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Abstract. The evaluation of the performance of decision-making units (DMUs) that use comparable
inputs to produce related outputs can be accomplished through a non-parametric linear programming
(LP) technique called Data Envelopment Analysis (DEA). However, the observed data are occasionally
imprecise, ambiguous, inadequate, and inconsistent which may result to incorrect decision-making when
these criteria are ignored. Neutrosophic Set (NS) is an extension of fuzzy sets which is used to represent
unclear, erroneous, missing, and wrong information. This paper proposes a neutrosophic version of the
DEA model, and a novel solution technique for Neutrosophic DEA (Neu-DEA) model. The possibility
mean for triangular neutrosophic number (TNN) is redefined and modified the Khatter’s approach to
convert directly the Neu-DEA model into its crisp DEA model. As a result, the Neu-DEA model is
simplified to a crisp LP problem with a risk parameter (δ ∈ [0, 1]) that represents the attitude of the
decision-maker towards taking risk. The efficiency score of the DMUs is computed by using various
risk factors and divided into efficient and inefficient groups. The ranking of DMUs is determined
by calculating the mean efficiency score of DMUs, which is based on various risk parameters. A
numerical example is illustrated here to describe the suggested approach’s flexibility and authenticity
and compared with some of the existing approaches.
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1. Introduction

The DEA is one of the most popular performance evaluation techniques used to evaluate the
efficiency of a group of comparable DMUs that generate similar outputs using similar inputs.
Charnes et al. [4] introduced a linear mathematical programming model based on Farrell’s
model to estimate the relative efficiency of DMUs, assuming constant returns to scale (CRS).
Since then, many researchers have employed DEA to estimate the efficiency of DMUs using
various models, including BCC, SBM, Additive, Super Efficiency, and Undesirable DEA. Re-
cently, Taeb et al. [24] established a DEA model to measure the efficiency of time-dependent
input-output of DMUs. The DEA method has been widely applied in various sectors such
as banking, insurance, education, SCM, crisis management, sustainability, agriculture, energy,
and healthcare services [5, 12, 16], making it a powerful and efficient MCDM approach. The
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traditional DEA models assume that the input and output variables are precise and determin-
istic, and do not account for uncertainties and vagueness in the data. However, in real-world
situations, the inputs and outputs variables may be imprecise or uncertain due to incomplete
or inaccurate data or subjective assessments. The most concerning problem for DM is to create
a mathematical model that handles uncertainty data in the evaluation of DMU performance.
First time Sengupta [22] in 1992 created the technique to solve the DEA model in the presence
of uncertain/imprecise data. After that, many authors developed different techniques to solve
fuzzy DEA (FDEA) models. Fuzzy stochastic approaches [20] and interval FDEA models are
commonly used to address inaccurate input-output data. Zhou & Xu [30] provided a summary
of fuzzy DEA models and their practical applications. Fuzzy DEA has been classified into
seven methods, which include “tolerance, α-cut, fuzzy ranking, possibility, fuzzy arithmetic,
fuzzy random/type-2 fuzzy set approaches, and multi-objective approach” [10]. These methods
have been applied in diverse areas, including portfolio optimization and industries [21, 26].

Smarandache [23] developed the Neutrosophic Set, which is an extension of Fuzzy Set and
Intuitionistic Fuzzy Set. It includes an indeterminacy-membership grade based on IFS and is
suitable for modeling problems with high levels of uncertainty. NS theory is capable of man-
aging ambiguity, indeterminacy, and inconsistency in decision-making and can control the DM
process and manage nonlinear complex systems, making it useful for solving various MCDM
problems. The essential features of NS theory, which independently define ”truth-membership,
false-membership, and indeterminacy-membership grades,” and their sum lies between 0 and
3, make it an effective tool in decision-making in today’s competitive environment where DM
problems are usually complicated by multiple opposing criteria. Possibility theory, introduced
by Zadeh [29], is crucial in handling incomplete information and uncertainty, similar to prob-
ability theory in crisp set. It has been used to solve optimization problems under uncertain
conditions in MCDM. The possibility means, variance, and standard deviation of TIFNs [27]
and SVTrNNs [11] have been defined to tackle MCDM problems. Recently, Khatter [14] defined
the possibility mean for TNNs and employed it to solve neutrosophic LP problems in which
first converts the TNN into corresponding crisp value. Then, it is directly replaced the crisp
value in the Neu-LPP to convert the corresponding crisp LP problem and find the optimum
solution of the Neu-LPP. However, this method does not directly convert Neutrosophic con-
straints or objective functions into crisp constraints or objective functions, nor does it satisfy
the possibility mean of each real crisp number must be the same crisp number. These are the
major drawback with the Khatter method.

To address these problems, we redefined the possibility mean for TNN such that it can be
applied to both TNN and crisp real numbers. The Khatter approach for solving neutrosophic
LP problem is modified such that it may be used directly in the neutrosophic optimization
problem to convert the equivalent crisp optimization problem. This paper presents a unique,
efficient solution strategy for solving a neutrosophic DEA model having TNN input and output
data. The modified Khatter’s method is implemented to obtain the solution for Neu-DEA
model. The proposed solution technique for the Neu-DEA model has the significant advantage
of allowing the decision-maker to a greater flexibility in determining the efficiency of DMUs with
risk parameter. The risk parameter indicates whether decision-makers should be pessimistic,
optimistic, or neutral in an uncertain environment.

The following is an outline of the remaining manuscript: In section 2, a brief overview of the
literature review of Neutrosophic DEA is presented. Section 3 delves into the fundamental con-
cepts of NSs, including terminology, notations, and mathematical operations. The possibility
mean for TNN is redefined, and the neutrosophic DEA model is developed from the Conven-
tional DEA model. Section 4 outlines the step-by-step procedure for solving the proposed
neutrosophic DEA model and utilizes the modified Khatter’s approach to convert it into the
crisp DEA model. Section 5 illustrates the effectiveness and validation of the suggested model
and draws a comparison with the pre-existing model through a numerical example. Finally, in
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section 6, the advantages and future possibilities of the proposed approach are discussed.

2. Literature Review

In this section, a survey of relevant literature is presented regarding the development and
utilization of the DEA within a neutrosophic fuzzy environment. The DEA is widely utilized
within the field of operational research to calculate DMU efficiency scores. However, standard
DEA models are not suitable when the precise values of all input-output data are not known in
advance. Several theories, such as stochastic techniques, interval DEA model, and FS approach,
have been suggested to address this issue. Nonetheless, these techniques do not take into
account the certainty level of the data. The neutrosophic theory can handle not only unclear,
imprecise, and incomplete data, but also indeterminate data. Neutrosophic sets (NSs) and their
expansions have subsequently been used in a number of domains, including computer science,
mathematics, engineering, medical [17]. Edalatpanah [7] has designed the first theoretical
Neutrosophic DEA model in 2018 using TNN inputs and outputs. Following that, several
authors attempted to develop and apply the Neu-DEA model in many fields to solve uncertainty
problems. Kahraman et al. [13] suggested an integrated Neutrosophic version of the AHP
and DEA models to analyse the efficiency of 15 private universities in Turkey. Abdelfattah
[1] suggested a ranking and parametric approach to solve the Neu-DEA model with inputs
and outputs are the neutrosophic numbers. Edalatpanah & Smarandache [8] applied natural
logarithms to transform an input-oriented Neu-DEA model into a corresponding crisp DEA
model based on simplified neutrosophic numbers. Again, Edalatpanah [9] investigated the Neu-
DEA model based on TNNs and devised a ranking technique to solve it. Mao et al. [15]
used single-valued neutrosophic sets (SVNSs) in undesirable DEA model based on logarithm
approach. Consequently, Tapia [25] created a new MCDA method that utilizes a neutrosophic
DEA model to assess NETs and their associated risks, accounting for the uncertainties within
these technologies. Yang et al. [28] used a single-valued triangular neutrosophic number to
measure hospital efficiency based on Neu-DEA model, which is the first study to demonstrate
real-world Neu-DEA application. Again, Abdelfattah [2] in 2021 applied his proposed model
[1] as an application for measuring the performance of the 32 regional hospitals of in Tunisia.
Recently, other extension of FS like Fermatean fuzzy set [3] and Spherical fuzzy set [18, 19] are
used to construct the DEA models and its solution techniques are developed.

3. Development of Neutrosophic Data Envelopment Analysis (Neu-
DEA)

This section discusses the earlier findings, results and operation of the Neutrosophic set (NS).
Also, the possibility mean for TNN is redefined and the neutrosophic DEA (Neu-DEA) model
is developed to assess the efficiency of DMUs having neutrosophic inputs-outputs.

3.1. Preliminary

Definition 1 ([23]). Let Ω be the universal set. The neutrosophic set (NS) N̂ over Ω is defined
as

N̂ = {⟨x;ϕN , φN , ψN ⟩ : x ∈ Ω} (1)

where ϕN , φN , ψN : Ω → [0, 1] are the truth, indeterminate and falsity membership grades and
satisfy 0 ≤ ϕN + φN + ψN ≤ 3.

Definition 2 ([6]). The Triangular neutrosophic number (TNN) is denoted by X̂ = ⟨xL, xM , xU ;
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ϕx, φx, ψx⟩, in which there are three membership grades of x are given below:

T(x) =



x− xL

xM − xL
ϕx, xL ≤ x ≤ xM

ϕx, x = xM

xU − x

xU − xM
ϕx, xM ≤ x ≤ xU

0, otherwise

I(x) =



xM − x+ φx(x− xL)

xM − xL
, xL ≤ x ≤ xM

φx, x = aM

x− xM + φx(x
U − x)

xU − xM
xM ≤ x ≤ xU

1, otherwise

F(x) =



xM − x+ ψx(x− xL)

xM − xL
, xL ≤ x ≤ xM

ψx, x = xM

x− xM + ψx(x
U − x)

xU − xM
, xM ≤ x ≤ xU

1, otherwise

where 0 ≤ T(x) + I(x) + F(x) ≤ 3, x ∈ Ω.

Definition 3 ([6]). Suppose X̂1 = ⟨xL1 , xM1 , xU1 ;ϕx1 , φx1 , ψx1⟩ and X̂2 = ⟨xL2 , xM2 , xU2 ;ϕx2 , φx2 , ψx2⟩
are two TNNs. The arithmetic operations are given as

1. X̂1 ⊕ X̂2 = ⟨xL1 + xL2 , x
M
1 + xM2 , x

U
1 + xU2 ;ϕx1

∧ ϕx2
, φx1

∨ φx2
, ψx1

∨ ψx2
⟩.

2. X̂1 − X̂1 = ⟨xL1 − xU2 , x
M
1 − xM2 , x

U
1 − xL2 ;ϕx1

∧ ϕx2
, φx1

∨ φx2
, ψx1

∨ ψx2
⟩.

3. X̂1 ⊗ X̂1 = ⟨xL1 xL2 , xM1 xM2 , xU1 xU2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

4. λX̂1 =

{
⟨λxL1 , λxM1 , λxU1 ;ϕx1 , φx1 , ψx1⟩, λ > 0

⟨λxU1 , λxM1 , λxL1 ;ϕx1
, φx1

, ψx1
⟩, λ < 0

where x ∧ y = min(x, y) and x ∨ y = max(x, y).

Definition 4 ([14]). The α, β & γ−cut for a TNN X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩, is defined as

X̂(α,β,γ) = {x : ϕx ≥ α,φx ≤ β, ψx ≤ γ}, (2)

where 0 ≤ α ≤ ϕx, φx ≤ β ≤ 1 and ψx ≤ γ ≤ 1.

From definition 3 and equation (2) , the lower limits LX̂(α), LX̂(β) and LX̂(γ), and upper

limits UX̂(α), UX̂(β) and UX̂(γ) of α, β and γ-level cut for TNN X̂ are defined as

X̂α = [LX̂(α), UX̂(α)] =
[
xL + α(

xM − xL

ϕx
), xU − α(

xU − xM

ϕx
)
]
,

X̂β = [LX̂(β), UX̂(β)] =
[ (β − φx)x

L + (1− β)xM

1− φx
,
(β − φx)x

U + (1− β)xM

1− φx

]
,

X̂γ = [LX̂(γ), UX̂(γ)] =
[ (γ − ψx)x

L + (1− γ)xM

1− ψx
,
(γ − ψx)x

U + (1− γ)xM

1− ψx

]
.

Definition 5 ([14]). Let X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩, be a TNN. The possibility mean for

truth, indeterminate, and falsity membership grades of a TNN X̂ is defined in equation (3),

equation (4) and equation (5) and denoted by µ(X̂α), µ(X̂β) and µ(X̂γ) respectively.
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1.

µ(X̂α) =
µL(X̂α) + µU (X̂α)

2
(3)

where

µL(X̂α) = 2

∫ ϕx

0

Pos[X̂ ≤ LX̂(α)]LX̂(α)dα =
xL + 2xM

3
ϕ2x

and

µU (X̂α) = 2

∫ ϕx

0

Pos[X̂ ≥ UX̂(α)]UX̂(α)dα =
xU + 2xM

3
ϕ2x

2.

µ(X̂β) =
µL(X̂β) + µU (X̂β)

2
(4)

where

µL(X̂β) = 2

∫ 1

φx

Pos[X̂ ≤ LX̂(β)]LX̂(β)dβ

= (xM − φxx
L)(1 + φx)−

2(xM − xL)

3
(1 + φx + φ2

x)

and

µU (X̂β) = 2

∫ 1

φx

Pos[X̂ ≥ UX̂(β)]UX̂(β)dβ

= (xM − φxx
U )(1 + φx) +

2(xU − xM )

3
(1 + φx + φ2

x)

3.

µ(X̂γ) =
µL(X̂γ) + µU (X̂γ)

2
(5)

where

µL(X̂γ) = 2

∫ 1

ψx

Pos[X̂ ≤ LX̂(γ)]LX̂(γ)dγ

= (xM − ψxx
L)(1 + ψx)−

2(xM − xL)

3
(1 + ψx + ψ2

x)

and

µU (X̂γ) = 2

∫ 1

ψx

Pos[X̂ ≥ UX̂(γ)]UX̂(γ)dγ

= (xM − ψxx
U )(1 + ψx) +

2(xU − xM )

3
(1 + ψx + ψ2

x)

Definition 6 ([14]). Let X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩, be a TNNs, the possibility means over
the risk parameter δ ∈ [0, 1] of truth, indeterminate and falsity grades is defined as

ℑ(X̂) = δ µ(X̂α) + (1− δ)
(
µ(X̂β) + µ(X̂γ)

)
(6)

and the value of δ indicates the decision maker’s risk attitude, as follows:
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(a) If δ is in the range of [0, 0.5), it suggests that the decision maker is willing to take risks
and considers uncertainty.

(b) If δ = 0.5, it indicates that the decision-maker is neutral in their parameter selection.

(c) If δ is in the range of (0.5, 1], it suggests that the decision maker is cautious about taking
risks when making decisions.

Example 1. If X̂ = x ∈ R is a crisp number, it is possible to express it in the form of TNN
i.e., X̂ = ⟨x, x, x; 1, 0, 0⟩ then ℑ(X̂) = δx+ (1− δ)2x = 2x− xδ ̸= x.

Definition 7. The possibility means over the risk parameter δ ∈ [0, 1] of truth, indeterminate,

and falsity membership grades of X̂ = ⟨xL, xM , xU ;ϕx, φx, ψx⟩ are redefined as:

ℑ̃(X̂) = δ µ(X̂α) + (1− δ)
(µ(X̂β) + µ(X̂γ)

2

)
(7)

That implies

ℑ̃(X̂) = δ
(xL + 4xM + xU

6

)
ϕ2x +

1− δ

2

[
1

6

(
2[xL + xM + xU ]− [xL − 2xM + xU ]φx

− [xL + 4xM + xU ]φ2
x

)
+
1

6

(
2[xL + xM + xU ]− [xL − 2xM + xU ]ψx

− [xL + 4xM + xU ]ψ2
x

)]
(8)

Definition 8. For two TNNs X̂1 and X̂2, we say that

1. X̂1 ≼ X̂2 if and only if ℑ̃(X̂1) ≤ ℑ̃(X̂2),

2. X̂1 ≈ X̂2 if and only if ℑ̃(X̂1) = ℑ̃(X̂2),

where ℑ̃(.) is the possibility mean function for TNN.

Example 2. If we consider X̂ = x ∈ R is a crisp number, it is possible to express it in the
form of TNN i.e., X̂ = ⟨x, x, x; 1, 0, 0⟩ then ℑ̃(X̂) = δx+ (1− δ)x = x.

Lemma 1. Let us consider there are n TNNs represented by X̂i = ⟨xLi , xMi , xUi ;ϕxi , φxi , ψxi⟩
where each X̂i has an associated scalar value αi ∈ R. Then

ℑ̃

(
n∑
i=1

αiX̂i

)
=

n∑
i=1

[
δ
(xLi + 4xMi + xUi

6

)( n∧
i=1

ϕxi

)2

+
1− δ

2

( 2
[
xLi + xMi + xUi

]
−
[
xLi − 2xMi + xUi

](∨n
i=1 φxi

)
−
[
xLi + 4xMi + xUi

](∨n
i=1 φxi

)2
6

+

2
[
xLi + xMi + xUi

]
−
[
xLi − 2xMi + xUi

](∨n
i=1 ψxi

)
−
[
xLi + 4xMi + xUi

](∨n
i=1 ψxi

)2
6

)]
αi

Proof.

n∑
i=1

αiX̂i =

〈 n∑
i=1

αix
L
i ,

n∑
i=1

αix
M
i ,

n∑
i=1

αix
U
i ;

n∧
i=1

ϕxi ,

n∨
i=1

φxi ,

n∨
i=1

ψxi

〉
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Using above Definition (7) and equation (8) , we have

ℑ̃

(
n∑
i=1

αiX̂i

)
= δ
(∑n

i=1 αix
L
i + 4

∑n
i=1 αix

M
i +

∑n
i=1 αix

U
i

6

)( n∧
i=1

ϕxi

)2

+
1− δ

2


1

6


2
[∑n

i=1 αix
L
i +

∑n
i=1 αix

M
i +

∑n
i=1 αix

U
i

]
−
[∑n

i=1 αix
L
i − 2

∑n
i=1 αix

M
i +

∑n
i=1 αix

U
i

](∨n
i=1 φxi

)
−
[∑n

i=1 αix
L
i + 4

∑n
i=1 αix

M
i +

∑n
i=1 αix

U
i

](∨n
i=1 φxi

)2



+
1

6


2
[∑n

i=1 αix
L
i +

∑n
i=1 αix

M
i +

∑n
i=1 αix

U
i

]
−
[∑n

i=1 αix
L
i − 2

∑n
i=1 αix

M1
i +

∑n
i=1 αix

U
i

](∨n
i=1 ψxi

)
−
[∑n

i=1 αix
L
i + 4

∑n
i=1 αix

M
i +

∑n
i=1 αix

U
i

](∨n
i=1 ψxi

)2




that implies

ℑ̃

(
n∑
i=1

αiX̂i

)
=

n∑
i=1

[
δ
(xLi + 4xMi + xUi

6

)( n∧
i=1

ϕxi

)2

+
1− δ

2

( 2
[
xLi + xMi + xUi

]
−
[
xLi − 2xMi + xUi

](∨n
i=1 φxi

)
−
[
xLi + 4xMi + xUi

](∨n
i=1 φxi

)2
6

+

2
[
xLi + xMi + xUi

]
−
[
xLi − 2xMi + xUi

](∨n
i=1 ψxi

)
−
[
xLi + 4xMi + xUi

](∨n
i=1 ψxi

)2
6

)]
αi.

3.2. Neutrosophic Data Envelopment Analysis (Neu-DEA)

Let us consider the input and output for the DMUo, (o = 1, 2, · · · , n) are defined as xio, (i =
1, 2, · · · ,m) and yko, (k = 1, 2, · · · , r) respectively. The Input and Output matrix for the
system is defined by X = [x1, · · · , xm] ∈ Rm×n, and Y = [yl, · · · , yr] ∈ Rr×n respectively.
The LPP model given below is used to evaluate the efficiency score of DMUo:

max
u,v

θ =

r∑
k=1

ukyko,

subject to

m∑
i=1

vixio = 1, (9)

r∑
k=1

ukykj ≤
m∑
i=1

vixij j = 1, 2, · · ·n,

and uk ≥ 0, ∀k ; vi ≥ 0, ∀i

which is known as traditional DEA or CCR Model [4]. The traditional DEA model may
lead to incorrect evaluations of DMU performance due to the presence of faulty, imprecise, or
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ambiguous observational data. Moreover, if a DMU is found to be the most efficient, it may not
be a reliable reference point for other less efficient DMUs. Hence, a robust method is necessary
to address such situations, and Neutrosophic Set theory can be employed to achieve this goal.
Neutrosophic Set theory deals with the concept of indeterminacy, which allows for handling
uncertain and imprecise information by incorporating the degrees of truth, indeterminate, and
falsity. Therefore, the utilization of Neutrosophic Set theory in DEA can lead to more accurate
and reliable evaluations of DMU performance.

Assuming that the input and output weights (i.e., vi & uk) are crisp real numbers and the
inputs and outputs data are TNNs. Thus, the Neutrosophic DEA (Neu-DEA) model is defined
as

max
u,v

θ =

r∑
k=1

ukŷko,

subject to

m∑
i=1

vix̂io = 1̂, (10)

r∑
k=1

ukŷkj ≤
m∑
i=1

vi, x̂ij , j = 1, 2, · · ·n,

and uk ≥ 0, ∀k ; vi ≥ 0, ∀i,

where x̂ij = ⟨xLij , xMij , xUij , ϕxij , φxij , ψxij ⟩ and ŷkj = ⟨yLkj , yMkj , yUkj , ϕykj
, φykj

, ψykj
⟩, ∀ i, j, k are

the TNNs. The efficiency of the DMUs is optimal solution of the above Neu-DEA model i.e.,
θ∗ ∈ [0, 1].

Definition 9. A DMU is said to be efficient if its efficiency score is one (i.e., θ∗ = 1);
Otherwise the DMU is called inefficient.

Theorem 1. The Neu-DEA model given in equation (10) is equivalent to the crisp LP model
given in equation (12).

Proof. If the aggregation operator and possibility mean approach, which are described in
Step 3 and Step 4 of Section 4, are used and it clear that the optimal feasible solution of
each Neu-DEA model is also an optimal feasible solution for the corresponding crisp DEA
model, and conversely, the optimal feasible solution of the crisp DEA model is also an optimal
feasible solution for the Neu-DEA model. Hence, the two models have identical optimal feasible
solutions when using this approach.

4. Method for Solving Neutrosophic DEA (Neu-DEA) model

Consider the inputs x̂ij and outputs ŷkj are the TNNs that is x̂ij = ⟨xLij , xMij , xUij , ϕxij
, φxij

, ψxij
⟩

and ŷkj = ⟨yLkj , yMkj , yUkj , ϕykj
, φykj

, ψykj
⟩, ∀ i, j, k. The Neu-DEA model defined in equation

(10) can’t be solved directly using the usual LPP approach. The following steps are proceed to
solve the Neu-DEA model and obtain the efficiency score of the DMUs.

Step 1: Fuzzifier or Fuzzification is the process of changing crisp input-output data into
neutrosophic input-output data using information from a knowledge base. Fuzzification is nec-
essary and desirable at an early stage of the uncertainty theory. As a result, the fuzzifier may
be defined as a mapping from an observable crisp data space to a fuzzy data space in a given
discourse universe. Triangular membership functions are the most widely employed in the fuzzi-
fication process because they are easily implemented by embedded controllers. In this case, a
triangular neutrosophic fuzzy set is employed in the fuzzification procedure.
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Step 2: The Neutrosophic DEA model is converted form the traditional DEA model by taking
neutrosophic inputs-outputs as given in equation (10).

Step 3: Applying the possibility mean function (ℑ̃) in the Neu-DEA model
The Neu-CCR models will be

max
u,v

θ = ℑ̃
( r∑
k=1

ukŷko

)
,

subject to ℑ̃
( m∑
i=1

vix̂io

)
= ℑ̃(1), (11)

ℑ̃
( r∑
k=1

ukŷkj

)
≤ ℑ̃

( m∑
i=1

vix̂ij

)
, j = 1, 2, · · ·n,

and uk ≥ 0, ∀k ; vi ≥ 0, ∀i.

Step 4: The above Neu-DEA model is turned into a corresponding crisp LP model with the
help of the modified Khatter method.
Using Lemma 1, The equation (11) become
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u,v
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[
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and uk ≥ 0, ∀k ; vi ≥ 0, ∀i

This is the corresponding crisp DEA or CCR model of the proposed Neu-DEA model.

Step 5: The optimum solution (θ∗) of the crisp DEA model is obtained for each δ ∈ [0, 1]
which reflects the DM’s risk preference.

Step 6: The average of efficiency scores with different risk factor are considered for rank-
ing the DMUs.

For the purpose of solving the proposed Neu-DEA model, MATLAB2013a software is utilized
and evaluate the performance of each DMU. Figure 1 illustrates the flowchart for the solution
technique of the proposed Neu-DEA model.

Figure 1: Flowchart for solving Neutrosophic DEA model
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5. Numerical Example

This section examines the validity of the suggested approach and its applicability with a suitable
example. The obtained results are compared to the technique previously presented. Consider
the input-output data from the example [1] as shown in Table 1.

DMU Input 1 Input 2 Output 1 Output 2
DMU 1 ⟨3.5, 4.0, 4.5; ⟨1.9, 2.1, 2.3; ⟨2.4, 2.6, 2.8; ⟨3.8, 4.1, 4.4;

0.7,0.4,0.3⟩ 0.4,0.3,0.5⟩ 0.9,0.2,0.1⟩ 0.8,0.5,0.1⟩
DMU 2 ⟨2.9, 2.9, 2.9; ⟨1.4, 1.5, 1.6; ⟨2.2, 2.2, 2.2; ⟨3.3, 3.5, 3.7;

0.6,0.5,0.2⟩ 0.8,0.2,0.1⟩ 0.9,0.3,0.0⟩ 1.0,0.0,0.0⟩
DMU 3 ⟨4.4, 4.9, 5.4; ⟨2.2, 2.6, 3.6; ⟨2.7, 3.2, 3.7; ⟨4.3, 5.1, 5.9;

0.6,0.4,0.1⟩ 0.7,0.4,0.2⟩ 0.7,0.5,0.1 ⟩ 0.7,0.5,0.1⟩
DMU 4 ⟨3.4, 4.1, 4.8; ⟨2.2, 2.3, 2.4; ⟨2.5, 2.9, 3.3; ⟨5.5, 5.7, 5.9;

0.4,0.3,0.2⟩ 1.0,0.0,0.0⟩ 0.7,0.5,0.1⟩ 0.4,0.2,0.1⟩
DMU 5 ⟨5.9, 6.5, 7.1; ⟨3.6, 4.1, 4.6; ⟨4.4, 5.1, 5.8; ⟨6.5, 7.4, 8.3;

0.7,0.4,0.3 ⟩ 0.9,0.1,0.1⟩ 0.8,0.4,0.2⟩ 0.5,0.0,0.2⟩

Table 1: Data of the five DMUs used in the numerical example [1]

DMUs
Efficiency Score

Mean
δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

DMU 1 0.8395 0.8709 0.9326 1.00 1.00 0.9286
DMU 2 1.0000 1.0000 1.0000 0.9554 0.6723 0.92554
DMU 3 0.7335 0.6853 0.6337 0.5449 0.3455 0.58858
DMU 4 0.9596 0.8565 0.7459 0.5914 0.3391 0.6985
DMU 5 0.9524 0.7796 0.5998 0.3881 0.1540 0.57478

Table 2: Efficiency Score of the DMUs

The steps given in Section 4 are implemented to solve the above example, and the DMU’s
efficiencies are determined with various risk factor, as shown in Table 2. Figure 2 depicts how
the risk factor affects the efficiency of the DMUs. It has been observed that when the risk
factor increases, most of the DMU’s efficiencies are decreases. If a DMU has an efficiency
score one, it is considered to be in the efficient group; otherwise, it is in the inefficient group
according to Definition 9. The DMU 2 is efficient when the risk factors δ = 0, δ = 0.25, and
δ = 0.5 and other DMUs are in inefficient group whereas DMU 1 is efficient when risk factors
δ = 0.75, and δ = 1 and other DMUs are in inefficient groups. The overall DMU’s efficiency is
obtained by considering average of the DMU’s efficiency in various risk level and ranked them
as : DMU1 > DMU2 > DMU4 > DMU3 > DMU5. Furthermore, as risk factors increase,
the efficiency scores of DMUs 3, 4, and 5 decrease. The efficiency score of DMU 2 remains
constant (i.e., one) until the risk parameter increases from 0 to 0.5 after that (increases from
0.5 to 1) the efficiency decreases. When the risk parameter is increased from 0 to 0.75, the
efficiency score of DMU 1 increases after that (increases from 0.75 to 1 ), the efficiency score
remain same (i.e, one) or it is efficient unit. The average DMU’s efficiency with various risk
levels is utilized to determine the overall efficiency score for complete ranking purpose (see
Table 2). Table 3 compares the efficiency score obtain in proposed approach to the efficiency
score obtain in the Abdelfattah parametric approach [1] and Edalatpanah ranking approach [9].
The efficiency scores in Abdelfattah parametric approach are obtained in interval form, which
make it difficult to rank the DMUs and also difficult to categorize the DMUs into efficient and
inefficient groups. Also, The Edalatpanah ranking approach converts the Neu-DEA model into
a crisp LP model and ranks DMUs by DMU’s efficiency. In comparison to earlier approaches,
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the proposed approach evaluates the efficiency score of the DMUs with a risk factor. The risk
factor indicates how much risk is taken while evaluating the DMUs’ efficiency in the Neu-DEA
model. The decision maker ranked and classified the DMUs into efficient and inefficient groups,
each with its own risk.

Figure 2: Efficiency Score of the DMUs with risk parameter

DMUs
Abdelfattah Parametric
Approach

Edalatpanah Ranking
Approach

Proposed Approach

Efficiency Score Rank Efficiency
Score

Rank Efficiency
Score

Rank

DMU 1 [0.624, 1.000] 4 0.9183 2 0.9286 1
DMU 2 [0.836, 1.000] 2 1.0000 1 0.92554 2
DMU 3 [0.571, 1.000] 5 0.6302 5 0.58858 4
DMU 4 [0.855, 1.000] 1 0.7975 3 0.6985 3
DMU 5 [0.638, 1.000] 3 0.7180 4 0.57478 5

Table 3: Comparative analysis of efficiency score

6. Conclusion

The possibility mean for TNN is redefined, and this possibility mean function has the ability to
compare both crisps real numbers and TNNs. The suggested method is linked to a risk factor
that reflects how willing the DM is to take risks. The concept of the possibility mean approach is
introduced by modifying Khatter’s approach for the neutrosophic LP problem and used for the
first time to solve the neutrosophic DEA models. This proposed approach has ability to convert
directly the Neutrosophic DEA into its corresponding crisp DEA model with risk parameter.
The decision-makers take a particular risk when determining the efficiency score of each DMU
without utilizing any inappropriate evaluation values. An example has been presented here to
demonstrate the proposed solution technique of Neu-DEA model. The recommended possibility
mean approach is effective and practical for solving the Neu-DEA model, and can be widely
applied in various disciplines based on the results. According to the comparative studies, the
suggested approach offers a significant advantage over the existing approaches (see Table 3). It
is suggested that further study should be done on estimating the DMUs’ efficiency in various
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types of DEA models, such as BCC, SBM, Additive, and Super-efficiency model. Future study
should concentrate on the applicability of our method in real-world scenarios.
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