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Vojković

Abstract. The aim of this research is to develop efficient techniques
to construct flag-transitive incidence structures. In this paper we describe
those techniques, present the construction results and take a closer look
at how some types of flag-transitive incidence structures relate to arc-
transitive graphs.

1. Motivation and background

In order to better understand the motivation for exploring incidence struc-
tures, we give a short overview of different, but similar and intertwined, struc-
tures and concepts that have been studied throughout modern history. They
include configurations, incidence structures, linear spaces, finite geometries,
arc-transitive graphs and combinatorial designs. In the broadest sense, an in-
cidence structure is any structure that consists of two types of objects, called
points and blocks, and an incidence relation between them.

However, a configuration was the first incidence structure explicitly de-
fined, [17,23,24]. (An interested reader may refer to [13] for even older exam-
ples of incidence structures, dating to 17th century, to Pascal and Desargues.)
It is defined as a set of points, a set of lines, and an incidence relation between
them such that each point is incident to the same number of lines and each
line is incident to the same number of points.

A linear space is an incidence structure in which any two distinct points lie
on exactly one common line and in which every line has at least two points.
A finite geometry is a finite linear space that is either a finite projective
plane (with no parallel lines) or a finite affine plane (with parallel lines), [2].
Probably the best known example of a finite projective plane is the Fano
plane.
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Also worth mentioning is a block design, an incidence structure in which
every two points occur together in the same number of blocks, and each block
is incident to the same number of points. For instance, the Fano plane is an
example of the smallest nontrivial block design.

In the prior research of these structures, there are surveys and classifica-
tions of some types and classes of structures with well-chosen properties. We
decided to focus this research on flag-transitive incidence structures. We ob-
tained results that relate to all of the specific incidence structures mentioned
above, and believe that this methods may be applied to various further work
in specific areas of incidence geometry. In this paper, flag-transitive structures
are studied and constructed directly, but the aforementioned structures that
are subsequently also constructed, will be mentioned wherever that will be of
interest.

A flag in an incidence structure is an ordered pair of a point and a block
which are in the incidence relation. Flag-transitivity is a property of an auto-
morphism group of an incidence structure, which was first proposed by Tits in
[26] and since then studied in geometries, linear spaces and designs [1, 6, 28].

Flag-transitivity allowed us to relate incidence structures with a specific
class of graphs that will have a special place in this research. The first mathe-
matician who explicitly related incidence structures to graph theory was Levi,
[19]. He represented an incidence structure with a bipartite graph with two
types of vertices, points and blocks, where edges were incidences. This graph
later became known as the Levi graph (the incidence graph) [14]. Another
way to represent an incidence structure is with the Menger graph (the point
graph) [14], in which vertices are points, and two vertices are adjacent if
the corresponding points are in the same block. The representation of one
incidence structure with these two graphs is shown in Figure 1.

Figure 1. The Levi graph and the Menger graph of the same
incidence structure

The connection opened up new questions and areas of research, as now
various properties of graphs could be studied as properties of incidence struc-
tures those graphs represented, and vice-versa. Flag-transitivity in an in-
cidence structure corresponds to arc-transitivity in Menger graphs [16]. In
Section 5 we give more details about arc-transitive graphs and incidence struc-
tures.
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The main issue of this paper is constructing flag-transitive incidence struc-
tures. After the preliminaries and foundations in Section 2, in Section 3, we
proceed to define the concept of a basic flag-transitive incidence structure, and
to show how the construction of all flag-transitive incidence structures comes
down to the construction of the basic ones. In Section 4, the algorithms and
methods of construction are presented. We use the program package Magma
[3] for all constructions. Section 5 is dedicated to relating flag-transitive in-
cidence structures to arc-transitive graphs, and the paper concludes with the
results in Section 6. The full list of constructed flag-transitive incidence struc-
tures can be found on the web page [18].

2. Definitions and known results

In this section, we give an overview of definitions and notation of incidence
structures and their relation to groups.

2.1. Incidence structures. Let P and B be disjoint sets and I a relation on
P ×B. A triple Γ = (P,B, I) is called an incidence structure. Elements of sets
P , B and I are called points, blocks and flags respectively, and if (p,B) ∈ I,
we say that the point p is incident with the block B. In this paper we only
observe incidence structures with finite sets P and B.

For the incidence structure Γ = (P,B, I) we note the following sets. For
a point p ∈ P , the set Γ(p) = {B ∈ B : (p,B) ∈ I} of all blocks incident with
the point p; and for a block B ∈ B, the set Γ(B) = {p ∈ P : (p,B) ∈ I} of all
points incident with the block B. With this, we say that |Γ(p)| is the degree
of the point p, and |Γ(B)| is the degree of the block B. If |Γ(p)| = 0 for some
point p ∈ P , we say that p is an isolated point and analogously we define an
isolated block.

We say that an incidence structure Γ is point-simple if

Γ(pi) = Γ(pj) =⇒ pi = pj

holds, for each pi, pj ∈ P . Analogously, we say that an incidence structure Γ
is block-simple if

Γ(Bi) = Γ(Bj) =⇒ Bi = Bj

holds, for each Bi, Bj ∈ B. If a structure is block-simple, we can identify each
block B with the set of its incident points Γ(B). As a result, we can view
incidences as a relation “is an element of"” and thus denote such structure by
Γ = (P,B), where B ⊆ 2P .

Another basic concept is the dual structure of an incidence structure. For
an incidence structure Γ = (P,B, I), the dual structure of Γ is the incidence
structure Γ∗ = (B, P, I∗), where I∗ = {(B, p) : (p,B) ∈ I} ⊆ B × P .

The incidence structure is connected if its Levi graph is connected.
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2.2. Automorphisms and group action. Let Γ1 = (P1,B1, I1) and Γ2 =
(P2,B2, I2) be two incidence structures. A bijection ϕ : P1 ∪ B1 → P2 ∪ B2
such that ϕ(P1) = P2, ϕ(B1) = B2, and for each point p ∈ P1 and each block
B ∈ B1 it holds

(p,B) ∈ I1 ⇐⇒ (ϕ(p), ϕ(B)) ∈ I2,

is called an isomorphism of incidence structures Γ1 and Γ2. If such function
exists, we say that Γ1 and Γ2 are isomorphic and denote it by Γ1 ∼= Γ2.

An automorphism of an incidence structure Γ = (P,B, I) is an isomor-
phism ϕ : Γ → Γ. A full automorphism group of Γ is a group of all auto-
morphisms of the structure Γ and is denoted by Aut(Γ). Each subgroup of
Aut(Γ) is called an automorphism group.

A bijection ψ : P ∪ B → P ∪ B is called a duality of the structure Γ =
(P,B, I) if ψ(P ) = B, ψ(B) = P and for each p ∈ P and B ∈ B the following
holds:

(p,B) ∈ I ⇐⇒ (ψ(B), ψ(p)) ∈ I.
We say that a group G acts on an incidence structure Γ = (P,B, I) if G

acts on the sets P , B and I in such way that for each g ∈ G and for each
(p,B) ∈ I, it holds g(p,B) = (gp, gB). A group G is point-transitive on the
incidence structure Γ = (P,B, I) if it acts transitively on the set P ; block-
transitive if it acts transitively on the set B, and is flag-transitive if it acts
transitively on the set I.

For a group G and a set X, we use the notation GX, which is defined as
GX = {gX : g ∈ G}. A permutation representation of the group G on the
set X is a homomorphism ρ : G → Sym(X). The image ρ(G) ⊆ Sym(X) is
a permutation group and is denoted by GX .

2.3. Flag-transitive incidence structures. Let Γ = (P,B, I) be an incidence
structure without isolated points or isolated blocks. We say that Γ is a flag-
transitive incidence structure if its automorphism group acts flag-transitively.
We define incidence structures that are point-transitive and block-transitive in
the same way.

We will refer to flag-transitive incidence structures as FTIS throughout
the paper. The examples of FTIS are finite affine and finite projective planes
over some finite field. For instance, the Fano plane is a projective plane over
the field F2.

If a group G is flag-transitive on the incidence structure Γ, we say that Γ
is G-flag-transitive.

It is worthy to note that if an incidence structure Γ is G-flag-transitive,
then its dual incidence structure, Γ∗, is also G-flag-transitive.

The following characterization of FTIS will be used in the construction
methods. We present it in the form of a proposition but omit the well known
proof.
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Proposition 2.1. Let Γ = (P,B, I) be an incidence structure without
isolated points and blocks, with a group G acting on it and let p ∈ P and
B ∈ B. Then the following statements are equivalent:

• Γ is flag-transitive;
• G is transitive on points and Gp is transitive on Γ(p);
• G is transitive on blocks and GB is transitive on Γ(B).

Now let us define Γ(m) and Γ(n), two types of structures obtained from
the incidence structure Γ and describe their connection to Γ.

Let Γ = (P,B, I) be an incidence structure and n,m ∈ N.
- Γ(m) is an incidence structure with the point set P and the block set

{1, ...,m} × B in which a point p is incident with a block (i, B) if and
only if (p,B) ∈ I.

- Γ(n) is an incidence structure with point set {1, ..., n} × P and block
set B in which a point (i, p) is incident with a block B if and only if
(p,B) ∈ I.

Clearly, (Γ(n))(m) = (Γ(m))(n), so that type of structure is denoted by Γ(n)
(m).

Proposition 2.2. Let Γ be a FTIS. Then there exist unique n,m ∈ N and
the unique point-simple and block-simple FTIS Ω, such that Γ is isomorphic
to Ω(n)

(m).

Proof. Let Γ = (P,B, I) be a G-FTIS. Let Ω be the incidence structure
with the point set {Γ(p) : p ∈ P}, the block set {Γ(B) : B ∈ B}, where a point
Γ(p) is incident with a block Γ(B) if and only if p is incident with B. Let us
notice that if p is incident with B, then all the points in Γ(B) are incident
with all of the blocks in Γ(p), so incidence in Ω is well-defined. For any g ∈ G,
it holds gΓ(p) = Γ(gp) and gΓ(B) = Γ(gB) for all the points p ∈ P and all
the blocks B ∈ B. Thus, G preserves incidences of Ω, so Ω is a FTIS.

If Ω(Γ(p)) = Ω(Γ(p′)) for some p, p′ ∈ P , then sets {Γ(B) : (p,B) ∈ I}
and {Γ(B′) : (p′, B′) ∈ I} are equal. That gives us Γ(p) = Γ(p′), which means
that Ω is a point-simple incidence structure. Analogously, one can easily show
that Ω is also block-simple.

For any point p ∈ P , let U(p) = {p′ ∈ P : Γ(p′) = Γ(p)}, and for any
block B ∈ B, let U(B) = {B′ ∈ B : Γ(B′) = Γ(B)}. For any g ∈ G, it
holds gU(p) = U(gp) and gU(B) = U(gB), for all the points p ∈ P and all
the blocks B ∈ B. Because G is point-transitive, it follows that sets U(p)
for all p ∈ P are of the same cardinality, so we can denote that cardinality
by n. Analogously, because G is block-transitive, it follows that sets U(B),
for all B ∈ B, are of the same cardinality, so we can denote that cardinality
by m. Let us denote by P ′ the set of points and by B′ the set of blocks
of incidence structure Ω(n)

(m), i.e. P ′ = {1, 2, ..., n} × {Γ(p) : p ∈ P} and
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B′ = {1, 2, ...,m} × {Γ(B) : B ∈ B}. Now, let us define a function
ϕ : P ∪B → P ′ ∪ B′

in a way that ϕ(U(p)) = {1, 2, ..., n} × {Γ(p)} for all p ∈ P and ϕ(U(B)) =
{1, 2, ...,m} × {Γ(B)} for all B ∈ B. Now, it is easily shown that ϕ is an
isomorphism of incidence structures Γ and Ω(n)

(m).

If Γ1 = (P1,B1, I1) and Γ2 = (P2,B2, I2) are incidence structures, then
by Γ1 +Γ2 we denote the incidence structure (P1 ⊔P2,B1 ⊔B2, I1 ⊔I2), where
⊔ denotes a disjoint union. The same structure, Γ = (P,B, I), added n times
this way, is denoted by nΓ.

Proposition 2.3. Let Γ be a FTIS. Then there exists the unique n ∈ N
and the unique connected FTIS Ω such that Γ is isomorphic to nΩ.

Proof. Let Γ = (P,B, I) be a G-FTIS. The group G acts transitively
on the edges of the Levi graph of Γ, so all of its connected components are
isomorphic to each other. A connected component of the Levi graph naturally
induces the connected incidence substructure Ω of Γ. The stabilizer of the set
of all flags of Ω in G acts transitively on that set, so Ω is a FTIS. Now, it is
easily shown that Γ is isomorphic to nΩ.

2.4. Imprimitive flag-transitive incidence structures. Let a group G act tran-
sitively on a set X. A partition {∆i ⊆ X : i ∈ {1, ..., d}} of the set X is
called a block system if for each i ∈ {1, ..., d} and for each g ∈ G there exists
j ∈ {1, ..., d} such that g∆i = ∆j .

For a group action of any transitive group G on any set X with at least
2 elements, there are at least two block systems, a partition to singletons
and a whole set X. Those block systems are called trivial. A non-trivial
block system is called a system of imprimitivity. If a group G has the action
that allows at least one system of imprimitivity, we say that such action is
imprimitive on X and we say that G is imprimitive. Elements of a system
of imprimitivity are called blocks of imprimitivity and they are of the same
cardinality. If a transitive action of a group G does not preserve any non-
trivial block system, we say that G is primitive.

With regard to incidence structures, we will observe imprimitive groups G
acting on sets of points of the structures, partitioning those sets into systems of
imprimitivity. Let us note that Γ(∆) naturally expands Γ(p) in the following
way:

Γ(∆) = {B ∈ B : (∃p ∈ ∆)(p,B) ∈ I}.
With this, we define the following structures.
Let Γ = (P,B, I) be a G-FTIS, Σ a system of imprimitivity for G on the

point set P and ∆ ∈ Σ. Then
• The incidence structure Γ∆ = (∆,Γ(∆), I∆), where I∆ = I ∩ (∆ × B),

is called a substructure of Γ with regard to ∆.
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• The incidence structure Γ/Σ = (Σ,B, IΣ) where IΣ = {(∆, B) : ∆ ∈
Σ, B ∈ B,∆ ∩ Γ(B) ̸= ∅} is called a quotient structure of Γ by Σ.

Proposition 2.4. Let Γ be a G-FTIS, Σ a system of imprimitivity for
G on the point set P and ∆ ∈ Σ. Then Γ∆ is G∆-FTIS and Γ/Σ is G-FTIS.

Proof. For two arbitrary flags (p1, B1) and (p2, B2) in I∆, given that
Γ is G-flag-transitive, there must exist g ∈ G such that g(p1, B1) = (p2, B2).
Since we have p1, p2 ∈ ∆ and gp1 = p2 then it must hold g∆ = ∆, which
gives us g ∈ G∆. Now, for two arbitrary flags (∆1, B1) and (∆2, B2) in IΣ
there must exist p1 ∈ ∆1 and p2 ∈ ∆2 such that (p1, B1) and (p2, B2) are
flags in I. Given that Γ is G-flag-transitive, there exists g ∈ G such that
g(p1, B1) = (p2, B2) which means gp1 = p2. Now, we have g∆1 = ∆2 which
gives us g(∆1, B1) = (∆2, B2).

3. Basic flag-transitive incidence structures and their
parameters

The key aspect of the construction is a basic flag-transitive incidence
structure, which we denote by BFTIS. Based on Propositions 2.2 and 2.3 and
the fact that the dual structure of FTIS is also a FTIS, we are able to simplify
the construction of all FTIS to their core class.

Definition 3.1. A FTIS is called basic if it is connected, point-simple,
block-simple and the number of points is less or equal to the number of blocks.

Proposition 3.2. Let Γ be a FTIS. Then there exist unique n,m, k ∈ N
and the unique BFTIS Ω such that Γ is isomorphic to kΩ(n)

(m) or to (kΩ(n)
(m))

∗.

From this, we conclude that the problem of constructing FTIS comes
down to the construction of BFTIS. Let us see how we can better describe
them in a numerical way, in order to develop the construction methods.

Let Γ = (P,B, I) be an incidence structure, transitive on points and
blocks. The degrees of all points are equal, and the degrees of all blocks are
equal, so we can denote by

v := |P |, the number of points;
b := |B|, the number of blocks;
r := |Γ(p)|, for each p ∈ P, the degree of points;
k := |Γ(B)|, for each B ∈ B, the degree of blocks.

If this is the case, we will say that this incidence structure is of the type
rvkb. It can be seen that if Γ is flag-transitive and of the type rvkb, then Γ∗

is also flag-transitive and of the type kbrv.
To connect these parameters with considerations of different structures

from Section 1, one can observe that this kind of incidence structures are in
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fact configurations, since each point is incident to the same number of blocks,
and each block is incident to the same number of points. For linear spaces,
k ≥ 2 holds and the Fano plane is an incidence structure of the type 3737,
while the Desargues configuration is an incidence structure of the type 310310.

In a BFTIS, rv = kb and k ≤ v. However, more on the parameters can
be deduced from the definition and properties of BFTIS. From the definition
directly follows

v ≤ b ≤
(
v

k

)
.

Also, if k = 1 holds, then v = b = r = 1. Similarly, if k = v holds, because of
point and block simplicity, we have v = b = r = 1. So for any BFTIS, other
then the one of the type 1111, it holds 1 < k < v.

Since there exists a group G that acts transitively on the set of flags,
which is of cardinality rv, it follows that rv divides the order of G. Because
G is a subgroup of Sv, we have |G||v!, so it holds

r|(v − 1)!.

We have shown the following:

Proposition 3.3. For the parameters of the BFTIS it holds
• rv = kb;
• v ≤ b ≤

(
v
k

)
;

• v > 1 =⇒ 1 < k < v;
• r|(v − 1)!.

While Proposition 3.3 will be the basic tool for determining parameter
sets when searching for BFTIS, we have an additional result that helped us to
eliminate many sets of parameters. That result is based on Sylow theorems,
from which we derived Proposition 3.8 presented in the next subsection.

3.1. Application of Sylow theorems.

Proposition 3.4. Let a group G act transitively on a set X, let H ≤ G
and x ∈ X. Then H acts transitively on the set X if and only if G = HGx

holds.

Proof. Let H act transitively on X. We have

|HGx| = |H||Gx|
|H ∩Gx|

= |H||Gx|
|Hx|

= |X||Gx| = |G|.

Now it follows G = HGx. For the other side, let G = HGx hold. We have

X = Gx = HGxx = Hx,

from which the transitivity of the subgroup H follows.
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Proposition 3.5. Let p be a prime number and H a subgroup of a finite
group G. Then there exists a Sylow p-subgroup Q of G such that Q ∩H is a
Sylow subgroup of H.

Proof. Every Sylow p-subgroup K of H is contained in some Sylow
p-subgroup Q of G so K = Q ∩H holds.

Proposition 3.6. Let X be a set for which |X| is a power of some prime
number p and let a group G act transitively on X. Then Sylow p-subgroups
of G also act transitively on X.

Proof. By Proposition 3.5, let Q be a Sylow p-subgroup of G such that
Q ∩ Gx is a Sylow p-subgroup of Gx. Then there exists m ∈ N such that
p ∤ m and |Gx| = |Q ∩ Gx|m. From |G| = |X||Gx| = |X||Q ∩ Gx|m it then
follows |Q| = |X||Q ∩ Gx| = |X||Qx|, which means |Qx| = |Q|

|Qx| = |X|. Now
we conclude Q is transitive, and so are the rest of Sylow p-subgroups, as they
are conjugated with Q.

Corollary 3.7. Let Γ be a FTIS for which the number of flags is a
power of some prime number p. Then there exists a p-group G such that Γ is
G-flag-transitive.

Proposition 3.8. Let p be a prime number, r, v, k, b, α ∈ N, k = pα,
k < v < pα+1 and p|b. Then there is no simple block-transitive incidence
structure of type rvkb.

Proof. Let us assume the opposite, let Γ be a G-FTIS with given prop-
erties and let B be any block in B. If K is a Sylow p-subgroup of the stabilizer
GB , then it acts transitively on B and there exists a Sylow p-subgroup Q of
G such that K = Q ∩GB . For some x incident with B it holds

pα = k = |B| = |Kx| ≤ |Qx| ≤ v < pα+1,

and then from |Qx| being a power of p it follows |Qx| = k, which means
Qx = B. Now we have Q ≤ GB and p ∤ [G : GB ], which is a contradiction.

For example, Proposition 3.8 is used to eliminate the possibility of exis-
tence of BFTIS of the type 16301630. Here we have k = 24, 24 < 30 < 25

and 2|30, which proves the elimination. Failure to solve the existence of
BFTIS of exactly this type via other construction methods in a timely man-
ner, prompted us to develop this elimination technique.

4. Methods of construction

The main goal is to construct BFTIS of type rvkb. We use several meth-
ods, depending on parameters and the computer capacity. Also, given the fact
that MAGMA has a library of transitive permutation groups up to the degree
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31 and a library of primitive permutation groups up to the degree 4096, we
adjust the construction methods regarding the values of v and k.

For v ≤ 31, we use the library of transitive groups to obtain the list of all
possible automorphism groups of BFTIS with v points and for each of those,
we run algorithms BASIC, k-REP or k-ORB (depending on the value of k),
described in Subsection 4.1.

For prime values of v greater than 31, we use the library of primitive
permutation groups and again for each group in the list run one of the same
three algorithms. For composite values of v greater than 31, we use the same
library to check for primitive groups but for the imprimitive ones we devised
a technique described in Subsection 4.2.

To make things somewhat simpler, we give the diagram in Figure 2 for
easier visualization of the methods of construction of BFTIS.

Figure 2. Methods of construction

Algorithm BASIC, with its complete theoretical background, is explained
in [4], where we used it as a part of the construction method for obtaining
flag-transitive designs that have Sn ≀ Sm as an automorphism group. Algo-
rithms BASIC and IMPRIMITIVE were used in [5] to construct flag-transitive
designs with the automorphism group Sn × Sm. In that same paper, we used
some ideas from algorithms k-REP and k-ORB, to solve some special cases,
however, we developed them in their fullness for this research so here we
present their theoretical explanation.

4.1. Main algorithms. We start with a set of parameters [r, v, k, b]. Depend-
ing on the value of v we use different methods for obtaining possible groups
of automorphisms G, but once we have those, for each such group we will
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use algorithms BASIC, k-REP or k-ORB, whichever appropriate, for the con-
struction of BFTIS of the type rvkb. Since not all candidates for the group
G will be able to yield any FTIS, we lay this elimination proposition that we
incorporate in the algorithm to eliminate such groups before we even start
trying to construct BFTIS.

Proposition 4.1. Let G be a permutation group of the degree v and let
Γ be a basic G -FTIS of the type rvkb. If p is a prime number for which
r < p < v and p ∤ v holds, then p ∤ |G|.

Proof. This claim was stated in terms of bipartite graphs and proven
in [15]. It can be seen that our proposition follows from applying this result
to the Levi graph of the structure.

Now we present the basic algorithm.

Algorithm BASIC
Input data is a set of parameters [r, v, k, b] and a group G.

First we check if rv | |G|, and for all prime numbers p such that r < p < v and
p ∤ v check if p ∤ |G|. Then we list all subgroups (up to conjugation) H of G
with the index b and for each subgroup H list all its orbits O such that |O| = k
and |GO| = b. Now we have those orbits that remain for base blocks of struc-
tures, so we can construct a FTIS by acting with the group G on an orbit and
thus gaining all blocks of the desired structure. Lastly, we make a list of all
such FTIS, and in the end, filter that list of structures to remove all which are
not connected or point-simple, and all that are isomorphic or dual isomorphic.

Even with those methods, with some parameters, the number of observed
groups was very large, and given that the algorithm calculates all the sub-
groups with the said properties, for each of those groups, sometimes this
algorithm required inefficient amount of time or too much memory. That is
the reason we devised the other algorithm, called k-REP, which constructs
structures in a different way. Theoretical background for this algorithm is
given in the following.

Definition 4.2. Let G ≤ Sv be a transitive group. We say that the sets
A,B ⊆ {1, ..., v} are G-conjugated if there exists g ∈ G such that gA = B.

G-conjugation is an equivalence relation and its equivalence classes are
orbits of the G-action on the partitive set of {1, ..., v}. It is easy to see
that for each A ⊆ {1, ..., v}, the simple incidence structure Γ({1, ..., v}, GA)
is point and block transitive. Clearly, if sets A and B are G-conjugated,
incidence structures Γ({1, ..., v}, GA) and Γ({1, ..., v}, GB) are the same. The
algorithm is based on constructing representatives of classes of G-conjugation.

Definition 4.3. Let α ∈ N, α ≤ v. We say that a set R, of subsets of
{1, ..., v} is a set of α-representatives if each two different elements of R are
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not G-conjugated and each subset of {1, ..., v} of the cardinality α is conjugated
with some element of R.

Proposition 4.4. Let R be a set of α-subsets of {1, ..., v}, such that no
two elements in R are G-conjugated. Then, R is a set of α -representatives if
and only if ∑

A∈R

[G : GA] =
(
v

α

)
.

Proof. If R is a set of α-representatives, then every α-subset is contained
in the exactly one orbit ωA, for some A ∈ R. Since [G : GA] = |ωA|, then∑

A∈R[G : GA] =
(

v
α

)
.

Proposition 4.5. Let R be a set of α-representatives, for some α < v,
and let U = {A ∪ {i} : A ∈ R, i ∈ {1, ..., v}, |A ∪ {i}| = α + 1}. Then there
exists some subset of (α+ 1)-representatives in U .

Proof. Let X be any (α + 1)-subset of {1, ..., v} and let i ∈ X be any
element of X. Now, the set X \ {i} is an α-subset of {1, ..., v} and therefore
has a representative in R, i.e. there exists A ∈ R such that for some g ∈ G it
holds g(X \ {i}) = A. Now, gX = A ∪ {gi} which is in U .

So the main idea is to construct a set of k-representatives for some group
G of the degree v. For small values of k this is easily achieved by induction,
described in the following algorithm. After that, we take elements of the set
of k-representatives and use them as base blocks in the construction.

Algorithm k-REP
For this algorithm input data is a transitive group G ≤ Sv and a set of

parameters [r, v, k, b].
The first step is to construct the set R of k-representatives. We do this by
induction, based on Proposition 4.5. We start with R = ∅ and in each step
construct a new set R in the following way:
For some element in U , we check if it is conjugated with some element from
R, if not, then we add it to R and calculate σ(R) =

∑
A∈R[G : GA]. If

σ(R) =
(

v
α+1
)
, the process is finished, and if not, we continue with a new

element from U .
The second step is to choose those Γ({1, ..., v}, GA), A ∈ R which are BFTIS
with given parameters. Finally, those structures are analyzed for isomor-
phisms or dual isomorphisms.

This algorithm is used for small values of k, or for groups which have a
small number of α-representatives.

Remark 4.6. It can be seen that if R is a set of α-representatives, then
{AC : A ∈ R} is a set of (v − α)-representatives. It follows that for the
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sets of parameters for which k > v
2 holds, it is better to calculate (v − α)-

representatives and then further proceed with their complements.

Example 4.7. Let us observe described methods in search for BFTIS of
the type 624624. Here we have v = 24 and there are 25000 transitive groups of
the degree 24. Group by group, Algorithm BASIC runs, and saves constructed
BFTIS. When it gets to the group which MAGMA identifies with the number
10272, the memory runs out, and for that group we then use Algorithm k-
REP. We proceed by observing group by group with Algorithm BASIC, and
if needed use k-REP again. This method yields 8 BFTIS of the type 624624.

One might wonder why not use k-REP for all the groups. The reason is
that it is generally slower, as some groups are faster discarded by Algorithm
BASIC.

We developed Algorithm k-REP to help us out with the construction of
those FTIS with a small k. Equally important, we had to find a way to deal
with those FTIS with a large k. So we devised Algorithm k-ORB.

The idea behind Algorithm k-ORB is to filter down the set {1, ..., v} to
orbits of the size k in a somewhat different way than checking for the action
of all the subgroups of a group G of the index b on that set.

Algorithm k-ORB
This algorithm has the transitive group G ≤ Sv and a set of parameters

[r, v, k, b] as its input data. We start with two lists, A and B, where A starts
as an empty list and B containing only the set {1, ..., v}. As long as there
are any elements still left in the list B, for each element X ∈ B, we do the
following:
- form a set of orbits, up to a G-conjugation, of all groups that we get by
going down the lattice of subgroups of (GX)X and choosing those that are
non-transitive and maximal in some transitive subgroup
- for each orbit in that set we do the following:

- if |O| = k and |GO| = b, then we store the orbit O in the list A
- if |O| > k, then we store O in the list B

- remove X from the list B.
Finally, when the list B empties out, we end up with the list A which is a list
of base blocks of the desired BFTIS. So we construct a list of those BFTIS
and filter out those that are isomorphic to some of the other ones in the list
or their duals.

It can be seen that the problem of a large number of subgroups of index
b of a group G can be bypassed by switching the focus on orbits rather than
groups. Because we check for the orbit size, and discard those of the size
less than k, a lot of subgroups of the index b will not even be taken into
consideration. In cases with a large k, this algorithm proved to be faster than
algorithms BASIC and k-REP.
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4.2. Construction of imprimitive flag-transitive structures. Firstly, we lay the
theoretical background for the construction of imprimitive structures.

4.2.1. Parameters of substructures and quotient structures. For this sub-
section, let Γ = (P,B, I) be a G-FTIS of the type rvkb. Let Σ be a system of
imprimitivity for G on the point set P with v1 blocks of size v2.

Keeping in mind that both the substructure and the quotient structure
are flag-transitive, the number of blocks of the substructure is denoted by
s, i.e. |Γ(∆)| = s, and notice that s is also the degree of a point ∆ in the
quotient structure and does not depend on the choice of ∆.

We also denote the number of blocks of imprimitivity that have non-empty
intersections by Γ(B), for any given B ∈ B, by k1 , i.e.

k1 = |{∆ ∈ Σ : ∆ ∩ Γ(B) ̸= ∅}|,
and the size of those intersections with k2,

k2 = |∆ ∩ Γ(B)|, for ∆ ∩ Γ(B) ̸= ∅.
With this denotations, it holds v = v1v2, k = k1k2, Γ/Σ is of type sv1kb

1
and Γ∆ is of the type rv2ks

2.

4.2.2. Basic theoretical background for construction. Two following propo-
sitions, though trivial, allow us to significantly reduce the running time and
the memory usage of the Algorithm IMPRIMITIVE.

Proposition 4.8. If Γ is point-simple, then Γ∆ is point-simple and k2 <
v2.

Proof. If v2 = k2, then Γ is isomorphic to (Γ/Σ)(v2).

Proposition 4.9. If Γ is connected, then Γ/Σ is connected and k1 ̸= 1.

Proof. If k1 = 1, then every block in Γ/Σ is incident with only one
point, so Γ/Σ is not connected and thus Γ is not connected.

Algorithm IMPRIMITIVE
We start with a quadruplet [r, v, k, b] and we need to obtain two new

quadruplets, which are the sets of parameters of the substructure and the quo-
tient structure. We do this by following the steps in the next paragraph.
The first step is to find all factorizations v = v1v2 such that vi ̸= 1. Next,
we find factorizations k = k1k2, such that k1 ̸= 1, (Proposition 4.9). Now
we check if k1b

v1
is an integer and if k2 < v2 holds (Proposition 4.8). If both

are true, we denote s = k1b
v1

, and thus we obtain quadruplets [r, v2, k2, s] and
[s, v1, k1, b]. Now we construct all point-simple FTIS (Proposition 4.8) of
the type rv2ks

2 which are candidates for substructures and all connected FTIS
(Proposition 4.9) of type sv1kb

1 which are candidates for quotient structures.
We do this using one of three main algorithms. After that, we search for all
automorphism groups that act flag-transitively on those structures and store
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their group action on points into two lists. Then we search for subgroups
G ≤ H ≀K, for each H from the list of automorphism groups of the substruc-
ture, and for each K from the list of automorphism groups of the quotient
structure. We start with the group H ≀K and go down the lattice of maximal
subgroups while filtering and keeping only those groups G that are transitive,
act on blocks of imprimitivity in the same way as H(i.e. (G∆)∆ = H), and
act on the system of imprimitivity in the same way as K(i.e. GΣ = K).

5. Arc-transitive graphs as incidence structures

At this point we observe arc-transitive graphs more closely, as well as
their relation to FTIS and BFTIS we are analyzing.

Commonly, a simple graph Λ is defined as a pair (V,E), where V is a
non-empty set and E ⊆

(
V
2
)
. Elements of V are called vertices and elements

of E are called edges. For a simple graph Λ we define the set A = {(x, y) :
{x, y} ∈ E} which we call a set of arcs of the graph Λ. We can imagine this
as replacing edges of Λ, each with two arcs of the opposite orientation.

Let Λ be a simple graph without isolated vertices, and G a group. We say
that Λ is G-arc-transitive or G-symmetric, if G acts transitively on the set
A. Analogously, we define a G-vertex-transitive graph and a G-edge-transitive
graph. We say that a graph Λ is arc-transitive if there exists a group G
such that Λ is G-arc-transitive. In that case it follows that Λ is both vertex-
transitive and edge-transitive.

Let Λ = (V,E) be a simple graph. A simple incidence structure with
point set V , and block set E is denoted by is(Λ). We can immediately tell
that in is(Λ), the degree (cardinality) of each block is 2.

It can be shown that Λ is G-arc-transitive, for some group G, if and only
if is(Λ) is a G-FTIS. If Λ is G-arc-transitive r-regular graph with v vertices
then the incidence structure is(Λ) is of the type rv2 rv

2 .
Above shown is one way how graphs lead to incidence structures, but what

about the opposite? We have already seen that an incidence structure can be
represented as a graph in two ways, and here we observe its representation as
the Menger graph. The Menger graph of the incidence structure is(Λ) is Λ.
For example, the Menger graph of the Fano plane is the complete graph K7,
as in the Fano plane for each two points there is a block to which they are
both incident.

If Γ is a block-simple FTIS with blocks of degree 2, then its Menger graph
is arc-transitive. Furthermore, a graph Λ is connected if and only if is(Λ) is
connected. An incidence structure is(Λ) is point-simple and block-simple if
the graph K2 is not a component of Λ.

To summarize, we give the following proposition.

Proposition 5.1. If Γ is a BFTIS of the type rv2 rv
2 , then its Menger

graph is a connected r-regular arc-transitive graph with v vertices.
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This is why the results in the construction of BFTIS are a contribution
to construction and classification of arc-transitive graphs. We will dedicate a
part of Section 6, the Results, to list all, until now known, classifications of
arc-transitive graphs and show how we expanded the known census.

Because we are dealing with a small k, in the construction of these FTIS,
Algorithm k-REP was mainly used.

Let us now give an example to better illustrate this connection. As the
results will show, for k = 2 and for v ∈ {3, 4, 5}, the only BFTIS, and therefore
the only arc-transitive graphs, are cycles and complete graphs, the structures
of the type 2323; 2424, 3426; 2525, 45210. Whereas for v = 6, we have four
BFTIS, and Menger graphs of two structures that are not a cycle or a complete
graph are shown in Figure 3. Their types are 3629 and 46212 and their graphs
are K3,3 and K2,2,2.

Figure 3. K3,3 and K2,2,2

6. Results

In this section, we present tables with numbers of existing BFTIS for dif-
ferent parameter conditions. All constructed BFTIS referenced in our tables
can be found in our database [18].

It is worthy to note that incidence structures with small values of param-
eter r are interesting on its own and are researched in the below mentioned
papers we compared our own results to. For incidence structures with r = 2
it holds k = 2, so it follows v = b. The observed BFTIS are of type 2n2n and
their Levi graph is a cycle. Incidence structures with r = 3 and k ∈ {2, 3}
are studied as cubic semi-symmetric and cubic symmetric graphs in [9, 11].
For r = 4 and k ∈ {2, 3, 4}, incidence structures are studied as edge-transitive
tetravalent graphs in [20].

In Table 1 we give the number of existing BFTIS on v points for each
v ≤ 23.
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Table 1. The number of BFTIS for each v

v #FTIS v #FTIS v #FTIS v #FTIS
1 1 7 10 13 29 19 27
2 0 8 22 14 71 20 412
3 1 9 23 15 105 21 201
4 3 10 38 16 314 22 140
5 4 11 21 17 33 23 44
6 10 12 111 18 302

Those BFTIS for which the number of points and blocks combined is less
than or equal to 79 are listed in Table 2. We omit those values of v + b for
which there are no BFTIS.

Table 2. The number of BFTIS for values of v + b

v + b #FTIS v + b #FTIS v + b #FTIS v + b #FTIS
2 1 26 9 45 30 63 53
6 1 27 4 46 6 64* ≥86
8 2 28 12 48 73 65 11
10 3 30 17 49 5 66 37
12 2 32 22 50 32 68 17
14 5 33 3 51 6 69 1
15 4 34 6 52 23 70 59
16 5 35 8 54 58 72* ≥157
18 6 36 31 55 5 74 9
20 7 38 5 56 87 75 46
21 5 39 5 57 6 76 20
22 6 40 40 58 6 77 22
24 13 42 37 60 108 78 51
25 3 44 13 62 14

* As can be seen in Table 2, we did not manage to construct all BFTIS
for v+ b < 80. At least, we are not sure if we did. For v+ b ∈ {64, 72} we are
yet to find out if there are any BFTIS of the type k32k32 where k ∈ {8, 12, 16}
or any basic FTIS of the type k36k36 where k ∈ {6, 8, 10, 12, 16, 20}.

Finally, in Table 3, we give numbers of BFTIS for each v ≤ 63, where
each block consists of exactly two points, i.e. k = 2. Those BFTIS correspond
to arc-transitive graphs which were classified in [12] for all v ≤ 47. Also, all
such graphs, with a prime number of points, were found in [7]. Cases where
the number of points were 2p and 3p for some prime number p, were solved
in [8,27]. Lastly, in [21,22], all cases where v equals the product of two prime
numbers were described. We used the construction methods to construct all
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those previously described cases and to try to find all the missing ones for
48 ≤ v ≤ 63.

Table 3. The number of BFTIS for each v, where k = 2

v #FTIS v #FTIS v #FTIS v #FTIS
3 1 19 3 35 15 51 13
4 2 20 22 36 67 52 32
5 2 21 13 37 6 53 4
6 4 22 8 38 10 54* ≥23
7 2 23 2 39 12 55 24
8 5 24 34 40 68 56* ≥40
9 4 25 11 41 6 57 14
10 8 26 13 42 56 58 11
11 2 27 20 43 4 59 2
12 11 28 26 44 16 60* ≥50
13 4 29 4 45 42 61 8
14 8 30 41 46 7 62 17
15 10 31 4 47 2 63* ≥36
16 15 32 42 48* ≥39
17 4 33 8 49 18
18 14 34 10 50 40

For values of v marked with * we managed to construct BFTIS, but only
for some parameters r. The number listed in Table 3 is the number of BFTIS
constructed so far. We give those values of r for which the cases remain
unsolved in Table 4.

Table 4. Unsolved cases from Table 3

v values of r for which BFTIS of type rv2
rv

2 were not constructed
48 6, 8, 9, 10, 12, 16, 18, 20, 24, 32
54 6, 8, 9, 12, 16, 18, 24, 32
56 6, 7, 8, 12, 14, 16, 24
60 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 32
63 6, 12, 18

References
[1] M. Aschbacher, Finite geometries of type C3 with flag-transitive groups, Geom. Dedi-

cata 16 (1984), 195–200.
[2] L. M. Batten and A. Beutelspacher, The Theory of Finite Linear Spaces, Cambridge

University Press, Cambridge, 1992.



CONSTRUCTING FTIS 29

[3] W. Bosma, J. J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma functions,
Edition 2:16, 2010 (electronic).

[4] S. Braić, J. Mandić and T. Vučičić, Flag-transitive block designs with automorphism
group Sn wr S2, Discrete Math. 341 (2018), 2220–2230.

[5] S. Braić, J. Mandić, A. Šubašić, T. Vojković and T. Vučičić, Groups Sn × Sm in
construction of flag-transitive block designs, Glas. Mat. Ser. III 56(76) (2021), 225–
240.

[6] F. Buekenhout, A. Delandtsheer and J. Doyen, Finite linear spaces with flag-transitive
groups, J. Combin. Theory Ser. A. 49 (1988), 268–293.

[7] C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices,
Trans. Amer. Math. Soc. 158 (1971), 247–256.

[8] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Com-
bin. Theory Ser. B. 42 (1987), 196–211.

[9] M. D. Conder, A. Malnič, D. Marušić and P. Potočnik, A census of semisymmetric
cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006), 255–294.

[10] M. D. Conder, and M. Morton, Classification of trivalent symmetric graphs of small
order, Australas. J. Combin. 11 (1995), 139–150.

[11] M. D. Conder, and R. Nedela, A refined classification of symmetric cubic graphs,
J. Algebra 322 (2009), 722–740.

[12] M. D. Conder, and G. Verret, Edge-transitive graphs of small order and the answer to
a 1967 question by Folkman, Algebr. Comb. 2 (2019), 1275–1284.

[13] J. Conway, and A. Ryba, The Pascal mysticum demystified, Math. Intelligencer 34
(2012), no.3, 4–8.

[14] H. S. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56
(1950), 413–455.

[15] D. Z. Djokovic and G. L. Miller, Groups Acting on Regular Graphs and Group Amal-
gams, in: Technical Report TR24, University of Rochester, Department of Computer
Science, Rochester, 1978.

[16] C. Godsil and G. Royle, Arc-Transitive Graphs, in: Algebraic Graph Theory, Springer,
New York, 2001.

[17] H. Gropp, Configurations and their realization, Discrete Math. 174 (1997), 137–151.
[18] https://mapmf.pmfst.unist.hr/∼sbraic/BFTIS/
[19] F. W. Levi, Finite geometrical systems: six public lectures, University of Calcutta,

Calcutta, 1942.
[20] P. Potočnik and S. E. Wilson, Recipes for edge-transitive tetravalent graphs, Art Dis-

crete Appl. Math. 3(1) (2020), Paper No. 1.08.
[21] C. E. Praeger, R. J. Wang and M. Y. Xu, Symmetric graphs of order a product of two

distinct primes, J. Combin. Theory Ser. B. 58 (1993), 299–318.
[22] C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct

primes, J. Combin. Theory Ser. B. 59 (1993), 245–266.
[23] T. Reye, Geometrie der Lage I. 2nd ed., C. Rumpler, Hannover, 1877.
[24] T. Reye, Das Problem der Configurationen, Acta Math. 1(1) (1882), 93–96.
[25] J. De Saedeleer, D. Leemans, M. Mixer and T. Pisanski, Core-free, rank two coset

geometries from edge-transitive bipartite graphs, Math. Slovaca 64 (2014), 991–1006.
[26] J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique, Bull. Soc.

Math. Belg. 8 (1956), 46–81.
[27] R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Com-

bin. Theory Ser. B. 58 (1993), 197–216.
[28] P.-H. Zieschang, Flag transitive automorphism groups of 2-designs with (r, λ) = 1,

J. Algebra 118 (1988), 369–375.



30 S. BRAIĆ, J. MANDIĆ, A. ŠUBAŠIĆ AND T. VOJKOVIĆ

Konstrukcija flag-tranzitivnih incidencijskih struktura

Snježana Braić, Joško Mandić, Aljoša Šubašić i Tanja Vojković

Sažetak. Cilj ovog istraživanja je razvoj učinkovitih tehnika
konstrukcije flag-tranzitivnih incidencijskih struktura. U članku
su opisane tehnike i metode konstrukcije te izneseni rezultati. Is-
taknuta je veza nekih tipova flag-tranzitivnih incidencijskih struk-
tura i lučno-tranzitivnih grafova.
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