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ARTIN-SCHREIER, ERDŐS, AND KUREPA’S CONJECTURE

Luis H. Gallardo

Abstract. We discuss possible generalizations of Erdős’s problem
about factorials in Fp to the Artin-Schreier extension Fpp of Fp. The gen-
eralizations are related to Bell numbers in Fp and to Kurepa’s conjecture.

1. Introduction

Erdős [20, Section B44] asked for primes p > 5 for which 2!, 3!, . . . , (p−1)!
are all distinct in Fp, the finite field with p elements. Trudgian [37] discovered
new congruences for p and proved that p > 109. More recently Andrejić and
Tatarević [2] improved the result to p > 234 and Andejić et al. [4] to p > 240

as a by-product of the computations that proved that Kurepa’s conjecture
holds for p ≤ 240.

Probably, a preliminary question was to find the primes p for which all
factorials

0!, 1!, . . . , (p− 1)!
are distinct in Fp, but of course 0! = 1! eliminate this case immediately.
We might think that the next case was to consider, instead, the factorials
1!, . . . , (p− 1)!, and observe that 1! = (p− 2)! eliminate this case as well.

Let r be a zero of xp − x − 1 in a fixed algebraic closure Fp of Fp. The
value of r is fixed throughout the entire paper.

Put q = pp. The field Fq = Fp(r) is the Artin-Schreier extension of degree
p of Fp.

Gallardo and Rahavandrainy [12] generalized the Stirling numbers in Fp

to the generalized Stirling numbers
S(n, k) = (r + p− 1)p−1−k(r + k)n ∈ Fq

(see Definition 2.1). Thus, β(n) =
∑p−1

k=0 S(n, k) ∈ Fq (see Definition 2.2) play
the role in Fq of the Bell number B(n) ∈ Fp. More precisely (see Lemma 3.8
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112 L. H. GALLARDO

(c)), one has that −B(n) equals the trace of β(n). We can think that β(n)
extends the Bell number B(n) in Fp to Fq.

We discuss two analogous problems in Fq. First, we replace the factorials
k! by Sg(k) ∈ Fq defined by

Sg(k) := S(−1, k)

in the statement of Erdős’s question. Second, we replace these factorials by
β(n) ∈ Fq.

The common point of the two problems is that both are related to
Kurepa’s conjecture. More precisely, they are related to the values in Fp

that take the left factorial function of a prime p:

(1.1) !p = 0! + 1! + · · · + (p− 1)!.

The following recalls some known facts.

Definition 1.1. The Bell numbers B(n) are defined by B(0) = 1, and

B(n+ 1) =
n∑

k=0

(
n

k

)
B(k).

The Bell numbers B(n) (see sequence A000110 of the OEIS [32]) are
positive integers that arise in combinatorics:

(1.2) 1, 1, 2, 5, 15, 52, 203, 877, . . . .

D’Ocagne [10, page 371] began work on Bell numbers. Becker and Riordan
[7] give the first formal definition in English. Later, Aigner [1], Dalton and
Levine [9], and more recently Montgomery et al. [24] do progress in the subject.

Barsky and Benzaghou [5], showed that the link of r with the Bell numbers
B(n) modulo p is the following equality in Fp (see also Lidl and Niederreiter
[21, Theorem 8.24]), using the notation defined in Section 2,

(1.3) B(n) = −Tr(rc(p))Tr(rn−c(p)−1).

Moreover, Kurepa [16] proposed the following conjecture (Kurepa’s con-
jecture), using the notation in (1.1). For any odd prime number p, we have

(1.4) !p ̸= 0 ∈ Fp.

The conjecture becomes a long-standing difficult conjecture (see also [2–6, 8,
11–13,15–18,22,23,25–27,30,31,34,35,37,38]).

The link between Bell numbers and Kurepa’s conjecture (see Lemma 3.8
(d)) is the following.

(1.5) B(p− 1) = !p+ 1 ∈ Fp.

Left factorial numbers !p ∈ Fp appear in sequence A100612 of the OEIS [32]:

(1.6) 0, 1, 4, 6, 1, 10, 13, 9, 21, 17, 2, 5, 4, 16, 18, 13, 28, . . . .
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Gallardo and Rahavandrainy [12, Theorem 38] proved a more general
result equivalent to Kurepa’s conjecture. The result easily implies our first
theorem:

Theorem 1.2. We have that Sg(1), . . . , Sg(p) are Fp-linearly independent
if and only if !p ̸= 0 ∈ Fp.

Now consider the β(n) in Fq. Theorem 3.1 implies that β(0) = β(1).
We might think that this equality is an analogue of 0! = 1! ∈ Fp. Thus, we
consider the case when β(1), β(2), . . . , β(p− 1) are all distinct.

Remark 1.3. Barsky and Benzaghou [5, Lemme 3] (see Lemma 3.4),
proved that β(n) is of the form krc(p) for some k ∈ Fp. Moreover, (see
Lemma 3.9) Shparlinski’s [33] work implies that for any k ∈ Fp we have that
krc(p) is of the form β(n) for some integer n.

Our second result is the following.

Theorem 1.4. Assume that β(1), β(2), . . . , β(p−1) are all distinct. Then
for some k0 ∈ Fp, and some integer n ≥ p one has

• β(n) = k0r
c(p), and

• B(n) = 1−!p ∈ Fp.

Moreover,
(a) When k0 = 0 we have β(n) = 0 for some n ≥ p + 1 so that !p = 1.

This implies that p > 240.
(b) When k0 ̸= 0 and n < p+ 3 one has

(1) n = p and !p = −1 in Fp, so that p ∈ {5, 7, 274453, 39541338091}
or p > 240, or

(2) n = p+ 1 and !p = −2 in Fp, so that p ∈ {3, 23, 67, 227, 10331}
or p > 240, or

(3) n = p+ 2 and !p = −6 in Fp, so that p ∈ {349, 1278568703} or
p > 240.

(c) If either k0 = 0 or n < p + 3, then one has p > 240, besides possibly
for

p ∈ {1278568703, 39541338091}.

Remark 1.5. Andrejić and Tatarevic [2] proved that a solution p of
Erdős’s problem satisfies

• (!p− 1)2 = −1 ∈ Fp, and
• p > 240.

For the convenience of the reader we give short proofs of some of our
results in [12] (see Section 3). Section 4 contains the proof of Theorem 1.2,
while Section 5 contains the proof of Theorem 1.4.
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2. Notation

We call an integer d a period of B(n) (mod p) if for all nonnegative inte-
gers n one has B(n+ d) ≡ B(n) (mod p). Williams [39] proved that, for each
prime number p, the sequence B(n) (mod p) is periodic.

We let Tr denote the trace function from Fq onto Fp. We let N denote
the norm function from Fq into Fp. Likewise, we let σ denote the Frobenius
from Fq onto Fq. We let σ(i) denote the composition of σ with itself i times.
In other words, for a ∈ Fq one has σ(0)(a) = a, and for each i > 0, σ(i)(a) =
σ(σ(i−1)(a)).

We put c(p) = 1 + 2p+ 3p2 + · · · + (p− 1)pp−2.
Graham et al. [19, pages 248–250]) defined the falling and rising powers.

The following definition is an extension of these definitions.

Definition 2.1. (1) Extension of falling powers. Set

(r + p− 1)p−i−1 = (r + p− 1)p−1−i = (r + i+ 1) · · · (r + p− 1)
in Fq for i = 0, . . . , p − 2, and (r + p − 1)0 = (r + p − 1)0 = 1, (r +
p− 1)−1 = (r + p− 1)−1 = (r + p− 1)p−1. More generally, we extend
the definition to any integer n by putting (r + p− 1)p−n−1 = (r + p−
1)p−1−(n (mod p)).

(2) Extension of rising powers. Set (r + p− 1)(1) = (r + p− 1)1 = r,

(r + p− 1)(p−i−1) = (r + p− 1)p−1−i = r(r + 1) · · · (r + i)
in Fq for i = 1, . . . , p − 2, and (r + p − 1)(p) = (r + p − 1)p = 1.
More generally, we extend the definition to any integer n by putting
(r + p− 1)(p−n−1) = (r + p− 1)(p−1−(n (mod p))).

Definition 2.2. We put for every integer n

(2.1) β(n) =
p−1∑
i=0

(r + p− 1)p−1−i(r + i)n.

3. Tools

First, we have a formula for β(n) that follows from [12, Lemma 13 and
Corollary 19 (a)].

Theorem 3.1. One has the following equality:

β(n) = − rc(p)

Tr(rc(p))
B(n).

Proof. We compute (r + p− 1)p−1−i(r + i)n by using the action of the
Frobenius σ on r and on r−c(p), and formula

N(r) = r(r + 1) · · · (r + p− 1) = 1,
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as follows:

(r + p− 1)p−1−i(r + i)n = (r + i)n−1

(r + p− 1)p−i
= rc(p)σ(i)(r−c(p))σ(i)(rn−1)

= rc(p)σ(i)(r−c(p)+n−1).
Hence, by definition of β(n), we obtain the following:

(3.1) β(n) = rc(p)Tr(r−c(p)+n−1).
The result follows from equations (3.1) and (1.3).

Remark 3.2. Clearly, equation (1.3) implies that

Tr(rc(p)) = B(c(p)) ∈ Fp.

Thus, Kahale’s result [14, formula (3)] (see also [29])

B(c(p)) = (−1)
(p−1)(p−3)

8

(
p− 1

2

)
!,

and Theorem 3.1 imply that

β(n) = rc(p) · (−1)
(p+1)(p−5)

8(
p−1

2
)
!

·B(n).

But
(

p−1
2
)
!2 ∈ {−1, 1} in Fp. Thus,

β(n)2 = ± r2c(p)B(n)2.

Corollary 3.3. One has
β(n) = k · rc(p) ·B(n),

where k ∈ Fp, satisfies
k2 ∈ {−1, 1} in Fp.

Second, we have some useful results of Barsky and Benzaghou, Touchard,
and Shparlinski. Barsky and Benzaghou [5, Lemme 3] proved the following
result about 0 and the p− 1 roots of r.

Lemma 3.4. The set of y ∈ Fq such that yp = ry equals {krc(p) : k ∈ Fp}

Touchard (see [36]) proved the following.

Lemma 3.5. (Touchard’s congruence) Let p be an odd prime number.
Then for any non-negative number n one has

B(n) +B(n+ 1) ≡ B(n+ p) (mod p).

Shparlinski [33, Theorem 2] proved the following result.

Lemma 3.6. For any k ∈ Fp there exist at least one integer n such that
k = B(n). Moreover, n ≤ 1

2
(2p

p

)
.
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Third, we collect some results of Gallardo and Rahavandrainy [12] useful
for the proof of both theorems. More precisely, we display [12, Lemma 49]
as Lemma 3.7, and [12, Lemma 40], [12, Theorem 3], [12, Theorem 14], [12,
Proposition 33], [12, Theorem 15] as parts (a), (b), (c), (d), (e) of Lemma 3.8.

Lemma 3.7. The following result holds. For any period d of B(n) modulo
p one has

β(d− 1) =
p−1∑
j=0

β(j).

Proof. Since tp = pp−1
p−1 is a period of B(n) (see [5, 28]), Theorem 3.1

implies that tp is a period for β(n). We extend the Bell numbers B(n) to
negative integers (see [5, Théorème 2]) using the equality (1.3). Hence, tp is
a period of B(n) for n ∈ Z. We now prove that d is also a period for B(n),
with n ∈ Z, by replacing the period tp by n+ ktp ≥ 0 as follows:

B(n+ d) = B(n+ d+ ktp) = B(n+ ktp) = B(n).
Hence,
(3.2) β(d− 1) = β(−1) = rc(p)Tr(r−c(p)−2),
and, following (3.1) one has

p−1∑
j=0

β(j) = rc(p)
p−1∑
j=0

Tr(r−c(p)+j−1) = rc(p)Tr
(
r−c(p)−1 · 1 − (r + 1)

1 − r

)

= rc(p)Tr
(
r−c(p)

r − 1

)
.

But rtp = 1, rpp = r, and (see [5], [12, page 5])
(3.3) −c(p)p = tp − pp − c(p).

Thus, the result follows from (3.3), since for x ∈ Fq, we have Tr(x) =
Tr(σ(x)). More precisely,

Tr
(
r−c(p)

r − 1

)
= Tr

(
σ

(
r−c(p)

r − 1

))
= Tr

(
r−c(p)p

r

)
= Tr

(
r−c(p)−1

r

)
= Tr(r−c(p)−2).

Lemma 3.8. The following results hold.
(a) For any period d of B(n) modulo p one has

β(d− 1) = β(p− 1) − β(0).
(b) For any integer n one has

β(n)p = rβ(n).
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(c) Let n be any non-negative integer. With the same notations as before,
we have in Fp:

Tr(β(n)) = −B(n).
(d) One has that Tr(β(d− 1)) = −!p ∈ Fp.
(e) For a prime number p and an integer k, there exists a non-negative

integer n such that B(n) = k ∈ Fp if and only if β(n) = kβ(0) ∈ Fq.

Proof. We prove (a): Clearly, we can extend Touchard’s congruence
(see Lemma 3.5) to n ∈ Z. This implies that B(p − 1) − B(0) = B(−1) (see
also [5, Lemme 5]). Since β(d− 1) = β(−1), the result follows from Theorem
3.1.

We prove (b): By (3.1) the formula is equivalent to r(p−1)c(p) = r that
follows from (3.3).

We prove (c): From Theorem 3.1 one has

Tr(β(n)) = −Tr(rc(p))
Tr(rc(p))

B(n) = −B(n).

We prove (d): Follows from (3.2) and [5, Lemme 7 or Lemme 5].
Finally, we prove (e): Follows immediately from Theorem 3.1.
This proves the lemma.

The next lemma follows from Theorem 3.1 and Lemma 3.6.

Lemma 3.9. For any ℓ ∈ Fp there exist at least one integer n ≤ 1
2
(2p

p

)
such that ℓrc(p) = β(n) ∈ Fq.

Gallardo and Rahavandrainy [12, Theorem 38] also proved the following
result. This result is key for the proof of Theorem 1.2.

Lemma 3.10. Let n be an integer and k ∈ {1, . . . , p}, with p a prime num-
ber. Then the Fp-vector space generated by the vectors S(n, 1), . . . , S(n, p) ∈
Fq has dimension less than p if and only if

β(n) = 0.

4. Proof of Theorem 1.2

Let d be a period of B(n) (mod p). Assume that the Sg(k) for k = 1, . . . , p
are Fp-linearly dependent. Putting n = d−1 in the statement of Lemma 3.10,
we obtain β(d− 1) = 0. Then apply Lemma 3.8 (d) to get !p = 0.

If !p = 0 then Lemma 3.8 (c) implies that B(d− 1) = 0. Thus, Theorem
3.1 proves that β(d − 1) = 0. Hence, as before, by putting n = d − 1 in the
statement of Lemma 3.10, we obtain that the Sg(k) are Fp-linearly dependent.

Remark 4.1. Observe that it is easy to prove (using that the minimal
polynomial of r has degree p) that the Sg(k) are all distinct. Similarly, we
can prove that the Fp-vector space generated by them has dimension > 1.
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5. Proof of Theorem 1.4

Let

(5.1) S = {krc(p) : k ∈ Fp}.

By Lemma 3.8 (b) and Lemma 3.4 we have that

(5.2) S = {β(1), . . . , β(p− 1), k0r
c(p)}

for some k0 ∈ Fp. By Lemma 3.9

(5.3) k0r
c(p) = β(n)

for some non-negative integer n.
Since the β(j) are all distinct, one has that n ≥ p.
Observe that

(5.4) σ =
∑
s∈S

s = rc(p)
∑

k∈Fp,k ̸=0
k = rc(p) · p(p− 1)/2 = 0.

Observe that (5.2), (5.3), and Lemma 3.7, together, implies that

(5.5) β(d− 1) + β(n) = σ + β(0)

for some period d, of B(n) modulo p. Thus, (5.4) implies that

(5.6) β(n) = β(0) − β(d− 1).

But Lemma 3.8 (a) says that

(5.7) β(p− 1) = β(0) + β(d− 1).

Adding both equations (5.5) and (5.6), we obtain

(5.8) β(n) = 2β(0) − β(p− 1).

Take the trace in both sides of (5.8). By Lemma 3.8 (c) we obtain

(5.9) B(p− 1) = 2 −B(n).

Lemma 3.8 (c) and Lemma 3.8 (d) implies

(5.10) B(p− 1) = !p+ 1

by taking the trace in both sides of (5.7). The result

(5.11) B(n) = 1−!p

follows then from (5.9) and (5.10).
Let k0 = 0. Thus, B(n) = 0 by Theorem 3.1. Therefore, (5.11) implies

that

(5.12) !p = 1.
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But Andrejić and Tatarević [3], and Andrejić et al. [4] proved that (5.12)
implies p > 240. This proves (a). The proof of (b) is similar. More precisely,
when n = p, we obtain from Lemma 3.5 that B(p) = 2 so that
(5.13) !p = −1.
When n = p+ 1 we get by a similar computation B(p+ 1) = 3 so that
(5.14) !p = −2.
Finally, when n = p+ 2, proceeding as before, we obtain
(5.15) !p = −6.
Observe that [3,4] implies the existence of the specific primes (in the statement
of (b)) for which (5.13), (5.14), and (5.15) hold, and also the inequality p >
240.

Part (c) follows from parts (a) and (b), and from a straightforward com-
putation in gp-PARI, based on Lemma 3.8 (e). The computation showed that
for all primes

p ∈ {3, 5, 7, 23, 67, 227, 349, 10331, 274453}
the β(1), . . . , β(p − 1) are not all distinct in Fq. More precisely, the list of
triplets [b, a, p] with 1 ≤ a < b ≤ p − 1 for which we have β(a) = β(b) in Fq

and a, b minimal, is as follows:
[3, 2, 3], [4, 3, 5], [4, 0, 7], [11, 0, 23], [6, 2, 67], [24, 23, 227], [16, 9, 349],

[186, 119, 10331], [659, 471, 274453].
For p ∈ {1278568703, 39541338091} we do not know if the same result

holds.
Acknowledgements.
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Artin-Schreierova, Erdősova i Kurepina slutnja

Luis H. Gallardo

Sažetak. Raspravljamo o mogućim generalizacijama
Erdősovog problema o faktorijelima u Fp na Artin-Schreierovo
proširenje Fpp od Fp. Generalizacije su povezane s Bellovim bro-
jevima u Fp i Kurepinom slutnjom.
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