ARTIN-SCHREIER, ERDÖS, AND KUREPA'S CONJECTURE

Luis H. Gallardo

Abstract

We discuss possible generalizations of Erdős's problem about factorials in \mathbb{F}_{p} to the Artin-Schreier extension $\mathbb{F}_{p^{p}}$ of \mathbb{F}_{p}. The generalizations are related to Bell numbers in \mathbb{F}_{p} and to Kurepa's conjecture.

1. Introduction

Erdős [20, Section B44] asked for primes $p>5$ for which $2!, 3!, \ldots,(p-1)$! are all distinct in \mathbb{F}_{p}, the finite field with p elements. Trudgian [37] discovered new congruences for p and proved that $p>10^{9}$. More recently Andrejić and Tatarević [2] improved the result to $p>2^{34}$ and Andejić et al. [4] to $p>2^{40}$ as a by-product of the computations that proved that Kurepa's conjecture holds for $p \leq 2^{40}$.

Probably, a preliminary question was to find the primes p for which all factorials

$$
0!, 1!, \ldots,(p-1)!
$$

are distinct in \mathbb{F}_{p}, but of course 0 ! $=1$! eliminate this case immediately. We might think that the next case was to consider, instead, the factorials $1!, \ldots,(p-1)$!, and observe that $1!=(p-2)$! eliminate this case as well.

Let r be a zero of $x^{p}-x-1$ in a fixed algebraic closure $\overline{\mathbb{F}_{p}}$ of \mathbb{F}_{p}. The value of r is fixed throughout the entire paper.

Put $q=p^{p}$. The field $\mathbb{F}_{q}=\mathbb{F}_{p}(r)$ is the Artin-Schreier extension of degree p of \mathbb{F}_{p}.

Gallardo and Rahavandrainy [12] generalized the Stirling numbers in \mathbb{F}_{p} to the generalized Stirling numbers

$$
S(n, k)=(r+p-1)^{\underline{p-1-k}}(r+k)^{n} \in \mathbb{F}_{q}
$$

(see Definition 2.1). Thus, $\beta(n)=\sum_{k=0}^{p-1} S(n, k) \in \mathbb{F}_{q}$ (see Definition 2.2) play the role in \mathbb{F}_{q} of the Bell number $B(n) \in \mathbb{F}_{p}$. More precisely (see Lemma 3.8

[^0](c)), one has that $-B(n)$ equals the trace of $\beta(n)$. We can think that $\beta(n)$ extends the Bell number $B(n)$ in \mathbb{F}_{p} to \mathbb{F}_{q}.

We discuss two analogous problems in \mathbb{F}_{q}. First, we replace the factorials k ! by $S_{g}(k) \in \mathbb{F}_{q}$ defined by

$$
S_{g}(k):=S(-1, k)
$$

in the statement of Erdős's question. Second, we replace these factorials by $\beta(n) \in \mathbb{F}_{q}$.

The common point of the two problems is that both are related to Kurepa's conjecture. More precisely, they are related to the values in \mathbb{F}_{p} that take the left factorial function of a prime p :

$$
\begin{equation*}
!p=0!+1!+\cdots+(p-1)! \tag{1.1}
\end{equation*}
$$

The following recalls some known facts.
Definition 1.1. The Bell numbers $B(n)$ are defined by $B(0)=1$, and

$$
B(n+1)=\sum_{k=0}^{n}\binom{n}{k} B(k)
$$

The Bell numbers $B(n)$ (see sequence A000110 of the OEIS [32]) are positive integers that arise in combinatorics:

$$
\begin{equation*}
1,1,2,5,15,52,203,877, \ldots \tag{1.2}
\end{equation*}
$$

D'Ocagne [10, page 371] began work on Bell numbers. Becker and Riordan [7] give the first formal definition in English. Later, Aigner [1], Dalton and Levine [9], and more recently Montgomery et al. [24] do progress in the subject.

Barsky and Benzaghou [5], showed that the link of r with the Bell numbers $B(n)$ modulo p is the following equality in \mathbb{F}_{p} (see also Lidl and Niederreiter [21, Theorem 8.24]), using the notation defined in Section 2,

$$
\begin{equation*}
B(n)=-\operatorname{Tr}\left(r^{c(p)}\right) \operatorname{Tr}\left(r^{n-c(p)-1}\right) . \tag{1.3}
\end{equation*}
$$

Moreover, Kurepa [16] proposed the following conjecture (Kurepa's conjecture), using the notation in (1.1). For any odd prime number p, we have

$$
\begin{equation*}
!p \neq 0 \in \mathbb{F}_{p} \tag{1.4}
\end{equation*}
$$

The conjecture becomes a long-standing difficult conjecture (see also [2-6, 8 , $11-13,15-18,22,23,25-27,30,31,34,35,37,38])$.

The link between Bell numbers and Kurepa's conjecture (see Lemma 3.8 (d)) is the following.

$$
\begin{equation*}
B(p-1)=!p+1 \in \mathbb{F}_{p} \tag{1.5}
\end{equation*}
$$

Left factorial numbers $!p \in \mathbb{F}_{p}$ appear in sequence A100612 of the OEIS [32]:

$$
\begin{equation*}
0,1,4,6,1,10,13,9,21,17,2,5,4,16,18,13,28, \ldots \tag{1.6}
\end{equation*}
$$

Gallardo and Rahavandrainy [12, Theorem 38] proved a more general result equivalent to Kurepa's conjecture. The result easily implies our first theorem:

Theorem 1.2. We have that $S_{g}(1), \ldots, S_{g}(p)$ are \mathbb{F}_{p}-linearly independent if and only if $!p \neq 0 \in \mathbb{F}_{p}$.

Now consider the $\beta(n)$ in \mathbb{F}_{q}. Theorem 3.1 implies that $\beta(0)=\beta(1)$. We might think that this equality is an analogue of $0!=1!\in \mathbb{F}_{p}$. Thus, we consider the case when $\beta(1), \beta(2), \ldots, \beta(p-1)$ are all distinct.

Remark 1.3. Barsky and Benzaghou [5, Lemme 3] (see Lemma 3.4), proved that $\beta(n)$ is of the form $k r^{c(p)}$ for some $k \in \mathbb{F}_{p}$. Moreover, (see Lemma 3.9) Shparlinski's [33] work implies that for any $k \in \mathbb{F}_{p}$ we have that $k r^{c(p)}$ is of the form $\beta(n)$ for some integer n.

Our second result is the following.
Theorem 1.4. Assume that $\beta(1), \beta(2), \ldots, \beta(p-1)$ are all distinct. Then for some $k_{0} \in \mathbb{F}_{p}$, and some integer $n \geq p$ one has

- $\beta(n)=k_{0} r^{c(p)}$, and
- $B(n)=1-!p \in \mathbb{F}_{p}$.

Moreover,
(a) When $k_{0}=0$ we have $\beta(n)=0$ for some $n \geq p+1$ so that $!p=1$. This implies that $p>2^{40}$.
(b) When $k_{0} \neq 0$ and $n<p+3$ one has
(1) $n=p$ and $!p=-1$ in \mathbb{F}_{p}, so that $p \in\{5,7,274453,39541338091\}$ or $p>2^{40}$, or
(2) $n=p+1$ and $!p=-2$ in \mathbb{F}_{p}, so that $p \in\{3,23,67,227,10331\}$
or $p>2^{40}$, or
(3) $n=p+2$ and $!p=-6$ in \mathbb{F}_{p}, so that $p \in\{349,1278568703\}$ or $p>2^{40}$.
(c) If either $k_{0}=0$ or $n<p+3$, then one has $p>2^{40}$, besides possibly for

$$
p \in\{1278568703,39541338091\}
$$

Remark 1.5. Andrejić and Tatarevic [2] proved that a solution p of Erdős's problem satisfies

- $(!p-1)^{2}=-1 \in \mathbb{F}_{p}$, and
- $p>2^{40}$.

For the convenience of the reader we give short proofs of some of our results in [12] (see Section 3). Section 4 contains the proof of Theorem 1.2, while Section 5 contains the proof of Theorem 1.4.

2. Notation

We call an integer d a period of $B(n)(\bmod p)$ if for all nonnegative integers n one has $B(n+d) \equiv B(n)(\bmod p)$. Williams [39] proved that, for each prime number p, the sequence $B(n)(\bmod p)$ is periodic.

We let Tr denote the trace function from \mathbb{F}_{q} onto \mathbb{F}_{p}. We let N denote the norm function from \mathbb{F}_{q} into \mathbb{F}_{p}. Likewise, we let σ denote the Frobenius from \mathbb{F}_{q} onto \mathbb{F}_{q}. We let $\sigma^{(i)}$ denote the composition of σ with itself i times. In other words, for $a \in \mathbb{F}_{q}$ one has $\sigma^{(0)}(a)=a$, and for each $i>0, \sigma^{(i)}(a)=$ $\sigma\left(\sigma^{(i-1)}(a)\right)$.

We put $c(p)=1+2 p+3 p^{2}+\cdots+(p-1) p^{p-2}$.
Graham et al. [19, pages 248-250]) defined the falling and rising powers. The following definition is an extension of these definitions.

Definition 2.1. (1) Extension of falling powers. Set

$$
\begin{aligned}
& (r+p-1)_{p-i-1}=(r+p-1)^{\frac{p-1-i}{}}=(r+i+1) \cdots(r+p-1) \\
& \text { in } \mathbb{F}_{q} \text { for } i=0, \ldots, p-2, \text { and }(r+p-1)_{0}=(r+p-1)^{0}=1,(r+
\end{aligned}
$$ $p-1)_{-1}=(r+p-1) \underline{-1}=(r+p-1)_{p-1}$. More generally, we extend the definition to any integer n by putting $(r+p-1)_{p-n-1}=(r+p-$ $1)_{p-1-(n(\bmod p))}$.

(2) Extension of rising powers. Set $(r+p-1)^{(1)}=(r+p-1)^{\overline{1}}=r$,

$$
(r+p-1)^{(p-i-1)}=(r+p-1)^{\overline{p-1-i}}=r(r+1) \cdots(r+i)
$$

in \mathbb{F}_{q} for $i=1, \ldots, p-2$, and $(r+p-1)^{(p)}=(r+p-1)^{\bar{p}}=1$. More generally, we extend the definition to any integer n by putting $(r+p-1)^{(p-n-1)}=(r+p-1)^{(p-1-(n(\bmod p)))}$.

Definition 2.2. We put for every integer n

$$
\begin{equation*}
\beta(n)=\sum_{i=0}^{p-1}(r+p-1)^{\underline{p-1-i}}(r+i)^{n} . \tag{2.1}
\end{equation*}
$$

3. Tools

First, we have a formula for $\beta(n)$ that follows from [12, Lemma 13 and Corollary 19 (a)].

Theorem 3.1. One has the following equality:

$$
\beta(n)=-\frac{r^{c(p)}}{\operatorname{Tr}\left(r^{c(p)}\right)} B(n)
$$

Proof. We compute $(r+p-1)^{\underline{p-1-i}}(r+i)^{n}$ by using the action of the Frobenius σ on r and on $r^{-c(p)}$, and formula

$$
\mathrm{N}(r)=r(r+1) \cdots(r+p-1)=1
$$

as follows:

$$
\begin{aligned}
(r+p-1) \frac{p-1-i}{}(r+i)^{n} & =\frac{(r+i)^{n-1}}{(r+p-1)^{\overline{p-i}}}=r^{c(p)} \sigma^{(i)}\left(r^{-c(p)}\right) \sigma^{(i)}\left(r^{n-1}\right) \\
& =r^{c(p)} \sigma^{(i)}\left(r^{-c(p)+n-1}\right)
\end{aligned}
$$

Hence, by definition of $\beta(n)$, we obtain the following:

$$
\begin{equation*}
\beta(n)=r^{c(p)} \operatorname{Tr}\left(r^{-c(p)+n-1}\right) . \tag{3.1}
\end{equation*}
$$

The result follows from equations (3.1) and (1.3).
Remark 3.2. Clearly, equation (1.3) implies that

$$
\operatorname{Tr}\left(r^{c(p)}\right)=B(c(p)) \in \mathbb{F}_{p}
$$

Thus, Kahale's result [14, formula (3)] (see also [29])

$$
B(c(p))=(-1)^{\frac{(p-1)(p-3)}{8}}\left(\frac{p-1}{2}\right)!,
$$

and Theorem 3.1 imply that

$$
\beta(n)=r^{c(p)} \cdot \frac{(-1)^{\frac{(p+1)(p-5)}{8}}}{\left(\frac{p-1}{2}\right)!} \cdot B(n) .
$$

But $\left(\frac{p-1}{2}\right)!^{2} \in\{-1,1\}$ in \mathbb{F}_{p}. Thus,

$$
\beta(n)^{2}= \pm r^{2 c(p)} B(n)^{2} .
$$

Corollary 3.3. One has

$$
\beta(n)=k \cdot r^{c(p)} \cdot B(n)
$$

where $k \in \mathbb{F}_{p}$, satisfies

$$
k^{2} \in\{-1,1\} \text { in } \mathbb{F}_{p}
$$

Second, we have some useful results of Barsky and Benzaghou, Touchard, and Shparlinski. Barsky and Benzaghou [5, Lemme 3] proved the following result about 0 and the $p-1$ roots of r.

Lemma 3.4. The set of $y \in \mathbb{F}_{q}$ such that $y^{p}=r y$ equals $\left\{k r^{c(p)}: k \in \mathbb{F}_{p}\right\}$
Touchard (see [36]) proved the following.
LEMmA 3.5. (Touchard's congruence) Let p be an odd prime number. Then for any non-negative number n one has

$$
B(n)+B(n+1) \equiv B(n+p) \quad(\bmod p)
$$

Shparlinski [33, Theorem 2] proved the following result.
Lemma 3.6. For any $k \in \mathbb{F}_{p}$ there exist at least one integer n such that $k=B(n)$. Moreover, $n \leq \frac{1}{2}\binom{2 p}{p}$.

Third, we collect some results of Gallardo and Rahavandrainy [12] useful for the proof of both theorems. More precisely, we display [12, Lemma 49] as Lemma 3.7, and [12, Lemma 40], [12, Theorem 3], [12, Theorem 14], [12, Proposition 33], [12, Theorem 15] as parts $(a),(b),(c),(d),(e)$ of Lemma 3.8.

Lemma 3.7. The following result holds. For any period d of $B(n)$ modulo p one has

$$
\beta(d-1)=\sum_{j=0}^{p-1} \beta(j)
$$

Proof. Since $t_{p}=\frac{p^{p}-1}{p-1}$ is a period of $B(n)$ (see $[5,28]$), Theorem 3.1 implies that t_{p} is a period for $\beta(n)$. We extend the Bell numbers $B(n)$ to negative integers (see [5, Théorème 2]) using the equality (1.3). Hence, t_{p} is a period of $B(n)$ for $n \in \mathbb{Z}$. We now prove that d is also a period for $B(n)$, with $n \in \mathbb{Z}$, by replacing the period t_{p} by $n+k t_{p} \geq 0$ as follows:

$$
B(n+d)=B\left(n+d+k t_{p}\right)=B\left(n+k t_{p}\right)=B(n)
$$

Hence,

$$
\begin{equation*}
\beta(d-1)=\beta(-1)=r^{c(p)} \operatorname{Tr}\left(r^{-c(p)-2}\right) \tag{3.2}
\end{equation*}
$$

and, following (3.1) one has

$$
\begin{aligned}
\sum_{j=0}^{p-1} \beta(j) & =r^{c(p)} \sum_{j=0}^{p-1} \operatorname{Tr}\left(r^{-c(p)+j-1}\right)=r^{c(p)} \operatorname{Tr}\left(r^{-c(p)-1} \cdot \frac{1-(r+1)}{1-r}\right) \\
& =r^{c(p)} \operatorname{Tr}\left(\frac{r^{-c(p)}}{r-1}\right)
\end{aligned}
$$

But $r^{t_{p}}=1, r^{p^{p}}=r$, and (see [5], [12, page 5])

$$
\begin{equation*}
-c(p) p=t_{p}-p^{p}-c(p) \tag{3.3}
\end{equation*}
$$

Thus, the result follows from (3.3), since for $x \in \mathbb{F}_{q}$, we have $\operatorname{Tr}(x)=$ $\operatorname{Tr}(\sigma(x))$. More precisely,

$$
\begin{aligned}
\operatorname{Tr}\left(\frac{r^{-c(p)}}{r-1}\right) & =\operatorname{Tr}\left(\sigma\left(\frac{r^{-c(p)}}{r-1}\right)\right)=\operatorname{Tr}\left(\frac{r^{-c(p) p}}{r}\right)=\operatorname{Tr}\left(\frac{r^{-c(p)-1}}{r}\right) \\
& =\operatorname{Tr}\left(r^{-c(p)-2}\right)
\end{aligned}
$$

Lemma 3.8. The following results hold.
(a) For any period d of $B(n)$ modulo p one has

$$
\beta(d-1)=\beta(p-1)-\beta(0)
$$

(b) For any integer n one has

$$
\beta(n)^{p}=r \beta(n)
$$

(c) Let n be any non-negative integer. With the same notations as before, we have in \mathbb{F}_{p} :

$$
\operatorname{Tr}(\beta(n))=-B(n)
$$

(d) One has that $\operatorname{Tr}(\beta(d-1))=-!p \in \mathbb{F}_{p}$.
(e) For a prime number p and an integer k, there exists a non-negative integer n such that $B(n)=k \in \mathbb{F}_{p}$ if and only if $\beta(n)=k \beta(0) \in \mathbb{F}_{q}$.

Proof. We prove (a): Clearly, we can extend Touchard's congruence (see Lemma 3.5) to $n \in \mathbb{Z}$. This implies that $B(p-1)-B(0)=B(-1)$ (see also $[5$, Lemme 5]). Since $\beta(d-1)=\beta(-1)$, the result follows from Theorem 3.1.

We prove (b): By (3.1) the formula is equivalent to $r^{(p-1) c(p)}=r$ that follows from (3.3).

We prove (c): From Theorem 3.1 one has

$$
\operatorname{Tr}(\beta(n))=-\frac{\operatorname{Tr}\left(r^{c(p)}\right)}{\operatorname{Tr}\left(r^{c(p)}\right)} B(n)=-B(n)
$$

We prove (d): Follows from (3.2) and [5, Lemme 7 or Lemme 5].
Finally, we prove (e): Follows immediately from Theorem 3.1.
This proves the lemma.
The next lemma follows from Theorem 3.1 and Lemma 3.6.
Lemma 3.9. For any $\ell \in \mathbb{F}_{p}$ there exist at least one integer $n \leq \frac{1}{2}\binom{2 p}{p}$ such that $\ell r^{c(p)}=\beta(n) \in \mathbb{F}_{q}$.

Gallardo and Rahavandrainy [12, Theorem 38] also proved the following result. This result is key for the proof of Theorem 1.2.

LEmMA 3.10. Let n be an integer and $k \in\{1, \ldots, p\}$, with p a prime number. Then the \mathbb{F}_{p}-vector space generated by the vectors $S(n, 1), \ldots, S(n, p) \in$ \mathbb{F}_{q} has dimension less than p if and only if

$$
\beta(n)=0
$$

4. Proof of Theorem 1.2

Let d be a period of $B(n)(\bmod p)$. Assume that the $S_{g}(k)$ for $k=1, \ldots, p$ are \mathbb{F}_{p}-linearly dependent. Putting $n=d-1$ in the statement of Lemma 3.10, we obtain $\beta(d-1)=0$. Then apply Lemma $3.8(\mathrm{~d})$ to get $!p=0$.

If $!p=0$ then Lemma 3.8 (c) implies that $B(d-1)=0$. Thus, Theorem 3.1 proves that $\beta(d-1)=0$. Hence, as before, by putting $n=d-1$ in the statement of Lemma 3.10, we obtain that the $S_{g}(k)$ are \mathbb{F}_{p}-linearly dependent.

Remark 4.1. Observe that it is easy to prove (using that the minimal polynomial of r has degree p) that the $S_{g}(k)$ are all distinct. Similarly, we can prove that the \mathbb{F}_{p}-vector space generated by them has dimension >1.

5. Proof of Theorem 1.4

Let

$$
\begin{equation*}
S=\left\{k r^{c(p)}: k \in \mathbb{F}_{p}\right\} \tag{5.1}
\end{equation*}
$$

By Lemma 3.8 (b) and Lemma 3.4 we have that

$$
\begin{equation*}
S=\left\{\beta(1), \ldots, \beta(p-1), k_{0} r^{c(p)}\right\} \tag{5.2}
\end{equation*}
$$

for some $k_{0} \in \mathbb{F}_{p}$. By Lemma 3.9

$$
\begin{equation*}
k_{0} r^{c(p)}=\beta(n) \tag{5.3}
\end{equation*}
$$

for some non-negative integer n.
Since the $\beta(j)$ are all distinct, one has that $n \geq p$.
Observe that

$$
\begin{equation*}
\sigma=\sum_{s \in S} s=r^{c(p)} \sum_{k \in \mathbb{F}_{p}, k \neq 0} k=r^{c(p)} \cdot p(p-1) / 2=0 . \tag{5.4}
\end{equation*}
$$

Observe that (5.2), (5.3), and Lemma 3.7, together, implies that

$$
\begin{equation*}
\beta(d-1)+\beta(n)=\sigma+\beta(0) \tag{5.5}
\end{equation*}
$$

for some period d, of $B(n)$ modulo p. Thus, (5.4) implies that

$$
\begin{equation*}
\beta(n)=\beta(0)-\beta(d-1) . \tag{5.6}
\end{equation*}
$$

But Lemma 3.8 (a) says that

$$
\begin{equation*}
\beta(p-1)=\beta(0)+\beta(d-1) \tag{5.7}
\end{equation*}
$$

Adding both equations (5.5) and (5.6), we obtain

$$
\begin{equation*}
\beta(n)=2 \beta(0)-\beta(p-1) \tag{5.8}
\end{equation*}
$$

Take the trace in both sides of (5.8). By Lemma 3.8 (c) we obtain

$$
\begin{equation*}
B(p-1)=2-B(n) \tag{5.9}
\end{equation*}
$$

Lemma 3.8 (c) and Lemma 3.8 (d) implies

$$
\begin{equation*}
B(p-1)=!p+1 \tag{5.10}
\end{equation*}
$$

by taking the trace in both sides of (5.7). The result

$$
\begin{equation*}
B(n)=1-!p \tag{5.11}
\end{equation*}
$$

follows then from (5.9) and (5.10).
Let $k_{0}=0$. Thus, $B(n)=0$ by Theorem 3.1. Therefore, (5.11) implies that

$$
\begin{equation*}
!p=1 \tag{5.12}
\end{equation*}
$$

But Andrejić and Tatarević [3], and Andrejić et al. [4] proved that (5.12) implies $p>2^{40}$. This proves (a). The proof of (b) is similar. More precisely, when $n=p$, we obtain from Lemma 3.5 that $B(p)=2$ so that

$$
\begin{equation*}
!p=-1 \tag{5.13}
\end{equation*}
$$

When $n=p+1$ we get by a similar computation $B(p+1)=3$ so that

$$
\begin{equation*}
!p=-2 \tag{5.14}
\end{equation*}
$$

Finally, when $n=p+2$, proceeding as before, we obtain

$$
\begin{equation*}
!p=-6 \tag{5.15}
\end{equation*}
$$

Observe that $[3,4]$ implies the existence of the specific primes (in the statement of (b)) for which (5.13), (5.14), and (5.15) hold, and also the inequality $p>$ 2^{40}.

Part (c) follows from parts (a) and (b), and from a straightforward computation in gp-PARI, based on Lemma 3.8 (e). The computation showed that for all primes

$$
p \in\{3,5,7,23,67,227,349,10331,274453\}
$$

the $\beta(1), \ldots, \beta(p-1)$ are not all distinct in \mathbb{F}_{q}. More precisely, the list of triplets $[b, a, p]$ with $1 \leq a<b \leq p-1$ for which we have $\beta(a)=\beta(b)$ in \mathbb{F}_{q} and a, b minimal, is as follows:

$$
\begin{gathered}
{[3,2,3],[4,3,5],[4,0,7],[11,0,23],[6,2,67],[24,23,227],[16,9,349]} \\
{[186,119,10331],[659,471,274453] .}
\end{gathered}
$$

For $p \in\{1278568703,39541338091\}$ we do not know if the same result holds.

Acknowledgements.
We are indebted to the referee for useful suggestions. As a consequence, the presentation of the paper is greatly enhanced.

References

[1] M. Aigner, A characterization of the Bell numbers, Discrete Math. 205 (1999), 207210.
[2] V. Andrejić and M. Tatarević, On distinct residues of factorials, Publ. Inst. Math. (Beograd) (N.S.) 100 (2016), 101-106.
[3] V. Andrejić and M. Tatarević, Searching for a counterexample to Kurepa's conjecture, Math. Comput. 85 (2016), 3061-3068.
[4] V. Andrejić, A. Bostan, and M. Tatarević, Improved algorithms for left factorial residues, Inform. Process. Lett. 167 (2021), Article ID 106078, 4 pp.
[5] D. Barsky and B. Benzaghou, Nombres de Bell et somme de factorielles, J. Théor. Nombres Bordeaux 16 (2004), 1-17.
[6] D. Barsky and B. Benzaghou, Erratum à l'article Nombres de Bell et somme de factorielles, J. Théor. Nombres Bordeaux 23 (2011), 527.
[7] H. W. Becker and J. Riordan, The arithmetic of Bell and Stirling numbers, Amer. J. Math. 70 (1948), 385-394.
[8] L. Carlitz, A note on the left factorial function, Math. Balkanica 5 (1975), 37-42.
[9] R. E. Dalton and J. Levine, Minimum periods, modulo p, of first order Bell exponential integers, Math. Comp. 16 (1962), 416-423.
[10] M. d'Ocagne, Sur une classe de nombres remarquables, Amer. J. Math. 9 (1887), 353-380.
[11] B. Dragović, On some finite sums with factorials, Facta Univ. Ser. Math. Inf. 14 (1999), 1-10.
[12] L. H. Gallardo and O. Rahavandrainy, Bell numbers modulo a prime number, traces and trinomials, Electron. J. Comb. 21 (2014), Research Paper P4.49, 30 pp.
[13] A. Ivić and Z̆. Mijajlović, On Kurepa's problems in number theory, in: Đuro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.), 57 (1995), 19-28.
[14] N. Kahale, New modular properties of Bell numbers, J. Combin. Theory Ser. A 58 (1991), 147-152.
[15] W. Kohnen, A remark on the left-factorial hypothesis, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (1998), 51-53.
[16] Đ. Kurepa, On the left factorial function ! n, Math. Balkanica 1 (1971), 147-153.
[17] Đ. R. Kurepa, Right and left factorials, in: Conferenze tenuti in occasione del cinquantenario dell' Unione Matematica Italiana (1972), Boll. Un. Mat. Ital (4) 9 (1974), no.suppl. fasc. 2, 171-189.
[18] Đ. Kurepa, On some new left factorial propositions, Math. Balkanica 4 (1974), 383386.
[19] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics. A foundation for computer science, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989.
[20] R. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004.
[21] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1996.
[22] Z. Mijajlović, On some formulas involving $!n$ and the verification of the $!n$-hypothesis by use of computers, Publ. Inst. Math. (Beograd) (N.S.) 47 (1990), 24-32.
[23] Z̆. Mijajlović, Fifty years of Kurepa's !n hypothesis, Bull. Cl. Sci. Math. Nat. Sci. Math. 46 (2021), 169-181.
[24] P. Montgomery, S. Nahm and S. S. Wagstaff, Jr., The period of the Bell numbers modulo a prime, Math. Comp. 79 (2010), 1793-1800.
[25] A. Petojević, On Kurepa's hypothesis for the left factorial, Filomat 12 (1998), 29-37.
[26] A. Petojević and M. Z̆iz̆ović, Trees and the Kurepa hypothesis for left factorial, Filomat 13 (1999), 31-40.
[27] A. Petojević, M. Žižović, and S. D. Cvejić, Difference equations and new equivalents of the Kurepa hypothesis, Math. Morav. 3 (1999), 39-42.
[28] C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de \mathbb{F}_{p}, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), A879-A882.
[29] C. Radoux, Déterminants de Hankel et théorème de Sylvester, in: Séminaire Lotharangien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Strasbourg, Vol. 498, 1992, pp. 115-122.
[30] Z. Šami, On generalization of functions $n!$ and ! n, Publ. Inst. Math. (Beograd) (N.S.) 60 (1996), 5-14.
[31] Z. N. Šami, A sequence $u_{n, m}$ and Kurepa's hypothesis on left factorial, in: Symposium Dedicated to the Memory of Đuro Kurepa (Belgrade, 1996), Sci. Rev. Ser. Sci. Eng., Vol. 19-20, 1996, pp. 105-113.
[32] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2019.
[33] I. E. Shparlinskiy, On the distribution of values of recurring sequences and the Bell numbers in finite fields, European J. Combin. 12 (1991), 81-87.
[34] J. Stanković, Über einige Relationen zwischen Fakultäten und den linken Fakultäten, Math. Balkanica 3 (1973), 488-495.
[35] J. Stanković and M. Žižović, Noch einige Relationen zwischen den Fakultäten und den linken Fakultäten, Math. Balkanica 4 (1974), 555-559.
[36] J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math. 8 (1956), 305-320.
[37] T. Trudgian, There are no socialist primes less than 10^{9}, Integers 14 (2014), Paper A63, 4 pp.
[38] V. S. Vladimirov, Left factorials, Bernoulli numbers, and the Kurepa conjecture, Publ. Inst. Math. (Beograd) (N.S.) 72 (2002), 11-22.
[39] G. T. Williams, Numbers generated by the function $e^{e^{x}-1}$, Amer. Math. Monthly. 52 (1945), 323-327.

Artin-Schreierova, Erdősova i Kurepina slutnja

Luis H. Gallardo

SAžETAK. Raspravljamo o mogućim generalizacijama Erdősovog problema o faktorijelima $u \mathbb{F}_{p}$ na Artin-Schreierovo proširenje $\mathbb{F}_{p^{p}}$ od \mathbb{F}_{p}. Generalizacije su povezane s Bellovim brojevima $u \mathbb{F}_{p}$ i Kurepinom slutnjom.

Luis H. Gallardo
Univ. Brest
UMR CNRS 6205
Laboratoire de Mathématiques de Bretagne Atlantique,
F-29238 Brest
France
E-mail: Luis.Gallardo@univ-brest.fr
Received: 10.11.2022.
Revised: 26.4.2023.
Accepted: 16.5.2023.

[^0]: 2020 Mathematics Subject Classification. 11T55, 11T06, 11B73, 11B65, 05A10, 12E20, 11A07, 11A25.

 Key words and phrases. Artin-Schreier extension, Bell numbers, Erdős's problem on factorials modulo p, Kurepa's conjecture.

