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In recent past, W. A. Hiscock [Phys. Lett. B 188 (1987) 317] studied the semi-
classical gravitational effects near cosmic strings. He obtained the vacuum expecta-
tion value of the stress-energy tensor of an arbitrary collection of conformal mass-
less free-quantum fields (scalar, spinor and vectors) in the presence of a static,
cylindrically symmetric cosmic string. With this stress-energy tensor, we study the
semi-classical gravitational effects of a cosmic string in the context of Lyra geome-
try.
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1. Introduction

In the past two decades, it has been proposed that the spontaneous breaking of
symmetries in grand unified theories during phase transitions in the early Universe
could lead to the formation of such structures as domain walls, cosmic strings and
monopoles [1]. Cosmologists are interested in defects as possible sources for the
density perturbations which seeded galaxy formation. One of these defects, the
cosmic string, is particularly interesting as it is capable of producing observational
effects and also may play an important role in the large-scale structure formation
of the Universe [2].

In last few decades, there has been considerable interest in alternative theories
of gravitation. The most important among them are scalar-tensor theories proposed
by Lyra [4] and by Brans-Dicke [4]. Lyra [4] proposed a modification of Riemannian
geometry by introducing a gauge function in to the structureless manifold that bears
a close resemblance to Weyls geometry.

In general relativity, Einstein succeeded in geometrising gravitation by identify-
ing the metric tensor with the gravitational potentials. In the scalar-tensor theory
of Brans-Dicke, on the other hand, scalar field remains alien to the geometry. Lyra’s
geometry is more in keeping with the spirit of Einsteins principle of geometrisation,
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since both the scalar and tensor fields have more-or-less intrinsic geometrical sig-
nificance. In the consecutive investigations, Sen [5] and Sen and Dunn [5] proposed
a new scalar-tensor theory of gravitation and constructed an analog of the Einstein
field equation based on Lyra’s geometry which in normal gauge may be written as

Fik ≡ Rik − 1

2
gikR +

3

2
φiφk − 3

4
gikφmφm = −8πTik , (1)

Where φi is the displacement vector and other symbols have their usual meaning
as in Riemannian geometry.

Halford [6] has pointed out that the constant displacement field φi in Lyra’s
geometry plays the role of cosmological constant Λ in the normal general-relativistic
treatment. According to Halford, the present theory predicts the same effects within
observational limits, as far as the classical solar system tests are concerned, as well
as tests based on the linearised form of field equations. Soleng [7] has pointed out
that the constant displacement field in Lyra’s geometry will either include a creation
field and be equal to Hoyles creation field cosmology or contain a special vacuum
field which together with the gauge vector term may be considered as a cosmological
term. Subsequent investigations were done by several authors in scalar tensor theory
and cosmology within the framework of Lyra geometry [8]. In classical theory,
if the Lagrangian is conformally invariant, the trace of the energy stress tensor
vanishes, but in the corresponding quantized theory, it acquires a trace during
renormalization. This trace anomaly is a geometrical scalar containing derivatives
of the metric tensor. The trace of the vacuum stress energy for a conformally
coupled massless free field is given by the anomaly, which is

T a
a =

1

2880π2

[

aCijklC
ijkl + b

(

RijR
ij − 1

3
R2

)

+ c 2R + dR2

]

.

The constants a, b, c and d depend on the conformal scalar field under consideration
and other symbols have their usual meaning as in Riemannian geometry.

In 1987, Hiscock [3] studied semi-classical gravitational effects near cosmic
strings. He has considered the vacuum expectation value (VEV) of the stress tensor
of an arbitrary collection of conformal massless free quantum fields(scalar, spinor
and vectors) as the source term in the background space-time of a static cylindri-
cally symmetric cosmic string. Taking these non-zero vacuum expectation value of
the stress-energy tensors as a source, he solved the semi-classical Einstein equations
for the quantum perturbations (to the first order in h̄) of the metric. In a recent
work, we have studied semi-classical gravitational effects around global monopole in
Lyra geometry [9]. In this paper, we discuss semi-classical gravitational effects near
cosmic string with constant displacement vector based on Lyra geometry in normal
gauge, i.e. displacement vector φi = (β, 0, 0, 0), where β is a constant, and look
whether the semi-classical gravitational effects near the cosmic string shows any
significant properties due to the introduction of the gauge field in the Riemannian
geometry. We have taken the same vacuum expectation value of the stress-energy
tensor as obtained by Hiscock [3] and set equal to the modified Einstein’s equations
to solve for the quantum perturbations (to the first order in h̄) of the metric.
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2. Basic equations

The form of the entire vacuum stress-energy tensors as obtained by Hiscock [3]
are

〈T b
a〉 = Dh̄r−4[1, 1, −3, 1] , (2)

where the constant D = [(1−4µ)−4−1]/(1440π2) and µ is the mass per unit length
of the string.

In our consideration, the vacuum expectation values of the stress tensors of
the quantum fields can be set equal to Fik in the semi-classical approach to the
quantum theory of gravity Fik = −8π〈Tik〉 . (3)

Here the geometrical units are used with G = c = 1 and h̄ ≈ 2.612 × 10−66 cm2.

For a cosmic string, the space time is static, cylindrically symmetric. One can
write the corresponding line element as

ds2 = A(r)(−dt2 + dz2) + A(r)dr2 + r2B(r)dθ2 . (4)

The field equations (3) for the metric (4) are

1

2

A′B′

A2B
+

A′ 2

4A3
+

A′

rA2
+

3

4

1

A
β2 = −8πDh̄

r4
, (5)

−A′ 2

4A3
+

A′′

A2
+

3

4

1

A
β2 =

24πDh̄

r4
, (6)

−A′ 2

A3
+

1

2

A′′

A2
+

1

2

B′′

B2
+

B′

rAB
− 3

4

B′ 2

AB2
− 3

4

1

A
β2 = −8πDh̄

r4
(7)

(‘′’ indicates differentiation w.r.t. r ).

3. Solutions in the weak-field approximations

Under the weak-field approximation, one can write

A(r) = 1 + f(r) and B(r) = 1 + g(r) . (8)

Here the functions f and g should be computed to the first order in h̄ and β2.

Under these weak-field approximations, the field equations take the following
forms f ′

r
+

3

4
β2 = −8πDh̄

r4
, (9)

f ′′ +
3

4
β2 =

24πDh̄

r4
, (10)

1

2
f ′′ +

1

2
g′′ +

g′

r
− 3

4
β2 = −8πDh̄

r4
, (11)
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From the above equations, we get the following solution for f and g

f =
4πDh̄

r2
− 3

8
β2r2 , (12)

g = −20πDh̄

r2
− 3

8
β2r2 . (13)

Thus in the weak-field approximation, the string metric in Lyra’s geometry, con-
sidering semi-classical gravitational effects, takes the following form

ds2 =

[

1 +
4πDh̄

r2
− 3

8
β2r2

]

(−dt2 + dz2 + dr2) + r2

[

1 − 20πDh̄

r2
+

3

8
β2r2

]

dθ2 .

(14)

4. Gravitational effects on test particles

Let us now consider a relativistic particle of mass m, moving in the gravitational
field of the string described by Eq. (14) using the formalism of Hamilton and Jacobi
(H - J). In our case, the H - J equation is [10]

1

A(r)

[

−
(

∂S

∂t

)2

+

(

∂S

∂z

)2

+

(

∂S

∂r

)2
]

+
1

B(r)

(

∂S

∂θ

)2

+ m2 = 0 , (15)

where A = 1 + 4πDh̄/r2 − (3/8)β2r2 and B = 1 − 20πDh̄/r2 + (3/8)β2r2.

In order to solve the particle differential equation, let us use the separation of
variables for the H - J function S as follows [10],

S(r, z, q, t) = −Et + S1(r) + Jθ + Mz . (16)

Here the constants E and J can be identified as the energy and angular momentum
of the particle and M is the momentum along the z-direction.

Hence the expression for S1(r) is

S1(r) = ǫ

∫
[

E2 − M2 + m2A − AJ2

Br2

]1/2

dr .

Here ǫ = ±1.

Hence the trajectory of the particle is given by [10]

t = ǫ

∫

E

[

E2 − M2 + m2A − AJ2

Br2

]−1/2

dr , (17)

θ = ǫ

∫

AJ

Br2

[

E2 − M2 + m2A − AJ2

Br2

]−1/2

dr , (18)
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z = ǫ

∫

M

[

E2 − M2 + m2A − AJ2

Br2

]−1/2

dr . (19)

Thus the radial velocity of the particle is given by

dr

dt
=

1

E

[

E2 − M2 + m2A − AJ2

Br2

]1/2

. (20)

The turning points of the trajectory are given by dr/dt = 0 and as a consequence
the potential curves are

E

m
=

[

M2

m2
+

AJ2

r2m2B
− A

]1/2

. (21)

The extrema of the potential curve are the solutions of the equation

3

4
β2r7 + 2r2

[

J2

m2
+ 4πDh̄

]

− 96πDh̄
J2

m2
= 0 . (22)

As an algebraic equation of odd degree, it has at least one real root, so it is possible
to have a bound orbit. Hence a trajectory of the particle can be trapped by the
string. Thus a cosmic string, with semi-classical effects taken into consideration in
Lyra geometry, may have a gravitational field which is attractive in nature.

5. Geodesics

We shall now study the bending of light in the above field. The equation for the
path of a light beam is [11]

(

dX

dθ

)2

= aX2 + bX − c , (23)

where Adt/dp = l, Adz/dp = k, r2Bdθ/dp = h and r = 1/U , where p is the
affine parameter along the light path and X = U2, a = [48πDh̄(l2/k2) − 1], b =
[(l2/h2) − (k2/h2) + 3

4
β2] and c = [3

2
β2(l2/h2)] (here we neglect the term U6h̄).

Then we get

1√
a

ln

[

X +
b

2a

]

+

√

[

X +
b

2a

]2

− b2 − 4ac

4a2
= 2θ . (24)

To U = 0 corresponds

2θ =
1√
a

ln

(

b

2a
+

√

c

a

)

. (25)

Hence the angle of bending of light is given by the expression

∆ = π

[

1 − 1√
a

ln

(

b

2a
+

√

c

a

)]

. (26)
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6. Summary

In this paper, we have studied the semi-classical gravitational effects near cos-
mic string in Lyra geometry. We have assumed the same vacuum expectation value
of the stress-energy tensor as obtained by Hiscock [3]. We have shown that cos-
mic string, with semi-classical effects into consideration, in Lyra geometry may
have gravitational field which is attractive in nature. When the gauge function is
switched off i.e. when β = 0, then we return to the earlier general relativity solution
of Hiscock. We also discuss the trajectory of photons in our space-time.
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POLUKLASIČNI GRAVITACIJSKI EFEKTI BLIZU KOZMIČKE STRUNE U
LYRINOJ GEOMETRIJI

Nedavno je W. A. Hiscock [Phys. Lett. B 188 (1987) 317] proučavao poluklasične
gravitacijske efekte u blizini kozmičkih struna. Izveo je vakuumsku očekivanu vri-
jednost za tenzor naprezanja-energije za proizvoljan skup konformnih, bezmasenih
i slobodnih kvantnih polja (skalara, spinora i vektora) u prisustvu statičke cilin-
drično-simetrične kozmičke strune. S tim tenzorom proučavamo poluklasične grav-
itacijske efekte kozmičke strune u okviru Lyrine geometrije.
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