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In this paper we investigate complex solutions of the Bethe equations in the two-
particle sector, both for arbitrary finite number of sites and for the thermodynamic
limit. We find the number of complex solutions (strings) and compare it with the
string conjecture prediction. Some simple properties of these solutions like position
in the spectrum, crossing of levels, connection to the ground state and transforma-
tion to the real solutions are discussed. Counting both real and complex solutions,
we find expected number of highest-weight Bethe states.
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1. Introduction

Among integrable spin chains, those invariant on quantum groups have attract-
edconsiderable interest. The simplest among these are SU(2)q invariant chains.
Open chains have been considered for spin one half [1], spin one [2] and higher spin
[3]. Generalisations to other groups have also been investigated [4,5]. Closed chains
have been introduced later because parallel requirement of quantum-group invari-
ance and generalised translational invariance required introduction of a nonlocal
term in the Hamiltonian [6]. These chains were shown to have interesting proper-
ties. SU(2)q invariant closed chain has ground state with vanishing or nonvanishing
spin depending on the value of the coupling constant [7]. Central charge was found
and it was shown that in particular points of the coupling constant it corresponds
to central charge of minimal unitary series [7,8]. Its excited states and operator
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content was also found [9]. Recently, it was argued that this model is related to
interesting field theories [10] and in particular to the Liouville theory with imag-
inary coupling [11]. A common approach to investigation of integrable models in
general, and of this model in particular, is the Bethe Ansatz method [12,13]. This
method leads to a set of transcendental equations for momenta of quasiparticles.
One class of the solutions has real quasimomenta that can be found by numerical
iteration. However, there are also solutions with complex quasimomenta. Searching
for the latter class of solutions, one usually makes the so-called string conjecture
[14,15]. In particular, it has been used in investigations of some quantum invari-
ant models [16,17] and also in a recent investigation motivated by the relation of
such models to Liouville field theories[18]. However, it was recently pointed in the
context of XXX and XXZ models that string conjecture has exceptions [19–25].
That means, those solutions to the Bethe Ansatz equations are not yet completely
understood. For that reason, in this paper we investigate complex solutions for
the closed quantum-invariant spin chain. In this investigation we shall not use the
string conjecture.

For simplicity, we shall investigate the sector where spin is lower by two units
than the maximal spin. We shall find the number of complex solutions for arbitrary
number of sites N . In the thermodynamic limit, this number is found to be of the
orderN , as expected on the basis of the string conjecture. Next correction will differ
for a finite number from the string-conjecture prediction. If the coupling constant
tends to the Bethe point (cos φ→ 1) in a sufficiently fast manner, then we shall have
an infinite number of exceptions to the number predicted by the string conjecture.
The model in this point coincides with the XXX model and this is consistent with
the results of Refs. [22] and [23]. Further, we shall find that the energy distribution
of complex solutions show simple features and that they are located in a narrow
energy band. In particular, they are located on the top of the spectrum near the
antiferromagnetic point and on the bottom near the ferromagnetic point. Energy
levels cross each other as coupling constant changes. There are no such crossings
in the XXZ model. We also find that solutions of the one of the two classes of
bound states (strings) evolve in real solutions in the special points for the coupling
constant, where we know that the representation theory is not isomorphic to usual
SU(2). It will turn also that at least one of overall ground states evolves in the
string state. This happens in a region of coupling constant where it is not more a
ground state.

As already anticipated, we shall consider the Hamiltonian

H = Nq −
N−1∑
i=1

Ri −R0 (1)

R0 = GRN−1G−1 (2)

G = R1R2....RN−1 , (3)
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where Ri are 4× 4 matrices given by

Ri = σ
+
i σ
−
i+1 + σ

−
i σ
+
i+1 +

q + q−1

2

(
σ3i σ

3
i+1 + 1

)− q − q−1
4

(
σ3i − σ3i+1 − 2

)
. (4)

Here q denotes a parameter which lies on unit circle

q = eiφ , (5)

and φ will be called coupling constant. The operators Ri satisfy the Hecke algebra

R2i =
(
q − q−1)Ri + 1 (6)

RiRi+1Ri = Ri+1RiRi+1 . (7)

As a consequence,

[G,H ] = 0 . (8)

It was also shown that this Hamiltonian is invariant on the SU(2)q symmetry group
whose generators are given by

S3 =
1

2

L∑
i=1

1⊗ . . .⊗ σ3i . . .⊗ 1 (9)

S+ =
L∑
i=1

q−σ
3/2 ⊗ ....σ+i ⊗ .......⊗ qσ

3/2. (10)

[S+, S−] =
q2S

3 − q−2S3
q − q−1 . (11)

Hamiltonian of the model is highly nonlocal, but due to the Hecke algebra, it is still
integrable. It can be diagonalized, e.g., with the coordinate Bethe Ansatz method
[7]. The energy eigenfunctions of the spin s

s =
N

2
−M, (12)

with M spins down can be written as

|ψM〉 =
∑

1≤n1≤n2...≤nM≤N
ψM (n1, . . .nM ) |n1 . . .nM 〉 . (13)
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The ψM functions are given by

ψM (n1, . . .nM ) =
∑
P

exp


i

 M∑
j=1

kPjnj +
1

2

∑
1≤j≤l≤M

ΦPj,Pl




 . (14)

Here the sum runs over the elements of the permutation group SM . The phase
shifts Φj,i have the following simple expression

Φj,i = 2 arctan
cos φ sin[(kj − ki)/2]

cos[(kj + ki)/2]− cosφ cos[(kj − ki)/2] . (15)

The quasimomenta ki, i = 1 . . .M form a solution of the Bethe Ansatz equations

Nki + φ (2M −N − 2) +
M∑
j=1

Φi,j = 2πλi i = 1 . . .M. (16)

TheM Bethe numbers Ii, i = 1 . . .M are half integers (integers) forM even (odd).
In terms of quasimomenta ki, i = 1 . . .M , the energy E and generalized momentum
P read

E = 2

M∑
i=1

(cos φ− cos ki) , (17)

P =

M∑
i=1

ki − φ(N −M − 1) . (18)

Operator G is then

G = e−iP . (19)

Due to SU(2)q symmetry, one can use its representation theory to classify the
states. In fact, for generic q we have the same multiplet structure as for usual
SU(2). However, for

qp = ±1 p integer, (20)

additional degeneracy occurs [1,6]. In particular, representations of spins j
′
= j+np

and j
′
= p − 1− j − np mix. Here n is an integer. In order to get representations

isomorphic to SU(2), one has to exclude also

j = np− 1/2 . (21)

Only the remaining representations (called ‘good’ representations) with

j <
p− 1
2

(22)
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are isomorphic to SU(2). The parameter q, which is a root of unity, can be written
as

q = eiπp
′/p . (23)

It has been shown [1] that for p′ = 1, the representations are unitary. We shall find
later that the points defined by (23) will play a role in the evolution of complex
solutions into real ones when we vary the coupling constant. Let us for the moment
concentrate on the generic sector of the parameter q. Due to the already mentioned
property that in this case we have the usual SU(2) multiplet structure, it is sufficient
to find the highest-weight states. Other states can be constructed [7] by application
of the generator J−. It is known that the highest-weight states correspond to sets
of {ki}, i = 1 . . .M where the quasimomenta satisfy

ki /=φ . (24)

In fact, we can identify in advance Bethe numbers which lead to the non-highest-
weight solutions. Let us assume that for some i = l we have

kl = φ . (25)

A straightforward calculation using (15) shows that

Φl,j (kl = φ, kj) = π − 2φ. (26)

From the Bethe equation (16) for i = l, we obtain

λl =
M − 1
2

. (27)

The highest-weight solutions will be obtained by excluding (27) from the choice of
the Bethe numbers. The ground state for the Hamiltonian (1) was found for the
whole interval 0 ≤ φ ≤ π. In fact, contrary to the XXZ model, the spin zero state is
the ground state only in the π

2
≤ φ ≤ π region. In the rest of the interval, there is a

subregion for each spin, where the ground state has just that particular spin. More
precisely, the total spin s of the ground state depends on the coupling constant φ
according to

J = 0 for
π

2
≤ φ ≤ π

J = s for
π

2(s+ 1)
≤ φ ≤ π

2s
(28)

J =
N

2
for 0 ≤ φ ≤ π

N
.

The Bethe numbers which give ground state are given by

λ =

(
−M − 1

2

)
− 1, . . . ,

(
M − 1
2

)
− 1 (29)
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and

M =
N

2
− s . (30)

It also turns out that the corresponding momenta are real. The natural question
arises, which role play complex solutions of the Bethe equations.

2. Complex solutions in two particle sector

In this section we shall investigate complex solutions of the Bethe equations
(16) without assuming the string conjecture [14,15]. For simplicity, we shall work
in the M = 2 sector. In that case, the Bethe equations (16) take the form

Nk1 +Φ1,2 + φ(2−N) = 2πλ1, (31)

Nk2 −Φ1,2 + φ(2−N) = 2πλ2. (32)

Here we want to look in particular for complex solutions. Due to reality of energy
and generalized momentum, k1 and k2 have to be complex conjugates of each other

k1 = kr + iki, (33)

k2 = kr − iki. (34)

We can express kr and ki by taking sum and difference of equations (31) and (32)

kr =
1

N
[π(λ1 + λ2) − φ(2−N)] (35)

iNki = π(λ1 − λ2)− 2 arctan cos φ sin(iki)

cos kr − cos φ cos(iki) . (36)

With the help of the identity

arctan z =
1

2i
ln
1 + iz

1− iz (37)

and exponentiation of (36), one can obtain

sinh[ki((N/2) − 1)]
sinh(kiN/2)

=
cos kr
cosφ

λ1 + λ2 odd , (38)

cosh[ki((N/2)− 1)]
cosh(kiN/2)

=
cos kr
cos φ

λ1 + λ2 even. (39)

In the further analysis, we shall call the solutions of equation (38) s-solutions and
the solutions of equation (39) c-solutions. The left-hand sides of equations (38) and

458 FIZIKA B (Zagreb) 8 (1999) 3, 453–468



ilakovac et al.: on bethe strings in the two-particle sector of . . .

(39) are monotonously decreasing functions, so we shall have a solution for ki for
any kr for which cos kr is in the interval

s-strings : 0 ≤ cos kr < cosφ(1− 2
N
), (40)

c-strings : 0 ≤ cos kr < cosφ (41)

if cosφ ≥ 0 (0 ≤ φ ≤ π
2
) and

s-strings : cos φ(1− 2
N
) < cos kr ≤ 0, (42)

c-strings : cos φ < cos kr ≤ 0 (43)

if cos φ ≤ 0 (π2 ≤ φ ≤ π). Further, as long as ki /=0, k1,2 /=φ and, therefore,
this solution represents the highest-weight state. Now, we can proceed to find the
number of complex solutions. As a first step, we shall consider leading order in N
when the inequalities (40) and (42) are identical. In this case, for a given coupling
constant φ, the number of complex solutions will depend on the number of values
that kr can take. In order to have one to one correspondence between kr and cos kr,
the sum of Bethe numbers can take 2N−1 different equidistant values. The interval
in kr, for which there are complex solutions, is 2

(
π
2
− φ). As a result, the number

of the string solutions in leading order in N is

1

2π
(2N − 1)(π − 2φ). (44)

If we insist to have kr between π and −π, we should not take Bethe numbers
symmetrically around zero due to the term proportional to φ in Eq. (35). However,
this does not affect the counting argument. To determine the number of complex
solutions more precisely, we have to take into account subleading orders in N in
relations (40) and (42). The allowed interval for the real parts of s-solutions is
smaller than the corresponding interval for c-solutions, and there are no s-solutions
for an interval in kr of length

δkr = 4 arcsin
cos φ

N sin
{
1
2
[arccos cosφ+ arccos(cos φ(1− 2/N))]} . (45)

The number of solutions, which were overcounted in naive formula (44), is integer
part of

n =
2N − 1
π

arcsin
cos φ

N sin
{
1
2 [arccos cosφ+ arccos(cosφ(1− 2/N))]

} . (46)

This correction is a finite number even in the thermodynamic limit (N → ∞).
However, if | cosφ| = 1, correction is infinite and goes as √N . This is true if
| cosφ| → 1 sufficiently fast, more precisely if

N(1− | cosφ|)α = const. and α > 1. (47)
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This is consistent with the fact that φ = 0 or φ = π corresponds to the XXX
chain for which is known that this correction is infinite. This correction represents
at the same time a violation of the string conjecture which was found previously
in the XXX [22,23] and XXZ chains [24,25]. Disappearance of s-solutions (strings)
is followed by appearance of real a solution with two close quasimomenta. These
quasimomenta can be found near the number of sites where s-string disappeared
by numerical iteration of (31) and (32) with the same Bethe numbers λ1 and λ2.
Real solutions of Bethe equations with two identical Bethe numbers also represent
violation of the string conjecture. Evolution of s-strings into real solutions with
identical Bethe numbers can be followed for fixed coupling constant by increasing
the number of sites N . Example is given in Fig. 1 for φ = 0.32.

N

10 20 30 40 50 60 70

k r, 
k 1,

 k
2

-2

-1

0

������

s-string �1=�2 real

Fig. 1. This figure shows dependence of real part of complex s-solutions on num-
bers of sites N for φ = 0.32. It clearly illustrates transmutation of one complex
solution in real solution (two quasimomenta) for a given critical N . These two real
quasimomenta correspond to same Bethe numbers and are obtained by numerical
iteration of equations (31) and (32).

3. Properties of complex solutions

Next, the interesting question we would like to ask is how are complex solutions
(bound states) distributed on the energy scale. From the relations (39), (38) and
(17), we see that complex solutions are confined in the energy band

0 < E(c-strings) ≤ 2 cosφ, (48)
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8 cosφ

N
< E(s-strings) ≤ 2 cosφ. (49)

The left sides of the inequalities correspond to the points in the coupling constant
φ where two complex quasimomenta collide on the real axis and the complex so-
lution becomes a real solution (decay of the bound state). The right sides of the
inequalities correspond to points where ki tends to infinity and so the localisation
of two overturned spins in bound state tends to infinity. This can be seen from the
form of the Bethe wave function (14). The energy band (48) is generally narrow
compared to the overall spread of energy when all solutions are included. As an
illustration of M = 2 spectrum, figures are given for N = 6, N = 8 and N = 10
(Figs. 2, 3 and 4, respectively). We see that all bound states (strings) disappear

�

0 1 2 3

E

-8

-6

-4

-2

0

2

4

6

8

N=6

Real
Complex

Fig. 2. Spectrum of M = 2 sector for N = 6. Energies of both real and complex
solutions of the Bethe equations are plotted.

near the ’free theory’ point φ = π
2 . Energies of the string solutions are on the top

of the spectrum near the Bethe antiferromagnetic point φ = π and on the bottom
of the spectrum near the Bethe ferromagnetic point φ = 0. There is an interesting
question connected to the nature of the overall ground state. We know that for any
finite and even N , the total spin s of the ground state depends on the value of the
coupling φ. In particular, ground state has spin zero for π2 ≤ φ ≤ π and spin s for
[π/(2(s+1)] ≤ φ ≤ π/(2s). The quasimomenta are known and they are all real. We
find that beyond these intervals, there is a region of φ values where these solutions
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become complex. To see this feature, we note that due to the relationM = 1
2
N − s

�

0 1 2 3

E

-10
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-4
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0
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4
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8

10

N=8

Real
Complex

Fig. 3. Same as Fig. 2 but for N = 8.
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10

N=10

Real
Complex

Fig. 4. Same as Fig. 2 but for N = 10.
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and (28), the overall ground state is in the M = 2 sector for

π

N − 2 ≤ φ ≤
π

N − 4 . (50)

In particular, for N = 6, 8 and 10, these intervals in coupling will be
[π4 ,

π
2 ], [

π
6 ,
π
4 ] and [

π
8 ,
π
6 ], respectively. Following this state, we see that at certain

points outside the above intervals the quasimomenta become complex. From the
choice of Bethe numbers (29) we see that this state will become complex c-solution
and the transformation of this real state into string will happen at the E = 0 point.
Generally, we can find points in the coupling constant when the complex solutions
will become real. In the transition points

cosφ = cos kr c-strings (51)

cos φ

(
1− 2

N

)
= cos kr s-strings. (52)

�

0 1 2 3

E

-3

-2

-1

0

1

2

3

N=15
SU(2)q

Fig. 5. Dependence of energies of complex solutions for SU(2)q invariant spin chain
and number of sites N = 15 on coupling constant φ.

For c-strings, this is satisfied for

φ =
π

2(N − 1) [2, ...,N − 4, N − 2] 0 ≤ φ ≤ π

2
(53)
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φ =
π

2(N − 1)[N, ..., 2N − 6, 2N − 4]
π

2
≤ φ ≤ π. (54)

Now we see that the state, which is the overall ground state in the interval (50),
after a change of π/[(N−1)(N−2)] in φ becomes c-string. It is interesting that the
points (53) and (54) correspond to the points (23) where the representation theory
is no more isomorphic to SU(2) and where several multiplets merge together forming
indecomposable combinations [1]. The points where the s-strings disappear are not
of this form because of the correction factor (1− 2/N) in (52).
Crossing of energy levels of complex solutions with the change of coupling con-

stant is one of the features of this model that makes it different from the XXZ
model. This is illustrated in Figs. 5 and 6 in which we follow energy levels of
M = 2 strings for both models and for the number of sites N = 15. The number
of strings is the same in both models. However, in XXZ model there are complex
solutions with ±kr which are degenerated. Presence of a term linear in φ in Eqs.
(16), which can be interpreted as a coupling-constant-dependent toroidal twist in
the XXZ model, removes this degeneracy and causes crossing of energy levels.

�

-1 0 1

E

-3

-2

-1

0

1

2

3

N=15
XXZ

Fig. 6. Dependence of energies of complex solutions for XXZ spin chain and number
of sites N = 15 on coupling constant ∆, which corresponds to cosφ.

4. Real quasimomenta and completeness of solutions of
Bethe equations

We want to enumerate all real solutions of Bethe equations in the two-particle
sector. We start again from Eqs. (31) and (32). After manipulating their difference
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and sum, we obtain the following equations for k = k1 + k2 and k1 − k2
k

2
=
1

N
[π(λ1 + λ2)− φ(2−N)] (55)

sin
(
1
2 (k1 − k2)(12N − 1)

)
sin
(
1
2
(k1 − k2)12N

) =
cos 1

2
k

cosφ
λ1 + λ2 odd (56)

cos
(
1
2(k1 − k2)(12N − 1)

)
cos
(
1
2
(k1 − k2)12N

) =
cos k2
cosφ

λ1 + λ2 even. (57)

One should notice that not all 2N−1 different values of I = λ1+λ2 give different
solutions. Replacing I by N is equivalent to changing one quasimomentum by 2π,
which results in the change of sign of right-hand sides of (56) and (57). This reduces
the number of possible values of I to N , which in turn can be chosen to give positive
values of right-hand sides of (56) and (57). The left-hand sides of the Eqs. (56) and
(57) are periodic functions. Thus in principle, for each of the N different fixed
values of the right-hand side, one can count the number of solutions by counting
the number of intersections. These periodic functions are given in Figs. 7 for N = 9
and N = 10. For N odd we find that the number of intersections equal is to

N eo =
N − 1
2

θ

(
cos k

2

cos φ
− 1
)
+
N − 3
2

θ

(
1− cos

k
2

cosφ

)
I even (58)

Noo =
N − 1
2

θ

(
cos k2
cos φ

− 1 + 2
N

)
+
N − 3
2

θ

(
1− 2

N
− cos

k
2

cosφ

)
I odd (59)

while for N even it is

Nee =
N

2
θ

(
cos k

2

cos φ
− 1
)
+
N − 2
2

θ

(
1− cos

k
2

cosφ

)
I even (60)

Noe =
N − 2
2

θ

(
cos k

2

cos φ
− 1 + 2

N

)
+
N − 4
2

θ

(
1− 2

N
− cos

k
2

cos φ

)
I odd. (61)

The number of complex solutions is just equal to the second θ function in the
expressions above. If we take into account that for N even, there are 1

2
N even and

1
2N odd values of I, and for N odd

1
2(N − 1) even values of I and 12 (N + 1) odd

values of I, we find that for any number of sites N and coupling constant φ there
are

N(N − 1)
2

(62)
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solutions to the Bethe equations in the two-particle sector. Among these solu-
tions, there are N previously identified non-highest-weight states, which have one
of quasimomenta equal to φ. Finally, we obtain

(
N

2

)
−
(
N

1

)
(63)

highest-weight Bethe states.

1 2 3 4 5 6

-2

-1.5

-1

-0.5

0.5

1

1.5

2

N=9, I=even

1 2 3 4 5 6

-2

-1.5

-1

-0.5

0.5

1

1.5

2

N=9, I=odd

1 2 3 4 5 6

-2

-1.5

-1

-0.5

0.5

1

1.5

2

N=10, I even

1 2 3 4 5 6

-2

-1.5

-1

-0.5

0.5

1

1.5

2

N=10, I odd

Fig. 7. Left hand sides of equations (56) and (57) as a functions of k1−k2 for N = 9
and N = 10.

5. Conclusion

In this paper, we have investigated complex solutions of the Bethe equations for
the M = 2 sector of the SU(2)q invariant closed-spin chain for arbitrary number
of sites and coupling constant. We find that some properties of these solutions
are similar to the properties of complex solutions for the normal XXZ chain and
some of them are not. In particular, we find the number of complex solutions both
for a finite N and in thermodynamic limit. This number differs from the number
predicted by the string conjecture for a finite number of solutions. However, if φ→ 0
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sufficiently fast compared to 1/N , the number of exceptions becomes infinite and

goes as
√
N . These properties are essentially the same as in the case of the XXZ

chain. One can follow evolution of string solutions and their disappearance with
decreasing ‘coupling strength’ | cosφ|. One class of strings (c-strings) disappears in
points where the representation of the SU(2)q is no more isomorphic to SU(2). By
increasing the number of sites for fixed coupling constant, strings of the other class
turn into real quasimomenta that can be found by iterating Bethe equations with
two identical Bethe numbers. This is again violation of the string conjecture. The
overall ground state, which is always real, is in the M = 2 sector for the coupling
constant π/(N − 2) ≤ φ ≤ π/(N − 4). This state becomes a complex solution
for φ ≤ π/(N − 1). The energy dependence of string solutions shows some simple
features. The strings are found in a narrow energy band and are located on the
top of the spectrum near the antiferromagnetic point and on the bottom near the
ferromagnetic point. Their energy levels cross each other with the change of the
coupling constant, which is not the case for the XXZ chain. Finally, we find the
number of real solutions. The number of all solutions of the Bethe equations is

(
N
2

)
.

Among these we identify N non-highest-weight states. That leads to the
(
N
2

)−(N
1

)
highest-weight Bethe states.
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BETHEOVE STRUNE U DVOČESTIČNOM SEKTORU ZATVORENOG
SU(2)q INVARIJANTNOG SPINSKOG LANCA

Istražujemo kompleksna rješenja Betheovih jednadžbi u dvočestičnom sektoru za
proizvoljan konačan broj kompleksnih rješenja i za termodinamičku granicu. Nala-
zimo broj kompleksnih rješenja (struna) i uspored–ujemo ga s uobičajenim pret-
postavkama za strune. Raspravljamo neka jednostavna svojstva tih rješenja, kao
položaj u spektru, presjecanje stanja, spoj s osnovnim stanjem i preobrazbu k re-
alnim rješenjima. Brojeći realna i kompleksna rješenja, našli smo očekivan broj
Betheovih stanja najveće težine.
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