LETTER TO THE EDITOR

QUASI-ELASTIC KNOCKOUT OF MESONS FROM THE NUCLEON. DEVELOPMENTS AND PERSPECTIVES

V. G. NEUDATCHIN, I. T. OBUKHOVSKY and N. P. YUDIN

Institute of Nuclear Physics, Moscow State University, Vorobievy Gory, Moscow 119899, Russia E-mail address: obukh@nucl-th.sinp.msu.ru

> Received 13 August 2003; Accepted 26 April 2004 Online 14 November 2004

The electroproduction of pions and kaons at the kinematics of quasi-elastic knockout is a powerful tool for investigation of mesonic cloud. A model of scalar $q\bar{q}$ (³P₀) fluctuation in the non-trivial QCD vacuum is used to calculate pion and kaon momentum distributions in the channels $N \rightarrow B + \pi$, B = N, Δ , N^* , N^{**} , and $N \rightarrow Y + K$, $Y = \Lambda$, Σ_0 .

PACS numbers: 12.39.Jh, 25.10.+s, 25.20.Lj UDC 529.12 Keywords: electroproduction of pions and kaons, mesonic cloud, quasi-elastic knockout

Investigation of structure of a composite system by means of quasi-elastic knockout of its constituents has been playing a very important role in microphysics. In a broad sense, the term "quasi-elastic knockout" means that a high-energy projectile (electron, proton, etc.) instantaneously knocks out a constituent – an electron from an atom, a nucleon or a few-nucleon cluster from a nucleus, or a meson from a nucleon – transferring a high momentum in an "almost free" binary collision to the knocked-out particle and leading to controllable changes in the internal state of the target. Exclusive quasi-elastic knockout experiments resolve individual states of the final system. By varying kinematics, one can directly measure the momentum distribution (MD) of a constituent in different channels. The formal description of the quasi-elastic knockout of composite particles (clusters) from atomic nuclei is a well-developed procedure [1]. In a channel of virtual decay $A_{\rm i} \rightarrow (A-4)_{\rm f} + \alpha_n$, the wave function of mutual motion $(A-4)_{\rm f} - \alpha_n$ can be defined as $\Psi_{i}^{f\alpha_{n}}(\mathbf{R}) = c < (A-4)_{f} \alpha_{n} | A_{i} >$, where c is a constant factor. The integration is carried out over the internal variables of the subsystems $(A-4)_{\rm f}$ and α_n and the nondiagonal amplitudes $p + \alpha_n \rightarrow p + \alpha_0$ should be taken into account [2]. The observable MD of the virtual α -particles in the mentioned channel is, in fact,

FIZIKA B 13 (2004) 1, 329–336

a squared sum of a few different comparable components $\Psi_{i}^{f\alpha_{n}}(\boldsymbol{q})$ taken for each n with its own amplitudes of $\alpha_{n} \to \alpha_{0}$ deexcitation. The MDs for various final states f may differ greatly from each other.

The physical content of the "microscopic" hadron theory corresponds, in general, to this concept. It is true, at least, for QCD-motivated quark models taking into account the $q\bar{q}$ pair creation, the flux-tube breaking model [3] or merely the "naive" ³P₀ model [4]. At relatively low energies, the physical nucleon can be described in terms of a Fock column of "bare" nucleons and mesons. The "bare" hadrons in its turn are composed of constituent quarks:

$$|N\rangle = \begin{pmatrix} N & & \\ N & + & \pi \\ N & + & \rho \\ \Delta & + & \pi \\ \Lambda & + & K \end{pmatrix} \longleftrightarrow \begin{pmatrix} (3q)_{N} & & \\ (3q)_{N} & + & (q\bar{q})_{\pi} \\ (3q)_{\Delta} & + & (q\bar{q})_{\pi} \\ (2qs)_{\Lambda} & + & (q\bar{s})_{K} \\ & & \cdots \end{pmatrix}.$$

These effective degrees of freedom could be tested in exclusive experiments on quasi-elastic pion (kaon) knockout, $p(e, e'\pi^+)B$, $B=n, \Delta, N^*, N^{**}$, and $p(e, e'K^+)Y$, $Y=\Lambda, \Sigma^0$, by few-GeV electrons.

In this work, the results of calculations performed on the basis of two approaches, meson-baryon and constituent quark model (CQM), are compared with the data [5] on longitudinal and transverse differential cross sections at specific kinematics of quasi-elastic knockout: a high-momentum ($|\mathbf{k}'| \gtrsim 1-2 \,\text{GeV}/c$) final pion (kaon) at forward angles and a nucleon(baryon)-spectator with small recoil momenta ($|\mathbf{k}| \lesssim 0.3 - 0.5 \,\text{GeV}/c$). The quantitative evaluations performed earlier for the p(e, e' π^+)n reaction on the basis of light-cone wave functions [7] and in terms of non-covariant formalism [8] have demonstrated that both pion and ρ -meson MD can be separately measured in coincidence (missing mass) experiments at quasielastic kinematics. The meson pole diagrams (Fig. 1) dominate in this region, and contributions of π and $\rho(\omega)$ poles can be separately measured if the cross section is separated into longitudinal and transverse parts

$$\mathrm{d}^3\sigma/\mathrm{d}Q^2\mathrm{d}W\mathrm{d}t = 2\pi\Gamma[\epsilon\,\mathrm{d}\sigma_\mathrm{L}/\mathrm{d}t + \mathrm{d}\sigma_\mathrm{T}/\mathrm{d}t].$$

In the meson-pole region the cross section is factorized on electro-magnetic (e.-m.)

Fig. 1. Meson pole diagrams dominating in the pion quasi-elastic knockout.

FIZIKA B 13 (2004) 1, 329-336

and strong (str) parts

$$\begin{split} \frac{\mathrm{d}\sigma_{\mathrm{L,T}}}{\mathrm{d}t} &= \frac{1}{16W^2} \frac{1}{|\mathbf{q}^*||\mathbf{q}_r^*|} \frac{\overline{|\mathcal{M}_{str}|^2}}{(t-m_M^2)^2} \times \begin{cases} \alpha \, F_\pi^2(Q^2)|\mathbf{k}+\mathbf{k}'|_{\mathrm{L,T}}^2 & \text{(pion pole)} \\ (g_{\rho\pi\gamma}^2/4\pi) F_{\rho\pi\gamma}^2(Q^2)|\hat{\boldsymbol{\rho}} \times \mathbf{q}|_{\mathrm{T}}^2 & (\rho\text{-meson pole)}, \end{cases} \\ \text{where} \quad \overline{|\mathcal{M}_{\mathrm{str}}|^2} \ &= \begin{cases} \overline{|\mathcal{M}(\mathrm{N} \to \pi + \mathrm{N})|^2} = 2g_{\pi\mathrm{NN}}^2 \mathbf{k}^2 F_{\pi\mathrm{NN}}^2 (\mathbf{k}^2) \\ \overline{|\mathcal{M}(\mathrm{N} \to \rho + \mathrm{N})|^2} = 2(1+\kappa_\rho)^2 g_{\rho\mathrm{NN}}^2 \mathbf{k}^2 F_{\rho\mathrm{NN}}^2 (\mathbf{k}^2). \end{cases} \end{split}$$

that allows to introduce the "wave function" (w.f.) of meson M $(=\pi,\rho,\mathrm{K})$ in the nucleon

$$\frac{|\Psi_{\mathrm{N}}^{\mathrm{BM}}(k)|^{2}}{\omega_{\mathrm{M}}^{2}(k)} = \frac{\overline{|\mathcal{M}(\mathrm{N} \to \mathrm{M} + \mathrm{B})|^{2}}}{(t - m_{\mathrm{M}})^{2}}$$

with an invariant normalization on "a spectroscopic factor" (the number of mesons in the nucleon) 1

$$S_{\rm N}^{\rm BM} = \int \frac{{\rm d}^3 k}{(2\pi)^3} \; \frac{4 |\Psi_{\rm N}^{\rm BM}(k)|^2}{2 E_{\rm N}(p) 2 E_{\rm B}(p') 2 \omega_{\rm M}(k)} \, . \label{eq:SN}$$

In principle, all components of Fock column can be studied in knock-out experiments, but really the w.f. defined with a measured cross section includes contributions from all intermediate virtual states of a given process. For example, at forward angles the longitudinal part of the $p(e,e'\pi^+)n$ cross section is only determined by the pion pole

$$\frac{\mathrm{d}\sigma_{\rm L}}{\mathrm{d}t} \sim \frac{|R_{\rm p}^{{\rm n}\pi^+}(k)|^2}{4\pi} = \frac{\overline{4|\Psi_{\rm p}^{{\rm n}\pi^+}(k)|^2}}{(2\pi)^3 2M_{\rm N} 2E_{\rm N}(k) 2\omega_{\pi}(k)},$$

while the transverse part at large $Q^2 \gtrsim 2-4 \text{ GeV}^2/c^2$ is determined by the ρ -meson pole $d\sigma_T/dt \sim |R_p^{n\rho^+}(k)|^2/(4\pi)$, because of a large contribution of the e.-m. M1 transition²

$$\rho^+ + \gamma_{\rm T}^* \to \pi^+, \quad \rho^0 + \gamma_{\rm T}^* \to \pi^0, \quad \omega + \gamma_{\rm T}^* \to \pi^0.$$

for transverse (T) photons. Hence the Fock states $n+\pi^+$ and $n+\rho^+$ (or $N+\pi^0$, $N+\rho^0$, and $N+\omega$ for neutral mesons) can be separately measured with the $d\sigma_L/dt$ and $d\sigma_T/dt$ [7, 8].

 $^1\mathrm{In}$ the I.M.F., it gives a momentum distribution of mesons as partons

$$p \to \infty: \quad S_{\rm N\infty}^{\rm BM} = \int \frac{{\rm d}^2 k_\perp}{(4\pi)^2} \, \frac{{\rm d}x}{x(1-x)} \, \frac{|\mathcal{M}({\rm N}\to{\rm M}+{\rm B})|^2}{(M_{\rm N}^2 - W^2(k_\perp^2,x))^2}, \quad W^2(k_\perp^2,x) = \frac{m_{\rm B}^2 + k_\perp^2}{1-x} + \frac{m_{\rm M}^2}{x}.$$

²Note that the most natural process for vector mesons $p+e \rightarrow \rho^++n+e'$ (with the real ρ -meson production) proceeds according to a totally different (vector dominance) scheme with the Pomeron exchange.

FIZIKA B **13** (2004) 1, 329–336

In this work, the model w.f.'s $R_{\rm N}^{\rm N\pi}(k)$ were calculated on the basis of 1) phenomenological vertex form factors (f.f.) and coupling constants

$$F_{\pi NN}(\mathbf{k}^2) = \frac{\Lambda_{\pi}^2}{\Lambda_{\pi}^2 + \mathbf{k}^2}, \quad F_{\rho NN}(\mathbf{k}^2) = \frac{\Lambda_{\rho}^2}{\Lambda_{\rho}^2 + \mathbf{k}^2}, \tag{1}$$

 $with \Lambda_{\pi} \approx m_{\rho}, \ \Lambda_{\rho} = 2m_{\rho}, \ g_{\pi \rm NN} = 13.2, \ g_{\rho \rm NN} = 2.9, \ \kappa_{\rho} = 6.1, \ g_{\rho\pi\gamma} = 0.609 \mu_{\rm p} m_{\pi};$

2) phenomenological π -N potentials of a separable form

$$V(k,k';E) = \frac{f_0(k)f_0(k')}{E - M_{N_0} + 0} - h_0(k)h_0(k'),$$

fitted to the π -N elastic scattering [9, 10], for which the w.f. of π N system

$$R_{\rm p}^{{\rm n}\pi^+}(k) = \frac{f(k, E = M_{\rm N})}{M_{\rm N} - \omega_{\pi}(k) - E_{\rm N0}}$$
(2)

is a residue of the exact πN propagator³ $G(k, k'; E) = f(k, E) f(k', E)/(E - M_N)$ in the nucleon pole $E = M_N$, $E_{N0} = \sqrt{M_{N0} + \mathbf{k}^2}$, where M_{N_0} is a "bare" nucleon mass;

3) the CQM with taking into account a scalar $q\bar{q}$ (³P₀) fluctuation in the nontrivial QCD vacuum [3, 4, 6].

Note that the relation of the phenomenological ${}^{3}P_{0}$ models [3, 4] to the first principals of QCD has not been clearly established because of the essentially nonperturbative mechanism of low-energy meson emission. However, the models [3, 4] have their good points: they satisfy the OZI rule and they make possible reasonable predictions for the transition amplitudes. The most general prediction of the ${}^{3}P_{0}$ model is that the meson momentum distribution in the cloud replicates the quark momentum distribution in the nucleon. For such a prediction, the details of different ${}^{3}P_{0}$ models are not important, and we start here from a universal formulation proposed in Ref. [6]. The interaction Hamiltonian is written in a covariant form as a scalar source of $q\bar{q}$ pairs

$$H_s = g_s \int d^3x \, \bar{\psi}_q(x) \psi_q(x) = g_s \int d^3x \, [\bar{u}(x)u(x) + \bar{d}(x)d(x) + \bar{s}(x)s(x)], \quad (3)$$

where u(x), d(x) and s(x) are Dirac fields for the triplet of constituent quarks (the color part is omitted). Amplitudes of meson emission N \rightarrow M+B and M \rightarrow

³In this model, the w.f. $R_{\rm p}^{{\rm n}\pi^+}(k)$ satisfies a non-trivial normalisation condition

$$\int |R_{\mathbf{p}}^{\mathbf{n}\pi^{+}}(k)|^{2}k^{2}dk + (M_{\mathbf{N}} - M_{\mathbf{N}_{0}})^{-1} \left(\int R_{\mathbf{p}}^{\mathbf{n}\pi^{+}}(k)k^{2}dk\right)^{2} = 1, \quad S_{\mathbf{p}}^{\mathbf{n}\pi^{+}} = \int |R_{\mathbf{p}}^{\mathbf{n}\pi^{+}}(k)|^{2}k^{2}dk < 1.$$

FIZIKA B 13 (2004) 1, 329–336

 M_1+M_2 are defined as matrix elements $\mathcal{M}(N \to M + B) = \langle M | \langle B | H_s | N \rangle$, $\mathcal{M}(M \to M_1 + M_2) = \langle M_1 | \langle M_2 | H_s | M \rangle$, where the initial and final states are basis vectors of constituent quark model (CQM). In the first order of v/c, one can obtain (see Ref. [11] for details)

$$\mathcal{M}(\mathbf{N} \to \pi_{\alpha} + \mathbf{N}) = \frac{5}{3} \frac{\mathrm{i}g_s}{m_{\pi} m_q} \frac{(2\pi b_{\pi}^2 m_{\pi}^2)^{3/4}}{(1 + \frac{2}{3} x_{\pi}^2)^{3/2}} F_{\pi \mathrm{NN}}(\mathbf{k}^2) \tau_{\alpha}^{(\mathrm{N})\dagger} \boldsymbol{\sigma}^{(\mathrm{N})} \cdot \left[\mathbf{k} - \frac{\omega_{\pi}(k)}{2M_{\mathrm{N}}} (\mathbf{P} + \mathbf{P}') \right],$$
(4)

where b and b_{π} are parameters of CQM (nucleon and pion radii respectively), $x_{\pi} = b_{\pi}/b \approx 0.5$ and the strong π NN form factor has a Gaussian form $F_{\pi NN}(\mathbf{k}^2) = \exp\left[-\frac{1}{6}k^2b^2\left(1+\frac{1}{6}x_{\pi}^2/(1+2x_{\pi}^2/3)\right)\right]$ characteristic of the harmonic oscilator (h.o.) wave functions. Equation (4) should be compared with the standard definition of pseudo-vector (P.V.) vertex for point-like nucleons and pions to obtain the normalization condition for $g_{\rm s}$ on the P.V. coupling constant $f_{\pi NN} \approx 1.0$

$$f_{\pi NN} = \frac{5}{3} \frac{g_{\rm s}}{m_q} (2\pi b_\pi^2 m_\pi^2)^{3/4} (1 + \frac{2}{3} x_\pi^2)^{-3/2}, \quad g_{\pi NN} = \frac{2M_{\rm N}}{m_\pi} f_{\pi NN}.$$
(5)

Starting from this value of g_s , we have calculated amplitudes for all transitions $N \rightarrow \pi^{\alpha} + B$ and $N \rightarrow K^{\alpha} + Y$. For the ρNN and $\rho \pi \gamma$ vertexes, we have obtained

$$\mathcal{M}(\mathbf{N} \to \rho_{\alpha}^{(m)} + \mathbf{N}) = \frac{g_{\rho \mathrm{NN}}}{2M_{\mathrm{N}}} \tau_{\alpha}^{(\mathrm{N})^{\dagger}} \boldsymbol{\epsilon}_{\rho}^{(m)^{*}} \cdot \{\mathbf{P} + \mathbf{P}' - (1 + \kappa_{\rho})\mathbf{i}[\boldsymbol{\sigma}^{(\mathrm{N})} \times \mathbf{k}]\} F_{\rho \mathrm{NN}}(\mathbf{k}^{2})$$
(6)

and
$$\mathcal{M}(\boldsymbol{\rho}+\boldsymbol{\gamma}\rightarrow\boldsymbol{\pi}) = g_{\rho\pi\gamma} \frac{|\mathbf{q}|}{m_{\pi}} \boldsymbol{\epsilon}_{\gamma}^{(m)} \cdot [\hat{\boldsymbol{\rho}} \times \hat{\mathbf{q}}] [\boldsymbol{\rho} \times \boldsymbol{\pi}]_{I_z=0} F_{\rho\pi\gamma}(\mathbf{q}^2),$$
 (7)

where Eq. (7) is the (spin-flip) matrix element calculated with the spin part of isovector e.-m. quark current $\sim \tau_z^{(q)}(e/2m_q)\mathbf{i}[\boldsymbol{\sigma}^{(q)}\times\mathbf{q}]; \hat{\boldsymbol{\rho}}$ is the ρ -meson polarisation vector, $\hat{\mathbf{q}} = \mathbf{q}/|\mathbf{q}|, \boldsymbol{\epsilon}_{\gamma}^{(m)}$ is the photon polarization vector with transverse sperical components $m = \pm 1$ only, and $\boldsymbol{\rho}, \boldsymbol{\gamma}$ and $\boldsymbol{\pi}$ are isovectors. The coupling constants $g_{\rho NN}, (1+\kappa_{\rho})g_{\rho NN}$, and $g_{\rho\pi\gamma}$ are calculated with the fractional parentage coefficients technique on the basis of CQM

$$g_{\rho \rm NN} = \frac{g_{\rm s}}{m_q} \frac{m_\pi}{3m_\rho} (2\pi b_\rho^2 m_\rho^2)^{3/4} (1 + \frac{2}{3}x_\rho^2)^{-3/2}, \quad 1 + \kappa_\rho = 5, \quad g_{\rho\pi\gamma} = \frac{2}{3} \frac{em_\pi}{2m_q}.$$
 (8)

The momentum distribution of pions in the nucleon $|R_{\rm p}^{n\pi^+}|^2$ calculated [Eq. (2)] with phenomenological πN potentials [9, 10] and with the monopole ($\Lambda_{\pi} = 0.6 \text{ GeV}/c$) vertex f.f. (1) are shown in Fig. 2 (left panel, solid line). The dashed line corresponds to Afnan's πN potential [9], and the dash-dotted line to the Lee's potential [10]. We see that the latter is rather far from the solid line and, consequently, from the experimental data. The MD and strong form factors for the channels $\pi+N$, $\pi+\Delta$, $\pi+N_{1/2^-}$ (N*) and $\pi+N_{1/2+}$ (N**) calculated on the basis of the

FIZIKA B 13 (2004) 1, 329–336

Fig. 2. The pion MD calculated in 1) phenomenological πN models [9, 10] (left panel); 2) the ³P₀ model (central panel: for $\pi + N$ and $\pi + \Delta$ channels, right panel: strong form factors for $\pi + N$, $\pi + N^*$ and $\pi + N^{**}$ channels.

 ${}^{3}\mathrm{P}_{0}$ model are shown in the central and right panels of Fig. 2. For comparison, the form factor (1) for $\Lambda_{\pi} = 0.7 \text{ GeV}/c$ (thick solid line) is also shown. One can see that the ${}^{3}\mathrm{P}_{0}$ predictions are in a good egreement with this monopole f.f. up to $|t| \approx 0.5 \text{ GeV}^{2}/c^{2}$. However, the experimental data on Rosenbluth separation [5] are not of high accuracy to resolve a wide interval of Λ_{π} from 0.7 to 1.2 GeV/c, as it is seen from Fig. 3, where the calculated $d\sigma_{L}/dt$ is compared with the data [5] at $Q^{2} = 0.7$ and 3.3 GeV²/c². Nevertheless, it is important to note here that both the absolute value of cross section $d\sigma_{L}/dt$ and the shape of its dependence on $t (\approx -\mathbf{k}^{2})$ are well reproduced by the microscopical models (CQM + ${}^{3}\mathrm{P}_{0}$). In particular, as Fig. 2 (right panel) shows, both the shape of monopole f.f. and the empirical value⁴ $\Lambda_{\pi} \approx 0.6 \div 0.7 \text{ GeV}/c$ find its microscopical foundation. So, our predictions for N $\rightarrow \pi$ +B, B= Δ , N^{*}, N^{**} seem to be useful for future exclusive experiments.

Fig. 3. The longitudinal cross section calculated with phenomenological monopole strong form factors Eq. (1). The data from [5].

The ρ -meson pole contribution to the transverse cross section of pion electroproduction is shown in Fig. 4 in comparison with the data [5] for $Q^2 = 0.7$ and $3.3 \text{ GeV}^2/c^2$. The contribution of pion pole is shown by the dashed line and the sum of ρ and π contribution by the solid line. It is seen that the ρ -pole contri-

FIZIKA B 13 (2004) 1, 329–336

⁴It appears close to the result by Phandaripande et al. [12] related to very different physics.

Fig. 4. The transverse cross section calculated in the ${}^{3}P_{0}$ model. π - and ρ -pole contributions (see comments in the text). The data from Ref. [5].

bution increases with Q^2 and becomes predominant at a few GeV^2/c^2 . Therefore, the ρ NN and $\rho\pi\gamma$ vertices can be studied in exclusive π^+ electro-production experiments, but new more precise data on the Rosenbluth separation are necessary. This is also true for π^0 electro-production, where an interference between ρ^0 and ω contributions can be studied in the transverse cross section.

Unfortunately, the longitudinal and transverse cross sections of the channel N \rightarrow Y+K are not separated in the available data, and we cannot extract the MD of kaons from the experiment as we did for pions. Here we only use an estimated value $d\sigma_L/dt \approx \frac{1}{2}d\sigma/dt$ [5] to compare the ³P₀-model prediction for $d\sigma_L/dt$ with the data Ref. [5] at $Q^2 = 1.35 \text{ GeV}^2/c^2$ (Fig. 5, left panel). So, our calculated results for the MDs of kaons in the channels $p \rightarrow \Lambda + K$ and $p \rightarrow \Sigma + K$ need verification in future experiments with longitudinal virtual photons. Our calculations of these MDs within the ³P₀ model are shown in Fig. 5 (right panel). Predicted spectroscopic factors are $S_p^{K\Lambda} = 0.076$ and $S_p^{K\Sigma} = 0.003$ (for comparison, $S_N^{\pi N} = 0.25$).

Fig. 5. The $d\sigma_L/dt$ cross section (left) and MD (right) for $p + e \rightarrow e' + K^+ + \Lambda(\Sigma_0)$.

FIZIKA B 13 (2004) 1, 329–336

NEUDATCHIN ET AL.: QUASI-ELASTIC KNOCKOUT OF MESONS FROM THE NUCLEON ...

We acknowledge partial support of this work by the Russian Foundation for Basic Research (grant 03-02-17394) and the Deutsche Forshungsgemainschaft (grant Fa67/20-1).

References

- [1] V. G. Neudatchin, Yu. F. Smirnov and N. F. Golovanova, Adv. Nucl. Phys. 11 (1979) 1.
- [2] V. G. Neudatchin, A. A. Sakharuk, V. V. Kurovsky and Yu. M. Tchuvilsky, Phys. Rev. C 50 (1994) 148; Phys. Rev. C 51 (1995) 784.
- [3] N. Isgur, Phys. Rev. D 32 (1985) 189.
- [4] A. Le Yaouanc, L. Oliver, O. Péne and J. Raynal, Phys. Lett. B 71 (1977) 397; 72 (1977) 57.
- [5] P. Brauel, T. Canzler, D. Cords et al., Z. Phys. C 3 (1977) 101; C. J. Bebek, C. N. Brown, S. D. Holmes et al., Phys. Rev. D 17 (1978) 1693.
- [6] E. S. Ackleh, T. D. Barns and E. S. Swanson, Phys. Rev. D 54 (1996) 6811.
- [7] J. Speth and V. R. Zoller, Phys. Lett. B **351** (1995) 533.
- [8] V. G. Neudatchin, L. L. Sviridova and N. P. Yudin, Yad. Fiz. 64 (2001) 1680.
- [9] T.-Y. Saito and I. R. Afnan, Few-Body Systems 18 (1995) 101.
- [10] S. Nozawa, B. Blankleider and T.-S. H. Lee, Nucl. Phys. A 513 (1990) 459.
- [11] I. T. Obukhovsky, A. Faessler, G. Wagner, and A. J. Buchmann, Phys. Rev. C 60 (1999) 035207.
- [12] S. Loucks, V. R. Phandaripande and R. Schiavilla, Phys. Rev. C 49 (1994) 342; Phys. Rev. 149 (1987) 1.

KVAZILASTIČNO IZBIJANJE MEZONA IZ NUKLEONA. RAZVOJ I BUDUĆNOST

Elektrotvorba piona i kaona u uvjetima kvazielastičnog izbijanja je moćna metoda za istraživanje elektronskog oblaka. Primijenili smo model skalarnih fluktuacija $q\bar{q}$ (³P₀) u netrivijalnom QCD vakuumu radi računanja raspodjela impulsa piona i kaona u kanalima N \rightarrow B+ π , B = N, Δ , N^{*}, N^{**}, i N \rightarrow Y + K, Y= Λ , Σ_0 .

FIZIKA B **13** (2004) 1, 329–336