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Introduction: 

Candida albicans is a commensal fungus in humans which causes different infections 

ranging from superficial to systemic. Invasive candidiasis is an important cause of 

disease and mortality in immunocompromised patients. The ability to switch from yeast 

to hypha growth is essential for virulence in C. albicans which express distinct cell 

surface proteins in these stages. The cell surface is the most external structure and the 

initial point of contact between the fungus and the host. Surface proteins play an 

important role in the structural integrity of the cell, adherence and invasion of host cells. 

One of these proteins is Ecm33, a glycosylphosphatidylinositol (GPI)-linked cell wall 

protein. The absence of this protein affects both yeast and hypha morphology and 

results in an aberrant wall structure and reduced virulence in vitro and in vivo.  

The C. albicans secreted proteins are also relevant in host-pathogen interaction. 

C. albicans secretes many important proteins involved in different processes, including 

biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Some 

secreted proteins, such as secreted aspartyl proteinases (Sap) and phospholipase B (Plb) 

families have been detected in the cell wall since they must pass through it to be 

secreted. These proteins have an amino-terminal signal peptide that is responsible for 

directing them into the classical secretory pathway. Furthermore, close to one-third of 

extracellular proteins identified in the C. albicans secretome do not possess a secretion 

signal. These proteins lacking the N-linked signal peptide should use alternative routes 

of exportation. Extracellular vesicles (EVs) have been described as a mechanism of 

molecular traffic across the cell wall to the extracellular space in fungi. All fungal 

species studied to date were apparently able to use EVs as a general mechanism of 

molecular traffic to transport intracellular proteins across the cell wall.  

Objectives: 

The present study is focused on 4 different aims: 

1. The analysis of the function and importance in virulence of 17 proteins of 

unknown function identified at the cell surface of the C. albicans by the 

phenotypic analysis of the corresponding deletion mutants. 
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2. The proteomic study of the C. albicans SC5314 secretome including 

extracellular vesicles and extracellular vesicle-free secretome. 

3. The proteomic analysis of C. albicans ecm33 mutant (RML2U) secretome 

including extracellular vesicles and extracellular vesicle-free secretome and the 

comparative analysis with the SC5314 data. 

4. The analysis of the function of Ecm33 cell wall protein in C. albicans by an 

extensive phenotypic analysis of the RML2U mutant. 

Results: 

In the first chapter, the study of 17 proteins of unknown function identified by 

C. albicans cell shaving was tackled. The different phenotypic analysis of the 

corresponding deletion mutants allowed the identification of four proteins involved in 

oxidative, osmotic and cell wall stress resistance, in yeast to hypha transition and in the 

ability to damage and invade oral epithelial cells. These are the putative NADH-

ubiquinone-related proteins, Ali1, Mci4, Orf19.287 and Orf19.7590. Other four 

proteins, Pst3, Orf19.3060, Orf19.5352 and Tos1, were found to be involved in cell wall 

integrity and in C. albicans engulfment by murine macrophages. However, none of 

these last four proteins were involved in virulence during experimental murine 

oropharyngeal candidiasis.  

The second chapter describes the proteomic study of the extracellular media of 

C. albicans or secretome. The cell-free culture supernatant was separated into EVs and 

EV-free supernatant and analyzed by liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). This approach allowed the identification of 96 proteins, including 75 and 

61 proteins detected in EVs and EV-free supernatant, respectively. All the identified 

proteins involved in cell metabolism or in the exocytosis and endocytosis process were 

exclusively detected in EVs. In addition, cell wall-related proteins and membrane 

proteins, including GPI-anchored proteins, are transported by the EVs. Most of the 

proteins detected in the EV-free supernatant were classical secretory proteins with 

predicted N-terminal signal peptide (more than 90% of the proteins identified), 

including cell wall and secreted pathogenesis related proteins. 
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The third chapter includes the proteomic analysis of the EVs and EV-free supernatant of 

the ecm33 mutant RML2U. A total of 170 proteins were identified, corresponding 114 

and 154 proteins to the EV-free supernatant and EVs, respectively. In this case, the 

proteins more represented in both samples were cell-wall related and metabolic proteins. 

RML2U showed altered the formation of EVs. Also, the pattern of proteins secreted by 

the classical secretion pathway was affected. Specifically, the secretion of the secreted 

aspartyl proteinase 2 (Sap2) was compromised but not its intracellular expression. The 

secretion of other members of the Sap family was not affected. The RML2U growth 

was compromised in bovine serum albumin (BSA) medium that induces the Sap2 

expression and secretion. Because of the relation of Sap2 expression to TOR pathway, 

the sensitivity of RML2U to rapamycin (the inhibitor of Target Of Rapamycin kinase) 

was tested and found to be enhanced, connecting Ecm33 with the TOR pathway. 

The last chapter of this thesis was the characterization of the Ecm33 protein by an 

extensive phenotypic study of the RML2U mutant strain. This study revealed that 

RML2U displays defects in cell wall regeneration, hypersensitivity to high 

temperatures, oxidative and osmotic stress-inducing agents. Morphological defects were 

observed in RML2U, such as abnormal cell morphologies, irregular septa distribution, 

nuclear disorganization and actin patches with unusual distribution in the cell. The 

abnormal actin and DNA distribution points to a possible arrest in cell cycle. In 

addition, RML2U presents short chronological lifespan, which connects again with 

TOR pathway. Furthermore, a new “veil growth” never described in C. albicans was 

observed in RML2U static stationary cultures after long periods. A film of yeast cells 

covers the surface of the liquid culture. The cells observed in this film were giant round 

cells with translucent cytoplasm, with large cell wall and large vacuoles. The cornmeal 

medium mimics the type of cells observed in the veil. In addition, a host-pathogen 

interaction was performed with murine macrophages. RML2U caused less damage to 

macrophages and its death response to macrophage was different than the wild type. 

Conclusions: 

Four new proteins detected in yeast and hypha cell surface, corresponding to putative 

NADH-ubiquinone proteins, are involved in cell wall integrity, yeast to hypha 

transition, stress response and host-pathogen interaction: Ali1, Mci4, Orf19.287 and 

Orf19.7590. Other four proteins, Pst3, Tos1, Orf19.3060 and Orf19.5352 are involved 
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in the maintenance of cell wall integrity and in the C. albicans engulfment by 

macrophages. 

The proteomic analysis of EVs and EV-free supernatant of C. albicans allowed the 

proposal of a model for protein secretion in the studied conditions based on the concept 

that proteins in the EV-free medium are secreted by the classical secretory pathway, and 

the EVs that might be formed from the plasma membrane carry cytoplasmic proteins 

and cell wall-related proteins. Thus, the EVs are the most important mechanism used by 

C. albicans to secrete proteins without predicted N-terminal signal peptide. 

The deletion of ECM33 affects the EVs morphology and their protein content. The 

classical secretion pathway is also altered, increasing the number of proteins secreted. 

However, the secretion of Sap2 is specifically compromised in RML2U, suggesting a 

different mechanism of Sap2 secretion. This result, together to the hypersensitivity to 

rapamycin and the reduced chronological life span showed by RML2U mutant, 

indicates a relation between Ecm33 and the TOR pathway. 

RML2U presents morphological defects and it is sensitive to high temperatures and to 

oxidative and osmotic stress-inducing agents. This mutant is able to growth as a “veil 

growth” which is a new growth stage never described for C. albicans with giant round 

cells with translucent cytoplasm. This form of growth is probably the RML2U 

adaptation to survive in extreme environmental conditions. 
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Introducción: 

Candida albicans es un importante patógeno oportunista en humanos, que puede causar 

distintos tipos de infecciones, desde micosis superficiales hasta sistémicas. La 

candidiasis invasiva es una enfermedad que puede causar mortalidad en pacientes 

inmunocomprometidos. Para causar daño en el hospedador, C. albicans cuenta con una 

serie de factores de virulencia. Entre ellos destaca la capacidad de cambiar su forma de 

crecimiento de levadura a hifa. La superficie celular es la estructura más externa de la 

célula y el punto de contacto entre el hongo y el hospedador. Las proteínas de superficie 

tienen un papel importante en la integridad estructural de la célula y en la adherencia e 

invasión de células del hospedador. Una de las proteínas localizadas en la superficie 

celular es Ecm33, una proteína de pared celular con anclaje glicosilfosfatidilinositol 

(GPI). La deleción de esta proteína afecta a la morfología tanto de levaduras como de 

hifas, dando como resultado células con la pared celular alterada y virulencia reducida 

tanto en condiciones in vitro como in vivo. 

El secretoma o las proteínas secretadas por C. albicans son también relevantes en la 

interacción patógeno-hospedador. C. albicans secreta muchas proteínas importantes 

relacionadas con diferentes procesos, entre los que se incluyen la formación de biofilms, 

la adquisición de nutrientes y el mantenimiento de la integridad de la pared celular. 

Muchas de estas proteínas secretadas, como las pertenecientes a las familias de aspartil 

proteasas (Sap) y la familia de fosfolipasas B (Plb), también han sido detectadas en la 

pared celular, ya que deben pasar a través de ella en su tránsito hacia el medio 

extracelular. Estas proteínas tienen un péptido señal en el extremo N-terminal que es el 

responsable de dirigirlas a la ruta clásica de secreción. Sin embargo, cerca de un tercio 

de las proteínas identificadas en el medio extracelular de C. albicans no poseen dicho 

péptido señal en su secuencia. Estas proteínas deben utilizar una ruta alternativa de 

secreción. Las vesículas extracelulares han sido descritas como un mecanismo para el 

tráfico de moléculas al espacio extracelular a través de la pared celular en hongos. 

Todas las especies fúngicas en las que se han estudiado dichas vesículas son capaces de 

usarlas como mecanismo general de transporte de proteínas intracelulares a través de la 

pared celular. 
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Objetivos: 

Los objetivos concretos de este trabajo son los siguientes: 

1. Análisis de la función e implicación en virulencia de 17 proteínas identificadas 

en la superficie de C. albicans con función desconocida mediante el análisis 

fenotípico de los mutantes delecionados en los genes correspondientes. 

 

2. Estudio proteómico del secretoma de la cepa SC5314 de C. albicans incluyendo 

las vesículas extracelulares y el secretoma libre de vesículas. 

 

3. Estudio proteómico del secretoma del mutante ecm33 de C. albicans (RML2U) 

incluyendo las vesículas extracelulares y el secretoma libre de vesículas y su 

análisis comparativo con los datos de la cepa SC5314. 

 

4. Análisis de la función de la proteína de pared celular Ecm33 de C. albicans 

mediante un análisis fenotípico exhaustivo del mutante RML2U. 

Resultados: 

En el primer capítulo se ha llevado a cabo el estudio de 17 proteínas de función 

desconocida identificadas en la superficie celular de C. albicans. Se realizaron 

diferentes análisis fenotípicos con los mutantes carentes de las proteínas seleccionadas 

que permitieron la identificación de cuatro proteínas relacionadas con la resistencia a 

estrés osmótico, oxidativo y a daño en la pared celular, con la transición levadura-hifa y 

con la habilidad para dañar e invadir células del epitelio oral. Estas cuatro proteínas, 

Ali1, Mci4, Orf19.287 y Orf19.7590, están descritas como posibles NADH-ubiquinona 

oxidorreductasas o deshidrogenasas. Los mutantes carentes de las proteínas Pst3, 

Orf19.3060, Orf19.5352 y Tos1, mostraron fenotipos relacionados con la integridad de 

la pared celular y la fagocitosis de C. albicans por los macrófagos murinos. Sin 

embargo, ninguna de estas cuatro últimas proteínas está implicada en virulencia en el 

modelo murino de candidiasis orofaríngea. 

El segundo capítulo describe el estudio proteómico del medio extracelular de 

C. albicans. El sobrenadante del cultivo libre de células fue separado en vesículas 

extracelulares y sobrenadante libre de vesículas, y fue analizado por cromatografía 
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líquida seguida de espectrometría de masas en tándem (LC-MS/MS). Esta aproximación 

permitió la identificación de 96 proteínas, incluyendo 75 proteínas detectadas en 

vesículas extracelulares y 61 proteínas identificadas en el sobrenadante libre de 

vesículas. Todas las proteínas identificadas relacionadas con el metabolismo celular o 

con los procesos de exocitosis y endocitosis fueron exclusivamente detectadas en las 

vesículas extracelulares. Además, algunas proteínas relacionadas con la pared celular y 

las proteínas de membrana, incluyendo las proteínas de anclaje GPI, también son 

transportadas por las vesículas extracelulares. Respecto a las proteínas detectadas en el 

sobrenadante libre de vesículas, más del 90% presentan péptido señal para su entrada en 

la ruta de secreción de proteínas, entre las que se incluyen proteínas de pared celular y 

proteínas secretadas relacionadas con patogénesis. 

El tercer capítulo incluye el análisis proteómico de las vesículas extracelulares y del 

sobrenadante libre de vesículas del mutante en ecm33, RML2U. Se identificaron 170 

proteínas, correspondientes a 114 proteínas en el sobrenadante libre de vesículas y 154 

proteínas en las vesículas extracelulares. En este caso, las proteínas más representadas 

en ambas muestras fueron proteínas relacionadas con la pared celular y proteínas 

metabólicas. Se comprobó que RML2U tiene alterada la formación de vesículas 

extracelulares. Además, el patrón de proteínas secretadas por la ruta clásica de secreción 

también está afectado. Específicamente, RML2U es incapaz de secretar la aspartil 

proteasa 2 (Sap2), mientras que la secreción del resto de los miembros de la familia Sap 

no se ve afectada. El crecimiento de RML2U está comprometido en medio con 

albúmina de suero bovino, el cual induce la expresión y secreción de Sap2. Debido a la 

relación que existe entre la expresión de Sap2 y la ruta TOR (diana de la rapamicina), se 

analizó la sensibilidad de RML2U a rapamicina y se observó que RML2U es sensible a 

rapamicina, lo cual conecta a Ecm33 con la ruta TOR. 

El último capítulo de esta tesis fue la caracterización de la proteína Ecm33 mediante  un 

estudio fenotípico del mutante RML2U. Este estudio reveló que RML2U es sensible a 

altas temperaturas y a agentes que producen estrés osmótico y oxidativo, y tiene 

problemas para regenerar la pared celular. RML2U tiene defectos morfológicos, como 

morfologías aberrantes, distribución irregular de los septos, desorganización nuclear y 

parches de actina con distribución inusual en la célula. La distribución atípica de actina 

y del DNA señala a un posible fallo en el ciclo celular. Además, RML2U presenta una 
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longevidad menor que la de su cepa parental, lo cual apoya la relación de Ecm33 con la 

ruta TOR. Además, el “crecimiento en velo”, nunca descrito hasta la fecha en 

C. albicans, fue observado en cultivos de RML2U en fase estacionaria y estáticos tras 

largos periodos de tiempo. Este velo está compuesto por una película de células que 

cubre la superficie del cultivo líquido. Las células observadas en esta película son 

gigantes, redondas, con citoplasma transparente, gruesa pared celular y grandes 

vacuolas. El medio de cultivo de maíz genera células similares a las observadas en el 

velo. Por otra parte, se estudió la interacción del mutante RML2U con macrófagos 

murinos. RML2U causó menos daño a los macrófagos que la cepa silvestre y presentó 

un patrón de muerte diferente. 

Conclusiones: 

Cuatro nuevas proteínas detectadas en la superficie celular de C. albicans y descritas 

como posibles NADH-ubiquinona oxidorreductasas o deshidrogenasas, están implicadas 

en la resistencia a estrés osmótico, oxidativo y de pared celular, en la transición 

levadura-hifa y en la interacción con células de epitelio orofaríngeo: Ali1, Mci4, 

Orf19.287 y Orf19.7590. Otras cuatro proteínas, Pst3, Tos1, Orf19.3060 y Orf19.5352, 

están relacionadas con el mantenimiento de la integridad de la pared celular y con la 

fagocitosis por los macrófagos. 

El análisis proteómico del secretoma de C. albicans ha permitido proponer un modelo 

de mecanismos de secreción de proteínas basado en el concepto de que existen al menos 

dos rutas principales. Las proteínas identificadas en el medio libre de vesículas son 

secretadas mayoritariamente por la ruta clásica de secreción, y las vesículas 

extracelulares, posiblemente formadas a partir de la membrana plasmática, transportan 

las proteínas citoplasmáticas y de membrana, algunas de ellas relacionadas con la 

reorganización de la pared celular. Por lo tanto, las vesículas extracelulares constituyen 

el mecanismo más importante utilizado por C. albicans para secretar proteínas que no 

presentan péptido señal. 

La deleción de ECM33 afecta a la morfología y al contenido proteico de las vesículas 

extracelulares. El mutante RML2U también tiene alterada la ruta clásica de secreción, 

ya que secreta un número mayor de proteínas. Sin embargo, no es capaz de secretar 

específicamente Sap2, lo que sugiere un posible mecanismo de secreción distinto para 
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esta proteína. Estos resultados unidos a la hipersensibilidad de RML2U a rapamicina y 

su reducida longevidad indican que existe una relación entre Ecm33 y la ruta TOR.  

RML2U presenta defectos en su morfología y es sensible a las altas temperaturas, al 

estrés osmótico y al estrés oxidativo. El "crecimiento en velo" observado en cultivos 

estacionarios y estáticos de RML2U está formado por células gigantes, redondas y con 

citoplasmas transparente y representa una forma de crecimiento no descrita 

anteriormente en C. albicans, que puede estar relacionada con la adaptación y 

supervivencia en condiciones ambientales extremas. 
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1. Candida albicans and candidiasis 

Fungi are important organisms present everywhere, from the land to sea water or human 

mucosal. The number of fungi species estimated on the Earth is approximately 600.000, 

a 7% of the total number of eukaryotic species, but only 600 are known to cause 

disease, and some of them are human pathogens (Mora et al. 2011). Also, yeasts are part 

of the commensal fungi of the healthy population which are normally avirulent in 

healthy people but could cause important infections in diseased individuals. The most 

common opportunistic yeast infection in human is candidiasis, which involves the 

Candida species. More than 150 species of Candida were discovered, but only five of 

them are responsible of 90% of cases of candidemia: C. albicans, C. parapsilopsis, 

C. glabrata, C. tropicalis, and C. krusei. The world distribution in clinical isolates from 

invasive Candida infections shows geographic differences (Figure 1) (Calderone 2011, 

Guinea 2014, Klingspor et al. 2015). Out of them, C. albicans is still the most prevalent 

cause of candidaemia and invasive candidiasis, accounting for 50-70% of all cases 

(Quindos 2014, Yapar 2014).  

C. albicans is a polymorphic fungus capable of switching between different 

morphologies and adapting to nutritional and environmental situations. It is able to grow 

in distinct morphological states, such as yeast, pseudohypha, chlamydospore and true 

hypha, critical for its virulence and corresponding to an adaptative response to 

environmental changes (Figure 2). Hyphal cells are long, with parallel sides and no 

obvious constriction at the neck of the mother cell. The yeast form is characterized by 

its oval form and its role for dissemination through the blood stream. It is stimulated by 

lower temperatures and more acidic pH, absence of serum and high concentration of 

glucose. Pseudohyphae are elongated cells that fail to separate from the mother cell, 

producing filaments with retained constrictions at the septal junctions, which are 

considered to represent an intermediate form between yeast and true hyphal growth 

forms (Sudbery et al. 2004). Other morphologies comprise chlamydospores, large, 

thick-walled, spherical cells produced on specific nutrient-poor media without 

biological without biological function or role in life cycle identified until date (Staib and 

Morschhauser 2007). The biological function proposed is to allow survival in severe 

environmental conditions, but it remains to be demonstrated. 
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C. albicans is a common species in genitourinary and gastrointestinal tracts of healthy 

people, but it is also able to cause problems, mainly vaginal infections in woman. Also, 

it is responsible for mouth and mucocutaneous infections (Odds 1988, Calderone 2011). 

C. albicans acts as an opportunistic pathogen under certain conditions, such as in 

immunocompromised people who receive chemotherapy sessions, in HIV-infected 

people or diabetics, among others. Under these conditions it is able to cause a range of 

infections, from superficial to systemic candidiasis, making it the most prevalent fungal 

pathogen in humans. 

In the last years, an increase in the frequency of Candida infections has been observed, 

not only in immunocompromised patients, but also in the healthy population. This 

increase could be associated to the raise in the number of organ transplantations, the use 

of invasive devices, the use of broad-spectrum antibiotic therapies, the increase of 

immunocompromised persons, as well as other predisposing factors (Eggimann et al. 

2003, Martins et al. 2014). However, the mortality rate of candidaemia has decreased in 

both HIV infected and non-infected patients, which could be due to an early diagnosis, 

increased awareness and enhanced therapy (Quindos 2014).  

Figure 2. C. albicans morphological states. Yeast, true hypha, pseudohypha and 

chlamydospore. 
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2. C. albicans virulence factors 

Determinants of pathogenicity are called virulence factors and are described as the 

components of a microorganism that cause damage to the host (Casadevall and Pirofski 

1999). A virulence factor becomes evident when loss of this factor leads to the loss of 

virulence, and when restoring the factor brings back the virulence. When considering 

the case of C. albicans, it is able to regulate the expression of certain genes and their 

products as virulence factors to produce disease. One important aspect, is its ability to 

survive as a commensal in various anatomical sites, each with its own environmental 

stresses (Calderone and Fonzi 2001). The combination of host factors and the different 

expression of virulence factors described below, results in a successful C. albicans 

infection (Figure 3). 

 

2.1. Morphological transition 

As mentioned above, C. albicans is a polymorphic fungus, which is able to growth as 

yeast, as elongated cells with constricted septum (pseudohypha) or as true hypha. The 

ability to change between its yeast, hyphal and pseudohyphal morphologies is 

Figure 3. Overview of C. albicans pathogenicity mechanisms. Yeast-to -hypha 

transition, yeast adhesion to host cell surfaces, the attachment of yeast cells to abiotic or 

biotic surfaces rising to the formation of biofilms with yeast and hyphal cells, host 

evasion and secretion of fungal hydrolases to facilitate the mechanism of invasion. 
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considered to be important for virulence. The hyphal growth is induced under several 

environmental signs, like exposure to physiological temperature of 37 ºC, addition of 

serum, neutral to higher pH values, N-acetyl-D-glucosamine, 5% CO2, hypoxia and 

nutrient starvation (Eckert et al. 2007).  

The yeast to hypha transition is termed dimorphism. The ability to switch between the 

yeast to filamentous forms is considered to be crucial for its virulence. Little is known 

about the role of pseudophyphal form in virulence, but it is known that the mutants that 

are impaired to form hyphae under in vitro conditions are generally avirulent (Lo et al. 

1997). Yeast and hyphal morphologies have distinct and important roles during 

infection, being accepted that the yeast form is primarily involved in the dissemination 

into the bloodstream and the hyphae form is implicated in the invasion, damage and 

evasion of phagocytic cells (Saville et al. 2003).  

Cell cycle progression is different between yeast and hypha. The progression of the 

yeast and pseudophyphal cell cycle is not considerably different, except for the bud 

elongation and the failure of cells to completely separate after septum formation. The 

hyphal cell cycle is completely different to the others (Figure 4).  

The yeast to hypha transition involves various regulatory pathways that contribute to a 

different expression of cell surface proteins in both stages, that will be explained in the 

corresponding section. Many triggers for this morphological switch have been described 

and cited before. Quorum sensing (QS) is a cell-to-cell communication system regulated 

by cell density which also regulates morphogenesis. In C. albicans, QS was described 

after the observation that cell densities lower than 10
6
 cells/ml favor hyphal formation 

mediated by a QS molecule (QSM), Farnesol (Hornby et al. 2001). In addition to 

farnesol, other molecules like tyrosol, have been found to be C. albicans QSM that 

induced the yeast-to-hyphal shift (Kruppa 2009, Albuquerque and Casadevall 2012).  
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2.2. Adhesion 

The ability of C. albicans to adhere to the host tissue is considered essential in the early 

stages of colonization and tissue invasion. It is a complex multifactorial event that 

comprises a series of specific and non-specific mechanisms, which allow the yeast to 

attach to abiotic surfaces and to host cells. To achieve this it exposes surface proteins 

such as adhesins and many other pathogenic factors (Chaffin 2008). Adhesins are a 

specialized set of proteins expressed in C. albicans that mediate adherence. The best 

studied C. albicans adhesins are the agglutinin-like sequences (Als) proteins (Hoyer 

2001). The ALS genes encode a family of glycosylphosphatidylinositol (GPI)-linked cell 

surface proteins composed by eight members (Als1 to Als7 and Als9). The hypha-

associated protein Als3 is very important for adhesion and it is involved in the 

attachment to host cells, extracellular matrix proteins and biofilm formation on 

biomedical surfaces (Liu and Filler 2011). Another protein involved in cell-surface 

adhesion is the hyphal wall protein, Hwp1. A study with C. albicans hwp1 null mutant 

has shown reduced adherence and mortality in a murine model (Staab et al. 1999). Both 

Figure 4. Cell cycles progression in yeast, hypha and pseudohypha. Modified from 

Sudbery et al. (Sudbery et al. 2004, Martinez-Lopez et al. 2006). 
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proteins, Als3 and Hwp1, contribute to biofilm formation by acting as complementary 

adhesins (Nobile et al. 2008). 

Other interesting proteins have been related to adhesion, such as the integrin-like 

protein Int1, the GPI-linked proteins Eap1, Ecm33 and Iff4, the cell surface 

mannoprotein Mp65, the secreted aspartyl proteinases Sap9 and Sap10, and the α-1,2-

mannosyltransferase Mnt1 (Buurman et al. 1998, Calderone and Fonzi 2001, Sundstrom 

2002, Li and Palecek 2003, Albrecht et al. 2006, Martinez-Lopez et al. 2006, Kempf et 

al. 2007, Sandini et al. 2007). 

2.3. Biofilm formation 

C. albicans is able to growth in the form of free-living (planktonic) cells or biofilms. 

Biofilms are defined as structured microbial communities that are attached to a surface 

and surrounded by a selfproduced extracellular matrix (Costerton et al. 1995). In the last 

few decades there have been increased Candida-biofilm-related infections associated to 

medical implant devices because of their high resistance to antifungal treatment and 

their host defense mechanisms (Ramage et al. 2006). Once C. albicans has adhered to 

the medical devices and evaded the immune system of the patient, it can form biofilms 

that colonize the internal organs and medical implants, such as central venous or urinary 

catheters, artificial heart valves, prosthetic joints or dentures. C. albicans biofilms are 

formed in a sequential process including 4 steps (Figure 5) (Blankenship and Mitchell 

2006, Polke et al. 2015): 

1. Settlement and adhesion of yeast cells to the surface. 

2. Proliferation of the attached yeast cells. 

3. Maturation of the biofilm through development of hyphae and pseudohyphae 

and accumulation of extracellular matrix material. 

4. Dispersion and dissemination of yeast cells from the biofilm complex.  

The first phase of biofilm formation is the adherence of Candida to medical devices 

mediated by cell wall proteins. During this step, the adhesins seem to be important in 

the establishment of the first contact with the host cell and/or the surface of the inert 

material during the formation and development of the biofilm, e.g. Hwp1 and Als3. A 

real-time PCR expression profiling of genes encoding potential virulence factors in 
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C. albicans biofilms showed that HWP1 and the genes member of the ALS, SAP and 

LIP gene families are upregulated in various biofilm model systems (Nailis et al. 2010).  

 

 

The formation of the exopolymeric matrix, composed of polysaccharides, 

carbohydrates, proteins and other components, enables C. albicans to protect itself from 

the phagocytic cells, maintaining nutrients and serving as a barrier to the diffusion of 

drugs and substances toxic to the yeast. In fact, biofilms are more resistant to drugs and 

the host immune system because of its matrix, architecture, increased expression of drug 

efflux pumps and metabolic plasticity (Fanning and Mitchell 2012). In line with this, 

C. albicans has other drug resistance mechanisms, such as differential regulation of 

drug targets that block binding of the drug to the target, and reduced growth rate that 

decrease the antifungal efficacy (Mathe and Van Dijck 2013). The major heat shock 

protein Hsp90, required also for biofilm antifungal drug resistance, is involved in the 

dispersion in C. albicans biofilms (Robbins et al. 2011).  

2.4. Host evasion 

 

C. albicans employs multiple avenues to avoid the antimicrobial activity of the immune 

system by inhibiting recognition, trafficking and effectors release, as well as by 

overcoming important stresses (Cheng et al. 2012, Jimenez-Lopez and Lorenz 2013).  

The innate immune system recognizes C. albicans through pattern recognition receptors 

(PRRs) that detect pathogen-associated molecular patterns (PAMPs), being the most 

important the cell wall components (see section 3.1. C. albicans cell wall organization). 

C. albicans is able to evade the host innate system through different evasion strategies:  

a. Yeast-to-hypha transition. 

b. Passive epithelium invasion through Als3 recognition by oral epithelial cells.  

Figure 5. Stages in the C. albicans biofilm development. Sequence of steps in biofilm 

formation representing the categories listed at the text. 
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c. Shielding of PAMPs from PRRs. 

d. Inhibition or degradation of complement system. 

e. Inhibition of phagolysosome formation. 

f. Modulation of cytokine production by soluble factors.  

The binding of negative regulators of the complement cascade to the cell surface inhibit 

complement activation. All of these activities aim to reduce immune recognition of 

C. albicans (Meri et al. 2002, Meri et al. 2004, Gantner et al. 2005, Phan et al. 2007, 

Gropp et al. 2009, Cheng et al. 2012). 

2.5. Secreted hydrolases 

C. albicans expresses important families of secreted proteins, including proteases 

(Saps), lipases (Lips) and phospholipases (Plbs), which contribute to facilitate active 

penetration into the host cells and to enhance the efficiency of extracellular nutrient 

acquisition. The family of Saps comprises ten members, Sap1 through Sap10. Sap9 and 

Sap10 are retained at the cell surface via a GPI anchor while Sap1 to Sap8 are secreted 

into the extracellular media (Albrecht et al. 2006). Saps are involved in multiple 

processes, like degradation of proteins and nutrient uptake, but the relative contribution 

of Saps to C. albicans pathogenicity is controversial. Previous studies have shown that 

Sap1-3 are required for virulence in a mouse model of systemic infection and for 

damage of human epithelium in vitro (Hube et al. 1997, Schaller et al. 1999); but other 

results indicate that Saps are dispensable for these purposes (Lermann and 

Morschhauser 2008, Correia et al. 2010). However, recent study showed that 

C. albicans Saps interfere and inactivate host innate effector components, suggesting a 

role for these proteases in virulence (Gropp et al., 2009).  

The family of phospholipases includes four different classes (A, B, C and D). Their 

activity consists in tissue disruption and evasion contributing to pathogenecity 

(Niewerth and Korting 2001). The five members of class B (Plb1-5) contain a signal 

sequence for secretion to extracellular environment, and 3 out of them, Plb3, Plb4.5 and 

Plb5, have a putative GPI signal (Richard and Plaine 2007). Their role in virulence 

implies the ability to destroy the components of the host membranes. Of the Plb 

proteins, Plb1 appears to be the most important contributor to the virulence. The plb1 

null mutant is viable without an obvious phenotype or an effect on adherence to human 
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endothelial or epithelial cells. However, PLB1 gene is required for virulence in a murine 

model for hematogenously disseminated candidiasis and its reintroduction restores 

virulence in vivo (Leidich et al. 1998, Mukherjee et al. 2001).  

The third important family of secreted hydrolases is the lipase family. This family 

consists of 10 members (Lip1-10) containing an N-terminal signal for secretion (Fu et 

al. 1997, Hube et al. 2000). All of them have a role in C. albicans pathogenecity. The 

differential expression of the C. albicans LIP genes in human clinical specimens 

confirmed that the transcription of these genes depends on the stage of infection (Stehr 

et al. 2004). 

3. The external face of C. albicans:  the cell wall and secreted 

proteins 
 

3.1. C. albicans cell wall organization 

The cell wall of C. albicans is one of the most important organelles because it is the first 

site of contact between the cell and the environment. As the external structure of yeast, 

it plays a significant role in cell shape, physical strength, colonization and invasion of 

human tissues, in the adhesion to medical materials and to biofilm formation. In 

addition, the cell wall provides a protective barrier against a wide range of 

environmental conditions such as temperature, osmotic stress and oxidative stress. The 

cell wall is a layered structure composed of polysaccharides, chitin, β-1,3- and β-1,6- 

glucan, manann, and proteins (Figure 6). The cell wall integrity must be balanced and 

the loss of this integrity could result in sensitivity to environmental factors and it could 

affect the growth, morphology and viability of the yeast.   

The chitin and β-glucans are the main components of the skeletal inner layer of the cell 

wall, closer to the plasma membrane. The β-1,3-glucan is part of an ordered structure to 

which β-1,6-glucan and chitin are attached through their reducing ends.  The function of 

the β-1,3-glucan is to confer a degree of elasticity and tensile strength to the cell wall, 

functioning as the major cell wall building block. It is synthesized by the plasma 

membrane-associated enzyme β-1,3-glucan synthase, Fks1 (Mio et al. 1997). The β-1,3- 
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glucan contributes to 40% of the yeast cell wall dry weight increasing twice in hypha, 

being one of the most abundant cell wall components.  

 

 

The β-1,6-glucan has been shown to form cross-links with the β-1,3-glucan, chitin and 

the GPI anchor and it is an important component of the cell wall, representing around 

20% of its dry weight. The biosynthesis of this polysaccharide is carried out by Kre 

family and Skn1, the latter is induced upon induction of hyphal formation (Boone et al. 

1991, Mio et al. 1997, Lussier et al. 1998, Gilbert et al. 2010).  

The last component of the cell wall polysaccharides is the chitin, which represents 

about 1-2% of the yeast and 4-6% of the hyphae dry weight. It is a β-1,4-linked polymer 

essential for cell viability and covalently attached to β-1,3-glucan (Lenardon et al. 

2010). The major classes of cell wall proteins are attached through the remnant of a GPI 

residue to β-1,3-glucan or via a branched β-1,6-glucan linker to chitin. Chitin is 

synthesized by a large family of chitin synthase (Chs). Of them, Chs1 is an essential 

chitin synthase required for the synthesis of primary septa in yeast and hyphae cells and 

Figure 6. C. albicans cell wall structure. General representation of the cell wall of 

C. albicans. The inner wall contains chitin and glucan matrix, including β-1,3-glucan and 

β-1,6-glucan. GPI-anchored proteins and non-anchored proteins are attached by mannans 

and represent the outer wall. 
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cell wall integrity (Munro et al. 2001). Chs2 is a non-essential hypha-specific enzyme 

responsible of the elaboration of about 40% of chitin found in this morphology (Gow et 

al. 1994). Chs3 and Chs8 synthesize short- and long-chitin fibrils, respectively, being 

Chs3 the major chitin synthase (Lenardon et al. 2007).   

The outermost layer of the cell wall is highly enriched with mannans that are 

covalently associated with proteins and represent 40% of total cell wall 

polysacchararide content. Mannose sugar is incorporated into three structures: linear O-

linked mannan, highly branched N-linked mannan and phospholipomannan (Poulain 

and Jouault 2004). N-linked mannan is linked to a protein component via asparagine. It 

is a comb-like structure comprised of a core glycan and an extensive outer branched 

structure, which has an α-1,6-linked mannose backbone and a variety of α-1,2-, α-1,3-

linked, and sometimes β-1,2-linked side chains and an acid-labile β-1,2-linked 

phosphomannan side chain joined to the backbone by a phosphodiester bond. Several 

enzymes are involved in the synthesis of N-linked mannan. Och1 is responsible for the 

addition of the first α-1,6-linked mannose to the core glycan (Bates et al. 2006). Bmt1-9 

are a novel family of C. albicans β-1,2-mannosyltransferases that synthesise the β-1,2-

linked oligossacharide side chains (Mille et al. 2008). Mnn2 is responsible for the 

addition of the first α-1,2-linked mannose to the α-1,6-linked mannose backbone. The 

synthesis of the O-linked mannans begins with a mannose residue being added to a 

serine or threonine residue in the amino acid sequence of the protein. The enzymes 

responsible for this addition are the protein mannosyltransferase (PMT), a family of six 

proteins (Pmt1 to Pmt6). The mannosyltransferases (Mnt1, Mnt2) are responsible for 

the addition of the second and third mannose residue during O-linked mannosylation to 

create a short α-1,2-mannose chain (Munro et al. 2005). As a final point, a α-1,3-

mannosyltransferase (Mnn1, Mnt2, Mnt3) added α-1,3-mannose to end the O-linked 

oligossacharides. Almost all cell wall proteins contain substantial amounts of O-linked 

oligosaccharides and a substantial amount of N-linked glycosylation. Initial N-linked 

glycosylation take place in the endoplasmic reticulum. 

As commented before, associated with these carbohydrates are cell wall proteins 

(CWPs) covalently attached to this framework of carbohydrates. The GPI-CWP are the 

most abundant class of CWP linked to β-1,6-glucan by a truncated GPI-anchor. Most 

GPI-CWPs are organized in distinct domains (Figure 7): 
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- N-terminus contains a signal peptide, which is cleaved off when exiting the 

secretory pathway. The remaining N-terminal domain constitutes the active part 

of the protein. 

- The middle part contains the serine/threonine-rich domain. It has a structural 

function and contains the majority of glycosylation sites. 

- The ω-site is located between the C-terminus and the S/T domain. During GPI 

anchor addition, the ω-site is cleaved and the protein is attached to an 

ethanolamine residue in the GPI anchor. 

- The C-terminal hydrophobic domain is for transient attachment to the ER 

membrane. 

 

 

 

While all GPI-proteins are initially inserted into the plasma membrane, the GPI-proteins 

that are to become resident proteins of the wall get cleaved off and the GPI-remnant is 

attached to the β-1,6-glucan (Pittet and Conzelmann 2007). Some GPI-proteins can be 

found at both locations. 

Richard and Plaine (2007) published a putative GPI-proteins list corresponding to the 

C. albicans genome and based on previous studies. In that list, the number of putative 

GPI-proteins identified in C. albicans was 115. Out of them, a vast majority of the 

proteins are of unknown function. These proteins, in particularly whose function is 

unknown, are important targets of C. albicans pathogenicity because their putative 

localization at the cell surface permits interactions with the environment. One of these 

proteins is Ecm33, a GPI-linked cell wall protein whose absence affects the wall 

structure (More details in section “3.1.1. Ecm33”). Another GPI-linked cell wall protein 

Figure 7. Domain structure of a GPI-CWP. From left to right the domains mentioned 

in the text: N-terminal signal peptide (SP), functional domain, serine/threonine domain, 

ω-site and C-terminal hydrophobic domain. (Thomas et al. 1990, de Groot et al. 2003, 

Nather and Munro 2008).  
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is the secreted yeast wall protein Ywp1. This protein is linked covalently to glucans of 

the wall matrix and has the highest expression during yeast exponential growth. The 

ywp1Δ/Δ mutant has increased adhesiveness and biofilm formation but no obvious 

change in growth, morphology or virulence, suggesting that Ywp1p promotes dispersal 

of yeast form cells in C. albicans (Granger et al. 2005). 

Several CWPs make up families with the same function but slightly different 

specificities like pH or morphological state. Furthermore, as commented before, these 

proteins are involved in adhesion, biofilm formation, acquisition of nutrients and 

interaction with the host. Several single proteins and families included in pathogenicity 

were commented in previous section "2. Pathogenesis and virulence factors of 

C. albicans”, for example Als, Plb and Sap families, and Hwp1. Another family is the 

pH response (PHR) family composed by the homologous PHR1 and PHR2 genes. The 

expression of PHR1 and PHR2 depends to the pH conditions, with PHR1 being 

expressed at neutral or basic pH and PHR2 being expressed at low pH, both required for 

normal morphology and virulence (Fonzi 1999).  

The other class of proteins, named Pir (Proteins with integral repeats) are linked 

directly to the β-1,3-glucan. They have a role in cell wall architecture and rigidity. PIR1 

expression increased during the protoplast regeneration and PIR32 is upregulated in 

response to macrophage interaction (Martinez et al. 2004, Fernández-Arenas et al. 

2007). Furthermore, the homozygous null mutant of PIR32 showed increased virulence 

in a mouse model of disseminated candidiasis, stress response and cell wall chitin 

deposition (Bahnan et al. 2012). 

Among the noncovalently attached CWP, Bgl2 is the major β-1,3-glycosyltransferase 

and it is involved in cell wall biogenesis (Sarthy et al. 1997). Mp65 is a cell surface 

mannoprotein that is induced during cell wall regeneration and it is required for hyphal 

morphogenesis and experimental pathogenicity (Gomez et al. 1996, Castillo et al. 2006, 

Sandini et al. 2007). Also, Sap and Plb families, have been detected in the cell wall. 

These proteins have the capacity to hydrolyze substrates for their nutrition and they also 

function as virulence factors (Chaffin 2008, Mayer et al. 2013, Pericolini et al. 2015). 

All of these noncovalently attached CWP have been shown to function as structural and 

nutrient acquisition proteins (Chaffin 2008, Free 2013). In addition, these proteins share 

the property of having an N-terminal signal peptide and pass through the classical 
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secretory pathway before being delivered to the cell wall space. However, many 

proteins detected on the surface of C. albicans lack this signal peptide and are often 

referred to "nonconventional" cell wall proteins. The set of "cytosolic" proteins 

identified in cell wall preparations include enolase (Eno1), glyceraldehyde-3-phosphate 

dehydrogenase (Tdh3), and heat shock proteins such as Hsp70 (Angiolella et al. 1996, 

Gil-Navarro et al. 1997, de Groot et al. 2004, Ebanks et al. 2006, Castillo et al. 2008, 

Chaffin 2008). 
3.1.1. Ecm33 

Different proteomic approaches have been used in order to obtain a comprehensive and 

integrated view of the Saccharomyces cerevisiae and C. albicans cell wall. The analysis 

of proteins secreted during S. cerevisiae protoplast regeneration allowed the 

identification of a protoplast-secreted protein (Pst1) that leads to the identification of 

C. albicans homolog (Pardo et al. 1999, Pardo et al. 2000, Monteoliva et al. 2002). 

Other three S. cerevisiae proteins showed similarity to Pst1 (ECM33, SPS2 and 

YCL048W gene products), but only ECM33 deletion affects the cell wall integrity under 

the growth conditions analyzed, resulting in hypersensitivity to cell wall perturbing 

agents and increased amount of β-1,6-glucan-linked proteins secreted to the 

extracellular medium. However, the deletion of its homolog PST1 did not show these 

effects, although the effects in the double deletion ECM33/PST1 strain were increased 

(Pardo et al. 2004). Both deletions resulted in a higher phosphorylation of the Slt2 

protein, the MAP kinase involved in regulating maintenance of cell wall integrity. 

In C. albicans, several studies of Ecm33 protein have tried to elucidate the function of 

the protein in the cell. In C. albicans, Ecm33 is a GPI-CWP member of a three-gene 

family that includes ECM33, ECM331 and C1_13290W. Its role in cell wall remodeling, 

cell wall maintenance and cell biogenesis was observed in the ecm33 deleted mutant, 

RML2U (Martínez-Lopez et al. 2004). Electron microscopy imaging of the RML2U 

strain showed an abnormal electron-dense outer mannoprotein layer, evidencing an 

abnormal wall structure that was supported by the aberrant surface localization of the 

adhesin Als1 (Martinez-Lopez et al. 2006). In addition, it showed defects to produce 

hyphae and media invasiveness on solid medium and it was delayed in liquid medium 

(Martínez-Lopez et al. 2004). The adherence and invasion capacity to endothelial and 

FaDu oral epithelial cell lines was also reduced in the mutant strain and it is less virulent 
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in the murine systemic infection model, indicating a role of Ecm33 in virulence. In 

addition the vaccination of mice with the RML2U strain protected them from a lethal 

infection with virulent strain SC5314 in a systemic candidiasis model (Martínez-Lopez 

et al. 2008). In the same work, the analysis of cell surface proteins (surfome) showed 

that RML2U exposed a larger number of proteins to the environment than the wild type, 

and proteins exclusively identified in this strain were also detected as immunogenic, 

supporting the idea that their surface localization enhances their immunoprotective 

capacity. 

These observations support the importance of Ecm33 for normal adherence and for the 

interactions with host cells. However, there are no studies that determine the function of 

the Ecm33 cell wall protein in the human pathogen C. albicans. 

3.2. Extracellular secretion 

The secretion of proteins are important for the commensal to pathogenic change because 

they are necessary for their adaptation to the environment and host, and they help to 

invade and evade host defenses by the secretion of hydrolytic enzymes. These secreted 

proteins are involved in different vital processes such as nutrient acquisition or cell wall 

integrity, and other virulence-related processes, such as tissue invasion, immune evasion 

or biofilm formation. Protein secretion in yeast follows the classical secretory pathway 

which involves the conventional endoplasmic reticulum-trans-Golgi network-plasma 

membrane route, in which a coordinated network of intracellular vesicles transport 

promote vesicular fusion with the plasma membrane and release of cargo to the 

extracellular space (Figure 8) (Schekman 2010).  

Apart from hydrolytic enzymes, mentioned in section "2.5. Secreted hydrolases", other 

proteins involved in cell wall protein, such as the exoglucanase Xog1 and the 

endoglucanase Eng1, are also secreted to the medium. The core set of seven secreted 

proteins detected in different studies under different growth conditions encloses Cht3, 

Mp65, Scw11, Sim1, Sun41, Tos1 and Xog1, that are responsible for maintaining cell 

wall integrity and wall remodeling (Sorgo et al. 2013). These proteins are secreted by 

the classical protein secretory pathway because they have an amino-terminal signal 

peptide responsible for directing them to the endoplasmic reticulum, and then 

redirection to the Golgi apparatus and transportation to the plasma membrane or the 
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extracellular region through a complex system of internal vesicles. Xog1 is a 

glycosidase responsible for the major exoglucanase activity in C. albicans. Besides 

Cht3, other two chitinases have been detected in the extracellular media, Cht1 and Cht2. 

Cht2 is a GPI-anchored protein, whereas Cht1 and Cht3 are non-GPI-proteins. The cell 

surface mannoprotein Mp65 and Tos1, are both abundant secreted proteins under all 

conditions examined. Besides these proteins, C. albicans also secretes proteins to 

sequester metal ions, such as zinc (Pra1 and Zrt1) or iron (Csa1, Csa2, Pga7, Pga10 and 

Rbt5).  

However, proteins without a signal peptide have been detected in the extracellular 

environment of C. albicans and other yeast species (Chaffin et al. 1998, Nombela et al. 

2006, Nickel 2010). Most of these unconventionally secreted proteins are determined as 

intracellular proteins and some of them have been described as “moonlighting” or 

multifunctional proteins, meaning that they are capable of performing dual or multiple 

functions, in some cases depending on their location in the cell (Jeffery 1999, Nombela 

et al. 2006, Chaffin 2008). These proteins lacking the N-linked signal peptide should 

use alternative routes of exporting, including vesicular pathways (Figure 8).  

One of the unconventional secretory mechanisms is mediated by the extracellular 

vesicles (EVs), recently characterized in fungi and extensively studied in mammalian 

cells (Raposo and Stoorvogel 2013, Rodrigues et al. 2013). However, the presence of a 

cell wall in fungi makes it different from other eukaryotic cells. All the fungal species 

examined are able to use vesicular mechanisms to transport proteins across the cell wall, 

which lack secretion signals and have cytoplasmic origin. The mechanism of vesicles 

biogenesis remained unknown as well as the pathway used by them to traverse plasma 

membrane and cell wall. The use of transmission electron microscopy (TEM) to observe 

the fungal EVs unravels different vesicles sizes and types in the culture medium of 

several fungi including C. albicans (Albuquerque et al. 2008). Moreover, suggestive 

EVs formation was observed by this methodology in the membrane of S. cerevisiae 

cells (Rodrigues et al. 2013). Based on these observations, the fungi plasma membrane 

invagination englobes intracellular components forming an EV. This is completely 

compatible with the proteomic analysis of the fungi EVs where cytoplasmic proteins 

lacking secretory tags are a higher proportion of the proteins detected (Albuquerque et 

al. 2008, Rodrigues et al. 2008, Oliveira et al. 2010, Vallejo et al. 2012, Rodrigues et al. 
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2014). Proteomic analysis of the content of EVs from several fungal species reveals 

similar protein composition that includes cytoplasmic, mitochondrial, vacuolar, cell wall 

 

Figure 8. Conventional and unconventional protein secretion pathways 

proposed in yeast.  The numbers denote the names of the protein transport pathways. 

1: Classical secretory pathway from proteins with signal peptide. 2: Unconventional 

transport of the α-pheromone peptide specifically driven by the transporter Ste6. 3: 

Other Golgi-independent pathway involves the formation of internal vesicles in the 

lumen of endosomes that generates the multivesicular bodies (MVB), which can fuse 

with the plasma membrane, resulting in the release of internal vesicles to the 

extracellular space as exosomes. 4: Soluble cytoplasmic proteins are captured during 

microvesicle shedding from the cell surface. 5: Pathway that connects the 

unconventional protein secretion and autophagy. Autophagosomes fuse with 

multivesicular bodies to form so-called amphisomes, which fuse with the plasma 

membrane, releasing exosomes and other proteins. Data obtained from (Nombela et 

al. 2006, Nickel and Rabouille 2009, Oliveira et al. 2010, Ding et al. 2012, Miura and 

Ueda 2015). 
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architecture, plasma membrane, signaling and virulence related proteins. After the 

initial description and further confirmation of the existence of EVs in all of these fungal 

species including C. albicans, and together with secretome proteomic data, in which 

about one third of the extracellular proteins detected in its growth culture does not 

possess a secretion signal, this alternative mechanism of secretion could be considered a 

logical explanation for cytoplasmic proteins in the extracellular media. 

 

4. Proteomic technology applied to the advance in the knowledge of 

C. albicans 

The term “proteome” was coined by Mark Wilkins in 1995 and it refers to the entire set 

of proteins, produced or modified by an organism or a cellular system which vary with 

time and different cell states. The large-scale comprehensive study of a specific 

proteome is named “proteomics” which goal is the qualitative and quantitative 

description of protein expression and its changes under different biological conditions in 

order to understand cellular processes. This term usually is used to enclose all of the 

technology currently available to analyze global patterns of protein expression. 

Proteomics is an interdisciplinary field emerging from the overall level of intracellular 

protein composition. 

Genomics is the study of the entire DNA sequence of organisms and fine-scale genetic 

mapping. There is only one definitive genome of an organism. This genome codes for 

multiple proteomes, since the accumulation of protein changes in response to the 

environment is the result of a combination of transcription, translation and post-

translation modifications. Proteomics gives biological information that cannot be 

obtained through DNA analysis, such as the subcellular localization of the protein, if it 

is post-translationally modified, its relative abundance or its possible interaction with 

other proteins (Patterson and Aebersold 2003). The combined application of advanced 

techniques to resolve, identify, quantify and characterized proteins, combined with 

bioinformatics tools to store and interlink protein information is the goal of proteomics 

to study complex biological phenomena.  

The field of proteomics has grown in the last few years, mainly due to the 

improvements in the accuracy, sensitivity, speed and throughput of mass spectrometry 
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(MS), and the development of analytical software. Proteome identification can be 

divided in several steps that include sample preparation, sample fractionation/separation 

and finally MS analysis. The accuracy and care in the sample preparation is vital to 

avoid sample contamination, which often leads to false positives, reduced quantification 

fidelity and unreliable identification results. Proteomics is based in different types of 

procedures for protein separation and identification. Within protein separation 

techniques, proteomics approaches can be classified in two important methods 

(Monteoliva and Albar 2004, Abdallah et al. 2012): 

1. Gel-based methods: Two-Dimensional Gel Electrophoresis (2-DE). Introduced 

in 1975 (O'Farrell 1975), it became the most used technique of protein 

separation. Protein first undergo isoelectric focusing (IEF) based on their net 

charge at different pH values and in the second dimension further separation is 

performed based on the molecular weight (MW). It is possible to visualize over 

10,000 spots corresponding to over 1,000 proteins. Its limitations include limited 

reproducibility, poor representation of low abundant proteins or difficulties in 

automation of the technique (Gygi et al. 2000, Tonge et al. 2001, Lilley et al. 

2002). Separated proteins have to be enzymatic digested (usually with trypsin) in 

order to be identified in the next step. 

2. Gel-free methods. Liquid chromatography (LC) connected with the mass 

analysis capabilities of MS: LC-MS. LC is able to separate proteins or peptides 

according to their differences in physical and chemical properties, first by an ion 

exchange column and then the eluted fractions are separated in reverse phase 

microcolums (Gao et al. 2010). 

Protein identification of digested proteins is performed by MS, the most common 

method for large-scale protein identification (Patterson 1998). The MS allows for 

protein identification, rapid posttranslational modification analysis, identification of 

components in complex mixtures, and direct mass analysis of gel-separated proteins. It 

is able to produce and separate ions according to their mass-to-charge ratio (m/z). The 

MS consist of three elements: an ion source, a mass analyzer and a detector. In the first 

element, the sample is ionized, causing charged fragments (ions). Among the diverse 

ionization sources only two produce peptide and protein ions efficiently: electrospray 

(ESI) and matrix-assisted laser desorption/ionization (MALDI). ESI ionizes the analytes 
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out of a solution and it is therefore readily coupled to liquid-based separation tools. 

MALDI sublimates and ionizes the samples out of a dry, crystalline matrix via laser 

pulses (Aebersold and Mann 2003). Then, ions are then separated according to their 

spatial trajectories, velocity and/or direction by electric or magnetic fields generated 

inside the mass analyzer. There are four different types of mass analyzer that can be 

used: quadrupole (Q), Fourier transform ion cyclotron (FT-MS), time-of-flight (TOF) 

and ion trap (IT) (Kicman et al. 2007). These analyzers can be stand alone or put 

together in tandem to take advantage of the strengths of each.  MALDI is usually 

coupled to TOF analyzers, whereas ESI has mostly been coupled to ion traps and triple 

quadrupole instruments. MS produces a mass spectrum that consists in a plot of ion 

abundance versus its mass-to-charge ratio from the sample. Mass spectrometry data 

analysis is specific to the type of experiment producing the data. Two strategies have 

been developed to identify the proteins: the Peptide Mass Fingerprinting (PMF) and the 

analysis of the resulting masses of the fragmented peptide. In PMF the peptide masses 

of digested proteins are compared to a database containing known protein sequences. 

The computer programs (search engine) translate the known genome of the organism 

into proteins, then theoretically cut the proteins into peptides and calculate the absolute 

masses of the peptides from each protein. Then the masses of the peptides of the 

unknown protein are compared to the theoretical peptide masses of each protein 

encoded in the genome. The results are statistically analyzed to find the best match 

(Pappin et al. 1993). In the analysis of the resulting masses of fragmented peptides, the 

interpretation of fragmentation spectra allow the identification of protein fragments by 

comparing them with theoretical fragmentation spectra obtained by the search engines 

from protein databases, or by "de novo" peptide sequencing which is the analytical 

process that derives a peptide´s amino acid sequence from its MS/MS spectrum without 

the assistance of a sequence database. This last strategy is the only possibility if the 

sequence of the organism to study is unknown or there is no homologue organism 

(Patterson and Aebersold 1995). Following the acquisition of the data, bioinformatic 

analyses are necessary. Figure 9 summarizes the proteomics workflow from the sample 

to the results.  
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Figure 9. Proteomics workflow. Schematic diagram of proteomic analysis.  
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Through the application of proteomics to the study of C. albicans, new insights into the 

biology and pathogenicity of this opportunistic fungus are gradually coming out. The 

availability of the complete diploid genome sequence of C. albicans has significantly 

enhanced the application of proteomics for the study of the behavior of the yeast and the 

host-fungus interaction. To date, proteome analysis of C. albicans has focused on the 

understanding of different aspects of its biology and: 

- Virulence factors: the pathogenicity of C. albicans is attributed to several 

virulence factors, as commented in the corresponding section. There are several 

works analyzing C. albicans proteins involved in biofilm formation (Martinez-

Gomariz et al. 2009) and protein secretion (Thomas et al. 2009, Sorgo et al. 

2010, Ene et al. 2012). 

- The structure and composition of the fungal cell wall and cell surface. The 

fungal cell wall mediates the interactions between the fungus and its 

environment linked to different aspects of its pathogenicity. Diverse proteomic 

studies have focused on the analysis of C. albicans cell wall proteins, in view of 

the fact that these constitute the major antigens and host recognition molecules 

(Pitarch et al. 2002, de Groot et al. 2004, Castillo et al. 2008, Hernáez et al. 

2010). Even more, proteomic analyses of C. albicans proteins secreted from 

protoplast in active cell wall regeneration provided insights into the protein 

framework related to cell wall biogenesis (Pitarch et al. 1999, Pitarch et al. 

2006). 

- Dimorphism. C. albicans can exist in different forms, especially as yeast cells, 

pseudoyphae and true hyphae, depending on the environment conditions. 

Proteomic techniques have been used in several studies to identify differences in 

the protein profiles associated with these forms and to create reference maps for 

their protein components (Hernandez et al. 2004, Monteoliva et al. 2011, Vialas 

et al. 2012). 

- Drug response: a reduced number of antifungal drugs are used for candidiasis 

therapy. These different compounds have different modes of action and some 

proteomic studies have analyzed the changes in C. albicans proteome after the 

treatment (Bruneau et al. 2003, Sorgo et al. 2011). 

- Host response: the study of the host response to Candida infections can be a 

very useful tool to discover new therapeutic strategies. This is the goal of several 

recent works published in which the protein profile of murine-derived and 
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human macrophages after interaction with C. albicans was analized by several 

proteomic strategies, such as quantitative proteomics, phosphoproteomics, 2-DE 

and SILAC (Martínez-Solano et al. 2006, Martínez-Solano et al. 2009, Reales-

Calderon et al. 2012, Reales-Calderon et al. 2013, Reales-Calderon et al. 2014). 

In addition, the research using proteomic strategies with serum of patients or in a 

murine model systemic candidiasis, detected a high number of immunogenic 

proteins (Pitarch et al. 2001, Pitarch et al. 2004, Pitarch et al. 2006).  

All of these proteomic results contribute to the dissection of the molecular mechanisms 

by which C. albicans interacts with the environment and how the host copes with it. It 

can pave the way for the advancement in novel diagnostic strategies and even for the 

development of antifungal drug or vaccine design.  
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The overall goal of this thesis was to deepen the knowledge concerning the surface and 

secreted proteins of C. albicans that play important roles in virulence and pathogenesis, 

because they are the first to come into contact with the host.  

The specific aims of the present study are: 

1. The analysis of the function and importance in virulence of 17 proteins of 

unknown function identified at the cell surface of the C. albicans by the 

phenotypic analysis of the corresponding deletion mutants. 

 

2. The proteomic study of the C. albicans SC5314 secretome including 

extracellular vesicles and extracellular vesicle-free secretome. 

 

3. The proteomic analysis of C. albicans ecm33 mutant (RML2U) secretome 

including extracellular vesicles and extracellular vesicle-free secretome and the 

comparative analysis with the SC5314 data. 

 

4. The analysis of the function of Ecm33 cell wall protein in C. albicans by an 

extensive phenotypic analysis of the RML2U mutant. 
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El objetivo general de este trabajo es profundizar en el conocimiento de las proteínas 

localizadas en la superficie celular, así como de las proteínas secretadas por C. albicans, 

ya que ambas tienen un papel importante en virulencia y patogénesis, debido a que son 

el primer punto de contacto con el hospedador. 

Los objetivos concretos de este trabajo son los siguientes: 

1. Análisis de la función e implicación en virulencia de 17 proteínas identificadas 

en la superficie de C. albicans con función desconocida mediante el análisis 

fenotípico de los mutantes delecionados en los genes correspondientes. 

 

2. Estudio proteómico del secretoma de la cepa SC5314 de C. albicans incluyendo 

las vesículas extracelulares y el secretoma libre de vesículas. 

 

3. Estudio proteómico del secretoma del mutante ecm33 de C. albicans (RML2U) 

incluyendo las vesículas extracelulares y el secretoma libre de vesículas y su 

análisis comparativo con los datos de la cepa SC5314. 

 

4. Análisis de la función de la proteína de pared celular Ecm33 de C. albicans 

mediante un análisis fenotípico exhaustivo del mutante RML2U. 

 

 

 



 

 

 



 

 
 

 

 

 

 

 

 

Chapter 1:  
 
Candida albicans cell shaving uncovers new proteins 

involved in cell wall integrity, yeast to hypha transition, 

stress response and host-pathogen interaction 

 

 

 

 

 

 

 

*In this chapter, the participation of Gil-Bona includes part of the proteomic data analysis to 

select the proteins of study and the phenotypic and virulence analysis of the mutants of the 

interesting identified proteins 
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Supplemental Figure 1. Low Temperature Scanning Electron Microscopy 

(LTSEM) of the cell surface of C. albicans hyphae cells before (A, B) and after (C, D) 

trypsinization. The untreated cell surface was intact (A, B) whereas irregular and 

wrinkled cell surface was observed after treatment (C, D). B and D are enlargement of 

the section marked in A and C images, respectively.  
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Supplemental Figure 2. Oral fungal burden of mice with oropharyngeal candidiasis. 
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Remaining Supplemental material is available in the provided CD. 

Supplemental Table 1. List of 438 proteins identified in C. albicans SC5314 yeast 

culture identified in at least two replicates with more than two peptides in both and 

proteins identified with one peptide in at least three replicates. Blue boxes correspond to 

proteins selected for phenotypic and virulence assays. 

Supplemental Table 2. List of 928 proteins identified in C. albicans SC5314 hypha 

culture identified in at least two replicates with more than two peptides in both and 

proteins identified with one peptide in at least three replicates. Blue boxes correspond to 

proteins selected for phenotypic and virulence assays.  

  



 

 

 
 

  



 

 

 
 

 

 

 

 

 

 

Chapter 2:  
 
Proteomics unravels extracellular vesicles as carriers of 

classical cytoplasmic proteins in Candida albicans 

 

 

 

 

 

 

 

 

 

*In this chapter, the participation of Gil-Bona includes most of the work presented with the 

exception of the Bgl2 expression and vaccination assays in mice 
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Supporting Information Figure S1. (A) Strategy followed to recover and identify the 

EVs and the EV-free supernatant from C. albicans culture supernatants for TEM and 

proteomic analysis. (B) Silver stained SDS-PAGE from isolated EVs (Ves), and EV-

free supernatant (Sec). 

 

 

 

 



Appendix Chapter 2 

 

 

108 
 



Appendix Chapter 2 

 

 

109 
 



Appendix Chapter 2 

 

 

110 
 



Appendix Chapter 2 

 

 

111 
 



Appendix Chapter 2 

 

 

112 
 

Remaining Supplemental material is available in the provided CD. 

Table S2. Results of GO Process and Function analysis. 

Table S3. List of all identified proteins by proteomic analysis of C. albicans secretome 

in different publications 

Table S4. Protein identification data. 

 



 

 

 
 

 

 

 

 

 

 

Chapter 3:  
 
Global proteomic profiling of the secretome of Candida 

albicans ecm33 cell wall mutant reveals the involvement 

of Ecm33 in Sap2 secretion 
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Reduced version of the Table S1. 
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Table S3. Identified proteins in C. albicans SC5314 and RML2U EV-free supernatant 

and EVs samples. SC5314 proteins were obtained from Gil-Bona et al. 2015. The gray 

background highlights the number of proteins described in each group. 
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Figure S1. Characterization of RML2U EVs obtained by ultracentrifugation of 

culture supernatants. (A) TEM images of purified EVs from the ecm33 mutant. Scale 

bars: left: 500 nm and right: 100 nm. (B) Percentage sizes of SC5314 and RML2U EVs 

observed by TEM. 
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Figure S2. Comparative analysis of the different biological processes in which proteins 

from SC5314 and RML2U that are (A) carried by extracellular vesicles or (B) secreted 

by the classical pathway (EV-free supernatant) are involved.
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Remaining Supplemental material is available in the provided CD. 

Complete Table S1. List of proteins identified in RML2U secretome. 

Table S2. GO term analysis by Biological Process of RML2U secretome. 

Table S4. GO Term analysis by Biological Process of SC5314 and RML2U EV-free 

supernatant proteins. 



 

 

 
 

 

 

 

 

 

 

Chapter 4:  
 
The cell wall protein Ecm33 of Candida albicans is 

involved in chronological life span, morphogenesis, cell 

wall regeneration, multi-stress tolerance and host-cell 

interaction  

 

 

 

*In this chapter, the participation of Gil-Bona includes most of the work presented with the 

exception of the cell wall regeneration assay 
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Figure S1. RML2U cells show abnormal morphologies in standard growth 

conditions. (A) Different morphologies of RML2U cells growing in YPD medium at 

30 ˚C in exponential phase. (B) Representative TEM images of SC5314 and RML2U 

cells obtained from YPD cultures at 30 °C during the exponential phase. Red lines 

indicate the thickness of the cell wall. Scale bars: 500 nm 
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Figure S2. Deletion of different genes related to cell wall not increase susceptibility 

to rapamycin. 10-fold serial dilutions of strains SC5314 (wild type), RML2U 

(ecm33/ecm33), cht1/cht1, exg1/exg1, mkc1/mkc1, phr1/phr1 and utr2/utr2 of 

C. albicans were spotted onto YPD with 0.01 μg/mL rapamycin or with MeOH (as 

control). Plates were incubated at 30 °C for 24 h. Data are representative of at least 

three independent experiments with identical results.  
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Figure S3. Measurement of the apoptotic status of SC5314 and RML2U C. albicans 

strains after the interaction with murine macrophages. (A) Percentage of 

C. albicans cells that contain ROS after 3 h, 6 h and 8 h macrophage interaction. (B) 

Percentage of C. albicans cells with active caspasa after 3 h, 6 h and 8 h macrophage 

interaction. (*, p < 0.05). 
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Supplemental Table 1. Number of RML2U aberrant cells. Different morphologies 

resulted from compromised ECM33 function were observed in cells growing in YPD 

medium at 30 °C by nomarski microscopy. The number of aberrant cells was counted 

and the percentage was obtained. 

 

  
Aberrant 

morphology 

No DNA 

detected 

More 

than 1 

nucleus 

Total aberrant 

cells (total cells 

observed) 

Exponential 

Phase 

Number of 

observed cells 
94 20 4 118 (922) 

Percentage 10% 2% 0.43% 12.43% 

Stationary 

Phase 

Number of 

observed cells 
106 23 3 132 (509) 

Percentage 21% 4.51% 0.58% 25.82% 

 

 

 

 

Supplemental Table 2. Survival rate after CLS. The number of colonies at day 3 was 

considered to be the initial survival (100%). Cells of each strain were collected every 3 

days and plated on YPD agar for 48 h to determine % survival. The percentages showed 

in the table correspond to the end of the study (day 30). 

 Survival rate after treatment 

 SC5314 RML2U 

Chronological Life Span (CLS) 0.7% 0.08% 

0.5 % Glucose SD 24.7% 2.4% 

CLS under Extreme Calorie Restriction – Water 32.26% 28.83% 
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As commensal, C. albicans is harmless, however, when the balance of the normal flora 

is disrupted or the immune defenses are compromised, this fungus becomes pathogenic. 

In these conditions, C. albicans can colonize mucosal surfaces and cause symptoms of 

disease, whereas in healthy individuals, it belongs to the normal microbiota of skin and 

mucosal surfaces, detected in up to 50% of the healthy population. Although the host-

immune state is the primary determinant of the severity of candidiasis, C. albicans 

ability to switch between different morphologies clearly contributes to its virulence in 

susceptible individuals. In addition, the secretome of this fungal pathogen help it in 

tissue invasion, immune evasion, cell wall integrity, biofilm formation and nutrient 

acquisition. For these reasons, the objectives of this thesis were the proteomic study of 

proteins secreted by this opportunistic fungal pathogen and the functional analysis of the 

proteins identified at the cell surface and the secretome, in particular the Ecm33 mutant. 

1. Relevant roles of proteins identified by shaving C. albicans yeast and 

hypha cell surface  

Previous published works in our laboratory studied the identification of C. albicans 

surface proteins under different conditions: live yeast, hypha and biofilms (Hernáez et 

al. 2010, Vialas et al. 2012). The methodology used to identify these proteins were 

based on a non-gel proteomic approach that used a short period of trypsin treatment 

followed by peptide separation and identification using nano-LC followed by off-line 

MS/MS. Based on this methodology, CM. Parra-Giraldo (Parra-Giraldo 2013) (Chapter 

1) carried out the study of the surface proteome of C. albicans yeast and hypha cells. 

The improvement of this work was the use of a LTQ-Orbitrap Velos, an ultra-high 

resolution mass analyzer with increased sensitivity, versus the MALDI TOF/TOF used 

in previous works. A total of 438 and 928 proteins were identified in yeast and hypha 

morphology, respectively, versus the smaller number of detected proteins reported in 

previous works (Ebanks et al. 2006, Martinez-Gomariz et al. 2009, Hernáez et al. 2010, 

Heilmann et al. 2011, Sosinska et al. 2011, Vialas et al. 2012). These previous studies 

performed no characterization of the identified proteins. For this reason, 17 proteins 

identified in the global surfome analysis of C. albicans yeast and hypha-surface by cell 

shaving carried out by CM. Parra-Giraldo, were selected to investigate their function; in 
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particular, their involvement in cell wall maintenance, stress resistance and yeast to 

hypha transition. 

The selection of these 17 proteins was based on their mutant availability in the Noble 

collection (Noble et al. 2010), obtained from Fungal Genetics Stock Center, and their 

unknown function. Other cell wall-related proteins identified, such as Phr1, Phr2 or 

Pir1, identified in both morphologies, were studied previously (Fonzi 1999, Martinez et 

al. 2004, De Virgilio and Loewith 2006). In addition, Ecm33 was identified in both 

morphological states and it was also thoroughly studied and it is discussed ahead. The 

resistance of the 17 selected mutants to cell wall, oxidative and osmotic stresses was 

analyzed, as well as the sensitivity to high temperatures and the dimorphic transition 

process. Out of the 17 mutants, eight did not show any sensitivity to the compounds or 

temperature studied (ihdΔ, orf19.3335Δ, orf19.6553Δ, orf19.7196Δ, orf19.7238Δ, 

pga45Δ, ptp3Δ and ycp4Δ). Two of these proteins were GPI proteins, Ihd1 and Pga45, 

with a presumably role in cell wall, but it was not detected in our study conditions. Both 

proteins are members of protein families. In this context, other members of the same 

family with similar functions in the cell could compensate their absence. Ihd family is 

composed by two proteins, Ihd1 and Ihd2. The function of Ihd2 is unknown but there 

are evidences of its implication during hyphae development (Carlisle and Kadosh 2013). 

Pga proteins are more than 30 GPI proteins with a large variety of functions. Little is 

known about the functions of these 8 proteins, which mutant strains did not show 

sensitivity to the stressor tested, and slso regarding Orf19.3290, which mutant was only 

sensitive to osmotic stress. The other 8, out of the 17 initial mutants, had a marked 

increased susceptibility to some of the stresses tested, ali1Δ, mci4Δ, orf19.287Δ, 

orf19.3060Δ, orf19.5352Δ, orf19.7590Δ, pst3Δ and tos1Δ. From those, only Tos1 was 

detected in both morphologies. The other 7 proteins were identified only in hypha 

(Figure 10). 

Seven of the mutants presented sensitivity to cell wall-disturbing agents, ali1Δ, 

orf19.287Δ, orf19.3060Δ, orf19.5352Δ, orf19.7590Δ, pst3Δ and tos1Δ, which was 

suppressed in osmotic medium stabilized with sorbitol 1 M. Three of them, 

orf19.3060Δ, orf19.5352Δ and tos1Δ mutant strains, only presented defects when they 

grew in the presence of the cell wall-disturbing agents, showing to have a cell wall-

specific defect. In addition, pst3∆ and orf19.3060∆ mutants showed an increase in their 
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ability to cause damage in the murine macrophages. This damage could be explained for 

the higher rate of mutant cells engulfed and their normal hyphal formation. The 

mutation of these proteins could affect the composition of specific components of the 

C. albicans cell wall, leading to an increase in recognition by macrophages, as occurs 

with different O-linked and N-linked mannan-deficient strains (McKenzie et al. 2010). 

The orf19.3060∆ mutant also showed to be of significant importance in regulating 

C. albicans interaction with oral epithelia cells in vitro. As mentioned above, the 

 

 

Figure 10. Summary of the main findings of the phenotypic and virulence analysis 

of interesting proteins identified in C. albicans cell surface. Blue proteins 

correspond to the mutants that did not show any sensitivity to the compounds or 

temperature studied. Green and pink proteins correspond to the mutants which 

showed different phenotypes than the wild-type strain. * The mci4∆ mutant did 

not present sensitivity to cell wall disturbing agents. See Chapter 1 for further 

details. 
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glycosylation status of the C. albicans cell wall is critical in host-pathogen interaction. 

Besides being involved in phagocytosis, it is also critical for the stimulus and regulation 

of epithelial responses (Wagener et al. 2012). Moreover, tos1∆ and orf19.5352∆ showed 

high variability in both assays with FaDu cells, showing slightly increased endocytosis 

and acting similarly to the wild-type strain in the damage assays, suggesting that are not 

essential for adhesion and endocytosis by FaDu cells. The orf19.3060Δ, orf19.5352Δ, 

pst3Δ and tos1Δ strains did not present difference in virulence in the mouse model of 

OPC, showing that they are not necessary for virulence during oropharyngeal 

candidiasis.  

On the other hand, the other four mutants that showed sensitivity to several stresses, 

ali1Δ, mci4Δ, orf19.287Δ and orf19.7590Δ, also presented filamentation defects in 10% 

serum agar plates and growing defects in the Spider plates containing mannitol. In fact, 

these mutants were incapable of growing using this C-source. Recently, Orf19.287 was 

named as Nuo2, and it was verified as NADH:ubiquinone oxidoreductase (She et al. 

2015). The data obtained in that study are in agreement with the results showed in the 

present thesis, including a reduced colonization of tissues and a corresponding 

avirulence in an invasive model of candidiasis. The other three proteins are described in 

CGD also as putative NADH-ubiquinone oxidoreductase (Ali1 and Orf19.7590) and as 

putative NADH-ubiquinone dehydrogenase (Mci4). The first two, Ali1 and Orf19.7590, 

were previously identified by 2-D gel in the DTT/SDS-extraction of the cell wall-

enriched fraction in the yeast and hyphae, more expressed in hyphae fraction (Ebanks et 

al. 2006). The interaction assays of these four mutants with RAW 264.7 macrophages at 

a MOI 1:1 displayed that mci4Δ and orf19.287Δ mutants were more phagocytized and 

showed an increased in their ability to cause damage in the host cells. In particular, the 

orf19.287Δ mutant was the most cytotoxic and it was highly phagocytized. We 

hypothesized that the large number of phagocytized cells could cause the increased 

damage by other mechanism, such as apoptotic signals or high secretion of proteins or 

enzymes involved in virulence. Furthermore, macrophages phagocytized and killed 

more ali1Δ and orf19.7590Δ mutants. This phenotype and their sensitivity to oxidative 

stress suggest that these proteins could have a role in avoiding the damage produced by 

reactive oxidative species inside the macrophages. In addition, as for the interaction 

with oral epithelial cells in vitro, these four mutants showed decreased endocytosis and 
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reduced capacity to cause damage, probably due to their slow generation time and their 

incapacity in yeast to hypha transition.  

All of this data focuses on the analysis of these four proteins, Ali1, Mci4, Nuo2 

(Orf19.287) and Orf19.7590, relevant in cellular processes, such as cell wall 

maintenance, osmotic and oxidative stress resistance and host-pathogen interplay. The 

other four proteins commented before, are related to cell wall maintenance. This is an 

important success because the goal of this work was to find proteins involved in cell 

wall maintenance and proteins involved in host-cell interaction. However, many 

proteins were detected in the surfome study and they could have important roles in 

pathogenicity. For this reason, and considering that fungal cell wall is the part of the cell 

that acts as protective structural shield and also contributes to interactive contacts with 

the human host during the infection, the analysis of the proteins exposed on the fungal 

surface and the fact that they are different from the host proteins highlights the 

importance to find potential targets for new drugs. Among these exposed proteins, we 

found an important number of classical cytoplasmic proteins. The results for the 

proteomic analysis of EVs of C. albicans could explain this finding as commented in 

the next section.  

2. Extracellular vesicles transport metabolic proteins to the 

extracellular media in C. albicans and non vesicular secreted proteins 

were secreted by the classical secretory-pathway 

Recently, a number of studies about the protein secretion of various pathogenic fungi 

have been published. In case of the C. albicans secretome, several published studies 

analyzed the global protein composition under different growth conditions (Sorgo et al. 

2010, Sorgo et al. 2011, Ene et al. 2012, Sorgo et al. 2013). C. albicans secretes 

proteins with functions related to biofilm formation, tissue invasion, cell wall and 

nutrient acquisition. Also, classical cytoplasmic proteins were detected in the growth 

medium. Release of EVs into culture supernatants of fungi has been investigated in 

detail in the last few years (Albuquerque et al. 2008, Rodrigues et al. 2008, Oliveira et 

al. 2010, Vallejo et al. 2012). Fungal EVs contain a complex molecular mixture, 

including many cytoplasmic proteins, polysaccharides, lipids and pigments (Rodrigues 

et al. 2007, Albuquerque et al. 2008, Rodrigues et al. 2008, Vallejo et al. 2012). In 
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C. albicans, the presence of EVs was observed by TEM in a previous study 

(Albuquerque et al. 2008). These authors demonstrated the presence of bilayered 

structures similar to those described for other fungi, such as C. neoformans or 

H. capsulatum. In the present thesis, the proteomic study of C. albicans EVs was carried 

out in parallel with the EV-free supernatant proteomic analysis. A total of 96 

extracellular proteins were identified, being 75 proteins identified in EVs and 61 in EV-

free supernatant. A relevant result of this work is that 93% (57) of the proteins identified 

in the extracellular medium (61) are canonically secreted proteins bearing signal 

peptide, which suggest that the classical secretory pathway is the general mechanism 

used for C. albicans to secrete proteins into the medium. The other four proteins in 

which a signal peptide is not detected by Signal P are the 40 ribosomal subunit Asc1, 

the polyubiquitin Ubi4 and two Orfs, Orf19.6119 with unknown function and 

Orf19.6741, a putative plasma membrane protein with predicted role in cell wall 

integrity. Some of the secreted identified proteins were categorized as virulence factors 

or involved in biofilm formation, nutrient acquisition, pH regulators or required for 

tissue invasion, such as Als proteins, Ecm33, Mp65, Sap proteins or Phr2, among others 

(Martínez-Lopez et al. 2004, Mayer et al. 2013, Pericolini et al. 2015).  

The proteomic analysis of C. albicans EVs showed that all of the proteins involved in 

metabolism identified in the secretome were exclusively detected in this sample, such as 

Eno1, Gpm1, Pdc11, Pgk1, Tal1, Tdh3 and Met6, as well as proteins involved in protein 

folding or protein synthesis. This mechanism of protein transport could explain the 

problem of non-conventional secretion of proteins lacking typical secretory signal 

peptide and their incorporation into cell wall or exposition at the cell surface. In the 

present work, 60% (45) of the proteins detected in EVs have the secretory signal 

peptide. This list includes GPIs (14), cell wall-related proteins (17), transmembrane 

transport proteins (5) and other proteins related to secretion, protein synthesis and 

secreted hydrolases. Recently, a compositional and immunological analysis of 

C. albicans EVs was published, at the same time that we published our work (Vargas et 

al. 2015). This work contains the proteomic analysis of EVs from strains 11 and ETCC 

90028, other C. albicans clinical isolates different from SC5314. The identification of 

the proteins was performed using a different database and 57 unique proteins were 

identified versus our 75 proteins detected in EVs. Thus, the work published in the 

present thesis includes the highest number of proteins described up to date in 
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C. albicans. The functions of the proteins identified in the two studies are the same: cell 

adhesion, cell wall organization or metabolism of carbohydrates among others. As it 

was discussed in Chapter 2, Vargas et al. also conclude that vesicle transportation could 

explain why some nuclear and cytosolic proteins are detected in the cell wall and the 

extracellular medium. Finally, they also suggested that EVs might correspond to 

cytoplasmic subtractions derived from plasma membrane reshaping, which is in 

agreement with our hypothetical model published in Chapter 2 and displayed again in 

Figure 11, based on our results and previously published observation (Rodrigues et al. 

2013). In addition, Vargas et al. investigated the kinetics of internalization of EVs by 

Figure 11. Model of two different C. albicans secretory pathways (Chapter 

2). The classical protein ER-Golgi pathway that secretes proteins with N-

terminal signal peptide is shown in the upper part. Underneath, the 

unconventional secretion mechanism proposed, by which proteins (with and 

without signal peptide) would be carried to the extracellular medium in vesicles 

formed at the plasma membrane, is represented. Enlarged view of EV was 

shown. Representative protein groups and single proteins identified in EVs and 

EV-free supernatant were shown. 
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bone-marrow derived murine macrophages and by dendritic cells, and the 

immunomodulatory activity of these vesicles, as well as the impact of them on fungal 

virulence using the Galleria mellonella larvae model. As we observed in Chapter 2, the 

EVs contain seroreactive proteins, and as we supposed and discussed in the Chapter 2, 

EVs shown to be immunologically active and to have the potential to interfere with the 

host responses in the setting of invasive candidiasis. It would be appropriate to carry out 

future investigations of their role in stimulating disease control in mammalian models of 

invasive candidiasis or their role in enhancing fungal pathogenesis. 

As it has been mentioned before, the study of EVs is a hot topic in fungal research. 

Besides these two studies discussed above (Gil-Bona et al. 2015, Vargas et al. 2015), 

other two works has been recently published about C. albicans EVs. One of them 

characterized EVs as carriers of fungal RNA to the extracellular media (Peres da Silva 

et al. 2015). The implication of these findings for fungal pathogenesis remains unclear, 

but opens up new possibilities for investigating how these nucleic acids could interfere 

with gene expression in host cells. The most recent study published observes the 

relationship between C. albicans lipid biosynthetic genes and EVs (Wolf et al. 2015). It 

showed that the phosphatidylserine decarboxylase (PSD1 and PSD2) mutant releases 

EVs larger than those from the wild-type and activated the NFkB in bone marrow-

derived macrophage and murine macrophage-like cell lines showed no statistical 

difference from wild-type strain. However, the mutant of phosphatidylserine synthase 

(CHO1) releases EVs comparable in size to wild-type EVs and they did not activate the 

NFkB. These mutants also exhibit defects in cell wall integrity (Chen et al. 2010), as the 

mutant studied in the present thesis, RML2U which showed large EVs than the SC5314 

strain and defects in the cell wall, as discussed below. The conclusion of this study 

highlights a complex interplay between lipid metabolism and vesicle production. 

Therefore, all of these data together showed that the C. albicans EVs are a very 

complex field of study that just starts to take shape. There are many points remain 

unclear, such as its implication in C. albicans pathogenicity, the process of EVs 

formation or their function in the cell. However, the rate at which the publications are 

coming out suggests that many of these questions would be resolved soon. 
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3. The importance of Ecm33 in cell wall, cell morphology and its 

relation to TOR pathway in the human pathogen C. albicans 

Ecm33 is a GPI-anchored cell wall protein of the human pathogen C. albicans as well 

other fungi species, such as S. cerevisiae, Schizosaccharomyces pombe, M. robertsii and 

B. bassiana. In C. albicans, this protein is involved in fungal cell wall integrity, host 

cell adhesion, host cell damage and endocytosis. In addition, mutant shows morphology 

defects during the yeast to hypha transition under different filament-inducing conditions 

and it is avirulent in a mouse model of systemic infection (Martínez-Lopez et al. 2004). 

Ecm33 has been detected in all the proteomic studies published in the present thesis, 

including C. albicans yeast and hyphae cell surface (Parra-Giraldo 2013) (Chapter 1), 

yeast EVs and yeast EV-free extracellular secretome analysis (Chapter 2). Other 

proteomic studies published previously also identified Ecm33 in C. albicans cell wall, 

plasma membrane and extracellular secretome under different growth conditions (de 

Groot et al. 2004, Castillo et al. 2008, Cabezón et al. 2009, Sorgo et al. 2011). Despite 

its identification in different cell and extracellular cell locations, its molecular function 

remains unknown.  

The analysis of extracellular secretome of RML2U unravels several important issues. 

As commented in Chapters 2 and 3, the EVs were separated from the rest of the soluble 

proteins by ultracentrifugation. The proteomic analysis of EVs and the soluble fraction 

was done separately. Interesting data was obtained. A total of 170 single proteins were 

identified, 114 proteins for the EV-free supernatant and 154 proteins for the EVs. Of 

them 98 were common for both fractions. Interestingly, most of the proteins secreted by 

RML2U strain to the extracellular medium had no predicted signal-peptide sequence 

and were annotated as being intracellular location. Several of these proteins are included 

in ribosomal families, such as RPL, RPS and RPP, or are metabolic proteins such as 

Eno1, Gdh3, Met6 or Tdh3, among others. These metabolic proteins were not detected 

in the EV-free supernatant of SC5314 strain. Remarkably, this data is in agreement with 

a study published several years ago in which the effect of fluconazole on the wall 

integrity and extracellular proteome of C. albicans was analyzed (Sorgo et al. 2011). 

Fluconazole is an antifungal drug which causes increased membrane fluidity and drug 

permeability. In the mentioned study, the number of proteins with predicted intracellular 

localization was increased in the secretome of the treated cells. However, RML2U 
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secretes more classical cytoplasmic proteins than SC5314 growth with fluconazole, 

suggesting that its cell wall aberrant organization might cause higher traffic of proteins 

through the cell wall, thus enriching their presence outside the cell. However, other 

possible explanation for the increased number of proteins detected in RML2U is that the 

proteomic analysis in the fluconazole study was less sensitive than ours and a new study 

with a high-resolution mass analyzer could elucidate these differences. 

When the EV-free supernatant and EVs from SC5314 and RML2U were compared, just 

10 and 6 proteins identified in SC5314 were not identified in RML2U samples, 

respectively. Two of these proteins undoubtedly are relevant, the Orf19.4952.1 and 

Sap2, both related directly or indirectly with Target of Rapamycin (TOR) pathway. The 

S. cerevisiae orthologue of ORF19.4952.1, FPR2, binds to the drugs FK506 and 

rapamycin (Nielsen et al. 1992, Partaledis et al. 1992). Its absence could influence on 

sensitivity to rapamycin, although fkb2 (fpr2) mutation looks as sensitive as the wild-

type strain to rapamycin. RML2U strain showed increased sensitivity to rapamycin, 

whereas the complementing strain RML4U resulted in a phenotype that was 

indistinguishable from the wild-type strain (Chapter 3). However, there is no evidence 

that the absence of this protein outside the cell could influence the sensitivity to the 

drug. Other protein not detected in RML2U extracellular proteome was Sap2. 

C. albicans Saps are considered to play important roles in the pathogenicity of this 

fungus. The pathological implication of Sap expression by this fungus in mucosal 

infections was observed by experimental and clinical evidences (Hube et al. 1997, 

Schaller et al. 1999), although the experimental systemic C. albicans infections with 

sap-null mutants have produced some contradictory findings (Lermann and 

Morschhauser 2008, Correia et al. 2010). In particular, Sap2 is dominantly expressed 

under various in vitro and in vivo conditions, including experimental infected rats and in 

women affected by vulvovaginal candidiasis (Schaller et al. 1998, Naglik et al. 2003). 

Also, a recently publication showed that it is able to cause vaginitis in mice (Pericolini 

et al. 2015). In the Chapter 3, proteomic and western blotting analysis confirmed the 

absence of extracellular Sap2 in RML2U cultures but its intracellular presence indicated 

a normal expression of Sap2, suggesting a problem in Sap2 secretion pathway. 

Furthermore, RML2U is not able to degrade BSA in a medium with BSA as a sole 

nitrogen source in which medium Sap2 is significantly expressed (Staib et al. 2008). 

This reduced proteolytic activity of the RML2U strain together with the fact that 
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RML2U secretes more proteins by the classical secretory pathway, including other 

members of the Sap family, suggests a different or specific mechanism of Sap2 

secretion which could have been compromised by the absence of Ecm33. Other 

C. albicans mutants that showed hypersensitivity to rapamycin, also results in an altered 

Sap2 secretion, vps1, vps4 and rhb1-deleted mutants (Bernardo et al. 2008, Lee et al. 

2009, Chen et al. 2012). Furthermore, Rhb1 mediates cross-talk between the TOR 

signaling pathway and the CWI pathway (Tsao et al. 2009). However, the mechanism of 

VPS mediated Sap2 secretion and Rhb1-TOR signaling remains unknown. Based in all 

of these results, a possible protein regulated secretion mechanism different for Sap2 

could be used by C. albicans. In yeast, this type of particular secretion has not been 

described until now. 

The incapacity to secrete Sap2 and the hypersensitivity to rapamycin of RML2U 

(Chapter 3) lead us to study if Ecm33 have an indirect role in TOR pathway. TOR is a 

growth regulator that senses and integrates diverse nutritional and environmental cues, 

including growth factors, energy levels and cellular stress, and also limits autophagy 

(Wullschleger et al. 2006, Kaeberlein et al. 2007, Fontana et al. 2010). This pathway is 

not well known in C. albicans. While in S. cerevisiae the central component of the TOR 

pathway contains two TOR genes codifying  the closely related kinases, Tor1 and Tor2, 

in C. albicans only one TOR gene has been identified, TOR1 (Cruz et al. 2001, Loewith 

and Hall 2011). Besides, to confirm that the RML2U sensitivity to rapamycin was not 

only related to damage in the cell wall, the sensitivity to rapamycin was also tested in 

other C. albicans mutants of cell wall proteins. These mutants did not show difference 

of growth compared with the wild type strain (Chapter 4. Supplemental Figure S2). In 

addition, RML2U showed sensitivity to caffeine, a compound used to evaluate problems 

in CWI pathway as well in TOR function (Martin et al. 2000, Park et al. 2005, Kuranda 

et al. 2006, Reinke et al. 2006), which supports previous results.  

Recently, it has been published that the transmembrane protein Mtl1 is a key regulator 

of TOR and Protein Kinase A (PKA) signaling pathways in S. cerevisiae (Sundaram et 

al. 2015). The absence of Mtl1 shortens CLS while its over expression increases CLS, 

suggesting a positive role in the chronological life span. Moreover, the values in the 

mtl1tor1 double mutant were similar to those in tor1, suggesting that Mtl1 might 

function upstream of TORC1, negatively regulating Tor1 in the progression though 
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stationary phase. These authors also studied the CLS in conditions of glucose restriction 

and mtl1 deletion decreased life span compared with wild type values but the life span 

increased compared to the other condition. They concluded that Mtl1 acts as inhibitor of 

the AGC family protein kinase Sch9 activity under their study conditions and Sch9 is 

also an inhibitor of the MAP kinase Slt2 activity in stationary phase and in the absence 

of glucose or in glucose restrictive conditions. However, a previous study displayed that 

Sch9 is not involved in the C. albicans CLS regulation (Stichternoth et al. 2011). Based 

on these results, together with previous data, the Figure 12 shows the hypothetical 

model for TOR and CWI signaling pathways in S. cerevisiae in order to compare it with 

the C. albicans model proposed. In the present thesis, it was observed that RML2U has 

the life span reduced compared to the wild type in all the studied conditions (Chapter 4), 

and, as observed in mtl1 mutant, the values under calorie restriction and water, are 

higher than the CLS condition. Besides, Mkc1 is phosphorylated in RML2U under basal 

growth conditions, showing the activation of the CWI pathway (Chapter 4). However, 

although these data is similar in both cases, there is no clear evidence that relates 

directly Ecm33 to the TOR signaling pathway.  

Bioinformatics analysis done in C. albicans Ecm33 protein and other family members 

described a domain similar to “L-Domain receptor” that is usually present in the linking 

region to ligand of important receptors with great physiological relevance as the insulin-

like receptor, or the epidermal growth factor receptor. Besides, TOR pathway responds 

to growth factors (insulin or insulin-like growth factors) in mammals (Wullschleger et 

al. 2006). In this way and taking previous data together, Ecm33 could be presented as a 

possible receptor of some physiological ligands, to coordinate the proper cell wall 

organization with cell cycle progression.  Besides, the Candida albicans database 

(CGD) describes the presence of a leucine rich region (“Leucine Rich Repeat” o LRR) 

in Ecm33, which are typical regions for protein-protein interactions. During the present 

thesis, a dot blot was done to determine if Ecm33 was able to bind insulin. No clear 

results were obtained. Further analysis would be needed to determine the role on this 

pathway. Figure 12 shows a hypothetical and simplified scheme of how Ecm33 could be 

involved in TOR and CWI pathways. The analysis of tor1ecm33 double mutant in 

C. albicans would be interest to perform. Also, the complementation of rapamycin-

sensitive phenotype of RML2U with the TOR1-1 mutant allele could give an idea of the 

role of Ecm33 in TOR pathway. TOR1-1 mutant allele carries a point mutation 
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 (TOR1
S1984I

) in the FKBP12 rapamycin-binding domain of the Tor kinase, giving 

rapamycin resistance to the strain that carries the allele (Cruz et al. 2001).  

Previous work showed that RM2LU have altered cell wall structure, aberrant 

morphology and fail to produce true hyphae (Martínez-Lopez et al. 2004, Martinez-

Lopez et al. 2006). In the present thesis, several stress tolerance assays were done to 

know in depth its contribution in the cell. The data obtained in Chapter 4 showed that 

RML2U displays sensitivity to osmotic stress, heat stress and oxidative stress. This data 

complement previous results in which RML2U showed sensitivity to cell wall-

perturbing agents, such as calcofluor white or congo red (Martínez-Lopez et al. 2004). 

Besides, its incapacity to form biofilms and its hypersensitivity to zymolyase (Chapter 

3) confirm cell wall defects. Also, the incapacity of the RML2U protoplast to regenerate 

the cell wall is an important finding of this work because it gives evidence for Ecm33 as 

fundamental for "de novo" cell wall reconstruction or biosynthesis (Chapter 4).  

Figure 12. Hypothetical model for TOR and CWI signaling pathways in 

S. cerevisiae and C. albicans. Right: Hypothetical model in S. cerevisiae based 

on previous works: 1 (Soulard et al. 2010) 2 (Jacinto and Hall 2003) (De Virgilio 

and Loewith 2006) 3 (Sundaram et al. 2015). Left: Hypothetical model in 

C. albicans based on previous works and the data obtained in this thesis: 4 (Chen 

et al. 2012) 5 (Tsao et al. 2009) 6 (Chen and Lan 2015). The irregular red arrow 

indicates a possible link between Ecm33 and TOR pathway.  

 



General discussion 

 

 

180 
 

In S. cerevisiae, TOR plays a fundamental role in morphogenesis by regulating 

numerous biological processes, including autophagy, translation and ribosome 

biogenesis (Wullschleger et al. 2006). In C. albicans, TOR pathway was related to 

hyphal development and cell morphogenesis (Zacchi et al. 2010, Su et al. 2013). Several 

abnormal morphological phenotypes could relate Ecm33 to this pathway and also to cell 

wall integrity and biogenesis. RML2U displays abnormal cell shapes in standard grow 

conditions (Martínez-Lopez et al. 2004). An important analysis of different phenotypes 

was developed in this thesis. Among the observed phenotypes, it is important to 

highlight the unusual distribution of actin, related to abnormal cell shape, the increasing 

chitin in the cell wall, multinucleated or no nucleated cells and cell like pseudohyphae. 

These observations suggest problems in cell cycle and cell division. Other mutants of 

cell surface or cell wall proteins, such as Hsp90 or Mkc1, showed similar phenotypes 

and are attributed to cell cycle arrest or CWI activation pathway (Navarro-Garcia et al. 

1998, Senn et al. 2012). However, the presence of the "veil growth" in RML2U static 

and stationary cultures has been never described before. In Chapter 4, the relation with 

the "flor velum" developed on the wine surface after the alcoholic fermentations 

(Alexandre 2013) and the RML2U veil was discussed. In S. cerevisiae, the difference 

between strains able or unable to form a velum was the presence of mannoprotein in the 

cell wall of the yeast (Alexandre et al. 2000), a similarity with RML2U which presented 

an abnormally electron-dense outer mannoprotein layer, which may represent a 

compensatory response to reduced cell wall integrity (Martinez-Lopez et al. 2006). 

Also, the cells observed in the "flor velum" have acquired the capacity to float as an 

adaptive mechanism to cope the environmental limitations. Then, we could associate the 

RML2U rounded cells observed in the veil and in corn meal growth conditions as the 

adaptive phenotype used by RML2U to survive. In fact, cornmeal medium is used to 

stimulate the chlamydospore formation in C. albicans. As discussed in Chapter 4, the 

RML2U cells obtained from cornmeal cultures and observed by TEM are similar to the 

Aspergillus fumigatus autophagic cells (Yan et al. 2013). This phenotype could be the 

RML2U strategy to survive, showing phenotypes similar to both stages, round cells like 

chlamydospores and vacuolization and translucent cytoplasm like phagocytosis. All this 

data together could explain the low damage caused by RML2U to the macrophages. The 

aberrant phenotypes observed, such as the sensitivity to oxidative stress or temperature, 

could influence in the RML2U incapacity to survive and cause damage to murine 
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macrophages. The apoptotic cells observed upon macrophage interaction by two 

apoptotic markers, ROS accumulation and caspase-like activity, presents other type of 

death different from necrosis. 

All the different results obtained from the RML2U study were summarized in Figure 13. 

The function of this protein remains unknown but all of these results focus on the fact 

that this protein could have a direct or an indirect role in TOR and CWI pathways. For 

that reason, the ECM33 mutation affects the cell morphology, cell viability and host-cell 

interaction.  

 

Figure 13. Summary of the main findings of the RML2U strain. The data presented in 

the figure come from previous studies from our group (Martínez-Lopez et al. 2004, 

Martinez-Lopez et al. 2006) and from the results published in the present thesis (Chapters 

3 and 4). 
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1. The phenotypic analysis of 17 mutants of C. albicans cell surface proteins 

detected by cell shaving, revealed four new proteins that are involved in the 

maintenance of cell wall integrity and in the C. albicans engulfment by 

macrophages: Pst3, Tos1, Orf19.3060 and Orf19.5352. However, these proteins 

are not relevant for virulence during oropharyngeal candidiasis. 

 

2. Four putative NADH-ubiquinone-related proteins, Ali1, Mci4, Orf19.287 and 

Orf19.7590, identified in the same cell shaving study, are involved in cell wall, 

osmotic and oxidative stress resistance, in the yeast-to-hypha transition and in 

the interaction with oral epithelial cells. 

 

3. The proteomic analysis of C. albicans extracellular proteins revealed that 

C. albicans is able to use at least two different mechanisms to secrete different 

types of proteins: the classical secretory pathway and the extracellular vesicles. 

 

4. More than 90% of the proteins identified in the extracellular vesicle-free 

secretome were classical secretory proteins with predicted N-terminal signal 

peptide. These proteins were enriched in cell wall- and secreted pathogenesis-

related proteins. 

 

5. The extracellular vesicles are the most important mechanism used by C. albicans 

to secrete proteins without predicted N-terminal signal peptide. All of the 

secreted metabolic or heat-shock proteins (including some moonlighting 

proteins) and secreted proteins involved in the exocytosis and endocytosis 

process are carried by extracellular vesicles. In addition, membrane proteins, 

including GPI-anchored proteins, and other cell wall-related proteins are 

transported by the extracellular vesicles. 

 

6. The deletion of ECM33 affects the classical secretion pathway and the 

extracellular vesicles morphology and its protein content. This results in the 

secretion of more proteins by both secretory mechanisms. 
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7. The secretion of the secreted aspartyl proteinase 2 (Sap2) is compromised in the 

RML2U mutant. Because the secretion of other members of the Sap family is 

not affected in the RML2U mutant, this result suggests a different mechanism of 

Sap2 secretion. 

 

8. The defects in Sap2 secretion joined to the hypersensitivity to rapamycin and the 

reduced chronological life span showed by RML2U mutant point to a relation 

between Ecm33 and the TOR pathway.  

 

9. RML2U mutant is sensitive to high temperatures, oxidative stress-inducing 

agents and osmotic stress-inducing agents. In addition, RML2U presents 

morphological defects: abnormal cell morphologies, irregular septa distribution, 

nuclear disorganization and actin patches with unusual distribution in the cell in 

absence of external stress. 

 

10. The “veil growth” observed in RML2U stationary static cultures after long 

periods, and not in those of SC5314, represents a form of growth that has never 

been described for C. albicans and it was also observed in cornmeal medium. 

The cells observed are giant, round, with a large cell wall, large vacuoles and 

translucent cytoplasm, and it is probably related to a role to adapt and survive in 

extreme environmental conditions. 
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1. Mediante el análisis fenotípico de 17 mutantes carentes de proteínas detectadas 

en la superficie celular de C. albicans se ha descubierto la presencia de cuatro 

nuevas proteínas implicadas en el mantenimiento de la integridad de la pared 

celular y en la fagocitosis por los macrófagos: Pst3, Tos1, Orf19.3060 y 

Orf19.5352. Sin embargo, estas proteínas no son relevantes para el desarrollo de 

candidiasis orofaríngea. 

 

2. Cuatro proteínas descritas como posibles NADH-ubiquinona oxidorreductasas o 

deshidrogenasas, Ali1, Mci4, Orf19.287 y Orf19.7590, identificadas en el 

mismo estudio de superficie celular, están relacionadas con la resistencia a estrés 

osmótico, oxidativo y de pared celular, con la transición levadura-hifa y con la 

interacción con células de epitelio oral. 

 

3. El análisis proteómico del secretoma de C. albicans ha demostrado que 

C. albicans puede usar al menos dos mecanismos diferentes para secretar 

distintos tipos de proteínas: la ruta clásica de secreción y las vesículas 

extracelulares. 

 

4. Más del 90% de las proteínas identificadas en el secretoma libre de vesículas son 

proteínas clásicas de secreción que presentan un péptido señal en su secuencia. 

Este grupo de proteínas está enriquecido en proteínas relacionadas con la pared 

celular y proteínas de secreción relacionadas con patogénesis. 

 

5. Las vesículas extracelulares constituyen el mecanismo más importante utilizado 

por C. albicans para secretar proteínas que no presentan péptido señal. Todas las 

proteínas de choque térmico y metábolicas que son secretadas (incluyendo 

proteínas multifuncionales) son transportadas por las vesículas extracelulares, 

así como las proteínas secretadas relacionadas con procesos de exocitosis y 

endocitosis. Además, las proteínas de membrana, incluyendo proteínas de 

anclaje GPI, y otras proteínas relacionadas con pared celular son también 

transportadas por las vesículas extracelulares. 
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6. La deleción de ECM33 afecta a la ruta clásica de secreción y a la morfología y al 

contenido proteico de las vesículas extracelulares. Esta alteración provoca que el 

mutante RML2U secrete más proteínas mediante ambos mecanismos de 

secreción. 

 

7. El mutante RML2U no es capaz de secretar la aspartil proteasa 2 (Sap2). Dado 

que la secreción del resto de los miembros de la familia Sap no está afectada en 

el mutante, este resultado apunta a un mecanismo de secreción distinto para 

Sap2. 

 

8. La incapacidad de secretar Sap2 unido a la hipersensibilidad de RML2U a 

rapamicina y su reducida longevidad sugieren que la función de Ecm33 está 

relacionada con la ruta TOR.  

 

9. El mutante RML2U es sensible a las altas temperaturas, al estrés osmótico y al 

estrés oxidativo. Además, RML2U presenta defectos en su morfología en 

ausencia de estrés: células con morfologías anómalas, distribución irregular de 

los septos, desorganización nuclear y parches de actina con distribución inusual 

en la célula. 

 

10. El "velo" observado en cultivos estacionarios y estáticos de RML2U tras largos 

periodos de tiempo, representan una forma de crecimiento no descrita 

anteriormente en C. albicans, con células grandes, redondas, con pared celular 

gruesa, grandes vacuolas y citoplasma traslúcido. Estas células que no se 

observan en la cepa SC5314 son similares a las observadas en el mutante 

creciendo en medio de cultivo de maíz, y su papel podría estar relacionado con 

la adaptación y supervivencia en condiciones ambientales extremas. 
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