be fixed. We first instruct the program of Appendix C to find [ˆ(r)

i,0,k]R(t,s,u),
by eliminating from [ˆ(r)]R the adequate rows and columns, and then to evaluate it in s= 1.
The entries of the resulting matrix [ˆ(r)

i,0,k]R(t, 1,u) take values on the ring C[t ,u]. As be-
fore, for the matrices [ˆ(r)

i,0,k]R(t, 1,u) in particular, the Smith form does exist. We use the
program to calculate their Smith forms as before, which provide us the ranks.

On the other hand,

dim(M (r)

i,0,k) =
---B(r)

i,0,k

--- =
---B(r)

t,s,u fi B
(r)

t,u

--- .

Therefore, for r equal to 0, 1, 2, 3 and 4, dim(M (r)

i,j,0) is equal to 3, 15, 22, 12 and 2
respectively. The nullities can be calculated from here using the Rank Theorem. ⇤

Lemma 4.23. For (0, j, k), with j, k ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are
given by

Null[ˆ(0)

0,j,k] = 3,

Null[ˆ(1)

0,j,k] = 12, Rk[ˆ(1)

0,j,k] = 3,

Null[ˆ(2)

0,j,k] = 10, Rk[ˆ(2)

0,j,k] = 12,

Null[ˆ(3)

0,j,k] = 2, Rk[ˆ(3)

0,j,k] = 10,

Null[ˆ(4)

0,j,k] = 0, Rk[ˆ(4)

0,j,k] = 2.

Proof. This can be proved in the same way as the preceding lemma, by the symmetry
of t and s. ⇤
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Lemma 4.24. For (i, j, k), with i, j, k ”= 0 the ranks and nullities of ˆ(0), . . . , ˆ(4) are
given by

Null[ˆ(0)

i,j,k] = 1,

Null[ˆ(1)

i,j,k] = 11, Rk[ˆ(1)

i,j,k] = 1,

Null[ˆ(3)

i,j,k] = 2, Rk[ˆ(3)

i,j,k] = 10,

Null[ˆ(4)

i,j,k] = 0, Rk[ˆ(4)

i,j,k] = 2.

and
Null[ˆ(2)

i,j,k] = 10, Rk[ˆ(2)

i,j,k] = 11 if ’
1

”= ›j ,

Null[ˆ(2)

i,j,k] = 11, Rk[ˆ(2)

i,j,k] = 10 if ’i = ›j.

Proof. We reason as in the preceding lemmas. In this case the rank of [ˆ(r)

i,j,k]R(’i, ›j , µk)
varies depending on whether ’

1

”= ›j or ’i = ›j .
Since,

dim(M (r)

i,j,k) =
---B(r)

i,j,k

--- =
---B(r)

t,s,u

--- ,

for r equal to 0, 1, 2, 3 and 4, dim(M (r)

i,j,k) is equal to 1, 12, 21, 12 and 2 respectively. The
nullities can be calculated from here using the Rank Theorem. ⇤

Let us observe that by Lemmas 4.12 and 4.14, the main homology chain may be
decomposed as abn subchains of the form

M
(4)

i,j,k

ˆ
(4)
i,j,k≠æ M

(3)

i,j,k

ˆ
(3)
i,j,k≠æ M

(2)

i,j,k

ˆ
(2)
i,j,k≠æ M

(1)

i,j,k

ˆ
(1)
i,j,k≠æ M

(0)

i,j,k

ˆ
(0)
i,j,k≠æ 0.

Therefore, the previous lemmas can be interpreted as providing the dimensions of the
spaces of chains, boundaries, cycles and homology spaces for each of these subchains, in
terms of the values of i, j and k. Now we are in a position to prove the main theorem.

Proof of Theorem 4.1. As we pointed out before, for each r, Rk[ˆ(r)], Null[ˆ(r)] and
Null[ˆ(r)] ≠ Rk[ˆ(r)] are the dimensions of the r-rth space of boundaries, the r-rth space
of cycles and the r-th homology space respectively. By Lemma 4.15,

Rk[ˆ(r)] =
ÿ

i,j,k

Rk[ˆ(r)

i,j,k] and Null[ˆ(r)] =
ÿ

i,j,k

Null[ˆ(r)

i,j,k].

Moreover,

Null[ˆ(r)] ≠ Rk[ˆ(r)] =
ÿ

i,j,k

Null[ˆ(r)

i,j,k] ≠ Rk[ˆ(r)

i,j,k].
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Therefore, by Lemmas 4.17 to 4.24,

Null[ˆ(0)] ≠ Rk[ˆ(0)] =
ÿ

0,0,0

1 +
i”=0ÿ

i,0,0

0 +
j ”=0ÿ

0,j,0

0 +
k ”=0ÿ

0,0,k

0

+
i,j ”=0ÿ

i,j,0

0 +
i,k ”=0ÿ

i,0,k

0 +
j,k ”=0ÿ

0,j,k

0 +
i,j,k ”=0ÿ

i,j,k

0

= 1,

Null[ˆ(1)] ≠ Rk[ˆ(1)] =
ÿ

0,0,0

0 +
i”=0ÿ

i,0,0

0 +
j ”=0ÿ

0,j,0

0 +
k ”=0ÿ

0,0,k

0 +
i,j ”=0ÿ

i,j,0

0

+
i,k ”=0ÿ

i,0,k

0 +
j,k ”=0ÿ

0,j,k

0 +
i,j,k ”=0, ’1 ”=›

jÿ

i,j,k

0 +
i,j,k ”=0, ’1=›

jÿ

i,j,k

1

= (d ≠ 1)(n ≠ 1),

Null[ˆ(2)] ≠ Rk[ˆ(2)] =
ÿ

0,0,0

0 +
i”=0ÿ

i,0,0

0 +
j ”=0ÿ

0,j,0

0 +
k ”=0ÿ

0,0,k

1 +
i,j ”=0ÿ

i,j,0

0

+
i,k ”=0ÿ

i,0,k

0 +
j,k ”=0ÿ

0,j,k

0 +
i,j,k ”=0, ’1 ”=›

jÿ

i,j,k

0 +
i,j,k ”=0, ’1=›

jÿ

i,j,k

1

= n ≠ 1 + (d ≠ 1)(n ≠ 1),

Null[ˆ(3)] ≠ Rk[ˆ(3)] =
ÿ

i,j,k

0 = 0,

Null[ˆ(4)] ≠ Rk[ˆ(4)] =
ÿ

i,j,k

0 = 0.

This provides the result. ⇤
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Chapter 5

Other Invariants of the Milnor
Fiber and Fibration

Let f(x, y, z) = zn ≠ xayb and CF be as in the two previous chapters. Our purpose now
is to calculate several invariants for the Milnor fiber CF , and for the Milnor fibration of
f , for arbitrary a, b and n. Specifically, we calculate the monodromy of the fibration, the
fundamental group, and integral homology of the fiber.

5.1 Monodromy of the Milnor Fibration

Let fl : F ≠æ F be the monodromy of the Milnor fibration of f , which is well defined up
to isotopy.

Theorem 5.1. An expression for the monodromy fl of the Milnor fibration of f is

fl = t ¶ u.

Or equivalently
fl(x, y, z) = (ei 2fi

a x, y, ei 2fi

n z).

Proof. For 0 Æ r Æ 1, let Fr denote the Milnor fiber given by

Fr :=
Ó

(x, y, z) | zn ≠ xayb = ei2fir
Ô

.
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Then, {Fr} is the set of fibers of the Milnor fibration of f over the circumference. Addi-
tionally, let us define a family {flr : F

0

≠æ Fr} of di�eomorphisms by

flr(x, y, z) = (ei 2fir

a x, y, ei 2fir

n z).

To see that flr is well defined, let us observe that, for 0 Æ r Æ 1,

(ei 2fir

n z)n ≠ (ei 2fir

a x)ayb = ei2firzn ≠ ei2firxayb

= ei2fir(zn ≠ xayb).

Hence, if (zn ≠xayb) = 1, we have that (ei 2fir

n z)n ≠(ei 2fir

a x)ayb = ei2fir. And reciprocally, if
(ei 2fir

n z)n ≠(ei 2fir

a x)ayb = ei2fir, then (zn ≠xayb) = 1. Therefore, it holds that (x, y, z) œ F
0

if and only if flr(x, y, z) œ Fr, which implies that flr is well defined for every r. Then, by
definition, fl

1

is the monodromy of the fibration. By observing that fl
1

= fl the result is
complete. ⇤

5.2 Fundamental Group of the Complement of the
Curve xy(xy ≠ 1) = 0

Our aim now is to calculate the fundamental group of the compact Milnor fiber CF . In
order to do this we shall calculate first the fundamental group of the complement in C2 of
the curve xy(xy ≠ 1) = 0. We do this by using the classical Zariski-van Kampen method,
though it can also be done by calculating the fundamental group of the two-skeleton of
the complex D(B) constructed in Section 3.1.

In the first place, we transform the curve xy(xy≠1) = 0 into (y2≠x2)(y2≠x2+1) = 0 by
a change of variable in order to get rid of the vertical line and the asymptotes. Let us call
this curve C, and let f : C2 ≠æ C be the function defined by f(x, y) = (y2≠x2)(y2≠x2+1).

Then, there are only three values of x, which are ≠1, 0, and 1, in which f(x, y) has
multiple roots, or with the notation of the first chapter,

� = {x œ C | f(x, y) has multiple roots} = {≠1, 0, 1} .

This means that Lx=≠1

, Lx=0

, and Lx=1

are the only vertical lines intersecting C in less
than four points.
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L
x=≠1 L

x=0 L
x=1

Figure 5.1: Real parts of C, L
x=≠1, L

x=0, and L
x=1 in Re(C) ◊ Re(C).

Let us define

C Õ = C fi Lx=≠1

fi Lx=0

fi Lx=1

,

Z = C2 \ C Õ ,

X = C \ {≠1, 0, 1} .

Let us choose a base point x
0

œ X. For convenience, we choose x
0

to be equal to 1 + Á,
for some Á > 0 to be defined. let „ : Z ≠æ X be the projection on the first coordinate,
and let F be defined by F = „≠1(x

0

), which is the line Lx=x0 minus four points. Then „
is a locally trivial fiber bundle with fiber homeomorphic to F . Let us choose also a base
point y

0

œ F . Then, we have the following exact sequence:

fi
2

(X, x
0

) ≠æ fi
1

(F, y
0

) Ï≠æ fi
1

(Z, (x
0

, y
0

)) Â≠æ fi
1

(X, x
0

) ≠æ 1,

where Ï and Â are the homomorphisms induced by the inclusion of F into Z and the
projection of Z into X.

Let {–≠1

, –
0

, –
1

} be a set of geometric generators for fi
1

(X, x
0

). For convenience, we
choose each –i to be as follows. Let Á be a real number such that 0 < Á < 1/2 and, for
j œ {≠1, 0, 1}, let “j be the loop given by

“j(t) = j + Áe2ifit,

for t œ [0, 1]. Then we define –
1

= “
1

and, for j ”= 1, we define –j as a composition of
paths ⁄j“j⁄≠1

j , where ⁄j is some path joining x
0

with j + Á.
Let {µ

1

, µ
2

, µ
3

, µ
4

} be a set of geometric generators for fi
1

(F, y
0

). Then, the former
exact sequence can be written as

1 ≠æ Èµ
1

, µ
2

, µ
3

, µ
4

Í Ï≠æ fi
1

(Z, (x
0

, y
0

)) Â≠æ È–≠1

, –
0

, –
1

Í ≠æ 1.
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We will use this exact sequence to calculate fi
1

(Z, (x
0

, y
0

)). For each i, let us denote Ï(µi)
by µ̃i. Also, let –̃≠1

, –̃
0

, and –̃
1

be elements of fi
1

(Z, (x
0

, y
0

)) such that, for i œ {≠1, 0, 1},
Â(–̃i) = –i. We know that

{µ̃
1

, µ̃
2

, µ̃
3

, µ̃
4

, –̃≠1

, –̃
0

, –̃
1

}
is a set of generators for fi

1

(Z, (x
0

, y
0

)). Also, we know that fi
1

(Z, (x
0

, y
0

)) possesses
the following relations, where the notation w(g

1

, . . . , gn) means a word in the elements
g

1

, . . . , gn.

• For each relation w(µ
1

, µ
2

, µ
3

, µ
4

) = 1 in fi
1

(F, y
0

), it is a trivial observation that
w(µ̃

1

, µ̃
2

, µ̃
3

, µ̃
4

) = 1 is a relation in fi
1

(Z, (x
0

, y
0

)).

• For each relation w(–≠1

, –
0

, –
1

) = 1 in fi
1

(X, x
0

) we have the following. It is clear
that Â(w(–̃≠1

, –̃
0

, –̃
1

)) = 1, for which w(–̃≠1

, –̃
0

, –̃
1

) œ ker(Â) = im(Ï). Therefore,
there exists a word wÕ(µ

1

, µ
2

, µ
3

, µ
4

) such that Ï(wÕ(µ
1

, µ
2

, µ
3

, µ
4

)) = w(–̃≠1

, –̃
0

, –̃
1

).
From here we obtain the relation w(–̃≠1

, –̃
0

, –̃
1

)wÕ≠1(µ̃
1

, µ̃
2

, µ̃
3

, µ̃
4

) = 1.

• For each pair (µi, –j) we have the following. Since µ̃i belongs to im(Ï) = ker(Â),
which is a normal subgroup, then –̃≠1

j µ̃i–̃j belongs to im(Ï). From here it follows
that, –̃≠1

j µ̃i–̃j = wi,j(µ̃
1

, µ̃
2

, µ̃
3

, µ̃
4

) for some word wi,j . We obtain in a similar
way that –̃jµ̃i–̃

≠1

j = wÕ
i,j(µ̃

1

, µ̃
2

, µ̃
3

, µ̃
4

), for some wÕ
i,j . These equalities provide two

additional relations.

These relations are su�cient to determine the group fi
1

(Z, (x
0

, y
0

)). Moreover, since
the groups fi

1

(F, y
0

) and fi
1

(X, x
0

) are free, we will only have relations of the third kind.
Before calculating these relations we will define an action

· : fi
1

(X, x
0

) ◊ B
4

≠æ fi
1

(X, x
0

)

of the braid group B
4

into the fundamental group fi
1

(X, x
0

) in the following way. First
we define

µj · ‡i = µj if j ”= i and j ”= i + 1,

µj · ‡i = µj+1

if j = i,

µj · ‡i = µj+1

µjµ≠1

j+1

if j = i + 1.

The products of the form µj · ‡≠1

i are also given implicitly here. For an arbitrary loop
“ = µi1 · . . . · µi

r

we define “ · ‡i by

“ · ‡i = (µi1 · ‡i) · . . . · (µi
r

· ‡i).

And for an arbitrary braid b = ‡±1

i1 · . . . · ‡±1

i
r

we define “ · b by

“ · b = (“ · ‡±1

i1 ) · . . . · (“ · ‡±1

i
r

).

94



Other Invariants of the Milnor Fiber and Fibration Chapter 5

Geometrically, the image of a loop “ by a braid b can be obtained in the following way.
Let us consider b as a geometrical braid inside a cylinder, and let B be the complement
of b in the cylinder. Let us see {µ

1

, µ
2

, µ
3

, µ
4

} as a geometrical set of generators for the
bottom of B, which is a disk minus four points. By identifying the top and bottom of B,
closing the braid, we can also see {µ

1

, µ
2

, µ
3

, µ
4

} at the top of B. Then, “ · b is obtained
by taking the loop “ at the bottom of B, and pushing it upwards, all the way to the top
of B.

Let us also observe that, since {µ
1

, µ
2

, µ
3

, µ
4

} is a set of geometric generators, for every
braid b it holds that (µ̃

1

· · · µ̃
4

) · b = (µ̃
1

· · · µ̃
4

).
Now we return to our purpose of calculating the relations of the third type, i.e., of

the form –̃≠1

j µ̃i–̃j = wi,j(µ̃
1

, µ̃
2

, µ̃
3

, µ̃
4

), for fi
1

(Z, (x
0

, y
0

)). Let us observe that –̃≠1

j µ̃i–̃j

is obtained by taking µ̃i in F , and moving it along –̃j all the way back to F . The word
wi,j(µ̃

1

, µ̃
2

, µ̃
3

, µ̃
4

) expresses how –̃≠1

j µ̃i–̃j is to be read in terms of µ
1

, . . . , µ
4

. From here
we can see that, for every i œ {1, 2, 3, 4} and j œ {≠1, 0, 1},

–̃≠1

j µ̃i–̃j = µ̃i · fl(–j),

where
fl : fi

1

(X, x
0

) ≠æ B
4

is the braid monodromy of C, presented as a homomorphism. Thus, for each –̃j we have
four relations associated to each µ̃i.

In order to calculate the relations we must therefore find a suitable presentation for fl.
For i œ {≠1, 0, 1}, the following table shows the roots of f(i, y) or, in other words, the y
values of the points at which C intersect Lx=i.

1 : ≠x
0

, ≠
Ò

x2

0

≠ 1,
Ò

x2

0

≠ 1, x
0

.

0 : ≠Á, ≠Ô
Á2 ≠ 1,

Ô
Á2 ≠ 1, Á.

≠1 : ≠(1 ≠ Á), ≠
(1 ≠ Á)2 ≠ 1,


(1 ≠ Á)2 ≠ 1, (1 ≠ Á) .

For i œ {≠1, 0, 1}, let Êi be the SCP in i + Á that joins through straight segments the
points of Lx=i shown in the table, in the order they are listed. It can be directly calculated
from the equation of C that a representative of its braid monodromy is given by

fl(–
1

) = ‡
2

,

fl(–
0

) = (‡≠1

1

‡≠1

3

)‡2

2

(‡≠1

1

‡≠1

3

)≠1,

fl(–≠1

) = (‡≠1

1

‡≠1

3

‡
2

‡
3

‡
1

)‡
2

(‡≠1

1

‡≠1

3

‡
2

‡
3

‡
1

)≠1,

where all the braids are defined according to Ê
1

, Ê
0

, and Ê≠1

. Moreover, for Á small
enough, the braids ‡

2

, ‡2

2

, and ‡
2

can be taken as local braids associated respectively
with “

1

, “
0

, and “≠1

, and the braids ‡≠1

1

‡≠1

3

and ‡≠1

1

‡≠1

3

‡
2

‡
3

‡
1

as conjugating braids
associated with ⁄

0

and ⁄≠1

. Also, without loss of generality, we choose our geometric set
of generators {µ

1

, µ
2

, µ
3

, µ
4

} to be coherent with Ê
1

. This means that we define µ
1

as a
loop around ≠x

0

, µ
2

as a loop around ≠
Ò

x2

0

≠ 1, and so on, in the order induced by Ê
1

.
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This allows us to calculate the relations explicitly. For the case of –̃
1

, the corresponding
relations are given by

–̃≠1

1

µ̃i–̃1

= µ̃i · ‡
2

.

Therefore, these relations are

1. –̃≠1

1

µ̃
1

–̃
1

= µ̃
1

,

2. –̃≠1

1

µ̃
2

–̃
1

= µ̃
3

,

3. –̃≠1

1

µ̃
3

–̃
1

= µ̃
3

µ̃
2

µ̃≠1

3

,

4. –̃≠1

1

µ̃
4

–̃
1

= µ̃
4

.

Let us observe that, since (µ̃
1

· · · µ̃
4

) · ‡
2

= (µ̃
1

· · · µ̃
4

), it also holds that

5. –̃≠1

1

(µ̃
1

· · · µ̃
4

)–̃
1

= (µ̃
1

· · · µ̃
4

),

which provides us a fifth relation. Any of these five relations can be obtained from the
other four, for which we can discard one of them. We choose to discard 3. Since 1, 4 and
5 are trivial relations they can be discarded too, for which the only relation we will keep
is 2.

For the case of –̃
0

we reason in a slightly di�erent way. Let {”
1

, ”
2

, ”
3

, ”
4

} be a set of
geometric generators for fi

1

(„≠1(Á)) obtained by sending {µ
1

, µ
2

, µ
3

, µ
4

} into Lx=Á by a
homeomorphism from Lx=x0 into Lx=Á that sends Ê

1

into Ê
0

. Then, for each i,

”i = µi · ‡
3

‡
1

.

Now, since the local braid around 0 is ‡2

2

, the relations for –̃
0

, associated with
{”

1

, ”
2

, ”
3

, ”
4

}, are given by
–̃≠1

0

”i–̃0

= ”i · ‡2

2

.

Therefore, these relations are

1. –̃≠1

0

”
1

–̃
0

= ”
1

,

2. –̃≠1

0

”
2

–̃
0

= ”
3

”
2

”≠1

3

,

3. –̃≠1

0

”
3

–̃
0

= ”
3

”
2

”
3

”≠1

2

”≠1

3

,

4. –̃≠1

0

”
4

–̃
0

= ”
4

,

5. –̃≠1

0

(”
1

· · · ”
4

)–̃
0

= (”
1

· · · ”
4

).

As before, we may discard one of these relations, for which we discard 3. We discard also
1, 4, and 5, since they are trivial relations, keeping only 2. In order to obtain 2 in terms
of {µ̃

1

, µ̃
2

, µ̃
3

, µ̃
4

} we must substitute each ”i with µi · ‡
3

‡
1

. By doing so we obtain

–̃≠1

0

µ̃
2

µ̃
1

µ̃≠1

2

–̃
0

= µ̃
4

µ̃
2

µ̃
1

µ̃≠1

2

µ̃
4

.
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By a similar procedure, we obtain the relation

–̃≠1

≠1

µ̃
2

–̃≠1

= (µ̃
2

µ̃≠1

1

µ̃≠1

2

µ̃
4

)µ̃
3

(µ̃
2

µ̃≠1

1

µ̃≠1

2

µ̃
4

)≠1

from the case of –̃≠1

.
Thus, the generators {µ̃

1

, µ̃
2

, µ̃
3

, µ̃
4

, –̃≠1

, –̃
0

, –̃
1

}, along with the three relations we
have found, provide a presentation for fi

1

(Z, (x
0

, y
0

)). Now we are going to calculate
fi

1

(C2 \ C, (x
0

, y
0

)). In order to do so, we recover C2 \ C from Z, by reintroducing the
lines Lx=≠1

, Lx=0

, Lx=1

.
Let us observe that “≠1

, “
0

, and “
1

can be chosen is such a way that they bound a
disk in C2 \ C, for which –̃≠1

, –̃
0

, and –̃
1

are all trivial in C2 \ C. Let

iú : fi
1

(Z, (x
0

, y
0

)) ≠æ fi
1

(C2 \ C, (x
0

, y
0

))

be the homomorphism induced by the inclusion of Z into C2 \ C, then we can use van
Kampen’s Theorem to show that

ker(iú) = È–̃≠1

, –̃
0

, –̃
1

Í .

This means that not only –̃≠1

, –̃
0

, and –̃
1

become trivial by reintroducing the lines, but
also that these loops, and their products, are the only trivial loops resulting from such
procedure.

From here it follows that {µ̃
1

, µ̃
2

, µ̃
3

, µ̃
4

} is a set of generators for fi
1

(C2 \ C, (x
0

, y
0

)),
and that the relations

µ̃
2

= µ̃
3

,

µ̃
2

µ̃
1

µ̃≠1

2

= µ̃
4

µ̃
2

µ̃
1

µ̃≠1

2

µ̃
4

,

µ̃
2

= (µ̃
2

µ̃≠1

1

µ̃≠1

2

µ̃
4

)µ̃
3

(µ̃
2

µ̃≠1

1

µ̃≠1

2

µ̃
4

)≠1

determine the group. Let us observe that the last relation is equivalent to

µ̃
2

= (µ̃≠1

1

µ̃≠1

2

µ̃
4

)µ̃
2

(µ̃≠1

1

µ̃≠1

2

µ̃
4

)≠1.

From here, and by making µi = µ̃i for every i, we obtain that

fi
1

(C2 \ C) =
e
µ

1

, µ
2

, µ
4

:
Ë
µ

2

µ
1

µ≠1

2

, µ
4

È
=

Ë
µ

2

, µ≠1

1

µ≠1

2

µ
4

È
= 1

f
,

where [a, b] denotes the word aba≠1b≠1. By defining µÕ
1

= µ
2

µ
1

µ≠1

2

, we have that

µ≠1

1

µ≠1

2

= µ≠1

2

µ
2

µ≠1

1

µ≠1

2

= µ≠1

2

µÕ≠1

1

.

Then, the second relation of the group can be rewritten as
Ë
µ

2

, µ≠1

2

µÕ≠1

1

µ
4

È
= 1, or equiv-

alently as
Ë
µ

2

, µÕ≠1

1

µ
4

È
= 1. We have proved the following.

Theorem 5.2. The fundamental group of C2 \ C is
e
µÕ

1

, µ
2

, µ
4

:
#
µÕ

1

, µ
4

$
=

Ë
µ

2

, µÕ≠1

1

µ
4

È
= 1

f
.

Here µ
2

is a meridian of the hyperbola, while µÕ
1

and µ
4

are meridians of the asymp-
totes.
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5.3 Fundamental Group of the Milnor Fiber

Now we will use the fundamental group calculated in the previous section to find the
fundamental group of CF by using of covering theory. Along this section we will employ
the notation from Chapter 3. Let us recall that

H
1,1 =

Ó
(x, y) œ C2 | xy ≠ 1 = 0

Ô
,

Ha,b =
Ó

(x, y) œ C2 | xayb ≠ 1 = 0
Ô

,

B =
Ó

(x, y) œ C2 | ÎxÎ Æ Á, ÎyÎ Æ Á
Ô

,

BÕ =
Ó

(x, y) œ C2 | ÎxÎ Æ a

Ô
Á, ÎyÎ Æ b

Ô
Á
Ô

,

where Á > 1. Let us recall also that
P : C2 æ C2

(x, y) ‘æ (xa, yb) and Q : F æ C2

(x, y, z) ‘æ (x, y) .

Let us define the following maps

Pa : C2 æ C2

(x, y) ‘æ (xa, y) and Pb : C2 æ C2

(x, y) ‘æ (x, yb) .

Lets us also define

Ha,1 =
Ó

(x, y) œ C2 | xay ≠ 1 = 0
Ô

,

B
1,1 = B,

Ba,1 =
Ó

(x, y) œ C2 | ÎxÎ Æ a

Ô
Á, ÎyÎ Æ Á

Ô
,

Ba,b = BÕ.

For simplicity, we keep denoting the restrictions Pa |B
a,1 , Pb |B

a,b

, and Q |CF by Pa, Pb,
and Q. These maps are branched coverings of order a, b, and n respectively. Finally, for
i œ {1, a} and j œ {1, b} we define the sets

Xi,j = Bi,j \ Hi,j ,

Xi,j,y = Bi,j \ (Hi,j fi Ly=0

),
Xi,j,x,y = Bi,j \ (Hi,j fi Lx=0

fi Ly=0

),
Fa,b = CF \ Q≠1(Ha,b)

(except for (i, j) = (1, b)), and the maps

pa = Pa |X
a,1,x,y

,

pb = Pb |X
a,b,y

,

q = Q |F
a,b

.
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These maps are coverings of order a, b, and n respectively. The situation is illustrated in
the following commutative diagram, where all the arrows with hooks represent inclusion
maps.

Fa,b CF

Xa,b,y Xa,b Ba,b

Xa,1,x,y Xa,1,y Ba,1

X
1,1,x,y B

1,1

q Q

p
b

P
b

p
a P

b

Let us consider the maps

ť : Ba,1 ≠æ Ba,1,
š : Ba,b ≠æ Ba,b, and

t, s, u : CF ≠æ CF ,

defined by

ť(x, y) = (e
2fi

a x, y),
š(x, y) = (x, e

2fi

b y),
t(x, y, z) = (e

2fi

a x, y, z),
s(x, y, z) = (x, e

2fi

b y, z), and
u(x, y, z) = (x, y, e

2fi

n z).

Let us recall that t, s, and u generate the deck transformations group of Q¶Pb ¶Pa, which
is therefore isomorphic to Za ü Zb ü Zn. We also know that ť, š, and u generate the deck
transformations groups of Pa, Pb, and Q respectively. It follows from here that ť, š, and
u, restricted to the corresponding domains, also generate the deck transformations groups
of pa, pb, and q respectively. Therefore, these groups are Za for pa, Zb for pb and Zn for q.

To find the fundamental group of CF we will successively calculate the fundamental
groups of the spaces shown in the stairway-like part of the commutative diagram, from
bottom to top, until reaching CF .

By Theorem 5.2, we already know that

fi
1

(X
1,1,x,y) =

e
x, c, y : [x, y] =

Ë
c, xy≠1

È
= 1

f
,
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where x, c, and y are meridians of Lx=0

, H
1,1, and Ly=0

respectively. Then, our first aim
is to calculate fi

1

(Xa,1,x,y). Let µa be the covering monodromy of pa. Since pa is a cyclic
covering, we know µa is given by

µa : fi
1

(X
1,1,x,y) ≠æ �a.

c ‘≠æ 0
y ‘≠æ 0
x ‘≠æ (1, 2, . . . , a ≠ 1, a)

The fact that pa is cyclic, implies also that it is regular (or normal), and therefore that

fi
1

(Xa,1,x,y) = ker(µa).

From here it follows that

µa(fi
1

(X
1,1,x,y)) = fi

1

(X
1,1,x,y)

ker(µa) .

The regularity of pa implies that this quotient is isomorphic to its deck transformations
group. Hence, we can write µa in the following way

µa : fi
1

(X
1,1,x,y) ≠æ Za.

c ‘≠æ 0
y ‘≠æ 0
x ‘≠æ 1

We are now going to calculate ker(µa). In general, and by definition, the CW complex
associated with a group given by generators and relations consists of:

• A single vertex.

• An oriented edge for each generator. Each edge begins and finishes at the vertex.

• A disk for every relation. The boundary of each disk, as a sequence of edges, is given
by the word that equals 1 in the corresponding relation.

Let us consider the CW complex associated with fi
1

(X
1,1,x,y), that we call Ka. This

complex is defined by a vertex, three oriented edges that begin and finish at the vertex,
that we name xÕ, cÕ, and yÕ, and two disks with boundaries xyx≠1y≠1 and cxy≠1c≠1yx≠1,
that we name D and E respectively. It is clear that

fi
1

(Ka) = fi
1

(X
1,1,x,y).

We will construct a covering space K̃a of Ka, satisfying that the corresponding covering
is regular and its monodromy is µa. Then we will calculate the fundamental group of K̃a.
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To construct K̃a we consider an a-sided polygon, with edges oriented according to
a given orientation of the circumference. We label its edges x

0

, . . . , xa≠1

in consecutive
order. To each vertex of this polygon we attach two oriented loops. If the vertex is the
initial point of some xi, we label the loops ci and yi. Finally, we add 2a disks, that we
call D

0

, . . . , Da≠1

, E
0

, . . . Ea≠1

, with boundaries given by

ˆDi = xiyi+1

y≠1

i x≠1

i and
ˆEi = cixiy

1

i+1

c≠1

i+1

yi+1

x≠1

i ,

where i + 1 is taken modulus a. The one-skeleton of K̃a is illustrated in the following
figure. The disks Di (respectively Ei) can be easily imagined, for their boundaries start
at the i-th vertex (the initial point of xi), and from there read the word xyx≠1y≠1 (res.
cxy≠1c≠1yx≠1) in the edges of K̃a.

c
1

y
1

x
1

x
0

c
0

y
0

xa≠1

ya≠1

ca≠1

Figure 5.2

Now, let us consider the map that projects each xi, ci, and yi into xÕ, cÕ, and yÕ

respectively, respecting the orientations, each Di into D, and each Ei into E. This map
is a regular covering with monodromy equal to µa, therefore,

fi
1

(K̃a) = ker(µa) = fi
1

(Xa,1,x,y).

To calculate the fundamental group of K̃a we need to consider a maximal tree in its
one-skeleton. we choose the tree x

0

, . . . , xa≠2

, and choose the initial point of x
0

as a base
point. By contracting this tree to a single point we obtain that fi

1

(K̃a) is generated by
the remaining edges, i.e.

{xa≠1

, c
0

, . . . , ca≠1

, y
0

, . . . , ya≠1

}.
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The relations can be obtained from the boundaries of the disks, with the suppression of
the xi for i < a ≠ 1. On the one hand, the Di provide the relations

(I). y
1

y≠1

0

= 1,

y
2

y≠1

1

= 1,

...
ya≠1

y≠1

a≠2

= 1,

xa≠1

ya≠1

y≠1

a≠2

x≠1

a≠1

= 1.

These relations imply that yi = yj for every i and j, which allows us to call yi simply by
y. On the other hand, the Ei, provide the relations

(II). c
0

y1c≠1

1

y = 1,

c
1

y1c≠1

2

y = 1,

...
ca≠2

y1c≠1

a≠1

y = 1,

ca≠1

xa≠1

y1c≠1

0

yx≠1

a≠1

= 1.

Thus we obtain that

fi
1

(Xa,1,x,y) = Èxa≠1

, c
0

, . . . , ca≠1

, y : [xa≠1

, y] = 1, (II) Í .

Now we calculate fi
1

(Xa,x,y). It is easy to see that the generator xa≠1

of fi
1

(K̃a) cor-
responds to a meridian of Lx=0

in fi
1

(Xa,1,x,y). This is true because they both correspond
to the element xa of ker(µa). Moreover, they are both the curve constructed from all the
lifts of x under the respective covering maps.

By reintroducing Lx=0

into Xa,1,x,y we obtain, by the Seifert-van Kampen Theorem,
that

fi
1

(Xa,1,y) = fi
1

(Xa,1,x,y)� Èxa≠1

Í .

Therefore, by making xa≠1

= 1 in the generators and relations of fi
1

(Xa,1,x,y), we obtain
that fi

1

(Xa,x,y) is the group generated by

{c
0

, . . . , ca≠1

, y},

with the relations

(III). c
0

y1c≠1

1

y = 1,

c
1

y1c≠1

2

y = 1,

...
ca≠2

y1c≠1

a≠1

y = 1,

ca≠1

y1c≠1

0

y = 1.
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Or, in other words,
fi

1

(Xa,1,y) = Èc
0

, . . . , ca≠1

, y : (III) Í .

This presentation can still be greatly simplified, until being reduced to a presentation
with only two generators (c and y) and one relation ([c, ya] = 1). However, we will keep
the big presentation on order to ease later calculations.

Now we shall repeat the whole procedure for pb, in order to find fi
1

(Xa,b,y) and fi
1

(Xa,b).
Let µb be the covering monodromy of pb, which is given by

µb : fi
1

(Xa,1,y) ≠æ �b.
c

0

, . . . , ca≠1

‘≠æ 0
y ‘≠æ (1, 2, . . . , b ≠ 1, b)

As before, since pb is regular, we have that

fi
1

(Xa,b,y) = ker(µb).

From here it follows that
µb(fi1

(Xa,1,y)) = fi
1

(Xa,1,y)
ker(µb)

,

where the regularity of pb implies that this quotient is isomorphic to its deck transforma-
tions group. Hence, we can write µb in the following way

µb : fi
1

(Xa,1,y) ≠æ Zb.
c

0

, . . . , ca≠1

‘≠æ 0
y ‘≠æ 1

We are now going to calculate ker(µb). As before, we will consider the CW complex
associated with fi

1

(Xa,1,y), that we call Kb. The complex possesses a + 1 edges that we
denote by yÕ, cÕ

0

, . . . , cÕ
a≠1

. It also possesses a disks with boundaries as given by the a
relations of (III). We denote these disks by D

0

, . . . , Da≠1

, where Di is the disk associated
with ci and ci+1

. Then we have that

fi
1

(Kb) = fi
1

(Xa,1,y).

As we did for Ka, we will construct a covering space K̃b of Kb, satisfying that the cor-
responding covering is regular and its monodromy is µb. Then we will calculate the
fundamental group of K̃b.

We construct K̃b from a b-sided polygon, with edges oriented according to a given
orientation of the circumference. We label these edges y

0

, . . . , yb≠1

in consecutive order.
To each vertex of this polygon we attach a oriented loops. We label the loops starting at
the initial point of some yj as c

0,j , . . . , ca≠1,j . Finally, we add ab disks that we call Di,j ,
for 0 Æ i < a and 0 Æ j < b. The boundary of Di,j is given by

ˆDi,j = ci,jy≠1

j≠1

c≠1

i+1,j≠1

yj≠1

,
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where i + 1 is taken modulus a and j ≠ 1 modulus b. The one-skeleton of K̃b is illustrated
in the following figure. The boundary of Di,j starts at the j-th vertex (the initial point of
yj), and from there read the word ciy

1c≠1

i+1

y in the edges of K̃b.

c
0,1, . . . , ca≠1,1

y
1

y
0

c
0,0, . . . , ca≠1,0

yb≠1

c
0,b≠1

, . . . , ca≠1,b≠1

Figure 5.3

The map that projects each ci,j into cÕ
i, and each yj into yÕ, respecting the orientations,

and each Di,j into Di, is a regular covering with monodromy equal to µb, therefore,

fi
1

(K̃b) = ker(µb) = fi
1

(Xa,b,y).

To calculate the fundamental group of K̃b we choose the maximal tree y
0

, . . . , yb≠2

,
and the initial point of y

0

as a base point. By contracting this tree to a single point we
obtain that fi

1

(K̃b) is generated by the remaining edges, i.e.

{yb≠1

} fi {c
0,j , . . . , ca≠1,j}

0Æj<b.

The relations can be obtained from the boundaries of the disks, with the suppression of
the yj for i < b ≠ 1. Then, for every j, the disks Di,j , provide the relations

(IV). c
0,jc≠1

1,j≠1

= 1,

c
1,jc

2,j≠1

= 1,

...
ca≠2,jc≠1

a≠1,j≠1

= 1,

ca≠1,jy1

b≠1

c≠1

0,j≠1

yb≠1

= 1.

Thus we obtain fi
1

(K̃a).
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Now we calculate fi
1

(Xa,b). As before, the generator yb≠1

of fi
1

(K̃b) corresponds to
a meridian of Ly=0

in fi
1

(Xa,b,y), both corresponding to the element yb of ker(µb). By
reintroducing Ly=0

into Xa,b,y we obtain, by the Seifert-van Kampen Theorem, that

fi
1

(Xa,b) = fi
1

(Xa,b,y)� Èyb≠1

Í .

Therefore, fi
1

(Xa,b) is the group generated by

{c
0,j , . . . , ca≠1,j}

0<j<b≠1

,

with the relations

(V). c
0,j = c

1,j≠1

,

c
1,j = c

2,j≠1

,

...
ca≠2,j = ca≠1,j≠1

,

ca≠1,j = c≠1

0,j≠1

.

But this is exactly the free group generated by c
0,1, . . . , cd,1, where d = gcd(a, b). In other

words,
fi

1

(Xa,b) = Èc
0

, . . . , cd≠1

Í .

It is important to observe that c
0

, . . . , cd≠1

are meridians of the d irreducible components
of Ha,b.

Now, once again, we repeat the procedure for q, in order to find fi
1

(Fa,b) and fi
1

(CF).
Let µn be the covering monodromy of q, which is given by

µn : fi
1

(Xa,b) ≠æ �n.
c

0

, . . . , cd ‘≠æ (1, 2, . . . , n ≠ 1, n)

Once again, since q is regular,
fi

1

(Fa,b) = ker(µn)

and

µn : fi
1

(Xa,1,y) ≠æ Zb.
c

0

, . . . , ca≠1

‘≠æ 1

We are now going to calculate ker(µn). For every i, with 0 Æ i < d, let ti be defined by
ti = c≠1

0

ci. Then, µn(ti) = 0 for every i. Let Kn be the CW complex associated with
fi

1

(Xa,b), constructed by using the presentation Èc
0

, t
1

, . . . , td≠1

Í. We denote the edges of
the complex by cÕ

0

, tÕ
1

, . . . , tÕ
d≠1

. Since Kn possesses no disks, fi
1

(Kc) is free.
We will construct a covering space K̃n of Kn, such that the corresponding covering

is regular and its monodromy is µn. We construct K̃n from a n-sided polygon, with
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edges oriented according to a given orientation of the circumference. We label these edges
k

0

, . . . , kn≠1

in consecutive order. To each vertex of this polygon we attach d ≠ 1 oriented
loops. We label the loops starting at the initial point of kj as t

1,j , . . . , td≠1,j . The complex
K̃b is illustrated in the following figure.

t
1,1, . . . , td≠1,1

k
1

k
0

t
1,0, . . . , td≠1,0

kn≠1

t
1,n≠1

, . . . , td≠1,n≠1

Figure 5.4

The map that projects each ti,j into tÕ
i, and each kj into cÕ, respecting the orientations,

is a regular covering with monodromy equal to µn, therefore,

fi
1

(K̃n) = ker(µn) = fi
1

(Fa,b).

To calculate the fundamental group of K̃b we choose the maximal tree k
0

, . . . , kn≠2

,
and the initial point of k

0

as a base point. By contracting this tree to a single point we
obtain that fi

1

(K̃n) is the free group generated by the remaining edges, i.e.

{kn≠1

} fi {t
1,j , . . . , td≠1,j}

0Æj<n.

It only remains to calculate fi
1

(CF). Let us denote the irreducible components of
Q≠1(Ha,b) by H

0

, . . . , Hd≠1

. As before, the generator kn≠1

of fi
1

(K̃n) corresponds to
a meridian of a branch of Q≠1(Ha,b) in fi

1

(Fa,b), and is related to the element cn
n≠1

of
ker(µn). Let us assume that this branch is H

0

. We know that this branch is an annulus,
the fundamental group of which is generated by a single loop l

0

. Besides, the intersection
of a regular neighborhood of this branch and Fa,b has the homotopy type or a torus, and
its fundamental group is generated by two loops, which are homotopic to l

0

and kn≠1

,
provided a common base point. Since kn≠1

is a meridian of H
0

, it is trivial in Fa,b fi H
0

.
Besides, since the cone of l

0

in any of the copies of BÕ that form CF is a disk that does
not intersect Q≠1(Ha,b), then l

0

is trivial in Fa,b.
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Then, by reintroducing H
0

into Fa,b we obtain, by the Seifert-van Kampen Theorem,
that

fi
1

(Fa,b fi H
0

) = fi
1

(Fa,b) ú Èl
0

Í
Èkn≠1

, l
0

Í = Èt
1,j , . . . , td≠1,jÍ

0Æj<n .

On the other hand, let us observe that, for every i with 0 < i < d, the loop
kn≠1

ti,0, . . . , kn≠1

ti,n≠1

of fi
1

(K̃n) is projected upon the loop (cn≠1

ti)n of fi
1

(Kn). This loop
is equal to cn

i , by the definition of ti. Let us recall also that ci is the meridian of a branch of
Ha,b in Xa,b. Then, by reasoning as several times before, we see that kn≠1

ti,0, . . . , kn≠1

ti,n≠1

in fi
1

(K̃n) corresponds to a meridian of a branch Hi in fi
1

(Fa,b), related to the element cn
i

of ker(µn). Let us observe also that the loop kn≠1

ti,0, . . . , kn≠1

ti,n≠1

in fi
1

(Fa,b) becomes
the loop ti,0, . . . , ti,n≠1

in fi
1

(Fa,b fi H
0

).
Then, by reintroducing H

1

into Fa,b fi H
0

we obtain, by applying the Seifert-van Kam-
pen Theorem in the same way as before, that

fi
1

(Fa,b fi H
0

fi H
1

) = fi
1

(Fa,b fi H
0

) ú Èl
1

Í
Èt

1,0, . . . , t
1,n≠1

, l
1

Í
= Èt

1,j , . . . , td≠1,j : t
1,0, . . . , t

1,n≠1

= 1Í
0Æj<n ,

where l
1

is the core of H
1

. By repeating this procedure for each Hi we obtain that the
fundamental group of CF is the group generated by

{t
1,j , . . . , td≠1,j}

0Æj<n,

and having the relations

t
1,0, . . . , t

1,n≠1

= 1,

...
td≠1,0, . . . , td≠1,n≠1

= 1.

But these relations only mean that t
1,0, . . . , td≠1,0 can be defined in terms of the other

generators, therefore
fi

1

(CF) = Èt
1,j , . . . , td≠1,jÍ

0<j<n .

We have proved the following.

Theorem 5.3. The fundamental group of CF is F
(d≠1)(n≠1)

, where d := gcd(a, b).

Here, F
(d≠1)(n≠1)

denotes the free group generated by (d ≠ 1)(n ≠ 1) elements.
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5.4 Homology of the Milnor Fiber

Our aim now is to calculate the homology groups of CF . These groups are given in the
following theorem.

Theorem 5.4. The homology groups of CF are the following:

H
0

(CF) = Z,

H
1

(CF) = Z(d≠1)(n≠1),

H
2

(CF) = Z(d≠1)(n≠1)+n≠1,

H
3

(CF) = 0,

H
4

(CF) = 0,

where d := gcd(a, b).

Proof. Since CF is path-connected, we know that H
0

(CF) = Z. Also, since the Milnor
fiber F is an a�ne algebraic variety of complex dimension two, we know that F , and
therefore CF , has the homotopy type of a two-dimensional CW complex, for which

H
3

(CF) = H
4

(CF) = 0.

On the other hand, by Theorem 5.3, we know that fi
1

(CF) = F
(d≠1)(n≠1)

. Therefore,

H
1

(CF) = Z(d≠1)(n≠1).

It only remains to calculate the second homology group.
Let bi denote the i-th Betti number of CF , i.e., the rank of Hi(CF). Also, for any field

K, let bi;K denote the dimension of Hi(CF ; K). By the Fundamental Theorem of Finitely
Generated Abelian Groups, H

2

(CF) has the form

H
2

(CF) = Zb2 ü Zp
a1
1

ü · · · ü Zpa

m

m

,

where, for each i, pi is a prime and ai a natural number. Besides, there is only one way to
represent H

2

(CF) as a decomposition of this type. For every prime p, and every natural
number a let us define kp,a as the number of Zpa summands in H

2

(CF).
Let p be a fixed prime number. Since all the homology groups of CF are finitely

generated, the Universal Coe�cient Theorem for Homology implies that, for every natural
m, Hm(CF ;Zp) is a direct sum with exactly the following summands:

• A Zp summand for each Z summand in Hm(CF).

• A Zp summand for each summand in Hm(CF) of the form Zpa , with a Ø 1.
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• A Zp summand for each summand in Hm≠1

(CF) of the form Zpa , with a Ø 1.

(See [15, p. 264-266]) From here, and since since H
3

(CF) = 0, we have that

H
3

(CF ;Zp) =

Q

a
ÿ

aØ1

kp,a

R

bZp,

where we use cZp as an alternative notation for Zc
p. However, since CF has the homo-

topy type of a two-dimensional complex, we know that

H
3

(CF ;Zp) = 0.

From here it follows that for every prime p, and every natural number a, kp,a = 0. There-
fore

H
2

(CF) = Zb2 .

On the other hand, again by the Universal Coe�cient Theorem for Homology, we know
that

H
2

(CF) ¢ C = H
2

(CF ;C),

which implies that,
b

2

= b
2;C.

Therefore, by Theorem 4.1,

H
2

(CF) = Z(d≠1)(n≠1)+n≠1.

⇤
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Appendix A

Code for the CW Decomposition
for A�ne Plane Curves

Here we exhibit the code of the program in SageMath that calculates the CW decomposi-
tion of (D, � fl D) from the braid monodromy of �, where � is an a�ne plane curve and
D a large enough polydisc. This program was explained in Section 2.1.

1 class _CaptureEq :
2 ’’’
3 Object wrapper that remembers "other" for successful equality tests.
4 ’’’
5 def __init__ (self , obj):
6 self.obj = obj
7 self.match = obj
8 def __eq__ (self , other):
9 result = (self.obj == other)

10 if result :
11 self.match = other
12 return result
13 def __getattr__ (self , name): # support hash () or anything else needed

by __contains__
14 return getattr (self.obj , name)
15
16 def get_equivalent (container , item , default =None):
17 ’’’Gets the specific container element matched by: "item in container ".
18 Useful for retreiving a canonical value equivalent to "item ". For

example , a
19 caching or interning application may require fetching a single

representative
20 instance from many possible equivalent instances ).
21

117



Appendix A Code for the CW Decomposition for A�ne Plane Curves

22 >>> get_equivalent (set ([1, 2, 3]) , 2.0) # 2.0 is equivalent
to 2

23 2
24 >>> get_equivalent ([1, 2, 3], 4, default =0)
25 0
26 ’’’
27 t = _CaptureEq (item)
28 if t in container :
29 return t.match
30 return default
31
32 class LocalBraid ( object ):
33 def __init__ (self , sing_point , braids , n, conj_braid ):
34 ’’’
35 braids is the local braids list
36 n[r] is the strands number of braids [r]
37 ’’’
38 self. sing_point = sing_point
39 self. braids = braids
40 l = max(len(b) for b in braids )
41 for i in range(len(self. braids )):
42 self. braids [i] = [0] + self. braids [i] + [0] * (l - len(self.

braids [i]))
43 self.n = n
44 self. strands = sum(n)
45 # k is the length of the components of beta
46 self.k = len(self. braids [0]) # l+1
47 self. conj_braid = conj_braid
48 self.kc = len(self. conj_braid )
49
50 class BraidMonodromy ( object ):
51 def __init__ (self , local_braids ):
52 self. local_braids = local_braids
53 strands = sum(self. local_braids [0].n)
54 self. all_braids = [ LocalBraid (0, [[0] * (len(self. local_braids ) -

1)] * strands , [1] * strands ,
55 [])] + local_braids
56
57 def CellularDescomposition (self):
58 strands = sum(self. local_braids [0].n)
59 base_tower = cells_of_tower (self. all_braids [0], self)
60 lTower = [ base_tower ] + [ cells_of_tower ( local_braid , self) for

local_braid in self. local_braids ]
61 lBridges = [ cells_of_bridge ( local_braid , self) for local_braid in

self. local_braids ]
62 return join_cells ( lTower + lBridges )
63
64 class Cell( object ):
65 def __str__ (self):
66 return self.name
67 def __repr__ (self):
68 return self.name
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69
70 class CellWithSign ( object ):
71 def __init__ (self ,Cell ,sgn):
72 self.Cell = Cell
73 self.sgn =sgn
74 def __repr__ (self):
75 if self.sgn ==1:
76 return self.Cell. __repr__ ()
77 else:
78 return "-"+self.Cell. __repr__ ()
79 def __eq__ (self ,other):
80 return isinstance (other , CellWithSign ) and (self.sgn == other.sgn) and

(self.Cell == self.Cell)
81 def __hash__ (self):
82 return hash (( self.Cell ,self.sgn))
83 def cone(self):
84 return CellWithSign ( ConeCell (self.Cell),self.sgn)
85 def product (self):
86 if isinstance (self.Cell , BottomCell ):
87 return CellWithSign ( product (self.Cell),self.sgn)
88 else:
89 raise Exception ("A ProductCell must have a BottomCell as base")
90
91 class Chain( object ):
92 def __init__ (self , set_of_cells_w_sign ):
93 self.d = {}
94 for c in set_of_cells_w_sign :
95 self.d[c.cell] = c.sgn
96
97 def __add__ (self , other):
98 result = Chain(set ({}))
99 result .d = self.d.copy ()

100 for c in other.d:
101 if c in result .d:
102 coef = result .d[c] + other.d[c]
103 if coef == 0:
104 del result .d[c]
105 else:
106 result .d[c] = coef
107 else:
108 result .d[c] = other.d[c]
109 return result
110
111 def __iadd__ (self , other):
112 for c in other.d:
113 if c in self.d:
114 coef = self.d[c] + other.d[c]
115 if coef == 0:
116 del self.d[c]
117 else:
118 self.d[c] = coef
119 else:
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120 self.d[c] = other.d[c]
121
122 return self
123
124 def __mul__ (self , x):
125 ’’’
126 x: int
127 ’’’
128 result = Chain(set ({}))
129 result .d = self.d.copy ()
130 for c in result .d:
131 result .d[c] = result .d[c] * x
132 return result
133
134 def degree (self):
135 result = 0
136 for c in self.d:
137 result += self.d[c]
138 return result
139
140 def border (self):
141 if len(self.d) != 0:
142 dim = self.d.keys () [0]. dim
143 if dim == 0:
144 return self. degree ()
145 result = Chain(set ({}))
146 for c in self.d:
147 result += (Chain(c. border ()) * self.d[c])
148 return result
149
150 def cone(chain):
151 """
152 chain is a set of CellWithSign
153 """
154 return {e.cone () for e in chain}
155
156 def product_of_chain ( border ):
157 """
158 auxiliar function used in order to calculate the border of the

cells_of_bridge
159 """
160 return {e. product () for e in border if isinstance (e.Cell , BottomCell )}
161
162 class TowerCell (Cell):
163 def __init__ (self ,dim ,name ,index ,sing_point ,(i,r),mon):
164 self.dim = dim
165 self.name = name
166 self.index = index
167 self. sing_point = sing_point
168 self.i = i
169 self.r = r
170 self.mon = mon
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171 def __hash__ (self):
172 return hash (( self.dim ,self.name ,self.index ,self.sing_point ,self.i,

self.r))
173
174 def __eq__ (self ,other):
175 if not isinstance (other , TowerCell ):
176 return NotImplemented
177 return isinstance (other , TowerCell ) and (self.dim ,self.name ,self.

index ,self.sing_point ,self.i,self.r)==( other.dim ,other.name ,other.index
,other.sing_point ,other.i,other.r)

178
179 def border (self):
180 beta = self.mon. all_braids [self. sing_point ]
181 if self.dim ==0:
182 return set ({})
183 elif self.name =="m2":
184 c1 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,( self.i,

None),self.mon) ,1)
185 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.

sing_point ,( self.i,None),self.mon) ,-1)
186 return {c1 ,c2}
187 elif self.name =="m1":
188 c1 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,( self.i,

None),self.mon) ,1)
189 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.

sing_point ,( self.i,None),self.mon) ,-1)
190 return {c1 ,c2}
191 elif self.name =="d":
192 if self.index ==0:
193 c1 = CellWithSign ( TowerCell (0,"A" ,1,self.sing_point ,( self.i

,self.r),self.mon) ,1)
194 c2 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,( self.i

,None),self.mon) ,-1)
195 return {c1 ,c2}
196 elif self.index == beta.n[self.r -1]:
197 c1 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.

sing_point ,( self.i,None),self.mon) ,1)
198 c2 = CellWithSign ( TowerCell (0,"A",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
199 return {c1 ,c2}
200 elif self.index !=0 and self.index != beta.n[self.r -1]:
201 c1 = CellWithSign ( TowerCell (0,"A",self.index +1, self.

sing_point ,( self.i,self.r),self.mon) ,1)
202 c2 = CellWithSign ( TowerCell (0,"A",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
203 return {c1 ,c2}
204 elif self.name =="e":
205 if self.index ==0:
206 c1 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,( self.i

% beta.k + 1,None),self.mon) ,1)
207 c2 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,( self.i

,None),self.mon) ,-1)
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208 return {c1 ,c2}
209 elif self.index == beta. strands +1:
210 c1 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.

sing_point ,( self.i % beta.k + 1,None),self.mon) ,1)
211 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.

sing_point ,( self.i,None),self.mon) ,-1)
212 return {c1 ,c2}
213 elif self.index !=0 and self.index != beta. strands +1:
214 c1 = CellWithSign ( TowerCell (0,"A",self.index ,self.

sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,1)
215 c2 = CellWithSign ( TowerCell (0,"A",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
216 return {c1 ,c2}
217 elif self.name =="hq":
218 q = abs(beta. braids [self.r -1][ self.i -1])
219 q = q - sum ([ beta.n[i] for i in xrange (self.r -1) ])
220 c1 = CellWithSign ( TowerCell (0,"A",q+1, self.sing_point ,( self

.i % beta.k + 1,self.r),self.mon) ,1)
221 c2 = CellWithSign ( TowerCell (0,"A",q,self.sing_point ,( self.i

,self.r),self.mon) ,-1)
222 return {c1 ,c2}
223 elif self.name =="hq1":
224 q = abs(beta. braids [self.r -1][ self.i -1])
225 q = q - sum ([ beta.n[i] for i in xrange (self.r -1) ])
226 c1 = CellWithSign ( TowerCell (0,"A",q,self.sing_point ,( self.i

% beta.k + 1,self.r),self.mon) ,1)
227 c2 = CellWithSign ( TowerCell (0,"A",q+1, self.sing_point ,( self

.i,self.r),self.mon) ,-1)
228 return {c1 ,c2}
229
230 elif self.name ==" lambda ":
231 result = { CellWithSign ( TowerCell (1,"e",beta. strands +1, self.

sing_point ,(j,None),self.mon) ,1) for j in range (1, beta.k+1) }
232 return result
233 elif self.name =="mu":
234 result = { CellWithSign ( TowerCell (1,"e" ,0,self.sing_point ,(j,

None),self.mon) ,1) for j in range (1, beta.k+1) }
235 return result
236 elif self.name =="kappa":
237 c1 = CellWithSign ( TowerCell (1,"m1",None ,self.sing_point ,( self.i

,self.r),self.mon) ,1)
238 c2 = CellWithSign ( TowerCell (1,"m1",None ,self.sing_point ,( self.i

% beta.k + 1,self.r),self.mon) ,-1)
239 c3 = CellWithSign ( TowerCell (1,"e",beta. strands +1, self.

sing_point ,( self.i,None),self.mon) ,-1)
240 c4 = CellWithSign ( TowerCell (1,"e" ,0,self.sing_point ,( self.i,

None),self.mon) ,1)
241 return {c1 ,c2 ,c3 ,c4}
242 elif self.name ==" varkappa ":
243 c1 = CellWithSign ( TowerCell (1,"m2",None ,self.sing_point ,( self.i

,None),self.mon) ,1)
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244 c2 = CellWithSign ( TowerCell (1,"m2",None ,self.sing_point ,( self.i
% beta.k + 1,None),self.mon) ,-1)

245 c3 = CellWithSign ( TowerCell (1,"e",beta. strands +1, self.
sing_point ,( self.i,None),self.mon) ,-1)

246 c4 = CellWithSign ( TowerCell (1,"e" ,0,self.sing_point ,( self.i,
None),self.mon) ,1)

247 return {c1 ,c2 ,c3 ,c4}
248 elif self.name ==" varsigma ":
249 q = abs(beta. braids [self.r -1][ self.i -1])
250 q = q - sum ([ beta.n[i] for i in xrange (self.r -1) ])
251 if self.index ==0:
252 c1 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,1)
253 c2 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
254 c3 = CellWithSign ( TowerCell (1,"e",self.index ,self.

sing_point ,( self.i,None),self.mon) ,1)
255 c4 = CellWithSign ( TowerCell (1,"e",self.index +1, self.

sing_point ,( self.i,self.r),self.mon) ,-1)
256 return {c1 ,c2 ,c3 ,c4}
257 elif self.index ==q:
258 c1 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,-1)
259 c2 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
260 c3 = CellWithSign ( TowerCell (1,"hq",None ,self.sing_point ,(

self.i,self.r),self.mon) ,1)
261 c4 = CellWithSign ( TowerCell (1,"hq1",None ,self.sing_point ,(

self.i,self.r),self.mon) ,-1)
262 return {c1 ,c2 ,c3 ,c4}
263 elif self.index == beta.n[self.r -1]:
264 c1 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,1)
265 c2 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
266 c3 = CellWithSign ( TowerCell (1,"e",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,1)
267 c4 = CellWithSign ( TowerCell (1,"e",beta. strands +1, self.

sing_point ,( self.i,None),self.mon) ,-1)
268 return {c1 ,c2 ,c3 ,c4}
269 else:
270 c1 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,1)
271 c2 = CellWithSign ( TowerCell (1,"d",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,-1)
272 c3 = CellWithSign ( TowerCell (1,"e",self.index ,self.

sing_point ,( self.i,self.r),self.mon) ,1)
273 c4 = CellWithSign ( TowerCell (1,"e",self.index +1, self.

sing_point ,( self.i,self.r),self.mon) ,-1)
274 return {c1 ,c2 ,c3 ,c4}
275 elif self.name =="theta":
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276 result = { CellWithSign ( TowerCell (1,"d",j,self.sing_point ,( self.
i,self.r),self.mon) ,1) for j in range (0, beta.n[self.r -1]+1) }

277 result .add( CellWithSign ( TowerCell (1,"m1",None ,self.sing_point ,(
self.i,self.r),self.mon) ,1))

278 return result
279 elif self.name ==" vartheta ":
280 if self.r== len(beta. braids ):
281 result = { CellWithSign ( TowerCell (1,"d",j,self.sing_point ,(

self.i,self.r),self.mon) ,-1) for j in range (0, beta.n[self.r -1]+1) }
282 result .add( CellWithSign ( TowerCell (1,"m2",None ,self.

sing_point ,( self.i,None),self.mon) ,-1))
283 return result
284 else:
285 result = { CellWithSign ( TowerCell (1,"d",j,self.sing_point ,(

self.i,self.r),self.mon) ,-1) for j in range (0, beta.n[self.r -1]+1) }
286 result .add( CellWithSign ( TowerCell (1,"m1",None ,self.

sing_point ,( self.i,self.r+1) ,self.mon) ,-1))
287 return result
288 elif self.name =="nu":
289 q = abs(beta. braids [self.r -1][ self.i -1])
290 q = q - sum ([ beta.n[i] for i in xrange (self.r -1) ])
291 if self.index ==1:
292 c1 = CellWithSign ( TowerCell (1,"d",q,self.sing_point ,( self.i

% beta.k + 1,self.r),self.mon) ,1)
293 c2 = CellWithSign ( TowerCell (1,"hq",None ,self.sing_point ,(

self.i,self.r),self.mon) ,-1)
294 c3 = CellWithSign ( TowerCell (1,"e",q,self.sing_point ,( self.i

,self.r),self.mon) ,1)
295 return {c1 ,c2 ,c3}
296 elif self.index ==2:
297 c1 = CellWithSign ( TowerCell (1,"d",q,self.sing_point ,( self.i

,self.r),self.mon) ,-1)
298 c2 = CellWithSign ( TowerCell (1,"hq",None ,self.sing_point ,(

self.i,self.r),self.mon) ,1)
299 c3 = CellWithSign ( TowerCell (1,"e",q+1, self.sing_point ,( self

.i,self.r),self.mon) ,-1)
300 return {c1 ,c2 ,c3}
301 elif self.index ==3:
302 c1 = CellWithSign ( TowerCell (1,"d",q,self.sing_point ,( self.i

% beta.k + 1,self.r),self.mon) ,1)
303 c2 = CellWithSign ( TowerCell (1,"hq1",None ,self.sing_point ,(

self.i,self.r),self.mon) ,1)
304 c3 = CellWithSign ( TowerCell (1,"e",q+1, self.sing_point ,( self

.i,self.r),self.mon) ,-1)
305 return {c1 ,c2 ,c3}
306 elif self.index ==4:
307 c1 = CellWithSign ( TowerCell (1,"d",q,self.sing_point ,( self.i

,self.r),self.mon) ,-1)
308 c2 = CellWithSign ( TowerCell (1,"hq1",None ,self.sing_point ,(

self.i,self.r),self.mon) ,-1)
309 c3 = CellWithSign ( TowerCell (1,"e",q,self.sing_point ,( self.i

,self.r),self.mon) ,1)
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310 return {c1 ,c2 ,c3}
311
312 elif self.name =="Hsup":
313 result = { CellWithSign ( TowerCell (2," varkappa ",None ,self.

sing_point ,(j,None),self.mon) ,-1) for j in range (1, beta.k+1) }
314 result .add( CellWithSign ( TowerCell (2,"mu",None ,self.sing_point ,(

None ,None),self.mon) ,1))
315 result .add( CellWithSign ( TowerCell (2," lambda ",None ,self.

sing_point ,(None ,None),self.mon) ,-1))
316 return result
317 elif self.name =="Hinf":
318 result = { CellWithSign ( TowerCell (2,"kappa",None ,self.sing_point

,(j,self.r),self.mon) ,-1) for j in range (1, beta.k+1) }
319 result .add( CellWithSign ( TowerCell (2,"mu",None ,self.sing_point ,(

None ,None),self.mon) ,1))
320 result .add( CellWithSign ( TowerCell (2," lambda ",None ,self.

sing_point ,(None ,None),self.mon) ,-1))
321 return result
322 elif self.name =="PI":
323 s = sgn(beta. braids [self.r -1][ self.i -1])
324 t = abs(beta. braids [self.r -1][ self.i -1])
325 q = t - sum ([ beta.n[i] for i in xrange (self.r -1) ])
326 if t==0:
327 result = { CellWithSign ( TowerCell (2," varsigma ",j,self.

sing_point ,( self.i,self.r),self.mon) ,-1) for j in range (0, beta.n[self.r
-1]+1) }

328 else:
329 result = { CellWithSign ( TowerCell (2," varsigma ",j,self.

sing_point ,( self.i,self.r),self.mon) ,-1) for j in range (0, beta.n[self.r
-1]+1) if j!=q}

330 result .add( CellWithSign ( TowerCell (2,"nu" ,2-s,self.
sing_point ,( self.i,self.r),self.mon) ,-1))

331 result .add( CellWithSign ( TowerCell (2,"nu" ,3-s,self.
sing_point ,( self.i,self.r),self.mon) ,-1))

332 result .add( CellWithSign ( TowerCell (2,"kappa",None ,self.
sing_point ,( self.i,self.r),self.mon) ,1))

333 result .add( CellWithSign ( TowerCell (2,"theta",None ,self.
sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,1))

334 result .add( CellWithSign ( TowerCell (2,"theta",None ,self.
sing_point ,( self.i,self.r),self.mon) ,-1))

335 return result
336 elif self.name =="OMEGA":
337 s = sgn(beta. braids [self.r -1][ self.i -1])
338 t = abs(beta. braids [self.r -1][ self.i -1])
339 q = t - sum ([ beta.n[i] for i in xrange (self.r -1) ])
340 if t==0:
341 result = { CellWithSign ( TowerCell (2," varsigma ",j,self.

sing_point ,( self.i,self.r),self.mon) ,1) for j in range (0, beta.n[self.r
-1]+1) }

342 else:
343 result = { CellWithSign ( TowerCell (2," varsigma ",j,self.

sing_point ,( self.i,self.r),self.mon) ,1) for j in range (0, beta.n[self.r
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-1]+1) if j!=q}
344 result .add( CellWithSign ( TowerCell (2,"nu" ,2+s,self.

sing_point ,( self.i,self.r),self.mon) ,1))
345 result .add( CellWithSign ( TowerCell (2,"nu" ,3+s,self.

sing_point ,( self.i,self.r),self.mon) ,1))
346 result .add( CellWithSign ( TowerCell (2," vartheta ",None ,self.

sing_point ,( self.i % beta.k + 1,self.r),self.mon) ,1))
347 result .add( CellWithSign ( TowerCell (2," vartheta ",None ,self.

sing_point ,( self.i,self.r),self.mon) ,-1))
348 if self.r== len(beta. braids ):
349 result .add( CellWithSign ( TowerCell (2," varkappa ",None ,self.

sing_point ,( self.i,None),self.mon) ,-1))
350 else:
351 result .add( CellWithSign ( TowerCell (2,"kappa",None ,self.

sing_point ,( self.i,self.r+1) ,self.mon) ,-1))
352 return result
353 elif self.name =="PHIpi":
354 s = sgn(beta. braids [self.r -1][ self.i -1])
355 q = abs(beta. braids [self.r -1][ self.i -1])
356 q = q - sum ([ beta.n[i] for i in xrange (self.r -1) ])
357 c1 = CellWithSign ( TowerCell (2,"nu" ,1,self.sing_point ,( self.i,

self.r),self.mon),s)
358 c2 = CellWithSign ( TowerCell (2,"nu" ,4,self.sing_point ,( self.i,

self.r),self.mon),-s)
359 c3 = CellWithSign ( TowerCell (2," varsigma ",q,self.sing_point ,(

self.i,self.r),self.mon),s)
360 return {c1 ,c2 ,c3}
361 elif self.name ==" PHIomega ":
362 s = sgn(beta. braids [self.r -1][ self.i -1])
363 q = abs(beta. braids [self.r -1][ self.i -1])
364 q = q - sum ([ beta.n[i] for i in xrange (self.r -1) ])
365 c1 = CellWithSign ( TowerCell (2,"nu" ,2,self.sing_point ,( self.i,

self.r),self.mon),s)
366 c2 = CellWithSign ( TowerCell (2,"nu" ,3,self.sing_point ,( self.i,

self.r),self.mon),-s)
367 c3 = CellWithSign ( TowerCell (2," varsigma ",q,self.sing_point ,(

self.i,self.r),self.mon),-s)
368 return {c1 ,c2 ,c3}
369
370 class ConeCell (Cell):
371 def __init__ (self ,Cell):
372 ’’’
373 Cell is a TowerCell
374 ’’’
375 self.name="V("+Cell.name+")"
376 self.dim=Cell.dim +1
377 self.base=Cell
378 self. sing_point =Cell. sing_point
379 self.mon = Cell.mon
380 def __eq__ (self ,other):
381 if not isinstance (other , ConeCell ):
382 return NotImplemented
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383 return isinstance (other , ConeCell ) and (self.name ,self.dim ,self.
base)==( other.name ,other.dim ,other.base)

384 def __hash__ (self):
385 return hash (( self.base ,self.name))
386 def border (self):
387 beta = self.mon. all_braids [self. sing_point ]
388 if self.base.name =="A":
389 ####
390 if self.base.index ==0:
391 c1 = CellWithSign ( TowerCell (0,"AA",None ,beta.sing_point ,(

None ,self.base.r),self.mon) ,1)
392 c2 = CellWithSign ( TowerCell (0,"A" ,0,beta.sing_point ,( self.

base.i,None),self.mon) ,-1)
393 return {c1 ,c2}
394 elif self.base.index == beta. strands +1:
395 c1 = CellWithSign ( TowerCell (0,"AA",None ,beta.sing_point ,(

None ,self.base.r),self.mon) ,1)
396 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1, beta.

sing_point ,( self.base.i,None),self.mon) ,-1)
397 return {c1 ,c2}
398 else:
399 return { CellWithSign ( TowerCell (0,"AA",None ,beta.sing_point

,(None ,self.base.r),self.mon) ,1),CellWithSign (self.base ,-1)}
400 elif self.base.name =="e":
401 ####
402 if self.base.index ==0 or self.base.index == beta. strands +1:
403 c = copy(self.base)
404 c.r = None
405 base_border = c. border ()
406 for Cell_sign in base_border :
407 Cell_sign .Cell.r=self.base.r
408 result =cone( base_border )
409 result .add( CellWithSign (c,-(-1)** self.base.dim))
410 return result
411 else:
412 result =cone(self.base. border ())
413 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
414 return result
415 elif self.base.name =="m1" or self.base.name =="d":
416 c = copy(self.base)
417 base_border = c. border ()
418 for Cell_sign in base_border :
419 Cell_sign .Cell.r=self.base.r
420 result =cone( base_border )
421 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
422 return result
423 elif self.base.name =="m2":
424 ####
425 if self.base.r!= None:
426 c = copy(self.base)
427 c.name = "m1"
428 c.r = self.base.r +1

127



Appendix A Code for the CW Decomposition for A�ne Plane Curves

429 base_border = c. border ()
430 for Cell_sign in base_border :
431 Cell_sign .Cell.r=self.base.r
432 result =cone( base_border )
433 result .add( CellWithSign (c,-(-1)** self.base.dim))
434 return result
435 else:
436 c = copy(self.base)
437 base_border = c. border ()
438 for Cell_sign in base_border :
439 Cell_sign .Cell.r=len(beta. braids )
440 result =cone( base_border )
441 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
442 return result
443 elif self.base.name =="kappa" or self.base.name ==" varsigma ":
444 c = copy(self.base)
445 base_border = c. border ()
446 for Cell_sign in base_border :
447 Cell_sign .Cell.r=self.base.r
448 result =cone( base_border )
449 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
450 return result
451 elif self.base.name ==" varkappa ":
452 ####
453 if self.base.r!= None:
454 c = copy(self.base)
455 c.name = "kappa"
456 c.r = self.base.r +1
457 base_border = c. border ()
458 for Cell_sign in base_border :
459 Cell_sign .Cell.r=self.base.r
460 if Cell_sign .Cell.name =="m1":
461 Cell_sign .Cell.name = "m2"
462 result =cone( base_border )
463 result .add( CellWithSign (c,-(-1)** self.base.dim))
464 return result
465 else:
466 c = copy(self.base)
467 base_border = c. border ()
468 for Cell_sign in base_border :
469 if Cell_sign .Cell.name =="e":
470 Cell_sign .Cell.r=len(beta. braids )
471 result =cone( base_border )
472 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
473 return result
474 elif self.base.name ==" lambda " or self.base.name =="mu":
475 ####
476 c = copy(self.base)
477 c.r = None
478 base_border = c. border ()
479 for Cell_sign in base_border :
480 Cell_sign .Cell.r=self.base.r
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481 result =cone( base_border )
482 result .add( CellWithSign (c,-(-1)** self.base.dim))
483 return result
484 elif self.base.name ==" vartheta ":
485 if self.base.r!= len(beta. braids ):
486 c = copy(self.base)
487 base_border = c. border ()
488 for Cell_sign in base_border :
489 if Cell_sign .Cell.name =="m1":
490 Cell_sign .Cell.name = "m2"
491 Cell_sign .Cell.r=self.base.r
492 result =cone( base_border )
493 result .add( CellWithSign (c,-(-1)** self.base.dim))
494 return result
495 else:
496 result =cone(self.base. border ())
497 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
498 return result
499 elif self.base.name =="Hsup":
500 ####
501 if self.base.r!= None:
502 c = copy(self.base)
503 c.name = "Hinf"
504 c.r = self.base.r +1
505 base_border = c. border ()
506 for Cell_sign in base_border :
507 if Cell_sign .Cell.name =="kappa":
508 Cell_sign .Cell.name = " varkappa "
509 Cell_sign .Cell.r=self.base.r
510 result =cone( base_border )
511 result .add( CellWithSign (c,-(-1)** self.base.dim))
512 return result
513 else:
514 c = copy(self.base)
515 base_border = c. border ()
516 for Cell_sign in base_border :
517 if Cell_sign .Cell.name ==" lambda " or Cell_sign .Cell.name

=="mu":
518 Cell_sign .Cell.r=len(beta. braids )
519 result =cone( base_border )
520 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
521 return result
522 elif self.base.name =="Hinf":
523 c = copy(self.base)
524 base_border = c. border ()
525 for Cell_sign in base_border :
526 Cell_sign .Cell.r=self.base.r
527 result =cone( base_border )
528 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
529 return result
530 elif self.base.name =="OMEGA":
531 if self.base.r!= len(beta. braids ):
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532 c = copy(self.base)
533 base_border = c. border ()
534 for Cell_sign in base_border :
535 if Cell_sign .Cell.name =="kappa":
536 Cell_sign .Cell.name = " varkappa "
537 Cell_sign .Cell.r=self.base.r
538 result =cone( base_border )
539 result .add( CellWithSign (c,-(-1)** self.base.dim))
540 return result
541 else:
542 result =cone(self.base. border ())
543 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
544 return result
545 else:
546 result =cone(self.base. border ())
547 result .add( CellWithSign (self.base ,-(-1)** self.base.dim))
548 return result
549
550 class BottomCell (Cell):
551 def __init__ (self , dim , name ,r , jr , sing_point , i, mon):
552 self.dim = dim
553 self.name = name
554 self.r = r
555 self.jr = jr
556 self. sing_point = sing_point
557 self.i = i
558 self.mon = mon
559 def __hash__ (self):
560 return hash (( self.dim , self.name ,self.r , self.jr , self.sing_point ,

self.i))
561 def __eq__ (self , other):
562 if not isinstance (other , BottomCell ):
563 return NotImplemented
564 return isinstance (other , BottomCell ) and (self.dim , self.name ,

self.r , self.jr , self.sing_point , self.i) == (other.dim , other.name ,
other.r , other.jr , other.sing_point , other.i)

565 def border (self):
566 beta = self.mon. all_braids [self. sing_point ]
567 n=sum(beta.n)
568 l=len(beta. braids )
569 kc = beta.kc
570
571 #CELLS IN THE LOOM
572
573 if self.dim ==0:
574 return set ({})
575 elif self.name =="m1":
576 c1 = CellWithSign ( BottomCell (0,"A" ,0,None ,self.sing_point ,self.

i,self.mon) ,1)
577 c2 = CellWithSign ( BottomCell (0,"A",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
578 return {c1 ,c2}
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579 elif self.name =="m2":
580 c1 = CellWithSign ( BottomCell (0,"A" ,0,None ,self.sing_point ,self.

i,self.mon) ,1)
581 c2 = CellWithSign ( BottomCell (0,"A",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
582 return {c1 ,c2}
583 elif self.name =="d":
584 c1 = CellWithSign ( BottomCell (0,"A",self.r+1,None ,self.

sing_point ,self.i,self.mon) ,1)
585 c2 = CellWithSign ( BottomCell (0,"A",self.r,None ,self.sing_point ,

self.i,self.mon) ,-1)
586 return {c1 ,c2}
587 elif self.name =="e":
588 c1 = CellWithSign ( BottomCell (0,"A",self.r,None ,self.sing_point ,

self.i+1, self.mon) ,1)
589 c2 = CellWithSign ( BottomCell (0,"A",self.r,None ,self.sing_point ,

self.i,self.mon) ,-1)
590 return {c1 ,c2}
591 elif self.name =="hq":
592 q = abs(beta. conj_braid [self.i -1])
593 c1 = CellWithSign ( BottomCell (0,"A",q+1,None ,self.sing_point ,

self.i+1, self.mon) ,1)
594 c2 = CellWithSign ( BottomCell (0,"A",q,None ,self.sing_point ,self.

i,self.mon) ,-1)
595 return {c1 ,c2}
596 elif self.name =="hq1":
597 q = abs(beta. conj_braid [self.i -1])
598 c1 = CellWithSign ( BottomCell (0,"A",q,None ,self.sing_point ,self.

i+1, self.mon) ,1)
599 c2 = CellWithSign ( BottomCell (0,"A",q+1,None ,self.sing_point ,

self.i,self.mon) ,-1)
600 return {c1 ,c2}
601
602 elif self.name =="theta":
603 result = { CellWithSign ( BottomCell (1,"d",j,None ,self.sing_point ,

self.i,self.mon) ,1) for j in range(n+1) }
604 result .add( CellWithSign ( BottomCell (1,"m1",None ,None ,self.

sing_point ,self.i,self.mon) ,1))
605 return result
606 elif self.name ==" vartheta ":
607 result = { CellWithSign ( BottomCell (1,"d",j,None ,self.sing_point ,

self.i,self.mon) ,-1) for j in range(n+1) }
608 result .add( CellWithSign ( BottomCell (1,"m2",None ,None ,self.

sing_point ,self.i,self.mon) ,-1))
609 return result
610 elif self.name =="kappa":
611 c1 = CellWithSign ( BottomCell (1,"m1",None ,None ,self.sing_point ,

self.i,self.mon) ,1)
612 c2 = CellWithSign ( BottomCell (1,"m1",None ,None ,self.sing_point ,

self.i+1, self.mon) ,-1)
613 c3 = CellWithSign ( BottomCell (1,"e" ,0,None ,self.sing_point ,self.

i,self.mon) ,1)
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614 c4 = CellWithSign ( BottomCell (1,"e",beta. strands +1,None ,self.
sing_point ,self.i,self.mon) ,-1)

615 return {c1 ,c2 ,c3 ,c4}
616 elif self.name ==" varkappa ":
617 c1 = CellWithSign ( BottomCell (1,"m2",None ,None ,self.sing_point ,

self.i,self.mon) ,1)
618 c2 = CellWithSign ( BottomCell (1,"m2",None ,None ,self.sing_point ,

self.i+1, self.mon) ,-1)
619 c3 = CellWithSign ( BottomCell (1,"e" ,0,None ,self.sing_point ,self.

i,self.mon) ,1)
620 c4 = CellWithSign ( BottomCell (1,"e",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
621 return {c1 ,c2 ,c3 ,c4}
622 elif self.name ==" varsigma ":
623 if self.r== abs(beta. conj_braid [self.i -1]) and self.r != 0:
624 c1 = CellWithSign ( BottomCell (1,"hq",None ,None ,self.

sing_point ,self.i,self.mon) ,1)
625 c2 = CellWithSign ( BottomCell (1,"hq1",None ,None ,self.

sing_point ,self.i,self.mon) ,-1)
626 c3 = CellWithSign ( BottomCell (1,"d",self.r,None ,self.

sing_point ,self.i+1, self.mon) ,-1)
627 c4 = CellWithSign ( BottomCell (1,"d",self.r,None ,self.

sing_point ,self.i,self.mon) ,-1)
628 return {c1 ,c2 ,c3 ,c4}
629 else:
630 c1 = CellWithSign ( BottomCell (1,"e",self.r,None ,self.

sing_point ,self.i,self.mon) ,1)
631 c2 = CellWithSign ( BottomCell (1,"e",self.r+1,None ,self.

sing_point ,self.i,self.mon) ,-1)
632 c3 = CellWithSign ( BottomCell (1,"d",self.r,None ,self.

sing_point ,self.i+1, self.mon) ,1)
633 c4 = CellWithSign ( BottomCell (1,"d",self.r,None ,self.

sing_point ,self.i,self.mon) ,-1)
634 return {c1 ,c2 ,c3 ,c4}
635 elif self.name =="nu":
636 q = abs(beta. conj_braid [self.i -1])
637 if self.r==1:
638 c1 = CellWithSign ( BottomCell (1,"d",q,None ,self.sing_point ,

self.i+1, self.mon) ,1)
639 c2 = CellWithSign ( BottomCell (1,"hq",None ,None ,self.

sing_point ,self.i,self.mon) ,-1)
640 c3 = CellWithSign ( BottomCell (1,"e",q,None ,self.sing_point ,

self.i,self.mon) ,1)
641 return {c1 ,c2 ,c3}
642 if self.r==2:
643 c1 = CellWithSign ( BottomCell (1,"d",q,None ,self.sing_point ,

self.i,self.mon) ,-1)
644 c2 = CellWithSign ( BottomCell (1,"hq",None ,None ,self.

sing_point ,self.i,self.mon) ,1)
645 c3 = CellWithSign ( BottomCell (1,"e",q+1,None ,self.sing_point

,self.i,self.mon) ,-1)
646 return {c1 ,c2 ,c3}
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647 if self.r==3:
648 c1 = CellWithSign ( BottomCell (1,"d",q,None ,self.sing_point ,

self.i+1, self.mon) ,1)
649 c2 = CellWithSign ( BottomCell (1,"hq1",None ,None ,self.

sing_point ,self.i,self.mon) ,1)
650 c3 = CellWithSign ( BottomCell (1,"e",q+1,None ,self.sing_point

,self.i,self.mon) ,-1)
651 return {c1 ,c2 ,c3}
652 if self.r==4:
653 c1 = CellWithSign ( BottomCell (1,"d",q,None ,self.sing_point ,

self.i,self.mon) ,-1)
654 c2 = CellWithSign ( BottomCell (1,"hq1",None ,None ,self.

sing_point ,self.i,self.mon) ,-1)
655 c3 = CellWithSign ( BottomCell (1,"e",q,None ,self.sing_point ,

self.i,self.mon) ,1)
656 return {c1 ,c2 ,c3}
657
658 elif self.name =="PI":
659 s = sgn(beta. conj_braid [self.i -1])
660 q = abs(beta. conj_braid [self.i -1])
661 if q==0:
662 result = { CellWithSign ( BottomCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,-1) for j in range (0, beta. strands +1)}
663 else:
664 result = { CellWithSign ( BottomCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,-1) for j in range (0, beta. strands +1) if j
!=q}

665 result .add( CellWithSign ( BottomCell (2,"nu" ,2-s,None ,self.
sing_point ,self.i,self.mon) ,-1))

666 result .add( CellWithSign ( BottomCell (2,"nu" ,3-s,None ,self.
sing_point ,self.i,self.mon) ,-1))

667 result .add( CellWithSign ( BottomCell (2,"kappa",None ,None ,self.
sing_point ,self.i,self.mon) ,1))

668 result .add( CellWithSign ( BottomCell (2,"theta",None ,None ,self.
sing_point ,self.i+1, self.mon) ,1))

669 result .add( CellWithSign ( BottomCell (2,"theta",None ,None ,self.
sing_point ,self.i,self.mon) ,-1))

670 return result
671 elif self.name =="OMEGA":
672 s = sgn(beta. conj_braid [self.i -1])
673 q = abs(beta. conj_braid [self.i -1])
674 if q==0:
675 result = { CellWithSign ( BottomCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,1) for j in range (0, beta. strands +1)}
676 else:
677 result = { CellWithSign ( BottomCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,1) for j in range (0, beta. strands +1) if j!=
q}

678 result .add( CellWithSign ( BottomCell (2,"nu" ,2+s,None ,self.
sing_point ,self.i,self.mon) ,1))

679 result .add( CellWithSign ( BottomCell (2,"nu" ,3+s,None ,self.
sing_point ,self.i,self.mon) ,1))
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680 result .add( CellWithSign ( BottomCell (2," varkappa ",None ,None ,self.
sing_point ,self.i,self.mon) ,-1))

681 result .add( CellWithSign ( BottomCell (2," vartheta ",None ,None ,self.
sing_point ,self.i+1, self.mon) ,1))

682 result .add( CellWithSign ( BottomCell (2," vartheta ",None ,None ,self.
sing_point ,self.i,self.mon) ,-1))

683 return result
684 elif self.name =="PHIpi":
685 s = sgn(beta. conj_braid [self.i -1])
686 q = abs(beta. conj_braid [self.i -1])
687 c1 = CellWithSign ( BottomCell (2,"nu" ,1,None ,self.sing_point ,self

.i,self.mon),s)
688 c2 = CellWithSign ( BottomCell (2,"nu" ,4,None ,self.sing_point ,self

.i,self.mon),-s)
689 c3 = CellWithSign ( BottomCell (2," varsigma ",q,None ,self.

sing_point ,self.i,self.mon),s)
690 return {c1 ,c2 ,c3}
691 elif self.name ==" PHIomega ":
692 s = sgn(beta. conj_braid [self.i -1])
693 q = abs(beta. conj_braid [self.i -1])
694 c1 = CellWithSign ( BottomCell (2,"nu" ,2,None ,self.sing_point ,self

.i,self.mon),s)
695 c2 = CellWithSign ( BottomCell (2,"nu" ,3,None ,self.sing_point ,self

.i,self.mon),-s)
696 c3 = CellWithSign ( BottomCell (2," varsigma ",q,None ,self.

sing_point ,self.i,self.mon),-s)
697 return {c1 ,c2 ,c3}
698
699 # CELLS IN THE JOINTS
700
701 elif self.name =="w0":
702 if self.i==0:
703 c1 = CellWithSign ( BottomCell (0,"A" ,0,None ,self.sing_point

,1, self.mon) ,1)
704 c2 = CellWithSign ( TowerCell (0,"A" ,0,0,( self.sing_point ,None

),self.mon) ,-1)
705 return {c1 ,c2}
706 else:
707 c1 = CellWithSign ( BottomCell (0,"A" ,0,None ,self.sing_point ,

kc+1, self.mon) ,1)
708 c2 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,(1, None

),self.mon) ,-1)
709 return {c1 ,c2}
710 elif self.name =="w1":
711 if self.i==0:
712 c1 = CellWithSign ( BottomCell (0,"A",beta. strands +1,None ,self

.sing_point ,1, self.mon) ,1)
713 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1,0,( self.

sing_point ,None),self.mon) ,-1)
714 return {c1 ,c2}
715 else:
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716 c1 = CellWithSign ( BottomCell (0,"A",beta. strands +1,None ,self
.sing_point ,kc+1, self.mon) ,1)

717 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.
sing_point ,(1, None),self.mon) ,-1)

718 return {c1 ,c2}
719 elif self.name =="z":
720 if self.i==0:
721 c1 = CellWithSign ( BottomCell (0,"A",self.r,None ,self.

sing_point ,1, self.mon) ,1)
722 c2 = CellWithSign ( TowerCell (0,"A" ,1,0,( self.sing_point ,self

.r),self.mon) ,-1)
723 return {c1 ,c2}
724 else:
725 S=sum ([ beta.n[i -1] for i in range (1, self.r)])
726 c1 = CellWithSign ( BottomCell (0,"A",S+self.jr ,None ,self.

sing_point ,kc+1, self.mon) ,1)
727 c2 = CellWithSign ( TowerCell (0,"A",self.jr ,self.sing_point

,(1, self.r),self.mon) ,-1)
728 return {c1 ,c2}
729 elif self.name =="psi":
730 if self.i==0:
731 c1 = CellWithSign ( BottomCell (1,"w0",None ,None ,self.

sing_point ,0, self.mon) ,1)
732 c2 = CellWithSign ( BottomCell (1,"w1",None ,None ,self.

sing_point ,0, self.mon) ,-1)
733 c3 = CellWithSign ( BottomCell (1,"m2",None ,None ,self.

sing_point ,1, self.mon) ,-1)
734 c4 = CellWithSign ( TowerCell (1,"m2",None ,0,( self.sing_point ,

None),self.mon) ,1)
735 return {c1 ,c2 ,c3 ,c4}
736 else:
737 c1 = CellWithSign ( BottomCell (1,"w0",None ,None ,self.

sing_point ,kc+1, self.mon) ,1)
738 c2 = CellWithSign ( BottomCell (1,"w1",None ,None ,self.

sing_point ,kc+1, self.mon) ,-1)
739 c3 = CellWithSign ( BottomCell (1,"m2",None ,None ,self.

sing_point ,kc+1, self.mon) ,-1)
740 c4 = CellWithSign ( TowerCell (1,"m2",None ,self.sing_point ,(1,

None),self.mon) ,1)
741 return {c1 ,c2 ,c3 ,c4}
742 elif self.name =="xi":
743 if self.i==0:
744 c1 = CellWithSign ( BottomCell (1,"w0",None ,None ,self.

sing_point ,0, self.mon) ,1)
745 c2 = CellWithSign ( BottomCell (1,"w1",None ,None ,self.

sing_point ,0, self.mon) ,-1)
746 c3 = CellWithSign ( BottomCell (1,"m1",None ,None ,self.

sing_point ,1, self.mon) ,-1)
747 c4 = CellWithSign ( TowerCell (1,"m1",None ,0,( self.sing_point

,1) ,self.mon) ,1)
748 return {c1 ,c2 ,c3 ,c4}
749 else:
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750 c1 = CellWithSign ( BottomCell (1,"w0",None ,None ,self.
sing_point ,kc+1, self.mon) ,1)

751 c2 = CellWithSign ( BottomCell (1,"w1",None ,None ,self.
sing_point ,kc+1, self.mon) ,-1)

752 c3 = CellWithSign ( BottomCell (1,"m1",None ,None ,self.
sing_point ,kc+1, self.mon) ,-1)

753 c4 = CellWithSign ( TowerCell (1,"m1",None ,self.sing_point
,(1 ,1) ,self.mon) ,1)

754 return {c1 ,c2 ,c3 ,c4}
755 elif self.name =="zeta":
756 S=sum ([ beta.n[i -1] for i in range (1, self.r)])
757 c1 = CellWithSign ( BottomCell (1,"z",self.r,self.jr ,self.

sing_point ,kc+1, self.mon) ,1)
758 c2 = CellWithSign ( BottomCell (1,"z",self.r,self.jr+1, self.

sing_point ,kc+1, self.mon) ,-1)
759 c3 = CellWithSign ( BottomCell (1,"d",S+self.jr ,None ,self.

sing_point ,kc+1, self.mon) ,1)
760 c4 = CellWithSign ( TowerCell (1,"d",self.jr ,self.sing_point ,(1,

self.r),self.mon) ,-1)
761 return {c1 ,c2 ,c3 ,c4}
762 elif self.name =="phi":
763 if self.i==0:
764 result = { CellWithSign ( BottomCell (1,"d",j,None ,self.

sing_point ,1, self.mon) ,1) for j in range (0, self.r)}
765 result .add( CellWithSign ( BottomCell (1,"w0",None ,None ,self.

sing_point ,0, self.mon) ,1))
766 result .add( CellWithSign ( BottomCell (1,"z",self.r,1, self.

sing_point ,0, self.mon) ,-1))
767 result .add( CellWithSign ( TowerCell (1,"d" ,0,0,( self.

sing_point ,self.r),self.mon) ,-1))
768 return result
769 else:
770 S=sum ([ beta.n[i -1] for i in range (1, self.r)])
771 result = { CellWithSign ( BottomCell (1,"d",j,None ,self.

sing_point ,kc+1, self.mon) ,1) for j in range (0,S+1)}
772 result .add( CellWithSign ( BottomCell (1,"w0",None ,None ,self.

sing_point ,kc+1, self.mon) ,1))
773 result .add( CellWithSign ( BottomCell (1,"z",self.r,1, self.

sing_point ,kc+1, self.mon) ,-1))
774 result .add( CellWithSign ( TowerCell (1,"d" ,0,self.sing_point

,(1, self.r),self.mon) ,-1))
775 return result
776 elif self.name =="omega":
777 if self.i==0:
778 result = { CellWithSign ( BottomCell (1,"d",j,None ,self.

sing_point ,1, self.mon) ,1) for j in range(self.r,n+1)}
779 result .add( CellWithSign ( BottomCell (1,"w1",None ,None ,self.

sing_point ,0, self.mon) ,-1))
780 result .add( CellWithSign ( BottomCell (1,"z",self.r,1, self.

sing_point ,0, self.mon) ,1))
781 result .add( CellWithSign ( TowerCell (1,"d" ,1,0,( self.

sing_point ,self.r),self.mon) ,-1))
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782 return result
783 else:
784 S=sum ([ beta.n[i -1] for i in range (1, self.r+1) ])
785 result = { CellWithSign ( BottomCell (1,"d",j,None ,self.

sing_point ,kc+1, self.mon) ,1) for j in range(S,n+1)}
786 result .add( CellWithSign ( BottomCell (1,"w1",None ,None ,self.

sing_point ,kc+1, self.mon) ,-1))
787 result .add( CellWithSign ( BottomCell (1,"z",self.r,beta.n[self

.r -1], self.sing_point ,kc+1, self.mon) ,1))
788 result .add( CellWithSign ( TowerCell (1,"d",beta.n[self.r-1],

self.sing_point ,(1, self.r),self.mon) ,-1))
789 return result
790 elif self.name =="PSI":
791 if self.i==0:
792 c1 = CellWithSign ( BottomCell (2,"phi",n,None ,self.sing_point

,0, self.mon) ,1)
793 c2 = CellWithSign ( BottomCell (2,"omega",n,None ,self.

sing_point ,0, self.mon) ,1)
794 c3 = CellWithSign ( BottomCell (2,"psi",None ,None ,self.

sing_point ,0, self.mon) ,-1)
795 c4 = CellWithSign ( BottomCell (2," vartheta ",None ,None ,self.

sing_point ,1, self.mon) ,1)
796 c5 = CellWithSign ( TowerCell (2," vartheta ",None ,0,( self.

sing_point ,n),self.mon) ,-1)
797 return {c1 ,c2 ,c3 ,c4 ,c5}
798 else:
799 result = { CellWithSign ( BottomCell (2,"zeta",l,j,self.

sing_point ,kc+1, self.mon) ,1) for j in range (1, beta.n[l -1])}
800 result .add( CellWithSign ( BottomCell (2,"phi",l,None ,self.

sing_point ,kc+1, self.mon) ,1))
801 result .add( CellWithSign ( BottomCell (2,"omega",l,None ,self.

sing_point ,kc+1, self.mon) ,1))
802 result .add( CellWithSign ( BottomCell (2,"psi",None ,None ,self.

sing_point ,kc+1, self.mon) ,-1))
803 result .add( CellWithSign ( BottomCell (2," vartheta ",None ,None ,

self.sing_point ,kc+1, self.mon) ,1))
804 result .add( CellWithSign ( TowerCell (2," vartheta ",None ,self.

sing_point ,(1,l),self.mon) ,-1))
805 return result
806 elif self.name =="XI":
807 if self.i==0:
808 c1 = CellWithSign ( BottomCell (2,"phi" ,1,None ,self.sing_point

,0, self.mon) ,-1)
809 c2 = CellWithSign ( BottomCell (2,"omega" ,1,None ,self.

sing_point ,0, self.mon) ,-1)
810 c3 = CellWithSign ( BottomCell (2,"xi",None ,None ,self.

sing_point ,0, self.mon) ,1)
811 c4 = CellWithSign ( BottomCell (2,"theta",None ,None ,self.

sing_point ,1, self.mon) ,1)
812 c5 = CellWithSign ( TowerCell (2,"theta",None ,0,( self.

sing_point ,1) ,self.mon) ,-1)
813 return {c1 ,c2 ,c3 ,c4 ,c5}
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814 else:
815 result = { CellWithSign ( BottomCell (2,"zeta" ,1,j,self.

sing_point ,kc+1, self.mon) ,-1) for j in range (1, beta.n[0])}
816 result .add( CellWithSign ( BottomCell (2,"phi" ,1,None ,self.

sing_point ,kc+1, self.mon) ,-1))
817 result .add( CellWithSign ( BottomCell (2,"omega" ,1,None ,self.

sing_point ,kc+1, self.mon) ,-1))
818 result .add( CellWithSign ( BottomCell (2,"xi",None ,None ,self.

sing_point ,kc+1, self.mon) ,1))
819 result .add( CellWithSign ( BottomCell (2,"theta",None ,None ,self

.sing_point ,kc+1, self.mon) ,1))
820 result .add( CellWithSign ( TowerCell (2,"theta",None ,self.

sing_point ,(1 ,1) ,self.mon) ,-1))
821 return result
822 elif self.name =="LAMDA":
823 if self.i==0:
824 c1 = CellWithSign ( BottomCell (2,"phi",self.r+1,None ,self.

sing_point ,0, self.mon) ,-1)
825 c2 = CellWithSign ( BottomCell (2,"omega",self.r+1,None ,self.

sing_point ,0, self.mon) ,-1)
826 c3 = CellWithSign ( BottomCell (2,"phi",self.r,None ,self.

sing_point ,0, self.mon) ,1)
827 c4 = CellWithSign ( BottomCell (2,"omega",self.r,None ,self.

sing_point ,0, self.mon) ,1)
828 c5 = CellWithSign ( TowerCell (2,"theta",None ,0,( self.

sing_point ,self.r+1) ,self.mon) ,-1)
829 c6 = CellWithSign ( TowerCell (2," vartheta ",None ,0,( self.

sing_point ,self.r),self.mon) ,-1)
830 return {c1 ,c2 ,c3 ,c4 ,c5 ,c6}
831 else:
832 result = { CellWithSign ( BottomCell (2,"zeta",self.r,j,self.

sing_point ,kc+1, self.mon) ,1) for j in range (1, beta.n[self.r -1])}
833 for j in range (1, beta.n[self.r]):
834 result .add( CellWithSign ( BottomCell (2,"zeta",self.r+1,j,

self.sing_point ,kc+1, self.mon) ,-1))
835 result .add( CellWithSign ( BottomCell (2,"phi",self.r+1,None ,

self.sing_point ,kc+1, self.mon) ,-1))
836 result .add( CellWithSign ( BottomCell (2,"omega",self.r+1,None ,

self.sing_point ,kc+1, self.mon) ,-1))
837 result .add( CellWithSign ( BottomCell (2,"phi",self.r,None ,self

.sing_point ,kc+1, self.mon) ,1))
838 result .add( CellWithSign ( BottomCell (2,"omega",self.r,None ,

self.sing_point ,kc+1, self.mon) ,1))
839 result .add( CellWithSign ( TowerCell (2,"theta",None ,self.

sing_point ,(1, self.r+1) ,self.mon) ,-1))
840 result .add( CellWithSign ( TowerCell (2," vartheta ",None ,self.

sing_point ,(1, self.r),self.mon) ,-1))
841 return result
842
843 class TopCell (Cell):
844 def __init__ (self , dim , name ,r , jr , sing_point , i,mon):
845 self.dim = dim
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846 self.name = name
847 self.r = r
848 self.jr = jr
849 self. sing_point = sing_point
850 self.i = i
851 self.mon = mon
852 def __hash__ (self):
853 return hash (( self.dim , self.name ,self.r , self.jr , self.sing_point ,

self.i))
854 def __eq__ (self , other):
855 if not isinstance (other , TopCell ):
856 return NotImplemented
857 return isinstance (other , TopCell ) and (self.dim , self.name ,self.r

, self.jr , self.sing_point , self.i) == (other.dim , other.name ,other.r
, other.jr , other.sing_point , other.i)

858
859 def border (self):
860 beta = self.mon. all_braids [self. sing_point ]
861 n=sum(beta.n)
862 l=len(beta. braids )
863 kc = beta.kc
864
865 # CELLS IN THE LOOM
866
867 if self.dim ==0:
868 return set ({})
869 elif self.name =="m1":
870 c1 = CellWithSign ( TopCell (0,"A" ,0,None ,self.sing_point ,self.i,

self.mon) ,1)
871 c2 = CellWithSign ( TopCell (0,"A",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
872 return {c1 ,c2}
873 elif self.name =="m2":
874 c1 = CellWithSign ( TopCell (0,"A" ,0,None ,self.sing_point ,self.i,

self.mon) ,1)
875 c2 = CellWithSign ( TopCell (0,"A",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
876 return {c1 ,c2}
877 elif self.name =="d":
878 c1 = CellWithSign ( TopCell (0,"A",self.r+1,None ,self.sing_point ,

self.i,self.mon) ,1)
879 c2 = CellWithSign ( TopCell (0,"A",self.r,None ,self.sing_point ,

self.i,self.mon) ,-1)
880 return {c1 ,c2}
881 elif self.name =="e":
882 c1 = CellWithSign ( TopCell (0,"A",self.r,None ,self.sing_point ,

self.i+1, self.mon) ,1)
883 c2 = CellWithSign ( TopCell (0,"A",self.r,None ,self.sing_point ,

self.i,self.mon) ,-1)
884 return {c1 ,c2}
885 elif self.name =="hq":
886 q = abs(beta. conj_braid [self.i -1])
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887 c1 = CellWithSign ( TopCell (0,"A",q+1,None ,self.sing_point ,self.i
+1, self.mon) ,1)

888 c2 = CellWithSign ( TopCell (0,"A",q,None ,self.sing_point ,self.i,
self.mon) ,-1)

889 return {c1 ,c2}
890 elif self.name =="hq1":
891 q = abs(beta. conj_braid [self.i -1])
892 c1 = CellWithSign ( TopCell (0,"A",q,None ,self.sing_point ,self.i

+1, self.mon) ,1)
893 c2 = CellWithSign ( TopCell (0,"A",q+1,None ,self.sing_point ,self.i

,self.mon) ,-1)
894 return {c1 ,c2}
895
896 elif self.name =="theta":
897 result = { CellWithSign ( TopCell (1,"d",j,None ,self.sing_point ,

self.i,self.mon) ,1) for j in range(n+1) }
898 result .add( CellWithSign ( TopCell (1,"m1",None ,None ,self.

sing_point ,self.i,self.mon) ,1))
899 return result
900 elif self.name ==" vartheta ":
901 result = { CellWithSign ( TopCell (1,"d",j,None ,self.sing_point ,

self.i,self.mon) ,-1) for j in range(n+1) }
902 result .add( CellWithSign ( TopCell (1,"m2",None ,None ,self.

sing_point ,self.i,self.mon) ,-1))
903 return result
904 elif self.name =="kappa":
905 c1 = CellWithSign ( TopCell (1,"m1",None ,None ,self.sing_point ,self

.i,self.mon) ,1)
906 c2 = CellWithSign ( TopCell (1,"m1",None ,None ,self.sing_point ,self

.i+1, self.mon) ,-1)
907 c3 = CellWithSign ( TopCell (1,"e" ,0,None ,self.sing_point ,self.i,

self.mon) ,1)
908 c4 = CellWithSign ( TopCell (1,"e",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
909 return {c1 ,c2 ,c3 ,c4}
910 elif self.name ==" varkappa ":
911 c1 = CellWithSign ( TopCell (1,"m2",None ,None ,self.sing_point ,self

.i,self.mon) ,1)
912 c2 = CellWithSign ( TopCell (1,"m2",None ,None ,self.sing_point ,self

.i+1, self.mon) ,-1)
913 c3 = CellWithSign ( TopCell (1,"e" ,0,None ,self.sing_point ,self.i,

self.mon) ,1)
914 c4 = CellWithSign ( TopCell (1,"e",beta. strands +1,None ,self.

sing_point ,self.i,self.mon) ,-1)
915 return {c1 ,c2 ,c3 ,c4}
916 elif self.name ==" varsigma ":
917 if self.r== abs(beta. conj_braid [self.i -1]) and self.r != 0:
918 c1 = CellWithSign ( TopCell (1,"hq",None ,None ,self.sing_point ,

self.i,self.mon) ,1)
919 c2 = CellWithSign ( TopCell (1,"hq1",None ,None ,self.sing_point

,self.i,self.mon) ,-1)
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920 c3 = CellWithSign ( TopCell (1,"d",self.r,None ,self.sing_point
,self.i+1, self.mon) ,-1)

921 c4 = CellWithSign ( TopCell (1,"d",self.r,None ,self.sing_point
,self.i,self.mon) ,-1)

922 return {c1 ,c2 ,c3 ,c4}
923 else:
924 c1 = CellWithSign ( TopCell (1,"e",self.r,None ,self.sing_point

,self.i,self.mon) ,1)
925 c2 = CellWithSign ( TopCell (1,"e",self.r+1,None ,self.

sing_point ,self.i,self.mon) ,-1)
926 c3 = CellWithSign ( TopCell (1,"d",self.r,None ,self.sing_point

,self.i+1, self.mon) ,1)
927 c4 = CellWithSign ( TopCell (1,"d",self.r,None ,self.sing_point

,self.i,self.mon) ,-1)
928 return {c1 ,c2 ,c3 ,c4}
929 elif self.name =="nu":
930 q = abs(beta. conj_braid [self.i -1])
931 if self.r==1:
932 c1 = CellWithSign ( TopCell (1,"d",q,None ,self.sing_point ,self

.i+1, self.mon) ,1)
933 c2 = CellWithSign ( TopCell (1,"hq",None ,None ,self.sing_point ,

self.i,self.mon) ,-1)
934 c3 = CellWithSign ( TopCell (1,"e",q,None ,self.sing_point ,self

.i,self.mon) ,1)
935 return {c1 ,c2 ,c3}
936 if self.r==2:
937 c1 = CellWithSign ( TopCell (1,"d",q,None ,self.sing_point ,self

.i,self.mon) ,-1)
938 c2 = CellWithSign ( TopCell (1,"hq",None ,None ,self.sing_point ,

self.i,self.mon) ,1)
939 c3 = CellWithSign ( TopCell (1,"e",q+1,None ,self.sing_point ,

self.i,self.mon) ,-1)
940 return {c1 ,c2 ,c3}
941 if self.r==3:
942 c1 = CellWithSign ( TopCell (1,"d",q,None ,self.sing_point ,self

.i+1, self.mon) ,1)
943 c2 = CellWithSign ( TopCell (1,"hq1",None ,None ,self.sing_point

,self.i,self.mon) ,1)
944 c3 = CellWithSign ( TopCell (1,"e",q+1,None ,self.sing_point ,

self.i,self.mon) ,-1)
945 return {c1 ,c2 ,c3}
946 if self.r==4:
947 c1 = CellWithSign ( TopCell (1,"d",q,None ,self.sing_point ,self

.i,self.mon) ,-1)
948 c2 = CellWithSign ( TopCell (1,"hq1",None ,None ,self.sing_point

,self.i,self.mon) ,-1)
949 c3 = CellWithSign ( TopCell (1,"e",q,None ,self.sing_point ,self

.i,self.mon) ,1)
950 return {c1 ,c2 ,c3}
951
952 elif self.name =="PI":
953 s = sgn(beta. conj_braid [self.i -1])
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954 q = abs(beta. conj_braid [self.i -1])
955 if q==0:
956 result = { CellWithSign ( TopCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,-1) for j in range (0, beta. strands +1)}
957 else:
958 result = { CellWithSign ( TopCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,-1) for j in range (0, beta. strands +1) if j!=
q}

959 result .add( CellWithSign ( TopCell (2,"nu" ,2-s,None ,self.
sing_point ,self.i,self.mon) ,-1))

960 result .add( CellWithSign ( TopCell (2,"nu" ,3-s,None ,self.
sing_point ,self.i,self.mon) ,-1))

961 result .add( CellWithSign ( TopCell (2,"kappa",None ,None ,self.
sing_point ,self.i,self.mon) ,1))

962 result .add( CellWithSign ( TopCell (2,"theta",None ,None ,self.
sing_point ,self.i+1, self.mon) ,1))

963 result .add( CellWithSign ( TopCell (2,"theta",None ,None ,self.
sing_point ,self.i,self.mon) ,-1))

964 return result
965 elif self.name =="OMEGA":
966 s = sgn(beta. conj_braid [self.i -1])
967 q = abs(beta. conj_braid [self.i -1])
968 if q==0:
969 result = { CellWithSign ( TopCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,1) for j in range (0, beta. strands +1)}
970 else:
971 result = { CellWithSign ( TopCell (2," varsigma ",j,None ,self.

sing_point ,self.i,self.mon) ,1) for j in range (0, beta. strands +1) if j!=q
}

972 result .add( CellWithSign ( TopCell (2,"nu" ,2+s,None ,self.
sing_point ,self.i,self.mon) ,1))

973 result .add( CellWithSign ( TopCell (2,"nu" ,3+s,None ,self.
sing_point ,self.i,self.mon) ,1))

974 result .add( CellWithSign ( TopCell (2," varkappa ",None ,None ,self.
sing_point ,self.i,self.mon) ,-1))

975 result .add( CellWithSign ( TopCell (2," vartheta ",None ,None ,self.
sing_point ,self.i+1, self.mon) ,1))

976 result .add( CellWithSign ( TopCell (2," vartheta ",None ,None ,self.
sing_point ,self.i,self.mon) ,-1))

977 return result
978 elif self.name =="PHIpi":
979 s = sgn(beta. conj_braid [self.i -1])
980 q = abs(beta. conj_braid [self.i -1])
981 c1 = CellWithSign ( TopCell (2,"nu" ,1,None ,self.sing_point ,self.i,

self.mon),s)
982 c2 = CellWithSign ( TopCell (2,"nu" ,4,None ,self.sing_point ,self.i,

self.mon),-s)
983 c3 = CellWithSign ( TopCell (2," varsigma ",q,None ,self.sing_point ,

self.i,self.mon),s)
984 return {c1 ,c2 ,c3}
985 elif self.name ==" PHIomega ":
986 s = sgn(beta. conj_braid [self.i -1])

142



Code for the CW Decomposition for A�ne Plane Curves Appendix A

987 q = abs(beta. conj_braid [self.i -1])
988 c1 = CellWithSign ( TopCell (2,"nu" ,2,None ,self.sing_point ,self.i,

self.mon),s)
989 c2 = CellWithSign ( TopCell (2,"nu" ,3,None ,self.sing_point ,self.i,

self.mon),-s)
990 c3 = CellWithSign ( TopCell (2," varsigma ",q,None ,self.sing_point ,

self.i,self.mon),-s)
991 return {c1 ,c2 ,c3}
992
993 # CELLS IN THE JOINTS
994
995 elif self.name =="w0":
996 if self.i==0:
997 c1 = CellWithSign ( TopCell (0,"A" ,0,None ,self.sing_point ,1,

self.mon) ,1)
998 c2 = CellWithSign ( TowerCell (0,"A" ,0,0,( self. sing_point %

len(self.mon. local_braids ) +1, None),self.mon) ,-1)
999 return {c1 ,c2}

1000 else:
1001 c1 = CellWithSign ( TopCell (0,"A" ,0,None ,self.sing_point ,kc

+1, self.mon) ,1)
1002 c2 = CellWithSign ( TowerCell (0,"A" ,0,self.sing_point ,(2, None

),self.mon) ,-1)
1003 return {c1 ,c2}
1004 elif self.name =="w1":
1005 if self.i==0:
1006 c1 = CellWithSign ( TopCell (0,"A",beta. strands +1,None ,self.

sing_point ,1, self.mon) ,1)
1007 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1,0,( self.

sing_point % len(self.mon. local_braids ) +1, None),self.mon) ,-1)
1008 return {c1 ,c2}
1009 else:
1010 c1 = CellWithSign ( TopCell (0,"A",beta. strands +1,None ,self.

sing_point ,kc+1, self.mon) ,1)
1011 c2 = CellWithSign ( TowerCell (0,"A",beta. strands +1, self.

sing_point ,(2, None),self.mon) ,-1)
1012 return {c1 ,c2}
1013 elif self.name =="z":
1014 if self.i==0:
1015 c1 = CellWithSign ( TopCell (0,"A",self.r,None ,self.sing_point

,1, self.mon) ,1)
1016 c2 = CellWithSign ( TowerCell (0,"A" ,1,0,( self. sing_point %

len(self.mon. local_braids ) +1, self.r),self.mon) ,-1)
1017 return {c1 ,c2}
1018 else:
1019 S=sum ([ beta.n[i -1] for i in range (1, self.r)])
1020 c1 = CellWithSign ( TopCell (0,"A",S+self.jr ,None ,self.

sing_point ,kc+1, self.mon) ,1)
1021 c2 = CellWithSign ( TowerCell (0,"A",self.jr ,self.sing_point

,(2, self.r),self.mon) ,-1)
1022 return {c1 ,c2}
1023 elif self.name =="psi":
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1024 if self.i==0:
1025 c1 = CellWithSign ( TopCell (1,"w0",None ,None ,self.sing_point

,0, self.mon) ,1)
1026 c2 = CellWithSign ( TopCell (1,"w1",None ,None ,self.sing_point

,0, self.mon) ,-1)
1027 c3 = CellWithSign ( TopCell (1,"m2",None ,None ,self.sing_point

,1, self.mon) ,-1)
1028 c4 = CellWithSign ( TowerCell (1,"m2",None ,0,( self. sing_point

% len(self.mon. local_braids ) +1, None),self.mon) ,1)
1029 return {c1 ,c2 ,c3 ,c4}
1030 else:
1031 c1 = CellWithSign ( TopCell (1,"w0",None ,None ,self.sing_point ,

kc+1, self.mon) ,1)
1032 c2 = CellWithSign ( TopCell (1,"w1",None ,None ,self.sing_point ,

kc+1, self.mon) ,-1)
1033 c3 = CellWithSign ( TopCell (1,"m2",None ,None ,self.sing_point ,

kc+1, self.mon) ,-1)
1034 c4 = CellWithSign ( TowerCell (1,"m2",None ,self.sing_point ,(2,

None),self.mon) ,1)
1035 return {c1 ,c2 ,c3 ,c4}
1036 elif self.name =="xi":
1037 if self.i==0:
1038 c1 = CellWithSign ( TopCell (1,"w0",None ,None ,self.sing_point

,0, self.mon) ,1)
1039 c2 = CellWithSign ( TopCell (1,"w1",None ,None ,self.sing_point

,0, self.mon) ,-1)
1040 c3 = CellWithSign ( TopCell (1,"m1",None ,None ,self.sing_point

,1, self.mon) ,-1)
1041 c4 = CellWithSign ( TowerCell (1,"m1",None ,0,( self. sing_point

% len(self.mon. local_braids ) +1 ,1) ,self.mon) ,1)
1042 return {c1 ,c2 ,c3 ,c4}
1043 else:
1044 c1 = CellWithSign ( TopCell (1,"w0",None ,None ,self.sing_point ,

kc+1, self.mon) ,1)
1045 c2 = CellWithSign ( TopCell (1,"w1",None ,None ,self.sing_point ,

kc+1, self.mon) ,-1)
1046 c3 = CellWithSign ( TopCell (1,"m1",None ,None ,self.sing_point ,

kc+1, self.mon) ,-1)
1047 c4 = CellWithSign ( TowerCell (1,"m1",None ,self.sing_point

,(2 ,1) ,self.mon) ,1)
1048 return {c1 ,c2 ,c3 ,c4}
1049 elif self.name =="zeta":
1050 S=sum ([ beta.n[i -1] for i in range (1, self.r)])
1051 c1 = CellWithSign ( TopCell (1,"z",self.r,self.jr ,self.sing_point ,

kc+1, self.mon) ,1)
1052 c2 = CellWithSign ( TopCell (1,"z",self.r,self.jr+1, self.

sing_point ,kc+1, self.mon) ,-1)
1053 c3 = CellWithSign ( TopCell (1,"d",S+self.jr ,None ,self.sing_point ,

kc+1, self.mon) ,1)
1054 c4 = CellWithSign ( TowerCell (1,"d",self.jr ,self.sing_point ,(2,

self.r),self.mon) ,-1)
1055 return {c1 ,c2 ,c3 ,c4}
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1056 elif self.name =="phi":
1057 if self.i==0:
1058 result = { CellWithSign ( TopCell (1,"d",j,None ,self.sing_point

,1, self.mon) ,1) for j in range (0, self.r)}
1059 result .add( CellWithSign ( TopCell (1,"w0",None ,None ,self.

sing_point ,0, self.mon) ,1))
1060 result .add( CellWithSign ( TopCell (1,"z",self.r,1, self.

sing_point ,0, self.mon) ,-1))
1061 result .add( CellWithSign ( TowerCell (1,"d" ,0,0,( self.

sing_point % len(self.mon. local_braids ) +1, self.r),self.mon) ,-1))
1062 return result
1063 else:
1064 S=sum ([ beta.n[i -1] for i in range (1, self.r)])
1065 result = { CellWithSign ( TopCell (1,"d",j,None ,self.sing_point

,kc+1, self.mon) ,1) for j in range (0,S+1)}
1066 result .add( CellWithSign ( TopCell (1,"w0",None ,None ,self.

sing_point ,kc+1, self.mon) ,1))
1067 result .add( CellWithSign ( TopCell (1,"z",self.r,1, self.

sing_point ,kc+1, self.mon) ,-1))
1068 result .add( CellWithSign ( TowerCell (1,"d" ,0,self.sing_point

,(2, self.r),self.mon) ,-1))
1069 return result
1070 elif self.name =="omega":
1071 if self.i==0:
1072 result = { CellWithSign ( TopCell (1,"d",j,None ,self.sing_point

,1, self.mon) ,1) for j in range(self.r,n+1)}
1073 result .add( CellWithSign ( TopCell (1,"w1",None ,None ,self.

sing_point ,0, self.mon) ,-1))
1074 result .add( CellWithSign ( TopCell (1,"z",self.r,1, self.

sing_point ,0, self.mon) ,1))
1075 result .add( CellWithSign ( TowerCell (1,"d" ,1,0,( self.

sing_point % len(self.mon. local_braids ) +1, self.r),self.mon) ,-1))
1076 return result
1077 else:
1078 S=sum ([ beta.n[i -1] for i in range (1, self.r+1) ])
1079 result = { CellWithSign ( TopCell (1,"d",j,None ,self.sing_point

,kc+1, self.mon) ,1) for j in range(S,n+1)}
1080 result .add( CellWithSign ( TopCell (1,"w1",None ,None ,self.

sing_point ,kc+1, self.mon) ,-1))
1081 result .add( CellWithSign ( TopCell (1,"z",self.r,beta.n[self.r

-1], self.sing_point ,kc+1, self.mon) ,1))
1082 result .add( CellWithSign ( TowerCell (1,"d",beta.n[self.r-1],

self.sing_point ,(2, self.r),self.mon) ,-1))
1083 return result
1084 elif self.name =="PSI":
1085 if self.i==0:
1086 c1 = CellWithSign ( TopCell (2,"phi",n,None ,self.sing_point ,0,

self.mon) ,1)
1087 c2 = CellWithSign ( TopCell (2,"omega",n,None ,self.sing_point

,0, self.mon) ,1)
1088 c3 = CellWithSign ( TopCell (2,"psi",None ,None ,self.sing_point

,0, self.mon) ,-1)
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1089 c4 = CellWithSign ( TopCell (2," vartheta ",None ,None ,self.
sing_point ,1, self.mon) ,1)

1090 c5 = CellWithSign ( TowerCell (2," vartheta ",None ,0,( self.
sing_point % len(self.mon. local_braids ) +1,n),self.mon) ,-1)

1091 return {c1 ,c2 ,c3 ,c4 ,c5}
1092 else:
1093 result = { CellWithSign ( TopCell (2,"zeta",l,j,self.sing_point

,kc+1, self.mon) ,1) for j in range (1, beta.n[l -1])}
1094 result .add( CellWithSign ( TopCell (2,"phi",l,None ,self.

sing_point ,kc+1, self.mon) ,1))
1095 result .add( CellWithSign ( TopCell (2,"omega",l,None ,self.

sing_point ,kc+1, self.mon) ,1))
1096 result .add( CellWithSign ( TopCell (2,"psi",None ,None ,self.

sing_point ,kc+1, self.mon) ,-1))
1097 result .add( CellWithSign ( TopCell (2," vartheta ",None ,None ,self

.sing_point ,kc+1, self.mon) ,1))
1098 result .add( CellWithSign ( TowerCell (2," vartheta ",None ,self.

sing_point ,(2,l),self.mon) ,-1))
1099 return result
1100 elif self.name =="XI":
1101 if self.i==0:
1102 c1 = CellWithSign ( TopCell (2,"phi" ,1,None ,self.sing_point ,0,

self.mon) ,-1)
1103 c2 = CellWithSign ( TopCell (2,"omega" ,1,None ,self.sing_point

,0, self.mon) ,-1)
1104 c3 = CellWithSign ( TopCell (2,"xi",None ,None ,self.sing_point

,0, self.mon) ,1)
1105 c4 = CellWithSign ( TopCell (2,"theta",None ,None ,self.

sing_point ,1, self.mon) ,1)
1106 c5 = CellWithSign ( TowerCell (2,"theta",None ,0,( self.

sing_point % len(self.mon. local_braids ) +1 ,1) ,self.mon) ,-1)
1107 return {c1 ,c2 ,c3 ,c4 ,c5}
1108 else:
1109 result = { CellWithSign ( TopCell (2,"zeta" ,1,j,self.sing_point

,kc+1, self.mon) ,-1) for j in range (1, beta.n[0])}
1110 result .add( CellWithSign ( TopCell (2,"phi" ,1,None ,self.

sing_point ,kc+1, self.mon) ,-1))
1111 result .add( CellWithSign ( TopCell (2,"omega" ,1,None ,self.

sing_point ,kc+1, self.mon) ,-1))
1112 result .add( CellWithSign ( TopCell (2,"xi",None ,None ,self.

sing_point ,kc+1, self.mon) ,1))
1113 result .add( CellWithSign ( TopCell (2,"theta",None ,None ,self.

sing_point ,kc+1, self.mon) ,1))
1114 result .add( CellWithSign ( TowerCell (2,"theta",None ,self.

sing_point ,(2 ,1) ,self.mon) ,-1))
1115 return result
1116 elif self.name =="LAMDA":
1117 if self.i==0:
1118 c1 = CellWithSign ( TopCell (2,"phi",self.r+1,None ,self.

sing_point ,0, self.mon) ,-1)
1119 c2 = CellWithSign ( TopCell (2,"omega",self.r+1,None ,self.

sing_point ,0, self.mon) ,-1)
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1120 c3 = CellWithSign ( TopCell (2,"phi",self.r,None ,self.
sing_point ,0, self.mon) ,1)

1121 c4 = CellWithSign ( TopCell (2,"omega",self.r,None ,self.
sing_point ,0, self.mon) ,1)

1122 c5 = CellWithSign ( TowerCell (2,"theta",None ,0,( self.
sing_point % len(self.mon. local_braids ) +1, self.r+1) ,self.mon) ,-1)

1123 c6 = CellWithSign ( TowerCell (2," vartheta ",None ,0,( self.
sing_point % len(self.mon. local_braids ) +1, self.r),self.mon) ,-1)

1124 return {c1 ,c2 ,c3 ,c4 ,c5 ,c6}
1125 else:
1126 result = { CellWithSign ( TopCell (2,"zeta",self.r,j,self.

sing_point ,kc+1, self.mon) ,1) for j in range (1, beta.n[self.r -1])}
1127 for j in range (1, beta.n[self.r]):
1128 result .add( CellWithSign ( TopCell (2,"zeta",self.r+1,j,

self.sing_point ,kc+1, self.mon) ,-1))
1129 result .add( CellWithSign ( TopCell (2,"phi",self.r+1,None ,self.

sing_point ,kc+1, self.mon) ,-1))
1130 result .add( CellWithSign ( TopCell (2,"omega",self.r+1,None ,

self.sing_point ,kc+1, self.mon) ,-1))
1131 result .add( CellWithSign ( TopCell (2,"phi",self.r,None ,self.

sing_point ,kc+1, self.mon) ,1))
1132 result .add( CellWithSign ( TopCell (2,"omega",self.r,None ,self.

sing_point ,kc+1, self.mon) ,1))
1133 result .add( CellWithSign ( TowerCell (2,"theta",None ,self.

sing_point ,(2, self.r+1) ,self.mon) ,-1))
1134 result .add( CellWithSign ( TowerCell (2," vartheta ",None ,self.

sing_point ,(2, self.r),self.mon) ,-1))
1135 return result
1136
1137 class ProductCell (Cell):
1138 def __init__ (self , CellB , CellT):
1139 self.name = "I"+CellB.name
1140 self.dim = CellB.dim +1
1141 self. bottom = CellB
1142 self.top =CellT
1143 self.r = self.top.r
1144 self.jr = self.top.jr
1145 self. sing_point = self.top. sing_point
1146 self.i = self.top.i
1147 self.mon = CellB.mon
1148 def __eq__ (self ,other):
1149 if not isinstance (other , ProductCell ):
1150 return NotImplemented
1151 return isinstance (other , ProductCell ) and (self.bottom ,self.top) ==

(other.bottom , other.top)
1152 def __hash__ (self):
1153 return hash (( self.bottom ,self.top ,self.name))
1154 def border (self):
1155 beta = self.mon. all_braids [self. sing_point ]
1156 # ProductCells inherit all their indexes name , sing point , i, r....

from its associated TopCell and BottomCell
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1157 if self. bottom .name in ["m2","m1","theta"," vartheta ","d","A","kappa
"," varkappa ","PI","OMEGA "," varsigma ","e","hq","hq1","nu","PHIpi","
PHIomega "]:

1158 if self. bottom .dim ==0:
1159 return { CellWithSign (self.top ,1) ,CellWithSign (self.bottom

,-1)}
1160 else:
1161 result = product_of_chain (self. bottom . border ())
1162 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1163 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1164 return result
1165 elif self. bottom .name == "w0":
1166 if self. bottom .i==0:
1167 result = product_of_chain (self. bottom . border ())
1168 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1169 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1170 result .add( CellWithSign ( TowerCell (1,"e" ,0,0,( self.

sing_point ,None),self.mon) ,-1))
1171 return result
1172 else:
1173 result = product_of_chain (self. bottom . border ())
1174 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1175 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1176 result .add( CellWithSign ( TowerCell (1,"e" ,0,self.sing_point

,(1, None),self.mon) ,-1))
1177 return result
1178 elif self. bottom .name == "w1":
1179 if self. bottom .i==0:
1180 result = product_of_chain (self. bottom . border ())
1181 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1182 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1183 result .add( CellWithSign ( TowerCell (1,"e",beta. strands +1,0,(

self.sing_point ,None),self.mon) ,-1))
1184 return result
1185 else:
1186 result = product_of_chain (self. bottom . border ())
1187 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1188 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1189 result .add( CellWithSign ( TowerCell (1,"e",beta. strands +1, self

.sing_point ,(1, None),self.mon) ,-1))
1190 return result
1191 elif self. bottom .name == "z":
1192 if self. bottom .i==0:
1193 result = product_of_chain (self. bottom . border ())
1194 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1195 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
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1196 result .add( CellWithSign ( TowerCell (1,"e",self.jr ,0,( self.
sing_point ,self.r),self.mon) ,-1))

1197 return result
1198 else:
1199 result = product_of_chain (self. bottom . border ())
1200 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1201 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1202 result .add( CellWithSign ( TowerCell (1,"e",self.jr ,self.

sing_point ,(1, self.r),self.mon) ,-1))
1203 return result
1204 elif self. bottom .name == "psi":
1205 if self. bottom .i==0:
1206 result = product_of_chain (self. bottom . border ())
1207 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1208 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1209 result .add( CellWithSign ( TowerCell (2," varkappa ",None ,0,( self

.sing_point ,None),self.mon) ,1))
1210 return result
1211 else:
1212 result = product_of_chain (self. bottom . border ())
1213 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1214 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1215 result .add( CellWithSign ( TowerCell (2," varkappa ",None ,self.

sing_point ,(1, None),self.mon) ,1))
1216 return result
1217 elif self. bottom .name == "xi":
1218 if self. bottom .i==0:
1219 result = product_of_chain (self. bottom . border ())
1220 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1221 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1222 result .add( CellWithSign ( TowerCell (2,"kappa",None ,0,( self.

sing_point ,1) ,self.mon) ,1))
1223 return result
1224 else:
1225 result = product_of_chain (self. bottom . border ())
1226 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1227 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1228 result .add( CellWithSign ( TowerCell (2,"kappa",None ,self.

sing_point ,(1 ,1) ,self.mon) ,1))
1229 return result
1230 elif self. bottom .name == "phi":
1231 if self. bottom .i==0:
1232 result = product_of_chain (self. bottom . border ())
1233 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1234 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
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1235 result .add( CellWithSign ( TowerCell (2," varsigma " ,0,0,( self.
sing_point ,self.r),self.mon) ,1))

1236 return result
1237 else:
1238 result = product_of_chain (self. bottom . border ())
1239 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1240 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1241 result .add( CellWithSign ( TowerCell (2," varsigma " ,0,self.

sing_point ,(1, self.r),self.mon) ,1))
1242 return result
1243 elif self. bottom .name == "omega":
1244 if self.i==0:
1245 result = product_of_chain (self. bottom . border ())
1246 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1247 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1248 result .add( CellWithSign ( TowerCell (2," varsigma " ,1,0,( self.

sing_point ,self.r),self.mon) ,1))
1249 return result
1250 else:
1251 result = product_of_chain (self. bottom . border ())
1252 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1253 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1254 result .add( CellWithSign ( TowerCell (2," varsigma ",beta.n[self.

r-1], self.sing_point ,(1, self.r),self.mon) ,1))
1255 return result
1256 elif self. bottom .name == "zeta":
1257 result = product_of_chain (self. bottom . border ())
1258 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1259 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1260 result .add( CellWithSign ( TowerCell (2," varsigma ",self.jr ,self

.sing_point ,(1, self.r),self.mon) ,1))
1261 return result
1262 elif self. bottom .name == "PSI":
1263 if self. bottom .i==0:
1264 result = product_of_chain (self. bottom . border ())
1265 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1266 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1267 result .add( CellWithSign ( TowerCell (3,"OMEGA",None ,0,( self.

sing_point ,sum(beta.n)),self.mon) ,-1))
1268 return result
1269 else:
1270 result = product_of_chain (self. bottom . border ())
1271 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1272 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1273 result .add( CellWithSign ( TowerCell (3,"OMEGA",None ,self.

sing_point ,(1, len(beta. braids )),self.mon) ,-1))

150



Code for the CW Decomposition for A�ne Plane Curves Appendix A

1274 return result
1275 elif self. bottom .name == "XI":
1276 if self. bottom .i==0:
1277 result = product_of_chain (self. bottom . border ())
1278 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1279 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1280 result .add( CellWithSign ( TowerCell (3,"PI",None ,0,( self.

sing_point ,1) ,self.mon) ,-1))
1281 return result
1282 else:
1283 result = product_of_chain (self. bottom . border ())
1284 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1285 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1286 result .add( CellWithSign ( TowerCell (3,"PI",None ,self.

sing_point ,(1 ,1) ,self.mon) ,-1))
1287 return result
1288 elif self. bottom .name == "LAMDA":
1289 if self. bottom .i==0:
1290 result = product_of_chain (self. bottom . border ())
1291 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1292 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1293 result .add( CellWithSign ( TowerCell (3,"OMEGA",None ,0,( self.

sing_point ,self.r),self.mon) ,-1))
1294 result .add( CellWithSign ( TowerCell (3,"PI",None ,0,( self.

sing_point ,self.r+1) ,self.mon) ,-1))
1295 return result
1296 else:
1297 result = product_of_chain (self. bottom . border ())
1298 result .add( CellWithSign (self.top ,( -1) ** self. bottom .dim))
1299 result .add( CellWithSign (self.bottom ,-(-1)** self. bottom .dim)

)
1300 result .add( CellWithSign ( TowerCell (3,"OMEGA",None ,self.

sing_point ,(1, self.r),self.mon) ,-1))
1301 result .add( CellWithSign ( TowerCell (3,"PI",None ,self.

sing_point ,(1, self.r+1) ,self.mon) ,-1))
1302 return result
1303
1304
1305 def __hash__ (self):
1306 return hash (( self.bottom ,self.top ,self.name))
1307
1308 def add_cell ( cellComplex ,Cell):
1309 dim=Cell.dim
1310 cellComplex [dim ]. add(Cell)
1311
1312 def add_cell_and_cone ( cellComplex ,Cell):
1313 dim=Cell.dim
1314 cellComplex [dim ]. add(Cell)
1315 cellComplex [dim +1]. add( ConeCell (Cell))
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1316
1317 def cells_of_tower (beta ,mon):
1318 l=len(beta. braids )
1319 result ={i:set ({}) for i in range (5)}
1320 k = beta.k
1321 add_cell (result , TowerCell (2," lambda ",None ,beta.sing_point ,(None ,None),

mon))
1322 add_cell (result , TowerCell (2,"mu",None ,beta.sing_point ,(None ,None),mon))
1323 add_cell_and_cone (result , TowerCell (3,"Hsup",None ,beta.sing_point ,(None ,

None),mon))
1324 for i in range (1,k+1):
1325 add_cell (result , TowerCell (0,"A" ,0,beta.sing_point ,(i,None),mon))
1326 add_cell (result , TowerCell (0,"A",beta. strands +1, beta.sing_point ,(i,

None),mon))
1327 add_cell (result , TowerCell (1,"e" ,0,beta.sing_point ,(i,None),mon))
1328 add_cell (result , TowerCell (1,"e",beta. strands +1, beta.sing_point ,(i,

None),mon))
1329 add_cell_and_cone (result , TowerCell (1,"m2",None ,beta.sing_point ,(i,

None),mon))
1330 add_cell_and_cone (result , TowerCell (2," varkappa ",None ,beta.

sing_point ,(i,None),mon))
1331 for r in range (1,l+1):
1332 add_cell (result , ConeCell ( TowerCell (2," lambda ",None ,beta.sing_point

,(None ,r),mon)))
1333 add_cell (result , ConeCell ( TowerCell (2,"mu",None ,beta.sing_point ,(

None ,r),mon)))
1334 add_cell (result , TowerCell (0,"AA",None ,beta.sing_point ,(None ,r),mon)

)
1335 add_cell_and_cone (result , TowerCell (3,"Hinf",None ,beta.sing_point ,(

None ,r),mon))
1336 for i in range (1,k+1):
1337 add_cell_and_cone (result , TowerCell (1,"m1",None ,beta.sing_point

,(i,r),mon))
1338 add_cell_and_cone (result , TowerCell (1,"d" ,0,beta. sing_point ,(i,r

),mon))
1339 add_cell_and_cone (result , TowerCell (2," varsigma " ,0,beta.

sing_point ,(i,r),mon))
1340 add_cell_and_cone (result , TowerCell (2,"theta",None ,beta.

sing_point ,(i,r),mon))
1341 add_cell_and_cone (result , TowerCell (2," vartheta ",None ,beta.

sing_point ,(i,r),mon))
1342 add_cell_and_cone (result , TowerCell (2,"kappa",None ,beta.

sing_point ,(i,r),mon))
1343 add_cell_and_cone (result , TowerCell (3,"PI",None ,beta.sing_point

,(i,r),mon))
1344 add_cell_and_cone (result , TowerCell (3,"OMEGA",None ,beta.

sing_point ,(i,r),mon))
1345 add_cell (result , ConeCell ( TowerCell (0,"A" ,0,beta.sing_point ,(i,r

),mon)))
1346 add_cell (result , ConeCell ( TowerCell (0,"A",beta. strands +1, beta.

sing_point ,(i,r),mon)))
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1347 add_cell (result , ConeCell ( TowerCell (1,"e" ,0,beta.sing_point ,(i,r
),mon)))

1348 add_cell (result , ConeCell ( TowerCell (1,"e",beta. strands +1, beta.
sing_point ,(i,r),mon)))

1349 for j in range (1, beta.n[r -1]+1) :
1350 add_cell_and_cone (result , TowerCell (0,"A",j,beta.sing_point

,(i,r),mon))
1351 add_cell_and_cone (result , TowerCell (1,"e",j,beta.sing_point

,(i,r),mon))
1352 add_cell_and_cone (result , TowerCell (1,"d",j,beta.sing_point

,(i,r),mon))
1353 add_cell_and_cone (result , TowerCell (2," varsigma ",j,beta.

sing_point ,(i,r),mon))
1354 if beta. braids [r -1][i -1]!=0:
1355 add_cell_and_cone (result , TowerCell (1,"hq",None ,beta.

sing_point ,(i,r),mon))
1356 add_cell_and_cone (result , TowerCell (1,"hq1",None ,beta.

sing_point ,(i,r),mon))
1357 add_cell_and_cone (result , TowerCell (2,"nu" ,1,beta.sing_point

,(i,r),mon))
1358 add_cell_and_cone (result , TowerCell (2,"nu" ,2,beta.sing_point

,(i,r),mon))
1359 add_cell_and_cone (result , TowerCell (2,"nu" ,3,beta.sing_point

,(i,r),mon))
1360 add_cell_and_cone (result , TowerCell (2,"nu" ,4,beta.sing_point

,(i,r),mon))
1361 add_cell_and_cone (result , TowerCell (3,"PHIpi",None ,beta.

sing_point ,(i,r),mon))
1362 add_cell_and_cone (result , TowerCell (3," PHIomega ",None ,beta.

sing_point ,(i,r),mon))
1363 for r in range (1,l):
1364 add_cell (result , ConeCell ( TowerCell (3,"Hsup",None ,beta.sing_point ,(

None ,r),mon)))
1365 for i in range (1,k+1):
1366 add_cell (result , ConeCell ( TowerCell (1,"m2",None ,beta.sing_point

,(i,r),mon)))
1367 add_cell (result , ConeCell ( TowerCell (2," varkappa ",None ,beta.

sing_point ,(i,r),mon)))
1368 return result
1369
1370 def top(Cell):
1371 #Cell is a BottomCell . returns its top
1372 c = TopCell (Cell.dim , Cell.name ,Cell.r , Cell.jr , Cell.sing_point , Cell

.i,Cell.mon)
1373 return c
1374
1375 def product (Cell):
1376 #Cell is a BottomCell . returns its product
1377 t = top(Cell)
1378 c = ProductCell (Cell ,t)
1379 return c
1380
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1381 def add_top_bottom_and_product ( cellComplex ,Cell):
1382 #Cell is a BottomCell (the Bottom ). Adds Cell and its corresponding

top and product
1383 prod = product (Cell)
1384 cellComplex [Cell.dim ]. add(Cell)
1385 cellComplex [Cell.dim +1]. add(prod)
1386 cellComplex [Cell.dim ]. add(prod.top)
1387
1388 def cells_of_bridge (beta ,mon):
1389 n=sum(beta.n)
1390 l=len(beta. braids )
1391 kc = beta.kc
1392 result ={i:set ({}) for i in range (5)}
1393 add_top_bottom_and_product (result , BottomCell (1,"m1",None ,None ,beta.

sing_point , kc+1, mon))
1394 add_top_bottom_and_product (result , BottomCell (1,"m2",None ,None ,beta.

sing_point , kc+1, mon))
1395 add_top_bottom_and_product (result , BottomCell (2,"theta",None ,None ,beta.

sing_point , kc+1, mon))
1396 add_top_bottom_and_product (result , BottomCell (2," vartheta ",None ,None ,

beta.sing_point , kc+1, mon))
1397 for j in range (0,n+1):
1398 add_top_bottom_and_product (result , BottomCell (1,"d",j,None ,beta.

sing_point , kc+1, mon))
1399 for j in range (0,n+2):
1400 add_top_bottom_and_product (result , BottomCell (0,"A",j,None ,beta.

sing_point , kc+1, mon))
1401 for i in range (1,kc +1):
1402 add_top_bottom_and_product (result , BottomCell (1,"m1",None ,None ,

beta.sing_point , i,mon))
1403 add_top_bottom_and_product (result , BottomCell (1,"m2",None ,None ,

beta.sing_point , i,mon))
1404 add_top_bottom_and_product (result , BottomCell (2,"theta",None ,None

,beta.sing_point , i,mon))
1405 add_top_bottom_and_product (result , BottomCell (2," vartheta ",None ,

None ,beta.sing_point , i,mon))
1406 add_top_bottom_and_product (result , BottomCell (2,"kappa",None ,None

,beta.sing_point , i,mon))
1407 add_top_bottom_and_product (result , BottomCell (2," varkappa ",None ,

None ,beta.sing_point , i,mon))
1408 add_top_bottom_and_product (result , BottomCell (3,"PI",None ,None ,

beta.sing_point , i,mon))
1409 add_top_bottom_and_product (result , BottomCell (3,"OMEGA",None ,None

,beta.sing_point , i,mon))
1410 for j in range (0,n+1):
1411 add_top_bottom_and_product (result , BottomCell (1,"d",j,None ,

beta.sing_point , i,mon))
1412 add_top_bottom_and_product (result , BottomCell (2," varsigma ",j,

None ,beta.sing_point , i,mon))
1413 for j in range (0,n+2):
1414 add_top_bottom_and_product (result , BottomCell (0,"A",j,None ,

beta.sing_point , i,mon))
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1415 add_top_bottom_and_product (result , BottomCell (1,"e",j,None ,
beta.sing_point , i,mon))

1416 if beta. conj_braid [i -1]!=0:
1417 add_top_bottom_and_product (result , BottomCell (1,"hq",None ,

None ,beta.sing_point ,i,mon))
1418 add_top_bottom_and_product (result , BottomCell (1,"hq1",None ,

None ,beta.sing_point ,i,mon))
1419 add_top_bottom_and_product (result , BottomCell (2,"nu" ,1,None ,

beta.sing_point ,i,mon))
1420 add_top_bottom_and_product (result , BottomCell (2,"nu" ,2,None ,

beta.sing_point ,i,mon))
1421 add_top_bottom_and_product (result , BottomCell (2,"nu" ,3,None ,

beta.sing_point ,i,mon))
1422 add_top_bottom_and_product (result , BottomCell (2,"nu" ,4,None ,

beta.sing_point ,i,mon))
1423 add_top_bottom_and_product (result , BottomCell (3,"PHIpi",None

,None ,beta.sing_point ,i,mon))
1424 add_top_bottom_and_product (result , BottomCell (3," PHIomega ",

None ,None ,beta.sing_point ,i,mon))
1425
1426
1427 add_top_bottom_and_product (result , BottomCell (1,"w0",None ,None ,beta.

sing_point , kc+1, mon))
1428 add_top_bottom_and_product (result , BottomCell (1,"w1",None ,None ,beta.

sing_point , kc+1, mon))
1429 add_top_bottom_and_product (result , BottomCell (2,"psi",None ,None ,beta.

sing_point , kc+1, mon))
1430 add_top_bottom_and_product (result , BottomCell (2,"xi",None ,None ,beta.

sing_point , kc+1, mon))
1431 add_top_bottom_and_product (result , BottomCell (3,"PSI",None ,None ,beta.

sing_point , kc+1, mon))
1432 add_top_bottom_and_product (result , BottomCell (3,"XI",None ,None ,beta.

sing_point , kc+1, mon))
1433 for r in range (1,l+1):
1434 add_top_bottom_and_product (result , BottomCell (1,"z",r,beta.n[r-1],

beta.sing_point , kc+1, mon))
1435 add_top_bottom_and_product (result , BottomCell (2,"phi",r,None ,beta.

sing_point , kc+1, mon))
1436 add_top_bottom_and_product (result , BottomCell (2,"omega",r,None ,beta

.sing_point , kc+1, mon))
1437 for j in range (1, beta.n[r -1]):
1438 add_top_bottom_and_product (result , BottomCell (1,"z",r,j,beta.

sing_point , kc+1, mon))
1439 add_top_bottom_and_product (result , BottomCell (2,"zeta",r,j,beta

.sing_point , kc+1, mon))
1440 for r in range (1,l):
1441 add_top_bottom_and_product (result , BottomCell (3,"LAMDA",r,None ,beta

.sing_point , kc+1, mon))
1442
1443 add_top_bottom_and_product (result , BottomCell (1,"w0",None ,None ,beta.

sing_point , 0,mon))

155



Appendix A Code for the CW Decomposition for A�ne Plane Curves

1444 add_top_bottom_and_product (result , BottomCell (1,"w1",None ,None ,beta.
sing_point , 0,mon))

1445 add_top_bottom_and_product (result , BottomCell (2,"psi",None ,None ,beta.
sing_point , 0,mon))

1446 add_top_bottom_and_product (result , BottomCell (2,"xi",None ,None ,beta.
sing_point , 0,mon))

1447 add_top_bottom_and_product (result , BottomCell (3,"PSI",None ,None ,beta.
sing_point , 0,mon))

1448 add_top_bottom_and_product (result , BottomCell (3,"XI",None ,None ,beta.
sing_point , 0,mon))

1449
1450 for r in range (1,n+1):
1451 add_top_bottom_and_product (result , BottomCell (1,"z",r,1, beta.

sing_point , 0,mon))
1452 add_top_bottom_and_product (result , BottomCell (2,"phi",r,None ,beta.

sing_point , 0,mon))
1453 add_top_bottom_and_product (result , BottomCell (2,"omega",r,None ,beta

.sing_point , 0,mon))
1454 for r in range (1,n):
1455 add_top_bottom_and_product (result , BottomCell (3,"LAMDA",r,None ,beta

.sing_point , 0,mon))
1456
1457 return result
1458
1459 def join_cells (l):
1460 # l is a list of cellular complex as is given by cells_of_tower and

cells_of_bridge
1461 result ={}
1462 for i in range (5):
1463 result [i] = reduce ( lambda x, y : x |y, [d[i] for d in l])
1464 return result
1465
1466 def cannonize (c, cwComp ):
1467 #c is a set of CellWithSign
1468 for a_Cell in c:
1469 exist_Cell = get_equivalent ( cwComp [ a_Cell .Cell.dim], a_Cell .Cell)
1470 a_Cell .Cell = exist_Cell
1471
1472 def euler( cwComplex ):
1473 i=1
1474 result = 0
1475 for dim in cwComplex :
1476 result += i*len( cwComplex [dim ])
1477 i *= -1
1478 return result
1479
1480 def in_curve (c):
1481 if isinstance (c, ProductCell ):
1482 return in_curve (c.top)
1483 elif isinstance (c, TowerCell ):
1484 if c.name == "A":
1485 beta = c.mon. all_braids [c. sing_point ]
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1486 n=sum(beta.n)
1487 return not (c.index == 0 or c.index ==n+1)
1488 if c.name == "e":
1489 beta = c.mon. all_braids [c. sing_point ]
1490 n=sum(beta.n)
1491 if c.index == 0 or c.index == n+1:
1492 return False
1493 else:
1494 q = abs(beta. braids [c.r -1][c.i -1])
1495 return c.index !=q and c.index !=q+1
1496 elif isinstance (c, BottomCell ) or isinstance (c, TopCell ):
1497 if c.name == "A":
1498 beta = c.mon. all_braids [c. sing_point ]
1499 n=sum(beta.n)
1500 return not (c.r == 0 or c.r ==n+1)
1501 if c.name == "e":
1502 beta = c.mon. all_braids [c. sing_point ]
1503 n=sum(beta.n)
1504 q = abs(beta. conj_braid [c.i -1])
1505 return not (c.r == 0 or c.r ==n+1 or c.r ==q or c.r == q+1)
1506
1507 elif c.name in ["hq","hq1","z","AA"]:
1508 return True
1509 elif isinstance (c, ConeCell ):
1510 return in_curve (c.base) and (not c.name == "AA")
1511 return False
1512
1513 def error_test ( cwComplex1 ):
1514 for dim in cwComplex1 :
1515 print len( cwComplex1 [dim ])
1516 cells_without_border = []
1517 cells_with_error_in_border = []
1518 cells_in_a_border_but_not_in_complex = []
1519 cells_given_a_cell_in_a_border_but_not_in_complex = {}
1520
1521 for dim in cwComplex1 :
1522 for c in cwComplex1 [dim ]:
1523 try:
1524 borde = c. border ()
1525 if borde == None:
1526 cells_without_border . append (c)
1527 else:
1528 for b in borde:
1529 if b.Cell not in cwComplex1 [b.Cell.dim ]:
1530 #print "Cell :"+ str(c. __dict__ )+" have Cell :"+ str(b

.Cell. __dict__ )+"in his border that isn ’t in the complex "
1531 cells_in_a_border_but_not_in_complex . append (b.Cell)
1532 if c in

cells_given_a_cell_in_a_border_but_not_in_complex :
1533

cells_given_a_cell_in_a_border_but_not_in_complex [c]. add(b)
1534 else:
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1535
cells_given_a_cell_in_a_border_but_not_in_complex [c]={b}

1536 except Exception as e:
1537 cells_with_error_in_border . append (c)
1538 print euler( cwComplex1 )
1539 return ( cells_with_error_in_border ,
1540 cells_without_border ,
1541 cells_in_a_border_but_not_in_complex ,
1542 cells_given_a_cell_in_a_border_but_not_in_complex )
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Code for the Simplicial
Decomposition for A�ne Plane

Curves

Here we exhibit the code of the program in SageMath that turns the CW decomposition
of (D, � fl D) into a simplicial decomposition. This program was explained in Section 2.2.

1
2 class Simple_Cell ( object ):
3 def __init__ (self ,dim ,name):
4 self.dim = dim
5 self.name = name
6 self.borde = set ({})
7
8 def __str__ (self):
9 return self.name

10
11 def __repr__ (self):
12 return self.name
13
14 def border (self):
15 return self.borde
16
17 def set_border (self ,borde):
18 self.borde = borde
19
20 class Cell_With_Sign ( object ):
21 def __init__ (self ,cell ,sgn):
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22 self.cell = cell
23 self.sgn =sgn
24 def __repr__ (self):
25 if self.sgn ==1:
26 return self.cell. __repr__ ()
27 else:
28 return "-"+self.cell. __repr__ ()
29 def __eq__ (self ,other):
30 return isinstance (other , Cell_With_Sign ) and (self.sgn == other.sgn)

and (self.cell == self.cell)
31 def __hash__ (self):
32 return hash (( self.cell ,self.sgn))
33 def cone(self):
34 return Cell_With_Sign ( ConeCell (self.cell),self.sgn)
35 def product (self):
36 if isinstance (self.cell , BottomCell ):
37 return Cell_With_Sign ( product (self.cell),self.sgn)
38 else:
39 raise Exception ("A ProductCell must have a BottomCell as a base"

)
40
41 def simple_complex ( cwComplex ):
42 simple_dict = {}
43 result = {dim:set ({}) for dim in cwComplex }
44 for dim in cwComplex :
45 for c in cwComplex [dim ]:
46 new_Simple_Cell = Simple_Cell (dim ,c.name)
47 new_Simple_Cell . from_monod = c
48 simple_dict [c] = new_Simple_Cell
49 result [dim ]. add( new_Simple_Cell )
50 for dim in result :
51 for simp_cell in result [dim ]:
52 b = simp_cell . from_monod . border ()
53 for e in b:
54 e.cell = simple_dict [e.cell]
55 simp_cell . set_border (b)
56 return result
57
58 def subcomplex (c):
59 return in_curve (c. from_monod )
60
61 def from_CW_to_simplicial ( cell_complex , subcomplex ):
62 def in_X(c):
63 ’’’
64
65 ’’’
66 if c.dim ==1:
67 result = [ subcomplex (e.cell) for e in c. border ()] == [True ,True

]
68 else:
69 result = False
70 return result
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71 def make_vs_and_ws ( cell_complex ):
72 v={}
73 w={}
74 B={}
75 dim=max ([d for d in cell_complex ])
76 X=set ({c for c in cell_complex [1] if in_X(c) })
77 for c in cell_complex [0]:
78 v[(0,c)]= set ({})
79 w[(0,c)]={(c,)}
80 B[(0,c)]={(c,)}
81 for c in cell_complex [1]:
82 borde = c. border ()
83 B[(0,c)]={(b.cell ,) for b in borde}
84 if c in X:
85 v[(0,c)]={(c,)}
86 v[(1,c)]={(c,)+l for l in B[(0,c)]}
87 else:
88 v[(0,c)]= set ({})
89 v[(1,c)]={ tuple ((b.cell for b in borde))}
90 w[(0,c)]=v[(0,c)]. union(B[(0,c)])
91 w[(1,c)]=v[(1,c)]
92 for d in range (2, dim +1):
93 for c in cell_complex [d]:
94 v[(0,c)]={(c,)}
95 B[(0,c)]= set ({})
96 borde = c. border ()
97 if borde == None:
98 print "Empty border "
99 for b in borde:

100 if b.cell not in cell_complex [d -1]:
101 print " Border cell not in complex "
102 global recuperaCelda
103 recuperaCelda =b
104 B[(0,c)]. update (w[(0,b.cell)])
105 w[(0,c)]=v[(0,c)]. union(B[(0,c)])
106 for i in range (1,d):
107 v[(i,c)]={(c,)+l for l in B[(i-1,c)]}
108 B[(i,c)]= set ({})
109 for b in borde:
110 B[(i,c)]. update (w[(i,b.cell)])
111 w[(i,c)]=v[(i,c)]. union(B[(i,c)])
112 v[(d,c)]={(c,)+l for l in B[(d-1,c)]}
113 w[(d,c)]= set(v[(d,c)])
114 return v,w,B
115 v,w,B= make_vs_and_ws ( cell_complex )
116 sim_comp = {0: set ({}) ,1: set ({}) ,2: set ({}) ,3: set ({}) ,4: set ({})}
117 for dim in cell_complex :
118 for c in cell_complex [dim ]:
119 for dim1 in xrange (0, dim +1):
120 for simplex in v[(dim1 ,c)]:
121 sim_comp [dim1 ]. add( simplex )
122 for c in cell_complex [0]:
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123 sim_comp [0]. add ((c,))
124 return sim_comp
125
126 def from_CW_to_simplicial_with_sets ( cell_complex , subcomplex ):
127 def in_X(c):
128 ’’’
129
130 ’’’
131 if c.dim ==1:
132 result = [ subcomplex (e.cell) for e in c. border ()] == [True ,True

] and not subcomplex (c)
133 else:
134 result = False
135 return result
136 def make_vs_and_ws ( cell_complex ):
137 v={}
138 w={}
139 B={}
140 dim=max ([d for d in cell_complex ])
141 X=set ({c for c in cell_complex [1] if in_X(c) })
142 for c in cell_complex [0]:
143 v[(0,c)]= set ({})
144 w[(0,c)]={ frozenset ({c})}
145 B[(0,c)]={ frozenset ({c})}
146 for c in cell_complex [1]:
147 borde = c. border ()
148 B[(0,c)]={ frozenset ({b.cell }) for b in borde}
149 if c in X:
150 v[(0,c)]={ frozenset ({c})}
151 v[(1,c)]={l.union ({c}) for l in B[(0,c)]}
152 else:
153 v[(0,c)]= set ({})
154 v[(1,c)]={ frozenset ([b.cell for b in borde ])}
155 w[(0,c)]=v[(0,c)]. union(B[(0,c)])
156 w[(1,c)]=v[(1,c)]
157 for d in range (2, dim +1):
158 for c in cell_complex [d]:
159 v[(0,c)]={ frozenset ({c})}
160 B[(0,c)]= set ({})
161 borde = c. border ()
162 if borde == None:
163 print "Empty border "
164 for b in borde:
165 if b.cell not in cell_complex [d -1]:
166 print " Border cell not in complex "
167 global recuperaCelda
168 recuperaCelda =b
169 B[(0,c)]. update (w[(0,b.cell)])
170 w[(0,c)]=v[(0,c)]. union(B[(0,c)])
171 for i in range (1,d):
172 v[(i,c)]={l.union ({c}) for l in B[(i-1,c)]}
173 B[(i,c)]= set ({})
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174 for b in borde:
175 B[(i,c)]. update (w[(i,b.cell)])
176 w[(i,c)]=v[(i,c)]. union(B[(i,c)])
177 v[(d,c)]={l.union ({c}) for l in B[(d-1,c)]}
178 w[(d,c)]= set(v[(d,c)])
179 return v,w,B
180 v,w,B= make_vs_and_ws ( cell_complex )
181 sim_comp = {0: set ({}) ,1: set ({}) ,2: set ({}) ,3: set ({}) ,4: set ({})}
182 for dim in cell_complex :
183 for c in cell_complex [dim ]:
184 for dim1 in xrange (0, dim +1):
185 for simplex in v[(dim1 ,c)]:
186 sim_comp [dim1 ]. add( simplex )
187 for c in cell_complex [0]:
188 sim_comp [0]. add( frozenset ({c}))
189 return sim_comp
190
191 def simplex_in_subcomplex (simplex , subcomplex ):
192 for c in simplex :
193 if not subcomplex (c):
194 return False
195 return True
196
197 def write_elem (e):
198 if isinstance (e, frozenset ):
199 write_simp (e)
200 else:
201 print e,
202
203 def write_simp (simp):
204 print "(",
205 for e in simp:
206 write_elem (e)
207 print ",",
208 print ")",
209
210 def write_simplex_set (s, dim):
211 print ("dim ={}:"+(10* "-")). format (dim)
212 for simp in s:
213 write_simp (simp)
214 print
215
216 def write_simp_complex ( complex ):
217 for dim in complex :
218 write_simplex_set ( complex [dim],dim)
219
220 def border ( simplex ):
221 result = set ({})
222 for c in simplex :
223 result .add( simplex . difference ({c}))
224 return result
225
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226 def subdivide ( cell_complex ):
227
228 def make_vs_and_ws ( cell_complex ):
229 v={}
230 w={}
231 B={}
232 dim=max ([d for d in cell_complex ])
233 dims= sorted ([d for d in cell_complex ])
234 for c in cell_complex [0]:
235 v[(0,c)]= set ({})
236 w[(0,c)]={ frozenset ({c})}
237 B[(0,c)]={ frozenset ({c})}
238 for d in range (1, dim +1):
239 for c in cell_complex [d]:
240 v[(0,c)]={ frozenset ({c})}
241 w[(0,c)]= set ({})
242 B[(0,c)]= set ({})
243 borde = border (c)
244 if borde == None:
245 print type(c),c.__dict__ ,c. bottom .name
246 for b in borde:
247 global recuperaCelda
248 recuperaCelda =b
249 B[(0,c)]. update (w[(0,b)])
250 w[(0,c)]=v[(0,c)]. union(B[(0,c)])
251 for i in range (1,d):
252 v[(i,c)]={l.union ({c}) for l in B[(i-1,c)]}
253 B[(i,c)]= set ({})
254 for b in borde:
255 B[(i,c)]. update (w[(i,b)])
256 w[(i,c)]=v[(i,c)]. union(B[(i,c)])
257 v[(d,c)]={l.union ({c}) for l in B[(d-1,c)]}
258 w[(d,c)]= set(v[(d,c)])
259 return v,w,B
260 v,w,B= make_vs_and_ws ( cell_complex )
261 sim_comp = {0: set ({}) ,1: set ({}) ,2: set ({}) ,3: set ({}) ,4: set ({})}
262 for dim in cell_complex :
263 for c in cell_complex [dim ]:
264 for dim1 in xrange (0, dim +1):
265 for simplex in v[(dim1 ,c)]:
266 sim_comp [dim1 ]. add( simplex )
267 for c in cell_complex [0]:
268 sim_comp [0]. add( frozenset ({c}))
269 return sim_comp
270
271 def subsimplex_in_subcomplex (subsimplex , subcomplex ):
272 for c in subsimplex :
273 if not simplex_in_subcomplex (c, subcomplex ):
274 return False
275 return True
276
277 def subsimplex_in_reg_neig (subsimplex , subcomplex ):
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278 for c in subsimplex :
279 if simplex_in_subcomplex (c, subcomplex ):
280 return True
281 return False
282
283 def comp_reg_neig (sim_comp , subcomplex ):
284 return {i:{c for c in sim_comp [i] if not subsimplex_in_reg_neig (c,

subcomplex )} for i in sim_comp }
285
286 def reg_neig (sim_comp , subcomplex ):
287 return {i:{c for c in sim_comp [i] if subsimplex_in_reg_neig (c,

subcomplex )} for i in sim_comp }
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Appendix C

Code for the Calculation of the
Complex Homology

Here we exhibit the code of the program in SageMath used to calculate the ranks of the
matrices [ˆ(r)

i,j,k]R(t,s,u) through Lemmas 4.17 to 4.24.

1 #!/ usr/bin/env python
2 # coding : utf -8
3
4 # In[ ]:
5
6
7
8
9 # $$

10 # \def\CC{\bf C}
11 # \def\QQ{\bf Q}
12 # \def\RR{\bf R}
13 # \def\ZZ{\bf Z}
14 # \def\NN{\bf N}
15 # $$
16 #
17 # The ring $AN$ is the base ring over which we are going to work.
18 # In fact , the ring that interest us is the ring
19 # $R_{a,b,m}=\ mathbb {C}[t,s,u]/(t^a-1,s^b-1,u^m -1)$, but we work with
20 # $AN$ for practical reasons . We define another rings that we will use
21 # too , and lists of keys that will be used to store the data orderly .
22
23 # In[ ]:
24
25
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26 ANs.<s>=QQ[]
27 ANt.<t>=QQ[]
28 ANu.<u>=QQ[]
29 ANtu.<t,u>=QQ[]
30 ANsu.<s,u>=QQ[]
31 ANst.<s,t>=QQ[]
32 AN.<t,s,u>=QQ[]
33 claves =[(s,t,u), (t,u), (s,u), (s,t) ,(u,)]
34 anillos ={(s,t,u):AN , (t,u):ANtu , (s,u):ANsu , (s,t):ANst ,(u,):ANu , (s,):ANs

, (t,):ANt}
35
36 # In[ ]:
37
38
39 M=[ FreeModule (AN ,_) for _ in [8 ,23 ,25 ,12 ,3]]
40
41 # We start with the module $M_0$ of the $0$ -cells; although we define it
42 # as a free module for practical reasons , it is not actually free.
43 # We name the elements of the generating system and distribute them

according
44 # to the actions that act trivially upon them.
45 #
46 # The module $M_0$ is generated by
47 # $R ,P_1 ,\ hat{P}_1 ,P_2 ,\ hat{P}_2 ,Q_1 ,Q_2 ,\ hat{R}$. In fact ,
48 #
49 # $$M_0=R_{a,b,m}\ langle R\ rangle \oplus R_{a,b,m}/(s -1)\ langle P_1 ,\ hat{P}

_1\ rangle \oplus R_{a,b,m}/(t -1)\ langle P_2 ,\ hat{P}_2\ rangle \oplus R_{a,
b,m}/(u -1)\ langle Q_1 ,Q_2 ,\ hat{R}\ rangle$$

50 #
51 # The dictionary ** M0dic ** assigns to each key the elements of the

generating
52 # system upon which the variables appearing in the key do ** NOT ** act

trivially .
53
54 # In[ ]:
55
56
57 M0=M[0]
58 R,P1 ,P1h ,P2 ,P2h ,Q1 ,Q2 ,Rh=M0.gens ()
59 Mdic ={(0 ,s,t,u):[R],(0,t,u):[P1 ,P1h ],(0,s,u):[P2 ,P2h ],(0,s,t):[Q1 ,Q2 ,Rh

],(0,u):[]}
60 Ldic ={}
61 i=0
62 for _ in claves :
63 cl=tuple ([0]+ list(_))
64 j=len(Mdic[cl])
65 Ldic[cl]= range(i,i+j)
66 i=i+j
67
68 # We do the same for the module $M_1$ :
69 #
70 # The module $M_1$ is generated by
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71 # $m ,l,k,a_1 ,a_2 ,b_1 ,b_2 ,\ hat{m},\ hat{l},\ hat{a}_1 ,\ hat{a}_2 ,r,c_1 ,\ hat{c}
_1 ,p_1 ,c_2 ,\ hat{c}_2 ,p_2 ,h_1 ,h_2 ,\ hat{k},q_1 ,q_2$.

72 # In fact ,
73 #
74 # $$M_1=R_{a,b,m}\ langle m,l,k,a_1 ,a_2 ,b_1 ,b_2 ,\ hat{m},\ hat{l},\ hat{a}_1 ,\

hat{a}_2 ,r\ rangle \oplus R_{a,b,m}/(s -1)\ langle c_1 ,\ hat{c}_1 ,p_1\ rangle
\oplus R_{a,b,m}/(t -1)\ langle c_2 ,\ hat{c}_2 ,p_2\ rangle \oplus R_{a,b,m
}/(u -1)\ langle h_1 ,h_2 ,\ hat{k},q_1 ,q_2\ rangle$$

75
76 # In[ ]:
77
78
79 M1=M[1]
80 m,l,k,a1 ,a2 ,b1 ,b2 ,mh ,lh ,a1h ,a2h ,r,c1 ,c1h ,p1 ,c2 ,c2h ,p2 ,h1 ,h2 ,kh ,q1 ,q2=M1.

gens ()
81 Mdic. update ({(1 ,s,t,u):[m,l,k,a1 ,a2 ,b1 ,b2 ,mh ,lh ,a1h ,a2h ,r], (1,t,u):[c1 ,c1h

,p1], (1,s,u):[c2 ,c2h ,p2], (1,s,t):[h1 ,h2 ,kh ,q1 ,q2], (1,u):[]})
82 i=0
83 for _ in claves :
84 cl=tuple ([1]+ list(_))
85 j=len(Mdic[cl])
86 Ldic[cl]= range(i,i+j)
87 i=i+j
88
89 # Now we build the matrix for $\ delta_1 :M_1\to M_0$. We do it in such
90 # a way that it will be easy to recover later the matrices that we will
91 # need according to the isotropy of the generators .
92
93 # In[ ]:
94
95
96 imagenes ={}
97 pr=(s,t,u)
98 mm=len(Mdic[tuple ([1]+ list(pr))])
99 imagenes [1,0,pr ,(s,t,u)]=[(u*s -1)*R,(u*t -1)*R,(t-s)*R,M0 (0) ,M0 (0) ,-R,-R,M0

(0) ,M0 (0) ,M0 (0) ,M0 (0) ,R]
100 imagenes [1,0,pr ,(t,u)]=[ M0 (0) ,M0 (0) ,M0 (0) ,P1 ,M0 (0) ,M0 (0) ,M0 (0) ,M0 (0) ,M0 (0) ,

P1h ,M0 (0) ,M0 (0)]
101 imagenes [1,0,pr ,(s,u)]=[ M0 (0) ,M0 (0) ,M0 (0) ,M0 (0) ,P2 ,M0 (0) ,M0 (0) ,M0 (0) ,M0 (0) ,

M0 (0) ,P2h ,M0 (0)]
102 imagenes [1,0,pr ,(s,t)]=[ M0 (0) ,M0 (0) ,M0 (0) ,-Q1 ,-Q2 ,Q1 ,Q2 ,(s -1)*Rh ,(t -1)*Rh ,-

Rh ,-Rh ,-Rh]
103 imagenes [1,0,pr ,(u,)]=mm*[M0 (0)]
104 imagenes [1,0,pr ]=[ sum ([_[i] for _ in [ imagenes [1,0,pr ,cl] for cl in claves

]]) for i in range(mm)]
105 pr=(t,u)
106 mm=len(Mdic[tuple ([1]+ list(pr))])
107 imagenes [1,0,pr ,(s,t,u)]=mm*[M0 (0)]
108 imagenes [1,0,pr ,(t,u)]=[(t -1)*P1 ,(t -1)*P1h ,P1 -P1h]
109 imagenes [1,0,pr ,(s,u)]=mm*[M0 (0)]
110 imagenes [1,0,pr ,(s,t)]=mm*[M0 (0)]
111 imagenes [1,0,pr ,(u,)]=mm*[M0 (0)]
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112 imagenes [1,0,pr ]=[ sum ([_[i] for _ in [ imagenes [1,0,pr ,cl] for cl in claves
]]) for i in range(mm)]

113 pr=(s,u)
114 mm=len(Mdic[tuple ([1]+ list(pr))])
115 imagenes [1,0,pr ,(s,t,u)]=mm*[M0 (0)]
116 imagenes [1,0,pr ,(t,u)]=mm*[M0 (0)]
117 imagenes [1,0,pr ,(s,u)]=[(s -1)*P2 ,(s -1)*P2h ,P2 -P2h]
118 imagenes [1,0,pr ,(s,t)]=mm*[M0 (0)]
119 imagenes [1,0,pr ,(u,)]=mm*[M0 (0)]
120 imagenes [1,0,pr ]=[ sum ([_[i] for _ in [ imagenes [1,0,pr ,cl] for cl in claves

]]) for i in range(mm)]
121 pr=(s,t)
122 mm=len(Mdic[tuple ([1]+ list(pr))])
123 imagenes [1,0,pr ,(s,t,u)]=mm*[M0 (0)]
124 imagenes [1,0,pr ,(t,u)]=mm*[M0 (0)]
125 imagenes [1,0,pr ,(s,u)]=mm*[M0 (0)]
126 imagenes [1,0,pr ,(s,t)]=[(t-s)*Q1 ,-(t-s)*Q2 ,(t-s)*Rh ,Q1 -Rh ,Q2 -Rh]
127 imagenes [1,0,pr ,(u,)]=mm*[M0 (0)]
128 imagenes [1,0,pr ]=[ sum ([_[i] for _ in [ imagenes [1,0,pr ,cl] for cl in claves

]]) for i in range(mm)]
129 pr=(u,)
130 mm=len(Mdic[tuple ([1]+ list(pr))])
131 imagenes [1,0,pr ,(s,t,u)]=mm*[M0 (0)]
132 imagenes [1,0,pr ,(t,u)]=mm*[M0 (0)]
133 imagenes [1,0,pr ,(s,u)]=mm*[M0 (0)]
134 imagenes [1,0,pr ,(s,t)]=mm*[M0 (0)]
135 imagenes [1,0,pr ,(u,)]=mm*[M0 (0)]
136 imagenes [1,0,pr ]=[ sum ([_[i] for _ in [ imagenes [1,0,pr ,cl] for cl in claves

]]) for i in range(mm)]
137 imagenes [1 ,0]= flatten ([ imagenes [1,0,_] for _ in claves ])
138 delta1 =M1.hom( imagenes [1,0],M0)
139 A={}
140 A[1]= delta1 . matrix ()
141 A1=A[1]
142
143 # In[ ]:
144
145
146 show(A1)
147
148 # In[ ]:
149
150
151 latex(A1)
152
153 # In[ ]:
154
155
156 def varclave (tuplevar ,clave):
157 res=True
158 for _ in tuplevar :
159 res=res and _ in clave
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160 return res
161 tupleclaves =[(s,) ,(t,) ,(u,) ,(s,t) ,(t,u) ,(s,u) ,(s,t,u)]
162 clavevar ={ tuplevar :[_ for _ in claves if varclave (tuplevar ,_)] for tuplevar

in tupleclaves }
163
164 # In[ ]:
165
166
167 for pr in tupleclaves :
168 clpr= clavevar [pr]
169 sbs ={vr:1 for vr in (s,t,u) if vr not in pr}
170 pr0= flatten ([ Ldic[tuple ([0]+ list(_))] for _ in clpr ])
171 A[1,pr]= Matrix ( flatten ([ imagenes [1,0,_] for _ in clpr ])).

matrix_from_columns (pr0).subs(sbs). change_ring ( anillos [pr])
172
173 # We do the same for $M_2$ :
174 #
175 # The module $M_2$ is generated by
176 # $\sigma , \pi , \theta_1 , \theta_2 , \omega_1 , \omega_2 , \phi_1 , \phi_2 , \

hat {\ sigma}, \hat {\pi}, \hat {\ theta}_1 , \hat {\ theta}_2 , \hat {\ omega}_1 ,
\hat {\ omega }_2 , \mu , \lambda , \kappa , \alpha_1 , \alpha_2 , \beta_1 , \

beta_2 , \zeta_1 , \zeta_2 , \eta_1 , \ eta_2$ .
177 # In fact ,
178 #
179 # $$M_2=R_{a,b,m}\ langle \sigma , \pi , \theta_1 , \theta_2 , \omega_1 , \

omega_2 , \phi_1 , \phi_2 , \hat {\ sigma}, \hat {\pi}, \hat {\ theta}_1 , \hat
{\ theta}_2 , \hat {\ omega}_1 , \hat {\ omega}_2 , \mu , \lambda , \kappa , \
alpha_1 , \alpha_2 , \beta_1 , \ beta_2 \ rangle \oplus R_{a,b,m}/(s -1)\ langle

\ zeta_1 \ rangle \oplus R_{a,b,m}/(t -1)\ langle \ zeta_2 \ rangle \oplus R_{a,
b,m}/(u -1)\ langle \eta_1 , \eta_2\ rangle$$

180
181 # In[ ]:
182
183
184 M2=M[2]
185 sigma ,pi_0 ,theta_1 ,theta_2 ,omega_1 ,omega_2 ,phi_1 ,phi_2 ,sigmah ,pi_0h ,

theta_1h ,theta_2h ,omega_1h ,omega_2h ,mu ,lambda_0 ,kappa ,alpha_1 ,alpha_2 ,
beta_1 ,beta_2 ,zeta_1 ,zeta_2 ,eta_1 ,eta_2=M2.gens ()

186 Mdic. update ({(2 ,s,t,u):[ sigma ,pi_0 ,theta_1 ,theta_2 ,omega_1 ,omega_2 ,phi_1 ,
phi_2 , sigmah ,pi_0h ,theta_1h ,theta_2h ,omega_1h ,omega_2h ,mu ,lambda_0 ,
kappa ,alpha_1 ,alpha_2 ,beta_1 , beta_2 ], (2,t,u):[ zeta_1 ], (2,s,u):[ zeta_2
], (2,s,t):[ eta_1 ,eta_2], (2,u):[]})

187 i=0
188 for _ in claves :
189 cl=tuple ([2]+ list(_))
190 j=len(Mdic[cl])
191 Ldic[cl]= range(i,i+j)
192 i=i+j
193
194 # In[ ]:
195
196
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197 pr=(s,t,u)
198 mm=len(Mdic[tuple ([2]+ list(pr))])
199 imagenes [2,1,pr ,(s,t,u)]=[s*l-t*m-k, m+u*k-l, m+(s -1)*a1+(s*u -1)*b1 , l+(t

-1)*a2+(t*u -1)*b2 ,-l+(1-t)*a1+(1-t*u)*b1 , -m+(1-s)*a2+(1-s*u)*b2 , -k+(s
-t)*b1 , k-(s-t)*b2 , s*lh -t*mh , mh -lh , mh+(s -1)*a1h , lh+(t -1)*a2h , -lh
+(1-t)*a1h , -mh+(1-s)*a2h , (u*s -1)*r+mh -m, (u*t -1)*r+lh -l, (t-s)*r-k,
a1h -a1 , a2h -a2 , -r-b1 , -r-b2]

200 imagenes [2,1,pr ,(t,u)]=[ M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,c1 ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,
M1 (0) ,M1 (0) ,M1 (0) ,c1h ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,p1 ,M1 (0) ,M1 (0) ,M1 (0)]

201 imagenes [2,1,pr ,(s,u)]=[ M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,c2 ,M1 (0) ,M1 (0) ,M1 (0) ,
M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,c2h ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,p2 ,M1 (0) ,M1 (0)]

202 imagenes [2,1,pr ,(s,t)]=[ M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,h1 ,h2 ,-kh ,u*kh ,
M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,M1 (0) ,kh ,-q1 ,-q2 ,q1 ,q2]

203 imagenes [2,1,pr ,(u,)]=mm*[M1 (0)]
204 imagenes [2,1,pr ]=[ sum ([_[i] for _ in [ imagenes [2,1,pr ,cl] for cl in claves

]]) for i in range(mm)]
205 pr=(t,u)
206 mm=len(Mdic[tuple ([2]+ list(pr))])
207 imagenes [2,1,pr ,(s,t,u)]=mm*[M1 (0)]
208 imagenes [2,1,pr ,(t,u)]=[(t -1)*p1+c1h -c1]
209 imagenes [2,1,pr ,(s,u)]=mm*[M1 (0)]
210 imagenes [2,1,pr ,(s,t)]=mm*[M1 (0)]
211 imagenes [2,1,pr ,(u,)]=mm*[M1 (0)]
212 imagenes [2,1,pr ]=[ sum ([_[i] for _ in [ imagenes [2,1,pr ,cl] for cl in claves

]]) for i in range(mm)]
213 pr=(s,u)
214 mm=len(Mdic[tuple ([2]+ list(pr))])
215 imagenes [2,1,pr ,(s,t,u)]=mm*[M1 (0)]
216 imagenes [2,1,pr ,(t,u)]=mm*[M1 (0)]
217 imagenes [2,1,pr ,(s,u)]=[(s -1)*p2+c2h -c2]
218 imagenes [2,1,pr ,(s,t)]=mm*[M1 (0)]
219 imagenes [2,1,pr ,(u,)]=mm*[M1 (0)]
220 imagenes [2,1,pr ]=[ sum ([_[i] for _ in [ imagenes [2,1,pr ,cl] for cl in claves

]]) for i in range(mm)]
221 pr=(s,t)
222 mm=len(Mdic[tuple ([2]+ list(pr))])
223 imagenes [2,1,pr ,(s,t,u)]=mm*[M1 (0)]
224 imagenes [2,1,pr ,(t,u)]=mm*[M1 (0)]
225 imagenes [2,1,pr ,(s,u)]=mm*[M1 (0)]
226 imagenes [2,1,pr ,(s,t)]=[(t-s)*q1+kh -h1 ,-(t-s)*q2 -kh -h2]
227 imagenes [2,1,pr ,(u,)]=mm*[M1 (0)]
228 imagenes [2,1,pr ]=[ sum ([_[i] for _ in [ imagenes [2,1,pr ,cl] for cl in claves

]]) for i in range(mm)]
229 pr=(u,)
230 mm=len(Mdic[tuple ([2]+ list(pr))])
231 imagenes [2,1,pr ,(s,t,u)]=mm*[M1 (0)]
232 imagenes [2,1,pr ,(t,u)]=mm*[M1 (0)]
233 imagenes [2,1,pr ,(s,u)]=mm*[M1 (0)]
234 imagenes [2,1,pr ,(s,t)]=mm*[M1 (0)]
235 imagenes [2,1,pr ,(u,)]=mm*[M1 (0)]
236 imagenes [2,1,pr ]=[ sum ([_[i] for _ in [ imagenes [2,1,pr ,cl] for cl in claves

]]) for i in range(mm)]

172



Code for the Calculation of the Complex Homology Appendix C

237 imagenes [2 ,1]= flatten ([ imagenes [2,1,_] for _ in claves ])
238 delta2 =M2.hom( imagenes [2,1],M1)
239 A[2]= delta2 . matrix ()
240 A2=A[2]
241
242 # In[ ]:
243
244
245 show(A2)
246
247 # In[ ]:
248
249
250 latex(A2)
251
252 # In[ ]:
253
254
255 for pr in tupleclaves :
256 clpr= clavevar [pr]
257 sbs ={vr:1 for vr in (s,t,u) if vr not in pr}
258 pr0= flatten ([ Ldic[tuple ([1]+ list(_))] for _ in clpr ])
259 A[2,pr]= Matrix ( flatten ([ imagenes [2,1,_] for _ in clpr ])).

matrix_from_columns (pr0).subs(sbs). change_ring ( anillos [pr])
260
261 # The module $M_3$ is generated by
262 # $\Psi_1 ,\ Psi_2 ,\ hat {\ Psi}_1 ,\ hat {\ Psi}_2 ,\ Theta_1 ,\ Theta_2 ,\ Omega_1 ,\

Omega_2 ,\ Phi_1 ,\ Phi_2 ,\ Sigma ,\ Pi$
263 # and is free.
264
265 # In[ ]:
266
267
268 M3=M[3]
269 Psi_1 ,Psi_2 ,Psi_1h ,Psi_2h ,Theta_1 ,Theta_2 ,Omega_1 ,Omega_2 ,Phi_1 ,Phi_2 ,

Sigma_0 ,Pi_0=M3.gens ()
270 Mdic. update ({(3 ,s,t,u):[ Psi_1 ,Psi_2 ,Psi_1h ,Psi_2h ,Theta_1 ,Theta_2 ,Omega_1 ,

Omega_2 ,Phi_1 ,Phi_2 ,Sigma_0 ,Pi_0], (3,t,u):[], (3,s,u):[], (3,s,t):[],
(3,u):[]})

271 i=0
272 for _ in claves :
273 cl=tuple ([3]+ list(_))
274 j=len(Mdic[cl])
275 Ldic[cl]= range(i,i+j)
276 i=i+j
277
278 # In[ ]:
279
280
281 pr=(s,t,u)
282 mm=len(Mdic[tuple ([3]+ list(pr))])
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283 imagenes [3,2,pr ,(s,t,u)]=[ sigma+pi_0 +(t -1)* theta_1 +(s -1)* omega_1 +(u -1)*
phi_1 ,-sigma -pi_0 +(s -1)* theta_2 +(t -1)* omega_2 +(u -1)*phi_2 , sigmah +pi_0h
+(t -1)* theta_1h +(s -1)*omega_1h ,-sigmah -pi_0h +(s -1)* theta_2h +(t -1)*
omega_2h ,mu+(s -1)* alpha_1 +(s*u -1)* beta_1 +theta_1 -theta_1h , lambda_0 +(t
-1)* alpha_2 +(t*u -1)* beta_2 +theta_2 -theta_2h ,- lambda_0 +(1-t)* alpha_1 +(1-
t*u)* beta_1 +omega_1 -omega_1h ,-mu+(1-s)* alpha_2 +(1-s*u)* beta_2 +omega_2 -
omega_2h ,-kappa +(s-t)* beta_1 +phi_1 , kappa -(s-t)* beta_2 +phi_2 ,s*lambda_0
-t*mu -kappa+sigma -sigmah ,mu+u*kappa - lambda_0 +pi_0 -pi_0h]

284 imagenes [3,2,pr ,(t,u)]=[ M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,zeta_1 ,M2 (0) ,M2
(0) ,M2 (0) ,M2 (0) ,M2 (0)]

285 imagenes [3,2,pr ,(s,u)]=[ M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,zeta_2 ,M2
(0) ,M2 (0) ,M2 (0) ,M2 (0)]

286 imagenes [3,2,pr ,(s,t)]=[ M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,M2 (0) ,
eta_1 ,eta_2 ,M2 (0) ,M2 (0)]

287 imagenes [3,2,pr ,(u,)]=mm*[M2 (0)]
288 imagenes [3,2,pr ]=[ sum ([_[i] for _ in [ imagenes [3,2,pr ,cl] for cl in claves

]]) for i in range(mm)]
289 pr=(t,u)
290 mm=len(Mdic[tuple ([3]+ list(pr))])
291 imagenes [3,2,pr ,(s,t,u)]=mm*[M2 (0)]
292 imagenes [3,2,pr ,(t,u)]=mm*[M2 (0)]
293 imagenes [3,2,pr ,(s,u)]=mm*[M2 (0)]
294 imagenes [3,2,pr ,(s,t)]=mm*[M2 (0)]
295 imagenes [3,2,pr ,(u,)]=mm*[M2 (0)]
296 imagenes [3,2,pr ]=[ sum ([_[i] for _ in [ imagenes [3,2,pr ,cl] for cl in claves

]]) for i in range(mm)]
297 pr=(s,u)
298 mm=len(Mdic[tuple ([3]+ list(pr))])
299 imagenes [3,2,pr ,(s,t,u)]=mm*[M2 (0)]
300 imagenes [3,2,pr ,(t,u)]=mm*[M2 (0)]
301 imagenes [3,2,pr ,(s,u)]=mm*[M2 (0)]
302 imagenes [3,2,pr ,(s,t)]=mm*[M2 (0)]
303 imagenes [3,2,pr ,(u,)]=mm*[M2 (0)]
304 imagenes [3,2,pr ]=[ sum ([_[i] for _ in [ imagenes [3,2,pr ,cl] for cl in claves

]]) for i in range(mm)]
305 pr=(s,t)
306 mm=len(Mdic[tuple ([3]+ list(pr))])
307 imagenes [3,2,pr ,(s,t,u)]=mm*[M2 (0)]
308 imagenes [3,2,pr ,(t,u)]=mm*[M2 (0)]
309 imagenes [3,2,pr ,(s,u)]=mm*[M2 (0)]
310 imagenes [3,2,pr ,(s,t)]=mm*[M2 (0)]
311 imagenes [3,2,pr ,(u,)]=mm*[M2 (0)]
312 imagenes [3,2,pr ]=[ sum ([_[i] for _ in [ imagenes [3,2,pr ,cl] for cl in claves

]]) for i in range(mm)]
313 pr=(u,)
314 mm=len(Mdic[tuple ([3]+ list(pr))])
315 imagenes [3,2,pr ,(s,t,u)]=mm*[M2 (0)]
316 imagenes [3,2,pr ,(t,u)]=mm*[M2 (0)]
317 imagenes [3,2,pr ,(s,u)]=mm*[M2 (0)]
318 imagenes [3,2,pr ,(s,t)]=mm*[M2 (0)]
319 imagenes [3,2,pr ,(u,)]=mm*[M2 (0)]
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320 imagenes [3,2,pr ]=[ sum ([_[i] for _ in [ imagenes [3,2,pr ,cl] for cl in claves
]]) for i in range(mm)]

321 imagenes [3 ,2]= flatten ([ imagenes [3,2,_] for _ in claves ])
322 delta3 =M3.hom( imagenes [3,2],M2)
323 A[3]= delta3 . matrix ()
324 A3=A[3]
325
326 # In[ ]:
327
328
329 show(A3)
330
331 # In[ ]:
332
333
334 latex(A3)
335
336 # In[ ]:
337
338
339 for pr in tupleclaves :
340 clpr= clavevar [pr]
341 sbs ={vr:1 for vr in (s,t,u) if vr not in pr}
342 pr0= flatten ([ Ldic[tuple ([2]+ list(_))] for _ in clpr ])
343 A[3,pr]= Matrix ( flatten ([ imagenes [3,2,_] for _ in clpr ])).

matrix_from_columns (pr0).subs(sbs). change_ring ( anillos [pr])
344
345 # The last module , $M_4$ , is generated by $\Xi_1 ,\Xi_2 ,\ Upsilon$ :
346 #
347 # $$M_4=R_{a,b,c}\ langle \Xi_1 ,\ Xi_2\ rangle \oplus R_{a,b,c}/(t-1,s -1)\ langle

\ Upsilon \ rangle$$
348 #
349 # In this case we don ’t insert the differential correctly because it

involves
350 # a polynomial on $a ,b$. In fact ,
351 #
352 # $$\ partial_4 (\ Upsilon )=\ frac {(t^a -1)(s^b -1) }{(t -1)(s -1) }\ left (\ hat {\ Psi}

_1+\ hat {\ Psi}_2\right)$$
353
354 # In[ ]:
355
356
357 M4=M[4]
358 Xi_1 ,Xi_2 , Upsilon =M4.gens ()
359 Mdic. update ({(4 ,s,t,u):[Xi_1 ,Xi_2], (4,t,u):[], (4,s,u):[], (4,s,t):[], (4,

u):[ Upsilon ]})
360 i=0
361 for _ in claves :
362 cl=tuple ([4]+ list(_))
363 j=len(Mdic[cl])
364 Ldic[cl]= range(i,i+j)
365 i=i+j

175



Appendix C Code for the Calculation of the Complex Homology

366
367 # In[ ]:
368
369
370 pr=(s,t,u)
371 mm=len(Mdic[tuple ([4]+ list(pr))])
372 imagenes [4,3,pr ,(s,t,u)]=[ Sigma_0 +Pi_0 +(t -1)* Theta_1 +(s -1)* Omega_1 +(u -1)*

Phi_1 -Psi_1+Psi_1h ,-Sigma_0 -Pi_0 +(s -1)* Theta_2 +(t -1)* Omega_2 +(u -1)*
Phi_2 -Psi_2+ Psi_2h ]

373 imagenes [4,3,pr ,(t,u)]=mm*[M3 (0)]
374 imagenes [4,3,pr ,(s,u)]=mm*[M3 (0)]
375 imagenes [4,3,pr ,(s,t)]=mm*[M3 (0)]
376 imagenes [4,3,pr ,(u,)]=mm*[M3 (0)]
377 imagenes [4,3,pr ]=[ sum ([_[i] for _ in [ imagenes [4,3,pr ,cl] for cl in claves

]]) for i in range(mm)]
378 pr=(t,u)
379 mm=len(Mdic[tuple ([4]+ list(pr))])
380 imagenes [4,3,pr ,(s,t,u)]=mm*[M3 (0)]
381 imagenes [4,3,pr ,(t,u)]=mm*[M3 (0)]
382 imagenes [4,3,pr ,(s,u)]=mm*[M3 (0)]
383 imagenes [4,3,pr ,(s,t)]=mm*[M3 (0)]
384 imagenes [4,3,pr ,(u,)]=mm*[M3 (0)]
385 imagenes [4,3,pr ]=[ sum ([_[i] for _ in [ imagenes [4,3,pr ,cl] for cl in claves

]]) for i in range(mm)]
386 pr=(s,u)
387 mm=len(Mdic[tuple ([4]+ list(pr))])
388 imagenes [4,3,pr ,(s,t,u)]=mm*[M3 (0)]
389 imagenes [4,3,pr ,(t,u)]=mm*[M3 (0)]
390 imagenes [4,3,pr ,(s,u)]=mm*[M3 (0)]
391 imagenes [4,3,pr ,(s,t)]=mm*[M3 (0)]
392 imagenes [4,3,pr ,(u,)]=mm*[M3 (0)]
393 imagenes [4,3,pr ]=[ sum ([_[i] for _ in [ imagenes [4,3,pr ,cl] for cl in claves

]]) for i in range(mm)]
394 pr=(s,t)
395 mm=len(Mdic[tuple ([4]+ list(pr))])
396 imagenes [4,3,pr ,(s,t,u)]=mm*[M3 (0)]
397 imagenes [4,3,pr ,(t,u)]=mm*[M3 (0)]
398 imagenes [4,3,pr ,(s,u)]=mm*[M3 (0)]
399 imagenes [4,3,pr ,(s,t)]=mm*[M3 (0)]
400 imagenes [4,3,pr ,(u,)]=mm*[M3 (0)]
401 imagenes [4,3,pr ]=[ sum ([_[i] for _ in [ imagenes [4,3,pr ,cl] for cl in claves

]]) for i in range(mm)]
402 pr=(u,)
403 mm=len(Mdic[tuple ([4]+ list(pr))])
404 imagenes [4,3,pr ,(s,t,u)]=[ Psi_1h + Psi_2h ]
405 imagenes [4,3,pr ,(t,u)]=mm*[M3 (0)]
406 imagenes [4,3,pr ,(s,u)]=mm*[M3 (0)]
407 imagenes [4,3,pr ,(s,t)]=mm*[M3 (0)]
408 imagenes [4,3,pr ,(u,)]=mm*[M3 (0)]
409 imagenes [4,3,pr ]=[ sum ([_[i] for _ in [ imagenes [4,3,pr ,cl] for cl in claves

]]) for i in range(mm)]
410 imagenes [4 ,3]= flatten ([ imagenes [4,3,_] for _ in claves ])
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411 delta4 =M4.hom( imagenes [4,3],M3)
412 A[4]= delta4 . matrix ()
413 A4=A[4]
414
415 # In[ ]:
416
417
418 for pr in tupleclaves :
419 clpr= clavevar [pr]
420 sbs ={vr:1 for vr in (s,t,u) if vr not in pr}
421 pr0= flatten ([ Ldic[tuple ([3]+ list(_))] for _ in clpr ])
422 A[4,pr]= Matrix ( flatten ([ imagenes [4,3,_] for _ in clpr ])).

matrix_from_columns (pr0).subs(sbs). change_ring ( anillos [pr])
423
424 # In[ ]:
425
426
427 #P=AN((t^var_a -1) *(s^var_b -1) /(t -1) /(s -1))
428
429 # In[ ]:
430
431
432 for j in [1..4]:
433 A[j ,() ]=A[j](t=1,s=1,u=1). change_ring (QQ)
434
435 # In the following cell we have the dimensions of the matrices of the
436 # differentials in the case $(\zeta ,\xi ,\mu)=(1 ,1 ,1)$.
437 #
438 # > $\dim C_0 =8,\dots ,\ dim C_4 =3$
439
440 # In[ ]:
441
442
443 for j in [1..4]:
444 print A[j ,() ]. dimensions ()
445
446 # In the following cell we have the ranks of the matrices : 7,16,9,3
447
448 # In[ ]:
449
450
451 k=A[1 ,() ]. ncols ()
452 for j in [1 ,2 ,3 ,4]:
453 mat=A[j ,()]
454 #print "Rango de C",0,":", mat.ncols ()
455 print "Rango del ker de delta",j-1,":",k
456 print "Rango de la imagen de delta",j,":",mat.rank ()
457 k=mat.nrows ()-mat.rank ()
458
459 # In[ ]:
460
461
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462 [( mat.rank (),mat.ncols ()) for mat in [A[j ,()] for j in [4 ,3 ,2 ,1]]]
463
464 # The following cell examines the $(\zeta ,\xi ,\mu)=(\ zeta ,1 ,1)$, with
465 # $\zeta\neq 1$.
466 #
467 # In this case $\dim C_j =6 ,20 ,24 ,12 ,2$ para $j=0,\dots ,4$
468 #
469 # Here we interpret the matrices of $\ delta_j$ as having values in
470 # $\ mathbb {C}[s]$.
471 #
472 # The results below state that the ranks of these matrices are:
473 # $6 ,14 ,12 ,2$, independently of the value of $s\neq 1$.
474 #
475 # Therefore , the dimensions of the kernels are: $14 ,10 ,2 ,0$.
476
477 # In[ ]:
478
479
480 pr=(s,)
481 Maux =[A[_,pr] for _ in [4 ,3 ,2 ,1]]
482 Saux =[ mat. smith_form () for mat in Maux]
483 for mat in Saux:
484 aux =[ mat [0][j,j] for j in range(min(mat [0]. dimensions ()))]
485 print aux ,len ([_ for _ in aux if _!=0]) ,mat [0]. dimensions ()
486
487 # Similarly for $(\zeta ,\xi ,\mu)=(1 ,\xi ,1)$, con $\xi\neq 1$.
488
489 # In[ ]:
490
491
492 pr=(t,)
493 Maux =[A[_,pr] for _ in [4 ,3 ,2 ,1]]
494 Saux =[ mat. smith_form () for mat in Maux]
495 for mat in Saux:
496 aux =[ mat [0][j,j] for j in range(min(mat [0]. dimensions ()))]
497 print aux ,len ([_ for _ in aux if _!=0]) ,mat [0]. dimensions ()
498
499 # The following cell examines the $(\zeta ,\xi ,\mu)=(1 ,1 ,\ mu)$, with
500 # $\mu\neq 1$.
501 #
502 # In this case $\dim C_j =5 ,18 ,23 ,12 ,3$ para $j=0,\dots ,4$
503 #
504 # Here we interpret the matrices $\ delta_j$ as having values in
505 # $\ mathbb {C}[u]$.
506 #
507 # The results below state that the ranks of these matrices are:
508 # $5 ,13 ,9 ,3$, independently of the value of $s\neq 1$.
509 #
510 # Therefore , the dimensions of the kernels are: $13 ,10 ,3 ,0$.
511 #
512 # For this sequence all the homology groups but $H_2$ are trivial . Since
513 # this happens for $m -1$ roots of unity , we have found an $m -1$- dimensional
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514 # subspace of $H_2$ .
515
516 # In[ ]:
517
518
519 pr=(u,)
520 Maux =[A[_,pr] for _ in [4 ,3 ,2 ,1]]
521 Saux =[ mat. smith_form () for mat in Maux]
522 for mat in Saux:
523 aux =[ mat [0][j,j] for j in range(min(mat [0]. dimensions ()))]
524 print aux ,len ([_ for _ in aux if _!=0]) ,mat [0]. dimensions ()
525
526 # In[ ]:
527
528
529 def smith2 (A):
530 dg =[]
531 pvt=True
532 B=copy(A)
533 while pvt and min(B. dimensions ()) >=0:
534 U=B.list ()
535 U0=[v. degree () ==0 for v in U]
536 pvt=not prod ([ not v for v in U0])
537 if not pvt:
538 return [dg ,B]
539 k=ZZ(U0.index(True))
540 i,j=k. quo_rem (B.ncols ())
541 B. swap_rows (0,i)
542 B. swap_columns (0,j)
543 for i in range (1,B.nrows ()):
544 B. add_multiple_of_row (i,0,-B[i ,0]/B[0 ,0])
545 for j in range (1,B.ncols ()):
546 B. add_multiple_of_column (j,0,-B[0,j]/B[0 ,0])
547 dg. append (B[0 ,0])
548 B=B. delete_rows ([0]). delete_columns ([0])
549
550 # In[ ]:
551
552
553 def smith2var (A,pr):
554 dg ,B= smith2 (A)
555 an= anillos [pr]
556 for i in range(B.nrows ()):
557 Bi=B[i]
558 mcd=gcd(Bi.list ())
559 for vv in pr:
560 if an(vv -1). divides (mcd):
561 Bi1=Bi. change_ring (an. fraction_field ())
562 Bi2=Bi1/an(vv -1)
563 Bi=Bi2. change_ring (an)
564 B[i]=Bi
565 for i in range(B.ncols ()):
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566 Bi=B. column (i)
567 mcd=gcd(Bi.list ())
568 for vv in pr:
569 if an(vv -1). divides (mcd):
570 Bi1=Bi. change_ring (an. fraction_field ())
571 Bi2=Bi1/an(vv -1)
572 Bi=Bi2. change_ring (an)
573 for j in range(B.nrows ()):
574 B[j,i]=Bi[j]
575 dg1 ,B1= smith2 (B)
576 return dg+dg1 ,B1
577
578 # The following cell examines the $(\zeta ,\xi ,\mu)=(\ zeta ,\xi ,1)$, with
579 # $\zeta ,\xi\neq 1$.
580 #
581 # In this case $\dim C_j =4 ,17 ,23 ,12 ,2$ para $j=0,\dots ,4$
582 #
583 # Here we interpret the matrices $\ delta_j$ as having values in
584 # $\ mathbb {C}[s,t]$ for which the Smith form does not need to exist ,
585 # but we can apply elementary operations .
586 #
587 # The results below state that the ranks of these matrices are:
588 # $4 ,13 ,10 ,2$, independently of the value of $s ,t\neq 1$.
589 #
590 # Something similar happens for the cases $(\zeta ,\xi ,\mu)=(\ zeta ,1,\mu)$,

with
591 # $\zeta ,\mu\neq 1$ and $(\zeta ,\xi ,\mu)=(1 ,\xi ,\mu)$, with $\xi ,\mu\neq 1$

.
592
593 # In[ ]:
594
595
596 pr=(s,t)
597 Maux =[A[_,pr] for _ in [1..4]]
598 for i in [1..4]:
599 n0 ,m0=Maux[i -1]. dimensions ()
600 print " ******************************* "
601 dg ,SM= smith2 (Maux[i -1])
602 dg1 ,SM1= smith2var (SM ,pr)
603 print "Rango de M",i-1,": ",m0
604 print "Rango de M",i,": ",n0
605 print " diagonalizado en delta",i,": ",dg+dg1 ,len(dg+dg1)
606 if SM1 !=0:
607 print "parte no diagonalizada de delta",i,": ",show(SM1)
608 print " ******************************* "
609 print "\n"
610
611 # In[ ]:
612
613
614 pr=(s,u)
615 Maux =[A[_,pr] for _ in [1..4]]
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616 for i in [1..4]:
617 n0 ,m0=Maux[i-i]. dimensions ()
618 print " ******************************* "
619 dg ,SM= smith2 (Maux[i -1])
620 dg1 ,SM1= smith2var (SM ,pr)
621 print "Rango de M",i-1,": ",m0
622 print "Rango de M",i,": ",n0
623 print " diagonalizado en delta",i,": ",dg+dg1 ,len(dg+dg1)
624 if SM1 !=0:
625 print "parte no diagonalizada de delta",i,": ",show(SM1)
626 print " ******************************* "
627 print "\n"
628
629 # In[ ]:
630
631
632 pr=(t,u)
633 Maux =[A[_,pr] for _ in [1..4]]
634 for i in [1..4]:
635 n0 ,m0=Maux[i-i]. dimensions ()
636 print " ******************************* "
637 dg ,SM= smith2 (Maux[i -1])
638 dg1 ,SM1= smith2var (SM ,pr)
639 print "Rango de M",i-1,": ",m0
640 print "Rango de M",i,": ",n0
641 print " diagonalizado en delta",i,": ",dg+dg1 ,len(dg+dg1)
642 if SM1 !=0:
643 print "parte no diagonalizada de delta",i,": ",show(SM1)
644 print " ******************************* "
645 print "\n" -1, -1, -1, -1
646
647 # The following cell examines the $(\zeta ,\xi ,\mu)=(\ zeta ,\xi ,\mu)$, with
648 # $\zeta ,\xi ,\mu\neq 1$.
649 #
650 # In this case $\dim C_j =1 ,12 ,21 ,12 ,2$ para $j=0,\dots ,4$
651 #
652 # Here we interpret the matrices $\ delta_j$ as having values in
653 # $\ mathbb {C}[s,t,u]$ for which the Smith form does not need to exist ,
654 # # but we can apply elementary operations .
655 #
656 # The results below state that the ranks of these matrices are:
657 # $\ delta_1 :1$, 4, $\ delta_3 :3$, $\ delta_4 :2$, independently of
658 # the value of $s ,t,u\neq 1$. But $\ delta_2$ has rank 10 if $t=s$ and rank
659 # 11 if $t\neq s$. This happens in $(d -1)(m -1)$ cases , $d=\ gcd(a,b)$.
660 #
661 # It can be calculated that $H_2 ,H_1$ has rank $1$ if $s=t$; and zero
662 # in any other case.
663
664 # In[ ]:
665
666
667 pr=(s,t,u)
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668 Maux =[A[_,pr] for _ in [1..4]]
669 for i in [1..4]:
670 n0 ,m0=Maux[i -1]. dimensions ()
671 print " ******************************* "
672 dg ,SM= smith2 (Maux[i -1])
673 dg1 ,SM1= smith2var (SM ,pr)
674 print "Rango de M",i-1,": ",m0
675 print "Rango de M",i,": ",n0
676 print " diagonalizado en delta",i,": ",dg+dg1 ,len(dg+dg1)
677 if SM1 !=0:
678 print "parte no diagonalizada de delta",i,": "
679 show(SM1)
680 print " ******************************* "
681 print "\n"
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