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Southwestern University of Finance and Economics, Chengdu, China

ABSTRACT
Green technology is a significant means to improve the environ-
ment and achieve sustainable development goals. According to the
data of Chinese provincial panel from 2000 to 2016, our study
investigated the spatial effect of environmental research and devel-
opment (R&D) activities on SO2 intensity using the dynamic spatial
Durbin model. First, SO2 intensity in China was shown to have obvi-
ous spatial correlation, strong path dependence, and spatial
agglomeration features of ‘high-high’ as well as ‘low-low’. Second,
both in the short- and long-term, environmental R&D activities had
an essential negative influence on local SO2 intensity, but no signifi-
cant effect on SO2 intensity in the neighbouring areas, indicating
that the SO2 intensity reduction effect of environmental R&D activ-
ities was confined to local areas. Moreover, the long-term effect of
environmental R&D activities on SO2 intensity was not enhanced,
indicating that China’s existing green technology is insufficient,
which hinders the spillover influences of environmental R&D activ-
ities. Third, the short- as well as long-term effects of practical-type
R&D on SO2 intensity were significantly negative, indicating that
practical-type R&D can effectively reduce SO2 intensity. Invention-
type R&D had a significant negative effect on local SO2 intensity,
but no significant effect on neighbouring areas.
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1. Introduction

In the past forty years, the fast economic development in China has caused some
environmental problems. As one of the air pollutants, SO2 can seriously hinder the
photosynthesis of plants after entering the atmosphere, causing a series of environ-
mental pollution problems such as acid rain and haze. In 2014, 723 million people in
China were affected by haze, mainly in East and Central China (Han et al., 2018).
With rising levels of environmental pollution, increased attention is being paid to
reduction of SO2 emissions.
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Numerous researchers have focused on the relative indicator of SO2 emissions (SO2

intensity), which is recognized as the proportion of SO2 emissions in gross domestic
product (GDP) units (Nan et al., 2020; Tian et al., 2022). SO2 intensity is primarily
affected by technological progress and structural changes (Tang et al., 2021). Over six
decades, heavy industry has become the main contributor of pollutant emissions in
China, and its stable economic structure is difficult to change (Li et al., 2020). In such
a scenario, technological progress is a realistic path to improve environmental quality.

Thus, the use of technological innovation to control environmental pollution while
promoting economic growth has been a hot issue. Environmental research and develop-
ment (R&D) activities focus on environmental protection and energy saving, which is an
R&D activity related to energy-saving technology1. Environmental R&D activities can not
only lead to reduction of pollutant emissions per unit product, but also greatly improve
total factor productivity (TFP), thereby improving the environment effectively without
restricting economic development (Acemoglu et al., 2012). Therefore, environmental
R&D activities are an important factor in achieving the sustainable development goals.

Since 2000, environmental R&D activities have developed rapidly in China.
However, the quality of environmental R&D activities is still low (Wang & Zhao,
2019). In addition, there are few inter-regional green innovation cooperation activ-
ities; neither an inter-regional platform for green technology innovation exchange nor
a pollution control platform has been formed. Increased and efficient input–output
relationship, knowledge diffusion, and technology spillover are the main methods to
promote regional economic efficiency. Particularly, environmental R&D activities are
conducive to improving energy efficiency and achieving emission reduction goals
owing to few technical obstacles and mass technology flow as well as diffusion
(Bataille et al., 2018). In addition, through cross-regional technical cooperation and
strict environmental regulation, emission intensity can be decreased further (Gries
et al., 2018). While some studies have discussed the spatial correlation of SO2 inten-
sity, the relationship between environmental R&D activities and SO2 intensity has not
been considered so far. Besides, the heterogeneity of environmental R&D activities
has been ignored. Therefore, we realise the necessity to systematically research the
spatial effect of environmental R&D activities on SO2 intensity.

Therefore, our research’s key goal was to assess the spatial effects of environmental
R&D activities on SO2 intensity. First, based on diverse spatial weight matrices, the
spatial correlation of SO2 intensity in China from 2000 to 2016 was examined.
Second, considering that SO2 emissions have the characteristics of ‘path dependence’
and ‘spatial correlation’, we used the dynamic spatial Durbin model (DSDM) to
examine the influence of environmental R&D activities and its spatial spillover on
SO2 intensity. Third, given the heterogeneity of environmental R&D activities, this
study further estimated the influences of various environmental R&D activities on
SO2 intensity in the short- and long-term.

2. Literature review

Theoretically, technological progress has a uncertain influence on the environment.
Technological progress will result in more energy-intensive economic activities,
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thereby leading to more energy consumption and more emissions. Besides, technological
progress reduces emissions by upgrading products and improving energy-saving technol-
ogies. Therefore, the environmental influence of technological progress is indeterminate
and depends on the net effect. For economically developed countries, a relatively con-
sistent view is that technological progress is beneficial to improving environmental qual-
ity (Fern�andez-Fern�andez et al., 2018; Weimin et al., 2021; Petrovic & Lobanov, 2020).
For China, technological progress and structural change are important elements affecting
SO2 intensity (Tang et al., 2021). Due to the high cost of optimising the economic and
energy structures, improving technological progress has become an important tool to
decrease SO2 intensity in China (Liu et al., 2019; Zhou et al., 2017).

Green technology was first mentioned by Ernest and David (1994); It is aimed at real-
ising clean production, promoting environmental performance, improving the compre-
hensive utilisation of resources and energy of various technologies, processes or products
(de Oliveira et al., 2018). As an important part of green technology, environmental R&D
activities are R&D activities related to energy-saving technologies, which can reflect the
‘bias’ of technological progress (Hicks, 1932). According to the concept of induced
innovation, enterprise innovation is a profit-driven investment activity (Acemoglu et al.,
2012). If an enterprise’s R&D investment is more inclined towards utilising emission
reduction technology, then such R&D activities reduce SO2 intensity more directly; these
are known as environmental R&D activities. The factors affecting environmental R&D
activities were discussed. First, environmental regulation (environmental policy) has been
regarded as a key tool to directly promote environmental performance or affects it indir-
ectly by raising environmental R&D activities (Ngo, 2022). Second, the business cycle
also has an impact on environmental R&D activities and the environment (Ahmad &
Zheng, 2021). The relatively consistent conclusion is the relationship between environ-
mental R&D activities and pollutants emissions is asymmetric and counter-cyclical, and
environmental R&D activities reduce pollutant emissions overall (Khattak & Ahmad,
2021;Khattak et al., 2022; Xin et al., 2021). Third, institutional pressure, second-order
social capital, and government R&D subsidies also influence environmental R&D activ-
ities (Chen et al., 2018; Wu & Zhao, 2021; Zhao et al., 2021).

However, there is a relative lack of literature on environmental R&D activities and
SO2 intensity. You et al. (2022) investigated the relationship between domestic envir-
onmental innovation and CO2 emissions in the United States between the first quar-
ter of 1990 and fourth quarter of 2018 and found that domestic environmental
innovation could reduce long-term CO2 emissions. Hou et al. (2020) takes emissions
trading scheme for SO2 (SO2 ETS) as the research object, and uses DID methods to
verify the policy influence on green total factor productivity and SO2 intensity. The
results show that the policy can significantly reduce SO2 intensity, but inhibit the
development of green total factor productivity. Thus, we need to clarify the relation-
ship between environmental R&D and SO2 intensity.

A comprehensive environmental R&D activity encompasses different fields and
stages. R&D based on various categories may result in differentiated environmental
performance. Du et al. (2021) divided green innovation into green utility innovation
and green invention innovation, and estimated the emission trading policy influence
on green innovation. The results show that different green innovations have different
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environmental effects. However, most research use environmental R&D activities to
investigate the environmental effects, rarely further considering the heterogeneity of
environmental R&D activities and their differential influence on SO2 intensity.

Lastly, air pollutant emissions have obvious spatial diffusion and spillover effects.
On the one hand, air pollutant emissions are easily transferred from one area to the
neighbouring areas with the movement of air or water, and local emissions are affected
by emissions from the neighbouring areas. On the other hand, adjacent areas may imi-
tate one another’s development pattern, which means that environmental quality may
also be influenced by neighbours. More importantly, pollutant emissions also have
obvious path dependence; that is, districts with heavy air pollution at present will still
have relatively high air pollution levels in the future. As an air pollutant, SO2 emission
has significant spatial correlation (Nan et al., 2020). Few studies have simultaneously
considered the characteristics of spatial correlation and path dependence when study-
ing the relationship between environmental R&D activities and SO2 intensity.

3. Model design and description of variables

3.1. Spatial econometric model

3.1.1. Spatial correlation test
Moran’s I Index includes global Moran’s I Index (GMI) and local Moran’s I Index
(LMI). The GMI is adopted to determine spatial correlations or dependencies
between different regions (Moran, 1948), as follows:

GMI ¼
Xn

i¼1

Xn

j¼1
wi, jðSOIi � SOIÞðSOIj � SOIÞ
S2

Xn

i¼1

Xn

j¼1
wi, j

(1)

where SOI represents SO2 intensity in China at a provincial level, SOI represents the
mean value of SO2 intensity of the sample, n denotes the number of samples, and wi, j

denotes binary spatial weight matrix;
S2 denotes the sample variance and can be written as

S2 ¼
Xn
i¼1

ðSOI � SOIÞ2=n (2)

The LMI is used as a method to test the existence of clustering in observed sam-
ples. Accordingly, the LMI of SO2 intensity can be calculated as follows:

LMI ¼
ðSOIi�SOIÞ

Xn

j¼1
wi, jðSOIj � SOIÞXn

i¼1
ðSOIi�SOIÞ2=n

(3)

3.1.2. Spatial weight matrix
The definition of the spatial weight matrix (W) is a key step in capturing the interac-
tions between different provinces. This study uses three of the most common spatial
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matrices, namely the spatial adjacent matrix (W1), geographic distance matrix (W2),
and economic distance matrix (W3), with the following basic forms:

3.1.3. Spatial adjacent matrix (W1). If the province i and province j are geographic-
ally adjacent, the corresponding factor in the matrix is 1. Otherwise, it is 0, as shown
below:

eij
1 ¼ 1, i 6¼ j

0, i ¼ j

�
(4)

3.1.4. Geographic distance matrix (W2). This is an extension of W1. According to
the latitude and longitude of the provincial capital, the spherical distance between
each point is calculated. Then, the geographical distance weight matrix is constructed
with its reciprocal element as follows:

eij
2 ¼ 1=dij, i 6¼ j

0, i ¼ j

�
(5)

3.1.5. Economic distance matrix (W3). According to Feng et al. (2019), this study
adopts the reciprocal of the economic level gap between the two provinces as W3,
where Yi

� is the annual average per capita GDP of a province from 2000 to 2016.

eij
3 ¼ 1= Yi

��Yj
�

�� ��, i 6¼ j
0, i ¼ j

�
(6)

3.1.6. Spatial econometric model
As a generalised form of a spatial econometric model, the spatial Durbin model
(SDM) entails spatial lags of pollutant emissions and socio-economic elements; these
can effectively resolve estimation problems, such as spatial heterogeneity and omis-
sion of variables (Elhorst, 2014). Therefore, the traditional SDM can be expressed in
the following manner:

ln SOIi, t ¼ qW: ln ðSOIi, tÞ þ g1 ln SINi, t þ g2 lnEMi, t þ g3 lnURi, t þ g4 ln SRDi, t

þ h1W: ln ðSINi, tÞ þ h2W:ð lnEMi, tÞ þ h3W:ð lnURi, tÞ
þ h4W:ð ln SRDi, tÞ þ lþ ot lN þ lt (7)

where q is the spatial autoregressive coefficient of SO2 intensity, reflecting the spatial
spillover effect of SO2 intensity, where SOI denotes SO2 intensity; SRD denotes total
environmental R&D activities; SIN, EM, and UR represent economic structure, energy
structure, and urbanisation, respectively; giði ¼ 1, 2 . . . , 4Þ is the regression coefficient
of different variables.hiði ¼ 1, 2 . . . , 4Þ signifies the spatial lag term of the correspond-
ing variable, l symbolises the vector of space fixed or space random effect, and ot
denotes the fixed or random effect of time period (t¼ 1,2,… ,T).
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However, SO2 intensity also has the characteristic of path dependence; in other
words, SO2 intensity in the present period is also influenced by the SO2 intensity in
the preceding period. Thus, the DSDM is introduced to study the dynamic character-
istics of SO2 intensity:

ln SOIi, t ¼ / ln SOIi, t�1 þ qW: ln ðSOIi, tÞ þ g1 ln SINi, t þ g2 lnEMi, t

þ g3 lnURi, t þ g4 ln SRDi, t þ h1W: ln ðSINi, tÞ þ h2W:ð lnEMi, tÞ
þ h3W:ð lnURi, tÞ þ h4W:ð ln SRDi, tÞ þ lþ otlN þ lt (8)

where / represents the lagging term of SO2 intensity.
Based on the above analysis, models (7) and (8) can evaluate the influence of

environmental R&D on SO2 intensity under the spatial effect. The magnitudes of the
coefficients g4 and h4 are of prime importance.

However, significant diversities exist between environmental R&D activities, as dis-
cussed in the Literature review, leading to different influences on SO2 intensity.
Thus, environmental R&D activities are categorised based on various purposes (e.g.,
practical-type and invention-type). Then, the experimental model can be showed as

ln SOIi, t ¼ qW: ln ðSOIi, tÞ þ g1 ln SINi, t þ g2 lnEMi, t þ g3 lnURi, t

þ g4 lnCRDi, t þ g5 lnURDi, t þ h1W: ln ðSINi, tÞ þ h2W:ð lnEMi, tÞ
þ h3W:ð lnURi, tÞ þ h4W:ð lnCRDi, tÞ þ h5W:ð lnURDi, tÞ
þ lþ otlN þ lt (9)

where model (9) is a static SDM; URD denotes practical-type R&D, CRD denotes
invention-type R&D, the coefficients g4 and h4 are of prime importance.

Likewise, the DSDM is presented below:

ln SOIi, t ¼ / ln SOIi, t�1 þ qW: ln ðSOIi, tÞ þ g1 ln SINi, t þ g2 lnEMi, t

þ g3 lnURi, t þ g4 lnCRDi, t þ g5 lnURDi, t

þ h1W: ln ðSINi, tÞ þ h2W:ð lnEMi, tÞ þ h3W:ð lnURi, tÞ
þ h4W:ð lnCRDi, tÞ þ h5W:ð lnURDi, tÞ þ lþ otlN þ lt (10)

where Model (10) is based on the SDM under different environmental R&D, in which
the coefficients g4,g5, h4, h5 are of prime importance.

3.2. Variable selection and data source

In accordance with previous studies, the present study classified the factors affecting
SO2 intensity into technological progress and structural change, wherein the latter
refers to the shift in economic structure and energy structure. In the process of rapid
urbanisation, energy demand and energy consumption patterns triggered by urbanisa-
tion will also have an impact on SO2 intensity. Considering the availability of data,
we obtained balanced panel data for 30 provinces from 2000 to 2016. Tables 1 and 2
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present the definitions of the variables and the correlation matrix, respectively. All
indicators are described below.

3.3. Explained variable

For the explained variable, SO2 intensity (unit: kg/104 RMB) is described by the pro-
portion of SO2 emissions to GDP. SO2 emissions and GDP data were obtained from
the China Energy Statistical Yearbook (CESY) and the China Provincial Statistical
Yearbooks (CPSY), respectively. GDP is showed in 2000 constant prices.

3.4. Core explanatory variable

This study selected environmental R&D activities as the core explanatory variable.
There are three ways to measure environmental R&D activities. First, in terms of
innovation input, they are expressed through R&D investment (Ahmad et al.,
2020).Second, from the perspective of innovation output, they are represented by
green patents. Third, from the perspective of innovation performance, they are

Table 1. Definitions and descriptive statistics of the variables.
Variables Description Proxy variables Mean Std.Dev Min Max

ln SOI SO2 intensity Sulphur dioxide emission divided by
GDP in logarithm

1.855 0.487 0.112 3.164

ln SRD The total environmental
R&D activities

Number of the total environmental
patents in logarithm

4.817 1.676 0 8.634

lnCRD The invention-type of
environmental
R&D activities

Number of invention-type patents
in logarithm

4.152 1.746 0 8.108

lnURD The practical-type of
environmental
R&D activities

Number of practical-type patents
in logarithm

4.036 1.617 0 7.898

ln SIN Economic structure Ratio of secondary sector added
value to GDP in logarithm

3.64 0.248 2.477 3.970

ln EM Energy mix Ratio of coal in energy consumption
in logarithm

4.117 0.314 2.163 4.572

ln FDI FDI Ratio of FDI to the total fixed asset
investment in logarithm

3.474 1.222 0.941 8.176

ln EX Export Ratio of export divided by GDP
in logarithm

�2.38 0.991 �4.785 �0.007

lnUR Urbanization Ratio of urban population to the
total population in logarithm

3.867 0.297 2.976 4.496

Source: Research results.

Table 2. Correlation matrix.
ln SOI ln SRD lnCRD lnURD ln SIN ln EM lnUR ln EX ln FDI

ln SOI 1
ln SRD �0.753 1
lnCRD �0.761 0.987 1
lnURD �0.731 0.979 0.943 1
ln SIN 0.164 0.201 0.164 0.252 1
ln EM 0.477 �0.101 �0.14 �0.060 0.524 1
lnUR �0.700 0.648 0.667 0.602 0.073 �0.342 1
ln EX �0.307 0.376 0.364 0.369 0.212 �0.117 0.561 1
ln FDI 0.315 �0.196 �0.196 �0.185 �0.045 0.215 �0.451 �0.641 1

Source: Research results.
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expressed by TFP (Miao et al., 2021). However, due to data limitations, R&D and
TFP have certain disadvantages (Tumelero et al., 2019). Consistent with most litera-
ture, we use the number of green patents to show environmental R&D activities (Du
et al., 2021; Zhang et al., 2019).

For the construction of green patents, first, we defined the scope of environmental
R&D activities. According to the World Intellectual Property Organization (WIPO),
there are seven fields related to emission reduction and energy conservation technolo-
gies2, and the innovative technologies in these areas can be considered as environ-
mental R&D activities. Second, we collected all patent data from the Chinese Patent
database, which publishes all valid patent application information. Third, we identi-
fied green patents by combining the classification code of each patent with the IPC
Green Inventory. The total environmental R&D activities would be the sum of the
green patents in seven environmental fields. Additionally, based on the search key-
words of each patent, it was possible to distinguish whether it was a practical-type or
an invention-type patent. The number of practical R&D activities and invention R&D
activities in environmental technology could also be obtained by following an identi-
cal method. Finally, given the time-lag of the impact of patents on the environment,
the patent data from 1999 to 2015 were selected.

3.5. Control variables

3.5.1. Economic structure
Numerous researchers have confirmed the positive association between industrialisa-
tion and pollutant emissions. As SO2 is an air pollutant, an economic structure domi-
nated by the secondary industry will lead to elevated levels of SO2 and SO2 intensity.
Similar to previous studies, this study defined the economic structure as the rate of
the added value by industries to the GDP (Han & Amira,2021; Zhu et al., 2021), and
the data were sourced from the CPSY. We expected the economic structure to
increase SO2 intensity.

3.5.2. Energy structure
China uses more coal compared to cleaner energy (natural gas or petroleum), and the
rate of coal in entire energy consumption was 56.8% in 2020 (National Bureau of
Statistics, China). The combustion of coal emits large quantities of sulphide.
Therefore, a coal-based energy structure is not beneficial to reducing pollutant emis-
sions (Wang et al., 2019). As in most literature, the rate of coal consumption to
entire energy consumption was considered as the energy consumption structure (Li
et al., 2020; Zhao et al., 2018), the corresponding data was obtained from the CESY.
The effect of energy structure on SO2 intensity was expected to be positive.

3.5.3. Urbanisation
Urbanisation can affect SO2 emissions through aggregation and scale effects; there-
fore, its impact primarily relies on the size of the two effects. In empirical research,
some researchers consider urbanisation to have worsened environmental pollution
(Salahuddin et al., 2019). However, other studies confirmed the positive effects of
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urbanisation on the environment (Liu et al., 2019). Referring to Salahuddin et al.
(2019) and Wang et al. (2019), urbanisation refers to the ratio of the urban popula-
tion to total population, which from CPSY. We assumed urbanisation to have a
uncertain impact on SO2 intensity.

4. Results and discussion

4.1. Spatial auto-correlation test

The annual change in the GMI for SO2 intensity was calculated based on three spatial
weight matrices. In Table 3, the GMI was greater than 0 at a high level of 5%. The
outcomes showed that SO2 intensity in China had highly spatial correlation character-
istics or global spatial dependence among different provinces. The annual GMI also
showed an inverted U-shaped trend. To further explore this problem, this study used
dynamic spatial econometric model to evaluate the impact of different environmental
R&D activities on SO2 intensity.

To identify the characteristics of local spatial autocorrelation and spatial agglom-
eration, we drew Moran’s index scatter diagrams for 2005 and 2015 (Figure 1).
Most provinces occurred in the first and third quadrants, showing that there was an
important positive local spatial dependence of SO2 intensity. In addition, according
to the local Moran’s index scatter diagrams and LISA, the ‘high-high’ cluster areas
were mainly distributed in Gansu, Qinghai, Shanxi, and Ningxia from 2005 to 2015.
The ‘low-low’ agglomeration areas were mainly in the eastern coastal areas, includ-
ing Jiangsu, Zhejiang, Fujian, Guangdong, Shanghai, and other regions.
Heilongjiang, Hunan, and Anhui were in the clustering characteristic of ‘high-low’.
The ‘low- high’-type regions were mainly distributed in parts of Gansu, Shaanxi,
Shanxi, and Inner Mongolia. In summary, China’s SO2 intensity not only has sig-
nificant spatial agglomeration, but also presents unbalanced spatial heterogeneity
within provinces.

Table 3. The global Moran I index of China’s SO2 intensity between 2000 and 2016.
Year W1 W2 W3

2000 0.061�� 0.065�� 0.077���
2001 0.065��� 0.068��� 0.081���
2002 0.069��� 0.072��� 0.085���
2003 0.087��� 0.091��� 0.103���
2004 0.099��� 0.098��� 0.115���
2005 0.1��� 0.11��� 0.116���
2006 0.103��� 0.107��� 0.12���
2007 0.105��� 0.109��� 0.123���
2008 0.108��� 0.11��� 0.125���
2009 0.108��� 0.112��� 0.124���
2010 0.119��� 0.117��� 0.131���
2011 0.127��� 0.125��� 0.14���
2012 0.126��� 0.124��� 0.139���
2013 0.124��� 0.123��� 0.138���
2014 0.126��� 0.128��� 0.141���
2015 0.13��� 0.131��� 0.146���
2016 0.124��� 0.125��� 0.142���
Notes: (a)The results are based on the stata command ‘spatgsa’. (b) ���, ��, and � denote significance at the 1%,
5%, and 10% levels, respectively.
Source: Research results.
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4.2. Spatial regression results

4.2.1. Analysis of general environmental R&D activities and SO2 intensity
Before empirical analysis, we used statistical tests to select the appropriate economet-
ric model. Table 4 reports the results. First, it was assumed that there was no correl-
ation between individual effects and variables. We used Hausman test to decide
whether to adopt the fixed effects model (FE) or the random effects model (RE). The
Hausman test showed that FE was better than RE, which passed the test at the 5%
significance level. Second, FE, static spatial Durbin model (FSDM), and DSDM were
compared. We found that most p-values of Lagrange Multiplier (LM) test—LM-Lag,
LM-error, Robust-LM-error, and Robust LM-lag—passed the test at the 5% signifi-
cance level, which means that spatial correlation should be considered in the econo-
metric model. In addition, both likelihood ratio test and Wald test also passed the

Figure 1. Moran scatter chart of China’s SO2 intensity in 2005 and 2015.
Notes: (a) The left figure shows the reported results of SO2 intensity in 2005, and the right figure shows the reported
results of SO2 intensity in 2015. (b) The provinces represented by the figures are：1 - Beijing, 2 - Tianjin, 3 - Hebei, 4
- Shanxi, 5 - Inner Mongolia, 6 - Liaoning, 7 - Jilin,8 - Heilongjiang, 9 - Shanghai, 10 - Jiangsu, 11 - Zhejiang, 12 -
Anhui, 13 - Fujian, 14 - Jiangxi, 15 - Henan,16 - Shandong ,17 - Hubei, 18 - Hunan, 19 - Guangdong, 20 - Guangxi, 21
- Hainan, 22 - Chongqing, 23 - Sichuan, 24 - Guizhou, 25 - Yunnan, 26 - Shaanxi, 27 - Gansu, 28 - Qinghai, 29 -
Ningxia, 30 - Xinjiang. (c) For simplicity, we only report the Moran’s index scatter diagrams based on W1. Due to
space limitation, the other weight matrices (W2,W3) are quite relatively consistent with the results of W1.
Source: Research results.

Table 4. Statistical tests results for form selection.
Statistic W1 W2 W3

LM-lag 6.088�� 6.026�� 6.111��
LM-error 7.638��� 7.988��� 5.112���
Robust- LMlag 5.012�� 6.065�� 8.615���
Robust -LM error 5.633�� 5.894�� 6.182��
Wald_spatial_lag 68.232��� 66.468��� 80.76���
Wald_spatial_error 62.129��� 61.31��� 85.72���
LR_spatial_error 56.122��� 50.432��� 85.11���
LR_spatial_lag 59.172��� 59.071��� 84.18���
Notes: ���, ��, and � denote significance at the 1%, 5%, and 10% levels, respectively.
Source: Research results.
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test at the 1% significance level; therefore, the FSDM was more suitable. Compared
with the FSDM, the DSDM has both spatial and time lag effect, and could estimate
parameters more accurately. In summary, we adopted the DSDM in this study.

Based on Equation (8), the quasi-maximum likelihood approach (Yu et al., 2008)
was adopted to evaluate the influence of environmental R&D activities on SO2 intensity
in China from 2005 to 2015. The estimation outcomes are presented in Table 5. For
comparison, Table 5 also lists the evaluated results of FE (Column 1), FSDM (Column
2), DSDM based on the spatial matrix W1 (Column 3), DSDM based on the spatial
matrix W2 (Column 4), and DSDM based on the spatial matrix W3 (Column 5).

In Table 5, under three diverse spatial weight matrices, the time lag coefficient of
SO2 intensity (L.lnSOI) was significantly positive at 1% level. This indicates that
China’s SO2 intensity has significant ‘time inertia’ and has certain pathing depend-
ence; that is, if the SO2 intensity is currently at a high level, the SO2 intensity may
increase continuously in the next period, showing a ‘snowball effect’. From the spatial
dimension, the spatial lag coefficient of SO2 intensity (W�lnSOI) was significantly
positive under three different spatial matrixes, indicating that SO2 intensity had the
characteristics of spatial agglomeration in different regions, which was in line with
the outcomes of previous spatial autocorrelation tests.

The coefficient of environmental R&D (lnSRD) was largely negative at the 1%
level, implying that the promotion of environmental technology would be conducive
to decreasing SO2 intensity in China. A 1% increase in general environmental tech-
nology activities would result in reducing SO2 intensity by about 0.039%.
Environmental R&D activities will allow companies to develop more energy-efficient
technologies to enhance energy efficiency to save power. However, the spatial lag
coefficient of environmental R&D (W�lnSRD) was positive, and it was not significant.

Table 5. Regression results of general environmental R&D activities to SO2 intensity.
1 2 3 4 5

Variables FE FSDM1 DSDM1 DSDM2 DSDM3

ln SRD �0.207��� �0.026�� �0.040��� �0.039��� �0.038���
(0.010) (0.012) (0.002) (0.005) (0.003)

ln SIN 0.202��� 0.068 0.063��� 0.067��� 0.065���
(0.052) (0.042) (0.006) (0.01) (0.008)

ln EM 0.520��� 0.352��� 0.353��� 0.354��� 0.365���
(0.045) (0.033) (0.005) (0.004) (0.005)

lnUR �0.434��� �0.066 �0.065 �0.059 �0.062
(0.080) (0.065) (0.061) (0.058) (0.068)

L: ln SOI 0.753��� 0.775��� 0.766���
(0.067) (0.069) (0.068)

W � ln SOI 0.155�� 0.258�� 0.247�� 0.254��
（0.075） (0.112) (0.102) (0.111)

W � ln SRD 0.017 0.015 0.011 0.022
(0.024) (0.023) (0.025) (0.024)

Hausman 13.05��
q 0.621��� 0.65��� 0.713��� 0.681���

(0.061) (0.17) (0.103) (0.041)
N 510 480 480 480 480

Notes: (1). ���, ��, and � denote the significance at the 1%, 5%, and 10% level. (2). Values in ( ) denote the std.er-
ror for the coefficient. (3). L.lnSOI stands for the first-order lag of dependent variable (i.e., SO2 intensity). (4). W is
the spatial weight matrix. W�X stands for the product of W and the variable X, representing the spillover effect of
the variable X on SO2 intensity.
Source: Research results.
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Possible reasons include (1) regional green technology innovation activities are not
closely linked, and the mechanism to jointly improve the green technology innovation
development has not yet been formed; (2) In terms of technology maturity, the green
technology in China is of low quality and insufficient. As a result, it cannot give full
play to its technology spillover effect, which has an obvious impact on neighbour-
ing provinces.

According to Lesage and Pace (2009), the influence of various factors on SO2

intensity can be divided into direct effect and indirect effect. In this study, the DSDM
was adopted. According to time dimension, direct and indirect effects could be sepa-
rated into short-term and long-term effects, respectively reflected the short-term
impact of immediate and the long-term impact of considering time lag. Next, we
examined the spatial effect decomposition of the explanatory variables using spatial
adjacency matrix (W1), as W1 corresponded to the most ideal model (Table 6).

Regardless of direct effect or indirect influence, the absolute value of the coefficient
of long-term effect was larger than that of short-term effect overall, indicating that
each factor had a more profound long-term influence on SO2 intensity. The effect of
environmental R&D on local SO2 intensity in the short- as well as long-term was
negative in the same direction. Both short- and long-term direct influences were
negative and passed the 1% significance level. The long-term effect did not change
significantly. China’s green innovation activities will help solve the problem of emis-
sion reduction. The reason the long-term effect of SO2 intensity reduction was not
strengthened may be that China’s existing green technology still mainly involves
incremental improvement, and it does not have sufficient time to develop.
Meanwhile, the indirect influence of environmental R&D in both short- and long-
term was positive, but not significant; this shows that the green technology innov-
ation was mainly limited locally, and there was a lack of regional linkage.

4.2.2. Analysis of different purposes of environmental R&D activities and
SO2 intensity
When environmental R&D activities were categorised based on different aims (i.e.,
lnURD and lnCRD), we further estimated the spatial effect of different environmental
R&D activities on SO2 intensity (Table 7).

Table 6. Results of spatial effect decomposition.

Variables
Short-run Long-run

Direct effects Indirect effects Total effects Direct effects Indirect effects Total effects

ln SRD �0.040��� 0.015 �0.025��� �0.040��� 0.015 �0.025���
(0.002) (0.023) (0.003) (0.002) (0.023) (0.003)

ln SIN 0.061��� �0.083� �0.022 0.068��� �0.091� �0.023
(0.005) (0.041) (0.132) (0.007) (0.042) (0.135)

ln EM 0.352��� 0.155�� 0.507��� 0.360��� 0.157�� 0.517���
(0.049) (0.068) (0.101) (0.006) (0.069) (0.111)

lnUR �0.062 �0.244 �0.306 �0.069 �0.247 �0.316
(0.057) (0.236) (1.082) (0.062) (0.239) (1.102)

Notes: (a) ���, ��, and � denote the significance at the 1%, 5%, and 10% level. (b) The table reports the short-run
and long-run effects under the DSDM model based on W1.
Source: Research results.
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It is worth noting that different types of green innovation activities had different
influences on SO2 intensity. First, practical-type innovation activities (lnURD) had a
significant positive impact on the SO2 intensity reduction. A 1% increase in practical
innovation activities significantly reduced local SO2 intensity by about 0.11%. In add-
ition, its effect of technology spillover on SO2 intensity was significantly negative,
indicating that practical innovation activities can help reduce SO2 intensity in neigh-
bouring provinces. Second, although invention-type innovation activities (lnCRD)
could reduce local SO2 intensity, their direct and spatial effects on SO2 intensity were
insignificant. Third, practical green innovation activities (lnURD) had a more obvious
effect on SO2 intensity, and the impact was greater. The possible reasons are that
invention-type innovation activities (lnCRD) are more inclined towards theoretical
innovation, and the influence on the environment is relatively indirect. Their spatial
spillover effect is not obvious, which may be due to most innovation activities focus-
ing on frontier theories, and the confidentiality of high-tech ventures makes regional
technical cooperation difficult, thus affecting SO2 intensity in neighbouring provinces.
In addition, invention-type innovation activities (lnCRD) are insufficient in China.

Table 7. Regression results of different environmental R&D activities to SO2 intensity.
1 2 3 4 5

Variables FE FSDM1 DSDM1 DSDM2 DSDM3

lnURD �0.127��� �0.017 �0.116��� �0.112��� �0.118���
(0.014) (0.012) (0.013) (0.014) (0.016)

lnCRD �0.094��� �0.021 �0.017 �0.014 �0.011
(0.013) (0.011) (0.012) (0.015) (0.018)

ln SIN 0.159��� 0.068 0.061�� 0.062��� 0.069���
(0.051) (0.042) (0.027) (0.025) (0.028)

ln EM 0.477��� 0.352��� 0.355��� 0.365��� 0.375���
(0.045) (0.033) (0.032) (0.037) (0.041)

lnUR �0.340��� �0.062 �0.075 �0.077 �0.074
(0.079) (0.065) (0.078) (0.075) (0.073)

L: ln SOI 0.792��� 0.785��� 0.796���
(0.066) (0.059) (0.065)

W � ln SOI 0.219�� 0.224�� 0.235��
(0.102) (0.103) (0.108)

W � lnURD �0.04 �0.049�� �0.051�� �0.053��
(0.037) (0.022) (0.024) (0.025)

W � lnCRD �0.014 �0.012 �0.014 �0.015
(0.042) (0.072) (0.074) (0.076)

W � ln SIN �0.083 �0.084��� �0.082��� �0.083���
(0.109) (0.027) (0.028) (0.021)

W � ln EM 0.153�� 0.154�� 0.151�� 0.153��
(0.063) (0.064) (0.062) (0.069)

W � lnUR �0.291 �0.247 �0.241 �0.245
(0.195) (0.484) (0.489) (0.494)

Hausman 13.95��

q 0.608��� 0.615��� 0.621��� 0.617���
(0.062) (0.134) (0.135) (0.137)

sigma2_e 0.008��� 0.007��� 0.009��� 0.008���
(0.001) (0.000) (0.000) (0.000)

N 510 510 480 480 480

Notes: (1) ���, ��, and � denote the significance at the 1%, 5%, and 10% level. (2) Values in ( ) denote the std.error
for the coefficient. (3) L.lnSOI stands for the first-order lag of dependent variable (i.e., SO2 intensity). (4) W is the
spatial weight matrix. W�X stands for the product of W and the variable X, representing the spillover effect of the
variable X on SO2 intensity.
Source: Research results.
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Practical innovation activities (lnURD) pay more attention to the practical operation
of green technology, their product maturity is higher, and technology is easier to flow
between different regions, thus resulting in a positive technology spillover effect on
the decrease of SO2 intensity.

Among other control variables, first, the coal-dominated energy structure (lnEM)
had a significant positive impact on local SO2 intensity. This shows that the long-
term energy consumption structure in China has been sacrificing the environment;
therefore, it is extremely important to optimise the current energy consumption
structure. The indirect effects of energy structure (W�lnEM) on SO2 intensity were
all positive and passed the significance level test of 5%, demonstrating the local
energy consumption structure increased the SO2 intensity of neighbouring areas. The
possible reason is the local energy consumption structure has greatly promoted local
economic development, and the neighbouring areas will also highly rely on coal for
economic development based on competition, resulting in increase of SO2 intensity in
the neighbouring areas. Second, the direct effect of industrial structure (lnSIN) on
local SO2 intensity was positive, but its indirect effect (W�lnSIN) was negative. From
the perspective of the rapid industrialisation process, the increase in the proportion
of industry may be caused by high-energy-consuming industries or unreasonable
trade division in the surrounding area, which increases the local SO2 intensity, while
the SO2 intensity in neighbouring areas relatively decrease. Finally, urbanisation
(lnUR) had a negative effect on SO2 intensity, though insignificant. Rapid urbanisa-
tion will increase residents’ income and make them have higher requirements for
environmental quality. At the same time, neighbouring provinces will also imitate
this consumption pattern; therefore, the spatial effect of urbanisation (W�lnUR) will
lead to reduction of SO2 intensity.

4.3. Results of Robustness test

4.3.1. Robustness test of endogeneity W
There may be endogeneity problems in previous estimates, which may bias the esti-
mated results. The possible reasons for endogeneity are as follows: First is the prob-
lem of omitted variables. Some important variables affecting SO2 intensity may be
missing from the model. Second is the interaction effect: environmental R&D activ-
ities and SO2 intensity are likely to interact. Third, the problem of endogeneity is not
only how to build spatial weights but also involves the spatial lag of control variables
in SDM that is considered to be endogenous (Delgado et al., 2018). Referring to
Zhang and Wu (2022), the Spatial Panel Autoregressive Generalised Method of
Moments Regression (Spatial GMM) was used in this study. First, the instrumental
variables of spatial GMM estimation were selected. We used W�lnSRD as the instru-
mental variable of spatial GMM method to estimate the influence of general environ-
mental R&D activities on SO2 intensity. When estimating the impact of various types
of environmental R&D activities on SO2 intensity, W�lnSRD and W�lnURD were
selected as instrumental variables of spatial GMM estimation. Second, Hansen J test
was used to test the rationality of instrumental variables. Finally, the SAR model was
used for GMM estimation of the above models, and the outcomes can be seen in

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 1899



columns 1 and 2 of Table 8. The empirical results show that the regression results are
consistent with those in Table 5 (DSDM1) and Table 7 (DSDM1).

4.3.2. Robustness tests of different variables
We added control variable to verify the robustness. Openness is one of the most sig-
nificant elements influencing the environment. Consistent with most studies, foreign
direct investment (FDI) was taken as a proxy variable of openness and expressed by
the rate of FDI in the total fixed-asset investment (Huang & Chen, 2020). Relevant
data were sourced from CPSY. The results in columns 3 and 4 of Table 8 show that

Table 8. The effects of environmental R&D activities on SO2 intensity (Robustness test).
1 2 3 4

Variables SGMM1 SGMM2 DSDM4 DSDM5

ln SRD �0.039��� �0.042���
(0.005) (0.001)

lnURD �0.113��� �0.118���
(0.014) (0.017)

lnCRD �0.016 �0.016
(0.015) (0.017)

ln SIN 0.061�� 0.06� 0.067��� 0.069���
(0.026) (0.028) (0.022) (0.023)

ln EM 0.343��� 0.345��� 0.357��� 0.0356���
(0.015) (0.04) (0.002) (0.011)

lnUR �0.069 �0.071 �0.078 �0.074
(0.062) (0.09) (0.063) (0.059)

ln EX

ln FDI 0.083��� 0.080���
(0.014) (0.015)

L: ln SOI 0.748��� 0.782��� 0.795��� 0.794���
(0.067) (0.076) (0.025) (0.024)

W � ln SOI 0.258�� 0.219� 0.217��� 0.219���
(0.112) (0.106) (0.027) (0.037)

W � ln SRD 0.015 0.013
(0.024) (0.04)

W � lnURD �0.046� �0.047��
(0.023) (0.018)

W � lnCRD �0.013 �0.013
(0.077) (0.037)

W � ln SIN �0.09�� �0.081��� �0.089��� �0.087���
(0.032) (0.03) (0.024) (0.023)

W � ln EM 0.159�� 0.151� 0.155�� 0.156��
(0.069) (0.072) (0.068) (0.068)

W � lnUR �0.245 �0.237 �0.245 �0.241
(0.238) (0.256) (0.237) (0.238)

W � ln EX

W � ln FDI �0.008��� �0.009��
(0.002) (0.003)

q 0.68��� 0.625��� 0.066��� 0.068���
(0.19) (0.131) (0.022) (0.025)

sigma2_e 0.002��� 0.002���
(0.000) (0.000)

Hansen J 0.199 0.203

Notes: (1). ���, ��, and � denote the significance at the 1%, 5%, and 10% level..(2) The variables EX and FDI repre-
sent the openness, denoted by the ratio of export in GDP and the share of FDI in fixed asset investment, respect-
ively. (3) The regression results of column 1 and column 2 are obtained by the spregdpd and xtdpdsys commands
of Stata14.0; columns (3)-(6) based on W1.
Source: Research results.
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the magnitude and direction of the effects of core variables and other influencing fac-
tors on SO2 intensity are similar to the previous results. Thus, the robustness of the
regression outcomes in this research was confirmed.

5. Conclusions and policy recommendations

Our research empirically tested the effects of environmental R&D activities on SO2

intensity by using spatial econometric model according to the 2005–2015 panel data
of Chinese provinces. The major conclusions include: (1) China’s SO2 intensity is
path-dependent in the temporal dimension. In terms of spatial agglomeration, SO2

intensity presents a spatial correlation of ‘high-high’ and ‘low-low’, and the regional
SO2 intensity will be positively affected by surrounding areas. (2) The direct influence
of environmental R&D on local SO2 intensity is negative both in the short- and long-
term, indicating that it has a continuous inhibition effect on local SO2 intensity, but
the effect does not show a long-term strengthening trend. The indirect effects of
environmental R&D on neighbouring areas are all positive, but insignificant, showing
that the spatial spillover influences of China’s green technology are not yet apparent
and there are spatial limitations. (3) There is obvious heterogeneity in environmental
R&D. Compared with invention-type R&D, utility-type R&D has more effect on SO2

intensity. (4) The coal-based energy structure and the industrial economic structure
will significantly increase SO2 intensity in China. Although urbanisation has a posi-
tive effect on improving the environment, the effect is not significant.

The corresponding policy recommendations are as follows: (1) SO2 emission reduc-
tion and environmental protection need ‘collaborative governance’ of provinces.
Provincial governments are supposed to control local SO2 intensity. Besides, ‘emissions
alliance’ should be formed between neighbouring provinces. (2) Environmental R&D is
beneficial to controlling regional SO2 intensity, indicating that the government should
continue to support R&D related to green technology and continuously increase finan-
cial support for cleaner production technology. (3) Environmental R&D should give
full play to its spatial spillover effect. A regional linkage platform should be provided
to high-tech enterprises of emission reduction and energy conservation; in addition,
the technical personnel exchanges between regions should be strengthened. (4)
Although the influence of practical-type R&D on SO2 intensity is far higher than that
of invention-type R&D, it does not indicate that invention-type R&D is not essential.
In fact, invention-type R&D represents high-quality green technology and deserves
more investment. Thus, China should make full use of these differential characteristics
of environmental R&D to reduce SO2 intensity more effectively.

This study pays attention to the influence of green technology on environmental
performance. Several extensions of this analysis are possible: (1) We use green patents
instead of green technologies, and the proxy variable problem arises. We can calculate
the biased technological progress in China and further research the influence of
biased technological progress on environmental performance. (2) Green technology
may not change linearly owing to environmental regulation and business cycle. An
extension of this study may consider the nonlinear influence of environmental
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regulation, business cycle, and human capital on green technology. (3) This study can
be extended to industry data and city data.
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