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Boubaker polynomials are used to obtain analytical solutions to the one-speed neu-
tron transport equation for strongly anisotropic scattering. The main advantage of
the method lies in proposing solution terms which verify inherent symmetry and
Mark-Marshak boundary conditions prior to resolution process. This original fea-
ture results in convergent and accurate solutions. Boubaker polynomials expansion
scheme is further applied to homogeneous slab problem with strongly anisotropic
scattering and vacuum boundaries. Parallel to the classical formulation, the kernels
for scattered and fission neutrons are originally chosen on the basis of most realis-
tic models. The results, expressed in terms of linear extrapolation distance de, are
recorded and compared to those presented in the related literature.
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1. Introduction

During the past few decades, polynomial expansion analysis has played an im-
portant role in the methods for solving the one-speed neutron transport equation.
The earliest known form of this equation has been presented by Davison [1] and
treated by Case’s singular eigenfunction expansion method (Case) [2, 3]. Consecu-
tively, attempts to develop approximated solution have been performed by Bowden
et al. [4], Bell and Glasstone [5] and many others.

In the present work, a polynomial expansion scheme is proposed in order to
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yield analytical solutions to the one-speed neutron transport equation. The main
feature of the proposed protocol is verifying inherently and conjointly symmetry
and Mark-Marshak boundary conditions. These conditions are ensured mainly prior
to the resolution process, which makes this latter convergent and quicker than those
proposed in the present literature.

2. Theory

2.1. The one-speed neutron transport equation in slab geometry

The considered system is a homogeneous slab extending, in one dimension, from
x = −a to x = a, bounded by a vacuum (Fig. 1).

Fig. 1. Slab geometry.

In this plane geometry, the one-speed neutron transport equation (Davison) [1]
is

ξ
∂φ(x, ξ)

∂x
+ΩTφ(x, ξ)=ΩS

1∫

−1

k̃S(ξ, ξ
′)φ(x, ξ′)dξ′+ ν̄ΩF

1∫

−1

k̃F (ξ, ξ
′)φ(x, ξ′)dξ′, (1)

where x is the spatial coordinate, ξ the direction cosine of the angle between the
neutron velocity and x-axis before scattering, φ the steady-state angular flux/flux
density of neutrons, ΩT the total cross section, ΩS the scattering cross section, ΩF

the fission cross-section, ν̄ the mean number of neutrons emitted per fission, k̃S the

kernel for scattered neutrons, k̃F kernel for fission neutrons and ξ′ the direction
cosine of the angle between the neutron velocity and x-axis after scattering.

k̃F (ξ, ξ
′) represents the 2a-thick slab one-dimensional fission kernel. Since the

fission is supposed to be an isotropic event in local reference frames, this kernel is
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presumed to be constant (Yilmazer) [6]:

k̃F (ξ, ξ
′) =

1

2
. (2)

The expression for k̃S ,the kernel for scattered neutrons, is chosen according to the
backward-forward-isotropic model (Yilmazer and Tombakoglu [7]; Yaşa [8]):

k̃S = k̃l + k̃f + k̃b,

where

k̃l =
1

2
(1− pf − pb)(1 + 3qξξ′) , k̃f = δ(ξ − ξ′)× pf , k̃b = δ(ξ + ξ′)× pb , (3)

where pf are the forward-scattering probabilities in a collision, pb are the backward-
scattering probabilities in a collision and q is the mean cosine of scattering angle.

In Eq. (3), k̃l expresses linearly anisotropic scattering, while k̃f and k̃b represent
the forward and backward scattering, respectively.

By affecting numerical values to the kernels and expressing both x and a in
mean-free-path units, Eq. (1) becomes

ξ
∂φ(x, ξ)

∂x
+ φ(x, ξ) =

1∫

−1

h(ξ, ξ′)φ(x, ξ′)dξ′, (4)

where

h(ξ, ξ′) =
ΩS

ΩT

(0.08 + 0.42δ(ξ − ξ′) + 0.42δ2(ξ + ξ′) +
νΩF

2ΩT

.

In this way, the symmetry and Mark-Marshak boundary conditions have been im-
posed. The Mark-Marshak boundary conditions concern mainly the incoming cur-
rent and the continuity of the angular flux at boundaries, which implies, among
others, the continuity of all angular moments of the neutron flux across the vacuum
edges (x = ±a planes),

φ(x, ξ)
∣∣
x=+a, ξ<0

= φ(x, ξ)
∣∣
x=−a, ξ>0

= 0 . (5)

It has been admitted that these conditions are difficult to simulate. Yilmazer and
Tombakoglu [7] stated that even they can be replaced by imposing a zero incoming
angular flux at the boundaries for some specific values of ξ.

On the other hand, the studied system symmetry imposes

φ(−x, ξ)
∣∣
x∈[−a,a]

= φ(x, ξ)
∣∣
x∈[−a,a]

. (6)
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2.2. Glossary and resolution historic

The earliest known approximated solution to the one-speed neutron transport
equation is mostly attributed to Davison [1], followed by Case [2] and Case and
Zweifel [3]. Their studies were the first attempts to convert the one-speed neutron
transport equation to an algebraic set of eigenvalue equations within a spectral
domain. Later, Bowden et al. [4] transformed the one-speed neutron transport
integro-differential equation plane geometry into a singular integral equation. This
transformation was used and enhanced by Bell and Glasstone [5], Kaper et al. [9],
Greenberg et al. [10].

Several methods were proposed in the last two decades, particularly in the
case of finite slabs, such as the diamond difference implicit trapezoidal (Barros et
al.) [11], the two-region system for the scalar neutron flux (Garis) [12], the differ-
ential approximations (Su [13]) and the multiple collision (De Oliveira et al.) [14]
methods.

Polynomial approximation methods for the solution of transport problems have
been firstly applied by Conkie [15] for the solution in slab geometry. Some poly-
nomial approximations have also been proposed by Levermore and Pomraning [16]
and Pomraning et al. ([17 – 20]) who developed a flux-limited diffusion theory in
models of radiation hydrodynamics, and Ganapol [21] who proposed the use of per-
turbation to develop a numerical method for solving the one-dimensional transport
problem by polynomial reconstruction. In some recent studies (Anli et al., [22];
Yaşa et al. [23]), polynomials expansions have been successfully applied in eigen-
value spectrum calculations and criticality of bare/reflected slab geometries for
isotropic scattering.

A complete glossary of the resolution methods has been detailed by Sahni and
Sjöstrand [24]. The motivation of this panoply of attempts can be summarized
through the sentence of Sahni [25]: “. . . this problem is very complex and a rich

source of interesting mathematical problems. Lot more work still remains to be

done”.

2.3. Boubaker polynomials related properties

The Boubaker polynomials Bm(X) have been established as-such by Oyedum
et al. [26] and Zhang et al. ([27 – 29]). Their particularities have been exploited
and discussed in several publications (Ghrib et al. [30]; Slama et al. [31]; Zhao et
al. [32]; Awojoyogbe and Boubaker [33]; Ghanouchi et al. [34]; Fridjine et al. [35];
Tabatabaei et al. [36]; Belhadj et al. [37]; Lazzez et al. [38]; Guezmir et al. [39];
Yildirim et al. [40]; Dubey et al. [41]).

Zhang [29] and Ben Mahmoud [42] stated that Bm(X) explicit monomial form
raised some singularities for the indices 4q. It has been demonstrated that for
these indices, the 2q-rank monomial term vanished in the manner that B4m(X)
expression is reduced to have 2q − 1 effective terms. The corresponding 4qth-order
Boubaker polynomials are presented in Eq. (7) as a general form, and in Eq. (8)
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the first functions,

B4q(X) = 4

2q∑

p=0

[
q − p

4q − p
Cp

4q−p

]
(−1)pX2(2q−p) . (7)

So we have:

B0(X) = 1 ,

B4(X) = X4 − 2 ,

B8(X) = X8 − 4X6 + 8X2 − 2 ,

B12(X) = X12 − 8X10 + 18X8 − 35X4 + 24X2 − 2 , (8)

B16 = X16 − 12X14 + 52X12 − 88X10 + 168X6 − 168X4 − 48X2 − 2 ,

B20=X20−16X18+102X16−320X14+455X12−858X8+1056X6−495X4+80X2−2 .

Figure 2 presents the graphics of the first 4q-order Boubaker polynomials. Zhao
et al. [32] conjectured from these graphics that the number of real positive roots is
2q − 1, and that they are contained exclusively in the domain [0;2].

Fig. 2. Graphic representation of the first 4q-order Boubaker polynomials.

Many arithmetical and differential properties of the Boubaker polynomials have
been demonstrated (Zhao and Naing [43]), for example,

B4(q+1)=(X4−4X2+2)B4q(X)−B4(q−1)(X) =B∗
4(X)B4q(X)−B4(q−1)(X), (9)

FIZIKA B (Zagreb) 19 (2010) 4, 257–268 261



boubaker: a polynomial analytical solution to the one-speed neutron. . .

B2
4q(X)−B4(q−1)(X)B4(q+1)(X)=X2(X2−1)2(3X2+4)=B∗

8(X), ∀q > 1 (10)

and
n∑

q=1

B2
4q(x) =

1

2x(2x2 − 4)

[
B′

4(n+1)(x)B4n(x)−B′
4n(x)B4(n+1)(x)− 4x3

]
. (11)

The existence of a specific generating function and a unique imaginary root has
been demonstrated by Zhao and Naing [43] who demonstrated also that each 4q-
order Boubaker polynomial has exactly 4q−2 real roots, contained exclusively in the
domain [-2;2]. Tabatabaei et al. [36] and Khélia et al. [44] outlined the arithmetical
properties of the B4n(X) minimal real positive root denoted αn. These properties
gave the fundaments of the Boubaker polynomials expansion scheme (BPES), which
was used for the first time by S. Fridjine et al. (2009) [35] and S. Lazzez et al. [38]
in different applied physics studies.

While solving a Cauchy boundary-type differential equation, the advantage of
the BPES lies in embedding the exogenous boundary condition thanks to properties
of 4q-Boubaker polynomials:

i) Values at boundaries, in the reduced real domain [0;αq]

N∑

q=1

B4q(x)
∣∣∣
x=0

= −2N /=0 ,

N∑

q=1

B4q(x)
∣∣∣
x=αq

= 0 . (12)

ii) first derivatives values at boundaries,

N∑

q=1

dB4q(x)

dx

∣∣∣∣∣
x=0

= 0 ,
N∑

q=1

dB4q(x)

dx

∣∣∣∣∣
x=αq

=
N∑

q=1

Hq , (13)

where

Hn = B′
4n(αn) =

4αn(2− α2
n)
∑n

q=1 B
2
4q(αn)

B4(n+1)(αn)
+ 4α3

n (14)

and

iii) second-derivative values at boundaries

N∑

q=1

d2B4q(x)

dx2

∣∣∣∣∣
x=0

=
8

3
N(N2 − 1) ,

N∑

q=1

d2B4q(x)

dx2

∣∣∣∣∣
x=αq

=

N∑

q=1

Gq , (15)

with

Gq =
d2B4q(x)

dx2

∣∣∣∣∣
x=αq

=
3αq(4qα

2
q + 12q − 2)Hq − 8q(24q2α2

q + 8q2 − 3q + 4)

(α2
q − 1)(12qα2

q + 4q − 2)
.

The last condition (iii) is deduced from the second-order differential equation es-
tablished by Labiadh et al. [45]:
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2.4. Resolution protocol

The standard formulation for the one-speed neutron transport equation, includ-
ing the main boundary conditions, and as deduced from Eqs. (4) – (6), is

ξ
∂φ(x, ξ)

∂x
+ φ(x, ξ) =

1∫

−1

h(ξ, ξ′)φ(x, ξ′)dξ′, (16)

where φ(x, ξ)

∣∣∣∣
x=±a,ξ<0

= 0 , φ(−x, ξ)

∣∣∣∣
x∈[−a,a]

= φ(x, ξ) .

According to the established definition (Zhao et al. [32]; Tabatabaei et al. [36]; Bel-
hadj et al. [37]; Yildirim et al. [40]; Dubey et al. [41]), the 4n-Boubaker polynomials
expansion scheme (BPES) is applied to Eq. (16) by applying the expression

φ(x, ξ) =
1

2N0

N0∑

q=1

ωqB4q(
(
x
αq

a

)
B4N0

(2ξ) , (17)

where αq is the 4q-Boubaker polynomial minimal root, N0 is a prefixed integer, and
ωq

∣∣
q=1,...,N0

are unknown real coefficients.

The main advantage of this formulation consists undoubtedly in verifying in-
herently both symmetry and Mark-Marshak boundary conditions.

This way, Eq. (16) is equivalent to the unique equation

ξ

N0∑

q=1

ωq

αq

a

d 〈B4q (xαq/a)〉

dx
B4N0

(2ξ) +

N0∑

q=1

ωqB4q

(
x
αq

a

)
B4N0

(2ξ)

=

1∫

−1

h(ξ, ξ′)

N0∑

q=1

ωqB4q

(
x
αq

a

)
B4N0

(2ξ′)dξ′ , (18)

which is equivalent, by integrating along the interval [a,+a] for x and [1,+1] for ξ,
to the equation

N0∑

q=1

ωqAq =

N0∑

q=1

ωqA
′
q , (19)

with

Aq

∣∣∣∣
1≤q≤N0

=

a∫

−a




1∫

−1

(
ξαq

a
B′

4q

(
x
αq

a

)
+B4q

(
x
αq

a

))
B4N0

(2ξ)dx


 dξ ,
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A′
q

∣∣∣∣
1≤q≤N0

=

a∫

−a




1∫

−1




1∫

−1

h(ξ, ξ′)B4q

(
x
αq

a

)
B4N0

(2ξ′)dξ′


 dξ


 dx . (20)

These integrals are calculated thanks to the 4q-Boubaker polynomial database along
with the knowledge of the global kernel h(ξ, ξ′) (Eq. (3)). A solution to the main
equation is obtained by determining the set of coefficients ωopt

q

∣∣
q=1,...,N0

which

minimises the function ηN0
,

ηN0
=

(
N0∑

q=1

ωopt
q Aq −

N0∑

q=1

ωopt
q A′

q

)2

. (21)

The obtained solution is finally presented as a continuous and indefinitely derivable
expression

φ(x, ξ) =
1

N0

N0∑

q=1

ωopt
q B4q

(
x
αq

a

)
B4N0

(2ξ) . (22)

Among the parameters deduced from the solution, like the eigenvalues spectrum,
the extrapolated end point and slab critical size, the relevancy of the linear extrapo-
lation distance de has been outlined by many studies (Yilmazer and Tombakoglu [7];
Yaşa [8]; Yilmazer [6]).

This parameter is defined as the distance outside the physical boundary at
which a linear extrapolation reaches zero. From a mathematical point of view,
there are many ways to define this extrapolation distance (Woznicka [46]; Dahl and
Sjöstrand [47]; Pomraning and Szilard [48]. Most commonly, the linear extrapo-
lated distance de is defined as the distance from a vacuum boundary at which the
asymptotic flux (extended by its natural curvature with distance) vanishes (Fig. 3).

In the actual study, the linear extrapolation distance de is calculated as the
absolute value of the ratio of the asymptotic flow to its derivative in the direction
perpendicular to the surface,

de =

∣∣∣∣∣∣

(
φ(x, ξ)

∣∣∣∣
x=0

/
dφ(x, ξ)

dx

∣∣∣∣
x=0

)

ξ=0

∣∣∣∣∣∣
. (23)

Since the remaining variable parameters in Eq. (4) are solely ΩS , ΩT , ΩF and ν̄,
the obtained values of de have been indexed on the synthetic parameter c which
represents the mean number of secondary neutrons per collision

c =
ΩS + ν̄ΩF

ΩT

. (24)

The obtained values of de, for various values of c and for N0 = 7 are presented in
Fig. 4, along with the precedent results published by Yaşa [8] and Davison [1].
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Fig. 3. The linear extrapolation distance de.

Fig. 4. Values of de versus c along with precedent results (Yaşa [8], Davison [1]).

3. Discussion and perspectives

Figure 4 presents calculated linear extrapolation distance de for various values
of collision parameter c, in comparison with the integral transport results of Yaşa [8]
and Davison [1] for the cases of strongly backward-forward and linearly anisotropic
scattering.

A complete agreement with the results of Yaşa [8] can be observed for values of
c around unity (c ≈ 1.0) or in the diffusion limit for close backward and forward
scattering probabilities. Inconsistencies encountered regarding the earliest solution
Davison [1] have been discussed previously by Williams [49]. It has been stated
that under the presumption of anisotropic fission kernel, approximations used by
Davison [1] may not converge or converge slowly. More importantly, differences
encountered at limiting cases of a highly reflecting (c ≈ 0.4) or a purely absorbing
(c ≈ 1.6) medium, could easily be explained by the fact that scattering and fission
kernels have been handled, by the referred model, as two independent parameters,
far from the actual study’s embedded kernels approach.
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On the other hand, it should be remarked that the actually used polynomial
procedure is in some sense an analytical ordinate one but in which symmetry and
boundary conditions are definitely ensured before final resolution. This feature
lightens drastically the resolution system size and hence avoids inaccuracies that dis-
crete ordinate procedures encounter when the integrand is too ill-behaved (Bowden
and Bullard [50]) to be approximated by a polynomial expansion. In this context,
it could be mentioned that the “difficulties in convergence encountered with polyno-

mial methods” evoked by Yildiz [51] and Williams [49], could have been avoided if
boundary conditions were not forced at the same level as the main equation during
the resolution process.

4. Conclusion

In this study, a recently proposed version of the Boubaker polynomials expansion
scheme (BPES), which was used in several applied and theoretical physics problems,
has been further developed to slab geometry for strongly anisotropic scattering.
Backward-forward isotropic model has been chosen for the scattering kernel as a
combination of linearly anisotropic and strongly backwardforward kernels. Further
to that, the realistic approach of using an isotropic fission kernel in the transport
equation has been implemented.

The obtained values of the linear extrapolation distance de are almost in com-
plete agreement with the recent literature data except for some limiting cases. More
importantly, it is observed that precedent models, which considered the same ker-
nels for fission and scattering, yielded deviations in linear extrapolation distances
in comparison with the values presented in the literature of the last decades.

Regarding the convergence and speed of the resolution process, it has been
noted that the establishment of polynomials expansions which verify conjointly and
inherently symmetry and Mark-Marshak boundary conditions reduces calculation
systems size and produces faster convergent results.

The obtained results can easily be extended to the more general case where the
scattering can be approximated functionally as a self-standing polynomial expan-
sion expressing strongly backward/forward kernel components. This approximation
awaits to be exploited later.
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POLINOMNO ANALITIČKO RJEŠENJE ZA JEDNOBRZINSKO
RAZLAŽENJE NEUTRONA U SLOJU UZ PROVJERENO SADRŽANE

MARK-MARSHAKOVE GRANIČNE UVJETE

Primjenjuju se Boubakerovi polinomi za dobivanje analitičkog rješenja jednadžbe
za razlaženje neutrona jedne brzine pri jako anizotropnom raspršenju. Osnovna
prednost metode sastoji se u traženju rješenja preko članova koji provjeravaju un-
utarnju simetriju i Mark-Marshakove granične uvjete prije postupka razvoja. Ta
izvorna odlika vodi na konvregentna i točna rješenja. Boubakerova se polinomna
shema razvoja zatim primjenjuje na problem jednolikog sloja s jako neizotropnim
raspršenjem i granicama s vakuumom. Usporedo s klasičnim predstavljanjem, jezgre
za raspršene i diobene neutrone se izvorno odabiru na osnovi najstvarnijih modela.
Ishodi računa, izraženi preko linearne ekstrapolacijske duljine de, prikazuju se i
uspored–uju s objavljenima.
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