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Abstract. A new definition of random sets is proposed in the pre-

sented paper. It is based on a special distance in a measurable space and
uses negative definite kernels for continuation from the initial space to the

one of the random sets. Motivation for introducing the new definition is

that the classical approach deals with Hausdorff distance between realisa-
tions of the random sets, which is not satisfactory for statistical analysis

in many cases. We place the realisations of the random sets in a complete

Boolean algebra (B.A.) endowed with a positive finite measure intended to
capture important characteristics of the realisations. A distance on B.A. is

introduced as a square root of measure of symmetric difference between its

two elements. The distance is then used to define a class of Borel subsets
of B.A. Consequently, random sets are defined as measurable mappings

taking values in the B.A. This approach enables us to use more general
family of distances between realisations of random sets which allows us

to make new statistical tests concerning equality of some characteristics

of random set distributions. As an extra result, the notion of stability of
newly defined random sets with respect to intersections is proposed and

limit theorems are obtained.

1. Introduction

Nowadays, mathematical theory of random sets is very popular. Let us
for example mention the books [8] and [10] which include basic definitions,
notions and theoretical results.

Applications of random sets are also very spread since they can be found in
many fields of science like material sciences [12], biology [11], medicine [5] and
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others, where the methods developed for random sets serve as a mathematical
background for their analyses and study of several phenomena.

For statistical purposes concerning comparison of random sets, which is
usually done on their realisations in practice, it is beneficial to define a distance
between two realisations so that it can distinguish between some specific fea-
tures while ignoring some other characteristics that are not important (e.g.
errors resulting from poor quality of images), see example in the following
paragraph.

The classical approach to definition of random sets and relating distance
between their realisations is the following. Suppose the random sets take
values in a family of compact subsets of a metric space.

On the family of the compact subsets, equipped by the Hausdorff metric
[10], Borel probability measures are defined and considered as the distribu-
tions of the given random sets. In order to obtain a ”richer” structure, we can
consider compact convex subsets of the Euclidean space Rd with Minkowski
sum as an operation. However, the Hausdorff metric is not suitable for com-
paring realisations of random sets in many situations, since, for example, only
one distinct point added to a realisation could increase the value of the dis-
tance between the original and the changed realisations significantly, and it
can be undesirable, see the following situation.

Suppose we want to compare random sets based on their realisations in
Figure 1. When the first and the second realisation come from the same

Figure 1. Example of 3 realisations of random set in R2

random set, but the second one is the only contaminated during the image
processing by adding a few isolated points, then the Hausdorff distance pro-
vides misleading information, because it indicates significant difference. On
the other hand, comparing the first and the third realisation, which differs
from the first one by missing a few points in the interior, we obtain the Haus-
dorff distance equal to zero, which could be undesirable again, since such holes
can play an important role in practice.

In such cases, a natural choice of distance between two realisations is
some measure of their symmetric difference [2]. It arises from applications,
e.g. when studying bone pores morphology to determine the progress of os-
teoporosis. A main factor is a change in bone pores volumes distribution (see
[9], [13]) and natural way to study its dynamics is using volume of symmetric
difference between old and new finding.
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Then, we can use the Lebesgue measure of the difference if we want all
realisation from Figure 1 to be considered as the same. Conversely, i.e. when
we want to distinguish between any two realisations from Figure 1, a measure
which assigns mass to isolated points can be employed. Further, if we want to
distinguish between the realisations based on holes only, we can use a measure
assigning the mass to the points in the interior of the set, etc.

In order to apply the above mentioned ideas, we introduce a new definition
of random sets taking values in a more general space. To get more intuition,
let us briefly sketch the interpretation of this mathematical model starting
from a measurable space {E, E} (e.g. a compact subset of Rd representing an
observation window endowed with Borel sigma algebra). The idea is to choose
a suitable measure m on it that captures important features of elements in E .
We can then define a relation ∼ such that A ∼ B if and only if m(A∆B) = 0,
where A∆B = (A ∩ Bc) ∪ (Ac ∩ B) is the symmetric difference between the
sets A and B (Ac and Bc denote the complements of A and B, respectively).
It is easy to see that ∼ is the relation of equivalence. Further, we denote
Ẽ = {[A] : A ∈ E}, where [A] = {A′ ∈ E : A ∼ A′}, i.e. the family Ẽ consists
of classes of equivalence on E generated by ∼, so in this way, we identify the
realisations having the same characteristics in some sense.

Since Ẽ is in fact an example of Boolean algebra [14] (denoted as B.A.
in the sequel), to make things more general, the random sets are defined as
random elements taking values in B.A.

Let us also mention that B.A. makes a more general space of realisations
than a family of subsets of metric space. The Stone Representation Theorem
for B.A. [14] states that every B.A. is isomorphic to a B.A. of clopen subsets of
the totally disconnected compact topological space. However, corresponding
totally disconnected compact space can be non-metrisable (for example an
uncountable product of Cantor sets). Therefore, in these situations we cannot
use standard procedures based on the Hausdorff distance.

Our approach starts from a normed B.A., i.e. a complete B.A. endowed
with a strictly positive finite measure (positive countably additive function
on B.A.) which is intended to capture the features of interest of elements of
B.A. Without loss of generality, it can be supposed that this is probabilistic
measure, or, shortly, probability. It allows us to introduce a distance on B.A.
as the square root of a measure of symmetric difference between two elements
as mentioned above, which is used to define a class of Borel subsets of B.A.
Further, using this distance, the B.A. is continuously embedded into Hilbert
space of equivalence classes of square integrable functions. This enables to
introduce a notion of characteristics of random set distribution as functions
describing distribution properties. The pseudo-distance between random set
distributions is constructed as an N-distance using the squared distance as a
negative definite kernel. It is shown that this pseudo-distance corresponds to
the distance between the characteristics of the random sets, and it is further
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used to build statistical tests for equality in distribution of random sets. Con-
sidering the weak convergence in distribution with respect to the introduced
characteristics, a notion of stability of newly defined random sets with respect
to intersections is proposed, and some limit theorems are derived.

The outline of the paper is as follows. In Section 2, we introduce the
B.A. of sets. Section 3 briefly introduces a theory of positive and negative
definite kernels and N−distances needed for further theory. In Section 4,
we describe the embedding of the normed B.A. into a Hilbert space of the
functions using positive and negative definite kernels. A new point of view of
random sets is introduced in Section 5, together with characteristics of their
distributions. Namely, N−distance on the space of these characteristics is
constructed here, and moreover, some new operations on the characteristics
are defined here. Section 6 presents results concerning limit theorems for
discrete random sets obtained via point-wise convergence of the characteristics
of their distributions. In Section 7, we explain some applications of the newly
developed theory to statistical testing. We conclude the paper with summary
in Section 8.

2. Theoretical backround

Basics of negative and positive definite kernels and N-distances

Positive and negative definite kernels on an arbitrary space X are very
useful functions that allow to embed the space X into a Hilbert space. In the
Hilbert space, the positive and negative kernels play the role of scalar products
and squared distances. They also allow to build a pseudo-distance (so-called
N−distance) on the space of distributions of random elements taking values in
X . The N−distances can be further used in many applications in probability
theory, information theory and statistics.

In this section, we present basic definitions concerning the negative and
positive definite kernels and the N−distances. The introduced definitions,
propositions, theorems and proofs can be found in [6].

Definition 2.1. Let X be a non-empty set. A map K : X × X → R is
called positive definite kernel if for any n ∈ N, arbitrary c1, ..., cn ∈ R and
arbitrary x1, ..., xn ∈ X it holds

n∑
j=1

n∑
k=1

K(xj , xk)cjck ≥ 0.

A map L : X ×X → R is called negative definite kernel if for any n ∈
N, arbitrary c1, ..., cn ∈ R such that

∑n
j=1 cj = 0 and arbitrary x1, ..., xn ∈ X

it holds

(2.1)

n∑
j=1

n∑
k=1

L(xj , xk)cjck ≤ 0.
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Consider now a negative definite kernel L(x, y) on X × X such that
L(x, y) = L(y, x) and L(x, x) = 0 for all x, y ∈ X . Then for any fixed xo ∈ X ,
the kernel

(2.2) K(x, y) = L(x, xo) + L(xo, y)− L(x, y), x, y ∈ X ,
is positive definite.

Let us first present the construction of N−distance starting from a nega-
tive definite kernel. Further on in this section, we suppose that X is a metric
space. We denote B(X ) the Borel σ−algebra generated by the topology in-
duced by the corresponding metric. When talking about negative definite
kernels on X , we suppose that they are continuous with respect to product
topology, symmetric and real-valued. We denote P the set of all probability
measures on {X ,B(X )}.

Suppose that L is a real continuous function, and denote PL the set of
all the measures P ∈ P for which the integral∫

X

∫
X
L(x, y)dP (x)dP (y)

exists.

Definition 2.2. Let L be a negative definite kernel. Then L is called
strongly negative definite kernel if for arbitrary measure Q ∈ P and for
an arbitrary real function c on X such that

∫
X c(x)dQ(x) = 0,∫

X

∫
X
L(x, y)c(x)c(y)dQ(x)dQ(y) = 0

implies c(x) = 0 Q-almost everywhere.

Theorem 2.3. Let L be a strongly negative definite kernel on X × X
satisfying L(x, y) = L(y, x) and L(x, x) = 0 for all x, y ∈ X . Let N : PL ×
PL → R be defined by
(2.3)

N (P1, P2) = 2

∫
X

∫
X
L(x, y)dP1(x)dP2(y)−

∫
X

∫
X
L(x, y)dP1(x)dP1(y)

−
∫
X

∫
X
L(x, y)dP2(x)dP2(y).

Then N = N 1/2 is a distance on PL.
If L is only a negative definite kernel, then N is a pseudo-distance on PL.

For the proof of this theorem, see [6].

Theorem 2.4. Let K : X × X → R be a positive definite kernel. Then
there exists a unique Hilbert space H(K) with properties:
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1. elements of H(K) are real functions defined on X ,
2. ky(·) = K(·, y) ∈ H(K) for all y ∈ X ,
3. for each y ∈ X and φ ∈ H(K) the relationship

⟨φ, ky⟩H(K) = φ(y)

holds.

For the proof of this theorem, see [1].
By Theorem 2.4, if we take φ = kx we have

⟨kx, ky⟩H(K) = K(x, y).

Thus, positive definite kernels appear to be nonlinear generalisations of the
inherent similarity measure created by the dot product. Also, it is easy to see
that

∥kx − ky∥2H = L(x, y),

where L is obtained from K by using relation

(2.4) L(x, y) = K(x, x) +K(y, y)− 2K(x, y), x, y ∈ X .
So, negative definite kernels appear to be the nonlinear generalisations of the
inherent dissimilarity measure created by the distance.

Embedding of normed Boolean algebra into a Hilbert space

Consider a measure space {E, E ,m} and corresponding B.A. Ẽ resulting

from factorisation of initial σ-algebra by the ideal of negligible sets. Then Ẽ
is a complete normed B.A. endowed with the measure m̃ such that m̃([A]) =
m(A).

Inversely, for each complete normed B.A. {X , µ}, there exists a measure

space {E, E ,m} such that the normed B.A.s {X , µ} and {Ẽ , m̃} are isomorphic
(see [14]).

According to this result, we further consider complete normed B.A. {X , µ}
and identify it with isomorphic {Ẽ , m̃}, which is denoted as {X , µ} iso

= {Ẽ , m̃}.
If the corresponding measure space {E, E ,m} is such that m(A) = 0 implies
A = ∅, then we can consider X as family of subsets of E. Just note that we
use the notation A for subset of E, and A for element of the Boolean algebra
that corresponds to the class of equivalence of subsets of E.

Let us now consider a complete normed B.A. {X , µ} and let a measure

space {E, E ,m} be such that {Ẽ , m̃} is isomorphic to {X , µ}. As mentioned

above, the B.A. {X , µ} is identified with {Ẽ , m̃}. Analogously, we identify

[A] ∈ Ẽ with A ∈ X in the sequel.
Define

(2.5) L(A,B) = µ(A∆B), A,B ∈ X .

Lemma 2.5. The function L given by (2.5) is a negative definite kernel
on X × X .
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Proof. We have

L(A,B) = µ(A∆B) = m(A∆B) =

∫
E

(
1IA(u) + 1IB(u)− 21IA(u)1IB(u)

)
dm(u).

Let A1, . . . , An be arbitrary elements of X . Then
n∑

j=1

n∑
k=1

L(Aj , Ak)cjck

=

n∑
j=1

n∑
k=1

∫
E

(
1IAj

(u) + 1IAk
(u)− 21IAj

(u)1IAk
(u)
)
dm(u) · cjck

=

∫
E

 n∑
j=1

n∑
k=1

1IAj
(u)cjck +

n∑
j=1

n∑
k=1

1IAk
(u)cjck

−2
n∑

j=1

n∑
k=1

1IAj (u)1IAk
(u)cjck

 dm(u)

=

∫
E

 n∑
j=1

1IAj (u)cj

(
n∑

k=1

ck

)
+

 n∑
j=1

cj

 n∑
k=1

1IAk
(u)ck

−2
n∑

j=1

n∑
k=1

1IAj (u)1IAk
(u)cjck

 dm(u)

n∑
k=1

ck=0

= −2
∫
E

n∑
j=1

n∑
k=1

1IAj (u)1IAk
(u)cjckdm(u)

= −2
∫
E

( n∑
k=1

1IAk
(u)ck

)2
dm(u) ≤ 0.

It is easy to see that

L(A,B) = µ(A∆B) =

∫
E

(
1IA(u)− 1IB(u)

)2
dm(u).(2.6)

Therefore

(2.7) dµ(A,B) = L1/2(A,B) =
(
µ(A∆B)

)1/2
for A,B ∈ X is a distance on B.A. X .

Denote L2(E, E ,m) a Hilbert space of measurable functions for which
the 2nd power is a Lebesgue integrable function with respect to the measure
m, where functions which agree m almost everywhere are identified. The
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distance dµ is equivalent to L2(E, E ,m)-distance. Suppose we have a mapping
π : X → E such that

(2.8) π(A) = A for some A ∈ A.
According to the mapping ι : (X , dµ)→ L2(E, E ,m), we have

(2.9) ι(A) = 1Iπ(A).

B.A. X with such a distance dµ is continuously embedded in a subset of a
Hilbert space, since

dµ(A,B) =
(
µ(A∆B)

)1/2
=

(∫
E

(
1Iπ(A)(u)− 1Iπ(B)(u)

)2
dm(u)

)1/2

for arbitrary π : X → E such that π(A) = A for some A ∈ A.
Note that the mapping defined in (2.9) does not depend on the chosen

representant A ∈ [A], i.e. on the choice of the function π, since for arbitrary
two mappings π1, π2 : X → E , it holds that(∫

E

(
1Iπ1(A)(u)− 1Iπ2(A)(u)

)2
dm(u)

)
= m(π1(A)∆π2(A)) = 0

for A ∈ X implying 1Iπ1(A) = 1Iπ2(A) m-a.e.
Graphical representation of the mappings π and ι is presented in Figure

2.

(X , µ) iso
= (Ẽ , m̃)

A = [A]

E

[A]

A = π(A)

π

L2(E, E ,m)

1π(A)

ι

Figure 2. Graphical representation of the mappings π and
ι defined by (2.8) and (2.9), respectively.

Remark 2.6. There are many topologies introduced in B.A.s. The most
popular is the order topology. It is known that the topology of the metric
space {X , dµ} coincides with the order topology (see [14]). Therefore, the
order topology coincides with the topology induced from Hilbert space. Thus,
we embedded the B.A. X into Hilbert space in such a way that the standard
topology is preserved.
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To define random set as a measurable mapping taking values in metric
space it would be beneficial to ensure that this space is a Polish metric space
in order to avoid some measure-theoretic difficulties. In case of (E, E) =
(Rd,B(Rd)), which is important for applications, for corresponding (X , dµ)
this property holds. It follows form the fact that (X , dµ) is homeomorfic to
subset of indicators in L2(Rd,B(Rd), µ) and this is a Polish metric subspace
(see [4]).

3. Definition of random sets

Denote B(X ) the Borel σ-algebra of subsets X with respect to the topol-
ogy induced by distance dµ.

Let a measure space {E, E ,m} be such that {Ẽ , m̃} is identified with
{X , µ}. As mentioned above, each A ∈ X can be identified with the corre-
sponding indicator 1Iπ(A).

Definition 3.1. Let {Ω,Σ, P} be a probability space. A random set
A : Ω→ X is measurable mapping from {Ω,Σ} to {X ,B(X )}. Its distribution
is a measure m on {X ,B(X )} defined by

m(V) = P (A−1(V)) = P (A ∈ V), V ∈ B(X ).

Remark 3.2. If one wishes that realisations of random set are not a
family of sets (e.g. one class of equivalence), choosing π we can identify a
class A with its representant π(A) and consider π(A) as a random set taking
values in π(X ).

Example 3.3. Consider (Rd,B(Rd), λ) and a map π such that it takes an
open set as a representative of each class of equivalence, we obtain definition of
random open set in Rd. Similarly, we can obtain definitions of random closed
sets with nonempty interior, or random sets that are neither closed nor open.

Example 3.4. Consider (R,B(R), d0), where d0 is Dirac delta measure
concentrated at point 0. Then the classes of equivalence are A1 = {A :
A contains 0} and A2 = {A : A does not contain 0}. Then, we can define e.g.
π(A1) = [−1, 1) and π(A2) = [1, 2), so we obtain random set taking values in
{[−1, 1) , [1, 2)}.

Our first aim is to define a pseudo-distance between distributions of ran-
dom sets. Recall the notation P for the set of all probabilities on {X ,B(X )}.
Consider m ∈ P as a distribution of corresponding random set.

Definition 3.5. Let m ∈ P be an arbitrary probability measure on B(X ).
A function fπm : E → R defined by

fπm(u) =

∫
X
1Iπ(A)(u)dm(A), u ∈ E,
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in which π is the function defined by (2.8) is called a characteristic of the
measure m.

In the sequel, we denote F the set of all functions {fm, m ∈ P} ⊂
L2(E,F ,m).

Remark 3.6. Characteristic of the measure m generally depends on the
choice of π, unless the space (E, E ,m) is complete. However, it is easy to see
that ∫

E

|fπ1
m (u)− fπ2

m (u)|2dm(u) = 0,

so fπ1
m = fπ2

m m-almost surely. Further on, for arbitrary fixed π, we will denote
fm = fπm keeping in mind that it is unique m-a.s.

Remark 3.7. Note that if A is a random set with distribution m, fm is
expectation of random indicator 1Iπ(A), i.e.

fm(u) = P (u ∈ π(A)).
Remark 3.8. Transformation m → fm from P to F is not one-to-one.

For example, two random sets A taking two values [A] and [E \A] with equal
probabilities 1/2 and B taking values [E] and [∅] with the same probabilities
have the same characteristic fm.

We would like to define a pseudo-distance on the space of probability
measures P, which is proposed as a pseudo-distance between corresponding
independent random sets. For this purpose, we introduce a negative definite
kernel on the pairs of such measures. Namely, for m, n ∈ P we define

(3.1)

N (m, n) = 2

∫
X

∫
X
L(A,B)dm(A)dn(B)

−
∫
X

∫
X
L(A,B)dm(A)dm(B)−

∫
X

∫
X
L(A,B)dn(A)dn(B).

Let us transform expression (3.1) using (2.6)

N (m, n) = 2

∫
X

∫
X
µ(A∆B)dm(A)dn(B)

−
∫
X

∫
X
µ(A∆B)dm(A)dm(B)−

∫
X

∫
X
µ(A∆B)dn(A)dn(B)

=

∫
E

(
2

∫
X

∫
X

(
1Iπ(A)(u) + 1Iπ(B)(u)− 21Iπ(A)(u) · 1Iπ(B)(u)

)
dm(A)dn(B)

−
∫
X

∫
X

(
1Iπ(A)(u) + 1Iπ(B)(u)− 21Iπ(A)(u) · 1Iπ(B)(u)

)
dm(A)dm(B)

−
∫
X

∫
X

(
1Iπ(A)(u) + 1Iπ(B)(u)− 21Iπ(A)(u) · 1Iπ(B)(u)

)
dn(A)dn(B)

)
dm(u)

= 2

∫
E

(
fm(u)− fn(u)

)2
dm(u).
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Now, it is seen that N (m, n) is a negative definite kernel on the set P2, which
is strongly negative definite kernel on the space F2 of pairs (fm, fn) for (m, n) ∈
P2. Finally, we define a pseudo-distance N on P as

(3.2) N(m, n) =
(
2

∫
E

(
fm(u)− fn(u)

)2
dm(u)

)1/2
.

It is obvious that the pseudo-metric space {P,N} is isometric to a sub-
space of Hilbert space. Therefore, the first natural step in the study of random
sets distributions is investigation of properties of the space F.

Since N2 is negative definite kernel, it is easy to see, using (2.2), that

K(m, n) = 2

∫
E

fm(u)fn(u)dm(u)

=
1

2

(
N2(m, 0) +N2(0, n)−N2(m, n)

)
,

(3.3)

where 0 denotes the measure concentrated at [∅] (note that its characteristic
is the zero function) is a positive definite kernel on F.

Now, we can define multiplication of the measures m and n as

(3.4) fm ◦ fn = fm · fn.

When we consider two independent random sets A and B with the dis-
tributions m and n, respectively, it is easy to prove that the characteristic
fm ◦ fn corresponds to the characteristic of the random set A ∩ B. Moreover,
F equipped with the operation (3.4) and the kernel (3.3) is a semi-group with
positive definite kernel in the sense of [6].

Note that there exist more ways to turn F into semi-group with positive
definite kernel. For example, we can define a new operation on F as

(3.5) fm ∗ fn =
(
1− fm

)
·
(
1− fn

)
with the kernel

(3.6) K∗(fm, fn) =

∫
E

(
1− fm(u)

)
·
(
1− fn(u)

)
dm(u).

Then for two independent random sets A and B with the distributions m and
n, respectively, it is easy to prove that the characteristic fm ∗ fn corresponds
to the characteristic of the random set Ac ∩ Bc.

4. Limit theorems and stability for intersections of discrete
random sets

Let us now obtain limit theorems connected to the large number of ◦-
multipliers. The limit theorems are related to the point-wise convergence of
the characteristics of random sets. For this purpose, denote fA the character-
istic of the distribution of a random set A.
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Definition 4.1. Let {An}n∈N be a sequence of random sets and A be
a random set. We say that the sequence {An}n∈N converges weakly in
characteristic to a random set A if

lim
n→∞

fAn
(u) = fA(u) m− a.s.

It is easy to verify that in this case, it holds that lim
n→∞

N(mAn ,mA) = 0,

where N is the pseudo-distance defined by (3.2).

Theorem 4.2. Let A be a discrete random set taking values A1, A2, . . .
with probabilities p1, p2, . . . Suppose that p1 > 0 and A1 =

⋂∞
j=1Aj. Then

(4.1) lim
n→∞

( ∞∑
k=1

1Iπ(Ak)(u)pk

)n
= 1Iπ(A1)(u) m− a.s.

Proof. Using the properties

π(A1) ∩ π(Aj) = π(A1) m− a.s.

and

1Iπ(A1)∩π(Aj)(u) = 1Iπ(A1)(u) · 1Iπ(Aj)(u)

for all j = 1, 2, . . . , we have( ∞∑
k=1

1Iπ(Ak)(u)pk

)n
= 1Iπ(A1)(u)

[
pn1 +

n−1∑
s=1

pk−s
1

( ∞∑
j=2

pj
)s(n

s

)]
+
( ∞∑
j=2

1Iπ(Aj)(u)pj

)n
=
(
1− (1− p1)n

)
1Iπ(A1)(u) +

( ∞∑
j=2

1Iπ(Aj)(u)pj

)n n→∞−→ 1Iπ(A1)(u) m− a.s.

Suppose we have a sequence of i.i.d. discrete random sets A1,A2, . . .,
equally distributed as a discrete random set A satisfying the conditions from
Theorem 4.2. The equation (4.1) implies that the sequence {∩nk=1Ak}n∈N
converges in characteristic to random set that is a.s. equal to A1.

For example, if we have a sample of n realisations of a random set in a
form of a pixelised black and white image, for large n its intersections should
converge in characteristic to the intersection of all sets in support of the given
random set.

As a particular case, we obtain that for A1 = [∅], the limit in (4.1) is the
zero function.

Using Theorem 4.2 we can prove that the minimal value of the sample is
a consistent estimator of the minimum value of a discrete random variable.
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Corollary 4.3. Consider a discrete random variable X taking values
x1, x2, . . . with positive probabilities p1, p2, . . ., where x(1) = min{x1, x2, . . .},
and X1, X2, . . . i.i.d. random variables equally distributed as X. For all n ∈ N,
denote X(1) = min{X1, . . . , Xn}. Then

X(1) → x(1) as n→∞,
in distribution.

Proof. To obtain this statement, we only apply Theorem 4.2 to the sets
Aj = (−∞, xj ] for j = 1, 2, . . .

Recall that for A1 = [∅], the limit in (4.1) is the zero function. The question is
how fast is the convergence to the zero function. To understand the problem
of such convergence more precisely, let us first introduce an example.

Example 4.4. Let A /∈ {∅, E} be a set from E . Consider a random set A
taking only two values, namely A = [A] and Ac = [E \ A], each of them with
probability 1/2. Then(
1Iπ(A)(u) ·

1

2
+1Iπ(Ac)(u) ·

1

2

)n
=

1

2n−1

(
1Iπ(A)(u) ·

1

2
+1Iπ(Ac)(u) ·

1

2

)
m−a.s.

Note that since A∩Ac = [∅], but the probability of [∅] is zero, we cannot
apply Theorem 4.2. Despite this fact, we can clearly see from the right-hand
side the convergence of the term to zero function. We can interpret 1

2n−1 as
a “normalising constant” which indicates the speed of convergence to zero of
the characteristic of n-times intersection of random sets.

Let A be a discrete random set taking values A1, A2, . . . with probabilities
p1, p2, . . . and suppose that p1 > 0 and A1 = [∅]. Then

fA(u) =

∞∑
j=1

1Iπ(Aj)(u)pj

and thus, the random set B taking values A2, A3, . . . with probabilities pj/(1−
p1) for j = 2, 3, . . . has the characteristic

(4.2) fB(u) =
1

1− p1
fA(u).

This follows from the fact that 1I[∅] = 0 m-a.s., so

fB(u) =

∞∑
j=2

1Iπ(Aj)(u)
pj

1− p1

=
1

1− p1

p11I[∅] + ∞∑
j=2

1Iπ(Aj)(u)pj


= fA(u).
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Remark 4.5. Suppose A is discrete random set taking values A1, A2, . . .
with probabilities p1, p2, . . . and let 0 ≤ λ ≤ 1. Then λfA is a characteristic of
a random set B taking values in [∅], A1, A2, . . . with probabilities

λpj = P (B = Aj) if Aj ̸= [∅],
1− λ+ λpj = P (B = Aj) if Aj = [∅],

where j = 1, 2, . . ., while in the special case when all Aj ̸= [∅], we have

P (B = [∅]) = 1− λ.

If follows from

(4.3) λfA =
∑
j∈N

λpj1Iπ(Aj) + (1− λ)1Iπ([∅]).

Definition 4.6. Suppose that A is a discrete random set taking values
A1, A2, . . . with probabilities p1, p2, . . . We call A to be a stable random set if
for any integer n ≥ 2, there exists a positive number κn such that

(4.4) fnA (u) = κnfA(u).

Example 4.7. The random set from Example 4.4 is stable.

Example 4.8. If A takes only one value A with probability 1, then A is
stable.

Example 4.9. Consider a random set A taking non-empty values
A1, . . . , Ak with equal probabilities 1/k. Suppose that Ai ∩ Aj = [∅] for
i ̸= j. Then A is stable. Really, we have(1

k

k∑
j=1

1Iπ(Aj)(u)
)n

=
1

kn

k∑
j=1

1Iπ(Aj)(u) m− a.s.,

and (4.4) is true with κn = k1−n.

We can obtain some results on convergence to stable random sets. The-
orem 4.2 gives the sufficient conditions for the convergence to degenerate
random sets.

Theorem 4.10. Suppose that A is a discrete random set and B is a stable
random set with normalising constant κn. Suppose that

(4.5) fA(u) = p1fB(u) + p2h(u),

where 0 ≤ p1, p2 ≤ 1, |h(u)| ≤ 1, pn2/(p
n
1κn)→ 0 as n→∞ and fB(u)h(u) =

0. Then there exists a sequence λn of positive constants such that

(4.6) λnf
n
A (u) −→ fB(u) as n→∞ m− a.s.
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Proof. Using the condition fB(u)h(u) = 0, it is not difficult to calculate
that

(4.7) λnf
n
A (u)− fB(u) =

(
λnp

n
1κn − 1

)
fB(u) + λnp

n
2h

n(u)

for any λn > 0. Now it is sufficient to choose λn so that λnp
n
1κn → 1 from

below as n→∞. For such λn, it holds

λnp
n
2h

n(u) = (λnp
n
1κn)(p

n
2/(p

n
1κn))h

n(u)→ 0,

which implies (4.6).

To see why the convergence from below is needed, let us first note that
λnp

n
1κnfB(u) corresponds to a characteristic of a random set, since in this

case 0 ≤ λnpn1κn ≤ 1 and use the same argument as in Remark 4.5. Further,
it follows from (4.7) that

λnf
n
A (u) = λnp

n
1κnfB(u) + λnp

n
2h

n(u),

and since for sufficiently large n, the term λnp
n
2h

n(u) is close to zero, we can
conclude that for n large enough, we have λnf

n
A (u) ≈ λnpn1κnfB(u). This rela-

tion gives us an interpretation of the left hand term in (4.6) as approximately
equal to characteristic of some random set for sufficiently large n.

It is possible to use other definition of stability for the case of discrete
random sets. The idea is similar to the one in the definition of casual stability
given in [7].

Definition 4.11. Let a > 0 be a parameter and Aa be a family of discrete
random sets with P{Aa = Aj} = pj(a), j = 1, 2, . . . We say that Aa is stable
with respect to a family of transformation a → ξn(a), n = 1, 2, . . . if for any
positive integer n, it holds that

(4.8) fna (u) = fξn(a)(u) m− a.s.,

where fa(u) =
∑∞

j=1 1Iπ(Aj)(u)pj(a).

Example 4.12. Let a ∈ (0, 1] be a parameter and Aa be a family of
discrete random sets with P{Aa = Aj} = pj(a) = a(1 − a)j−1, j = 1, 2, . . .,
where Aj ̸= Ak for j ̸= k and

A1 ⊂ A2 ⊂ A3 ⊂ · · ·

Denote ξn(a) = 1 − (1 − a)n. Then Aa is stable with respect to a family of
transformation ξn(a).

Let

fa(u) =

∞∑
j=1

1Iπ(Aj)(u)pj(a)

for

A1 ⊂ A2 ⊂ A3 ⊂ · · ·
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It is not difficult to calculate that

fna (u) =

∞∑
k=1

(
snk−1(a)− snk (a)

)
1Iπ(Ak)(u),

where sk(a) =
∑∞

j=k+1 pj(a). For the case pj(a) = a(1− a)j−1 we have

sk(a) = (1− a)k, k = 0, 1, 2, . . .

Therefore

fna (u) =

∞∑
j=1

(
(1− a)n(j−1) − (1− a)nj

)
1Iπ(Aj)(u)

=

∞∑
j=1

(1− a)n(j−1)(1− (1− a)n)1Iπ(Aj)(u)

=

∞∑
j=1

(1− ξn(a))j−1ξn(a)1Iπ(Aj)(u)

=

∞∑
j=1

pj(ξn(a))1Iπ(Aj)(u) = fξn(a)(u).

Remark 4.13. Recall that the results obtained in this section are con-
nected to the operation ◦. However, the results for the operation ∗ defined
by (3.5) are very similar. It follows from the fact that the operation ∗ corre-
sponds to the intersection of the complements of the sets (or equivalently the
complement of the union of the sets). It means that the study of ∗-operation
is equivalent to that of ◦ for the complements, while we only have to change
fm(u) by 1− fm(u).

5. Statistical testing

In this section, we show how the theory introduced above can be used for
statistical testing in the field of random sets. Here, we assume that (E, E ,m)
is such that m(A) = 0 implies A = ∅. Then we can set X = E .

Consider two random samples (i.e. 2 × n i.i.d. random sets) A1, . . . ,An

and B1, . . . ,Bn, n ≥ 2. We want to test the hypothesis fm = fn, where m and
n are the distributions the samples A1, . . . ,An and B1, . . . ,Bn, respectively,
come from.

This hypothesis is in fact equivalent to

(5.1) N2(fm, fn) =

∫
E

(
fm(u)− fn(u)

)2
dm(u) = 0,

which is equivalent to

(5.2)

∫
E

(
f2m(u)− fm(u) · fn(u)

)
dm(u) =

∫
E

(
fm(u) · fn(u)− f2n (u)

)
dm(u).
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To construct a statistical test, we have to estimate fm(u) and fn(u) by their
empirical analogues. Then on both left and right side of the equality (5.2), we
obtain the samples from one-dimensional distributions. Thus, we may apply
any free-of-distribution two-sample one-dimensional test.

An example of application of the described procedure for statistical testing
using (5.1) can be found in [3]. There the author dealt with a permutation
version of the test and used the Lebesgue measure as the measure m. The
approach was moreover justified by a simulation study and applied to real
data, namely for distinguishing between different types of breast tissue based
on their histological images.

6. Conclusion

We introduced a new definition of random sets on the normed B.A. and
proposed a characteristic of their distributions. We also considered some N-
distances on the space of those characteristic together with obtaining limiting
theorems for discrete random sets using those characteristics. The presence of
N-distances allows to have a Hilbert structure on the class of corresponding
sets instead of usually used Banach structure.

Some possible applications in statistical testing were also proposed.
Our future work would be concentrated on investigating more the char-

acteristics of random sets and defining more N-distances on the space of dis-
tributions of random sets. Further on, we will apply the obtained theory in
statistical testing for random sets concerning some practical problems.

Appendix A. More details concerning embedding of normed
Boolean algebra into a Hilbert space

Negative definite kernel L generates positive definite kernel K (see [6]) as
follows:

(A.1) K(A,B) =
1

2

(
L(A,E) + L(E,B)− L(A,B)

)
= µ(A ∩B).

The kernel K plays the role of the inner product in the corresponding Hilbert
space [6]. This fact is also obvious from the representation

K(A,B) =

∫
E

1Iπ(A)(u) · 1Iπ(B)(u)dm.

This allows us to define some characteristics of the elements of our B.A.
using geometric properties of the Hilbert space. For example, we may define
a norm of a set as ∥A∥ = K(A,A) = µ(A) and an angle α(A,B) between the
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nonempty sets (the elements of B.A.) A and B by setting

cosα(A,B) =

∫
E
1Iπ(A)(u) · 1Iπ(B)(u)dm(u)(∫

E
1I2π(A)(u)dm(u)

)1/2(∫
E
1I2π(B)(u)dm(u)

)1/2
=

µ(A ∩B)

(µ(A) · µ(B))1/2
.

As the measure µ is strictly positive, it is clear that

0 ≤ cosα(A,B) ≤ 1,

cosα(A,B) = 0⇐⇒ A ∩B = ∅,

cosα(A,B) = 1⇐⇒ A = B.

Therefore, the sets with an empty intersection may be considered as orthog-
onal. The main property of the measure µ: µ(A ∪B) = µ(A) + µ(B) for the
orthogonal sets A and B may be interpreted as Pythagorean theorem in the
Hilbert space.

Let A1, . . . , An be a complete system of the events, i.e. the n elements
of the B.A. satisfying to the conditions

⋃n
j=1Aj = [E] and Ai ∩ Aj = [∅]

for i ̸= j. Then
∑n

j=1 1Iπ(Aj)
m−a.s.
= 1IE = 1 and

∫
E
1Iπ(Ai) · 1Iπ(Aj)dm =

0 for i ̸= j, i.e. the functions 1Iπ(A1), . . . , 1Iπ(An) compose an orthogonal
system. Inverse statement is not completely true. If some indicator-functions
1Iπ(A1), . . . , 1Iπ(An) compose an orthogonal system then [Ai] ∩ [Aj ] = [∅] for
i ̸= j, but, possibly,

⋃n
j=1 π(Aj) ̸= E.

Suppose now that the indicator-functions 1Iπ(A1), . . . , 1Iπ(An) compose an
orthogonal system, and 1Iπ(A) is an indicator, corresponding to an event A.
We can find the best approximation of 1Iπ(A) by the linear combinations of
1Iπ(A1), . . . , 1Iπ(An) in our Hilbert space:

min
a1,...,an

∫
E

(
1Iπ(A)(u)−

n∑
j=1

aj1Iπ(Aj)(u)
)2
dm(u).

It is well-known (and easy to obtain) that the optimal values of the coefficients
aj are

(A.2) a∗j =

∫
E
1Iπ(A)(u) · 1Iπ(Aj)(u)dm(u)∫

E
1Iπ(Aj)(u)

2dm(u)
=
µ(A ∩Aj)

µ(Aj)
, j = 1, . . . , n.

Obviously, the optimal coefficients a∗j are the conditional probabilities of A
given Aj , and their interpretation is clear. However, how is it possible to give
an interpretation of

∑n
j=1 a

∗
j · 1Iπ(Aj)? This sum is not an indicator-function

and, therefore, does not correspond to any set. Let us mention that 0 ≤ a∗j ≤ 1
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and
∑n

j=1 a
∗
j ≤ 1. If we define a∗n+1 = 1−

∑n
j=1 a

∗
j and An+1 = ∅ then

n∑
j=1

a∗j · 1IAj
=

n+1∑
j=1

a∗j · 1Iπ(Aj).

Here the sum
∑n+1

j=1 a
∗
j ·1Iπ(Aj) is the convex combination of indicators 1Iπ(Aj),

j = 1, . . . , n + 1 and, therefore, may be interpreted as the mean value of the
random indicator 1Iπ(A) (or, equivalently, the random set A), where A takes
values Aj with the probabilities a∗j , j = 1, . . . , n+ 1.
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