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We made an analysis of time-ordered diagrams for the two-nucleon T-matrix in
chiral perturbation theory. From the analysis, it follows that low-energy nucleon
dynamics is governed by the generalized dynamical equation [derived in J. Phys. A
32 (1999) 5657] with a nonlocal-in-time interaction operator. We also present an
operator that parametrizes the nucleon-nucleon interaction in the 'Sy channel at
leading order of the Weinberg power counting.
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1. Introduction

One of the most fundamental problems of nuclear physics is to derive nuclear
forces from the principles of QCD. A first attempt to construct a bridge between
QCD and low-energy nuclear physics was made by Weinberg [1]. He suggested to
derive a nucleon-nucleon (NN) potential in time-ordered chiral perturbation theory
(ChPT). However, such a potential is singular and the Schrédinger (Lippmann-
Schwinger) equation can not be used without regularization and renormalization.
This means that in the effective field theory (EFT) of nuclear forces, which follow-
ing the pioneering work of Weinberg has become very popular in nuclear physics
(for a review, see Ref. [2]), the Schrédinger equation is not valid. On the other
hand, quantum mechanics is one of the basic ingredients of the whole formalism of
fields and particles, and hence in the nonrelativistic limit, QCD must produce low-
energy nucleon physics consistent with the basic principles of quantum mechanics.
However, as follows from the Weinberg analysis, QCD leads, through ChPT, to the
low-energy theory in which the Schrodinger equation is not valid. This means that
either there is something wrong with QCD and ChPT or the Schrédinger equation
is not the basic dynamical equation of quantum theory. Meanwhile, in Ref. [3],
it has been shown that the Schrodinger equation is not the most general equa-
tion consistent with the current concepts of quantum physics, and a more general
equation of motion has been derived as a consequence of the basic postulates of
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the Feynman [4] and canonical approaches to quantum theory. Being equivalent to
the Schrodinger equation in the case of instantaneous interactions, this generalized
dynamical equation permits the generalization to the case where the dynamics of
a system is generated by a nonlocal-in-time interaction. The generalized quantum
dynamics (GQD) developed in this way has proved to be a useful tool for solving
various problems in quantum theory [5, 6].

The Weinberg program for low-energy nucleon physics employs the analysis of
time-ordered diagrams for the two-nucleon T-matrix in ChPT to derive a NN po-
tential and then to use it in the Lippmann-Schwinger (LS) equation for constructing
the full NN T-matrix. Obviously, the starting point for this program is the assump-
tion that in the nonrelativistic limit ChPT leads to low-energy nucleon dynamics
which is Hamiltonian and is governed by the Schrédinger equation. However, as
we have noted, this is not the case because the Schrodinger equation with chiral
potentials constructed in this way makes no sense without renormalization. The
GQD provides a new insight into this problem: The above may mean that the low-
energy nucleon dynamics, which results from the analysis of diagrams in ChPT, is
governed by the generalized dynamical equation with a nonlocal-in-time interaction
operator when this equation cannot be reduced to the Schrodinger equation. In Ref.
[5], it has been shown that such a dynamical situation takes place in the case of the
pionless EFT which is valid at extreme low energies: After renormalization, low-
energy nucleon dynamics is governed by the generalized dynamical equation with
a nonlocal-in-time interaction operator. Moreover, at leading order this dynamics
is just the same as in the model of Refs. [3] and [7], developed as a test model
illustrating the possibility of the extension of quantum dynamics provided by the
formalism of the GQD. The aim of the present paper is to show that the same sit-
uation takes place at higher energies when one must include the n-field explicitly.
We will show that from the analysis of diagrams for the two-nucleon T-matrix in
ChPT it follows that low-energy dynamics is governed by the generalized dynamical
equation with a nonlocal-in-time interaction operator which is well defined and does
not give rise to UV divergences. At leading order of the Weinberg power counting,
we will construct a chiral NN interaction operator for the 1S, channel. It will be
shown that the generalized dynamical equation with this interaction operator is
well defined and allows one to construct the T-matrix and the evolution operator
without regularization and renormalization.

2. Generalized quantum dynamics

In the GQD the evolution operator U(t,ty) in the interaction picture is repre-
sented in the form [3]

t to
< Po|U(t, 1) |[t01 >=< ol > +/dt2/dt1 < o] S(ta, t1) [t >, (1)
to to

where < wg\g(tg, t1)|1 > is the probability amplitude that if at time ¢; the system
was in the state [¢); >, then the interaction in the system will begin at time ¢; and
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will end at time t5, and at this time the system will be in the state |t > . This equa-
tion represents the Feynman superposition principle according to which the proba-
bility amplitude of an event which can happen in several different ways is a sum of
contributions from each alternative way. Here subprocesses with definite instants
of the beginning and end of the interaction in the system are used as alternative
ways of realization of the corresponding evolution process, and < 19|S(t2,t1) |11 >
represents the contribution to the evolution operator from the subprocess in which
the interaction begins at time ¢; and ends at time ¢5. As has been shown in Ref.
[3], the condition of unitarity for the evolution operator given by Eq. (1) is that for
any t and tg, the operator S tg, t1 must satisfy the equation

(ty —t1)S(ta, t1) /dt4/dt3 ty — t3)S(ta, t4)S(ts,t1). (2)

A remarkable feature of this relation is that it works as a recurrence relation and
allows one to obtain the operators S(t2,t1) for any t; and to, if S(t5,¢]) corre-
sponding to infinitesimal time intervals 7 = ¢5, — ¢} of interaction are known. It is
natural to assume that most of the contribution to the evolution operator in the
limit to — ¢; comes from the processes associated with the fundamental interaction
in the system under study. Denoting this contribution by Hint(t2, 1), we can write

S(t2:t1), =, Hin(t2,t1) + o). (3)

where 7 =ty — t;. The parameter ¢ is determined by demanding that Hint(t2,%1),
called the generalized interaction operator, must be so close to the solution of
Eq. (2) in the limit t; —¢; that this equation has a unique solution having the
behavior (3) near the point to = t1. If Hing(t2, 1) is specified, Eq. (2) allows one to
find the operator S (t2,t1), and hence the evolution operator. Thus Eq. (2), which
is a direct consequence of the principle of the superposition, can be regarded as
an equation of motion for states of a quantum system. This equation allows one
to construct the evolution operator by using the contributions from fundamental
processes as building blocks. In the case of Hamiltonian dynamics, the fundamental
interaction is instantaneous. The generalized interaction operator describing such
an interaction is of the form

Hing(to,t1) = —2i6(ty — t1)Hi(t1) , (4)

where the delta function §(¢2 —t1) emphasizes that the interaction is instantaneous.
In this case Eq. (2) is equivalent to the Schrodinger equation [3], and the operator
Hi(t) is an interaction Hamiltonian. At the same time, Eq. (2) permits the gen-
eralization to the case where the fundamental interaction in a quantum system is
nonlocal in time, and hence the dynamics is non-Hamiltonian [3].

By using Eq. (1) for U(t, ), we can write

Ult, to) =1+ i / dz exp[—i(z — Hyp)t]

— 00
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x(z — Hy)~'T(2)(z — Hy) ™' expli (z — Ho)to], (5)

where z = x + iy, y > 0, and Hy is the free Hamiltonian. The operator T'(z) is
defined by

T(z) =i / drexp(i27)T(7), (6)
0

where T'(7) = exp(—i Hota)S(t2, t1) exp(i Hoty), and 7 = t5 — t;. In terms of the T-
matrix defined by Eq. (6), the generalized dynamical equation (2) can be rewritten
in the form [3]

Ao T(2) 1) Z (2| T(2)[n) (n| T (2)[1)

dz (z — Ep)? ’ @

n

where n stands for the entire set of discrete and continuous variables that charac-
terize the system in full, and |n) are the eigenvectors of Hy. As follows from Eq.
(4), the boundary condition for this equation is of the form

(2| T'(2)[91) ‘z‘ijz\B(«z)Wﬂ +o(|2|7"), (8)
where
B(z) = i/dT exp(i ZT)IT{i(mst)(T)7 (9)
0

and H') (ta — t1) = exp(—i Hota) Hint (t2,t1) exp(i Hoty) is the interaction operator

int

in the Schrodinger picture. As can be seen from Egs. (8) and (9), the operator B(z)
represents the contribution which H-(S)(T) gives to the operator T'(z).

int

3. Chiral dynamics and the NN interaction operator

The Weinberg program implies the employment of the analysis of diagrams in
ChPT for deriving the chiral NN potential, which is assumed to be a sum of irre-
ducible diagrams involving only two external nucleons. Here irreducible diagrams
are two-nucleon irreducible: Any intermediate state contains at least one pion or
isobar. The motivation for this is as follows. If we assume that the two-nucleon
T-matrix satisfies the LS equation with the interaction potential (p2|V|p1), then
in the limit |z] — oo the operator T'(z) must behave as

(P2|T(2)|p1) lzl:)oo<P2|V\P1>- (10)
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Since any reducible diagram can be constructed from irreducible ones by connecting
the latter with intermediate two-nucleon states whose evolution is described by the
free Green operator Go(z) = (z—Hy) ™1, reducible diagrams tend to zero as |z| — oo
and hence do not contribute to the potential (ps|V|p1). For this reason, it is natural
to use the sum of irreducible diagrams as a potential describing a “fundamental”
interaction in the two-nucleon system. In addition, as follows from Eq. (6), the
large-z behavior of the T-matrix relates to the behavior of the operator S (ta,t1)
in the limit of infinitesimal duration times of interaction in the system when this
operator describes a fundamental interaction in the system. At leading order of
Weinberg power counting, we have two types of irreducible diagrams: The one-
pion-exchange diagram and the diagram describing the contact interaction. The
corresponding chiral potential is of the form

(p2|VIp1) = Vope(P2, P1) + Cs + Ct 01 - 02, (11)

where Vopg(p2, p1) is the one-pion exchange (OPE) potential

2

giA 7(1 ) 0-1 q ) 0—2 T . T
2]‘2 q2 n m% 1 2,

with q = p2 — p1. The coupling ga is the axial coupling constant, m, is the pion
mass, fr is the pion decay constant, and o(7) are the Pauli matrices acting in spin
(isospin) space. In the 1Sy channel, the chiral potential can be rewritten in the form

Vore(P2,P1) = — <

(P2|V[p1) = Co + Vz(p2, P1), (12)
where
dmo, gim?2
CO = CS - 30’1“, Vﬂ-(pg,pl) = _m and Aqr = 87rf72r . (13)

However, the potential (11) is singular and the Schrédinger equation makes no
sense without regularization and renormalization. The reason for this is that the
chiral Lagrangian is only of formal importance. In addition, one has to specify a
renormalization scheme to make the physical predictions finite. The formal chiral
Lagrangian determines the structure of the theory. In particular, it determines
the structure of the two-nucleon T-matrix, i.e., its dependence on the momenta
of nucleons. On the other hand, this T-matrix must satisfy Eq. (7), and there is
the one-to-one correspondence between the large-momentum behavior of the T-
matrix and the character of the dynamics in the two-nucleon system [3]. As will be
shown below, in order to establish such a behavior, one need not enter into detail
and perform renormalization of diagrams: This behavior directly follows from the
form of the chiral Lagrangian. This gives us the hope that, using the structure of
the two-nucleon diagrams, which follows from ChPT together with the requirement
that the T-matrix satisfy the generalized dynamical equation, may allow one to find
a true asymptotic behavior for T'(z). By using this behavior, one can then derive
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the NN interaction operator. With such an operator, the generalized dynamical
equation permits one to construct the two-nucleon T-matrix without resorting to
regularization and renormalization.

The form of the chiral Lagrangian specifies the dependence of the two-nucleon T-
matrix on the momenta of nucleons. From the analysis of the time-ordered diagrams
in ChPT, it follows that the leading order two-nucleon T-matrix should be of the
form

(P2|T'(2)|p1) = too(2) + tor(z, P1) + to1(2, P2) + t11(2, P1, P2) - (14)

In fact, there are two kinds of vertices in the leading order diagrams: The vertex
which corresponds to the contact interaction without derivatives and is a constant,
and the 7NN vertex. The term tgo(z) describes the contribution from the time-
ordered diagrams in which the initial and final vertices are the above contact ones.
The term tg1(z,p1) is the contribution from the diagrams in which the initial and
final vertices are the 7NN and contact ones, respectively. Correspondingly, the
initial and final vertices in the diagrams which contribute to the term ¢11(z, p1, p2)
are the 7NN ones. Thus Eq. (14) represents the structure of the leading order two-
nucleon T-matrix which results from the form of the chiral Lagrangian. As we have
noted, the character of the dynamics of a system is determined by the behavior
of T'(z) in the limit |z| — oo. Let us examine this behavior of the two-nucleon
T-matrix (14) using the fact that this T-matrix must satisfy Eq. (7). The main
contribution to t11(z, p1,p2) in the limit |z| — oo comes from the two-nucleon
irreducible diagram describing the one-pion-exchange processes, and, for the 1S
channel we have

ti1(z,p1,p2) — Vz(pP1,pP2). (15)

|z| =00

Since there are no irreducible diagrams which contribute to the terms to1 (2, p) and
t10(2, p1), it is natural to assume that ‘ l‘im to1(z,p) = ‘ llim t10(z,p) = 0. At the
Z|—00 zZ|—00

same time, one might think that in this limit the function ¢ (z) tends to a nonzero
constant Cy playing the role of a contact potential. However, such a potential is
singular and leads to UV divergences. This is a manifestation of the fact that
the large-momentum behavior of the T-matrix shown in Eq. (14) does not satisfy
the requirements of Hamiltonian formalism. There are no potentials which could
generate the T-matrix of such a form, and hence the dynamics of the system is
non-Hamiltonian. On the other hand, the form of the two-nucleon T-matrix shown
in Eq. (14) is not at variance with the requirements of the GQD. Such a form of
the T-matrix corresponds to the case of a nonlocal-in-time interaction when the
dynamics is non-Hamiltonian. In this case, the contact term must tend to zero as
|z]| = oo [5].

The large-z behavior of T'(z) is determined by Eq. (7). From this equation, it
follows that too(2) and ¢;;(z, p) satisfy the equations:

dtoo(z) _ _/ d3]€ (too(z) + t01(Z, k)) (too(z) + tlo(z,k)) (16)

dz (2m)3 (z — Ex)? ’
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dtor(2,p) _ [ d®k (too(2) +to1(2,k)) (tor(z,p) + tui (2, k, p))
dz /(271')3 (z — Ep)? (17)
dtio(z,p) [ d®k (tio(2,P) +t11(2,p,k)) (too(2) + tio(2,k))
e B - 18)

Since to1(z, p) and t10(z, p) describe the contribution from diagrams which consist
of connected diagrams corresponding to the terms tgo(2z) and ¢11(2, p1,p2), in the
limit |z| — oo the terms ¢p1(z, p) and t19(z, p) must tend to zero faster than the
term too(z). Taking this fact into account, from Eq. (16) we get

dtgo(2) 2/ A3k 1
i (too(2)) (27)3 (z — Eg)?’ ] = oo.
From this equation it follows that
too(2) = bi(=2) "% +o(|z[7?), [z = oo, (19)

where by = —4n/(M+/M). Substituting this expression into Eq. (17) and taking
into account Eq. (15), one obtains

dto1 (2, p) _ by d*k (Vz(k,p) + to1(z,p)) +o(|2]72)
az V2) @ B |

From this equation we get

to1(z,p) = Boi(z,p) +o(|2] "), 2| — oo,

where

b d3]€ VTI' k7
Boi(z,p) = \/ifz (2m)3 (2 (* Epk)) '

In the same way, for tio(z,p), we get ti0(2,p) = Bio(z,p) + o(|z|7!), where
Bio(z,p) = Bo1(z,p). Equation (19) represents the first term in the asymptotic
expansion of tgo(z). In order to obtain further terms in this expansion, let us write
the equation for oo (2) = too(2) — by(—2)~1/2

dfo()(z) _Qb%/dsk‘ld?’kg Vﬂ—(kl,k2>

dz =z (2m)8 (2 — Ej,)?(z — Ek,)
_ 2h Bk too(2) oflz]=2) = 7{700(2) b o(|z| 72
V=2 ) (2m)3 (z — Ey)? ol ™) = 2z 2T (12175, (20)

where

by = —2b%4 Sard®er o 221 - 2 )
3= —2idman [ =555 (a1 —a2) "(1—qi/M)""(1 —q3/M) ",
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with q; = p;/v/2. Here we have used Eq. (16) and the above expressions for
too(z), to1(z,p) and t19(z,p). The solution of Eq. (20) is of the form tgo(2) =
—by/z —bzInz/z+ o(|z| 1), where by is a free parameter, and hence

too(2) =

———b37—|—0(|z|71), |z| = o0.

Thus the requirement that the T-matrix be of the form (14) and satisfy the gen-
eralized dynamical equation determines its behavior for |z| — oo up to one free
parameter, by,

bl b2 Inz

(p2|T'(2)[p1) = = by— + Bo1(z,p1) + Bio(z, p2)

+V7r(p17p2) + 0(|Z‘_1)a |Z| — 00. (21)

Knowing the terms in the asymptotic expansion of (ps|T(z)|p1) represented in Eq.
(21) is sufficient to construct the T-matrix, and hence they determine the effective
interaction operator, which governs the dynamics of a two-nucleon system. Thus in
the 1Sy channel, this operator is of the form

by b Inz
—— — —= —b3— + By (z, + Bio(z, + Va(P1,P2). (22
N 37, 01(2,pP1) 10(2, P2) (P1,P2). (22)

The corresponding NN interaction operator HI(I;) (1) can be obtained by using Eq.
(9). The generalized dynamical equation with this nonlocal-in-time interaction op-
erator is well defined and allows one to construct the T-matrix without regulariza-
tion and renormalization. It can be shown that the solution of Eq. (7) with this

interaction operator is of the form

(P2|B(2)|p1) =

B2/ T(:)[p1) = 1121, p2) + x(=pa)x( 1) [0 = G 0,0)] L (23)

where

Vi (ky, ko)
(8 - Ek1)2(s - Ek2)

r 37 13
G (0,0) = (471')_1M3/2\/—z—2/d3/ dhd ks
(2m)S
0

/d3k1d3k2d3k3 Vi (ki, ko)1t (2, ko, K3)
(2m)? (2 = By, )(2 — E,) (2 — Ek,)

d3k TL (Z7 P, k)

and X(Z»P):H/Wm

C = —(47)?M—3b; ! and Ty (2, ko, ky) is the solution of the LS equation with the
Yukawa potential V; (ko, k;). For the scattering amplitude, we then get

Ap) = Ac — (B )Y [0 - @R 0.0)] (24
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where A, is just the amplitudes one finds in the pure Yukawa theory with the
potential V,(p2, p1). This expression for the scattering amplitude is exactly what
Kaplan, Savage and Wise have obtained in Ref. [8] by summing and renormalizing
the relevant diagrams in the EFT of nuclear forces. Equations (5) and (23), can
then be used for constructing the evolution operator describing the dynamics of the
two-nucleon system in the 1Sy channel.

4. Conclusion

We have shown that the formalism of the GQD provides a new way to realize
the Weinberg program for deriving the forces between nucleons from the analysis
of diagrams in ChPT. The Weinberg proposal was based on the assumption that
the low energy nucleon dynamics is governed by the Schrédinger (LS) equation,
and hence what one has to derive from the analysis of diagrams in ChPT is an
NN potential. However, as we have seen, this equation with the NN chiral po-
tentials derived in this way makes no sense without renormalization. At the same
time, there is no reason to expect that low-energy nucleon dynamics is necessar-
ily governed by the Schrdodinger equation. In principle it may be governed by the
generalized dynamical equation with a nonlocal-in-time interaction operator when
this equation is not equivalent to the Schrédinger equation. In the present paper,
we have shown that really at leading order of the Weinberg power counting, low-
energy nucleon dynamics is governed by the generalized dynamics equation with
the nonlocal-in-time interaction operator (22) which is well defined and does not
require renormalization. The problem with the UV divergences arise when we try
to extract from the analysis of the diagrams in ChPT an NN potential, while really
in the low-energy limit ChPT leads to nucleon dynamics that is generated by a
nonlocal-in-time NN interaction. This means that in order to realize the Weinberg
program in a consistent way, instead of the LS equation, one should use the gen-
eralized dynamical equation being a more general equation of motion than the LS
equation.

It should be noted that, from the physical point of view, the fact that the chiral
potentials lead to UV divergences means that the LS equation with such potentials
does not provide a good separation of the low-energy scale from the scale of the
underlying high-energy physics. Such a separation of the scales is needed for the
low-energy theory in which nucleons and pions emerge as the only effective degrees
of freedom to be self consistent. In the standard EFT approach, the needed sep-
aration of the scales is achieved by using renormalization. The advantage of the
use of the generalized dynamical equation is that this equation provides the good
separation of the scale of the low-energy nuclear physics from the scale of the un-
derlying high-energy physics without renormalization. This allows one to formulate
the effective theory of nuclear forces as a perfectly consistent theory, keeping all
advantages of the traditional nuclear physics approach based on the use of “real-
istic” potentials: In this case we deal with a well defined equation of motion that,
in contrast with the standard EFT of nuclear forces, allows one to construct not
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only the scattering amplitudes, but also the off-shell T-matrix and the evolution
operator. At the same time, the advantage of such a formulation of the theory of
nuclear forces over the traditional approach is that it allows one to construct the
NN interaction operator as an inevitable consequence of the symmetries of QCD
and the basic principles of quantum mechanics without employing any ad hoc form
factors. The leading order NN interaction operator in the 1Sy channel, for example,
should be of the form (22). The solution of Eq. (7) with this interaction operator
yields the two-nucleon T-matrix given in Eq. (23). This T-matrix can be used not
only for calculating the scattering amplitude (in this case we reproduce the results
obtained in Ref. [8] by summing the relevant diagrams and performing regulariza-
tion and renormalization), but also the evolution operator (5). Note that Eq. (23)
determines the off-shell behavior of the two-nucleon T-matrix at leading order. In
other words, our approach allows one to find constrains on the off-shell behavior
of the two-nucleon T-matrix that are placed by the symmetries of QCD. This is
very important because this off-shell behavior may play a crucial role in solving
the many-nucleon problem and is an important factor in calculating in-medium
observables and in microscopic nuclear structure calculations. As is well known,
the “realistic” potentials constructed within the traditional approach cannot guar-
antee a reliable off-shell extrapolation of the two-nucleon T-matrix since they are
all constrained by the two-nucleon phase shifts analysis.
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NUKLEARNE SILE 1Z KIRALNE DINAMIKE

Naginili smo analizu vremenski-uredenih dijagrama dvonukleonske T-matrice u ki-
ralnoj teoriji smetnje. Iz te analize slijedi da nukleonsku dinamiku na niskim ener-
gijama odreduje poopéena dinamicka jednadzba (izvedena u J. Phys. A 32 (1999)
5657] s vremenski nelokalnim operatorom medudjelovanja. Predstavljamo i opera-
tor koji parametrizira medudjelovanje nukleon-nukleon u kanalu 1Sy za vodeéi ¢lan
Weinbergovog brojanja potencija.
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