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Abstract – This Paper is dedicated to the analysis of the evolution of the tangent vector during the Continuous Power Flow (CPF) 
iterations. The flow of the tangent slope (measured in degrees) is shown through the coefficient of lambda tangent vector component 
and the maximum voltage tangent vector component. A 17 Node Network was used for the purposes of this Paper. The system was 
modelled in MATLAB software. The admittance matrix of the node voltage equations was formulated and the functions in MATLAB 
were developed for the systematic formation of the node admittance matrix. Equations for the calculated network were generated in 
MATLAB. 32 Iterations were performed. Iterations and corrections of iterations were done manually. Firstly, the results for the tangent 
vectors calculated through the CPF program were compared to the results for the tangents directly calculated with mathematical 
formula for the tangent, and both results match. The chart, which contains the classical PV curve and the flow of tangent vectors 
during the CPF iterations, was developed based on the results obtained. The increase in the slope of the tangent in the PV diagram 
imposes a clear numerical stability limit by specifying an angle limit value, which can be used to trigger an alarm. In addition to the 
classic Power-Voltage (PV) curve, this serves as an additional indicator for ensuring voltage stability of the examined system.
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1.  INTRODUCTION

This Research differs from others because the litera-
ture uses the tangents to find the PV curves for the ex-
amined system, which serves as an indicator to ensure 
the voltage stability of the examined system. In addi-
tion to classical PV curves, my Research also explains 
the voltage stability through the slope of the tangent 
vector components during CPF iterations. This serves 
as an additional indicator for ensuring the stability of 
the voltage of the examined system. Using examples, it 
also provides a theoretical and practical explanation of 
the matching of directly calculated tangent results and 
their calculation through CPF.

The tangent vector component “t” in [1] represents 
the values (voltage angle δ, voltage magnitude V and 
load parameter lambda λ). The variable values with the 
largest tangent vector component from the tangent “t” 
are used as continuous parameter. The lambda tangent 
vector component (dλ) is positive for the upper part of 
the PV. It is zero at the critical point where the Jacobian 
matrix becomes singular and is negative at the bottom 
of the PV curve. The sign of dλ shows us whether or not 
the critical point has been reached. The flow of the volt-
age magnitudes in view of the network load provides in-
formation about the voltage stability limit or the network 
load which, when exceeds, causes collapse to the voltage 

[1]. The most common parameterization techniques used 
by CPF to remove the singularity of the PF Jacobian ma-
trix is in [2]. The sensitivity of the information discussed 
from the tangent vector. The continuation power flow 
traces the complete P-V curves by automatically chang-
ing the value of a parameter. In the local parameterization 
technique, a parameter change always occurs close to 
the Maximum Loading Point (MLP). Generally, the load-
ing factor λ is an initially chosen parameter. Close to the 
MLP, it changes to the voltage magnitude that presents 
the largest variations and after a few points, it changes 
back to λ. The differential change in the voltage at each 
node for a given differential change in the system load is 
available from the tangent vector [2]. In [3] is explained 
the voltage stability index from the tangent vector. The 
ratio Cdλ/dVi, where C is constant, which is easier to be 
handled numerically, can be defined as voltage stability 
index for the entire system [3]. In each CPF iteration step, 
the active and reactive loads of the network are increased 
by a certain percentage of the base load. Voltage stability 
index using the tangent can be derived at [4]. The weak-
est node means a node which is nearer to the voltage 
collapse due to the lack of the reactive power. It means 
that the weakest node has the maximum ratio of differ-
ential change in the voltage to the differential change 
in the active power demand at the critical point. It rep-
resents the gradient or the tangent of a PV curve [5]. In 
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[6-8], it consists of the  calculation of the power flow and 
voltages of a transmission network for specified terminal 
conditions. Such calculations are required for steady-state 
performance analysis of power systems. Thus, the tangent 
vector provides information about critical nodes or criti-
cal parts of the network [6-8]. Equation [Fδ, FV, Fλ] is the 
Jacobian matrix of the power flow, augmented by a col-
umn multiplied by a tangent vector required. One prob-
lem arises while solving this Equation, i.e., the additional 
unknowns are added to the power flow equation when 
the load factor λ is added to the power flow equations. 
The tangent vector is represented by the Equation [dδ, 
dV, dλ]T, T= transpose. The critical point is reached when 
the load change reaches its maximum value. The change 
of sign of dLambda in the tangent vector is constantly 
checked. The CPF method, which includes the process 
of predictor and the process of corrector, can be applied 
to solve the non-linear equations. The predictor process 
starts with the calculation of the tangent vector. The tan-
gent vector must be normalized in order to guarantee the 
non-singularity of the augmented Jacobian matrix [9-11]. 
The tangent vector gives the sensitivity of the parameters 
at a point in the PV curve where they are evaluated. The 
sensitivities in the entire parts of the PV curve should be 
evaluated [12]. The tangent vector t is used to predict ini-
tial values for the next step of CPF. The tangent size is (6n 
+ 1) for a three-phase system, where there are 6n voltage 
variables and one loading parameter (λ) variable. Predic-
tion can be made by using tangent and secant predictors. 
Tangent predictors predict only by using the current solu-
tion, and the secant predictors use the current and pre-
vious solutions in order to make predictions [13]. An ef-
ficient geometric parameterization technique for the CPF 
is presented in [14]. Intending to reduce the CPU time, the 
effectiveness caused by updating the Jacobian matrix is 
investigated only when the system undergoes a signifi-
cant change. The Paper presents in [15] a potential algo-
rithm for Continuation Power Flow method in voltage 
stability assessment. [16] proposes an innovative method 
by modifying the Conventional Continuation Power Flow 
(CCPF) method. The tangent predictor is proposed to 
estimate the next predicted solution from two previous 
corrected solutions. And the corrector step is proposed to 
determine the next corrected solution on the exact solu-
tion. This correct solution is constrained to lie in the hyper-
plane running through the predicted solution orthogonal 
to the line from the two previous corrected solutions [16].

This field of research is currently focused on research-
ing the voltage stability by using the slope of the tan-
gent vector component. This Paper is structured as fol-
lows: Second chapter shows the methods employed, 
namely the direct calculation of tangents and tangent 
calculation through CPF. It consists of a research and 
detailed explanation of the Lambda as a continuous pa-
rameter. Moreover, it illustrates the Voltage V as a con-
tinuous parameter. Third section consists of the results. 
Furthermore, it compares the tangent vectors when cal-
culated with the CPF program and when calculated di-
rectly using the mathematical formula. Finally, the chart, 

which contains the classical PV curve and the flow of the 
tangent vectors during the CPF iterations, is developed 
using the results. In addition to the classic Power-Volt-
age (PV) curve, this serves as an additional indicator for 
ensuring voltage stability of the examined system.

2. METHODS - DIRECT CALCULATION OF 
TANGENTS AND TANGENT CALCULATION 
THROUGH CPF. TANGENTS USING LAMBDA 
(λ) AND VOLTAGE V AS CONTINUOUS 
PARAMETERS 

2.1. DIRECT CALCULATION OF TANGENTS AND 
 TANGENT CALCULATION THROUGH CPF

2.1.1. Direct calculation of tangents   

The method below was employed for the direct cal-
culation of tangents using the tangent formula

To calculate the slope of any point on the line, we 
draw a tangent to it and calculate the value of tan of 
the angle it makes with the base.  A tangent to a curve 
is a straight line that touches the curve at a given point 
and represents the gradient of the curve at that point. 

Fig. 1. Direct calculation the tangent  
in the 17-node network.

2.1.2. Calculation of the Tangent using CPF 
 Predictor step

The method below was employed to calculate the tan-
gents through CPF. The system of non-linear equations 
looks like this after inserting the lambda parameter: 

(1)

The Taylor linearization of equation (1) yields, ne-
glecting the higher-order terms: 

Fv- Derivatives of F with respect to the magnitude 
of the voltage. Fδ- Derivatives of F with respect to the 
voltage angle. Fλ- Derivatives from F to λ, corresponds 
to a column vector [1].
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The first task in the predictor step is to calculate the 
tangent vector component.

(2)

On the left are Jacobian matrix elements

(3)

t is the tangent vector component 

The system of equations (2) is underdetermined by 
the additional unknown dλ.

One, therefore, adds another equation (5) and sup-
plements the right-hand 0-vector by:

(4)

(5)

ek is a vector with all elements equal to 0, except the 
kth element, which equals 1 [3].

The value of k depends on the continuation param-
eter. For instance, with the continuation parameter l, 
k corresponds to the last position in ek. If the continu-
ation parameter increases over the course of the CPF 
iterations, tk is set to +1, otherwise, it is set to -1. For in-
stance, with continuation parameter l, before the rever-
sal point of the PV curve (the stability limit) is reached, 
tk = 1, then tk = -1.

Solving equation (5) gives the tangent vector com-
ponent [t].

2.2. LAMBDA USED AS A CONTINUOUS 
 PARAMETER AND VOLTAGE V AS 
 CONTINUATION PARAMETER

2.2.1. lambda used as a continuous parameter

Since λ Continuation parameter is in ek at the λ posi-
tion (n-th position) is 1. As long as λ is continuation pa-
rameter, the ek series and λ column is eliminated at the 
corrector step. (Since λ is fixed on the predictor value in 
the corrector iterations, it has to be eliminated from the 
corrector equation system). Chap 2. need to construct 
the classical PV curve. The iterations using the continu-
ous parameter λ are performed while the tangent vec-
tor component λ is greater than the component of the 
high (negative) voltage tangent vector. As long as λ is 
a continuous parameter, λ remains constant during the 
corrector iterations, but the voltage angles δi and volt-
age values Vi change. Fig. 3 explains the tangents when 
the parameter λ is continuous V=f (λ) for the 17-node 
network shown in Fig. 2 and explains in which range of 
angles the iterations span using the continuous param-
eters Lambda and V. For the angle range (0 → -45°), the 
parameter Lambda is a continuous parameter. 

The largest voltage tangent vector component will be 
in range (0 → -1). The closer we get to the critical point, 
the higher the tangent angle. For the angle -44°, we gain 
-0.9656. For the angle -135°, the condition to change the 
continuous parameter V to the continuous parameter 
Lambda is met and the iterations are carried until the 
end by using the continuous parameter Lambda.

Fig. 2. 17- node network

tan (-135° → -180°) = (1→ 0). The largest (-1) voltage 
tangent vector component will be in the interval (-1→ 0), 
(the lower part of the curve).

Fig. 3. Tangents using λ as a CP V=f (λ)

At the beginning of the CPF iteration, large changes 
in load correspond to small changes in voltage dλ >> 
dV. As the iterations progress, the ratio between chang-
es in load and changes in voltage becomes smaller and 
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smaller. These relations are expressed by the quotient 
between the largest negative voltage and the lambda 
tangent vector component.

Fig. 3 shows that the value of the largest negative 
voltage tangent vector component of -0.36 corre-
sponds to an angle of tan-1(-0,36) = -20°. If the condi-
tion of inverting λ to V is met, then the largest voltage 
tangent vector component value is -1. This corresponds 
to a tangent angle of -45 degrees.

Thereafter, the absolute value of the quotient be-
tween the largest voltage tangent vector component 
and the λ tangent vector component is greater than 
1 (negative sign), resulting in a tangent angle of more 
than -45 degrees.

2.2.2. Voltage V as continuation parameter

As long as V is continuation parameter, the ek- vector 
row and the V5- column are eliminated at the corrector 
step. (V5 is fixed at the predictor value in the corrector 
iterations). The differentials dV5 = 0 are thus eliminated 
from the corrector equation system. For the illustration 
in Fig. 4, the tangent angle is calculated from the quo-
tient between λ and the largest voltage tangent vector 
component. Since the voltage component is fixed at 
-1, it follows directly from the p. u. value of the lambda 
tangent vector component. The change from continu-
ation parameter λ to V occurs at a voltage tangent vec-
tor component of -1.0355 p. u., which corresponds to a 
tangent angle of -46°. Reason: The inversion condition 
is that tangent angle is < -45°. The closer you get to the 
critical point, the more the relationship between volt-
age and load changes. This corresponds to a tangent 
angle of -90° at the critical point in Fig. 4.

Thereafter, the sign of the lambda tangent vector 
component reverses from + to -, and the tangent an-
gle assumes values of more than 90°. The sign remains 
negative, see Fig. 3, lower part of the PV curve. The val-
ues of both the lambda tangent vector component and 
the tangent angle increase again. Because the value of 
the tangent angle is negative, the slope of the tangent 
becomes flatter again.

Fig. 4. V=f (λ) using V as a continuous parameter

For an angle of -135°, the quotient between volt-
age and lambda tangent vector components becomes 
1 (tan(-135) = 1), and thus the condition to invert the 
continuation parameter from V back to λ is met. Once 
this condition is met, the changes in the voltage be-
come smaller again.

Lambda tangent vector component for the angle 
range (-45° → -135°) will be in the range (1→ -1). For the 
angle -45° (tan(-45°) = -1), the condition of changing 
the continuous parameter Lambda to the continuous 
parameter V is met again.

After that, CPF iterations continue with V as continu-
ous parameter.

•	 For the angle (-46°)→tan(-46°)=-1.0355. 
•	 For the angle -80° → ctan(-80°) = -0.176  

(The upper part of the curve)
•	 For the angle (-90°) → ctan(-90°)=0, 

(tang(-90°)=Infinite).
•	 For the angle (-100°) → ctan(-100°)=0.176 

(The bottom part of the curve)

3. RESULTS: COMPARISON OF THE TANGENT 
VECTORS WHEN CALCULATED USING THE 
CPF PROGRAM AND WHEN CALCULATED 
DIRECTLY. COURSE OF THE QUOTIENT OF THE 
LARGEST (NEGATIVE) VOLTAGE TANGENT 
VECTOR COMPONENT AND LAMBDA 
TANGENT VECTOR COMPONENT.

3.1. COMPARISON OF THE TANGENT VECTORS 
 WHEN CALCULATED USING THE CPF 
 PROGRAM AND WHEN CALCULATED 
 DIRECTLY

3.1.1. Direct calculation of tangents   

Data for direct calculation the tangent for the first it-
eration.

Iteration 1: Before the predictor: V5=0.9520 
Before the predictor: λ=0
After the predictor: λ=0.15
dV1 = V5 (After the predictor) - V5 (Before the predictor) = 
=0.9520-0.9442=-0,0078 
dλ1 = λ (After the predictor) - λ (Before the predictor) = 0.15 – 0 = 0.15 

The direct calculation of tangents for the first iteration is:

Data for direct calculation the tangent for iteration 16.
Iteration 16: Before the predictor: V5=0.5541
  After the predictor: V5=0.5441;
   Before the predictor: λ=3.1854;
  After the predictor: λ=3.1880;
dV1 = V5 (After the predictor) - V5 (Before the predictor) =0.5441 - 
0.5541=-0,01
dλ1 = λ (After the predictor) - λ (Before the predictor) = 3.1880 – 
3.1854= 0.0026 
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Fig. 5. Direct calculation of the tangents in the iterations 
3, 13, 14 at the node 5 in the 17-node network.

Fig. 6. Direct calculation of the tangents in the 
iterations 15, 17 and 19 at node 5 in the 17-node 

network.

3.1.2. Tangent calculation through 
 CPF and compare

Calculation of tangents through CPF:

The tangent vector components for a 17-node net-
work calculated using the CPF are as follows:

In the iteration 1:

t1= δ2 
[ 0.0031  

δ3 
-0.0023

δ4 
-0.0318

δ5 
-0.0631

δ6 
-0.0370

δ7 
-0.0360

δ8 
-0.0303  

δ9 
-0.0531

δ10 
-0.0573

δ11 
-0.0504

δ12 
-0.0562

δ13 
-0.0495

δ14 
-0.0578  

δ15 
-0.0632

δ16 
-0.0724

δ17 
-0.0598

V4 
-0.0303  

V5 
-0.0531

V6 
-0.0573

V7 
-0.0504

V8 
-0.0562

V9 
-0.0495

V10 
-0.0303  

V11 
-0.0531

V12 
-0.0573

V13 
-0.0504

V14 
-0.0562

V15 
-0.0495

V16 
-0.0562

V17 
-0.0495

λ 
1.0000]T

T = transpose

In the iteration 1, the largest (negative) voltage tan-
gent vector component occurs at node 5. The tangent 
inclination in direction V5 is given by the quotient dV5/
dλ =-0,0521/1 = -0,0521. If you compare this with the 
result of the direct calculation, which is 0.052 (see sub-
chapter 3.1.1), you can see a good agreement with an 
error of only 0.001. 

In the iteration 16, the tangent direction for the con-
tinuation parameter V5 results from the values taken 
from t16 to dλ/dV5 = -0.2626/1= -0.2626.

If you compare this with the result of the direct cal-
culation, which is 0.26, you can see a good agreement 
with an error of only 0.0026.

Table 1. Tangents in the iterations 1-32 at the node 
5 in the 17-node network calculation through CPF.

Tangents in the iterations 1-32 at the node 5 in 
the 17-node network.

Iteration dV5 dλ tangent=dV/dλ

1 -0.0521 1.0000 -0.0521

2 -0.0536 1.0000 -0.0536

3 -0.0570 1.0000 -0.0570

4  -0.0616 1.0000 -0.0616

5  -0.0684 1.0000 -0.0684

6 -0.0776 1.0000 -0.0776

7 -0.0912 1.0000 -0.0912

8 -0.1103 1.0000 -0.1103

9 -0.1474 1.0000 -0.1474

10 -0.1949 1.0000 -0.1949

11  -0.2440 1.0000 -0.2440

12  -0.3115 1.0000 -0.3115

13  -0.4523 1.0000 -0.4523

14 -1.0238   1.0000 -1.0238

15 -1.0000 0.6133 -0.6133

16 -1.0000 0.2626 -0.2626

17 -1.0000 -0.0851 0.0851

18 -1.0000 -0.5960 0.5960

19 -1.0000 -1.0975 -1.0975

20 -0.6314 -1.0000 0.6314

21 -0.4746 -1.0000 0.4746

22 -0.3662 -1.0000 0.3662

23 -0.2818 -1.0000 0.2818

24 -0.2255 -1.0000 0.2255

25 -0.1827 -1.0000 0.1827

26 -0.1377 -1.0000 0.1377

27 -0.1157 -1.0000 0.1157

28 -0.1021 -1.0000 0.1021

29 -0.0927 -1.0000 0.0927

30 -0.0856 -1.0000 0.0856

31 -0.0802 -1.0000 0.0802

32 -0.0759 -1.0000 0.0759

Iteration 3, 13 and 14 using continuation param-
eter lambda

The tangent vector components for a 17-node net-
work calculated using the CPF are as follows:
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In the iteration 3:

t3= δ2 
[ 0.0007  

δ3 
-0.0049

δ4 
-0.0349

δ5 
-0.0685

δ6 
-0.0403

δ7 
-0.0383

δ8 
-0.0326  

δ9 
-0.0569

δ10 
-0.0612

δ11 
-0.0539

δ12 
-0.0600

δ13 
-0.0531

δ14 
-0.0618  

δ15 
-0.0673

δ16 
-0.0770

δ17 
-0.0639

V4 
-0.0321  

V5 
-0.0570

V6 
-0.0294

V7 
-0.0306

V8 
-0.0368

V9 
-0.0219

V10 
-0.0171  

V11 
-0.0219

V12 
-0.0182

V13 
-0.0242

V15 
-0.0195

V16 
-0.0299

V17 
-0.0562

λ 
1.0000]T

Node 1 is the slack, nodes 2, 3 and 14 are PV nodes. 
Therefore, no voltage magnitude components appear 
for these nodes in the tangent vector.

The largest (negative) voltage tangent vector com-
ponent occurs at node 5. The tangent inclination in di-
rection V5 is given by the quotient dV5/dλ = -0,0570/1 = 
-0,057. If you compare this with the result of the direct 
calculation from Fig. 5, which is 0.0569, you can see a 
good agreement with an error of only 0.0001. 

In the iteration 13, the tangent vector components 
calculated using the CPF are:

t13= δ2 
[-0.3010  

δ3 
-0.3102

δ4 
-0.3580

δ5 
-0.6216

δ6 
-0.3646

δ7 
-0.2516

δ8 
-0.2733 

δ9 
-0.4006

δ10 
-0.4024

δ11 
-0.3677

δ12 
-0.3962

δ13 
-0.3767

δ14 
-0.4049 

δ15 
-0.4184

δ16 
-0.4398

δ17 
-0.4080

V4 
-0.2624

V5 
-0.4523

V6 
-0.2394

V7 
-0.2761

V8 
-0.3071

V9 
-0.14131

V10 
-0.1083 

V11 
-0.1684

V12 
-0.1189

V13 
-0.1725

V15 
-0.0887

V16 
-0.1120

V17 
-0.0958

λ 
1.0000]T

T = transpose

T = transpose

The comparison of dV5 = -0.4523 with the value of 
-0.4533 from Fig. 5 shows again good value agreement.

The same applies to the iteration 14:

t14= δ2 
[-0.7464 

δ3 
-0.7545

δ4 
-0.8245

δ5 
-1.4313

δ6 
-0.8271

δ7 
-0.5460

δ8 
-0.6141 

δ9 
-0.8796

δ10 
-0.8747

δ11 
-0.8036

δ12 
-0.8614

δ13 
-0.8276

δ14 
-0.8795

δ15 
-0.9026

δ16 
-0.9342

δ17 
-0.8836

V4 
-0.5932

V5 
-1.0238

V6 
-0.5400

V7 
-0.6248

V8 
-0.6933

V9 
-0.3131

V10 
-0.2358 

V11 
-0.3742

V12 
-0.2594

V13 
-0.3804

V15 
-0.1823

V16 
-0.2188

V17 
-0.2012

λ 
1.0000]T

T = transpose

dV5 = -1.0238; from Fig. 5: -1.020. The differences in 
the values are a consequence of the limited numerical 
accuracy.

Iterations 15,17 and 19 with voltage V as continu-
ation parameter.

The tangent vector components accounted for by 
the CPF in the iteration 15 are:

t15= δ2 
[-0.7472 

δ3 
-0.7510

δ4 
-0.8082

δ5 
-1.4047

δ6 
-0.8069

δ7 
-0.5251

δ8 
-0.5937 

δ9 
-0.8493

δ10 
-0.8419

δ11 
-0.7749

δ12 
-0.8292

δ13 
-0.7993

δ14 
-0.8463

δ15 
-0.8667

δ16 
-0.8925

δ17 
-0.8494

V4 
-0.5789

V5 
-1.0000

V6 
-0.5267

V7 
-0.6098

V8 
-0.6764

V9 
-0.3025

V10 
-0.2274

V11 
-0.3632

V12 
-0.2504

V13 
-0.3684

V15 
-0.1725

V16 
-0.2035

V17 
-0.1919

λ 
0.6133]T

T = transpose

The tangent direction for the continuation parame-
ter V5 results from the values taken from t15 to dλ / dV5 
= -0.6133 / 1= -0.6133. From Fig. 6 with -0.610 again we 
get a good match. The same applies to the iterations 17 
and 19, see tangent vectors below.

Tangent vector in the iteration 17:

t17= δ2 
[-0.7800 

δ3 
-0.7756

δ4 
-0.8112

δ5 
-1.4159

δ6 
-0.8022

δ7 
-0.5063

δ8 
-0.5900 

δ9 
-0.8267

δ10 
-0.8139

δ11 
-0.7517

δ12 
-0.8017

δ13 
-0.7781

δ14 
-0.8178

δ15 
-0.8340

δ16 
-0.8498

δ17 
-0.8192

V4 
-0.5779

V5 
-1.0000

V6 
-0.5249

V7 
-0.6079

V8 
-0.6743

V9 
-0.2957

V10 
-0.2214

V11 
-0.3581

V12 
-0.2442

V13 
-0.3617

V15 
-0.1615

V16 
-0.1832

V17 
-0.1825

λ 
0.0851]T

T = transpose

Tangent vector in the iteration 19:

t19= δ2 
[-0.8228 

δ3 
-0.8050

δ4 
-0.8091

δ5 
-1.4284

δ6 
-0.7875

δ7 
-0.4723

δ8 
-0.5726 

δ9 
-0.7841

δ10 
-0.7636

δ11 
-0.7090

δ12 
-0.7521

δ13 
-0.7382

δ14 
-0.7665

δ15 
-0.7763

δ16 
-0.7770

δ17 
-0.7655

V4 
-0.5757

V5 
-1.0000

V6 
-0.5216

V7 
-0.6032

V8 
-0.6700

V9 
-0.2851

V10 
-0.2120

V11 
-0.3494

V12 
-0.2342

V13 
-0.3510

V15 
-0.1449

V16 
-0.1527

V17 
-0.1682

λ 
-1.0975]T

T = transpose

Iterations 20, 25 and 32 with continuation param-
eter lambda

Similar calculations can also be carried out for the 
lower part of the PV curve with the continuation pa-
rameter lambda, which is not done here. The tangent 
vector components of the iterations 20, 25 and 32 giv-
en below are used to develop Fig. 7.

Tangent vector component in the iteration 20:

t20= δ2 
[-0.5308 

δ3 
-0.5152

δ4 
-0.5080

δ5 
-0.9044

δ6 
-0.4903

δ7 
-0.2857

δ8 
-0.3542 

δ9 
-0.4791

δ10 
-0.4637

δ11 
-0.4316

δ12 
-0.4567

δ13 
-0.4510

δ14 
-0.4652

δ15 
-0.4694

δ16 
-0.4652

δ17 
-0.4638

V4 
-0.3626

V5 
-0.6314

V6 
-0.3281

V7 
-0.3788

V8 
-0.4212

V9 
-0.1766

V10 
-0.1308

V11 
-0.2176

V12 
-0.1446

V13 
-0.2180

V15 
-0.0863

V16 
-0.0869

V17 
-0.1017

λ 
-1.0000]T

T = transpose
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In the Iteration 25:

t25= δ2 
[-0.1583 

δ3 
-0.1399

δ4 
-0.1148

δ5 
-0.2506

δ6 
-0.0972

δ7 
-0.0321

δ8 
-0.0635 

δ9 
-0.0695

δ10 
-0.0591

δ11 
-0.0575

δ12 
-0.0580

δ13 
-0.0649

δ14 
-0.0588

δ15 
-0.0550

δ16 
-0.0424

δ17 
-0.0566

V4 
-0.1006

V5 
-0.1872

V6 
-0.0893

V7 
-0.0984

V8 
-0.1137

V9 
-0.0412

V10 
-0.0286

V11 
-0.0519

V12 
-0.0317

V13 
-0.0518

V15 
-0.0117

V16 
-0.0016

V17 
-0.0174

λ 
-1.0000]T

T = transpose

In the Iteration 32:

t32= δ2 
[-0.0272 

δ3 
-0.0011

δ4 
0.0340

δ5 
-0.0627

δ6 
0.0570

δ7 
0.0569

δ8 
0.0294 

δ9 
0.0883

δ10 
0.0947

δ11 
0.0846

δ12 
0.0927

δ13 
0.0809

δ14 
0.0951

δ15 
0.1017

δ16 
0.1137

δ17 
0.0971

V4 
-0.0287

V5 
-0.0759

V6 
-0.0246

V7 
-0.0243

V8 
-0.0300

V9 
-0.0060

V10 
-0.0021

V11 
-0.0088

V12 
-0.0024

V13 
-0.0084

V15 
-0.0061

V16 
-0.0170

V17 
-0.0031

λ 
-1.0000]T

T = transpose

3.2.  COURSE OF THE QUOTIENT OF THE  
 LARGEST (NEGATIVE) VOLTAGE TANGENT 
 VECTOR COMPONENT AND LAMBDA  
 TANGENT VECTOR COMPONENT

Fig. 7 shows the quotient between the largest nega-
tive voltage tangent vector component and the lamb-
da tangent vector component. The scale for this quo-
tient can be found on the ordinate of the lower part 
of the figure. Since it also defines the negative slope 
of the tangent (see Fig. 3), the figure also contains an 
angle scaling, namely on the abscissa of the lower part.

The upper part of the figure shows the PV curve, with 
the abscissa being the voltage axis and the ordinate 
being the lambda axis. The V-axis scaling is non-linear, 
so the PV curve is mapped symmetrically, putting the 
critical point right in the middle. (In fact, the PV curve is 
usually asymmetrical with respect to the critical point). 
The values for the development of the Fig. 6 are taken 
from subchapters 3.1.1. and 3.1.2.

The purple curve on the right describes CPF itera-
tions 1 to 13. The middle blue curve applies to itera-
tions 14-19. And, the left purple curve represents itera-
tion 20 – 32, (see subchapter 3.1.2).

The starting point is on the right side of the Fig. 7. The 
continuation parameter is the load factor λ. The quo-
tient dV/dλ and the tangent inclination are still small 
for the time being. In particular, dλ = +1; dV < 0, |dV| 
< 1). The increase in load (λ increases) results in the in-
crease of the absolute value of the quotient according 
to a tangent function, see purple curve. At point S it 
takes the value -1 (dλ = +1, dV = -1).

This corresponds to a tangent inclination of tg-1(-1) 
= -45°. If the load factor is further increased, the volt-

age tangent vector component becomes larger than 
the lambda tangent vector component (point E), and 
therefore continuation parameter changes from λ to V.

Fig. 7. The component of the tangent vector of the 
higher (negative) voltage compared to the lambda 
tangent vector component, values for the 17- node 

network.

In order for the quotient of the tangent vector com-
ponents to remain finite, (dλ/dV) needs to get inverted. 
Therefore, its further course develops according to a 
cotangent function (blue curve). The tangent angle 
of -45.67° thus corresponds to a quotient of -1/1.0238 
= -0.9768 (see point H on the blue curve). This is now 
valid for all further CPF iterations carried out with Con-
tinuation Parameter V. The critical point is reached at 
-90 (corresponding to ctg(-90) = 0 or dV = ∞).

At a tangent inclination of -135°, both dλ and dV have 
the value -1, and the quotient of the tangent vector 
components becomes 1, see point C. For the develop-
ment of point I, see Chap. 3.1.2 for the iteration 19.: dV 
= -1, dλ = -1.0975, 

ctg-1(dλ/dV) = ctg-1(1,0975/1) = 42,33°.
However, since the tangent slope has exceeded the 

critical value of -90°, a 180° transformation must be 
performed, which is why the final angle is: 42.33° - 180° 
= -137.66°. The condition for resetting the continuation 
parameter from V to λ is now fulfilled (dλ > dV). Accord-
ingly, the quotient dλ/dV is inverted to dV/dλ, and the 
purple tangent function shown on the left in Fig. 7 is 
valid for the rest of the curve.

Point I on the blue curve now corresponds to point J 
on the purple curve. 



(tg-1(dλ/dV) = tg-1(1/1,0975) = tg-1(0,9112) = -137,66°). 

For the development of a further point of the left 
purple curve, values from Chap. 3.3 are taken, for in-
stance, for the iteration 25: 

dλ=-1, dV= -0.1827; tg-1(dV/dλ) = tg-1(0,1827) = 10,35°.  
After transformation by 180°, the final tangent inclina-
tion is 10.35 – 180 = -169.65°. In the figure, this corre-
sponds to point U.

4. CONCLUSIONS

This Paper illustrates the voltage stability by using the 
slope of the tangent vector component. It represents a 
research and detailed explanation of Lambda as a con-
tinuous parameter. The tangent angle was calculated 
from the quotient between the voltage and the larg-
est lambda tangent vector component. Moreover, it il-
lustrates the Voltage V as continuous parameter, where 
the tangent angle was calculated from the coefficient 
between lambda λ and the largest tangent vector com-
ponent of the voltage. Furthermore, it compares the tan-
gent vectors when calculated with the continuous pow-
er flow program and when directly calculated, for the 
most vulnerable network node. The highest (negative) 
voltage tangent vector component occurs in the node 5 
in the network with 17 nodes. The results for the tangent 
vectors calculated through the CPF program were com-
pared with the results directly calculated with mathe-
matical formula and both results match. The chart, which 
contains the classical PV curve and the flow of tangent 
vectors during the CPF iterations, was developed based 
on the results obtained. In addition to the classic Power-
Voltage (PV) curve, this serves as an additional indicator 
for ensuring voltage stability of the examined system. 
This enables easier comparison with the effectiveness 
of different measures regarding the improvement of the 
voltage stability of the examined system.
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