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Abstract. In this paper, we study the relationship between the map-
ping class group of an infinite-type surface and the simultaneous flip graph,

a variant of the flip graph for infinite-type surfaces defined by Fossas and
Parlier [6]. We show that the extended mapping class group is isomorphic

to a proper subgroup of the automorphism group of the flip graph, unlike

in the finite-type case. This shows that Ivanov’s metaconjecture, which
states that any “sufficiently rich” object associated to a finite-type surface

has the extended mapping class group as its automorphism group, does

not extend to simultaneous flip graphs of infinite-type surfaces.

1. Introduction

Themapping class group Map(S) of a surface S is the group of orientation-
preserving homeomorphisms of S up to isotopy. Expanding Map(S) to
include orientation-reversing homeomorphisms yields the extended mapping
class group Map±(S). The flip graph F(S) of S is the graph whose ver-
tices are triangulations and whose edges are elementary moves, or flips. This
graph characterizes finite-type surfaces up to homeomorphism, and the au-
tomorphisms of the flip graph are precisely those induced by the action of
the extended mapping class group [13]. This exemplifies a broader pattern
described by the following “metaconjecture” due to Ivanov.

Conjecture 1.1 (Problem 6 of [12]). Every object naturally associated
to a surface and having sufficiently rich structure has the extended mapping
class group as its group of automorphisms.

2020 Mathematics Subject Classification. 57M60.
Key words and phrases. Flip graphs, infinite-type surfaces, mapping class groups,

Ivanov.

125



126 A. BAR-NATAN ET AL.

Here, “sufficiently rich” is intentionally left undefined. Ivanov’s metacon-
jecture has been shown to hold for many objects in addition to the flip graph,
such as the curve complex [11], the arc complex [10], and Torelli buildings [5],
and in 2019, the metaconjecture was shown to be true for an even larger class
of complexes on finite-type surfaces [3].

For infinite-type surfaces, i.e., surfaces whose fundamental group is not
finitely generated, it is known that the automorphism group of the curve
graph is the extended mapping class group [1, 8]. Therefore, in this paper,
motivated by Ivanov’s metaconjecture and the above results, we study the
same question in the setting of flip graphs on infinite-type surfaces.

We will consider the simultaneous flip graph, a variant of the flip graph
defined by Fossas and Parlier [6], which adapts the flip graph to infinite-type
surfaces. We show that—unlike in the finite-type case—the symmetries of
this graph are no longer fully captured by the extended mapping class group.
In particular, we prove the following result.

Theorem 1.2. The natural action of the extended mapping class group
on the flip graph is an isomorphism from Map±(Σ) to a proper subgroup of
Aut(F(Σ)).

To prove this, we first show that the isotopy class of a homeomorphism
is determined by its action on F(Σ). For other simplicial complexes on which
Map±(Σ) acts, such as the curve complex and the pants complex, this can be
accomplished using the Alexander Method for infinite-type surfaces developed
by Hernandez et al. in [9]. To apply this result to ideal arcs, we use the
following lemma, which is a corollary of the Alexander Method for infinite-
type surfaces described by [9].

Lemma 1.3 (Alexander method for ideal arcs). Let Σ be an infinite-type
surface, and let f be a homeomorphism of Σ. The following are equivalent.

(i) For any arc α in Σ, f(α) is homotopic to α.
(ii) The homeomorphism f is isotopic to the identity homeomorphism IdΣ.

2. Preliminaries

This section is an introduction to the concepts and terminology regarding
infinite-type surfaces that will be used throughout the paper. A surface is a
connected, orientable topological 2-manifold. A surface Σ is of finite type if
π1(Σ) is finitely generated. Otherwise, Σ is of infinite type.

The end space of an infinite-type surface Σ, which we denote Ends(Σ),
was introduced by Freudenthal [7] as the inverse limit lim←−π0(Σ\K), where K

ranges over all compact subsurfaces of Σ and the discrete spaces π0(Σ\K) are
ordered by inclusion. We equip Ends(Σ) with the inverse limit topology, and
note that it is totally disconnected, compact, and metrizable. The set Σ̄ :=
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Σ⊔Ends(Σ), equipped with an appropriate topology, is called the Freudenthal
compactification of the surface Σ [7].

Concretely, an end can be thought of as a descending chain e = U1 ⊃
U2 ⊃ · · · of connected open sets such that ∩iUi = ∅. If there exists n such
that Un can be embedded in R2, then e is called planar. Otherwise, it is
said to be non-planar or accumulated by genus. We denote by Endsg(Σ) the
subspace of non-planar ends.

In 1963, Richards showed that orientable infinite-type surfaces are
classified up to homeomorphism by their genus and the pair of spaces
(Ends(Σ),Endsg(Σ)). For a more detailed exposition, see [14].

A simple closed curve is an embedding of the circle S1 into Σ. An ideal
arc, or simply an arc, on a surface Σ is an embedding α : (0, 1) → Σ which
extends continuously to a map ᾱ : [0, 1] → Σ̄ such that the ends of (0, 1) are
mapped to ends of Σ. A multi-arc is a collection of disjoint arcs.

An arc α in Σ is called peripheral if Σ\α has a connected component that
is a disk. An arc is called essential if it is not peripheral. A multi-arc is a
possibly-infinite collection of disjoint arcs, and an isotopy class of a multi-arc
is the collection of isotopy classes of its corresponding disjoint arcs.

Let [µ] and [ν] be isotopy classes of multi-arcs. The intersection number
i(µ, ν) is the minimum value of |µ∩ ν| among all isotopy representatives of µ
and ν.

Definition 2.1. An ideal triangulation of a surface, denoted T , is a
locally finite maximal collection of pairwise disjoint, pairwise non-homotopic,
essential ideal arcs whose complementary components are open disks.

There are other alternative definitions of ideal triangulations on infinite-
type surfaces in the literature, such as in [6, 15]. We will sometimes consider
a triangulation of Σ to be a subspace of Σ rather than a collection of maps
into Σ. The closures of complementary components of a triangulation are
called triangles. Consider a triangle ∆, and consider the arcs {αi}i ∈ I that
compose its boundary. |I| > 1, since otherwise the boundary arc would be
null-homotopic through the disk ∆. If |I| > 3, then there is an ideal arc
contained in ∆ which is not homotopic to any of αi’s. Thus, if T is maximal,
then the boundary of a triangle can consist of either two or three arcs.

If an arc α in a triangulation bounds only one triangle ∆, then ∂∆ must
consist of a single additional arc β [13]. In this situation we call β a petal arc
for α.

In [15], McLeay and Parlier establish that every infinite-type surface ad-
mits an ideal triangulation. Moreover, they determine when exactly a multiarc
is a subset of a triangulation.

Lemma 2.2 (Theorem 1.2 of [15]). An ideal multiarc µ is a subset of an
ideal triangulation if and only if for any simple closed curve γ, the intersection
number i(γ, µ) <∞.



128 A. BAR-NATAN ET AL.

If a multiarc µ satisfies the conditions above, then there exists a triangu-
lation T containing µ. We call such a triangulation a completion of µ.

Definition 2.3. Consider a triangulation T and a disjoint collection of
arcs µ ⊂ T such that for any α ∈ µ bounding distinct triangles ∆1 and ∆2,
we have ∆1 ∩∆2 ∩ µ = α. A simultaneous flip sends T to a triangulation T ′

by replacing each α ∈ µ by the other diagonal of its bounding quadrilateral.

Figure 1 depicts an example of a simultaneous flip. We can now define
the flip graph F(Σ) of a surface Σ, whose vertices are isotopy classes of ideal
triangulations of Σ. If Σ is an infinite-type surface, we connect two triangula-
tions by an edge if they are related by a simultaneous flip. If Σ is finite-type,
we connect triangulations by an edge only if they are related by a single flip.

Figure 1. An example of a simultaneous flip of a triangu-
lation, with the dotted blue arcs before the flip and the red
arcs afterward.

Although the flip graph is connected in the finite-type case [4], the flip
graph in the infinite-type case has uncountably many connected components.
In particular, [6] establishes conditions on when two triangulations are in the
same connected component.

Lemma 2.4 (Theorem 1.1 of [6]). Let Σ be an infinite-type surface. Let
S and T be triangulations of Σ. Then, S and T are in the same connected
component of F(Σ) if and only if there exists K ≥ 0 such that for every arc
α of S and every arc β of T , the intersection numbers i(α, T ) and i(α, S) are
bounded by K.

Note that there is a natural action of the mapping class group on the flip
graph sending an ideal triangulation to its image under a homeomorphism
of the surface. Since this action commutes with flips, each mapping class
induces an automorphism of the flip graph. In the next section, we show that
there exists an automorphism of the flip graph which is not induced by any
mapping class.
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3. Proof of Theorem 1.2

In this section, we show that the extended mapping class group is a proper
subgroup of the automorphism group of the flip graph for infinite-type sur-
faces. Our methods were first inspired by those used by Branman to show an
analogous result for pants graphs [2].

Since the flip graph is disconnected, the connected components can in
some sense be manipulated independently of one another. However, every
mapping class necessarily affects triangulations in every connected component
of the flip graph. This is the essential reason that the symmetries of Σ fail to
fully capture the symmetries of F(Σ). After establishing some properties of
the action on F(Σ), we will prove this by constructing an automorphism of
F(Σ) that cannot be induced by a mapping class.

We begin by proving Lemma 1.3.

Proof. Assuming (ii), we see that restricting the isotopy from IdΣ to f
yields an isotopy from α to f(α). Hence, (ii) implies (i).

To show the converse, let T be a triangulation of Σ. By hypothesis, the
arcs comprising T are, up to homotopy, an Alexander system on Σ as in [9].
This system is filling and we claim that it is stable in the sense of [9]. This
is because if f ∈ Map±(Σ) fixes the isotopy classes of the arcs in T , then f
must preserve their respective complementary components, each of which is
an ideal triangle. Thus, in each component, up to homotopy, f restricts to a
map from the disk to itself, and hence is homotopic to the identity.

Figure 2. The standard triangulation of the flute surface.

Remark 3.1. Initially, one might think that if a mapping class fixes
a particular triangulation, it must be the identity. This is not always the
case, however. For example, consider the triangulation T of the flute surface
depicted in Figure 2. Then, the mapping class that shifts every point on
the plane to the right one unit fixes T (not as a set, but as a triangulation).
Note that this homeomorphism is not isotopic to the identity. In other words,
arbitrary triangulations do not form Alexander systems. This implies that
generally, Map±(Σ) does not act freely on F(Σ).
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The following technical lemma will be used in the proof of Lemma 3.4 to
glean information about the action of F(Σ) on individual arcs from its action
on triangulations.

Lemma 3.2. Let α and β be distinct ideal arcs on Σ, such that α is not
a petal arc for β. Then, there exist ideal triangulations T1, T2 in distinct
connected components of the flip graph that each contain α but not β.

Proof. We first construct T1. If i(α, β) > 0, then any completion of α
can be taken as T1. Otherwise, α and β are disjoint and, by Lemma 2.2, they
can be completed into a triangulation T . If β is flippable, we flip β to get a
triangulation T ′ that contains α but not β.

Otherwise, β is unflippable, which implies that the triangles bordering
both sides of the arcs are the same, and that β is contained within a petal
formed by an arc γ. Then, γ must border two distinct triangles, so γ is
flippable. After flipping γ, β will thus be flippable, and flipping β will result
in a triangulation T1 that contains α but not β.

Next, we construct T2. Since Σ′ = Σ \ (α ∪ β) is still an infinite-type
surface, we can choose a countable collection of disjoint simple closed curves
δi on Σ′. Note that each δi, when thought of as a curve on Σ, is disjoint from
α and β.

We apply the procedure described in Corollary 4.1 of [6] to T1 using the
collection {δi} to obtain a triangulation T2 in a distinct connected component
of F(Σ), containing α but not β.

Remark 3.3. Note that the procedure described above can create un-
countably many triangulations, each in a distinct connected component and
containing α but not β. This procedure is done precisely in [6]. However, it is
not true that every connected component contains such a triangulation. Con-
sider the triangulation T of the flute surface shown in Figure 2. We claim that
no triangulation in the connected component of T contains an arc α with an
endpoint at the non-isolated end. To see why this is true, observe that none of
the arcs of T connect to the non-isolated end, so this end cannot be the vertex
of a bounding quadrilateral of an arc. Hence, a simultaneous flip cannot con-
nect any new arcs to this end. Since the resulting triangulation will retain this
property, we conclude that no triangulation containing α is reachable from
T by a series of simultaneous flips. This implies that the modular flip graph
[4], the quotient of F(Σ) by the action of Map(Σ), is disconnected for certain
infinite-type surfaces, a result which may be of independent interest.

The next result shows that mapping classes are determined by their action
on the flip graph. In addition, the weaker hypothesis allows us to determine
the action of a mapping class on one connected component of F(Σ) by its
action on the other components. We use this in the proof of Theorem 1.2 to
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show that a particular automorphism of F(Σ) is not induced by a mapping
class.

Lemma 3.4. If f ∈ Map±(Σ) acts trivially on every connected component
of F(Σ) except for possibly one, then f is the identity in Map±(Σ).

Proof. Let α be an arc in Σ, and let β be an arc not equal to α. We show
that f(α) cannot be homotopic to β, and will then conclude that f(α) = α. By
Lemma 1.3, this would immediately show that f is the identity in Map±(Σ).

Suppose that α is a petal arc of β. We observe that β must have two
distinct endpoints, while α only has one, so f(α) cannot be homotopic to β.
In the case where α is not a petal arc of β, Lemma 3.2 guarantees the existence
of triangulations T1, T2 each containing α but not β such that T1 and T2 lie in
distinct connected components of F(Σ). Then, f must act trivially on either
T1 or T2, and in particular, f(α) ̸= β.

Corollary 3.5. The action of Map±(Σ) on F(Σ) is faithful. In other
words, Map±(Σ) embeds into Aut(F(Σ)).

The preceding result establishes that the flip graph has at least as many
symmetries as the surface. But since so little is known about the graph struc-
ture of F(Σ), it is difficult to conceive of automorphisms that are not induced
by specific mapping classes. The following lemma improves the situation to
some extent, allowing us to construct automorphisms of individual connected
components via compactly-supported mapping classes.

Lemma 3.6. Let f be a compactly-supported mapping class. Then, f in-
duces an automorphism on every connected component of F(Σ). In particular,
f fixes the connected components of F(Σ).

Proof. Let T ∈ F(Σ) be arbitrary. We will show that T and f(T ) must
lie in the same connected component of F(Σ). Since f has compact support,
there exists a finite-type subsurface Σ′ of Σ containing every point x ∈ T ⊂ Σ
for which f(x) ̸= x. It follows that every transverse intersection of arcs of T
and arcs of f(T ) is contained within Σ′.

Only finitely many arcs of T and f(T ) can pass through Σ′, because
otherwise, the arcs of T or f(T ) would accumulate. Let A ⊂ Σ′ be this
set of arcs, and let K = maxα,β∈A |α ∩ β|. This maximum exists, because
intersection points between arcs in A are discrete and contained in Σ′. Note
that for any α ∈ T , we have i(α, f(T )) ≤ K|A|, and for any β ∈ f(T ), we have
i(β, T ) ≤ K|A|. Thus, by Lemma 2.4, T and f(T ) lie in the same connected
component of F(Σ).

Since f induces an automorphism on F(Σ), it must restrict to an auto-
morphism on each connected component of F(Σ).

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let f be a nontrivial mapping class with com-
pact support, and let Γ be a connected component of F(Σ) that f acts non-
trivially on. Note that f induces an automorphism on Γ by Lemma 3.6, which
we also denote f . We define an automorphism f of F(Σ) by

f(T ) =

{
f(T ) T ∈ Γ,

T T ∈ F(Σ) \ Γ.

By Lemma 3.4, a mapping class inducing f would necessarily act trivially on
F(Σ), which f does not. Thus, f cannot be induced by a mapping class. To-
gether with Corollary 3.5, this establishes that the natural action of Map±(Σ)
corresponds to a homomorphism Map±(Σ)→ Aut(F(Σ)) that is injective but
not surjective.

4. Discussion

In this paper, we constructed an automorphism of the flip graph not in-
duced by a mapping class. In other words, there are graph isomorphisms
between flip graphs that are not induced by homeomorphisms of the corre-
sponding surfaces. A natural follow-up question to ask is whether simultane-
ous flip graphs even determine a surface.

Question: If F(Σ) and F(Σ′) are isomorphic as graphs, does this mean
that Σ and Σ′ are homeomorphic?

The method we used in this paper considers how automorphisms of the flip
graph on distinct connected components may be incompatible with mapping
classes. However, we might try to restrict our attention to a single connected
component of the flip graph. We can ask whether every automorphism of a
connected component is induced by a mapping class.

Question: For a given connected component Γ of the flip graph F(Σ),
is Aut(Γ) isomorphic to Map±(Σ)?
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