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Aim To assess the effects of different test-set design strate-
gies for magnetic resonance (MR) image classification us-
ing deep learning.

Methods Error rates in 10 experimental settings were as-
sessed. The performance of pretrained models and data 
augmentation were examined as possible contributing 
factors.

Results Error rates in experimental settings using MR im-
ages of different patients for training and test sets were 
ten times higher than those in experimental settings using 
MR images of the same patients (four disease groups with 
whole-chest images, 46.80% vs 2.06%; four disease groups 
without whole-chest images, 49.09% vs 1.29%; sex classi-
fication with whole-chest images, 16.02% vs 0.96%; and 
sex classification without whole-chest images, 23.56% vs 
0.30%). Error rates were higher when data augmentation 
was applied to settings that used MR images of different 
patients for training and test sets.

Conclusion When deep learning is applied to MR image 
classification, training and test sets should consist of MR 
images of different patients. Models built on training and 
test sets consisting of images of the same patients yield 
optimistic error rates and lead to wrong conclusions. MR 
images of neighboring slices are so similar that they cause 
data leakage effect.
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Deep neural networks (DNNs), due to their ability to han-
dle large amounts of complex data, are mostly used in the 
analysis of non-numerical data, such as image processing 
(1), including medical image analysis (2).

Machine learning should be applied critically and it is 
important to take into account all of its advantages and 
limitations (2,3). Deep learning is now entering the field 
of clinical diagnosis in order to provide a fully automat-
ed diagnosis (2). Despite many promising results of deep 
learning applications, multiple challenges hinder their 
use in clinical practice. One of them is the lack of evalua-
tion methods for testing general performance in clinical 
settings (1).

Deep learning is a statistical method that learns only the 
statistics of the training data set. Once trained, the neu-
ral network can perform the learned mapping on unseen 
data (2). Performance evaluation tells us how well the 
model performs on unseen data (4). The test set is a set 
of data for model evaluation (5). DNNs perform very well 
on the training set and generalize suitably to a data set 
with identical or similar statistical distributions. However, 
the generalization ability can fail in unexpected ways if 
a data set with different statistical distributions is used 
for testing (for example, a different patient cohort). For 
clinical use, it is important that DNNs trained on one par-
ticular data set generalize well to other unseen data sets 
(2). It is also essential to train and evaluate the model on 
different representative data sets. Training and evalua-
tion on the same data set introduces an optimistic bias, 
in which case we cannot be sure if the model just memo-
rizes the training data or indeed generalizes well to un-
seen data (4).

Magnetic resonance imaging (MRI) (6) is widely used in 
clinical practice, and cardiac MRI is generally considered 
the reference standard method for evaluation of cardi-
ac structure. Although MR images and medical images 
in general are rich sources of information, deep learning 
could empower them even further. Much of the current 
research focuses on deep learning applications in MR im-
age analysis (2).

In contrast to the amount of research conducted in the field 
of deep learning application and performance in medical 
image analysis, far less attention has been paid to the de-
sign of test sets in such contexts. Medical image analysis 
using DNNs might represent a special class of computer vi-
sion problems because it introduces new challenges in im-

age analysis. Furthermore, each error that affects diagnosis 
may harm patients. The aim of this study is to assess the 
effects of different test-set design strategies for MR image 
classification using deep learning.

MATERIALS AND METHODS

Data

We used Sunnybrook Cardiac Data (7) (https://www.cardia-
catlas.org/studies/sunnybrook-cardiac-data/) consisting of 
cine-MR images of 45 patients from four disease groups. 
The disease groups were classified as follows (8):

1. Heart failure with infarction (HFI) group – ejection frac-
tion <40% and evidence of late gadolinium enhancement 
(9 patients);

2. Heart failure without infarction (HF) group – ejection 
fraction <40% and no late gadolinium enhancement (12 
patients);

3. Left ventricle hypertrophy (LVH) group – ejection frac-
tion >55% and a ratio of ventricular mass over body sur-
face area >83 g/m2 (12 patients);

4. Healthy (H) group – ejection fraction >55% and no hy-
pertrophy (12 patients).

For each patient in the data set, sex and identification 
number were stated.

The first set of experiments

Sunnybrook Cardiac Data MR images, originally in DICOM 
format, were converted to JPG format by a programmed 
DICOM to JPG converter, built using Pydicom and OpenCV-
Python packages. Eight-bit depth was used.

Images ≤3 KB in JPG were excluded from further experiments 
because they were uninformative even for trained cardiolo-
gists or radiologists (examples are shown in Figure 1).

In all experiments, the FastAI library (9) was used. After im-
age normalization (imagenet_norm) and data augmenta-
tion, ResNet-50 pretrained model (10) with one-cycle pol-
icy (11) was used (Table 1). Data augmentation consisted 
of a random flip, random rotation, random zoom, ran-
dom lightning and contrast change, and random sym-
metric warp (Table 1).

https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
https://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
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In 10 experiments (Figure 2), three different classifica-
tions were performed, based on the following: 1) four 
disease groups (HFI, HF, LVH, and H), 2) sex (male and 
female), and 3) patients (each patient represented one 
class).

Since we estimated that the MR images showing the 
whole chest might mislead the models (and even a trained 
cardiologist or radiologist) in the classifications of heart dis-
eases, we conducted all classifications twice: once includ-
ing chest MR images and once excluding them from the 
training and test data sets. In the whole database, there 
were 708 chest images; chest images were provided for all 
patients.

Since the creation of a state-of-the-art-model was not a 
goal of this study, and since hyperparameter tuning for 
achieving better performance was not a part of our experi-
ments, validation sets were not made.

Training and test sets were split manually using the hold-
out method. The effects of different test-set design strate-
gies – using random images from each category and using 
images of different patients for training and test sets – were 
assessed by measuring the difference in error rates.

The second set of experiments

An example of images included in one batch in one of the 
experiments in the first set of experiments is shown in Fig-
ure 3. To exclude the possibility that the images were too 
diverse (showing different angles, sizes, and sections of the 
heart and the surrounding structures) for neural networks 
to classify them properly, we created a uniform subset of 
Sunnybrook Cardiac Data images from two pathological 
groups: LVH and H (Figure 4). An example of images from 
the new subset that was included into one batch in one of 
the experiments is also shown in Figure 3.

Subset analysis using other pretrained models

To exclude the possibility that the performance in some set-
tings resulted from the performance of a particular pretrained 
model on MR images, we classified two disease groups (LVH 
and H) using the created uniform data subset and pretrained 
models: ResNet-50 (10), ResNet-152 (10), SqueezeNet 1.1 (12), 
DenseNet-161 (13), DenseNet-169 (13), DenseNet-201 (13), 
VGG-16 with batch normalization (14), VGG-19 with batch 
normalization (14), and AlexNet (15). Other experimental set-
tings are shown in Table 1. The test set consisted of MR im-
ages of one patient from each group (Figure 4).

TAbLE 1. Data augmentation and model design

Option Value

Library FastAI
Image size 224
Batch size 20
Image normalization imagenet_norm
Data augmentation random flip

flips limited to horizontal flips
random rotation between -10 and 10 degrees with probability 0.75
random zoom between 1.0 and 1.1 with probability 0.75
random lightning and contrast change controlled by 0.2 with probability 0.75
random symmetric warp of magnitude between -0.2 and 0.2 with probability 0.75

Architecture ResNet-50
Model fitting method One cycle policy
Optimizer Adam
Regularization L2
Loss function cross entropy loss

FIGuRE 1. Examples of uninformative images excluded from further experiments.
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Subset analysis without data augmentation

To exclude the possibility that data augmentation affect-
ed the results, we classified two disease groups (LVH and 
H) with and without data augmentation using the creat-
ed uniform data subset and pretrained models: ResNet-50 
(10), ResNet-152 (10), SqueezeNet 1.1 (12), DenseNet-161 
(13), DenseNet-169 (13), DenseNet-201 (13), VGG-16 with 
batch normalization (14), VGG-19 with batch normaliza-
tion (14), and AlexNet (15). Other experimental settings are 
shown in Table 1. The test set consisted of MR images of 
one patient from each group (Figure 4).

RESuLTS

The error rates were ten times higher in the experimental 
settings that used MR images of different patients for train-
ing and test sets compared with experimental settings that 
used subsets of MR images of the same patients for train-
ing and test sets (Table 2).

Other pretrained models had a performance comparable 
with ResNet-50 in the classification task involving two dis-

ease groups and using the created uniform data subset 
where test sets consisted of MR images of one patient from 
each group (Table 3). Error rates were higher when data 
augmentation was applied (Table 3).

DISCuSSION

In this research, the effects of various test set strategies 
were determined by measuring the difference in error 
rates between settings where the test set consisted of 
random MR images from each class and where images of 
different patients were used for the training and test sets 
while keeping all other parameters and settings identical. 
In the second set of experiments, we excluded some fac-
tors other than test set design, which could have contrib-
uted to this difference. To the best of our knowledge, no 
other research has studied the effect of different test-set 
strategies for medical image classification tasks using ma-
chine learning.

We used Sunnybrook Cardiac Data MR images for the clas-
sification of four heart disease groups. This database in 
its raw form might be considered excessively diverse: al-

FIGuRE 2. The first set of experiments.
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though all MR images we used show hearts with a particu-
lar disease, they are actually sets of many smaller subsets 
of MR images, each showing a different angle, size, and 
section of the heart. This could explain why the error rates 
were so high in the settings where one patient was used 
as the test set. The error rate would probably have been 
much lower if we had used MR images of just one section, 
or if we had classified MR images in more classes repre-
senting sections with particular characteristics (pathology 

or sex). In terms of accuracy, one should also keep in mind 
that we did not perform any hyperparameter tuning. Cre-
ating state-of-the-art models was not a goal of our study 
and the chosen experimental settings serve to show the 
importance of choosing the right test set when classifying 
medical images.

The main reason for conducting all the classifications 
twice (with and without whole-chest MR images) was 

TAbLE 2. Experimental settings and effects of different test-set designs

Classification Number of classes Chest images Test set Error rate (%) Training loss<<Test loss

Disease groups 4 + 10% random images from each class  2.0643 -
Disease groups 4 + images of one patient from each class 46.7975* +
Disease groups 4 - 10% random images from each class  1.2866 -
Disease groups 4 - images of one patient from each class 49.0891* +
Sex 2 + 10% random images from each class  0.9597 -
Sex 2 + images of one patient from each class 16.0180* +
Sex 2 - 10% random images from each class  0.3040 -
Sex 2 - images of one patient from each class 23.5596* +
Patients 45 + 10% random images from each class  1.5293 -
Patients 45 - 10% random images from each class  0.3939 -
*We used early stopping in models where the test set consisted of the images of one patient from each class. In the cases where test sets consisted 
of 10% of random images from each class, both training loss and test loss were decreasing constantly, so there was no need or opportunity for early 
stopping.

FIGuRE 3. An example of images in one batch – when complete data set was used (left) and when uniform data subset was used (right).
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to investigate if whole-chest images were misleading 
the models. At the same time, we validated our results 
in each experimental setting. When we excluded whole-
chest MR images in the settings where training loss was 
higher than test loss, error rates were lower and error 
rate measuring was more precise. We can conclude that 
whole-chest images were indeed misleading the models, 
which would also be the case with trained cardiologists 
or radiologists.

In all experimental settings that used different patients in 
training and test sets, test loss was much greater than train-
ing loss, which is a sign of overfitting. This means that the 
model fits the training data well, but not the test (unseen) 
data (16). It is learning the noise rather than the character-
istics relevant for classification; as a result, the model is not 
generalizing well (17). In our experiments, this was hap-
pening from the first to the last epoch. Since in the first ep-
och the model was seeing the images for the first time, this 

FIGuRE 4. The second set of experiments. Each experiment was conducted with and without data augmentation. HFI – Heart failure 
with infarction; HF – Heart failure without infarction; LVH – Left ventricle hypertrophy; H – healthy.

TAbLE 3. Subset analysis using other pretrained models, with and without data augmentation*

Pretrained models
Error rate (%) 

with data augmentation
Error rate (%) 

without data augmentation Training loss<<Test loss
ResNet-50 46.9799 30.2013 +
ResNet-152 38.2550 32.2148 +
SqueezeNet 1.1 48.9933 25.5034 +
DenseNet-161 45.6376 27.5168 +
DenseNet-169 32.8859 29.5302 +
DenseNet-201 40.2685 33.5570 +
VGG-16 with batch normalization 34.8993 32.8859 +
VGG-19 with batch normalization 29.5302 14.0940 +
AlexNet 53.6913 53.0201 +
*Early stopping was applied in all training runs.
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phenomenon might be explained by the “too sliced” na-
ture of MR images; even during the first epoch of the train-
ing, the model already saw many similar MR images. Due 
to the high amount of noise and overfitting in such cases 
(as values of training and test loss show during the train-

ing), more training data or training data of higher quality 
could also help in building better-performing models (16).

Overfitting is caused by a high extent of irrelevant attri-
butes (18). In this case, surrounding tissues are irrelevant 
and redundant for disease classification. We added patient 
classifications to test if the model was fitting to the gener-
al patient anatomy when random images from each class 
were used for the test set. This might indeed be the case 
as the model predicted the patients better (45-class clas-
sification) than it predicted the disease (four-class classifi-
cation).

Our results show that error rates are ten times higher when 
MR images of different patients are used for training and 
test set than when random subsets of MR images are used. 
This huge difference is a result of the data leakage effect, 
which could appear each time when multiple images of 
the same patients are used in machine learning tasks. Data 
leakage in machine learning occurs when the data we use 

FIGuRE 5. An example of neighboring slices. Image 
CAP_SCD0001401_MR__hrt_raw_20120813121634880_31 
of patient 14 (left) and image CAP_SCD0001401_MR__hrt_
raw_20120813121634905_32 of patient 14 (right).

FIGuRE 6. An example of top losses in subset analysis using ResNet-50 for pathological group classification.
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to train a model carry the information that we are trying to 
predict (19). In the case of MR images, this happens if im-
ages of the same patients are used for the training and test 
sets, and images of neighboring slices appear in the train-
ing and test set. Since MR images of neighboring slices are 
very similar (an example is shown in Figure 5), the model 
behaves in a manner as if it has already seen the answer 
to the question we are asking; all of this causes overfitting. 
During this process, the model is learning not only the 
information needed for accurate prediction but also the 
noise. This effect is present each time when we use images 
from the same patients for the training and test sets, but it 
is more subtle when we use just a few images per patient, 
and more prominent when we use many images (as in this 
case). In both cases, the model is learning the general anat-
omy of the patient rather than characteristics needed for 
the classification: when it sees the same anatomy (patient) 
in the test set, it classifies the image properly but based on 
the wrong characteristics. This in itself does not represent a 
problem, but it might lead to very misleading conclusions; 
the model performance is overestimated and the general-
ization is poor, which leads the model to make wrong pre-
dictions for new (unseen) images. This is of particular inter-
est when models are used for medical applications, where 
they might cause errors leading to patient harm.

To interpret our models’ behavior, we used a technique pro-
posed by Selvaraju et al (20), which highlights the discrimi-
native areas for classification of a given image (the deeper 
the highlighted color, the more relevant the region is for a 
particular class prediction). In images shown as top losses in 
our experiments, the areas that mostly contributed to the 
decision for the classification were always the structures 
around the heart, and not the heart itself (Figure 6).

As a PubMed search showed, many machine learning 
tools for medical image classification are still built in set-
tings that allow the described atypical data leakage. This 
kind of data leakage might be very discrete but carries seri-
ous consequences. In research papers, both test set design 
strategies are present. Usually, the ones with the test set 
containing random images from each class have very high 
accuracy (more than 95%) and a low error rate. On the oth-
er hand, those using different patients for training and test 
sets have much lower accuracy (60%-90%). It is important 
to be aware of this phenomenon because it might remain 
unnoticed in less “extreme” data sets and settings.

Augmentation methods do not perform well when imag-
es in the training set are similar (21). In our study, in subset 

analysis, a lower error rate was achieved when data aug-
mentation was not applied. This suggests that data aug-
mentation makes the “too sliced” situation worse; it adds 
even more similar slices during model training. However, in 
our study, data augmentation was not decisive for the dis-
crepancy between the error rates observed in experimen-
tal settings that used MR images of different patients and 
experimental settings that used MR images of the same 
patients for training and test sets.

The study is subject to several limitations. The settings used 
in this study undoubtedly provoke overfitting in many 
ways. However, through the use of this method, we were 
able to show an overemphasized example of the phenom-
enon that may have remained otherwise unrecognized.

In all experimental settings that used different patients 
in training and test sets, test loss was much greater than 
training loss, and the test loss curve was fluctuating (prob-
ably due to the nature of the data set), which made error 
rate measuring less precise.

Future research should propose tools or methods for re-
moving the data leakage effect when deep learning is ap-
plied to tasks involving medical images. Since medical im-
age data sets are very small compared with other data sets 
used in computer vision (21), each image is precious.

Further investigations are also needed to determine if oth-
er types of medical data and signals also have the “individ-
ual patient’s signature,” and, if so, if other machine learning 
classification algorithms (random forests, support vectors 
machines, etc) suffer equally from this phenomenon. More 
studies are also required to establish the best practices for 
building and validating machine learning tools in medical 
image analysis.

In conclusion, when deep learning is applied to MR im-
age classification, training and test sets should be made 
of different patients’ MR images. Test sets consisting of MR 
images from patients who have other MR images in the 
training set yield wrong results: MR images of neighbor-
ing slices in the two different sets are so similar that they 
cause data leakage effect. The models built on training 
and test sets consisting of random subsets of images of 
the same patients have optimistic error rates, would not 
be useful in real clinical situations, and could harm pa-
tients. Machine learning tools, therefore, must be vali-
dated in rigorous and multicenter settings before they 
can be clinically used.
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