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ABSTRACT

As a new urbanization mode, smart cities provide a way to
achieve the mutually beneficial situation of both economic devel-
opment and environmental protection. As such, the question of
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whether and how smart-city construction can promote the high-
quality development of urban economies is worth considering. By
measuring the green total factor productivity (GTFP) of 233 cities
in China from 2004-2019, this paper adopts the national pilot
smart cities of China as a quasi-experiment and constructs a time-
varying DID model to explore the direct, dynamic, and heterogen-
eity influence of smart-city construction on GTFP. The results indi-
cate the following: (1) Smart-city construction can significantly
promote the urban GTFP, which is mainly caused by the progress
of green technology, and the effect is robust after a series of
robustness tests; (2) smart-city construction can contribute to
GTFP improvement primarily through accelerating technological
innovation, promoting industrial upgrading, and realizing resource
allocation optimization; and (3) smart cities that are larger in
scale, have a higher administrative rank, and lie in eastern regions
have stronger positive effects on GTFP. This study aims to contrib-
ute to the promotion of urban sustainable development.

Smart-city construction;
green total-factor
productivity; green
economic development;
time-varying DID
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1. Introduction

The world has faced large-scale urbanization over the past few decades. In particular,
China’s urbanization rate reached 63.89% in 2020, which is 27.67% higher than that
of 2000." However, the rapid development of urbanization has been accompanied by
ecological damage, environmental pollution, traffic congestion, and other types of
urban disease that seriously impact the effective development of cities. Technological
innovation is an important focus for achieving pollution reduction, and cities, as the
basic unit of a country, are the core medium for promoting green technological
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innovation. In the context of the global technological revolution, the smart city pro-
gram, which supports urban development with advanced technology, has emerged. In
2008, IBM proposed the Smarter Planet strategy for the first time, and in 2009 China
proposed the concept of smart-city construction, advocating for the in-depth applica-
tion of information technology to urban construction. Since 2012, Chinese govern-
ments have announced three sets of national pilot smart cities, which focus on the
transition of the urban development mode by relying on information technology
including the Internet of Things, cloud computing, big data, and urban innovation
ecology nurtured by the knowledge environment. Therefore, smart-city construction
is, to some extent, regarded as the fundamental approach to the green and low-
carbon transformation of cities. Consequently, it is a critical path for exploring the
sustainable development of cities. Sustainable development should include economic
development, ecological environment improvement, and related aspects. Green total-
factor productivity (GTFP) incorporates non-desired outputs like environmental pol-
lution into the total-factor productivity analysis framework. It also measures the green
productivity of an economy to produce desired outputs from a given set of inputs
while minimizing negative ecological consequences and can more comprehensively
reflect the effective and sustainable development of a regional economy (Xia & Xu,
2020). Accordingly, this paper will consider whether smart-city construction can pro-
mote GTFP, explore the impact mechanism, and discuss the heterogeneous effect of
the influence of smart-city construction on GTFP.

This paper makes three main contributions to current research. First, we measured
the GTFP using the epsilon-based-measure-Malmquist-Luenberger (EBM-ML) index.
Most existing literature calculates GTFP based on the traditional radial and angle
DEA model or the SBM model (Tone, 2001). On the one hand, traditional DEA-CCR
and DEA-BCC models ignore the existence of undesired output and neglect the
input-output slack problem. On the other hand, the SBM model does not consider
the input and output variables of both radials and their characteristics. Meanwhile,
the SBM model simultaneously increases the optimal relaxation contrast between the
input and output variables and discards the front projection proportion of the ori-
ginal information, which leads to deviations in the calculation results. Tone and
Tsutsui (2010) proposed an improved model that accounts for the compatibility pro-
portion and radial distance functions: the epsilon-based measure (EBM) model. It
includes related elements into the target and practical value between the radial scale
and considers the differentiation of radial slack variables. The EBM model better
reflects the environmental efficiency level of DMUs and effectively solves the defi-
ciency of the SBM model (Li & Wu, 2017; Tone & Tsutsui, 2010). Therefore, we use
the EBM model combined with the Malmquist-Luenberger (ML) index to measure
the GTFP of cities. Second, most of the existing literature uses only the first batch of
pilot smart cities as the treatment group to identify the impact of smart-city construc-
tion on GTFP using the standard DID, which cannot comprehensively identify the
impact of all three batches of pilot smart cities on GTFP. As such, we select these
three batches of pilot smart cities as the treatment group and use the time-varying
DID model to divide the control group and the experimental group year by year to
identify the influence of smart-city construction on GTFP. Additionally, the existing
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literature also treats prefecture-level cities containing counties or districts that are
smart-city pilots as the experimental group, which underestimates the impact effect of
smart-city policy on GTFP. Therefore, this study discounts prefecture-level cities con-
taining counties or districts that are smart-city pilots and ultimately includes 233 pre-
fecture-level cities as the research sample. Third, this study explores the mechanism
of smart-city construction influencing GTFP from the perspective of accelerating
technological innovation, promoting industrial structure upgrading, and realizing
resource allocation optimization. Furthermore, this paper discusses the heterogeneity
effect of smart-city construction on GTFP using the factors of urban size, geograph-
ical location, and administrative level to provide targeted theoretical guidance for the
revision and improvement of smart city policies.

The paper is organized as follows: Section 2 presents a review of the literature,
Section 3 describes model settings, variables, and data, Section 4 outlines the empir-
ical analysis, and Section 5 discusses conclusions and policy implications.

2. Literature review

There is no clear definition of smart cities, and earlier scholars believed that technol-
ogy was at the heart of smart cities. For example, Gibson et al. (1992) first introduced
the ‘smart city’ concept and believed that smart-city construction could improve qual-
ity of life through the adoption of new technologies. Eger (2009) also highlighted the
role of information communication technologies (ICTs) in smart-city construction.
However, according to Kourtit et al. (2012) as well as Kandt and Batty (2021), the
smart city is a new development model where information technology and urbaniza-
tion are integrated to a high degree. Furthermore, the application of information
technology is as important as the effective use of social capital, entrepreneurship, and
innovation capabilities. Accordingly, Neirotti et al. (2014) have argued that smart-city
construction should combine intelligent computer technology with urban production
and life, emphasizing that smart cities must reflect people’s expectations for a better
life (Papa et al., 2013). Likewise, Giffinger and Gudrun (2010) stressed that smart-city
construction should contain six elements, including smart people, smart mobility, smart
governance, smart environment, smart economy, and smart living. Lee et al. (2014)
also emphasizes that the motivations for smart city development should include know-
ledge, humans, technology, environment, education, and many other factors.

Additionally, a significant number of studies have evaluated the effects of smart-
city construction on economic and social structures.

Smart-city construction can boost economic growth and plays an important role in
optimizing resource allocation and improving economic productivity (Ahvenniemi
et al., 2017). Specifically, the application of the Internet of Things, artificial intelli-
gence, cloud computing, and other technologies promotes the digital transformation
of enterprises, which can improve their innovation capacity and productivity (Dewan
& Kraemer, 2000; Jiang et al., 2021). Furthermore, smart-city construction can reduce
the average costs of companies, including production costs, transportation costs,
and transaction costs, while directly stimulating demands and investment to achieve
urban economic development (Bustos, 2011; Nikitas et al., 2020; Xu et al., 2022;
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Song et al., 2022). However, this effect is heterogeneous, with the promotion effect of
the United States and other developed countries being the most significant (Gust &
Marquez, 2004).

Smart-city construction can also accelerate technological innovation. The infra-
structure of ICT and other technologies may have several effects. It can change the
way resources are combined and connected; reduce transaction, contract, agency, and
governance costs; reduce cognitive innovation differences in the innovation process,
leading to the gathering, learning, and sharing of knowledge and creativity; and
enhance the innovation capability of each subject (Meijer & Thaens, 2018; Appio
et al., 2019; Su et al., 2022). Angelidou (2017) analyzed the plans of 15 representative
smart cities worldwide and argued that most smart cities emphasize the contribution
of information and communication technologies and focus on knowledge transfer
and innovation. Caragliu and Del Bo (2019) collected a dataset of smart-city policy
intensity and urban innovation outputs in 309 European metropolitan areas using
the Propensity Score Matching (PSM) method to explore the urban innovation
effect of smart-city policies. They found that cities engaging in smart-city policies
above the EU average also tend to patent more. Furthermore, the implementation of
smart-city construction policy can also boost urban innovation output in China
(Wang & Deng, 2022).

Furthermore, smart-city construction can improve environmental quality.
Specifically, it may reduce traftic congestion and achieve sustainable transportation by
creating a smart transportation system that includes shared bicycles or cars as well as
the monitoring of vehicle emissions in real time (Jamil et al., 2015; Zawieska &
Pieriegud, 2018). Smart-city construction also provides intellectual support for urban
development with the siphon effect of talents, the diffusion effect of knowledge and
guides, the demonstration effect of role models, and green changes in residents’ life-
styles based on the concept of ecological civilization (Chu et al,, 2021; Su et al.,
2022). Furthermore, smart-city construction can significantly promote industrial
transformation and upgrading, which are fundamental for energy-saving and emission
reduction, to achieve a reduction of pollution and carbon emissions (Gao & Yuan,
2022; Yigitcanlar & Kamruzzaman, 2018). However, Winters (2011) has argued that
urban population migration resulting from smart city development both exacerbates
urban environmental management pressure and reduces the resilience of cities to
future climate risks.

In the relevant literature to date, a significant number of studies have explored the
economic or environmental consequences of smart-city construction. Nonetheless,
there is room for further research, and several gaps have emerged. As a new urban
development model, smart cities specifically emphasize environment-inclusive growth,
which entails achieving a mutually beneficial situation of economic growth and the
improvement of environmental quality (Albino et al, 2015; Tao et al, 2022; Qin
et al., 2022). Therefore, the evaluation of smart-city construction policy should give
more consideration to their contribution to the sustainable development goals of
cities. However, few studies have explored the impact of smart-city construction on
economic development and environmental protection. To our knowledge, Xin and
Qu (2019) and Jiang et al. (2021) are the only two works that explore the impact of
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smart-city construction on GTFP, so further study remains necessary. First, the two
works primarily calculated GTFP using the SBM model. However, the SBM model
does not consider the input and output variables of both radials and their characteris-
tics. Meanwhile, the SBM model simultaneously increases the optimal relaxation con-
trast between input and output variables and discards the proportion of front
projection from the original information. This leads to deviations in the calculation
results. Second, the impact mechanism and heterogeneous effects have not yet been
studied in depth. The two works only investigated the mechanism of smart-city poli-
cies that influence GTFP through technological innovation and only discussed the
heterogeneous effects of urban size. Thus, they neglected the differences of geograph-
ical location and administrative level. Third, the existing literature explored the influ-
ence of smart-city construction on GTFP based on the first or second batch of pilot
smart cities using the DID method. However, China has announced three batches of
pilot smart cities in different years, and the standard DID model is not applicable.
Furthermore, the existing literature treated prefecture-level cities containing counties
or districts that are smart-city pilots as the experimental group, which underestimates
the impact effect of smart-city policy on GTFP. Therefore, in this paper, we remove
prefecture-level cities containing counties or districts that are smart-city pilots and
calculate the GTFP of 233 cities in China from 2004-2019 using the EBM-ML index.
Subsequently, relying on the quasi-experiment of the national smart-city construction
policies established in China, a time-varying DID model is used to explore the direct,
dynamic, and heterogeneity impact of smart-city construction on GTFP.

3. Model settings, variables, and data
3.1. Model setting

The smart-city construction pilot cities were not approved in the same year, and
there are differences in time and pilot cities. Accordingly, this study treats the three
batches of national smart-city pilot construction as a quasi-experiment and uses the
time-varying DID model to explore the impact of smart-city policy on GTFP. The
model is set up as follows:

Ingtfp,, = oo + otysccic + AXie + My + Ve + & (1)

where Ingtfp;, is the logarithm of GTFP of city i at time f, scc;; denotes the dummy
variable of smart-city construction pilot cities, X;; indicates other control variables, &;
indicates the random disturbance term, 1; denotes the urban fixed effect, v; indicates
the year fixed effect, and o, reflects the impact of the smart-city policy on the
improvement of GTFP. If oy > 0, smart-city policy can promote GTFP improvement,
otherwise inhibit.

3.2. Variable description

1. Explained variable: green total-factor productivity (gtfp). We use the EBM model
combined with the ML index to measure GTFP.
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We suppose that every city in China is a production decision-making unit (DMU),
and each DMU constructs an optimal production frontier in each period, t=1, 2,
---T. Supposing that each DMU uses N inputs, x = (x;, x2 -, x5) € R} produces M
desirable outputs y = (y;, ¥» - ym) € R and I undesirable outputs b=(b,, b,, -+,
by) € R{. As such, the production possibility sets P(x), as shown in Equation (2):

P(x) = {(y,b) : x — (y,b)}, €R} )

Simultaneously, the EBM model put forward by Tone and Tsutsui (2010) is
employed to establish the distance directional function and to measure static efficiency:

m W, S~
b 7 —min 0TI
& Ko Yo Pk =7 =m p——— . e
v (P_SY Zr:l ;rkr +8b Zp:l IiJPkP

n
s.t. ZXU;\'J + S: = elk ,i = 1) -+ -,
=1

. N (3)
Zyijkj +s =0y .r=1--s,
=1

D bk =8 =0by p=1q,
p=1

A >0, s, ,slb; >0

In Equation (3), E’ denotes the directional distance function of the variable returns
to scale (VRS). y* represents the optimal efficiency, 0<y*<1, and xj refers to the i
input of k DMU. y; refers to the r desirable output of k DMU, and by, refers to the
p desirable output of k DMU. Furthermore, m, s, and q represent a series of inputs,
desirable outputs, and undesirable outputs, respectively. 8 denotes the radial efficiency
value, and € represents the parameters of the efficiency value of the radial model and
efficiency value of the non-radial model. ¢ denotes the non-radial efficiency value, and
s, and sl;,_ indicate the slack vector of r desirable outputs and p desirable outputs,
respectively. Additionally, s; is the slack vector of i input. Finally, w, wg_ and w;
denote the weight of r desirable outputs, the weight of p desirable outputs, and the
weight of inputs, while ", w; = 1. A indicates the weight of each district section.

Subsequently, we use the ML index to measure dynamic GTFP. Based on the ana-
lysis of Chung et al. (1997), the ML productivity index of t-t 4 1 is as follows:

_>(Xt+1) t+1’bt+1) _)(Xt+1’yt+l’bt+1) 1/2
t1 tHl bl ot opt E| Y Ef
ML(x b b)) = A X
( DA Yo ) E_()(Xt’yt’ bt) ;(Xt,yt,bt)
v v
:)l(xt+l’yt+l,bt+l) _t)(xt+1yyt+1,bt+l) ?(Xt,yt,bt) 1/2 (4)
Ey Ey Ey
= X X
_t)(xt’yt’bt) — (Xt+1’yt+1’bt+1) — (Xt)yt,bt)
Ey Ey Ey

= TECH(x"*, y+D) b1 gt bt EFFCH (x(HY, y(+1) b1yt bt
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In Equation (4), ML denotes the green ML productivity index, TECH stands for
green technology progress, and EFFCH represents green technology efficiency. Given
that the ML productivity index reflects the growth rate of GTFP and the change of
GTEFP relative to the previous year, it is impossible to compare the size of GTFP sim-
ply from the index. As such, we use the cumulative form of GTFP, and the decom-
position indexes are treated similarly.

The input and output indicators of the gtfp measures are as follows:

1. Input indicators

First, we consider labor input. As there are no statistical data on labor time in the
cities of China, this paper uses the number of employees at the end of each year in
each city as the indicator of labor input. Second, we consider capital input. The fixed
capital stock of the city obtained by the perpetual inventory method is used to char-
acterize the indicator of capital factor input, which is calculated as follows:

Ki=Ki1 (1-8) +1I (5)

In Formula (5), Kj; indicates the capital stock of city i in year ¢, Kj;—; indicates the
capital stock of city i in year -1, I;; indicates the amount of new fixed assets invest-
ment for city i in year ¢, and § indicates the rate of depreciation. This paper sets the
depreciation rate (8) of urban fixed assets at 10.96% and converts investment and the
capital stock of urban fixed assets into constant price for 2003 using the fixed asset
price index of each province.

2. Output indicators

First, we consider expected output. Due to the lack of a GDP deflator at the pre-
fecture-level city level, this paper uses the provincial GDP deflator to adjust the GDP
of the prefecture-level city to the actual value based on 2003. Second, we consider
undesirable output. Undesirable output mainly refers to various pollutants, such as
sulfur dioxide, smoke and dust, solid waste, which are produced in the process of
urban industrial production and residents’ lives. Given the availability of data, this
paper selects the emissions of industrial sulfur dioxide, industrial wastewater, and
industrial smoke and dust to represent the undesirable output of the city.

2. Explanatory variable: Smart-city construction pilot policy (scc). China
announced three batches of national smart-city construction pilot lists in January
2013, August 2013, and April 2015, respectively. In this paper, the first round of pilot
cities announced in January 2013 takes 2013 as the year for the pilot, the second
round of pilot cities announced in August 2013 takes 2014 as the year for the pilot,
and the third round of pilot cities announced in April 2015 takes 2015 as the year for
the pilot. If city i is the smart-city pilot in year t, then scc in and after year ¢ is
assigned a value of 1. Otherwise, it is 0.

3. Control variables: The following variables were selected in this paper. ©
Economic agglomeration (agg) is measured by the ratio of the GDP of each city to
the GDP of the entire province. @ Industrial structure (sgdp) is measured by the
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GDP of the tertiary industry. ® Population density (popden) is measured by the
size of population per unit area. @ Fiscal expenditure on science and technology
(te) refers to the budget expenditure on science and technology/GDP. ®
Infrastructure construction (inf) is measured by the number of public vehicles. ®
Fiscal expenditure on education (edu) is expressed by the budget expenditure on
education/GDP. @ Social investment rate (invest) is measured by the proportion
of urban fixed assets investment to GDP. ® Opening-up level (fdi) is measured by
the amount of foreign direct investment utilized. ® Government intervention (gov)
refers to the general public budget expenditure for GDP. In this paper, the above
variables are logarithmically processed, and the variables’ descriptive statistics are
shown in Table 1.

3.3. Data

On the one hand, considering that some of the national smart-city pilot lists estab-
lished in the three rounds only include a county or district under a prefecture-level
city, if we consider this prefecture-level city as a pilot city the impact of smart-city
policy on GTFP would be underestimated. Consequently, this study removes the cat-
egory of prefecture-level cities and selects 233 prefecture-level cities as the study sam-
ple. On the other hand, each prefecture-level city will no longer publish fixed asset
investment data after 2017, and this paper calculated the fixed asset investment data
based on the published growth rate of fixed asset investment. Unfortunately, the
National Bureau of Statistics has not published the price index of fixed asset invest-
ment after 2019, so we cannot accurately estimate the capital stock of each prefec-
ture-level city after that year. Using predicted capital stock to measure GTFP may
produce significant errors. Fortunately, the dynamic effect of smart-city construction
can be more effectively evaluated following the four-year implementation period after
the third round of pilot cities was announced in 2015. Therefore, this paper sets the
sample period from 2004-2019.> The original data used in the study comes from the
‘China Statistical Yearbook’, ‘China Environmental Yearbook’, ‘China Urban
Statistical Yearbook’, the statistical yearbooks of each province, and the statistical bul-
letins of each prefecture-level city.

4. Results and discussion
4.1. The mutually beneficial effect of smart-city construction

The improvement of GTFP is directly reflected in the mutually beneficial effect of
economic growth and pollution emissions reduction, and this paper examines this
effect of smart-city construction. The results indicate smart-city construction can not
only significantly improve the expected output level, such as GDP and per capita
GDP, but also significantly reduce undesirable outputs, including the pollution emis-
sions of industrial sulfur dioxide, industrial wastewater, industrial smoke, and the pol-
lutant composite index (see Table 2).> As such, the results suggest that smart-city
construction can have a mutually beneficial effect.
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Table 1. Variable descriptive statistics.

Variable Obs Mean Standard Min Max
Ingtfp 3,728 0.799 0.178 0.0569 1.527
Ineffch 3,728 0.702 0.0793 0.422 1.087
Intech 3,728 0.792 0.174 0.0681 1.655
scc 3,728 0.175 0.380 0 1
Inagg 3,728 1.247 0.667 0.171 3.780
Insgdp 3,728 3.734 0.288 2.149 4378
Inpopden 3,728 6.376 0.985 2.523 9.551
Inte 3,728 0.170 0.163 0.00031 1.797
Ininf 3,728 6.170 0.994 2.079 9.892
Inedu 3,728 1.206 0.352 0.0141 2.876
Ininvest 3,728 4174 0.437 2.274 5.504
Infdi 3,728 6.506 1.861 0.153 11.35
Ingov 3,728 2.728 0.472 0.704 4,968
Source: Author’s estimation.
Table 2. Mutually beneficial effect of smart city construction.
M (2) (3) 4 5) (6)
Variables InGDP InPGDP InSO, Inwaste Insmoke polluindex
scc 0.032%** 0.024%** —0.095%** —0.165%** —0.089** —0.284***
(4.02) (2.92) (—=2.71) (—5.70) (—2.09) (—3.43)

Control YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Constants 13.929%** 8.365%** 9.953%** 11.829%** 11.137%%* 0.080

(125.20) (73.44) (20.32) (30.88) (18.70) (0.07)
N 3728 3728 3728 3728 3728 3728
R-squared 0.960 0.954 0.565 0.161 0.249 0.154

Notes: ***, ** * s significant at the 1%, 5%, and 10% levels respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

4.2. The impact of smart-city construction on GTFP

The results of the impact of scc on GTFP are shown in Table 3. Model (1) includes
the prefecture-level cities where the pilot counties or districts are located, while
Model (2) and Model (3) exclude the prefecture-level cities where the pilot counties
or districts are located. The results indicate that, despite whether the control variables
are added, the estimated coefficient of scc on GTFP is positive, which is significant at
the level of 1%. Additionally, the estimated coefficient value of Model (3) is 0.034,
which is higher than the estimated coefficient value of Model (1) of 0.020.
Consequently, the impact of scc on GTFP would be underestimated if the prefecture-
level cities where the pilot counties or districts are located were included in the study
sample as described previously. The results also indicate that the smart-city pilot pol-
icy will increase GTFP by 3.4% on average. Simultaneously, this paper further exam-
ined the impact of scc on the green technology efficiency index and green technology
progress index. The results demonstrate that the estimated coefficient of scc on green
technology efficiency is not significant, while the estimated coefficient of scc on green
technology progress is significantly positive at the level of 1%. These results imply
that the positive effect of scc on GTFP is mainly due to the progress of green technol-
ogy. Therefore, scc not only directly promotes enterprises to increase the R&D of
green technologies but also promotes the use of advanced technologies such as ICT,
cloud computing, and Al to promote green technology progress. However, scc does
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Table 3. Direct impact of smart city construction on GTFP.

M ) 3) 4) ©)

Variables Ingtfp Ingtfp Ingtfp Ineffch Intech
scc 0.020%** 0.037%** 0.034%** —0.0005 0.034%**

(3.53) (5.86) (5.45) (—0.14) (5.93)
Control YES NO YES YES YES
City FE YES YES YES YES YES
Year FE YES YES YES YES YES
Constants 1.280%** 0.716%** 1.235%%* 0.787%%* 1.159%**

(16.18) (115.01) (14.20) (16.35) (14.57)
N 4544 3728 3728 3728 3728
R-squared 0.411 0.326 0.364 0.078 0.419

Note: ***, ** * is significant at the 1%, 5%, and 10% levels respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

not bring innovation to environmental management systems to achieve a significant
improvement in green technology efficiency.

4.3. Robustness test

4.3.1. Common trend test

An important prerequisite for the validity of the DID method is that the treatment
group and the control group meet a common trend before the policy is implemented.
That is, if the smart-city construction pilot policy is not implemented, the changing
trend toward GTFP in smart pilot cities and other cities should be parallel. Referring
to Li et al. (2016), this paper establishes the following model to test whether there is
a common trend before the smart-city construction pilot and to dynamically examine
the impact of the pilot policy on the growth of GTFP:

6
Ingtfp, = By + Z D + Xt + M + Ve + & (6)
k=11, k0

where DX denotes dummy variables indicating implementation of the smart-city con-
struction pilot policy. Suppose that the year when city I was announced as a smart-
city construction pilot area is policy;, setting k=t- policy;, when k=—11, -5, -, 2,6,
then DX = 1, otherwise = 0. Taking the current year to the implementation of policy
as the base group, Figure 1 shows the changing trend of the estimated coefficients of
each dummy variable. According to the results, the estimated coefficients are not sig-
nificant before the implementation of the scc pilot policy, which shows that there is
no significant difference in GTFP between the pilot and non-pilot cities before the
implementation of the scc pilot policy, thus meeting the common trend. However,
after the implementation of the policy, the estimated coefficients become larger and
are significantly positive, indicating that the policy of smart-city construction has sig-
nificantly contributed to the growth of GTFP.

4.3.2. Reverse test

Is the choice of pilot cities for smart-city construction influenced by the GTFP level
of cities? Referring to studies by Beck et al. (2010), the following risk model is con-
structed to test whether this reverse effect exists:
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Figure 1. common trend test.
Source: Author’s estimation.

Table 4. Results of the survival analysis.

(M V)

Variables InT InT
Ingtfp —0.045 —0.0003
(=1.01) (—0.01)
Control NO YES
Constants 2.753%** 2.818%**
(60.31) (51.06)
N 1083 1083

Note: ***, ** * is significant at the 1%, 5%, and 10% levels respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

In(Ty) = o + oulngtfp; + AXi + p @)

where T;; denotes the survival time of city i in the year f, which is assumed to obey
the Weibull distribution in the study, Ingtfp; is the logarithm of GTFP of city i at
time t, and X denotes a controlled variable, which is consistent with Formula (1).
The results show that, regardless of whether the control variables are added, the esti-
mated coefficients of Ing#fp are not significant. This outcome indicates that the GTFP
of a city does not have significant impact on whether it can become a pilot city for a
smart city and further verifies that the results are robust and reliable. (Table 4)

4.3.3. PSM-DID

Considering that the DID method ignores the systematic differences between the con-
trol and treatment group, this paper rematches the treatment group according to kernel
matching, nearest neighbor matching, and radius matching methods.* Table 5 reports
the results of PSM-DID estimation, and they indicate that the estimated coefficient of
scc on GTFP remains significantly positive at the 1% level after PSM method matching.

4.3.4. Excluding the possible effects of other policies
Several of the 100 scc pilot cities covered in this paper are also affected by policies includ-
ing national-environmental-model cities, innovative pilot cities, new-energy pilot cities,
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Table 5. Results of PSM-DID.

Variables Kernel matching Nearest neighbor matching Radius matching

scc 0.027%** 0.029%** 0.028%**
(4.45) (4.68) (4.58)

Control YES YES YES

City FE YES YES YES

Year FE YES YES YES

Constants 1.295%+* 1.2627%+% 1.296%+*
(14.69) (14.43) (14.69)

N 3683 3692 3687

R-squared 0.381 0.375 0.380

Note: ***, ** * is significant at the 1%, 5%, and 10% levels respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

Table 6. Results of excluding other policies.
m @) €) @ ()

Excluding
Excluding Excluding Excluding new environmental
innovative pilot emission trading energy pilot protection model Excluding all

Variables cities pilot cities cities pilot cities pilot cities
scc 0.034%** 0.042%** 0.038*** 0.023%** 0.037%**

(5.08) (5.28) (5.94) (3.32) (3.97)
Control YES YES YES YES YES
City FE YES YES YES YES YES
Year FE YES YES YES YES YES
Constants 1.183%%* 1.437%%* 1.338%** 1.268*** 1.469%**

(13.32) (13.97) (15.24) (13.57) (13.07)
N 3518 2916 3485 3303 2387
R-squared 0.336 0.305 0.345 0.321 0.235

Note: ***, ** * is significant at the 1%, 5%, and 10% levels respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

and emission-trading pilot cities. To eliminate the interference of the policies mentioned
above, re-estimation is conducted by excluding their pilot cities. Table 6 reports the esti-
mated results of excluding the possible effects of other policies. The results show that the
estimated coefficient of scc remains significantly positive, indicating that the benchmark
regression is robust and smart city policies have a significant effect on GTFP.

4.3.5. Other robust tests

(1) Change the measurement method of GTFP. In this paper, the original input and
output indicators are used to re-measure GTFP using the SBM-ML index model, and
re-estimated Equation (1) results suggest that the estimated coefficient of scc is posi-
tively significant at the 1% level (see Table 7, Model 1), further indicating that smart
city policies can significantly promote GTFP.

(4) Considering time-varying DID heterogeneous treatment effects. Some schol-
ars have found that using time-varying DID models to identify policy effects may
result in significant estimation bias due to ‘heterogeneous treatment effects’ (De
Chaisemartin & d’Haultfoeuille, 2020). Accordingly, this paper uses the method sug-
gested by De Chaisemartin and d’Haultfoeuille (2020) to conduct robustness tests on
the heterogeneity treatment effect. The estimated robustness index of heterogeneity
treatment is 0.73, which is close to 1, indicating that the effect of heterogeneity treat-
ment does not have a substantial effect on the estimation results of this study. As
such, the conclusion is robust.
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Table 7. Results of other tests.

(1) )

Variables Change the explained variables Refine pilot time
scc 0.024%**
(6.87)
scc’ 0.034%%*
(5.49)
Control YES YES
City FE YES YES
Year FE YES YES
Constants 0.175%%* 1.236%**
(3.78) (14.27)
N 3728 3728
R-squared 0.331 0.316

Note: ***, ** * is significant at the 1%, 5%, and 10% levels, respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

Table 8. Mechanism analysis of smart city construction on GTFP.
m @ ®3)

Variables number of patents granted per capita industrial structure upgrading ratio of capital-to-labour
scc 0.424%* 0.037%* 0.209%**
(14.89) (2.46) (11.13)
Control YES YES YES
City FE YES YES YES
Year FE YES YES YES
Constants —8.387** —5.148%%* 6.8127%**
(—22.24) (—25.96) (27.32)
N 3728 3728 3728
R-squared 0.664 0.543 0.586

Note: ***, ** * is significant at the 1%, 5%, and 10% levels respectively; data in parentheses are t-statistics.
Source: Author’s estimation.

4.4. Mechanism analysis

Theoretically, scc can promote GTFP improvement by accelerating technological
innovation, promoting industrial structure upgrading, and realizing resource alloca-
tion optimization. To further verify the theoretical influence mechanism, this paper
sets three mechanism variables as explained variables. Technological innovation is
measured by the number of patents granted per capita, industrial structure upgrading
is expressed by the GDP of the tertiary industry/GDP of the secondary industry, and
resource allocation is measured by the ratio of capital-to-labor. The estimated results
are shown in Table 8.

The results indicate that, regardless of the number of patents granted per capita,
industrial structure upgrading, and the ratio of capital-to-labor, the estimated coeffi-
cients of scc are significantly positive at a significant level of 1% or 5%. First, smart-city
construction depends on the integration of advanced technology into urban manage-
ment and services. Such integration will undoubtedly increase investment in innovation
of enterprises, universities, and other innovative subjects, promote technological innov-
ation, and improve the progress of green technology. Second, smart cities can realize
the transformation and upgrading of traditional industries by applying modern infor-
mation technology. They can also take advantage of the continuous development of
information technology to actively develop new sectors based on the internet or Al and
promote a more rationalized and advanced industrial structure. In doing so, they would
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Figure 2. Placebo test.
Source: Author’s estimation.

finally realize the change of economic development mode and the improvement of
GTFP. Third, smart-city construction can significantly improve resources allocation
optimization. The development of new information technology, such as big data and
the internet, has provided an essential means for smart-city construction that not only
facilitates enterprises to more effectively perceive the changes of various types of infor-
mation in the market but also promotes enterprises and other market entities to carry
out flexible scheduling and achieve optimal allocation of capital, labor, and other pro-
duction resources.

(2) Refine the pilot time of the policy. Considering the differences in the pilot
time of the three rounds of national smart cities, this paper draws on Lu et al
(2017). As such, for the first round of smart cities announced on January 29, 2013,
the value of scc’ is set to 0 before 2013, 5/6 in 2013, and 1 after 2013. Similarly, for
the second round of smart cities announced on August 1, 2013, the value of scc’ is set
to 0 before 2014, 4/3 in 2014, and 1 after 2014. For the third round of smart cities
announced on April 7, 2015, the value of scc’ is set to 0 before 2015, 2/3 in 2015, and
1 after 2015. The results show that there is no difference between the estimated coef-
ficients and the basic estimated coefficients, which further indicates that the results of
the basic estimation are robust (see Table 7, Model 2).

(3) Placebo test. To further test whether the impact of scc on GTFP is not due to
other unobservable factors, we conducted a placebo test referring to Li et al. (2016).
First, 100 pilot cities for virtual smart-city construction are randomly selected from
all prefecture-level cities as an ‘artificial treatment group’. One year is then randomly
selected from 2004-2019 as the year of policy implementation for each artificial treat-
ment group, and the above process is repeated 500 times to obtain 500 estimated
coefficients of scc. The results show that the mean estimated coefficient value of scc is
—0.003 (see Figure 2), which is much lower than the 0.034 estimated by Model 3 in
Table3, and the P-values are mostly higher than 0.1. Therefore, the possibility that
smart-city construction for GTFP growth is derived from other unobservable factors
can be excluded.



ECONOMIC RESEARCH-EKONOMSKA ISTRAZIVANJA 15

4.5. Heterogeneity

To achieve the improvement effect of smart-city construction on GTFP, we must fully
account for the differences among cities in population size, geographical location, and
administrative level rather than adopting a ‘one-size-fits-all’ policy. Therefore, the het-
erogeneity effect of smart-city construction must be discussed.

4.5.1. Heterogeneity of city size

First, we set the dummy variable for the city size, assigning a value of 1 to cities with
an urban resident population of more than 5 million and 0 to other cities. On this
basis, we add the interaction items scc x scale to explore whether the effect of smart-
city construction policy results in significant differences depending on city size. The
results are shown in Column (1) in Table 9: The coefficient of scc x scale is signifi-
cantly positive, indicating that the impact on the GTFP of a large-scale smart city is
stronger than that of the small-scale city. The larger the scale of the city, the higher
the degree of industrial agglomeration and the more smart cities can fully enjoy the
enhancement and diffusion effect of pollution-control technology brought by the
economy of scale. Thus, compared to small- and medium-sized cities, smart-city con-
struction in large-scale smart cities is more conducive to achieving economic growth,
promoting environmental quality, and improving GTFP.

4.5.2. Heterogeneity of administrative levels

We then set the administrative rank dummy variable, assigning 1 to municipalities,
sub-provincial cities, provincial capital cities, and special economic zone cities and 0
to other cities. On this basis, we added the interaction items scc X rank to explore the
heterogeneous effect of administrative level on GTFP. The results are shown in
Column (2) in Table 9: The coefficient of scc x rank is significantly positive, indicat-
ing that the impact on GTFP of a smart city with a higher administrative rank is

Table 9. Heterogeneity results of the impact of smart city construction on GTFP.
m @ €)) @)

Variables City scale City rank City region City location
scc 0.029%** 0.028%** 0.015%* 0.0527%*%*

(4.24) (4.37) (2.16) (7.91)
scc x scale 0.072%**

(6.68)
scc x rank 0.055%**

(3.61)
SCC X region 0.080***
(7.06)
scc x huline —0.109%**
(—8.26)

Control YES YES YES YES
City FE YES YES YES YES
Year FE YES YES YES YES
Constants 0.371%%* 1.233%%* 1.237%%* 1.200%**

(4.73) (14.19) (14.32) (13.91)
N 3728 3728 3728 3728
R-squared 0.269 0.366 0.373 0.376

Note: ***, ** * is significant at the 1%, 5%, and 10% levels, respectively; data in parentheses are t-statistics.
Source: Author’s estimation.
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stronger than that with a lower administrative rank. Compared to low-administrative-
rank cities, smart cities with a high administrative rank can fully enjoy the advantages
of scale economy, industrial agglomeration, and high-quality factor-resource agglom-
eration and allocation. They can do so by relying on the tools of executive orders and
the benefits of administrative rank, which can realize rapid transformation of the
green economy and improvement of GTFP. However, smart cities with low adminis-
trative rank may face many obstacles, such as the insufficient supply of high-skilled
labor, low financial subsidies, and a low level of industrial agglomeration, so the pro-
motion effect on GTFP is significantly smaller than that in high-administrative-rank
cities.

4.5.3. Heterogeneity of geographical location

The impact of smart-city pilot policies on GTFP may have regional heterogeneity due
to the imbalance of economic development among regions in China. This paper sets
region dummy variables, assigning a value of 1 to the eastern region and 0 to the cen-
tral and western regions. The results in Column (3) in Table 9 show that the coeffi-
cient of scc X region is significantly positive, indicating that the impact of smart cities
on GTFP in the eastern region is greater than that of smart cities in central and west-
ern regions. Additionally, considering the major differences in geographical environ-
ment and climate suitability of the different regions, this paper also sets the dummy
variable of huline, assigning the cities on the northwest side of the Hu-huanyong line
to 1 and the cities passing through the Hu-huanyong line and those on the southeast
side to 0. The results in Column (4) in Table 9 indicate that the coefficient of
scc X huline is significantly negative, indicating that the impact of smart cities on
GTFP on the northwest side of the Hu-huanyong line is lower than that of smart cit-
ies on the southeast side of the Hu-huanyong line. Compared with cities in the east-
ern region and east of the Hu-huanyong line, cities in the central and western
regions and those west of the Hu-huanyong line have more significant disadvantages
in terms of industrial agglomeration, production factors inflow, and optimal resource
allocation. To some extent, such shortcomings limit the improvement effect of smart-
city policy on GTFP.

5. Conclusions and policy implications

Based on the panel data of 233 prefecture-level cities in China from 2004-2019, this
paper takes the national pilot smart cities in China as a quasi-experiment. It con-
structs a time-varying DID model to identify the direct and dynamic impact, explore
the influence mechanism, and discuss the heterogeneity effect of smart-city construc-
tion on GTFP. Our findings show the following. (1) Smart-city construction can sig-
nificantly promote GFTP, which is mainly caused by the progress of green
technology. The estimated coefficient value is 0.034, indicating that smart city policies
may significantly increase GTFP by 3.4% on average compared with non-pilot smart
cities. The results remain robust after a series of robustness tests. (2) The estimation
results of the influence mechanism of smart-city construction on GTFP show that
smart-city construction promotes GTFP mainly through three channels: accelerating
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technological innovation, promoting industrial upgrading, and realizing resource allo-
cation optimization. (3) The impact of smart-city construction on GTFP is heteroge-
neous depending on cities’ differences in population scale, administrative rank, and
geographical location. The larger the city, the higher the administrative rank level.
Similarly, the more eastern the geographical location is, the greater the influence of
smart-city construction on GTFP.

The above findings are equally economically significant. Total-factor productivity
growth is an essential source of long-term economic growth. GTFP, which incorpo-
rates non-desired outputs like environmental pollution into the traditional analytical
framework of total-factor productivity, is an important indicator of the degree of sus-
tainable urban development and the level of high-quality economic development.
Ahvenniemi et al. (2017) also argued that the ‘general goal of smart cities is to
improve sustainability with the help of technologies’. Our findings indicate that smart
cities can significantly promote GTFP, and the result is consistent with Ahvenniemi
et al. (2017). Given the global economic recession and climate change, as well as
increasing carbon emissions, promoting GTFP to achieve a mutually beneficial situ-
ation of both economic development and environmental protection will be an
increasingly important concern in constructing smart cities.

There are also several policy implications based on our findings. First, the results
show that smart-city construction can promote GTFP. As such, the scope of the
pilot smart cities in China can be expanded based on existing national pilot smart
cities by adopting new indicator systems or new development concepts. Meanwhile,
considering the differences in population size, administrative rank, and geographic
location of cities, local governments should make full use of their development
characteristics and advantages and put forward targeted and reasonable strategies
for smart-city construction to avoid an excessive homogenization of ‘smart projects’.
Second, the results show that smart-city construction promotes GTFP mainly
through accelerating technological innovation. Therefore, the governments in China
should continuously strengthen the construction of digital information infrastruc-
tures, such as the Internet of Things, big data, and Al, thus releasing the innovation
dividend of new infrastructure construction. Furthermore, it is essential to improve
the innovation incentive furtherly and assessment mechanism and provide more
incentives and autonomy to science and technology workers to stimulate their
innovation initiative and enthusiasm. Third, the governments in China should rely
on the advantages of smart-city pilot policy, and consistently promote the upgrad-
ing of industrial structures. For highly polluting and energy-intensive enterprises, it
is necessary to guide them to change their traditional production methods and
increase investment in green technology innovation. For regional leading enter-
prises, it is necessary to encourage them to play a leading demonstration effect in
green and digital transformation. Moreover, the government should make full use
of big data, cloud computing, and other information technology in the progress of
smart-city construction to promote the transformation of industrial development
towards intelligence, and continuously breed ‘Internet +’, smart industry, smart
services, and other new industries, and then achieve industrial restructuring and
upgrading.
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Notes

1. Data source:China Statistical Yearbook 2021.
If possible,given the timely update of data from listed companies, future analysis of the
impact of smart city policies on TFP of firms based on microdata could be conducted
over a more extended period,including the shocks of COVID-19 and the Russian-
Ukrainian War.

3. The pollutant composite index is obtained by summing up the initial data of three
pollutants after standardization.

4. The nearest neighbor matching is 1:1, the radius of radius matching is set to 0.01, and the
kernel matching defaults to the quadratic kernel with a bandwidth of 0.01.
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