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Abstract. In this paper, we prove that the optimality conditions
of the higher order convex functions are characterized by a class of varia-
tional inequalities, which is called the higher order variational inequality.
Auxiliary principle technique is used to suggest an implicit method for
solving higher order variational inequalities. Convergence analysis of the
proposed method is investigated using the pseudo-monotonicity of the op-
erator. Some special cases also discussed. Results obtained in this paper
can be viewed as refinement and improvement of previously known results.

1. Introduction

Convexity theory has been extended and generalized in various directions
by using novel and innovative techniques to tackle complicated and complex
problems. Hanson [6] introduced the concept of invex function for the dif-
ferentiable functions, which played significant part in the mathematical pro-
gramming. Ben-Israel and Mond [1] introduced the concept of invex set and
preinvex functions. It is known that the differentiable preinvex function are
invex functions. The converse also holds under certain conditions, see [20,21].
Noor [18] proved that the minimum of the differentiable preinvex functions
on the invex set can be characterized by a class of variational inequalities,
which is known as the variational-like inequality. These results have inspired
a great deal of subsequent work which has expanded the role and applications
of the invexity in nonlinear optimization and engineering sciences. Noor at el.
[22,23] investigated the properties of the higher order preinvex functions and
their variant forms. We would like to emphasize that the higher order preinvex
functions include the higher order strongly convex functions as special cases.
With appropriate choice of non-negative bifunction η(., .) and the parameters
p, ν, one can obtain various known classes of preinvex, convex functions and
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their variant forms. For the recent developments in variational-like inequali-
ties and invex equilibrium problems, see [2, 3, 18–23, 25, 28, 30, 32, 34–36] and
the references therein.

It is known that the minimum of the differentiable of the preinvex func-
tions on the invex sets can be characterized by a class of variational inequal-
ities, called the variational-like inequalities. Variational inequalities theory,
which was introduced by Stampacchia [33] in 1964, contains wealth of new
ideas and techniques for investigating a wide class of unrelated problems in a
unified framework. The ideas and techniques of variational inequalities are be-
ing applied in a variety of diverse areas of sciences and prove to be productive
and innovative. Variational inequalities have been extended and generalized
in several directions using novel and new techniques. For the formulation, ap-
plications, numerical methods, sensitivity analysis and other aspects of vari-
ational inequalities, see [4–17,22–30,36] and the references therein.

Noor et al [22,23] introduced the strongly preinvex functions and studied
their properties. We have shown that the minimum of a differentiable higher
order strongly convex function on the general biconvex set can be character-
ized by a class of variational inequality. Theses results inspired us to consider
the higher order variational inequalities. Due to the inherent nonlinearity,
the projection method and its variant form can not be used to suggest the
iterative methods for solving these variational inequalities. To overcome these
draw backs, we use the technique of the auxiliary principle [5,10,15,18,29,37]
to suggest an implicit method for solving variational inequalities. Convergence
analysis of the proposed method is investigated under pseudo-monotonicity,
which is a weaker condition than monotonicity. Some special cases are dis-
cussed as applications of the results, which represent the improvement and
refinement of the known results. It is expected that the ideas and techniques
of this paper may stimulate further research in this field.

2. Preliminary Results

Let Kη be a nonempty closed set in a real Hilbert space H. We denote
by ⟨·, ·⟩ and ∥ · ∥ the inner product and norm, respectively. Let F : Kη → R
be a continuous function.

Definition 2.1 ([1]). The set Kη in H is said to be an invex set with
respect to an arbitrary continuous bifunction η(·, ·) : Kη ×Kη → R, if

u+ tη(v, u) ∈ Kη, ∀u, v ∈ Kη, t ∈ [0, 1].

The invex set Kη is also called a η-connected set. Note that the invex set
with η(v, u) = v−u is a convex set, but the converse is not true. For example,
the set Kη = R− (− 1

2 ,
1
2 ) is an invex set with respect to η, where

η(v, u) =
{
v − u, for v > 0, u > 0 or v < 0, u < 0
u− v, for v < 0, u > 0 or v < 0, u < 0.
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It is clear that Kη is not a convex set.

Remark 2.2. We would like to emphasize that, if u+η(v, u) = v,∀u, v ∈
Kη, then η(v, u) = v − u,∀u, v ∈ Kη. Consequently, the η-invex set reduces
to the convex set K. Thus, Kη ⊂ K. This implies that every convex set is an
invex set.

From now onward Kη is a nonempty closed invex set in H with respect
to the bifunction η(·, ·), unless otherwise specified.

Definition 2.3 ([22]). The function F on the convex set Kη is said to
be a higher order preinvex with respect to the bifunction η(, .), if there exists
a constant µ > 0, such that

F (u+ tη(v, u)) ≤ (1 − t)F (u) + tF (v)
− µ{tp(1 − t) + t(1 − t)p}∥η(v, u)∥p,

∀u, v ∈ Kη, t ∈ [0, 1], p ≥ 1.

The function F is said to be higher order preincave, if and only if, −F is
higher order preinvex function.

We now discuss some special cases.

I. If η(v, u) = v − u, then Definition 2.3 reduces to

Definition 2.4. [13] The function F on the convex set K is said to be a
higher order strongly convex, if there exists a constant µ > 0, such that

F (u+ t(v − u)) ≤ (1 − t)F (u) + tF (v)
− µ{tp(1 − t) + t(1 − t)p}∥v − u∥p,

∀u, v ∈ K, t ∈ [0, 1], p ≥ 1.

II. If p = 2, then Definition 2.4 becomes:

Definition 2.5. A function F is said to be strongly convex, if

F (u+ t(v − u)) ≤ (1 − t)F (u) + tF (v) − µt(1 − t)∥v − u∥2,

∀u, v ∈ K, t ∈ [0, 1],

which were introduced by Polyak [31]. For the applications of strongly convex
functions in variational inequalities and optimization programming, see [4, 5,
14,24,28,31,37] and the references therein.

III. If µ = 0, then Definition 2.3 becomes:

Definition 2.6 ([1]). A function F is said to be preinvex function with
respect to the bifunction η(, .), if

F (u+ tη(v, u)) ≤ (1 − t)F (u) + tF (v), ∀u, v ∈ Kη, t ∈ [0, 1].
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If the preinvex function F is differentiable, then u ∈ Kη is the minimum
of the F, if and only if, u ∈ K satisfies the inequality

⟨F ′(u), η(v, u)⟩ ≥ 0, ∀v ∈ Kη,

which is called the variational-like inequality, see Noor [18, 19]. For the ap-
plications, formulation, sensitivity, dynamical systems, generalizations, and
other aspects of the variational-like inequalities, see [18–20,22,23,28] and the
references therein.

IV. For p = 1, Definition 2.3 reduces to:

Definition 2.7 ([22]). The function F on the convex set Kη is said to
be an approximate preinvex with respect to the bifunction η(, .), if there exists
a constant µ1 > 0, such that

F (u+ tη(v, u)) ≤ (1 − t)F (u) + tF (v) − µ1t(1 − t)∥η(v, u)∥,
∀u, v ∈ Kη, t ∈ [0, 1].

Remark 2.8. For suitable and appropriate choices of the bifunction η(., .),
invex sets, operators and parameters p, µ, µ1, we can obtain several new and
known classes of preinvex functions, convex functions and their variant forms
as special cases of the higher order preinvex functions. This shows that the
higher order preinvex functions are quite general and unifying one.

We also need the following condition regarding the bifunction η(., .), which
is due to Mohan and Neogy [12].

Condition C. Let η(·, ·) : K ×K → H satisfy assumptions
η(u, u+ tη(v, u)) = −tη(v, u), for all u, v ∈ Kη, t ∈ [0, 1].
η(v, u+ tη(v, u)) = (1 − t)η(v, u), for all u, v ∈ Kη, t ∈ [0, 1].

For the applications of the condition C in variational-like inequalities and
optimization, see [2, 3, 12, 18–22, 24–28, 32, 34–36]. Clearly for t = 0, we have
η(u, v) = 0, if and only if, u = v, for all u, v ∈ Kη. One can easily show that
η(u+ tη(v, u), u) = tη(v, u), for all u, v ∈ Kη. From

η(v, u) = η(v, z) + η(z, u), ∀v, u, z ∈ Kη,

it follows that η(u, u) = 0 and η(v, u) = η(u, v), ∀u, v ∈ Kη. Then the
bilinear function η(., .) is skew symmetric. Consequently, it follows that

η(v, u) = 0 ⇔ u = v, ∀u, v ∈ Kη.

For differentiable strongly preinvex functions, we have the following result.

Lemma 2.9 ([22]). Let the function F be a differentiable function on the
invex set Kη. If the condition C holds, then the followings are equivalent.
(i) The function F is higher order strongly preinvex function.
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(ii) F (v) − F (u) ≥ ⟨F ′(u), η(v, u)⟩ + ν∥η(v, u)∥p, ∀u, v ∈ Kη.

(iii) ⟨F ′(u), η(v, u)⟩+⟨F ′(v), η(u, v)⟩ ≤ −α{∥η(v, u)∥p+∥η(u, v)∥p}, u, v ∈ Kη.

3. Main Results

In this section, we introduce and consider a new class of variational in-
equalities, which arises as an optimality condition of differentiable higher or-
der preinvex functions. This result is mainly due to Noor and Noor [22]. We
include its details to convey the main idea and for the sake of completeness.

Theorem 3.1 ([22]). Let F be a differentiable higher order preinvex func-
tion with modulus µ > 0. If u ∈ Kη is the minimum of the function F, then

F (v) − F (u) ≥ µ∥η(v, u)∥p, ∀u, v ∈ Kη.(3.1)

Proof. Let u ∈ Kη be a minimum of the function F. Then
F (u) ≤ F (v),∀v ∈ Kη.(3.2)

Since Kη is an invex set, so, ∀u, v ∈ Kη, t ∈ [0, 1],
vt = u+ tη(v, u) ∈ Kη.

Taking v = vt in (3.2), we have

0 ≤ lim
t→0

F (u+ tη(v, u)) − F (u)
t

= ⟨F ′(u), η(v, u)⟩.(3.3)

Since F is differentiable higher order strongly preinvex function, so
F (u+ tη(v, u)) ≤ F (u) + t(F (v) − F (u))

− µt(1 − t){tp−1 + (1 − t)p−1}∥η(v, u)∥p,∀u, v ∈ Kη,

from which, using (3.3), we have

F (v) − F (u) ≥ lim
t→0

F (u+ tη(v, u)) − F (u)
t

+ µ∥η(v, u)∥p

= ⟨F ′(u), η(v, u)⟩ + µ∥η(v, u)∥p

≥ µ∥η(v, u)∥p,

which is the required result (3.1).

We would like to mention that, if u ∈ Kη satisfies the inequality
⟨F ′(u), η(v, u)⟩ + µ∥η)v, u)∥p ≥ 0, ∀u, v ∈ Kη,(3.4)

then u ∈ Kη is the minimum of the function F .
The inequality of the type (3.4) is called the higher order variational-like

inequality and appears to a new one. It is well known that the inequalities of
the type (3.4) does not arise as a minimum of the differentiable higher order
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preinvex function. We now consider an other variational-like inequality of
which (3.4) is a special case.

For a given operator T, consider the problem of finding u ∈ Kη for a
constant µ > 0, such that

⟨Tu, η(v, u)⟩ + µ∥η(v, u)∥p ≥ 0, ∀v ∈ Kη, p > 1,(3.5)

which is called the higher order variational-like inequality.
We now discus several special cases of the problem (3.5).

(I) If Tu = F ′(u), then problem (3.5) is exactly the higher order
variational-like inequality (3.4).

(II) If µ = 0, then (3.5) is equivalent to finding u ∈ Kη, such that

⟨Tu, η(v, u)⟩ ≥ 0, ∀v ∈ K,

which is known as the variational-like inequality, introduced and studied by
Noor [18]. For recent applications, see [18–22,28] and the references therein.

(III) If p = 1, then problem (3.5) reduces to the problem of finding u ∈ K
such that

⟨Tu, η(v, u)⟩ + µ∥η(v, u)∥ ≥ 0, ∀v ∈ Kη,

which is called the approximate variational-like inequality and appears to be
a new one.

(IV) If p = 2, then problem (3.5) reduces to the problem of finding u ∈ K
such that

⟨Tu, η(v, u)⟩ + µ∥η(v, u)∥2 ≥ 0, ∀v ∈ Kη,

which is called the strongly variational-like inequality, see Noor and Noor [23].

(V) If η(v, u) = v − u, then problem (3.5) reduces to finding u ∈ K such
that

⟨Tu, v − u⟩ + µ∥v − u∥p ≥ 0, ∀v ∈ K, p > 1,(3.6)

which is called the higher order variational inequality, studied by Noor and
Noor [24].

For appropriate and suitable choices of the bifunction η(., .), spaces and
parameter p, we can obtain several new and known classes of variational in-
equalities and related problems.

We now recall the concept of the monotonicity.

Definition 3.2. An operator T : Kη → H is said to be:



HIGHER ORDER VARIATIONAL-LIKE INEQUALITIES 159

1. strongly η-monotone, if there exists a constant α > 0 such that
⟨Tu, η(v, u)⟩ + ⟨Tv, η(u, v)⟩ ≤ −α{∥η(v, u)∥p + ∥η(u, v)∥p}, u, v ∈ Kη.

2. η-monotone, if
⟨Tu, η(v, u)⟩ + ⟨Tv, η(u, v)⟩ ≤ 0, u, v ∈ Kη.

Note that, if η(v, u) = v − u, then the invex set Kη is a convex set K.
This clearly shows that Definition 3.2 is more general and includes the ones
in [6, 10,12–14] as special cases.

Lemma 3.3. Let the operator T be η-monotone. If u ∈ Kη is the solution
of the problem (3.5), then u ∈ Kη satisfies the inequality

−⟨Tv, η(u, v)⟩ + ν∥η(v, u)∥p ≥ 0, ∀v ∈ Kη, p > 1.(3.7)
Proof. Let u ∈ Kη be a solution of the problem (3.5). Then

⟨Tu, η(v, u)⟩ + ν∥η(v, u)∥p ≥ 0, ∀v ∈ Kη, p > 1,
from which, using the η-monotonicity of the operator T, we have

−⟨Tv, η(u, v)⟩ + ν∥η(v, u)∥p ≥ 0, ∀v ∈ Kη, p > 1,
which is the required result (3.7).

The inequality of the type (3.7) is called the Minty higher order
variational-like inequality. For suitable and appropriate choice of the param-
eter µ and p, one can obtain several new and known classes of variational-like
inequalities and optimization problems.

Remark 3.4. We would like to emphasize that the converse of Lemma
3.3 does not hold. However, if the operator T is hemicontinuous, then one
can show that the converse of Lemma 3.3 holds for p > 1 and ν = 0. The
variational-like inequality (3.7) is also called the dual of inequality (3.7) and
plays an important role in the study of variational-like inequalities.

We note that the projection method and its variant forms can not be
used to study the higher order strongly variational-like inequalities (3.5) due
to its inherent structure. These facts motivated us to consider the auxiliary
principle technique, which is mainly due to Lions and Stampacchia [10] and
Glowinski et al. [5] as developed by Noor [17] and Noor et al. [26–28]. We
again use this technique to suggest some iterative methods for solving the
higher order variational-like inequalities (3.5).

For given u ∈ Kη satisfying (3.5), consider the problem of finding w ∈ Kη,
such that
(3.8) ⟨ρTw, η(v, w)⟩ + ⟨w − u, v − w⟩ + ν∥η(v, w)∥p ≥ 0,∀v ∈ Kη, p ≥ 1.
The problem (3.8) is called the auxiliary higher order variational-like inequal-
ity. It is clear that the relation (3.8) defines a mapping connecting the prob-
lems (3.5) and (3.8).



160 M. A. NOOR AND K. I. NOOR

We note that, if w(u) = u, then w is a solution of problem (3.5). This
simple observation enables to suggest an iterative method for solving (3.5).

Algorithm 3.1. For a given u0 ∈ Kη, find the approximate solution
un+1 by the scheme

⟨ρTun+1, η(v, un+1)⟩ + ⟨un+1 − un, v − un+1⟩(3.9)
+ ν∥η(v, un+1)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1.

The Algorithm 3.1 is known as the implicit method. Such type of methods
have been studied extensively for various classes of variational inequalities.

If ν = 0, then Algorithm 3.1 reduces to:

Algorithm 3.2. For given u0 ∈ Kη, find the approximate solution
un+1 by the scheme

(3.10) ⟨ρTun+1, η(v, un+1)⟩ + ⟨un+1 − un, v − un+1⟩ ≥ 0,∀v ∈ Kη,

for solving the variational-like inequalities (3.6).

If η(v, u) = v − u, then the invex set Kη becomes convex set K, and
Algorithm 3.1 reduces to following iterative method for solving the higher
order variational inequalities, which is mainly due to Noor and Noor [24].

Algorithm 3.3. For a given u0 ∈ K, find the approximate solution
un+1 by the scheme

⟨ρTun+1, v − un+1⟩ + ⟨un+1 − un, v − un+1⟩(3.11)
+ ν∥v − un+1∥p ≥ 0, ∀v ∈ K, p ≥ 1.

For the convergence analysis of Algorithm 3.1, we need the following
concept.

Definition 3.5. The operator T is said to be η-pseudomonotone with
respect to ν∥η(v, u)∥p, if

⟨ρTu, η(v, u)⟩ + ν∥η(v, u)∥p ≥ 0,∀v ∈ Kη, p > 1

implies
−⟨ρTv, η(u, v)⟩ − ν∥η(v, u)∥p ≥ 0,∀v ∈ Kη, p > 1.

We now study the convergence analysis of Algorithm 3.1.

Theorem 3.6. Let u ∈ K be a solution of (3.5) and un+1 be the ap-
proximate solution obtained from Algorithm 3.1. If T is a η-pseudomonotone
operator with respect to ν∥v − u∥p, then

∥un+1 − u∥2 ≤ ∥un − u∥2 − ∥un+1 − un∥2.(3.12)
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Proof. Let u ∈ Kη be a solution of (3.5). Then
⟨ρTu, η(v, u)⟩ + ν∥η(v, u)∥p ≥ 0,∀v ∈ Kη,

implies that
−⟨ρTv, η(u, v)⟩ − ν∥η(u, v)∥p ≥ 0,∀v ∈ Kη.(3.13)

Now taking v = un+1 in (3.13), we have
⟨ρTun+1, η(u− un+1)⟩ − ν∥η(u, un+1)∥p ≥ 0.(3.14)

Taking v = u in (3.9), we have
⟨ρTun+1, η(u, un+1)⟩ + ⟨un+1 − un, u− un+1⟩(3.15)

+ ν∥η(u, un+1)∥p ≥ 0.
Combining (3.14) and (3.15), we have

⟨un+1 − un, un+1 − u⟩ ≥ 0.
Using the inequality

2⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2,∀a, b ∈ H,

we obtain
∥un+1 − u∥2 ≤ ∥un − u∥2 − ∥un+1 − un∥2,

which is the required result (3.12).

Theorem 3.7. Let T be a pseudomonotone operator. If un+1 is the ap-
proximate solution obtained from Algorithm 3.1 and u ∈ K is the exact solu-
tion (3.5), then

lim
n→∞

un = u.

Proof. Let u ∈ K be a solution of (3.5). Then, it follows from (3.12) that
the sequence {∥u− un∥} is nonincreasing and consequently {un} is bounded.
From (3.12), we have

∞∑
n=0

∥un+1 − un∥2 ≤ ∥u0 − u∥2,

from which, it follows that
lim

n→∞
∥un+1 − un∥ = 0.(3.16)

Let û be a cluster point of {un} and the subsequence {unj
} of the sequence

{un} converge to û ∈ H. Replacing un by unj
in (3.9), taking the limit nj → 0

and from (3.16), we have
⟨T û, v − û⟩ + µ∥v − û)∥p ≥ 0, ∀v ∈ K, p ≥ 1.

This implies that û ∈ K satisfies (3.5) and
∥un+1 − un∥2 ≤ ∥un − û∥2.
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Thus it follows from the above inequality that the sequence un has exactly
one cluster point û and

lim
n→∞

un = û.

In order to implement the implicit Algorithm 3.1, one uses the predictor-
corrector technique. Consequently, Algorithm 3.1 is equivalent to the follow-
ing iterative method for solving the variational-like inequality (3.5).

Algorithm 3.4. For a given u0 ∈ Kη, find the approximate solution
un+1 by the schemes

⟨ρTun, η(v, yn)⟩ + ⟨yn − un, v − yn⟩
+ µ∥η(v, yn)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1

⟨ρTyn, η(v, yn)⟩ + ⟨un+1 − yn, v − un⟩
+ µ∥η(v, un+1)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1.

Algorithm 3.4 is called the two-step method and appears to be a new one.
We again use the auxiliary principle technique to suggest an other implicit

method for solving the higher order variational-like inequalities (3.5) for a
constant ξ ∈ [0, 1].

For a given u ∈ Kη satisfying (3.5), consider the problem of finding w ∈
Kη, such that

⟨ρTw, η(v, w)⟩ + ⟨w − (1 − ξ)w − ξu, v − w⟩(3.17)
+ ν∥η(v, w)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1.

Clearly, if w(u) = u, then w is a solution of problem (3.5). This simple
observation enables to suggest an iterative method for solving (3.5).

Algorithm 3.5. For a given u0 ∈ Kη, find the approximate solution
un+1 by the schemes

⟨ρTun+1, η(v, un+1)⟩ + ⟨un+1 − (1 − ξ)un+1 − ξun, v − un+1⟩
+ ν∥η(v, un+1)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1.

Algorithm 3.5 is called the unified implicit method.
If ξ = 1, then Algorithm 3.5 is exactly the Algorithm 3.1.
If ξ = 0, then Algorithm 3.5 reduces to:

Algorithm 3.6. For a given u0 ∈ Kη, find the approximate solution
un+1 by the schemes

⟨ρTun+1, η(v, un+1)⟩ + ⟨un+1 − un+1, v − un+1⟩
+ ν∥η(v, un+1)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1.
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Algorithm 3.6 can be viewed as an extragraident method in the sense of
Noor [17] and appears to be a new one. This shows that Algorithm 3.5 is a
more general and unified one.

Using the technique of Theorem 3.6, one consider the convergence criteria
of Algorithm 3.5.

If ξ = 1
2 , then Algorithm 3.5 becomes:

Algorithm 3.7. For a given u0 ∈ Kη, find the approximate solution
un+1 by the schemes

⟨ρTun+1, η(v, un+1)⟩ + ⟨un+1 − un

2 , v − un+1⟩

+ ν∥η(v, un+1)∥p ≥ 0, ∀v ∈ Kη, p ≥ 1.

Conclusion

In this paper, we have characterized the optimality conditions of higher
order strongly differentiable convex functions by a class of variational inequali-
ties. This result motivated to introduce and study a new class of higher order
variational-like inequalities. Using the auxiliary principle technique, some
implicit iterative methods are suggested for finding the approximate solution.
Using the pseudo-monotonicity of the operator, convergence criteria is dis-
cussed. Some special cases are considered as application of the main results.
Comparison of these methods with other methods need further efforts. It is
an interesting problem to explore the applications of higher order variational
inequalities in various branches of pure and applied sciences.
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Nove klase varijacijskih nejednakosti višeg reda

Muhammad Aslam Noor i Khalida Inayat Noor

Sažetak. U ovom članku dokazujemo da su uvjeti opti-
malnosti konveksnih funkcija višeg reda karakterizirani klasom
varijacijskih nejednakosti, koja se naziva varijacijska nejednakost
višeg reda. Tehnika pomoćnog principa koristi se za sugeriranje
implicitne metode za rješavanje varijacijskih nejednakosti višeg
reda. Analiza konvergencije predložene metode se istražuje ko-
rištenjem pseudo-monotonosti operatora. Razmotreni su i neki
posebni slučajevi. Rezultati dobiveni u ovom radu mogu se pro-
matrati kao usavršavanje i poboljšanje ranije poznatih rezultata.
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